

CHARON-11
Application Interface Manual (CHAPI)

[10-01-040] © 2002 Software Resources International S.A

CHARON-11
Application Interface Manual (CHAPI)

Document 10-01-040

www.softresint.com

Page iv

[10-01-040] © 2002 Software Resources International S.A

We greatly acknowledge the development of this manual and the
practical application of the CHARON-11 Application Interface by
Eduardo Marcelo Serrat of Galmes y Casale S.R.L., Argentina.

Copyright © 2002 Software Resources International S.A.

All rights reserved. Under the copyright laws, this publication and the
software described within may not be copied, in whole or in part, without the
written consent of Software Resources International. The same proprietary
and copyright notices must be affixed to any permitted copies as were
affixed to the original. This exception does not allow copies to be made for
others, whether or not sold. Under the law, copying includes translating into
another language or format.

The CHARON name and logo is a trademark of Software Resources
International. PDP-11, Qbus and UNIBUS are trademarks of Compaq
Computer Corporation. Windows is a registered trademark in the United
States and other countries, licensed exclusively through Microsoft
Corporation, USA. All other trademarks and registered trademarks are the
property of their respective holders.

Software Resources International makes no representations that the use of
CHARON-11 as described in this publication will not infringe on existing or
future patent rights, nor do the descriptions contained in this publication
imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Document number: 10-01-040

20 February 2002

Printed in Switzerland

Page - 1 -

[10-01-040] © 2002 Software Resources International S.A

Contents
Preface ...1

Related information:...2
Conventions...2

Chapter 1 Overview ..3

Chapter 2 CHAPI structure ..5
2.1 The chapi_in structure ..5
2.2 The chapi_out structure ..5

Chapter 3 KW11-L emulation with CHAPI9
3.1 The KW11-L CSR description ..9
3.2 KW11.C code listing..10
3.3 KW11.C code analysis..14

Appendix A CHAPI function reference17
A.1 DLL Initialization Routine ..17

void *DLLENTRY *XXX_INIT (chapi_in* ci,chapi_out co,char *name)..............17
A.2 CHAPI_IN functions ..18

void put_ast (ast_handler func,void *param) ...18
void put_sst (long delay,int tag,sst_fun func,void *arg1, int arg2)18
void put_irq (int vec,int pri, int delay,irq_fun fun, int arg)19
void clear_irq (int vec)..19
int read_mem (size_t adr, size_t len,char *buf) ...20
int write_mem (size_t adr, size_t len,char *buf)...20

A.3 CHAPI_OUT functions..21
int set_configuration (void *instance, char *parameters)21
void start (void *instance) ..22
void reset (void *instance) ...22
void stop (void *instance)...22
void write(void *instance,size_t addr,int value, int is_byte_access)23
int read(void *instance,size_t addr,int value, int is_byte_access)23

Page - 1 -

[10-01-040] © 2002 Software Resources International S.A

Preface
The PDP-11 processor family designed by Digital Equipment
Corporation during the 1970’s and 1980’s became a landmark in the
history of computing. In decades of development and sales these
systems found their way into virtually every application of computer
technology.

It is a tribute to the original PDP-11 designers that their products
survive the company the company who developed them by so many
years, in an industry where product life cycles are now measured in
months. Even a well-designed PDP-11 will eventually stop working
due to mechanical or electrical hardware failure, but its design lives
on in CHARON-11, a PDP-11 system emulator developed by
Software Resources International.

Although Charon-11 provides a wide range of PDP-11 emulated
peripherals, it has the capability to add support for peripheral devices
that are not part of its standard component library. One way is to
connect an existing Qbus or UNIBUS back plane to the emulator via
a bus adapter. Another method is to emulate a peripheral on the host
system in software and connect it to the emulated peripheral bus.
This feature of CHARON-11 is achieved through its Application
Programming Interface named CHAPI.

This manual explains you how to use CHAPI for developing
additional CHARON-11 peripheral support. It provides a number of
examples and explains the individual software calls. To be
successful in developing a peripheral using CHAPI you need to be
familiar with the PDP-11 architecture, have access to the technical
documentation of the peripheral you want to emulate and have the
capability to write real-time applications on the Windows platform.

Chapter 2 describes the application of CHAPI by showing in detail
the code implementation of a KW11-L line clock device.

Page - 2 -

[10-01-040] © 2002 Software Resources International S.A

Appendix A contains detailed functions reference.

Related information:

http://www.montagar.com/~patj/dec/hcps.htm points to several PDP-
11 technical manuals.

 Conventions

Throughout this manual these conventions are followed:

Notation Description

$ or > The dollar sign or the right angle bracket in
interactive examples indicates operating system
prompt.

User Input Bold type in examples indicates source code.

<path> Bold type enclosed by angle brackets indicates
command parameters and parameter values.

[] In syntax definitions, brackets indicate items that
are optional.

… In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

Page - 3 -

[10-01-040] © 2002 Software Resources International S.A

Chapter 1 Overview
CHARON-11 emulates
the hardware of a PDP-
11 system. It provides a
software model of a
PDP-11 CPU, memory,
disks, tapes, serial lines,
other controllers and its
system bus (Qbus or
UNIBUS).

CHAPI, the CHARON-11
Application Interface is a

method to connect a user written emulated peripheral controller to
the emulated PDP-11 bus. The user written device is implemented
as a Visual C++ WIN32 DLL. This DLL can be loaded with the
CHARON-11 command console or in the configuration file.

Every PDP-11 controller has a specific bus interface through which it
communicates with the rest of the PDP-11. The controller
functionality is typically described in its User Guide. The User Guide
shows the CSRs addresses and bit field descriptions, Interrupt
VECTORS, DMA features (if present) and describes how to program
the device.

In order to be recognizable by the PDP-11 software, the user written
controller emulation must present the same CSRs, VECTORs and
DMA features of its hardware equivalent. A full understanding of the
device operation should be acquired before proceeding to implement
an emulation of it using CHAPI.

PDP-11
hardware

CHARON-11

Windows
Host hardware

Application
System utilities
System libraries

Operating
system code

Application

System utilities
System libraries

Operating
system code

Page - 5 -

[10-01-040] © 2002 Software Resources International S.A

Chapter 2 CHAPI structure
A user written emulated device is implemented as a Visual C++
WIN32 DLL. At the core of CHAPI, there are two important
structures, chapi_in and chapi_out, defining pointers to functions.
These structures are shared by CHARON-11 and the user written
DLL.

2.1 The chapi_in structure

Chapi_in contains pointers to emulator filled-in internal functions and
values for the CSR and VEC addresses:

typedef struct {
 size_t reg_addr;
 size_t reg_win_size;
 int vector;
 void (CHAPI* put_ast)(ast_handler func, void* parm);
 void (CHAPI* put_sst)(long delay, int tag,
 sst_fun fun, void* arg1, int arg2);
 void (CHAPI* put_irq) (int vec, int pri, int delay_cycles,
 irq_fun fun, int arg);
 void (CHAPI* clear_irq) (int vec);
 size_t (CHAPI* read_mem) (size_t adr, size_t len, char* buf);
 size_t (CHAPI* write_mem) (size_t adr, size_t len, const char* buf);
} chapi_in;

The user written DLL calls the functions provided by this structure.

2.2 The chapi_out structure

Chapi_out contains pointers to DLL’s filled-in functions that are called
by CHARON-11 emulator when accessing the emulated device:
typedef struct {

Page - 6 -

[10-01-040] © 2002 Software Resources International S.A

 void (CHAPI* stop) (void* instance);
 void (CHAPI* start)(void* instance);
 void (CHAPI* reset)(void* instance);
 void (CHAPI* write)(void* instance, size_t addr, int value,
 int is_byte_access);
int (CHAPI* read) (void* instance, size_t addr, int

is_byte_access);
int (CHAPI* set_configuration)(void* instance, char*

 parameters);
} chapi_out;

The user written DLL must export one symbol, the name of the
Initialization function that will receive the chapi_in structure and send
out the chapi_out structure properly filled with the corresponding
function pointers.

The DLL you create runs in a thread separate from Charon-11.
Depending on the device you are trying to emulate, you can create a
single thread or a multithreaded DLL for it.

There are two kinds of emulated devices: those that do not require
mapping and those that map an emulated device functionality onto a
host resource.

The first ones are very simple devices like the KW11-L line clock and
are written using single threaded DLLs. The second ones are more
complex and are typically implemented as multithreaded DLLs. Disk
subsystems, Communication devices like Ethernet Adapters, Sync
Adapters, Serial Multiplexers, etc. fall into this category.

Use of CHAPI is illustrated in the following chapter by showing in
detail the code implementation of a KW11-L line clock device.

Page - 7 -

[10-01-040] © 2002 Software Resources International S.A

2.3 CHAPI performance considerations.

As the CHARON CPU thread uses up to 100% of the host CPU
cycles normally the CPU threads run on a lower priority than device
priority. This enables device threads to handle near to real-time
activity.

In some circumstances as CHARON-11 runs as a
NORMAL_PRIORITY_CLASS process with the main thread at
THREAD_PRIORITY_NORMAL this can affect CHARON-11
performance when used along with CHAPI modules, particularly
when CHARON-11 is not the foreground process. The actual
foreground process receives a priority boost that affects CHARON-
11 as a background process. Thus CHAPI Modules threads that
execute I/O, may also receive Priorities Boost that surpasses
CHARON's. This can cause problems.

To avoid such problems consider changing the CHARON-11 Main
Thread Priority to THREAD_PRIORITY_HIGHEST. With this priority,
foreground priority boosting and CHAPI Threads running at
THREAD_PRIORITY_NORMAL do not affect CHARON11.

With this approach, CHARON-11 and the CHAPI DZ11 modules
work well.

Page - 9 -

[10-01-040] © 2002 Software Resources International S.A

Chapter 3 KW11-L emulation with CHAPI
The KW11-L line clock uses a signal generated from the AC Power
Supply input line voltage and converts it in a square wave identical in
frequency. The KW11-L sets one bit on its CSR for each cycle. A
program can make use of this event and count unit time intervals of
20ms or 16 2/3ms depending on the input frequency, 50HZ or 60HZ
correspondingly.

This device is simple to implement with CHAPI. The KW11-L has
only one register and one interrupt vector (see figure 3.) In its
register it only uses CSR’s bits 6 and 7. For each cycle, bit 7 is set. A
program can “poll” the CSR to count the unit time intervals. If the
program is polling the CSR, it is responsible for resetting bit 7 to 0. If
bit 6 is on, an interrupt is delivered for each cycle. The routine
hooked at interrupt vector 100 increments a time interval counter.

3.1 The KW11-L CSR description

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|

| |

| | Interrupt Enable R/W)

|___Interrupt Monitor(R/W)

CSR: 777546

VEC: 100

The KW11-L CHAPI counterpart is produced from KW11.C coded as
a WIN32 DLL using Microsoft Visual C++ 6.0 (see further on). In
order to produce the DLL, KW11.C and CHAPI.H should be located
preferably at the following path:

C:\Program Files\Charon-11\kw11

Page - 10 -

[10-01-040] © 2002 Software Resources International S.A

The Microsoft C++ command line compiler is used with the following
syntax to compile KW11. The /LD option indicates the compile to
produce a dll as output.

cl /LD kw11.c

The output from the previous command is KW11.DLL. It is loaded
from Charon-11 configuration file inserting the instructions shown as
follows:

- This symbol means that the text is comment
set CPU model="PDP 11/44"
set MMU memory_size=1024.
The following line is commented to load the CHAPI KW11 timer
instead of the CHARON-11 internal KW11-L
#load KW11-L TIMER
load chapi TIMER # TIMER is a CHAPI implementation
set TIMER dll=”..\kw11\kw11.dll” # Indicates which dll implements it
Sets CSR,VEC addr and register_window
set TIMER register=17777546 vector=100 register_window=2.
Pass 50HZ as line frequency to the DLL
set TIMER parameters=”FREQUENCY:50HZ”
Console/SLU
load DL11 SLU1
set SLU1 register=17777560 vector0=060
set SLU1 line="run terminal"
set SLU1 speed=9600.
…

3.2 KW11.C code listing

(See 3.3 for the references in the code listing)

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include "chapi.h"

Page - 11 -

[10-01-040] © 2002 Software Resources International S.A

#define TIMER_PRIORITY 6
#define KW11$M_IE 0x0040
#define KW11$M_IM 0x0080

typedef struct {
 int interval;
 int enabled;
 int csr;
 chapi_in* chapi;
} timer_t;

static void CHAPI timer_ast(void* arg) {
 timer_t* tmr = arg;
 tmr->chapi->put_irq(tmr->chapi->vector, TIMER_PRIORITY, 0, 0, 0);
}

static DWORD WINAPI timer_loop(LPVOID lpvThreadParm)
{
 timer_t* tmr = lpvThreadParm;
 while (tmr->enabled) {
 Sleep(tmr->interval);
 tmr->csr |= KW11$M_IM;
 if (tmr->csr & KW11$M_IE) {
 tmr->chapi->put_ast(timer_ast, tmr);
 }
 }
 return 1;
}

static void CHAPI kw11_start(void* instance)
{
 timer_t* tmr = (timer_t*)instance;
 HANDLE th;
 DWORD thread_id;

1

3

4

Page - 12 -

[10-01-040] © 2002 Software Resources International S.A

 tmr->enabled = 1;
 th=CreateThread(NULL, 0, timer_loop, tmr, 0, &thread_id);
 SetThreadPriority(th,THREAD_PRIORITY_TIME_CRITICAL);
}

static void CHAPI kw11_reset(void* instance)
{
 timer_t* tmr = (timer_t*)instance;
 tmr->csr = 0;
}
static void CHAPI kw11_stop(void* instance)
{
 timer_t* tmr = (timer_t*)instance;
 tmr->enabled = 0;
}

static void CHAPI kw11_write(void* instance, size_t addr, int value,
 int is_byte_access)
{
 timer_t* tmr = (timer_t*)instance;
 int new_csr =is_byte_access ? ((tmr->csr & ~(0xFF << ((addr & 1) << 3)))
 | ((value & 0xFF) << ((addr & 1) << 3))) : value;

 if (!(new_csr & KW11$M_IE) && (tmr->csr & KW11$M_IE)) {
 tmr->chapi->clear_irq(tmr->chapi->vector);
 }
 tmr->csr = new_csr;
}

static int CHAPI kw11_read(void* instance, size_t addr, int is_byte_access)
{
 timer_t* tmr = (timer_t*)instance;
 return is_byte_access ? (char)(tmr->csr >> ((addr & 1) << 3)) : tmr->csr;
}

5

6

Page - 13 -

[10-01-040] © 2002 Software Resources International S.A

static int CHAPI kw11_set_configuration(void* instance, char* parameters)
{
 timer_t* tmr = (timer_t*)instance;
 int line_frequency;

 if (strlen(parameters) == 0) return 1;
 if (sscanf(parameters, "FREQUENCY:%dHZ", &line_frequency) == 1) {
 if ((line_frequency == 50) || (line_frequency == 60)) {
 tmr->interval = 1000/line_frequency;
 return 1;
 }
 }
 printf(“KW11-Error Invalid Parameter specified for line clock frequency\n”);
 return 0;
}

__declspec(dllexport)
void* DLLENTRY KW11_INIT(chapi_in* ci, chapi_out* co, char* name)
{
 timer_t* tmr = (timer_t*)malloc(sizeof(timer_t));
 tmr->chapi = ci;
 co->stop = kw11_stop;
 co->start = kw11_start;
 co->reset = kw11_reset;
 co->read = kw11_read;
 co->write = kw11_write;
 co->set_configuration = kw11_set_configuration;
 return tmr;
}

2

Page - 14 -

[10-01-040] © 2002 Software Resources International S.A

3.3 KW11.C code analysis

1. This structure is device specific and should contain every
component needed by the emulated device as CSRs, global
variables, circular buffers, etc. It also contains a chapi_in
structure pointer that will be initialized with the value provided by
Charon-11 upon DLL loading and initialization process. Further
Charon-11’s calls to functions pointed by chapi_out structure will
pass the instantiated device specific structure as their first
parameter.

2. This is the DLL initialization routine. It´s name must be in
uppercase. Charon-11 will convert the dll name specified in

Set dll=”xxx.dll”

to uppercase and add the string “_INIT”. In our case the dll
name is kw11.dll, so Charon-11 will call KW11_INIT to initialize
the dll. The compiler metadata __declspec(dllexport) indicates
that the function KW11_INIT will be exported by this dll.

Charon-11 calls this function with three parameters. The first
and second are the chapi_in and chapi_out structure while the
third is the name of the device associated with this instance by
the configuration command

“load chapi TIMER”.

This initialization function allocates and instance of the device
specific structure timer_t, saves the received chapi_in pointer
and fills the chapi_out structure, returning the instantiated
timer_t structure.

The functions provided by chapi_out are called in the following
order by Charon-11:

Page - 15 -

[10-01-040] © 2002 Software Resources International S.A

kw11_set_configuration Called for each ‘set’ statement contained in
the Charon-11 configuration file. The only call
that is of interest is when parameters length >
0, which indicates it is called by the ‘set
TIMER parameters’ command.

kw11_start Called once when Charon-11 emulation
starts.

kw11_reset Called once or twice responding to emulated
bus reset signals.

kw11_read Called any time between kw11_reset and
kw11_stop to read CSRs values.

kw11_write Called any time between kw11_reset and
kw11_stop to write CSRs values.

kw11_stop Called once when the emulation stops.

3. The kw11_start routine is responsible for Threads creation and
initialization procedures. Generally it sets a global variable (tmr-
>enabled) that commands threads execution.

The routine kw11_stop sets this variable to 0 making executing
thread to end.

4. The kw11_loop thread executes while tmr->enabled is 1. It
sleeps for tmr->interval ms emulating the AC input voltage
frequency. After tmr->interval elapses it will set the CSR Monitor
interrupt bit to “1” and if interrupts are enabled for this device, it
will request an interrupt.

Posting an IRQ is considered an asynchronous event, so it must
be done through the chapi_in put_ast routine passing as
argument and ast_handler. This ast_handler will actually post the
IRQ using chapi_in function put_irq when dequeued from the
AST queue by Charon-11 main thread.

Page - 16 -

[10-01-040] © 2002 Software Resources International S.A

5. 6. These functions do the real work supporting the read and
write operation to the device CSRs. The addr argument indicates
which CSR is being accessed and the is_byte_access boolean
constant determines if a WORD or BYTE reference is done.

Page - 17 -

[10-01-040] © 2002 Software Resources International S.A

Appendix A CHAPI function reference

A.1 DLL Initialization Routine

void *DLLENTRY *XXX_INIT (chapi_in* ci,chapi_out* co,char *name)

Description:

DLL initialization routine. XXX must be replaced with the module name in
Uppercase.

This routine is called by CHARON-11 for each instance
creation of the user written device emulation.

Parameters:

 ci: Pointer to chapi_in structure.

co: Pointer to chapi_out structure. (Filled in by this
function)

name: Name of the instance speficied in the LOAD
configuration command.

Returns:

Pointer to the device specific structure instantiated by this
function.

Page - 18 -

[10-01-040] © 2002 Software Resources International S.A

A.2 CHAPI_IN functions

void put_ast (ast_handler func,void *param)

Description:

put_ast is a synchronization primitive used to process
asynchronous events.

Posting an IRQ is considered by Charon-11 main thread as
an asynchronous event. This function inserts the request in
an internal AST queue.

Parameters:

func: function to be called when this AST request is de-
queued. The function uses the following prototype:

(CHAPI* ast_handler)(void *)

 param: Parameter to be passed to the function.

void put_sst (long delay,int tag,sst_fun func,void *arg1, int arg2)

Description:

put_sst is used to introduce a programmed delay at code
execution measured in pdp-11 instructions.

Parameters:

delay: Long integer with number of instructions to delay
execution.

 tag: MUST BE ZERO.

func: Function to be called when ‘delay’ instructions are
executed.

 The function uses the following prototype:

Page - 19 -

[10-01-040] © 2002 Software Resources International S.A

(CHAPI* sst_fun)(void *arg1, int arg2)

 arg1,arg2: Parameters passed to ‘func’

void put_irq (int vec,int pri, int delay,irq_fun fun, int arg)

Description:

Posts and interrupt request at Bus Request defined by ‘pri’
argument.

Parameters:

 vec: Vector which will serve this interrupt request.

 pri: Bus Request priority.

delay: Number of PDP-11 instructions to delay before
requesting the interrupt.

 func: Function to call when Bus Request is granted.

 The function uses the following prototype:

(CHAPI* irq_fun)(int arg);

arg: Argument for irq_fun.

void clear_irq (int vec)

Description:

 Cancels an interrupt request.

Parameters:

vec: Vector associated with Interrupt Request to be
cancelled.

Page - 20 -

[10-01-040] © 2002 Software Resources International S.A

int read_mem (size_t adr, size_t len,char *buf)

Description:

Reads a PDP-11 memory range specified by adr and len into
buf. This function is used by DMA capable devices.

Parameters:

 adr: Starting address for the transfer.

 len: Number of bytes to transfer.

buf: Pointer to buffer that will receive the transfer.

Returns:

 Number of bytes actually transferred.

int write_mem (size_t adr, size_t len,char *buf)

Description:

Writes a PDP-11 memory range specified by adr and len
from buf. This function is used by DMA capable devices.

Parameters:

 adr: Starting address for the transfer.

 len: Number of bytes to transfer.

buf: Pointer to buffer that contains data to be
written.

Returns:

 Number of bytes actually transferred.

Page - 21 -

[10-01-040] © 2002 Software Resources International S.A

A.3 CHAPI_OUT functions

int set_configuration (void *instance, char *parameters)

Description:

This function is called by Charon-11 for each ‘set’ command
encountered in the configuration file related to this device
instance.

Parameters:

instance: Pointer to device internal structure instance
as returned by the XXX_INIT function.

parameters: Buffer containing string from the

set xxx parameters=”..”

configuration command.

If set_configuration is called for other ‘set’
commands like

“set xxx register=nnnn”

then the parameters will contain a NULL
 string.

Returns:

TRUE: If succesful. Receiving a zero length
parameters value should return this value.

FALSE: If error encountered. Returning this value will
cause Charon-11 to eliminate this device
from the configuration.

Page - 22 -

[10-01-040] © 2002 Software Resources International S.A

void start (void *instance)

Description:

This function is called by Charon-11 when starting
simulation.

Parameters:

instance: Pointer to device internal structure instance
as returned by the XXX_INIT function.

void reset (void *instance)

Description:

This function is called by Charon-11 when it simulates Bus
Reset signals.

Parameters:

instance: Pointer to device internal structure instance
as returned by the XXX_INIT function.

void stop (void *instance)

Description:

 This functions is called by Charon-11 when it stops
simulation.

Parameters:

instance: Pointer to device internal structure instance
as returned by the XXX_INIT function.

Page - 23 -

[10-01-040] © 2002 Software Resources International S.A

void write(void *instance,size_t addr,int value, int is_byte_access)

Description:

This function is called by Charon-11 when writing to device
registers.

Parameters:

instance: Pointer to device internal structure instance
as returned by the XXX_INIT function.

 addr: 22-bit address of register.

 value: New register value.

 is_byte_access: FALSE indicates WORD access.

 TRUE indicates BYTE access.

int read(void *instance,size_t addr,int value, int is_byte_access)

Description:

 This function is called by Charon-11 when reading device
registers.

Parameters:

instance: Pointer to device internal structure instance
as returned by the XXX_INIT function.

 addr: 22-bit address of register.

 is_byte_access: FALSE indicates WORD access.

 TRUE indicates BYTE access.

Returns:

Integer containing the sign extended value of the resulting
read operation.

Page - 24 -

[10-01-040] © 2002 Software Resources International S.A

[10-01-040] © 2002 Software Resources International S.A

Reader’s comments

We appreciate your comments, suggestions, criticism and
updates of this CHARON-11 manual by email. Our email
address is: CHARON@SRI-GVA.CH

Please mention that it concerns the CHARON-11 Application
interface manual, Version: 1 – February 2002, document
number 10-01-040, and include your name, company (and
phone number if you want to receive feedback that way).

If you found any errors, please list them with their page
number.

CHARON-11 Customer Service

If at any time you have questions or suggestions about the
CHARON-11 product, please:

• Send an Email to info@charon-11.com, or

• Call CHARON support at +41 22 794 1071, or

• Send a FAX to +41 22 794 1073

