OpenVMS System Services
Reference Manual: GETUTC-Z

Order Number: AA-QSBND-TE

April 2001

This manual describes a set of routines that the Compaq OpenVMS
Operating System uses to control resources, to allow process
communication, to control 1/O, and to perform other such operating
system functions.

This manual is in two parts. This second part contains the system
services from $GETUTC through Z.

Revision/Update Information: This manual supersedes the OpenVMS
System Services Reference Manual,
Version 7.2.

Software Version: OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Compaqg Computer Corporation
Houston, Texas

© 2001 Compag Computer Corporation
Compag, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS and Tru64 are trademarks of Compaqg Information Technologies Group, L.P in the United
States and other countries.

Microsoft, MS-DOS, Visual C++, Windows, and Windows NT are trademarks of Microsoft
Corporation in the United States and other countries.

Intel, Intel Inside, and Pentium are trademarks of Intel Corporation in the United States and other
countries.

Motif, OSF/1, and UNIX are trademarks of The Open Group in the United States and other
countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compag shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject

to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6244
The Compag OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface i

System Service Descriptions

BGETUTC ..o SYS2-3
$GET_ALIGN_FAULT DATA (AlphaOonly)coououn. .. SYS2-4
$GET_ARITH_EXCEPTION (Alpha Only)o SYS2-6
$GET_GALAXY_LOCK_INFO (AlphaOnly)ccooo.... SYS2-8
$GET_GALAXY_LOCK_SIZE (Alpha Only)ououunn. .. SYS2-10
$GET_REGION_INFO (Alpha Only) SYS2-12
SGET SECURITY . e SYS2-17
$GET_SYS_ALIGN_FAULT DATA (Alphaonly) SYS2-25
$GET_USER_CAPABILITY (Alpha Only)cveeoo .. SYS2-27
$GOTO_UNWIND (Alpha Only) SYS2-30
BGRANTID ... SYS2-32
SHASH_PASSWORD SYS2-36
SHIBER SYS2-39
BICC _ACCEPT . .. SYS2-41
BICC_CLOSE_ASSOCttt SYS2-44
BICC CONNECT . ..o e e e e e e e SYS2-46
SICC _CONNECTW .. e e e SYS2-51
SICC_DISCONNECT . ..ot e SYS2-52
SICC_DISCONNECTW ... e SYS2-55
BICC_OPEN_ASSOC . . .o e SYS2-56
SICC RECEIVE SYS2-63
SICC_RECEIVEW SYS2-66
BICC REJECT ... e SYS2-67
BICC _REPLY .. SYS2-69
BICC REPLYW . SYS2-72
SICC TRANSCEIVE e e SYS2-73
SICC_TRANSCEIVEW SYS2-77
SICC _TRANSMIT . SYS2-78
SICC _TRANSMITW . . e e SYS2-81
BIDTOASC . . o SYS2-82
$IEEE_SET_FP_CONTROL (Alpha Only)oovuiuno. .. SYS2-86
$INIT_SYS_ALIGN_FAULT _REPORT (AlphaOnly) SYS2-89
BINIT VOL ... SYS2-92
$IO_CLEANUP (Alpha Only) SYS2-105
$IO_FASTPATH (Alpha Only) SYS2-106

$10_FASTPATHW (AIPha ONly) . . . oo oo SYS2-108

$I0_PERFORM (Alpha Only) i SYS2-109
$IO_PERFORMW (Alpha Only) o SYS2-112
SIO_SETUP (Alpha Only) e SYS2-113
BLCKPAG . . SYS2-116
$LCKPAG_64 (AIPha ONlY)\ttt SYS2-119
LKW SET . . SYS2-122
SLKWSET 64 (AIpha ONnly)o oo SYS2-125
BMGBLSC SYS2-128
SMGBLSC_64 (Alpha Only) SYS2-134
$SMGBLSC_GPFN_64 (Alpha Only) SYS2-144
SMOD_HOLDER SYS2-150
SMOD _IDENT . .. SYS2-153
BMOUNT . L SYS2-157
BMTACCESS . .. SYS2-171
BNUMTIM . . SYS2-174
BNUMUT C . . e e e SYS2-176
BPARSE _ACL . .. SYS2-178
$PERM_DIS_ALIGN_FAULT_REPORT (AlphaOnly) SYS2-181
$PERM_REPORT_ALIGN_FAULT (Alpha Only) SYS2-182
$PERSONA_ASSUME (VAX ONIY). . oo oo oot SYS2-184
$PERSONA_ASSUME (Alpha Only)ouiin.. SYS2-186
$PERSONA_CLONE (AIpha Only)o oot SYS2-188
$PERSONA_CREATE (VAX ONly) . .. oo e SYS2-190
$PERSONA _CREATE (Alpha Only)o SYS2-192
$PERSONA_CREATE_EXTENSION (AlphaOnly) SYS2-197
$PERSONA _DELEGATE (Alpha Only) SYS2-200
SPERSONA DELETE e e SYS2-202
$PERSONA_DELETE_EXTENSION (Alpha Only) SYS2-203
$PERSONA_EXTENSION_LOOKUP (Alpha Only) SYS2-205
$PERSONA_FIND (AIPha ONlY) . ..o ettt SYS2-207
$PERSONA_MODIFY (Alpha Only)o oot SYS2-211
$PERSONA _QUERY (Alpha Only). SYS2-214
$PERSONA RESERVE (Alpha Only). SYS2-219
$PROCESS_AFFINITY (Alpha Only). SYS2-221
$PROCESS_CAPABILITIES (Alpha Only)o SYS2-226
BPROCESS SCAN . ..t SYS2-231
BPURGW S . . SYS2-246
SPURGE_WS (Alpha Only) e SYS2-248
BPUTMSG . .o SYS2-250
BOIO . e SYS2-257
BOIOW . . SYS2-263
BREADEF SYS2-264
SREGISTRY (Alpha Only) s SYS2-266
SREGISTRYW (Alpha Only) e SYS2-290
$RELEASE_GALAXY_LOCK (Alpha Only) SYS2-291
$RELEASE_VP (VAX ONIY) . ..o\t SYS2-293

SREM_HOLDER SYS2-294

SREM_IDENT .ttt e SYS2-296
SRESCHED . . . oottt e e SYS2-298
$RESTORE_VP_EXCEPTION (VAX ONly)o oo SYS2-299
$RESTORE_VP_STATE (VAX ONlY) ..ot SYS2-301
SRESUME . .. oottt e SYS2-303
SREVOKID ..ottt SYS2-305
SRMSRUNDWNo ee e e e e e SYS2-309
$SAVE_VP_EXCEPTION (VAX ONlY) . eeeee e SYS2-311
$SCAN_INTRUSION . . o oottt SYS2-313
BSCHDWK © . . o oot e SYS2-318
BSCHED . . .ot SYS2-321
BSETAST & et SYS2-326
SSETCLUEVT . .ttt e e SYS2-327
BSETDDIR .« . o oottt SYS2-330
SSETDFPROT . . ettt SYS2-332
BSETEF . o v ee et e e SYS2-334
BSETEXV . . oo oottt SYS2-335
BSETIME . . oo oottt SYS2-337
BSETIMR . . v eee e et e SYS2-339
BSETPRA . ot ee SYS2-342
BSETPRI ot SYS2-344
BSETPRN . . . oot et SYS2-348
BSETPRT . . oottt e et SYS2-349
$SETPRT_64 (AIPha ONlY)o oot e et e e SYS2-352
BSETPRV .« . . o eee et et SYS2-355
SSETRWM © .o oot e e e e e e SYS2-359
BSETSHLY . . o o oottt e e SYS2-361
BSETSTK . ettt SYS2-363
BSETSWM . oo oot SYS2-365
BSETUAI « oo e e SYS2-367
$SETUP_AVOID PREEMPT ...ttt SYS2-379
$SET DEVICE . . . ettt e SYS2-380
$SET DEVICEW . ..\ ooee et e e e e e SYS2-385
$SET_IMPLICIT_AFFINITY (Alpha Only)c.oueueinn... SYS2-386
$SET_PROCESS_PROPERTIESW (Alpha Only) SYS2-390
$SET_RESOURCE_DOMAIN . ..ottt SYS2-392
$SET SECURITY ..\t SYS2-397
$SET_SYSTEM_EVENT (AIpha Only)o vooe oo SYS2-404
$SHOW _INTRUSION . ..ottt e e e SYS2-407
$SIGNAL _ARRAY B4 . . . oo et SYS2-412
BSNDERR . ..o oottt SYS2-414
BSNDIBC . . . o e oot e SYS2-415
SSNDIBCW . . o oottt e SYS2-472
BSNDOPR .« . . o oe oot SYS2-473
$START_ALIGN_FAULT _REPORT (AlphaOnly) SYS2-487
SSTART TRANS . ottt SYS2-491

SSTART _TRANSW . . . SYS2-496

$STOP_ALIGN_FAULT _REPORT (Alpha Only) SYS2-497
$STOP_SYS_ALIGN_FAULT _REPORT (AlphaOnly) SYS2-498
BSUBSYSTEM . .. SYS2-499
BSUSPND . . SYS2-501
BSYNCH .. SYS2-504
BTIMCON . . SYS2-506
BTRNLNM . SYS2-508
BTSTCLUEVT .. e e e SYS2-515
BULKPAG . . SYS2-517
SULKPAG_ 64 (Alpha Only) e SYS2-519
BULWSET . . SYS2-522
SULWSET 64 (Alpha Only)ot SYS2-524
BUNWIND . . SYS2-527
BUPDSEC . . SYS2-529
BUPDSECW . . . SYS2-534
$UPDSEC 64 (AIPha ONnly)o SYS2-535
$UPDSEC_64W (Alpha Only) SYS2-540
BVERIFY PROXY .. SYS2-541
BWAITER . .. e SYS2-546
BWAKE . o SYS2-548
BWELAND . . o SYS2-550
BWILOR . . SYS2-552

A Obsolete Services

Index

Tables
SYS2-1 Region Summary Buffer Format SYS2-15
SYS2-2 Format of the IEEE Floating-Point Control Register (Alpha Only) ... SYS2-86
SYS2-3 Flags Used with $PROCESS SCAN. i SYS2-240
SYS2-4 Valid Function Codes SYS2-270
SYS2-5 Item Code SUMMANY SYS2-280
SYS2-6 CPU Time Limit Decision Table. SYS2-437
SYS2-7 Working Set Decision Table SYS2-460

vi

Preface

Intended Audience

This manual is intended for system and application programmers who want to
call system services.

System Services Support for OpenVMS Alpha 64-Bit Addressing

As of Version 7.0, the OpenVMS Alpha operating system provides support

for 64-bit virtual memory addresses. This support makes the 64-bit virtual
address space defined by the Alpha architecture available to the OpenVMS Alpha
operating system and to application programs. In the 64-bit virtual address
space, both process-private and system virtual address space extend beyond 2
GB. By using 64-bit address features, programmers can create images that map
and access data beyond the previous limits of 32-bit virtual addresses.

New OpenVMS system services are available, and many existing services have
been enhanced to manage 64-bit address space. The system services descriptions
in this manual indicate the services that accept 64-bit addresses. A list of

the OpenVMS system services that accept 64-bit addresses is available in the
OpenVMS Programming Concepts Manual.

The following section briefly describes how 64-bit addressing support affects
OpenVMS system services. For complete information about OpenVMS Alpha
64-bit addressing features, refer to the OpenVMS Programming Concepts Manual.

64-Bit System Services Terminology

32-Bit System Service

A 32-bit system service only supports 32-bit addresses on any of its arguments
that specify addresses. If passed by value on OpenVMS Alpha, a 32-bit virtual
address is actually a 64-bit address that is sign-extended from 32 bits.

64-Bit Friendly Interface

A 64-bit friendly interface can be called with all 64-bit addresses. A 32-bit system
service interface is 64-bit friendly if, without a change in the interface, it needs
no modification to handle 64-bit addresses. The internal code that implements
the system service might need modification, but the system service interface will
not.

64-Bit System Service

A 64-bit system service is defined to accept all address arguments as 64-bit
addresses (not necessarily 32-bit sign-extended values). A 64-bit system service
also uses the entire 64 bits of all virtual addresses passed to it.

Use of the 64 Suffix

The 64-bit system services include the 64 suffix for services that
accept 64-bit addresses by reference. For promoted services, this suffix

vii

distinguishes the 64-bit capable version from its 32-bit counterpart. For
new services, it is a visible reminder that a 64-bit-wide address cell will
be read/written.

Sign-Extension Checking

The OpenVMS system services that do not support 64-bit addresses and all user-
written system services that are not explicitly enhanced to accept 64-bit addresses
receive sign-extension checking. Any argument passed to these services that is
not properly sign-extended causes the error status SS$ ARG_GTR_32 BITS to be
returned.

Document Structure

The OpenVMS System Services Reference Manual is a two-part manual. The
first part contains information on A through $GETUALI; the second part contains
information on $GETUTC through Z.

Related Documents

The OpenVMS Programming Concepts Manual contains useful information for
anyone who wants to call system services.

High-level language programmers can find additional information about calling
system services in the language reference manual and language user’s guide
provided with the OpenVMS language.

The following documents might also be useful:

e OpenVMS Programming Concepts Manual

e Guide to OpenVMS File Applications

e OpenVMS Guide to System Security

= DECnet-Plus for OpenVMS Introduction and User’s Guide

e OpenVMS Record Management Services Reference Manual

e OpenVMS I/0 User’s Reference Manual

= OpenVMS Alpha Guide to Upgrading Privileged-Code Applications

For a complete list and description of the manuals in the OpenVMS document set,
refer to the OpenVMS Version 7.3 New Features and Documentation Overview.

For additional information about the Compaq OpenVMS products and services,
access the Compag website at the following location:

http:// ww. openvis. conpag. com

Reader’'s Comments

Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compag.com

viii

Mail Compag Computer Corporation
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation

Visit the following World Wide Web address for information on how to order
additional documentation:

http:// ww. openvns. conpag. con

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions

In this manual, any reference to OpenVMS is synonymous with Compagq
OpenVMS.

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references to OpenVMS Clusters or clusters in this document
are synonymous with VMSclusters.

In this manual, every use of DECwindows and DECwindows Motif refers to
Compaq DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

A horizontal ellipsis in examples indicate one of the following
possibilities:

= Additional optional arguments in a statement have been
omitted.

= The preceding item or items can be repeated one or more
times.

= Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[]

(1]

{}

bold text

italic text

UPPERCASE TEXT

Monospace t ext

numbers

In the OpenVMS System Services Reference Manual, brackets
generally indicate default arguments. If an argument is
optional, it is specified as such in the argument text.

In command format descriptions, vertical bars separating
items inside brackets indicate that you choose one, none, or
more than one of the options.

In command format descriptions, braces indicate required
elements; you must choose one of the options listed.

This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type identifies
the following elements: keywords, the names of independently
compiled external functions and files, syntax summaries, and
references to variables or identifiers introduced in an example.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

System Service Descriptions

System services provide basic operating system functions, interprocess
communication, and various control resources.

Condition values returned by system services indicate not only whether the
service completed successfully, but can also provide other information. While
the usual condition value indicating success is SS$ NORMAL, other values are
also defined. For example, the condition value SS$ BUFFEROVERF, which

is returned when a character string returned by a service is longer than the
buffer provided to receive it, is a success code, but it also provides additional
information.

Warning returns and some error returns indicate that the service might have
performed some, but not all, of the requested function.

The particular condition values that each service can return are described in the
Condition Values Returned section of each individual service description.

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO.

System Service Descriptions
$GETUTC

$GETUTC
Get UTC Time

Returns the current time in 128-bit UTC format.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYS$GETUTC utcadr

C Prototype
int sys$getutc (unsigned int *utcadr [4]);

Arguments

utcadr

OpenVMS usage: coordinated universal time

type: utc_date_time

access: write only

mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 128-bit time value to be returned.

Description

The Get UTC Time service returns the current system time in 128-bit UTC
format. System time is updated every 10 milliseconds.

On Alpha systems, the frequency at which system time is updated varies,
depending on the clock frequency of the Alpha processor.

Required Access or Privileges
None

Required Quota
None

Related Services
$ASCUTC, $BINUTC, SNUMUTC, $TIMCON

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The argument was not accessible for write in the
mode of the caller.

SYS2-3

System Service Descriptions
$GET_ALIGN_FAULT_DATA (Alpha Only)

$GET_ALIGN_FAULT_DATA (Alpha Only)
Get Alignment Fault Data

On Alpha systems, obtains data from the user image alignment fault buffer if
buffered user alignment fault data reporting has been enabled.

This service accepts 64-bit addresses.

Format
SYS$GET_ALIGN_FAULT_DATA buffer ,buffer_size ,return_size

C Prototype

int sys$get_align_fault_data (void *buffer, int buffer_size, int *return_size);

Arguments
buffer
OpenVMS usage: address
type: longword (unsigned)
access: read/write
mechanism: by 32- or 64-bit reference
The user buffer in which the alignment fault data is to be stored. The buffer is
the 32- or 64-bit address of this user buffer.
buffer_size
OpenVMS usage: byte count
type: longword (signed)
access: read
mechanism: by value
The size, in bytes, of the buffer specified by the buffer argument.
return_size
OpenVMS usage: longword_signed
type: longword (signed)
access: write
mechanism: by 32- or 64-bit reference
The amount of data, in bytes, stored in the buffer. The return_size argument is
the 32- or 64-bit address of a naturally aligned longword into which the service
returns the size of the buffer. The return_size is set to O if there is no data in
the buffer.
Description

The Get Alignment Fault Data service obtains data from the user image
alignment fault buffer if buffered user alignment fault data reporting has
been enabled.

When buffered user alignment fault data reporting is enabled, the operating
system writes each alignment fault into a user-defined buffer. The user must poll
this buffer periodically to read the data.

SYS2-4

System Service Descriptions
$GET_ALIGN_FAULT_DATA (Alpha Only)

The user must call the $START_ALIGN_FAULT_REPORT service to enable
buffered user alignment fault data reporting.

For more information about buffered user alignment fault data reporting, see the
$START_ALIGN_FAULT_REPORT system service.

Required Access or Privileges
None

Required Quota
None

Related Services

$GET_SYS ALIGN_FAULT_DATA, $INIT_SYS ALIGN_FAULT REPORT,
$PERM _DIS ALIGN_FAULT_REPORT, $PERM_REPORT_ALIGN_FAULT,
$START_ALIGN_FAULT REPORT, $STOP_ALIGN_FAULT_REPORT, $STOP_
SYS_ALIGN_FAULT_REPORT

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ACCVIO The buffer named in the buffer argument is not
accessible.
SS$ AFR_NOT_ENABLED Alignment fault reporting has not been enabled.
SS$_BADPARAM The buffer size is smaller than the minimum
defined by the AFR$K_USER_LENGTH
symbol.

SYS2-5

System Service Descriptions
$GET_ARITH_EXCEPTION (Alpha Only)

$GET_ARITH_EXCEPTION (Alpha Only)
Get Arithmetic Exception Information

On Alpha systems, returns information about the exception context for a given
arithmetic exception.

Format
SYS$GET_ARITH_EXCEPTION sigarg ,mcharg ,buffer

C Prototype

int sys$get_arith_exception (void *sigarg, void *mcharg, void *buffer);

Arguments

sigarg

OpenVMS usage: signal array

type: vector_longword_signed

access: read only

mechanism: by reference

Address of the signal array for the given arithmetic exception.

mcharg

OpenVMS usage: mech array

type: vector_quadword_unsigned

access: read only

mechanism: by reference

Address of the mechanism array for the given arithmetic exception.

buffer

OpenVMS usage: vector_quadword

type: vector_quadword_unsigned

access: write only

mechanism: by descriptor

Four-quadword buffer to receive additional exception context. The buffer

argument is the address of a descriptor that points to this buffer.
Description

The Get Arithmetic Exception Information service returns, to the buffer specified
by the buffer argument, the following information for a given arithmetic
exception in an array of quadwords:

First quadword, the PC of the triggering instruction in the trap shadow

Second quadword, a copy of the triggering instruction

Third quadword, the exception summary

Fourth quadword, the register write mask

SYS2-6

Required Access or Privilege
None

Required Quota
None

Condition Values Returned

SS$_ NORMAL
SS$_ACCVIO
SS$ BADBUFLEN

System Service Descriptions
$GET_ARITH_EXCEPTION (Alpha Only)

The service completed successfully.
The specified buffer cannot be written.

The specified buffer length is invalid or out of
range.

SYS2-7

System Service Descriptions
$GET_GALAXY_LOCK_INFO (Alpha Only)

$GET_GALAXY_LOCK_INFO (Alpha Only)
Get OpenVMS Galaxy Lock Information

Returns "interesting"” fields from the specified lock.

Note that this system service is supported only in an OpenVMS Alpha Galaxy
environment. For more information about programming with OpenVMS Galaxy
system services, refer to the OpenVMS Alpha Partitioning and Galaxy Guide.

Format

SYS$GET_GALAXY_LOCK_INFO handle ,name ,timeout ,size ,ipl ,rank ,flags
[,name_length]

C Prototype

int sys$get_galaxy lock_info (unsigned __int64 lock_handle, char *name, unsigned
int *timeout, unsigned int *size, unsigned int *ipl,
unsigned int *rank, unsigned short int *flags unsigned
short int *name_length);

Arguments
handle
OpenVMS usage: handle for the galaxy lock
type: guadword (unsigned)
access: read
mechanism: input by value

The 64-bit lock handle that identifies the lock on which to return information.
This value is returned by SYS$CREATE_GALAXY_LOCK.

name
OpenVMS usage: address

type: zero-terminated string
access: write

mechanism: output by reference

Pointer to a buffer. This buffer must be large enough to receive the name of the
lock. Locks names are zero-terminated strings with a maximum size of 16 bytes.

timeout

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is the timeout value of the lock.

size

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is the size of the lock in bytes.

SYS2-8

Description

System Service Descriptions
$GET_GALAXY_LOCK_INFO (Alpha Only)

ipl

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is the IPL of the lock.

rank

OpenVMS usage: address

type: longword (unsigned)
access: write

mechanism: output by reference

Pointer to a longword. The value returned is the rank of the lock.

flags

OpenVMS usage: address

type: word (unsigned)
access: write

mechanism: output by reference

Pointer to a word. The value returned is the word mask of lock flags.

name_length
OpenVMS usage: address

type: word (unsigned)
access: write
mechanism: output by reference

Length of the string returned in the name argument.

This service returns all "interesting” fields from the specified lock. See the
$CREATE_GALAXY_LOCK service for detailed information regarding these
values.

Required Access or Privileges
Read access to lock.

Required Quota
None

Related Services

$ACQUIRE_GALAXY_LOCK, $CREATE_GALAXY_LOCK,
$CREATE_GALAXY_LOCK_TABLE, $DELETE_GALAXY_LOCK,
$DELETE_GALAXY_LOCK_TABLE, $GET_GALAXY_LOCK_SIZE,
$RELEASE_GALAXY_LOCK

Condition Values Returned

SS$ NORMAL Normal completion.
SS$ IVLOCKID Invalid lock id.
SS$_IVLOCKTBL Invalid lock table.

SYS2-9

System Service Descriptions
$GET_GALAXY_LOCK_SIZE (Alpha Only)

$GET_GALAXY_LOCK_SIZE (Alpha Only)
Get OpenVMS Galaxy Lock Size

Returns the minimum and maximum size of an OpenVMS Galaxy lock.

Note that this system service is supported only in an OpenVMS Alpha Galaxy
environment.

For more information about programming with OpenVMS Galaxy system services,
refer to the OpenVMS Alpha Partitioning and Galaxy Guide.

Format
SYS$GET_GALAXY_LOCK_SIZE min_size ,max_size

C Prototype

int sys$get galaxy lock size (unsigned int *min_size, unsigned int *max_size);

Arguments
min_size
OpenVMS usage: address
type: longword (unsigned)
access: write
mechanism: output by reference
Pointer to a longword. The value returned is minimum legal size of a galaxy lock
structure.
max_size
OpenVMS usage: address
type: longword (unsigned)
access: write
mechanism: output by reference
Pointer to a longword. The value returned is maximum legal size of a galaxy lock
structure.
Description

This service returns the minimum and maximum size of an OpenVMS Galaxy
lock. If a lock is created with the maximum size, the locking services will record
acquire and release information in the lock.

The lock sizes can be used to determine the value of the section_size parameter
to the SCREATE_GALAXY_LOCK_TABLE service.

Required Access or Privileges
Read access to lock.

Required Quota
None

SYS2-10

System Service Descriptions
$GET_GALAXY_LOCK_SIZE (Alpha Only)

Related Services
$ACQUIRE_GALAXY_LOCK, $CREATE_GALAXY_LOCK,
$CREATE_GALAXY_LOCK_TABLE, $DELETE_GALAXY_LOCK,
$DELETE_GALAXY_LOCK TABLE, $GET_GALAXY_LOCK_INFO,
$RELEASE_GALAXY_LOCK

Condition Values Returned

SS$_NORMAL Normal completion.

SYS2-11

System Service Descriptions
$GET_REGION_INFO (Alpha Only)

$GET_REGION_INFO (Alpha Only)
Get Information About a Specified Virtual Region

On Alpha systems, gets information about a specified virtual region.

This service accepts 64-bit addresses.

Format

SYS$GET_REGION_INFO function_code ,region_id_64 ,start_va_64 ,nullarg
,buffer_length ,buffer_address_64 ,return_length_64

C Prototype

int sys$get_region_info (unsigned int function_code, struct _generic_64
*region_id_64, void *start va_64, void *reserved, unsigned
int buffer_length, void *buffer_address_64, unsigned int
*return_length_64);

Arguments

function_code
OpenVMS usage: function code

type: longword (unsigned)
access: read only
mechanism: by value

Function code specifying how the information you are requesting should be looked
up. All function codes return region summary information in the return buffer in
the format of the Region Summary Buffer. The Region Summary Buffer format is
shown in the table in the buffer_address_64 argument.

If less buffer space is specified than the length of the Region Summary Buffer,
only the amount of information requested is returned. If more buffer space is
specified than the length of the Region Summary Buffer, the service will fill in the
buffer. The return length will reflect the amount of useful information written to
the buffer, the size of the Region Summary Buffer.

The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each function code.

The following function codes are defined:

Symbolic Name Description

VA$_REGSUM_BY_ID Return the region summary information
for the region whose ID is specified in the
region_id_64 argument.

VA$_REGSUM_BY_VA Return the region summary information for
the region that contains the virtual address
specified in the start_va_64 argument.

SYS2-12

System Service Descriptions
$GET_REGION_INFO (Alpha Only)

Symbolic Name Description

VA$_NEXT_REGSUM_BY_VA Return the region summary information for
the region containing the starting address. If
the starting address is not in a region, return
the region summary information for the next
region with a starting address higher than the
specified address.

Note: For the VA$_NEXT_REGSUM_BY_VA
function, OpenVMS checks for a start va_64
argument in the inaccessible address range in
P2 space. If it finds one, OpenVMS adjusts
the address to account for the discontinuity.
For more information about the layout of
the 64-bit virtual address space, refer to the
OpenVMS Programming Concepts Manual.
This function code can be used for wildcard
operations. See the description of the
start_va_64 argument for information on
how to program a wildcard operation on

regions.
region_id_64
OpenVMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

The region ID associated with the region about which information is requested.
This argument is read only if the function code VA$_REGSUM_BY_ID is specified.

The file VADEF.H in SYS$STARLET_C.TLB and the $YVADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions
in PO, P1, and P2 space.

The following region IDs are defined:

Symbol Region

VA$C_PO Program region
VASC_P1 Control region
VA$C_P2 64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

start_va_64

OpenVMS usage: input address
type: quadword address
access: read only
mechanism: by value

Virtual address associated with region about which information is requested. This
argument is read only if the function_code argument is VA$_REGSUM_BY_VA
or VA$_NEXT_REGSUM_BY_VA.

SYS2-13

System Service Descriptions
$GET_REGION_INFO (Alpha Only)

SYS2-14

If the function_code argument is VA$S REGSUM_BY_VA, this argument is a
virtual address within the region about which you are requesting information.

To perform a wildcard search on all regions, specify VA$ NEXT_REGSUM_BY _
VA as the function code and begin with the start va 64 argument specified as
-1. For subsequent calls, specify start_va 64 as the sum of the previous region’s
start address and length. Call the $GET_REGION_INFO service in a loop until
the condition SS$ NOMOREREG is returned.

Note

Before performing the lookup function, OpenVMS sign-extends the 64-bit
starting address so that it represents a properly formed virtual address
for the CPU.

nullarg

OpenVMS usage: null_arg

type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Compag.

buffer_length
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Length of the buffer into which information is returned.

buffer_address_64
OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a quadword-aligned buffer into which to
return information if the buffer_length argument is nonzero.

This argument is ignored if the buffer_length argument is zero.

Table SYS2-1 shows the format of the Region Summary Buffer:

System Service Descriptions
$GET_REGION_INFO (Alpha Only)

Table SYS2-1 Region Summary Buffer Format
Field
Field Size Offset
Field name Meaning (Bytes) (Decimal)
VASL_FLAGS Flags used when region was 4 8
created
VASL_REGION_PROTECT Create and owner mode of region 4 12
VA$Q_REGION_ID Region identifier 8 0
VASPQ_START_VA Starting (lowest) virtual address 8 16
of region
VA$Q_REGION_SIZE Total length of region 8 24
VASPQ FIRST_FREE_VA First free virtual address in 8 32
region
VA$C_REGSUM_LENGTH Length of Region Summary Buffer constant 40
The file VADEF.H in SYSSSTARLET_C.TLB and the $VADEF MACRO in
STARLET.MLB define the REGSUM structure.
return_length_64
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference
The 32- or 64-bit virtual address of a naturally aligned longword into which the
service returns the length of the information in bytes.
Description

The Get Information About a Specified Virtual Region service is a kernel mode
service that can be called from any mode. This service gets the requested
information about the specified region or the next region in a wildcard search.

If the returned value of this service is not a successful condition value, a value
cannot be returned in the memory locations pointed to by the buffer_address 64
or return_length_64 arguments.

Required Privileges
None

Required Quota
None

Related Services
$CREATE_REGION_64, $SDELETE_REGION_64

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The buffer_address_64 argument or the
return_length_64 argument cannot be written
by the caller.

SYS2-15

System Service Descriptions
$GET_REGION_INFO (Alpha Only)

SYS2-16

SS$ BADPARAM
SS$_IVREGID

SS$ NOMOREREG

SS$_PAGNOTINREG

Unrecognized function code.

Invalid region ID specified in conjunction with
the VA$_REGSUM_BY_ID function code.

No region at a higher address than specified in
the start_va_64 argument, which was specified
in conjunction with the wildcard function code
VA$ NEXT_REGSUM_BY_VA.

The value specified in the start va_64
argument is not within a region and was
specified in conjunction with the function code
VA$ REGSUM_BY_VA.

System Service Descriptions
$GET_SECURITY

$GET_SECURITY
Get Security Characteristics

Retrieves the security characteristics of an object.

Format
SYS$GET_SECURITY [clsnam] ,[objnam] ,[objhan] ,[flags] ,[itmlist] ,[contxt]
,Jlacmode]
C Prototype

int sys$get_security (void *clsnam, void *objnam, unsigned int *objhan, unsigned
int flags, void *itmlst, unsigned int *contxt, unsigned int

*acmode);
Arguments
clsnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the object class. The clsnam argument is the address of a descriptor
pointing to a string containing the name of the object class.

The following is a list of protected object class names:

CAPABILITY
COMMON_EVENT_CLUSTER
DEVICE

FILE
GLXSYS_GLOBAL_SECTION
GLXGRP_GLOBAL_SECTION
GROUP_GLOBAL_SECTION
ICC_ASSOCIATION
LOGICAL_NAME_TABLE
QUEUE
RESOURCE_DOMAIN
SECURITY_CLASS
SYSTEM_GLOBAL_SECTION

VOLUME
objnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the protected object whose associated security profile is going to be
retrieved. The objnam argument is the address of a descriptor pointing to a
string containing the name of the protected object.

SYS2-17

System Service Descriptions
$GET_SECURITY

SYS2-18

The format of an object name is class specific. The following table lists object
names and describes their formats:

Object Class

Object Name Format

CAPABILITY

COMMON_EVENT_CLUSTER

DEVICE
FILE
GROUP_GLOBAL_SECTION

ICC_ASSOCIATION

LOGICAL_NAME_TABLE
QUEUE
RESOURCE_DOMAIN

SECURITY_CLASS

SYSTEM_GLOBAL_SECTION

A character string. Currently, the only
capability object is VECTOR.

Name of the event flag cluster, as defined in
the Associate Common Event Flag Cluster
($ASCEFC) system service.

Standard device specification, described in the
OpenVMS User’'s Manual.

Standard file specification, described in the
OpenVMS User’s Manual.

Section name, as defined in the Create and Map
Section ($CRMPSC) system service.

ICC security object name node::association_
name. The special node name, ICC$::, refers to
entries in the clusterwide registry. For registry
entries, the Access Access Type does not apply.

Table name, as defined in the Create Logical
Name Table ($CRELNT) system service.

Standard queue name, as described in the Send
to Job Controller ($SNDJBC) system service.

An identifier or octal string enclosed in
brackets.

Any class name shown in column 1, or a

class name followed by a period (.) and the
template name. Use the DCL command SHOW
SECURITY to display possible template names.

Section name, as defined in the Create and Map
Section ($CRMPSC) system service.

VOLUME Volume name or name of the device on which
the volume is mounted.

objhan

OpenVMS usage: object_handle

type: longword (unsigned)

access: read only

mechanism: by reference

Data structure identifying the object whose associated characteristics are going
to be retrieved. The objhan argument is an address of a longword containing
the object handle. You can use the objhan argument as an alternative to the
objnam argument; for example, channel number clearly specifies the file open on
the channel and can serve as an object handle.

The following table shows the format of the object classes:

System Service Descriptions
$GET_SECURITY

Object Class Object Handle Format
COMMON_EVENT_CLUSTER Event flag number
DEVICE Channel number
FILE Channel number
RESOURCE_DOMAIN Resource domain identifier
VOLUME Channel number
flags

OpenVMS usage: flags

type: mask_longword

access: read only

mechanism: by value

Mask specifying processing options. The flags argument is a longword bit vector
wherein a bit, when set, specifies the processing option. The flags argument
requires the contxt argument.

The following table describes each flag:

Symbolic Name Description

OSS$M_RELCTX Release the context structure at the completion of this
request.

OSS$M_WLOCK Maintain a write lock on the security profile at the

completion of this request. $GET_SECURITY ignores
the flag if the context has already been established.

These symbolic names are defined in the $OSSDEF macro. You construct the
flags argument by specifying the symbolic names of each flag.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the process or processes is to be
returned. The itmlst argument is the address of a list of item descriptors, each of
which describes an item of information. The list of item descriptors is terminated
by a longword of 0.

With the item list, the user retrieves the protected object’s characteristics. The
user defines which security characteristics to retrieve. If this argument is not
present, only the flags argument is processed. Without the itmlst argument, you
can only manipulate the security profile lock or release contxt resources.

The following diagram depicts a single item descriptor:

SYS2-19

System Service Descriptions
$GET_SECURITY

SYS2-20

31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table describes the item descriptor fields:
Descriptor Field Definition
Buffer length A word containing an integer specifying the length

(in bytes) of the buffer in which $GET_SECURITY
is to write the information. The length of the buffer
needed depends on the item code specified in the
item code field of the item descriptor. If the value
of buffer length is too small, $GET_SECURITY
truncates the data.

Item code A word containing a symbolic code specifying the
item of information that $GET_SECURITY is to
return. The $OSSDEF macro defines these codes.
A description of each item code is given in the Item
Codes section.

Buffer address A longword containing the address of the buffer in
which $GET_SECURITY is to write the information.
Return length address A longword containing the address of a word in

which $GET_SECURITY writes the length (in
bytes) of the information it actually returns.

contxt

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Value used to maintain the processing context when dealing with a single
protected object across multiple $GET_SECURITY/$SET_SECURITY calls.
Whenever the context value is nonzero, the class name, object name, or object
handle arguments are disregarded. An input value of O indicates that a new
context should be established.

Because an active context block consumes process memory, be sure to release the
context block by setting the RELCTX flag when the profile processing is complete.
$GET_SECURITY sets the context argument to 0 once the context is released.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the object protection check. The acmode argument is
the address of a longword containing the access mode. The acmode argument

Item Codes

System Service Descriptions
$GET_SECURITY

defaults to kernel mode; however, the system compares acmode with the caller’s
access mode and uses the least privileged mode. The access modes are defined in
the system macro $PSLDEF library. Compag recommends that this argument be

omitted (passed as zero).

The following table provides a summary of item codes that are valid in an item
descriptor in the itmlst argument. Complete descriptions of each item code are

provided after the table.

Iltem Identifier

Description

OSS$_ACCESS_NAMES

OSS$_ACCESS_NAMES_LENGTH

0SS$ ACL_FIND_ENTRY
0SS$ ACL_FIND_NEXT
0SS$_ACL_FIND_TYPE
0SS$_ACL_GRANT_ACE

0SS$_ACL_LENGTH
0SS$_ACL_POSITION_BOTTOM
0SS$_ACL_POSITION_TOP

0SS$ ACL_READ

0SS$ ACL_READ_ENTRY
0SS$ CLASS_NAME
0SS$_FIRST _TEMPLATE

0SS$ NEXT_OBJECT
0SS$_NEXT TEMPLATE
0SS$ OBJECT NAME
0SS$_OWNER

OSS$_PROTECTION

Returns access bitname translation table
for the class.

Returns the size (in bytes) of the access
bitname translation table.

Locates an access control entry (ACE).
Positions to the next ACE.
Locates an ACE of specified type.

Locates an ACE that either grants or
denies access.

Returns the length of the access control list
(ACL).

Sets a marker that points to the end of the
ACL.

Sets a marker that points to the beginning
of the ACL.

Reads the entire ACL.
Reads an ACE.
Returns the full object class hame.

Returns the name of the first template
profile of a Security_Class object.

Returns the name of the next Security_
Class object.

Returns the name of the next template
profile of a Security_Class object.

Returns the name of the object. The FILE
class does not return an object name.

Returns the UIC or general identifier of
the object’s owner.

Returns the protection code of the object.

OSS$_ACCESS_NAMES

Returns the access name translation table in the buffer pointed to by the buffer

address field of the item descriptor.

SYS2-21

System Service Descriptions
$GET_SECURITY

SYS2-22

The access name translation table is a 32-quadword vector followed by a variable
section containing the access names. Each bit in the vector represents a single
access type. The contents of the quadword is a string descriptor that corresponds
to the ASCII bitname string. Undefined access types have zero-length names.
The return length, if present, returns the length of the table.

0OSS$ _ACCESS_NAMES_LENGTH
Returns the length of the access name translation table.

0SS$ ACL_FIND_ENTRY

Locates an ACE pointed to by the buffer address. OSS$ ACL_FIND_ENTRY
sets the position within the ACL for succeeding ACL operations; for example,
for a deletion or modification of the ACE. If the buffer address is 0, it returns
SS$_ACCVIO.

OSS$_ACL_FIND_NEXT
Advances the current position to the next ACE in the ACL.

OSS$ _ACL_FIND_TYPE

Returns an ACE of a particular type if there is one in the buffer pointed to by
the buffer address. OSS$_ACL_FIND_TYPE sets the position within the ACL for
succeeding ACL operations. If the buffer address is 0, it returns SS$ ACCVIO.

0OSS$_ACL_GRANT_ACE

Returns the ACE in the object's ACL that grants or denies the user access to that
object. OSS$ ACL_GRANT_ACE returns the ACE found in the buffer pointed to
by the buffer address.

OSS$_ACL_LENGTH
Returns the size (in bytes) of the object's ACL. The buffer address field points to a
longword that receives the size.

OSS$_ACL_POSITION_BOTTOM
Sets the ACL position to point to the bottom of the ACL.

OSS$_ACL_POSITION_TOP
Sets the ACL position to point to the top of the ACL.

0OSS$_ACL_READ
Returns the portion of the object's ACL to the buffer pointed to by the buffer
address.

OSS$_ACL_READ_ENTRY
Reads the ACE pointed to by the buffer address.

0OSS$_CLASS _NAME
Returns the full object class name.

0OSS$_FIRST_TEMPLATE

Returns the name of the first template profile for the object named in the objnam
argument. This item code is valid only for security class objects. If the clsnam is
not Security Class, SS$ INVCLSITM is returned.

OSS$_NEXT_OBJECT

Returns the name of the next object. A return length of 0 indicates the end of the
list. This item code is valid only for security class objects. If the clsnam is not
Security_Class, SS$_INVCLSITM is returned.

Description

System Service Descriptions
$GET_SECURITY

0SS$ NEXT_TEMPLATE

Returns the name of the next template. This item code allows you to step through
a list of an object’s templates. A return length of O indicates the end of the list.
This item code is valid only for security class objects. If the clsnam is not
Security_Class, SS$ INVCLSITM is returned.

OSS_OBJECT_NAME
Returns the name of the object.

0OSS$_OWNER
Returns the owner of the object.

0SS$_PROTECTION
Returns the protection code of the object.

The Get Security service returns information about security characteristics

of a selected object. Security characteristics include such information as the
protection code, the owner, and the access control list (ACL). The security
management services, $GET_SECURITY and $SET_SECURITY, maintain a
single master copy of a profile for every security object in an OpenVMS Cluster
environment. They also ensure that only one process at a time can modify an
object’s security profile.

There are different ways of identifying which protected object $GET_SECURITY
should process:

= Whenever the contxt argument has a nonzero value, $GET_SECURITY uses
the context to select the object and ignores the class nhame, object nhame, and
object handle.

= With some types of objects, such as a file or a device, it is possible to select an
object on the basis of its objhan and clsnam values.

= If neither a nonzero contxt argument nor an objhan argument is provided,
$GET_SECURITY uses an object’s class name (clsnam) and object name
(objnam) to select the object.

When you call $GET_SECURITY, the service selects the specified protected object
and fetches a local copy of the object’s security profile.

The context for a security management operation can be established through
either $GET_SECURITY or $SET_SECURITY. Whenever the context is set

by one service, the other service can use it, provided the necessary locks are
being held. If you intend to modify the profile, you must set the write lock flag
(OSS$M_WLOCK) when you establish the context.

There are many situations in which the contxt argument is essential. By
establishing a context for an ACL operation, for example, a caller can retain

an ACL position across calls to $GET_SECURITY so that a set of ACEs can be
read and modified sequentially. A security context is released by a call to $SET _
SECURITY or $GET_SECURITY that sets the OSS$M_RELCTX flag. Once the
context is released, the user-supplied context longword is set to 0.

Required Access or Privileges
Read or control access to the object is required.

SYS2-23

System Service Descriptions
$GET_SECURITY

Required Quota
None

Related Services
$SET_SECURITY

Condition Values Returned

SYS2-24

SS$_NORMAL
SS$_ACCVIO

SS$ BADPARAM

SS$_INSFARG

SS$_INVCLSITM

SS$_NOCLASS
SS$ OBJLOCKED

The service completed successfully.

The parameter cannot be read and the buffer
cannot be written.

You specified an invalid object, attribute code, or
item size.

The clsnam and objnam arguments are not
specified, the clsnam and objhan arguments
are not specified, or the contxt argument is not
specified.

The item code that you specified is not supported
for the class.

The named security class does not exist.
The selected object is currently write locked.

System Service Descriptions
$GET_SYS_ALIGN_FAULT_DATA (Alpha Only)

$GET_SYS_ALIGN_FAULT_DATA (Alpha Only)
Get System Alignment Fault Data

On Alpha systems, obtains data from the system alignment fault buffer if buffered
system alignment fault data reporting has been enabled.

This service accepts 64-bit addresses.

Format
SYS$GET_SYS_ALIGN_FAULT_DATA buffer ,buffer_size ,return_size

C Prototype

int sys$get_sys_align_fault_data (void *buffer, int buffer_size, int *return_size);

Arguments
buffer
OpenVMS usage: address
type: longword (unsigned)
access: read/write
mechanism: by 32- or 64-bit reference
The user buffer in which the alignment fault data is to be stored. The buffer
argument is the 32- or 64-bit virtual address of this buffer.
buffer_size
OpenVMS usage: byte count
type: longword (signed)
access: read
mechanism: by value
The size, in bytes, of the buffer specified by the buffer argument.
return_size
OpenVMS usage: longword_signed
type: longword (signed)
access: write
mechanism: by 32- or 64-bit reference
The amount of data, in bytes, stored in the buffer. The return_size argument is
the 32- or 64-bit virtual address of a naturally aligned longword into which the
service returns the amount of data, in bytes, stored in the buffer. The return_
size argument is set to O if there is no data in the buffer.
Description

The Get System Alignment Fault Data service obtains data from the system
alignment fault buffer if buffered system alignment fault data reporting has been
enabled.

When buffered system alignment fault data reporting is enabled, the operating
system writes each alignment fault into a system-allocated buffer. The user must
poll this buffer periodically to read the data.

SYS2-25

System Service Descriptions
$GET_SYS_ALIGN_FAULT_DATA (Alpha Only)

The user must call the $INIT_SYS_ALIGN_FAULT_REPORT service to enable
buffered system alignment fault data reporting. For more information, see the
$INIT_SYS_ALIGN_FAULT_REPORT service.

Required Access or Privileges
CMKRNL privilege is required.

Required Quota
None

Related Services

$GET_ALIGN_FAULT DATA, $INIT_SYS_ALIGN_FAULT REPORT, $PERM_
DIS_ALIGN_FAULT_REPORT, $PERM_REPORT_ALIGN_FAULT, $START_
ALIGN_FAULT REPORT, $STOP_ALIGN_FAULT_REPORT, $STOP_SYS_
ALIGN_FAULT REPORT

Condition Values Returned

SYS2-26

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The buffer named in the buffer argument is not
accessible.

SS$_AFR_NOT_ENABLED Alignment fault reporting has not been enabled.

SS$ BADPARAM The buffer size is smaller than the minimum

defined by the AFR$K_VMS_LENGTH or the
AFR$K_EXTENDED_LENGTH symbol.

System Service Descriptions
$GET_USER_CAPABILITY (Alpha Only)

$GET_USER_CAPABILITY (Alpha Only)
Reserve a User Capability

On Alpha systems, reserves a user capability, indicating to other processes that
the resource is in use.

This service accepts 64-bit addresses.

Format

SYS$GET_USER_CAPABILITY cap_num [,select_num] [,select_mask]
[,prev_mask] [,flags]

C Prototype

int sys$get_user_capability (*cap_num, int *select_num, struct _generic_64
*select_mask, struct _generic_64 *prev_mask, struct
_generic_64 *flags);

Arguments
cap_num
OpenVMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Capability number to be reserved by the calling kernel thread. This number
can range from 1 to 16 for an explicit request, or the symbolic constant CAP$K _
GET_FREE_CAP can be specified to get the next available user capability. The
cap_num argument is the 32- or 64-bit address of the longword containing the
user capability number or symbolic constant.

select_num

OpenVMS usage: longword

type: longword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

The number of the user capability selected by the service call. The select_ num
argument is the 32- or 64-bit address of a longword into which the system writes
the user capability number. For an explicit numeric request, the value returned
in this longword will match that specified in cap_num; otherwise, this cell
contains the next available user capability.

select_mask
OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

A quadword bit mask with a single bit position set, reflecting the user capability
selected by the service. The select_mask argument is the 32- or 64-bit address
of a quadword into which the system writes the selected user capability bit
mask. This bit mask is the most efficient method for indicating the reserved

SYS2-27

System Service Descriptions
$GET_USER_CAPABILITY (Alpha Only)

Description

SYS2-28

user capability with the $CPU_CAPABILITIES and $PROCESS_CAPABILITIES
services.

prev_mask

OpenVMS usage: mask_quadword

type: guadword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

The previous user capability reservation mask before execution of this service
call. The prev_mask argument is the 32- or 64-bit address of a quadword into
which the service writes a quadword bit mask specifying the previously reserved
user capabilities taken from the global cell SCH$GQ_RESERVED_USER_CAPS.

flags

OpenVMS usage: mask_quadword

type: guadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Options selected for the user capability reservation. The flags argument is a
guadword bit vector wherein a bit corresponds to an option.

Each option (bit) has a symbolic name, which the $CAPDEF macro defines. The
flags argument is constructed by performing a logical OR operation using the
symbolic names of each desired option.

At this time, all bits are reserved to Compaq and must be 0.

The Reserve a User Capability service provides a way for discrete processes to

communicate and synchronize their use of a user capability in the system. This
service uses the global cell SCH$GQ_RESERVED_USER_CAPS to indicate that
a particular user capability has been reserved. $GET_USER_CAPABILITY can
also return the current reservation state of all user capabilities in the system.

Reservation of a user capability can be made for an explicit number or for the
next available number. The selected user capability is returned to the caller
through a numeric value in select_ num or by a quadword bit mask in select_
mask.

This service does not directly enforce unique use of the individual user
capabilities; it simply provides a common informational and control resource

for processes using the other capability scheduling services. Code threads that
do not use this service to verify whether a user capability is available are still at
risk if differing usages conflict.

Required Privileges

The caller must have both ALTPRI and WORLD privileges to call $GET_
USER_CAPABILITY to reserve a user capability. No privileges are required

if SGET_USER_CAPABILITY is called only to retrieve the current user capability
reservation mask.

Required Quota
None

Related Services

System Service Descriptions
$GET_USER_CAPABILITY (Alpha Only)

$FREE_USER_CAPABILITY, $CPU_CAPABILITIES, $PROCESS_

CAPABILITIES

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_INSFARG

SS$_NOPRIV
SS$_NOSUCH_OBJECT
SS$_OBJECT_EXISTS

SS$_TOO_MANY_ARGS

The service completed successfully.

The service cannot access the locations specified
by one or more arguments.

Fewer than the required number of arguments
were specified, or no operation was specified.

Insufficient privilege for the attempted operation.
No more user capabilities are available.

A specifically requested user capability has
already been reserved.

Too many arguments were presented to the
system service.

SYS2-29

System Service Descriptions
$GOTO_UNWIND (Alpha Only)

$GOTO_UNWIND (Alpha Only)
Unwind Call Stack

On Alpha systems, unwinds the call stack.

Format
SYS$GOTO_UNWIND target_invo ,target_pc ,[new_r0] ,[new_r1]

C Prototype

int sys$goto_unwind (void *target_invo, void *(*(target_pc)), unsigned __int64
*new_r0, unsigned __int64 *new_rl);

Arguments
target_invo
OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains a handle for the target invocation.

If you do not specify the target_invo argument, or if the handle value is 0, an
exit unwind is initiated.

target_pc

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains the address at which execution should
continue in the target invocation.

If the target_pc argument is omitted or the value is 0, a system-defined target
PC is assumed and execution resumes at the location specified at the return
address for the call frame of the target procedure invocation.

new_r0

OpenVMS usage: quadword_unsigned
type: guadword (unsigned)
access: read only
mechanism: by reference

The address of a location that contains the value to place in the saved RO location
of the mechanism argument vector. The contents of this location are then loaded
into the processor RO register at the time that execution continues in the target
invocation.

If the new_r0 argument is omitted, the contents of the processor RO register at
the time of the call to $GOTO_UNWIND are used.

SYS2-30

Description

System Service Descriptions
$GOTO_UNWIND (Alpha Only)

new_rl

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a location that contains the value to place in the saved R1 location
of the mechanism argument vector. The contents of the location are then loaded
into the processor R1 register at the time that execution continues in the target
invocation.

If the new_r1 argument is omitted, the contents of the processor R1 register at
the time of the call to $GOTO_UNWIND are used.

The Unwind Call Stack service provides the function for a procedure to unwind
the call stack.

Required Access or Privileges
None

Required Quota
None

Related Services
$UNWIND

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The specified target_invo, target_pc, new_ro0,
or new_rl argument is not accessible.

SYS2-31

System Service Descriptions
$GRANTID

$GRANTID
Grant ldentifier to Process

Adds the specified identifier record to the rights list of the process or the system.

Format
SYS$GRANTID [pidadr] ,[prcnam] ,[id] ,[name] ,[prvatr]

C Prototype

int sys$grantid (unsigned int *pidadr, void *prcnam, struct _generic_64 *id, void
*name, unsigned int *prvatr, unsigned int segment);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) number of the process affected when $GRANTID
completes execution. The pidadr argument is the address of a longword
containing the PID of the process to be affected. You use —1 to indicate the
system rights list. When pidadr is passed, it is also returned; therefore, you
must pass it as a variable rather than a constant. If you specify neither pidadr
nor prcnam, your own process is used.

prcnam
OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Process name on which $GRANTID operates. The prcnam argument is the
address of a character string descriptor containing the process name. The
maximum length of the name is 15 characters. Because the UIC group number
is interpreted as part of the process name, you must use pidadr to specify the
rights list of a process in a different group. If you specify neither pidadr nor
prcnam, your own process is used.

id

OpenVMS usage: rights_holder

type: guadword (unsigned)
access: modify

mechanism: by reference

Identifier and attributes to be granted when $GRANTID completes execution.
The id argument is the address of a quadword containing the binary identifier
code to be granted in the first longword and the attributes in the second longword.

Use the id argument to modify the attributes of the identifier.

SYS2-32

System Service Descriptions
$GRANTID

Symbol values are offsets to the bits within the longword. You can also obtain
the values as masks with the appropriate bit set using the prefix KGB$M rather
than KGB$V. The following symbols for each bit position are defined in the macro
library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove
it from or add it to the process rights
database using the DCL command SET
RIGHTS_LIST.

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

You must specify either id or name. Because the id argument is returned as
well as passed if you specify name, you must pass it as a variable rather than a
constant in this case.

name
OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the identifier granted when $GRANTID completes execution. The name
argument is the address of a descriptor pointing to the name of the identifier.
The identifier is granted as it is created. You must specify either id or name.

prvatr

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous attributes of the identifier. The prvatr argument is the address of a
longword used to store the attributes of the identifier if it was previously present
in the rights list. If you added rather than modified the identifier, prvatr is
ignored.

SYS2-33

System Service Descriptions

$GRANTID

Description

SYS2-34

The Grant Identifier to Process service adds the specified identifier to the rights
list of the process or the system. If the identifier is already in the rights list,
its attributes are modified to those specified. This service is meant to be used
by a privileged subsystem to alter the access rights profile of a user, based on
installation policy. It is not meant to be used by the general system user.

The result of passing the pidadr or the prcnam argument, or both, to
SYS$GRANTID is summarized in the following table:

prcnam pidadr Result

Omitted Omitted Current process ID is used; process ID is not
returned.

Omitted 0 Current process ID is used; process ID is
returned.

Omitted Specified Specified process ID is used.

Specified Omitted Specified process name is used; process ID is not
returned.

Specified 0 Specified process name is used; process ID is
returned.

Specified Specified Specified process ID is used and process name is
ignored.

The result of passing the name or the id argument, or both, to SYS$GRANTID is
summarized in the following table:

name id Result

Omitted Omitted lllegal. The INSFARG condition value is
returned.

Omitted Specified Specified identifier value is used.

Specified Omitted Specified identifier name is used; identifier value
is not returned.

Specified 0 Specified identifier name is used; identifier value
is returned.

Specified Specified Specified identifier value is used and identifier

name is ignored.

Note that a value of O in either of the preceding tables indicates that the contents
of the address specified by the argument is the value 0. The word omitted
indicates that the argument was not supplied.

Required Access or Privileges

You need CMKRNL privilege to invoke this service. In addition, you need GROUP
privilege to modify the rights list of a process in the same group as the calling
process (unless the process has the same UIC as the calling process). You need
WORLD privilege to modify the rights list of a process outside the caller’s group.
You need SYSNAM privilege to modify the system rights list.

Required Quota
None

Related Services

System Service Descriptions
$GRANTID

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB,
$FORMAT_ACL, $SFORMAT_AUDIT, $GET_SECURITY, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SS$ WASCLR
SS$ WASSET

SS$_ACCVIO

SS$_INSFARG
SS$_INSFMEM

SS$_IVIDENT

SS$_IVLOGNAM
SS$_NONEXPR
SS$_NOPRIV

SS$ NOSUCHID

SS$_NOSYSNAM
SS$_RIGHTSFULL
RMS$_PRV

The service completed successfully; the rights list
did not contain the specified identifier.

The service completed successfully; the rights list
already held the specified identifier.

The pidadr argument cannot be read or written;
prcnam cannot be read; id cannot be read or
written; the name cannot be read; or prvatr
cannot be written.

You did not specify either the id or the name
argument.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier name is invalid; the
identifier name is longer than 31 characters,
contains an illegal character, or does not contain
at least one nonnumeric character.

You specified an invalid process name.
You specified a nonexistent process.

The caller does not have CMKRNL privilege or
is not running in executive or kernel mode, or
the caller lacks GROUP, WORLD, or SYSNAM
privilege as required.

The specified identifier name does not exist

in the rights database. Note that the binary
identifier, if given, is not validated against the
rights database.

The operation requires SYSNAM privilege.
The rights list of the process or system is full.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the OpenVMS
Record Management Services Reference Manual.

SYS2-35

System Service Descriptions
$HASH_PASSWORD

$HASH PASSWORD
Hash Password

Applies the hash algorithm you select to an ASCII password string and returns a
guadword hash value that represents the encrypted password.

Format
SYS$HASH _PASSWORD pwd ,alg ,[salt] ,usrnam ,hash

C Prototype

int sys$hash_password (void *pwd, unsigned char alg, unsigned short int salt, void
*usrnam, struct _generic_64 *hash);

Arguments
pwd
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

ASCII password string to be encrypted. The pwd argument is the address of a
character string descriptor pointing to the ASCII password. The password string
can contain between 1 and 32 characters and use the uppercase characters A
through Z, the numbers 0 through 9, the dollar sign ($), and the underscore (_).

The caller must validate the password string before calling $SHASH_PASSWORD
to ensure that only permitted characters are included.

alg

OpenVMS usage: byte unsigned
type: byte (unsigned)
access: read only
mechanism: by value

Algorithm used to hash the ASCII password string. The alg argument is an
unsigned byte specifying the hash algorithm.

The operating system recognizes the following algorithms:

Symbolic Name Description

UAISK_AD_II Uses a CRC algorithm and returns a longword hash
value. This algorithm was used in releases prior to
VAX VMS Version 2.0.

UAI$C_PURDY Uses a Purdy algorithm over salted input. It expects
a blank-padded user name and returns a quadword
hash value. This algorithm was used during VAX VMS
Version 2.0 field test.

SYS2-36

System Service Descriptions
$HASH PASSWORD

Symbolic Name Description

UAI$C_PURDY_V Uses the Purdy algorithm over salted input. It expects
a variable-length user name and returns a quadword
hash value. This algorithm was used in releases prior
to VMS Version 5.4.

UAI$K_PURDY_S Uses the Purdy algorithm over salted input. It expects
a variable-length user name and returns a quadword
hash value. This algorithm is used to hash all new
passwords in VMS Version 5.4 and later.

UAI$C_PREFERED _ Represents the latest encryption algorithm that the

ALGORITHM? operating system uses to encrypt new passwords.
Currently, it equates to UAI$C_PURDY_S. Compaq
recommends that you use this symbol in source
modules because it always equates with the most
recent algorithm.

1 The value of this symbol might be changed in future releases if an additional algorithm is
introduced.

Values ranging from 128 to 255 are reserved for customer use; the constant
UAI$K_CUST_ALGORITHM defines the start of this range.

You can use the UAI$_ENCRYPT and UAI$_ENCRYPT2 item codes with the
$GETUAI system service to retrieve the primary and secondary password hash
algorithms for a user.

salt

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

Value used to increase the effectiveness of the hash. The salt argument is an
unsigned word containing 16 bits of data that is used by the hash algorithms
when encrypting a password for the associated user name. The $GETUAI item
code UAI$_SALT is used to retrieve the SALT value for a given user. If you do
not specify a SALT value, $HASH_PASSWORD uses the value of 0.

usrnam
OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the user associated with the password. The usrnam argument is the
address of a descriptor pointing to a character text string containing the user
name. The current password encryption algorithm (UAI$C_PURDY_S) folds the
user name into the ASCII password string to ensure that different users with the
same password produce different hash values. This argument must be supplied
for all calls to $SHASH_PASSWORD but is ignored when using the CRC algorithm
(UAISC_AD_II).

SYS2-37

System Service Descriptions
$HASH_PASSWORD

Description

hash

OpenVMS usage: quadword_unsigned
type: guadword (unsigned)
access: write only
mechanism: by reference

Output hash value representing the encrypted password. The hash argument is
the address of an unsigned quadword to which $HASH_PASSWORD writes the
output of the hash. If you use the UAI$C_AD_II algorithm, the second longword
of the hash is always set to 0.

The Hash Password service applies the hash algorithm you select to an ASCII
password string and returns a quadword hash value that represents the
encrypted password.

Other OpenVMS password services allow spaces, tabs, and other blank characters
from the user, but they remove those spaces before passing the string to SHASH_
PASSWORD. Before calling $HASH_PASSWORD, all white space must be
removed from the password string to ensure proper comparison with passwords
created by other services.

Required Access or Privileges
None

Required Quota
None

Related Services
$GETUAI, $SETUALI.

Use $GETUAI to get the values for the salt and alg arguments. Use $SETUAI to
store the resulting hash using the item codes UAI$ PWD and UAI$ PWD2.

For more information, see the appendix on implementing site-specific security
policies in the OpenVMS Programming Concepts Manual.

Condition Values Returned

SYS2-38

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The input or output buffer descriptors cannot be
read or written to by the caller.

SS$_BADPARAM The specified hash algorithm is unknown or
invalid.

System Service Descriptions

$HIBER
$HIBER
Hibernate
Allows a process to make itself inactive but to remain known to the system so
that it can be interrupted; for example, to receive ASTs.
Format

SYS$HIBER

C Prototype
int sys$hiber (void);

Arguments

None.

Description

The Hibernate service allows a process to make itself inactive but to remain
known to the system so that it can be interrupted; for example, to receive ASTSs.
A hibernate request is a wait-for-wake-event request. When you call the Wake
Process from Hibernation ($WAKE) service or when the time specified with the
Schedule Wakeup ($3SCHDWK) service occurs, the process continues execution at
the instruction following the Hibernate call.

In VAX MACRO, you can call the Hibernate service only by using the $name_S
macro.

A hibernating process can be swapped out of the balance set if it is not locked
into the balance set.

An AST can interrupt the wait state caused by $HIBER if the access mode at
which the AST is to execute is equal to or more privileged than the access mode
from which the hibernate request was issued and the process is enabled for ASTs
at that access mode.

When the AST service routine completes execution, the system reexecutes the
$HIBER service on behalf of the process. If a wakeup request has been issued
for the process during the execution of the AST service routine (either by itself
or another process), the process resumes execution. If a wakeup request has not
been issued, it continues to hibernate.

If one or more wakeup requests are issued for the process while it is not
hibernating, the next hibernate call returns immediately; that is, the process
does not hibernate. No count of outstanding wakeup requests is maintained.

Although this service has no arguments, a Fortran function reference must use
parentheses to indicate a null argument list, as in the following example:

| STAT=SYS$HI BER()

Required Access or Privileges
None

Required Quota
None

SYS2-39

System Service Descriptions
$HIBER

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETIPIW, $SPROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRYV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$ NORMAL The service completed successfully.

SYS2-40

System Service Descriptions
$ICC_ACCEPT

$ICC_ACCEPT

Accept for

Format

C Prototype:

Arguments

Intra-Cluster Communications (ICC)
Responds to an incoming connection request. This call is used to complete an ICC

connection from the server side.

On Alpha systems, this service accepts 64-bit addresses.

SYSS$ICC_ACCEPT conn_handle ,[accept_buf] ,Jaccept_len] ,[user_context] ,[flags]

int sys$icc_accept (unsigned int conn_handle, char * accept_buf, unsigned int
accept_len, unsigned int user_context, unsigned int flags);

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the requested connection.

accept_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

A buffer of up to 1000 bytes of accept data that is sent to the source of the
connection at the completion of the connection process.

accept_len

OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The actual number of bytes in accept_buf to be sent.

user_context
OpenVMS usage: user_arg

type: longword (unsigned) (VAX), quadword (Alpha)
access: read only
mechanism: by value

A user-specified value that is subsequently returned on any disconnect or data
events on this connection.

SYS2-41

System Service Descriptions

$ICC_ACCEPT
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Description

ICC$M_SYNCH_MODE can be specified to indicate that the data transmission
and reception routines $ICC_TRANSMIT, $ICC_RECEIVE, and $ICC_REPLY are
allowed to return the status SS$_SYNCH in the case of synchronous completion,
and that the AST will not be called.

This service is used by a server to respond to an incoming connection request.
The $ICC_ACCEPT service may only be called after receiving a connection
request AST.

At the completion of the service, the connection is open and data can be
exchanged. Once opened, there is no logical distinction between a connection
opened by a client with the Connect service or a server with the Accept service.

A server can reject a Connection request by calling the $ICC_REJECT service.

Required Access or Privileges
None.

Required Quota

$ICC_ACCEPT changes the process BYTLM quota for the length of the
accept_buf parameter, as well as a fixed value for each potential Receive buffer
on the connection. The number of potential Receive buffers is specified by the
MAXFLOWBUFCNT parameter in the $ICC_OPEN_ASSOC service.

Related Services

$ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY,
$ICC_REPLYW, $ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,
$ICC_TRANSMITW

Condition Values Returned

SYS2-42

SS$_NORMAL Normal completion.

SS$_ACCVIO Access violation on parameter.

SS$_BADPARAM Bad parameter value specified.

SS$ CLEARED Remote association closed the link before it was
accepted.

SS$ EXQUOTA Exceeded BYTCNT/BYTLM.

SS$_INSFARG Too few arguments supplied.

SS$_INSFMEM Not enough system resources or process virtual
memory available.

SS$_IVMODE Attempted to accept a connection from a more
privileged access mode than the requested
association.

SS$_IVCHAN
SS$_LINKDISCON

SS$_TOO_MANY_ARGS
SS$ WRONGSTATE

System Service Descriptions
$ICC_ACCEPT

Connection not found or Invalid connection
handle.

The connection is valid, but the physical link has
started to disconnect.

Too many arguments specified.
Connection is in the wrong state for the request.

SYS2-43

System Service Descriptions
$ICC_CLOSE_ASSOC

$ICC_CLOSE_ASSOC
Close Association for Intra-Cluster Communications (ICC)

Closes the application’s association with ICC.

Format
SYS$ICC_CLOSE_ASSOC assoc_handle

C Prototype:

int sys$icc_close_assoc (unsigned int assoc_handle);

Arguments

assoc_handle

OpenVMS usage: association_id

type: longword (unsigned)

access: read only

mechanism: by value

The handle of the association to be closed.
Description

This service closes the application’s association with ICC. If multiple associations
are open, only the specified association is closed. When an association is closed,
any active connections on that association are disconnected. If not explicitly
closed by the application, associations opened in user mode will be closed at image
exit; associations opened in inner modes will be closed at process termination.

All operations on an association must occur in the access mode at which the
association was opened.

When an association is closed, the entry (if any) in the simple clusterwide
association registry is removed.

Required Access or Privileges
None.

Required Quota
None.

Related Services

$ICC_ACCEPT, $ICC_CONNECT, $ICC_CONNECTW, $ICC_DISCONNECT,
$ICC_DISCONNECTW, $ICC_OPEN_ASSOC, $ICC_RECEIVE,
$ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,
$ICC_TRANSMITW

SYS2-44

System Service Descriptions
$ICC_CLOSE_ASSOC

Condition Values Returned

SS$_NORMAL Normal completion.

SS$_INSFARG The assoc_handle was not supplied.

SS$ IVCHAN Invalid association handle.

SS$ IVMODE Attempted to close an association from a more
privileged access mode than the requested
association.

SS$ TOO_MANY_ARGS Too many arguments specified.

SYS2-45

System Service Descriptions
$ICC_CONNECT

$ICC_CONNECT
Connect for Intra-Cluster Communications (ICC)

Establishes a connection to a remote application over an open association.

On Alpha systems, this service accepts 64-bit addresses.

Format

SYS$ICC_CONNECT ios_icc ,[astadr] ,[astprm] ,assoc_handle ,conn_handle
,remote_assoc ,[remote_node] ,[user_context] ,[conn_buf]
,[conn_buf_len] ,[return_buf] ,[return_buf_len] ,[retlen_addr]
[flags]

C Prototype:

int sys$icc_connect (struct _ios_icc *ios_icc, void (*astadr)(__unknown_params),
__int64 astprm, unsigned int assoc_handle, unsigned int
*conn_handle, void *remote_assoc, void *remote_node,
unsigned int user_context, char *conn_buf, unsigned int
conn_buf _len, char *return_buf, unsigned int return_buf len,
unsigned int *retlen_addr, unsigned int flags);

Arguments
ios_icc
OpenVMS usage: io_status_block
type: guadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)
1/0 status block:

+2 0

Undefined Completion status

ios_icc$l_remstat
+6 +4

VM-0462A-Al

Completion status values:

SS$ NORMAL, SS$ BUFFEROVF, SS$_EXQUOTA, SS$_INSFMEM,
SS$_IVBUFLEN, SS$_LINKABORT, SS$_LINKDISCON, SS$_NOLOGNAM,
SS$_NOSUCHID, SS$_NOSUCHNODE, SS$ PATHLOST, SS$ REJECT,
SS$_SSFAIL, SS$ UNREACHABLE, SS$ WRONGSTATE

The second longword is undefined unless the completion code is SS$ REJECT. In
this case, the application-defined rejection reason code is supplied by the server
when $ICC_REJECT is called.

astadr

OpenVMS usage: ast_procedure

type: procedure_entry _mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha)

SYS2-46

System Service Descriptions
$ICC_CONNECT

by 32-bit reference (VAX)

The AST routine to be executed when the operation completes.

astprm

OpenVMS usage: user_arg

type: guadword (unsigned) (Alpha), longword (unsigned) (VAX)
access: read only

mechanism: by 64-bit value (Alpha)

by 32-bit value (VAX)

The parameter to be passed to the AST routine.

assoc_handle
OpenVMS usage: association_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the association on which the connection is to be opened. The
constant ICC$C_DFLT_ASSOC_HANDLE, if used, indicates that the default
association is to be used (and opened if necessary).

conn_handle
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of a longword into which $ICC_CONNECT writes the connection handle
of the created connection on a successful call.

remote_assoc
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor (Alpha)

by 32-bit descriptor (VAX)

An ASCII character string (31 characters maximum) specifying the name of the
target application to connect to. Association names are case sensitive.

remote_node
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor (Alpha)

by 32-bit descriptor (VAX)

The name of the node where the target association resides. A null or blank string
can be used to indicate the local node. If omitted (by passing zero by value),

the simple clusterwide association registry is to be used. Each node name is a
one-to-six character SCS node name. A comma-delimited list of nodes may be
specified, indicating that one is to be chosen at random.

SYS2-47

System Service Descriptions
$ICC_CONNECT

SYS2-48

user_context
OpenVMS usage: user_arg

type: longword (unsigned) (VAX), quadword (Alpha)
access: read only
mechanism: by value

A user-specified value to be subsequently returned on any disconnect or data
events on this connection.

conn_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

A buffer of up to 1000 bytes of connection data to be sent to the target of the
connection during the connection process.

conn_buf_len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes in conn_buf to be sent.

return_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

A buffer of up to 1000 bytes in length to receive any incoming connection accept
or reject data returned.

return_buf len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The length of the supplied return_buf.

retlen_addr

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of a longword into which $ICC_CONNECT writes the actual length (in
bytes) of any user accept or reject data returned in the buffer return_buf.

Description

System Service Descriptions
$ICC_CONNECT

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

ICC$M_SYNCH_MODE can be specified to indicate that the data transmission
and reception routines $ICC_TRANSMIT, $ICC_RECEIVE, and $ICC_REPLY are
allowed to return the status SS$_SYNCH in the case of synchronous completion,
indicating that the AST will not be called.

This service establishes a connection to a remote application over an

open association. Connections must be opened in the same mode as

their association. If the user provides the default association constant
ICC$C_DFLT_ASSOC_HANDLE as its association handle, the default association
will be used; it will be opened if it is not already open. Multiple connections

are possible over a single association. When completion is signaled by the AST
routine, the application must check the completion status field of the 10S_ICC
to determine if the server has accepted or rejected the connection request. The
number of connections is subject to process BYTLM quota.

At image exit, as a result of closing any open user mode associations, all user
mode connections are disconnected. Inner mode connections are the responsibility
of the inner mode code, but are disconnected at process termination when inner
mode associations are closed. Connections are only visible to the mode in which
they were opened.

A client opens connections with the $ICC_CONNECT service; a server opens
connections with the $ICC_ACCEPT service.

Required Access or Privileges

SYSNAM, or access via ICC Security Object. Refer to the OpenVMS System
Manager’s Manual for more information.

Required Quota

$ICC_CONNECT changes the process BYTLM quota for the length of the conn_
buf parameter, as well as a fixed value for each potential Receive buffer on

the connection. The number of potential Receive buffers is specified by the
MAXFLOWBUFCNT parameter in the $ICC_OPEN_ASSOC service.

If $ICC_OPEN_ASSOC is not called before $ICC_CONNECT, the default value of
MAXFLOWBUFCNT is used (currently 5).

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC _RECEIVEW, $ICC_REJECT, $ICC_REPLY,
$ICC_REPLYW, $ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,
$ICC_TRANSMITW

SYS2-49

System Service Descriptions

$iICC_CONNECT

Condition Values Returned

SYS2-50

SS$_NORMAL
SS$_ACCVIO
SS$_BADPARAM
SS$ BUFFEROVF
SS$_EXQUOTA

SS$_INSFARG
SS$_INSFMEM

SS$_INSFP1POOL
SS$_IVBUFLEN

SS$_IVCHAN
SS$_IVMODE
SS$ LINKABORT
SS$ LINKDISCON

SS$_NOLINKS
SS$ NOLOGNAM

SS$ NOSUCHOBJECT

SS$_ NOSUCHNODE

SS$ PATHLOST

SS$_REMRSRC
SS$ REJECT

SS$_TOO_MANY_ARGS
SS$ UNREACHABLE
SS$ WRONGSTATE

Normal completion.

Access violation on parameter.

Bad parameter value specified.

Overflow on inbound accept or reject data.

Not enough AST quota (asynchronous request) or
insufficient BYTLM/BYTCNT.

Too few arguments were supplied, or required
arguments not supplied.

Not enough system resources or process virtual
memory available.

Not enough process P1 space available.

The length of the context data or the accept or
reject data buffer is more than 1000 bytes.

Invalid association handle.

Attempted to open a connection from a more
privileged access mode than the requested
association.

The communications link to the target node was
lost.

The communications link to the target node was
lost.

Too many connections open.

The underlying layers failed to start properly
during system initialization.

The remote association name and/or node was
not found.

The target node is not known.

The communications link to the target node was
lost.

Insufficient resources at remote node.

The remote association or node rejected the
connection request.

Too many arguments specified.
Target node currently unreachable.
Connection is in the wrong state for the request.

System Service Descriptions
$ICC_CONNECTW

$ICC_CON
Connect fo

Format

C Prototype:

NECTW
r Intra-Cluster Communications and Wait

Establishes a link between two ICC associations.

The $ICC_CONNECTW service completes synchronously; that is, it returns to the
caller after the server has either accepted or rejected the connection request.

For asynchronous completion, use the $ICC_CONNECT service; $ICC_CONNECT
returns to the caller as soon as the connection request has been sent to the server,
without waiting for a response from the server.

On Alpha, this service accepts 64-bit addresses.

SYS$ICC_CONNECTW ios_icc, [astadr], [astprm], assoc_handle, conn_handle,
remote_assoc, [remote_node], [user_context], [conn_buf],
[conn_buf_len], [return_buf], [return_buf_len], [retlen_addr],
[flags]

int sys$icc_connectw (struct _ios_icc *ios_icc, void (*astadr)(__unknown_params),
__int64 astprm, unsigned int assoc_handle, unsigned int
*conn_handle, void *remote_assoc, void *remote_node,
unsigned int user_context, char *conn_buf, unsigned int
conn_bhuf_len, char *return_buf, unsigned int return_buf _len,
unsigned int *retlen_addr, unsigned int flags);

SYS2-51

System Service Descriptions
$ICC_DISCONNECT

$ICC_DISCONNECT
Disconnect for Intra-Cluster Communications (ICC)

Terminates the specified connection.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYS$ICC_DISCONNECT conn_handle ,iosb ,[astadr] ,[astprm] ,[disc_buf]
[disc_buf_len]
C Prototype:

int sys$icc_disconnect (unsigned int conn_handle, struct _iosb, *iosb, void
(*astadr)(__unknown_params), __int64 astprm, char *
disc_buf, unsigned int disc_buf_len);

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The ID of the connection to be disconnected.

iosb

OpenVMS usage: io_status_block

type: guadword (unsigned)

access: write only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)
1/0O status block:

+2 0

Undefined Completion status

Unused Unused
+6 +4
VM-0463A-Al

Completion status values:
SS$_NORMAL, SS$_EXQUOTA, SS$_LINKDISCON, $ICC_REJECT

astadr

OpenVMS usage: ast_procedure

type: procedure_entry _mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha)

by 32-bit reference (VAX)

The AST routine to be executed when the operation completes.

SYS2-52

Description

System Service Descriptions
$ICC_DISCONNECT

astprm

OpenVMS usage: user_arg

type: quadword (unsigned) (Alpha), longword (unsigned) (VAX)
access: read only

mechanism: by 64-bit value (Alpha)

by 32-bit value (VAX)

The parameter to be passed to the AST routine.

disc_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

A buffer of up to 1000 bytes of disconnect data to be sent to the partner in the
connection when notifying it that disconnection is being initiated. Delivery of this
data is not guaranteed.

disc_buf _len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes in disc_buf to be sent.

This service must be called in the mode in which the association was opened.

This service terminates the specified connection. After this service is called,
no further communication is possible over this connection. All outstanding
data transmission and reception functions are terminated with an error before
completion is signaled by calling the AST (if supplied).

A connection may be disconnected by either party. Proper programming procedure
for network communications strongly recommends that the party that last
received a message initiate the disconnection. If the party that last sent a
message initiates the disconnection, there is no guarantee that the message was
delivered.

Similarly, although this interface provides the ability to send disconnect data,
only noncritical information should be transmitted with the disconnect data
mechanism, because there is no guarantee that the data will have been received
or acted upon by the other party to the connection.

Required Access or Privileges
None.

Required Quota
BYTLM (disc_buf)

SYS2-53

System Service Descriptions
$ICC_DISCONNECT

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$1CC_DISCONNECTW, $ICC_OPEN_ASSOC, $ICC_RECEIVE,
$ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $1CC_TRANSMIT,

$ICC_TRANSMITW

Condition Values Returned

SYS2-54

SS$_NORMAL
SS$_ACCVIO
SS$_BADPARAM
SS$_INSFMEM
SS$_IVBUFLEN

SS$_IVCHAN

SS$_IVMODE

SS$_LINKDISCON

SS$ TOO_MANY_ARGS

Normal successful completion.
Access violation on parameter.
Bad parameter value specified.
Not enough nonpaged pool.

The length of the disconnect data buffer is more
than 1000 bytes.

Unknown connection specified or invalid
connection handle.

Attempted to disconnect a connection from a
more privileged access mode than the requested
connection.

The remote association closed the connection
before it was accepted or rejected.

Too many arguments specified.

System Service Descriptions
$ICC_DISCONNECTW

$ICC_DISCONNECTW
Disconnect and Wait for Intra-Cluster Communications (ICC)

Terminates a link between two ICC associations.

The $ICC_DISCONNECTW service completes synchronously; that is, it returns to
the caller after the connection has completely finished the disconnection request.

For asynchronous completion, use the $ICC_DISCONNECT service;
$ICC_DISCONNECT returns to the caller as soon as the disconnection request
has been sent to the transport layer, without waiting for notification that the
disconnection has completed.

On Alpha, this service accepts 64-bit addresses.

Format
SYSS$ICC_DISCONNECTW conn_handle ,iosb ,[astadr] ,[astprm] ,[disc_buf]
,[disc_buf_len]
C Prototype:

int sys$icc_disconnectw (unsigned int conn_handle, struct _iosb, *iosb, void
(*astadr)(__unknown_params), __int64 astprm, char *
disc_buf, unsigned int disc_buf_len);

SYS2-55

System Service Descriptions
$ICC_OPEN_ASSOC

$ICC_OPEN_ASSOC
Open Association for Intra-Cluster Communications (ICC)

Format

C Prototype:

Arguments

SYS2-56

Declares an application association with ICC.

On Alpha systems, this service accepts 64-bit addresses.

SYS$ICC_OPEN_ASSOC assoc_handle ,[assoc_name] ,[logical_name]
J[logical_table] ,[conn_event_rtn] ,[disc_event_rtn]
,[recv_rtn] ,[maxflowbufcnt] ,[prot]

int sys$icc_open_assoc (unsigned int *assoc_handle, void *assoc_name,
void *logical_name, void *logical_table, void
(*conn_event_rtn)(_ _unknown_params), void
(*disc_event_rtn)(__unknown_params), void
(*recv_rtn)(__unknown_params), unsigned int
maxflowbufcnt, unsigned int prot);

assoc_handle
OpenVMS usage: association_id

type: longword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of a longword into which $ICC_OPEN_ASSOC writes the handle
assigned to the opened association.

assoc_name
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor (Alpha)

by 32-bit descriptor (VAX)

An ASCII character string of up to 31 characters in length specifying the name
of the application opening the association. Null (0 length), and empty or blank
association names are not allowed. If this argument is omitted (that is, a zero
is passed in by value), it signifies that the user wants to open the default
association. This argument is case sensitive.

logical_name
OpenVMS usage: logical name

type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor (Alpha)

by 32-bit descriptor (VAX)

System Service Descriptions
$ICC_OPEN_ASSOC

A logical name in a clusterwide logical name table used to maintain the simple
association registry. The logical name represents the name of the service provided
by the application. Logical names are case sensitive.

logical_table

OpenVMS usage: logical name table

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit descriptor (Alpha)

by 32-bit descriptor (VAX)

The table containing the logical name logical _name. Logical name tables
are converted to uppercase. Unless your application requires an application-
specific logical name table, this argument should be either the default

ICC Registry search list (ICCSREGISTRY), or the default registry table
(ICC$REGISTRY_TABLE).

conn_event_rtn
OpenVMS usage: user_routine

type: procedure_entry_mask
access: call without stack unwinding
mechanism: by 32-bit or 64-bit linkage reference (Alpha)

by 32-bit reference (VAX)

The address of the AST routine to be called for incoming connect events. This
routine will be called in the mode of the caller. (No mechanism is provided for the
routine to be called at a different mode).

You must have a conn_event_rtn to operate as a server.

disc_event_rtn
OpenVMS usage: user_routine

type: procedure_entry_mask
access: call without stack unwinding
mechanism: by 32-bit or 64-bit linkage reference (Alpha)

by 32-bit reference (VAX)

The address of the AST routine to be called for incoming disconnect events. This
routine will be called in the mode of the caller. (No mechanism is provided for the
routine to be called at a different mode). The arguments, conn_event_rtn, and
disc_event_rtn, may reference the same routine.

recv_rtn

OpenVMS usage: user_routine

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha)

by 32-bit reference (VAX)
The address of the AST routine to be called for incoming new data events.

If the user provides this routine, it indicates that the user will supply a buffer

of the size required (specified in an argument to the recv_rtn at each call) each
time one is requested. If the user supplies this routine, receive calls should only
be issued after receive events arrive and sufficient buffer space has been allocated
to handle the incoming data.

SYS2-57

System Service Descriptions
$ICC_OPEN_ASSOC

Description

SYS2-58

This routine will be called in the mode of the caller. (No mechanism is provided
for the routine to be called at a different mode).

maxflowbufcnt
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

The maximum number of pending inbound messages (per connection) that ICC
will allow the user before initiating flow control. A message is pending if it is
being held within ICC but no receive call(s) are outstanding from the user.

Default = 5 (Pass 0 to get the default)

prot

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

This argument is ignored for non-server applications.
The default protection scheme for this association is as follows:

0 - access for everyone (default)
1 - stops WORLD access
2 - stops both WORLD and GROUP access

Advanced access control is provided by ICC Security objects. Refer to the
OpenVMS System Manager’s Manual for information on ICC system management
and security.

This service declares an application association with ICC. Servers must make
this call to declare or register their name and to indicate their readiness to
receive incoming connections. Although a client is permitted to call this routine,
it is unnecessary for simple applications. A client application that wishes to

be notified of disconnection events or Receive Data events must call the $ICC_
OPEN_ASSOC service.

A client can open a connection without specifying an open association; this
automatically creates a default association name of ICC$PID_nnnnnnnn (where
nnnnnnnn is a character representation of the Process ID).

NETMBX privilege is required to open any association.

The association name space is a controlled resource. Refer to the OpenVMS
System Manager’s Manual for information on managing this resource.

An attempt to open an association with a name not authorized as described in
the OpenVMS System Manager’s Manual will fail with the error SS$ NOPRIV
returned to the caller. In addition to making entries in the system’s local
association name space, a call to $ICC_OPEN_ASSOC may also make an entry in
a simple clusterwide registry of active associations.

An association may only be accessed from the mode in which it was opened. Inner
modes are prevented from using the default association.

System Service Descriptions
$ICC_OPEN_ASSOC

An application can open any number of associations subject to available process
BYTLM quota. Currently, there is a systemwide limit of 512 open associations.
There is no limit imposed clusterwide.

Description of User-Supplied Routines (ASTSs)

When opening an association, the user may optionally supply a connect/disconnect
AST and/or a Data Event AST. These routines will be used for all connections
established over the specified association. In addition, for any of the
asynchronous services (those provided with both an immediate return and a

"W" form), a completion AST may be supplied by the user. This section describes
these ASTs.

1. Connect and Disconnect AST

The user chooses the name of this routine and supplies the procedure name as an
argument to the Open Association service. Seven arguments will be passed to the
user.

The first argument notifies the user whether this is an incoming new connection
or a disconnection of an existing connection. The second identifies the connection.
The third and fourth provide access to incoming connect or disconnect data (if
any) sent by the cooperating application. The fifth argument provides the number
of bytes available for any optional Accept or Reject data (in the case of a connect
request) or the disconnect reason supplied by the cooperating application (if any).

For connect events, the sixth and seventh arguments are the EPID and username
of the process requesting the connect, respectively.

The user has the choice of using and declaring a common routine or separate
routines as specified when calling $SOPEN_ASSOCIATION.

Format
ConnDi scRtn event type ,conn_handle ,data_|len ,data_bfr ,P5 ,P6 ,P7

C Prototype:

void ConDiscRtn (unsigned int event type, unsigned int conn_handle,
unsigned int data_len, char *data_bfr,
unsigned int P5, unsigned int P6, char *P7);

Arguments

event _type

Type: [ongword (unsi gned)
Access: read only

Mechani sm by val ue

This field will contain a code describing the type of event. The possible event
codes are defined in ICCDEF:

| CC$C_EV_CONNECT - Connection event
| CC3C_EV_DI SCONNECT - Disconnection event

conn_handl e
Type: | ongword (unsi gned)
Access: read only

Mechani sm by val ue

The handle of the connection associated with the event.

data_len
Type: | ongword (unsi gned)
Access: read only

Mechani sm by val ue

SYS2-59

System Service Descriptions
$ICC_OPEN_ASSOC

SYS2-60

The length (in bytes) of the incoming data. This value specifies the length of the
buffer data_bfr, and will be between 0 and 1000, with zero indicating no data.

data_bfr
Type: character-coded text string
Access: read only

Mechanism by 32-bit or 64-bit value (Al pha)
by 32-bit value (VAX)

The 32-bit address of the P1-space buffer containing the data, or zero if no data is
available. The length of this buffer is specified by the argument data_len.

Upon return from the AST, the address of the data is no longer valid. An
application wishing to reference the Connection or Disconnection data after
Return must copy the data from the supplied buffer to storage owned by the
application.

P5
Type: [ongwor d (unsi gned)
Access: read only

Mechanism by val ue

The usage of this argument is dependent on the specified event type code
(event_type).

For connect events (event_type=ICC$C_EV_CONNECT), this argument contains
the length (in bytes) of the buffer available for a reply.

For disconnect events (event_type=ICC$C_EV_DISCONNECT), this argument
contains the user-defined disconnect reason/status from the remote partner.

P6
Type: [ongword (unsigned) (VAX), quadword (Al pha)
Access: read only

Mechanism by val ue

The usage of this argument is dependent on the specified event type code
(event_type).

For connect events (event_type=ICC$C_EV_CONNECT), this argument contains
the EPID of the process requesting the connection, passed by value.

For disconnect events (event_type=ICC$C_EV_DISCONNECT), this argument
contains the user-defined user_context supplied when the connection was
opened. For a client, the user_context is that supplied to the $ICC_CONNECT
call. For a server, it is the value supplied to $ICC_ACCEPT.

P7
Type: character-coded text string
Access: read only

Mechani sm by reference

For connect events: Username, passed by reference (to P1 space buffer) as a
12-character, space-filled string.

The application must copy this information to local storage before exiting from
the connect routine.

For disconnect events, this argument is zero (0).

System Service Descriptions
$ICC_OPEN_ASSOC

2. Data Event Routine

This routine, if supplied by the user when opening the association, allows the
user to be notified of any pending data events over any connections subsequently
opened over that association.

If the user has supplied this routine, the Receive service must only be called in
response to incoming data events signaled by this routine, and must be called
with a buffer large enough to handle the message size specified.

Use of this routine obligates the user to allocate buffers up to the size requested
by the cooperating application. The only recovery provided at this time if a
sufficiently large buffer cannot be allocated is to disconnect the connection.
Failure to issue a receive call or disconnect may stall all further communication
on this connection.

Format
Dat aEventRtn nessage_size ,conn_handl e , user_cont ext

C Prototype:

void DataEventRtn (unsigned int nmessage_size, unsigned int conn_handle,
unsi gned int user_context);

Arguments

message_si ze

Type: [ongword (unsi gned)
Access: read only

Mechani sm by val ue

This field will contain the number of bytes in the pending data event.

conn_handl e
Type: [ongwor d (unsi gned)
Access: read only

Mechani sm by val ue

The handle of the connection associated with the event. This value should be
used as the conn_handle argument to $ICC_RECEIVE.

user _cont ext

Type: [ongword (unsigned) (VAX), quadword (Al pha)
Access: read only

Mechani sm by val ue

The user-defined user_context supplied when the connection was opened. For a
client, the user context is that supplied to the $ICC_CONNECT call. For a server,
it is the value supplied to $ICC_ACCEPT.

3. Completion ASTs

Completion ASTs may be supplied to the $ICC_CONNECT[W],
$ICC_DISCONNECT[W], $ICC_TRANSMIT[W], $ICC_RECEIVE[W],
$ICC_TRANSCEIVE[W], and $ICC_REPLY[W] services. In all cases, they are
called at the completion of the requested operation, with the single argument, the
AST parameter supplied when the original service was called, passed by value.

Completion ASTs are not called if the service returns an error prior to
initiating the operation. $ICC_CONNECT and $ICC_ACCEPT accept the flag
ICC$V_SYNCH_MODE which indicates that the routines $ICC_TRANSMIT[W],
$ICC_RECEIVE[W], and $ICC_REPLY[W] are permitted to return the status
SS$_SYNCH, which will indicate that completion has already occurred and the
AST will not be called.

SYS2-61

System Service Descriptions
$ICC_OPEN_ASSOC

Required Access or Privileges

Refer to the OpenVMS System Manager’s Manual for more information.

Required Quota
BYTCNT, BYTLM

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_RECEIVE,
$ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,

$ICC_TRANSMITW

Condition Values Returned

SYS2-62

SS$ NORMAL
SS$_ACCVIO
SS$ BADPARAM
SS$ DUPLNAM
SS$ EXQUOTA

SS$_INSFARG
SS$_INSFMEM

SS$_IVMODE

SS$_NOLINKS
SS$_NONETMBX
SS$_NOPRIV

SS$_SSFAIL

SS$ TOO_MANY_ARGS

Normal completion.
Access violation on parameter.
Bad parameter value specified.

Specified association name is already registered
(already exists), or default association is already
open.

One or more process quotas has been exceeded
(probably BYTCNT/BYTLM).

Too few arguments supplied.

Not enough system resources or process virtual
memory available.

Attempt to open default association from other
than user mode.

Too many associations open for this process.
Request requires NETMBX privilege.

No privilege for association name access or
logical name table access if using the Registry.

Transport association name table is full,
systemwide.

Too many arguments were specified.
Any failures from the system services: $ENQ,
$DEQ, $CRELNM, $TRNLNM.

System Service Descriptions
$ICC_RECEIVE

$ICC_RECEIVE
Receive for Intra-Cluster Communications (ICC)

Receives a single message over a connection.

On Alpha systems, this service accepts 64-bit addresses.

Format

SYSS$ICC_RECEIVE conn_handle ,ios_icc ,[astadr] ,[astprm] ,recv_buf
,recv_buf_len

C Prototype:

sys$icc_receive (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), __int64 astprm, char *recv_buf,
unsigned int recv_buf_len);

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the fully established connection.

ios_icc

OpenVMS usage: io_status_block

type: four longwords (unsigned)

access: write only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)
1/O status block:

+2 0
Undefined Completion status
ios_icc$1_rcv_len: recvlen +4
ios_icc$1_req_handle: request_handle +8
ios_icc$1_reply_len: reply_len +12
VM-0464A-Al

Completion codes:

SS$ NORMAL, SS$ EXQUOTA, SS$_INSFMEM, SS$_LINKDISCON,
SS$ BUFOVL, SS$ ACCVIO

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha)

by 32-bit reference (VAX)

SYS2-63

System Service Descriptions
$ICC_RECEIVE

SYS2-64

The AST routine to be executed when the operation completes.

astprm

OpenVMS usage: user_arg

type: guadword (unsigned) (Alpha)
access: longword (unsigned) (VAX)
mechanism: read only

by 64-bit value (Alpha)

The parameter to be passed to the AST routine.

recv_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of the buffer to receive the incoming data. The length of this buffer is
specified by the argument recv_buf_len.

recv_buf len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The length (in bytes) of the buffer available to hold the incoming data. This value
specifies the length of the buffer recv_buf.

IOS_ICC Arguments:
recvlen (output)
OpenVMS usage: longword unsigned

type: longword (unsigned)
access: write only
mechanism: by value

This parameter is returned in the ios_icc. $ICC_RECEIVE writes the actual
length of the incoming data message received from the target application (in
bytes) into offset ios_icc$l_rcv_len of the ios_icc.

request_handle (output)
OpenVMS usage: request_id

type: longword (unsigned)
access: write only
mechanism: by value

This parameter is returned in the ios_icc. $ICC_RECEIVE writes the
Request/Response handle into offset ios_icc$l_req_handle of the ios_icc. The
request_handle argument is nonzero if the application is expected to reply to
this message.

Description

reply_len (output)
OpenVMS usage:

type:
access: write only
mechanism: by value

System Service Descriptions
$ICC_RECEIVE

longword_unsigned
longword (unsigned)

This parameter is returned in the ios_icc. The $ICC_RECEIVE service writes
the maximum length (in bytes) of the expected Reply message into offset
ios_icc$l_reply_len of the ios_icc, if request_handle is nonzero.

This service receives a single message over a connection. If a Request ID is
returned at completion, the partner has used a Transceive system service and
requires data to be returned with a Reply service.

For efficiency reasons, the number of parameters on this routine has been limited
to six parameters. Three additional values are returned by the ios_icc data

structure.

Required Access or Privileges

None.

Required Quota
BYTLM

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,

$ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$ EXBYTLM
SS$ EXQUOTA
SS$_INSFARG
SS$_IVCHAN

SS$_IVMODE

SS$_LINKDISCON
SS$_SYNCH

SS$_TOO_MANY_ARGS
SS$ WRONGSTATE

Normal completion.

Access violation on parameter.

Insufficient byte count quota.

One or more process quotas has been exceeded.
Too few arguments supplied.

Unknown connection specified or invalid
connection handle.

Attempted to use a connection from a more
privileged access mode than the mode in which it
was opened.

The connection has been disconnected.

If synchronous mode was requested at connection
time, this return value indicates that completion
has already occurred and the AST routine, if
specified, will not be called.

Too many arguments specified.
Connection is in the wrong state for the request.

SYS2-65

System Service Descriptions
$ICC_RECEIVEW

$ICC_RECEIVEW
Receive and Wait for Intra-Cluster Communications (ICC)

The Intra-Cluster Communications Receive and Wait service queues a receive
request to the specified connection.

The $ICC_RECEIVEW service completes synchronously; that is, it returns to the
caller with data.

For asynchronous completion, use the $ICC_RECEIVE service; $ICC_RECEIVE
returns to the caller as soon as the receive request is queued, without waiting for
data on the connection.

On Alpha, this service accepts 64-bit addresses.

Format
SYSS$ICC_RECEIVEW conn_handle ,ios_icc ,[astadr] ,[astprm] ,recv_buf
,recv_buf_len
C Prototype:

sys$icc_receivew (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), __int64 astprm, char *recv_buf,
unsigned int recv_buf_len);

SYS2-66

System Service Descriptions
$ICC_REJECT

$ICC_REJECT
Reject for Intra-Cluster Communications (ICC)

Refuses a connection request.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYSS$ICC_REJECT conn_handle, [reject_buf], [reject_buf_len], [reason]

C Prototype:
int sys$icc_reject (unsigned int conn_handle, char * reject_buf, unsigned int
reject_buf _len, unsigned int reason);
Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the requested connection.

reject_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

A buffer of up to 1000 bytes of reject data to be sent to the source of the
connection at the completion of the rejection process.

reject_buf_len
OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes in reject_buf to be sent.

reason
OpenVMS usage: cond_code

type: longword (unsigned)
access: read only
mechanism: by value

User-specified reject reason code to be supplied to the remote application.
Default = SS$ REJECT

SYS2-67

System Service Descriptions
$ICC_REJECT

Description

This service is used by a server to refuse an incoming connection request. The
$ICC_REJECT service may only be called after receiving a connection request
AST. After the completion of the service, the client is notified that the connection
was not opened.

Required Access or Privileges
None.

Required Quota
None.

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REPLY, $ICC_REPLYW,
$ICC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,
$ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL Normal completion.

SS$_ACCVIO Access violation on parameter.

SS$_BADPARAM Bad parameter value specified.

SS$ CLEARED Remote association closed the link before it was
rejected.

SS$_INSFARG Too few arguments supplied.

SS$_IVCHAN Connection not found or Invalid connection
handle.

SS$_LINKDISCON The transport layer has initiated disconnect
before the Reject could be sent to the requester.

SS$ TOO_MANY_ARGS Too many arguments specified.

SS$_WRONGSTATE Connection is already open and cannot

be rejected. To close the connection, call
$ICC_DISCONNECT.

SYS2-68

System Service Descriptions
$ICC_REPLY

$ICC_REPLY
Reply for Intra-Cluster Communications (ICC)

Sends a single message over a connection. This service is used in response to the
reception of a Request Handle in a previous $ICC_RECEIVE system service.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYSS$ICC_REPLY conn_handle ,ios_icc ,[astadr] ,[astprm] ,reply_buf ,reply_len

C Prototype:

sys$icc_reply (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), __int64 astprm, char *reply_buf,
unsigned int reply_len);

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the fully established connection.

ios_icc

OpenVMS usage: io_status_block

type: quadword (unsigned)

access: modify

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)
1/O status block:

+2 0

Undefined Completion status

ios_icc$1_replyto_handle: request_handle +4

VM-0465A-Al

Completion status values:

SS$_NORMAL, SS$_EXQUOTA, SS$_INSFMEM, SS$_LINKABORT,
SS$_LINKDISCON

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha)

by 32-bit reference (VAX)

The AST routine to be executed when the operation completes.

SYS2-69

System Service Descriptions

$ICC_REPLY
astprm
OpenVMS usage: user_arg
type: quadword (unsigned) (Alpha), longword (unsigned) (VAX)
access: read only
mechanism: by 64-bit value (Alpha)

by 32-bit value (VAX)

The parameter to be passed to the AST routine.

reply_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of the buffer containing the reply data to be sent. The length of this
buffer is specified by the argument reply_len.

reply_len

OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The length (in bytes) of the reply data to be sent over the connection. This
value specifies the length of the buffer reply_buf. ICC segments larger buffers
internally.

The maximum Reply length is the smaller of the Reply buffer size supplied in the
$ICC_RECEIVE call, or 1MB.

IOS_ICC Argument:
request_handle (input)
OpenVMS usage: request_id

type: longword (unsigned)
access: read only
mechanism: by value

This parameter is passed through the ios_icc. The Request/Response
handle from the received Transceive request is placed at offset
ios_icc$l_replyto_handle of the ios_icc.

Description

This service is almost identical to the $ICC_TRANSMIT system service in that it
sends a single message over a connection. The only difference is that it is used in
response to the reception of a Request Handle in a previous Receive Data system
service.

When completion is signaled by calling the AST (if supplied), the data has been
delivered to the communications system, but not necessarily to the application at
the other end of the connection. The user can reuse the buffer after completion
has been signaled.

SYS2-70

System Service Descriptions
$ICC_REPLY

Alternatively, if the synchronous completion option was requested at connection
time, the service may return the optional success status, SS$ SYNCH. When
SS$ SYNCH is returned, completion has occurred, and no AST will be delivered.

Required Access or Privileges

None.

Required Quota

BYTLM (for Reply buffer)

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$1CC_DISCONNECT, $1CC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLYW,
$1CC_TRANSCEIVE, $ICC_TRANSCEIVEW, $ICC_TRANSMIT,

$ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$_BADPARAM
SS$ EXBYTLM
SS$_INSFARG
SS$_IVCHAN

SS$_IVMODE

SS$ LINKDISCON

SS$_NOSUCHID
SS$_SYNCH

SS$ TOO_MANY_ARGS
SS$ WRONGSTATE

Normal completion.

Access violation on parameter.
Bad parameter value specified.
Insufficient byte count quota.
Too few arguments supplied.

Unknown connection specified or invalid
connection handle.

Attempted to use a connection from a more
privileged access mode than the mode in which it
was opened.

An Incoming disconnect event is already in
progress.

The request_handle is invalid.

If synchronous mode was requested at connection
time, this return value indicates that completion
has already occurred and the AST routine, if
specified, will not be called.

Too many arguments specified.
Connection is in the wrong state for the request.

SYS2-71

System Service Descriptions
$ICC_REPLYW

$ICC_REPLYW
Reply and Wait for Intra-Cluster Communications (ICC)

The Intra-Cluster Communications Reply and Wait service transmits a single
message over a connection in response to a $ICC_TRANSCEIVE[W] request.

The $ICC_REPLYW service completes synchronously; that is, it returns to the
caller when the underlying transport layer has released use of the reply buffer.

For asynchronous completion, use the $ICC_REPLY service; $ICC_REPLY returns
to the caller as soon as the transmission request has been queued to the transport
layer, without waiting for notification that the transport layer has released control
of the data buffer.

On Alpha, this service accepts 64-bit addresses.

Format
SYS$ICC_REPLYW conn_handle, ios_icc, [astadr], [astprm], reply_buf, reply_len

C Prototype:

sys$icc_replyw (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), __int64 astprm, char *reply_buf,
unsigned int reply_len);

SYS2-72

System Service Descriptions
$ICC_TRANSCEIVE

$ICC_TRANSCEIVE
Transceive for Intra-Cluster Communications (ICC)

Sends a single message over a connection and then waits for a reply.

On Alpha systems, this service accepts 64-bit addresses.

Format

SYSS$ICC_TRANSCEIVE conn_handle ,ios_icc ,[astadr] ,[astprm] ,send_buf
,send_len

C Prototype:

sys$icc_transceive (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), __int64 astprm, char *send_buf,
unsigned int send_len);

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the fully established (open) connection.

ios_icc

OpenVMS usage: io_status_block

type: five longwords (unsigned)

access: modify

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)
1/O status block:

+2 0
Undefined Completion status
ios_icc$1_txrcv_len: returned_data_len +4
ios_icc$a_reply_buffer: reply_buf +8
+12
ios_icc$1_txreply_len: reply_buf_len +16
VM-0466A-Al

Completion status values:

SS$_NORMAL, SS$_EXQUOTA, SS$_INSFMEM, SS$ BUFOVFL,
SS$_LINKABORT, SS$_LINKDISCON

astadr

OpenVMS usage: ast_procedure

type: procedure_entry_mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha)

by 32-bit reference (VAX)

SYS2-73

System Service Descriptions
$ICC_TRANSCEIVE

The AST routine to be executed when the operation completes.

astprm

OpenVMS usage: user_arg

type: guadword (unsigned) (Alpha), longword (unsigned) (VAX)
access: read only

mechanism: by 64-bit value (Alpha)

by 32-bit value (VAX)

The parameter to be passed to the AST routine.

send_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of the buffer containing the data to be sent. The length of this buffer is
specified by the argument send_len.

send_len

OpenVMS usage: buffer size

type: longword (unsigned)
access: read only
mechanism: by value

The length (in bytes) of the data to be sent over the connection. This value
specifies the length of the buffer send_buf.

IOS_ICC Arguments:
returned_data_len (output)
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

This parameter is passed through the ios_icc. The $ICC_TRANSCEIVE
service writes the actual length (in bytes) of the reply data received into offset
ios_icc$l_txrcv_len of the ios_icc. This value represents how much data in
reply_buf was returned by the target application.

reply_buf (input)
OpenVMS usage: byte stream

type: character-coded text string
access: write only
mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

This parameter is passed through the ios_icc. The 32-bit or 64-bit address (on
Alpha systems) or the 32-bit address (on VAX systems) of the buffer available to
receive the incoming reply message is placed in offset ios_icc$a_reply_buffer of
the ios_icc.

SYS2-74

Description

System Service Descriptions
$ICC_TRANSCEIVE

reply_buf_len (input)
OpenVMS usage: buffer_size

type: longword (unsigned)
access: read only
mechanism: by value

This parameter is passed through the ios_icc. The length (in bytes) of the
buffer to receive the reply message. This value specifies the length of the buffer
reply_buf. This value is placed in offset ios_icc$l_txreply_len of the ios_icc.

This service sends a single message over a connection and then waits for a
reply. When completion is signaled by calling the AST (if supplied), the data
has been delivered to the application at the other end of the connection and that
application has delivered a reply, now present in the reply buffer. The user can
reuse the send and reply buffers after completion.

For efficiency reasons, the number of parameters on this routine has been limited
to six parameters. Three additional parameters are passed by the ios_icc data
structure.

Required Access or Privileges
None.

Required Quota
BYTLM (Send and Reply buffers)

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY,
$ICC_REPLYW, $ICC_TRANSCEIVEW, $ICC_TRANSMIT, $ICC_TRANSMITW

Condition Values Returned

SS$_NORMAL Normal completion.

SS$_ACCVIO Access violation on parameter.

SS$_BADPARAM Bad parameter value specified.

SS$_EXBYTLM Insufficient byte count quota.

SS$_INSFARG Too few arguments were supplied.

SS$_INSFMEM Insufficient process or system memory to
complete the request.

SS$_IVCHAN Unknown connection specified or invalid
connection handle.

SS$_IVMODE Attempted to use a connection from a more
privileged access mode than the mode in which it
was opened.

SS$_LINKDISCON An Incoming disconnect event is in progress.

SYS2-75

System Service Descriptions
$ICC_TRANSCEIVE

SYS2-76

SS$_SYNCH

SS$ TOO_MANY_ARGS
SS$ WRONGSTATE

If synchronous mode was requested at connection
time, this return value indicates that completion
has already occurred and the AST routine, if
specified, will not be called.

Too many arguments were specified.

Connection is in wrong state for request.

System Service Descriptions
$ICC_TRANSCEIVEW

$ICC_TRANSCEIVEW
Transceive and Wait for Intra-Cluster Communications (ICC)

Format

C Prototype:

Sends a single message over a connection and waits for a reply.

The $ICC_TRANSCEIVEW service completes synchronously; that is, it returns to
the caller when the data from the reply is available.

For asynchronous completion, use the $ICC_TRANSCEIVE service;
$ICC_TRANSCEIVE returns to the caller when the transmit portion of the
tranceive request has been queued to the transport layer, but without waiting for
notification that the transport layer has released control of the data buffer or for
the reply data from the receiving end of the connection.

On Alpha, this service accepts 64-bit addresses.

SYSS$ICC_TRANSCEIVEW conn_handle ,ios_icc ,[astadr] ,[astprm] ,send_buf
,send_len

sys$icc_transceivew (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), __int64 astprm, char
*send_buf, unsigned int send_len);

SYS2-77

System Service Descriptions
$ICC_TRANSMIT

$ICC_TRANSMIT
Transmit for Intra-Cluster Communications (ICC)

Sends a single message over a connection.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYSS$ICC_TRANSMIT conn_handle ,ios_icc ,[astadr] ,[astprm] ,send_buf ,send_len

C Prototype:

sys$icc_transmit (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), __int64 astprm, char *send_buf,
unsigned int send_len);

Arguments

conn_handle
OpenVMS usage: connection_id

type: longword (unsigned)
access: read only
mechanism: by value

The handle of the fully established (open) connection to send the data over.

ios_icc

OpenVMS usage: ios_status_block

type: structure 10S_ICC

access: write only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)
1/O status block:

+2 0
Undefined Completion status
Unused
+6 +4

VM-0467A-Al

Completion status values:

SS$_NORMAL, SS$_EXQUOTA, SS$_INSFMEM, SS$_LINKABORT,
SS$_LINKDISCON

astadr

OpenVMS usage: ast_procedure

type: procedure_entry _mask

access: call without stack unwinding

mechanism: by 32-bit or 64-bit linkage reference (Alpha)

by 32-bit reference (VAX)

The AST routine to be executed when the operation completes.

SYS2-78

Description

System Service Descriptions
$ICC_TRANSMIT

astprm

OpenVMS usage: user_arg

type: quadword (unsigned) (Alpha), longword (unsigned) (VAX)
access: read only

mechanism: by 64-bit value (Alpha)

by 32-bit value (VAX)

The parameter to be passed to the AST routine.

send_buf

OpenVMS usage: byte stream

type: character-coded text string

access: read only

mechanism: by 32-bit or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of the buffer containing the data to be sent. The length of this buffer is
specified by the argument send_len.

send_len

OpenVMS usage: buffer_length

type: longword (unsigned)
access: read only
mechanism: by value

The length (in bytes) of the data to be sent over the connection. This value
specifies the length of the buffer send_buf. The maximum transmission size is
1MB.

This service sends a single message over a connection. When completion is
signalled by calling the AST (if supplied), the data has been delivered to the
communications system, but not necessarily to the system or application at the
other end of the connection. After completion, the user can reuse the buffer.

Alternatively, if the synchronous completion option was requested at connection
time, the service may return the optional success status, SS$_SYNCH. When
SS$ SYNCH is returned, completion has occurred, and no AST will be delivered.

Required Access or Privileges
None.

Required Quota
BYTLM (send_buf)

Related Services

$ICC_ACCEPT, $ICC_CLOSE_ASSOC, $ICC_CONNECT, $ICC_CONNECTW,
$ICC_DISCONNECT, $ICC_DISCONNECTW, $ICC_OPEN_ASSOC,
$ICC_RECEIVE, $ICC_RECEIVEW, $ICC_REJECT, $ICC_REPLY,
$ICC_REPLYW, $ICC_TRANSCEIVE, $ICC_TRANSCEIVEW,
$ICC_TRANSMITW

SYS2-79

System Service Descriptions
$ICC_TRANSMIT

Condition Values Returned

SYS2-80

SS$_NORMAL
SS$_ACCVIO
SS$ BADPARAM
SS$ EXBYTLM
SS$_INSFARG
SS$_INSFMEM

SS$_IVCHAN

SS$ IVMODE

SS$_LINKDISCON
SS$_SYNCH

SS$_ TOO_MANY_ARGS
SS$ WRONGSTATE

Normal completion.

Access violation on parameter.
Bad parameter value specified.
Insufficient byte count quota.

Too few arguments were supplied.

Insufficient process or system memory to
complete the request.

Unknown connection specified or invalid
connection handle.

Attempted to use a connection from a more
privileged access mode than the mode in which it
was opened.

An Incoming disconnect event is in progress.

If synchronous mode was requested at connection
time, this return value indicates that completion
has already occurred and the AST routine, if
specified, will not be called.

Too many arguments were specified.

Connection is in the wrong state for the request.

System Service Descriptions
$ICC_TRANSMITW

$ICC_TRANSMITW
Transmit and Wait for Intra-Cluster Communications (ICC)

Format

C Prototype:

Sends a single message over a connection.

The $ICC_TRANSMITW service completes synchronously; that is, it returns to
the caller when the underlying transport layer has released use of the Transmit
buffer. This does not mean that the data has been received by the partner
application.

For asynchronous completion, use the $ICC_TRANSMIT service. The
$ICC_TRANSMIT service returns to the caller as soon as the transmission
request has been queued to the transport layer, without waiting for notification
that the transport layer has released control of the data buffer.

On Alpha, this service accepts 64-bit addresses.

SYSS$ICC_TRANSMITW conn_handle ,ios_icc ,[astadr] ,[astprm] ,send_buf
,send_len

sys$icc_transmitw (unsigned int conn_handle, struct _ios_icc *ios_icc, void
(*astadr)(__unknown_params), __int64 astprm, char *send_buf,
unsigned int send_len);

SYS2-81

System Service Descriptions
$IDTOASC

$IDTOASC
Translate Identifier to Identifier Name

Translates the specified identifier value to its identifier name.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYSS$IDTOASC id ,[namlen] ,[nambuf] ,[resid] ,[attrib] ,[contxt]

C Prototype

int sys$idtoasc (unsigned int id, unsigned short int *namlen, void *nambuf, unsigned
int *resid, unsigned int *attrib, unsigned int *contxt);

Arguments
id
OpenVMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary identifier value translated by $IDTOASC. The id argument is a longword
containing the binary value of the identifier. To determine the identifier names
of all identifiers in the rights database, you specify id as —1 and call $IDTOASC
repeatedly until it returns the status code SS$ NOSUCHID. The identifiers are
returned in alphabetical order.

namlen

OpenVMS usage: word_unsigned

type: word (unsigned)

access: write only

mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

Number of characters in the identifier name translated by $IDTOASC. The
namlen argument is the 32- or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of a word containing the length of the identifier name
written to nambuf.

nambuf

OpenVMS usage: char_string

type: character-coded text string

access: write only

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

(Alpha)
by 32-bit descriptor—fixed-length string descriptor (VAX)

Identifier name text string returned when $IDTOASC completes the translation.
The nambuf argument is the 32- or 64-bit address (on Alpha systems) or the
32-bit address (on VAX systems) of a descriptor pointing to the buffer in which
the identifier name is written.

SYS2-82

System Service Descriptions

$IDTOASC
resid
OpenVMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

Identifier value of the identifier name returned in nambuf. The resid argument
is the 32- or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of a longword containing the 32-bit code of the identifier.

attrib

OpenVMS usage: mask_longword

type: longword (unsigned)

access: write only

mechanism: by by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

Mask of attributes associated with the identifier returned in resid. The attrib
argument is the 32- or 64-bit address (on Alpha systems) or the 32-bit address
(on VAX systems) of a longword containing the attribute mask.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove
it from or add it to the process rights list
using the DCL command SET RIGHTS_
LIST.

KGB$V_NAME_HIDDEN Allows holders of an identifier to have it
translated, either from binary to ASCI|I
or vice versa, but prevents unauthorized
users from translating the identifier.

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

contxt

OpenVMS usage: context

type: longword (unsigned)

access: modify

mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

SYS2-83

System Service Descriptions

$IDTOASC

Description

Context value used when repeatedly calling $IDTOASC. The contxt argument
is the 32- or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of a longword used while $IDTOASC searches for all identifiers. The
context value must be initialized to the value 0, and the resulting context of each
call to $SIDTOASC must be presented to each subsequent call. After contxt is
passed to $IDTOASC, you must not modify its value.

The Translate Identifier to Identifier Name service translates the specified binary
identifier value to an identifier name. While the primary purpose of this service
is to translate the specified identifier to its name, you can also use it to find all
identifiers in the rights database. Owner or read access to the rights database

is required. To determine all the identifiers, call $IDTOASC repeatedly until it
returns the status code SS$ NOSUCHID. When SS$ NOSUCHID is returned,
$IDTOASC has returned all the identifiers, cleared the context value, and
deallocated the record stream.

If you complete your calls to $IDTOASC before SS$_NOSUCHID is returned, use
$FINISH_RDB to clear the context value and deallocate the record stream.

When you use wildcards with this service, the records are returned in identifier
name order.

Required Access or Privileges

None, unless the id argument is NAME_HIDDEN, in which case you must hold
the identifier or have read access to the rights list.

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB,
$FORMAT_ACL, $FORMAT_AUDIT, $GET_SECURITY, $GRANTID, $HASH_
PASSWORD, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SYS2-84

SS$ NORMAL The service completed successfully.

SS$ ACCVIO The namlen, nambuf, resid, attrib, or contxt
argument cannot be written by the caller.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$ IVCHAN The contents of the context longword are not
valid.

SS$_IVIDENT The specified identifier is of invalid format.

SS$_NOIOCHAN No more rights database context streams are
available.

System Service Descriptions
$IDTOASC

SS$_NORIGHTSDB The rights database does not exist.

SS$_NOSUCHID The specified identifier name does not exist in
the rights database, or the entire rights database
has been searched if the ID is —1.

Because the rights database is an indexed file that you access with OpenVMS
RMS, this service can also return RMS status codes associated with operations
on indexed files. For descriptions of these status codes, refer to the OpenVMS
Record Management Services Reference Manual.

SYS2-85

System Service Descriptions
$IEEE_SET_FP_CONTROL (Alpha Only)

$SIEEE_SET _FP_CONTROL (Alpha Only)
Set IEEE Floating-Point Control Register

Format

C Prototype

Arguments

SYS2-86

On Alpha systems, modifies the software IEEE floating-point control register and,
optionally, returns the previous register value.

The service provides the mechanism to set the specified bits in the IEEE floating-
point control register, to clear the specified bits in the register, and to swap the
values of the register.

SYSS$IEEE_SET_FP_CONTROL [cIrmsk] ,[setmsk] ,[prvmsk]

int sys$ieee_set fp_control (struct _ieee *clrmsk, struct _ieee *setmsk, struct _ieee

*prvmsk);
clrmsk
OpenVMS usage: mask_quadword
type: guadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword bit mask to be cleared in the IEEE floating-point control
register.

The $IEEEDEF macro defines symbols for the floating-point control register.
Table SYS2-2 shows the symbols, their corresponding masks, and their
meaning:

Table SYS2-2 Format of the IEEE Floating-Point Control Register (Alpha Only)

Symbol Mask Meaning
IEEE$M_TRAP_ENABLE_INV 2 Invalid operation
IEEE$SM_TRAP_ENABLE_DZE 4 Divide by 0
IEEE$SM_TRAP_ENABLE_OVF 8 Overflow
IEEESM_TRAP_ENABLE_UNF 10 Underflow
IEEE$SM_TRAP_ENABLE_INE 20 Inexact
IEEESM_MAP_UMZ 4000 Underflows are mapped to 0.0
IEEE$SM_INHERIT 8000 Inherit FP state on thread
create
IEEE$SM_STATUS_INV 20000 Invalid operation
IEEE$SM_STATUS_DZE 40000 Divide by 0
IEEE$M_STATUS_OVF 80000 Overflow
IEEE$M_STATUS_UNF 100000 Underflow

(continued on next page)

Description

System Service Descriptions
$IEEE_SET_FP_CONTROL (Alpha Only)

Table SYS2-2 (Cont.) Format of the IEEE Floating-Point Control Register

(Alpha Only)
Symbol Mask Meaning
IEEE$SM_STATUS_INE 200000 Inexact
setmsk
OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword bit mask to be set in the IEEE floating-point control
register.

Table SYS2-2 shows the format of the IEEE floating-point control register.

prvmsk

OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: write only
mechanism: by reference

Address of a quadword to receive the previous value of the IEEE floating-point
control register.

The Set IEEE Floating-Point Control Register service updates the IEEE floating-
point control register, maintained by the operating system, with the values
supplied by the calling program.

The following steps are used to update the register:

1. If the prvmsk argument is specified, SIEEE_SET_FP_CONTROL first reads
the previous value of the IEEE floating-point control register.

2. If the clrmsk argument is specified, $IEEE_SET_FP_CONTROL then clears
the specified bit masks in the clrmsk argument.

3. If the setmsk argument is specified, $IEEE_SET_FP_CONTROL then sets
the specified bit masks in the setmsk argument.

A program can swap the IEEE floating-point control register (that is, save the old
value and specify a new value) by specifying the following:

= The clrmsk argument with the address of a quadword of all 1s

= The setmsk argument with the address of a quadword that holds the new
register value

e The prvmsk argument with the address of a quadword to save the old
register value

Required Access or Privilege
None

Required Quota
None

SYS2-87

System Service Descriptions
$IEEE_SET_FP_CONTROL (Alpha Only)

Condition Values Returned

SS$_ NORMAL The service completed successfully.
SS$_ACCVIO The specified argument cannot be read or cannot
be written.

SYS2-88

System Service Descriptions
$INIT_SYS_ALIGN_FAULT_REPORT (Alpha Only)

SINIT_SYS ALIGN_FAULT_REPORT (Alpha Only)
Initialize System Alignment Fault Reporting

On Alpha systems, initializes system process alignment fault reporting.

This service accepts 64-bit addresses.

Format
SYSS$INIT_SYS _ALIGN_FAULT _REPORT match_table ,buffer_size ,flags

C Prototype

int sys$init_sys_align_fault_report (void *match_table, int buffer_size, unsigned int

flags);
Arguments
match_table
OpenVMS usage: address
type: longword (unsigned)
access: read
mechanism: by 32-bit or 64-bit reference

Describes the system fault match table. The match_table argument is the 32-bit
or 64-bit virtual address of an array of longwords describing the system fault
match table. The first longword is the number of match entries; the remaining
longwords are the match entries.

The match table is used to restrict the number of alignment faults reported. Each
entry in the table is a bit mask divided into three groups: mode bits, program
counter (PC) space bits, and virtual address (VA) space bits.

The following table lists the symbols that can be used to define these bits:

Bit Type Symbols

Mode bits AME$M_KERNEL_MODE Kernel mode
AME$M_EXEC_MODE Executive mode
AME$M_SUPER_MODE Supervisor mode
AME$M_USER_MODE User mode

Program counter bits AME$M_USER_PC PC in User space
AME$M_SYSTEM_PC PC in System space

Virtual address bits AMES$M_SYSTEM_VA VA in System space
AME$M_USER_VA PO VA in User PO space
AME$M_USER_VA P1 VA in User P1 space
AME$M_USER_VA_ P2 VA in User P2 space

The following diagram illustrates the data structure of the match table:

SYS2-89

System Service Descriptions
$INIT_SYS_ALIGN_FAULT_REPORT (Alpha Only)

Description

SYS2-90

Length n

Entry O

Entry n

ZK-4981A-GE

When an alignment fault occurs, a fault bit mask is created with one bit set
in each group. The alignment fault handler then compares this fault bit mask
against each entry in the match table. If the fault bit mask is a subset of an
entry in the match table, the fault is reported.

buffer_size

OpenVMS usage: byte count

type: longword (signed)
access: read

mechanism: by value

The number of bytes to allocate, from nonpaged pool, to save the alignment fault
data. The buffer you allocate must be sufficient to accommodate one data item of
the size specified in the flags argument.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag bit mask specifying options for the $GET_SYS_ALIGN_FAULT_DATA
operation.

If the flags argument is 0, data items of size AFR$K_VMS_LENGTH will be
returned. If the flags argument is AFR$M_USER_INFO, the user name and
image name are added to each data item and they are returned in a buffer of
length AFR$K_EXTENDED_LENGTH. If the user name and image name are not
available, an empty string is returned in the data item.

The Initialize System Alignment Fault Reporting service initializes system
alignment fault reporting.

System alignment faults must be written to a buffer. The following diagram
illustrates the format in which system alignment fault data is saved in the buffer:

63 0

AFR$Q_FAULT _PC

AFR$Q_FAULT VA

AFR$Q_RESERVED

ZK-4982A-GE

System Service Descriptions
$INIT_SYS_ALIGN_FAULT_REPORT (Alpha Only)

Only one user on a system can initialize system alignment fault reporting at any
time. Subsequent calls will return SS$_AFR_ENABLED.

System alignment fault reporting is disabled when the program that called the
service completes.

Required Access or Privileges

CMKRNL privilege is required.

Required Quota
None

Related Services

$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT_DATA, $PERM _DIS_
ALIGN_FAULT _REPORT, $PERM_REPORT_ALIGN_FAULT, $START_ALIGN _
FAULT _REPORT, $STOP_ALIGN_FAULT_REPORT, $STOP_SYS ALIGN_
FAULT _REPORT

Condition Values Returned

SS$ NORMAL The service completed successfully.
SS$_ACCVIO The match table is not read accessible.

SS$ AFR_ENABLED The service was already called.
SS$_BADPARAM The buffer_size argument is less than the

minimum size required. If the flags argument
is 0, AFR$K_VMS_LENGTH + 32 is required. If
the flags argument is 1, AFR$K_EXTENDED _
LENGTH + 32 is required.

SS$_NOPRIV The caller does not have CMKRNL privilege.

SYS2-91

System Service Descriptions
$INIT_VOL

$INIT_VOL
Initialize Volume

Formats a disk or magnetic tape volume and writes a label on the volume. At the
end of initialization, the disk is empty except for the system files containing the
structure information. All former contents of the volume are lost.

Format
SYSSINIT_VOL devnam, volnam [,itmist]

C Prototype

int sys$init_vol (void *devnam, void *volnam, void *itmist);

Arguments
devnam
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the device on which the volume is physically mounted. The descriptor
must point to the device name, a character string of 1 to 64 characters. The
device name can be a physical device name or a logical name; if it is a logical
name, it must translate to a physical name.

The device does not have to be currently allocated; however, allocating the device
before initializing it is recommended.

volnam

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Identification to be encoded on the volume. The descriptor must point to the
volume name, a character string of 1 to 12 characters. For a disk volume name,
you can specify a maximum of 12 ANSI characters; for a magnetic tape volume
name, you can specify a maximum of 6 ANSI “a” characters.

Any valid ANSI “a” characters can be used; these include numbers, uppercase
letters, and any one of the following nonalphanumeric characters:

P"%' ()*+,-./:;,<=>

Compagq strongly recommends that a disk volume name consist of only
alphanumeric characters, dollar signs ($), underscores (_), and hyphens (-).

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options that can be used when initializing the volume.
The itmlst argument is the address of a list of item descriptors, each of which

SYS2-92

System Service Descriptions
$INIT_VOL

describes one option. The list of item descriptors is terminated by a longword of
0.

The following diagram depicts the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table defines the item descriptor fields:

Descriptor Field Definition

Buffer length A word specifying the length (in bytes) of the buffer

that supplies the information $INIT_VOL needs to
process the specific item code. The length of the
buffer needed depends on the item code specified in
the item descriptor.

Item code A word containing an option for the initialize
operation. These codes are defined by the
SINITDEF macro. There are three types of item
codes:

Boolean item code Boolean item codes specify
a true or false value. The
form INIT$_code specifies
a true value and the form
INIT$_NO_code specifies
a false value. For Boolean
item codes, the buffer
length and buffer address
fields of the item descriptor
must be 0.

Symbolic value item Symbolic value item codes

code specify one of a specified
range of possible choices.
The buffer length and
buffer address fields of the
item descriptor must be 0.

Input value item code Input value item codes
specify a value to be used
by $INIT_VOL. The buffer
length and buffer address
fields of the item descriptor
must be nonzero.

Buffer address A longword containing the address of the buffer that
supplies information to $INIT_VOL.

SYS2-93

System Service Descriptions

$INIT_VOL

ltem Codes

SYS2-94

Descriptor Field Definition

Return length address This field is not used.

INIT$_ACCESSED
An input item code that specifies the number of directories allowed in system
space on the volume.

You must specify an integer between 0 and 255 in the input buffer. The default
value is 3.

The INIT$_ACCESSED item code applies only to Files-11 On-Disk Structure
Level 1 disks.

INIT$_BADBLOCKS_LBN

An input item code that enables $INIT_VOL to mark bad blocks on the volume;
no data is written to those faulty areas. INIT$ BADBLOCKS_LBN specifies
faulty areas on the volume by logical block number and block count.

The buffer from which $INIT_VOL reads the option information contains an
array of quadwords containing information in the following format:

31 0
Logical block number

Count

ZK-1590A-GE

The following table describes the information to be specified for INIT$_
BADBLOCKS_LBN:

Field Symbol Name Description
Logical block INIT$SL_BADBLOCKS_LBN Specifies the logical block
number number of the first block to be
marked as allocated.
Count INIT$L_BADBLOCKS _ Specifies the number of
COUNT blocks to be allocated. This

range begins with the first
block, as specified in INIT$SL_
BADBLOCKS_LBN.

For example, if the input buffer contains the values 5 and 3, INIT_VOL starts at
logical block number 5 and allocates 3 blocks.

The number of entries in the buffer is determined by the buffer length field in the
item descriptor.

All media supplied by Compag and supported on the operating system, except
disks and TUS58 cartridges, are factory formatted and contain bad block data.
The Bad Block Locator utility (BAD) or the diagnostic formatter EVRAC can

be used to refresh the bad block data or to construct it for the disks and TU58
cartridges. The INIT$_BADBLOCKS_LBN item code is necessary only to enter
bad blocks that are not identified in the volume’s bad block data. For more
information, refer to the OpenVMS Bad Block Locator Utility Manual (available
on the Documentation CD-ROM).

System Service Descriptions
$INIT_VOL

The INIT$_BADBLOCKS _LBN item code applies only to disks.

INIT$_BADBLOCKS_SEC

An input item code that specifies faulty areas on the volume by sector, track,
cylinder, and block count. $INIT_VOL marks the bad blocks as allocated; no data
is written to them.

The input buffer must contain an array of octawords containing information in
the following format:

31 0
Sector
Count
Track
Cylinder
ZK-1591A-GE

The following table describes the information to be specified for INIT$
BADBLOCKS_SEC:

Field Symbol Name Description
Sector INIT$L_BADBLOCKS _ Specifies the sector number of
SECTOR the first block to be marked as
allocated.
Count INIT$L_BADBLOCKS _ Specifies the number of blocks
COUNT to be allocated.
Track INIT$L_BADBLOCKS _ Specifies the track number of
TRACK the first block to be marked as
allocated.
Cylinder INIT$L_BADBLOCKS _ Specifies the cylinder number
CYLINDER of the first block to be marked
as allocated.

For example, if the input buffer contains the values 12, 3, 1, and 2, INIT_VOL
starts at sector 12, track 1, cylinder 2, and allocates 3 blocks.

The number of entries in the buffer is determined by the buffer length field in the
item descriptor.

All media supplied by Compag and supported on the operating system, except
disks and TU58 cartridges, are factory formatted and contain bad block data. The
Bad Block Locator utility (BAD) or the diagnostic formatter EVRAC can be used
to refresh the bad block data or to construct it for the disks and TU58 cartridges.
The INIT$_BADBLOCKS_SEC item code is necessary only to enter bad blocks
that are not identified in the volume’s bad block data. For more information, refer
to the OpenVMS Bad Block Locator Utility Manual.

The INIT$ BADBLOCKS_SEC item code applies only to disks.

INIT$_CLUSTERSIZE

An input item code that specifies the minimum allocation unit in blocks. The
input buffer must contain a longword value. The maximum size that can be
specified for a volume is one-hundredth the size of the volume; the minimum size
is calculated with the following formula:

SYS2-95

System Service Descriptions

$INIT_VOL

SYS2-96

volume size in blocks/(255 * 4096)

The INIT$ _CLUSTERSIZE item code applies only to Files-11 On-Disk Structure
Level 2 disks (for Files-11 On-Disk Structure Level 1 disks, the cluster size is 1).
For Files-11 On-Disk Structure Level 2 disks, the cluster size default depends on
the disk capacity.

= Disks that are 50,000 blocks or larger have a default cluster size of 3.

e Disks smaller than 50,000 blocks have a default value of 1.
INIT$_COMPACTION
INIT$_NO_COMPACTION—Default

A Boolean item code that specifies whether data compaction should be performed
when writing the volume.

The INIT$_COMPACTION item code applies only to TA90 drives.

INIT$_DENSITY
A symbolic item code that specifies the density value for magnetic tapes and
diskettes.

For magnetic tape volumes, the INIT$ DENSITY item code specifies the density
in bytes per inch (bpi) at which the magnetic tape is written. Possible symbolic
values for tapes are as follows:

- INIT$K_DENSITY_800_BPI
- INIT$K_DENSITY_1600_BPI
- INIT$K_DENSITY_ 6250 _BPI

The specified density value must be supported by the drive. If you do not specify
a density item code for a blank magnetic tape, the system uses a default density
of the highest value allowed by the tape drive. If the drive allows 6250, 1600,
and 800 bpi operation, the default density is 6250. If the drive allows only 1600
and 800 bpi operation, the default density is 1600. If you do not specify a density
item code for a magnetic tape that has been previously written, the system uses
the previously set volume density.

For diskettes, the INIT$_DENSITY item code specifies how the diskette is to be
formatted. Possible symbolic values for diskettes are as follows:

- INIT$K_DENSITY_SINGLE_DISK
- INIT$K_DENSITY_DOUBLE_DISK
- INIT$K_DENSITY_DD_DISK
- INIT$K_DENSITY_HD_DISK

For disk volumes that are to be initialized on RX02, RX23, or RX33 diskette
drives, the following values specify how the disk is to be formatted:

- INIT$K_DENSITY_SINGLE_DISK
< INIT$K DENSITY_DOUBLE_DISK
- INIT$K_DENSITY_DD_DISK

« INIT$K_DENSITY_HD_DISK
Diskettes are initialized as follows:

e RX23 diskettes—DD or HD density

System Service Descriptions
$INIT_VOL

= RX33 diskettes—double density only
= RXO02 dual-density diskette drives—single or double density

If you do not specify a density item code for a disk, the system leaves the volume
at the density at which it was last formatted. RX02 disks purchased from
Compagq are formatted in single density.

Note

Disks formatted in double density cannot be read or written by the console
block storage device (an RX01 drive) of a VAX-11/780 processor until they
have been reformatted in single density.

INIT$_DIRECTORIES

An input item code that specifies the number of entries to preallocate for user
directories. The input buffer must contain a longword value in the range of 16 to
16000. The default value is 16.

The INIT$_DIRECTORIES item code applies only to disks.

INIT$_ERASE

INIT$_NO_ERASE—Default

A Boolean item code that specifies whether deleted data should be physically
destroyed by performing the data security erase (DSE) operation on the volume
before initializing it. The INIT$_ERASE item code applies to the following
devices:

e ODS-2 disk volumes

< ANSI magnetic tape volumes on magnetic tape devices that support the
hardware erase function, for example, TU78 and MSCP magnetic tapes

For disk devices, this item code sets the ERASE volume attribute, causing each
file on the volume to be erased when it is deleted.

INIT$_EXTENSION

An input item code that specifies, by the number of blocks, the default extension

size for all files on the volume. The extension default is used when a file increases
to a size greater than its initial default allocation during an update. For Files-11

On-Disk Structure Level 2 disks, the buffer must contain a longword value in the
range 0 to 65535. For Files-11 On-Disk Structure Level 1 disks, the input buffer

must contain a longword value in the range of 0 to 255. The default value is 5 for
both Structure Level 1 and Structure Level 2 disks.

The default extension set by this item code is used only if the following conditions
are in effect:

< No default extension for the file has been set.

= No default extension for the process has been set using the SET RMS
command.

INIT$_FPROT

An input item code that specifies the default protection applied to all files on the
volume. The input buffer must contain a longword protection mask that contains
four 4-bit fields. Each field grants or denies read, write, create, and delete access
to a category of users. Cleared bits grant access; set bits deny access.

SYS2-97

System Service Descriptions

$INIT_VOL

SYS2-98

The following diagram depicts the structure of the protection mask on systems:

World Group Owner System

p|c|w|r|p|c|w|r|[p[c|w|[r[p[c]w[r
1514131211109 8 7 6 5 4 3 2 1 0
ZK-5893A-GE

The INIT$_FPROT item code applies only to Files-11 On-Disk Structure
Level 1 disks and is ignored if it is used on an OpenVMS system. OpenVMS
systems use the default file extension set by the DCL command SET
PROTECTION/DEFAULT.

INIT$_HEADERS

An input item code that specifies the number of file headers to be allocated for
the index file. The input buffer must contain a longword value within the range
of 16 to the value set by the INIT$_MAXFILES item code. The default value is
16.

The INIT$_HEADERS item code applies only to disks.

INIT$ HIGHWATER—Default

INIT$_NO_HIGHWATER

A Boolean item code that sets the file highwater mark (FHM) volume attribute,
which guarantees that users cannot read data that they have not written.

INIT$_NO_HIGHWATER disables FHM for a volume.

The INIT$_HIGHWATER and INIT$_NO_HIGHWATER item codes apply only to
Files-11 On-Disk Structure Level 2 disks.

INIT$ HOMEBLOCKS

Specifies where the volume’s homeblock and spare copy of the homeblock are
placed on disk. This item code applies only to Files-11 ODS-2 volumes, and can
have the following values:

* INIT$K_HOMEBLOCKS_GEOMETRY

Causes the homeblocks to be placed at separate locations on disk, to protect
against failure of a disk block. Placement depends on the reported geometry
of the disk.

e INIT$K_HOMEBLOCKS_FIXED

Causes the homeblocks to be placed at separate fixed locations on the disk;
this is the default. Placement is independent of the reported geometry of the
disk. This caters for disks that report different geometries according to the
type of controller to which they are attached.

= INIT$K_HOMEBLOCKS_CONTIGUOUS

Causes the homeblocks to be placed contiguously at the start of the disk. This
allows container file systems to maximize the amount of contiguous space on
the disk, when used with the INIT$ INDEX_BEGINNING item code.

INIT$_INDEX_BEGINNING

A symbolic item code that places the index file for the volume’s directory structure
at the beginning of the volume. By default, the index is placed in the middle of
the volume.

System Service Descriptions
$INIT_VOL

When issuing calls to $INIT_VOL, using this item code in conjunction with
INIT$_INDEX_BLOCK results in an error. If you specify both item codes from
DCL, INIT$_INDEX_BLOCK takes precedence.

This item code applies only to disks.

INIT$_INDEX_BLOCK

An input item code that specifies the location of the index file for the volume’s
directory structure by logical block number. The input buffer must contain a
longword value specifying the logical block number of the first block of the index
file. By default, the index is placed in the middle of the volume.

When issuing calls to $INIT_VOL, using this item code with INIT$_INDEX_
BEGINNING, INIT$_INDEX_MIDDLE, or INIT$_INDEX_END results in an
error. From DCL, if you specify INIT$_INDEX_BLOCK with INIT$_INDEX_
BEGINNING, INIT$ INDEX _MIDDLE, or INIT$ INDEX_END, then INIT$_
INDEX_BLOCK takes precedence.

The INIT$_INDEX_BLOCK item code applies only to disks.

INIT$_INDEX_END

A symbolic item code that places the index file for the volume’s directory structure
at the end of the volume. The default is to place the index in the middle of the
volume.

When issuing calls to $INIT_VOL, using this item code with INIT$_INDEX_
BLOCK results in an error. If you specify both item codes from DCL, INIT$_
INDEX_BLOCK takes precedence.

This item code applies only to disks.

INIT$_INDEX_MIDDLE
A symbolic item code that places the index file for the volume’s directory structure
in the middle of the volume. This is the default location for the index.

When issuing calls to $INIT_VOL, using this item code with INIT$_INDEX_
BLOCK results in an error. If you specify both item codes from DCL, INIT$_
INDEX_BLOCK takes precedence.

This item code applies only to disks.

INIT$_INTERCHANGE

An input item code that specifies that the magnetic tape ANSI VOL1 volume
label is to be used for interchange in a heterogeneous vendor environment. On
OpenVMS, this item code overrides creation of the ANSI VOL2 volume label,
which contains security attributes specific to OpenVMS systems.

For more information about the INIT$_INTERCHANGE item code and about
magnetic tape labeling and tape interchange, refer to the OpenVMS System
Manager’s Manual, Volume 1: Essentials.

INIT$_LABEL_ACCESS

An input item code that specifies the character to be written in the volume
accessibility field of the ANSI volume label VOL1 on an ANSI magnetic tape.
Any valid ANSI “a” characters can be used; these include numbers, uppercase
letters, and any one of the following nonalphanumeric characters:

L % () %+, -. [<=>

SYS2-99

System Service Descriptions

$INIT_VOL

SYS2-100

By default, the operating system provides a routine SYSSMTACCESS that checks
this field in the following manner:

= If the magnetic tape was created on a version of the operating system
that conforms to Version 3 of ANSI, this item code is used to override any
character except an ASCII space.

= If the magnetic tape conforms to an ANSI standard that is later than
Version 3, this item code is used to override any character except an ASCII 1
character.

INIT$_LABEL_VOLO

An input item code that specifies the text that is written in the owner identifier
field of the ANSI volume label VOL1 on an ANSI magnetic tape. The owner
identifier field can contain up to 14 valid ANSI “a” characters.

INIT$_MAXFILES

An input item code that restricts the maximum number of files that the volume
can contain. The input buffer must contain a longword value between 0 and a
value determined by the following calculation:

volume size in blocks/cluster factor + 1

Once initialized, the maximum number of files can be increased only by
reinitializing the volume.

The default maximum number of files is calculated as follows:
volume size in blocks/(cluster factor + 1) * 2
The INIT$_MAXFILES item code applies only to disks.

INIT$_OVR_ACCESS

INIT$_NO_OVR_ACCESS—Default

A Boolean item code that specifies whether to override any character in the
accessibility field of the ANSI volume label VOL1 on an ANSI magnetic tape. For
more information, refer to the OpenVMS System Manager’s Manual.

To specify INIT$_OVR_ACCESS, the caller must either own the volume or have
VOLPRO privilege.

INIT$_OVR_EXP

INIT$_NO_OVR_EXP—Default

A Boolean item code that specifies whether the caller writes to a magnetic tape
that has not yet reached its expiration date. This item code applies only to the
magnetic tapes that were created before VAX VMS Version 4.0 and that use the
D% format in the volume owner identifier field.

To specify INIT$_OVR_EXP, the caller must either own the volume or have
VOLPRO privilege.

INIT$_OVR_VOLO

INIT$_NO_OVR_VOLO—Default

A Boolean item code that allows the caller to override processing of the owner
identifier field of the ANSI volume label VOL1 on an ANSI magnetic tape.

To specify INIT$_OVR_VOLO, the caller must either own the volume or have
VOLPRO privilege.

System Service Descriptions
$INIT_VOL

INIT$_OWNER

An input item code that specifies the UIC that will own the volume. The input
buffer must contain a longword value, which is the UIC. The default is the UIC
of the caller.

For magnetic tapes, no UIC is written unless protection on the magnetic tape
is specified. If the INIT$_VPROT item code is specified but the INIT$ OWNER
item code is not specified, the UIC of the caller is assigned ownership of the
volume.

INIT$_READCHECK

INIT$_NO_READCHECK—Default

A Boolean item code that specifies whether data checking should be performed for
all read operations on the volume. For more information about data checking, see
the OpenVMS 1/0 User’s Reference Manual.

The INIT$_READCHECK item code applies only to disks.

INIT$_SIZE

An input item code that specifies the number of blocks allocated for a RAM disk
with a device type of DT$_RAM_DISK. The input buffer must contain a longword
value.

INIT$ STRUCTURE_LEVEL 1

INIT$_STRUCTURE_LEVEL_2—Default

Symbolic item codes that specify whether the volume should be formatted in
Files-11 On-Disk Structure Level 1 or Structure Level 2. Structure Level 1 is
incompatible with the following item codes:

= INIT$ READCHECK
= INIT$_WRITECHECK
= INIT$_CLUSTERSIZE

The default protection for a Structure Level 1 disk is full access to system, owner,
and group users, and read access to all other users.

The INIT$_STRUCTURE_LEVEL_1 item code applies only to disks.
INIT$_USER_NAME

An input item code that specifies the user name that is associated with
the volume. The input buffer must contain a character string from 1 to 12

alphanumeric characters, which is the user name. The default is the user name
of the caller.

INIT$_VERIFIED

INIT$_NO_VERIFIED

A Boolean item code that indicates whether the disk contains bad block data.
INIT$_NO_VERIFIED indicates that any bad block data on the disk should be
ignored. For disks with 4096 blocks or more, the default is INIT$_VERIFIED.

INIT$_NO_VERIFIED is the default for the following:
« Disks with fewer than 4096 blocks

< DIGITAL Storage Architecture (DSA) devices

= Disks that are not last-track devices

The INIT$_VERIFIED item codes apply only to disks.

SYS2-101

System Service Descriptions

$INIT_VOL

Description

SYS2-102

INIT$_VPROT

An input item code that specifies the protection assigned to the volume. The
input buffer must contain a longword protection mask that contains four 4-bit
fields. Each field grants or denies read, write, create, and delete access to a
category of users. Cleared bits grant access; set bits deny access.

The following diagram depicts the structure of the protection mask:

World Group Owner System
p|c|w|r[p[c|w|r]|p|c|w|r|p|c|wW[r
1514131211109 8 7 6 5 4 3 2 1 0

ZK-5893A-GE

The default is the default protection of the caller.

For magnetic tape, the protection code is written to a specific volume label. The
system applies only read and write access restrictions; execute and delete access
are ignored. Moreover, the system and the owner are always given read and write
access to magnetic tapes, regardless of the protection mask specified.

When you specify a protection mask for a disk volume, access type E (execute)
indicates create access.

For Files-11 On-Disk Structure Level 2 volumes, an initial security profile is
created from the VOLUME.DEFAULT profile, with the owner and protection as
currently defined for INITIALIZE.

You can use the $SET_SECURITY service to modify the security profile after the
volume is initialized and mounted.

The caller needs read, write, or control access to the device.

INIT$_WINDOW

The INIT$S_WINDOW item code specifies the number of mapping pointers to be
allocated for file windows. The input buffer must contain a longword value in the
range 7 to 80. The default is 7.

When a file is opened, the file system uses the mapping pointers to access the
data in the file.

The INIT$_WINDOW item code applies only to disks.

INITS WRITECHECK

INIT$_NO_WRITECHECK—Default

A Boolean item code that specifies whether data checking should be performed
for all read operations on the volume. For more information about data checking,
refer to the OpenVMS 1/0 User’s Reference Manual.

The INIT$_WRITECHECK item code applies only to disks.

The Initialize Volume system service formats a disk or magnetic tape volume and
writes a label on the volume. At the end of initialization, the disk is empty except
for the system files containing the structure information. All former contents of
the volume are lost.

System Service Descriptions
$INIT_VOL

A blank magnetic tape can sometimes cause unrecoverable errors when it is read.
$INIT_VOL attempts to read the volume unless the following three conditions are
in effect:

e INIT$_OVR_ACCESS Boolean item code is specified.
< INIT$_OVR_EXP Boolean item code is specified.

= Caller has VOLPRO privilege.

If the caller has VOLPRO privilege, $INIT_VOL initializes a disk without
reading the ownership information; otherwise, the ownership of the volume is
checked.

A blank disk or a diskette with an incorrect format can sometimes cause a fatal
drive error. Such a diskette can be initialized successfully by specifying the
INIT$_DENSITY item code to format the diskette.

Required Access or Privileges

To initialize a particular volume, the caller must either have volume protection
(VOLPRO) privilege or the volume must be one of the following:

= Blank disk or magnetic tape; that is, a volume that has never been written
= Disk that is owned by the caller’s UIC or by the UIC [0,0]

= Magnetic tape that allows write access to the caller’'s UIC or that was not
protected when it was initialized

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, SMOUNT, $PUTMSG, $QIO,
$QIOW, $SET_SECURITY, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The item list or an address specified in the item
list cannot be accessed.

SS$_BADPARAM A buffer length of 0 was specified with a nonzero
item code or an illegal item code was specified.

SS$_IVSSRQ A concurrent call to SYSSINIT_VOL is already
active for the process.

SS$_NOPRIV The caller does not have sufficient privilege to
initialize the volume.

SS$_ NOSUCHDEV The specified device does not exist on the host
system.

The $INIT_VOL service can also return the following condition values, which are
specific to the Initialize Volume utility:

SYS2-103

System Service Descriptions

$INIT_VOL

SYS2-104

INIT$_ALLOCFAIL
INIT$_BADACCESSED

INIT$_BADBLOCKS
INIT$_BADCLUSTER

INIT$_BADDENS

INIT$_BADDIRECTORIES

INIT$_BADEXTENSION

INIT$_BADHEADERS
INIT$_BADMAXFILES

INIT$_BADOWNID
INIT$_BADRANGE
INIT$_BADVOL1
INIT$_BADVOLACC

INIT$_BADVOLLBL
INIT$_BADWINDOWS

INIT$_BLKZERO
INIT$_CLUSTER
INIT$_CONFQUAL
INIT$_DIAGPACK
INIT$_ERASEFAIL
INIT$_FACTBAD
INIT$_ILLOPT

INIT$_INDEX
INIT$_LARGECNT
INIT$_MAXBAD
INIT$_MTLBLLONG

INIT$_MTLBLNONA

INIT$_NOBADDATA
INIT$_NONLOCAL
INIT$_NOTRAN
INIT$_NOTSTRUCL1

INIT$_UNKDEV

Index file allocation failure.

Value for INIT$_ACCESSED item code out of
range.

Invalid syntax in bad block list.

Value for INIT$_CLUSTER_SIZE item code out
of range.

Invalid value for INIT$_DENSITY item code.

Value for INIT$_DIRECTORIES item code out of
range.

Value for INIT$_EXTENSION item code out of
range.

Value for INIT$_HEADER item code out of
range.

Value for INIT$_MAXFILES item code out of
range.

Invalid value for owner ID.
Bad block address not on volume.
Bad VOL1 ANSI label.

Invalid value for INIT$_LABEL_ACCESS item
code.

Invalid value for ANSI tape volume label.

Value for INIT$S WINDOWS item code out of
range.

Block 0 is bad—volume not bootable.
Unsuitable cluster factor.

Conflicting options were specified.
Disk is a diagnostic pack.

Volume not completely erased.
Cannot read factory bad block data.
Item codes not appropriate for the device were
specified.

Invalid index file position.

Disk too large to be supported.

Bad block table overflow.

Magnetic tape label specified is longer than 6
characters.

Magnetic tape label specified contains non-ANSI
“a” characters.

Bad block data not found on volume.
Device is not a local device.
Logical name cannot be translated.

Options not available with Files-11 On-Disk
Structure Level 1.

Unknown device type.

System Service Descriptions
$I0_CLEANUP (Alpha Only)

$I0_CLEANUP (Alpha Only)
Clean Up Fast I/O

On Alpha systems, returns all resources allocated by $10_SETUP.

This service accepts 64-bit addresses.

Format
SYS$IO_CLEANUP fandle

C Prototype

int sys$io_cleanup (unsigned __int64 fandl);

Arguments

fandle

OpenVMS usage: fandle

type: 64-bit integer (unsigned)

access: read only

mechanism: by value

A fandle, passed by value, returned by a previous call to $1I0_SETUP.
Description

The Clean Up Fast 1/O system service returns various internal resources allocated
by the $10_SETUP system service. Buffer objects passed to $I0_SETUP cannot
be deleted until every $10_SETUP call has had a corresponding $10_CLEANUP
call.

Image rundown executes any required $10_CLEANUP operations on behalf of the
process.

Required Privileges
None

Required Quota
None

Related Services
$10_PERFORM(W), $10_SETUP

Condition Values Returned

SS$ NORMAL The service completed successfully.
SS$ BADFANDLE Argument was not a valid fandle.
SS$_BUSY The fandle cannot be cleaned up because an 1/0

is in progress. Reissue the call to $10_CLEANUP
after the 1/0 has finished.

SYS2-105

System Service Descriptions
$10_FASTPATH (Alpha Only)

$I0_FASTPATH (Alpha Only)
Control Fast Path Devices

Format

C Prototype:

Arguments

Description

SYS2-106

Provides the ability to control the set of Fast Path devices and their assignment
to CPUs enabled for Fast Path use.

SYS$IO_FASTPATH efn ,cpu_mask ,function_code

int sys$io_fastpath (unsigned int efn, UINT32_PQ cpu_mask, unsigned int
function_code);

efn

OpenVMS usage: integer

type: longword bit mask (unsigned)
access: read

mechanism: by value

Number of the event flag to be set when the 10_FASTPATH(W) operation
completes. The efn argument is a longword containing the number of the event
flag.

cpu_mask

OpenVMS usage: integer

type: longword bit mask (unsigned)
access: read

mechanism: by 32- or 64-bit reference

The cpu_mask argument specifies a set of CPUs to be operated upon.

function_code
OpenVMS usage: integer

type: longword (unsigned)
access: read
mechanism: by value

The function_code specifies the operation to be performed. Must be one of the
following:

FP$K_BALANCE_PORTS - Distribute Fast Path ports across CPUs.

Note that there is currently only one function code.

The $10_FASTPATH system service performs operations on the set of Fast
Path devices and CPUs enabled for Fast Path use. The $I0_FASTPATHW
system service completes synchronously. That is, it returns after the operation is
complete.

System Service Descriptions
$10_FASTPATH (Alpha Only)

The FP$K_BALANCE_PORTS function code specifies that the system service is
to distribute the set of system assignable Fast Path ports across the intersection
of a caller-supplied set of candidate CPUs (cpu_mask) and the current set of

usable CPUs. Usable CPUs are the intersection of the set of CPUs both enabled
for Fast Path use by 10$ PREFERRED_CPUS and whose current state is RUN.

The service does this by:

1. Eliminating all CPUs not in the set of usable CPUs from the set of candidate
CPUs.

2. Restoring any user assigned ports that aren't currently on the user’s preferred
CPU to the user’s preferred CPU, if that CPU is in the set of usable CPUs.

3. Spreading the system assignable Fast Path ports, and any Fast Path ports
whose user preferred CPU is unavailable, evenly across the set of usable
candidate CPUs.

If the primary CPU is in the set of usable candidate CPUs, the distribution
will be biased against the primary CPU in that a port will only be assigned
to the primary after ports have been assigned to each of the other usable
candidate CPUs.

Required Access or Privileges
PHYS_IO

Required Quota
None.

Related Services
$GETDVI, $QIO

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$ BADPARAM Unsupported value for cpu_mask.
SS$_ILLIOFUNC lllegal function code.

SYS2-107

System Service Descriptions
$10_FASTPATHW (Alpha Only)

$I0_FASTPATHW (Alpha Only)
Control Fast Path Devices

Performs operations on the set of Fast Path devices and CPUs enabled for Fast
Path use.

The $10_FASTPATHW system service is functionally equivalent to the
$10_FASTPATH service except that it completes synchronously. That is, it
returns after the operation is complete.

Format
SYS$IO_FASTPATHW efn ,cpu_mask ,function_code

C Prototype:

int sys$io_fastpathw (unsigned int efn, UINT32_PQ cpu_mask, unsigned int
function_code);

SYS2-108

System Service Descriptions
$10_PERFORM (Alpha Only)

$I0_PERFORM (Alpha Only)
Perform Fast I/O

Format

C Prototype

Arguments

On Alpha systems, starts the Fast 1/O operation. The $I0_PERFORM service
completes asynchronously. For synchronous completion, use the Perform Fast 1/O
and Wait ($10_PERFORMW) service.

This service accepts 64-bit addresses.

SYS$IO_PERFORM fandle ,chan ,iosadr ,bufadr ,buflen ,devdata

int sys$io_perform (unsigned _ _int64 fandl, unsigned short int chan, struct _iosa
*josadr, void *bufadr, unsigned _ _int64 buflen, unsigned __int64

devdata);
fandle
OpenVMS usage: fandle
type: 64-bit integer (unsigned)
access: read only
mechanism: by value

A fandle returned by a previous call to $10_SETUP.

chan

OpenVMS usage: channel

type: word (unsigned)
access: read
mechanism: by value

Software 1/0 channel number.

iosadr

OpenVMS usage: address
type: address
access: read only
mechanism: by value

Address of the I/0O Status Area (IOSA). This value cannot be 0; that is, an IOSA
is required. The iosadr must be aligned to a quadword boundary.

bufadr

OpenVMS usage: char_string
type: address
access: read only
mechanism: by value

The process buffer address. Must be aligned on a 512-byte boundary.

SYS2-109

System Service Descriptions
$10_PERFORM (Alpha Only)

Description

buflen

OpenVMS usage: byte count
type: 64-bit integer
access: read only
mechanism: by value

The byte count for the 1/0. The buflen argument must be a multiple of 512 bytes.
Drivers have further limitations on the maximum size of an 1/O request.

devdata

OpenVMS usage: address

type: pointer or integer
access: read only
mechanism: by value

A hardware integer passed unchanged to the driver. For disk devices, this is the
media address for the transfer; that is, the virtual block number (VBN) for virtual
1/0 functions or the logical block humber (LBN) for logical 1/O functions. This
argument is ignored for tape devices.

For drivers with complex parameters, devdata would be the address of a
descriptor or buffer specific to the device and function and would be documented
with the driver.

The Perform Fast 1/0 system service initiates an 1/O operation on the channel
number specified by the chan argument. The bytes specified by the buflen
argument are transferred between the location (devdata) on the device driver
and the user’s buffer starting at the process buffer address (bufadr). The byte
count is read or written according to the function code previously specified in the
$I0_SETUP call associated with the fandle argument.

Upon completion, the I/O status is written to the I0SA starting at the location
specified by iosadr, and an AST is delivered to the astadr address supplied in
the $10_SETUP call associated with fandle. The IOSA address is passed to the
AST as the AST parameter.

Required Privileges
None

Required Quota
None

Related Services
$10_CLEANUP, $10_SETUPR, $10_PERFORMW

Condition Values Returned

SYS2-110

SS$_NORMAL The service completed successfully.

SS$ BADBUFADR The data buffer does not reside within the
bounds of the data buffer object for the fandle.

SS$ BADIOSADR The I0SA does not reside within the bounds of

the 10SA buffer object for this fandle.

System Service Descriptions
$10_PERFORM (Alpha Only)

SS$_FANDLEBUSY The operation using this fandle is already in
progress.
SS$_IVCHAN An invalid channel number was specified; that is,

a channel number of 0 or a number larger than
the number of channels available.

SS$_UNALIGNED The buffer specified by bufadr or iosadr is not
properly aligned.
SS$ WRONGACMODE The request is invalid because the fandle was

created from a more privileged access mode, or
the channel was assigned from a more privileged
access mode.

Condition Values Returned in the I/O Status Block

The OpenVMS 1/0 User’s Reference Manual lists these device-specific condition
values for each device.

SYS2-111

System Service Descriptions
$10_PERFORMW (Alpha Only)

$I0_PERFORMW (Alpha Only)
Perform Fast I/O and Wait

Format

C Prototype

SYS2-112

On Alpha systems, starts a Fast 1/0O operation. The $10_PERFORMW service
completes synchronously; that is, it returns to the caller after performing the Fast
1/0 operation.

In all other respects, $10_PERFORMW is identical to $10_PERFORM. For all
other information about the IO0_PERFORMW service, refer to the description of
$10_PERFORM in this manual.

SYS$IO_PERFORMW fandle ,chan ,iosadr ,bufadr ,buflen ,devdata

int sys$io_performw (unsigned _ _int64 fandl, unsigned short int chan, struct _iosa
*josadr, void *bufadr, unsigned __int64 buflen, unsigned
__int64 devdata);

System Service Descriptions
$I0_SETUP (Alpha Only)

$I0_SETUP (Alpha Only)
Set Up Fast I/O

On Alpha systems, allocates resources for Fast 1/0.

This service accepts 64-bit addresses.

Format
SYS$IO_SETUP func ,bufobj ,iosobj ,astadr ,flags ,return_fandle

C Prototype

int sys$io_setup (unsigned int func, struct _generic_64 *bufobj, struct _generic_64
*josobj, void (*astadr)(struct _iosa *), unsigned int flags, unsigned
___int64 *return_fandle);

Arguments
func
OpenVMS usage: function_code
type: longword
access: read only
mechanism: by value

1/0 function code. Must be one of the following:
e 10$ READVBLK

e |10$ WRITEVBLK

e |0$_READLBLK

e 10$ WRITELBLK

Various function modifiers are supported, depending on the device and driver.
Disk drivers support 10$M_NOVCACHE and 10$M_DATACHECK. Some
tape devices support IO$M_REVERSE. lllegal modifiers are detected by the
$10_PERFORM(W) service.

bufobj

OpenVMS usage: buffer object

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference
Handle describing the buffer object that contains the user’s buffer. This identifier
cannot be 0.

iosobj

OpenVMS usage: object handle

type: vector longword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Buffer object handle describing the buffer object that contains the 1/O Status Area
(I0SA). This might or might not be the same identifier as the bufobj argument.
This identifier cannot be O.

SYS2-113

System Service Descriptions
$I0_SETUP (Alpha Only)

Description

SYS2-114

astadr

OpenVMS usage: ast _procedure

type: procedure value

access: read only

mechanism: by 32- or 64-bit reference

Completion AST routine address (0, if none). There is no AST parameter
argument. When the AST routine is called, the AST parameter will be the
address of the I0SA for the operation. Applications can store data in the IOSA at
offset IOSA$IH_CONTEXT.

flags

OpenVMS usage: mask_longword

type: 64-bit integer (unsigned)
access: read only

mechanism: by value

Flag mask. The flags argument is a bit vector in which each bit corresponds to a
flag. Flags are defined in the module IOSADEF.

The following table describes the flags that are valid for the $I0_SETUP service:

Flag Description

FIO$M_EXPEDITE This is a high priority 1/0; that is, it is to be given
preferential treatment by the 1/O subsystem. Use of
this bit requires ALTPRI or PHY_IO privilege.

FIO$M_AST _ The AST procedure does not use, or call any procedure
NOFLOAT that uses, any floating-point registers. This is a
performance option. If set, AST delivery will neither
save nor restore floating-point registers. Caution:
Use of floating-point registers when FIO$SM_AST _
NOFLOAT has been specified can cause unpredictable,
difficult to detect, error conditions.

All other bits in the flags argument are reserved for future use by Compaq and
should be specified as 0.

return_fandle
OpenVMS usage: fandle

type: 64-bit integer (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Address of an aligned quadword to receive the fandle for this 1/O operation.

The Set Up Fast 1/O system service allocates and initializes a number of internal
objects based on the parameters supplied. Because these objects are then ready
for use when a subsequent $10_PERFORM or $10_PERFORMW is issued, the
1/0 operation will require less CPU time and fewer multiprocessor steps.

Required Privileges
If you use the flags argument FIO$M_EXPEDITE, a process must have ALTPRI
or PHY_IO privilege.

Required Quota
Byte count

Related Services

System Service Descriptions
$I0_SETUP (Alpha Only)

$10_CLEANUP, $10_PERFORM(W)

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_INSFMEM

SS$_ILLIOFUNC
SS$_ILLMODIFIER
SS$_UNALIGNED

The service completed successfully.

The fandle does not have 8 bytes of writability,
or the two buffer objects do not have 8 bytes of
readability each.

There is no pool available from which to create a
fandle vector, or the fandle vector is already full
and an attempted expansion failed.

The function code is not valid.
The 1/0O function modifier is not permitted.

The 1/0O Status Area (I0SA) or data buffer is not
aligned on a quadword boundary.

SYS2-115

System Service Descriptions
$LCKPAG

SLCKPAG
Lock Pages in Memory

Locks a page or range of pages in memory. The specified virtual pages are forced
into the working set and then locked in memory. A locked page is not swapped
out of memory if the working set of the process is swapped out. These pages are
not candidates for page replacement and in this sense are locked in the working
set as well.

Format
SYS$LCKPAG inadr ,[retadr] ,[acmode]

C Prototype

int sys$lckpag (struct _va_range *inadr, struct _va_range *retadr, unsigned int

acmode);
Arguments
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be locked. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. Only the virtual page number

portion of each virtual address is used; the low-order byte-within-page bits are
ignored.

On VAX systems, if the starting and ending virtual addresses are the same, a
single page is locked.

retadr

OpenVMS usage: address_range

type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the pages that $LCKPAG
actually locked. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages to be locked. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the four
access modes.

SYS2-116

System Service Descriptions
$LCKPAG

The most privileged access mode used is the access mode of the caller. For the
$LCKPAG service to complete successfully, the resultant access mode must be
equal to or more privileged than the access mode already associated with the

pages to be locked.

Description

The Lock Pages in Memory service locks a page or range of pages in memory. The
specified virtual pages are forced into the working set and then locked in memory.
A locked page is not swapped out of memory if the working set of the process is
swapped out. These pages are not candidates for page replacement and in this
sense are locked in the working set as well.

If more than one page is being locked and you need to determine specifically
which pages were previously locked, the pages should be locked one at a time.

If an error occurs while the $LCKPAG service is locking pages, the return array,
if requested, indicates the pages that were successfully locked before the error
occurred. If no pages are locked, both longwords in the return address array
contain the value —1.

On Alpha systems, if you are attempting to lock executable code, you should
issue multiple $LCKPAG calls: one to lock the code pages and others to lock the
linkage section references into these pages.

Required Access or Privileges
The calling process must have PSWAPM privilege to lock pages into memory.

Required Quota
None

Related Services

You can unlock pages locked in memory with the Unlock Pages from Memory
(BULKPAG) service. Locked pages are automatically unlocked at image exit.

For more information, refer to the chapter on memory management in the
OpenVMS Programming Concepts Manual.

Condition Values Returned

SS$_WASCLR The service completed successfully. All of the
specified pages were previously unlocked.

SS$_WASSET The service completed successfully. At least one
of the specified pages was previously locked.

SS$_ACCVIO The input array cannot be read; the output array

cannot be written; the page in the specified range
is inaccessible or nonexistent; or an attempt to
lock pages was made by a caller whose access
mode is less privileged than the access mode
associated with the pages.

SS$_LCKPAGFUL The system-defined maximum limit on the
number of pages that can be locked in memory
has been reached.

SYS2-117

System Service Descriptions
$LCKPAG

SS$_LDWSETFUL

SS$_NOPRIV

SS$_PAGOWNVIO

SYS2-118

The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution.

The process does not have the privilege to lock
pages in memory.

The pages could not be locked because the access
mode associated with the call to SLCKPAG was

less privileged than the access mode associated
with the pages that were to be locked.

System Service Descriptions
$LCKPAG_64 (Alpha Only)

SLCKPAG_64 (Alpha Only)
Lock Pages in Memory

Format

C Prototype

Arguments

On Alpha systems, locks a range of pages in memory. The specified virtual pages
are forced into the working set and then locked in memory. A locked page is not
swapped out of memory if the working set of the process is swapped out. These
pages are not candidates for page replacement and, in this sense, are locked in
the working set as well.

This service accepts 64-bit addresses.

SYS$LCKPAG_64 start va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64

int sys$lckpag_64 (void *start va 64, unsigned __int64 length_64, unsigned
int acmode, void *(*(return_va_64)), unsigned __int64
*return_length_64);

start_va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be locked. The specified virtual
address will be rounded down to a CPU-specific page boundary.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be locked. The specified length will be
rounded up to a CPU-specific page boundary so that it includes all CPU-specific
pages in the requested range.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the pages to be locked. The acmode argument is a
longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

SYS2-119

System Service Descriptions
$LCKPAG_64 (Alpha Only)

Description

SYS2-120

Value Symbolic Name Access Mode
0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor
3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. For the
SLCKPAG_64 service to complete successfully, the resultant access mode must
be equal to or more privileged than the access mode already associated with the
pages to be locked.

return_va_ 64
OpenVMS usage: address

type: qguadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address of the pages locked in memory. The
return_va 64 argument is the 32- or 64-bit virtual address of a naturally
aligned quadword into which the service returns the virtual address.

return_length_64
OpenVMS usage: byte count

type: guadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a naturally aligned quadword into which the
service returns the length of the virtual address range locked in bytes.

The Lock Pages in Memory service locks a range of pages in memory. The
specified virtual pages are forced into the working set and then locked in memory.
A locked page is not swapped out of memory if the working set of the process is
swapped out. These pages are not candidates for page replacement and, in this
sense, are locked in the working set as well.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_va_ 64 and
return_length_64 arguments. If a condition value other than SS$ ACCVIO

is returned, the returned address and returned length indicate the pages that
were successfully locked before the error occurred. If no pages were locked,

the return_va_64 argument will contain the value -1, and a value cannot be
returned in the memory location pointed to by the return_length_64 argument.

Required Privileges
A process must have PSWAPM privilege to call the $LCKPAG_64 service.

Required Quota
None

Related Services
SLCKPAG, $SULKPAG, SULKPAG_64

Condition Values Returned

SS$ WASCLR

SS$_WASSET

SS$_ACCVIO

SS$ LCKPAGFUL

SS$_LKWSETFUL

SS$_NOPSWAPM

SS$_PAGOWNVIO

System Service Descriptions
$LCKPAG_64 (Alpha Only)

The service completed successfully. All of the
specified pages were previously unlocked.

The service completed successfully. At least one
of the specified pages was previously locked in
the working set.

The return_va 64 argument or the
return_length_64 argument cannot be written
by the caller, or an attempt was made to lock
pages by a caller whose access mode is less
privileged than the access mode associated with
the pages.

The system-defined maximum limit on the
number of pages that can be locked in memory
has been reached.

The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution.

The process does not have the privilege to lock
pages in memory.

The pages could not be locked because the access
mode associated with the call to SLCKPAG_64
was less privileged than the access mode
associated with the pages that were to be locked.

SYS2-121

System Service Descriptions
SLKWSET

SLKWSET
Lock Pages in Working Set

Locks a range of pages in the working set; if the pages are not already in the
working set, it brings them in and locks them. A page locked in the working set
does not become a candidate for replacement.

Format

SYS$LKWSET inadr ,[retadr] ,Jacmode]

C Prototype

int sys$lkwset (struct _va_range *inadr, struct _va_range *retadr, unsigned int

acmode);
Arguments
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be locked in
the working set. The inadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses. Only
the virtual page number portion of each virtual address is used; the low-order
byte-within-page bits are ignored.

On VAX systems, if the starting and ending virtual addresses are the same, a
single page is locked.

retadr

OpenVMS usage: address_range

type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the range of pages actually
locked by $SLCKWSET. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages to be locked. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the four
access modes.

The most privileged access mode used is the access mode of the caller. For the
$SLKWSET service to complete successfully, the resultant access mode must be
equal to or more privileged than the access mode already associated with the
pages to be locked.

SYS2-122

System Service Descriptions
SLKWSET

Description

The Lock Pages in Working Set service locks a range of pages in the working set;
if the pages are not already in the working set, it brings them in and locks them.
A page locked in the working set does not become a candidate for replacement.

If more than one page is being locked and you need to determine specifically
which pages were previously locked, the pages should be locked one at a time.

If an error occurs while the SLKWSET service is locking pages, the return array,
if requested, indicates the pages that were successfully locked before the error
occurred. If no pages are locked, both longwords in the return address array
contain the value —1.

Global pages with write access cannot be locked into the working set.

On Alpha systems, if you are attempting to lock executable code, you should
issue multiple $SLKWSET calls: one to lock the code pages and others to lock the
linkage section references into these pages.

Required Access or Privileges
None

Required Quota
None

Related Services

You can unlock pages locked in the working set with the Unlock Page from
Working Set (JULWSET) service.

For more information, refer to the chapter on memory management in the
OpenVMS Programming Concepts Manual.

Condition Values Returned

SS$_WASCLR The service completed successfully. All of the
specified pages were previously unlocked.
SS$_WASSET The service completed successfully. At least one

of the specified pages was previously locked in
the working set.

SS$ ACCVIO The input address array cannot be read; the
output address array cannot be written; a page in
the specified range is inaccessible or nonexistent;
or an attempt was made to lock pages by a caller
whose access mode is less privileged than the
access mode associated with the pages.

SS$ LKWSETFUL The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution.

SYS2-123

System Service Descriptions
SLKWSET

SS$_NOPRIV A page in the specified range is in the system
address space, or a global page with write access
was specified.

SS$_PAGOWNVIO The pages could not be locked because the access
mode associated with the call to SLKWSET was

less privileged than the access mode associated
with the pages that were to be locked.

SYS2-124

System Service Descriptions
SLKWSET_64 (Alpha Only)

SLKWSET_64 (Alpha Only)
Lock Pages in Working Set

Format

C Prototype

Arguments

On Alpha systems, locks a range of virtual addresses in the working set; if
the pages are not already in the working set, the service brings them in and
locks them. A page locked in the working set does not become a candidate for
replacement.

This service accepts 64-bit addresses.

SYS$LKWSET_64 start_va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64

int sys$lkwset 64 (void *start va_64, unsigned __int64 length_64, unsigned
int acmode, void *(*(return_va_64)), unsigned _ _int64
*return_length_64);

start_va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be locked in the working set. The
specified virtual address will be rounded down to a CPU-specific page boundary.

length_64

OpenVMS usage: byte count

type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be locked in the working set. The specified
length will be rounded up to a CPU-specific page boundary so that it includes all
CPU-specific pages in the requested range.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the pages to be locked. The acmode argument is a
longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

SYS2-125

System Service Descriptions
SLKWSET_64 (Alpha Only)

Description

SYS2-126

Value Symbolic Name Access Mode
0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor
3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. For the
SLKWSET 64 service to complete successfully, the resultant access mode must
be equal to or more privileged than the access mode already associated with the
pages to be locked.

return_va_ 64
OpenVMS usage: address

type: qguadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address of the pages locked in the working set. The
return_va 64 argument is the 32- or 64-bit virtual address of a naturally aligned
guadword into which the service returns the virtual address.

return_length_64
OpenVMS usage: byte count

type: guadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The length of the virtual address range locked in the working set. The
return_length_64 argument is the 32- or 64-bit virtual address of a naturally
aligned quadword into which the service returns the length of the virtual address
range in bytes.

The Lock Pages in Working Set service locks a range of pages in the working set;
if the pages are not already in the working set, it brings them in and locks them.
A page locked in the working set does not become a candidate for replacement.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_va_ 64 and
return_length_64 arguments. If a condition value other than SS$ ACCVIO

is returned, the returned address and returned length indicate the pages that
were successfully locked before the error occurred. If no pages were locked,

the return_va_64 argument will contain the value -1, and a value cannot be
returned in the memory location pointed to by the return_length_64 argument.

Global pages with write access cannot be locked into the working set.
Required Privileges
None

Required Quota
None

Related Services
SLKWSET, SULWSET, SULWSET 64

Condition Values Returned

SS$ WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_LKWSETFUL

SS$ NOPRIV
SS$ PAGNOTINREG

SS$_PAGOWNVIO

System Service Descriptions
SLKWSET_64 (Alpha Only)

The service completed successfully. All of the
specified pages were previously unlocked.

The service completed successfully. At least one
of the specified pages was previously locked in
the working set.

The return_va_64 or return_length_64
argument cannot be written by the caller, or
an attempt was made to lock pages by a caller
whose access mode is less privileged than the
access mode associated with the pages.

The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution.

No privilege; global pages with write access
cannot be locked into the working set.

A page in the specified range is not within the
specified region.

The pages could not be locked because the access
mode associated with the call to SLKWSET 64
was less privileged than the access mode
associated with the pages that were to be locked.

SYS2-127

System Service Descriptions
$MGBLSC

$MGBLSC
Map Global Section

Establishes a correspondence between pages (maps) in the virtual address space
of the process and physical pages occupied by a global section.

Format
SYS$SMGBLSC inadr ,[retadr] ,Jacmode] ,[flags] ,gsdnam ,[ident] ,[relpag]

C Prototype

int sys$mgblsc (struct _va_range *inadr, struct _va_range *retadr, unsigned int
acmode, unsigned int flags, void *gsdnam, struct _secid *ident,
unsigned int relpag);

Arguments
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses into which the section is to be mapped.
The inadr argument is the address of a 2-longword array containing, in order,
the starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used to specify which pages are to be mapped;
the low-order byte-within-page bits are ignored for this purpose.

The interpretation of the inadr argument depends on the setting of
SEC$M_EXPREG in the flags argument and on whether you are using an
Alpha or a VAX system. The two system types are discussed separately in this
section.

Alpha System Usage

On Alpha systems, if you do not set the SEC$M_EXPREG flag, the inadr
argument specifies the starting and ending virtual addresses of the region to

be mapped. Addresses in system space are not allowed. The addresses must be
aligned on CPU-specific pages; no rounding to CPU-specific pages occurs. The
lower address of the inadr argument must be on a CPU-specific page boundary
and the higher address of the inadr argument must be 1 less than a CPU-specific
boundary, thus forming a range, from lowest to highest, of address bytes. You can
use the SYI$ _PAGE_SIZE item code in the $GETSYI system service to set the
inadr argument to the proper values. You do this to avoid programming errors
that might arise because of incorrect programming assumptions about page sizes.

If, on the other hand, you do set the SEC$M_EXPREG flag, indicating that the
mapping should take place using the first available space in a particular region,
the inadr argument is used only to indicate the desired region: the program
region (P0O) or the control region (P1).

Caution

Mapping into the P1 region is generally discouraged, but, if done, must
be executed with extreme care. Since the user stack is mapped in P1, it

SYS2-128

System Service Descriptions
$MGBLSC

is possible that references to the user stack might inadvertently read or
write the pages mapped with $CRMPSC.

When the SEC$M_EXPREG flag is set, the second inadr longword is ignored,
while bit 30 (the second most significant bit) of the first inadr longword is used
to determine the region of choice. If the bit is clear, PO is chosen; if the bit is
set, P1 is chosen. On Alpha systems, bit 31 (the most significant bit) of the first
inadr longword must be 0. To ensure compatibility between VAX and Alpha
systems when you choose a region, Compaq recommends that you specify, for the
first inadr longword, any virtual address in the desired region.

VAX System Usage

On VAX systems, if you do not set the SEC$M_EXPREG flag, the inadr argument
specifies the starting and ending virtual addresses of the region to be mapped.
Addresses in system space are not allowed. If the starting and ending virtual
addresses are the same, a single page is mapped.

Note

If the SEC$M_EXPREG flag is not set, Compaq recommends that the
inadr argument always specify the entire virtual address range, from
starting byte address to ending byte address. This ensures compatibility
between VAX and Alpha systems.

If, on the other hand, you do set the SEC$M_EXPREG flag, indicating that the
mapping should take place using the first available space in a particular region,
the inadr argument is used only to indicate the desired region: the program
region (PO) or the control region (P1).

Caution

Mapping into the P1 region is generally discouraged, but, if done, must
be executed with extreme care. Since the user stack is mapped in P1, it
is possible that references to the user stack might inadvertently read or
write the pages mapped with $SCRMPSC.

When the SEC$M_EXPREG flag is set, the second inadr longword is ignored,
while bit 30 (the second most significant bit) of the first inadr longword is used
to determine the region of choice. If the bit is clear, PO is chosen; if the bit is set,
P1 is chosen. On VAX systems, bit 31 (the most significant bit) of the first inadr
longword is ignored. To ensure compatibility between VAX and Alpha systems
when you choose a region, Compaq recommends that you specify, for the first
inadr longword, any virtual address in the desired region.

retadr

OpenVMS usage: address_range

type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses into which the section was actually
mapped by $SMGBLSC. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

SYS2-129

System Service Descriptions

$MGBLSC

SYS2-130

On Alpha systems, the retadr argument returns the starting and ending
addresses of the usable range of addresses. This might differ from the total
amount mapped. The retadr argument is required when the relpag argument
is specified. If the section being mapped does not completely fill the last page
used to map the section, the retadr argument indicates the highest address that
actually maps the section. If the relpag argument is used to specify an offset
into the section, the retadr argument reflects the offset.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access mode.
The $PSLDEF macro defines symbols for the four access modes.

The most privileged access mode used is the access mode of the caller.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector wherein a bit when set specifies the corresponding option.

The $SECDEF macro defines symbolic names for the flag bits. You construct
the flags argument by specifying the symbolic names of each desired option in a
logical OR operation.

The following table describes each flag option:

Flag Option Description

SEC$SM_WRT Map the section with read/write access. By default, the
section is mapped with read-only access. If SEC$M_WRT
is specified and the section is not copy-on-reference, write
access is required.

SEC$M_SYSGBL Map a system global section. By default, the section is a
group global section.
SEC$M_EXPREG Map the section into the first available virtual address

range. By default, the section is mapped into the range
specified by the inadr argument.

See the inadr argument description for a complete
explanation of how to set the SEC$M_EXPREG flag.

gsdnam

OpenVMS usage: section_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the global section. The gsdnam argument is the address of a character
string descriptor pointing to this name string.

System Service Descriptions
$MGBLSC

For group global sections, the operating system interprets the group UIC as
part of the global section name; thus, the names of global sections are unique to
UIC groups. Further, all global section names are implicitly qualified by their
identification fields.

You can specify any name from 1 to 43 characters. All processes mapping to the
same global section must specify the same name. Note that the name is case
sensitive.

Use of characters valid in logical names is strongly encouraged. Valid values
include alphanumeric characters, the dollar sign ($), and the underscore (). If
the name string begins with an underscore (), the underscore is stripped and the
resultant string is considered to be the actual name. Use of the colon (:) is not
permitted.

Names are first subject to a logical name translation, after the application of the
prefix GBL$ to the name. If the result translates, it is used as the name of the
section. If the resulting name does not translate, the name specified by the caller
is used as the name of the section.

Additional information on logical name translations and on section name
processing is available in the OpenVMS Programming Concepts Manual.

ident

OpenVMS usage: section_id

type: quadword (unsigned)
access: read only
mechanism: by reference

Identification value specifying the version number of a global section and, for
processes mapping to an existing global section, the criteria for matching the
identification. The ident argument is the address of a quadword structure
containing three fields.

The first longword specifies, in the low-order two bits, the matching criteria.
Their valid values, the symbolic names by which they can be specified, and their
meanings are as follows:

Value/Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications match.
2 SEC$K_MATLEQ Match if the major identifications are equal and the

minor identification of the mapper is less than or equal
to the minor identification of the global section.

The version number is in the second longword and contains two fields: a minor
identification in the low-order 24 bits and a major identification in the high-order
8 bits.

If you do not specify ident or specify it as the value 0 (the default), the version
number and match control fields default to the value 0.

relpag

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

SYS2-131

System Service Descriptions

$MGBLSC

Description

SYS2-132

Relative page number within the section of the first page to be mapped. The
relpag argument is a longword containing this number.

On Alpha systems, the relpag argument is interpreted as an index into the
section file, measured in pagelets for a file-backed section or CPU-specific pages
for a PFN-mapped section.

On Alpha and VAX systems, if you do not specify relpag or specify it as the value
0 (the default), the global section is mapped beginning with the first virtual block
in a file-backed section or the first CPU-specific page in a PFN-mapped section.

The Map Global Section service establishes a correspondence between pages
(maps) in the virtual address space of the process and physical pages occupied by
a global section. The protection mask specified at the time the global section is
created determines the type of access (for example, read/write or read only) that a
particular process has to the section.

When $MGBLSC maps a global section, it adds pages to the virtual address
space of the process. The section is mapped from a low address to a high address,
whether the section is mapped in the program or control region.

If an error occurs during the mapping of a global section, the return address
array, if specified, indicates the pages that were successfully mapped when the
error occurred. If no pages were mapped, both longwords of the return address
array contain the value —1.

Required Access or Privileges

Read access is required. If the SEC$SM_WRT flag is specified, write access is
required.

Required Quota

The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased size of the virtual address space when the $MGBLSC
service maps a section.

If the section pages are copy-on-reference, the process must also have sufficient
paging file quota (PGFLQUOTA).

This system service causes the working set of the calling process to be adjusted to
the size specified by the working set quota (WSQUOTA). If the working set size
of the process is less than quota, the working set size is increased; if the working
set size of the process is greater than quota, the working set size is decreased.

Related Services

$ADJISTK, SADIWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $SLKWSET, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $SULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

For more information, refer to the chapter on memory management in the
OpenVMS Programming Concepts Manual.

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_ENDOFFILE
SS$_EXQUOTA

SS$_INSFWSL

SS$_INVARG

SS$_IVLOGNAM

SS$_IVSECFLG
SS$_IVSECIDCTL

SS$ NOPRIV

SS$_NOSHPTS

SS$_NOSUCHSEC
SS$_PAGOWNVIO

SS$_SECREFOVF
SS$ TOOMANYLNAM
SS$ VA_IN_USE

SS$_VASFULL

System Service Descriptions
$MGBLSC

The service completed successfully.

The input address array, the global section name
or name descriptor, or the section identification
field cannot be read by the caller; or the return
address array cannot be written by the caller.

The starting virtual block number specified is
beyond the logical end-of-file.

The process exceeded its paging file quota,
creating copy-on-reference pages.

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

Invalid argument specified to service. Common
sources are the incorrect specification of relpag
or the values in the inadr array.

The global section name has a length of 0 or has
more than 43 characters.

You set a reserved flag.

The match control field of the global section
identification is invalid.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller; or a page in the
input address range is in the system address
space.

The region ID of a shared page-table region was
specified.
The specified global section does not exist.

A page in the specified input address range is
owned by a more privileged access mode.

The maximum number of references for a global
section has been reached (2,147,483,647).
Logical name translation of the gsdnam string
exceeded the allowed depth.

The existing underlying page cannot be deleted
because it is associated with a buffer object.

The virtual address space of the process is full;
no space is available in the page tables for the
pages created to contain the mapped global
section.

SYS2-133

System Service Descriptions
$MGBLSC_64 (Alpha Only)

$MGBLSC_64 (Alpha Only)
Map to Global Section

On Alpha systems, establishes a correspondence between pages in the virtual
address space of the process and the pages occupied by a global disk file, page file,
or demand-zero section and can map to a demand-zero section with shared page
tables.

This service accepts 64-bit addresses.

Format

SYS$MGBLSC_64 gs_name_64 ,ident_64 ,region_id_64 ,section_offset_64
Jlength_64 ,acmode ,flags ,return_va_64 ,return_length 64
[,start va_64]

C Prototype

int sys$mgblsc_64 (void *gsdnam_64, struct _secid *ident_64, struct _generic_64
*region_id_64, unsigned _ _int64 section_offset 64, unsigned
___int64 length_64, unsigned int acmode, unsigned int flags, void
((return_va_64)), unsigned __int64 *return_length_64,...);

Arguments

gs_name_64
OpenVMS usage: section_name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 32- or 64-bit
virtual address of a naturally aligned 32-bit or 64-bit string descriptor pointing to
this name string.

You can specify any name from 1 to 43 characters. All processes mapping to the
same global section must specify the same name. Note that the name is case
sensitive.

Use of characters valid in logical names is strongly encouraged. Valid values
include alphanumeric characters, the dollar sign ($), and the underscore (). If
the name string begins with an underscore (), the underscore is stripped and the
resultant string is considered to be the actual name. Use of the colon (:) is not
permitted.

Names are first subject to a logical name translation, after the application of the
prefix GBL$ to the name. If the result translates, it is used as the name of the
section. If the resulting name does not translate, the name specified by the caller
is used as the name of the section.

Additional information on logical name translations and on section name
processing is available in the OpenVMS Programming Concepts Manual.

ident_64

OpenVMS usage: section_id

type: guadword (unsigned)
access: read only

SYS2-134

System Service Descriptions
$MGBLSC_64 (Alpha Only)

mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32- or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits.

The valid values, symbolic names by which they can be specified, and their
meanings are as follows:

Value Symbolic Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications
match.

2 SEC$K_MATLEQ Match if the major identifications are equal

and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

region_id_64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

The region ID associated with the region to map the global section. The file
VADEF.H in SYS$STARLET _C.TLB and the $YVADEF macro in STARLET.MLB
define a symbolic name for each of the three default regions in PO, P1, and P2
space.

The following region IDs are defined:

Symbol Region

VA$C_PO Program region
VA$C_P1 Control region

VASC P2 64-bit program region

Other region IDs, as returned by the $SCREATE_REGION_64 service, can be
specified.

SYS2-135

System Service Descriptions
$MGBLSC_64 (Alpha Only)

SYS2-136

section_offset 64
OpenVMS usage: byte offset

type: guadword (unsigned)
access: read only
mechanism: by value

Offset into the global section at which to start mapping into the process’s virtual
address space.

If a map to a global disk file section is being requested, the section_offset 64
argument specifies an even multiple of disk blocks. If a map to a global page
file or demand-zero section is being requested, the section_offset_64 argument
specifies an even multiple of CPU-specific pages. If zero is specified, the global
section is mapped beginning with the first page of the section.

If the region_id_64 argument specifies a shared page table region, section_
offset_64 must be an even multiple of pages mapped by a page table page.

length_64

OpenVMS usage: byte count

type: guadword (unsigned)
access: read only
mechanism: by value

Length, in bytes, of the desired mapping of the global disk file section.

If a map to a global section is being requested, the length_64 argument must
specify an even multiple of disk blocks. If a map to a global page file or demand-
zero section is being requested, the length_64 argument must specify an even
multiple of CPU-specific pages. If zero is specified, the size of the disk file is used.

If a shared page-table region is specified by the region_id_64 argument, length_
64 must be an even multiple of the number of bytes that can be mapped by a
CPU-specific page-table page or must include the last page within the memory-
resident global section.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
This is also the read access mode and, if the SEC$M_WRT flag is specified, the
write access mode. The acmode argument is a longword containing the access
mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET _C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode
0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

System Service Descriptions
$MGBLSC_64 (Alpha Only)

Value Symbolic Name Access Mode

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. Address
space cannot be created within a region that has a create mode associated
with it that is more privileged than the caller’'s mode. The condition value
SS$_IVACMODE is returned if the caller is less privileged than the create mode
for the region.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector in which each bit corresponds to a flag. The $SECDEF macro and the
SECDEF.H file define a symbolic name for each flag. You construct the flags
argument by performing a logical OR operation on the symbol names for all
desired flags.

The following table describes each flag that is valid for the $SMGBLSC_64 service:

Flag Description

SEC$M_EXPREG Pages are mapped into the first available space at the
current end of the specified region.

If /ALLOCATE was specified when the memory-resident
global section was registered in the Reserved Memory
Registry, virtually aligned addresses after the first
available space are chosen for the mapping.

It the region_id_64 argument specifies a shared page-
table region, the first available space is round up to the
beginning of the next CPU-specific page-table page.

SEC$M_GBL Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_NO _ Pages cannot overmap existing address space.

OVERMAP

SEC$M_SHMGS On OpenVMS Galaxy systems, create a shared-memory
global section.

SEC$M_SYSGBL The global section map is a system global section. By
default, the section is a group global section.

SEC$M_WRT Map the section with read/write access.

All other bits in the flags argument are reserved for future use by Compaq and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an attempt is made to use the SEC$M_PAGFIL flag,
which applies only to the creation of a page-file backed section.

return_va_64

OpenVMS usage: address

type: quadword address
access: write only

SYS2-137

System Service Descriptions
$MGBLSC_64 (Alpha Only)

SYS2-138

mechanism: by 32- or 64-bit reference

The process virtual address into which the global disk or page file section was
mapped. The return_va_64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword into which the service returns the virtual address.

Upon successful completion of this service, if the section_offset 64 argument
was specified, the virtual address returned in the return_va 64 argument
reflects the offset into the global section mapped such that the virtual address
returned cannot be aligned on a CPU-specific page boundary. The virtual address
returned will always be on an even virtual disk block boundary.

return_length_64
OpenVMS usage: byte count

type: guadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The length of the usable virtual address range mapped. The return_length_64
argument is the 32- or 64-bit virtual address of a naturally aligned quadword
into which the service returns the length of the virtual address range mapped in
bytes.

Upon successful completion of this service, the value in the return_length_64
argument might differ from the total amount of virtual address space
mapped. The value in the return_va_64 argument plus the value in the
return_length_64 argument indicates the address of the first byte beyond the
end of the mapping of the global disk file section.

If the value in the section_offset 64 argument plus the value in the length_64
argument did not specify to map the entire global section, this byte can be located
at an even virtual disk block boundary within the last page of the mapping.

If the section being mapped does not completely fill the last page used to
represent the global disk file section, this byte can be mapped into your address
space; however, it is not backed up by the disk file.

start_va 64

OpenVMS usage: address

type: guadword address
access: read only
mechanism: by value

The starting virtual address to which to map the global section. The specified
virtual address must be a CPU-specific page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_va_64 argument
is nonzero, the condition value SS$_IVSECFLG is returned.

If the region_id_64 argument specifies a shared page-table region, start_va_64
must be aligned to a CPU-specific page-table page boundary.

Description

System Service Descriptions
$MGBLSC_64 (Alpha Only)

The Map to Global Section service establishes a correspondence between pages in
the virtual address space of the process and pages occupied by a global disk file,
page file, or memory-resident demand-zero section. This service adds pages to the
virtual address space of the process.

If a global disk file or page file backed section is being mapped, invalid page table
entries are placed in the process page table.

If a memory-resident global section is being mapped, global pages are not charged
against the process’'s working set quota when the virtual memory is referenced
and the global pages are not charged against the process’s pagefile quota.

If the memory-resident global section was not registered in the Reserved Memory
Registry or INOALLOCATE was specified when the global section was registered,
invalid page table entries are placed in the process page table.

If the memory-resident global section was registered in the Reserved Memory
Registry and /ALLOCATE was specified when the memory-resident global section
was registered, valid page table entries are placed in the process page tables.

If a global disk file or page file backed section is being mapped, and the flag
SEC$M_EXPREG is set, the first free virtual address within the specified region
is used to start mapping to the global section.

To use the shared page tables associated with a memory-resident global section,
you must first create a shared page table region (with SYSSCREATE_REGION _
64). To map to the memory-resident global section using the shared page tables
you must do the following:

= Specify a shared page table region in the region_id_64 argument.
= Specify SEC$M_WRT in the flags argument.

= Set the flag SEC$M_EXPREG or provide a CPU-specific page-table page-
aligned virtual address in the start_va_64 argument.

= Specify a CPU-specific page-table page-aligned value for the section_offset_
64 argument or zero.

= Specify a value for the map_length_64 argument that is an even multiple of
bytes mapped by a CPU-specific page-table page, or include the last page of
the section or zero.

See the description of $SCREATE_REGION_64 for information about calculating
virtual addresses that are aligned to a CPU-specific page table page boundary.

A memory-resident global section can be mapped with shared page tables

or private page tables. The following table lists the factors associated with
determining whether the mapping occurs with shared page tables or private page
tables:

Shared Page-Table

Global Section Created Region Specified by Type of Page Tables Used in
with Shared Page Tables region_id_64 Mapping
No No Private
No Yes Private

SYS2-139

System Service Descriptions
$MGBLSC_64 (Alpha Only)

SYS2-140

Shared Page-Table

Global Section Created Region Specified by Type of Page Tables Used in
with Shared Page Tables region_id_64 Mapping
Yes No Private
Yes Yes Shared

In general, if the flag SEC$M_EXPREG is set, the first free virtual address
within the specified region is used to map to the global section.

If the flag SEC$M_EXPREG is set, a memory-resident global section is being
mapped and the region_id_64 argument indicates a shared page-table region,
the first free virtual address within the specified region is rounded up to a
CPU-specific page-table page boundary and used to map to the global section.

If the flag SEC$M_EXPREG is set and the /ALLOCATE qualifier was specified
with the SYSMAN command RESERVED MEMORY ADD for the memory-
resident global section, the first free virtual address within the specified region
is rounded up to the same virtual alignment as the physical alignment of the
preallocated pages and used to map to the global section. Granularity hints are
set appropriately for each process private page-table entry (PTE).

In general, if the flag SEC$M_EXPREG is clear, the virtual address in the start_
va_64 argument is used to map to the global section.

If the flag SEC$M_EXPREG is clear and a memory-resident global section is
being mapped, the value specified in the start_va 64 argument can determine
if the mapping is possible and if granularity hints are used in the private page
tables. If a shared page-table region is specified by the region_id_64 argument,
the virtual address specified by the start va_64 argument must be on an even
CPU-specific page-table page boundary or an error is returned by this service. If
the region_id_64 argument does not specify a shared page-table region and the
/ALLOCATE qualifier was specified with the SYSMAN command RESERVED _
MEMORY ADD for this global section, granularity hints are used only if the
virtual alignment of start_va_64 is appropriate for the use of granularity hints
(either 8-page, 64-page or 512-page alignment).

Whenever granularity hints are being used within the mapping of a memory-
resident global section, if the length_64 argument is not an exact multiple of
the alignment factor, lower granularity hints factors are used as appropriate

at the higher addressed portion of the global section. If the section_offset 64
argument is specified, a lower granularity hint factor can be used throughout the
mapping of the global section to match the physical alignment of the first page
mapped.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_va_64 and
return_length_64 arguments.

If a condition value other than SS$ ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before the
error occurred. If no pages were mapped, the return_va_64 argument contains
the value —1.

Required Privileges
None

System Service Descriptions
$MGBLSC_64 (Alpha Only)

Required Quota

If private page tables are used to map to the global section, the working set limit
quota (WSQUOTA) of the process must be sufficient to accommodate the increased
size of the process page tables required by the increase in virtual address space
when the section is mapped.

If private page tables are used to map to a memory-resident global section, the
pagefile quota (PGFLQUOTA) of the process must be sufficient to accommodate
the increased size of the process page tables required by the increase in virtual
address space.

If the process is mapping to a global copy-on-reference section, the pagefile quota
(PGFLQUOTA) of the process must be sufficient to accommodate the increased
size of the virtual address space.

Related Services

$CREATE_GDZRO, $CREATE_GFILE, $CREATE_GPFILE, $CREATE_REGION_
64, SCRMPSC_GDZRO_64, $CRMPSC_GFILE_64, $CRMPSC_GPFILE_64,
$DELETE_REGION_64, $DELTVA_64, $LCKPAG_64, $SLKWSET_64, $MGBLSC,
$MGBLSC_GPFN_64, $PURGE_WS, $ULKPAG_64, SULWSET_64, SUPDSEC_
64, SUPDSEC_64W

Condition Values Returned

SS$_ NORMAL The service completed successfully.

SS$ ACCVIO The gs_name_64 argument cannot be read by
the caller, or the return_va_64 argument or the
return_length_64 argument cannot be written

by the caller.

SS$ EXPGFLQUOTA The process’s page file quota is not large enough
to accommodate the increased virtual address
space.

SS$_GBLSEC_MISMATCH Global section type mismatch. The specified
global section was found; however, it is not a
global disk-file, page-file, or demand-zero section.

SS$_INSFWSL The process’s working set limit is not large
enough to accommodate the increased virtual
address space.

SS$ IVACMODE The specified access mode is greater than PSL$
USER or the caller’'s mode is less privileged than
the create mode associated with the region. Or,
if a shared page table region is specified by the
region_id_64 argument, the acmode argument
does not match the access mode of the shared

PTEs.
SS$_IVLOGNAM The specified global section name has a length of
0 or has more than 43 characters.
SS$_IVREGID An invalid region ID was specified.
SS$_IVSECFLG An invalid flag, a reserved flag, or an invalid

combination of flags was specified.

SYS2-141

System Service Descriptions
$MGBLSC_64 (Alpha Only)

SS$_IVSECIDCTL

SS$ LEN_NOTBLKMULT

SS$ LEN_NOTPAGMULT

SS$ NOSHPTS

SS$ NOSHPTS

SS$_NOSUCHSEC
SS$_OFF_NOTPAGALGN

SS$_OFFSET_TOO BIG
SS$ PAGNOTINREG

SS$_PAGOWNVIO

SS$ PROTVIO

SS$ REGISFULL

SS$_SECREFOVF
SS$ SECTBLFUL
SS$_ TOOMANYLNAM

SS$ VA _IN_USE

SYS2-142

The match control field of the global section
identification is invalid.

The length_64 argument is not a multiple of
virtual disk blocks if a map to a global section
was requested (SEC$M_PAGFIL is clear in the
flags argument).

The length_64 argument is not a multiple of
CPU-specific pages and a map to a global page
file section was requested.

The region ID of a shared page-table region was
specified, and a gobal section was specified that
is not a memory-resident demand-zero section.

The region ID of a shared page table region was
specified.
The specified global section does not exist.

The section_offset 64 argument is not CPU-
specific page aligned if a map to a global page-file
or demand-zero section is requested. Or, if a
shared page table region is specified by the
region_id_64 argument, the section_offset_64
argument is not CPU-specific page-table page
aligned.

The section_offset 64 argument specified is
beyond the logical end-of-file.

A page in the specified input address range is not
within the specified region.

A page in the specified input address range
already exists and cannot be deleted because it is
owned by a more privileged access mode.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller.

The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped section.

The maximum number of references for a global
section has been reached (2,147,483,647).

There are no entries available in the system
global section table.

The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

A page in the specified input address range

is already mapped and the flag SEC$M_NO _
OVERMARP is set, or a page in the specified input
address range is in another region, in system
space, or inaccessible; or, the existing underlying
page cannot be deleted because it is associated
with a buffer object.

System Service Descriptions
$MGBLSC_64 (Alpha Only)

SS$_VA_NOTPAGALGN The start_va_64 argument is not CPU-specific
page aligned. Or, if a shared page table region
is specified by the region_id_64 argument,
the start_va_ 64 argument is not CPU-specific
page-table page aligned.

SS$ NOWRTACC The specified global section is not copy-on-
reference and does not allow write access.

SYS2-143

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

SMGBLSC_GPFN_64 (Alpha Only)
Map Global Page Frame Section

On Alpha systems, establishes a correspondence between pages in the virtual
address space of the process and the pages occupied by a global page frame
section.

This service accepts 64-bit addresses.

Format

SYS$SMGBLSC_GPFN_64 gs_name_64 ,ident_64 ,region_id_64 ,relative_page
,page_count ,acmode ,flags ,return_va 64
Jreturn_length_64 [,start_va_64]

C Prototype

int sys$mgblsc_gpfn_64 (void *gsdnam_64, struct _secid *ident_64, struct
_generic_64 *region_id_64, unsigned int relative_page,
unsigned int page_count, unsigned int acmode, unsigned
int flags, void *(*(return_va_64)), unsigned __int64
*return_length_64,...);

Arguments

gs_name_64
OpenVMS usage: section_name

type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Name of the global section. The gs_name argument is the 32- or 64-bit virtual
address of a naturally aligned 32-bit or 64-bit descriptor pointing to this name
string.

You can specify any name from 1 to 43 characters. All processes mapping to the
same global section must specify the same name. Note that the name is case
sensitive.

Use of characters valid in logical names is strongly encouraged. Valid values
include alphanumeric characters, the dollar sign ($), and the underscore (). If
the name string begins with an underscore (), the underscore is stripped and the
resultant string is considered to be the actual name. Use of the colon (:) is not
permitted.

Names are first subject to a logical name translation, after the application of the
prefix GBL$ to the name. If the result translates, it is used as the name of the
section. If the resulting name does not translate, the name specified by the caller
is used as the name of the section.

Additional information on logical name translations and on section name
processing is available in the OpenVMS Programming Concepts Manual.

ident_64

OpenVMS usage: section_id

type: guadword (unsigned)
access: read only

SYS2-144

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

mechanism: by 32- or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32- or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value Symbolic Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications
match.

2 SEC$K_MATLEQ Match if the major identifications are equal

and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

region_id_64

OpenVMS usage: region identifier

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

The region ID associated with the region to map the private page frame
section. The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro

in STARLET.MLB define a symbolic name for each of the three default regions in
PO, P1, and P2 space.

The following region IDs are defined:

Symbol Region

VAS$C_PO Program region
VA$C_P1 Control region

VASC P2 64-bit program region

Other region IDs, as returned by the $SCREATE_REGION_64 service, can be
specified.

SYS2-145

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

SYS2-146

relative_page
OpenVMS usage: CPU-specific page count

type: longword (unsigned)
access: read only
mechanism: by value

Relative CPU-specific page number within the global section to start mapping.

page_count

OpenVMS usage: CPU-specific page count
type: longword (unsigned)
access: read only

mechanism: by value

Length of mapping in CPU-specific pages. If zero is specified, the global page
frame section is mapped to the end of the section.

acmode

OpenVMS usage: access-mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access mode.
The $PSLDEF macro defines symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. Address
space cannot be created within a region that has a create mode associated
with it that is more privileged than the caller's mode. The condition value

SS$ IVACMODE is returned if the caller is less privileged than the create mode
for the region.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector in which each bit corresponds to a flag. The $SECDEF macro and the
SECDEF.H file define a symbolic name for each flag. You construct the flags
argument by performing a logical OR operation on the symbol names for all
desired flags.

The following table describes each flag that is valid for the SMGBLSC _GPFN_64
service:

Flag Description

SEC$M_GBL Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

SEC$SM_EXPREG Map the section into the first available space at the
current end of the specified region. If this flag is specified,
the start_va_64 argument is not used.

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

Flag Description

SEC$M_PERM Pages are permanent. By default, this flag is always
present in this service and cannot be disabled.

SEC$M_PFNMAP Pages form a page frame section. By default, this flag is
always present in this service and cannot be disabled.

SEC$M_PAGFIL Pages form a global page-file section. SEC$M_PAGFIL
also implies SEC$M_WRT and SEC$M_DZRO.

SEC$M_SYSGBL Map a system global section. By default, the section is a
group global section.

SEC$M_WRT Map the section with read/write access. By default, the

section is mapped with read-only access. If SECSM_WRT
is specified, write access is required.

All other bits in the flags argument are reserved for future use by Compaq and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an illegal combination of flags is set.

return_va_64
OpenVMS usage: address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address into which the global page frame section was
mapped. The return_va_64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword that contains the virtual address.

return_length_64
OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The 32- or 64-bit virtual address of a naturally aligned quadword into which the
$MGBLSC_GPFN_64 service returns the length of the virtual address range in
bytes.

start_va_64

OpenVMS usage: address

type: quadword address
access: read only
mechanism: by value

The starting virtual address to map the global section. The specified

virtual address must be a CPU-specified page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_va_64 argument
is nonzero, the condition value SS$_IVSECFLG is returned.

Always refer to the return_va 64 and return_length_64 arguments to
determine the range of virtual addresses mapped.

SYS2-147

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

Description

The Map Global Page Frame Section service establishes a correspondence
between pages in the virtual address space of the process and pages occupied
by a global page frame section. It adds pages to the virtual address space of the
process.

Pages mapped to a global page frame section are not included in or charged
against the process’s working set; they are always valid. Do not lock these pages
in the working set by using $LKWSET; this can result in a machine check if they
are in 1/O space.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_va_64 and
return_length_64 arguments.

If a condition value other than SS$ ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before
the error occurred. If no pages were mapped, the return_va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
Read access is required. If the SEC$M_WRT flag is specified, write access is
required.

Required Quota

The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

The page file quota (PAGFLQUOTA) of the process must be sufficient to
accommodate the increased number of process page tables required by the
increase in virtual address space. (Note that this service can return the SS$_
EXPGFLQUOTA))

Related Services

$CREATE_GPFN, $CREATE_REGION_64, $CRMPSC_GPFN_64, $DELETE_
REGION_64, $DELTVA_64, $MGBLSC, $MGBLSC_64

Condition Values Returned

SYS2-148

SS$ NORMAL The service completed successfully.

SS$ ACCVIO The gs_name_64 argument cannot be
read by the caller, or the return_va_64 or
return_length_64 argument cannot be written
by the caller.

SS$_GBLSEC_MISMATCH Global section type mismatch. The specified
global section was found; however, it is not a
global page frame section.

SS$_ILLRELPAG The specified relative page argument is either
larger than the highest page number within the
section or is not a valid 32-bit physical page
frame number.

SS$_INSFWSL

SS$_IVACMODE
SS$_IVLOGNAM

SS$_IVREGID
SS$_IVSECFLG

SS$_IVSECIDCTL

SS$ NOSUCHSEC
SS$ NOWRTACC

SS$ PROTVIO

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$ REGISFULL

SS$_TOOMANYLNAM
SS$ VA IN_USE

SS$ VA NOTPAGALGN

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

The caller’s mode is less privileged than the
create mode associated with the region.

The specified global section name has a length of
0 or has more than 43 characters.

Invalid region ID specified.

An invalid flag, a reserved flag, or an invalid
combination of flags was specified.

The match control field of the global section
identification is invalid.
The specified global section does not exist.

The specified global section is not copy-on-
reference and does not allow write access.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller.

A page in the specified range is not within the
specified region.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped global section.

The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.

The existing underlying page cannot be deleted
because it is associated with a buffer object.

The start_va_64 argument is not CPU-specific
page aligned.

SYS2-149

System Service Descriptions
$MOD_HOLDER

$MOD_HOLDER
Modify Holder Record in Rights Database

Modifies the specified holder record of the target identifier in the rights database.

Format
SYS$MOD_HOLDER id ,holder ,[set_attrib] ,[clr_attrib]

C Prototype

int sys$mod_holder (unsigned int id, struct _generic_64 *holder, unsigned int
set_attrib, unsigned int clr_attrib);

Arguments
id
OpenVMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of target identifier whose holder record is modified when $MOD_
HOLDER completes execution. The id argument is a longword containing the
identifier value.

holder

OpenVMS usage: rights_holder

type: guadword (unsigned)
access: read only
mechanism: by reference

Identifier of holder being modified when $MOD_HOLDER completes execution.
The holder argument is the address of a quadword containing the UIC identifier
of the holder in the first longword and the value of 0 in the second longword.

set_attrib

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_HOLDER
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGBS$V. The following symbols for each bit position are defined in the system
macro library ($SKGBDEF):

SYS2-150

Description

System Service Descriptions
$MOD_HOLDER

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove it from or add
it to the process rights list by using the DCL command
SET RIGHTS_LIST.

KGB$V_NOACCESS Makes any access rights of the identifier null and void.
This attribute is intended as a modifier for a resource
identifier or the Subsystem attribute.

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

KGB$V_SUBSYSTEM Allows holders of the identifier to create and maintain
protected subsystems by assigning the Subsystem ACE
to the application images in the subsystem.

clr_attrib

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $SMOD_HOLDER
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove it from or add
it to the process rights list by using the DCL command
SET RIGHTS_LIST.

KGB$V_NOACCESS Makes any access rights of the identifier null and void.
This attribute is intended as a modifier for a resource
identifier or the Subsystem attribute.

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

KGB$V_SUBSYSTEM Allows holders of the identifier to create and maintain
protected subsystems by assigning the Subsystem ACE
to the application images in the subsystem.

The Modify Holder Record in Rights Database service modifies the specified
holder record in the rights database. lIdentifier attributes can be added or
removed.

When you specify both the set_attrib and clr_attrib arguments, the attribute is
cleared first. Thus, if you specify the same attribute bit with each argument, the
result is that the bit is set.

SYS2-151

System Service Descriptions
$MOD_HOLDER

Required Access or Privileges
Write access to the rights database is required.

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GET_SECURITY, $GRANTID, $IDTOASC,
$MOD_IDENT, $SREM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SYS2-152

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The holder argument cannot be read by the
caller.

SS$ BADPARAM The specified attributes contain invalid attribute
flags.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$_IVIDENT The specified identifier or holder identifier is of
invalid format.

SS$ NOSUCHID The specified identifier does not exist in the

rights database, or the specified holder identifier
does not exist in the rights database.

RMS$_PRV The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the OpenVMS
Record Management Services Reference Manual.

System Service Descriptions
$MOD_IDENT

$MOD_IDENT
Modify Identifier in Rights Database

Format

C Prototype

Arguments

Modifies the specified identifier record in the rights database.

SYS$MOD_IDENT id ,[set_attrib] ,[cIr_attrib] ,[new_name] ,[new_value]

int sys$mod_ident (unsigned int id, unsigned int set_attrib, unsigned int clr_attrib,
void *new_name, unsigned int new_value);

id

OpenVMS usage: rights_id

type: longword (unsigned)
access: read only
mechanism: by value

Binary value of identifier whose identifier record is modified when $SMOD_IDENT
completes execution. The id argument is a longword containing the identifier
value.

set_attrib

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_IDENT
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGBS$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove
it from or add it to the process rights
list by using the DCL command SET _
RIGHTS_LIST.

KGB$V_HOLDER_HIDDEN Prevents someone from getting a list of
users who hold an identifier, unless they
own the identifier themselves.

SYS2-153

System Service Descriptions

$MOD_IDENT
Bit Position Meaning When Set
KGB$V_NAME_HIDDEN Allows holders of an identifier to have it

translated—either from binary to ASCII
or vice versa—but prevents unauthorized
users from translating the identifier.

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

clr_attrib

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $SMOD_IDENT
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGBS$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove
it from or add it to the process rights
list by using the DCL command SET _
RIGHTS_LIST.

KGB$V_HOLDER_HIDDEN Prevents someone from getting a list of
users who hold an identifier, unless they
own the identifier themselves.

KGB$V_NAME_HIDDEN Allows holders of an identifier to have it
translated—either from binary to ASCII
or vice versa—but prevents unauthorized
users from translating the identifier.

SYS2-154

Description

System Service Descriptions
$MOD_IDENT

Bit Position Meaning When Set

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

new_name
OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

New name to be given to the specified identifier. The new_name argument is the
address of the descriptor pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters, including dollar
signs ($) and underscores (_), and must contain at least one nonnumeric
character. Any lowercase characters specified are automatically converted to
uppercase.

new_value

OpenVMS usage: rights_id

type: longword (unsigned)
access: read only
mechanism: by value

New value to be assigned to the specified identifier. The new_value argument

is a longword containing the binary value of the specified identifier. When the
identifier value is changed, $SMOD_IDENT also changes the value of the identifier
in all of the holder records in which the specified identifier appears.

The Modify Identifier in Rights Database service modifies the specified identifier
record in the rights database. Identifier attributes can be added or removed. The
identifier name or value can be changed. When you specify both the set_attrib
and clr_attrib arguments, the attribute is cleared first. Thus, if you specify the
same attribute bit with each argument, the result is that the bit is set.

Required Access or Privileges
Write access to the rights database is required.

Required Quota
None

SYS2-155

System Service Descriptions
$MOD _IDENT

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS2-156

SS$ NORMAL The service completed successfully.

SS$_NOSUCHID The specified identifier does not exist in the
rights database.

SS$ BADPARAM The specified attributes contain invalid attribute
flags.

SS$_DUPIDENT The specified identifier value already exists.

SS$_DUPLNAM The specified identifier name already exists in
the rights database.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$_IVIDENT The specified identifier is of invalid format.

RMS$_PRV The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the OpenVMS
Record Management Services Reference Manual.

System Service Descriptions
$SMOUNT

$MOUNT
Mount Volume

Mounts a tape, disk volume, or volume set and specifies options for the mount
operation.

Format
SYS$SMOUNT itmlst

C Prototype

int sys$mount (void *itmist);

Argument
itmlst
OpenVMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the mount operation. The itmlst argument is
the address of a list of item descriptors, each of which specifies an option and
provides the information needed to perform the operation.

The item list must include at least one device item descriptor and is terminated
by a longword value of 0.

The following diagram depicts the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table defines the item descriptor fields:
Descriptor Field Definition
Buffer length A word specifying the length (in bytes) of the buffer

that supplies the information $MOUNT needs to
process the specified item code. The required length
of the buffer depends on the item code specified in
the item code field of the item descriptor. If the
value of the buffer length is too small, SMOUNT
truncates the data.

Item code A word containing a user-supplied symbolic code
that specifies an option for the MOUNT operation.
The SMNTDEF macro defines these codes.

SYS2-157

System Service Descriptions

$MOUNT

ltem Codes

SYS2-158

Descriptor Field Definition

Buffer address A longword containing the address of the buffer that
supplies information to SMOUNT.

Return length address This field is not used.

MNT$_ACCESSED

Specifies the number of directories that will be in use, concurrently, on the
volume. The buffer must contain a longword integer value in the range 0 to 255.
This value overrides the number of directories specified when the volume was
initialized. To specify MNT$_ACCESSED, the caller must have OPER privilege.
The MNT$_ACCESSED item code applies only to disks.

MNT$_BLOCKSIZE

Specifies the default block size for tape volumes. The buffer must contain a
longword integer value in the range 20 to 65,532 bytes for OpenVMS RMS
operations or 10 to 65,534 bytes for operations that do not use RMS. The MNT$_
BLOCKSIZE item code applies only to tapes.

If you do not specify MNT$_BLOCKSIZE, the default block size is 2048 bytes for
Files-11 tape volumes and 512 bytes for foreign and unlabeled tapes.

You must specify MNT$_BLOCKSIZE when mounting (1) tapes that do not have
ANSI HDR2 labels, (2) tapes to which data will be written from compatibility
mode, and (3) tapes that are to contain records whose size is larger than the
default value.

MNT$_COMMENT

Specifies text to be associated with an operator request. The buffer must contain
a character string of no more than 78 characters. This text will be printed on the
operator’s console if an operator request is issued for the device being mounted.

MNT$_DENSITY

Specifies the density at which data is to be written to a foreign or unlabeled tape.
The buffer must contain a longword value that specifies one of the following legal
densities: 800, 1600, or 6250 bpi. The MNT$_DENSITY item code applies only to
tapes.

The specified density will be used only if (1) the tape is foreign or unlabeled and
(2) the first operation is a write.

MNT$_DEVNAM

Specifies the name of the device to be mounted. The buffer must contain a
character string of from 1 to 64 characters, which is the device name. The device
name can be a physical device name or a logical name; if it is a logical name, it
must translate to a physical device name.

The MNT$_DEVNAM item code must appear at least once in an item list, and
it can appear more than once. It appears more than once when a volume set
is being mounted, because, in this case, one device is being mounted for each
volume in the volume set.

System Service Descriptions
$SMOUNT

MNT$_EXTENSION

Specifies the number of blocks by which files will be extended. The buffer must
contain a longword value in the range 0 to 65,535. The MNT$ EXTENSION item
code applies only to disks.

MNT$_EXTENT

Specifies the size of the extent cache in units of extent pointers. The buffer must
contain a longword value, which specifies this size. To specify MNT$_EXTENT,
you need OPER privilege. The value 0 (the default) disables caching. The MNT$_
EXTENT item code applies only to disks.

MNT$_FILEID

Specifies the size of the file-ID cache in units of file numbers. The buffer must
contain a longword value, which specifies this size. To specify MNT$_FILEID,
you need OPER privilege. The value 1 disables caching. The MNT$_FILEID item
code applies only to disks.

MNT$_FLAGS
Specifies a 2-longword bit vector wherein each bit specifies an option for the
mount operation. The buffer must contain a quadword, which is the bit vector.

The SMNTDEF macro defines symbolic names for each option (bit) in the bit
vector. You construct the bit vector by specifying the symbolic names for the
desired options in a logical OR operation. In the first longword you logically
OR the MNT$M_ mask bits, and in the second longword you logically OR the
MNT2$M_ mask bits. The following table describes the symbolic names for each
option. The MNT2$M _ options are at the end of the table.

Option

Description

MNT$M_CLUSTER The volume is to be mounted for clusterwide access; that is, every

OpenVMS Cluster node can access the volume. SMOUNT mounts
the volume first on the caller’s node and then on every other node
in the existing cluster.

Only system or group volumes can be mounted clusterwide. If you
do not specify MNT$M_GROUP or MNT$M_SYSTEM, $SMOUNT
mounts the volume as a system volume, provided the caller has
SYSNAM privilege. To mount a group volume clusterwide, the
caller must have GRPNAM privilege. To mount a system volume
clusterwide, the caller must have SYSNAM privilege.

MNT$M_CLUSTER has no effect if the system is not a member of
a cluster. MNT$M_CLUSTER applies only to disks.

MNT$M_FOREIGN The volume is to be mounted as a foreign volume; a foreign volume

is not Files-11 structured. If you specify MNT$M_FOREIGN, the
following item codes can each appear in the item list only once: the
caller must either own the volume or have VOLPRO privilege.

MNT$M_GROUP The logical name for the volume to be mounted is entered in

the group logical name table, and the volume is made accessible
to other users with the same UIC group number as that of the
calling process. To specify MNT$M_GROUP, the caller must have
GRPNAM privilege. MNT$M_GROUP applies only to disks.

SYS2-159

System Service Descriptions

$MOUNT

Option

Description

MNT$M_INCLUDE

MNT$M_INIT_CONT

MNT$M_MESSAGE

MNT$M_MINICOPY _
OPTIONAL

MNT$M_MINICOPY _
REQUIRED

SYS2-160

Automatically reconstructs a shadow set to the state it was in
before the shadow set was dissolved (due to dismounting or system
failure). Use this option to mount a shadow set or a volume set

of shadow sets. You must specify the exact name of the original
virtual unit and the device name of at least one of the shadow

set members. The shadowing software reads the shadow set
membership information from the named device to determine

the membership of the original shadow set. You can include

the MNT$M_INCLUDE option in executable images to have a
shadow set reconstructed. Using MNT$M_INCLUDE prevents your
having to manually reinstate shadow sets after they have been
dismounted.

If you do not select this option, $SMOUNT does not automatically
reconstruct the former shadow set.

Additional volumes in the volume set are to be initialized without
operator intervention. $MOUNT initializes new volumes with the
protections specified for the first magnetic tape of the volume set
and creates unique volume label names for up to 99 volumes in a
volume set.

If MNT$SM_INIT_CONT is specified, you must allocate multiple
magnetic tape drives to the volume set. If SMOUNT switches to a
drive that has no magnetic tape loaded or has the wrong magnetic
tape loaded or if SMOUNT tries to read a magnetic tape that is not
loaded, it notifies the operator to load the correct magnetic tape.
$SMOUNT will dismount and unload volumes as soon as they have
been read or written. The operator can load the next volume in the
volume set before the current reel of the volume set reaches the end
of the magnetic tape.

If writing to the volume set, SMOUNT automatically (1) switches
to the next magnetic tape drive, (2) initializes that magnetic tape
with the same volume name and protection as specified in the
volume labels of the first volume in the set, and (3) notifies the
operator that the switch has occurred. If reading the volume set,
$MOUNT generates the label for the next volume in the volume set
and reads that volume.

The label name that SMOUNT generates for each additional volume
in the volume set consists of six characters: the first four characters
are the same as the first four characters of the label name of the
previous volume; the fifth and sixth characters represent the
number of the volume in the volume set.

MNT$M_INIT_CONT applies only to magnetic tapes.

Messages will be sent to the caller’s SYSSOUTPUT device.

$MOUNT fails if minicopy has not been enabled on the disk.

$MOUNT continues even if minicopy has not been enabled on the
disk.

System Service Descriptions
$SMOUNT

Option

Description

MNT$M_MULTI_VOL

MNT$M_NOASSIST

MNT$M_NOAUTO

MNT$M_NOCACHE

MNT$M_NOCOPY

MNT$M_NODISKQ

Specifies, for foreign or unlabeled magnetic tapes, that subsequent
volumes can be processed by overriding MOUNT's access checks.
You can use this option when a utility that supports multivolume
magnetic tape sets needs to process subsequent volumes, and
these volumes do not contain labels that MOUNT can interpret.
You need VOLPRO privilege to specify the MNT$M_MULTI_VOL
option. MNT$M_MULTI_VOL can only be used with the MNT$M _
FOREIGN option.

Compaq recommends the use of this qualifier only when it is not
possible to alter the utility to explicitly perform MOUNT and
DISMOUNT operations on each reel in the set.

$MOUNT does not request operator assistance if errors are
encountered during the mount operation. If not specified, SMOUNT
requests operator assistance to recover from some error conditions.

Automatic volume labeling (AVL) and automatic volume recognition
(AVR) are to be disabled. If MNT$M_NOAUTO is specified, the
operator must enter commands from the console to process each
additional volume in a volume set. When a volume is finished
processing, the operator specifies the drive on which the next
volume is loaded and the label name of the next volume. You might
want to use MNT$SM_NOAUTO to disable AVL and AVR when not
reading a volume set sequentially.

You can enable AVL and AVR by specifying MNT$M_INIT_CONT.
MNT$M_NOAUTO applies only to magnetic tapes.

All caching associated with the volume is turned off. Specifying
MNT$M_NOCACHE is equivalent to (1) specifying MNT$M_
WRITETHRU, (2) specifying a value of 1 for the item descriptor
MNT$_FILEID, and (3) specifying a value of 0 for the item
descriptors MNT$M_EXTENT and MNT$M_QUOTA.

Disables full copy operations on all physical devices being mounted
or added to a shadow set. This option provides you with the
opportunity to confirm the states of all of the devices or members
of a shadow set before proceeding with any full copy operation.
This prevents any accidental loss of data that could occur if an
unintended device is added to the shadow set.

If you do not select this option, SMOUNT automatically overwrites
the data on shadow set members that are not current. When you
select this option, a SMOUNT operation fails if any of the specified
potential shadow set members require full copy operations.

Disk quotas are not to be enforced for the volume to be mounted.

If not specified, disk quotas are enforced. To specify MNT$M _
NODISKQ, the caller must either own the volume or have VOLPRO
privilege. MNT$M_NODISKQ applies only to disks.

SYS2-161

System Service Descriptions

$MOUNT

Option

Description

MNT$M_NOHDR3

MNT$M_NOLABEL

MNT$M_NOMNTVER

MNT$M_NOREBUILD

MNT$M_NOUNLOAD

MNT$M_NOWRITE

SYS2-162

ANSI HDR3 and HDR4 labels are not to be written to magnetic
tapes as they are mounted. If not specified, ANSI HDR3 and HDR4
labels are written to all tapes.

Use MNT$M_NOHDR3 when writing to volumes that will be read
by a system, such as the RT-11 system, which does not process
HDR3 and HDR4 labels correctly. MNT$M_NOHDRS3 applies only
to tapes.

The volume is to be mounted as a foreign volume; a foreign volume
is not Files-11 structured. If you specify MNT$M_NOLABEL, the
following item codes can each appear in the item list only once:
MNT$_DEVNAM, MNT$_VOLNAM, and MNT$_LOGNAM. To
specify MNT$M_NOLABEL, the caller must either own the volume
or have VOLPRO privilege.

The volume is not marked as a candidate for automatic mount
verification. If not specified, the volume is marked as a candidate
for mount verification.

The volume to be mounted should be returned to active use
immediately, without performing a rebuild operation. This flag
defers the disk rebuild operation, so that the volume to be mounted
is returned to active use immediately. A rebuild operation can
consume a considerable amount of time, depending on the number
of files on the volume and on the number of different file owners (if
guotas are in use). The volume can be rebuilt later with the DCL
command SET VOLUME/REBUILD to recover the free space; for
more information, refer to the OpenVMS DCL Dictionary.

If a disk volume is improperly dismounted, for example, during

a system failure, it must be rebuilt to recover any caching limits
that were enabled on the volume at the time of the dismount. By
default, SMOUNT attempts to rebuild.

When mounting a volume set, you must mount all members of the
set to reclaim all available free space.

MNT$M_NOREBUILD applies only to disks.

The volume to be mounted is not to be unloaded when it is
dismounted. Specifying MNT$M_NOUNLOAD causes the volume
to remain loaded when it is dismounted unless the dismount
explicitly requests that the volume be unloaded.

The volume to be mounted is software write locked. If not specified,
the volume is assumed to have read and write access.

System Service Descriptions
$SMOUNT

Option

Description

MNT$M_OVR_ACCESS

MNT$M_OVR_EXP

MNT$M_OVR_IDENT

MNT$M_OVR_LOCK

MNT$M_OVR_SETID

MNT$M_OVR_SHAMEM

If the installation allows, this option overrides any character in
the accessibility field of the volume. The necessity of this option is
defined by the installation. That is, each installation has the option
of specifying a routine that the magnetic tape file system will use
to process this field. By default, the operating system provides a
routine that checks this field in the following manner:

= If the magnetic tape was created on a version of the operating
system that conforms to Version 3 of ANSI, then you must
use this option to override any character other than an ASCII
space.

= If a protection is specified and that magnetic tape conforms to
an ANSI standard that is higher than Version 3, then you must
use this option to override any character other than an
ASCII 1.

To specify MNT$M_OVR_ACCESS, the caller must either own the
volume or have VOLPRO privilege. MNT$M_OVR_ACCESS applies
only to tapes.

A tape that has not yet reached its expiration date can be
overwritten. To specify MNT$M_OVR_EXP, the caller must own
the volume or have VOLPRO privilege.

You can mount the volume without specifying the volume name (by
using the MNT$_VOLNAM item code). If specified, the following
options must not be specified: MNT$M_CLUSTER, MNT$M _
GROUP, MNT$M_SHARE, and MNT$M_SYSTEM.

The software write lock that occurs when a volume has a corrupted
storage bit mask can be overridden.

Checks on the volume set identification are not to be performed
when subsequent reels in the volume set are mounted. MNT$M_
OVR_SETID applies only to tapes.

Allows you to mount former shadow set members outside of

the shadow set. If you do not specify this option, SMOUNT
automatically mounts the volume write-locked to prevent accidental
deletion of data. To specify this option, you must either own the
volume or have VOLPRO privilege.

When you use this option, the shadow set generation number is
erased from the volume. If you then remount the volume in the
former shadow set, SMOUNT considers it an unrelated volume and
marks it for a full copy operation.

SYS2-163

System Service Descriptions

$MOUNT

Option

Description

MNT$M_OVR_VOLO

MNT$M_READCHECK

MNT$M_REQUIRE_
MEMBERS

MNT$M_SHARE

MNT$M_SYSTEM

MNT$M_TAPE_DATA_
WRITE

MNT$M_VERIFY_LABEL

MNT$M_WRITECHECK
MNT$M_WRITETHRU

MNT2$M_CDROM

SYS2-164

The volume label’s owner identifier field is not to be processed.
$MOUNT reads volume owner and protection information from the
volume owner field of the volume labels.

The operating system requires that you specify MNT$M_OVR_
VOLO to process magnetic tapes when all of the following
conditions exist: (1) the volume was created on an operating
system other than OpenVMS; (2) the volume was initialized with a
protection specified; and (3) the volume conforms to the Version 3
ANSI label standard.

To specify MNT$M_OVR_VOLDO, the caller must either have
VOLPRO privilege or own the volume. MNT$M_OVR_VOLO
applies only to tapes.

Read checks are to be performed following all read operations.

Controls whether every physical device specified with the
/SHADOW qualifier must be accessible when the MOUNT command
is issued in order for the SMOUNT system service to take effect.

Volume is to be mounted shared and is therefore accessible to other
users. MNT$M_SHARE applies only to disks.

If the volume was previously mounted shared by another user and
MNT$M_SHARE is specified in the current call, all other options
specified in the current call are ignored.

If the caller allocated the device and specified MNT$M_SHARE in
the call to SMOUNT, SMOUNT will deallocate the device so that
other users can access the volume.

The logical name for the volume to be mounted is entered in the
system logical name table, and the volume is made accessible to
all other users, provided that UIC-based protection allows access
to the volume. To specify MNT$M_SYSTEM, the caller must have
SYSNAM privilege. MNT$M_SYSTEM applies only to disks.

Enables the tape controller’s write cache for this device. Enabling
the write cache improves data throughput for write operations. By
default, the tape controller’s write cache is disabled for the device.

This option applies only to tape systems that support a write cache.

Requires that any member to be added to the shadow set have a
volume label of SCRATCH_DISK. This helps ensure that the wrong
disk is not added to a shadow set. If you plan to use VERIFY_
LABEL, you must first assign the disk to a label. You can do this
either by initializing the disk to be added to the set with the label
SCRATCH_DISK, or by specifying the label for the disk with the
SET VOLUME/LABEL command.

Write checks are to be performed after all write operations.
Disables the deferred write feature for file headers. By default
this feature is enabled, which improves the performance of the

applications, such as PATHWORKS, that use it. The deferred write
feature is not available on Files-11 ODS-1 volumes.

Mounts a volume assuming the media to be 1SO 9660 (or High
Sierra) formatted.

System Service Descriptions
$SMOUNT

Option

Description

MNT2$M_COMPACTION
MNT2$M_DISKQ

MNT2$_DSI

MNT2$_INCLUDE

MNT2$M_
NOCOMPACTION

MNT2$_OVR_LIMITED_
SEARCH

MNT2$M_OVR_NOFE

MNT2$_OVR_SECURITY

MNT2$M_SUBSYSTEM

MNT2$M_XAR

Enables data compaction for those magnetic tapes that support
data compaction (TA90, TA91, and others).

Controls whether quotas are to be enforced on the specified disk
volume.

Enables XAR permissions Owner and Group for XARs containing
DIGITAL System lIdentifiers (DSI). For more information, refer to
the OpenVMS Record Management Services Reference Manual.

Automatically reconstructs a former shadow set to the way it
was before the shadow set was dissolved. Applicable only if you
have the volume shadowing option. For more information, refer to
Volume Shadowing for OpenVMS.

Forces the density to no compaction for those magnetic tapes that
support data compaction (TA90, TA91, and others).

For disk type devices that do not provide for bad-block revectoring,
it is possible that the Files-11 homeblock has been placed numerous
1/Os from the start of the volume. To decrease the failover time
when accessing media which does not contain a valid Files-11
homeblock, a limited-search algorithm was implemented. This
switch overrides the limited-search algorithm so that the entire
volume will be searched for a valid Files-11 homeblock.

This bit mask is set to override those SCSI devices that do not
support forced error functionality. By overriding those SCSI devices
not supporting forced error capabilities, MNT2$M_OVR_NOFE
enables those devices to be mounted; otherwise, the shadowing code
would report to SMOUNT that the device does not support forced
error, and the device would not be mounted.

Enables you to continue mounting a volume if an error is returned
because the volume has an invalid SECURITY.SYS file. You must
have the VOLPRO privilege or own the volume to use this keyword.

Enables the processing of protected subsystem identifiers on the
volume. By default, subsystem identifiers are ignored on all but the
system disk. Requires SECURITY privilege.

Enables enforcement of the extended record attribute (XAR) access
controls. For more information about XAR, refer to the OpenVMS
System Manager’s Manual.

MNT$_LIMIT

Specifies the maximum amount of free space in the extent cache. The buffer must
contain a longword value, which specifies the amount of free space in units of
tenths of a percent of the disk’s total free space. The MNT$_LIMIT item code
applies only to disks.

MNT$_LOGNAM

Specifies a logical name for the volume; this logical name is equated to the device
name specified by the first MNT$_DEVNAM item code. The buffer must contain
a character string from 1 to 64 characters, which is the logical name.

Unless you specify MNT$M_GROUP or MNT$M_SYSTEM, the logical name is
entered in the process logical name table.

SYS2-165

System Service Descriptions

$MOUNT

SYS2-166

MNT$_OWNER

Specifies the UIC to be assigned ownership of the volume. The buffer must
contain a longword octal value, which is the UIC. If the volume is Files-11
structured, the specified value overrides the ownership recorded on the volume.
You need either VOLPRO privilege or ownership of the volume to assign a UIC to
a Files-11 structured volume.

MNT$_PROCESSOR

For magnetic tapes and Files-11 On-Disk Structure Level 1 disks, MNT$
PROCESSOR specifies the name of the ancillary control process (ACP) that is to
process the volume. The specified ACP overrides the default ACP associated with
the device.

For Files-11 On-Disk Structure Level 2 disks, MNT$_PROCESSOR controls block
cache allocation.

To specify MNT$_PROCESSOR, the caller must have OPER privilege.

The buffer must contain a character string specifying either the string UNIQUE,
a device name, or a file specification. Following is a description of the action
taken for each of these cases:

String Description

UNIQUE For magnetic tapes and Files-11 Structure Level 1 disks,
UNIQUE specifies that SMOUNT create a new process to execute
a copy of the default ACP image associated with the device
specified by the MNT$_DEVNAM item code.

For Files-11 Structure Level 2 disks, UNIQUE allocates a
separate block cache.

ddcu For magnetic tapes and Files-11 Structure Level 1 disks, ddcu
specifies that SMOUNT use the ACP process currently being used
by the device ddcu. The device specified must be in the format
ddcu, for example, DRAS.
For Files-11 Structure Level 1 disks, ddcu specifies that SMOUNT
take the block allocation from the specified device.

filespec Specifies that SMOUNT create a new process to execute the ACP
image with the file specification filespec. Wildcard characters are
not allowed in the file specification. The file must be in the disk
and directory specified by the logical name SYS$SYSTEM. This
operation requires CMKRNL privilege.

MNT$_QUOTA

Specifies the size of the quota record cache in units of quota records. The buffer
must contain a longword value, which is this size. To specify MNT$_QUOTA, you
need OPER privilege. The value 0 disables caching. The MNT$_QUOTA item
code applies only to disks.

MNT$_RECORDSIZ

Specifies the number of characters in each record and is used with MNT$_
BLOCKSIZE to specify the data formats for foreign volumes. The buffer must
contain a longword value less than or equal to the block size. The MNT$_
RECORDSIZ item code applies only to tapes.

If you do not specify MNT$_RECORDSIZ, the record size is assumed to be equal
to the block size.

System Service Descriptions
$SMOUNT

MNT$_SHAMEM

Specifies the name of a physical device to be mounted into a shadow set. The
MNT$_SHAMEM descriptor is a 1- to 64-character string containing the device
name. The string can be a physical device name or a logical name; if it is a logical
name, it must translate to a physical device name. An item list must contain at
least one item descriptor specifying a member; this item descriptor must appear
after the MNT$_SHANAM item descriptor.

Volume Shadowing for OpenVMS automatically performs a copy or a merge
operation, if necessary, when it mounts the disk into the shadow set.

MNT$_SHANAM

Specifies the name of the virtual unit to be mounted. The buffer is a 1- to 64-
character string containing the device name. The virtual unit name can be a
logical name; if it is a logical name, it must translate to a virtual unit name.

Because every shadow set is represented by a virtual unit, you must include

at least one MNT$_SHANAM item descriptor in the item list that you pass to
$MOUNT to create and mount the shadow set. If you are mounting a volume set
containing more than one shadow set, you must include one MNT$ SHANAM
item descriptor for each virtual unit included in the volume set.

The relative position of the item descriptors in the item list determines the
membership of the shadow set. That is, it indicates which members should be
bound to a specific virtual unit to form the shadow set. You must first specify
the virtual unit by using the MNT$_SHANAM item code. Then, you can specify
any number of members that are to be represented by that virtual unit by using
one of the following item codes: MNT$_SHAMEM, MNT$_SHAMEM_COPY,

or MNT$_SHAMEM_MGCOPY. If you specify one shadow set and want to
specify a second, specify a second virtual unit item descriptor. The members you
specify subsequently are bound to the shadow set represented by the virtual unit
specified in the second virtual unit item descriptor.

MNT$_UCS

Specifies a descriptor containing a Universal Character Sequence (UCS) defined
by 1SO 2022 and used when mounting an 1SO 9660 CD-ROM. For more
information, refer to the OpenVMS System Manager’s Manual.

MNT$_UNDEFINED_FAT
Specifies the default file attributes to be used for the records on 1SO 9660 media
for which no record format has been specified.

The buffer contains a 32-bit structure that defines a file’s record format, record
attributes, and maximum record size.

The following diagram depicts the structure of the Undefined File Attributes
buffer:

31 24 23 16 15 0
UNFAT$B_RFM | UNFAT$B_RAT UNFAT$SW_MRS

ZK-6644A-GE

The following table defines the buffer fields:

SYS2-167

System Service Descriptions
$SMOUNT

Buffer Field Definition

UNFAT$W_MRS Maximum record size; specifies the maximum record
size for all records in a file: 0 to 32767. Applies only
to FIXED or STREAM formats.

UNFATS$B_RAT Record attributes; specifies the attributes for all
records in a file: NONE, CR, FTN, PRN, NOBKS.
Applies only to non-STREAM record formats.

UNFAT$B_RFM Record format; specifies the format for all records in
a file: FIXED, VARIABLE, STREAM, STREAM_
LF, STREAM_CR, LSB_VARIABLE, or MST_
VARIABLE.

MNT$_VOLNAM
Specifies the name of the volume to be mounted on the device. The number of
characters allowed in a volume name depends on the type of device, as follows:

Device Type Number of Characters in Label
Magnetic tape 0-6

Files-11 disk 1-12

I1SO 9660 disk 1-32

The operating system requires disk volume labels to be unique in the first 12
characters within a given domain.

The MNT$_VOLNAM item code can appear more than once in an item list; it
appears more than once when a volume set is being mounted because, in this
case, one volume name is given to each volume in the volume set.

When a disk volume set is being mounted, you must specify MNT$_DEVNAM
and MNT$_VOLNAM once for each volume of the volume set. The SMOUNT
service mounts the volume specified by the first MNT$_VOLNAM item code on
the device specified by the first MNT$_DEVNAM item code in the item list; it
mounts the volume specified by the second MNT$ VOLNAM code on the device
specified by the second MNT$ _DEVNAM code, and so on for all specified volumes
and devices. Thus, there must be an equal number of these two item codes in the
item list.

When a tape volume set is being mounted, the number of MNT$ DEVNAM item
codes specified need not be equal to the number of MNT$_VOLNAM item codes
specified, because more than one volume can be mounted on the same device.

MNT$_VOLSET
Specifies the name of a volume set. The buffer must contain a character string
from 1 to 12 alphanumeric characters, which is the volume set name.

An 1SO 9660 volume set name can be from 1 to 128 characters in length.

Volume set names must be unique in the first 12 characters. In addition, if the
first 12 characters of the volume set name are the same as the first 12 characters
of any volume label, a lock manager deadlock will occur. To avoid this problem,
you must override either the volume label (by using the MNT$_VOLNAM item
code) or the volume set name (by using the MNT$_VOLSET item code).

SYS2-168

Description

System Service Descriptions
$SMOUNT

When you specify MNT$_VOLSET, volumes specified by the MNT$_VOLNAM
item code are bound into a new volume set or added to an existing volume set,
depending on whether the name specified by MNT$_VOLSET is a new or already
existing name.

When you specify MNT$_VOLSET to add volumes to an existing volume set, the
root volume (RVN21) must either (1) already be mounted or (2) be specified first
(by the MNT$_DEVNAM and MNT$_VOLNAM item codes) in the item list.

When you specify MNT$_VOLSET to create a new volume set, the first volume
specified (by the MNT$ DEVNAM and MNT$_VOLNAM item codes) in the item
list becomes the root volume.

MNT$_VPROT

Specifies the protection to be assigned to the volume. The buffer must contain a
longword protection mask, which specifies the four types of access allowed to the
four categories of user.

The protection mask consists of four 4-bit fields. Each field grants or denies
read, write, logical, and physical access to a category of users. Cleared bits grant
access; set bits deny access. The following diagram depicts the structure of the
protection mask:

World Group Owner System
P|L|W|R P|L|W|R P|L|W|R P|L|W|R
151413121110 9 8 7 6 54 3 2 10

ZK-1715-GE

If you do not specify MNT$_VPROT or specify it as the value 0, the volume
receives the protection that it was assigned when it was initialized. To specify
MNT$_VPROT for a Files-11 structured volume, the caller must either own the
volume or have VOLPRO privilege.

MNT$_WINDOW

Specifies the number of mapping pointers to be allocated for file windows. The
buffer must contain a longword value in the range 7 to 80. This value overrides
the default value that was applied when the volume was initialized. The MNT$_
WINDOW item code applies only to disks.

When a file is opened, the file system uses the mapping pointers to access the
data in the file. To specify MNT$_WINDOW, you need OPER privilege.

The Mount Volume service mounts a tape, disk volume, or volume set and
specifies options for the mount operation.

When a subprocess mounts a private volume without explicitly allocating the
device, the master process of the job becomes the owner of this device. This

provision is necessary because the subprocess can be deleted and the volume
should remain privately mounted for this job.

When a subprocess explicitly allocates a device and then mounts a private volume
on this device, this subprocess retains the device ownership. In this case, only
subprocesses of the device owner, and processes with SHARE privilege, have
access to the device.

SYS2-169

System Service Descriptions

$MOUNT

The SMOUNT service uses the following system resources to mount volumes with
group or systemwide access allowed:

< Nonpaged pool
< Paged pool

When $MOUNT mounts a disk volume, the logical name DISK$volume-label
is always created. If you specify a logical name in the mount request that is
different from DISK$volume-label, there will be two logical names associated
with the device.

If the logical name of a volume is in a process-private table, then the name is not
deleted when the volume is dismounted.

Required Access or Privileges

To mount a volume on a device, you must have read or control access to that
device.

To mount a particular volume, the caller must either own or have privilege to
access the specified volume or volumes. The privileges required depend on the
operation and are listed with the item codes that specify the operation.

The calling process must have TMPMBX or PRMMBX privilege to perform an
operator-assisted mount. SECURITY privilege is required to enable protected
subsystems.

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS2-170

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The item list or an address specified in the item
list cannot be accessed.

SS$ BADPARAM A buffer length of 0 was specified with a nonzero

item code; an illegal item code was specified; or
no device was specified.

SS$_NOGRPNAM The caller does not have GRPNAM privilege.

SS$ NOHOMEBLK Files-11 home block not found on volume.

SS$_NOOPER The caller does not have the required OPER
privilege.

SS$_NOPRIV The caller does not have sufficient privilege to
access a specified volume.

SS$ NOSUCHDEV The specified device does not exist on the host
system.

SS$_NOSYSNAM The caller does not have SYSNAM privilege.

The $MOUNT service can also return a condition value that is specific to the
Mount utility. The symbolic definition macro $SMOUNDEF defines these condition
values.

System Service Descriptions
$MTACCESS

SMTACCESS
Magnetic Tape Accessibility

Allows installations to provide their own routine to interpret and output the
accessibility field in the VOL1 and HDR1 labels of an ANSI labeled magnetic
tape.

Format
SYS$MTACCESS Iblnam ,[uic] ,[std_version] ,[access_char] ,[access_spec] ,type

C Prototype

int sys$émtaccess (unsigned int *Iblnam, unsigned int uic, unsigned int std_version,
unsigned int access_char, unsigned int access_spec, unsigned int

type);
Arguments
Iblnam
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

ANSI label to be processed. The Iblnam argument is the address of a longword
containing the label. On input, the label passed is either the VOL1 or HDR1
label read from the magnetic tape; on output of labels, the value of this field is O.
The type of label passed is determined by type.

uic

OpenVMS usage: uic

type: longword (unsigned)
access: read only
mechanism: by value

UIC of the user performing the operation. The uic argument is a longword
containing the UIC.

std_version

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Decimal equivalent of the ANSI standard version read from the VOL1 label. The
std_version argument is a longword containing the standard version nhumber.

access_char
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Accessibility character specified by the user. The access_char argument is a
byte containing the accessibility character used for the output of labels.

SYS2-171

System Service Descriptions
$MTACCESS

Description

SYS2-172

access_spec
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Value specifying whether the accessibility character passed in access_char was
specified by the user.

The access_spec argument is a byte containing one of the following values:

Value Meaning
MTA$K_CHARVALID Yes
MTAS$SK_NOCHAR No

This argument is used only for the output of labels.

type

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Type of accessibility field to process.

The type argument is a byte containing one of the following values:

Value Meaning
MTASK_INVOL1 Input a VOLL1 label
MTA$SK_INHDR1 Input a HDR1 label
MTA$K_OUTVOL1 Output a VOL1 label
MTA$SK_OUTHDR1 Output a HDRL1 label

The Magnetic Tape Accessibility service allows installations to provide their own
routine to interpret and output the accessibility field in the VOL1 and HDR1
labels of ANSI labeled magnetic tapes. The installation can override the default
routine by providing an MTACCESS.EXE executive loaded image.

The default installation routine first checks the ANSI standard version of the
label. For magnetic tapes with a version number of 3 or less, the routine outputs
either a blank or the character you specified. On input of these magnetic tapes,
the routine checks for a blank and returns the value SS$ FILACCERR if the field
is not blank.

For magnetic tapes with a version number greater than 3, the routine outputs
either the character specified by the access_char argument or an ASCII 1 if no
character was specified. On input of these magnetic tapes, the routine checks
for a blank. If the field is blank, RO is set to 0. In that case, you are given full
access and protection is not checked. If the field contains an ASCII 1, and the
VOL1 Implementation Identifier field contains the system code, RO is set to
SS$_NORMAL. In that case, the protection is checked.

System Service Descriptions
$MTACCESS

If the field is not blank and does not contain an ASCII 1, RO is set to SS$_
FILACCERR, which forces you to override accessibility checking and allows the
magnetic tape file system to check protection.

The following table summarizes the results of label input check:

Contents of RO Result
SS$_NORMAL Check the protection on the magnetic tape.
0 Give the user full access. Protection is not checked.

SS$ FILACCERR Check for explicit override, then check protection.

Note that the default accessibility routine does not output SS$ NOVOLACC or
SS$_NOFILACC. These statuses are included for the installation’s use, and the
magnetic tape file system handles these cases.

The magnetic tape file system calls SMTACCESS to process the accessibility field
in the VOL1 and HDRL1 labels. After a call to the system service, the magnetic
tape file system checks that the installation did not move the magnetic tape.

If the magnetic tape was moved, the magnetic tape file system completes the
current operation with an SS$ TAPEPOSLOST error. Finally, it processes the
remainder of the label according to the status returned by $MTACCESS.

Required Access or Privileges

Because accessibility is an installation-provided routine, the operating system
cannot determine which users have the authority to override the processing of
this field. However, the magnetic tape file system allows only operator class users
to deal with blank magnetic tapes so that a user must have both OPER and
VOLPRO privileges to initialize or mount blank magnetic tapes.

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB,
$FORMAT_ACL, $FORMAT_AUDIT, $GET_SECURITY, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_FILACCERR The accessibility characteristic in the HDR1
label is not blank and you cannot access the file
without overriding the field.

SS$_NOFILACC The user has no access to the file.
SS$ NOVOLACC The user has no access to the volume.

SYS2-173

System Service Descriptions
SNUMTIM

SNUMTIM
Convert Binary Time to Numeric Time

Converts an absolute or delta time from 64-bit system time format to binary
integer date and time values.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYS$SNUMTIM timbuf ,[timadr]

C Prototype

int sys$numtim (unsigned short int timbuf [7], struct _generic_64 *timadr);

Arguments
timbuf
OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: write only
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

Buffer into which $SNUMTIM writes the converted date and time. The timbuf
argument is the 32-bit address (on VAX systems) or the 32- or 64-bit address (on
Alpha systems) of a 7-word structure.

The following diagram depicts the fields in this structure:

31 15 0
Month of year Year since O
Hour of day Day of month
Second of minute Minute of hour
Hundredths of second

ZK-1716-GE

If the timadr argument specifies a delta time, SNUMTIM returns the value 0 in
the year since 0 and month of year fields. It returns in the day of month field the
number of days specified by the delta time.

timadr

OpenVMS usage: date_time

type: guadword

access: read only

mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 64-bit time value to be converted. The timadr argument is the 32-bit
address (on VAX systems) or the 32- or 64-bit address (on Alpha systems) of a
guadword containing this time. A positive-time value represents an absolute
time, while a negative time value indicates a delta time.

If you do not specify timadr, SNUMTIM returns the current system time.

SYS2-174

System Service Descriptions
SNUMTIM

If timadr specifies the value 0, SNUMTIM returns the base date (November 17,
1858).

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The 64-bit time value cannot be read by the
caller, or the buffer cannot be written by the
caller.

SS$_IVTIME The specified delta time is equal to or greater

than 10,000 days.

SYS2-175

System Service Descriptions
$NUMUTC

SNUMUTC
Convert UTC Time to Numeric Components

Converts an absolute 128-bit binary time into its numeric components. The
numeric components are returned in local time.

On Alpha systems, this service accepts 64-bit addresses.

Format

SYSSNUMUTC timbuf ,[utcadr]

C Prototype

int sys$numutc (unsigned short int timbuf [13], unsigned int *utcadr [4]);

Arguments
timbuf
OpenVMS usage: vector_word_unsigned
type: word
access: write only
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

Buffer into which $NUMUTC writes the converted date and time. The timbuf
argument is the 32-bit address (on VAX systems) or the 32- or 64-bit address (on
Alpha systems) of a 13-word structure containing time, inaccuracy of time, and
time differential factor. The time differential factor encoded in the 128-bit buffer
is used to convert the UTC to its numerical components. Negative values in the
inaccuracy field indicate an infinite inaccuracy.

The following diagram depicts the fields in this structure:

31 15 0

SYS2-176

Month of year

Year since 0

Hour of day

Day of month

Second of minute

Minute of hour

Inacc days Hundredths of second
Inacc minutes Inacc hours
Inacc hundredths of second Inacc seconds

TDF in minutes

ZK-4631A-GE
utcadr
OpenVMS usage: coordinated universal time
type: utc_date_time
access: read only
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)
The 128-bit UTC time value to be converted.

System Service Descriptions
$NUMUTC

The utcadr argument is optional; if it is not used, $NUMUTC will use the
current time.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_INVTIME The 128-bit UTC time is not valid.

SYS2-177

System Service Descriptions
$PARSE_ACL

$PARSE_ACL
Parse Access Control List Entry

Format

C Prototype

Arguments

SYS2-178

Parses the specified text string and converts it to the binary representation for an
access control entry (ACE).

SYS$PARSE_ACL aclstr ,aclent ,[errpos] ,[accnam] ,[nullarg]

int sys$parse_acl (void *aclstr, void *aclent, unsigned short int *errpos, void
*accnam, int (*routin)(void));

aclstr

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Formatted ACE that is parsed when $PARSE_ACL completes execution. The
aclstr argument is the address of a string descriptor pointing to the text string to
be parsed.

aclent

OpenVMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor—fixed-length string descriptor

Description of the ACE that is parsed when $PARSE_ACL completes execution.
The aclent argument is the address of a descriptor pointing to the buffer in
which the ACE is written. The first byte of the buffer contains the length of the
ACE; the second byte contains a value that identifies the type of ACE, which in
turn defines the format of the ACE.

For information about the ACE types and their associated formats, see
$FORMAT_ACL system service documentation.

errpos
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters from aclstr processed by $PARSE_ACL. The errpos
argument is the address of a word that receives the number of characters actually
processed by the service. If the service fails, this count points to the failing point
in the string.

Description

System Service Descriptions

$PARSE_ACL
accnam
OpenVMS usage: access_bit_names
type: longword (unsigned)
access: read only
mechanism: by reference

Names of the bits in the access mask when $PARSE_ACL is executing. The
accnam argument is the address of an array of 32 quadword descriptors that
define the names of the bits in the access mask. Each element points to the name
of a bit. The first element names bit 0, the second element names bit 1, and so
on.

You can call LIBSGET_ACCNAM to retrieve the access name table for the class
of object whose ACL is to be formatted. If you omit accnam, the following names
are used:

Bit Name

Bit 0 READ

Bit 1 WRITE
Bit 2 EXECUTE
Bit 3 DELETE
Bit 4 CONTROL
Bit 5 BIT 5

Bit 6 BIT 6

Bit 31 BIT 31

nullarg

OpenVMS usage: null_arg

type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Compag.

The Parse Access Control List Entry service parses the specified text string and
converts it to the binary representation for an access control entry (ACE).

Required Access or Privileges
None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_RDB,
$FORMAT_ACL, $FORMAT_AUDIT, $GET_SECURITY, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$REM_HOLDER, $REM_IDENT, $REVOKID, $SET_SECURITY

SYS2-179

System Service Descriptions
$PARSE_ACL

Condition Values Returned

SS$_ NORMAL The service completed successfully.

SS$_ACCVIO The string or its descriptor cannot be read by the
caller; the buffer descriptor cannot be read by the
caller; the buffer cannot be written by the caller;
or the buffer is too small to hold the ACL entry.

SS$_IVACL The format of the access control list entry is not
valid.
SS$_NOSUCHID The specified identifier does not exist in the

rights database.

SYS2-180

System Service Descriptions
$PERM_DIS_ALIGN_FAULT_REPORT (Alpha Only)

$PERM_DIS_ALIGN_FAULT_REPORT (Alpha Only)
Disable Alignment Fault Reporting

On Alpha systems, disables user process alignment fault reporting.

Format
SYS$PERM_DIS_ALIGN_FAULT _REPORT

C Prototype

int sys$perm_dis_align_fault_report (void);

Arguments

None.

Description

The Disable Alignment Fault Reporting service disables user process alignment
fault reporting.

See the description of the $PERM_REPORT_ALIGN_FAULT service for an
example of a program that can be used to enable and disable user process
alignment fault reporting.

Required Access or Privileges
None

Required Quota
None

Related Services

$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT DATA, $INIT_SYS_
ALIGN_FAULT _REPORT, $PERM_REPORT ALIGN_FAULT, $START_ALIGN _
FAULT _REPORT, $STOP_ALIGN_FAULT REPORT, $STOP_SYS_ALIGN_
FAULT_REPORT

Condition Values Returned

SS$ NORMAL The service completed successfully.

SYS2-181

System Service Descriptions
$PERM_REPORT_ALIGN_FAULT (Alpha Only)

$PERM_REPORT_ALIGN_FAULT (Alpha Only)
Report Alignment Fault

Format

C Prototype

Arguments

Description

On Alpha systems, initializes user process alignment fault reporting.

SYS$PERM_REPORT_ALIGN_FAULT

int sys$perm_report_align_fault (void);

None.

The Report Alignment Fault service allows the user to permanently enable user
process alignment fault reporting for all subsequent images.

This service reports alignment faults only in exception mode. For more
information about reporting modes, see the $START_ALIGN_FAULT_REPORT
service.

Image alignment fault reporting takes precedence over process alignment fault
reporting; that is, if both image and process alignment fault reporting are
enabled, faults are reported to the image first.

Required Access or Privileges
None

Required Quota
None

Related Services

$GET_ALIGN_FAULT _DATA, $GET_SYS ALIGN_FAULT _DATA, $INIT_SYS
ALIGN_FAULT_REPORT, $PERM_DIS_ALIGN_FAULT _REPORT, $START _
ALIGN_FAULT_REPORT, $STOP_ALIGN_FAULT_REPORT, $STOP_SYS_
ALIGN_FAULT _REPORT

Condition Values Returned

SYS2-182

SS$ NORMAL The service completed successfully.

System Service Descriptions
$PERM_REPORT_ALIGN_FAULT (Alpha Only)

Example
/***************************************~k*~k*~k~k~k~k~k**********************/
[* *|
[* SET_ALI GN_REPCRT. C *|
[* *|
[* This programcan be used to permanently turn on and of f *|
[* alignment fault reporting for a process. After creating the *|
[* executable, do:)
[* *|
/¥ $ align :== $dir:set_align_report.exe *|
[* $ align on *|
[* $ run program I will generate align faults on screen */
[* $ align off *|
[* $ run program I will not generate align faults *|
[* *|

/**/

#incl ude <stdio>
#incl ude <ctype>
#incl ude <ssdef>

* alignment fault reporting system services *|
extern sys$perm report _align_ fault(),
sys$permdis_align_fault_report()

mai n(argc, argv)

int argc

char *argv(];
{

int status

[* check argunents */

if (argc < 2) {
printf ("Insufficient argunents\n");
return (40);

[* check if the argument is on or off */
if ((stremp ("ON', argv[1]) ==0) [| (strcnp ("on", argv[1]) == 0))
[* on, turn alignment fault reporting on for this process */
status = sys$permreport_align_fault ();
else if ((strcnp ("OFF', argv[1l]) ==0) || (strcnp ("off", argv[l]) == 0))
[* off, turn alignment fault reporting off for this process */
status = sys$permdis_align_fault_report ();

el se
return (SS$_BADPARAM ;

[* return status */
return (status);

}

This example shows a program that can be used to enable and disable alignment
fault reporting for a process.

SYS2-183

System Service Descriptions
$PERSONA_ASSUME (VAX Only)

$PERSONA_ASSUME (VAX Only)
Assume Persona

Format

C Prototype

Modifies the context of the current process to match the context of a given
persona. The $SPERSONA_ASSUME service allows an OpenVMS process to
assume the identity of another user or to discard a persona to return the process
to its original state.

SYS$PERSONA_ASSUME persona ,[flags]

int sys$persona_assume (unsigned int *persona, unsigned int flags);

Arguments
persona
OpenVMS usage: integer
type: longword (unsigned)
access: read
mechanism: by reference
Address of a longword in which the persona handle is expected.
If the value of the context passed is 1, then the current persona is discarded, and
the state of the calling process is returned to the state that existed prior to the
first call to SPERSONA_CREATE.
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value
Flag mask specifying which Persona services options are to be employed when the
persona is assumed. This argument is ignored when a persona is being discarded.
The following table describes each flag:
Flag Description
IMP$M_ASSUME_SECURITY Assume access rights, UIC, authorized privileges, user
name, and security audit flag.
IMP$M_ASSUME_ACCOUNT Assume OpenVMS account.
IMP$M_ASSUME_JOB_WIDE Assume the new persona, even in a multiprocess job.
Description

SYS2-184

When assuming a persona using the IMP$M_ASSUME_SECURITY option, any
previously enabled image privileges will be disabled. The caller’s process will
have only the privileges of the impersonated user enabled. These privileges are
enabled in the Current, Process, and Authorized privilege masks.

System Service Descriptions
$PERSONA_ASSUME (VAX Only)

When using IMP$M_ASSUME_SECURITY, access to the job logical name table
might no longer be possible because the table is protected by the UIC of the
user on whose behalf the current process was created. Also, a new access to the
process’ controlling terminal might fail, and the process might be in a different
default resource domain for locking.

Any persona is automatically discarded and deleted upon image exit. Hence, it is
not possible to permanently change the persona of a process using $PERSONA _
ASSUME.

The arguments are read in caller’s mode, so an invalid argument can cause an
access violation to be signaled.

Required Access or Privileges
None

Required Quota
None

Related Services
$PERSONA CREATE, $PERSONA DELETE

Condition Values Returned

SS$ NORMAL The service completed successfully; the desired
access is granted.

IMP$_NOCHJIB The Job Information Block cannot be modified.

IMP$_ Invalid persona argument.

PERSONANONGRATA

SYS2-185

System Service Descriptions
$PERSONA_ASSUME (Alpha Only)

$PERSONA_ASSUME (Alpha Only)
Assume Persona

Format

C Prototype

Arguments

SYS2-186

Allows an OpenVMS thread to assume the identity of another persona.

SYS$PERSONA_ASSUME persona ,[flags], [previous], [acmode]

int sys$persona_assume (unsigned int *persona, unsigned int flags, unsigned int
*previous, unsigned int acmode);

persona
OpenVMS usage: persona

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword in which the persona identification handle is expected.

If the value passed is ISS$C_ID_NATURAL, then the state of the calling thread
is returned to the natural persona.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Ignored.

previous

OpenVMS usage: persona

type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword into which the persona identification handle of the
currently active persona being replaced is written.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be considered when assuming a persona. The acmode argument
is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. Only equal
or more privileged access modes can use this persona.

System Service Descriptions
$PERSONA_ASSUME (Alpha Only)

Description

This service establishes the specified persona as the active security profile and
returns the persona identification handle of the persona that was active at the
point in which the call to this service was made.

On image exit, the natural persona is assumed and all nhonpermanent personae
are deleted.

The arguments are validated against the caller’s mode, so an invalid argument
can cause an access violation to be signaled.

Required Access or Privileges
None

Required Quota
None

Related Services

$PERSONA _CLONE, $PERSONA_CREATE, $PERSONA_CREATE_
EXTENSION, $PERSONA DELETE_EXTENSION, $PERSONA DELEGATE,
$PERSONA DELETE, $SPERSONA _EXTENSION_LOOKUP, $SPERSONA_FIND,
$PERSONA_MODIFY, $PERSONA_QUERY, $SPERSONA_RESERVE

Condition Values Returned

SS$ NORMAL The service completed successfully; the desired
access is granted.

SS$_ACCVIO Access violation.

SS$ _INSFARG Certain required arguments were not specified.

SS$ IVMODE The caller cannot create a persona that is more
privileged than the caller.

SS$_NOPRIV The operation requires IMPERSONATE
privilege.

SS$_ PERSONANONGRATA Invalid persona argument.

SYS2-187

System Service Descriptions
$PERSONA_CLONE (Alpha Only)

$SPERSONA_CLONE (Alpha Only)
Clone Persona

Format

C Prototype

Arguments

Description

SYS2-188

Creates a copy of an existing persona within the context of the current process.
The service returns the assigned persona identification for the new persona in
the persona argument. This persona can be assumed using the SPERSONA _
ASSUME service.

SYS$PERSONA_CLONE persona ,[input]

int sys$persona_clone (unsigned int *persona, unsigned int *input);

persona
OpenVMS usage: persona

type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword into which the persona identification handle is written.

input

OpenVMS usage: persona

type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword containing the persona identification of the persona to
be cloned. If this argument is 0, null, or absent, the currently active persona is
cloned.

The Clone Persona service creates a copy of an existing persona within the
context of the current process. The service returns the assigned persona
identification for the new persona in the persona argument. This persona
can be assumed using the SPERSONA_ASSUME service.

On image exit, the natural persona is assumed and all nonpermanent personae
are deleted.

Required Access or Privileges
None

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CREATE, $PERSONA_CREATE_
EXTENSION, $PERSONA_DELETE_EXTENSION, $PERSONA_DELEGATE,
$PERSONA_DELETE, $PERSONA_EXTENSION_LOOKUP, $PERSONA_FIND,
$PERSONA_MODIFY, $SPERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$ EXQUOTA

SS$_INSFMEM
SS$_IVMODE

SS$_PERSONANONGRATA

System Service Descriptions
$PERSONA_CLONE (Alpha Only)

The service completed successfully.
Access violation.

The caller lacks sufficient quota to allocate a new
persona.

Insufficient memory.

The caller cannot create a persona that is more
privileged than the caller.

The persona ID supplied was invalid.

SYS2-189

System Service Descriptions
$PERSONA_CREATE (VAX Only)

$PERSONA_CREATE (VAX Only)
Create Persona

Creates a persona that can be assumed using the $SPERSONA_ASSUME service.

Format
SYS$PERSONA_CREATE persona ,usrnam ,flags

C Prototype

int sys$persona_create (unsigned int *persona, void *usrnam, unsigned int flags);

Arguments
persona
OpenVMS usage: integer
type: longword (unsigned)
access: write
mechanism: by reference
Address of a longword into which the persona handle is written.
usrnam
OpenVMS usage: char_string
type: character coded text string
access: read only
mechanism: by descriptor - fixed-length descriptor
Name of the user to be impersonated. The usrnam argument is the address of
a descriptor pointing to a character string containing the user name. The string
can contain a maximum of 12 alphanumeric characters.
flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value
Flag mask specifying which Persona services options are to be employed when
the persona is created.
The following table describes each flag:
Flag Description
IMP$M_ASSUME_DEFPRIV Create a persona with only default privileges.
IMP$M_ASSUME_DEFCLASS Create a persona with default classification.
Description

On calling the Create Persona service, the required information concerning
the OpenVMS user specified by the usrnam argument is read from the User
Authorization File and Rights database and is stored in system memory. A
handle to refer to the created persona is returned in the persona argument.

SYS2-190

System Service Descriptions
$PERSONA_CREATE (VAX Only)

It is not possible to create a persona for a username which has been disabled.

No changes are made to the caller’s process as a result of calling $PERSONA _
CREATE.

Some of the $PERSONA_CREATE service executes in the caller’s access mode
(assumed to be user mode). An improper use of the usernam argument can
cause an access violation to be signaled.

Required Access or Privileges
All calls to SPERSONA_CREATE require DETACH privilege and access to the
system authorization database.

Required Quota
None

Related Services
$PERSONA_ASSUME, $PERSONA DELETE

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The persona argument cannot be written by the
caller.

SS$ NODETACH Operation requires DETACH privilege.

SS$_INSFMEM Insufficient memory.

IMP$_USERDISABLED User name disabled.

Any condition value returned by the SLKWSET, $GETUAI, or, $FIND_HELD can
also be returned.

SYS2-191

System Service Descriptions
$PERSONA_CREATE (Alpha Only)

$PERSONA_CREATE (Alpha Only)
Create Persona

Creates a persona that can be assumed using the $SPERSONA_ASSUME service.

Format
SYS$PERSONA_CREATE persona ,[usrnam] ,[flags], [usrpro], [itmist]

C Prototype

int sys$persona_create (unsigned int *persona, void *usrnam, unsigned int flags,
unsigned int *usrpro, unsigned int *itmlst);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword into which the persona identification handle is written.

usrnam
OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length descriptor

Name of the user to be impersonated. The usrnam argument is the address of
a descriptor pointing to a character string containing the user name. The string
can contain a maximum of 32 alphanumeric characters.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The $ISSDEF macro defines these codes:

e ISS$V_CREATE_AUTHPRIV - This bit is used to create a persona with the
privilege fields set to the authorized privileges of the specified user.

= |ISS$V_CREATE_DEFPRIV - This bit is used for backward compatibility
with the previous implementation of personae. This bit is accepted but not
processed, as it describes the default behavior of the service.

e ISS3V_NOACCESS - Tells $SPERSONA_CREATE not to access the SYSUAF
file. Only valid in exec or kernel mode.

SYS2-192

Item Codes

System Service Descriptions
$PERSONA_CREATE (Alpha Only)

usrpro
OpenVMS usage: char_string

type: opague byte stream
access: read only
mechanism: by descriptor

Buffer containing an encoded security profile. The usrpro argument is the
address of a descriptor pointing to a buffer that contains encoded security profile
data. This profile can be created by calling the SYSSCREATE_USER_PROFILE
system service.

itmlst

OpenVMS usage: item_list_3
type: longword
access: read only
mechanism: by reference

Attributes describing modifications to the security profile. The itmlst argument
is the address of an item_list defining changes to be made to the specified user
profile.

This section lists the 1SS$ item codes and definitions.

ISS$ WORKPRIV
$PERSONA_CREATE sets the working privileges for the new persona as a
quadword value.

ISS$_MODE
$PERSONA_CREATE sets the access mode of the new persona as a longword
value. The mode cannot be more privileged than that of the caller.

ISS$_FLAGS
$PERSONA_CREATE sets the flags field of the new persona as a longword bit
mask. The following bits are currently defined for this field:

= ISS$V_PERMANENT - Mark this persona as permanent. It will survive
image activations/deactivations.

e |SS$V_SECAUDIT - Always audit this persona’s operations.

= |ISS$V_DEBIT - Debit and credit the process BYTLM/BYTCNT for this
persona. (This flag is always set for user mode persona.)

ISS$_RIGHTS_INDEX

The index indicates into which rights chain the rights are placed. Values for
the index are: ISS$M_ENABLED_PERSONA, ISS$M_ENABLED_SYSTEM,
ISS$M_ENABLED_INSTALLED, ISS$M_ENABLED_SUBSYSTEM, and ISS$M_
ENABLED_TEMPORARY. All subsequent rights item packets use the index until
a new ISS$_RIGHTS_INDEX item changes the index. If a rights index is not
specified, the rights item packets will use the PERSONA chain as the default.
Rights item packets include: 1SS$ AUTHRIGHTS, ISS$ RIGHTS, ISS$ ADD _
AUTHRIGHTS, and ISS$_ADD_RIGHTS.

SYS2-193

System Service Descriptions
$PERSONA_CREATE (Alpha Only)

SYS2-194

ISS$ AUTHRIGHTS (Reserved for use by Compagq.)

$PERSONA_CREATE sets the user authorized rights of the new persona as

a list of quadword values. Any existing authorized rights will be overwritten.
By default, the rights will be placed in the PERSONA rights chain. See ISS$_
RIGHTS_INDEX for more information on specifying different indexes.

ISS$_RIGHTS

$PERSONA_CREATE sets the user rights of the new persona as a list of
guadword (paired longword) values. Any existing authorized rights will be
overwritten. By default, the rights will be placed in the PERSONA rights chain.
See ISS$_RIGHTS_INDEX for more information on specifying different indexes.
The format of the list is the same as 1ISS$ AUTHRIGHTS.

The format of the list is as follows:

Id value

Id flags

Id value

Id flags

Id value

Id flags

))
[9
))
(

Id value

Id flags

VM-0468A-Al

ISS$_USERNAME
$PERSONA_CREATE sets the user name of the new persona as a 32-byte
character string.

ISS$_ACCOUNT
$PERSONA_CREATE sets the account of the new persona as a 32-byte character
string.

ISS$_NOAUDIT
$PERSONA_CREATE sets the No Audit field of the new persona as a longword
value.

ISS$_UIC
$PERSONA_CREATE sets the UIC of the new persona as a longword value.

ISS$_AUTHPRIV
$PERSONA_CREATE sets the authorized privileges for the new persona as a
guadword value.

ISS$_PERMPRIV
$PERSONA_CREATE sets the permanent privileges for the new persona as a
guadword value.

ISS$_IMAGE_WORKPRIV
$PERSONA_CREATE sets the image working privileges for the new persona as a
guadword value.

Description

System Service Descriptions
$PERSONA_CREATE (Alpha Only)

ISS$_ENABLED

$PERSONA_CREATE sets the Rights Enable field of the new persona as a
longword bit mask. These bits correspond to the indices of the different rights
chains. By setting the bit in the ENABLED field, the corresponding rightslist
chain will be enabled, and its rights will be included in all rights checks. Valid
bits are: 1SS$V_ENABLED_PERSONA, ISS$V_ENABLED_SUBSYSTEM,
ISS$V_ENABLED_IMAGE, ISS$V_ENABLED_SYSTEM, and ISS$V_ENABLED_
TEMPORARY.

ISS$ ADD_AUTHRIGHTS

$PERSONA_CREATE adds the rights to the current list of authorized rights.
$PERSONA_CREATE expects the same format as that outlined in I1SS$_
AUTHRIGHTS. By default, the rights will be placed in the PERSONA rights
chain. See I1SS$ RIGHTS_INDEX for more information on specifying different
indexes.

ISS$_ADD_RIGHTS

$PERSONA_CREATE adds the rights to the current list of rights. SPERSONA _
CREATE expects the same format as that outlined in 1ISS$ AUTHRIGHTS.

By default, the rights will be placed in the PERSONA rights chain. See ISS$_
RIGHTS_INDEX for more information on specifying different indexes.

When you call this service, you can specify either the usrnam or usrpro
argument, but not both. The required information specifying the OpenVMS user
is read from either the User Authorization File (UAF) and rights database or the
usrpro buffer and is stored in system memory. Any modifications specified in the
itmlst are then applied to complete the new persona. A persona identification
handle that refers to the created persona is returned in the persona argument.
This service creates a default VMS extension for the persona.

It is possible to call $PERSONA_CREATE in any mode. To call $SPERSONA_
CREATE in kernel mode, the calling sequence is different. Only the usrpro
argument is valid (usrnam cannot be used because kernel mode access to the
SYSUAF file is not allowed), and it is necessary to set the PSB$M_NOACESS
value in the flags.

No changes are made to the caller’s thread as a result of calling $PERSONA _
CREATE.

The arguments are validated against the caller’s mode, so an invalid argument
can cause an access violation to be signaled.

Required Access or Privileges

All calls to $SPERSONA_CREATE require IMPERSONATE privilege and read
access to the system authorization database.

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA _CLONE, $SPERSONA _CREATE_
EXTENSION, $PERSONA DELETE_EXTENSION, $PERSONA_DELEGATE,
$PERSONA DELETE, $SPERSONA_EXTENSION_LOOKUP, $PERSONA_FIND,
$PERSONA_MODIFY, $SPERSONA_QUERY, $SPERSONA_ RESERVE

SYS2-195

System Service Descriptions

$PERSONA_CREATE (Alpha Only)

Condition Values Returned

SYS2-196

SS$_NORMAL
SS$_ACCVIO

SS$_NOPRIV

SS$_INSFMEM
SS$ USERDISABLED
SS$_IVMODE

SS$_INSFARG
SS$_BADPARAM

SS$ BADCHECKSUM
SS$_BADBUFLEN

SS$_BADITMCOD
SS$_INVARG

SS$_INVSECDOMAIN

The service completed successfully.

The persona argument cannot be written by the
caller.

The operation requires IMPERSONATE
privilege.

Insufficient memory.

User name disabled.

The caller cannot create a persona that is more
privileged than the caller.

Certain required arguments were not specified.

The value of at least one of the arguments is
incorrect.

The buffer specified by usrpro is not valid.

The buffer length for data within the usrpro or
itmlst was invalid.

At least one argument in the item code is invalid.

An incorrect combination of arguments was
specified.

The buffer specified by usrpro contains data
that originated outside the local security domain.

Any condition value returned by the SLKWSET, $GETUAI, or $FIND_HELD

service can also be returned.

System Service Descriptions
$PERSONA_CREATE_EXTENSION (Alpha Only)

$PERSONA_CREATE_EXTENSION (Alpha Only)
Create Persona Extension

Creates an extension on the current persona. A persona extension is a mechanism
to attach support for additional security credentials.

Format
SYS$PERSONA CREATE_EXTENSION persona ,extensionlD ,buffer ,length ,flags

C Prototype

int sys$persona_create_extension (unsigned int *persona, unsigned int
*extensionID, void *buffer, unsigned int *length,
unsigned int *flags);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the persona identification to which $SPERSONA _
CREATE_EXTENSION attaches a new persona extension.

Two special values for persona are also permitted: 0, which means the current
persona, and -1, which means the process’ natural persona is used.

extensionID
OpenVMS usage: extension_ID

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the extension identification (EID) for which
the registered CREATE routine will be called to create a new persona extension

block.

buffer

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a buffer containing data to be used in creating the persona extension
data structure. The interpretation of the data within this buffer is the
responsibility of the extension create routine. For example, this data could

be a Type-Length-Value (TLV) structure containing fields in the extension data
structure. Specifying this buffer is optional; a caller who does not want to supply
a buffer should specify an address of zero (0).

SYS2-197

System Service Descriptions
$PERSONA_CREATE_EXTENSION (Alpha Only)

Description

SYS2-198

length

OpenVMS usage: size

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the size, in bytes, of the buffer argument.
Specifying length is optional; a caller who does not want to supply a length
should specify an address of zero (0). Specifying a buffer without a length is the
same as not specifying a buffer.

flags

OpenVMS usage: flags

type: longword (unsigned)
access: read only
mechanism: by reference

Flag mask specifying the options to be employed when the persona extension is
created. Specifying flags is optional; a caller who does not want to supply flags
should specify an address of zero (0).

Flag Description
PXB$V_ This extension is recorded as the persona’s primary extension.
PRIMARY _ If a persona already has a primary extension, the error SS$_

EXTENSION UNSUPPORTED is returned and the extension is not created.
The primary extension is returned when the persona is queried
for its "Primary Extension."” There is no other meaning for this
value.

This service creates an extension by calling the registered Extension Create
routine for the specified extension and by attaching it to the persona represented
by the persona argument.

When a return fails, no persona extension is created.

A VMS extension is already associated with every persona. An attempt to create
a VMS extension using this service returns SS$_ DUPLNAM.

Required Access or Privileges

This service requires that the caller have the IMPERSONATE privilege enabled
or be in exec or kernel mode.

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_DELETE_EXTENSION, $PERSONA_DELEGATE, $PERSONA _
DELETE, $PERSONA _EXTENSION_LOOKUP, $SPERSONA_FIND, $SPERSONA _
MODIFY, $SPERSONA_QUERY, $PERSONA_RESERVE

System Service Descriptions

$PERSONA_CREATE_EXTENSION (Alpha Only)

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADITMCOD
SS$ BADPARAM
SS$ DUPLNAM

SS$ EXQUOTA
SS$ NOIMPERSONATE
SS$ NOSUCHEXT

SS$_PERSONANONGRATA
SS$ UNSUPPORTED

The service completed successfully.

A buffer or return address specified in the item
list cannot be read.

The item list contains an invalid identifier code.
An invalid parameter was specified.

The persona already has an extension of this
type.

The caller lacks sufficient quota to allocate a new
persona.

The caller does not have the privilege to extend
its original identity/persona.

The extension requested does not exist on the
system.

The persona ID supplied was invalid.

An unsupported request was made; check the
PRIMARY_EXTENSION flags bit.

SYS2-199

System Service Descriptions
$PERSONA_DELEGATE (Alpha Only)

$PERSONA_DELEGATE (Alpha Only)
Delegate Personato a Server Process

Format

C Prototype

Arguments

Description

SYS2-200

Delegates or assigns the currently active persona to another process.

SYS$PERSONA_DELEGATE serverPID ,persona ,input

int sys$persona_delegate (unsigned int *serverPID, unsigned int *persona, unsigned

int *input);
serverPID
OpenVMS usage: process_ID
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the extended process identification (PID) of the
server process to which $PERSONA_DELEGATE grants the current persona.

persona
OpenVMS usage: persona

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the persona identification that this service
reserved in the server’s process for this client’s persona.

input

OpenVMS usage: persona

type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the persona identification that describes which
persona is delegated to the server. If the input argument is zero (0) or null, or if
the input value is zero (0), the current persona is delegated. If the input value is
-1, then the natural persona of the process is delegated.

This service delegates or assigns either the specified persona or the currently
active persona to another process. The server process must have reserved a

persona slot for the current process to use by calling SPERSONA_RESERVE
before calling this service.

The delegation of persona is only supported for processes residing on the same
node in the cluster. When a return fails, the persona is not delegated.

System Service Descriptions
$PERSONA_DELEGATE (Alpha Only)

Required Access or Privileges
None

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA _CLONE, $PERSONA _CREATE,
$PERSONA _CREATE_EXTENSION, $PERSONA DELETE_EXTENSION,
$PERSONA _DELETE, $SPERSONA_EXTENSION_LOOKUP, $PERSONA_FIND,
$PERSONA_MODIFY, $SPERSONA_QUERY, $SPERSONA_RESERVE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The arguments cannot be read by the service.

SS$_BADPARAM An invalid parameter was specified.

SS$ EXQUOTA The caller lacks sufficient quota to allocate a new
persona.

SS$ NONEXPR The process specified does not exist.

SS$ PERSONANONGRATA The persona ID supplied was invalid.

SYS2-201

System Service Descriptions
$PERSONA_DELETE

$PERSONA_DELETE
Delete Persona

Deletes a persona created using the $PERSONA_CREATE, the $PERSONA_
CLONE, or the SPERSONA_RESERVE service.

Format
SYS$PERSONA_DELETE persona

C Prototype

int sys$persona_delete (unsigned int *persona);

Arguments

persona

OpenVMS usage: persona

type: longword (unsigned)

access: read only

mechanism: by reference

Address of a longword in which the persona identification handle is expected.
Description

The PERSONA_DELETE service frees the resources used by the persona. No
changes to the caller’s process are made as a result of calling $SPERSONA_
DELETE.

The persona argument is validated against the caller’s mode, so an invalid
argument can cause an access violation to be signaled.

Required Access or Privileges

None

Required Quota

BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA_DELEGATE, $PERSONA_EXTENSION_LOOKUP, $PERSONA _
FIND, $PERSONA_MODIFY, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$ ACCVIO Access violation.

SS$ PERSONADELPEND Persona is in use; delete pending on release.
SS$_NODELPERMANENT Permanent personae cannot be deleted.

SYS2-202

System Service Descriptions
$PERSONA_DELETE_EXTENSION (Alpha Only)

$PERSONA_DELETE_EXTENSION (Alpha Only)
Delete Persona Extension

Deletes an extension attached to a persona.

Format
SYS$PERSONA_DELETE_EXTENSION persona ,extensionID

C Prototype

int sys$persona_delete_extension (unsigned int *persona, unsigned int
*extensionID);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference
Address of a longword containing the persona identification for which
$PERSONA_DELETE_EXTENSION calls the registered Extension Delete
function.
extensionID
OpenVMS usage: extension_ID
type: longword (unsigned)
access: read only
mechanism: by reference
Address of a longword containing the extension identification (EID) for which the
registered DELETE routine is called in order to delete a persona extension block
from the specified persona.
Description

This service deletes an extension data structure by calling the registered
Extension Delete routine for the specified extension.

When a return fails, the persona extension is not deleted.

The VMS extension associated with each persona cannot be deleted. An attempt
to delete that extension returns SS$_UNSUPPORTED.

Required Access or Privileges

This service requires that the caller have the IMPERSONATE privilege enabled
or be in exec or kernel mode.

Required Quota
BYTLM

SYS2-203

System Service Descriptions
$PERSONA_DELETE_EXTENSION (Alpha Only)

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELEGATE, $PERSONA _
DELETE, $PERSONA _EXTENSION_LOOKUP, SPERSONA_FIND, $SPERSONA _
MODIFY, $SPERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$ BADPARAM An invalid parameter was specified.

SS$_NOIMPERSONATE The caller does not have the privilege to delete
pieces of the thread’s original identity/persona.

SS$_NOSUCHEXT The extension specified does not exist in the
persona.

SS$_PERSONANONGRATA The persona ID supplied was invalid.

SS$ UNSUPPORTED The specified extension cannot be deleted.

SYS2-204

System Service Descriptions
$PERSONA_EXTENSION_LOOKUP (Alpha Only)

$PERSONA_EXTENSION_LOOKUP (Alpha Only)
Translates an Extension Name

Translates a text name of an extension (for example, VMS or NT) into an
extension identification (EID) that can be used in other persona-related system
services.

Format
SYS$PERSONA EXTENSION_LOOKUP extensionName ,extensionID

C Prototype

int sys$persona_extension_lookup (void *extensionName, unsigned int
*extensionID);

Arguments
extensionName
OpenVMS usage: extension_name
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length descriptor
Address of a character string descriptor pointing to the name of the extension
being looked up.
extensionID
OpenVMS usage: extension_ID
type: longword (unsigned)
access: write only
mechanism: by reference
Address of a longword into which the value of the extension identification (EID)
returned by the service is written.
Description

This service translates a text name of an extension into an extension
identification (EID) that can be used in other persona-related system services.

There are currently two extension names: VMS and NT.

Required Access or Privileges
None

Required Quota
None

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA _CREATE,
$PERSONA CREATE_EXTENSION, $SPERSONA DELETE_EXTENSION,
$PERSONA DELEGATE, $PERSONA_DELETE, $PERSONA_FIND,
$PERSONA_MODIFY, SPERSONA_QUERY, $PERSONA_RESERVE

SYS2-205

System Service Descriptions

$PERSONA_EXTENSION_LOOKUP (Alpha Only)

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$ BADPARAM
SS$ NOSUCHTEXT

SYS2-206

The service completed successfully.

The string descriptor supplied in the
extensionName argument cannot be read by
the service.

An invalid argument was specified.

The supplied extensionName does not exist on
this system.

System Service Descriptions
$PERSONA_FIND (Alpha Only)

$PERSONA_FIND (Alpha Only)
Find Persona with Characteristics

Enables the caller to find the personae within a process that have certain
attributes or settings.

Format
SYS$PERSONA_FIND persona ,itmist ,contxt

C Prototype

int sys$persona_find (unsigned int *persona, void *itmlst, unsigned int *contxt);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: write only
mechanism: by reference

Address of a longword into which the persona identification that matches all of
the items present in the item list is written.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Attributes specifying which information about the persona is to be compared.
The itmlst argument is the address of a list of item descriptors, each describing
an item of information or an item list processing directive. The list of item
descriptors is terminated by a longword value of 0.

The following diagram shows the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table lists the item descriptor fields and their definitions:

SYS2-207

System Service Descriptions
$PERSONA_FIND (Alpha Only)

Description

SYS2-208

Field Description

Buffer length A word containing a user-supplied integer specifying the
length (in bytes) of the buffer in which $PERSONA_FIND is
to locate the information. The length of the buffer depends
on the item code specified in the item code field of the
item descriptor. If the value of buffer length is too small,
$PERSONA_FIND fails the comparison.

Item code A word containing a user-supplied symbolic code specifying
the item of information $SPERSONA_FIND is to test, or
specifying a directive for processing subsequent items. The
$ISSDEF macro defines these codes. Each item code is
described in the Description section.

Buffer address A longword containing the user-supplied address of the buffer
in which SPERSONA_FIND locates the information used for
the comparison.

Return length An unused longword containing the user-supplied address

address of a word into which the system service writes the length in
bytes of the information it returned. This longword is unused
for PERSONA_FIND.

contxt

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Context value used when repeatedly calling $PERSONA_FIND. The contxt
argument is the address of a longword used while $PERSONA_FIND searches
for all personae that match the criteria. The context value must be initialized
to zero, and the resulting context of each call to SPERSONA_FIND must be
presented to each subsequent call. After contxt is passed to $PERSONA_FIND,
you must not modify its value.

This service enables the caller to find the personae within a process that have
certain attributes or settings.

A persona identification is returned only if all the items specified in the item list
match those in the persona and its extensions.

The item list cannot be changed between context-saved calls. Results are
unpredictable if the item list is changed between calls.

Repeated calls to $SPERSONA_FIND return subsequent matching personae.
When the service returns SS$ NOMOREPROC, there are no more personae to
examine.

System Service Descriptions
$PERSONA_FIND (Alpha Only)

OpenVMS Persona Item Codes

The following table contains the item codes specific to the OpenVMS persona
extension data:

Size

Item Code Uset (bytes) Description

ISS$_USERNAME Q.M,F 32 OpenVMS user name as
text string

ISS$ ACCOUNT QM,F 32 OpenVMS account name
as text string

ISS$_DOMAIN Q.F 32 OpenVMS SCSNODE
as text string as
obtained from $GETJPI's
nodename

ISS$ PRINCIPAL Q,F 64 OpenVMS user name as
text string

ISS$ EXTENSION Q.F 32 The text string VMS

ISS$ WORKPRIV Q.M 8 Working privilege mask

ISS$_WORKCLASS Q.M Varying Working classification

ISS$ RIGHTS Q Varying Enabled list of rights
identifiers

ISS$_NOAUDIT QM 4 No audit counter—0
means audits disabled

ISS$_UIC Q.MF 4 Current UIC

ISS$_AUTHPRIV Q.M 8 Authorized privilege mask

ISS$_PERMPRIV Q.M 8 Permanent privilege mask

ISS$_IMAGE_WORKPRIV Q.M 8 Image working privilege
mask

ISS$_ENABLED Q 4 Mask of enabled rights
chains

ISS$ AUTHRIGHTS Q Varying Authorized list of rights
identifiers

ISS$_MINCLASS Q Varying Minimum classification

ISS$_MAXCLASS Q Varying Maximum classification

tUse descriptions are: Query, Modify, and Find.

Required Access or Privileges

The caller may require extension-specific privileges to search on some data items.
The Persona Item Codes section lists the privileges that are needed.

Required Quota

None

Related Services

$PERSONA_ASSUME, $PERSONA _CLONE, $PERSONA _CREATE,
$PERSONA _CREATE_EXTENSION, $PERSONA DELETE_EXTENSION,
$PERSONA DELEGATE, $PERSONA DELETE, $PERSONA_EXTENSION _
LOOKUP, SPERSONA_MODIFY, $SPERSONA_QUERY, $PERSONA RESERVE

SYS2-209

System Service Descriptions
$PERSONA_FIND (Alpha Only)

Condition Values Returned

SYS2-210

SS$_NORMAL
SS$_ACCVIO

SS$ BADPARAM

SS$ BADITMCOD
SS$_IVCONTEXT
SS$_NOIMPERSONATE

SS$_NOMOREPROC
SS$ NOSUCHEXT

The service completed successfully.

The item list cannot be read by the caller.
An invalid parameter was specified.

The item list contains an invalid item code.
The context value is invalid.

The caller does not have the privilege to obtain
information about the specified personae.

There are no more personae to check.

The extension requested does not exist on the
system.

System Service Descriptions
$PERSONA_MODIFY (Alpha Only)

$PERSONA_MODIFY (Alpha Only)
Modify Persona Data

Sets attribute values for a persona.

Format
SYS$PERSONA_MODIFY persona ,itmlst

C Prototype

int sys$persona_modify (unsigned int *persona, void *itmist);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing the persona identification for which this service
is to set information.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Attributes specifying which information in the persona is to be modified. The
itmlst argument is the address of a list of item descriptors, each describing
an item of information or an item list processing directive. The list of item
descriptors is terminated by a longword value of 0.

The following diagram shows the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table lists the item descriptor fields and their definitions:

Field Description

Buffer length A word containing a user-supplied integer specifying the
length (in bytes) of the buffer from which $SPERSONA _
MODIFY is to get information.

SYS2-211

System Service Descriptions
$PERSONA_MODIFY (Alpha Only)

Field Description

Item code A word containing a user-supplied symbolic code specifying
the item of information $SPERSONA_MODIFY is to change,
or specifying a directive for processing subsequent items.
The $ISSDEF macro defines these codes. Each item code is
described in the Description section.

Buffer address A longword containing the user-supplied address of the buffer

from which $SPERSONA_MODIFY is to get the information.
Return length This field is ignored on a call to PERSONA_MODIFY.
address

Description
The Modify Persona Data service sets attribute values for a persona.

OpenVMS Persona Item Codes

The following table contains the item codes specific to the OpenVMS persona
extension data:

Size
Item Code Uset (bytes) Description
ISS$_USERNAME QM,F 32 OpenVMS user name as
text string
ISS$_ ACCOUNT Q.M,F 32 OpenVMS account name
as text string
ISS$_DOMAIN Q.F 32 OpenVMS SCSNODE
as text string as
obtained from $GETJPI’s
nodename
ISS$_PRINCIPAL Q.F 64 OpenVMS user name as
text string
ISS$_EXTENSION Q,F 32 The text string VMS
ISS$_WORKPRIV Q.M 8 Working privilege mask
ISS$_WORKCLASS Q.M Varying Working classification
ISS$ RIGHTS Q Varying Enabled list of rights
identifiers
ISS$_NOAUDIT Q.M 4 No audit counter—0
means audits disabled
ISS$_UIC QM,F 4 Current UIC
ISS$_AUTHPRIV Q.M 8 Authorized privilege mask
ISS$_PERMPRIV Q.M 8 Permanent privilege mask
ISS$_IMAGE_WORKPRIV Q.M 8 Image working privilege
mask
ISS$ ENABLED Q 4 Mask of enabled rights
chains

tUse descriptions are: Query, Modify, and Find.

SYS2-212

System Service Descriptions
$PERSONA_MODIFY (Alpha Only)

Size
Item Code Uset (bytes) Description
ISS$_ AUTHRIGHTS Q Varying Authorized list of rights
identifiers
ISS$_MINCLASS Q Varying Minimum classification
ISS$_MAXCLASS Q Varying Maximum classification

tUse descriptions are: Query, Modify, and Find.

Required Access or Privileges

This service requires that the caller have the IMPERSONATE privilege enabled

or be in exec or kernel mode.

Required Quota
None

Related Services

$PERSONA_ASSUME, $PERSONA_CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA_DELETE_EXTENSION,
$PERSONA_DELEGATE, $PERSONA_DELETE, $PERSONA_EXTENSION_
LOOKUP, $PERSONA_FIND, $PERSONA_QUERY, $PERSONA_RESERVE

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM
SS$ BADITMCOD
SS$_NOIMPERSONATE

SS$ NOSUCHEXT

SS$ PERSONANONGRATA

The service completed successfully.

The item list cannot be read by the caller, or the
buffer cannot be read by the caller.

An invalid parameter was specified.
The item list contains an invalid item code.

The caller does not have the privilege to obtain
information about the specified personae.

The extension requested does not exist on the
system.

The persona ID supplied was invalid. This
service may also return status codes associated
with the various extension routines.

SYS2-213

System Service Descriptions
$PERSONA_QUERY (Alpha Only)

$PERSONA_QUERY (Alpha Only)
Query for Persona Data

Retrieves attribute values from a persona (and accompanying extensions).

Format
SYS$PERSONA_QUERY persona ,itmist

C Prototype

int sys$persona_query (unsigned int *persona, void *itmlist);

Arguments
persona
OpenVMS usage: persona
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword into which the persona identification handle is written.

Two special values for persona are also permitted: 0, which means use the
current persona, and -1, which means use the process’ natural persona.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Attributes describing which information about the persona is to be returned.
The itmlst argument is the address of a list of item descriptors, each of which
describes an item of information or an item list processing directive. The list of
item descriptors is terminated by a longword value of 0.

The following diagram shows the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table lists the item field descriptors and their definitions:

SYS2-214

Description

System Service Descriptions
$PERSONA_QUERY (Alpha Only)

Field

Description

Buffer length

Item code

Buffer address

Return length
address

A word containing a user-supplied integer specifying the
length (in bytes) of the buffer into which $SPERSONA _
QUERY writes the information. The length of the buffer
depends on the item code specified in the item code field of
the item descriptor. If the value of buffer length is too small,
$PERSONA_QUERY truncates the data.

If the buffer length is specified as 0, the service does not
return any data in the buffer; instead, the service returns
the size of buffer required to contain the data in the Return
Length address. This allows run-time determination of the
size of buffer needed to hold the requested information.

A word containing a user-supplied symbolic code specifying
the item of information $SPERSONA_QUERY is to return,
or specifying a directive for processing subsequent items.
The $ISSDEF macro defines these codes. Each item code is
described in the Description section.

A longword containing the user-supplied address of the buffer
into which SPERSONA_QUERY writes the information.

A longword containing the user-supplied address of a word
into which the service writes the length in bytes of the
information it returned. If the buffer length field is zero (0),
then you must specify a return length address.

The Query for Persona Data service returns the requested items in the buffers

supplied.

OpenVMS Persona Item Codes
The following table contains the item codes specific to the OpenVMS persona

extension data:

Size

Item Code Uset (bytes) Description

ISS$ USERNAME QMF 32 OpenVMS user name as
text string

ISS$ ACCOUNT QMF 32 OpenVMS account name as
text string

ISS$_ DOMAIN Q.F 32 OpenVMS SCSNODE as
text string as obtained from
$GETJPI's nodename

ISS$ PRINCIPAL Q.F 64 OpenVMS user name as
text string

ISS$_EXTENSION Q.F 32 The text string VMS

ISS$ WORKPRIV Q.M 8 Working privilege mask

ISS$_WORKCLASS

Q.M Varying Working classification

tUse descriptions are: Query, Modify, and Find.

SYS2-215

System Service Descriptions
$PERSONA_QUERY (Alpha Only)

SYS2-216

Size
Item Code Uset (bytes) Description
ISS$_RIGHTS Q Varying Enabled list of rights
identifiers
ISS$_NOAUDIT Q.M 4 No audit counter—0 means
audits disabled
ISS$_UIC QMF 4 Current UIC
ISS$_AUTHPRIV Q.M 8 Authorized privilege mask
ISS$_PERMPRIV Q.M 8 Permanent privilege mask
ISS$_IMAGE_WORKPRIV Q.M 8 Image working privilege
mask
ISS$_ENABLED Q 4 Mask of enabled rights
chains
ISS$ AUTHRIGHTS Q Varying Authorized list of rights
identifiers
ISS$_MINCLASS Q Varying Minimum classification
ISS$_MAXCLASS Q Varying Maximum classification

tUse descriptions are: Query, Modify, and Find.

Common Item Codes

The following table contains the item codes specific to the common persona

extension data:

Size
Item Code Uset (bytes) Description
ISS$_COMMON_ Q varying User name as text string
USERNAME
ISS$_COMMON_ACCOUNT Q varying Account name as text string
ISS$ COMMON_FLAGS Q 4 Flags as a longword
ISS$_DOMAIN Q varying Domain name as text string
ISS$ COMMON_PRINCIPAL Q varying Principal name as text
string
ISS$_EXTENSION Q 32 Extension name as text
string
ISS$_DOI Q 8 Domain Of Interpretation

guadword

tUse descriptions are: Query, Modify, and Find.

General Persona Iltem Codes

System Service Descriptions

$PERSONA_QUERY (Alpha Only)

The following table contains the item codes specific to the general persona

extension data:

Size

Item Code Uset (bytes) Description

ISS$_ SWITCH_EXTENSION Q,M 4 Extension ID to be used
for subsequent item code
processing

ISS$ FLAGS QM 4 Various flags (1SS$_FLAG _
PERMANENT)

ISS$ MODE Q 4 Persona creation mode
(user, supervisor, exec, or
kernel)

ISS$_UID Q 16 UID assigned when persona
created

ISS$ PERSONA_ID Q 4 Persona ID of this PSB

ISS$_PRIMARY _ Q.M 4 Extension id of primary

EXTENSION authenticator

ISS$_ EXTENSION_COUNT Q 4 Count of extensions
attached to persona

ISS$_EXTENSION_ARRAY Q varying Array of longwords

containing extension ids
of all extensions attached
to persona

tUse descriptions are: Query, Modify, and Find.

NT Persona Item Codes

The following table contains the item codes specific to the NT persona extension

data:
Size

Iltem Code Uset (bytes) Description
ISS$_NT_PRINCIPAL Q,F varying Principal name as text

string
ISS$ NT_TOKEN_ Q.F varying NT user name as text
USERNAME string
ISS$ NT_TOKEN_ Q,F varying NT domain as text string
DOMAINNAME
ISS$_EXTENSION Q.F varying The text string "NT"
ISS$ NT_FLAGS Q.M 4 Various flags
ISS$ NT_USER_ Q.M 4 NT-Specific User Field
REFCOUNT
ISS$_NT_CREDENTIALS Q.M varying All Token and Security info
ISS$ NT_NT _OWF_ Q.M varying NT Password

PASSWORD

tUse descriptions are: Query, Modify, and Find.

SYS2-217

System Service Descriptions
$PERSONA_QUERY (Alpha Only)

Size
Item Code Uset (bytes) Description
ISS$_ NT_LM_OWF_ Q.M varying LM Password
PASSWORD
ISS$_ NT_TOKEN_ Q.F 16 User’s session key
USERSESSIONKEY
ISS$_ NT_TOKEN_ Q.F 8 LM session key

LMSESSIONKEY

tUse descriptions are: Query, Modify, and Find.

Required Access or Privileges
No privileges are required to call this service.

Required Quota
None

Related Services

$PERSONA_ASSUME, $PERSONA _CLONE, $PERSONA_CREATE,
$PERSONA_CREATE_EXTENSION, $PERSONA DELETE_EXTENSION,
$PERSONA_DELEGATE, $SPERSONA_DELETE, $SPERSONA_EXTENSION _
LOOKUP, $SPERSONA_FIND, $SPERSONA_MODIFY, $SPERSONA_RESERVE

Condition Values Returned

SYS2-218

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The item list cannot be read by the caller, or the
buffer length or buffer cannot be written by the
caller.

SS$_BADPARAM An invalid parameter was specified.

SS$ BADITMCOD The item list contains an invalid item code.

SS$ NOSUCHEXT The extension requested does not exist on the
system.

SS$ PERSONANONGRATA The persona ID supplied is invalid.

System Service Descriptions
$PERSONA_RESERVE (Alpha Only)

$PERSONA_RESERVE (Alpha Only)
Reserve Persona Slot

Reserves a persona ID in the server’s persona table to be filled in by the
$PERSONA_DELEGATE system service.

Format
SYS$PERSONA_RESERVE clientPID ,persona

C Prototype

int sys$persona_reserve (unsigned int *clientPID, unsigned int *persona);

Arguments

clientPID

OpenVMS usage: process_ID

type: longword (unsigned)

access: read only

mechanism: by reference

Address of a longword containing the External Process Identification (EPID) of

the client process for which the server is reserving the slot.

persona

OpenVMS usage: persona

type: longword (unsigned)

access: write only

mechanism: by reference

Address of a longword into which the persona identification is written. This

service sets aside the identification for the client’s to-be-delegated persona.
Description

This service reserves a persona identifier slot within the current process for a
specific client process to use in delegating its persona to this process. A reserved
persona slot can be deleted by a call to the SPERSONA_DELETE service. When
a return fails, no persona slot has been reserved for the client process.

The delegation of persona is only supported for processes residing on the same
node of a cluster.

Required Access or Privileges
IMPERSONATE

Required Quota
BYTLM

Related Services

$PERSONA_ASSUME, $PERSONA CLONE, $PERSONA CREATE,
$PERSONA CREATE_EXTENSION, $PERSONA DELETE_EXTENSION,
$PERSONA DELEGATE, $PERSONA DELETE, $PERSONA EXTENSION _
LOOKUP, SPERSONA_FIND, $SPERSONA_MODIFY

SYS2-219

System Service Descriptions
$PERSONA_RESERVE (Alpha Only)

Condition Values Returned

SYS2-220

SS$ NORMAL
SS$_ACCVIO
SS$ BADPARAM
SS$ EXQUOTA

SS$ NONEXPR

The service completed successfully.
The item list cannot be read by the caller.
An invalid parameter was specified.

The caller lacks sufficient quota to allocate a new
persona.

The specified process does not exist, or an invalid
process identification was specified.

System Service Descriptions
$PROCESS_AFFINITY (Alpha Only)

$PROCESS_AFFINITY (Alpha Only)
Modify Process Affinity

On Alpha systems, allows modification of the CPU affinity set for a specified
kernel thread.

This service accepts 64-bit addresses.

Format
SYS$PROCESS_AFFINITY [pidadr] [,prcnam] [,select_mask] [,modify_mask]
[,prev_mask] [,flags]
C Prototype

int sys$process_affinity (unsigned int *pidadr, void *prcnam, struct _generic_64
*select_mask, struct _generic_64 *modify_mask, struct
_generic_64 *prev_mask, struct _generic_64 *flags);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Process identification (PID) of a kernel thread whose affinity mask is to be
modified or returned. The pidadr argument is the 32- or 64-bit address of a
longword that contains the PID.

Process selection is made through a combination of the pidadr and prcnam
arguments. If neither are specified or if both have a zero value, the service
operations are made to the user affinity mask of the current kernel thread of
the calling process. The pidadr argument takes precedence over the prcnam
argument in any circumstances where both are supplied in the service call.

prcnam
OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Process name of the process whose affinity mask is to be modified or returned.
The prcnam argument is the 32- or 64-bit address of a character string descriptor
pointing to the process name string. A process can be identified with a 1- to 15-
character string. The service operations are made to the user affinity mask of the
initial thread of the specified process.

If pidadr and prcnam are both specified, then pidadr is modified or returned
and prcnam is ignored. If neither argument is specified, then the context of the
current kernel thread of the calling process is modified or returned.

SYS2-221

System Service Descriptions
$PROCESS_AFFINITY (Alpha Only)

SYS2-222

select_mask
OpenVMS usage: mask_quadword

type: guadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Mask specifying which bits of the specified process’ affinity mask are to be
modified. The select_mask argument is the 32- or 64-bit address of a quadword
bit vector wherein a bit, when set, specifies that the corresponding CPU position
in the mask is to be modified.

The individual CPU bits in select_mask can be referenced by their symbolic
name constants, CAP$M_CPUO through CAP$M_CPU31. These constants (zero-
relative to match system CPU IDs) specify the position in the mask quadword
that correspond to the bit name. Multiple CPUs can be selected by ORing
together the appropriate bits.

modify_mask
OpenVMS usage: mask_quadword

type: guadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Mask specifying the settings for those explicit affinities selected in the select
mask argument. The modify_mask argument is the 32- or 64-bit address of a
guadword bit vector wherein a bit, when set, specifies that the corresponding CPU
is to be added to the specified process affinity set; when clear, the corresponding
CPU is to be removed from the specified process affinity set.

The bit constants CAP$M_CPUO through CAP$M_CPU31 can be used to modify
the appropriate bit position in the quadword pointed to by modify_mask.
Multiple CPUs can be added to the affinity set by ORing together the appropriate
bits.

To add a specific CPU to the affinity mask set, that bit position must be set in
both select_mask and modify_mask. To remove a specific CPU from the affinity
mask set, that bit position must be set in select_ mask and clear in modify_
mask.

The constant CAP$K_ALL_CPU_ADD, when specified in modify_mask, indicates
that all CPUs specified in select_mask are to be added to the affinity mask set.
The constant CAP$K_ALL_CPU_REMOVE indicates that all CPUs in select_
mask are to be removed from the affinity mask set.

prev_mask

OpenVMS usage: mask_quadword

type: guadword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

Previous CPU affinity mask for the specified kernel thread before execution of
this call to $SPROCESS_AFFINITY. The prev_mask argument is the 32- or 64-bit
address of a quadword into which $PROCESS_AFFINITY writes the previous
explicit affinity bit mask.

System Service Descriptions

$PROCESS_AFFINITY (Alpha Only)

flags

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Options selected for affinity modification. The flags argument is a quadword bit
vector wherein a bit corresponds to an option. Only the bits specified below are
used; the remainder of the quadword bits are reserved and must be 0.

Each option (bit) has a symbolic name, which the $CAPDEF macro defines. The
flags argument is constructed by performing a logical OR operation using the

symbolic names of each desired option.

The following table describes the symbolic name of each option:

Symbolic Name

Description

CAP$M_FLAG_PERMANENT

CAP$M_FLAG_CHECK_CPU

Indicates whether to modify the
permanent process affinities in addition
to the current image copy. If CAP$M_
FLAG_PERMANENT is set, then both
the permanent and current affinities are
modified. If the flag bit is clear or flags is
unspecified, then just the current image
process affinities are modified.

This bit also determines which of the
affinity masks are returned in prev_
mask. If set, the permanent mask, used
to reinitialize the current set at image
rundown, is returned. If the bit is clear
or the flags argument is not specified, the
current running mask is returned.

Determines whether the kernel thread
can be left in a nonrunnable state under
some circumstances. No operation of
this service will allow a transition from
a runnable to blocked state; however, if
the kernel thread is already at a blocked
state, this bit determines whether the
result of the operation must leave it
runnable. If CAP$M_FLAG_CHECK_
CPU is set or flags is unspecified, the
kernel thread will be checked to ensure
it can safely run on one of the CPUs in
the active set; otherwise, any valid state
operations on kernel threads already in a
blocked state will be allowed.

SYS2-223

System Service Descriptions
$PROCESS_AFFINITY (Alpha Only)

Description

SYS2-224

Symbolic Name Description
CAP$SM_FLAG_CHECK_CPU_ Indicates whether a check is made to
ACTIVE verify that all CPUs in the select mask

that are about to be selected for affinity
binding are in the active set. This does
not apply to CPUs that are about to be
cleared from the current affinity set.
Unlike CAP$M_FLAG_CHECK_CPU
where only a single CPU has to be valid
for the condition to pass, CAP$M_FLAG _
CHECK_CPU_ACTIVE requires that all
CPUs in the selected set must pass the
criteria.

The Modify Process Affinity system service, based on the arguments select_mask
and modify_mask, adds or removes CPUs from the specified kernel thread’s
affinity mask sets. If specified, the previous affinity mask is returned in prev_
mask. With the modify_mask argument, multiple CPUs can be added to or
removed from the process affinity mask set in the same system service call.

Adding a specific CPU to the process affinity mask indicates that the kernel
thread is able to execute only on that CPU or on the others specified in the
mask. Affinity scheduling takes effect as soon as the affinity mask becomes
nonzero, limiting the CPU selection for the kernel thread to what is specified and
available. Thread selection and execution is still subject to standard capability
requirements, but only the affinity CPU set is considered when looking for an
available site. When the affinity mask is cleared, all CPUs are again considered
available and affinity is deactivated.

Either modify_mask or prev_mask, or both, must be specified as arguments. If
modify_mask is specified, then select_mask must be specified as an argument.
If modify_mask is not specified, then no modifications are made to the affinity
mask for the specified kernel thread. In this case, select_mask is ignored. If
prev_mask is not specified, then no previous mask is returned.

No service changes will be allowed if the specified kernel thread will transition
from a runnable to blocked state. The CAP$M_FLAG _CHECK_CPU bit in the
flags argument requires that the final thread state be runnable regardless of
previous state; otherwise, interim changes that maintain a blocked state are
allowed if the thread is already in one.

Required Privileges

The caller must have the ALTPRI privilege to call SYS$PROCESS AFFINITY to
modify its own affinity mask. To modify another process’ affinity mask, the caller
must have:

ALTPRI—To modify any process with a matching UIC
ALTPRI and GROUP—To modify any process in the same UIC group
ALTPRI and WORLD—To modify any process

System Service Descriptions
$PROCESS_AFFINITY (Alpha Only)

To call SYS$PROCESS_AFFINITY simply to retrieve the specific process or global
mask, the caller need only have the following privileges:

None—To retrieve the state of itself or any process with a matching UIC
GROUP—To retrieve the state of any process in the same UIC group
WORLD—To retrieve the state of any process

Related Services

$CPU_CAPABILITIES
$PROCESS_CAPABILITIES

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_BADPARAM One of more arguments has an invalid value.

SS$ ACCVIO The service cannot access the locations specified
by one or more arguments.

SS$_NOPRIV Insufficient privilege for attempted operation.

SS$ NOSUCHTHREAD The specified kernel thread does not exist.

SS$_NONEXPR The specified process does not exist, or an invalid
process identification was specified.

SS$_IVLOGNAM The process name string has a length of 0 or has
more than 15 characters.

SS$_CPUCAP No CPU can run the specified process with new
affinities.

SS$_INSFARG Fewer than the required number of arguments

were specified or no operation was specified.

SYS2-225

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

$PROCESS_CAPABILITIES (Alpha Only)
Modify Process User Capabilities

On Alpha systems, allows modification of the user capability set for a specified
kernel thread, or for the global user capability process default.

This service accepts 64-bit addresses.

Format

SYS$PROCESS_CAPABILITIES [pidadr] [,prcnam] [,select_mask] [,modify _mask]
[,prev_mask] [,flags]

C Prototype

int sys$process_capabilities (unsigned int *pidadr, void *prcnam, struct _generic_64
*select_mask, struct _generic_64 *modify_mask, struct
_generic_64 *prev_mask, struct _generic_64 *flags);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Process identification (PID) of a kernel thread whose user capability mask is to
be modified or returned. The pidadr argument is the 32- or 64-bit address of a
longword that contains the PID.

Process selection is made through a combination of the pidadr and prcnam
arguments. If neither are specified or if both have a zero value, the service
operations are made to the user capability mask of the current kernel thread of
the calling process. The pidadr argument takes precedence over the prcnam
argument where both are supplied in the service call.

If the constant CAP$M_FLAG_DEFAULT_ONLY is specified in flags, then the
user portion of the default process user capability mask is modified or returned
instead, regardless of the values specified in pidadr.

prcnam
OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Process name of the process whose user capability mask is to be modified or
returned. The prcnam argument is the 32- or 64-bit address of a character
string descriptor pointing to the process name string. A process can be identified
with a 1- to 15-character string. The service operations are made to the user
capability mask of the initial thread of the specified process.

You can use the prcnam argument only if the process identified by the descriptor
has the same UIC group number as the calling process. To obtain information
about processes in other groups, the pidadr argument must be used.

SYS2-226

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

If pidadr and prcnam are both specified, then prcnam is ignored. If neither
argument is specified, then the context of the current kernel thread of the calling
process is modified or returned.

select_mask
OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Mask specifying which bits of the specified process’ user capability mask are to be
modified. The select_mask argument is the 32- or 64-bit address of a quadword
bit vector wherein a bit, when set, specifies that the corresponding user capability
is to be modified.

The individual user capability bits in select_mask can be referenced by their
symbolic bit constant names, CAP$M_USER1 through CAP$M_USER16. These
constants (not zero-relative) specify the position in the mask quadword that
corresponds to the bit name. Multiple capabilities can be selected by ORing
together the appropriate bits.

Alternatively, the constant CAP$SK_ALL_USER, when specified as the select_
mask argument, selects all user capabilities.

modify_mask
OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Mask specifying the settings for those capabilities selected in the select_
mask argument. The modify_mask argument is the 32- or 64-bit address of
a quadword bit vector wherein a bit, when set, specifies that the corresponding
user capability is to be added to the specified kernel thread; when clear, the
corresponding user capability is to be removed.

The symbolic bit constants CAP$M_USER1 through CAP$M_USER16 can be used
to modify the appropriate bit position in modify_mask. Multiple capabilities can
be modified by ORing together the appropriate bits.

To add a specific user capability to a kernel thread, that bit position must be set
in both select_mask and modify_mask. To remove a specific user capability
from a kernel thread, that bit position must be set in select_ mask and clear in
modify_mask.

The symbolic constant CAP$K_ALL_USER_ADD, when specified in modify_
mask, indicates that all capabilities specified in select_mask are to be added
to the appropriate capability set. The symbolic constant CAP$K_ALL USER_
REMOVE indicates that all specified capabilities are to be removed from the set.

prev_mask

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

Previous user capability mask for the specified process or thread before execution
of this call to $PROCESS_CAPABILITIES. The prev_mask argument is the 32-
or 64-bit address of a quadword into which $PROCESS_CAPABILITIES writes

SYS2-227

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

SYS2-228

the previous bit mask. If CAP$M_FLAG_DEFAULT_ONLY is set in the flags
argument, then prev_mask will contain the user portion of the global default
capability mask.

flags

OpenVMS usage: mask_quadword

type: guadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

Options selected for the user capability modification. The flags argument is
a quadword bit vector wherein a bit corresponds to an option. Only the bits
specified below are used; the remainder of the quadword bits are reserved and
must be zero.

Each option (bit) has a symbolic name, defined by the $CAPDEF macro. The
flags argument is constructed by performing a logical OR operation using the
symbolic names of each desired option.

The following table describes the symbolic name of each option:

Symbolic Name Description

CAP$M_FLAG_DEFAULT_ONLY Indicates that the specified operations
are to be performed on the global context
cell instead of on a specific kernel thread.
This bit supersedes any individual kernel
thread specified in pidadr or prcnam.
Specifying this bit constant applies the
service operations to the capabilities for
all newly created processes.

CAP$M_FLAG_PERMANENT Indicates whether to modify the
permanent user process capabilities in
addition to the current image copy. If
CAPSM_FLAG_PERMANENT is set,
then both the permanent and current
user process capabilities are modified. If
this bit is clear or flags is unspecified,
then just the current image process
capabilities are modified.

This bit also determines which of the
capability masks are returned in prev_
mask. If set, the permanent mask, used
to reinitialize the current set at image
rundown, is returned. If the bit is clear
or the flags argument is not specified, the
current running mask is returned.

Description

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

Symbolic Name Description

CAP$M_FLAG_CHECK_CPU Determines whether the kernel thread
can be left in a nonrunnable state under
some circumstances. No operation of
this service will allow a transition from
runnable to blocked state; however, if
the kernel thread is already at a blocked
state, this bit determines whether the
result of the operation must leave it
runnable. If CAP$M_FLAG_CHECK _
CPU is set or flags is unspecified, the
kernel thread will be checked to ensure it
can safely run on one of the CPUs in the
active set; otherwise, any state operations
on kernel threads already in a blocked
state will be allowed.

The Modify Process User Capabilities system service, based on the arguments
select_mask and modify _mask, adds or removes user capabilities for the
specified kernel thread. If specified, the previous capability mask is returned in
prev_mask. With the modify_mask argument, multiple user capabilities for a
kernel thread can be added or removed in the same system service call.

Either modify_mask or prev_mask, or both, must be specified as arguments. If
modify_mask is specified, then select_mask must be specified as an argument.
If modify_mask is not specified, then no modifications are made to the user
capability mask for the specified kernel thread. In this case, select_mask is
ignored. If prev_mask is not specified, then no previous mask is returned.

No service changes will be allowed if the specified kernel thread will transition
from a runnable to blocked state. The CAP$M_FLAG_CHECK_CPU bit in the
flags argument requires that the final thread state be runnable regardless of
previous state; otherwise, interim changes that maintain a blocked state are
allowed if the thread is already in one.

If the symbolic bit constant CAP$SM_FLAG_DEFAULT_ONLY is set in the flags
argument, the user capability modifications or the mask read requests are made
only to the global initialization cell regardless of what process selections values
are specified in the pidadr and prcnam arguments.

Required Access or Privileges

The caller must have the ALTPRI privilege to call SYSSPROCESS _
CAPABILITIES to modify its own user capability mask. To modify another
process’ user capability mask, the caller must have:

ALTPRI—To modify any process with a matching UIC
ALTPRI and GROUP—To modify any process in the same UIC group
ALTPRI and WORLD—To modify any process

SYS2-229

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

To call SYS$PROCESS_CAPABILITIES simply to retrieve the specific process or
global mask, the caller need only have the following privileges:

None—To retrieve the state of itself or any process with a matching UIC
GROUP—To retrieve the state of any process in the same UIC group
WORLD—To retrieve the state of any process

Related Services
$CPU_CAPABILITIES

Condition Values Returned

SYS2-230

SS$_NORMAL
SS$_BADPARAM
SS$_ACCVIO

SS$ NOSUCHTHREAD
SS$ NONEXPR

SS$_IVLOGNAM

SS$_NOPRIV
SS$_CPUCAP

SS$_INSFARG

The service completed successfully.
One of more arguments has an invalid value.

The service cannot access the locations specified
by one or more arguments.

The specified kernel thread does not exist.

The specified process does not exist, or an invalid
process identification was specified.

The process name string has a length of 0 or
more than 15 characters.

Insufficient privilege for attempted operation.

No CPU can run the specified process with new
capabilities.

Fewer than the required number of arguments
were specified or no operation was specified.

System Service Descriptions
$PROCESS_SCAN

$PROCESS SCAN
Process Scan

Creates and initializes a process context that is used by $GETJPI to scan
processes on the local system or across the nodes in an OpenVMS Cluster system.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYS$PROCESS_SCAN pidctx [,itmlst]

C Prototype

int sys$process_scan (unsigned int *pidctx, void *itmlst);

Arguments
pidctx
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

Context value supplied by $SPROCESS_SCAN to be used as the pidadr argument
of $GETJPI. The pidctx argument is the 32-bit address (on VAX systems) or
the 32- or 64-bit address (on Alpha systems) of a longword that is to receive

the process context longword. This longword normally contains 0 or a previous
context. If it contains a previous context, the old context is deleted. If it contains
a value other than 0 or a previous context, the old value is ignored.

itmlst

OpenVMS usage: 32-bit item_list_3 or 64-bit item_list_64b

type: longword (unsigned) for 32-bit; quadword (unsigned) for 64-bit
access: read only

mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)
Item list specifying selection criteria to be used by the scan or to control the scan.

The itmlst argument is the 32-bit address (on VAX systems) or the 32- or 64-bit
address (on Alpha systems) of a list of item descriptors, each of which describes
one selection criterion or control option. Within each selection criterion you can
include several item entries. An item list in 32-bit format is terminated by a
longword of 0; an item list in 64-bit format is terminated by a quadword of 0. All
items in an item list must be of the same format—either 32-bit or 64-bit.

The information in the item list is passed to the item descriptor in one of two
ways. If the item descriptor can always hold the actual value of the selection
criterion, the value is placed in the second longword of the item descriptor and
the buffer length is specified as 0. If the item descriptor points to the actual
value of the selection criterion, the address of the value is placed in the second
longword of the item descriptor and you must specify the buffer length for the
selection criterion. Each item code description specifies whether the information
is passed by value or by reference.

SYS2-231

System Service Descriptions
$PROCESS_SCAN

The following diagram depicts the format of a 32-bit item descriptor that passes
the selection criterion as a value:

31 15 0
Item code 0
Item value
Iltem—-specific flags
ZK-0949A-GE

The following diagram depicts the format of a 64-bit item descriptor that passes
the selection criterion as a value:

31 15

Item code (MBO)

(MBMO)

ltem value

Item-specific flags

ZK-8924A-GE

The following diagram depicts the format of a 32-bit item descriptor that passes
the selection criterion by reference:

31 15 0
Item code Buffer length
Buffer address
Item—specific flags
ZK-0948A-GE

The following diagram depicts the format of a 64-bit item descriptor that passes
the selection criterion by reference:

31 15

Item code (MBO)

(MBMO)

Buffer length

Buffer address

Item-specific flags

ZK-8925A-GE

The following table defines the item descriptor fields:

SYS2-232

System Service Descriptions
$PROCESS_SCAN

Descriptor Field

Definition

Buffer length

Item code

ltem value

Buffer address

Buffer length is specified in a different way for the
two types of item descriptors.

Character string or A word containing a

reference descriptors: user-supplied integer
specifying the length
(in bytes) of the buffer
from which $PROCESS _
SCAN retrieves a selection
criterion. The length of the
buffer needed depends on
the item code specified in
the item descriptor.

Immediate value The length of the buffer is
descriptors: always specified as 0.

A word containing the selection criterion. These
codes are defined by the $PSCANDEF macro.

Each item code is described after this list of
descriptor fields.

A longword containing the actual value of the
selection criterion. When you specify an item code
that is passed by value, $PROCESS_SCAN searches
for the actual value contained in the item list.

See the description of the buffer address field for
information about item codes that are passed by
reference.

A longword containing the user-supplied address

of the buffer from which $PROCESS_SCAN
retrieves information needed by the scan. When
you specify an item code that is passed by reference,
$PROCESS_SCAN uses the address as a pointer

to the actual value. See the description of the item
value field for information about item codes that are
passed by value.

SYS2-233

System Service Descriptions
$PROCESS_SCAN

ltem Codes

SYS2-234

Descriptor Field Definition

Item-specific flags A longword that contains flags to help control
selection information. Item-specific flags, for
example EQL or NEQ, are used to specify how the
value specified in the item descriptor is compared to
the process value.

These flags are defined by the $SPSCANDEF macro.
Some flags are common to multiple item codes;
other flags are specific to an individual item code.
See the description of each item code to determine
which flags are used.

For item codes that describe bit masks or character
strings, these flags control how the bit mask or
character string is compared with that in the
process. By default, they are compared for equality.

For item codes that describe integers, these flags
specify an arithmetic comparison of an integer
item with the process attribute. For example, a
PSCANS$M_GTR selection specifying the value 4
for the item code PSCAN$_PRIB finds only the
processes with a base priority above 4. Without one
of these flags, the comparison is for equality.

MBO Must be 1.
MBMO Must be —-1.

PSCAN$_ACCOUNT
When you specify PSCAN$_ACCOUNT, $GETJPI returns information about
processes that match the account field.

If the string supplied in the item descriptor is shorter than the account field,
the string is blank-padded for the comparison unless the item-specific flag
PSCANS$SM_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed
by reference. The length of the buffer is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the account field is 8 bytes, the PSCANS$_
ACCOUNT hbuffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

PSCAN$_AUTHPRI
When you specify PSCAN$_AUTHPRI, $GETJPI returns information about
processes that match the authorized base priority field.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

System Service Descriptions
$PROCESS_SCAN

PSCANS$_CURPRIV

When you specify PSCAN$_CURPRIV, $GETJPI returns information about
processes that match the current privilege field. Privilege bits are defined by the
$PRVDEF macro.

Because the bit mask information is too long to be passed by value, the
information is passed by reference. The privilege buffer must be exactly 8
bytes, otherwise the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCANS$_GETJPI_BUFFER_SIZE

When you specify PSCAN$_GETJPI_BUFFER_SIZE, you determine the size of a
buffer to be used by $GETJPI to process multiple requests in a single message.
Using this item code can greatly improve the performance of scans on remote
nodes, because fewer messages are needed. This item code is ignored during
scans on the local node.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0. The
buffer is allocated by $SPROCESS_SCAN; you do not have to allocate a buffer.

If you use PSCAN$ _GETJPI_BUFFER_SIZE with $PROCESS_SCAN, all calls to
$GETJPI using the context established by $PROCESS_SCAN must request the
same item code information. Because $GETJPI locates information for more than
one process at a time, it is not possible to change the item codes or the length of
the buffers used in the $GETJPI item list. $GETJPI checks each call and returns
the error SS$ BADPARAM if an attempt is made to change the item list during
a buffered process scan; however, the buffer addresses can be changed between
$GETJPI calls.

Because the locating and buffering of information by $GETJPI is transparent to a
calling program, you are not required to change the way $GETJPI is called when
you use this item code.

The $GETJIPI buffer uses the process quota BYTLM. If the buffer is too large
for the process quota, $GETJIPI (not $PROCESS_SCAN) returns the error SS$_
EXBYTLM. If the buffer specified is not large enough to contain the data for at
least one process, $GETJPI returns the error SS$ BADPARAM.

No item-specific flags are used with PSCAN$_GETJPI_BUFFER_SIZE.

PSCANS$_GRP
When you specify PSCAN$_GRP, $GETJPI returns information about processes
that match the UIC group number.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. Because the value of the group number is a
word, the high-order word of the value is ignored. The buffer length must be
specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.
PSCAN$_HW_MODEL

When you specify PSCAN$_HW_MODEL, $GETJPI returns information about
processes that match the specified CPU hardware model number.

The hardware model number is an integer, such as VAX$K_V8840. The VAX$
symbols are defined by the $VAXDEF macro.

SYS2-235

System Service Descriptions
$PROCESS_SCAN

SYS2-236

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_HW_NAME

When you specify PSCAN$_HW_NAME, $GETJPI returns information about
processes that match the specified CPU hardware name, such as VAX-11/780,
VAX 8800, or VAXstation I1/GPX.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

The PSCAN$_HW_NAME buffer can be up to 128 bytes in length. If the buffer
length is O or greater than 128, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_JOBPRCCNT

When you specify PSCAN$ JOBPRCCNT, $GETJPI returns information
about processes that match the subprocess count for the job (the count of all
subprocesses in the job tree).

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.
PSCAN$_JOBTYPE

When you specify PSCAN$_JOBTYPE, $GETJPI returns information about
processes that match the job type. The job type values include the following:

Value Description

JPISK_LOCAL Local interactive process

JPISK_DIALUP Interactive process accessed by a modem line
JPI$SK_REMOTE Interactive process accessed by using SET HOST
JPISK_BATCH Batch process

JPISK_NETWORK Noninteractive network process
JPI$SK_DETACHED Detached process

These values are defined by the $JPIDEF macro. Note that values checked by
PSCANS$_JOBTYPE are similar to PSCAN$_MODE values.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.
PSCANS$_KT_COUNT

When you specify PSCAN$_KT_COUNT, $PROCESS_SCAN uses the current
count of kernel threads for the process as a selection criteria.

The flags that can be used with this item code are listed in Table SYS2-3.

System Service Descriptions
$PROCESS_SCAN

PSCAN$_MASTER_PID

When you specify PSCAN$_MASTER_PID, $GETJPI returns information about
processes that are descendants of the specified parent process. The master
process is the first process created in the job tree. The PSCAN$ OWNER item is
similar, but the owner process is the process that created the target process (the
owner process might itself be a subprocess). Although all jobs in a job tree must
have the same master, they can have different owners.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_MEM
When you specify PSCAN$_MEM, $GETJPI returns information about processes
that match the UIC member number.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. Because the value of the member number is a
word, the high-order word of the value is ignored. The buffer length must be
specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.
PSCAN$_MODE

When you specify PSCAN$_MODE, $GETJPI returns information about processes
that match the specified mode. Mode values include the following:

Value Description
JPISK_INTERACTIVE Interactive process
JPI$SK_BATCH Batch job
JPISK_NETWORK Noninteractive network job
JPISK_OTHER Detached and other process

These values are defined by the $JPIDEF macro. Note that values checked by
PSCAN$_MODE are similar to PSCAN$_JOBTYPE values.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.
PSCAN$_MULTITHREAD

When you specify PSCAN$ MULTITHREAD, $PROCESS_SCAN uses the
maximum count of kernel threads for the process as a selection criteria.

The flags that can be used with this item code are listed in Table SYS2-3.
PSCAN$ NODE_CSID
When you specify PSCAN$_NODE_CSID, $GETJPI returns information about

processes on the specified nodes. To scan all nodes in an OpenVMS Cluster
system, you specify a CSID of 0 and the item-specific flag PSCAN$M_NEQ.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as O.

The flags that can be used with this item code are listed in Table SYS2-3.

SYS2-237

System Service Descriptions
$PROCESS_SCAN

SYS2-238

PSCAN$_NODENAME
When you specify PSCAN$_NODENAME, $GETJPI returns information about
processes that match the specified node names.

To scan all of the nodes in an OpenVMS Cluster system, specify the node name
using an asterisk wildcard (*) and the PSCAN$M_WILDCARD item-specific flag.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the node name is 6 bytes, the PSCANS$_
NODENAME buffer can be up to 64 bytes in length. If the buffer length is O
or greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_OWNER

When you specify PSCAN$_OWNER, $GETJPI returns information about
processes that are immediate descendants of the specified process. The PSCANS
MASTER_PID item is similar, but the owner process is the process that created
the target process (the owner process might itself be a subprocess). Although all
jobs in a job tree must have the same master, they can have different owners.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCANS$_PRCCNT

When you specify PSCAN$_PRCCNT, $GETJPI returns information about
processes that match the subprocess count (the count of all immediate
descendants of a given process). The PSCAN$ JOBPRCCNT item code is similar,
except that JOBPRCCNT is the count of all subprocesses in a job.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_PRCNAM
When you specify PSCAN$ PRCNAM, $GETJPI returns information about
processes that match the specified process names.

The process name string is blank-padded for the comparison unless the item-
specific flag PSCAN$SM_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the process name field is 15 bytes, the PSCANS _
PRCNAM buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCANS$_PRI

When you specify PSCAN$_PRI, $GETJPI returns information about processes
that match current priority. Note that the current priority of a process can be
temporarily increased as a result of system events such as the completion of 1/0O.

System Service Descriptions
$PROCESS_SCAN

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as O.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCANS$_PRIB
When you specify PSCAN$_PRIB, $GETJPI returns information about processes
that match base priority.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCANS$_STATE

When you specify PSCAN$_STATE, $GETJPI returns information about processes
that match the specified process state. State values, for example SCH$C_COM
and SCH$C_PFW, are defined by the $STATEDEF macro.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCANS$_STS

When you specify PSCAN$_STS, $GETJPI returns information that matches the
current status mask. Without any item-specific flags, the match is for a process
mask that is equal to the pattern. Status bits, for example PCB$V_ASTPEN or
PCB$V_PSWAPM, are defined by the $PCBDEF macro.

This bit mask item code uses an immediate value descriptor; the selection value
is placed in the second longword of the item descriptor. The buffer length must
be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCANS$ TERMINAL

When you specify PSCAN$_TERMINAL, $GETJPI returns information that
matches the specified terminal names. The terminal name string is blank-padded
for the comparison unless the item-specific flag PSCAN$SM_PREFIX_MATCH is
present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the terminal name field is 8 bytes, the PSCANS$
TERMINAL buffer can be up to 64 bytes in length. If the buffer length is O or
greater than 64, the SS$ IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCANS$_UIC

When you specify PSCAN$_UIC, $GETJPI returns information about processes
that match the UIC identifier. To convert an alphanumeric identifier name to the
internal identifier, use the $ASCTOID system service before calling $PROCESS _
SCAN.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as O.

SYS2-239

System Service Descriptions
$PROCESS_SCAN

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_USERNAME
When you specify PSCAN$_USERNAME, $GETJPI returns information about
processes that match the specified user name.

The user name string is blank-padded for the comparison unless the item-specific
flag PSCAN$SM_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the user name field is 12 bytes, the PSCANS$_
USERNAME buffer can be up to 64 bytes in length. If the buffer length is O or
greater than 64, the SS$ IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

Item-Specific Flags

Table SYS2-3

Table SYS2-3 lists the flags and the item codes that can be used together. The
flags are described in the section following the table:

Flags Used with $PROCESS_SCAN

Item-Specific Flag

Common to the Following

PSCANS$M_BIT_ALL
PSCANS$M_BIT_ANY
PSCANS$M_CASE_

BLIND

PSCAN$M_EQL

PSCAN$M_GEQ

PSCAN$M_GTR
PSCAN$M_LEQ

PSCANS$M_LSS

PSCANS$M_NEQ

PSCAN$M_OR

PSCANS$M_PREFIX_

MATCH

SYS2-240

Description $PROCESS_SCAN ltem Codes
All bits set in pattern set in target _CURPRIV
Any bit set in pattern set in target _STS
Match without regard to case of _ACCOUNT
letters
Match value exactly (the default) All except
_BUFFER_SIZE
Match if value is greater than or _AUTHPRI
equal to
Match if value is greater than _GRP
Match if value is less than or equal _JOBPRCCNT
to
Match if value is less than _PRI
_PRIB
Match if value is not equal All except
_BUFFER_SIZE
Match this value or the next value All except
_BUFFER_SIZE
Match on leading substring _HW_NAME

(continued on next page)

System Service Descriptions
$PROCESS_SCAN

Table SYS2-3 (Cont.) Flags Used with $PROCESS_SCAN

Common to the Following

Item-Specific Flag Description $PROCESS_SCAN Item Codes
PSCANS$M_ Match a wildcard pattern _NODENAME
WILDCARD _PRCNAM
_TERMINAL
_USERNAME

PSCAN$SM_BIT_ALL

If the PSCANSM_BIT_ALL flag is used, all bits set in the pattern mask specified
by the item descriptor must also be set in the process mask. Other bits in the
process mask can also be set.

For item codes that describe bit masks, such as privilege masks and status words,
this flag controls how the pattern bit mask specified by the item descriptor is
compared with that in the process. By default, the bit masks are compared for
equality.

The PSCAN$M_BIT_ALL flag is used only with bit masks.

PSCANSM_BIT_ANY
If the PSCANSM_BIT_ANY flag is used, a match occurs if any bit in the pattern
mask is also set in the process mask.

For item codes that describe bit masks, such as privilege masks and status words,
this flag controls how the pattern bit mask specified by the item descriptor is
compared with that in the process. By default, the bit masks are compared for
equality.

The PSCANS$M_BIT_ANY flag is used only with bit masks.

PSCAN$M_CASE_BLIND

When you specify PSCAN$M_CASE_BLIND to compare the character string
specified by the item descriptor with the character string value from the process,
$PROCESS_SCAN does not distinguish between uppercase and lowercase letters.

The PSCAN$M_CASE_BLIND flag is used only with character-string item codes.
The PSCAN$M_CASE_BLIND flag can be specified with either the PSCAN$M_
PREFIX_MATCH flag or the PSCAN$M_WILDCARD flag.

PSCAN$M_EQL

When you specify PSCAN$SM_EQL, $PROCESS_SCAN compares the value
specified by the item descriptor with the value from the process to see if there is
an exact match.

PSCAN$M_EQL and PSCAN$M_NEQ are used with bit masks, character strings,
and integers to control how the item is interpreted. Only one of the flags can be
specified; if more than one of these flags is used, the SS$ BADPARAM error is
returned. If you want to specify that bits not set in the pattern mask must not be
set in the process mask, use PSCAN$SM_EQL.

PSCAN$M_GEQ

When you specify PSCAN$M_GEQ, $PROCESS_SCAN selects a process if the
value from the process is greater than or equal to the value specified by the item
descriptor.

SYS2-241

System Service Descriptions
$PROCESS_SCAN

SYS2-242

PSCANSM_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$ BADPARAM error is returned.

PSCANS$SM_GTR
When you specify PSCAN$SM_GTR, $PROCESS_SCAN selects a process if the
value from the process is greater than the value specified by the item descriptor.

PSCANSM_GEQ, PSCAN$SM_GTR, PSCAN$SM_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$ BADPARAM error is returned.

PSCANS$SM_LEQ

When you specify PSCAN$SM_LEQ, $PROCESS_SCAN selects a process if the
value from the process is less than or equal to the value specified by the item
descriptor.

PSCANSM_GEQ, PSCAN$SM_GTR, PSCANS$SM_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$ BADPARAM error is returned.

PSCANS$M_LSS
When you specify PSCAN$M_LSS, $PROCESS_SCAN selects a process if the
value from the process is less than the value specified by the item descriptor.

PSCANSM_GEQ, PSCAN$M_GTR, PSCANS$SM_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$ BADPARAM error is returned.

PSCANS$M_NEQ
When you specify PSCAN$SM_NEQ, $PROCESS_SCAN selects a process if the
value from the process is not equal to the value specified by the item descriptor.

PSCANS$M_EQL and PSCAN$M_NEQ are used with bit masks, character strings,
and integers to control how the item is interpreted. Only one of the flags can be
specified; if more than one of these flags is used, the SS$ BADPARAM error is
returned.

PSCAN$M_OR

When you specify PSCAN$M_OR, $PROCESS_SCAN selects processes whose
values match the current item descriptor or the next item descriptor. The next
item descriptor must have the same item code as the item descriptor with the
PSCAN$M_OR flag. Multiple items are chained together; all except the last item
descriptor must have the PSCAN$M_OR flag.

The PSCAN$M_OR flag can be specified with any other flag and can be used
with bit masks, character strings, and integers. If the PSCAN$M_OR flag is used
between different item codes, or if it is missing between identical item codes, the
SS$_BADPARAM error is returned.

PSCAN$M_PREFIX_MATCH

When you specify PSCANSM_PREFIX_MATCH, $PROCESS_SCAN compares the
character string specified in the item descriptor to the leading characters of the
requested process value.

Description

System Service Descriptions
$PROCESS_SCAN

For example, to find all process names that start with the letters AB, use the
string AB with the PSCAN$SM_PREFIX_MATCH flag. If you do not specify
the PSCAN$SM_PREFIX_MATCH flag, the search looks for a process with the
2-character process name AB.

The PSCAN$M_PREFIX_MATCH flag also allows either the PSCAN$M_EQL
or the PSCAN$M_NEQ flag to be specified. If you specify PSCAN$M_NEQ, the
service matches those names that do not begin with the specified character string.

The PSCAN$SM_PREFIX_MATCH flag is used only with character string item
codes. The PSCAN$M_PREFIX_MATCH flag cannot be specified with the
PSCANS$M_WILDCARD flag; if both of these flags are used, the SS$_BADPARAM
error is returned.

PSCANS$SM_WILDCARD

When you specify PSCAN$SM_WILDCARD, the character string specified by

the item descriptor is assumed to be a wildcard pattern. Acceptable wildcard
characters are the asterisk (*), which allows the match to substitute any number
of character in place of the asterisk, and the percent sign (%), which allows the
match to substitute any one character in place of the percent sign. For example,
if you want to search for all process names that begin with the letter A and

end with the string ER, use the string A*ER with the PSCAN$M_WILDCARD
flag. If the PSCAN$SM_WILDCARD flag is not specified, the search looks for the
4-character process name A*ER.

The PSCAN$SM_WILDCARD is used only with character string item codes. The
PSCAN$M_WILDCARD flag cannot be specified with the PSCAN$SM_PREFIX_
MATCH flag; if both of these flags are used, the SS$ BADPARAM error is
returned. The PSCAN$M_NEQ flag can be used with PSCAN$M_WILDCARD to
exclude values during a wildcard search.

The following restrictions apply to the flags above:

« Only one of the flags PSCAN$SM_EQL, PSCAN$SM_NEQ, PSCANS$M_BIT_
ALL, PSCANSM_BIT_ANY can be specified.

e PSCAN$M_CASE_BLIND item-specific flag also allows either the PSCANS$M _
EQL or the PSCANSM_NEQ flag to be specified.

« Only one of the flags PSCAN$SM_EQL and PSCAN$M_WILD_CARD can be
specified.

The Process Scan system service creates and initializes a process context that is
used by $GETJPI to scan processes on the local system or across the nodes in
an OpenVMS Cluster system. An item list is used to specify selection criteria to
obtain information about specific processes, for example, all processes owned by
one user or all batch processes.

The output of the $PROCESS_SCAN service is a process context longword
named pidctx. This process context is then provided to $GETJPI as the pidadr
argument. The process context provided by $PROCESS_SCAN enables $GETJPI
to search for processes across the nodes in an OpenVMS Cluster system and to
select processes that match certain selection criteria.

SYS2-243

System Service Descriptions
$PROCESS_SCAN

The process context consumes process dynamic memory. This memory is
deallocated when the end of the context is reached. For example, when the
$GETJIPI service returns SS$ NOMOREPROC or when $PROCESS_SCAN is
called again with the same pidctx longword, the dynamic memory is deallocated.
If you anticipate that a scan might be interrupted before it runs out of processes,
$PROCESS_SCAN should be called a second time (without an itmlst argument)
to release the memory. Dynamic memory is automatically released when the
current image terminates.

$PROCESS_SCAN copies the item list and user buffers to the allocated dynamic
memory. This means that the item lists and user buffers can be deallocated or
reused immediately; they are not referenced during the calls to SGETJPI.

The item codes referenced by $PROCESS_SCAN are found in data structures
that are always resident in the system, primarily the process control block (PCB)
and the job information block (JIB). A scan of processes never forces a process
that is swapped out of memory to be brought into memory to read nonresident
information.

See the $GETJPI service for a C program example that uses the $PROCESS
SCAN service.

Required Access or Privileges
None

Required Quota
See the description for the PSCAN$_GETJPI_BUFFER_SIZE item.

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJIPIW, $HIBER, $RESUME, $SETPRI, $SETPRN, $SETPRV, $SETRWM,
$SUSPND, $WAKE

Condition Values Returned

SYS2-244

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The pidctx argument cannot be written by the
caller; the item list cannot be read by the caller;
or a buffer for a reference descriptor cannot be
read.

SS$ BADPARAM The item list contains an invalid item identifier,
or an invalid combination of item-specific flags is
present. Or, an item list containing both 32-bit
and 64-bit item list entries was found.

SS$_IVBUFLEN The buffer length field is invalid. For immediate
value descriptors, the buffer length must be
0. For reference descriptors, the buffer length
cannot be 0 or longer than the maximum for the
specified item code. This error is also returned if
the total length of the item list plus the length of
all of the buffer fields is too large to process.

SS$_IVSSRQ

System Service Descriptions
$PROCESS_SCAN

The pidctx argument was not supplied, or the
item list is improperly formed (for example,
multiple occurrences of a given item code were
interspersed with other item codes).

SYS2-245

System Service Descriptions
$PURGWS

$PURGWS
Purge Working Set

Removes a specified range of pages from the current working set of the calling
process to make room for pages required by a new program segment.

Format
SYS$PURGWS inadr

C Prototype

int sys$purgws (struct _va_range *inadr);

Argument
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference
Starting and ending virtual addresses of the range of pages to be purged. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. The addresses are adjusted up
or down to fall on CPU-specific page boundaries. Only the virtual page number
portion of each virtual address is used; the low-order byte-within-page bits are
ignored.

Description

The Purge Working Set service removes a specified range of pages from the
current working set of the calling process to make room for pages required by
a new program segment; however, the Adjust Working Set Limit (ADJWSL)
service is the preferred mechanism for controlling a process's use of physical
memory resources.

The $PURGWS service locates pages within the specified range and removes
them if they are in the working set.

If the starting and ending virtual addresses are the same, only that single page is
purged.

To purge the entire working set, specify a range of pages from 0 through
7FFFFFFF; in this case, the image continues to execute and pages are faulted
back into the working set as they are needed.

Required Access or Privileges
None

Required Quota
None

Related Services

$ADJISTK, SADIWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$SULWSET, $UPDSEC, $UPDSECW

SYS2-246

System Service Descriptions

$PURGWS
Condition Values Returned
SS$_NORMAL The service completed successfully.
SS$_ACCVIO The input address array cannot be read by the
caller.

SYS2-247

System Service Descriptions
$PURGE_WS (Alpha Only)

$PURGE_WS (Alpha Only)
Purge Working Set

On Alpha systems, removes a specified range of pages from the current working
set of the calling process to make room for pages required by a new program
segment.

This service accepts 64-bit addresses.

Format
SYS$PURGE_WS start_va_64 ,(length_64

C Prototype
int sys$purge_ws (void *start_va_64, unsigned __int64 length_64);

Arguments
start_va 64
OpenVMS usage: address
type: guadword address
access: read only
mechanism: by value
The starting virtual address of the pages to be purged from the working set. The
specified virtual address will be rounded down to a CPU-specific page boundary.
length_64
OpenVMS usage: byte count
type: guadword (unsigned)
access: read only
mechanism: by value
Length of the virtual address space to be purged from the working set. The
specified length will be rounded up to a CPU-specific page boundary so that it
includes all CPU-specific pages in the requested range.
Description

The Purge Working Set service removes a specified range of pages from the
current working set of the calling process to make room for pages required by
a new program segment; however, the Adjust Working Set Limit (JADJWSL)
service is the preferred mechanism for controlling a process’s use of physical
Mmemory resources.

The $PURGE_WS service locates pages within the specified range and removes
them if they are in the working set. To purge the entire working set, specify a
range of pages from 0 through FFFFFFFF.FFFFFFFF (or to the highest possible
process private virtual address, available from $GETJPI); in this case, the image
continues to execute, and pages are faulted back into the working set.

Required Privileges
None

Required Quota
None

SYS2-248

System Service Descriptions
$PURGE_WS (Alpha Only)

Related Services
$ADIWSL, $SLCKPAG_64, SLKWSET_64, $PURGWS, $SULKPAG_64, SULWSET _
64

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS2-249

System Service Descriptions
$PUTMSG

SPUTMSG
Put Message

Writes informational and error messages to processes.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYS$PUTMSG msgvec ,[actrtn] ,[facnam] ,[actprm]

C Prototype

int sys$putmsg (void *msgvec, void (*actrtn)(__unknown_params), void *facnam,
unsigned __int64 actprm);

Arguments
msgvec
OpenVMS usage: cntriblk
type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

Message argument vector specifying the message or messages to be written
and options that $PUTMSG is to use in writing the message or messages. The
msgvec argument is the 32- or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of the message vector.

The message vector consists of one longword followed by one or more message
descriptors, one descriptor per message. The following diagram depicts the
contents of the first longword:

31 15 0
default message options argument count

ZK-1717-GE

The following table describes the message vector fields:

Descriptor Field Definition

Argument count This word-length field specifies the total number of
longwords in the message vector, not including the
first longword (of which it is a part).

Default message options This word-length field specifies which message
component or components are to be written. The
default message options field is a word-length bit
vector wherein a bit, when set, specifies that the
corresponding message component is to be written.
For a description of each of these components, refer
to the Description section.

The following table shows the significant bit numbers. Note that the bit numbers
shown (0, 1, 2, 3) are the bit positions from the beginning of the word; however,

SYS2-250

System Service Descriptions
$PUTMSG

because the word is the second word in the longword, you should add the number
16 to each bit number to specify its exact offset within the longword.

Bit Value Description
0

Include message text

Do not include message text

Include mnemonic name for message text

Do not include mnemonic name for message text

Include severity level indicator
Do not include severity level indicator

Include facility prefix
Do not include facility prefix

N
Or OFr OFr OpF

Bits 4 through 15 must be 0.

You can override the default setting specified by the default message options field
for any or all messages by specifying different options in the new message options
field of any subsequent message descriptor. When you specify hew message
options, the options it specifies become the new default settings for all remaining
messages until you specify nhew message options again.

The $SPUTMSG service passes the default message options field to the $SGETMSG
service as the flags argument.

If you specify the default message options field as 0, the default message options
for the process are used; you can set the process default message options by using
the DCL command SET MESSAGE.

The Description section shows the format that $PUTMSG uses to write these
message components.

Message Descriptors

Following the first longword of the message vector are one or more message
descriptors. A message descriptor can have one of four possible formats,
depending on the type of message it describes. There are four types of messages:

= User-supplied

e System

e OpenVMS RMS

= System exception

The following diagrams depict the message descriptors for each type of message:

Message Descriptor for User-Supplied Messages

31 15 0
Message code

New message options FAO parameter count

First FAO parameter

Second FAO parameter

~_

i

ZK-1718-GE

2

SYS2-251

System Service Descriptions
$PUTMSG

Message Descriptor Field

Definition

Message code

FAO parameter count

New message options

FAO parameter

Longword value that uniquely identifies the
message. The Description section discusses the
message code; the OpenVMS Command Definition,
Librarian, and Message Utilities Manual explains
how to create message codes.

Word-length value specifying the number of
longword $FAQO parameters that follow in

the message descriptor. The number of $FAO
parameters needed depends on the $FAO directives
used in the message text; some $FAO directives
require one or more parameters, while some
directives require none.

Word-length bit vector specifying new message
options for the current message. The contents
and format of this field are identical to that of the
default message options field.

Longword value used by an $FAO directive
appearing in the message text. The $FAO
parameters listed in the message descriptor must
appear in the order in which they will be used by
the $FAO directives in the message text.

Message Descriptor for System Messages

31

Message code

ZK-1719-GE

Message Descriptor Field

Definition

Message code

Longword value that uniquely identifies the
message. The facility number field in the message
code identifies the facility associated with the
message. A system message has a facility number
of 0. You cannot specify the FAO parameter count,
new message options, and FAO parameter fields.
Each longword following the message identification
field in the message vector will be interpreted as
another message identification.

Message Descriptor for OpenVMS RMS Messages

31

Message code

RMS status value (STV)

SYS2-252

ZK-1720-GE

System Service Descriptions
$PUTMSG

Message Descriptor Field Definition

Message code Longword value that uniquely identifies the
message. The facility number field in the message
code identifies the facility associated with the
message. An OpenVMS RMS message has a
facility number of 1. You cannot specify the FAO
parameter count, new message options, and FAO
parameter fields. The longword following the
message identification field in the message vector
will be interpreted as a standard value field (STV).

RMS status value Longword containing an STV for use by an RMS
message that has an associated STV value. The
$PUTMSG service uses the STV value as an $FAO
parameter or as another message identification,
depending on the RMS message identified by the
message identification field. If the RMS message
does not have an associated STV, $SPUTMSG ignores
the STV longword in the message descriptor.

Message Descriptor for System Exception Messages

31 0
Message code

First FAO parameter

Second FAO parameter

T T

ZK-1721-GE

Message Descriptor Field Definition

Message code Longword value that uniquely identifies the
message. The facility number field in the message
code identifies the facility associated with the
message. A system exception message has a facility
number of 0.

You cannot specify the FAO parameter count
and new message options fields. The longword
or longwords following the message code field in
the message vector will be interpreted as $FAO
parameters.

On Alpha systems, 64-bit message vectors can be used for applications that
require them. A 64-bit message vector begins with the same argument count
longword as the 32-bit message vector. After the argument count longword is
another longword containing the value SS$_SIGNALG64, which signals that a
64-bit message vector follows. Subsequent message vector elements have a layout
analogous to 32-bit message vectors but are 64-bits wide.

SYS2-253

System Service Descriptions

$PUTMSG
For example, the following diagram depicts the format of a 32-bit message vector:
31 16 15 0
Message options | 7 :0
SCA$ OPENERR 14
Message options | 1 18
Pointer to file specification string description 112
RMS$_FNF 116
RMS status value 120
ZK-8549A-GE
The 64-bit version of that same message vector would have the following format:
63 32 31 0
SS$_SIGNAL64 | Message options | 7 10
SCA$_OPENERR 18
MBZ | Message options | 1 116
Pointer to file specification string description 124
RMS$_FNF :32
RMS status value 140
ZK-8550A-GE

SYS2-254

The $PUTMSG service accepts either the 32-bit or the 64-bit form of the message
vector on Alpha systems.

actrtn

OpenVMS usage: procedure

type: procedure value

access: call without stack unwinding
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

User-supplied action routine to be executed during message processing. The
actrtn argument is the 32- or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of this routine.

Note that the first argument passed to the action routine is the address of a
character string descriptor pointing to the message text; the parameter specified
by actprm is the second.

The action routine receives control after a message is formatted but before it is
actually written to the user.

The completion code in general register RO from the action routine indicates
whether the message should be written. If the low-order bit of RO is set (1), then
the message will be written. If the low-order bit is cleared (0), then the message
will not be written.

If you do not specify actrtn or specify it as 0 (the default), no action routine
executes.

Because $PUTMSG writes messages only to SYSSERROR and SYS$OUTPUT, an
action routine is useful when output must be directed to, for example, a file.

Description

System Service Descriptions

$PUTMSG
facnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

(Alpha)
by 32-bit descriptor—fixed-length string descriptor (VAX)

Facility prefix to be used in the first or only message written by $PUTMSG. The
facnam argument is the 32- or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of a character string descriptor pointing to this facility
prefix.

If you do not specify facnam, $PUTMSG uses the default facility prefix associated
with the message.

actprm

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Parameter to be passed to the action routine. The actprm argument is a
longword value containing this parameter. If you do not specify actprm, no
parameter is passed.

In the operating system, a message is identified by a longword value, which is
called the message code. To construct a message code, you specify values for its
four fields, using the Message utility. The following diagram depicts the longword
message code:

31 27 15 2 0
Cntl Facility number Message humber Sev |

ZK-1722-GE

Thus, each message has a unique longword value associated with it: its message
code. You can give this longword value a symbolic name using the Message
utility. Such a symbolic name is called the message symbol.

The Message utility describes how to construct a message symbol according to
the conventions for operating system messages. Basically, the message symbol
has two parts: (1) a facility prefix, which is an abbreviation of the name of the
facility with which the message is associated, and (2) a mnemonic name for the
message text, which serves to hint at the nature of the message. These two parts
are separated by an underscore character (_) in the case of a user-constructed
message and by a dollar sign/underscore ($_) in the case of system messages.

The message components written by $PUTMSG are derived both from the
message code and from the message symbol. For additional information about
both the message code and the message symbol, refer to the OpenVMS Command
Definition, Librarian, and Message Utilities Manual.

The $PUTMSG service writes the message components in the following format:
%FACILITY-L-IDENT, message text

SYS2-255

System Service Descriptions

$PUTMSG

where:

% Is the prefix used for the first message written. The hyphen
(-) is the prefix used for the remaining messages.

FACILITY Is the facility prefix taken from the message symbol. This
facility prefix can be overridden by a facility prefix specified in
the facnam argument in the call to $SPUTMSG.

L Is the severity level indicator. The severity level indicator is
taken from the message code.

IDENT Is a mnemonic name for the message text, taken from the
message symbol.

message text Is the message text specified in the message source file.

The $PUTMSG service does not check the length of the argument list and
therefore cannot return the SS$_INSFARG (insufficient arguments) condition
value. Be sure you specify the required number of arguments.

If an error occurs while $PUTMSG calls the Formatted ASCII Output ($FAO)
service, $FAO parameters specified in the message vector do not appear in the
output.

You cannot call the $PUTMSG service from kernel mode.

Required Access or Privileges
None

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, SINIT_VOL, SMOUNT, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned
SS$ NORMAL The service completed successfully.

Example

#i ncl ude <ssdef. h>
#incl ude <rnsdef. h>
#include <starlet.h>

mai n()
int nmsgvec[] = {3, /* Arg count and nmessage flags */
SS$_ABORT, /* Message code */
RVBS_FNF, /* RVB Message code */
0}; /* RVB Status val ue */
return (sys$put msg(nmsgvec)); /* Generate nessage */
}

SYS2-256

System Service Descriptions
$QIO

$QIO
Queue I/0O Request

Queues an 1/0O request to a channel associated with a device. This service
completes asynchronously; for synchronous completion, use the Queue 1/0
Request and Wait ($QIOW) service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYS$QIO [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[p1] ,[p2] .[p3] .[p4] .[p5] .[p6]

C Prototype

int sys$qgio (unsigned int efn, unsigned short int chan, unsigned int func, struct _iosb
*josb, void (*astadr)(__unknown_params), __int64 astprm, void *p1,
__int64 p2, __int64 p3, __int64 p4, __int64 p5, _int64 pb);

Arguments
efn
OpenVMS usage: ef number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag that $QIO is to set when the 1/O operation completes. The efn
argument is a longword value containing the number of the event flag; however,
$QIO uses only the low-order byte.

If you do not specify efn, event flag O is set.

When $QIO begins execution, it clears the specified event flag or event flag O if
efn was not specified.

The specified event flag is set if the service terminates without queuing an 1/0

request.

chan

OpenVMS usage: channel

type: longword (unsigned)
access: read only
mechanism: by value

1/0 channel assigned to the device to which the request is directed. The chan
argument is a longword value containing the number of the 1/0 channel; however,
$QIO0 uses only the low-order word.

Specifying an invalid value for the chan argument will result in either SS$_
IVCHAN or SS$_IVIDENT being returned.

SYS2-257

System Service Descriptions

$QIO

SYS2-258

func

OpenVMS usage: function_code

type: longword (unsigned)
access: read only
mechanism: by value

Device-specific function codes and function modifiers specifying the operation to
be performed. The func argument is a longword containing the function code.

Each device has its own function codes and function modifiers. For complete
information about the function codes and function modifiers that apply to
the particular device to which the 1/O operation is to be directed, refer to the
OpenVMS 1/0 User’s Reference Manual.

iosb

OpenVMS usage: io_status_block

type: guadword (unsigned)

access: write only

mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

1/O status block to receive the final completion status of the 1/O operation. The
iosb argument is the address of the quadword 1/O status block. The following
diagram depicts the structure of the 1/O status block.

31

15 0

Transfer count

Condition value

Device-specific information

ZK-1723-GE

The following table defines the 1/O status block fields.

Status Block Field

Definition

Condition value

Transfer count

Device-specific information

Word-length condition value that $QIO returns
when the 1/O operation actually completes.

Number of bytes of data transferred in the 1/O
operation. For information about how specific
devices handle this field of the 1/O status block,
refer to the OpenVMS 1/0 User’s Reference Manual.

Contents of this field vary depending on the specific
device and on the specified function code. For
information on how specific devices handle this field
of the 1/O status block, refer to the OpenVMS 1/0
User’s Reference Manual.

When $QIO begins execution, it clears the quadword 1/O status block if the iosb

argument is specified.

Though this argument is optional, Compaq strongly recommends that you specify

it, for the following reasons:

= If you are using an event flag to signal the completion of the service, you can
test the 1/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

System Service Descriptions
$QIO

= If you are using the $SYNCH service to synchronize completion of the service,
the 1/O status block is a required argument for $SYNCH.

< The condition value returned in RO and the condition value returned in the
1/0 status block provide information about different aspects of the call to the
$QI0 service. The condition value returned in RO gives you information about
the success or failure of the service call itself; the condition value returned in
the 1/0 status block gives you information about the success or failure of the
service operation. Therefore, to accurately assess the success or failure of the
call to $QIO, you must first check the condition value returned in RO. If RO
contains a successful value, then you must check the condition value in the
1/0O status block.

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

AST service routine to be executed when the 1/O completes. The astadr argument
is the address of the AST routine.

The AST routine executes at the access mode of the caller of $QIO.

astprm

OpenVMS usage: user_arg

type: guadword unsigned (Alpha); longword unsigned (VAX)
access: read only

mechanism: by 64-bit value (Alpha)

by 32-bit value (VAX)

AST parameter to be passed to the AST service routine. On Alpha systems,
the astprm argument is a quadword value containing the AST parameter. On
VAX systems, the astprm argument is a longword value containing the AST
parameter.

plto p6

OpenVMS usage: varying_arg

type: quadword (unsigned) (Alpha); longword unsigned (VAX)
access: read only

mechanism: by 32- or 64-bit reference or by 64-bit value depending on the

1/0 function (Alpha)
by 32-bit reference or by 32-bit value depending on the 1/O
function (VAX)

Optional device-specific and function-specific 1/O request parameters. For
example, the pl parameter usually specifies a buffer by reference. Other
parameters, such as the buffer size, disk block number, or carriage control
are often passed by value.

For more information about these parameters, see the OpenVMS 1/0 User’s
Reference Manual.

SYS2-259

System Service Descriptions

$QIO

Description

The Queue 1/0 Request service operates only on assigned 1/0 channels and only
from access modes that are equal to or more privileged than the access mode from
which the original channel assignment was made.

The $QIO service uses system dynamic memory to construct a database to queue
the 1/0O request and might require additional memory depending on the queued
device.

For $QI0, you can synchronize completion (1) by specifying the astadr argument
to have an AST routine execute when the 1/O completes or (2) by calling

the Synchronize ($SYNCH) service to await completion of the 1/O operation.

The $QIOW service completes synchronously, and it is the best choice when
synchronous completion is required.

For information about how to use the $QIO service for network operations, refer
to the DECnet for OpenVMS Networking Manual.

Required Access or Privileges

LOG_IO or PHY_IO is required, depending upon the device type and the
requested operation. DIAGNOSE is required to issue a $QIO with an associated
diagnostic buffer. In addition, read or write access is generally required for the
device. For more information, refer to the OpenVMS Guide to System Security.

Required Quota
The $QIO service uses the following quotas:

= The process’s quota for buffered 1/0 limit (BIOLM) or direct 1/O limit (DIOLM)
e The process’s buffered 1/0 byte count (BYTLM) quota
= The process's AST limit (ASTLM) quota, if an AST service routine is specified

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $SMOUNT,
$PUTMSG, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR, $10_
CLEANUP, $10_PERFORM, $10_SETUP

Condition Values Returned

SYS2-260

SS$ NORMAL The service completed successfully. The 1/0
request was successfully queued.

SS$_ABORT A network logical link was broken.

SS$_ACCVIO Either the 1/O status block cannot be written by

the caller, or the parameters for device-dependent
function codes are specified incorrectly.

SS$ CONNECFAIL The connection to a network object timed out or
failed.
SS$ DEVOFFLINE The specified device is off line and not currently

available for use.

SS$_EXQUOTA

SS$_FILALRACC

SS$_ILLEFC
SS$_INSFMEM

SS$_INVLOGIN

SS$_IVCHAN

SS$_IVIDENT

SS$_IVDEVNAM
SS$_LINKABORT

SS$_LINKDISCON

SS$ LINKEXIT

SS$_NOLINKS

SS$ NOPRIV

SS$_NOSUCHNODE
SS$ NOSUCHOBJ

SS$_NOSUCHUSER

System Service Descriptions
$QIO

The process has (1) exceeded its AST limit
(ASTLM) quota, (2) exceeded its buffered 1/0
byte count (BYTLM) quota, (3) exceeded its
buffered 1/0 limit (BIOLM) quota, (4) exceeded
its direct 1/O limit (DIOLM) quota, or (5)
requested a buffered 1/O transfer smaller than
the buffered byte count quota limit (BYTLM), but
when added to other current buffer requests, the
buffered 1/O byte count quota was exceeded.

A logical link is already accessed on the channel
(that is, a previous connect on the channel).

You specified an illegal event flag number.

The system dynamic memory is insufficient for
completing the service.

The access control information was invalid at the
remote node.

You specified an invalid channel number, that is,
a channel number of 0, or you failed to specify a
channel number.

You specified a channel number greater than the
number of channels assigned for the process.

The NCB has an invalid format or content.

The network partner task aborted the logical
link.

The network partner task disconnected the
logical link.

The network partner task was started, but
exited before confirming the logical link (that is,
$ASSIGN to SYSSNET).

No logical links are available. The maximum
number of logical links as set for the executor
MAXIMUM LINKS parameter was exceeded.

The specified channel does not exist or was
assigned from a more privileged access mode,
or the process does not have the necessary
privileges to perform the specified functions on
the device associated with the specified channel.

The specified node is unknown.

The network object number is unknown at the
remote node; or for a TASK= connect, the named
DCL command procedure file cannot be found at
the remote node.

The remote node could not recognize the login
information supplied with the connection request.

SYS2-261

System Service Descriptions

$QIO

SS$_NOT64DEVFUNC

SS$_PATHLOST
SS$_ PROTOCOL

SS$_REJECT
SS$ REMRSRC

SS$_SHUT
SS$_THIRDPARTY
SS$_TOOMUCHDATA
SS$_UNASEFC

SS$_UNREACHABLE

On Alpha systems, this fatal condition value is
returned under the following circumstances: (1)
The caller has specified a 64-bit virtual address
in the P1 device dependent parameter but the
device driver does not support 64-bit addresses
with the requested 1/O function. (2) The caller
has specified a 64-bit address for a diagnostic
buffer but the device driver does not support
64-bit addresses for diagnostic buffers. (3) Some
device drivers might also return this condition
value when 64-bit buffer addresses are passed
using the P2 through P6 parameters and the
driver does not support a 64-bit address with the
requested 1/0 function.

The path to the network partner task node was
lost.

A network protocol error occurred. This error is
most likely due to a network software error.

The network object rejected the connection.

The link could not be established because system
resources at the remote node were insufficient.

The local or remote node is no longer accepting
connections.

The logical link was terminated by a third party
(for example, the system manager).

The task specified too much optional or interrupt
data.

The process is not associated with the cluster
containing the specified event flag.

The remote node is currently unreachable.

Condition Values Returned in the I/O Status Block

Device-specific condition values; the OpenVMS 1/0 User’s Reference Manual lists
these condition values for each device.

SYS2-262

System Service Descriptions
$QIOW

$QIOW

Queue I/0O Request and Wait

Format

C Prototype

The Queue 1/0O Request and Wait service queues an 1/O request to a channel
associated with a device.

The $QIOW service completes synchronously; however, Digital recommends that
you use an I0OSB with this service to avoid premature completion.

For asynchronous completion, use the Queue 1/0 Request ($QI0) service.

In all other respects, $QIOW is identical to $QIO. For more information about
$QI0W, refer to the description of $QIO.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

On Alpha systems, this service accepts 64-bit addresses.

SYS$QIOW [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[p1] ,[p2] ,[p3]
[P4] ,[p5] ,[p6]

int sys$giow (unsigned int efn, unsigned short int chan, unsigned int func, struct
_iosb *iosb, void (*astadr)(__unknown_params), __int64 astprm, void
*pl, __int64 p2, __int64 p3, __int64 p4, __int64 p5, __int64 p6);

SYS2-263

System Service Descriptions

$READEF

$READEF

Read Event Flags

Format

C Prototype

Arguments

SYS2-264

Returns the current status of all 32 event flags in a local or common event flag
cluster and indicates whether the specified event flag is set or clear.

On Alpha systems, this service accepts 64-bit addresses.

SYS$READEF efn ,state

int sys$readef (unsigned int efn, unsigned int *state);

efn

OpenVMS usage: ef number

type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag in the cluster whose status is to be returned. The
efn argument is a longword containing this number; however, SREADEF uses
only the low-order byte. Specifying an event flag within a cluster requests that
$READEF return the status of all event flags in that cluster.

There are two local event flag clusters, which are local to the process: cluster
0 and cluster 1. Cluster 0 contains event flag numbers 0 to 31, and cluster 1
contains event flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

state

OpenVMS usage: mask_longword

type: longword (unsigned)

access: write only

mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

State of all event flags in the specified cluster. The state argument is the 32- or
64-bit address (on Alpha systems) or the 32-bit address (on VAX systems) of a
longword into which $READEF writes the state (set or clear) of the 32 event flags
in the cluster.

System Service Descriptions
$READEF

Condition Values Returned

SS$ WASCLR The service completed successfully. The specified
event flag is clear. Note that this is also the
same value as SS$_NORMAL.

SS$ WASSET The service completed successfully. The specified
event flag is set. Note that while the message id
is the same as SS$_ACCVIO, the severity bits
are different.

SS$ ACCVIO The longword that is to receive the current state
of all event flags in the cluster cannot be written
by the caller.

SS$_ILLEFC You specified an illegal event flag number.

SS$ UNASEFC The process is not associated with the cluster

containing the specified event flag.

SYS2-265

System Service Descriptions
$REGISTRY (Alpha Only)

SREGISTRY (Alpha Only)
Interface to the OpenVMS Registry Database

Format

C Prototype

Arguments

SYS2-266

Interface to the OpenVMS Registry database server.

The $REGISTRY service allows you to query, update, and set keys, subkeys, and
values in the OpenVMS Registry database.

The $REGISTRY service supports both asynchronous and synchronous operations.
For asynchronous completion, use the Registry (SREGISTRY) system service.

For synchronous completion, use the Registry and Wait (SREGISTRYW) system
service. The SREGISTRYW system service is identical to the $SREGISTRY
system service, except that SREGISTRYW returns to the caller after the system
completes the requested operation. For additional information about system
service completion, see the Synchronize ($SYNCH) system service.

This system service is 64-bit compatible.

SYS$REGISTRY [efn] ,func ,0 ,itmlst ,[iosb or iosa_64] [,astadr or astadr_64]
[,astprm or astprm_64] [,timeout]

int sys$registry (unsigned int efn, unsigned int func, void *, void *itmist, struct _iosb

*josb, ...);
efn
VMS Usage: ef number
type: longword (unsigned)
access: read only

mechanism: by value

Number of the event flag to be used by $REGISTRY. If you do not specify the
event flag, the system defaults to event flag 0. The event flag is initially cleared
by $REGISTRY and then set when the operation completes.

func

VMS Usage: function_code

type: longword (unsigned)
access: read only

mechanism: by value

Function code specifying the action that $REGISTRY is to perform. The func
argument is a longword containing this function code. The function code can
contain function modifiers. For more information on function modifiers, see the
Function Modifiers section.

A single call to $SREGISTRY can specify only one function code. All function codes
require additional information to be passed in the call with the itmlst argument.

System Service Descriptions
$REGISTRY (Alpha Only)

itmlst

VMS Usage: 32-bit item_list_3 or 64-bit item_list 64b

type: longword (unsigned) for 32-bit; quadword (unsigned) for 64-bit
access: read only

mechanism: by 32- or 64-bit reference

Item list supplying information that the system will use to perform the function
specified by the func argument.

The itmlst argument is the address of the item list. The item list consists of
one or more sets of item descriptors. Each descriptor is either an item_list_3 or
item_list_64b format.

Some function codes allow you to specify multiple operations in a single call. In
this case, you must place the REG$_SEPARATOR item code between each set
of item codes. Each request, separated by a REG$ SEPARATOR item code, can
contain the item codes in any order.

You can specify item codes as either input or output parameters. Input
parameters modify functions, set context, or describe the information to be
returned. Output parameters return the requested information.

For item_list_3 lists, you must terminate the list with a longword of 0. For
item_list_64b lists, you must terminate the list with a quadword of 0.

The following diagram shows the structure of an item_list_3 descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following diagram shows the structure of an item_list_64b descriptor:

31 15 0
Item code (MBO) 0
(MBMO) 4
Buffer length 8
Buffer address 16
Return length address 24
ZK-8782A-GE

The following table defines the item descriptor fields:

SYS2-267

System Service Descriptions
$REGISTRY (Alpha Only)

SYS2-268

Descriptor Field Definition

Buffer length A word that specifies the length of the buffer. The buffer
either supplies information to be used by $REGISTRY,
or receives information from $REGISTRY. The required
length of the buffer varies, depending on the item
code specified. Each item code description specifies the
required length.

Item code A word containing a symbolic code that describes the
type of information currently in the buffer or that is
returned in the buffer. The buffer address field points to
the location of the buffer.

Buffer address A longword that contains the address of the buffer that
specifies or receives the information.

Return length address A longword that contains the address of a word that
specifies the actual length in bytes of the information
returned by $REGISTRY. The information resides in a
buffer identified by the buffer address field. The field
applies to output item list entries only, and must be 0
(zero) for input entries. If the return length address is 0,
it is ignored.

iosb or iosa_64
OpenVMS usage: status_block

type: buffer
access: write only
mechanism: by reference

Status block to receive the final completion status and information of the
$REGISTRY operation.

If multiple operations are requested for a function code, the value returned in
iosb is either SS$_ NORMAL or SS$ REGERROR.

A more specific return status for each operation is returned in the REG$_
RETURNSTATUS item code (if specified).

The iosb argument is the address of the SREGISTRY status block:

31 15 0
Status
Reserved
VM-0226A-Al

When $REGISTRY begins execution, it clears the quadword 1/O status block if
you specify the iosb argument.

Although the iosb argument is optional, Compaq strongly recommends that you
specify it for the following reasons:

= If you are using an event flag to signal the completion of the service, you can
test the 1/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

= If you are using the $SYNCH system service to synchronize completion of the
service, the 1/O status block is a required argument for $SYNCH.

System Service Descriptions
$REGISTRY (Alpha Only)

The condition value returned in RO and the condition value returned in the

1/O status block provide information about different aspects of the call to the
$REGISTRY service. The condition value returned in RO provides information
about the success or failure of the service call itself; the condition value returned
in the 1/O status block provides information about the success or failure of the
service operation.

To assess the success or failure of the call to SREGISTRY accurately, you must
first check the condition value returned in RO. If RO contains a successful value,
you must check the condition value in the 1/O status block.

The following table defines the item descriptor fields:

Descriptor Field Definition

Status A longword specifying the final status of the
$REGISTRY service. If you request multiple operations
for a function code, the system returns either SS$_
NORMAL or SS$ REGERROR to iosb. This field is set
to O (zero) when the operation begins.

Reserved A reserved longword.

astadr or astadr_64
OpenVMS usage: ast_procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $REGISTRY completes. The astadr
argument is the address of this routine. If you specify astadr, the AST routine
executes at the same access mode as the caller of the $SREGISTRY service.

If the $REGISTRY service is not called successfully (that is, if it returns an error
immediately), the AST routine is not executed.

astprm or astprm_64

VMS Usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument specifies this longword parameter.

timeout

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Timeout value specifies the number of seconds allotted to SREGISTRY to perform
the request. If the Registry server does not complete the request within the time
you allot, SREGISTRY returns REG-F-NORESPONSE.

SYS2-269

System Service Descriptions
$REGISTRY (Alpha Only)

Function Codes

Table SYS2-4 provides a summary of valid function codes, a brief description of
their function, and the OpenVMS Registry rights identifier required to perform

the function.

You can find a detailed description of each item code in the Item Codes section.

The OpenVMS Registry identifier is required only if you do not provide a valid NT
access token and you do not have the SYSPRYV privilege. If you have a granted
REG$UPDATE identifier, you can perform all the functions in Table SYS2—4.

Table SYS2—-4 Valid Function Codes

Function Code Identifier Description

REG$FC_CLOSE_KEY REGS$LOOKUP Closes an open key or subkey.

REG$FC_CREATE_KEY REG$UPDATE Creates (and opens) a subkey.

REG$FC_DELETE_KEY REG$SUPDATE Removes a subkey from a key.

REG$FC_DELETE_VALUE REG$UPDATE Removes a value from a key.

REG$FC_ENUM_KEY REG$LOOKUP Lists (enumerates) the subkeys of a
key.

REG$FC_ENUM_VALUE REG$LOOKUP Lists (enumerates) the values of a key.

REG$FC_FLUSH_KEY REG$SUPDATE Ensures that all information for the
key is backed to disk.

REG$FC_MODIFY_KEY REG$UPDATE Modifies a key.

REG$FC_MODIFY_TREE_KEY REG$UPDATE Modifies a key and all its subkeys.

REG$FC _NOTIFY_CHANGE KEY_ REG$UPDATE Notifies when a key or value has

VALUE changed.

REG$FC_OPEN_KEY REG$LOOKUP Opens a key or subkey.

REG$FC_QUERY_KEY REG$LOOKUP Fetches information about a key.

REG$FC_QUERY_VALUE REG$LOOKUP Fetches information about a value.

REG$FC_SEARCH_TREE_DATA REG$LOOKUP Searches the value data of key and its
subkeys.

REG$FC_SEARCH_TREE_KEY REG$LOOKUP Searches the names of a key and its
subkeys.

REG$FC _SEARCH_TREE_VALUE REG$LOOKUP Searches the values of a key and its
subkeys.

REG$FC_SET_VALUE REG$UPDATE Changes the data associated with a

value name.

REG$FC_CLOSE_KEY

This request releases the open resources of the specified key. If REG$ KEYID
indicates a predefined key, the system ignores the action and returns success.

Specify the item codes as follows:

Item Code

Required

Parameter Type

REG$_KEYID

SYS2-270

Yes

Input

System Service Descriptions
$REGISTRY (Alpha Only)

Item Code Required Parameter Type

REG$_RETURNSTATUS No Output

REG$FC_CREATE_KEY
If the key does not exist, this request creates a new subkey under the key
specified by REG$ _KEYID. If the key does exist, the system does not modify it.

If you specify the REG$_KEYRESULT item code, the system opens the specified
subkey.

The system returns the result in the REG$_DISPOSITION item code buffer.

Using this function code, you can group multiple requests into a single call to
the SREGISTRY service. To use the multiple-request feature, you must use the
REG$_SEPARATOR item code to indicate the end of the set of item codes for the
current request and that there is another request to process.

To set a value for a key, call the $SREGISTRY service with the REG$FC_SET _
VALUE function code.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_CACHEACTION No Input

REG$_CLASSNAME No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_DISPOSITION No Output

REG$_KEYID Yes Input

REG$_KEYRESULT No Output

REG$_LINKPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_LINKTYPE No Input

REG$_RETURNSTATUS No Output

REG$_SECACCESS No Input

REGS$_ No Input

SECURITYPOLICY

REG$_SEPARATOR No n/a

REG$_SUBKEYNAME Yes Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_VOLATILE No Input

If you specify the REG$_LINKPATH item code, it must point to a key path
already defined in the OpenVMS Registry; otherwise the system returns the
REGS$_INVALIDPATH error.

Note

If you do not specify the REG$_CACHEACTION item code, the new key
is created with the same cache action value as the parent key. The same
rule applies to the REG$ VOLATILE and REG$ _SECURITYPOLICY item
codes.

SYS2-271

System Service Descriptions
$REGISTRY (Alpha Only)

SYS2-272

REG$FC_DELETE_KEY

This request removes the specified subkey and its values from the OpenVMS
Registry database. If the specified key has subkeys, the key is not deleted. You
must delete the subkeys first.

Using this function code, you can group multiple requests into a single call to
the SREGISTRY service. If you use this multiple-request feature, use the REG$_
SEPARATOR item code to indicate the end of the set of item codes for the current
request and that there is another request to process.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$ KEYID Yes Input

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_RETURNSTATUS No Output

REG$_SEPARATOR No n/a

REG$_SUBKEYNAME Yes Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)

REG$FC_DELETE_VALUE
This request deletes the specified value from the key.

Using this function code, you can group multiple requests into a single call to
the SREGISTRY service. If you use this multiple-request feature, use the REG$_
SEPARATOR item code to indicate the end of the set of item codes for the current
request and that there is another request to process.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input

REG$ _KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$ RETURNSTATUS No Output

REG$_SEPARATOR No n/a

REG$_VALUENAME Yes Input

REG$FC_ENUM_KEY
This request retrieves information about one subkey of the key. You identify the
subkey in the REG$_SUBKEYINDEX item code.

To enumerate all the key’s subkeys, the application must call the $SREGISTRY
service repeatedly using the REG$FC_ENUM_KEY function code. Begin with
a REG$_SUBKEYINDEX of zero, then increment the count until the request

returns a REG$_NOMOREITEMS error.

Specify the item codes as follows:

System Service Descriptions
$REGISTRY (Alpha Only)

Item Code Required Parameter Type

REG$_CACHEACTION No Output

REG$_CLASSNAME No Output (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_KEYID Yes Input

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_LASTWRITE No Output

REG$_LINKCOUNT No Output

REG$ LINKPATH No Output (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REGS$ LINKTYPE No Output

REG$_RETURNSTATUS No Output

REGS$_ No Output

SECURITYPOLICY

REG$_SUBKEYINDEX Yes Input

REG$_SUBKEYNAME No

REG$_VOLATILE No

Output (Pointer to Unicode string.
Unicode character is 4 bytes long.)

Output

REG$FC_ENUM_VALUE

This request retrieves information about a value of the specified key identifier.
The value to retrieve is identified in the REG$_VALUEINDEX item code.

To enumerate all a key’s values, the application must call the SREGISTRY service
repeatedly using the REG$FC_ENUM_VALUE function code. Begin with a
REG$_VALUEINDEX of zero, then increment the count until the request returns

a REG$ NOMOREITEMS error.

Specify the item codes as follows:

Item Code Required Parameter Type
REG$_DATAFLAGS No Output

REG$ DATATYPE No Output

REG$_KEYID Yes Input

REG$_KEYPATH No Input (Pointer to Unicode string.

REG$_RETURNSTATUS No

REG$_VALUEDATA No
REG$_VALUEINDEX Yes
REG$_VALUENAME No
REG$_VOLATILE No

Unicode character is 4 bytes long.)
Output

Output

Input

Output

Output

REG$FC_FLUSH_KEY

This request writes all the information about a specified key to disk.

This request returns only after the operation is complete and all attributes of the
key have been written to the OpenVMS Registry database.

SYS2-273

System Service Descriptions
$REGISTRY (Alpha Only)

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_RETURNSTATUS No Output

REG$FC_MODIFY_KEY
This request modifies a specified key’s attributes.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_CACHEACTION No Input

REG$_CLASSNAME No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_KEYID Yes Input

REG$ _KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_LINKPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_LINKTYPE No Input

REG$_NEWNAME No Input

REG$_RETURNSTATUS No Output

REGS$_ No Input

SECURITYPOLICY

To remove the link from the specified key, enter a REG$_LINKPATH item code
with an address of zero. You cannot add a link to a key that has either values or
subkeys (or both).

REG$FC_MODIFY_TREE_KEY
This request modifies a specified key and all its subkey attributes. No link will
be followed or modified.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_CACHEACTION No Input

REG$_CLASSNAME No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$ KEYID Yes Input

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_RETURNSTATUS No Output

SYS2-274

System Service Descriptions
$REGISTRY (Alpha Only)

Item Code Required Parameter Type

REGS$_ No Input
SECURITYPOLICY

REGS$FC_NOTIFY_CHANGE_KEY_VALUE

This request notifies the calling process when a specified key or any of its subkeys
has changed. That is, the requested function waits for the specified condition
before returning.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_FLAGSUBKEY Yes Input

REG$_KEYID Yes Input

REG$ _KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$ NOTIFYFILTER Yes Input

REG$_RETURNSTATUS No Output

REG$FC_OPEN_KEY
This request opens the specified key. If you do not specify a subkey, the system
opens the key specified in REG$_KEYID.

If REG$_KEYID specifies a key other than a predefined key, the system opens the
key again (duplicates the key).

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input

REG$_KEYRESULT Yes Output

REG$ _KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$ RETURNSTATUS No Output

REG$_SECACCESS Yes Input

REG$_SUBKEYNAME No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)

REG$FC_QUERY_KEY
This request retrieves attributes about a specified key.

Specify the item codes as follows:

Item Code Required Parameter Type
REG$ CACHEACTION No Output
REG$_CLASSNAME No Output (Pointer to Unicode string.

Unicode character is 4 bytes long.)

SYS2-275

System Service Descriptions
$REGISTRY (Alpha Only)

Item Code Required Parameter Type

REG$_CLASSNAMEMAX No Output

REG$_KEYID Yes Input

REG$ _KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$ _LASTWRITE No Output

REGS$ LINKCOUNT No Output

REG$_LINKPATH No Output (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_LINKTYPE No Output

REG$ RETURNSTATUS No Output

REG$_ No Output

SECURITYPOLICY

REGS$_ No Output

SUBKEYNAMEMAX

REGS$_ Yes Output

SUBKEYSNUMBER

REG$_VALUEDATAMAX No Output

REG$_ VALUENAMEMAX No Output

REG$ VALUENUMBER No Output

REG$ VOLATILE No Output

REG$FC_QUERY_VALUE
This request retrieves the type, data flags, and data for the specified value name.

Using this function code, you can group multiple requests into a single call to the
SREGISTRY service.

If you use this multiple-request feature, use the REG$_SEPARATOR item code to
indicate the end of the set of item codes for the current request and that there is
another request to process.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_DATAFLAGS No Output

REG$_DATATYPE No Output

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_KEYID Yes Input

REG$_LINKCOUNT No Output

REG$_LINKPATH No Output (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_LINKTYPE No Output

REG$_RETURNSTATUS No Output

REG$_SEPARATOR No n/a

SYS2-276

System Service Descriptions
$REGISTRY (Alpha Only)

Item Code Required Parameter Type
REGS$ VALUEDATA No Output

REG$ VALUENAME Yes Input

REG$ VOLATILE No Output

REG$FC_SEARCH_TREE_DATA
This request scans a specified key and all its descendants for a match with a
specified set of data information.

The set of data information can be either the REG$ DATAFLAGS item code, or
the pair REG$_DATATYPE and REG$_VALUEDATA item codes, or all three item
codes.

The REG$_FLAGOPCODE item code specifies how the REG$_DATAFLAGS item
code should be matched against the database. (See the item codes description for
more information about the REG$_FLAGOPCODE item code.)

Every time the system finds a match, it appends the path name relative to the
specified key to the REG$_PATHBUFFER item code. A Unicode null character is
used to separate the value path names.

If the buffer supplied by the application is not big enough to hold all the value
path names found, the system returns the SS$ BUFFEROVF error message in
the iosb argument, and the length required to complete the operation successfully
is returned in the REG$_REQLENGTH item (if specified).

Use the ellipsis (...) wildcard to match zero or more subkeys in the REG$_
KEYPATH item code.

(For example, Hardwar e\ . ..\ di sks finds all the paths that start with the
Har dwar e subkey and end with the di sk subkey, with zero or more subkeys in
between.)

Use the asterisk (*) wildcard to match an entire subkey or a portion of a subkey
in the REG$_KEYPATH item code.

Use the percent (%) wildcard to match one character in a key name in the REG$_
KEYPATH item code.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_DATAFLAGS No Input

REG$_DATATYPE No Input

REG$_FLAGOPCODE No Input

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_KEYID Yes Input

REG$_PATHBUFFER Yes Output

REG$ REQLENGTH No Output

REG$_RETURNSTATUS No Output

REG$_VALUEDATA No Input

SYS2-277

System Service Descriptions
$REGISTRY (Alpha Only)

SYS2-278

REG$FC_SEARCH_TREE_KEY
This request scans a specified key and all its descendants for a specified key path.

For this function code, a valid key path is a Unicode string that can include the
ellipsis (...), asterisk (*), or percent (%) wildcard character, but that cannot start
with the backslash character (\).

Use the ellipsis (...) wildcard to match zero or more subkeys in the REG$_
KEYPATH item code. (For example, Har dwar €\ . . . \ di sks finds all the paths that
start with the Har dwar e subkey and end with the di sk subkey, with zero or more
subkeys in between.)

Use the asterisk (*) wildcard to match an entire subkey or a portion of a subkey
in the REG$_KEYPATH item code.

Use the percent (%) wildcard to match one character in a key name in the REG$_
KEYPATH item code.

An example of a valid key path is as follows:
har dwar e\ syst em *\ di sk%b

Every time the system finds a match, the system appends its path name relative
to the specified key identifier to the REG$ PATHBUFFER item code. A Unicode
null character (4 bytes) separates the subkey path names.

If the buffer supplied by the application is not big enough to contain all the
subkey path names found, the system returns the SS$ BUFFEROVF error
message in the iosb argument, and the system returns the required length to
complete the operation successfully in the REG$_REQLENGTH item (if specified).

Specify the item codes as follows:

Item Code Required Parameter Type

REG$ _KEYID Yes Input

REG$ _KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$ PATHBUFFER Yes Output

REG$_REQLENGTH No Output

REG$_RETURNSTATUS No Output

REG$FC_SEARCH_TREE_VALUE
This request scans a specified key and all its descendants for a specified value
name.

For this function code a valid key name is a Unicode string that can include the
ellipsis (...), asterisk (*), or percent (%) wildcard character, but cannot start with
the backslash character (\).

Use the ellipsis (...) wildcard to match zero or more subkeys in the REG$_
KEYPATH item code. (For example, Hardwar €\ . . . \ di sks finds all the paths that
start with the Har dwar e subkey and end with the di sk subkey, with zero or more
subkeys in between.)

Use the asterisk (*) wildcard to match an entire subkey or a portion of a subkey
in the REG$_KEYPATH item code.

Use the percent (%) wildcard to match one character in a key name in the REG$_
KEYPATH item code.

System Service Descriptions
$REGISTRY (Alpha Only)

An example of a valid key path is as follows:
har dwar e\ system . ..

For this function code, a valid name is a Unicode string that can include the
asterisk (*) and percent (%) wildcard characters.

Every time the system finds a match, the system appends its path name relative
to the specified key identifier to the REG$_PATHBUFFER item code. A Unicode
null character (4 bytes) separates the subkey path names.

If the buffer supplied by the application is not big enough to contain all the
subkey path names found, the system returns the SS$ BUFFEROVF error
message in the iosb argument, and the system returns the required length to
complete the operation successfully in the REG$_REQLENGTH item (if specified).

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$ _KEYID Yes Input

REG$_PATHBUFFER Yes Output

REG$_REQLENGTH No Output

REG$_RETURNSTATUS No Output

REG$ _VALUENAME Yes Input

REG$FC_SET _VALUE
This request sets value and type information for a specified key.

Using this function code, you can group multiple requests into a single call to the
$REGISTRY service.

If you use this multiple-request feature, use the REG$_SEPARATOR item code to
indicate the end of the set of item codes for the current request and that there is
another request to process.

When a value is set to a link, the system validates the link unless you specify the
REG$M_IGNORE_LINKS function code modifier.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_DATAFLAGS No Input

REG$_DATATYPE No Input

REG$_KEYID Yes Input

REG$ _KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_LINKPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_LINKTYPE No Input

REG$_RETURNSTATUS No Output

SYS2-279

System Service Descriptions
$REGISTRY (Alpha Only)

ltem Codes

SYS2-280

Item Code Required Parameter Type
REG$ SEPARATOR No n/a

REG$ VALUEDATA No Input

REG$ VALUENAME No Input

Table SYS2-5 provides a summary of item codes that are valid as an item
descriptor in the itmlst argument. The table lists the item codes, input/output

usage, and data types.

Complete descriptions of each item code are provided in the sections that follow

this table.

Table SYS2-5 Item Code Summary

Item Code

Input/Output

Data Type

REG$_CACHEACTION
REG$_CLASSNAME

REG$_CLASSNAMEMAX

REG$_DATAFLAGS
REG$_DATATYPE
REG$_DISPOSITION
REG$_FLAGOPCODE
REG$_FLAGSUBKEY
REG$_KEYID
REG$_KEYPATH

REG$ KEYRESULT
REG$_LASTWRITE

REG$_LINKCOUNT
REG$_LINKPATH

REG$_LINKTYPE
REG$_NEWNAME

REG$_NOTIFYFILTER

REG$_PATHBUFFER
REG$ REQLENGTH

REG$ RETURNSTATUS

REG$_SECACCESS

Input, output
Input, output

Output
Input, output
Input, output
Output
Input

Input

Input, output
Input

Output
Output
Output
Input, output

Input, output
Input

Input
Output
Output
Output
Input

Longword

(Pointer to Unicode string.
Unicode character is 4 bytes
long.)

Longword

Quadword

Longword

Longword

Longword

Longword

Longword

(Pointer to Unicode string.
Unicode character is 4 bytes
long.)

Longword

Quadword

Longword

(Pointer to Unicode string.
Unicode character is 4 bytes
long.)

Longword

Unicode string

Longword

Buffer

Longword

Longword

Longword

(continued on next page)

Table SYS2-5 (Cont.) Item Code Summary

System Service Descriptions

$REGISTRY (Alpha Only)

Iltem Code Input/Output Data Type
REG$ SECURITYPOLICY Input, output Longword
REG$_SEPARATOR n/a None

REG$_SUBKEYINDEX Input Longword

REG$_SUBKEYNAME

REG$_SUBKEYNAMEMAX
REG$_SUBKEYSNUMBER
REG$_VALUEDATA
REG$_VALUEDATAMAX
REG$_VALUEINDEX
REG$_VALUENAME
REG$_VALUENAMEMAX
REG$_VALUENUMBER
REG$_VOLATILE

Input, output

Output
Output
Input, output
Output
Input

Input, output
Output
Output
Input, output

(Pointer to Unicode string.
Unicode character is 4 bytes
long.)

Longword

Longword

Buffer

Longword

Longword

Unicode string

Longword

Longword

Longword

REG$_CACHEACTION

The REG$_CACHEACTION item code is an input item code. It is a longword flag
that specifies whether the information on a specified object should be written to
disk immediately. It takes one of the following values:

Cache Value

Description

REG$K_WRITEBEHIND

Write information about the specified object written

to disk at a later time (default).

REG$K_WRITETHRU

immediately.

Write information about the specified object to disk

Note

If you do not specify this item code, the value or key inherits its value
from the parent object. By default, the entry points (REG$ HKEY _
CLASSES_ROOT, REG$ HKEY_LOCAL_MACHINE, and REG$ HKEY_
USERS) are set with a value equal to that of REG$K_WRITEBEHIND.

REG$_CLASSNAME

The REG$_CLASSNAME item code is, depending on the function code, either an

input or output item code.

The class name is an information field for a key. The type of an object is an
example of a class name. It can be composed of any string of Unicode characters.
A Unicode character is 4 bytes long.

REG$_CLASSNAMEMAX

The REG$_CLASSNAMEMAX item code is an output item code. It receives the
length, in bytes, of the longest string specifying a subkey class name.

SYS2-281

System Service Descriptions
$REGISTRY (Alpha Only)

SYS2-282

REG$_DATAFLAGS
Depending on the function code, the REG$_DATAFLAGS item code is either an
input or output item code. It is a 64-bit application-dependent value data flag.

REG$_DATATYPE
Depending on the function code, the REG$_DATATYPE item code is either an
input or output item code.

It is a longword that either specifies the type of information to be stored as a
value data or receives the type of information of a specified value data component.

It takes one of the following values:

Type code Description
REG$K_BINARY Binary data
REG$K_DWORD A 32-bit number

REG$K_EXPAND_SZ A string of Unicode characters
REG$K_MULTI Sz A concatenated array of REG$K_SZ strings

REG$K_NONE No defined value type (default)

REG$K_QWORD A 64-bit number

REG$K_Sz A null-terminated Unicode string
Note

The difference between REG$K_EXPAND_SZ and REG$K_SZ:

A string is a set of characters usually in human-readable form. Many
value entries in the OpenVMS Registry are written using a string (REG_
SZ) or an expandable string (REG_EXPAND_SZ) format.

An expandable string is usually human-readable text, but it can also
include a variable that will be replaced when the string is called by an
application.

For example, on a Windows NT system, in the value entry

%Byst enRoot % Syst enB2\ Boot ok. exe, %5yst enRoot %is the expandable
portion of the variable. This part is replaced with the actual location of
the directory that contains the Windows NT system files.

REG$_DISPOSITION
The REG$_DISPOSITION item code is an output item code. It is a longword and
takes one of the following values:

Disposition value Description

REG$K_CREATENEWKEY The key did not exist and was created.
REG$K_OPENEXISTINGKEY The key existed and was opened.

REG$_FLAGOPCODE

The REG$_FLAGOPCODE item code is an input item code. It is a longword flag
that indicates how the REG$_DATAFLAGS input item code should be matched
against the data flags field in the OpenVMS Registry database. It takes one of
the following values:

System Service Descriptions
$REGISTRY (Alpha Only)

Operator code options Description

REG$K_ANY The data field in the OpenVMS Registry database
must contain at least one of the flags in the REG$_
DATAFLAGS input item code.

REGS$K_ The REG$_DATAFLAGS input item code must match
EXACTMATCH exactly the data flags field in the OpenVMS Registry
database.

REG$K_EXCLUDE The data flags field in the OpenVMS Registry database
must not contain the flags in the REG$ DATAFLAGS
input item code.

REG$K_INCLUDE The data flags field in the OpenVMS Registry database
must contain, at a minimum, the flags in the REG$_
DATAFLAGS input item code.

REG$K_NOTANY The data field in the OpenVMS Registry database must
not contain any of the flags in the REG$ DATAFLAGS
input item code.

REG$_FLAGSUBKEY
The REG$ FLAGSUBKEY item code is an input item code. It is a longword
Boolean field that indicates the following:

= If set to 1, report changes in a specified key and any of its subkeys.

= If set to O, report changes to a specified key only.

REG$_KEYID
The REG$_KEYID item code is an input item code. It is a longword that contains
the key identifier.

REG$_KEYRESULT

The REG$_KEYRESULT item code is an output item code. It is a longword that
receives a key identifier. The key identifier can be passed to other Registry calls
using the REG$_KEYID item code.

REG$_KEYPATH
The REG$_KEYPATH item code is an input item code. It is a string of Unicode
characters that specifies a key path. A Unicode character is 4 bytes long.

REG$_LASTWRITE

The REG$ _LASTWRITE item code is an output item code. It is a quadword
representation of absolute time that receives the time a specified key was last
written to (including changes to its values).

REG$_LINKCOUNT
The REG$_LINKCOUNT item code is an output item code. It is longword count
of the number of symbolic links that refer to the item.

REGS$_LINKPATH

The REG$_LINKPATH item code is, depending on the function code, either an
input or an output item code. It is a string of Unicode characters that specifies
the key path to which a specified key is linked. A Unicode character is 4 bytes
long.

SYS2-283

System Service Descriptions
$REGISTRY (Alpha Only)

SYS2-284

REG$_LINKTYPE
The REG$_LINKTYPE item code is, depending on the function code, either an
input or an output item code. It is longword type that indicates the link type.

Link Type Description

REG$K_NONE No link (default)
REG$K_SYMBOLICLINK Symbolic (logical) link

REG$_NEWNAME
The REG$_NEWNAME item code is a string of Unicode characters that specifies
the new name of the key.

REG$ _NOTIFYFILTER

The REG$_NOTIFYFILTER item code is an input item code. It is a longword
mask that specifies which changes to the specified key and its subkeys and values
to report. It takes any combination of the following values:

Value Description
REG$M_ An attribute change of the specified key or its
CHANGEATTRIBUTES subkeys.

REG$M_CHANGELASTSET Changes to the last write time of the specified
key or its subkeys.

REG$M_CHANGENAME A key name change, including creation and
deletion, of the specified key or its subkeys.

Note

The system report changes to subkeys of the specified key only if the
REG$_FLAGSUBKEY item code is set to 1.

REG$_PATHBUFFER

The REG$_PATHBUFFER item code is an output item code. It is a buffer that
receives a set of either key paths or value paths, separated by a null Unicode
character (4 bytes long). (The third longword of the item descriptor contains the
number of bytes written to the buffer.)

REG$ REQLENGTH
The REG$ REQLENGTH item code is an output item code. It is a longword that
receives the required buffer size (in bytes) to complete the operation successfully.

REG$ RETURNSTATUS

The REG$ RETURNSTATUS item code is an output item code. It is a longword
that receives the final completion status for a specified operation. For more
information, see the Condition Values Returned section of this chapter.

REG$_SECACCESS

The REG$_SECACCESS item code is an input item code. It is a longword
mask that specifies the desired security access for the new key. It takes any
combination of the following values:

System Service Descriptions
$REGISTRY (Alpha Only)

Security access mask Description
REG$M_ALLACCESS A combination of the following access values:

REG$K_CREATELINK
REG$K_CREATESUBKEY
REG$K_ENUMSUBKEYS
REG$K_NOTIFY
REG$K_QUERYVALUE
REG$K_SETVALUE

REG$M_ Allows creation of a symbolic link.
CREATELINK

REG$M_ Allows creation of subkeys.
CREATESUBKEY

REG$M_ Allows enumeration of subkeys.
ENUMSUBKEYS

REG$M_EXECUTE Allows read access.
REG$M_NOTIFY Allows change notification.
REG$M_ Allows queries of subkey data.
QUERYVALUE

REG$M_READ A combination of the following access values:

REG$K_ENUMSUBKEYS
REG$K_QUERYVALUE
REG$K_NOTIFY
REG$M_SETVALUE Allows setting of values and data.
REG$SM_WRITE A combination of the following access values:

REG$K_CREATESUBKEY
REG$K_SETVALUE

REG$ SECURITYPOLICY
The REG$_SECURITYPOLICY item code is an input item code. It is a longword
that specifies the security policy to enforce for the key.

It takes the following value:

Policy Setting Description

REG$K_POLICY_NT_ Access is required to the first key and the requested key
40 (default).

REG$_SEPARATOR
The REG$_SEPARATOR item code is an empty item code that provides a
separator between sets of item codes.

Using this item code, you can group multiple requests into a single call to the
$REGISTRY service. If you use this multiple-request feature, use the REG$_
SEPARATOR item code to indicate the end of the set of item codes for the current
request and that there is another request to process.

SYS2-285

System Service Descriptions
$REGISTRY (Alpha Only)

SYS2-286

REG$_SUBKEYINDEX
The REG$_SUBKEYINDEX item code is an input item code. It is a longword
that specifies the index of the subkey to retrieve.

REG$_SUBKEYNAME

The REG$_SUBKEYNAME item code is an input item code. It is a string of
Unicode characters that specifies the name of a subkey. A Unicode character is 4
bytes long.

REG$_SUBKEYNAMEMAX

The REG$_SUBKEYNAMEMAX item code is an output item code. It is a
longword that receives the length (in characters) of a specified key's longest
subkey name.

REG$_SUBKEYSNUMBER
The REG$_SUBKEYSNUMBER item code is an output item code. It is a
longword that receives the number of subkeys contained in a specified key.

REG$_VALUEDATA

The REG$_VALUEDATA item code is, depending on the function code, either
an input or output item code. It is a buffer that contains either the value data
component to write to the OpenVMS Registry (input), or it receives a data value
component from the OpenVMS Registry (output).

REG$_VALUEDATAMAX

The REG$_VALUEDATAMAX item code is an output item code. It is a longword
that receives the length (in bytes) of the specified key’s longest data component
value.

REG$_VALUEINDEX

The REG$_VALUEINDEX item code is an input item code. It is a longword that
specifies the index of the value to retrieve within a specified key. Note that the
value index starts at zero and can be any value up to one less than the count
returned by REG$_VALUENUMBER.

REG$ VALUENAME

The REG$ VALUENAME item code is, depending on the function code, either an
input or an output item code. It is a string of Unicode characters that specifies
the name of a value.

REG$_VALUENAMEMAX
The REG$_VALUENAMEMAX item code is an output item code. It is a longword
that receives the length (in characters) of a specified key's longest value name.

REG$_VALUENUMBER
The REG$_VALUENUMBER item code is an output item code. It is a longword
that receives the number of values contained in a specified key.

REG$_VOLATILE

The REG$_VOLATILE item code identifies the volatility of an item. As an output,
it returns the volatility of the object. On OpenVMS, volatile keys and values are
lost when all nodes running an OpenVMS Registry server are rebooted. (In a
standalone system, volatile keys and values are lost when the system reboots.)

System Service Descriptions
$REGISTRY (Alpha Only)

Volatile Type Description
REG$K_CLUSTER The item is removed when the cluster reboots.
REG$K_NONE The item is not volatile (default).

Function Modifiers

Description

You can optionally specify the high-order bits of a function code value with
function modifiers. These individual bits can alter the operation of the function.

For example, you can specify the function modifier REG$M_CASE_SENSITIVE
with the function REG$FC_CREATE_KEY. When you use the function

and function modifier together, the data passed to the OpenVMS Registry

is treated as case sensitive. The two values are written in Compaq C as
REGSM CASE_SENSI TI VE | REGSFC_CREATE_KEY.

The OpenVMS Registry function modifiers are defined in the header file
REGDEF.H.

REG$M_CASE_SENSITIVE
Use case sensitive matching for keys and values.

REG$M_DISABLE_WILDCARDS
Treat wildcard characters as normal characters for this function.

REG$M_IGNORE_LINKS
Force the operation to not follow any symbolic links associated with a key or a
value.

By default, if a key or value is symbolically linked to another key or value, the
system follows all links so that the operation specified by the function code is
performed on the linked key or value.

When you specify the REG$M_IGNORE_LINKS function modifier, the operation
specified by the function code affects only the specified key or value, not the
linked key or value.

By default, if a key or value has a symbolic link, it can not be deleted. If you
specify the REG$M_IGNORE_LINKS function modifier, the system deletes the
key or value.

REG$M_NOW
Write to disk immediately, regardless of the REG$_CACHEACTION item code
value.

The $REGISTRY service provides the means to create, delete and modify registry
keys, key values, and key attributes.

The $REGISTRY service uses process P1 space to store handles to keys.

The $REGISTRY service must be called at IPL 0, and requires system dynamic
memory to deliver AST requests.

Related Services
$REGISTRYW

SYS2-287

System Service Descriptions
$REGISTRY (Alpha Only)

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$ BADPARAM

SS$_EXASTLM
SS$_INSFARG
SS$_INSFP1POOL
SS$_NOIMPERSONATE

SS$ TOO_MANY_ARGS
REG$_ACCESSDENIED
REG$_IPLTOOHIGH

Normal successful completion.
One of the arguments cannot be read/written.

Function code or one of the item list code is
invalid.

Exceeded AST limit.
Insufficient number of argument supplied.
Not enough process P1 space available.

The caller does not have the privilege to obtain
information about the specified personae.

Too many arguments.
Requested access to key is denied.
Callers above IPL 0 cannot call this service.

Condition Values Returned in the I/O Status Block

SYS2-288

SS$_NORMAL
SS$_ACCVIO
SS$_BADPARAM

SS$_EXASTLM
SS$_INSFARG
SS$_INSFP1POOL
SS$_NOIMPERSONATE

SS$_ TOO_MANY_ARGS
REG$_ACCESSDENIED
REG$_BUFFEROVF

REGS$_
DBALREADYLOADED

REG$_DBNOTYETLOADED
REG$_EXQUOTA
REG$_HASLINK

REG$ HAVESUBKEYS
REGS$_INTERNERR
REG$_INVCACHEACTION
REG$_INVCREDENTIALS
REG$_INVDATA
REG$_INVDATATYPE
REG$_INVFUNCCODE
REG$_INVKEYFLAGS
REG$_INVKEYID

Normal successful completion.
One of the arguments cannot be read/written.

Function code or one of the item list code is
invalid.

Exceeded AST limit.
Insufficient number of argument supplied.
Not enough process P1 space available.

The caller does not have the privilege to obtain
information about the specified personae.

Too many arguments.

Requested access to key is denied.
Buffer overflow.

Database is already loaded.

Database is not yet loaded.
Registry file quota or page file quota exceeded.
Key has a link to another key.
Cannot delete a key with subkeys.
Registry internal error.

Invalid cache action parameter.
NT credentials are not valid.
Invalid data value.

Invalid data type parameter.
Invalid function code.

Invalid key flags.

Key does not exist or invalid key ID was
specified.

REG$_INVKEYNAME
REGS$_INVLINK
REG$_INVLINKPATH
REG$_INVPARAM
REG$_INVPATH

REGS$_
INVSECDESCRIPTOR

REG$_INVSECPOLICY
REG$_INVVALNAME
REG$_INVVOLROOTKEY
REG$_IPLTOOHIGH
REG$ _KEYCHANGED
REG$ _KEYLOCKED
REG$_KEYNAMEEXIST
REG$ _NOKEY
REG$_NOMOREITEMS
REG$_NOPATHFOUND
REG$_NORESPONSE

REG$_NOTROOTKEY
REG$_NOTSUPPORTED

REG$_NOVALUE
REG$ REQRECEIVED
REG$_RESERVED
REG$_SECVIO

REG$_STRINGTOOLONG
REG$_STRINGTRUNC

REG$ TOOMANYOPENKEY

REG$_VALUEEXIST
REG$_VOLMISMATCH

System Service Descriptions
$REGISTRY (Alpha Only)

Invalid key name.

Invalid link or link type.
Invalid link path.

Invalid parameter.

Invalid key path.

Invalid security descriptor.

Invalid security policy parameter.

Invalid value name.

Cannot create a new file with a volatile root key.
Callers above IPL 0 cannot call this service.

Key or subkey has changed.

Key locked by another thread.

Key name already exists.

Specified key does not exist.

No more items for specified key.

Path not found.

OpenVMS Registry server failed to respond
within the alloted time period.

Invalid root key index.

Function code, item code, or item value is not
supported.

Specified value does not exist.
Received request for key change notification.
Cannot delete or modify a reserved key or value.

Violates the security access method specified
when this key was last opened.

Input string too long.

Output buffer is not large enough to contain the
converted string.

Number of opened keys exceeds the limit.
Value already exists.

Cannot create nonvolatile subkey for a volatile
key.

This service can also return status values from the following system services:
$CLREF, $SYNCH, $SPERSONA_EXTENSION_LOOKUP, and $PERSONA _

QUERY.

SYS2-289

System Service Descriptions
$SREGISTRYW (Alpha Only)

SREGISTRYW (Alpha Only)
Interface to the OpenVMS Registry Database and Wait

Interface to the OpenVMS Registry database server.

The $REGISTRY service supports both asynchronous and synchronous operations.
For asynchronous completion, use the Registry ($REGISTRY) system service.

For synchronous completion, use the Registry and Wait ($REGISTRYW) system
service. The SREGISTRYW system service is identical to the SREGISTRY
system service, except that $REGISTRYW returns to the caller after the system
completes the requested operation. For additional information about system
service completion, see the Synchronize (3SYNCH) system service.

This system service is 64-bit compatible.

Format

SYS$REGISTRYW [efn] ,func ,0 ,itmlst ,[iosb or iosa_64] [,astadr or astadr_64]
[,astprm or astprm_64] [,timeout]

C Prototype

int sys$registryw (unsigned int efn, unsigned int func, void *, void *itmlst, struct
_iosb *iosb, ...);

SYS2-290

System Service Descriptions
$RELEASE_GALAXY_LOCK (Alpha Only)

SRELEASE_GALAXY_LOCK (Alpha Only)
Release OpenVMS Galaxy Lock

Releases ownership of an OpenVMS Galaxy lock.

Note that this system service is supported only in an OpenVMS Alpha Galaxy
environment.

For more information about programming with OpenVMS Galaxy system services,
refer to the OpenVMS Alpha Partitioning and Galaxy Guide.

Format
SYS$RELEASE_GALAXY_LOCK handle

C Prototype

int sys$release _galaxy lock (unsigned __int64 lock_handle);

Arguments
handle
OpenVMS usage: galaxy lock handle
type: quadword (unsigned)
access: read
mechanism: input by value
The 64-bit lock handle that identifies the lock to be released. This value is
returned by SYS$CREATE_GALAXY_LOCK.
Description

This service releases ownership of an OpenVMS Galaxy lock. Because a Galaxy
lock can be acquired multiple times by the same owner (nested ownership), the
lock is not released until the ownership count goes to zero. If the lock ownership
is completely released and there are other threads waiting for the lock, they are
released from their wait states.

Required Access or Privileges
Write access to lock.

Required Quota
None

Related Services

$ACQUIRE_GALAXY_LOCK, $CREATE_GALAXY_LOCK,
$CREATE_GALAXY_LOCK_TABLE, $DELETE_GALAXY_LOCK,
$DELETE_GALAXY_LOCK TABLE, $GET_GALAXY_LOCK_INFO,
$GET_GALAXY_LOCK SIZE

SYS2-291

System Service Descriptions
$RELEASE_GALAXY_LOCK (Alpha Only)

Condition Values Returned

SS$_NORMAL Normal completion.
SS$ IVLOCKID Invalid lock id.
SS$_IVLOCKOP Invalid lock operation.
SS$ IVLOCKTBL Invalid lock table.

SYS2-292

System Service Descriptions
$RELEASE_VP (VAX Only)

$RELEASE_VP (VAX Only)
Release Vector Processor

Format

Arguments

Description

On VAX systems, terminates the current process’ status as a vector consumer.

SYS$RELEASE_VP

None.

The Release Vector Processor service terminates the current process’ status as
a vector consumer. The $RELEASE_VP service waits for all pending vector
instructions and vector memory operations to complete. It then declares that
the process no longer needs a vector-present processor. As a result, the process
relinquishes its use of the processor’s vector registers and can be scheduled on
another processor in the system.

In systems that do not have vector-present processors but do have the VAX
Vector Instruction Emulation facility (VVIEF) in use, this service relinquishes the
process’s use of VVIEF. VVIEF remains mapped in the process’s address space.
Required Access or Privileges

None

Required Quota
None

Related Services
$RESTORE_VP_EXCEPTION, $RESTORE_VP_STATE, $SAVE_VP_EXCEPTION

Condition Values Returned

SS$ NORMAL The service completed successfully.

SYS2-293

System Service Descriptions
$REM_HOLDER

$REM_HOLDER
Remove Holder Record from Rights Database

Deletes the specified holder record from the target identifier’s list of holders.

Format
SYS$REM_HOLDER id ,holder

C Prototype

int sys$rem_holder (unsigned int id, struct _generic_64 *holder);

Arguments
id
OpenVMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value
Binary value of target identifier whose holder is deleted when $REM_HOLDER
completes execution. The id argument is a longword containing the identifier
value.
holder
OpenVMS usage: rights_holder
type: guadword (unsigned)
access: read only
mechanism: by reference
Identifier of holder being deleted when $SREM_HOLDER completes execution.
The holder argument is the address of a quadword containing the UIC identifier
of the holder in the first longword and the value of 0 in the second longword.
Description

The Remove Holder Record from Rights Database service removes the specified
holder record from the target identifier’s list of holders.

Required Access or Privileges
Write access to the rights database is required.

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$MOD_IDENT, $REM_IDENT, $REVOKID

SYS2-294

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_INSFMEM
SS$_IVIDENT
SS$_NORIGHTSDB

SS$ NOSUCHID

RMS$_PRV

System Service Descriptions
$REM_HOLDER

The service completed successfully.

The holder argument cannot be read by the
caller.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

The rights database does not exist.

The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the OpenVMS
Record Management Services Reference Manual.

SYS2-295

System Service Descriptions
$REM_IDENT

$REM_IDENT
Remove ldentifier from Rights Database

Removes the specified identifier record and all its holder records (if any) from the
rights database.

Format
SYS$REM_IDENT id

C Prototype

int sys$rem_ident (unsigned int id);

Argument
id
OpenVMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value
Binary value of identifier deleted from rights database when $REM_IDENT
completes execution. The id argument is a longword containing the identifier
value.
Description

The Remove ldentifier from Rights Database service removes from the rights
database the specified identifier record, all its holder records (if any), and all
records in identifiers that the deleted identifier held.

Required Access or Privileges
Write access to the rights database is required.

Required Quota

None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,

$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$MOD_IDENT, $SREM_HOLDER, $REVOKID

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$_IVIDENT The specified identifier is of invalid format.

SYS2-296

System Service Descriptions

$REM_IDENT
SS$_NORIGHTSDB The rights database does not exist.
SS$_NOSUCHID The specified identifier does not exist in the
rights database.
RMS$_PRV The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the OpenVMS
Record Management Services Reference Manual.

SYS2-297

System Service Descriptions
$RESCHED

$RESCHED
Reschedule Process

Requests reschedule of a process.

Format
SYS$RESCHED

C Prototype

int sys$resched (void);

Arguments

None.

Description

The Reschedule Process service requests that the set of runnable processes on the
system be evaluated by their priority, with the potential result that the current
process may be descheduled and requeued.

$RESCHED is intended to allow a process running at priority n to voluntarily
relinquish the remainder of its run quantum to another process of the same
priority. When the set of all runnable processes is evaluated, one of the following
will occur:

1. The process executing SRESCHED will be descheduled, while another process
of equal or higher priority is selected to run. The descheduled process is
placed at the end of its priority queue and all other processes at that priority
will run before the process that called $RESCHED runs again. When the
process does run again, $SRESCHED completes and returns control to the
application.

2. If, after the evaluation of all runnable processes, the process that executed
$RESCHED remains the highest-priority runnable process, that process
remains current and continues to run. In this case, $RESCHED returns
immediately.

Required Access or Privileges
None

Required Quota
None

Related Services
None

Condition Values Returned

SS$ NORMAL The service completed successfully.

SYS2-298

System Service Descriptions
$RESTORE_VP_EXCEPTION (VAX Only)

$RESTORE_VP_EXCEPTION (VAX Only)
Restore Vector Processor Exception State

Format

Argument

Description

On VAX systems, restores the saved exception state of the vector processor.

SYS$RESTORE_VP_EXCEPTION excid

excid

OpenVMS usage: context

type: longword (unsigned)
access: read only
mechanism: by reference

Internal 1D of the exception state saved by $SAVE_VP_EXCEPTION. The excid
argument is the address of a longword containing this ID.

The Restore Vector Processor Exception State service restores from memory the
vector exception state saved by a prior call to $SAVE_VP_EXCEPTION. After a
routine invokes this service, the next vector instruction issued within the process
causes the restored vector exception to be reported.

By default, when an AST or condition handler interrupts the execution of a
mainline routine, the operating system saves the mainline routine’s vector
state, including its vector exception state. Any other routine that executes
synchronously with, or asynchronously to, currently executing vectorized code
and that performs vector operations itself must preserve the preempted routine’s
vector exception state across its own execution. It does so by using the $SAVE_
VP_EXCEPTION and $RESTORE_VP_EXCEPTION services.

Used together, these services ensure that vector exceptions occurring as a result
of activity in the original routine are serviced by existing condition handlers
within that routine.

In systems that do not have vector-present processors but do have the VAX Vector
Instruction Emulation facility (VVIEF) in use, VVIEF emulates the function of
this service.

Required Access or Privileges
None

Required Quota
BYTLM

Related Services
$RELEASE_VP, $SRESTORE_VP_STATE, $SAVE_VP_EXCEPTION

SYS2-299

System Service Descriptions

$RESTORE_VP_EXCEPTION (VAX Only)

Condition Values Returned

SYS2-300

SS$_NORMAL

SS$_ACCVIO

SS$ NOSAVPEXC

The service completed successfully. The service
also returns this status when executed in a
system that does not have vector-present
processors and that does not have the VAX
Vector Instruction Emulation facility (VVIEF)
loaded.

The caller cannot read the exception ID
longword.

No saved vector exception state exists for this
exception ID.

System Service Descriptions
$RESTORE_VP_STATE (VAX Only)

$RESTORE_VP_STATE (VAX Only)
Restore Vector State

Format

Arguments

Description

On VAX systems, allows an AST routine or condition handler to restore the vector
state of the mainline routine.

SYS$RESTORE_VP_STATE

None.

The Restore Vector State service allows an AST routine or a condition handler to
restore the vector state of the process’s mainline routine.

By default, when an asynchronous routine (AST routine or condition handler)
interrupts the execution of a mainline routine, the operating system creates

a new vector state when the routine issues its first vector instruction. At this
point, the vector state of the mainline routine is inaccessible to the asynchronous
routine. If the asynchronous routine must manipulate the vector state of the
mainline routine, it first calls SRESTORE_VP_STATE to restore the mainline’'s
vector state.

In systems that do not have vector-present processors but do have the VAX Vector
Instruction Emulation facility (VVIEF) in use, VVIEF emulates the functions of
this service.

This service can be called only from a routine running in user mode.

Required Access or Privileges
None

Required Quota
None

Related Services
$RELEASE_VP, $SRESTORE_VP_EXCEPTION, $SAVE_VP_EXCEPTION

Condition Values Returned

SS$ NORMAL The service completed successfully. Vector
state of the mainline has been restored. The
service also returns this status when executed
in a system that does not have vector-present
processors and that does not have the VAX
Vector Instruction Emulation facility (VVIEF)

loaded.
SS$ BADSTACK Bad user stack encountered.
SS$ BADCONTEXT The mainline vector state is corrupt.

SYS2-301

System Service Descriptions
$RESTORE_VP_STATE (VAX Only)

SS$ WRONGACMODE The system service was called from an access
mode other than user mode.

SYS2-302

System Service Descriptions
$RESUME

$RESUME
Resume Process

Causes a process previously suspended by the Suspend Process ($SUSPND)
service to resume execution or cancels the effect of a subsequent suspend request.

Format
SYS$RESUME [pidadr] ,[prcnam]

C Prototype

int sys$resume (unsigned int *pidadr, void *prcnam);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be resumed. The pidadr argument
is the address of a longword containing the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the cluster.

You must specify the pidadr argument to delete processes in other UIC groups.

prcnam
OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the process to be resumed. The prcnam argument is the address of a
character string descriptor pointing to the process name.

A process running on the local node can be identified with a 1- to 15-character
string. To identify a process on a particular node on a cluster, specify the full
process name, which includes the node name as well as the process name. The
full process name can contain up to 23 characters.

You can use the prcnam argument to resume only processes in the same UIC
group as the calling process, because process names are unique to UIC groups,
and the operating system uses the UIC group number of the calling process to
interpret the process name specified by the prcnam argument. You must use the
pidadr argument to delete processes in other UIC groups.

Description

The Resume Process service (1) causes a process previously suspended by the
Suspend Process ($SUSPND) service to resume execution or (2) cancels the effect
of a subsequent suspend request.

If you specify neither the pidadr nor prcnam argument, the resume request is
issued on behalf of the calling process.

SYS2-303

System Service Descriptions
$RESUME

If the longword value at address pidadr is O, the PID of the target process is
returned.

If one or more resume requests are issued for a process that is not suspended, a
subsequent suspend request completes immediately; that is, the process is not
suspended. No count of outstanding resume requests is maintained.

Required Access or Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $SRESUME:

< GROUP privilege to resume execution of a process in the same group unless
the process has the same UIC as the calling process

< WORLD privilege to resume execution of any process in the system

Required Quota
None

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJIPIW, $HIBER, $PROCESS_SCAN, $SETPRI, $SETPRN, $SETPRYV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$ ACCVIO The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

SS$_INCOMPAT The remote node is running an incompatible
version of the operating system.

SS$_IVLOGNAM The specified process name has a length of 0 or
has more than 15 characters.

SS$ NONEXPR The specified process does not exist, or an invalid
process identification was specified.

SS$ NOPRIV The process does not have the privilege to resume
the execution of the specified process.

SS$ NOSUCHNODE The process name refers to a node that is not
currently recognized as part of the cluster.

SS$ REMRSRC The remote node has insufficient resources to

respond to the request. (Bring this error to the
attention of your system manager.)

SS$ UNREACHABLE The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS2-304

System Service Descriptions
$REVOKID

$REVOKID
Revoke Identifier from Process

Removes the specified identifier from the rights list of the process or the system.
If the identifier is listed as a holder of any other identifier, the appropriate holder
records are also deleted.

Format
SYS$REVOKID [pidadr] ,[prcnam] ,[id] ,[name] ,[prvatr]

C Prototype

int sys$revokid (unsigned int *pidadr, void *prcnam, struct _generic_64 *id, void
*name, unsigned int *prvatr, unsigned int segment);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) number of the process affected when $SREVOKID
completes execution. The pidadr argument is the address of a longword
containing the PID of the process to be affected. You use —1 to indicate the
system rights list. When pidadr is passed, it is also returned; therefore, you
must pass it as a variable rather than a constant.

prcnam
OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Process name on which $REVOKID operates. The prcnam argument is the
address of a character string descriptor containing the process name. The
maximum length of the name is 15 characters. Because the UIC group number
is interpreted as part of the process name, you must use pidadr to specify the
rights list of a process in a different group.

id

OpenVMS usage: rights_id

type: quadword (unsigned)
access: modify

mechanism: by reference

Identifier and attributes to be removed when $REVOKID completes execution.
The id argument is the address of a quadword containing the binary identifier
code to be removed in the first longword and the attributes in the second
longword.

SYS2-305

System Service Descriptions

$REVOKID

Symbol values are offsets to the bits within the longword. You can also obtain the

values as masks with the appropriate bit set using the prefix KGB$M rather than

KGBS$V. The following symbols for each bit position are defined in the system

macro library ($KGBDEF):

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows unprivileged holders of the
identifier to remove it from or add it
to the process rights database by using
the DCL command SET RIGHTS_LIST.

KGB$V_NOACCESS Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

KGB$V_RESOURCE Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

KGB$V_SUBSYSTEM Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

You must specify either id or name. Because the id argument is returned as

well as passed if you specify name, you must pass it as a variable rather than a

constant in this case.

name

OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the identifier removed when $SREVOKID completes execution. The name

argument is the address of a descriptor pointing to the name of the identifier.

prvatr

OpenVMS usage: mask_longword

type: longword (unsigned)

access: write only

mechanism: by reference

Attributes of the deleted identifier. The prvatr argument is the address of a

longword used to store the attributes of the identifier.

Description

The Revoke ldentifier from Process service removes the specified identifier from
the rights list of the process or the system. If the identifier is listed as a holder of
any other identifier, the appropriate holder records are also deleted.

The result of passing the pidadr or the prcnam argument, or both, to
$REVOKID is summarized in the following table.

SYS2-306

System Service Descriptions
$REVOKID

Note that a value of 0 in either of the following tables indicates that the contents
of the address specified by the argument is the value 0. The word omitted
indicates that the argument was not supplied.

prcnam pidadr Result

Omitted Omitted Current process ID is used; process ID is not
returned.

Omitted 0 Current process ID is used; process ID is
returned.

Omitted Specified Specified process ID is used.

Specified Omitted Specified process name is used; process ID is not
returned.

Specified 0 Specified process name is used; process ID is
returned.

Specified Specified Specified process ID is used and process name is
ignored.

The result of passing either the name or the id argument, or both, to
SYS$REVOKID is summarized in the following table:

name id Result

Omitted Omitted lllegal. The INSFARG condition value is
returned.

Omitted Specified Specified identifier value is used.

Specified Omitted Specified identifier name is used; identifier value
is not returned.

Specified 0 Specified identifier name is used; identifier value
is returned.

Specified Specified Specified identifier value is used and identifier

name is ignored.

Because the Revoke ldentifier from Process service removes the specified
identifier from the rights list of the process or the system, this service is meant
for use by a privileged subsystem to alter the access rights profile of a user, based
on installation policy. It is not meant for use by the general system user.

Required Access or Privileges

You need CMKRNL privilege to invoke this service. In addition, you need GROUP
privilege to modify the rights list of a process in the same group as the calling
process (unless the process has the same UIC as the calling process). You need
WORLD privilege to modify the rights list of a process outside the caller’s group.
You need SYSNAM privilege to modify the system rights list.

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$MOD_IDENT, $REM_HOLDER, $REM_IDENT

SYS2-307

System Service Descriptions

$REVOKID

Condition Values Returned

SYS2-308

SS$_WASCLR
SS$_WASSET

SS$_ACCVIO

SS$_INSFARG
SS$_INSFMEM

SS$_IVIDENT

SS$_IVLOGNAM
SS$ NONEXPR
SS$_NOPRIV

SS$_NOSUCHID

SS$ NOSYSNAM
SS$ RIGHTSFULL
RMS$_PRV

The service completed successfully; the rights list
did not contain the specified identifier.

The service completed successfully; the rights list
already held the specified identifier.

The pidadr argument cannot be read or written;
prcnam cannot be read; id cannot be read or
written; name cannot be read; or prvatr cannot
be written.

You did not specify either the id or the name
argument.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier name is invalid; the
identifier name is longer than 31 characters,
contains an illegal character, or does not contain
at least one nonnumeric character.

You specified an invalid process hame.
You specified a nonexistent process.

The caller does not have CMKRNL privilege or
is not running in executive or kernel mode; or
the caller lacks GROUP, WORLD, or SYSNAM
privilege as required.

The specified identifier name does not exist

in the rights database. Note that the binary
identifier, if given, is not validated against the
rights database.

The operation requires SYSNAM privilege.
The rights list of the process or system is full.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with OpenVMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the OpenVMS
Record Management Services Reference Manual.

System Service Descriptions
$RMSRUNDWN

$RMSRUNDWN
RMS Rundown

Closes all files opened by OpenVMS RMS for the image or process and halts
1/0O activity. This routine performs a $CLOSE service for each file opened for
processing.

Format
SYS$RMSRUNDWN buf-addr ,type-value

C Prototype

int sys$rmsrundwn (void *buf-addr, unsigned char *type-value);

Arguments

buf-addr

OpenVMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor

A descriptor pointing to a 22-byte buffer that is to receive the device identification

(16 bytes) and the file identification (6 bytes) of an improperly closed output file.

The buf-addr argument is the address of the descriptor that points to the buffer.

type-value

OpenVMS usage: byte unsigned

type: byte (unsigned)

access: read only

mechanism: by value

A single byte code that specifies the type of 1/O rundown to be performed. The

type-value argument is the actual value used.

This type of code has the following values and meanings:

0 Rundown of image and indirect 1/O for process permanent files.

1 Rundown of image and process permanent files. The caller's mode must
not be user.

2 Abort RMS 1/0. The caller’s mode must be either executive or kernel
(the system calls the 1/O rundown control routine with this argument
for process deletion).

Description

The RMS Rundown service closes all files opened by OpenVMS RMS for the
image or process and halts 1/O activity. This routine performs a $CLOSE service
for each file opened for processing. In addition to closing all files and terminating
1/0O activity, the 1/O rundown control routine releases all locks held on records

in shared files, clears buffers, and returns other resources allocated for file
processing. You should continue to call the rundown control routine until you
receive the success completion status code of RMS$ NORMAL.

SYS2-309

System Service Descriptions
$RMSRUNDWN

Note that, prior to the execution of the $CLOSE service, the rundown control
routine cancels all outstanding file operations specified in a File Access Block
(FAB) or any QIO requests related to file operations (an Open, Create, or Extend
service, for example). It also cancels any read/write requests to nondisk devices
such as terminals or mailboxes prior to the execution of the $CLOSE service,
resulting in possible loss of data. All read/write requests of disk 1/0 buffers,
however, are allowed to complete, which guarantees that none of the data written
to disk files will be lost.

There is no predefined macro of the form $SRMSRUNDWN_G or
$RMSRUNDWN_S to call this service.

Required Access or Privileges
None

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CLOSE,
$CREMBX, $DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU,
$GETDVI, $GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL,
SMOUNT, $PUTMSG, $QI0, $QI0OW, $SETDDIR, $SETDFPROT, $SNDERR,
$SNDJIBC, $SNDJIBCW, $SNDOPR

Condition Values Returned

SYS2-310

RMS$_NORMAL The service completed successfully.
RMS$_CCF The 1/0 rundown routine cannot close the file.
RMS$_IAL The argument list is invalid. An output file could

not be closed successfully, and the user buffer
could not be written.

System Service Descriptions
$SAVE_VP_EXCEPTION (VAX Only)

$SAVE_VP_EXCEPTION (VAX Only)
Save Vector Processor Exception State

Format

Argument

Description

On VAX systems, saves the pending exception state of the vector processor.

SYS$SAVE_VP_EXCEPTION excid

excid

OpenVMS usage: context

type: longword (unsigned)
access: read only
mechanism: by reference

Internal 1D of the exception state saved by $SAVE_VP_EXCEPTION. The excid
argument is the address of a longword containing this ID.

The Save Vector Processor Exception State service saves in memory any pending
vector exception state and clears the vector processor’s current exception state.

By default, when an AST or condition handler interrupts the execution of a
mainline routine, the operating system saves the mainline routine’s vector

state, including its vector exception state. Any other routine that executes
synchronously with, or asynchronously to, currently executing vectorized code
and that performs vector operations itself must preserve the preempted routine’s
vector exception state across its own execution. It does so by using the $SAVE_
VP_EXCEPTION and $RESTORE_VP_EXCEPTION services. Used together,
these services ensure that vector exceptions occurring as a result of activity in the
original routine are serviced by existing condition handlers within that routine.

In systems that do not have vector-present processors but do have the VAX Vector
Instruction Emulation facility (VVIEF) in use, VVIEF emulates the functions of
this service.

Required Access or Privileges
None

Required Quota
None

Related Services
$RELEASE_VP, $SRESTORE_VP_EXCEPTION, $RESTORE_VP_STATE

SYS2-311

System Service Descriptions
$SAVE_VP_EXCEPTION (VAX Only)

Condition Values Returned

SS$_NORMAL

SS$_WASSET
SS$_ACCVIO

SS$_INSFMEM

SYS2-312

The service completed successfully. There were
no pending vector exceptions. The service also
returns this status when executed in a system
that does not have vector-present processors and
that does not have the VAX Vector Instruction
Emulation facility (VVIEF) loaded.

The service completed successfully. Pending
vector exception state has been saved.

The caller cannot write the exception ID
longword.

Insufficient system dynamic memory exists for
completing the service.

System Service Descriptions
$SCAN_INTRUSION

$SCAN_INTRUSION
Scan Intrusion Database

Scans the intrusion database for suspects or intruders during a login attempt,
audits login failures and updates records, or adds new records to the intrusion
database.

Format

SYS$SCAN_INTRUSION logfail_status ,failed_user ,job_type ,[source_terminal]
,[source_node] ,[source_user] ,[source_address]
J[failed_password] ,[parent_user] ,[parent_id] ,[flags]

C Prototype

int sys$scan_intrusion (unsigned int logfail_status, void *failed_user, unsigned int
job_type, void *source_terminal, void *source_node, void
*source_user, void *source_address, void *failed_password,
void *parent_user, unsigned int parent_id, unsigned int flags);

Arguments

logfail_status
OpenVMS usage: status code

type: longword (unsigned)
access: read only
mechanism: by value

Reason why the user’s login attempt failed. The logfail_status argument is a
longword containing the login failure status code.

The logfail_status argument can contain any valid message code. For example,
the value of the logfail_status argument is SS$ NOSUCHUSER if the user
name the user entered does not exist on the system.

If the logfail_status argument contains a failure status, the service performs
a suspect scan. Here, the service searches the intrusion database for intruder
suspects as well as intruders. If the value of the logfail_status argument is a
successful message, such as SS$ NORMAL, the service scans the database only
for intruders. For more information about how the database works, refer to the
OpenVMS Guide to System Security.

failed_user

OpenVMS usage: char_string or item_list_3

type: character-coded text string or longword (unsigned)

access: read only

mechanism: by descriptor—fixed-length string descriptor or by reference

If the CIASM_ITEMLIST flag is FALSE:

This argument is the user name associated with the unsuccessful login attempt.
The failed_user argument is the address of a character-string descriptor pointing
to the failed user name.

A failed user name consists of 1 to 32 alphanumeric characters.

SYS2-313

System Service Descriptions
$SCAN_INTRUSION

SYS2-314

If the CIASM_ITEMLIST flag is TRUE:

The failed_user argument is the address of a 32-bit item list. If the item list
is used, one item, the CIA$ FAILED_USERNAME item, must be present in the
item list.

The following table lists the valid item descriptions for the failed_user argument:

Item Description

CIA$_FAILED_USERNAME Address of a buffer containing the failed user
name.

CIA$_SCSNODE Address of the 8-character null-padded SCS node
name on which the intrusion happened.

CIA$_USER_DATA Address of a 256-byte buffer, available for

passing third party specified data.

job_type

OpenVMS usage: job type

type: longword (unsigned)
access: read only
mechanism: by value

Type of job that failed. The job_type argument is a longword indicating the type
of job that failed.

The $JPIDEF macro defines the following values for the job_type argument:
= JPI$SK_BATCH

= JPI$SK_DETACHED

< JPI$SK DIALUP

= JPI$K_LOCAL

= JPI$SK_NETWORK

« JPISK_ REMOTE

source_terminal
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Source terminal where the login attempt is occurring. The source_terminal
argument is the address of a character-string descriptor pointing to the device
name of the terminal from which the login attempt originates.

A source terminal device name consists of 1 to 64 alphanumeric characters,
including underscores (_) and colons (:).

source_node
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

System Service Descriptions
$SCAN_INTRUSION

Name of the node from which the user’s login attempt originates. The source_
node argument is the address of a character-string descriptor pointing to the
source node name string.

A source node name consists of 1 to 1024 characters. No specific characters,
format, or case is required for a source node name string.

source_user
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

User name associated with the login attempt. The source_user argument is the
address of a character-string descriptor pointing to the source user name string.

A source user name consists of 1 to 32 alphanumeric characters, including dollar
signs ($) and underscores (_).

source_addr
OpenVMS usage: node address

type: descriptor
access: read only
mechanism: by reference

Source DECnet for OpenVMS address from which the login attempt originates.
The source_addr argument is the address of a descriptor containing the source
node address.

failed_password
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Password the user entered for the login attempt. The failed_password
argument is the address of a character-string descriptor pointing to the plaintext
password the user entered to log in.

A failed password is a password of 0 to 32 characters that did not allow the user
to log in to the system. This argument is not stored in the intrusion database and
is only used for auditing during break-in attempts.

parent_user
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Parent process name of the failed login. The parent_user argument is the
address of a character-string descriptor pointing to the parent process name of
the failed login process.

A parent process name consists of 1 to 15 characters. This argument should be
specified only for failed spawn commands.

SYS2-315

System Service Descriptions
$SCAN_INTRUSION

Description

SYS2-316

parent_id

OpenVMS usage: process_id

type: longword (unsigned)
access: read only
mechanism: by value

Process identification of the parent process from which the login was attempted.
The parent_id argument is a longword containing the parent process

identification.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Operational instructions for the service. The flags argument is a longword bit
mask wherein each bit corresponds to an option.

Each flag option has a symbolic name. The $CIADEF macro defines the following
valid names for the $SCAN_INTRUSION service:

Symbolic Name

Description

CIA$SM_NOAUDIT

CIA$SM_IGNORE_RETURN

CIASM_ITEMLIST

CIASM_REAL_USERNAME

CIA$M_SECONDARY _
PASSWORD

If set, this flag indicates that the service should
instruct the security server to not audit the login
failure or the break-in attempt. If the flag is set,
you are expected to do your own auditing.

Specifies that the service should not wait for the
return status from the security server. No return
status from the server’s function will be returned
to the caller.

If FALSE, the failed_user argument is a
character string. If TRUE, this argument is
a 32-bit item list.

If set, indicates that the user name passed as
the failed user name is read and known to the
system.

Indicates that the failed password passed to the
service was the secondary password. If the flag is
clear, the password is assumed to be the primary
password.

The Scan Intrusion Database service performs the following functions:

= Scans the intrusion database for intruders so that successful logins are
evaded if the system is taking evasive action

« Adds login failures to the intrusion database

= Changes records in the intrusion database from suspects to intruders when
the number of login failures by the specified user or from the specified source
reaches the value of the LGI_BREAK_LIM system parameter

System Service Descriptions
$SCAN_INTRUSION

= Disables user accounts if the LGI_BRK_DISUSER flag is set and the number
of login attempts on a real user has reached LGI_BRK_LIM

= Audits login failures or break-in attempts on behalf of the caller

The information that $SCAN_INTRUSION stores in the intrusion database

is based on the setting of the LGI_BRK_TERM system parameter and the
information passed by the caller. For more information about how the intrusion
database functions and the use of the LGI system parameters, refer to the
OpenVMS Guide to System Security.

Required Access or Privileges
$SCAN_INTRUSION requires the SECURITY privilege.

Required Quota
None

Related Services
$DELETE_INTRUSION, $SHOW_INTRUSION

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$ ACCVIO One or more of the arguments were not readable.

SS$ BADBUFLEN The length of one or more of the specified
arguments is out of range.

SS$ BADPARAM An invalid flag was specified in the flags
argument.

SS$_NOSECURITY The caller does not have SECURITY privilege.

This service can also return any of the following messages passed from the
security server:

SECSRV$_INSUFINFO Not enough information is supplied to form an
intrusion record.

SECSRV$_INTRUDER An intruder matching the information passed to
the service exists in the intrusion database.

SECSRV$_NOMATCH No intruders or suspects exist that match the
information passed to the service.

SECSRV$ The security server is not currently active. Try

SERVERNOTACTIVE the request again later.

SECSRV$_SUSPECT A suspect matching the information passed to

the service exists in the intrusion database.

SYS2-317

System Service Descriptions
$SCHDWK

$SCHDWK
Schedule Wakeup

Schedules the awakening (restarting) of a process that has placed itself in a state
of hibernation with the Hibernate ($HIBER) service.

Format
SYS$SCHDWK [pidadr] ,[prcnam] ,daytim ,[reptim]

C Prototype

int sys$schdwk (unsigned int *pidadr, void *prcnam, struct _generic_64 *daytim,
struct _generic_64 *reptim);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be awakened. The pidadr argument
is the address of a longword containing the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the OpenVMS Cluster system.

You must specify the pidadr argument to awaken processes in other UIC groups.

prcnam
OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the process to be awakened. The prcnam is the address of a character
string descriptor pointing to the process name. A process running on the local
node can be identified with a string of from 1 to 15 characters.

To identify a process on a particular node on a cluster, specify the full process
name, which includes the node name as well as the process name. The full
process name can contain up to 23 characters.

You can use the prcnam argument to awaken only processes in the same UIC
group as the calling process because process names are unique to UIC groups,
and the operating system uses the UIC group number of the calling process to
interpret the process name specified by the prcnam argument. You must use the
pidadr argument to awaken processes in other UIC groups.

daytim

OpenVMS usage: date_time
type: quadword
access: read only
mechanism: by reference

SYS2-318

Description

System Service Descriptions
$SCHDWK

Time at which the process is to be awakened. The daytim argument is the
address of a quadword containing this time in the system 64-bit time format. A
positive time value specifies an absolute time at which the specified process is
to be awakened. A negative time value specifies an offset (delta time) from the
current time.

reptim

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Time interval at which the wakeup request is to be repeated. The reptim
argument is the address of a quadword containing this time interval. The time
interval must be expressed in delta time format.

The time interval specified cannot be less than 10 milliseconds; if it is, $SCHDWK
automatically increases it to 10 milliseconds.

If you do not specify reptim, a default value of 0 is used, which specifies that the
wakeup request is not to be repeated.

The Schedule Wakeup service schedules the awakening of a process that has
placed itself in a state of hibernation with the Hibernate ($HIBER) service. A
wakeup can be scheduled for a specified absolute time or for a delta time and can
be repeated at fixed intervals.

If you specify neither the pidadr nor the prcnam argument, the wakeup request
is issued on behalf of the calling process. If the longword value at address pidadr
is 0, the PID of the target process is returned.

$SCHDWK uses the system dynamic memory to allocate a timer queue entry.

If you issue one or more scheduled wakeup requests for a process that is not
hibernating, a subsequent hibernate request by the target process completes
immediately; that is, the process does not hibernate. No count of outstanding
wakeup requests is maintained.

You can cancel scheduled wakeup requests that have not yet been processed by
using the Cancel Wakeup (3CANWAK) service.

If a specified absolute time value has already passed and no repeat time is
specified, the timer expires at the next clock cycle (within 10 milliseconds).

Required Access or Privileges

Depending on the operation, the calling process might need one of the following
privileges to use $SCHDWK:

< GROUP privilege to schedule wakeup requests for a process in the same
group unless it has the same UIC

e WORLD privilege to schedule wakeup requests for any other process in the
system

Required Quota

This service uses the process’s timer queue entries (TQELM) quota. If you specify
an AST routine, the service uses the AST limit (ASTLM) quota of the calling
process to schedule a wakeup request.

SYS2-319

System Service Descriptions

$SCHDWK

Related Services

$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $SGETTIM, SNUMTIM, $SETIME,

$SETIMR

Condition Values Returned

SYS2-320

SS$_NORMAL
SS$_ACCVIO

SS$ EXQUOTA
SS$ INCOMPAT

SS$_INSFMEM
SS$_IVLOGNAM

SS$_IVTIME

SS$ NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$ REMRSRC

SS$_UNREACHABLE

The service completed successfully.

The expiration time, repeat time, process name
string, or string descriptor cannot be read by
the caller, or the process identification cannot be
written by the caller.

The process has exceeded its AST limit quota.

The remote node is running an incompatible
version of the operating system.

The system dynamic memory is insufficient for
allocating a timer queue entry.

The process name string has a length of 0 or has
more than 15 characters.

The specified delta repeat time is a positive
value, or an absolute time plus delta repeat time
is less than the current time.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to
schedule a wakeup request for the specified
process.

The process name refers to a node that is not
currently recognized as part of the OpenVMS
Cluster system.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

System Service Descriptions
$SCHED

$SCHED
Affect Process Scheduling

Affects process scheduling. This service is intended for use by a class scheduler
process.

Format
SYS$SCHED func ,pl ,p2 ,p3

C Prototype

int sys$sched (unsigned int func, unsigned int *p1, unsigned int *p2, unsigned int

*p3);
Arguments
func
OpenVMS usage: function_code
type: longword (unsigned)
access: write only
mechanism: by value

Function code specifying the action $SCHED is to perform. The func argument
is a longword containing this code.

See the Function Codes section for a list of valid function codes for $SCHED.

pl, p2, p3

OpenVMS usage: longword

type: longword (unsigned)
access: varies

mechanism: varies

The meaning of the pl1, p2, and p3 arguments depends on the function code
specified in the func argument, and is defined in the Function Codes section.

Function Codes

This section defines each of the $SCHED function codes and describes the values
of the p1 argument, p2 argument, and p3 argument for each function.

CSH$_READ_ALL
Returns a buffer containing information, including an index, EPID, and priority,
for all processes.

The format of the buffer is defined in the $CSHDEF macro and consists of a
series of CSHP fields.

The following table shows the pl argument, p2 argument, and p3 argument
values for the CSH$ READ_ALL function code:

Argument Access Description

pl Read Address of the buffer.

SYS2-321

System Service Descriptions

$SCHED

SYS2-322

Argument Access Description

p2 Write Address of the longword size of the buffer.

p3 Write Address of the longword size of the per-process
entry.

CSH$_READ_NEW
Returns a buffer containing information, including an index, EPID, and priority,
for all processes for which a class assignment has not been made.

The format of the buffer is defined in the $CSHDEF macro and consists of a
series of CSHP fields.

The following table shows the pl argument, p2 argument, and p3 argument
values for the CSH$_READ_NEW function code:

Argument Access Description

pl Read Address of the buffer.

p2 Write Address of the longword size of the buffer.

p3 Write Address of the longword size of the per-process
entry.

The following table describes the information returned in the buffer fields for both
CSH$_READ_ALL and CSH$ READ_NEW:

Buffer Field Definition

CSHP$T_ACCOUNT Account string from the user authorization file (first
eight characters).

CSHPS$L_CPUTIM Process CPU time used, in 10-millisecond ticks.

CSHPS$L_EPID Process ID (PID). If CSHP information is

insufficient to determine the right class for a
process, the PID can be used with the $GETJPI(W)
system service to obtain additional detail.

CSHP$W_PIX A unique integer assigned to the process for its
duration. Applications might want to use this value
to index arrays.

CSHP$B_PRI Current process priority.
CSHP$B_PRIB Base process priority.
CSHPS$L_STATUS Undefined; reserved to Compag.

CSH$ _READ_QUANT

Returns a buffer containing information about how many ticks are left for each
class. Data is returned in a series of longwords, one longword per class, starting
with class number 0.

The following table defines the p1 argument, p2 argument, and p3 argument
values when specifying the CSH$_READ_QUANT function code:

System Service Descriptions

$SCHED
Argument Access Description
pl Read Address of the buffer.
p2 Read Address of the longword size of the buffer.
p3 — Unused.

CSH$_SET_ATTN_AST
Enables attention asynchronous system traps (ASTS).

The following table defines the p1 argument, p2 argument, and p3 argument
values when specifying the CSH$ SET _ATTN_AST function code:

Argument Access Description

pl Read Address of an AST routine.
p2 Read Access mode to deliver AST.
p3 — Unused.

CSH$_SET_CLASS
Places processes in classes with or without windfall capability. The caller supplies
a buffer consisting of CSHC blocks.

The format of the buffer is defined in the $SCSHDEF macro. The following table
describes the information contained in the buffer:

Buffer Field Definition
CSHC$L_EPID Process ID (PID) of the process to affect.
CSHC$W_CLASS Class into which to place the process. Class 65535

(hexadecimal FFFF) has a special interpretation:
the associated process is not to be class scheduled
and will, therefore, never run out of class quantum.
The largest class number is 8191.

CSHC$W_WINDFALL Determines whether the process is to share windfall.
A value of 1 permits the process to share windfall;
a value of 0 prevents the process from sharing
windfall. Values other than 0 and 1 are undefined
and can cause unpredictable behavior in future
releases of the operating system.

The following table defines the p1 argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_CLASS function code:

Argument Access Description

pl Read Address of the buffer.

p2 Read Address of the longword size of the buffer.

p3 Read Address of the longword size of the entry used.

Should be CSHC$K_LENGTH or equivalent.

SYS2-323

System Service Descriptions

$SCHED
CSH$_SET_NEW
Indicates to the class scheduler that the next READ_NEW will return information
about the calling process. This function should be used only in executive or kernel
mode.
The following table defines the p1 argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_NEW function code:
Argument Access Description
pl — Unused.
p2 Read PID (by value).
p3 — Unused.
CSH$_SET_QUANT
Establishes class quantum and enables class scheduling. The caller supplies a
buffer that allocates CPU ticks to classes, one longword per class, starting with
class number 0. Class-scheduled processes will have their quantum deducted
from the appropriate longword, and will be removed from execution if class
guantum is decremented to O.
The following table defines the pl1 argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_QUANT function code:
Argument Access Description
pl Read Address of the buffer.
p2 Read Address of the longword size of buffer.
p3 — Unused.
CSH$_SET_TIMEOUT
Establishes a nonstandard timeout. If the application does not issue a CSH$_
SET_QUANT within the timeout period, all class scheduling is stopped and
processes are returned to normal scheduling. The default value, 30 seconds,
should be suitable for most circumstances.
The following table defines the p1l argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_TIMEOUT function code:
Argument Access Description
pl — Unused.
p2 Read Time in seconds (by value).
p3 — Unused.

Description

The Affect Process Scheduling service is used by class scheduler processes to
affect scheduling.

Use the func argument to specify which action $SCHED is to perform.

For more information on class scheduling, refer to the OpenVMS Programming
Concepts Manual.

SYS2-324

System Service Descriptions
$SCHED

Required Access or Privileges

ALTPRI is required to affect processes. Group access is required to affect
processes in the same UIC group. World access is required to affect processes
in different UIC groups. SYSPRYV is required to set the timeout value.

Required Quota
None

Related Services
$GETJIPI, $GETJIPIW, $SETPRI

Condition Values Returned

SS$_ NORMAL Service completed successfully.

SS$_ACCVIO Buffer, length, or size locations not writeable.

SS$ BADPARAM Specified a class higher than currently defined,
or an element size of 0 was specified.

SS$ BUFFEROVF Buffer is too small, only some data transferred.

SS$_INCLASS Returned if a process (specified by the input

PID) already belongs to a scheduling class. This
can happen if the process was previously class
scheduled at login through the class scheduler
permanent database file, or by issuing the
command, SET PROCESS/SCHEDULING_
CLASS="class_name".

SS$_INSFMEM System dynamic memory is insufficient to
complete the service.
SS$_NOSUCHUSER Supplied PID is not valid.

SYS2-325

System Service Descriptions
$SETAST

$SETAST
Set AST Enable

Enables or disables the delivery of asynchronous system traps (ASTs) for the
access mode from which the service call was issued.

Format
SYS$SETAST enbflg

C Prototype
int sys$setast (char enbflg);

Argument
enbflg
OpenVMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value
Value specifying whether ASTs are to be enabled. The enbflg argument is a byte
containing this value. The value 1 enables AST delivery for the calling access
mode; the value 0 disables AST delivery.
Description

The Set AST Enable service enables or disables the delivery of ASTs for the
access mode from which the service call was issued.

Required Access or Privileges

When an image is executing in user mode, ASTs are always enabled for more
privileged access modes. If ASTs are disabled for a more privileged access mode,
the operating system cannot deliver ASTs for less privileged access modes until
ASTs are enabled once again for the more privileged access mode. Therefore, a
process that has disabled ASTs for a more privileged access mode must reenable
ASTs for that mode before returning to a less privileged access mode.

Required Quota
None

Related Services
$DCLAST, $SETPRA

Condition Values Returned

SS$ WASCLR The service completed successfully. AST delivery
was previously disabled for the calling access
mode.

SS$_WASSET The service completed successfully. AST delivery
was previously enabled for the calling access
mode.

SYS2-326

System Service Descriptions
$SETCLUEVT

$SETCLUEVT
Set Cluster Event

Establishes a request for notification when an OpenVMS Cluster configuration
event occurs.

Format
SYS$SETCLUEVT event ,astadr ,[astprm] ,Jacmode] ,[handle]

C Prototype

int sys$setcluevt (unsigned int event, void (*astadr)(__unknown_params), int
astprm, unsigned int acmode, struct _generic_64 *handle);

Arguments
event
OpenVMS usage: event code
type: longword (unsigned)
access: read only
mechanism: by value

Event code indicating the type of cluster configuration event for which an AST is
to be delivered. The event argument is a value indicating which type of event is
of interest.

Each event type has a symbolic name. The $CLUEVTDEF macro defines the
following symbolic names:

Symbolic Name Description

CLUEVTS$C_ADD One or more OpenVMS nodes have been added to
the OpenVMS Cluster system.

CLUEVT$C_REMOVE One or more OpenVMS nodes have been removed

from the OpenVMS Cluster system.

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding
mechanism: by reference

Notification AST routine to receive control after a change in OpenVMS Cluster
configuration occurs.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Optional AST parameter to be passed to the AST service routine. The astprm
argument is a longword value containing the AST parameter.

SYS2-327

System Service Descriptions

$SETCLUEVT
acmode
OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Description

SYS2-328

Optional access mode at which the configuration event AST is to execute. The
acmode argument is a longword containing the access mode.

Each access mode has a symbolic name. The $PSLDEF macro defines the
following symbols for the four access modes:

Symbol Access Mode
PSL$C_KERNEL Kernel
PSL$C_EXEC Executive
PSL$C_SUPER Supervisor
PSL$C USER User

The value of the access mode must not be more privileged than the access mode
of the caller.

handle

OpenVMS usage: identifier

type: guadword (unsigned)
access: write only
mechanism: by reference

Optional identifier to receive a value that uniquely identifies this AST request.
$SETCLUEVT sets this handle to a unique value so that it can later be used to
identify the request in the $SCLRCLUEVT and $TSTCLUEVT services.

The Set Cluster Event service establishes a request for notification when a cluster
configuration event occurs. The service establishes only one AST notification for
a configuration event. To receive AST notification for all cluster configuration
events, the $SETCLUEVT service must be reissued within the notification AST
routine.

The service will verify that the input parameters specify a valid request, allocate
appropriate data structures to hold the request, and enqueue the request for
notification.

You must specify an event type and an AST address. You can specify an AST
parameter, the access mode, and an address into which to place the handle of this
request.

Errors will be returned in the following cases:

= If quotas are exceeded, an error identifying the specific quota will be returned.
It is important to note that this routine will return an error and will not retry
an attempt to get quota if quota is exhausted on the first attempt. See the
Condition Values Returned section for types of errors that can be returned.

= If the astadr argument is omitted, SS$_BADPARAM will be returned.

< If the event argument is omitted or incorrectly specified, SS$ BADPARAM
will be returned.

System Service Descriptions
$SETCLUEVT

« If the access mode parameter is more privileged than the mode of the caller,
the mode of the caller will be used.

= If specified, the handle argument must be readable and writable from the
mode of the caller. SS$_ACCVIO is returned if this is not the case.

Required Access or Privileges
None

Required Quota
None

Related Services
$CLRCLUEVT, $TSTCLUEVT

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$ ACCVIO Unable to process parameters for improper use.

SS$_BADPARAM The event was improperly specified.

SS$_EXASTLM The process exceeded its quota for outstanding
AST requests.

SS$_INSFMEM The system dynamic memory is insufficient to

complete the service.

SYS2-329

System Service Descriptions

$SETDDIR

$SETDDIR

Set Default Directory

Format

C Prototype

Arguments

Description

SYS2-330

Allows you to read and change the default directory string for the process.

SYS$SETDDIR [new-dir-addr] ,[length-addr] ,[cur-dir-addr]

int sys$setddir (void *newdiraddr, unsigned short int *lengthaddr, void *curdiraddr);

new-dir-addr
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

A descriptor of the new default directory. The new-dir-addr argument is the
address of the descriptor that points to the buffer containing the new directory
specification that RMS will use to set the new process-default directory. If the
default directory is not to be changed, the value of the new-dir-addr argument
should be 0.

length-addr

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

A word that is to receive the length of the current default directory. The length-
addr argument is the address of the word that will receive the length. If you do
not want this value returned, specify the value 0.

cur-dir-addr

OpenVMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor—fixed-length string descriptor

A descriptor of a buffer that is to receive the current default directory string. The
cur-dir-addr argument is the address of the descriptor that points to the buffer
area that is to receive the current directory string.

The Set Default Directory service allows you to read and change the default
directory string for the process. You should restore the previous default directory
string to its original state unless you want the changed default directory string to
last beyond the exit of your image. The new directory name string is checked for
correct syntax.

System Service Descriptions
$SETDDIR

There is no predefined macro of the form $SETDDIR_G or $SETDDIR_S to call
this service.

On Alpha systems, the Set Default Directory service attempts to replace the
default directory string with a DID abbreviation if the length of the resulting
default directory exceeds 255 characters. If this happens, then in addition to the
normal syntax check, the entire path to that specification, including the device, is
verified and must exist for the call to succeed.

Required Access or Privileges
None

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, SINIT_VOL, $SMOUNT,
$PUTMSG, $QI0, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

RMS$_NORMAL The service completed successfully.
RMS$_DIR The directory name contains an error.
RMS$_IAL The argument list is invalid.

SYS2-331

System Service Descriptions
$SETDFPROT

$SETDFPROT
Set Default File Protection

Allows you to read and write the default file protection for the process.

Format
SYS$SETDFPROT [new-def-prot-addr] ,[cur-def-prot-addr]

C Prototype

int sys$setdfprot (unsigned short int *newdefprotaddr, unsigned short int
*curdefprotaddr);

Arguments

new-def-prot-addr

OpenVMS usage: file_protection
type: word (unsigned)
access: read only
mechanism: by reference

A word that specifies the new default file protection specification. The new-
def-prot-addr argument is the address of the word that specifies the desired
protection. If you do not want the process-default file protection to be changed,
specify the value 0.

cur-def-prot-addr

OpenVMS usage: file_protection
type: word (unsigned)
access: write only
mechanism: by reference

A word that is to receive the current default file protection specification. The
cur-def-prot-addr argument is the address of the word that receives the current
process-default protection. If you do not want the current default file protection,
specify the value 0.

Description

The Set Default File Protection service allows you to read and write the default
file protection for the process. You should restore the old default file protection
specification unless you want the changed default to last beyond the exit of your
image.

There is no predefined macro of the form $SETDEFPROT_G or
$SETDEFPROT_S to call this service.

Required Access or Privileges
None

Required Quota
None

SYS2-332

System Service Descriptions
$SETDFPROT

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $GET_SECURITY, $INIT_VOL,
$MOUNT, $PUTMSG, $QIO0, $QIOW, $SET_SECURITY, $SNDERR, $SNDJBC,
$SNDJIBCW, $SNDOPR

Condition Values Returned

RMS$_NORMAL The service completed successfully.
RMS$_IAL The argument list is invalid.

SYS2-333

System Service Descriptions
$SETEF

$SETEF
Set Event Flag

Sets an event flag in a local or common event flag cluster. The condition value
returned by $SETEF indicates whether the specified flag was previously set or
clear. After the event flag is set, processes waiting for the event flag to be set
resume execution.

Format
SYS$SETEF efn

C Prototype

int sys$setef (unsigned int efn);

Argument
efn
OpenVMS usage: ef number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set. The efn argument is a longword containing
this number; however, $SETEF uses only the low-order byte.

Two local event flag clusters are local to the process: cluster 0 and cluster 1.
Cluster 0 contains event flag numbers 0 to 31, and cluster 1 contains event flag
numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

Condition Values Returned

SS$ WASCLR The service completed successfully. The specified
event flag was previously 0.

SS$ WASSET The service completed successfully. The specified
event flag was previously 1.

SS$_ILLEFC You specified an illegal event flag number.

SS$_UNASEFC The process is not associated with the cluster

containing the specified event flag.

SYS2-334

System Service Descriptions
$SETEXV

$SETEXV
Set Exception Vector

Assigns a condition handler address to the primary, secondary, or last chance
exception vectors, or removes a previously assigned handler address from any of
these three vectors.

Format
SYS$SETEXV |[vector] ,[addres] ,Jacmode] ,[prvhnd]

C Prototype

int sys$setexv (unsigned int vector, int (*addres)(_ _unknown_params), unsigned int
acmode, void *(*(prvhnd)));

Arguments
vector
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Vector for which a condition handler is to be established or removed. The vector
argument is a longword value. The value 0 (the default) specifies the primary
exception vector; the value 1, the secondary vector; and the value 2, the last
chance exception vector.

addres

OpenVMS usage: procedure

type: procedure value

access: call without stack unwinding
mechanism: by reference

Condition handler address to be established for the exception vector specified by
the vector argument. The addres argument is a longword value containing the
address of the condition handler routine.

If you do not specify addres or specify it as the value 0, the condition handler
address already established for the specified vector is removed; that is, the
contents of the longword vector is set to 0.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the exception vector is to be modified. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. Exception
vectors for access modes more privileged than the caller’s access mode cannot be
modified.

SYS2-335

System Service Descriptions

$SETEXV

Description

prvhnd

OpenVMS usage: procedure value
type: longword (unsigned)
access: write only
mechanism: by reference

Previous condition handler address contained by the specified exception vector.
The prvhnd argument is the address of a longword into which $SETEXV writes
the handler’s procedure value.

The Set Exception Vector service (1) assigns a condition handler address to the
primary, secondary, or last chance exception vectors or (2) removes a previously
assigned handler address from any of these three vectors. A process cannot
modify a vector associated with a more privileged access mode.

The operating system provides two different methods for establishing condition
handlers:

= Using the call stack associated with each access mode. Each call frame
includes a longword to contain the address of a condition handler associated
with that frame.

= On VAX systems, the RTL routine LIB$ESTABLISH establishes a condition
handler; the RTL routine LIB$REVERT removes a handler.

= Using the software exception vectors (by using $SETEXV) associated with
each access mode. These vectors are set aside in the control region (P1 space)
of the process.

The modular properties associated with the first method do not apply to the
second. The software exception vectors are intended primarily for performance
monitors and debuggers. For example, the primary exception vector and the

last chance exception vector are used by the OpenVMS Debugger for user mode
access, and DCL uses the last chance exception vector for supervisor mode access.

User mode exception vectors are canceled at image exit.

Required Access or Privileges
None

Required Quota
None

Related Services
$DCLCMH, $SETSFM, $SUNWIND

Condition Values Returned

SYS2-336

SS$ NORMAL The service completed successfully.

SS$ ACCVIO The longword to receive the previous contents of
the vector cannot be written by the caller.

System Service Descriptions
$SETIME

$SETIME
Set System Time

Changes the value of, or recalibrates, the system time.

On Alpha systems, this service accepts 64-bit addresses.

Format
SYS$SETIME [timadr]

C Prototype

int sys$setime (struct _generic_64 *timadr);

Argument

timadr

OpenVMS usage: date_time

type: quadword (unsigned)

access: read only

mechanism: by 32- or 64-bit reference (Alpha)
by 32-bit reference (VAX)

New absolute time value for the system time, specifying the number of 100-
nanosecond intervals since 00:00 o'clock, November 17, 1858. The timadr
argument is the 32-bit address (on VAX systems) or the 32- or 64-bit address (on
Alpha systems) of a quadword containing the new system time value. A negative
(delta) time value is invalid.

If you do not specify the value of timadr or specify it as 0, $SETIME recalibrates
the system time using the time-of-year clock.

Description

The Set System Time service (1) changes the value of or (2) recalibrates the
system time, which is defined by a quadword value that specifies the number of
100-nanosecond intervals since 00:00 o'clock, November 17, 1858.

System time is the reference used for nearly all timer-related software activities
in the operating system. After changing or recalibrating the system clock,
$SETIME updates the timer queue by adjusting each element in the timer queue
by the difference between the previous system time and the new system time.

The $SETIME service saves the new time (for future bootstrap operations)

in the system image SYS$SYSTEM:SYS.EXE on VAX systems or
SYS$LOADABLE_IMAGES:SYS$BASE_IMAGE.EXE on Alpha systems. To
save the time, the service assigns a channel to the system boot device and calls
$QIOW. You need the LOG_IO user privilege to perform this operation.

Required Access or Privileges

To set system time, the calling process must have OPER, LOG_IO, and SYSPRV
privileges.

Required Quota
None

SYS2-337

System Service Descriptions
$SETIME

Related Services

$ASCTIM, $BINTIM, $CANTIM, SCANWAK, $GETTIM, $SNUMTIM, $SCHDWK,
$SETIMR

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The quadword that contains the new system time
value cannot be read by the caller.

SS$_IVTIME The caller specified no time value or a negative
time value and an invalid processor clock was
found.

SS$_NOIOCHAN No 1/0 channel is available for assignment.

SS$_NOPRIV The process does not have the privileges to set

the system time.

SYS2-338

System Service Descriptions

$SETIMR
$SETIMR
Set Timer
Sets the timer to expire at a specified time.
On Alpha systems, this service accepts 64-bit addresses.
Format

SYS$SETIMR [efn] ,daytim ,[astadr] ,[reqidt] ,[flags]

C Prototype

int sys$setimr (unsigned int efn, struct _generic_64 *daytim, void
(*astadr)(__unknown_params), unsigned __int64 reqidt, unsigned int

flags);
Arguments
efn
OpenVMS usage: ef number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag to be set when the timer expires. The efn argument is a longword
value containing the number of the event flag; however, $SETIMR uses only the
low-order byte.

If you do not specify efn, event flag 0O is set.

When $SETIMR first executes, it clears the specified event flag or event flag 0.

daytim

OpenVMS usage: date_time

type: quadword

access: read only

mechanism: by 64-bit reference (Alpha)

by 32-bit reference (VAX)

Time at which the timer expires. The daytim argument is the 64-bit address (on
Alpha systems) or the 32-bit address (on VAX systems) of a quadword time value.
A positive time value specifies an absolute time at which the timer expires; a
negative time value specifies an offset (delta time) from the current time.

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding
mechanism: by 64-bit reference (Alpha)

by 32-bit reference (VAX)

AST service routine that is to execute when the timer expires. The astadr
argument is the 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of the procedure value of this routine. If you do not specify the value of
astadr or specify it as 0 (the default), no AST routine executes.

The AST routine, if specified, executes at the access mode of the caller.

SYS2-339

System Service Descriptions

$SETIMR

Description

SYS2-340

reqidt

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Identification of the timer request. The reqidt argument is a longword value
containing a number that uniquely identifies the timer request. If you do not
specify reqidt, the value 0 is used.

To cancel a timer request, the identification of the timer request (as specified by
reqidt in $SETIMR) is passed to the Cancel Timer ($CANTIM) service (as the
reqidt argument).

If you want to cancel specific timer requests but not all timer requests, be sure to
specify a nonzero value for reqidt in the $SETIMR call; SCANTIM interprets an
identification value of 0 as a request to cancel all timer requests.

You can specify unique values for reqidt for each timer request or give the same
value to related timer requests. This permits selective canceling of a single timer
request, a group of related timer requests, or all timer requests.

If you specify the astadr argument in the $SETIMR call, the value specified by
the reqidt argument is passed as a parameter to the AST routine. If the AST
routine requires more than one parameter, specify an address for the value of
reqidt; the AST routine can then interpret that address as the beginning of a list
of parameters.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of bit flags for the set timer operation. Currently, only bit O is used for
the flags argument. When the low bit (bit 0) is set, it indicates that this timer
request should be in units of CPU time, rather than elapsed time. When bit 0

is clear (the default), the timer request is in units of elapsed time. The flags
argument is optional.

The Set Timer service sets the timer to expire at a specified time. When the
timer expires, an event flag is set and (optionally) an AST routine executes. This
service requires dynamic memory and executes at the access mode of the caller,
as does the AST routine if one is specified.

Required Access or Privileges
None

Required Quota

This service uses the process’s timer queue entries (TQELM) quota. If you specify
an AST routine, the service uses the AST limit (ASTLM) quota of the process.

Related Services

$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $GETTIM, SNUMTIM, $SCHDWK,
$SETIME

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$ EXQUOTA

SS$_ILLEFC
SS$_INSFMEM

SS$ UNASEFC

System Service Descriptions
$SETIMR

The service completed successfully.
The expiration time cannot be read by the caller.

The process exceeded its quota for timer entries
or its AST limit quota; or the system dynamic
memory is insufficient for completing the request.

You specified an illegal event flag number.

The dynamic memory is insufficient for allocating
a timer queue entry.

The process is not associated with the cluster
containing the specified event flag.

SYS2-341

System Service Descriptions
$SETPRA

$SETPRA
Set Power Recovery AST

Establishes a routine to receive control after a power recovery is detected.

Format
SYS$SETPRA astadr ,Jacmode]

C Prototype

int sys$setpra (int (*astadr)(__unknown_params), unsigned int acmode);

Arguments
astadr
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Power recovery AST routine to receive control when a power recovery is detected.
The astadr argument is the address of this routine.

If you specify astadr as the value 0, an AST is not delivered to the process when
a power recovery is detected.

The system passes one parameter to the specified AST routine. This parameter is
a longword value containing the length of time that the power was off, expressed
as the number of 1/100th-of-a-second intervals that have elapsed.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode at which the power recovery AST routine is to execute. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
symbols for the access modes.

The most privileged access mode used is the access mode of the caller.

Description

The Set Power Recovery AST service establishes a routine to receive control after
a power recovery is detected.

You can specify only one power recovery AST routine for a process. The AST
entry point address is cleared at image exit.

The entry and exit conventions for the power recovery AST routine are the same
as for all AST service routines.

Required Access or Privileges
None

SYS2-342

System Service Descriptions
$SETPRA

Required Quota
One unit of quota is deducted from the process's ASTLM.

Related Services
$DCLAST, $SETAST

For more information, refer to the chapter on AST services in the OpenVMS
Programming Concepts Manual.

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$ EXQUOTA The process exceeded its quota for outstanding
AST requests.

SYS2-343

System Service Descriptions

$SETPRI

$SETPRI

Set Priority
Changes the base priority of the process. The base priority is used to determine
the order in which executable processes are to run.

Format

SYSS$SETPRI [pidadr] ,[prcnam] ,pri ,[prvpri] ,[nullarg] ,[nullarg]

C Prototype

int sys$setpri (unsigned int *pidadr, void *prcnam, unsigned int pri, unsigned int
*prvpri, unsigned int *pol, unsigned int *prvpol);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process whose priority is to be set. The pidadr
argument is the address of the PID. The pidadr argument can refer to a process
running on the local node or a process running on another node in the cluster.

prcnam

OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Process name of the process whose priority is to be changed. The prcnam
argument is the address of a character string descriptor pointing to the process
name.

A process running on the local node can be identified with a 1- to 15-character
string. To identify a process on a particular node on a cluster, specify the full
process name, which includes the node name as well as the process name. The
full process name can contain up to 23 characters.

You can use the prcnam argument only on behalf of processes in the same UIC
group as the calling process. To set the priority for processes in other groups, you
must specify the pidadr argument.

pri

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

New base priority to be established for the process. The pri argument is a
longword value containing the new priority. Priorities that are not real time are
in the range 0 through 15; real-time priorities are in the range 16 through 31.

SYS2-344

System Service Descriptions
$SETPRI

If the specified priority is higher than the base priority of the target process, and
if the caller does not have ALTPRI privilege, then the base priority of the target
process is used.

prvpri

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Base priority of the process before the call to $SETPRI. The prvpri argument is
the address of a longword into which $SETPRI writes the previous base priority
of the process.

policy

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

On Alpha systems, address of a longword containing the new scheduling policy
for the process.

The $JPIDEF macro defines the following symbols for the policy argument:

Symbol Meaning

JPI$SK_DEFAULT_POLICY The normal scheduling policy. The priority
interval for this policy is defined as [0..n], such
that priorities [0..15] are interactive and priorities
[16..n] are real time.

JPI$SK_PSX_FIFO_POLICY POSIX FIFO scheduling policy. The priority
interval for this policy is defined as [n..m] real-
time priorities.

JPI$K_PSX_RR_POLICY POSIX round-robin policy. The priority interval for
this policy is defined as [n..m] real-time priorities.

prvpol

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

On Alpha systems, address of a longword into which the previous scheduling
policy for the process is written. If the policy argument is null, no change in
policy is requested and prvpol returns the current policy.

The valid priority intervals for specific scheduling policies might change in the
future. Applications should, therefore, not use embedded numeric constants for
scheduling priority, but should use the appropriate $GETSYI item codes to fetch
the legal priority intervals. The application can then dynamically select a priority
value that is within the interval. The $GETSYI item codes are:

- SYI$ DEF_PRIO_MAX, SYI$_DEF_PRIO_MIN
e SYI$_PSXFIFO_PRIO_MAX, SYI$_PSXFIFO_PRIO_MIN

SYS2-345

System Service Descriptions

$SETPRI

Description

SYS2-346

- SYI$_PSXRR_PRIO_MAX, SYI$_PSXRR_PRIO_MIN

See the Item Codes section of the $GETSY|1 service description for more
information about these item codes.

nullarg

OpenVMS usage: null_arg

type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Compag.

The Set Priority service changes the base priority of the process or, optionally,
changes the scheduling policy of the process. The base priority is used to
determine the order in which executable processes are to run.

The scheduling policy denotes the following:
= The basic scheduling discipline (FIFO, round-robin, and so forth).

= The preemption/compensation rules by which a running process is
descheduled in favor of another process and, ultimately, rescheduled.

A source process can modify the priority or scheduling policy of a target process if
any of the following are true:

= The source and target processes are in the same job tree.

= The source and target processes have the same UIC.

= The source process has WORLD privilege enabled.

= The source and target processes are in the same process group.

The value to which the priority of a process can be set can be subject to
limitations. If the source has ALTPRI privilege enabled, the target can be

set to any valid priority. Otherwise, the priority value specified by the source
process is compared to the authorized priority of the target process and the
smaller of the two values is used as the new base priority of the target process.

If you specify neither the pidadr nor the prcnam argument, $SETPRI sets the
base priority of the calling process.

If the longword at address pidadr is the value O, the PID of the target process is
returned.

The base priority of a process remains in effect until specifically changed or until
the process is deleted.

To determine the priority set by the $SETPRI service, use the Get Job/Process
Information ($GETJPI) service.

Required Access or Privileges

Depending on the operation, the calling process might need one of the following
privileges to use $SETPRI:

< GROUP privilege to change the priority of a process in the same group, unless
the target process has the same UIC as the calling process.

< WORLD privilege to change the priority of any other process in the system.

System Service Descriptions
$SETPRI

= ALTPRI privilege to set any process’s priority to a value greater than the
target process’s initial base priority. If a process does not have ALTPRI
privilege, the priority value specified by the source process is compared to the
authorized priority of the target process and the smaller of the two values is
used as the new base priority of the target process.

Required Quota
None

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJIPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRN, $SETPRY,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The process name string or string descriptor
cannot be read by the caller, or the process
identification or previous priority longword
cannot be written by the caller.

SS$_ILLPOLICY An invalid scheduling policy was specified.

SS$_ILLPRIPOL Setting the process to the specified priority
and/or policy would result in an illegal
policy/priority combination. The illegal
combination can occur between the SETPRI
policy and priority parameters themselves, or it
can occur between either of the parameters and
the current policy and/or priority of the target

process.

SS$_INCOMPAT The remote node is running an incompatible
version of the operating system.

SS$_IVLOGNAM The process name string has a length of 0 or has
more than 15 characters.

SS$ NONEXPR The specified process does not exist, or an invalid
process identification was specified.

SS$ NOPRIV The process does not have the privilege to affect
other processes.

SS$ NOSUCHNODE The process name refers to a node that is not
currently recognized as part of the cluster.

SS$ REMRSRC The remote node has insufficient resources to

respond to the request. (Bring this error to the
attention of your system manager.)

SS$ UNREACHABLE The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS2-347

System Service Descriptions

$SETPRN

$SETPRN

Set Process Name

Format

C Prototype

Argument

Description

Allows a process to establish or to change its own process name.

SYS$SETPRN [prcnam]

int sys$setprn (void *prcnam);

prcnam
OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Process name to be given to the calling process. The prcnam argument is the
address of a character string descriptor pointing to a 1- to 15-character process
name string. If you do not specify prcnam, the calling process is given no name.

The Set Process Name service allows a process to establish or to change its own
process name, which remains in effect until you change it (using $SETPRN) or
until the process is deleted. Process names provide an identification mechanism
for processes executing with the same group number. A process can also be
identified by its process identification (PID).

Required Access or Privileges
None

Required Quota
None

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $SFORCEX, $GETJPI,
$GETJIPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRY,
$SETRWM, $SUSPND, $SWAKE

Condition Values Returned

SYS2-348

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The process name string or string descriptor
cannot be read by the caller.

SS$ DUPLNAM The specified process name duplicates one
already specified within that group.

SS$_IVLOGNAM The specified process nhame has a length of 0 or

has more than 15 characters.

System Service Descriptions
$SETPRT

$SETPRT
Set Protection on Pages

Allows a process to change the protection on a page or range of pages.

Format
SYS$SETPRT inadr ,[retadr] ,[acmode] ,prot ,[prvprt]

C Prototype

int sys$setprt (struct _va_range *inadr, struct _va_range *retadr, unsigned int
acmode, unsigned int prot, unsigned char *prvprt);

Arguments
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages whose protection is to
be changed. The inadr argument is the address of a 2-longword array containing,
in order, the starting and ending process virtual addresses.

Addresses are adjusted up or down to fall on CPU-specific page boundaries. Only
the virtual page number portion of each virtual address is used; the low-order
byte-within-page bits are ignored.

If the starting and ending virtual addresses are the same, the protection is
changed for a single page.

retadr

OpenVMS usage: address_range

type: longword (unsigned)

access: write only

mechanism: by reference—array reference or descriptor

Starting and ending virtual addresses of the range of pages whose protection
was actually changed by $SETPRT. The retadr argument is the address of a
2-longword array containing, in order, the starting and ending process virtual
addresses.

If an error occurs while the protection is being changed, $SETPRT writes into
retadr the range of pages that were successfully changed before the error
occurred. If no pages were affected before the error occurred, $SETPRT writes
the value —1 into each longword of the 2-longword array.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

SYS2-349

System Service Descriptions

$SETPRT

SYS2-350

Access mode associated with the call to $SETPRT. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines symbols for
the access modes.

The $SETPRT service uses whichever of the following two access modes is least
privileged: (1) the access mode specified by acmode or (2) the access mode

of the caller. To change the protection of any page in the specified range, the
resultant access mode must be equal to or more privileged than the access mode
of the owner of that page.

prot

OpenVMS usage: page_protection
type: longword (unsigned)
access: read only
mechanism: by value

Page protection to be assigned to the specified pages. The prot argument is a
longword value containing the protection code. Only bits 0 to 3 are used; bits 4 to
31 are ignored.

The $PRTDEF macro defines the following symbolic names for the protection
codes:

Symbol Description

PRT$C_NA No access

PRT$C_KR Kernel read only
PRT$C_KW Kernel write

PRT$C_ER Executive read only
PRT$C_EW Executive write

PRT$C_SR Supervisor read only
PRT$C_SW Supervisor write

PRT$C_UR User read only

PRT$C_UW User write

PRT$C_ERKW Executive read; kernel write
PRT$C_SRKW Supervisor read; kernel write
PRT$C_SREW Supervisor read; executive write
PRT$C_URKW User read; kernel write
PRT$C_UREW User read; executive write
PRT$C_URSW User read; supervisor write

OpenVMS Alpha systems convert PRT$C_NA to the next highest protection,
kernel-read.

If you specify the protection as the value 0, the protection defaults to kernel read
only.

prvprt

OpenVMS usage: page_protection
type: byte (unsigned)
access: write only
mechanism: by reference

Description

System Service Descriptions
$SETPRT

Protection previously assigned to the last page in the range. The prvprt
argument is the address of a byte into which $SETPRT writes the protection of
this page. The prvprt argument is useful only when protection for a single page
is being changed.

The Set Protection on Pages service allows a process to change the protection on
a page or range of pages.

Required Access or Privileges

None

Required Quota

If a process changes the protection for any pages in a private section from read
only to read/write, $SETPRT uses the paging file (PGFLQUOTA) quota of the
process.

For pages in global sections, the new protection can alter only copy-on-reference
pages.

Related Services

$ADJISTK, SADIWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $SLKWSET, $SMGBLSC, $PURGWS, $SETSTK, $SETSWM, $SULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The input address array cannot be read by the
caller; the output address array or the byte to
receive the previous protection cannot be written
by the caller; or an attempt was made to change
the protection of a nonexistent page.

SS$ EXQUOTA The process exceeded its paging file quota while
changing a page in a read-only private section to
a read/write page.

SS$_IVPROTECT The specified protection code has a humeric value
of 1, less than 0O, or greater than 15.

SS$_LENVIO A page in the specified range is beyond the end
of the program or control region.

SS$_NOPRIV A page in the specified range is in the system

address space; an attempt was made to change
the protection of a valid global page, of an invalid
global noncopy-on-reference page, or a PFN
global or private page.

SS$_PAGOWNVIO The process attempted to change the protection
on a page owned by a more privileged access
mode.

SYS2-351

System Service Descriptions
$SETPRT_64 (Alpha Only)

$SETPRT_64 (Alpha Only)
Set Protection on Pages

On Alpha systems, allows a process to change the protection on a page or range
of pages.

This service accepts 64-bit addresses.

Format

SYS$SETPRT_64 start_va_64 ,length_64 ,acmode ,prot ,return_va_64
,sreturn_length_64 ,return_prot_64

C Prototype

int sys$setprt_64 (void *start_va_64, unsigned __int64 length_64, unsigned int
acmode, unsigned int prot, void *(*(return_va_64)), unsigned
__int64 *return_length_64, unsigned int *return_prot_64);

Arguments
start_va 64
OpenVMS usage: address
type: guadword address
access: read only
mechanism: by value

The starting virtual address of the range of pages whose protection is to be
changed. The specified virtual address will be rounded down to a CPU-specific

boundary.

length_64

OpenVMS usage: byte count

type: guadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space whose protection is to be changed. The
specified length will be rounded up to a CPU-specific page boundary so that it
includes all CPU-specific pages in the requested range.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to $SETPRT_64. The acmode argument is
a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

SYS2-352

System Service Descriptions
$SETPRT_64 (Alpha Only)

Value Symbolic Name Access Mode
0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor
3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. To change
the protection of any page in the specified range, the resultant access mode must
be equal to or more privileged than the access mode of the owner of that page.

prot

OpenVMS usage: page_protection
type: longword (unsigned)
access: read only
mechanism: by value

Page protection to be assigned to the specified pages. The prot argument is a
longword value containing the protection code. Only bits 0 to 3 are used; bits 4 to
31 are ignored.

The $PRTDEF macro for MACRO-32 and the include file PRTDEF.H for C define
the symbolic names for the protection codes.

return_va_64
OpenVMS usage: address

type: quadword address
access: write only
mechanism: by 32- or 64-bit reference

The lowest process virtual address of the range of pages whose protection was
actually changed. The return_va_64 argument is the 32- or 64-bit virtual
address of a naturally aligned quadword into which the service returns the
virtual address.

return_length_64
OpenVMS usage: byte count

type: quadword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

The length of the virtual address range whose protection was actually changed.
The return_length_64 argument is the 32- or 64-bit virtual address of a
naturally aligned quadword into which the service returns the length of the
virtual address range in bytes.

return_prot_64
OpenVMS usage: page_protection

type: longword (unsigned)
access: write only
mechanism: by 32- or 64-bit reference

Protection previously assigned to the last page in the range. The return_prot_64
argument is the 32- or 64-bit virtual address of a naturally aligned longword into
which $SETPRT_64 writes the protection of this page. The return_prot_64
argument is useful only when protection for a single page is being changed.

SYS2-353

System Service Descriptions
$SETPRT_64 (Alpha Only)

Description

The Set Protection on Pages service allows a process to change the protection on
a page or range of pages. For pages in a global section, the new protection can
alter only copy-on-reference pages.

If the condition value SS$_ACCVIO is returned by this service, a value
cannot be returned in the memory locations pointed to by the return_va_ 64,
return_length_64, and return_prot arguments.

If a condition value other than SS$ ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully changed before
the error occurred. If no pages were changed, the return_va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
None

Required Quota

If a process changes the protection for any pages in a private section from
read-only to read/write, $SETPRT_64 uses the paging file (PGFLQUOTA) quota
of the process.

Related Services

$CRETVA_64, $CRMPSC_FILE_64, $CRMPSC_GFILE_64, $CRMPSC_GPFILE_
64, SEXPREG_64, SMGBLSC_64

Condition Values Returned

SYS2-354

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The return_va_64 or the return_length_64
argument cannot be written by the caller.

SS$ EXPGFLQUOTA The process exceeded its paging file quota while

changing a page in a read-only private section to
a read/write page.

SS$ IVPROTECT The specified protection code has a numeric value
of 1 or is greater than 15.

SS$ LENVIO A page in the specified range is not in process
private address space.

SS$_NOSUCHPAG An attempt was made to change the protection
on a nonexistent page.

SS$_PAGNOTINREG A page in the specified range is not within the
specified region.

SS$ PAGTYPVIO A page in the specified range is not in process
private address space.

SS$ PAGOWNVIO The process attempted to change the protection
on a page owned by a more privileged access
mode.

System Service Descriptions
$SETPRV

$SETPRV
Set Privileges

Enables or disables specified privileges for the calling process.

Format
SYS$SETPRV [enbflg] ,[prvadr] ,[prmflg] ,[prvprv]

C Prototype

int sys$setprv (char enbflg, struct _generic_64 *prvadr, char prmflg, struct
_generic_64 *prvprv);

Arguments
enbflg
OpenVMS usage: boolean
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the specified privileges are to be enabled or disabled.
The enbflg argument is a longword value. The value 1 indicates that the
privileges specified in the prvadr argument are to be enabled. The value 0 (the
default) indicates that the privileges are to be disabled.

prvadr

OpenVMS usage: mask_privileges
type: quadword (unsigned)
access: read only
mechanism: by reference

Privileges to be enabled or disabled for the calling process. The prvadr argument
is the address of a quadword bit vector wherein each bit corresponds to a privilege
that is to be enabled or disabled.

Each bit has a symbolic name. The $PRVDEF macro defines these names. You
form the bit vector by specifying the symbolic name of each desired privilege
in a logical OR operation. The following table provides the symbolic name and
description of each privilege:

User Privilege Symbolic Name Description

ACNT PRV$SM_ACNT Create processes for which no
accounting is done

ALLSPOOL PRV$M_ALLSPOOL Allocate a spooled device

ALTPRI PRV$SM_ALTPRI Set (alter) any process priority

AUDIT PRV$V_AUDIT Generate audit records

BUGCHK PRV$SM_BUGCHK Make bugcheck error log entries

BYPASS PRV$M_BYPASS Bypass all protection

CMEXEC PRV$M_CMEXEC Change mode to executive

SYS2-355

System Service Descriptions

$SETPRV

SYS2-356

User Privilege

Symbolic Name

Description

CMKRNL
DIAGNOSE
DOWNGRADE
EXQUOTA
GROUP
GRPNAM

GRPPRV
IMPERSONATE

IMPORT
LOG_IO
MOUNT
NETMBX
OPER
PFNMAP

PHY_IO
PRMCEB

PRMGBL
PRMMBX
PSWAPM
READALL
SECURITY
SETPRV
SHARE

SHMEM

SYSGBL
SYSLCK
SYSNAM

SYSPRV

TMPMBX
UPGRADE
VOLPRO
WORLD

PRV$M_CMKRNL
PRV$M_DIAGNOSE
PRV$V_DOWNGRADE
PRV$M_EXQUOTA
PRV$M_GROUP
PRV$M_GRPNAM

PRV$V_GRPPRV
PRV$M_IMPERSONATE

PRV$V_IMPORT
PRV$M_LOG_IO
PRV$M_MOUNT
PRV$M_NETMBX
PRV$M_OPER
PRV$M_PFNMAP

PRV$M_PHY IO
PRV$M_PRMCEB

PRV$M_PRMGBL
PRV$M_PRMMBX
PRV$M_PSWAPM
PRV$V_READALL
PRV$V_SECURITY
PRV$M_SETPRV
PRV$M_SHARE

PRV$M_SHMEM

PRV$M_SYSGBL
PRV$M_SYSLCK
PRV$M_SYSNAM

PRV$M_SYSPRV

PRV$M_TMPMBX
PRV$V_UPGRADE
PRV$M_VOLPRO
PRV$M_WORLD

Change mode to kernel

Can diagnose devices

Can downgrade classification
Can exceed quotas

Group process control

Place name in group logical name
table

Group access by means of system
protection field

Create detached processes under
another UIC

Mount a nonlabeled tape volume
Perform logical 1/0 operations
Issue mount volume QIO

Create a network device

All operator privileges

Map to section by physical page
frame number

Perform physical 1/O operations

Create permanent common event
flag clusters

Create permanent global sections
Create permanent mailboxes
Change process swap mode
Possess read access to everything
Can perform security functions
Set any process privileges

Can assign a channel to a
nonshared device

Allocate structures in memory
shared by multiple processors

Create system global sections
Queue systemwide locks

Place name in system logical name
table

Access files and other resources as
if you have a system UIC

Create temporary mailboxes
Can upgrade classification
Override volume protection
World process control

If you do not specify prvadr or assign it the value 0, the privileges are not

altered.

Description

System Service Descriptions

$SETPRV
prmflg
OpenVMS usage: boolean
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the privileges are to be affected permanently or
temporarily. The prmflg argument is a longword value. The value 1 specifies
that the privileges are to be affected permanently, that is, until you change
them again by using $SETPRV or until the process is deleted. The value 0 (the
default) specifies that the privileges are to be affected temporarily, that is, until
the current image exits (at which time the permanently enabled privileges of the
process will be restored).

Setting the prmflg argument to nonzero changes privilege bits in both the
CURPRIV mask and the PROCPRIV mask.

prvprv

OpenVMS usage: mask_privileges
type: quadword (unsigned)
access: write only
mechanism: by reference

Privileges previously possessed by the calling process. The prvprv argument is
the address of a quadword bit vector wherein each bit corresponds to a privilege
that was previously either enabled or disabled. If you do not specify prvprv or
assign it the value 0, the previous privilege mask is not returned.

The Set Privileges service enables or disables specified privileges for the calling
process.

The operating system maintains four separate privilege masks for each process:

= AUTHPRIV—Privileges that the process is authorized to enable, as
designated by the system manager or the process creator. The AUTHPRIV
mask never changes during the life of the process.

= PROCPRIV—Privileges that are designated as permanently enabled for the
process. The PROCPRIV mask can be modified by $SETPRV.

< IMAGPRIV—Privileges with which the current image is installed.

e CURPRIV—Privileges that are currently enabled. The CURPRIV mask can
be modified by $SETPRV.

When a process is created, its AUTHPRIV, PROCPRIV, and CURPRIV masks
have the same contents. Whenever a system service (other than $SETPRV) must
check the process privileges, that service checks the CURPRIV mask.

When a process runs an installed image, the privileges with which that image
was installed are enabled in the CURPRIV mask. When the installed image
exits, the PROCPRIV mask is copied to the CURPRIV mask.

The $SETPRV service can set bits only in the CURPRIV and PROCPRIV mask,
but $SETPRV checks the AUTHPRIV mask to see whether a process can set
specified privilege bits in the CURPRIV or PROCPRIV masks. Consequently, a
process can give itself the SETPRV privilege only if this privilege is enabled in
the AUTHPRIV mask.

SYS2-357

System Service Descriptions

$SETPRV

You can obtain each of a process’s four privilege masks by calling the $GETJPI
(Get Job/Process Information) service and specifying the desired privilege mask
or masks as item codes in the itmlst argument. You construct the item code for
a privilege mask by prefixing the name of the privilege mask with the characters
JPI$_ (for example, JPI$_CURPRIV is the item code for the current privilege
mask).

The DCL command SET PROCESS/PRIVILEGES also enables or disables
specified privileges; refer to the OpenVMS DCL Dictionary for details.

Required Access or Privileges

To set a privilege permanently, the calling process must be authorized to set the
specified privilege, or the process must be executing in kernel or executive mode.

To set a privilege temporarily, one of the following three conditions must be true:
= The calling process must be authorized to set the specified privilege.
= The calling process must be executing in kernel or executive mode.

= The image currently executing must be one that was installed with the
specified privilege.

Required Quota

None

Related Services

$CANEXH, $CMKRNL, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX,
$GETJPI, $GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI,
$SETPRN, $SETRWM, $SUSPND, $WAKE

Condition Values Returned

SYS2-358

SS$_NORMAL The service completed successfully. All privileges
were enabled or disabled as specified.
SS$_NOTALLPRIV The service completed successfully. Not all

specified privileges were enabled; see the
Description section for details.

SS$_ACCVIO The privilege mask cannot be read or the
previous privilege mask cannot be written by
the caller.

SS$_IVSTSFLG You specified a value other than 1 or O in either

the prmflg argument or the enblfg argument.

System Service Descriptions
$SETRWM

$SETRWM

Set Resource Wait Mode

Format

C Prototype

Argument

Description

Allows a process to specify what action system services should take when system
resources required for their execution are unavailable.

Caution

Disabling resource waiting should be performed with caution, as doing so
can have unexpected effects on constituent sharable images and runtime
libraries.

SYS$SETRWM [watflg]

int sys$setrwm (char watflg);

watflg

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether system services should wait for required resources.
The watflg argument is a longword value. The value 0 (the default) specifies that
system services should wait until resources needed for their execution become
available. The value 1 specifies that system services should return failure status
immediately when resources needed for their execution are unavailable.

The operating system enables resource wait mode for all processes. You can
disable resource wait mode only by calling $SETRWM.

If resource wait mode is disabled, it remains disabled until it is explicitly
reenabled or until the process is deleted.

The Set Resource Wait Mode service allows a process to specify what action
system services should take when system resources required for their execution
are unavailable.

When resource wait mode is enabled, system services wait for the required system
resources to become available and then continue execution. When resource wait
mode is disabled, system services return to the caller when required system
resources are unavailable. The condition value returned by $SETRWM indicates
whether resource wait mode was previously enabled or previously disabled.

The following system resources and process quotas are affected by resource wait
mode:

e System dynamic memory

SYS2-359

System Service Descriptions

$SETRWM

< UNIBUS adapter map registers

< Direct I/O limit (DIOLM) quota

« Buffered 1/O limit (BIOLM) quota

« Buffered 1/0O byte count limit (BYTLM) quota

Caution

Due to the process-wide implications of resource waiting, disabling
resource waiting should be performed with caution.

Disabling resource wait mode can have unexpected effects on libraries

or shareable images upon which your application may be directly or
indirectly dependent. If resource waiting is disabled, these constituent
libraries or shareable images may not perform as expected. It is possible
that these constituent components are coded to assume resource waiting is
enabled; therefore, they may not be coded to receive various quota-related
errors such as SS$_EXQUOTA.

Note that you should have full control over the entire program context
down to the system calls before disabling resource wait mode.

Required Access or Privileges
None

Required Quota
None

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $SFORCEX, $GETJPI,
$GETJIPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETPRYV, $SUSPND, $WAKE

Condition Values Returned

SYS2-360

SS$ WASCLR The service completed successfully. Resource
wait mode was previously enabled.
SS$ WASSET The service completed successfully. Resource

wait mode was previously disabled.

System Service Descriptions
$SETSHLV

$SETSHLV
Set Automatic Unshelving

Controls whether a process automatically unshelves files.

Format
SYS$SETSHLV [pidadr] ,[prcnam] ,[shivflg]

C Prototype

int sys$setshlv (unsigned int *pidadr, void *prcnam, unsigned int shivflg);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process. The pidadr argument is the address
of the PID. The pidadr argument can only refer to a process running on the local
node. You cannot modify a process on a remote node.

You must specify the pidadr argument to modify a process whose UIC group
number is different from that of the calling process.

prcnam
OpenVMS usage: process_name

type: character—coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Process name of the process. The prcnam argument is the address of a character
string descriptor pointing to the process name. You identify a process with a 1- to
15-character string.

You can only use the prcnam argument to modify a process in the same UIC
group as the calling process. To modify a process in another UIC group, you must
specify the pidadr argument.

shlvflg

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Value specifying whether automatic unshelving is to be turned on or off. The
shlvflg argument is a longword containing this value. The value O turns
automatic unshelving on. The value 1 turns automatic unshelving off.

SYS2-361

System Service Descriptions

$SETSHLV

Description

The Set Automatic Unshelving service controls whether a process automatically
unshelves files.

The pidadr and prcnam default to the current process. If the longword at
address pidadr is 0, the PID of the target process is returned.

The setting for automatic unshelving is inherited by subprocesses.

The DCL command SET PROCESS/[NOJAUTOUNSHELVE also controls
automatic unshelving for a process; refer to the OpenVMS DCL Dictionary
for details.

Required Access or Privileges

Depending on the operation, the calling process might need one of the following
privileges to use $SETSHLV:

< GROUP privilege to modify a process in the same group, unless the target
process has the same UIC as the calling process.

< WORLD privilege to modify any process in the system.

Required Quota
None

Related Services
$GETJPI

Condition Values Returned

SYS2-362

SS$ WASCLR The service completed successfully. Automatic
unshelving was previously on.

SS$ WASSET The service completed successfully. Automatic
unshelving was previously off.

SS$ ACCVIO An argument was not accessible by the caller.

SS$ BADPARAM The shlvflg argument was invalid.

SS$_IVLOGNAM The prcnam argument was invalid. The process

name string had either 0 characters or more than
15 characters.

SS$ NONEXPR The specified process did not exist, or the
specified process identification was invalid.

SS$_NOPRIV The caller did not have the privilege to modify
other processes.

SS$_REMOTE_PROC The specified process was not on the local node.

The service cannot modify a process on a remote
node.

System Service Descriptions
$SETSTK

$SETSTK

Set Stack Limits

Format

C Prototype

Arguments

Allows a process to change the size of its supervisor, executive, and kernel stacks

by altering the values in the stack limit and base arrays held in P1 (per-process)
space.

SYS$SETSTK inadr ,[retadr] ,[acmode]

int sys$setstk (struct _va_range *inadr, struct _va_range *retadr, unsigned int

acmode);
inadr
OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Range of addresses that express the stack’s new limits. The inadr argument is
the address of a 2-longword array containing, in order, the address of the top of
the stack and the address of the base of the stack. Because stacks in P1 space
expand from high to low addresses, the address of the base of the stack must be
greater than the address of the top of the stack.

retadr

OpenVMS usage: address_range

type: longword (unsigned)
access: write only
mechanism: by reference

Range of addresses that express the stack’s previous limits. The retadr
argument is the address of a 2-longword array into which $SETSTK writes,
in the first longword, the previous address of the top of the stack and, in the
second longword, the previous address of the base of the stack.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the stack to be altered. The acmode argument is a longword
containing the access mode. The $PSLDEF macro defines symbols for the four
access modes. The most privileged access mode used is the access mode of the
caller.

If acmode specifies user mode, $SETSTK performs no operation and returns the
SS$ NORMAL condition value.

SYS2-363

System Service Descriptions

$SETSTK

Description

The Set Stack Limits service allows a process to change the size of its supervisor,
executive, and kernel stacks by altering the values in the stack limit and base
arrays held in P1 (per-process) space.

Required Access or Privileges

The calling process can adjust the size of stacks only for access modes that are
equal to or less privileged than the access mode of the calling process.

Required Quota
None

Related Services

$ADJISTK, SADIWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSWM, SULKPAG,
$SULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS2-364

SS$ NORMAL The service completed successfully.

SS$ ACCVIO The input address array cannot be read by the
caller; the input range is invalid; or the return
address array cannot be written by the caller.

System Service Descriptions
$SETSWM

$SETSWM
Set Process Swap Mode

Allows a process to control whether it can be swapped out of the balance set.

Format
SYS$SETSWM [swpfig]

C Prototype

int sys$setswm (char swpflg);

Argument
swpflg
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value
Indicator specifying whether the process can be swapped. The swpflg argument
is a longword value. The value 0 (the default) enables process swap mode,
meaning the process can be swapped. The value 1 disables process swap mode,
meaning the process cannot be swapped.

Description

The Set Process Swap Mode service allows a process to control whether it can be
swapped out of the balance set.

When the process swap mode is enabled, the process can be swapped out; when
disabled, the process remains in the balance set until (1) process swap mode is
reenabled or (2) the process is deleted.

The $SETSWM service returns a condition value indicating whether process swap
mode was enabled or disabled prior to the call to $SSETSWM.

Required Access or Privileges

To change its process swap mode, the calling process must have PSWAPM
privilege.

Required Quota

None

Related Services

$ADJISTK, SADIWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $SMGBLSC, $PURGWS, $SETPRT, $SETSTK, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

To lock some but not necessarily all process pages into the balance set, use the
Lock Pages in Memory ($LCKPAG) service.

For more information, refer to the chapter on memory management in the
OpenVMS Programming Concepts Manual.

SYS2-365

System Service Descriptions
$SETSWM

Condition Values Returned

SS$_WASCLR
SS$_WASSET

SS$_NOPRIV

SYS2-366

The service completed successfully. The process
was not previously locked in the balance set.

The service completed successfully. The process
was previously locked in the balance set.

The process does not have the necessary
PSWAPM privilege.

System Service Descriptions
$SETUAI

$SETUAI
Set User Authorization Information

Modifies the user authorization file (UAF) record for a specified user.

Format
SYS$SETUAI [nullarg] ,[contxt] ,usrnam ,itmlst ,[nullarg] ,[nullarg] ,[nullarg]

C Prototype

int sys$setuai (unsigned int efn, unsigned int *contxt, void *usrnam, void *itmist,
struct _iosb *iosb, void (*astadr)(__unknown_params), int astprm);

Arguments
nullarg
OpenVMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Compag.

contxt

OpenVMS usage: longword

type: longword (unsigned)
access: modify

mechanism: by reference

A longword used to maintain authorization file context. The contxt argument is
the address of a longword to receive a $SETUAI context value. On the initial call,
this longword should contain the value —1. On subsequent calls, the value of the
contxt argument from the previous call should be passed back in.

usrnam
OpenVMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the user whose UAF record is modified. The usrnam argument is
the address of a descriptor pointing to a character text string containing the
user name. The user name string can contain a maximum of 32 alphanumeric

characters.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information from the specified UAF record is to be
modified. The itmlst argument is the address of a list of one or more item
descriptors, each of which specifies an item code. The item list is terminated by
the item code 0 or by the longword 0.

SYS2-367

System Service Descriptions

$SETUAI

ltem Codes

SYS2-368

The following diagram depicts the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table defines the item descriptor fields:
Descriptor Field Definition
Buffer length A word specifying the length (in bytes) of the buffer

in which $SETUAI is to write the information. The
length of the buffer varies, depending on the item
code specified in the item code field of the item
descriptor, and is given in the description of each
item code. If the value of the buffer length field is
too small, $SETUAI truncates the data.

Item code A word containing a user-supplied symbolic code

specifying the item of information that $SETUAI is
to set. The SUAIDEF macro defines these codes.

Buffer address A longword address of the buffer that specifies the
information to be set by $SETUAL.
Return length address A longword containing the user-supplied address

of a word in which $SETUAI writes the length in
bytes of the information it actually set.

The symbolic codes have the following format:

UAI$_code

UAI$_ACCOUNT
Sets, as a blank-padded 32-character string, the account name of the user.

An account name can include up to 8 characters. Because the account name is a
blank-filled string, however, the buffer length field of the item descriptor should
specify 32 (bytes).

UAI$_ASTLM
Sets the AST queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_BATCH_ACCESS_P

Sets, as a 3-byte value, the range of times during which batch access is permitted
for primary days. Each bit set represents a 1-hour period, from bit 0 as midnight
to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

System Service Descriptions
$SETUAI

UAI$_BATCH_ACCESS_S

Sets, as a 3-byte value, the range of times during which batch access is permitted
for secondary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$ BIOLM
Sets the buffered 1/O count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$ BYTLM
Sets the buffered 1/O byte limit.

Because the buffered 1/O count limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAI$_CLITABLES
Sets, as a character string, the name of the user-defined CLI table for the account,
if any.

Because the CLI table name can include up to 31 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 32 (bytes).

UAI$_CPUTIM
Sets the maximum CPU time limit (per session) for the process in 10-millisecond
units.

Because the maximum CPU time limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAI$_DEFCLI

Sets, as an OpenVMS RMS file name component, the name of the command
language interpreter used to execute the specified batch job. The file specification
set assumes the device name and directory SYS$SYSTEM and the file type .EXE.

Because a file name can include up to 31 characters plus a size-byte prefix, the
buffer length field in the item descriptor should specify 32 (bytes).

UAI$_DEFDEV
Sets, as a 1- to 31-character string, the name of the default device.

Because the device name string can include up to 31 characters plus a size-byte
prefix, the buffer length field in the item descriptor should specify 32 (bytes).

UAI$_DEFDIR
Sets, as a 1- to 63-character string, the name of the default directory.

Because the directory name string can include up to 63 characters plus a size-byte
prefix, the buffer length field in the item descriptor should specify 64 (bytes).

UAI$_DEF_PRIV
Sets, as a quadword value, the default privileges for the user.

Because the default privileges are set as a quadword value, the buffer length field
in the item descriptor should specify 8 (bytes).

SYS2-369

System Service Descriptions

$SETUAI

SYS2-370

UAI$_DFWSCNT
Sets, in pages (on VAX systems) or pagelets (on Alpha systems), the default
working set size.

Because the default working set size is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAI$_DIALUP_ACCESS_P

Sets, as a 3-byte value, the range of times during which dialup access is permitted
for primary days. Each bit set represents a 1-hour period, from bit 0 as midnight
to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$_DIALUP_ACCESS_S

Sets, as a 3-byte value, the range of times during which dialup access is permitted
for secondary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$_DIOLM
Sets the direct 1/O count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_ENCRYPT
Sets one of the values shown in the following table to identify the encryption
algorithm for the primary password:

Symbolic Name Description

UAIS$C_AD_II Uses a CRC algorithm and returns a longword hash
value. It was used in VAX VMS releases prior to
Version 2.0.

UAI$C_PURDY Uses a Purdy algorithm over salted input. It expects

a blank-padded user name and returns a quadword
hash value. This algorithm was used during VAX VMS
Version 2.0 field test.

UAI$C PURDY_V Uses the Purdy algorithm over salted input. It expects
a variable-length user name and returns a quadword
hash value. This algorithm was used in VMS releases
prior to Version 5.4.

UAI$C _PURDY_S Uses the Purdy algorithm over salted input. It expects
a variable-length user name and returns a quadword
hash value. This is the current algorithm that the
operating system uses for all new password changes.

UAI$C_PREFERED_ Represents the latest encryption algorithm that the

ALGORITHM operating system uses to encrypt new passwords.
Currently, it equates to UAI$C _PURDY_S. Compaq
recommends that you use this symbol in source
modules.

Because the encryption algorithm is a byte in length, the buffer length field in
the item descriptor should specify 1 (byte).

UAI$_ENCRYPT2

System Service Descriptions
$SETUAI

Sets one of the following values, indicating the encryption algorithm for the
secondary password. Refer to the UAI$_ENCRYPT item code for a description of

the algorithms.

UAI$SC_AD _II
UAI$C_PURDY
UAI$C_PURDY_V
UAI$C_PURDY_S

UAI$C_PREFERED_ALGORITHM

UAI$_ENQLM
Sets the lock queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_EXPIRATION

Sets, as a quadword absolute time value, the expiration date and time of the

account.

Because the absolute time value is a quadword in length, the buffer length field
in the item descriptor should specify 8 (bytes).

UAI$_FILLM
Sets the open file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_FLAGS

Sets, as a longword bit vector, the various login flags set for the user.

Each flag is represented by a bit. The SUAIDEF macro defines the following
symbolic names for these flags:

Symbol

Description

UAI$V_AUDIT
UAI$V_AUTOLOGIN

UAI$V_CAPTIVE
UAI$V_DEFCLI
UAI$V_DISACNT

UAI$V_DISCTLY

UAI$V_DISFORCE_PWD_

CHANGE
UAI$V_DISIMAGE

UAI$V_DISMAIL
UAI$V_DISPWDDIC

All actions are audited.

User can only log in to terminals defined by the
Automatic Login facility (ALF).

User is restricted to captive account.
User is restricted to default command interpreter.

User account is disabled. Same as /FLAG =
DISUSER qualifier in AUTHORIZE.

User cannot use Ctrl/Y.

User will not be forced to change expired passwords
at login.

User cannot issue the RUN or MCR commands or
use the foreign command mechanism in DCL.

Announcement of new mail is suppressed.

Automatic checking of user-selected passwords
against the system dictionary is disabled.

SYS2-371

System Service Descriptions
$SETUAI

Symbol

Description

UAI$V_DISPWDHIS

UAI$V_DISRECONNECT
UAI$V_DISREPORT
UAI$V_DISWELCOME
UAI$V_EXTAUTH

UAI$V_GENPWD
UAI$V_LOCKPWD
UAI$V_MIGRATEPWD

UAI$V_NOMAIL
UAI$V_PWD_EXPIRED
UAI$V_PWD2_EXPIRED
UAI$V_RESTRICTED

Automatic checking of user-selected passwords
against previously used passwords is disabled.

User cannot reconnect to existing processes.
User will not receive last login messages.
User will not receive the login welcome message.

User is considered externally authenticated by
an external user ID and password and not by the
SYSUAF user name and password. The SYSUAF
record is still used for checking login restrictions
and quotas and for creating the user’s OpenVMS
process profile.

User is required to use generated passwords.
SET PASSWORD command is disabled.

User’s SYSUAF password was set using
AUTHORIZE or SYS$SETUAI and is likely to be
inconsistent with the user’s external user password.
If password migration is enabled, the system will
attempt to update the external authorization service
the next time the user attempts a login.

Mail delivery to user is disabled.

Primary password is expired.

Secondary password is expired.

User is limited to operating under a restricted
account. Clear the CAPTIVE flag (UAI$V_
CAPTIVE), if set, before setting the RESTRICTED
flag. (Refer to the OpenVMS Guide to System

Security for a description of restricted and captive
accounts.)

UAI$_JTQUOTA

Sets the initial byte quota with which the jobwide logical name table is to be

created.

Because this quota is a longword decimal number, the buffer length field in the
item descriptor should specify 4 (bytes).

UAI$_LASTLOGIN_I

Sets, as a quadword absolute time value, the date of the last interactive login.

UAI$_LASTLOGIN_N

Sets, as a quadword absolute time value, the date of the last noninteractive login.

UAI$_LGICMD

Sets, as an OpenVMS RMS file specification, the name of the default login

command file.

Because a file specification can include up to 63 characters plus a size-byte prefix,
the buffer length field of the item descriptor should specify 64 (bytes).

System Service Descriptions
$SETUAI

UAI$_LOCAL_ACCESS_P

Sets, as a 3-byte value, the range of times during which local interactive access is
permitted for primary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$_LOCAL_ACCESS_S

Sets, as a 3-byte value, the range of times during which local interactive access is
permitted for secondary days. Each bit set represents a 1-hour period, from bit O
as midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$_LOGFAILS
Sets the count of login failures.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_MAXACCTJOBS

Sets the maximum number of batch, interactive, and detached processes that can
be active at one time for all users of the same account. The value O represents an
unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_MAXDETACH
Sets the detached process limit. The value 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_MAXJIOBS
Sets the active process limit. A value of 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$ NETWORK_ACCESS P

Sets, as a 3-byte value, the range of times during which network access is
permitted for primary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$_NETWORK_ACCESS_S

Sets, as a 3-byte value, the range of times during which network access is
permitted for secondary days. Each bit set represents a 1-hour period, from bit 0
as midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$_OWNER
Sets, as a character string, the name of the owner of the account.

Because the owner name can include up to 31 characters plus a size-byte prefix,
the buffer length field of the item descriptor should specify 32 (bytes).

SYS2-373

System Service Descriptions

$SETUAI

SYS2-374

UAI$_PASSWORD

Sets the specified plaintext string as the primary password for the user and
updates the primary password change date. You must have SYSPRYV privilege to
set passwords for any user account (including your own).

The UAI$_PASSWORD and UAI$_PASSWORD?2 item codes provide the building
blocks for designing a site-specific SET PASSWORD utility. Note that if you
create such a utility, you should also set the LOCKPWD bit in the user
authorization file (UAF) to prevent users from using the DCL command SET
PASSWORD and to prevent the LOGINOUT process from forcing password
changes. If you create a site-specific SET PASSWORD utility, install the utility
with SYSPRYV privilege.

You must adhere to the following guidelines when specifying a password with
UAI$_PASSWORD or UAI$_PASSWORD?2:

= The password must meet the minimum password length defined for the user
account.

= The password cannot exceed 32 characters in length.
e The password must be different from the previous password.
To clear the primary password, specify the value 0 in the buffer length field.

When you use $SETUAI to change the password on an account that has the
UAISV_EXTHAUTH flag set, the UAI$V_MIGRATEPWD flag is set automatically.

UAI$_PASSWORD?2

Sets the specified plaintext string as the secondary password for the user and
updates the secondary password change date. You must have SYSPRYV privilege
to set passwords for any user account (including your own).

To clear the secondary password, specify the value 0 in the buffer length field.

UAI$_PBYTLM
Sets the paged buffer 1/0 byte count limit.

Because the paged buffer 1/0O byte count limit is a longword decimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

UAI$ PGFLQUOTA
Sets, in pages (on VAX systems) or pagelets (on Alpha systems), the paging file
quota.

Because the paging file quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAI$_PRCCNT
Sets the subprocess creation limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_PRI
Sets the default base priority.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

System Service Descriptions
$SETUAI

UAI$_PRIMEDAYS
Sets, as a longword bit vector, the primary and secondary days of the week.

Each bit represents a day of the week, with the bit clear representing a primary
day and the bit set representing a secondary day. The SUAIDEF macro defines
the following symbolic names for these bits:

UAI$V_MONDAY
UAI$V_TUESDAY
UAI$V_WEDNESDAY
UAISV_THURSDAY
UAI$V_FRIDAY
UAI$V_SATURDAY
UAI$V_SUNDAY

UAI$_PRIV
Sets, as a quadword value, the names of the privileges that the user holds.

Because the privileges are set as a quadword value, the buffer length field in the
item descriptor should specify 8 (bytes).

UAI$_PWD
Sets, as a quadword value, the hashed primary password of the user.

Because the hashed primary password is set as a quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

When you use $SETUAI to change the password on an account that has the
UAI$V_EXTHAUTH flag set, the UAI$V_MIGRATEPWD flag is set automatically.

UAI$_PWD_DATE
Sets, as a quadword absolute time value, the date of the last password change.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

A value of -1 indicates that the password could be marked as preexpired.

UAI$_PWD_LENGTH
Sets the minimum password length.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAI$_PWD_LIFETIME
Sets, as a quadword delta time value, the password lifetime.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

A quadword of 0 means that none of the password mechanisms will take effect.

UAI$_PWD2
Sets, as a quadword value, the hashed secondary password of the user.

Because the hashed secondary password is set as a quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

UAI$_PWD2_DATE
Sets, as a quadword absolute time value, the last date the secondary password
was changed.

SYS2-375

System Service Descriptions

$SETUAI

SYS2-376

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

A value of -1 indicates that the password could be marked as preexpired.

UAI$_QUEPRI
Sets the maximum job queue priority in the range 0 through 31.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAI$_REMOTE_ACCESS_P

Sets, as a 3-byte value, the range of times during which batch access is permitted
for primary days. Each bit set represents a 1-hour period, from bit 0 as midnight
to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$_REMOTE_ACCESS_S

Sets, as a 3-byte value, the range of times during which batch access is permitted
for secondary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAI$_SALT

Sets the salt field of the user’s record to the value you provide. The salt value is
used in the operating system hash algorithm to generate passwords. $SETUAI
does not generate a new salt value for you.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

By copying the item codes UAI$_SALT, UAI$_ENCRYPT, UAI$_PWD, UAIS$_
PWD_DATE, and UAI$_FLAGS, a site-security administrator can construct a
utility that propagates password changes throughout the network. Note, however,
that Compaqg does not recommend using the same password on more than one
node in a network.

UAI$ SHRFILLM
Sets the shared file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_TQCNT
Sets the timer queue entry limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAI$_UIC
Sets, as a longword, the user identification code (UIC). For the format of the UIC,
refer to the OpenVMS Guide to System Security.

UAI$_USER_DATA

Sets up to 255 bytes of information in the user data area of the system user
authorization file (SYSUAF). This is the supported method for modifying the user
data area of the SYSUAF. Compaq no longer supports direct user modification of
the SYSUAF.

Description

System Service Descriptions
$SETUAI

To clear all the information in the user data area of the SYSUAF, specify
$SETUAI with a buffer length field of 0.

UAI$_WSEXTENT
Sets the working set extent, in pages (on VAX systems) or pagelets (on Alpha
systems), specified for the specified job or queue.

Because the working set extent is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAI$_WSQUOTA
Sets the working set quota, in pages (on VAX systems) or pagelets (on Alpha
systems), for the specified user.

Because the working set quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

The Set User Authorization Information service is used to modify the user
authorization file (UAF) record for a specified user.

The UAISV_PWD_EXPIRED should only be set when the bit UAI$V_DISFORCE_
PWD_CHANGE is set in the user’'s SYSUAF record and the comparison between
the UAI$_PWD_DATE and UAI$_PWD_LIFETIME indicates a password is past
its valid life.

For information about login and password expiration, see the Description section
of the $GETUAI system service.

Required Access or Privileges
The following list describes the privileges you need to use the $SETUAI service:

= BYPASS or SYSPRV—AIlows modification of any record in the UAF (user
authorization file).

e GRPPRV—AIllows modification of any record in the UAF whose UIC group
matches that of the requester. Note, however, that you cannot change a UAF
record whose UIC matches exactly the requester’'s UIC. Group managers with
GRPPRYV privilege are limited in the extent to which they can modify the
UAF records of users in the same group; values such as privileges and quotas
can be changed only if the modification does not exceed the values set in a
group manager's UAF record.

= No privilege—Does not allow access to any UAF record.

Required Quota
None

Related Services
$GETUAI

SYS2-377

System Service Descriptions
$SETUAI

Condition Values Returned

SS$_ NORMAL The service completed successfully.

SS$_ACCVIO The item list or input buffer cannot be read by
the caller; or the return length buffer, output
buffer, or status block cannot be written by the
caller.

SS$ BADPARAM The function code is invalid; the item list
contains an invalid item code; a buffer descriptor
has an invalid length; or the reserved parameter
has a nonzero value.

SS$ NOGRPPRV The user does not have the privileges required
to modify the authorization information for other
members of the UIC group.

SS$ NOSYSPRV The user does not have the privileges required to
modify the authorization information associated
with the user or for users outside of the user’s
UIC group.

RMS$_RSZ The UAF record is smaller than required; the
caller's SYSUAF is likely corrupt.

This service can also return OpenVMS RMS status codes associated with
operations on indexed files. For a description of RMS status codes that are
returned by this service, refer to the OpenVMS Record Management Services
Reference Manual.

SYS2-378

System Service Descriptions
$SETUP_AVOID_PREEMPT

$SETUP_AVOID_PREEMPT
Setup for Process Preemption Avoidance

Performs initial setup for process preemption avoidance.

Format
SYS$SETUP_AVOID _PREEMPT enable

C Prototype

int sys$setup_avoid_preempt (int enable);

Arguments

enable

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Enables or disables preemption avoidance. If the enable argument is set to 1,

preemption avoidance is enabled; if O, preemption avoidance is disabled.
Description

The Setup for Process Preemption Avoidance service is a kernel-mode
initialization routine that locks the necessary internal data structures in memory
so scheduling routines can access them above pageable IPL. A process or thread
can then set or clear the indicator bit by calling the $AVOID_PREEMPT service.

In addition, if the process or thread has ALTPRI privilege, $SSETUP_AVOID _
PREEMPT sets a bit in the PKTA (a per-kernel-thread data area) to mark that
the process or thread can prevent preemption by other processes or threads
having the same base priority but not those that have a higher base priority.

Note that without ALTPRI, this service will still function successfully, but will
only enable the $AVOID_PREEMPT service to avoid preemptions due to quantum
end.

Required Access or Privileges
None

Required Quota
None

Related Services
$AVOID_PREEMPT

Condition Values Returned

SS$_NORMAL The service completed successfully.
Also, any values returned by the $LKWSET or $SUNLKSET services.

SYS2-379

System Service Descriptions
$SET_DEVICE

$SET _DEVICE
Set Device Characteristics

Format

C Prototype

Arguments

SYS2-380

Modifies the characteristics of a device or the paths used to access that device.

For synchronous completion, use the Set Device Characteristics and Wait ($SET _
DEVICEW) service. The $SET_DEVICEW service is identical to the $SET_
DEVICE service, except that $SET_DEVICEW returns to the caller only after the
requested action has taken effect.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

SYS$SET DEVICE [efn] [,chan] [,devnam] ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

int sys$set_device (unsigned int efn, unsigned short int chan, void *devnam, void
*itmlst, struct _iosb *iosb, void (*astadr)(__unknown_params), int
astprm, struct_generic_64 *nullarg);

efn

OpenVMS usage: ef _number

type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $SET_DEVICE returns the requested
information. The efn argument is a longword containing this number; however,
$SET_DEVICE uses only the low-order byte.

Upon request initiation, $SET_DEVICE clears the specified event flag (or event
flag O if efn was not specified). Then, when $SET_DEVICE returns the requested
information, it sets the specified event flag (or event flag 0).

chan

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by value

Number of the 1/O channel assigned to the device about which information is
desired. The chan argument is a word containing this number.

To identify a device to $SET_DEVICE, you can specify either the chan or
devnam parameters, but you should not specify both. If you specify both
arguments, the chan argument is used.

If you specify neither chan nor devnam, $SET_DEVICE uses a default value of
0 for chan.

System Service Descriptions

$SET _DEVICE
devnam
OpenVMS usage: device_name
type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor-fixed-length string descriptor

The name of the device about which $SET_DEVICE is to modify the
characteristics or path settings. The devnham argument is the address of a
character string descriptor pointing to this name string.

The device name string can be either a physical device name or a logical hame.
If the first character in the string is an underscore (_), the string is considered

a physical device name; otherwise, the string is considered a logical name and
logical name translation is performed until either a physical device name is found
or the system default number of translations has been performed.

If the device name string contains a colon (:), the colon and the characters that
follow it are ignored.

To identify a device to $SET_DEVICE, you can specify either the chan or
devnam argument, but you should not specify both. If both arguments are
specified, the chan argument is used.

If you specify neither chan nor devnam, $SET_DEVICE uses a default value of
0 for chan.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the device is to be returned. The
itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by a
longword of 0.

Currently, $SET_DEVICE allows only one valid item list entry.

The following diagram depicts the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE

See the itmlst argument in the $GETDVI system service description for
information on the meaning of these fields in the item list.

iosb

OpenVMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

SYS2-381

System Service Descriptions
$SET_DEVICE

ltem Codes

SYS2-382

1/O status block that is to receive the final completion status. The iosb argument
is the address of the quadword 1/O status block. See iosb in the $SGETDVI system
service description for more information.

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $SET_DEVICE completes. The astadr
argument is the address of this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $SET_DEVICE service.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

nullarg

OpenVMS usage: null_arg

type: guadword (unsigned)
access: read only
mechanism: by reference

Placeholding argument reserved to Compaq and should be zero.

SDV$_MP_SWITCH_PATH

Forces an immediate 1/0O path switch for the specified device. The active path will
be switched from the current 1/O path to the path name specified in the buffer for
this item code. Note that issuing $SET_DEVICE with SDV$_MP_SWITCH_PATH
will initiate the process of switching the path. A delay may occur between when
the service completes and when the path switch is complete. A synchronous
version of this service, $SET_DEVICEW, is available that will wait until the path
switch attempt is complete before returning to the caller.

The path name specified in this and the following item codes must be fully
specified. It may be in either uppercase or lowercase, however the entire name
must be specified.

The Return Length field in this and the following item codes should set to zero.

The SDVDEF macro contains these item codes.

SDV$_MP_DISABLE_PATH

Disables the path specified in the buffer for this item code so that it will no longer
be considered as a switch candidate. Note that this does not apply to the current
path, which cannot be disabled. The reasons one might want to disable a path
include the following:

System Service Descriptions
$SET_DEVICE

= You know a specific path is broken or that a failover to that path will cause
some members of the cluster to lose access.

= To prevent automatic switching to a selected path while it is being serviced.

SDV$_MP_ENABLE_PATH
Re-enables the path name specified in the buffer for this item code as a switch
candidate.

Description

The Set Device service modifies the characteristics of devices or 1/0 paths that
have been established to those devices. For Multipath, the service allows the user
to switch the current 1/O path to a different available path and to enable and
disable paths from being used for 1/0.

Required Access or Privileges
None.

Required Quota
None.

Related Services

$ASSIGN, $DASSGN, $DEVICE_SCAN, $DEVICE_PATH_SCAN, $GETDVI,
$GETDVIW

Condition Values Returned

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The device name string descriptor, device name
string, or itmlst argument cannot be read; or
the buffer or return length longword cannot be
written.

SS$ BADPARAM The item list contains an invalid item code, or
the buffer length field in an item descriptor
specified insufficient space for the return length

information.

SS$_ EXQUOTA Quota for pool has been exceeded.

SS$_IVCHAN You specified an invalid channel number, that
is, a channel number larger than the number of
channels.

SS$_IVDEVNAM The device name string contains invalid

characters, or neither the devnam nor chan
argument was specified.

SS$ NOOPER Caller does not have OPER privileges.

SS$_NOPRIV The specified channel is not assigned or was
assigned from a more privileged access mode.

SS$ NOSUCHDEV The specified device does not exist on the host
system.

SS$ NOSUCHPATH The specified pathname does not exist on the

host system.

SYS2-383

System Service Descriptions
$SET_DEVICE

SS$_PATHAMBIG The specified pathname is ambiguous for this
device.

SYS2-384

System Service Descriptions
$SET_DEVICEW

$SET DEVICEW
Set Device Characteristics and Wait

Modifies the characteristics of a device or the paths used to access that device.

The $SET_DEVICEW completes synchronously; that is, it returns to the caller
only after the requested action has taken effect.

Format

SYS$SET_DEVICEW [efn] [,chan] [,devnam] ,itmist [,iosb] [,astadr] [,astprm]
[,nullarg]

C Prototype

int sys$set_devicew (unsigned int efn, unsigned short int chan, void *devnam, void
*itmlst, struct _iosb *iosb, void (*astadr)(__unknown_params),
int astprm, struct_generic_64 *nullarg);

SYS2-385

System Service Descriptions
$SET_IMPLICIT_AFFINITY (Alpha Only)

$SET_IMPLICIT_AFFINITY (Alpha Only)
Modify Process Implicit Affinity

On Alpha systems, controls or retrieves the activation state for the implicit
affinity system capability of a specific kernel thread or of the global process
default.

This service accepts 64-bit addresses.

Format
SYS$SET_IMPLICIT_AFFINITY [pidadr] [,prcnam] [,state] [,cpu_id] [,prev_mask]

C Prototype

int sys$set_implicit_affinity (unsigned int *pidadr, void *prcnam, struct _generic_64
*state, int cpu_id, struct _generic_64 *prev_mask);

Arguments
pidadr
OpenVMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

Process identification (PID) of a kernel thread whose implicit affinity is to be
modified or returned. The pidadr argument is the 32- or 64-bit address of a
longword that contains the PID.

Process selection is made through a combination of the pidadr and prcnam
arguments. If neither are specified or if both have a zero value, the service
operations are made to the user capability mask of the current kernel thread
of the current calling process. The pidadr argument takes precedence over the
prcnam argument where both are supplied in the service call.

If the bit constant CAP$M_IMPLICIT_DEFAULT_ONLY is specified in the state
argument, then the implicit affinity state portion of the default capability mask is
modified or returned instead.

prcnam
OpenVMS usage: process_name

type: character-coded text string

access: read only

mechanism: by 32- or 64-bit descriptor—fixed-length string descriptor

Process name of the process whose implicit affinity capability state is to be
modified or returned. The prcnam argument is the 32- or 64-bit address of a
character string descriptor pointing to the process name string. A process can be
identified with a 1- to 15-character string. The service operations are made to the
user capability mask of the initial thread of the specified process.

If pidadr and prcnam are both specified, then pidadr is modified or returned
and prcnam is ignored. If neither argument is specified, then the context of the
current kernel thread of the calling process is modified or returned.

SYS2-386

System Service Descriptions
$SET_IMPLICIT_AFFINITY (Alpha Only)

state

OpenVMS usage: mask_quadword

type: quadword (unsigned)
access: read only

mechanism: by 32- or 64-bit reference

State options that can be selected for the affected thread’s implicit affinity. The
state argument is a pointer to a quadword bit vector wherein a bit corresponds
to a requested state for the implicit affinity feature. Only the bits specified below
are used; the remainder of the quadword bits are reserved.

Each option (bit) has a symbolic name, defined in the $SCAPDEF macro. The
state argument is constructed by performing a logical OR operation using the
symbolic names of each desired option.

The following table describes the symbolic name of each option:

Symbolic Name Description
CAP$M_IMPLICIT_DEFAULT _ Indicates the specified operations are to
ONLY be performed on the global cell instead

of on a specific kernel thread. This
bit supersedes any individual kernel
thread specified in pidadr or prcnam.
Specifying this bit constant applies the
implicit affinity operations to all newly
created processes.

CAPSM_IMPLICIT_AFFINITY_SET Indicates that the implicit affinity
capability bit is to be set for the specified
kernel thread. This is mutually exclusive
with CAP$M_IMPLICIT_AFFINITY_

CLEAR.
CAP$SM_IMPLICIT_AFFINITY_ Indicates that the implicit affinity
CLEAR capability bit is to be cleared for the

specified kernel thread. This is mutually
exclusive with CAP$SM_IMPLICIT_
AFFINITY_SET.

cpu_id

OpenVMS usage: longword

type: longword (unsigned)
access: read only
mechanism: by value

Identifier of the CPU requested as the first CPU on which this kernel thread is
to execute. The cpu_id is a longword containing this number, which is in the
supported range of individual CPUs from 0 to SYI$ MAX_CPUS —1.

If no explicit CPU is needed, specifying a value of —1 in this argument indicates
the system is to select the initial association based on system dynamics and load
balancing.

Note that, regardless of what explicit CPU is supplied to this argument, it will
be taken only as a suggestion. This service will attempt to make the requested
association, but it will be superseded by another CPU if the system dynamics are
adversely affected by the operation.

SYS2-387

System Service Descriptions
$SET_IMPLICIT_AFFINITY (Alpha Only)

Description

prev_mask

OpenVMS usage: mask_quadword

type: guadword (unsigned)
access: write only

mechanism: by 32- or 64-bit reference

Previous implicit affinity state mask for the specified kernel thread before
execution of this call to $SET_IMPLICIT_AFFINITY. The prev_mask argument
is the 32- or 64-bit address of a quadword into which $SET_IMPLICIT_AFFINITY
writes a bit mask specifying the implicit affinity state.

The current state of the kernel thread’s current implicit affinity feature can
be determined by testing the returned mask with the symbolic bit definitions
described for the state argument. These bit definitions are found in the
$CAPDEF macro.

The Modify Process Implicit Affinity system service modifies or returns the
implicit affinity state for the specified kernel thread or from the system default
process creation cell.

Setting a kernel thread’'s implicit affinity function indicates to the system that

it is to schedule the process in ways that will maximize the cache and TB
performance in the current symmetric multiprocessing (SMP) configuration. This
might tend to bias the process towards specific CPUs more than the standard
scheduling algorithm would normally have allowed.

Required Access or Privileges

The caller must have the ALTPRI privilege to call SYS$SET IMPLICIT_
AFFINITY to modify its own implicit affinity capability bit. To modify another
process’ capability mask, the caller must have:

ALTPRI—To modify any process with a matching UIC
ALTPRI and GROUP—To modify any process in the same UIC group
ALTPRI and WORLD—To modify any process

To call SYS$SET_IMPLICIT_AFFINITY simply to retrieve the state of a specific
process or global bit, the caller need only have the following privileges:

None—To retrieve the state of itself or any process with a matching UIC
GROUP—To retrieve the state of any process in the same UIC group
WORLD—To retrieve the state of any process

Related Services
$CPU_CAPABILITIES, $PROCESS _CAPABILITIES, $PROCESS _AFFINITY

Condition Values Returned

SYS2-388

SS$_NORMAL The service completed successfully.

SS$_BADPARAM One or more arguments has an invalid value.

SS$ ACCVIO The service cannot access the locations specified
by one or more arguments.

SS$ NOSUCHTHREAD The specified kernel thread does not exist.

SS$_NONEXPR
SS$_IVLOGNAM

SS$_NOPRIV
SS$_CPUCAP

SS$_INSFARG

System Service Descriptions
$SET_IMPLICIT_AFFINITY (Alpha Only)

The specified process does not exist, or an invalid
process identification was specified.

The process name string has a length of 0 or
more than 15 characters.

Insufficient privilege for attempted operation.

No CPU can run the specified process with new
capabilities.

Fewer than the required number of arguments
were specified or no operation was specified.

SYS2-389

System Serv

ice Descriptions

$SET_PROCESS_PROPERTIESW (Alpha Only)

$SET_PROCESS PROPERTIESW (Alpha Only)
Sets Simple Value

Format

C Prototype:

Arguments

SYS2-390

Sets a simple value associated with a process.

SYS$SET_PROCESS_PROPERTIESW mbzl ,mbz2 ,mbz3 ,property ,value

,prev_value

int sys$set_process_propertiesw (unsigned int mbz1, unsigned int mbz2, unsigned

mbzl,mbz2,mbz3

int mbz3, unsigned int property, unsigned _ _int64
value, unsigned __int64 *prev_value);

Reserved for future use by Compaq. Must be specified as 0.

property

OpenVMS usage: integer

type: longword (unsigned)
access: read only
mechanism: by value

A constant that selects which property to set.

Valid values for property are defined by the $SPPROPDEF macro as follows:

Property Code

Description

PPROP$C_HOME_RAD:

The Resource Affinity Domain (RAD) to
which the process is assigned. Newly
mapped memory in the process will
come from the home RAD of the process.
Currently mapped memory will not
move into the new home RAD unless
$PURGWS is issued. Valid values are
integers between 0 and the maximum
RAD on the system. Valid home RADs
must also contain either memory or
CPUs.

Note: OpenVMS support for RADs is
available only on the new AlphaServer
GS series systems. For more information
about using RADs, refer to the OpenVMS
Alpha Partitioning and Galaxy Guide.

System Service Descriptions
$SET_PROCESS_PROPERTIESW (Alpha Only)

Property Code Description

PPROP$C_PARSE_STYLE_TEMP: The type of command parsing to use. This
value is set only for the life of the image.
The value reverts to the permanent style
on image rundown. Valid values are:
PARSE_STYLES$C_TRADITIONAL and
PARSE_STYLE$C_EXTENDED.

PPROP$C_PARSE_STYLE_PERM: The type of command parsing to use.
This value is set for the life of the process
unless the style is set again. Valid values
are; PARSE_STYLE$C TRADITIONAL
and PARSE_STYLE$C_EXTENDED.

value

OpenVMS usage: integer

type: quadword (unsigned)
access: read

mechanism: by value

New property value.

prev_value

OpenVMS usage: access_mode

type: quadword (unsigned) address of a quadword value
access: write

mechanism: by reference

The address of a quadword that will receive the previous value of the property.

Description

The $SET_PROCESS_PROPERTIESW system service sets a simple value
associated with a process.

This service is used for changing process properties that have a maximum of a
single quadword. You can only change one property value at a time per call to
this service.

Required Access or Privileges
None.

Required Quota
None.

Related Services
$GETJIPI

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$ ACCVIO Access violation.

SYS2-391

System Service Descriptions
$SET_RESOURCE_DOMAIN

$SET_RESOURCE_DOMAIN
Set Resource Domain

Controls the association between a calling process and resource domains.

Format

SYS$SET_RESOURCE_DOMAIN func ,rsdm_id ,domain_number ,[nullarg]
,[access] ,Jacmode]

C Prototype

int sys$set_resource_domain (unsigned int func, unsigned int *rsdm_id, unsigned
int domain_number, unsigned int nullarg, unsigned int
access, unsigned int acmode);

Arguments
func
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by value

Function code specifying the action that $SET_RESOURCE_DOMAIN is to
perform. The func argument is a longword containing this function code. See the
Function Codes section for a description of $SET_RESOURCE_DOMAIN function

codes.

rsdm_id

OpenVMS usage: longword

type: longword (unsigned)

access: write only to join, read only to leave
mechanism: by reference

Resource domain identification. The rsdm_id argument is the address of a
longword specifying the association of the calling process with the resource
domain.

The RSDM$_JOIN_DOMAIN function returns a resource domain identification.
The RSDM$_LEAVE function requires the rsdm_id argument as input to specify
which resource domain association the process is leaving.

The resource domain identification can be used as input to the $ENQ and
SENQW system services.

domain_number
OpenVMS usage: longword

type: longword (unsigned)
access: read only
mechanism: by value

Domain number that identifies the resource domain. The domain_number
argument is a longword value containing the resource domain number.

The domain_number argument is required for the RSDM$_JOIN_DOMAIN
function but ignored for the RSDM$_LEAVE function.

SYS2-392

System Service Descriptions
$SET_RESOURCE_DOMAIN

nullarg

OpenVMS usage: null_arg

type: longword (unsigned)
access: read only
mechanism: by value

Placeholder reserved to Compag. You must specify 0.

access
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Types of access desired when using the lock management services within the
resource domain. The access argument is a longword bit mask specifying the
access types required; these can include read, write, and lock.

The following table lists the symbols that the $SRSDMDEF macro defines, their
descriptions, and the lock management system services that might require each
type of access:

Symbol Access Description System Service
RSDM$M_READ Read lock value blocks $DEQ, $ENQ, SENQW,
$GETLKI, $GETLKIW
RSDM$M_WRITE Write lock value blocks $DEQ, $SENQ, SENQW,
RSDM$M_LOCK Take locks $ENQ, SENQW

The service grants the desired access, provided your process has the necessary
access rights to the resource domain. If you do not specify the access argument
or if you specify 0, $SET_RESOURCE_DOMAIN attempts to access the domain
in the following order:

1. Read, write, lock

2. Read, lock
3. Write, lock
4. Lock

The access attempt terminates with the first success.

The access argument defaults to 0. It is ignored for the RSDM$_LEAVE
function.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode requested for the association to the resource domain. The most
privileged access mode granted is the access mode of the caller. Locks cannot be
taken from access modes less privileged than the access mode of the association.

SYS2-393

System Service Descriptions
$SET_RESOURCE_DOMAIN

The acmode argument is a longword containing the access mode. The $PSLDEF
macro defines the following symbols for the access modes:

Symbolic Access Privilege
Name Mode Rank
PSL$C_KERNEL Kernel High
PSL$C_EXEC Executive -
PSL$C_SUPER Supervisor -
PSL$C_USER User Low

The acmode argument is optional for the RSDM$_JOIN_DOMAIN function. If
you do not specify the acmode argument, the access mode is set to the access
mode of the calling process. The acmode argument is ignored for the RSDM$_
LEAVE function.

Function Codes

SYS2-394

RSDM$_JOIN_DOMAIN

A process has the option of forming multiple associations with one or more
resource domains. Each association can have different access rights to the
resource domain, such as to read lock value blocks or to write lock value blocks.
This request sets up a new association with a resource domain.

$SET_RESOURCE_DOMAIN verifies the desired access against the security
profile of the resource domain. If the desired access is allowed, a new association
to the resource domain is created, and a resource domain identification for the
association is returned.

This function code returns the following condition values:

SS$_NORMAL
SS$_BADPARAM
SS$_EXQUOTA
SS$_INSFMEM
SS$ NOOBJSRV
SS$_NOPRIV

RSDM$_LEAVE
This operation requests that a process end an association with a resource domain.

A process must leave a resource domain association in the same mode as, or in a
more privileged mode than, the mode in which it joined the resource domain.

Before a process can end its association with a resource domain, it must release
all locks taken using that association.

This function code returns the following condition values:

SS$_NORMAL

SS$ BADPARAM
SS$_IVMODE

SS$ RSDM_ACTIVE
SS$ RSDMNOTFOU

Description

System Service Descriptions
$SET_RESOURCE_DOMAIN

The Set Resource Domain system service enables a process to use the lock
management system services $DEQ, $ENQ, SENQW, $GETLKI, and $GETLKIW.

The lock management services enable processes with the appropriate access
rights to take and release locks on resource names and to perform other functions
related to lock management. Applications use resource names to represent
resources to which they want to synchronize access. A resource domain is a
namespace for resource names. A process must join a resource domain to take
and release locks and to read and write value blocks associated with resources in
that resource domain.

When a process requests to join a resource domain, $SET_RESOURCE_DOMAIN
performs an access check. After $SET_RESOURCE_DOMAIN verifies the desired
access to the resource domain, the service creates an association between the
resource domain and the calling process. The association is represented by a
resource domain identification. A process can request different types of access to
the same resource domain; the type of access is a characteristic of the association
with the resource domain.

Each time a process joins a resource domain, a new association is created.

Processes use their resource domain identifications when using $ENQ or SENQW
to request a new lock.

The service can grant the following three types of access to resource domains:
= The right to read lock value blocks
= The right to write lock value blocks
= The right to take and release locks

Required Access or Privileges
None

Required Quota

$SET_RESOURCE_DOMAIN uses system dynamic memory, which uses BYTLM
quota, for the creation of the resource domain data structures.

Related Services
$DEQ, $ENQ, SENQW, $GETLKI, $GETLKIW

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$ BADPARAM The func, the domain_number, or the rsdm_id
argument was specified incorrectly.

SS$ EXQUOTA The caller has insufficient BYTLM quota.

SS$_INSFMEM There is insufficient memory to join the resource
domain.

SS$ IVMODE An attempt was made to leave an association

created by a more privileged access mode.

SYS2-395

System Service Descriptions
$SET_RESOURCE_DOMAIN

SS$_NOOBJSRV

SS$ NOPRIV
SS$ RSDM_ACTIVE

SS$ RSDMNOTFOU

SYS2-396

The audit server process, which maintains the
security profile for resource domains, is not
running. The process access rights to the domain
cannot be determined, so access is denied.

Access to the resource domain was denied.

Unable to leave the resource domain because
there are locks still associated with this resource
domain.

The resource domain was not found.

System Service Descriptions
$SET_SECURITY

$SET_SECURITY
Set Security Characteristics

Modifies the security characteristics of a protected object.

Format
SYS$SET_SECURITY [clsnam] ,[objnam] ,[objhan] ,[flags] ,[itmlIst] ,[contxt]
,[acmode]
C Prototype

int sys$set_security (void *clsnam, void *objnam, unsigned int *objhan, unsigned int
flags, void *itmlst, unsigned int *contxt, unsigned int *acmode);

Arguments
clsnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the object class. The clsnam argument is the address of a descriptor
pointing to a string that contains the name of the object class.

The following is a list of the protected object class names:

CAPABILITY
COMMON_EVENT_CLUSTER
DEVICE

FILE
GLXGRP_GLOBAL_SECTION
GLXSYS_GLOBAL_SECTION
GROUP_GLOBAL_SECTION
ICC_ASSOCIATION
LOGICAL_NAME_TABLE
QUEUE
RESOURCE_DOMAIN
SECURITY_CLASS
SYSTEM_GLOBAL_SECTION

VOLUME
objnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the protected object whose associated security profile is going to be
retrieved. The objnam argument is the address of a descriptor pointing to a
string containing the name of the protected object.

SYS2-397

System Service Descriptions
$SET_SECURITY

The format of an object name is class specific. The following table lists object
names and describes their formats:

Object Class

Object Name Format

CAPABILITY

COMMON_EVENT_CLUSTER

DEVICE
FILE
GROUP_GLOBAL_SECTION

ICC_ASSOCIATION

LOGICAL_NAME_TABLE
QUEUE
RESOURCE_DOMAIN

SECURITY_CLASS

SYSTEM_GLOBAL_SECTION

A character string. Currently, the only
capability object is VECTOR.

Name of the event flag cluster, as defined in
the Associate Common Event Flag Cluster
($ASCEFC) system service.

Standard device specification, described in the
OpenVMS User’'s Manual.

Standard file specification, described in the
OpenVMS User’s Manual.

Section name, as defined in the Create and Map
Section ($CRMPSC) system service.

ICC security object name node::association_
name. The special node name, ICC$::, refers to
entries in the clusterwide registry. For registry
entries, the Access Access Type does not apply.

Table name, as defined in the Create Logical
Name Table ($CRELNT) system service.

Standard queue name, as described in the Send
to Job Controller ($SNDJBC) system service.

An identifier or octal string enclosed in
brackets.

Any class name shown in the Object Class
column of this table, or a class name followed
by a period (.) and the template name. Use the
DCL command SHOW SECURITY to display
possible template names.

Section name, as defined in the Create and Map
Section ($CRMPSC) system service.

VOLUME Volume name or name of the device on which
the volume is mounted.

objhan

OpenVMS usage: object_handle

type: longword (unsigned)

access: read only

mechanism: by reference

Data structure identifying the object to address. The objhan argument is an
address of a longword containing the object handle. You can use the objhan
argument as an alternative to the objnam argument; for example, a channel
number clearly specifies the file open on the channel and can serve as an object

handle.

SYS2-398

System Service Descriptions
$SET_SECURITY

The following table shows the format of the object classes:

Object Class Object Handle Format
COMMON_EVENT _CLUSTER Event flag number
DEVICE Channel number
FILE Channel number
RESOURCE_DOMAIN Resource domain identifier
VOLUME Channel number
flags

OpenVMS usage: flags

type: mask_longword

access: read only

mechanism: by value

Mask specifying processing options. The flags argument is a longword bit vector
wherein a bit, when set, specifies the corresponding option. The flags argument
requires the contxt argument.

The following table describes each flag:

Symbolic Name Description

OSS$M_LOCAL Do not update the master profile for the specified
object. This flag allows you to call $SET_SECURITY
several times to modify a local copy of a profile; once
the modifications are satisfactory, you can clear the
OSS$M_LOCAL flag, set the OSS$M_RELCTX flag,
and have $SET_SECURITY update the master profile.
The flag applies only to calls made with the contxt
argument.

OSS$M_RELCTX Release the context structure at the completion of this
request.

The $OSSDEF macro defines symbolic names for the flag bits. You construct the
flags argument by specifying the symbolic names of each desired option.

itmlst

OpenVMS usage: item_list_3

type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the process or processes is to be
modified. The itmlst argument is the address of a list of item descriptors, each of
which describes an item of information. The list of item descriptors is terminated
by a longword of 0.

With the item list, the user modifies the protected object’'s characteristics. The
user defines which security characteristics to modify. If this argument is not
present, only the flags argument is processed. Without the itmlst argument, you
can only manipulate the security profile locks or release contxt resources.

SYS2-399

System Service Descriptions
$SET_SECURITY

SYS2-400

The following data structure depicts the format of a single item descriptor:
31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-5186A-GE
The following table defines the item descriptor fields:
Descriptor Field Definition
Buffer length A word containing an integer specifying the

length (in bytes) of the buffer from which $SET _
SECURITY is to read the information. The length of
the buffer needed depends on the item code specified
in the item code field of the item descriptor. If

the value of buffer length is too small, $SET _
SECURITY truncates the data.

Item code A word containing a symbolic code specifying the
item of information that $SET_SECURITY is to
modify. The $OSSDEF macro defines these codes.
A description of each item code is given in the Item
Codes section.

Buffer address A longword containing the address of the buffer
from which $SET_SECURITY is to read the
information.

Return length address Not used.

contxt

OpenVMS usage: context

type: longword (unsigned)

access: modify

mechanism: by reference

Value used to maintain protected object processing context when dealing with a
single protected object across multiple $GET_SECURITY/$SET_SECURITY calls.
Whenever the context value is nonzero, the class name, object name, or object
handle arguments are disregarded. An input value of O indicates that a new
context should be established.

Because an active context block consumes process memory, be sure to release the
context block by setting the RELCTX flag when the profile processing is complete.
$SET_SECURITY sets the context argument to 0 once the context is released.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the object protection check. The acmode argument is
the address of a longword containing the access mode. The acmode argument

Item Codes

System Service Descriptions
$SET_SECURITY

defaults to kernel mode; however, the system compares acmode with the caller’s
access mode and uses the least privileged mode. The access modes are defined in
the system macro $PSLDEF library.

Compaq recommends that this argument be omitted (passed as zero).

The following table provides a summary of item codes that are valid as an item
descriptor in the itmlst argument. The table lists the $SET_SECURITY item

codes and gives a corresponding description. Complete descriptions of each item

code are provided after the table.

Item Code

Description

0SS$_ACL_ADD_ENTRY
0SS$ ACL_DELETE
0SS$_ACL_DELETE_ALL

0SS$_ACL_DELETE_ENTRY
0SS$_ACL_FIND_ENTRY
0SS$_ACL_FIND_NEXT
0SS$_ACL_FIND_TYPE
0SS$_ACL_MODIFY_ENTRY
0SS$_ACL_POSITION_BOTTOM

0SS$_ACL_POSITION_TOP

0SS$ OWNER

Adds an access control entry (ACE)
Deletes all unprotected ACEs in an ACL

Deletes the ACL, including protected
ACEs

Deletes an ACE

Locates an ACE

Positions the next ACE

Locates an ACE of the specified type
Replaces an ACE at the current position

Sets a marker that points to the end of
the ACL

Sets a marker that points to the
beginning of the ACL

Sets the UIC or general identifier of the

object’s owner

0OSS$ PROTECTION Sets the protection code of the object

OSS$_ACL_ADD_ENTRY

Adds an access control entry (ACE) pointed to by the buffer address so that it
is in front of the current ACE in the access control list (ACL). See OSS$ ACL _
POSITION for more information on explicit access control list positioning.

OSS$_ACL_DELETE
Deletes all unprotected ACEs in an ACL.

OSS$ ACL_DELETE_ALL
Deletes an entire ACL, including protected ACEs.

OSS$ _ACL_DELETE_ENTRY
Deletes an ACE pointed to by the buffer address or, if the buffer address is
specified as 0, the ACE at the current position.

0SS$_ACL_FIND_ENTRY

Locates an ACE pointed to by the buffer address. OSS$ ACL_FIND_ENTRY
sets the position within the ACL for succeeding ACL operations; for example,
for a deletion or modification of the ACE. If the buffer address is 0, it returns
SS$ _ACCVIO.

SYS2-401

System Service Descriptions
$SET_SECURITY

Description

SYS2-402

0OSS$_ACL_FIND_NEXT
Advances the current position to the next ACE in the ACL.

0SS$ ACL_FIND_TYPE

Returns an ACE of a particular type if there is one in the buffer pointed to by
the buffer address. OSS$ _ACL_FIND_TYPE sets the position within the ACL for
succeeding ACL operations. If the buffer address is 0, it returns SS$ ACCVIO.

0OSS$_ACL_MODIFY_ENTRY
Replaces an ACE at the current position with the ACE pointed to by the buffer
address.

0OSS$_ACL_POSITION_BOTTOM
Sets the ACL position to point to the bottom of the ACL.

0OSS$_ACL_POSITION_TOP
Sets the ACL position to point to the top of the ACL.

OSS$_OWNER
Sets the owner UIC of the selected object to the value in the buffer. The buffer
size must be 4 bytes.

0SS$ _PROTECTION
Sets the selected object’'s protection code to the value in the buffer. The buffer
size must be 2 bytes.

The Set Security service modifies the security characteristics of a protected object.
Security characteristics include such information as the protection code, the
owner, and the access control list (ACL).

The security management services, $SET_SECURITY and $GET_SECURITY,
maintain a single master copy of a profile for every protected object in an
OpenVMS Cluster system. They also ensure that only one process at a time can
modify an object’s security profile.

When you call $SET_SECURITY, the service performs the following steps:
1. It selects the specified protected object.

2. It fetches a local copy of the object’s security profile, unless the service is
operating on an existing context.

3. It modifies the local profile.

4. It updates the master copy of the profile if the local flag is clear and there
was no error.

5. It deletes the local copy of the profile and returns if RELCTX is specified or if
no context is specified.

There are different ways of identifying which protected object $SET_SECURITY
should process:

= Whenever the contxt argument has a nonzero value, $SET_SECURITY uses
the context to select the object and ignores the class name, object name, and
object handle.

< With some types of objects, such as a file or a device, it is possible to select an
object on the basis of its objhan and clsnam values.

System Service Descriptions
$SET_SECURITY

= When the clsnam and objnam arguments are provided, $SET_SECURITY
uses an object’s class name and object name to select the object.

The context for a security management operation can be established through
either $GET_SECURITY or $SET_SECURITY. Whenever the context is set by
one service, the other service can use it provided the necessary locks are being
held. A caller to $GET_SECURITY needs to set the write lock flag (OSS$M_
WLOCK) to inspect a profile value, maintain the lock on the object’s profile, and
then modify some value through a call to $SET_SECURITY.

There are many situations in which the contxt argument is essential. By
establishing a context for an ACL operation, for example, a caller can retain

an ACL position across calls to $GET_SECURITY so that a set of ACEs can be
read and modified sequentially. A security context is released by a call to $SET_
SECURITY or $GET_SECURITY that sets the OSS$M_RELCTX flag. Once the
context is deleted, the user-supplied context longword is reset to 0.

Required Access or Privileges

Control access to the object is required.

Required Quota
None

Related Services
$GET_SECURITY

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$ BADPARAM

SS$ INSFARG

SS$_INVBUFLEN
SS$_INVCLSITM
SS$_INVFILFOROP
SS$ MMATORB

SS$_NOCLASS
SS$_OBJLOCKED

The service completed successfully.

The parameter cannot be read and the buffer
cannot be written.

You specified an invalid object, attribute code, or
item size.

The clsnam and objnam arguments are not
specified, the clsnam and objhan arguments
are not specified, or the contxt argument is not
specified.

The buffer size for one of the item codes was
invalid.

The item code that you specified is not supported
for the class.

An invalid file name was specified; the file name
contained either a node or wildcard specification.

The attempted update cannot be performed. The
object profile was changed by another process.

The named object class does not exist.
The selected object is currently write locked.

SYS2-403

System Service Descriptions
$SET_SYSTEM_EVENT (Alpha Only)

$SET_SYSTEM_EVENT (Alpha Only)
Set System Event

Establishes a request for notification when an OpenVMS system event occurs.

Format
SYS$SET_SYSTEM_EVENT event ,astadr ,astprm ,acmode ,flags ,handle

C Prototype

int sys$set_system_event (unsigned int event, void (*astadr)(__unknown_params),
int astprm, unsigned int acmode, unsigned int flags, struct
_generic_64 * handle);

Arguments
event
OpenVMS usage: event code
type: longword (unsigned)
access: read only
mechanism: by value

Event code indicating the type of system event for which an AST is to be
delivered. The event argument is a value indicating which type of event is of
interest.

Each event type has a symbolic name. The $SYSEVTDEF macro defines the
following symbolic names:

Symbolic Name Description

SYSEVT$C_ADD_MEMBER One or more OpenVMS instances have joined
the OpenVMS Galaxy sharing community.

SYSEVT$C _DEL_MEMBER One or more OpenVMS instances have left

the OpenVMS Galaxy sharing community.

SYSEVT$C_ADD_ACTIVE_CPU One or more processors have become active
within this OpenVMS instance.

SYSEVT$C DEL_ ACTIVE_CPU One or more processors have become inactive
within this OpenVMS instance.

SYSEVT$C ADD _CONFIG _CPU One or more CPUs have been added to the
set of available CPUs for this OpenVMS
instance.

SYSEVT$C_DEL_CONFIG_CPU One or more processors have been removed
from this OpenVMS instance.

SYSEVT$C_TDF _CHANGE The system’s time differential factor has
changed.

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding

mechanism: by 32-bit or 64-bit reference

SYS2-404

Description

System Service Descriptions
$SET_SYSTEM_EVENT (Alpha Only)

Notification AST routine to receive control after a change in OpenVMS system
configuration occurs.

astprm

OpenVMS usage: user_arg

type: guadword
access: read only
mechanism: by value

The quadword AST parameter to be passed to the AST routine.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)
access: read only
mechanism: by value

Access mode at which the system event AST is to execute. The acmode argument
is a longword containing the access mode.

Each access mode has a symbolic name. The $PSLDEF macro defines the
following symbols for the four access modes.

Symbolic Name Description
PSL$C_KERNEL Kernel
PSL$C _EXEC Executive
PSL$C_SUPER Supervisor
PSL$C _USER User

The value of the access mode is maximized with the access mode of the caller.

flags

Defined in SYSEVTDEF.

SYSEVT$M_REPEAT_NOTIFY When this flag is set, event notification is
repeated.

handle

OpenVMS usage: handle

type: quadword (unsigned)

access: read/write

mechanism: by reference

The virtual address of a naturally aligned quadword for the event handle.

The Set System Event service establishes a request for notification when a system
event occurs. It may create a new system event notification object, add an event
to a new or existing object, and enable notification on a new or existing object.

If the handle specified is zero, a new system notification request object is created,
and a handle for the new object is returned.

If the event specified is non-zero, that event is added to the set of events which
trigger notification on the notification object.

SYS2-405

System Service Descriptions
$SET_SYSTEM_EVENT (Alpha Only)

The service will verify that the input parameters specify a valid request and
enable the object for notification. Notification is accomplished by AST delivery.
After the AST has been delivered, notification must again be enable on the object
before another notification (AST delivery) can occur if flag is not set.

Errors are returned in the following cases:

=« If quotas are exceeded, an error is returned. It is important to note that this
routine returns an error and will not retry an attempt to get quota if quota is
exhausted on the first attempt.

= See the Condition Values Returned section for types of errors that can be
returned.

- If the astadr argument is omitted, and a new notification object is being
created, SS$ BADPARAM is returned.

- If the event argument is incorrectly specified, SS$ BADPARAM is returned.

= If the access mode parameter is more privileged than the mode of the caller,
the mode of the caller is used.

= If specified, the handle argument must be writeable from the mode of the
caller. SS$_ACCVIO is returned if this is not the case.

Required Access or Privileges
None

Required Quota
ASTLM

Related Services
$CLEAR_SYSTEM_EVENT

Condition Values Returned

SYS2-406

SS$_NORMAL The service completed successfully.

SS$ ACCVIO The service cannot access the locations specified
by one or more arguments.

SS$_BADPARAM One of more arguments has an invalid value.

SS$ EXASTLM The process exceeded its quota for outstanding
ASTs.

SS$_INSFMEM The system dynamic memory is insufficient to

complete the service.

System Service Descriptions
$SHOW_INTRUSION

$SHOW INTRUSION
Show Intrusion Information

Searches for and returns information about records in the intrusion database
matching the caller’s specifications.

Format

SYS$SHOW _INTRUSION user_criteria ,intruder ,intruder_len ,breakin_block ,[flags]
,[context]

C Prototype

int sys$show_intrusion (void *user_criteria, void *intruder, unsigned short int
*intruder_len, void *breakin_block, unsigned int flags,
unsigned int *context);

Arguments

user_criteria
OpenVMS usage: char_string or item_list_3

type: character-coded text string or longword (unsigned)
access: read only
mechanism: by descriptor—fixed-length string descriptor or by reference

If the CIASM_ITEMLIST flag is FALSE:

The user_criteria argument is the description of intruder or suspect. The
user_criteria argument is the address of a character-string descriptor pointing
to a buffer containing the user criteria to match an intrusion record’s user
specification in the intrusion database.

The user_criteria argument is a character string of between 1 and 1058 bytes
containing characters to match the user specification on records in the intrusion
database.

A user specification is any combination of the suspect’s or intruder’s source node
name, source user name, source DECnet for OpenVMS address, local failed user
name, local terminal, or the string UNKNOWN. The user specification for an
intrusion record is based on the input to the $SCAN_INTRUSION service and
the settings of the LGI system parameter. For more information, refer to the
OpenVMS Guide to System Security.

Wildcards are allowed for the user_criteria argument. For more information
about using wildcards to scan the intrusion database, see the Description section.

If the CIASM_ITEMLIST flag is TRUE:

The user_criteria argument is now the address of an 32-bit item list. If the item
list is used, one item, the CIA$_USER_CRITERIAL item, must be present in the
item list.

The following table lists the valid item descriptions for the user_criteria
argument:

SYS2-407

System Service Descriptions
$SHOW_INTRUSION

SYS2-408

Item Description

CIA$ OUTPUT _LIST Address of an 8192-byte buffer into which the
service writes the associated node information for
the returned intrusion record.

CIA$_SCSNODE_LIST Address of a list of 8-character null-padded SCS
nodenames for which the caller wants to see
intrusion information about.

CIA$_USER_CRITERIAL Address of a buffer, 1-1058 bytes long, containing
the intruder or suspect.

If a CIA$_SCSNODE_LIST item is provided, an intrusion record will only be
returned if it originated on one of the nodes specified. If a CIA$_SCSNODE_
LIST item is not provided, records from all nodes will be candidates for display.
Multiple CIA$_SCSNODE_LIST items are permitted in the item list.

If a CIA$_OUTPUT_LIST item is provided, the item is filled with node-count
records on return. The returned intrusion record will have a breakin block with
a valid attempt-count field. The node-count records will have the name and
attempt-count for each node represented.

intruder

OpenVMS usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor—fixed-length string descriptor

User specification of the matched intruder or suspect record in the intrusion
database. The intruder argument is the address of a character-string descriptor
pointing to a buffer to receive the user specification of the matched record in the
intrusion database.

The intruder argument is a 1058-byte string that will receive the user
specification of a record in the intrusion database that matches the specifications
in the user_criteria and flags arguments.

intruder_len

OpenVMS usage: string length

type: longword (unsigned)
access: write only
mechanism: by reference

Length of returned string in the intrusion buffer. The intruder_len argument is
the address of a longword to receive the length of the returned intrusion buffer.

The possible range of the intruder_len argument is 0 to 1058 bytes. If the
longword specified by the argument contains a 0 after the call to the service,
either the service did not find a record that matched the user criteria in the
intrusion database, or there are no more matching items in the intrusion
database.

breakin_block
OpenVMS usage: record

type: block of 2 words (unsigned), 1 longword (unsigned), and
1 quadword (unsigned)

access: write only

mechanism: by reference

System Service Descriptions
$SHOW_INTRUSION

Block to receive various information in the intrusion database about a record
matching the user criteria. The breakin_block argument is the address of a
structure with the following format:

31

Flags

Type

Count

Time

ZK-6171A-GE

The following table defines the break-in block fields:

Field Description

Type Unsigned word containing the type of the matched record.
The possible values for the type field are TERM_USER,
TERMINAL, USERNAME, and NETWORK. These
constants are defined in $CIADEF in STARLET.

Flags Boolean set to TRUE (1) if the matched record is an
intruder. If the value is set to FALSE (0), the matched
record is only a suspect.

Count Unsigned longword containing the number of login failures
or break-in attempts made by the specified intruder or
suspect.

Time Quadword time format indicating the time when the record
will expire.

flags

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Type of records in the intrusion database about which information is to be
returned. The flags argument is a longword bit mask wherein each bit
corresponds to an option.

Each option has a symbolic name. The $CIADEF macro defines the following

valid names:

Symbolic Name

Description

CIASM_ALL

CIASM_INTRUDERS

All records will be shown. If the flags argument
is omitted, this value is assumed.

Only intruder records matching the criteria
specified by the user_criteria argument will
be returned. The value of the flag field in the
break-in block will always be 1.

SYS2-409

System Service Descriptions
$SHOW_INTRUSION

Description

SYS2-410

Symbolic Name Description

CIASM_ITEMLIST If FALSE, the user_criteria argument is a
character string. If TRUE, this argument is a
32-bit item list.

CIA$SM_SUSPECTS Only suspect records matching the criteria

specified by the user_criteria argument will
be returned. The value of the flag field in the
break-in block will always be 0.

Each of these options is mutually exclusive.

context

OpenVMS usage: context

type: longword (unsigned)
access: write only
mechanism: by reference

Context information to keep between related calls to the $SHOW_INTRUSION
service. The context argument is the address of a longword that receives a
context from the service.

The initial value contained in the unsigned longword pointed to by the context
argument must be 0. The contents of the unsigned longword must not be changed
after the service has set its value. If the contents of the context argument are
changed between calls to the service, SS$_ BADCONTEXT will be returned.

Contexts become invalid after one-half hour of non-use. This means that if you
call the $SHOW_INTRUSION service with a wildcard in the user_criteria
argument and do not call the service to get the next matching record within
one-half hour, the context becomes invalid. If the context has become invalid,
you must restart your search of the intrusion database from the beginning by
resetting the context to 0.

The Show Intrusion service returns information about records in the intrusion
database that match the criteria you specify.

You can retrieve information about multiple records in the intrusion database by
specifying wildcards for the user_criteria argument. For example, specifying

an asterisk (*) for the user_criteria argument and CIA$M_ALL_RECORDS for
the flags argument will return information about all records in the database.
Specifying TTA4* for the user_criteria argument and CIASM_SUSPECTS _
ONLY for the flags argument will return information about all suspects who have
had failures on terminal TTA4.

If you specify a wildcard string for the user_criteria argument, you must also
include a context argument. Because the service can only return information
about one intrusion record at a time, you must call the service repeatedly to
retrieve information about more than one record. The service will return SS$_
NOMOREITEMS when information about all of the matching records has been
returned. No intrusion information is returned from the call that returns SS$_
NOMOREITEMS.

Required Access or Privileges
SECURITY privilege is required.

Required Quota
None

Related Services

System Service Descriptions
$SHOW_INTRUSION

$DELETE_INTRUSION, $SCAN_INTRUSION

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$ BADBUFLEN

SS$_ BADCONTEXT

SS$_BADPARAM

SS$_NOMOREITEMS

SS$ NOSECURITY

The service completed successfully.

The user_criteria or context argument cannot
be read, or the intruder, intruder_len,
breakin_block, or context argument cannot
be written.

The length of one of the specified arguments is
out of range.

The context argument did not contain a 0 on the
first call to the service. The context argument’s
value changed between consecutive calls to the
service.

An invalid value was specified in the flags
argument, or mutually exclusive options were
specified in the flags argument.

All items matching the specified criteria have
been returned.

The caller does not have SECURITY privilege.

This service can also return any of the following messages passed from the

security server:

SECSRVS$_
NOSUCHINTRUDER

SECSRVS$_
SERVERNOTACTIVE

No records matching the specified criteria were
found in the intrusion database.

The security server is not currently active. Try
the request again later.

SYS2-411

System Service Descriptions
$SIGNAL_ARRAY_64

$SIGNAL_ARRAY_64
Signal Array

Returns the address of a 64-bit signal array. A 32-bit signal array and a
mechanism array are passed to a condition handler when it is called. $SIGNAL _
ARRAY_64 provides the a