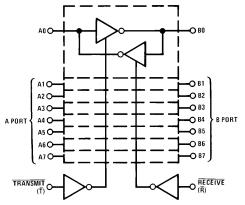


DP8307A 8-Bit TRI-STATE® **Bidirectional Transceiver (Inverting)**

General Description

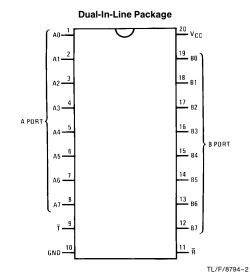

The DP8307A is a high speed Schottky 8-bit TRI-STATE bidirectional transceiver designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. It is capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high (VOH) level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, it features glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.

DP8303A and DP7304B/DP8304B are featured with Transmit/Receive (T/R) and Chip Disable (CD) inputs to simplify control logic. For greater design flexibility, DP8307A and DP7308/DP8308 is featured with $\overline{\text{Transmit}}$ ($\overline{\text{T}}$) and Receive (R) control inputs.

Features

- 8-bit bidirectional data flow reduces system package count
- Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loading
- Output high votlage interfaces with TTL, MOS, and CMOS
- 48 mA/300 pF bus drive capability
- Pinouts simplify system interconnections
- Independent T and R controls for versatility
- Compact 20-pin dual-in-line package
- Bus port glitch free power up/down

Logic and Connection Diagrams



TL/F/8794-1

Logic Table

Control Inputs		Resulting Conditions			
Transmit	Receive	A Port	B Port		
1	0	OUT	IN		
0	1	IN	OUT		
1	1	TRI-STATE	TRI-STATE		
0	0	Both Active*			

^{*}This is not an intended logic condition and may cause oscillations.

Top View Order Number DP8307AN See NS Package Number N20A

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Output Voltage 5.5V
Maximum Power Dissipation* at 25°C

Cavity Package 1667 mW Molded Package 1832 mW $\begin{array}{lll} \mbox{Lead Temperature (soldering, 4 sec.)} & 260 \mbox{°C} \\ \mbox{Storage Temperature} & -65 \mbox{°C to} + 150 \mbox{°C} \\ \end{array}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.75	5.25	V
Temperature (T _A)	0	70	°C

DC Electrical Characteristics (Notes 2 and 3)

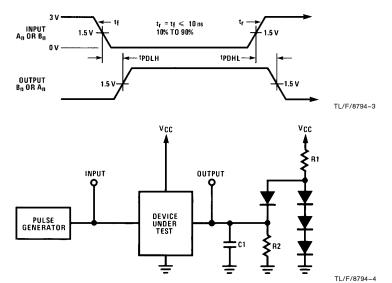
Symbol	Parameter	Conditions		Min	Тур	Max	Units
A PORT	(A0-A7)			•			
V _{IH}	Logical "1" Input Voltage	$\overline{T} = V_{IL}, \overline{R} = 2.0V$		2.0			٧
V _{IL}	Logical "0" Input Voltage	$\overline{T} = V_{IL}, \overline{R} = 2.0V$				0.7	V
V _{OH}	Logical "1" Output Voltage	$\overline{T} = 2.0V, \overline{R} = V_{IL}$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} - 1.15	V _{CC} - 0.7		٧
		$V_{IL} = 0.5V$	$I_{OH} = -3 \text{ mA}$	2.7	3.95		٧
V _{OL}	Logical "0" Output Voltage	$\overline{T} = 2.0V$,	I _{OL} = 16 mA		0.35	0.5	٧
	$\overline{R} = V_{IL}$	I _{OL} = 8 mA		0.3	0.4	٧	
I _{OS}	Output Short Circuit Current	$\overline{T} = 2.0V, \overline{R} = V_{IL}, V_O = 0V,$ $V_{CC} = Max, (Note 4)$		-10	-38	-75	mA
I _{IH}	Logical "1" Input Current	$\overline{T} = V_{IL}, \overline{R} = 2.0V, V_{II}$	H = 2.7V		0.1	80	μΑ
I _I	Input Current at Maximum Input Voltage	$\overline{R} = \overline{T} = 2.0V$, $V_{CC} = Max$, $V_{IH} = 5.25V$				1	mA
I _{IL}	Logical "0" Input Current	$\overline{T} = V_{IL}, \overline{R} = 2.0V, V_{IN} = 0.4V$			-70	-200	μΑ
V _{CLAMP}	Input Clamp Voltage	$\overline{T} = \overline{R} = 2.0V$, $I_{IN} = -12 \text{ mA}$			-0.7	-1.5	٧
I _{OD} Output/Input	$\overline{T} = \overline{R} = 2.0V$	$V_{\text{IN}} = 0.4V$			-200	μΑ	
TRI-STATE Current		$V_{IN} = 4.0V$				80	μΑ
B PORT	(B0-B7)						
V _{IH}	Logical "1" Input Voltage	$\overline{T} = 2.0V, \overline{R} = V_{IL}$		2.0			٧
V_{IL}	Logical "0" Input Voltage	$\overline{T} = 2.0V, \overline{R} = V_{IL}$				0.7	٧
V _{OH} Logical "1" Output Voltage	$\overline{T} = V_{IL}, \overline{R} = 2.0V$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} - 1.15	V _{CC} - 0.8		V	
	$V_{IL} = 0.5V$	$I_{OH} = -5 \text{ mA}$	2.7	3.9		V	
			$I_{OH} = -10 \text{ mA}$	2.4	3.6		V
V_{OL}	Logical "0" Output Voltage	$\overline{T} = V_{IL}, \overline{R} = 2.0V$	$I_{OL} = 20 \text{ mA}$		0.3	0.4	V
			$I_{OL} = 48 \text{ mA}$		0.4	0.5	V
I _{OS}	Output Short Circuit Current	$\overline{T} = V_{IL}, \overline{R} = 2.0V, V_O = 0V,$ $V_{CC} = Max, (Note 4)$		-25	-50	-150	mA
I _{IH}	Logical "1" Input Current	$\overline{T} = 2.0V, \overline{R} = V_{IL}, V_{IH} = 2.7V$			0.1	80	μΑ
II	Input Current at Maximum Input Voltage	$\overline{T} = \overline{R} = 2.0V$, $V_{CC} = Max$, $V_{IH} = 5.25V$				1	mA
I _{IL}	Logical "0" Input Current	$\overline{T} = 2.0V, \overline{R} = V_{IL}, V_{IN} = 0.4V$			-70	-200	μΑ
V _{CLAMP}	Input Clamp Voltage	$\overline{T} = \overline{R} = 2.0V$, $I_{ N} = -12 \text{ mA}$			-0.7	-1.5	V
I _{OD}	Output/Input TRI-STATE Current	$\overline{T} = \overline{R} = 2.0V$	$V_{IN} = 0.4V$			-200	μΑ
			V _{IN} = 4.0V			+200	μΑ

^{*}Derate cavity package 11.1 mW/°C above 25°C; derate molded package 14.7 mW/°C above 25°C.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
CONTROI	LINPUTS T, R			-1			
V _{IH}	Logical "1" Input Voltage			2.0			V
V _{IL}	Logical "0" Input Voltage				0.7	٧	
I _{IH}	Logical "1" Input Current	V _{IH} = 2.7V			0.5	20	μΑ
II	Maximum Input Current	$V_{CC} = Max, V_{IH} = 5.25V$				1.0	mA
I _{IL}	Logical "0" Input Current	$V_{IL} = 0.4V$	R		-0.1	-0.25	mA
			Ŧ		-0.25	-0.5	mA
V _{CLAMP}	Input Clamp Voltage	$I_{\text{IN}} = -12 \text{mA}$			-0.8	-1.5	٧
POWER S	UPPLY CURRENT						
Icc	Power Supply Current	$\overline{T} = \overline{R} = 2.0V, V_{IN} = 2.0V, V_{CC} = Max$			70	100	mA
		$\overline{T} = 0.4V, V_{INA} =$		100	150	mA	

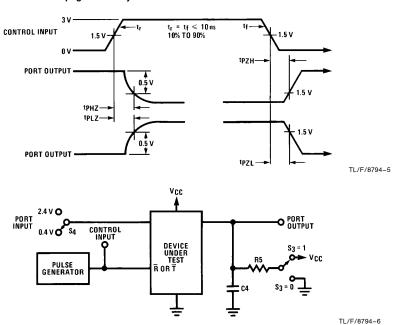
AC Electrical Characteristics $V_{CC}=5V,\,T_A=25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
A PORT DATA/MODE SPECIFICATIONS								
t _{PDHLA}	Propagation Delay to a Logical "0" from B Port to A Port	$\overline{T} = 2.4V, \overline{R} = 0.4V$ (Figure A) R1 = 1k, R2 = 5k, C1 = 30 pF		8	12	ns		
t _{PDLHA}	Propagation Delay to a Logical "1" from B Port to A Port	$\overline{T} = 2.4V, \overline{R} = 0.4V$ (Figure A) R1 = 1k, R2 = 5k, C1 = 30 pF		11	16	ns		
t _{PLZA}	Propagation Delay from a Logical "0" to TRI-STATE from $\overline{\mathbf{R}}$ to A Port	B0 to B7 = 2.4V, \overline{T} = 2.4V (Figure B) S3 = 1, R5 = 1k, C4 = 15 pF		10	15	ns		
t _{PHZA}	Propagation Delay from a Logical "1" to TRI-STATE from $\overline{\mathbf{R}}$ to A Port	B0 to B7 = 0.4V, \overline{T} = 2.4V (Figure B) S3 = 0, R5 = 1k, C4 = 15 pF		8	15	ns		
t _{PZLA}	Propagation Delay from TRI-STATE to a Logical "0" from \overline{R} to A Port	B0 to B7 = 2.4V, \overline{T} = 2.4V (Figure B) S3 = 1, R5 = 1k, C4 = 30 pF		25	35	ns		
t _{PZHA}	Propagation Delay from TRI-STATE to a Logical "1" from \overline{R} to A Port	B0 to B7 = 0.4V, \overline{T} = 2.4V (Figure B) S3 = 0, R5 = 5k, C4 = 30 pF		24	35	ns		
B PORT D	ATA/MODE SPECIFICATIONS							
t _{PDHLB}	Propagation Delay to a Logical "0" from A Port to B Port	$\overline{T} = 0.4V, \overline{R} = 2.4V (Figure A)$ R1 = 100 Ω , R2 = 1k, C1 = 300 pF R1 = 667 Ω , R2 = 5k, C1 = 45 pF		12 8	18 12	ns ns		
t _{PDLHB}	Propagation Delay to a Logical "1" from A Port to B Port	$\overline{T} = 0.4V, \overline{R} = 2.4V (Figure A)$ R1 = 100 Ω , R2 = 1k, C1 = 300 pF R1 = 667 Ω , R2 = 5k, C1 = 45 pF		15 9	23 14	ns ns		
t _{PLZB}	Propagation Delay from a Logical "0" to TRI-STATE from T to B Port	A0 to A7 = 2.4V, \overline{R} = 2.4V (Figure B) S3 = 1, R5 = 1k, C4 = 15 pF		13	18	ns		
t _{PHZB}	Propagation Delay from a Logical "1" to TRI-STATE from \overline{T} to B Port	A0 to A7 = 0.4V, \overline{R} = 2.4V (Figure B) S3 = 0, R5 = 1k, C4 = 15 pF		8	15	ns		
t _{PZLB}	Propagation Delay from TRI-STATE to a Logical "0" from \overline{T} to B Port	A0 to A7 = 2.4V, \overline{R} = 2.4V (Figure B) S3 = 1, R5 = 100 Ω , C4 = 300 pF S3 = 1, R5 = 667 Ω , C4 = 45 pF		32 18	40 25	ns ns		
t _{PZHB}	Propagation Delay from TRI-STATE to a Logical "1" from \overline{T} to B Port	A0 to A7 = 0.4V, \overline{R} = 2.4V (Figure B) S3 = 0, R5 = 1k, C4 = 300 pF S3 = 0, R5 = 5k, C4 = 45 pF		25 16	35 25	ns ns		


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for V_{CC} = 5V and T_A = 25°C.

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.


Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

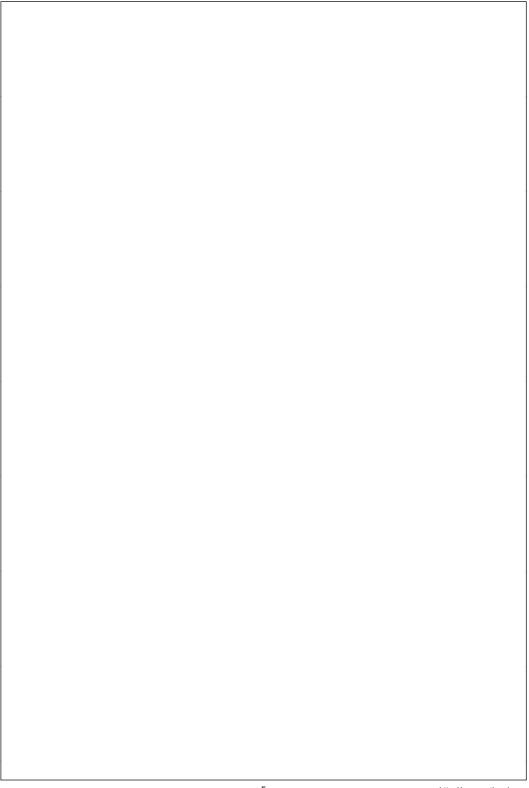
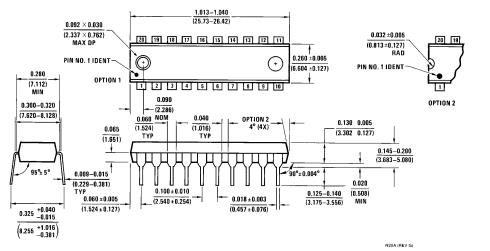

Note: C1 includes test fixture capacitance.

FIGURE A. Propagation Delay from A Port to B Port or from B Port to A Port



Note: C4 includes test fixture capacitance. Port input is in a fixed logical condition. See AC Table.

FIGURE B. Propagation Delay to/from TRI-STATE from \overline{R} to A Port and \overline{T} to B Port

Physical Dimensions inches (millimeters)

Molded Dual-In-Line Package (N) Order Number DP8307AN NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

http://www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86

Fax: +49 (0) 180-530 so so Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 85 85 English Tel: +49 (0) 180-532 78 32 Français Tel: +49 (0) 180-532 95 58 Italiano Tel: +49 (0) 180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2308
Fax: 81-043-299-2408