
VAX MACRO and Instruction Set
ReferenceManual
Order Number: AA–PS6GD–TE

April 2001

This document describes the features of the VAX MACRO instruction set
and assembler. It includes a detailed description of MACRO directives
and instructions, as well as information about MACRO source program
syntax.

Revision/Update Information: This manual supersedes the VAX
MACRO and Instruction Set Reference
Manual, Version 7.1

Software Version: OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS is a trademark of Compaq Information Technologies Group, L.P. in the United States and
other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK4515

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xv

VAX MACRO Language

1 Introduction

2 VAX MACRO Source Statement Format

2.1 Label Field . 2–2
2.2 Operator Field . 2–3
2.3 Operand Field . 2–3
2.4 Comment Field . 2–3

3 Components of MACRO Source Statements

3.1 Character Set . 3–1
3.2 Numbers . 3–2
3.2.1 Integers . 3–3
3.2.2 Floating-Point Numbers . 3–3
3.2.3 Packed Decimal Strings . 3–4
3.3 Symbols . 3–4
3.3.1 Permanent Symbols . 3–4
3.3.2 User-Defined Symbols and Macro Names . 3–5
3.3.3 Determining Symbol Values . 3–5
3.4 Local Labels . 3–6
3.5 Terms and Expressions . 3–8
3.6 Unary Operators . 3–9
3.6.1 Radix Control Operators . 3–10
3.6.2 Textual Operators . 3–11
3.6.2.1 ASCII Operator . 3–11
3.6.2.2 Register Mask Operator . 3–12
3.6.3 Numeric Control Operators . 3–13
3.6.3.1 Floating-Point Operator . 3–13
3.6.3.2 Complement Operator . 3–13
3.7 Binary Operators . 3–14
3.7.1 Arithmetic Shift Operator . 3–14
3.7.2 Logical AND Operator . 3–15
3.7.3 Logical Inclusive OR Operator . 3–15
3.7.4 Logical Exclusive OR Operator . 3–15
3.8 Direct Assignment Statements . 3–15
3.9 Current Location Counter . 3–16

iii

4 Macro Arguments and String Operators

4.1 Arguments in Macros . 4–1
4.2 Default Values . 4–2
4.3 Keyword Arguments . 4–2
4.4 String Arguments . 4–3
4.5 Argument Concatenation . 4–5
4.6 Passing Numeric Values of Symbols . 4–6
4.7 Created Local Labels . 4–6
4.8 Macro String Operators . 4–7
4.8.1 %LENGTH Operator . 4–7
4.8.2 %LOCATE Operator . 4–8
4.8.3 %EXTRACT Operator . 4–10

5 VAX MACRO Addressing Modes

5.1 General Register Modes . 5–1
5.1.1 Register Mode . 5–3
5.1.2 Register Deferred Mode . 5–4
5.1.3 Autoincrement Mode . 5–4
5.1.4 Autoincrement Deferred Mode . 5–5
5.1.5 Autodecrement Mode . 5–6
5.1.6 Displacement Mode . 5–6
5.1.7 Displacement Deferred Mode . 5–8
5.1.8 Literal Mode . 5–9
5.2 Program Counter Modes . 5–10
5.2.1 Relative Mode . 5–10
5.2.2 Relative Deferred Mode . 5–11
5.2.3 Absolute Mode . 5–12
5.2.4 Immediate Mode . 5–12
5.2.5 General Mode . 5–14
5.3 Index Mode . 5–14
5.4 Branch Mode . 5–16

6 VAX MACRO Assembler Directives

.ADDRESS . 6–4

.ALIGN . 6–5

.ASCIx . 6–7

.ASCIC . 6–8

.ASCID . 6–9

.ASCII . 6–10

.ASCIZ . 6–11

.BLKx . 6–12

.BYTE . 6–14

.CROSS . 6–16

.DEBUG . 6–18

.DEFAULT . 6–19

.D_FLOATING . 6–20

.DISABLE . 6–21

.ENABLE . 6–22

.END . 6–25

iv

.ENDC . 6–26

.ENDM . 6–27

.ENDR . 6–28

.ENTRY . 6–29

.ERROR . 6–31

.EVEN . 6–33

.EXTERNAL . 6–34

.F_FLOATING . 6–35

.G_FLOATING . 6–36

.GLOBAL . 6–37

.H_FLOATING . 6–38

.IDENT . 6–39

.IF . 6–40

.IF_x . 6–43

.IIF . 6–46

.IRP . 6–47

.IRPC . 6–49

.LIBRARY . 6–51

.LINK . 6–52

.LIST . 6–55

.LONG . 6–56

.MACRO . 6–57

.MASK . 6–59

.MCALL . 6–60

.MDELETE . 6–61

.MEXIT . 6–62

.NARG . 6–63

.NCHR . 6–64

.NLIST . 6–65

.NOCROSS . 6–66

.NOSHOW . 6–67

.NTYPE . 6–68

.OCTA . 6–70

.ODD . 6–71

.OPDEF . 6–72

.PACKED . 6–74

.PAGE . 6–75

.PRINT . 6–76

.PSECT . 6–77

.QUAD . 6–81

.REFn . 6–82

.REPEAT . 6–83

.RESTORE_PSECT . 6–85

.SAVE_PSECT . 6–86

.SHOW

v

.NOSHOW . 6–88
.SIGNED_BYTE . 6–90
.SIGNED_WORD . 6–91
.SUBTITLE . 6–93
.TITLE . 6–94
.TRANSFER . 6–95
.WARN . 6–98
.WEAK . 6–100
.WORD . 6–101

VAX Data Types and Instruction Set

7 Terminology and Conventions

7.1 Numbering . 7–1
7.2 UNPREDICTABLE and UNDEFINED . 7–1
7.3 Ranges and Extents . 7–1
7.4 MBZ . 7–1
7.5 RAZ . 7–2
7.6 SBZ . 7–2
7.7 Reserved . 7–2
7.8 Figure Drawing Conventions . 7–2

8 Basic Architecture

8.1 Basic Architecture . 8–1
8.2 VAX Addressing . 8–2
8.3 Data Types . 8–2
8.3.1 Byte . 8–2
8.3.2 Word . 8–2
8.3.3 Longword . 8–3
8.3.4 Quadword . 8–3
8.3.5 Octaword . 8–3
8.3.6 F_floating . 8–4
8.3.7 D_floating . 8–4
8.3.8 G_floating . 8–5
8.3.9 H_floating . 8–6
8.3.10 Variable-Length Bit Field . 8–6
8.3.11 Character String . 8–7
8.3.12 Trailing Numeric String . 8–8
8.3.13 Leading Separate Numeric String . 8–11
8.3.14 Packed Decimal String . 8–12
8.4 Processor Status Longword (PSL) . 8–13
8.4.1 C Bit . 8–14
8.4.2 V Bit . 8–14
8.4.3 Z Bit . 8–14
8.4.4 N Bit . 8–14
8.4.5 T Bit . 8–14
8.4.6 IV Bit . 8–14
8.4.7 FU Bit . 8–14
8.4.8 DV Bit . 8–15
8.5 Permanent Exception Enables . 8–15
8.5.1 Divide by Zero . 8–15

vi

8.5.2 Floating Overflow . 8–15
8.6 Instruction and Addressing Mode Formats . 8–15
8.6.1 Opcode Formats . 8–15
8.6.2 Operand Specifiers . 8–15
8.7 General Addressing Mode Formats . 8–16
8.7.1 Register Mode . 8–17
8.7.2 Register Deferred Mode . 8–17
8.7.3 Autoincrement Mode . 8–18
8.7.4 Autoincrement Deferred Mode . 8–18
8.7.5 Autodecrement Mode . 8–19
8.7.6 Displacement Mode . 8–19
8.7.7 Displacement Deferred Mode . 8–20
8.7.8 Literal Mode . 8–21
8.7.9 Index Mode . 8–23
8.8 Summary of General Mode Addressing . 8–24
8.8.1 General Register Addressing . 8–24
8.8.2 Program Counter Addressing . 8–25
8.9 Branch Mode Addressing Formats . 8–26

9 VAX Instruction Set

9.1 Introduction to the VAX Instruction Set . 9–1
9.2 Instruction Descriptions . 9–1
9.2.1 Integer Arithmetic and Logical Instructions . 9–5

ADAWI . 9–7
ADD . 9–8
ADWC . 9–9
ASH . 9–10
BIC . 9–11
BIS . 9–12
BIT . 9–13
CLR . 9–14
CMP . 9–15
CVT . 9–16
DEC . 9–17
DIV . 9–18
EDIV . 9–19
EMUL . 9–20
INC . 9–21
MCOM . 9–22
MNEG . 9–23
MOV . 9–24
MOVZ . 9–25
MUL . 9–26
PUSHL . 9–27
ROTL . 9–28
SBWC . 9–29
SUB . 9–30
TST . 9–31
XOR . 9–32

vii

9.2.2 Address Instructions . 9–33
MOVA . 9–34
PUSHA . 9–35

9.2.3 Variable-Length Bit Field Instructions . 9–36
CMP . 9–38
EXT . 9–39
FF . 9–40
INSV . 9–41

9.2.4 Control Instructions . 9–42
ACB . 9–44
AOBLEQ . 9–46
AOBLSS . 9–47
B . 9–48
BB . 9–50
BB . 9–51
BB . 9–52
BLB . 9–53
BR . 9–54
BSB . 9–55
CASE . 9–56
JMP . 9–58
JSB . 9–59
RSB . 9–60
SOBGEQ . 9–61
SOBGTR . 9–62

9.2.5 Procedure Call Instructions . 9–63
CALLG . 9–65
CALLS . 9–67
RET . 9–69

9.2.6 Miscellaneous Instructions . 9–70
BICPSW . 9–71
BISPSW . 9–72
BPT . 9–73
HALT . 9–74
INDEX . 9–75
MOVPSL . 9–77
NOP . 9–78
POPR . 9–79
PUSHR . 9–80
XFC . 9–81

9.2.7 Queue Instructions . 9–82
9.2.7.1 Absolute Queues . 9–82
9.2.7.2 Self-Relative Queues . 9–85
9.2.7.3 Instruction Descriptions . 9–88

INSQHI . 9–89
INSQTI . 9–91
INSQUE . 9–93
REMQHI . 9–95

viii

REMQTI . 9–97
REMQUE . 9–99

9.2.8 Floating-Point Instructions . 9–101
9.2.8.1 Introduction . 9–101
9.2.8.2 Overview of the Instruction Set . 9–102
9.2.8.3 Accuracy . 9–103
9.2.8.4 Instruction Descriptions . 9–104

ADD . 9–106
CLR . 9–107
CMP . 9–108
CVT . 9–109
DIV . 9–111
EMOD . 9–113
MNEG . 9–115
MOV . 9–116
MUL . 9–117
POLY . 9–118
SUB . 9–121
TST . 9–123

9.2.9 Character String Instructions . 9–124
CMPC . 9–126
LOCC . 9–128
MATCHC . 9–129
MOVC . 9–130
MOVTC . 9–132
MOVTUC . 9–134
SCANC . 9–136
SKPC . 9–137
SPANC . 9–138

9.2.10 Cyclic Redundancy Check Instruction . 9–139
CRC . 9–140

9.2.11 Decimal String Instructions . 9–142
9.2.11.1 Decimal Overflow . 9–143
9.2.11.2 Zero Numbers . 9–143
9.2.11.3 Reserved Operand Exception . 9–143
9.2.11.4 UNPREDICTABLE Results . 9–143
9.2.11.5 Packed Decimal Operations . 9–143
9.2.11.6 Zero-Length Decimal Strings . 9–144
9.2.11.7 Instruction Descriptions . 9–144

ADDP . 9–146
ASHP . 9–148
CMPP . 9–150
CVTLP . 9–151
CVTPL . 9–152
CVTPS . 9–153
CVTPT . 9–155
CVTSP . 9–157
CVTTP . 9–159
DIVP . 9–161

ix

MOVP . 9–163
MULP . 9–164
SUBP . 9–165

9.2.12 The EDITPC Instruction and Its Pattern Operators 9–167
EDITPC . 9–168
EO$ADJUST_INPUT . 9–172
EO$BLANK_ZERO . 9–173
EO$END . 9–174
EO$END_FLOAT . 9–175
EO$FILL . 9–176
EO$FLOAT . 9–177
EO$INSERT . 9–178
EO$LOAD_ . 9–179
EO$MOVE . 9–180
EO$REPLACE_SIGN . 9–181
EO$_SIGNIF . 9–182
EO$STORE_SIGN . 9–183

9.2.13 Other VAX Instructions . 9–184
PROBEx . 9–185
CHM . 9–187
REI . 9–189
LDPCTX . 9–191
SVPCTX . 9–193
MTPR . 9–194
MFPR . 9–195
BUG . 9–196

10 VAX Vector Architecture

10.1 Introduction to VAX Vector Architecture . 10–1
10.2 VAX Vector Architecture Registers . 10–1
10.2.1 Vector Registers . 10–1
10.2.2 Vector Control Registers . 10–2
10.2.3 Internal Processor Registers . 10–3
10.3 Vector Instruction Formats . 10–8
10.3.1 Masked Operations . 10–9
10.3.2 Exception Enable Bit . 10–10
10.3.3 Modify Intent Bit . 10–10
10.3.4 Register Specifier Fields . 10–10
10.3.5 Vector Control Word Formats . 10–10
10.3.6 Restrictions on Operand Specifier Usage . 10–13
10.3.7 VAX Condition Codes . 10–14
10.3.8 Illegal Vector Opcodes . 10–14
10.4 Assembler Notation . 10–14
10.5 Execution Model . 10–15
10.5.1 Access Mode Restrictions . 10–16
10.5.2 Scalar Context Switching . 10–17
10.5.3 Overlapped Instruction Execution . 10–18
10.5.3.1 Vector Chaining . 10–18
10.5.3.2 Register Conflict . 10–20
10.5.3.3 Dependencies Among Vector Results . 10–20

x

10.6 Vector Processor Exceptions . 10–24
10.6.1 Vector Memory Management Exception Handling 10–25
10.6.2 Vector Arithmetic Exceptions . 10–26
10.6.3 Vector Processor Disabled . 10–27
10.6.4 Handling Disabled Faults and Vector Context Switching 10–28
10.6.5 MFVP Exception Reporting Examples . 10–30
10.7 Synchronization . 10–33
10.7.1 Scalar/Vector Instruction Synchronization (SYNC) 10–33
10.7.2 Scalar/Vector Memory Synchronization . 10–34
10.7.2.1 Memory Instruction Synchronization (MSYNC) 10–34
10.7.2.2 Memory Activity Completion Synchronization (VMAC) 10–35
10.7.3 Other Synchronization Between the Scalar and Vector Processors 10–36
10.7.4 Memory Synchronization Within the Vector Processor (VSYNC) 10–36
10.7.5 Required Use of Memory Synchronization Instructions 10–37
10.7.5.1 When VSYNC Is Not Required . 10–39
10.8 Memory Management . 10–41
10.9 Hardware Errors . 10–42
10.10 Vector Memory Access Instructions . 10–43
10.10.1 Alignment Considerations . 10–43
10.10.2 Stride Considerations . 10–43
10.10.3 Context of Address Specifiers . 10–43
10.10.4 Access Mode . 10–44
10.10.5 Memory Instructions . 10–44

VLD . 10–45
VGATH . 10–47
VST . 10–49
VSCAT . 10–51

10.11 Vector Integer Instructions . 10–52
VADDL . 10–53
VCMPL . 10–54
VMULL . 10–56
VSUBL . 10–58

10.12 Vector Logical and Shift Instructions . 10–59
VBIC, VBIS, and VXOR . 10–60
VSL . 10–62

10.13 Vector Floating-Point Instructions . 10–63
10.13.1 Vector Floating-Point Exception Conditions . 10–63
10.13.2 Floating-Point Instructions . 10–64

VADD . 10–65
VCMP . 10–67
VVCVT . 10–70
VDIV . 10–72
VMUL . 10–74
VSUB . 10–76

10.14 Vector Edit Instructions . 10–77
VMERGE . 10–78
IOTA . 10–79

10.15 Miscellaneous Instructions . 10–80
MFVP . 10–81
MTVP . 10–83
VSYNC . 10–84

xi

A ASCII Character Set

B Hexadecimal/Decimal Conversion

B.1 Hexadecimal to Decimal . B–1
B.2 Decimal to Hexadecimal . B–2
B.3 Powers of 2 and 16 . B–2

C VAX MACRO Assembler Directives and Language Summary

C.1 Assembler Directives . C–1
C.2 Special Characters . C–5
C.3 Operators . C–6
C.3.1 Unary Operators . C–7
C.3.2 Binary Operators . C–7
C.3.3 Macro String Operators . C–8
C.4 Addressing Modes . C–9

D Permanent Symbol Table Defined for Use with VAX MACRO

E Exceptions That May Occur During Instruction Execution

E.1 Arithmetic Traps and Faults . E–1
E.1.1 Integer Overflow Trap . E–2
E.1.2 Integer Divide-by-Zero Trap . E–2
E.1.3 Floating Overflow Trap . E–2
E.1.4 Divide-by-Zero Trap . E–2
E.1.5 Floating Underflow Trap . E–2
E.1.6 Decimal String Overflow Trap . E–3
E.1.7 Subscript-Range Trap . E–3
E.1.8 Floating Overflow Fault . E–3
E.1.9 Divide-by-Zero Floating Fault . E–3
E.1.10 Floating Underflow Fault . E–3
E.2 Memory Management Exceptions . E–3
E.2.1 Access Control Violation Fault . E–3
E.2.2 Translation Not Valid Fault . E–4
E.3 Exceptions Detected During Operand Reference . E–4
E.3.1 Reserved Addressing Mode Fault . E–4
E.3.2 Reserved Operand Exception . E–4
E.4 Exceptions Occurring as the Consequence of an Instruction E–5
E.4.1 Reserved or Privileged Instruction Fault . E–5
E.4.2 Operand Reserved to Customers Fault . E–5
E.4.3 Instruction Emulation Exceptions . E–6
E.4.4 Compatibility Mode Exception . E–6
E.4.5 Change Mode Trap . E–7
E.4.6 Breakpoint Fault . E–7
E.5 Trace Fault . E–7
E.5.1 Trace Operation When Entering a Change Mode Instruction E–8
E.5.2 Trace Operation Upon Return From Interrupt E–8
E.5.3 Trace Operation After a BISPSW Instruction E–8
E.5.4 Trace Operation After a CALLS or CALLG Instruction E–8
E.6 Serious System Failures . E–9
E.6.1 Kernel Stack Not Valid Abort . E–9
E.6.2 Interrupt Stack Not Valid Halt . E–9

xii

E.6.3 Machine Check Exception . E–9

Index

Figures

6–1 Using Transfer Vectors . 6–96
10–1 Vector Register . 10–2
10–2 Vector Length Register (VLR) . 10–2
10–3 Vector Mask Register (VMR) . 10–3
10–4 Vector Count Register (VCR) . 10–3
10–5 Vector Processor Status Register (VPSR) . 10–3
10–6 Vector Arithmetic Exception Register (VAER) 10–6
10–7 Vector Memory Activity Check (VMAC) Register 10–6
10–8 Vector Translation Buffer Invalidate All (VTBIA) Register 10–7
10–9 Vector State Address Register (VSAR) . 10–7
10–10 Vector Control Word Operand (cntrl) . 10–8
10–11 Vector Control Word Format . 10–12
10–12 Memory Management Fault Stack Frame (as Sent by the Vector

Processor) . 10–25
10–13 Encoding of the Reserved Operand . 10–64
E–1 Compatibility Mode Exception Stack Frame . E–6

Tables

3–1 Special Characters Used in VAX MACRO Statements 3–1
3–2 Separating Characters in VAX MACRO Statements 3–2
3–3 Unary Operators . 3–10
3–4 Binary Operators . 3–14
5–1 Addressing Modes . 5–2
5–2 Floating-Point Literals Expressed as Decimal Numbers 5–9
5–3 Floating-Point Literals Expressed as Rational Numbers 5–9
5–4 Index Mode Addressing . 5–16
6–1 Summary of General Assembler Directives . 6–1
6–2 Summary of Macro Directives . 6–2
6–3 .ENABLE and .DISABLE Symbolic Arguments 6–22
6–4 Condition Tests for Conditional Assembly Directives 6–41
6–5 Operand Descriptors . 6–72
6–6 Program Section Attributes . 6–77
6–7 Default Program Section Attributes . 6–79
6–8 .SHOW and .NOSHOW Symbolic Arguments 6–88
8–1 Representation of Least-Significant Digit and Sign in Zoned Numeric

Format . 8–9
8–2 Representation of Least-Significant Digit and Sign in Overpunch

Format . 8–10
8–3 Floating-Point Literals Expressed as Decimal Numbers 8–22
8–4 Floating-Point Literals Expressed as Rational Numbers 8–23

xiii

8–5 General Register Addressing . 8–25
8–6 Program Counter Addressing . 8–26
9–1 Summary of EDITPC Pattern Operators . 9–170
9–2 EDITPC Pattern Operator Encoding . 9–171
10–1 Description of the Vector Processor Status Register (VPSR) 10–4
10–2 Possible VPSR<3:0> Settings for MTPR . 10–5
10–3 State of the Vector Processor . 10–5
10–4 VAER Exception Condition Summary Word Encoding 10–6
10–5 IPR Assignments . 10–8
10–6 Description of the Vector Control Word Operand 10–9
10–7 Dependencies for Vector Operate Instructions 10–21
10–8 Dependencies for Vector Load and Gather Instructions 10–22
10–9 Dependencies for Vector Store and Scatter Instructions 10–22
10–10 Dependencies for Vector Compare Instructions 10–23
10–11 Dependencies for Vector MERGE Instructions 10–23
10–12 Dependencies for IOTA Instruction . 10–23
10–13 Dependencies for MFVP Instructions . 10–24
10–14 Miscellaneous Dependencies . 10–24
10–15 Possible Pairs of Read and Write Operations When Scalar/Vector

Memory Synchronization (M) or VSYNC (V) Is Required Between
Instructions That Reference the Same Memory Location 10–39

10–16 Encoding of the Exception Condition Type (ETYPE) 10–64
C–1 Assembler Directives . C–1
C–2 Special Characters Used in VAX MACRO Statements C–6
C–3 Summary of Unary Operators . C–7
C–4 Summary of Binary Operators . C–7
C–5 Macro String Operators . C–8
C–6 Summary of Addressing Modes . C–9
D–1 Opcodes (Alphabetic Order) and Functions . D–1
D–2 One_Byte Opcodes (Numeric Order) . D–11
D–3 Two_Byte Opcodes (Numeric Order) . D–15
E–1 Arithmetic Exception Type Codes . E–1
E–2 Compatibility Mode Exception Type Codes . E–6

xiv

Preface

Intended Audience
This manual is intended for all programmers writing VAX MACRO programs. You
should be familiar with assembly language programming, the VAX instruction
set, and the OpenVMS operating system before reading this manual.

Document Structure
This manual is divided into two parts, each of which is subdivided into several
chapters.

Part I describes the VAX MACRO language.

• Chapter 1 introduces the features of the VAX MACRO language.

• Chapter 2 describes the format used in VAX MACRO source statements.

• Chapter 3 describes the following components of VAX MACRO source
statements:

– Character set

– Numbers

– Symbols

– Local labels

– Terms and expressions

– Unary and binary operators

– Direct assignment statements

– Current location counter

• Chapter 4 describes the arguments and string operators used with macros.

• Chapter 5 summarizes and gives examples of using the VAX MACRO
addressing modes.

• Chapter 6 describes the VAX MACRO general assembler directives and the
directives used in defining and expanding macros.

Part II describes the VAX data types, the instruction and addressing mode
formats, and the instruction set.

• Chapter 7 summarizes the terminology and conventions used in the
descriptions in Part II.

• Chapter 8 describes the basic VAX architecture, including the following:

– Address space

– Data types

xv

– Processor status longword

– Permanent exception enables

– Instruction and addressing mode formats

• Chapter 9 describes the native-mode instruction set. The instructions are
divided into groups according to their function and are listed alphabetically
within each group.

• Chapter 10 describes the extension to the VAX architecture for integrated
vector processing.

This manual also contains the following five appendixes:

• Appendix A lists the ASCII character set used in VAX MACRO programs.

• Appendix B gives rules for hexadecimal/decimal conversion.

• Appendix C summarizes the general assembler and macro directives (in
alphabetical order), special characters, unary operators, binary operators,
macro string operators, and addressing modes.

• Appendix D lists the permanent symbols (instruction set) defined for use with
VAX MACRO.

• Appendix E describes the exceptions (traps and faults) that may occur during
instruction execution.

Related Documents
The following documents are relevant to VAX MACRO programming:

• VAX Architecture Reference Manual

• OpenVMS DCL Dictionary

• The descriptions of the VMS Linker and Symbolic Debugger in:

OpenVMS Linker Utility Manual

OpenVMS Debugger Manual

• OpenVMS Programming Concepts Manual

For additional information about OpenVMS products and services, access the
following World Wide Web address:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

xvi

How to Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

xvii

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xviii

VAX MACRO Language

Part I provides an overview of the features of the VAX MACRO language. It
includes an introduction to the structure and components of VAX MACRO source
statements. Part I also contains a detailed discussion of the VAX MACRO
addressing modes, general assembler directives, and macro directives.

1
Introduction

VAX MACRO is an assembly language for programming VAX computers using
the OpenVMS operating system. Source programs written in VAX MACRO are
translated into object (or binary) code by the VAX MACRO assembler, which
produces an object module and, optionally, a listing file. The features of the
language are introduced in this chapter.

VAX MACRO source programs consist of a sequence of source statements. These
source statements may be any of the following:

• VAX native-mode instructions

• Direct assignment statements

• Assembler directives

Instructions manipulate data. They perform such functions as addition, data
conversion, and transfer of control. Instructions are usually followed in the source
statement by operands, which can be any kind of data needed for the operation
of the instruction. The VAX instruction set is summarized in Appendix D of this
volume and is described in detail in Chapter 9. Direct assignment statements
equate symbols to values. Assembler directives guide the assembly process
and provide tools for using the instructions. There are two classes of assembler
directives: general assembler directives and macro directives.

General assembler directives can be used to perform the following operations:

• Store data or reserve memory for data storage

• Control the alignment of parts of the program in memory

• Specify the methods of accessing the sections of memory in which the
program will be stored

• Specify the entry point of the program or a part of the program

• Specify the way in which symbols will be referenced

• Specify that a part of the program is to be assembled only under certain
conditions

• Control the format and content of the listing file

• Display informational messages

• Control the assembler options that are used to interpret the source program

• Define new opcodes

Macro directives are used to define macros and repeat blocks. They allow you to
perform the following operations:

• Repeat identical or similar sequences of source statements throughout a
program without rewriting those sequences

Introduction 1–1

Introduction

• Use string operators to manipulate and test the contents of source statements

Use of macros and repeat blocks helps minimize programmer errors and speeds
the debugging process.

1–2 Introduction

2
VAX MACRO Source Statement Format

A source program consists of a sequence of source statements that the assembler
interprets and processes, one at a time, generating object code or performing a
specific assembly-time process. A source statement can occupy one source line or
can extend onto several source lines. Each source line can be up to 132 characters
long; however, to ensure that the source line fits (with its binary expansion) on
one line in the listing file, no line should exceed 80 characters.

VAX MACRO statements can consist of up to four fields, as follows:

• Label field—symbolically defines a location in a program.

• Operator field—specifies the action to be performed by the statement; can be
an instruction, an assembler directive, or a macro call.

• Operand field—contains the instruction operands, the assembler directive
arguments, or the macro arguments.

• Comment field—contains a comment that explains the meaning of the
statement; does not affect program execution.

The label field and the comment field are optional. The label field ends with a
colon (:) and the comment field begins with a semicolon (;). The operand field
must conform to the format of the instruction, directive, or macro specified in the
operator field.

Although statement fields can be separated by either a space or a tab (see
Table 3–2), formatting statements with the tab character is recommended for
consistency and clarity and is a Compaq convention.

Field Begins in Column Tab Characters to Reach Column

Label 1 0

Operator 9 1

Operand 17 2

Comment 41 5

For example:

.TITLE ROUT1

.ENTRY START,^M<> ; Beginning of routine
CLRL R0 ; Clear register

LABT: SUBL3 #10,4(AP),R2 ; Subtract 10
LAB2: BRB CONT ; Branch to another routine

Continue a single statement on several lines by using a hyphen (-) as the last
nonblank character before the comment field, or at the end of a line (when there
is no comment). For example:

VAX MACRO Source Statement Format 2–1

VAX MACRO Source Statement Format

LAB1: MOVAL W^BOO$AL_VECTOR,- ; Save boot driver
RPB$L_IOVEC(R7)

VAX MACRO treats the preceding statement as equivalent to the following
statement:

LAB1: MOVAL W^BOOAL_VECTOR,RPBL_IOVEC(R7) ; Save boot driver

A statement can be continued at any point. Do not continue permanent and
user-defined symbol names on two lines. If a symbol name is continued and
the first character on the second line is a tab or a blank, the symbol name is
terminated at that character. Section 3.3 describes symbols in detail.

Note that when a statement occurs in a macro definition (see Chapter 4 and
Chapter 6), the statement cannot contain more than 1000 characters.

Blank lines are legal, but they have no significance in the source program except
that they terminate a continued line.

The following sections describe each of the statement fields in detail.

2.1 Label Field
A label is a user-defined symbol that identifies a location in the program. The
symbol is assigned a value equal to the location counter where the label occurs.
The user-defined symbol name can be up to 31 characters long and can contain
any alphanumeric character and the underscore (_), dollar sign ($), and period
(.) characters. See Section 3.3.2 for a description of the rules for forming
user-defined symbol names in more detail.

If a statement contains a label, the label must be in the first field on the line.

A label is terminated by a colon (:) or a double colon (::). A single colon indicates
that the label is defined only for the current module (an internal symbol). A
double colon indicates that the label is globally defined; that is, the label can be
referenced by other object modules.

Once a label is defined, it cannot be redefined during the source program. If a
label is defined more than once, VAX MACRO displays an error message when
the label is defined and again when it is referenced.

If a label extends past column 7, place it on a line by itself so that the following
operator field can start in column 9 of the next line.

The following example illustrates some of the ways you can define labels:

EXP: .BLKL 50 ; Table stores expected values
DATA:: .BLKW 25 ; Data table accessed by store

; routine in another module
EVAL: CLRL R0 ; Routine evaluates expressions
ERROR_IN_ARG: ; The arg-list contains an error

INCL R0 ; increment error count
TEST:: MOVO EXP,R1 ; This tests routine

; referenced externally
TEST1: BRW EXIT ; Go to exit routine

The label field is also used for the symbol in a direct assignment statement (see
Section 3.8).

2–2 VAX MACRO Source Statement Format

VAX MACRO Source Statement Format
2.2 Operator Field

2.2 Operator Field
The operator field specifies the action to be performed by the statement. This
field can contain an instruction, an assembler directive, or a macro call.

When the operator is an instruction, VAX MACRO generates the binary code for
that instruction in the object module. The binary codes are listed in Appendix D;
the instruction set is described in Chapter 9. When the operator is a directive,
VAX MACRO performs certain control actions or processing operations during
source program assembly. The assembler directives are described in Chapter 6.
When the operator is a macro call, VAX MACRO expands the macro. Macro calls
are described in Chapter 4 and in Chapter 6 (.MACRO directive).

Use either a space or a tab character to terminate the operator field; however, the
tab is the recommended termination character.

2.3 Operand Field
The operand field can contain operands for instructions or arguments for either
assembler directives or macro calls.

Operands for instructions identify the memory locations or the registers that
are used by the machine operation. These operands specify the addressing mode
for the instruction, as described in Chapter 5. The operand field for a specific
instruction must contain the number of operands required by that instruction.
See Chapter 9 for descriptions of the instructions and their operands.

Arguments for a directive must meet the format requirements of that directive.
Chapter 6 describes the directives and the format of their arguments.

Operands for a macro must meet the requirements specified in the macro
definition. See the description of the .MACRO directive in Chapter 6.

If two or more operands are specified, they must be separated by commas (,).
VAX MACRO also allows a space or tab to be used as a separator for arguments to
any directive that does not accept expressions (see Section 3.5 for a discussion of
expressions). However, a comma is required to separate operands for instructions
and for directives that accept expressions as arguments.

The semicolon that starts the comment field terminates the operand field. If a
line does not have a comment field, the operand field is terminated by the end of
the line.

2.4 Comment Field
The comment field contains text that explains the function of the statement.
Every line of code should have a comment. Comments do not affect assembly
processing or program execution. You can cause user-written messages to be
displayed during assembly by the .ERROR, .PRINT, and .WARN directives (see
descriptions in Chapter 6).

The comment field must be preceded by a semicolon; it is terminated by the end
of the line. The comment field can contain any printable ASCII character (see
Appendix A).

To continue a lengthy comment to the next line, write the comment on the next
line and precede it with another semicolon. If a comment does not fit on one
line, it can be continued on the next, but the continuation must be preceded by
another semicolon. A comment can appear on a line by itself.

VAX MACRO Source Statement Format 2–3

VAX MACRO Source Statement Format
2.4 Comment Field

Write the text of a comment to convey the meaning rather than the action of the
statement. The instruction MOVAL BUF_PTR_1,R7, for example, should have a
comment such as ‘‘Get pointer to first buffer,’’ not ‘‘Move address of BUF_PTR_1
to R7.’’

For example:

MOVAL STRING_DES_1,R0 ; Get address of string
; descriptor

MOVZWL (R0),R1 ; Get length of string
MOVL 4(R0),R0 ; Get address of string

2–4 VAX MACRO Source Statement Format

3
Components of MACRO Source Statements

This chapter describes the following components of VAX MACRO source
statements:

• Character set

• Numbers

• Symbols

• Local labels

• Terms and expressions

• Unary and binary operators

• Direct assignment statements

• Current location counter

3.1 Character Set
The following characters can be used in VAX MACRO source statements:

• The letters of the alphabet, A to Z, uppercase and lowercase. Note that the
assembler considers lowercase letters equivalent to uppercase letters except
when they appear in ASCII strings.

• The digits 0 to 9.

• The special characters listed in Table 3–1.

Table 3–1 Special Characters Used in VAX MACRO Statements

Character Character Name Function

_ Underscore Character in symbol names

$ Dollar sign Character in symbol names

. Period Character in symbol names, current location
counter, and decimal point

: Colon Label terminator

= Equal sign Direct assignment operator and macro
keyword argument terminator

Tab Field terminator

Space Field terminator

Number sign Immediate addressing mode indicator

(continued on next page)

Components of MACRO Source Statements 3–1

Components of MACRO Source Statements
3.1 Character Set

Table 3–1 (Cont.) Special Characters Used in VAX MACRO Statements

Character Character Name Function

@ At sign Deferred addressing mode indicator and
arithmetic shift operator

, Comma Field, operand, and item separator

; Semicolon Comment field indicator

+ Plus sign Autoincrement addressing mode indicator,
unary plus operator, and arithmetic addition
operator

- Minus sign or
hyphen

Autodecrement addressing mode indicator,
unary minus operator, arithmetic subtraction
operator, and line continuation indicator

* Asterisk Arithmetic multiplication operator

/ Slash Arithmetic division operator

& Ampersand Logical AND operator

! Exclamation point Logical inclusive OR operator point

\ Backslash Logical exclusive OR and numeric conversion
indicator in macro arguments

^ Circumflex Unary operators and macro argument
delimiter

[] Square brackets Index addressing mode and repeat count
indicators

() Parentheses Register deferred addressing mode indicators

<> Angle brackets Argument or expression grouping delimiters

? Question mark Created local label indicator in macro
arguments

’ Apostrophe Macro argument concatenation indicator

% Percent sign Macro string operators

Table 3–2 defines the separating characters used in VAX MACRO.

Table 3–2 Separating Characters in VAX MACRO Statements

Character Character Name Usage

(space)
(tab)

Space or tab Separator between statement fields. Spaces
within expressions are ignored.

, Comma Separator between symbolic arguments within
the operand field. Multiple expressions in the
operand field must be separated by commas.

3.2 Numbers
Numbers can be integers, floating-point numbers, or packed decimal strings.

3–2 Components of MACRO Source Statements

Components of MACRO Source Statements
3.2 Numbers

3.2.1 Integers
Integers can be used in any expression including expressions in operands and in
direct assignment statements (Section 3.5 describes expressions).

Format
snn

s
An optional sign: plus sign (+) for positive numbers (the default) or minus sign
(-) for negative numbers.

nn
A string of numeric characters that is legal for the current radix.

VAX MACRO interprets all integers in the source program as decimal unless the
number is preceded by a radix control operator (see Section 3.6.1).

Integers must be in the range of -2,147,483,648 to +2,147,483,647 for signed data
or in the range of 0 to 4,294,967,295 for unsigned data.

Negative numbers must be preceded by a minus sign; VAX MACRO translates
such numbers into two’s complement form. In positive numbers, the plus sign is
optional.

3.2.2 Floating-Point Numbers
A floating-point number can be used in the .F_FLOATING
(.FLOAT),.D_FLOATING (.DOUBLE), .G_FLOATING, and .H_FLOATING
directives (described in Chapter 6) or as an operand in a floating-point
instruction. A floating-point number cannot be used in an expression or with
a unary or binary operator except the unary plus, unary minus, and unary
floating-point operator, ^F (F_FLOATING). Section 3.6 and Section 3.7 describe
unary and binary operators.

A floating-point number can be specified with or without an exponent.

Formats
Floating-point number without exponent:

snn
snn.nn
snn.

Floating-point number with exponent:

snnEsnn
snn.nnEsnn
snn.Esnn

s
An optional sign.

nn
A string of decimal digits in the range of 0 to 9.

The decimal point can appear anywhere to the right of the first digit. Note that
a floating-point number cannot start with a decimal point because VAX MACRO
will treat the number as a user-defined symbol (see Section 3.3.2).

Components of MACRO Source Statements 3–3

Components of MACRO Source Statements
3.2 Numbers

Floating-point numbers can be single-precision (32-bit), double-precision (64-bit),
or extended-precision (128-bit) quantities. The degree of precision is 7 digits for
single-precision numbers, 16 digits for double-precision numbers, and 33 digits
for extended-precision numbers.

The magnitude of a nonzero floating-point number cannot be smaller than
approximately 0.29E-38 or greater than approximately 1.7E38.

Single-precision floating-point numbers can be rounded (by default) or truncated.
The .ENABLE and .DISABLE directives (described in Chapter 6) control whether
single-precision floating-point numbers are rounded or truncated. Double-
precision and extended-precision floating-point numbers are always rounded.

Section 8.3.6, Section 8.3.7, Section 8.3.8, and Section 8.3.9 describe the internal
format of floating-point numbers.

3.2.3 Packed Decimal Strings
A packed decimal string can be used only in the .PACKED directive (described in
Chapter 6).

Format
snn

s
An optional sign.

nn
A string containing up to 31 decimal digits in the range of 0 to 9.

A packed decimal string cannot have a decimal point or an exponent.

Section 8.3.14 describes the internal format of packed decimal strings.

3.3 Symbols
Three types of symbols can be used in VAX MACRO source programs: permanent
symbols, user-defined symbols, and macro names.

3.3.1 Permanent Symbols
Permanent symbols consist of instruction mnemonics (see Appendix D), VAX
MACRO directives (see Chapter 6), and register names. You need not define
instruction mnemonics and directives before you use them in the operator field of
a VAX MACRO source statement. Also, you need not define register names before
using them in the addressing modes (see Chapter 5).

Register names cannot be redefined; that is, a symbol that you define cannot be
one of the register names contained in the following list. You can express the 16
general registers of the VAX processor in a source program only as follows:

Register
Name Processor Register

R0 General register 0

R1 General register 1

R2 General register 2

. .

3–4 Components of MACRO Source Statements

Components of MACRO Source Statements
3.3 Symbols

Register
Name Processor Register

. .

. .

R11 General register 11

R12 or
AP

General register 12 or argument pointer. If you use R12 as an argument
pointer, the name AP is recommended; if you use R12 as a general
register, the name R12 is recommended.

FP Frame pointer

SP Stack pointer

PC Program counter

Note that the symbols IV and DV are also permanent symbols and cannot
be redefined. These symbols are used in the register mask to set the integer
overflow trap (IV) and the decimal string overflow trap (DV). See Section 3.6.2.2
for an explanation of their uses.

3.3.2 User-Defined Symbols and Macro Names
You can use symbols that you define as labels or you can equate them to a specific
value by a direct assignment statement (see Section 3.8). These symbols can also
be used in any expression (see Section 3.5).

The following rules govern the creation of user-defined symbols:

• User-defined symbols can be composed of alphanumeric characters,
underscores (_), dollar signs ($), and periods (.). Any other character
terminates the symbol.

• The first character of a symbol must not be a number.

• The symbol must be no more than 31 characters long and must be unique.

In addition, by Compaq convention:

• The dollar sign ($) is reserved for names defined by Compaq. This convention
ensures that a user-defined name (which does not have a dollar sign) will not
conflict with a Compaq-defined name (which does have a dollar sign).

• Do not use the period (.) in any global symbol name (see Section 3.3.3)
because languages, such as FORTRAN, do not allow periods in symbol names.

Macro names follow the same rules and conventions as user-defined symbols.
(See the description of the .MACRO directive in Chapter 6 for more information
on macro names.) User-defined symbols and macro names do not conflict; that
is, the same name can be used for a user-defined symbol and a macro. To avoid
confusion, give the symbols and macros that you define different names.

3.3.3 Determining Symbol Values
The value of a symbol depends on its use in the program. VAX MACRO uses a
different method to determine the values of symbols in the operator field than it
uses to determine the values of symbols in the operand field.

A symbol in the operator field can be either a permanent symbol or a macro
name. VAX MACRO searches for a symbol definition in the following order:

1. Previously defined macro names

2. User-defined opcode (see the .OPDEF description in Chapter 6)

Components of MACRO Source Statements 3–5

Components of MACRO Source Statements
3.3 Symbols

3. Permanent symbols (instructions and directives)

4. Macro libraries

This search order allows permanent symbols to be redefined as macro names. If a
symbol in the operator field is not defined as a macro or a permanent symbol, the
assembler displays an error message.

A symbol in the operand field must be either a user-defined symbol or a register
name.

User-defined symbols can be either local (internal) symbols or global (external)
symbols. Whether symbols are local or global depends on their use in the source
program.

A local symbol can be referenced only in the module in which it is defined. If
local symbols with the same names are defined in different modules, the symbols
are completely independent. The definition of a global symbol, however, can be
referenced from any module in the program.

VAX MACRO treats all symbols that you define as local unless you explicitly
declared them to be global by doing any one of the following:

• Use the double colon (::) in defining a label (see Section 2.1).

• Use the double equal sign (= =) in a direct assignment statement (see
Section 3.8).

• Use the .GLOBAL, .ENTRY, or .WEAK directive (see Chapter 6).

When your code references a symbol within the module in which it is defined,
VAX MACRO considers the reference internal. When your code references a
symbol within a module in which it is not defined, VAX MACRO considers the
reference external (that is, the symbol is defined externally in another module).
You can use the .DISABLE directive to make references to symbols not defined
in the current module illegal. In this case, you must use the .EXTERNAL
directive to specify that the reference is an external reference. See Chapter 6 for
descriptions of the .DISABLE and .EXTERNAL directives.

3.4 Local Labels
Use local labels to identify addresses within a block of source code.

Format
nn$

nn
A decimal integer in the range of 1 to 65535.

Use local labels in the same way as you use the symbol labels that you define,
with the following differences:

• Local labels cannot be referenced outside the block of source code in which
they appear.

• Local labels can be reused in another block of source code.

• Local labels do not appear in the symbol tables and thus cannot be accessed
by the VAX Symbolic Debugger.

• Local labels cannot be used in the .END directive (see Chapter 6).

3–6 Components of MACRO Source Statements

Components of MACRO Source Statements
3.4 Local Labels

By convention, local labels are positioned like statement labels: left-justified in
the source text. Although local labels can appear in the program in any order,
by convention, the local labels in any block of source code should be in numeric
order.

Local labels are useful as branch addresses when you use the address only
within the block. You can use local labels to distinguish between addresses that
are referenced only in a small block of code and addresses that are referenced
elsewhere in the module. A disadvantage of local labels is that their numeric
names cannot provide any indication of their purpose. Consequently, you should
not use local labels to label sequences of statements that are logically unrelated;
user-defined symbols should be used instead.

Compaq recommends that users create local labels only in the range of 1$ to
29999$ because the assembler automatically creates local labels in the range of
30000$ to 65535$ for use in macros (see Section 4.7).

The local label block in which a local label is valid is delimited by the following
statements:

• A user-defined label

• A .PSECT directive (see Chapter 6)

• The .ENABLE and .DISABLE directives (see Chapter 6), which can extend a
local label block beyond user-defined labels and .PSECT directives

A local label block is usually delimited by two user-defined labels. However, the
.ENABLE LOCAL_BLOCK directive starts a local block that is terminated only
by one of the following:

• A second .ENABLE LOCAL_BLOCK directive

• A .DISABLE LOCAL_BLOCK directive followed by a user-defined label or a
.PSECT directive

Although local label blocks can extend from one program section to another,
Compaq recommends that local labels in one program section not be referenced
from another program section. User-defined symbols should be used instead.

Local labels can be preserved for future reference with the context of the program
section in which they are defined; see the descriptions of the .SAVE_PSECT
[LOCAL_BLOCK] directive and the .RESTORE_PSECT directive in Chapter 6.

An example showing the use of local labels follows:

RPSUB: MOVL AMOUNT,R0 ; Start local label block
10$: SUBL2 DELTA,R0 ; Define local label 10$

BGTR 10$; Conditional branch to local label
ADDL2 DELTA,R0 ; Executed when R0 not > 0

COMP: MOVL MAX,R1 ; End previous local label
CLRL R2 ; block and start new one

10$: CMPL R0,R1 ; Define new local label 10$
BGTR 20$; Conditional branch to local label
SUBL INCR,R0 ; Executed when R0 not > R1
INCL R2 ; . . .
BRB 10$; Unconditional branch to local label

20$: MOVL R2,COUNT ; Define local label
BRW TEST ; Unconditional branch to user-defined label

Components of MACRO Source Statements 3–7

Components of MACRO Source Statements
3.4 Local Labels

.ENABLE LOCAL_BLOCK ; Start local label block that
ENTR1: POPR #^M<R0,R1,R2> ; will not be terminated

ADDL3 R0,R1,R3 ; by a user-defined label
BRB 10$; Branch to local label that appears

; after a user-defined label
ENTR2: SUBL2 R2,R3 ; Does not start a new local label block
10$: SUBL2 R2,R3 ; Define local label

BGTR 20$; Conditional branch to local label
INCL R0 ; Executed when R2 not > R3
BRB NEXT ; Unconditional branch to user-defined label

20$: DECL R0 ; Define local label
.DISABLE LOCAL_BLOCK ; Directive followed by user-defined

NEXT: CLRL R4 ; label terminates local label block

3.5 Terms and Expressions
A term can be any of the following:

• A number

• A symbol

• The current location counter (see Section 3.9)

• A textual operator followed by text (see Section 3.6.2)

• Any of the previously noted items preceded by a unary operator (see
Section 3.6)

VAX MACRO evaluates terms as longword (4-byte) values. If you use an
undefined symbol as a term, the linker determines the value of the term. The
current location counter (.) has the value of the location counter at the start of
the current operand.

Expressions are combinations of terms joined by binary operators (see Section 3.7)
and evaluated as longword (4-byte) values. VAX MACRO evaluates expressions
from left to right with no operator precedence rules. However, angle brackets
(<>) can be used to change the order of evaluation. Any part of an expression
that is enclosed in angle brackets is first evaluated to a single value, which is
then used in evaluating the complete expression. For example, the expressions
A*B+C and A*<B+C> are different. In the first case, A and B are multiplied and
then C added to the product. In the second case, B and C are added and the sum
is multiplied by A. Angle brackets can also be used to apply a unary operator to
an entire expression, such as -<A+B>.

If an arithmetic expression is continued on another line, the listing file will not
show the continued line. For example:

.WORD <DATA1’$^XFF@8+-
89>

You must use /LIST/SHOW=EXPANSION to show the continuation line.

VAX MACRO considers unary operators part of a term and thus, performs the
action indicated by a unary operator before it performs the action indicated by
any binary operator.

Expressions fall into three categories: relocatable, absolute, and external (global),
as follows:

• An expression is relocatable if its value is fixed relative to the start of
the program section in which it appears. The current location counter is
relocatable in a relocatable program section.

3–8 Components of MACRO Source Statements

Components of MACRO Source Statements
3.5 Terms and Expressions

• An expression is absolute if its value is an assembly-time constant. An
expression whose terms are all numbers is absolute. An expression that
consists of a relocatable term minus another relocatable term from the
same program section is absolute, since such an expression reduces to an
assembly-time constant.

• An expression is external if it contains one or more symbols that are not
defined in the current module.

Any type of expression can be used in most MACRO statements, but restrictions
are placed on expressions used in the following:

• .ALIGN alignment directives

• .BLKx storage allocation directives

• .IF and .IIF conditional assembly block directives

• .REPEAT repeat block directives

• .OPDEF opcode definition directives

• .ENTRY entry point directives

• .BYTE, .LONG, .WORD, .SIGNED_BYTE, and .SIGNED_WORD directive
repetition factors

• Direct assignment statements (see Section 3.8)

See Chapter 6 for descriptions of the directives listed in the preceding list.

Expressions used in these directives and in direct assignment statements can
contain only symbols that have been previously defined in the current module.
They cannot contain either external symbols or symbols defined later in the
current module. In addition, the expressions in these directives must be absolute.
Expressions in direct assignment statements can be relocatable.

An example showing the use of expressions follows.

A = 2*100 ; 2*100 is an absolute expression
.BLKB A+50 ; A+50 is an absolute expression and

; contains no undefined symbols
LAB: .BLKW A ; LAB is relocatable
HALF = LAB+<A/2> ; LAB+<A/2> is a relocatable

; expression and contains no
; undefined symbols

LAB2: .BLKB LAB2-LAB ; LAB2-LAB is an absolute expression
; and contains no undefined symbols
; but contains the symbol LAB3
; that is defined later in this module

LAB3: .WORD TST+LAB+2 ; TST+LAB+2 is an external expression
; because TST is an external symbol

3.6 Unary Operators
A unary operator modifies a term or an expression and indicates an action
to be performed on that term or expression. Expressions modified by unary
operators must be enclosed in angle brackets. You can use unary operators to
indicate whether a term or expression is positive or negative. If unary plus or
minus is not specified, the default value is assumed to be plus. In addition,
unary operators perform radix conversion, textual conversion (including ASCII
conversion), and numeric control operations, as described in the following
sections. Table 3–3 summarizes the unary operators.

Components of MACRO Source Statements 3–9

Components of MACRO Source Statements
3.6 Unary Operators

Table 3–3 Unary Operators

Unary
Operator Operator Name Example Operation

+ Plus sign +A Results in the positive
value of A

- Minus sign -A Results in the negative
(two’s complement) value of
A

^B Binary ^B11000111 Specifies that 11000111 is a
binary number

^D Decimal ^D127 Specifies that 127 is a
decimal number

^O Octal ^O34 Specifies that 34 is an octal
number

^X Hexadecimal ^XFCF9 Specifies that FCF9 is a
hexadecimal number

^A ASCII ^A/ABC/ Produces an ASCII string;
the characters between
the matching delimiters
are converted to ASCII
representation

^M Register mask #^M<R3,R4,R5> Specifies the registers R3,
R4, and R5 in the register
mask

^F Floating-point ^F3.0 Specifies that 3.0 is a
floating-point number

^C Complement ^C24 Produces the one’s
complement value of 24
(decimal)

More than one unary operator can be applied to a single term or to an expression
enclosed in angle brackets. For example:

-+-A

This construct is equivalent to:

-<+<-A>>

3.6.1 Radix Control Operators
VAX MACRO accepts terms or expressions in four different radixes: binary,
decimal, octal, and hexadecimal. The default radix is decimal. Expressions
modified by radix control operators must be enclosed in angle brackets.

Formats
^Bnn
^Dnn
^Onn
^Xnn

3–10 Components of MACRO Source Statements

Components of MACRO Source Statements
3.6 Unary Operators

nn
A string of characters that is legal in the specified radix. The following are the
legal characters for each radix:

Format Radix Name Legal Characters

^Bnn Binary 0 and 1

^Dnn Decimal 0 to 9

^Onn Octal 0 to 7

^Xnn Hexadecimal 0 to 9 and A to F

Radix control operators can be included in the source program anywhere a
numeric value is legal. A radix control operator affects only the term or
expression immediately following it, causing that term or expression to be
evaluated in the specified radix.

For example:

.WORD ^B00001101 ; Binary radix

.WORD ^D123 ; Decimal radix (default)

.WORD ^O47 ; Octal radix

.WORD <A+^O13> ; 13 is in octal radix

.LONG ^X<F1C3+FFFFF-20> ; All numbers in expression
; are in hexadecimal radix

The circumflex (^) cannot be separated from the B, D, O, or X that follows it, but
the entire radix control operator can be separated by spaces and tabs from the
term or expression that is to be evaluated in that radix.

The default decimal operator is needed only within an expression that has
another radix control operator. In the following example, ‘‘16’’ is interpreted as a
decimal number because it is preceded by the decimal operator ^D even though
the ‘‘16’’ is in an expression prefixed by the octal radix control operator.

.LONG ^O<10000 + 100 + ^D16>

3.6.2 Textual Operators
The textual operators are the ASCII operator (^A) and the register mask
operator (^M).

3.6.2.1 ASCII Operator
The ASCII operator converts a string of printable characters to their 8-bit ASCII
values and stores them 1 character to a byte. The string of characters must be
enclosed in a pair of matching delimiters.

The delimiters can be any printable character except the space, tab, or semicolon.
Use nonalphanumeric characters to avoid confusion.

Format
^Astring

string
A delimited ASCII string from 1 to 16 characters long.

The delimited ASCII string must not be larger than the data type of the operand.
For example, if the ^A operator occurs in an operand in a Move Word (MOVW)
instruction (the data type is a word), the delimited string cannot be more than 2
characters.

Components of MACRO Source Statements 3–11

Components of MACRO Source Statements
3.6 Unary Operators

For example:

.QUAD ^A%1234/678% ; Generates 8 bytes of ASCII data
MOVL #^A/ABCD/,R0 ; Moves characters ABCD

; into R0 right justified with
; "A" in low-order byte and "D"
; in high-order byte

CMPW #^A/XY/,R0 ; Compares X and Y as ASCII
; characters with contents of low
; order 2 bytes of R0

MOVL #^A/AB/,R0 ; Moves ASCII characters AB into
; R0; "A" in low-order byte; "B" in
; next; and zero the 2 high-order bytes

3.6.2.2 Register Mask Operator
The register mask operator converts a register name or a list of register names
enclosed in angle brackets into a 1- or 2-byte register mask. The register mask is
used by the Push Registers (PUSHR) and Pop Registers (POPR) instructions and
the .ENTRY and .MASK directives (see Chapter 6).

Formats
^Mreg-name
^M<reg-name-list>

reg-name
One of the register names or the DV or IV arithmetic trap-enable specifiers.

reg-name-list
A list of register names and the DV and IV arithmetic trap-enable specifiers,
separated by commas.

The register mask operator sets a bit in the register mask for every register name
or arithmetic trap enable specified in the list. The bits corresponding to each
register name and arithmetic trap-enable specifier follow.

Register Name Arithmetic Trap Enable Bits

R0 to R11 0 to 11

R12 or AP 12

FP 13

SP IV 14

DV 15

When the POPR or PUSHR instruction uses the register mask operator, R0 to
R11, R12 or AP, FP, and SP can be specified. You cannot specify the PC register
name and the IV and DV arithmetic trap-enable specifiers.

When the .ENTRY or .MASK directive uses the register mask operator, you can
specify R2 to R11 and the IV and DV arithmetic trap-enable specifiers. However,
you cannot specify R0, R1, FP, SP, and PC. IV sets the integer overflow trap, and
DV sets the decimal string overflow trap.

The arithmetic trap-enable specifiers are described in Chapter 8.

3–12 Components of MACRO Source Statements

Components of MACRO Source Statements
3.6 Unary Operators

For example:

.ENTRY RT1,^M<R3,R4,R5,R6,IV> ; Save registers R3, R4,
; R5, and R6 and set the
; integer overflow trap

PUSHR #^M<R0,R1,R2,R3> ; Save registers R0, R1,
; R2, and R3

POPR #^M<R0,R1,R2,R3> ; Restore registers R0, R1,
; R2, and R3

3.6.3 Numeric Control Operators
The numeric control operators are the floating-point operator (^F) and the
complement operator (^C). The use of the numeric control operators is explained
in Section 3.6.3.1 and Section 3.6.3.2.

3.6.3.1 Floating-Point Operator
The floating-point operator accepts a floating-point number and converts it
to its internal representation (a 4-byte value). This value can be used in any
expression. VAX MACRO does not perform floating-point expression evaluation.

Format
^Fliteral

literal
A floating-point number (see Section 3.2.2).

The floating-point operator is useful because it allows a floating-point number in
an instruction that accepts integers.

For example:

MOVL #^F3.7,R0 ; NOTE: the recommended instruction
; to move this floating-point

MOVF #3.7,R0 ; number is the MOVF instruction

3.6.3.2 Complement Operator
The complement operator produces the one’s complement of the specified value.

Format
^Cterm

term
Any term or expression. If an expression is specified, it must be enclosed in angle
brackets.

VAX MACRO evaluates the term or expression as a 4-byte value before
complementing it.

For example:

.LONG ^C^XFF ; Produces FFFFFF00 (hex)

.LONG ^C25 ; Produces complement of
; 25 (dec) which is
; FFFFFFE6 (hex)

Components of MACRO Source Statements 3–13

Components of MACRO Source Statements
3.7 Binary Operators

3.7 Binary Operators
In contrast to unary operators, binary operators specify actions to be performed
on two terms or expressions. Expressions must be enclosed in angle brackets.
Table 3–4 summarizes the binary operators.

Table 3–4 Binary Operators

Binary
Operator Operator Name Example Operation

+ Plus sign A+B Addition

- Minus sign A-B Subtraction

* Asterisk A*B Multiplication

/ Slash A/B Division

@ At sign A@B Arithmetic shift

& Ampersand A&B Logical AND

! Exclamation point A!B Logical inclusive OR

\ Backslash A\B Logical exclusive OR

All binary operators have equal priority. Terms or expressions can be grouped
for evaluation by enclosing them in angle brackets. The enclosed terms and
expressions are evaluated first, and remaining operations are performed from left
to right. For example:

.LONG 1+2*3 ; Equals 9

.LONG 1+<2*3> ; Equals 7

Note that a 4-byte result is returned from all binary operations. If you use a 1-
byte or 2-byte operand, the result is the low-order bytes of the 4-byte result. VAX
MACRO displays an error message if the truncation causes a loss of significance.

The following sections describe the arithmetic shift, logical AND, logical inclusive
OR, and logical exclusive OR operators.

3.7.1 Arithmetic Shift Operator
You use the arithmetic shift operator (@) to perform left and right arithmetic
shifts of arithmetic quantities. The first argument is shifted left or right by the
number of bit positions that you specify in the second argument. If the second
argument is positive, the first argument is shifted left; if the second argument is
negative, the first argument is shifted right. When the first argument is shifted
left, the low-order bits are set to zero. When the first argument is shifted right,
the high-order bits are set to the value of the original high-order bit (the sign bit).

For example:

.LONG ^B101@4 ; Yields 1010000 (binary)

.LONG 1@2 ; Yields 100 (binary)
A = 4

.LONG 1@A ; Yields 10000 (binary)

.LONG ^X1234@-A ; Yields 123(hex)
MOVL #<^B1100000@-5>,R0 ; Yields 11 (binary)

3–14 Components of MACRO Source Statements

Components of MACRO Source Statements
3.7 Binary Operators

3.7.2 Logical AND Operator
The logical AND operator (&) takes the logical AND of two operands.

For example:

A = ^B1010
B = ^B1100

.LONG A&B ; Yields 1000 (binary)

3.7.3 Logical Inclusive OR Operator
The logical inclusive OR operator (!) takes the logical inclusive OR of two
operands.

For example:

A = ^B1010
B = ^B1100

.LONG A!B ; Yields 1110 (binary)

3.7.4 Logical Exclusive OR Operator
The logical exclusive OR operator (\) takes the logical exclusive OR of two
arguments.

For example:

A = ^B1010
B = ^B1100

.LONG A\B ; Yields 0110 (binary)

3.8 Direct Assignment Statements
A direct assignment statement equates a symbol to a specific value. Unlike a
symbol that you use as a label, you can redefine a symbol defined with a direct
assignment statement as many times as you want.

Formats
symbol=expression
symbol= =expression

symbol
A user-defined symbol.

expression
An expression that does not contain any undefined symbols (see Section 3.5).

The format with a single equal sign (=) defines a local symbol and the format
with a double equal sign (= =) defines a global symbol. See Section 3.3.3 for more
information about local and global symbols.

The following three syntactic rules apply to direct assignment statements:

• An equal sign (=) or double equal sign (= =) must separate the symbol from
the expression which defines its value. Spaces preceding or following the
direct assignment operators have no significance in the resulting value.

• Only one symbol can be defined in a single direct assignment statement.

• A direct assignment statement can be followed only by a comment field.

By Compaq convention, the symbol in a direct assignment statement is placed in
the label field.

Components of MACRO Source Statements 3–15

Components of MACRO Source Statements
3.8 Direct Assignment Statements

For example:

A == 1 ; The symbol ’A’ is globally
; equated to the value 1

B = A@5 ; The symbol ’B’ is equated
; to 1@5 or 20(hex)

C = 127*10 ; The symbol ’C’ is equated
; to 1270(dec)

D = ^X100/^X10 ; The symbol ’D’ is equated
; to 10(hex)

3.9 Current Location Counter
The symbol for the current location counter, the period (.), always has the
value of the address of the current byte. VAX MACRO sets the current location
counter to zero at the beginning of the assembly and at the beginning of each new
program section.

Every VAX MACRO source statement that allocates memory in the object module
increments the value of the current location counter by the number of bytes
allocated. For example, the directive .LONG 0 increments the current location
counter by 4. However, with the exception of the special form described below,
a direct assignment statement does not increase the current location counter
because no memory is allocated.

The current location counter can be explicitly set by a special form of the direct
assignment statement. The location counter can be either incremented or
decremented. This method of setting the location counter is often useful when
defining data structures. Data storage areas should not be reserved by explicitly
setting the location counter; use the .BLKx directives (see Chapter 6).

Format
.=expression

expression
An expression that does not contain any undefined symbols (see Section 3.5).

In a relocatable program section, the expression must be relocatable; that is, the
expression must be relative to an address in the current program section. It may
be relative to the current location counter.

For example:

. = .+40 ; Moves location counter forward

When a program section that you defined in the current module is continued, the
current location counter is set to the last value of the current location counter in
that program section.

When you use the current location counter in the operand field of an instruction,
the current location counter has the value of the address of that operand; it does
not have the value of the address of the beginning of the instruction. For this
reason, you would not normally use the current location counter as a part of the
operand specifier.

3–16 Components of MACRO Source Statements

4
Macro Arguments and String Operators

By using macros, you can use a single line to insert a sequence of source lines
into a program.

A macro definition contains the source lines of the macro. The macro definition
can optionally have formal arguments. These formal arguments can be used
throughout the sequence of source lines. Later, the formal arguments are
replaced by the actual arguments in the macro call.

The macro call consists of the macro name optionally followed by actual
arguments. The assembler replaces the line containing the macro call with
the source lines in the macro definition. It replaces any occurrences of formal
arguments in the macro definition with the actual arguments specified in the
macro call. This process is called the macro expansion.

The macro directives (described in Chapter 6) provide facilities for performing
eight categories of functions. Table 6–2 lists these categories and the directives
that fall under them.

By default, macro expansions are not printed in the assembly listing. They
are printed only when the .SHOW directive (see description in Chapter 6) or
the /SHOW qualifier (described in the OpenVMS DCL Dictionary) specifies the
EXPANSIONS argument. In the examples in this chapter, the macro expansions
are listed as they would appear if .SHOW EXPANSIONS was specified in the
source file or /SHOW=EXPANSIONS was specified in the MACRO command
string.

The remainder of this chapter describes macro arguments, created local labels,
and the macro string operators.

4.1 Arguments in Macros
Macros have two types of arguments: actual and formal. Actual arguments
are the strings given in the macro call after the name of the macro. Formal
arguments are specified by name in the macro definition; that is, after the macro
name in the .MACRO directive. Actual arguments in macro calls and formal
arguments in macro definitions can be separated by commas (,), tabs, or spaces.

The number of actual arguments in the macro call can be less than or equal
to the number of formal arguments in the macro definition. If the number of
actual arguments is greater than the number of formal arguments, the assembler
displays an error message.

Formal and actual arguments normally maintain a strict positional relationship.
That is, the first actual argument in a macro call replaces all occurrences of the
first formal argument in the macro definition. This strict positional relationship
can be overridden by the use of keyword arguments (see Section 4.3).

Macro Arguments and String Operators 4–1

Macro Arguments and String Operators
4.1 Arguments in Macros

An example of a macro definition using formal arguments follows:

.MACRO STORE ARG1,ARG2,ARG3

.LONG ARG1 ; ARG1 is first argument

.WORD ARG3 ; ARG3 is third argument

.BYTE ARG2 ; ARG2 is second argument

.ENDM STORE

The following two examples show possible calls and expansions of the macro
defined previously:

STORE 3,2,1 ; Macro call
.LONG 3 ; 3 is first argument
.WORD 1 ; 1 is third argument
.BYTE 2 ; 2 is second argument

STORE X,X-Y,Z ; Macro call
#.LONG X ; X is first argument
#.WORD Z ; Z is third argument
#.BYTE X-Y ; X-Y is second argument

4.2 Default Values
Default values are values that are defined in the macro definition. They are used
when no value for a formal argument is specified in the macro call.

Default values are specified in the .MACRO directive as follows:

formal-argument-name = default-value

An example of a macro definition specifying default values follows:

.MACRO STORE ARG1=12,ARG2=0,ARG3=1000

.LONG ARG1

.WORD ARG3

.BYTE ARG2

.ENDM STORE

The following three examples show possible calls and expansions of the macro
defined previously:

STORE ; No arguments supplied
.LONG 12
.WORD 1000
.BYTE 0

STORE ,5,X ; Last two arguments supplied
.LONG 12
.WORD X
.BYTE 5

STORE 1 ; First argument supplied
.LONG 1
.WORD 1000
.BYTE 0

4.3 Keyword Arguments
Keyword arguments allow a macro call to specify the arguments in any order.
The macro call must specify the same formal argument names that appear in the
macro definition. Keyword arguments are useful when a macro definition has
more formal arguments than need to be specified in the call.

4–2 Macro Arguments and String Operators

Macro Arguments and String Operators
4.3 Keyword Arguments

In any one macro call, the arguments should be either all positional arguments
or all keyword arguments. When positional and keyword arguments are
combined in a macro, only the positional arguments correspond by position
to the formal arguments; the keyword arguments are not used. If a formal
argument corresponds to both a positional argument and a keyword argument,
the argument that appears last in the macro call overrides any other argument
definition for the same argument.

For example, the following macro definition specifies three arguments:

.MACRO STORE ARG1,ARG2,ARG3

.LONG ARG1

.WORD ARG3

.BYTE ARG2

.ENDM STORE

The following macro call specifies keyword arguments:

STORE ARG3=27+5/4,ARG2=5,ARG1=SYMBL
.LONG SYMBL
.WORD 27+5/4
.BYTE 5

Because the keywords are specified in the macro call, the arguments in the macro
call need not be given in the order they were listed in the macro definition.

4.4 String Arguments
If an actual argument is a string containing characters that the assembler
interprets as separators (such as a tab, space, or comma), the string must be
enclosed by delimiters. String delimiters are usually paired angle
brackets (<>).

The assembler also interprets any character after an initial circumflex (^) as a
delimiter. To pass an angle bracket as part of a string, you can use the circumflex
form of the delimiter.

The following are examples of delimited macro arguments:

<HAVE THE SUPPLIES RUN OUT?>
<LAST NAME, FIRST NAME>
<LAB: CLRL R4>
^%ARGUMENT IS <LAST,FIRST> FOR CALL%
^?EXPRESSION IS <5+3>*<4+2>?

In the last two examples, the initial circumflex indicates that the percent sign
(%) and question mark (?) are the delimiters. Note that only the left-hand
delimiter is preceded by a circumflex.

The assembler interprets a string argument enclosed by delimiters as one actual
argument and associates it with one formal argument. If a string argument
that contains separator characters is not enclosed by delimiters, the assembler
interprets it as successive actual arguments and associates it with successive
formal arguments.

For example, the following macro call has one formal argument:

.MACRO REPEAT STRNG

.ASCII /STRNG/

.ASCII /STRNG/

.ENDM REPEAT

Macro Arguments and String Operators 4–3

Macro Arguments and String Operators
4.4 String Arguments

The following two macro calls demonstrate actual arguments with and without
delimiters:

REPEAT <A B C D E>
.ASCII /A B C D E/
.ASCII /A B C D E/

REPEAT A B C D E
%MACRO-E-TOOMNYARGS, Too many arguments in macro call

Note that the assembler interpreted the second macro call as having five actual
arguments instead of one actual argument with spaces.

When a macro is called, the assembler removes any delimiters around a string
before associating it with the formal arguments.

If a string contains a semicolon (;), the string must be enclosed by delimiters, or
the semicolon will mark the start of the comment field.

Strings enclosed by delimiters cannot be continued on a new line.

To pass a number containing a radix or unary operator (for example, ^XF19), the
entire argument must be enclosed by delimiters, or the assembler will interpret
the radix operator as a delimiter.

The following are macro arguments that are enclosed in delimiters because they
contain radix operators:

<^XF19>
<^B01100011>
<^F1.5>

Macros can be nested; that is, a macro definition can contain a call to another
macro. If, within a macro definition, another macro is called and is passed a
string argument, you must delimit the argument so that the entire string is
passed to the second macro as one argument.

The following macro definition contains a call to the REPEAT macro defined in an
earlier example:

.MACRO CNTRPT LAB1,LAB2,STR_ARG
LAB1: .BYTE LAB2-LAB1-1 ; Length of 2*string

REPEAT <STR_ARG> ; Call REPEAT macro
LAB2:

.ENDM CNTRPT

Note that the argument in the call to REPEAT is enclosed in angle brackets
even though it does not contain any separator characters. The argument is thus
delimited because it is a formal argument in the definition of the macro CNTRPT
and will be replaced with an actual argument that may contain separator
characters.

The following example calls the macro CNTRPT, which in turn calls the macro
REPEAT:

CNTRPT ST,FIN,<LEARN YOUR ABC’S>
ST: .BYTE FIN-ST-1 ; Length of 2*string

REPEAT <LEARN YOUR ABC’S> ; Call REPEAT macro
.ASCII /LEARN YOUR ABC’S/
.ASCII /LEARN YOUR ABC’S/

FIN:

4–4 Macro Arguments and String Operators

Macro Arguments and String Operators
4.4 String Arguments

An alternative method to pass string arguments in nested macros is to enclose
the macro argument in nested delimiters. Do not use delimiters around the
macro calls in the macro definitions. Each time you use the delimited argument
in a macro call, the assembler removes the outermost pair of delimiters before
associating it with the formal argument. This method is not recommended
because it requires that you know how deeply a macro is nested.

The following macro definition also contains a call to the REPEAT macro:

.MACRO CNTRPT2 LAB1,LAB2,STR_ARG
LAB1: .BYTE LAB2-LAB1-1 ; Length of 2*string

REPEAT STR_ARG ; Call REPEAT macro
LAB2:

.ENDM CNTRPT2

Note that the argument in the call to REPEAT is not enclosed in angle brackets.

The following example calls the macro CNTRPT2:

CNTRPT2 BEG,TERM,<<MIND YOUR P’S AND Q’S>>
BEG: .BYTE TERM-BEG-1 ; Length of 2*string

REPEAT <MIND YOUR P’S AND Q’S> ; Call REPEAT macro
.ASCII /MIND YOUR P’S AND Q’S/
.ASCII /MIND YOUR P’S AND Q’S/

TERM:

Note that even though the call to REPEAT in the macro definition is not enclosed
in delimiters, the call in the expansion is enclosed because the call to CNTRPT2
contains nested delimiters around the string argument.

4.5 Argument Concatenation
The argument concatenation operator, the apostrophe (’), concatenates a macro
argument with some constant text. Apostrophes can either precede or follow a
formal argument name in the macro source.

If an apostrophe precedes the argument name, the text before the apostrophe
is concatenated with the actual argument when the macro is expanded. For
example, if ARG1 is a formal argument associated with the actual argument
TEST, ABCDE’ARG1 is expanded to ABCDETEST.

If an apostrophe follows the formal argument name, the actual argument is
concatenated with the text that follows the apostrophe when the macro is
expanded. For example, if ARG2 is a formal argument associated with the actual
argument MOV, ARG2’L is expanded to MOVL.

Note that the apostrophe itself does not appear in the macro expansion.

To concatenate two arguments, separate the two formal arguments with two
successive apostrophes. Two apostrophes are needed because each concatenation
operation discards an apostrophe from the expansion.

An example of a macro definition that uses concatenation follows:

.MACRO CONCAT INST,SIZE,NUM
TEST’NUM’:

INST’’SIZE R0,R’NUM
TEST’NUM’X:

.ENDM CONCAT

Note that two successive apostrophes are used when concatenating the two formal
arguments INST and SIZE.

Macro Arguments and String Operators 4–5

Macro Arguments and String Operators
4.5 Argument Concatenation

An example of a macro call and expansion follows:

CONCAT MOV,L,5
TEST5:

MOVL R0,R5
TEST5X:

4.6 Passing Numeric Values of Symbols
When a symbol is specified as an actual argument, the name of the symbol, not
the numeric value of the symbol, is passed to the macro. The value of the symbol
can be passed by inserting a backslash (\) before the symbol in the macro call.
The assembler passes the characters representing the decimal value of the symbol
to the macro. For example, if the symbol COUNT has a value of 2 and the actual
argument specified is \COUNT, the assembler passes the string ‘‘2’’ to the macro;
it does not pass the name of the symbol, ‘‘COUNT’’.

Passing numeric values of symbols is especially useful with the apostrophe (’)
concatenation operator for creating new symbols.

An example of a macro definition for passing numeric values of symbols follows:

.MACRO TESTDEF,TESTNO,ENTRYMASK=^?^M<>?

.ENTRY TEST’TESTNO,ENTRYMASK ; Uses arg concatenation

.ENDM TESTDEF

The following example shows a possible call and expansion of the macro defined
previously:

COUNT = 2
TESTDEF \COUNT
.ENTRY TEST2,^M<> ; Uses arg concatenation

COUNT = COUNT + 1
TESTDEF \COUNT,^?^M<R3,R4>?
.ENTRY TEST3,^M<R3,R4> ; Uses arg concatenation

4.7 Created Local Labels
Local labels are often very useful in macros. Although you can create a macro
definition that specifies local labels within it, these local labels might be
duplicated elsewhere in the local label block possibly causing errors. However,
the assembler can create local labels in the macro expansion that will not conflict
with other local labels. These labels are called created local labels.

Created local labels range from 30000$ to 65535$. Each time the assembler
creates a new local label, it increments the numeric part of the label name by
1. Consequently, no user-defined local labels should be in the range of 30000$ to
65535$.

A created local label is specified by a question mark (?) in front of the formal
argument name. When the macro is expanded, the assembler creates a new local
label if the corresponding actual argument is blank. If the corresponding actual
argument is specified, the assembler substitutes the actual argument for the
formal argument. Created local symbols can be used only in the first 31 formal
arguments specified in the .MACRO directive.

Created local labels can be associated only with positional actual arguments;
created local labels cannot be associated with keyword actual arguments.

4–6 Macro Arguments and String Operators

Macro Arguments and String Operators
4.7 Created Local Labels

The following example is a macro definition specifying a created local label:

.MACRO POSITIVE ARG1,?L1
TSTL ARG1
BGEQ L1
MNEGL ARG1,ARG1

L1: .ENDM POSITIVE

The following three calls and expansions of the macro defined previously show
both created local labels and a user-defined local label:

POSITIVE R0
TSTL R0
BGEQ 30000$
MNEGL R0,R0

30000$:

POSITIVE COUNT
TSTL COUNT
BGEQ 30001$
MNEGL COUNT,COUNT

30001$:

POSITIVE VALUE,10$
TSTL VALUE
BGEQ 10$
MNEGL VALUE,VALUE

10$:

4.8 Macro String Operators
Following are the three macro string operators:

• %LENGTH

• %LOCATE

• %EXTRACT

These operators perform string manipulations on macro arguments and ASCII
strings. They can be used only in macros and repeat blocks. The following
sections describe these operators and give their formats and examples of their
use.

4.8.1 %LENGTH Operator
Format
%LENGTH(string)

string
A macro argument or a delimited string. The string can be delimited by angle
brackets or a character preceded by a circumflex (see Section 4.4).

Description
The %LENGTH operator returns the length of a string. For example, the value of
%LENGTH(<ABCDE>) is 5.

Macro Arguments and String Operators 4–7

Macro Arguments and String Operators
4.8 Macro String Operators

Examples

The macro definition is as follows:

1. .MACRO CHK_SIZE ARG1 ; Macro checks if ARG1
.IF GREATER_EQUAL %LENGTH(ARG1)-3 ; is between 3 and
.IF LESS_THAN 6-%LENGTH(ARG1) ; 6 characters long
.ERROR ; Argument ARG1 is greater than 6 characters
.ENDC ; If more than 6
.IF_FALSE ; If less than 3
.ERROR ; Argument ARG1 is less than 3 characters
.ENDC ; Otherwise do nothing
.ENDM CHK_SIZE

The macro calls and expansions of the macro defined previously are as
follows:

2. CHK_SIZE A ; Macro checks if A
.IF GREATER_EQUAL 1-3 ; is between 3 and
.IF LESS_THAN 6-1 ; 6 characters long.

; Should be too short.
.ERROR ; Argument A is greater than 6 characters
.ENDC ; If more than 6
.IF_FALSE ; If less than 3

%MACRO-E-GENERR, Generated ERROR: Argument A is less than 3 characters

.ENDC ; Otherwise do nothing

3. CHK_SIZE ABC ; Macro checks if ABC
.IF GREATER_EQUAL 3-3 ; is between 3 and
.IF LESS_THAN 6-3 ; 6 characters long.

; Should be ok.
.ERROR ; Argument ABC is greater than 6 characters
.ENDC ; If more than 6
.IF_FALSE ; If less than 3
.ERROR ; Argument ABC is less than 3 characters
.ENDC ; Otherwise do nothing

4.8.2 %LOCATE Operator
Format
%LOCATE(string1,string2 [,symbol])

Parameters
string1
A substring. The substring can be written either as a macro argument or as
a delimited string. The delimiters can be either angle brackets or a character
preceded by a circumflex.

string2
The string to be searched for the substring. The string can be written either as
a macro argument or as a delimited string. The delimiters can be either angle
brackets or a character preceded by a circumflex.

4–8 Macro Arguments and String Operators

Macro Arguments and String Operators
4.8 Macro String Operators

symbol
An optional symbol or decimal number that specifies the position in string2 at
which the assembler should start the search. If this argument is omitted, the
assembler starts the search at position zero (the beginning of the string). The
symbol must be an absolute symbol that has been previously defined; the number
must be an unsigned decimal number. Expressions and radix operators are not
allowed.

Description
The %LOCATE operator locates a substring within a string. If %LOCATE finds a
match of the substring, it returns the character position of the first character of
the match in the string. For example, the value of %LOCATE(<D>,<ABCDEF>)
is 3. Note that the first character position of a string is zero. If %LOCATE
does not find a match, it returns a value equal to the length of the string. For
example, the value of %LOCATE(<Z>,<ABCDEF>) is 6.

The %LOCATE operator returns a numeric value that can be used in any
expression.

Macro Arguments and String Operators 4–9

Macro Arguments and String Operators
4.8 Macro String Operators

Examples

The macro definition is as follows:

1. .MACRO BIT_NAME ARG1 ; Checks if ARG1 is in list
.IF EQUAL %LOCATE(ARG1,<DELDFWDLTDMOESC>)-15

; If it is not, print error
.ERROR ; ARG1 is an invalid bit name
.ENDC ; If it is, do nothing
.ENDM BIT_NAME

The macro calls and expansions of the macro defined previously are as
follows:

2. BIT_NAME ESC ; Is ESC in list
.IF EQUAL 12-15 ; If it is not, print error
.ERROR ; ESC is an invalid bit name
.ENDC ; If it is, do nothing

BIT_NAME FOO ; Not in list
.IF EQUAL 15-15

; If it is not, print error
%MACRO-E-GENERR, Generated ERROR: FOO is an invalid bit name

.ENDC ; If it is, do nothing

Note

If the optional symbol is specified, the search begins at the character
position of string2 specified by the symbol. For example, the value of
%LOCATE(<ACE>,<SPACE_HOLDER>,5) is 12 because there is no match
after the fifth character position.

4.8.3 %EXTRACT Operator
Format
%EXTRACT(symbol1,symbol2,string)

Parameters
symbol1
A symbol or decimal number that specifies the starting position of the substring
to be extracted. The symbol must be an absolute symbol that has been previously
defined; the number must be an unsigned decimal number. Expressions and radix
operators are not allowed.

symbol2
A symbol or decimal number that specifies the length of the substring to be
extracted. The symbol must be an absolute symbol that has been previously
defined; the number must be an unsigned decimal number. Expressions and
radix operators are not allowed.

string
A macro argument or a delimited string. The string can be delimited by angle
brackets or a character preceded by a circumflex.

4–10 Macro Arguments and String Operators

Macro Arguments and String Operators
4.8 Macro String Operators

Description
The %EXTRACT operator extracts a substring from a string. It returns the
substring that begins at the specified position and is of the specified length. For
example, the value of %EXTRACT(2,3,<ABCDEF>) is CDE. Note that the first
character in a string is in position zero.

Examples

The macro definition is as follows:

1. .MACRO RESERVE ARG1
XX = %LOCATE(<=>,ARG1)

.IF EQUAL XX-%LENGTH(ARG1)

.WARN ; Incorrect format for macro call - ARG1

.MEXIT

.ENDC

%EXTRACT(0,XX,ARG1)::
XX = XX+1

.BLKB %EXTRACT(XX,3,ARG1)

.ENDM RESERVE

The macro calls and expansions of the macro defined previously are as
follows:

2. RESERVE FOOBAR
XX = 6

.IF EQUAL XX-6
%MACRO-W-GENWRN, Generated WARNING: Incorrect format for macro call - FOOBAR

.MEXIT

3. RESERVE LOCATION=12
XX = 8

.IF EQUAL XX-11

.WARN ; Incorrect format for macro call - LOCATION=12

.MEXIT

.ENDC

LOCATION::
XX = XX+1

.BLKB 12

Note

If the starting position specified is equal to or greater than the length of
the string, or if the length specified is zero, %EXTRACT returns a null
string (a string of zero characters).

Macro Arguments and String Operators 4–11

5
VAX MACRO Addressing Modes

This section summarizes the VAX addressing modes and contains examples
of VAX MACRO statements that use these addressing modes. Table 5–1
summarizes the addressing modes. (Chapter 8 describes the addressing mode
formats in detail.)

The following are the four types of addressing modes:

• General register

• Program counter (PC)

• Index

• Branch

Although index mode is a general register mode, it is considered separate because
it can be used only in combination with another type of mode.

5.1 General Register Modes
The general register modes use registers R0 to R12, AP (the same as R12), FP,
and SP.

The following are the eight general register modes:

• Register

• Register deferred

• Autoincrement

• Autoincrement deferred

• Autodecrement

• Displacement

• Displacement deferred

• Literal

VAX MACRO Addressing Modes 5–1

VAX MACRO Addressing Modes
5.1 General Register Modes

Table 5–1 Addressing Modes

Type Addressing Mode Format
Hex
Value Description

Can Be
Indexed?

General
register

Register Rn 5 Register contains the operand. No

Register deferred (Rn) 6 Register contains the address of
the operand.

Yes

Autoincrement (Rn)+ 8 Register contains the address
of the operand; the processor
increments the register contents
by the size of the operand data
type.

Yes

Autoincrement
deferred

@(Rn)+ 9 Register contains the address
of the operand address; the
processor increments the register
contents by 4.

Yes

Autodecrement -(Rn) 7 The processor decrements the
register contents by the size
of the operand data type;
the register then contains the
address of the operand.

Yes

Displacement dis(Rn)
B^dis(Rn)
W^dis(Rn)
L^dis(Rn)

A
C
E

The sum of the contents of the
register and the displacement is
the address of the operand; B^,
W^, and L^ respectively indicate
byte, word, and longword
displacement.

Yes

Displacement
deferred

@dis(Rn)
@B^dis(Rn)
@W^dis(Rn)
@L^dis(Rn)

B
D
F

The sum of the contents of the
register and the displacement
is the address of the operand
address; B^, W^, and L^
respectively indicate, byte, word,
and longword displacement.

Yes

Literal #literal
S^#literal 0-3

The literal specified is the
operand; the literal is stored
as a short literal.

No

Program
counter

Relative address
B^address
W^address
L^address

A
C
E

The address specified is
the address of the operand;
the address is stored as a
displacement from the PC; B^,
W^, and L^ respectively indicate
byte, word, and longword
displacement.

Yes

Relative
deferred

@address
@B^address
@W^address
@L^address

B
D
F

The address specified is the
address of the operand address;
the address specified is stored as
a displacement from the PC; B^,
W^, and L^ indicate byte, word,
and longword displacement
respectively.

Yes

Key:

Rn—Any general register R0 to R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx cannot be the
same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis—An expression specifying a displacement.
address—An expression specifying an address.
literal—An expression, an integer constant, or a floating-point constant.

(continued on next page)

5–2 VAX MACRO Addressing Modes

VAX MACRO Addressing Modes
5.1 General Register Modes

Table 5–1 (Cont.) Addressing Modes

Type Addressing Mode Format
Hex
Value Description

Can Be
Indexed?

Absolute @#address 9 The address specified is the
address of the operand; the
address specified is stored as an
absolute virtual address, not as
a displacement.

Yes

Immediate #literal
I^#literal 8

The literal specified is the
operand; the literal is stored
as a byte, word, longword, or
quadword.

No

General G^address — The address specified is the
address of the operand; if the
address is defined as relocatable,
the linker stores the address as a
displacement from the PC; if the
address is defined as an absolute
virtual address, the linker stores
the address as an absolute value.

Yes

Index Index base-mode[Rx] 4 The base-mode specifies the base
address and the register specifies
the index; the sum of the base
address and the product of the
contents of Rx and the size of
the operand data type is the
address of the operand; base
mode can be any addressing
mode except register, immediate,
literal, index, or branch.

No

Branch Branch address — The address specified is the
operand; this address is stored
as a displacement from the PC;
branch mode can only be used
with the branch instructions.

No

Key:

Rn—Any general register R0 to R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx cannot be the
same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis—An expression specifying a displacement.
address—An expression specifying an address.
literal—An expression, an integer constant, or a floating-point constant.

5.1.1 Register Mode
In register mode, the operand is the contents of the specified register, except in
the following cases:

• For quadword, D_floating, G_floating, or variable-bit field operands, the
operand is the contents of register n concatenated with the contents of
register n+1.

• For octaword and H_floating operands, the operand is the contents of register
n concatenated with the contents of registers n+1, n+2, and n+3.

In each of these cases, the least significant bytes of the operand are in register n
and the most significant bytes are in the highest register used, either n+1 or n+3.

The results of the operation are unpredictable if you use the PC in register mode
or if you use a large data type that extends the operand into the PC.

VAX MACRO Addressing Modes 5–3

VAX MACRO Addressing Modes
5.1 General Register Modes

Formats
Rn
AP
FP
SP

n
A number in the range 0 to 12.

Example

CLRB R0 ; Clear lowest byte of R0
CLRQ R1 ; Clear R1 and R2
TSTW R10 ; Test lower word of R10
INCL R4 ; Add 1 to R4

5.1.2 Register Deferred Mode
In register deferred mode, the register contains the address of the operand.
Register deferred mode can be used with index mode (see Section 5.3).

Formats
(Rn)
(AP)
(FP)
(SP)

Parameters
n
A number in the range 0 to 12.

Example

MOVAL LDATA,R3 ; Move address of LDATA to R3
CMPL (R3),R0 ; Compare value at LDATA to R0
BEQL 10$; If they are the same, ignore
CLRL (R3) ; Clear longword at LDATA

10$: MOVL (SP),R1 ; Copy top item of stack into R1
MOVZBL (AP),R4 ; Get number of arguments in call

5.1.3 Autoincrement Mode
In autoincrement mode, the register contains the address of the operand.
After evaluating the operand address contained in the register, the processor
increments that address by the size of the operand data type. The processor
increments the contents of the register by 1, 2, 4, 8, or 16 for a byte, word,
longword, quadword, or octaword operand, respectively.

Autoincrement mode can be used with index mode (see Section 5.3), but the index
register cannot be the same as the register specified in autoincrement mode.

Formats
(Rn)+
(AP)+
(FP)+
(SP)+

5–4 VAX MACRO Addressing Modes

VAX MACRO Addressing Modes
5.1 General Register Modes

Parameters
n
A number in the range 0 to 12.

Example

MOVAL TABLE,R1 ; Get address of TABLE.
CLRQ (R1)+ ; Clear first and second longwords
CLRL (R1)+ ; and third longword in TABLE;

; leave R1 pointing to TABLE+12.

MOVAB BYTARR,R2 ; Get address of BYTARR.
INCB (R2)+ ; Increment first byte of BYTARR
INCB (R2)+ ; and second.

XORL3 (R3)+,(R4)+,(R5)+ ; Exclusive-OR the 2 longwords
; whose addresses are stored in
; R3 and R4 and store result in
; address contained in R5; then
; add 4 to R3, R4, and R5.

5.1.4 Autoincrement Deferred Mode
In autoincrement deferred mode, the register contains an address that is the
address of the operand address (a pointer to the operand). After evaluating the
operand address, the processor increments the contents of the register by 4 (the
size in bytes of an address).

Autoincrement deferred mode can be used with index mode (see Section 5.3), but
the index register cannot be the same as the register specified in autoincrement
deferred mode.

Formats
@(Rn)+
@(AP)+
@(FP)+
@(SP)+

Parameters
n
A number in the range 0 to 12.

Example

MOVAL PNTLIS,R2 ; Get address of pointer list.

CLRQ @(R2)+ ; Clear quadword pointed to by
; first absolute address in PNTLIS;
; then add 4 to R2.

CLRB @(R2)+ ; Clear byte pointed to by second
; absolute address in PNTLIS
; then add 4 to R2.

MOVL R10,@(R0)+ ; Move R10 to location whose address
; is pointed to by R0; then add 4
; to R0.

VAX MACRO Addressing Modes 5–5

VAX MACRO Addressing Modes
5.1 General Register Modes

5.1.5 Autodecrement Mode
In autodecrement mode, the processor decrements the contents of the register
by the size of the operand data type; the register contains the address of the
operand. The processor decrements the register by 1, 2, 4, 8, or 16 for byte, word,
longword, quadword, or octaword operands, respectively.

Autodecrement mode can be used with index mode (see Section 5.3), but the index
register cannot be the same as the register specified in autodecrement mode.

Formats
-(Rn)
-(AP)
-(FP)
-(SP)

Parameters
n
A number in the range 0 to 12.

Example

CLRO -(R1) ; Subtract 8 from R1 and zero
; the octaword whose address
; is in R1.

MOVZBL R3,-(SP) ; Push the zero-extended low byte
; of R3 onto the stack as a
; longword.

CMPB R1,-(R0) ; Subtract 1 from R0 and compare
; low byte of R1 with byte whose
; address is now in R0.

5.1.6 Displacement Mode
In displacement mode, the contents of the register plus the displacement (sign-
extended to a longword) produce the address of the operand.

Displacement mode can be used with index mode (see Section 5.3). If used in
displacement mode, the index register can be the same as the base register.

Formats
dis(Rn)
dis(AP)
dis(FP)
dis(SP)

Parameters
n
A number in the range 0 to 12.

dis
An expression specifying a displacement; the expression can be preceded by one of
the following displacement length specifiers, which indicate the number of bytes
needed to store the displacement:

5–6 VAX MACRO Addressing Modes

VAX MACRO Addressing Modes
5.1 General Register Modes

Displacement Length
Specifier Meaning

B^ Displacement requires 1 byte.

W^ Displacement requires one word (2 bytes).

L^ Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the expression, and the value of
the expression is known, the assembler chooses the smallest number of bytes
(1, 2, or 4) needed to store the displacement. If no length specifier precedes the
expression, and the value of the expression is unknown, the assembler reserves
one word (2 bytes) for the displacement. Note that if the displacement is either
relocatable or defined later in the source program, the assembler considers it
unknown. If the actual displacement does not fit in the memory reserved, the
linker displays an error message.

Example

MOVAB KEYWORDS,R3 ; Get address of KEYWORDS.

MOVB B^IO(R3),R4 ; Get byte whose address is IO
; plus address of KEYWORDS;
; the displacement is stored
; as a byte.

MOVB B^ACCOUNT(R3),R5 ; Get byte whose address is
; ACCOUNT plus address of
; KEYWORDS; the displacement
; is stored as a byte.

CLRW L^STA(R1) ; Clear word whose address
; is STA plus contents of R1;
; the displacement is stored
; as a longword.

MOVL R0,-2(R2) ; Move R0 to address that is -2
; plus the contents of R2; the
; displacement is stored as a
; byte.

TSTB EXTRN(R3) ; Test the byte whose address
; is EXTRN plus the address
; of KEYWORDS; the displace-
; ment is stored as a word,
; since EXTRN is undefined.

MOVAB 2(R5),R0 ; Move <contents of R5> + 2
; to R0.

Note

If the value of the displacement is zero, and no displacement length
is specified, the assembler uses register deferred mode rather than
displacement mode.

VAX MACRO Addressing Modes 5–7

VAX MACRO Addressing Modes
5.1 General Register Modes

5.1.7 Displacement Deferred Mode
In displacement deferred mode, the contents of the register plus the displacement
(sign-extended to a longword) produce the address of the operand address (a
pointer to the operand).

Displacement deferred mode can be used with index mode (see Section 5.3). If
used in displacement deferred mode, the index register can be the same as the
base register.

Formats
@dis(Rn)
@dis(AP)
@dis(FP)
@dis(SP)

Parameters
n
A number in the range 0 to 12.

dis
An expression specifying a displacement; the expression can be preceded by one of
the following displacement length specifiers, which indicate the number of bytes
needed to store the displacement:

Displacement Length
Specifier Meaning

B^ Displacement requires 1 byte.

W^ Displacement requires one word (2 bytes).

L^ Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the expression, and the value of
the expression is known, the assembler chooses the smallest number of bytes
(1, 2, or 4) needed to store the displacement. If no length specifier precedes the
expression, and the value of the expression is unknown, the assembler reserves
one word (2 bytes) for the displacement. Note that if the displacement is either
relocatable or defined later in the source program, the assembler considers it
unknown. If the actual displacement does not fit in the memory the assembler
has reserved, the linker displays an error message.

Example

MOVAL ARRPOINT,R6 ; Get address of array of pointers.
CLRL @16(R6) ; Clear longword pointed to by

; longword whose address is
; <16 + address of ARRPOINT>; the
; displacement is stored as a byte.

MOVL @B^OFFS(R6),@RSOFF(R6) ; Move the longword pointed to
; by longword whose address is
; <OFFS + address of ARRPOINT>
; to the address pointed to by
; longword whose address is
; <RSOFFS + address of ARRPOINT>;
; the first displacement is
; stored as a byte; the second
; displacement is stored as a word.

5–8 VAX MACRO Addressing Modes

VAX MACRO Addressing Modes
5.1 General Register Modes

CLRW @84(R2) ; Clear word pointed to by
; <longword at 84 + contents of R2>;
; the assembler uses byte
; displacement automatically.

5.1.8 Literal Mode
In literal mode, the value of the literal is stored in the addressing mode byte.

Formats
#literal
S^#literal

Parameters
literal
An expression, an integer constant, or a floating-point constant. The literal must
fit in the short literal form. That is, integers must be in the range 0 to 63 and
floating-point constants must be one of the 64 values listed in Table 5–2 and
Table 5–3. Floating-point short literals are stored with a 3-bit exponent and a
3-bit fraction. Table 5–2 and Table 5–3 also show the value of the exponent and
the fraction for each literal. See Section 8.7.8 for information on the format of
short literals.

Table 5–2 Floating-Point Literals Expressed as Decimal Numbers

Exponent 0 1 2 3 4 5 6 7

0 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375

1 1.0 1.125 1.25 1.37 1.5 1.625 1.75 1.875

2 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75

3 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

4 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

5 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

6 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0

7 64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0

Table 5–3 Floating-Point Literals Expressed as Rational Numbers

Exponent 0 1 2 3 4 5 6 7

0 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16

1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8

2 2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4

3 4 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2

4 8 9 10 11 12 13 14 15

5 16 18 20 22 24 26 28 30

6 32 36 40 44 48 52 56 60

7 64 72 80 88 96 104 112 120

VAX MACRO Addressing Modes 5–9

VAX MACRO Addressing Modes
5.1 General Register Modes

Example

MOVL #1,R0 ; R0 is set to 1; the 1 is stored
; in the instruction as a short
; literal.

MOVB S^#CR,R1 ; The low byte of R1 is set
; to the value CR.
; CR is stored in the instruction
; as a short literal.
; If CR is not in range 0-63,
; the linker produces a
; truncation error.

MOVF #0.625,R6 ; R6 is set to the floating-point
; value 0.625; it is stored
; in the floating-point short
; literal form.

Notes

1. When you use the #literal format, the assembler chooses whether to use
literal mode or immediate mode (see Section 5.2.4). The assembler uses
immediate mode if any of the following conditions is satisfied:

• The value of the literal does not fit in the short literal form.

• The literal is a relocatable or external expression (see Section 3.5).

• The literal is an expression that contains undefined symbols.

The difference between immediate mode and literal mode is the amount of
storage that it takes to store the literal in the instruction.

2. The S^#literal format forces the assembler to use literal mode.

5.2 Program Counter Modes
The program counter (PC) modes use the PC for a general register. Following are
the five program counter modes:

• Relative

• Relative deferred

• Absolute

• Immediate

• General

In Section 8.8, Table 8–6 is a summary of PC addressing.

5.2.1 Relative Mode
In relative mode, the address specified is the address of the operand. The
assembler stores the address as a displacement from the PC.

Relative mode can be used with index mode (see Section 5.3).

Format
address

5–10 VAX MACRO Addressing Modes

VAX MACRO Addressing Modes
5.2 Program Counter Modes

Parameters
address
An expression specifying an address; the expression can be preceded by one of
the following displacement length specifiers, which indicate the number of bytes
needed to store the displacement.

Displacement Length
Specifier Meaning

B^ Displacement requires 1 byte.

W^ Displacement requires one word (2 bytes).

L^ Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the address expression, and the
value of the expression is known, the assembler chooses the smallest number
of bytes (1, 2, or 4) needed to store the displacement. If no length specifier
precedes the address expression, and the value of the expression is unknown, the
assembler uses the default displacement length (see the description of .DEFAULT
in Chapter 6). If the address expression is either defined later in the program or
defined in another program section, the assembler considers the value unknown.

Example

MOVL LABEL,R1 ; Get longword at LABEL; the
; assembler uses default
; displacement unless LABEL was
; previously defined in this
; section

CMPL W^<DATA+4>,R10 ; Compare R10 with longword at
; address DATA+4; CMPL
; uses a word displacement

5.2.2 Relative Deferred Mode
In relative deferred mode, the address specified is the address of the operand
address (a pointer to the operand). The assembler stores the address specified as
a displacement from the PC.

Relative deferred mode can be used with index mode (see Section 5.3).

Format
@address

Parameters
address
An expression specifying an address; the expression can be preceded by one of
the following displacement length specifiers, which indicate the number of bytes
needed to store the displacement:

Displacement Length
Specifier Meaning

B^ Displacement requires 1 byte.

W^ Displacement requires one word (2 bytes).

L^ Displacement requires one longword (4 bytes).

VAX MACRO Addressing Modes 5–11

VAX MACRO Addressing Modes
5.2 Program Counter Modes

If no displacement length specifier precedes the address expression, and the
value of the expression is known, the assembler chooses the smallest number
of bytes (1, 2, or 4) needed to store the displacement. If no length specifier
precedes the address expression, and the value of the expression is unknown, the
assembler uses the default displacement length (see the description of .DEFAULT
in Chapter 6). If the address expression is either defined later in the program or
defined in another program section, the assembler considers the value unknown.

Example

CLRL @W^PNTR ; Clear longword pointed to by
; longword at PNTR; the assembler
; uses a word displacement

INCB @L^COUNTS+4 ; Increment byte pointed to by
; longword at COUNTS+4; assembler
; uses a longword displacement

5.2.3 Absolute Mode
In absolute mode, the address specified is the address of the operand. The
address is stored as an absolute virtual address (compare relative mode, where
the address is stored as a displacement from the PC).

Absolute mode can be used with index mode (see Section 5.3).

Format
@#address

Parameters
address
An expression specifying an address.

Example

CLRL @#^X1100 ; Clear the contents of location 1100(hex)

CLRB @#ACCOUNT ; Clear the contents of location
; ACCOUNT; the address is stored
; absolutely, not as a displacement

CALLS #3,@#SYS$FAO ; Call the procedure SYS$FAO with
; three arguments on the stack

5.2.4 Immediate Mode
In immediate mode, the literal specified is the operand.

Formats
#literal
I^#literal

Parameters
literal
An expression, an integer constant, or a floating-point constant.

5–12 VAX MACRO Addressing Modes

VAX MACRO Addressing Modes
5.2 Program Counter Modes

Example

MOVL #1000,R0 ; R0 is set to 1000; the operand 1000
; is stored in a longword

MOVB #BAR,R1 ; The low byte of R1 is set
; to the value of BAR

MOVF #0.1,R6 ; R6 is set to the floating-point
; value 0.1; it is stored
; as a 4-byte floating-point
; value (it cannot be
; represented as a short literal)

ADDL2 I^#5,R0 ; The 5 is stored in a longword
; because the I^ forces the
; assembler to use immediate mode

MOVG #0.2,R6 ; The value 0.2 is converted
; to its G_FLOATING representation

MOVG #PI,R6 ; The value contained in PI is
; moved to R6; no conversion is
; performed

Notes

1. When you use the #literal format, the assembler chooses whether to use
literal mode (Section 5.1.8) or immediate mode. If the literal is an integer
from 0 to 63 or a floating-point constant that fits in the short literal form,
the assembler uses literal mode. If the literal is an expression, the assembler
uses literal mode if all the following conditions are met:

• The expression is absolute.

• The expression contains no undefined symbols.

• The value of the expression fits in the short literal form.

In all other cases, the assembler uses immediate mode.

The difference between immediate mode and literal mode is the amount of
storage required to store the literal in the instruction. The assembler stores
an immediate mode literal in a byte, word, or longword depending on the
operand data type.

2. The I^#literal format forces the assembler to use immediate mode.

3. You can specify floating-point numbers two ways: as a numeric value or as
a symbol name. The assembler handles these values in different ways, as
follows:

• Numeric values are converted to the appropriate internal floating-point
representation.

• Symbols are not converted. The assembler assumes that the values have
already been converted to internal floating-point representation.

Once the assembler obtains the value, it tries to convert the internal
representation of the value to a short floating literal. If conversion fails,
the assembler uses immediate mode; if conversion succeeds, the assembler
uses short floating literal mode.

VAX MACRO Addressing Modes 5–13

VAX MACRO Addressing Modes
5.2 Program Counter Modes

5.2.5 General Mode
In general mode, the address you specify is the address of the operand. The
linker converts the addressing mode to either relative or absolute mode. If the
address is relocatable, the linker converts general mode to relative mode. If the
address is absolute, the linker converts general mode to absolute mode. You
should use general mode to write position-independent code when you do not
know whether the address is relocatable or absolute. A general addressing mode
operand requires 5 bytes of storage.

You can use general mode with index mode (see Section 5.3).

Format
G^address

Parameters
address
An expression specifying an address.

Example

CLRL G^LABEL_1 ; Clears the longword at LABEL_1
; If LABEL_1 is defined as
; absolute then general mode is
; converted to absolute
; mode; if it is defined as
; relocatable, then general mode is
; converted to relative mode

CALLS #5,G^SYS$SERVICE ; Calls procedure SYS$SERVICE
; with 5 arguments on stack

5.3 Index Mode
Index mode is a general register mode that can be used only in combination
with another mode (the base mode). The base mode can be any addressing
mode except register, immediate, literal, index, or branch. The assembler first
evaluates the base mode to get the base address. To get the operand address, the
assembler multiplies the contents of the index register by the number of bytes of
the operand data type, then adds the result to the base address.

Combining index mode with the other addressing modes produces the following
addressing modes:

• Register deferred index

• Autoincrement index

• Autoincrement deferred index

• Autodecrement index

• Displacement index

• Displacement deferred index

• Relative index

• Relative deferred index

• Absolute index

• General index

5–14 VAX MACRO Addressing Modes

VAX MACRO Addressing Modes
5.3 Index Mode

The process of first evaluating the base mode and then adding the index register
is the same for each of these modes.

Formats
base-mode[Rx]
base-mode[AP]
base-mode[FP]
base-mode[SP]

Parameters
base-mode
Any addressing mode except register, immediate, literal, index, or branch,
specifying the base address.

x
A number in the range 0 to 12, specifying the index register.

Table 5–4 lists the formats of index mode addressing.

Example

;
; Register deferred index mode
;
OFFS=20 ; Define OFFS

MOVAB BLIST,R9 ; Get address of BLIST
MOVL #OFFS,R1 ; Set up index register
CLRB (R9)[R1] ; Clear byte whose address

; is the address of BLIST
; plus 20*1

CLRQ (R9)[R1] ; Clear quadword whose
; address is the address
; of BLIST plus 20*8

CLRO (R9)[R1] ; Clear octaword whose
; address is the address
; of BLIST plus 20*16

;
; Autoincrement index mode
;

CLRW (R9)+[R1] ; Clear word whose address
; is address of BLIST plus
; 20*2; R9 now contains
; address of BLIST+2

;
; Autoincrement deferred index mode
;

MOVAL POINT,R8 ; Get address of POINT
MOVL #30,R2 ; Set up index register
CLRW @(R8)+[R2] ; Clear word whose address

; is 30*2 plus the address
; stored in POINT; R8 now
; contains 4 plus address of
; POINT

;
; Displacement deferred index mode
;

MOVAL ADDARR,R9 ; Get address of address array
MOVL #100,R1 ; Set up index register
TSTF @40(R9)[R1] ; Test floating-point value

; whose address is 100*4 plus
; the address stored at
; (ADDARR+40)

VAX MACRO Addressing Modes 5–15

VAX MACRO Addressing Modes
5.3 Index Mode

Table 5–4 Index Mode Addressing

Mode Format

Register Deferred Index1;2 (Rn)[Rx]

Autoincrement Index1;2 (Rn)+[Rx]

Autoincrement Deferred
Index1;2

@(Rn)+[Rx]

Autodecrement Index1;2 -(Rn)[Rx]

Displacement Index 1;2;3 dis(Rn)[Rx]

Displacement Deferred
Index 1;2;3

@dis(Rn)[Rx]

Relative Index2 address[Rx]

Relative Deferred Index2 @address[Rx]

Absolute Index2 @#address[Rx]

General Index2 G^address[Rx]

1Rn—Any general register R0 to R12 or the AP, FP, or SP register.
2Rx—Any general register R0 to R12 or the AP, FP, or SP register. Rx cannot be the same register as
Rn in the autoincrement index, autoincrement deferred index, and decrement index addressing modes.
3dis—An expression specifying a displacement.

Notes

1. If the base mode alters the contents of its register (autoincrement,
autoincrement deferred, and autodecrement), the index mode cannot specify
the same register.

2. The index register is added to the address after the base mode is completely
evaluated. For example, in autoincrement deferred index mode, the base
register contains the address of the operand address. The index register
(times the length of the operand data type) is added to the operand address
rather than to the address stored in the base register.

5.4 Branch Mode
In branch mode, the address is stored as an implied displacement from the
PC. This mode can be used only in branch instructions. The displacement for
conditional branch instructions and the BRB instruction is stored in a byte.
The displacement for the BRW instruction is stored in a word (2 bytes). A byte
displacement allows a range of 127 bytes forward and 128 bytes backward. A
word displacement allows a range of 32,767 bytes forward and 32,768 bytes
backward. The displacement is relative to the updated PC, the byte past the byte
or word where the displacement is stored. See Chapter 9 for more information on
the branch instructions.

Format
address

5–16 VAX MACRO Addressing Modes

VAX MACRO Addressing Modes
5.4 Branch Mode

Parameters
address
An expression that represents an address.

Example

ADDL3 (R1)+,R0,TOTAL ; Total values and set condition
; codes

BLEQ LABEL1 ; Branch to LABEL1 if result is
; less than or equal to 0

BRW LABEL ; Branch unconditionally to LABEL

VAX MACRO Addressing Modes 5–17

6
VAX MACRO Assembler Directives

The general assembler directives provide facilities for performing 11 types of
functions. Table 6–1 lists these types of functions and their directives.

The macro directives provide facilities for performing eight categories of
functions. Table 6–2 lists these categories and their associated directives.
Chapter 4 describes macro arguments and string operators.

The remainder of this chapter describes both the general assembler directives
and the macro directives, showing their formats and giving examples of their
use. For ease of reference, the directives are presented in alphabetical order.
Appendix C contains a summary of all assembler directives.

Table 6–1 Summary of General Assembler Directives

Category Directives1

Listing control directives .SHOW (.LIST)
.NOSHOW(.NLIST)
.TITLE
.SUBTITLE (.SBTTL)
.IDENT
.PAGE

Message display directives .PRINT
.WARN
.ERROR

Assembler option directives .ENABLE (.ENABL)
.DISABLE(.DSABL)
.DEFAULT

Data storage directives .BYTE
.WORD
.LONG
.ADDRESS
.QUAD
.OCTA
.PACKED
.ASCII
.ASCIC
.ASCID
.ASCIZ
.F_FLOATING (.FLOAT)
.D_FLOATING (.DOUBLE)
.G_FLOATING
.H_FLOATING
.SIGNED_BYTE
.SIGNED_WORD

1The alternate form, if any, is given in parentheses.

(continued on next page)

VAX MACRO Assembler Directives 6–1

VAX MACRO Assembler Directives

Table 6–1 (Cont.) Summary of General Assembler Directives

Category Directives1

Location control directives .ALIGN
.EVEN
.ODD
.BLKA
.BLKB
.BLKD
.BLKF
.BLKG
.BLKH
.BLKL
.BLKO
.BLKQ
.BLKW
.END

Program sectioning directives .PSECT
.SAVE_PSECT (.SAVE)
.RESTORE_PSECT (.RESTORE)

Symbol control directives .GLOBAL (.GLOBL)
.EXTERNAL (.EXTRN)
.DEBUG
.WEAK

Routine entry point definition directives .ENTRY
.TRANSFER
.MASK

Conditional and subconditional assembly
block directives

.IF

.ENDC

.IF_FALSE (.IFF)

.IF_TRUE (.IFT)

.IF_TRUE_FALSE (.IFTF)

.IIF

Cross-reference directives .CROSS
.NOCROSS

Instruction generation directives .OPDEF
.REF1
.REF2
.REF4
.REF8
.REF16

Linker option record directive .LINK

1The alternate form, if any, is given in parentheses.

Table 6–2 Summary of Macro Directives

Category Directives1

Macro definition directives .MACRO
.ENDM

Macro library directives .LIBRARY
.MCALL

1The alternate form, if any, is given in parentheses.

(continued on next page)

6–2 VAX MACRO Assembler Directives

VAX MACRO Assembler Directives

Table 6–2 (Cont.) Summary of Macro Directives

Category Directives1

Macro deletion directive .MDELETE

Macro exit directive .MEXIT

Argument attribute directives .NARG
.NCHR
.NTYPE

Indefinite repeat block directives .IRP
.IRPC

Repeat block directives .REPEAT (.REPT)

End range directive .ENDR

1The alternate form, if any, is given in parentheses.

VAX MACRO Assembler Directives 6–3

Assembler Directives
.ADDRESS

.ADDRESS

Address storage directive

Format

.ADDRESS address-list

Parameter

address-list
A list of symbols or expressions, separated by commas (,), which VAX MACRO
interprets as addresses. Repetition factors are not allowed.

Description

.ADDRESS stores successive longwords containing addresses in the object
module. Compaq recommends that you use .ADDRESS rather than .LONG for
storing address data to provide additional information to the linker. In shareable
images, addresses that you specify with .ADDRESS produce position-independent
code.

Example

TABLE: .ADDRESS LAB_4, LAB_3, ROUTTERM ; Reference table

6–4 VAX MACRO Assembler Directives

Assembler Directives
.ALIGN

.ALIGN

Location counter alignment directive

Format

.ALIGN integer[,expression]

.ALIGN keyword[,expression]

Parameters

integer
An integer in the range 0 to 9. The location counter is aligned at an address that
is the value of 2 raised to the power of the integer.

keyword
One of five keywords that specify the alignment boundary. The location counter
is aligned to an address that is the next multiple of the following values:

Keyword Size (in Bytes)

BYTE 2^0 = 1
WORD 2^1 = 2
LONG 2^2 = 4
QUAD 2^3 = 8
PAGE 2^9 = 512

expression
Specifies the fill value to be stored in each byte. The expression must not contain
any undefined symbols and must be an absolute expression (see Section 3.5).

Description

.ALIGN aligns the location counter to the boundary specified by either an integer
or a keyword.

Notes

1. The alignment that you specify in .ALIGN cannot exceed the alignment of the
program section in which the alignment is attempted (see the description
of .PSECT). For example, if you are using the default program section
alignment (BYTE) and you specify .ALIGN with a word or larger alignment,
the assembler displays an error message. fills the bytes skipped by the
location counter (if any) with the value of that expression. Otherwise, the
assembler fills the bytes with zeros.

VAX MACRO Assembler Directives 6–5

Assembler Directives
.ALIGN

2. Although most instructions can use byte alignment of data, execution speed is
improved by the following alignments:

Data Length Alignment

Word Word
Longword Longword
Quadword Quadword

Example

.ALIGN BYTE,0 ; Byte alignment--fill with null

.ALIGN WORD ; Word alignment

.ALIGN 3,^A/ / ; Quad alignment--fill with blanks

.ALIGN PAGE ; Page alignment

6–6 VAX MACRO Assembler Directives

Assembler Directives
.ASCIx

.ASCIx

ASCII character storage directives

Description

VAX MACRO has the following four ASCII character storage directives:

Directive Function

ASCIC Counted ASCII string storage
ASCID String-descriptor ASCII string storage
ASCII ASCII string storage
ASCIZ Zero-terminated ASCII string storage

Each directive is followed by a string of characters enclosed in a pair of matching
delimiters. The delimiters can be any printable character except the space or tab
character, equal sign (=), semicolon (;), or left angle bracket (<). The character
that you use as the delimiter cannot appear in the string itself. Although you can
use alphanumeric characters as delimiters, use nonalphanumeric characters to
avoid confusion.

Any character except the null, carriage-return, and form-feed characters can
appear within the string. The assembler does not convert lowercase alphabetic
characters to uppercase.

ASCII character storage directives convert the characters to their 8-bit ASCII
value (see Appendix A) and store them one character to a byte.

Any character, including the null, carriage-return, and form-feed characters, can
be represented by an expression enclosed in angle brackets (<>) outside of the
delimiters. You must define the ASCII values of null, carriage-return, and form-
feed with a direct assignment statement. The ASCII character storage directives
store the 8-bit binary value specified by the expression.

ASCII strings can be continued over several lines. Use the hyphen (-) as the line
continuation character and delimit the string on each line at both ends. Note that
you can use a different pair of delimiters for each line. For example:

CR=13
LF=10

.ASCII /ABC DEFG/

.ASCIZ @Any character can be a delimiter@

.ASCIC ? lowercase is not converted to UPPER?

.ASCII ? this is a test!?<CR><KEY>(LF\TEXT)!Isn’t it?!

.ASCII \ Angle Brackets <are part <of> this> string \

.ASCII / This string is continued / -
\ on the next line \

.ASCII <CR><KEY>(LF\TEXT)! this string includes an expression! -
<128+CR>? whose value is a 13 plus 128?

VAX MACRO Assembler Directives 6–7

Assembler Directives
.ASCIC

.ASCIC

Counted ASCII string storage directive

Format

.ASCIC string

Parameter

string
A delimited ASCII string.

Description

.ASCIC performs the same function as .ASCII, except that .ASCIC inserts a count
byte before the string data. The count byte contains the length of the string in
bytes. The length given includes any bytes of nonprintable characters outside the
delimited string but excludes the count byte.

.ASCIC is useful in copying text because the count indicates the length of the text
to be copied.

Example

CR=13 ; Direct assignment statement
; defines CR

.ASCIC #HELLO#<CR> ; This counted ASCII string
; is equivalent to the

.BYTE 6 ; count followed by

.ASCII #HELLO#<CR> ; the ASCII string

6–8 VAX MACRO Assembler Directives

Assembler Directives
.ASCID

.ASCID

String-descriptor ASCII string storage directive

Format

.ASCID string

Parameter

string
A delimited ASCII string.

Description

.ASCID performs the same function as ASCII, except that .ASCID inserts a string
descriptor before the string data. The string descriptor has the following format:

Information Length

Pointer

31 0

ZK−0370−GE

Parameters

length
The length of the string (2 bytes).

information
Descriptor information (2 bytes) is always set to 010E.

pointer
Position-independent pointer to the string (4 bytes).

String descriptors are used in calling procedures (see the OpenVMS RTL String
Manipulation (STR$) Manual).

Example

DESCR1: .ASCID /ARGUMENT FOR CALL/ ; String descriptor
DESCR2: .ASCID /SECOND ARGUMENT/ ; Another string

; descriptor
.
.
.

PUSHAL DESCR1 ; Put address of descriptors
PUSHAL DESCR2 ; on the stack
CALLS #2,STRNG_PROC ; Call procedure

VAX MACRO Assembler Directives 6–9

Assembler Directives
.ASCII

.ASCII

ASCII string storage directive

Format

.ASCII string

Parameter

string
A delimited ASCII string.

Description

.ASCII stores the ASCII value of each character in the ASCII string or the value
of each byte expression in the next available byte.

Example

CR=13 ; Assignment statements
LF=10 ; define CR and LF

.ASCII "DATE: 17-NOV-1988" ; Delimiter is "

.ASCII /EOF/<CR><LF> ; Delimiter is /

6–10 VAX MACRO Assembler Directives

Assembler Directives
.ASCIZ

.ASCIZ

Zero-terminated ASCII string storage directive

Format

.ASCIZ string

Parameter

string
A delimited ASCII string.

Description

.ASCIZ performs the same function as .ASCII, except that .ASCIZ appends a null
byte as the final character of the string. When a list or text string is created with
an .ASCIZ directive, you need only perform a search for the null character in the
last byte to determine the end of the string.

Example

FF=12 ; Define FF

.ASCIZ /ABCDEF/ ; 6 characters in string,
; 7 bytes of data

.ASCIZ /A/<FF>/B/ ; 3 characters in strings

VAX MACRO Assembler Directives 6–11

Assembler Directives
.BLKx

.BLKx

Block storage allocation directives

Format

.BLKA expression

.BLKB expression

.BLKD expression

.BLKF expression

.BLKG expression

.BLKH expression

.BLKL expression

.BLKO expression

.BLKQ expression

.BLKW expression

Parameter

expression
An expression specifying the amount of storage to be allocated. All the symbols in
the expression must be defined and the expression must be an absolute expression
(see Section 3.5). If the expression is omitted, a default value of 1 is assumed.

Description

VAX MACRO has the following 10 block storage directives.

Directive Function

.BLKA Reserves storage for addresses (longwords).

.BLKB Reserves storage for byte data.

.BLKD Reserves storage for double-precision floating-point data
(quadwords).

.BLKF Reserves storage for single-precision floating-point data
(longwords).

.BLKG Reserves storage for G_floating data (quadwords).

.BLKH Reserves storage for H_floating data (octawords).

.BLKL Reserves storage for longword data.

.BLKO Reserves storage for octaword data.

.BLKQ Reserves storage for quadword data.

.BLKW Reserves storage for word data.

Each directive reserves storage for a different data type. The value of the
expression determines the number of data items for which VAX MACRO reserves
storage. For example, .BLKL 4 reserves storage for 4 longwords of data and
.BLKB 2 reserves storage for 2 bytes of data.

6–12 VAX MACRO Assembler Directives

Assembler Directives
.BLKx

The total number of bytes reserved is equal to the length of the data type times
the value of the expression as follows:

Directive Number of Bytes Allocated

.BLKB Value of expression

.BLKW 2 value of expression

.BLKA "

.BLKF 4 value of expression

.BLKL "

.BLKD 8 value of expression

.BLKG "

.BLKQ "

.BLKH 16 value of expression

.BLKO "

Example

.BLKB 15 ; Space for 15 bytes

.BLKO 3 ; Space for 3 octawords (48 bytes)

.BLKL 1 ; Space for 1 longword (4 bytes)

.BLKF <3*4> ; Space for 12 single-precision
; floating-point values (48 bytes)

VAX MACRO Assembler Directives 6–13

Assembler Directives
.BYTE

.BYTE

Byte storage directive

Format

.BYTE expression-list

Parameter

expression-list
One or more expressions separated by commas (,). Each expression is first
evaluated as a longword expression; then the value of the expression is truncated
to 1 byte. The value of each expression should be in the range 0 to 255 for
unsigned data or in the range -128 to +127 for signed data.

Optionally, each expression can be followed by a repetition factor delimited by
square brackets ([]). An expression followed by a repetition factor has the
following format:

expression1[expression2]

expression1
An expression that specifies the value to be stored.

[expression2]
An expression that specifies the number of times the value will be repeated. The
expression must not contain any undefined symbols and it must be absolute (see
Section 3.5). The square brackets are required.

Description

.BYTE generates successive bytes of binary data in the object module.

Notes

1. The assembler displays an error message if the high-order 3 bytes of the
longword expression have a value other than 0 or ^XFFFFFF.

2. At link time, a relocatable expression can result in a value that exceeds 1
byte in length. In this case, the linker issues a truncation diagnostic message
for the object module in question. For example:

A: .BYTE A ; Relocatable value ’A’ will
; cause linker truncation
; diagnostic if the statement
; has a virtual address of 256
; or above

3. The .SIGNED_BYTE directive is the same as .BYTE except that the
assembler displays a diagnostic message if a value in the range 128 to 255 is
specified. See the description of .SIGNED_BYTE for more information.

6–14 VAX MACRO Assembler Directives

Assembler Directives
.BYTE

Example

.BYTE <1024-1000>*2 ; Stores a value of 48

.BYTE ^XA,FIF,10,65-<21*3> ; Stores 4 bytes of data

.BYTE 0 ; Stores 1 byte of data

.BYTE X,X+3[5*4],Z ; Stores 22 bytes of data

VAX MACRO Assembler Directives 6–15

Assembler Directives
.CROSS

.CROSS

.NOCROSS

Cross-reference directives

Format

.CROSS [symbol-list]

.NOCROSS [symbol-list]

Parameter

symbol-list
A list of legal symbol names separated by commas (,).

Description

When you specify the /CROSS_REFERENCE qualifier in the MACRO command,
VAX MACRO produces a cross-reference listing. The .CROSS and .NOCROSS
directives control which symbols are included in the cross-reference listing. The
.CROSS and .NOCROSS directives have an effect only if /CROSS_REFERENCE
was specified in the MACRO command (see the OpenVMS DCL Dictionary).

By default, the cross-reference listing includes the definition and all the
references to every symbol in the module.

You can disable the cross-reference listing for all symbols or for a specified list of
symbols by using .NOCROSS. Using .NOCROSS without a symbol list disables
the cross-reference listing of all symbols. Any symbol definition or reference that
appears in the code after .NOCROSS used without a symbol list and before the
next .CROSS used without a symbol list is excluded from the cross-reference
listing. You reenable the cross-reference listing by using .CROSS without a
symbol list.

.NOCROSS with a symbol list disables the cross-reference listing for the listed
symbols only. .CROSS with a symbol list enables or reenables the cross-reference
listing of the listed symbols.

Notes

1. The .CROSS directive without a symbol list will not reenable the cross-
reference listing of a symbol specified in .NOCROSS with a symbol list.

2. If the cross-reference listing of all symbols is disabled, .CROSS with a symbol
list will have no effect until the cross-reference listing is reenabled by .CROSS
without a symbol list.

6–16 VAX MACRO Assembler Directives

Assembler Directives
.CROSS

Examples

1. .NOCROSS ; Stop cross-reference
LAB1: MOVL LOC1, LOC2 ; Copy data

.CROSS ; Reenable cross-reference

In this example, the definition of LAB1 and the references to LOC1 and LOC2
are not included in the cross-reference listing.

2. .NOCROSS LOC1 ; Do not cross-reference LOC1
LAB2: MOVL LOC1,LOC2 ; Copy data

.CROSS LOC1 ; Reenable cross-reference
; of LOC1

In this example, the definition of LAB2 and the reference to LOC2 are
included in the cross-reference, but the reference to LOC1 is not included in
the cross-reference.

VAX MACRO Assembler Directives 6–17

Assembler Directives
.DEBUG

.DEBUG

Debug symbol attribute directive

Format

.DEBUG symbol-list

Parameter

symbol-list
A list of legal symbols separated by commas (,).

Description

.DEBUG specifies that the symbols in the list are made known to the VAX
Symbolic Debugger. During an interactive debugging session, you can use these
symbols to refer to memory locations or to examine the values assigned to the
symbols.

Note
The assembler adds the symbols in the symbol list to the symbol table in the
object module. You need not specify global symbols in the .DEBUG directive
because global symbols are automatically put in the object module’s symbol table.
(See the description of .ENABLE for a discussion of how to make information
about local symbols available to the debugger.)

Example

.DEBUG INPUT,OUTPUT,- ; Make these symbols known
LAB_30,LAB_40 ; to the debugger

6–18 VAX MACRO Assembler Directives

Assembler Directives
.DEFAULT

.DEFAULT

Default control directive

Format

.DEFAULT DISPLACEMENT, keyword

Parameter

keyword
One of three keywords—BYTE, WORD, or LONG—indicating the default
displacement length.

Description

.DEFAULT determines the default displacement length for the relative and
relative deferred addressing modes (see Section 5.2.1 and Section 5.2.2).

Notes

1. The .DEFAULT directive has no effect on the default displacement for
displacement and displacement deferred addressing modes (see Section 5.1.6
and Section 5.1.7).

2. If there is no .DEFAULT in a source module, the default displacement length
for the relative and relative deferred addressing modes is a longword.

Example

.DEFAULT DISPLACEMENT,WORD ; WORD is default
MOVL LABEL,R1 ; Assembler uses word

; displacement unless
; label has been defined

.DEFAULT DISPLACEMENT,LONG ; LONG is default
INCB @COUNTS+4 ; Assembler uses longword

; displacement unless
; COUNTS has been defined

VAX MACRO Assembler Directives 6–19

Assembler Directives
.D_FLOATING

.D_FLOATING

.DOUBLE

Floating-point storage directive

Format

.D_FLOATING literal-list

.DOUBLE literal-list

Parameter

literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot contain
any unary or binary operators except unary plus or unary minus.

Description

.D_FLOATING evaluates the specified floating-point constants and stores the
results in the object module. .D_FLOATING generates 64-bit, double-precision,
floating-point data (1 bit of sign, 8 bits of exponent, and 55 bits of fraction).
See the description of .F_FLOATING for information on storing single-precision
floating-point numbers and the descriptions of
.G_FLOATING and .H_FLOATING for descriptions of other floating-point
numbers.

Notes

1. Double-precision floating-point numbers are always rounded. They are not
affected by .ENABLE TRUNCATION.

2. The floating-point constants in the literal list must not be preceded by the
floating-point operator (^F).

Example

.D_FLOATING 1000,1.0E3,1.0000000E-9 ; Constant

.DOUBLE 3.1415928, 1.107153423828 ; List

.D_FLOATING 5, 10, 15, 0, 0.5

6–20 VAX MACRO Assembler Directives

Assembler Directives
.DISABLE

.DISABLE

Function control directive

Format

.DISABLE argument-list

Parameter

argument-list
One or more of the symbolic arguments listed in Table 6–3 in the description
of .ENABLE. You can use either the long or the short form of the symbolic
arguments. If you specify multiple arguments, separate them by commas (,),
spaces, or tabs.

Description

.DISABLE disables the specified assembler functions. See the description of

.ENABLE for more information.

Note
The alternate form of .DISABLE is .DSABL.

VAX MACRO Assembler Directives 6–21

Assembler Directives
.ENABLE

.ENABLE

Function control directive

Format

.ENABLE argument-list

Parameter

argument-list
One or more of the symbolic arguments listed in Table 6–3. You can use either
the long form or the short form of the symbolic arguments.

If you specify multiple arguments, separate them with commas (,), spaces, or
tabs.

Table 6–3 .ENABLE and .DISABLE Symbolic Arguments

Long Form Short Form
Default
Condition Function

ABSOLUTE AMA Disabled When ABSOLUTE is
enabled, all the PC
relative addressing modes
are assembled as absolute
addressing modes.

DEBUG DBG Disabled When DEBUG is enabled,
all local symbols are
included in the object
module’s symbol table for
use by the debugger.

GLOBAL GBL Enabled When GLOBAL is
enabled, all undefined
symbols are considered
external symbols. When
GLOBAL is disabled,
any undefined symbol
that is not listed in an
.EXTERNAL directive
causes an assembly error.

LOCAL_BLOCK LSB Disabled When LOCAL_BLOCK
is enabled, the current
local label block is ended
and a new one is started.
When LOCAL_BLOCK is
disabled, the current local
label block is ended. See
Section 3.4 for a complete
description of local label
blocks.

(continued on next page)

6–22 VAX MACRO Assembler Directives

Assembler Directives
.ENABLE

Table 6–3 (Cont.) .ENABLE and .DISABLE Symbolic Arguments

Long Form Short Form
Default
Condition Function

SUPPRESSION SUP Disabled When SUPPRESSION
is enabled, all symbols
that are defined but
not referred to are not
listed in the symbol table.
When SUPPRESSION is
disabled, all symbols that
are defined are listed in
the symbol table.

TRACEBACK TBK Enabled When TRACEBACK is
enabled, the program
section names and
lengths, module names,
and routine names are
included in the object
module for use by
the debugger. When
TRACEBACK is disabled,
VAX MACRO excludes
this information and,
in addition, does not
make any local symbol
information available to
the debugger.

TRUNCATION FPT Disabled When TRUNCATION
is enabled, single-
precision, floating-point
numbers are truncated.
When TRUNCATION
is disabled, single-
precision floating-point
numbers are rounded. D_
floating, G_floating, and
H_floating numbers are
not affected by .ENABLE
TRUNCATION; they are
always rounded.

VECTOR Disabled When VECTOR is
enabled, the assembler
accepts and correctly
handles vector code. If
vector assembly is not
enabled, vector code
produces assembly errors.

VAX MACRO Assembler Directives 6–23

Assembler Directives
.ENABLE

Description

.ENABLE enables the specified assembly function. .ENABLE and its negative
form, .DISABLE, control the following assembler functions:

• Creating local label blocks

• Making all local symbols available to the debugger and enabling the traceback
feature

• Specifying that undefined symbol references are external references

• Truncating or rounding single-precision floating-point numbers

• Suppressing the listing of symbols that are defined but not referenced

• Specifying that all the PC references are absolute, not relative

Note
The alternate form of .ENABLE is .ENABL.

Example

.ENABLE ABSOLUTE, GLOBAL ; Assemble relative address mode
; as absolute address mode, and consider
; undefined references as global

.DISABLE TRUNCATION,TRACEBACK ; Round floating-point numbers, and
; omit debugging information from
; the object module

6–24 VAX MACRO Assembler Directives

Assembler Directives
.END

.END

Assembly termination directive

Format

.END [symbol]

Parameter

symbol
The address (called the transfer address) at which program execution is to begin.

Description

.END terminates the source program. No additional text should occur beyond this
point in the current source file or in any additional source files specified in the
command line for this assembly. If any additional text does occur, the assembler
ignores it. The additional text does not appear in either the listing file or the
object file.

Notes

1. The transfer address must be in a program section that has the EXE attribute
(see the description of .PSECT).

2. When an executable image consisting of several object modules is linked, only
one object module should be terminated by an .END directive that specifies
a transfer address. All other object modules should be terminated by .END
directives that do not specify a transfer address. If an executable image
contains either no transfer address or more than one transfer address, the
linker displays an error message.

3. If the source program contains an unterminated conditional code block when
the .END directive is specified, the assembler displays an error message.

Example

.ENTRY START,0 ; Entry mask
.
. ; Main program
.

.END START ; Transfer address

VAX MACRO Assembler Directives 6–25

Assembler Directives
.ENDC

.ENDC

End conditional directive

Format

.ENDC

Description

.ENDC terminates the conditional range started by the .IF directive. See the
description of .IF for more information and examples.

6–26 VAX MACRO Assembler Directives

Assembler Directives
.ENDM

.ENDM

End definition directive

Format

.ENDM [macro-name]

Parameters

macro-name
The name of the macro whose definition is to be terminated. The macro name is
optional; if specified, it must match the name defined in the matching .MACRO
directive. The macro name should be specified so that the assembler can detect
any improperly nested macro definitions.

Description

.ENDM terminates the macro definition. See the description of .MACRO for an
example of the use of .ENDM.

Note
If .ENDM is encountered outside a macro definition, the assembler displays an
error message.

VAX MACRO Assembler Directives 6–27

Assembler Directives
.ENDR

.ENDR

End range directive

Format

.ENDR

Description

.ENDR indicates the end of a repeat range. It must be the final statement of
every indefinite repeat block directive (.IRP and .IRPC) and every repeat block
directive (.REPEAT). See the description of these directives for examples of the
use of .ENDR.

6–28 VAX MACRO Assembler Directives

Assembler Directives
.ENTRY

.ENTRY

Entry directive

Format

.ENTRY symbol,expression

Parameters

symbol
The symbolic name for the entry point.

expression
The register save mask for the entry point. The expression must be an absolute
expression and must not contain any undefined symbols.

Description

.ENTRY defines a symbolic name for an entry point and stores a register save
mask (2 bytes) at that location. The symbol is defined as a global symbol with a
value equal to the value of the location counter at the .ENTRY directive. You can
use the entry point as the transfer address of the program. Use the register save
mask to determine which registers are saved before the procedure is called. These
saved registers are automatically restored when the procedure returns control
to the calling program. See the description of the procedure call instructions in
Chapter 9.

Notes

1. The register mask operator (^M) is convenient to use for setting the bits in
the register save mask (see Section 3.6.2.2).

2. An assembly error occurs if the expression has bits 0, 1, 12, or 13 set. These
bits correspond to the registers R0, R1, AP, and FP and are reserved for the
CALL interface.

3. Compaq recommends that you use .ENTRY to define all callable entry
points including the transfer address of the program. Although the following
construct also defines an entry point, Compaq discourages its use:

symbol:: .WORD expression

Although your program can call a procedure starting with this construct, the
entry mask is not checked for any illegal registers, and the symbol cannot be
used in a .MASK directive.

4. You should use .ENTRY only for procedures that are called by the CALLS or
CALLG instruction. A routine that is entered by the BSB or JSB instruction
should not use .ENTRY because these instructions do not expect a register
save mask. Begin these routines using the following format:

symbol:: first instruction

The first instruction of the routine immediately follows the symbol.

VAX MACRO Assembler Directives 6–29

Assembler Directives
.ENTRY

Example

.ENTRY CALC,^M<R2,R3,R7> ; Procedure starts here.
; Registers R2, R3, and R7
; are preserved by CALL
; and RET instructions

6–30 VAX MACRO Assembler Directives

Assembler Directives
.ERROR

.ERROR

Error directive

Format

.ERROR [expression] ;comment

Parameters

expression
An expression whose value is displayed when .ERROR is encountered during
assembly.

;comment
A comment that is displayed when .ERROR is encountered during assembly. The
comment must be preceded by a semicolon (;).

Description

.ERROR causes the assembler to display an error message on the terminal or
batch log file and in the listing file (if there is one).

Notes

1. .ERROR, .WARN, and .PRINT are message display directives. Use them to
display information indicating that a macro call contains an error or an illegal
set of conditions.

2. When the assembly is finished, the assembler displays the total number of
errors, warnings, information messages, and the sequence numbers of the
lines causing the errors or warnings.

3. If .ERROR is included in a macro library, end the comment with a semicolon
(;). Otherwise, the librarian will strip the comment from the directive and it
will not be displayed when the macro is called.

4. The line containing the .ERROR directive is not included in the listing file.

5. If the expression has a value of zero, it is not displayed in the error message.

VAX MACRO Assembler Directives 6–31

Assembler Directives
.ERROR

Example

.IF DEFINED LONG_MESS

.IF GREATER 1000-WORK_AREA

.ERROR 25 ; Need larger WORK_AREA;

.ENDC

.ENDC

In this example, if the symbol LONG_MESS is defined and if the symbol WORK_
AREA has a value of 1000 or less, the following error message is displayed:

%MACRO-E-GENERR, Generated ERROR: 25 Need larger WORK_AREA

6–32 VAX MACRO Assembler Directives

Assembler Directives
.EVEN

.EVEN

Even location counter alignment directive

Format

.EVEN

Description

.EVEN ensures that the current value of the location counter is even by adding
1 if the current value is odd. If the current value is already even, no action is
taken.

VAX MACRO Assembler Directives 6–33

Assembler Directives
.EXTERNAL

.EXTERNAL

External symbol attribute directive

Format

.EXTERNAL symbol-list

Parameter

symbol-list
A list of legal symbols, separated by commas (,).

Description

.EXTERNAL indicates that the specified symbols are external; that is, the
symbols are defined in another object module and cannot be defined until link
time (see Section 3.3.3 for a discussion of external references).

Notes

1. If the GLOBAL argument is enabled (see Table 6–3), all unresolved references
will be marked as global and external. If GLOBAL is enabled, you need
not specify .EXTERNAL. If GLOBAL is disabled, you must explicitly specify
.EXTERNAL to declare any symbols that are defined externally but are
referred to in the current module.

2. If GLOBAL is disabled and the assembler finds symbols that are neither
defined in the current module nor listed in a .EXTERNAL directive, the
assembler displays an error message.

3. Note that if your program does not reference, in a relocatable program
section, symbols that are declared in the absolute program section (ABS),
the unreferenced symbols are filtered out by the assembler and will not be
included in the object file. This filtering out will occur even if the symbols are
declared global or external.

If you want to be sure that a symbol will be included even if it is not
referenced, declare it in a relocatable program section. If you want to make
sure that a symbol you define in an absolute program section is included,
reference it in a relocatable program section.

4. The alternate form of .EXTERNAL is .EXTRN.

Example

.EXTERNAL SIN,TAN,COS ; These symbols are defined in

.EXTERNAL SINH,COSH,TANH ; externally assembled modules

6–34 VAX MACRO Assembler Directives

Assembler Directives
.F_FLOATING

.F_FLOATING

.FLOAT

Floating-point storage directive

Format

.F_FLOATING literal-list

.FLOAT literal-list

Parameter

literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot contain
any unary or binary operators except unary plus and unary minus.

Description

.F_FLOATING evaluates the specified floating-point constants and stores the
results in the object module. .F_FLOATING generates 32-bit, single-precision,
floating-point data (1 bit of sign, 8 bits of exponent, and 23 bits of fractional
significance). See the description of .D_FLOATING for information on storing
double-precision floating-point numbers and the descriptions of .G_FLOATING
and .H_FLOATING for descriptions of other floating-point numbers.

Notes

1. See the description of .ENABLE for information on specifying floating-point
rounding or truncation.

2. The floating-point constants in the literal list must not be preceded by the
floating-point unary operator (^F).

Example

.F_FLOATING 134.5782,74218.34E20 ; Constant list

.F_FLOATING 134.2,0.1342E3,1342E-1 ; These all generate 134.2

.F_FLOATING -0.75,1E38,-1.0E-37 ; Constant list

.FLOAT 0,25,50

VAX MACRO Assembler Directives 6–35

Assembler Directives
.G_FLOATING

.G_FLOATING

G_floating-point storage directive

Format

.G_FLOATING literal-list

Parameters

literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot contain
any unary or binary operators except unary plus or unary minus.

Description

.G_FLOATING evaluates the specified floating-point constants and stores the
results in the object module. .G_FLOATING generates 64-bit data
(1 bit of sign, 11 bits of exponent, and 52 bits of fraction).

Notes

1. G_floating-point numbers are always rounded. They are not affected by the
.ENABLE TRUNCATION directive.

2. The floating-point constants in the literal list must not be preceded by the
floating-point operator (^F).

Example

.G_FLOATING 1000, 1.0E3, 1.0000000E-9 ; Constant list

6–36 VAX MACRO Assembler Directives

Assembler Directives
.GLOBAL

.GLOBAL

Global symbol attribute directive

Format

.GLOBAL symbol-list

Parameter

symbol-list
A list of legal symbol names, separated by commas (,).

Description

.GLOBAL indicates that specified symbol names are either globally defined in the
current module or externally defined in another module (see Section 3.3.3).

Notes

1. .GLOBAL is provided for MACRO-11 compatibility only. Compaq recommends
that global definitions be specified by a double colon (::) or double equal
sign (= =) (see Section 2.1 and Section 3.8) and that external references be
specified by .EXTERNAL when necessary.

2. The alternate form of .GLOBAL is .GLOBL.

Example

.GLOBAL LAB_40,LAB_30 ; Make these symbol names
; globally known

.GLOBAL UKN_13 ; to all linked modules

VAX MACRO Assembler Directives 6–37

Assembler Directives
.H_FLOATING

.H_FLOATING

H_floating-point storage directive

Format

.H_FLOATING literal-list

Parameter

literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot contain
any unary or binary operators except unary plus or unary minus.

Description

.H_FLOATING evaluates the specified floating-point constants and stores the
results in the object module. .H_FLOATING generates 128-bit data (1 bit of sign,
15 bits of exponent, and 112 bits of fraction).

Notes

1. H_floating-point numbers are always rounded. They are not affected by the
.ENABLE TRUNCATION directive.

2. The floating-point constants in the literal list must not be preceded by the
floating-point operator (^F).

Example

.H_FLOATING 36912, 15.0E18, 1.0000000E-9 ; Constant list

6–38 VAX MACRO Assembler Directives

Assembler Directives
.IDENT

.IDENT

Identification directive

Format

.IDENT string

Parameter

string
A 1- to 31-character string that identifies the module, such as a string that
specifies a version number. The string must be delimited. The delimiters can
be any paired printing characters other than the left angle bracket (<) or the
semicolon (;), as long as the delimiting character is not contained within the text
string.

Description

.IDENT provides a means of identifying the object module. This identification is
in addition to the name assigned to the object module with .TITLE. A character
string can be specified in .IDENT to label the object module. This string is
printed in the header of the listing file and also appears in the object module.

Notes

1. If a source module contains more than one .IDENT, the last directive
given establishes the character string that forms part of the object module
identification.

2. If the delimiting characters do not match, or if you use an illegal delimiting
character, the assembler displays an error message.

Example

.IDENT /3-47/ ; Version and edit numbers

The character string ‘‘3-47’’ is included in the object module.

VAX MACRO Assembler Directives 6–39

Assembler Directives
.IF

.IF

Conditional assembly block directives

Format

.IF condition argument(s)

.

.

.

range

.

.

.

.ENDC

Parameters

condition
A specified condition that must be met if the block is to be included in the
assembly. The condition must be separated from the argument by a comma (,),
space, or tab. Table 6–4 lists the conditions that can be tested by the conditional
assembly directives.

argument(s)
One or more symbolic arguments or expressions of the specified conditional test.
If the argument is an expression, it cannot contain any undefined symbols and
must be an absolute expression (see Section 3.5).

range
The block of source code that is conditionally included in the assembly.

6–40 VAX MACRO Assembler Directives

Assembler Directives
.IF

Table 6–4 Condition Tests for Conditional Assembly Directives

Condition
Test

Complement
Condition Test

Argument
Type

Number of
Arguments

Condition that
Assembles Block

Long Form
Short
Form Long Form

Short
Form

EQUAL EQ NOT_EQUAL NE Expression 1 Expression is equal to
0/not equal to 0.

GREATER GT LESS_EQUAL LE Expression 1 Expression is greater
than 0/less than or
equal to 0.

LESS_THAN LT GREATER_EQUAL GE Expression 1 Expression is less than
0/greater than or equal
to 0.

DEFINED DF NOT_DEFINED NDF Symbolic 1 Symbol is defined /not
defined.

BLANK1 B NOT_BLANK1 NB Macro 1 Argument is blank/
nonblank.

IDENTICAL1 IDN DIFFERENT1 DIF Macro 2 Arguments are
identical/different.

1The BLANK, NOT_BLANK, IDENTICAL, and DIFFERENT conditions are only useful in macro definitions.

Description

A conditional assembly block is a series of source statements that is assembled
only if a certain condition is met. .IF starts the conditional block and .ENDC
ends the conditional block; each .IF must have a corresponding .ENDC. The
.IF directive contains a condition test and one or two arguments. The condition
test specified is applied to the arguments. If the test is met, all VAX MACRO
statements between .IF and .ENDC are assembled. If the test is not met, the
statements are not assembled. An exception to this rule occurs when you use
subconditional directives (see the description of the .IF_x directive).

Conditional blocks can be nested; that is, a conditional block can be inside
another conditional block. In this case, the statements in the inner conditional
block are assembled only if the condition is met for both the outer and inner
block.

VAX MACRO Assembler Directives 6–41

Assembler Directives
.IF

Notes

1. If .ENDC occurs outside a conditional assembly block, the assembler displays
an error message.

2. VAX MACRO permits a nesting depth of 31 conditional assembly levels. If a
statement attempts to exceed this nesting level depth, the assembler displays
an error message.

3. Lowercase string arguments are converted to uppercase before being
compared, unless the string is surrounded by delimiters. For information
on string arguments and delimiters, see Chapter 4.

4. The assembler displays an error message if .IF specifies any of the following:
a condition test other than those in Table 6–4, an illegal argument, or a null
argument specified in an .IF directive.

5. The .SHOW and .NOSHOW directives control whether condition blocks that
are not assembled are included in the listing file.

Examples

1. An example of a conditional assembly directive is:

.IF EQUAL ALPHA+1 ; Assemble block if ALPHA+1=0. Do
. ; not assemble if ALPHA+1 not=0
.
.

.ENDC

2. Nested conditional directives take the form:

.IF condition,argument(s)

.IF condition,argument(s)
.
.
.

.ENDC

.ENDC

3. The following conditional directives can govern whether assembly
is to occur:

.IF DEFINED SYM1

.IF DEFINED SYM2
.
.
.

.ENDC

.ENDC

In this example, if the outermost condition is not satisfied, no deeper
level of evaluation of nested conditional statements within the program
occurs. Therefore, both SYM1 and SYM2 must be defined for the code to be
assembled.

6–42 VAX MACRO Assembler Directives

Assembler Directives
.IF_x

.IF_x

Subconditional assembly block directives

Format

.IF_FALSE

.IF_TRUE

.IF_TRUE_FALSE

Description

VAX MACRO has the following three subconditional assembly block directives:

Directive Function

.IF_FALSE If the condition of the assembly block tests false, the
program includes the source code following the .IF_FALSE
directive and continuing up to the next subconditional
directive or to the end of the conditional assembly block.

.IF_TRUE If the condition of the assembly block tests true, the
program includes the source code following the .IF_TRUE
directive and continuing up to the next subconditional
directive or to the end of the conditional assembly block.

.IF_TRUE_FALSE Regardless of whether the condition of the assembly
block tests true or false, the source code following the .IF
TRUE_FALSE directive (and continuing up to the next
subconditional directive or to the end of the assembly
block) is always included.

The implied argument of a subconditional directive is the condition test specified
when the conditional assembly block was entered. A conditional or subconditional
directive in a nested conditional assembly block is not evaluated if the preceding
(or outer) condition in the block is not satisfied (see Examples 3 and 4).

A conditional block with a subconditional directive is different from a nested
conditional block. If the condition in the .IF is not met, the inner conditional
blocks are not assembled, but a subconditional directive can cause a block to be
assembled.

Notes

1. If a subconditional directive appears outside a conditional assembly block, the
assembler displays an error message.

2. The alternate forms of .IF_FALSE, .IF_TRUE, and .IF_TRUE_FALSE are
.IFF, .IFT, and .IFTF.

VAX MACRO Assembler Directives 6–43

Assembler Directives
.IF_x

Examples

1. Assume that symbol SYM is defined:

.IF DEFINED SYM ; Tests TRUE since SYM is defined.
. ; Assembles the following code.
.
.

.IF_FALSE ; Tests FALSE since previous
. ; .IF was TRUE. Does not
. ; assemble the following code.
.

.IF_TRUE ; Tests TRUE since SYM is defined.
. ; Assembles the following code.
.
.

.IF_TRUE_FALSE ; Assembles the following code
. ; unconditionally.
.
.

.IF_TRUE ; Tests TRUE since SYM is defined.
. ; Assembles remainder of
. ; conditional assembly block.
.

.ENDC

2. Assume that symbol X is defined and that symbol Y is not defined:

.IF DEFINED X ; Tests TRUE since X is defined.

.IF DEFINED Y ; Tests FALSE since Y is not defined.

.IF_FALSE ; Tests TRUE since Y is not defined.
. ; Assembles the following code.
.
.

.IF_TRUE ; Tests FALSE since Y is not defined.
. ; Does not assemble the following
. ; code.
.

.ENDC

.ENDC

3. Assume that symbol A is defined and that symbol B is not defined:

.IF DEFINED A ; Tests TRUE since A is defined.
. ; Assembles the following code.
.
.

.IF_FALSE ; Tests FALSE since A is defined.
. ; Does not assemble the following
. ; code.
.

.IF NOT_DEFINED B ; Nested conditional directive
. ; is not evaluated.
.
.

.ENDC

.ENDC

6–44 VAX MACRO Assembler Directives

Assembler Directives
.IF_x

4. Assume that symbol X is not defined but symbol Y is defined:

.IF DEFINED X ; Tests FALSE since X is not defined.
. ; Does not assemble the following
. ; code.
.

.IF DEFINED Y ; Nested conditional directive
. ; is not evaluated.
.
.

.IF_FALSE ; Nested subconditional
. ; directive is not evaluated.
.
.

.IF_TRUE ; Nested subconditional
. ; directive is not evaluated.
.
.

.ENDC

.ENDC

VAX MACRO Assembler Directives 6–45

Assembler Directives
.IIF

.IIF

Immediate conditional assembly block directive

Format

.IIF condition [,]argument(s), statement

Parameters

condition
One of the legal condition tests defined for conditional assembly blocks in
Table 6–4 (see the description of .IF). The condition must be separated from the
arguments by a comma (,), space, or tab. If the first argument can be a blank,
the condition must be separated from the arguments with a comma.

argument(s)
An expression or symbolic argument (described in Table 6–4) associated with the
immediate conditional assembly block directive. If the argument is an expression,
it cannot contain any undefined symbols and must be an absolute expression (see
Section 3.5). The arguments must be separated from the statement by a comma.

statement
The statement to be assembled if the condition is satisfied.

Description

.IIF provides a means of writing a one-line conditional assembly block. The
condition to be tested and the conditional assembly block are expressed
completely within the line containing the .IIF directive. No terminating .ENDC
statement is required.

Note
The assembler displays an error message if .IIF specifies a condition test other
than those listed in Table 6–4, an illegal argument, or a null argument.

Example

.IIF DEFINED EXAM, BEQL ALPHA

This directive generates the following code if the symbol EXAM is defined within
the source program:

BEQL ALPHA

6–46 VAX MACRO Assembler Directives

Assembler Directives
.IRP

.IRP

Indefinite repeat argument directive

Format

.IRP symbol,<argument list>

.

.

.

range

.

.

.

.ENDR

Parameters

symbol
A formal argument that is successively replaced with the specified actual
arguments enclosed in angle brackets (<>). If no formal argument is specified,
the assembler displays an error message.

<argument list>
A list of actual arguments enclosed in angle brackets and used in expanding
the indefinite repeat range. An actual argument can consist of one or more
characters. Multiple arguments must be separated by a legal separator (comma,
space, or tab). If no actual arguments are specified, no action is taken.

range
The block of source text to be repeated once for each occurrence of an actual
argument in the list. The range can contain macro definitions and repeat ranges.
.MEXIT is legal within the range.

Description

.IRP replaces a formal argument with successive actual arguments specified in
an argument list. This replacement process occurs during the expansion of the
indefinite repeat block range. The .ENDR directive specifies the end of the range.

.IRP is analogous to a macro definition with only one formal argument. At each
expansion of the repeat block, this formal argument is replaced with successive
elements from the argument list. The directive and its range are coded in line
within the source program. This type of macro definition and its range do not
require calling the macro by name, as do other macros described in this section.

.IRP can appear either inside or outside another macro definition, indefinite
repeat block, or repeat block (see the description of .REPEAT). The rules for
specifying .IRP arguments are the same as those for specifying macro arguments.

VAX MACRO Assembler Directives 6–47

Assembler Directives
.IRP

Example

The macro definition is as follows:

.MACRO CALL_SUB SUBR,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10

.NARG COUNT

.IRP ARG,<A10,A9,A8,A7,A6,A5,A4,A3,A2,A1>

.IIF NOT_BLANK , ARG, PUSHL ARG

.ENDR
CALLS #<COUNT-1>,SUBR ; Note SUBR is counted
.ENDM CALL_SUB

The macro call and expansion of the macro defined previously is as follows:

CALL_SUB TEST,INRES,INTES,UNLIS,OUTCON,#205
.NARG COUNT
.IRP ARG,<,,,,,#205,OUTCON,UNLIS,INTES,INRES>
.IIF NOT_BLANK , ARG, PUSHL ARG
.ENDR
.IIF NOT_BLANK , , PUSHL
.IIF NOT_BLANK , , PUSHL
.IIF NOT_BLANK , , PUSHL
.IIF NOT_BLANK , , PUSHL
.IIF NOT_BLANK , , PUSHL
.IIF NOT_BLANK , #205, PUSHL #205
.IIF NOT_BLANK , OUTCON, PUSHL OUTCON
.IIF NOT_BLANK , UNLIS, PUSHL UNLIS
.IIF NOT_BLANK , INTES, PUSHL INTES
.IIF NOT_BLANK , INRES, PUSHL INRES
CALLS #<COUNT-1>,TEST ; Note TEST is counted

This example uses the .NARG directive to count the arguments and the .IIF
NOT_BLANK directive (see descriptions of .IF and .IIF in this section) to
determine whether the actual argument is blank. If the argument is blank, no
binary code is generated.

6–48 VAX MACRO Assembler Directives

Assembler Directives
.IRPC

.IRPC

Indefinite repeat character directive

Format

.IRPC symbol,<STRING>

.

.

.

range

.

.

.

.ENDR

Parameters

symbol
A formal argument that is successively replaced with the specified characters
enclosed in angle brackets (<>). If no formal argument is specified, the assembler
displays an error message.

<STRING>
A sequence of characters enclosed in angle brackets and used in the expansion of
the indefinite repeat range. Although the angle brackets are required only when
the string contains separating characters, their use is recommended for legibility.

range
The block of source text to be repeated once for each occurrence of a character in
the list. The range can contain macro definitions and repeat ranges. .MEXIT is
legal within the range.

Description

.IRPC is similar to .IRP except that .IRPC permits single-character substitution
rather than argument substitution. On each iteration of the indefinite repeat
range, the formal argument is replaced with each successive character in the
specified string. The .ENDR directive specifies the end of the range.

.IRPC is analogous to a macro definition with only one formal argument. At each
expansion of the repeat block, this formal argument is replaced with successive
characters from the actual argument string. The directive and its range are coded
in line within the source program and do not require calling the macro by name.

.IRPC can appear either inside or outside another macro definition, indefinite
repeat block, or repeat block (see description of .REPEAT).

VAX MACRO Assembler Directives 6–49

Assembler Directives
.IRPC

Example

The macro definition is as follows:

.MACRO HASH_SYM SYMBOL

.NCHR HV,<SYMBOL>

.IRPC CHR,<SYMBOL>
HV = HV+^A?CHR?

.ENDR

.ENDM HASH_SYM

The macro call and expansion of the macro defined previously is as follows:

HASH_SYM <MOVC5>
.NCHR HV,<MOVC5>
.IRPC CHR,<MOVC5>

HV = HV+^A?CHR?
.ENDR

HV = HV+^A?M?
HV = HV+^A?O?
HV = HV+^A?V?
HV = HV+^A?C?
HV = HV+^A?5?

This example uses the .NCHR directive to count the number of characters in an
actual argument.

6–50 VAX MACRO Assembler Directives

Assembler Directives
.LIBRARY

.LIBRARY

Macro library directive

Format

.LIBRARY macro-library-name

Parameters

macro-library-name
A delimited string that is the file specification of a macro library.

Description

.LIBRARY adds a name to the macro library list that is searched whenever a

.MCALL or an undefined opcode is encountered. The libraries are searched in the
reverse order in which they were specified to the assembler.

If you omit any information from the macro-library-name argument, default
values are assumed. The device defaults to your current default disk; the
directory defaults to your current default directory; the file type defaults to MLB.

Compaq recommends that libraries be specified in the MACRO command line
with the /LIBRARY qualifier rather than with the .LIBRARY directive. The
.LIBRARY directive makes moving files cumbersome.

Example

.LIBRARY /DISK:[TEST]USERM/ ; DISK:[TEST]USERM.MLB

.LIBRARY ?DISK:SYSDEF.MLB? ; DISK:SYSDEF.MLB

.LIBRARY \CURRENT.MLB\ ; Uses default disk and directory

VAX MACRO Assembler Directives 6–51

Assembler Directives
.LINK

.LINK

Linker option record directive

Format

.LINK "file-spec" [/qualifier[=(module-name[,...])],...]

Parameters

file-spec[,...]
A delimited string that specifies one or more input files. The delimiters can
be any matching pair of printable characters except the space, tab, equal sign
(=), semicolon (;), or left angle bracket (<). The character that you use as the
delimiter cannot appear in the string itself. Although you can use alphanumeric
characters as delimiters, use nonalphanumeric characters to avoid confusion.

The input files can be object modules to be linked, or shareable images to be
included in the output image. Input files can also be libraries containing external
references or specific modules for inclusion in the output image. The linker will
search the libraries for the external references. If you specify multiple input files,
separate the file specifications with commas (,).

If you do not specify a file type in an input file specification, the linker supplies
default file types, based on the nature of the file. All object modules are assumed
to have file types of OBJ.

Note that the input file specifications must be correct at link time. Make your
references explicit, so that if the object module created by VAX MACRO is linked
in a directory other than the one in which it was created, the linker will still be
able to find the files referenced in the .LINK directive.

No wildcard characters are allowed in the file specification.

File Qualifiers

/INCLUDE=(module-name[,...])
Indicates that the associated input file is an object library or shareable image
library, and that only the module names specified are to be unconditionally
included as input to the linker.

At least one module name must be specified. If you specify more than one module
name, separate the names with commas (,) and enclose the list in parentheses.

No wildcard characters are allowed in the module name specifications. Module
names may not be longer than 31 characters, the maximum length of a VAX
MACRO symbol.

/LIBRARY
Indicates that the associated input file is a library to be searched for modules to
resolve any undefined symbols in the input files.

If the associated input file specification does not include a file type, the linker
assumes the default file type of OLB. You can use both /INCLUDE and /LIBRARY
to qualify a file specification. If you specify both /INCLUDE and /LIBRARY,
the library is subsequently searched for unresolved references. In this case, the
explicit inclusion of modules occurs first; then the linker searches the library for
unresolved references.

6–52 VAX MACRO Assembler Directives

Assembler Directives
.LINK

/SELECTIVE_SEARCH
Directs the linker to add to its symbol table only those global symbols that
are defined in the specified file and are currently unresolved. If /SELECTIVE_
SEARCH is not specified, the linker includes all symbols from that file in its
global symbol table.

/SHAREABLE
Requests that the linker include a shareable image file. No wildcard characters
are allowed in the file specification.

The following table contains the abbreviations of the qualifiers for the .LINK
directive. Note that to ensure readability, as well as compatibility with future
releases, it is recommended that you use the full names of the qualifiers.

Abbreviation Qualifier

/I /INCLUDE
/L /LIBRARY
/SE /SELECTIVE_SEARCH
/SH /SHAREABLE

Description

The .LINK directive allows you to include linker option records in an object
module produced by VAX MACRO. The qualifiers for the .LINK directive perform
functions similar to the functions performed by the same qualifiers for the DCL
command LINK.

You should use the .LINK directive for references that are not linker defaults,
but that you always want to include in a particular image. Using the .LINK
directive enables you to avoid having to explicitly name these references in the
DCL command LINK.

For detailed information on the qualifiers to the DCL command LINK, see the
OpenVMS DCL Dictionary. For a complete discussion of the operation of the
linker itself, see the OpenVMS Linker Utility Manual.

Examples

1. .LINK "SYS$LIBRARY:MYLIB" /INCLUDE=(MOD1, MOD2, MOD6)

This statement, when included in the file MYPROG.MAR, causes the
assembler to request that MYPROG.OBJ be linked with modules MOD1,
MOD2, and MOD6 in the library SYS$LIBRARY:MYLIB.OLB (where
SYS$LIBRARY is a logical name for the disk and directory in which
MYLIB.OLB is listed). The library is not searched for other unresolved
references. The statement is equivalent to linking the file with the DCL
command:

2. $ LINK MYPROG, SYS$LIBRARY:MYLIB /INCLUDE=(MOD1, MOD2, MOD6)

VAX MACRO Assembler Directives 6–53

Assembler Directives
.LINK

3. .LINK \SYS$LIBRARY:MYOBJ\ ; Link with object module
; SYS$LIBRARY:MYOBJ.OBJ

.LINK ’SYS$LIBRARY:YOURLIB’ /LIBRARY ; Search object library
; SYS$LIBRARY:YOURLIB.OLB
; for unresolved references

.LINK *SYS$LIBRARY:MYSTB.STB* /SELECTIVE_SEARCH ; Search symbol table
; SYS$LIBRARY:MYSTB.STB
; for unresolved references

.LINK "SYS$LIBRARY:MYSHR.EXE" /SHAREABLE ; Link with shareable image
; SYS$LIBRARY:MYSHR.EXE

To increase efficiency and performance, include several related input files in
a single .LINK directive. The following example shows how the five options
illustrated previously can be included in one statement:

4. .LINK ’SYS$LIBRARY:MYOBJ’,-
’SYS$LIBRARY:YOURLIB’ /LIBRARY,-
’SYS$LIBRARY:MYLIB’ /INCLUDE=(MOD1, MOD2, MOD6),-
’SYS$LIBRARY:MYSTB.STB’ /SELECTIVE_SEARCH,-
’SYS$LIBRARY:MYSHR.EXE’ /SHAREABLE

6–54 VAX MACRO Assembler Directives

Assembler Directives
.LIST

.LIST

Listing directive

Format

.LIST [argument-list]

Parameter

argument-list
One or more of the symbolic arguments defined in Table 6–8. You can use either
the long form or the short form of the arguments. If multiple arguments are
specified, separate them with commas (,), spaces, or tabs.

Description

.LIST is equivalent to .SHOW. See the description of .SHOW for more
information.

VAX MACRO Assembler Directives 6–55

Assembler Directives
.LONG

.LONG

Longword storage directive

Format

.LONG expression-list

Parameters

expression-list
One or more expressions separated by commas (,). You have the option of
following each expression with a repetition factor delimited by square brackets
([]).

An expression followed by a repetition factor has the format:

expression1[expression2]

expression1
An expression that specifies the value to be stored.

[expression2]
An expression that specifies the number of times the value is repeated. The
expression must not contain any undefined symbols and must be an absolute
expression (see Section 3.5). The square brackets are required.

Description

.LONG generates successive longwords (4 bytes) of data in the object module.

Example

LAB_3: .LONG LAB_3,^X7FFFFFFF,^A’ABCD’ ; 3 longwords of data
.LONG ^XF@4 ; 1 longword of data
.LONG 0[22] ; 22 longwords of data

Note
Each expression in the list must have a value that can be represented in 32 bits.

6–56 VAX MACRO Assembler Directives

Assembler Directives
.MACRO

.MACRO

Macro definition directive

Format

.MACRO macro-name [formal-argument-list]

.

.

.

range

.

.

.

.ENDM [macro name]

Parameters

macro-name
The name of the macro to be defined; this name can be any legal symbol up to 31
characters long.

formal-argument-list
The symbols, separated by commas (,), to be replaced by the actual arguments in
the macro call.

range
The source text to be included in the macro expansion.

Description

.MACRO begins the definition of a macro. It gives the macro name and a list of
formal arguments (see Chapter 4). If the name specified is the same as the name
of a previously defined macro, the previous definition is deleted and replaced with
the new one. The .MACRO directive is followed by the source text to be included
in the macro expansion. The .ENDM directive specifies the end of the range.

Macro names do not conflict with user-defined symbols. Both a macro and a
user-defined symbol can have the same name.

When the assembler encounters a .MACRO directive, it adds the macro name to
its macro name table and stores the source text of the macro (up to the matching
.ENDM directive). No other processing occurs until the macro is expanded.

The symbols in the formal argument list are associated with the macro name
and are limited to the scope of the definition of that macro. For this reason, the
symbols that appear in the formal argument list can also appear elsewhere in the
program.

VAX MACRO Assembler Directives 6–57

Assembler Directives
.MACRO

Notes

1. If a macro has the same name as a VAX opcode, the macro is used instead of
the instruction. This feature allows you to temporarily redefine an opcode.

2. If a macro has the same name as a VAX opcode and is in a macro library, you
must use the .MCALL directive to define the macro. Otherwise, because the
symbol is already defined (as the opcode), the assembler will not search the
macro libraries.

3. You can redefine a macro with new source text during assembly by specifying
a second .MACRO directive with the same name. Including a second .MACRO
directive within the original macro definition causes the first macro call
to redefine the macro. This feature is useful when a macro performs
initialization or defines symbols, when an operation is performed only once.
The macro redefinition can eliminate unneeded source text in a macro or it
can delete the entire macro. The .MDELETE directive provides another way
to delete macros.

Example

The macro definition is as follows:

.MACRO USERDEF

.PSECT DEFIES,ABS
MYSYM= 5
HIVAL= ^XFFF123
LOWVAL= 0

.PSECT RWDATA,NOEXE,LONG
TABLE: .BLKL 100
LIST: .BLKB 10

.MACRO USERDEF ; Redefine it to null

.ENDM USERDEF

.ENDM USERDEF

The macro calls and expansions of the macro defined previously are as follows:

USERDEF ; Should expand data
.PSECT DEFIES,ABS

MYSYM= 5
HIVAL= ^XFFF123
LOWVAL= 0

.PSECT RWDATA,NOEXE,LONG
TABLE: .BLKL 100
LIST: .BLKB 10

.MACRO USERDEF ; Redefine it to null

.ENDM USERDEF

USERDEF ; Should expand nothing

In this example, when the macro is called the first time, it defines some symbols
and data storage areas and then redefines itself. When the macro is called a
second time, the macro expansion contains no source text.

6–58 VAX MACRO Assembler Directives

Assembler Directives
.MASK

.MASK

Mask directive

Format

.MASK symbol[,expression]

Parameters

symbol
A symbol defined in an .ENTRY directive.

expression
A register save mask.

Description

.MASK reserves a word for a register save mask for a transfer vector. See the
description of .TRANSFER for more information and for an example of .MASK.

Notes

1. If .MASK does not contain an expression, the assembler directs the linker
to copy the register save mask specified in .ENTRY to the word reserved by
.MASK.

2. If .MASK contains an expression, the assembler directs the linker to combine
this expression with the register save mask specified in .ENTRY and store
the result in the word reserved by .MASK. The linker performs an inclusive
OR operation to combine the mask in the entry point and the value of the
expression. Consequently, a register specified in either .ENTRY or .MASK
will be included in the combined mask. See the description of .ENTRY for
more information on entry masks.

VAX MACRO Assembler Directives 6–59

Assembler Directives
.MCALL

.MCALL

Macro call directive

Format

.MCALL macro-name-list

Parameters

macro-name-list
A list of macros to be defined for this assembly. Separate the macro names with
commas (,).

Description

.MCALL specifies the names of the system and user-defined macros that are
required to assemble the source program but are not defined in the source file.

If any named macro is not found upon completion of the search (that is, if the
macro is not defined in any of the macro libraries), the assembler displays an
error message.

Note

.MCALL is provided for compatibility with MACRO-11; with one
exception, Compaq recommends that you not use it. When VAX MACRO
finds an unknown symbol in the opcode field, it automatically searches
all macro libraries. If it finds the symbol in a library, it uses the macro
definition and expands the macro reference. If VAX MACRO does not find
the symbol in the library, it displays an error message.

You must use .MCALL when a macro has the same name as an opcode
(see description of .MACRO).

Example

.MCALL INSQUE ; Substitute macro in
; library for INSQUE
; instruction

6–60 VAX MACRO Assembler Directives

Assembler Directives
.MDELETE

.MDELETE

Macro deletion directive

Format

.MDELETE macro-name-list

Parameters

macro-name-list
A list of macros whose definitions are to be deleted. Separate the names with
commas (,).

Description

.MDELETE deletes the definitions of specified macros. The number of macros
actually deleted is printed in the assembly listing on the same line as the
.MDELETE directive.

.MDELETE completely deletes the macro, freeing memory as necessary. Macro
redefinition with .MACRO merely redefines the macro.

Example

.MDELETE USERDEF,$SSDEF,ALTR

VAX MACRO Assembler Directives 6–61

Assembler Directives
.MEXIT

.MEXIT

Macro exit directive

Format

.MEXIT

Description

.MEXIT terminates a macro expansion before the end of the macro. Termination
is the same as if .ENDM were encountered. You can use the directive within
repeat blocks. .MEXIT is useful in conditional expansion of macros because it
bypasses the complexities of nested conditional directives and alternate assembly
paths.

Notes

1. When .MEXIT occurs in a repeat block, the assembler terminates the current
repetition of the range and suppresses further expansion of the repeat range.

2. When macros or repeat blocks are nested, .MEXIT exits to the next higher
level of expansion.

3. If .MEXIT occurs outside a macro definition or a repeat block, the assembler
displays an error message.

Example

.MACRO P0L0 N,A,B
.
.
.

.IF EQ N ; Start conditional assembly block
.
.
.

.MEXIT ; Terminate macro expansion

.ENDC ; End conditional assembly block
.
.
.

.ENDM P0L0 ; Normal end of macro

In this example, if the actual argument for the formal argument N equals zero,
the conditional block is assembled, and the macro expansion is terminated by
.MEXIT.

6–62 VAX MACRO Assembler Directives

Assembler Directives
.NARG

.NARG

Number of arguments directive

Format

.NARG symbol

Parameters

symbol
A symbol that is assigned a value equal to the number of arguments in the macro
call.

Description

.NARG determines the number of arguments in the current macro call.

.NARG counts all the positional arguments specified in the macro call, including
null arguments (specified by adjacent commas (,)). The value assigned to the
specified symbol does not include either any keyword arguments or any formal
arguments that have default values.

Note
If .NARG appears outside a macro, the assembler displays an error message.

Example

The macro definition is as follows:

.MACRO CNT_ARG A1,A2,A3,A4,A5,A6,A7,A8,A9=DEF9,A10=DEF10

.NARG COUNTER ; COUNTER is set to no. of ARGS

.WORD COUNTER ; Store value of COUNTER

.ENDM CNT_ARG

The macro calls and expansions of the macro defined previously are as follows:

CNT_ARG TEST,FIND,ANS ; COUNTER will = 3
.NARG COUNTER ; COUNTER is set to no. of ARGS
.WORD COUNTER ; Store value of COUNTER

CNT_ARG ; COUNTER will = 0
.NARG COUNTER ; COUNTER is set to no. of ARGS
.WORD COUNTER ; Store value of COUNTER

CNT_ARG TEST,A2=SYMB2,A3=SY3 ; COUNTER will = 1
.NARG COUNTER ; COUNTER is set to no. of ARGS
.WORD COUNTER ; Store value of COUNTER

; Keyword arguments are not counted

CNT_ARG ,SYMBL,, ; COUNTER will = 3
.NARG COUNTER ; COUNTER is set to no. of ARGS
.WORD COUNTER ; Store value of COUNTER

; Null arguments are counted

VAX MACRO Assembler Directives 6–63

Assembler Directives
.NCHR

.NCHR

Number of characters directive

Format

.NCHR symbol,<string>

Parameters

symbol
A symbol that is assigned a value equal to the number of characters in the
specified character string.

<string>
A sequence of printable characters. Delimit the character string with angle
brackets (<>) (or a character preceded by a circumflex (^)) only if the specified
character string contains a legal separator (comma (,), space, and/or tab) or a
semicolon (;).

Description

.NCHR determines the number of characters in a specified character string. It
can appear anywhere in a VAX MACRO program and is useful in calculating the
length of macro arguments.

Example

The macro definition is as follows:

.MACRO CHAR MESS ; Define MACRO

.NCHR CHRCNT,<MESS> ; Assign value to CHRCNT

.WORD CHRCNT ; Store value

.ASCII /MESS/ ; Store characters

.ENDM CHAR ; Finish

The macro calls and expansions of the macro defined previously are as follows:

CHAR <HELLO> ; CHRCNT will = 5
.NCHR CHRCNT,<HELLO> ; Assign value to CHRCNT
.WORD CHRCNT ; Store value
.ASCII /HELLO/ ; Store characters

CHAR <14, 75.39 4> ; CHRCNT will = 12(dec)
.NCHR CHRCNT,<14, 75.39 4> ; Assign value to CHRCNT
.WORD CHRCNT ; Store value
.ASCII /14, 75.39 4/ ; Store characters

6–64 VAX MACRO Assembler Directives

Assembler Directives
.NLIST

.NLIST

Listing directive

Format

.NLIST [argument-list]

Parameter

argument-list
One or more of the symbolic arguments listed in Table 6–8. Use either the long
form or the short form of the arguments. If you specify multiple arguments,
separate them with commas (,), spaces, or tabs.

Description

.NLIST is equivalent to .NOSHOW. See the description of .SHOW for more
information.

VAX MACRO Assembler Directives 6–65

Assembler Directives
.NOCROSS

.NOCROSS

Cross-reference directive

Format

.NOCROSS [symbol-list]

Parameter

symbol-list
A list of legal symbol names separated by commas (,).

Description

VAX MACRO produces a cross-reference listing when the /CROSS_REFERENCE
qualifier is specified in the MACRO command. The .CROSS and .NOCROSS
directives control which symbols are included in the cross-reference listing. The
description of .NOCROSS is included with the description of .CROSS.

6–66 VAX MACRO Assembler Directives

Assembler Directives
.NOSHOW

.NOSHOW

Listing directive

Format

.NOSHOW [argument-list]

Parameter

argument-list
One or more of the symbolic arguments listed in Table 6–8 in the description
of .SHOW. Use either the long form or the short form of the arguments. If you
specify multiple arguments, separate them with commas (,), spaces, or tabs.

Description

.NOSHOW specifies listing control options. See the description of .SHOW for
more information.

VAX MACRO Assembler Directives 6–67

Assembler Directives
.NTYPE

.NTYPE

Operand type directive

Format

.NTYPE symbol,operand

Parameters

symbol
Any legal VAX MACRO symbol. This symbol is assigned a value equal to the 8-
or 16-bit addressing mode of the operand argument that follows.

operand
Any legal address expression, as you use it with an opcode. If no argument is
specified, zero is assumed.

Description

.NTYPE determines the addressing mode of the specified operand.

The value of the symbol is set to the specified addressing mode. In most cases, an
8-bit (1-byte) value is returned. Bits 0 to 3 specify the register associated with the
mode, and bits 4 to 7 specify the addressing mode. To provide concise addressing
information, the mode bits 4 to 7 are not exactly the same as the numeric value
of the addressing mode described in Table C–6. Literal mode is indicated by a
zero in bits 4 to 7, instead of the values 0 to 3. Mode 1 indicates an immediate
mode operand, mode 2 indicates an absolute mode operand, and mode 3 indicates
a general mode operand.

For indexed addressing mode, a 16-bit (2-byte) value is returned. The high-order
byte contains the addressing mode of the base operand specifier and the low-order
byte contains the addressing mode of the primary operand (the index register).

See Chapter 5 of this volume for more information on addressing modes.

6–68 VAX MACRO Assembler Directives

Assembler Directives
.NTYPE

Example

; The following macro is used to push an address on the stack. It checks
; the operand type (by using .NTYPE) to determine if the operand is an
; address and, if not, the macro simply pushes the argument on the stack
; and generates a warning message.
;

.MACRO PUSHADR #ADDR

.NTYPE A,ADDR ; Assign operand type to ’A’
A = A@-4&^XF ; Isolate addressing mode

.IF IDENTICAL 0,<ADDR> ; Is argument exactly 0?
PUSHL #0 ; Stack zero
.MEXIT ; Exit from macro
.ENDC

ERR = 0 ; ERR tells if mode is address
; ERR = 0 if address, 1 if not

.IIF LESS_EQUAL A-1, ERR=1 ; Is mode not literal or immediate?

.IIF EQUAL A-5, ERR=1 ; Is mode not register?

.IF EQUAL ERR ; Is mode address?
PUSHAL ADDR ; Yes, stack address
.IFF ; No
PUSHL ADDR ; Then stack operand & warn
.WARN ; ADDR is not an address;
.ENDC
.ENDM PUSHADR

The macro calls and expansions of the macro defined previously are as follows:

PUSHADR (R0) ; Valid argument
PUSHAL (R0) ; Yes, stack address

PUSHADR (R1)[R4] ; Valid argument
PUSHAL (R1)[R4] ; Yes, stack address

PUSHADR 0 ; Is zero
PUSHL #0 ; Stack zero

PUSHADR #1 ; Not an address
PUSHL #1 ; Then stack operand & warn

%MACRO-W-GENWRN, Generated WARNING: #1 is not an address

PUSHADR R0 ; Not an address
PUSHL R0 ; Then stack operand & warn

%MACRO-W-GENWRN, Generated WARNING: R0 is not an address

Note that to save space, this example is listed as it would appear if .SHOW
BINARY, not .SHOW EXPANSIONS, were specified in the source program.

VAX MACRO Assembler Directives 6–69

Assembler Directives
.OCTA

.OCTA

Octaword storage directive

Format

.OCTA literal

.OCTA symbol

Parameters

literal
Any constant value. This value can be preceded by ^O, ^B, ^X, or ^D to specify
the radix as octal, binary, hexadecimal, or decimal, respectively; or it can be
preceded by ^A to specify ASCII text. Decimal is the default radix.

symbol
A symbol defined elsewhere in the program. This symbol results in a sign-
extended, 32-bit value being stored in an octaword.

Description

.OCTA generates 128 bits (16 bytes) of binary data.

Note
.OCTA is like .QUAD and unlike other data storage directives (.BYTE, .WORD,
and .LONG), in that it does not evaluate expressions and that it accepts only one
value. It does not accept a list.

Example

.OCTA ^A"FEDCBA987654321" ; Each ASCII character
; is stored in a byte

.OCTA 0 ; OCTA 0

.OCTA ^X01234ABCD5678F9 ; OCTA hex value specified

.OCTA VINTERVAL ; VINTERVAL has 32-bit value,
; sign-extended

6–70 VAX MACRO Assembler Directives

Assembler Directives
.ODD

.ODD

Odd location counter alignment directive

Format

.ODD

Description

.ODD ensures that the current value of the location counter is odd by adding 1 if
the current value is even. If the current value is already odd, no action is taken.

VAX MACRO Assembler Directives 6–71

Assembler Directives
.OPDEF

.OPDEF

Opcode definition directive

Format

.OPDEF opcode value,operand-descriptor-list

Parameters

opcode
An ASCII string specifying the name of the opcode. The string can be up to 31
characters long and can contain the letters A to Z, the digits 0 to 9, and the
special characters underscore (_), dollar sign ($), and period (.). The string
should not start with a digit and should not be surrounded by delimiters.

value
An expression that specifies the value of the opcode. The expression must be
absolute and must not contain any undefined values (see Section 3.5). The value
of the expression must be in the range 0 to 65; 53510 (hexadecimal FFFF), but you
cannot use the values 252 to 255 because the architecture specifies these as the
start of a 2-byte opcode. The expression is represented as follows:

If 0 < expression < 251 Expression is a 1-byte opcode.
If expression > 255 Expression bits 7:0 are the first byte of the

opcode and expression bits 15:8 are the
second byte of the opcode.

operand-descriptor-list
A list of operand descriptors that specifies the number of operands and the type
of each. Up to 16 operand descriptors are allowed in the list. Table 6–5 lists the
operand descriptors.

Table 6–5 Operand Descriptors

Access
Type

Data Type

Byte Word Long-
word

Float-
ing
Point

Double
Float-
ing
Point

G_
Floating
Point

H_
Floating
Point

Quad-
word

Octa-
word

Address AB AW AL AF AD AG AH AQ AO

Read-
only

RB RW RL RF RD RG RH RQ RO

Modify MB MW ML MF MD MG MH MQ MO

Write-
only

WB WW WL WF WD WG WH WQ WO

Field VB VW VL VF VD VG VH VQ VO

Branch BB BW — — — — — — —

6–72 VAX MACRO Assembler Directives

Assembler Directives
.OPDEF

Description

.OPDEF defines an opcode, which is inserted into a user-defined opcode table.
The assembler searches this table before it searches the permanent symbol table.
This directive can redefine an existing opcode name or create a new one.

Notes

1. You can also use a macro to redefine an opcode (see the description of
.MACRO in this section). Note that the macro name table is searched before
the user-defined opcode table.

2. .OPDEF is useful in creating ‘‘custom’’ instructions that execute user-written
microcode. This directive is supplied to allow you to execute your microcode
in a MACRO program.

3. The operand descriptors are specified in a format similar to the operand
specifier notation described in Chapter 8. The first character specifies the
operand access type, and the second character specifies the operand data
type.

Example

.OPDEF MOVL3 ^XA9FF,RL,ML,WL ; Defines an instruction
; MOVL3, which uses
; the reserved opcode FF

.OPDEF DIVF2 ^X46,RF,MF ; Redefines the DIVF2 and

.OPDEF MOVC5 ^X2C,RW,AB,AB,RW,AB ; MOVC5 instructions

.OPDEF CALL ^X10,BB ; Equivalent to a BSBB

VAX MACRO Assembler Directives 6–73

Assembler Directives
.PACKED

.PACKED

Packed decimal string storage directive

Format

.PACKED decimal-string[,symbol]

Parameters

decimal-string
A decimal number from 0 to 31 digits long with an optional sign. Digits can be in
the range 0 to 9 (see Section 8.3.14).

symbol
An optional symbol that is assigned a value equivalent to the number of decimal
digits in the string. The sign is not counted as a digit.

Description

.PACKED generates packed decimal data, two digits per byte. Packed decimal
data is useful in calculations requiring exact accuracy. Packed decimal data
is operated on by the decimal string instructions. See Section 8.3.14 for more
information on the format of packed decimal data.

Example

.PACKED -12,PACK_SIZE ; PACK_SIZE gets value of 2

.PACKED +500

.PACKED 0

.PACKED -0,SUM_SIZE ; SUM_SIZE gets value of 1

6–74 VAX MACRO Assembler Directives

Assembler Directives
.PAGE

.PAGE

Page ejection directive

Format

.PAGE

Description

.PAGE forces a new page in the listing. The directive itself is not printed in the
listing.

VAX MACRO ignores .PAGE in a macro definition. The paging operation is
performed only during macro expansion.

VAX MACRO Assembler Directives 6–75

Assembler Directives
.PRINT

.PRINT

Assembly message directive

Format

.PRINT [expression] ;comment

Parameters

expression
An expression whose value is displayed when .PRINT is encountered during
assembly.

;comment
A comment that is displayed when .PRINT is encountered during assembly. The
comment must be preceded by a semicolon (;).

Description

.PRINT causes the assembler to display an informational message. The message
consists of the value of the expression and the comment specified in the .PRINT
directive. The message is displayed on the terminal for interactive jobs and in
the log file for batch jobs. The message produced by .PRINT is not considered an
error or warning message.

Notes

1. .PRINT, .ERROR, and .WARN are called the message display directives. You
can use these to display information indicating that a macro call contains an
error or an illegal set of conditions.

2. If .PRINT is included in a macro library, end the comment with an additional
semicolon. If you omit the semicolon, the comment will be stripped from the
directive and will not be displayed when the macro is called.

3. If the expression has a value of zero, it is not displayed with the message.

Example

.PRINT 2 ; The sine routine has been changed

6–76 VAX MACRO Assembler Directives

Assembler Directives
.PSECT

.PSECT

Program sectioning directive

Format

.PSECT [program-section-name[,argument-list]]

Parameters

program-section-name
The name of the program section. This name can be up to 31 characters long and
can contain any alphanumeric character and the special characters underscore
(_), dollar sign ($), and period (.). The first character must not be a digit.

argument-list
A list containing the program section attributes and the program section
alignment. Table 6–6 lists the attributes and their functions. Table 6–7 lists
the default attributes and their opposites. Program sections are aligned when
you specify an integer in the range 0 to 9 or one of the five keywords listed in the
following table. If you specify an integer, the program section is linked to begin
at the next virtual address, which is a multiple of 2 raised to the power of the
integer. If you specify a keyword, the program section is linked to begin at the
next virtual address (a multiple of the values listed in the following table):

Keyword Size (in Bytes)

BYTE 2^0 = 1
WORD 2^1 = 2
LONG 2^2 = 4
QUAD 2^3 = 8
PAGE 2^9 = 512

BYTE is the default.

Table 6–6 Program Section Attributes

Attribute Function

ABS Absolute—The linker assigns the program section an absolute
address. The contents of the program section can be only
symbol definitions (usually definitions of symbolic offsets
to data structures that are used by the routines being
assembled). No data allocations can be made. An absolute
program section contributes no binary code to the image, so
its byte allocation request to the linker is zero. The size of
the data structure being defined is the size of the absolute
program section printed in the ‘‘program section synopsis’’ at
the end of the listing. Compare this attribute with its opposite,
REL.

(continued on next page)

VAX MACRO Assembler Directives 6–77

Assembler Directives
.PSECT

Table 6–6 (Cont.) Program Section Attributes

Attribute Function

CON Concatenate—Program sections with the same name and
attributes (including CON) are merged into one program
section. Their contents are merged in the order in which the
linker acquires them. The allocated virtual address space is
the sum of the individual requested allocations.

EXE Executable—The program section contains instructions. This
attribute provides the capability of separating instructions
from read-only and read/write data. The linker uses this
attribute in gathering program sections and in verifying that
the transfer address is in an executable program section.

GBL Global—Program sections that have the same name and
attributes, including GBL and OVR, will have the same
relocatable address in memory even when the program
sections are in different clusters (see the OpenVMS Linker
Utility Manual for more information on clusters). This
attribute is specified for FORTRAN COMMON block program
sections (see the VAX FORTRAN User’s Guide). Compare this
attribute with its opposite, LCL.

LCL Local—The program section is restricted to its cluster.
Compare this attribute with its opposite, GBL.

LIB Library Segment—Reserved for future use.
NOEXE Not Executable—The program section contains data only; it

does not contain instructions.
NOPIC Non-Position-Independent Content—The program section is

assigned to a fixed location in virtual memory (when it is in a
shareable image).

NORD Nonreadable—Reserved for future use.
NOSHR No Share—The program section is reserved for private use at

execution time by the initiating process.
NOWRT Nonwritable—The contents of the program section cannot be

altered (written into) at execution time.
OVR Overlay—Program sections with the same name and

attributes, including OVR, have the same relocatable base
address in memory. The allocated virtual address space is the
requested allocation of the largest overlaying program section.
Compare this attribute with its opposite, CON.

PIC Position-Independent Content—The program section can be
relocated; that is, it can be assigned to any memory area
(when it is in a shareable image).

RD Readable—Reserved for future use.
REL Relocatable—The linker assigns the program section a

relocatable base address. The contents of the program section
can be code or data. Compare this attribute with its opposite,
ABS.

(continued on next page)

6–78 VAX MACRO Assembler Directives

Assembler Directives
.PSECT

Table 6–6 (Cont.) Program Section Attributes

Attribute Function

SHR Share—The program section can be shared at execution time
by multiple processes. This attribute is assigned to a program
section that can be linked into a shareable image.

USR User Segment—Reserved for future use.
VEC Vector-Containing—The program section contains a change

mode vector indicating a privileged shareable image. You must
use the SHR attribute with VEC.

WRT Write—The contents of the program section can be altered
(written into) at execution time.

Table 6–7 Default Program Section Attributes

Default Attribute Opposite Attribute

CON OVR
EXE NOEXE
LCL GBL
NOPIC PIC
NOSHR SHR
RD NORD
REL ABS
WRT NOWRT
NOVEC VEC

Description

.PSECT defines a program section and its attributes and refers to a program
section once it is defined. Use program sections to do the following:

• Develop modular programs.

• Separate instructions from data.

• Allow different modules to access the same data.

• Protect read-only data and instructions from being modified.

• Identify sections of the object module to the debugger.

• Control the order in which program sections are stored in virtual memory.

The assembler automatically defines two program sections: the absolute program
section and the unnamed (or blank) program section. Any symbol definitions
that appear before any instruction, data, or .PSECT directive are placed in the
absolute program section. Any instructions or data that appear before the first
named program section is defined are placed in the unnamed program section.
Any .PSECT directive that does not include a program section name specifies the
unnamed program section.

A maximum of 254 user-defined, named program sections can be defined.

VAX MACRO Assembler Directives 6–79

Assembler Directives
.PSECT

When the assembler encounters a .PSECT directive that specifies a new program
section name, it creates a new program section and stores the name, attributes,
and alignment of the program section. The assembler includes all data and
instructions that follow the .PSECT directive in that program section until it
encounters another .PSECT directive. The assembler starts all program sections
at a location counter of 0, which is relocatable.

If the assembler encounters a .PSECT directive that specifies the name of a
previously defined program section, it stores the new data or instructions after
the last entry in the previously defined program section. The location counter
is set to the value of the location counter at the end of the previously defined
program section. You need not list the attributes when continuing a program
section but any attributes that are listed must be the same as those previously in
effect for the program section. A continuation of a program section cannot contain
attributes conflicting with those specified in the original .PSECT directive.

The attributes listed in the .PSECT directive only describe the contents of the
program section. The assembler does not check to ensure that the contents of the
program section actually include the attributes listed. However, the assembler
and the linker do check that all program sections with the same name have
exactly the same attributes. The assembler and linker display an error message
if the program section attributes are not consistent.

Program section names are independent of local symbol, global symbol, and macro
names. You can use the same symbolic name for a program section and for a local
symbol, global symbol, or macro name.

Notes

1. The .ALIGN directive cannot specify an alignment greater than that of the
current program section; consequently, .PSECT should specify the largest
alignment needed in the program section. For efficiency of execution, an
alignment of longword or larger is recommended for all program sections that
have longword data.

2. The attributes of the default absolute and the default unnamed program
sections are listed in the following table. Note that the program section
names include the periods (.) and enclosed spaces.

Program SectionName Attributes and Alignment

. ABS . NOPIC,USR,CON,ABS,LCL,NOSHR,NOEXE,
NORD,NOWRT,NOVEC,BYTE

. BLANK . NOPIC,USR,CON,REL,LCL,NOSHR,EXE,
RD,WRT,NOVEC,BYTE

Example

.PSECT CODE,NOWRT,EXE,LONG ; Program section to contain
; executable code

.PSECT RWDATA,WRT,NOEXE,QUAD
; Program section to contain
; modifiable data

6–80 VAX MACRO Assembler Directives

Assembler Directives
.QUAD

.QUAD

Quadword storage directive

Format

.QUAD literal

.QUAD symbol

Parameters

literal
Any constant value. This value can be preceded by ^O, ^B, ^X, or ^D to specify
the radix as octal, binary, hexadecimal, or decimal, respectively; or it can be
preceded by ^A to specify the ASCII text operator. Decimal is the default radix.

symbol
A symbol defined elsewhere in the program. This symbol results in a sign-
extended, 32-bit value being stored in a quadword.

Description

.QUAD generates 64 bits (8 bytes) of binary data.

Note
.QUAD is like .OCTA and different from other data storage directives (.BYTE,
.WORD, and .LONG) in that it does not evaluate expressions and that it accepts
only one value. It does not accept a list.

Example

.QUAD ^A’..ASK?..’ ; Each ASCII character is stored
; in a byte

.QUAD 0 ; QUAD 0

.QUAD ^X0123456789ABCDEF ; QUAD hex value specified

.QUAD ^B1111000111001101 ; QUAD binary value specified

.QUAD LABEL ; LABEL has a 32-bit,
; zero-extended value.

VAX MACRO Assembler Directives 6–81

Assembler Directives
.REFn

.REFn

Operand generation directives

Format

.REF1 operand

.REF2 operand

.REF4 operand

.REF8 operand

.REF16 operand

Parameter

operand
An operand of byte, word, longword, quadword, or octaword context, respectively.

Description

VAX MACRO has the following five operand generation directives that you can
use in macros to define new opcodes:

Directive Function

.REF1 Generates a byte operand

.REF2 Generates a word operand

.REF4 Generates a longword operand

.REF8 Generates a quadword operand

.REF16 Generates an octaword operand

The .REFn directives are provided for compatibility with VAX MACRO Version
1.0. Because the .OPDEF directive provides greater functionality and is easier to
use than .REFn, you should use .OPDEF instead of .REFn.

Example

.MACRO MOVL3 A,B,C

.BYTE ^XFF,^XA9

.REF4 A ; This operand has longword context

.REF4 B ; This operand has longword context

.REF4 C ; This operand has longword context

.ENDM MOVL3

MOVL3 R0,@LAB-1,(R7)+[R10]

This example uses .REF4 to create a new instruction, MOVL3, which uses the
reserved opcode FF. See the example in .OPDEF for a preferred method to create
a new instruction.

6–82 VAX MACRO Assembler Directives

Assembler Directives
.REPEAT

.REPEAT

Repeat block directive

Format

.REPEAT expression

range

.ENDR

Parameters

expression
An expression whose value controls the number of times the range is to be
assembled within the program. When the expression is less than or equal to zero,
the repeat block is not assembled. The expression must be absolute and must not
contain any undefined symbols (see Section 3.5).

range
The source text to be repeated the number of times specified by the value of the
expression. The repeat block can contain macro definitions, indefinite repeat
blocks, or other repeat blocks. .MEXIT is legal within the range.

Description

.REPEAT repeats a block of code a specified number of times, in line with other
source code. The .ENDR directive specifies the end of the range.

Note
The alternate form of .REPEAT is .REPT.

VAX MACRO Assembler Directives 6–83

Assembler Directives
.REPEAT

Example

The macro definition is as follows:

.MACRO COPIES STRING,NUM

.REPEAT NUM

.ASCII /STRING/

.ENDR

.BYTE 0

.ENDM COPIES

The macro calls and expansions of the macro defined previously are as follows:

COPIES <ABCDEF>,5
.REPEAT 5
.ASCII /ABCDEF/
.ENDR
.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/
.BYTE 0

VARB = 3
COPIES <HOW MANY TIMES>,VARB
.REPEAT 3
.ASCII /HOW MANY TIMES/
.ENDR
.ASCII /HOW MANY TIMES/
.ASCII /HOW MANY TIMES/
.ASCII /HOW MANY TIMES/
.BYTE 0

6–84 VAX MACRO Assembler Directives

Assembler Directives
.RESTORE_PSECT

.RESTORE_PSECT

Restore previous program section context directive

Format

.RESTORE_PSECT

Description

.RESTORE_PSECT retrieves the program section from the top of the program
section context stack, an internal stack in the assembler. If the stack is empty
when .RESTORE_PSECT is issued, the assembler displays an error message.
When .RESTORE_PSECT retrieves a program section, it restores the current
location counter to the value it had when the program section was saved. The
local label block is also restored if it was saved when the program section was
saved. See the description of .SAVE_PSECT for more information.

Note

The alternate form of .RESTORE_PSECT is .RESTORE.

Example

.RESTORE_PSECT and .SAVE_PSECT are especially useful in macros that
define program sections. The macro definition in the following example saves
the current program section context and defines new program sections. Then,
it restores the saved program section. If the macro did not save and restore the
program section context each time the macro was invoked, the program section
would change.

.MACRO INITD ; Initialize symbols
; and data areas

.SAVE_PSECT ; Save the current PSECT

.PSECT SYMBOLS,ABS ; Define new PSECT
HELP_LEV=2 ; Define symbol
MAXNUM=100 ; Define symbol
RATE1=16 ; Define symbol
RATE2=4 ; Define symbol

.PSECT DATA,NOEXE,LONG ; Define another PSECT
TABL: .BLKL 100 ; 100 longwords in TABL
TEMP: .BLKB 16 ; More storage

.RESTORE_PSECT ; Restore the PSECT
; in effect when
; MACRO is invoked

.ENDM

VAX MACRO Assembler Directives 6–85

Assembler Directives
.SAVE_PSECT

.SAVE_PSECT

Save current program section context directive

Format

.SAVE_PSECT [LOCAL_BLOCK]

Parameter

LOCAL_BLOCK
An optional keyword that specifies that the current local label is to be saved with
the program section context.

Description

.SAVE_PSECT stores the current program section context on the top of the
program section context stack, an internal assembler stack. It leaves the current
program section context in effect. The program section context stack can hold 31
entries. Each entry includes the value of the current location counter and the
maximum value assigned to the location counter in the current program section.
If the stack is full when .SAVE_PSECT is encountered, an error occurs.

.SAVE_PSECT and .RESTORE_PSECT are especially useful in macros that define
program sections. See the description of .RESTORE_PSECT for another example
using .SAVE_PSECT.

Note
The alternate form of .SAVE_PSECT is .SAVE.

Example

The macro definition is as follows:

.MACRO ERR_MESSAGE,TEXT ; Set up lists of messages
; and pointers
;

.IIF NOT_DEFINED MESSAGE_INDEX, MESSAGE_INDEX=0

.SAVE_PSECT -
LOCAL_BLOCK ; Keep local labels

.PSECT MESSAGE_TEXT ; List of error messages
MESSAGE::

.ASCIC /TEXT/

.PSECT MESSAGE_POINTERS ; Addresses of error

.ADDRESS - ; messages
MESSAGE ; Store one pointer

.RESTORE_PSECT ; Get back local labels
PUSHL #MESSAGE_INDEX ;
CALLS #1,PRINT_MESS ; Print message

MESSAGE_INDEX=MESSAGE_INDEX+1
.ENDM ERR_MESSAGE

6–86 VAX MACRO Assembler Directives

Assembler Directives
.SAVE_PSECT

Macro call:

RESETS: CLRL R4
BLBC R0,30$
ERR_MESSAGE <STRING TOO SHORT> ; Add "STRING TOO SHORT"

; to list of error
30$: RSB ; messages

By using .SAVE_PSECT LOCAL_BLOCK, the local label 30$ is defined in the
same local label block as the reference to 30$. If a local label is not defined in
the block in which it is referenced, the assembler produces the following error
message:

%MACRO-E-UNDEFSYM, Undefined Symbol

VAX MACRO Assembler Directives 6–87

Assembler Directives
.SHOW .NOSHOW

.SHOW .NOSHOW
4515CH6_630

Listing directives

Format

.SHOW [argument-list]

.NOSHOW [argument-list]

Parameter

argument-list
One or more of the optional symbolic arguments defined in Table 6–8. You can
use either the long form or the short form of the arguments. You can use each
argument alone or in combination with other arguments. If you specify multiple
arguments, you must separate them by commas (,), tabs, or spaces. If any
argument is not specifically included in a listing control statement, the assembler
assumes its default value (SHOW or NOSHOW) throughout the source program.

Table 6–8 .SHOW and .NOSHOW Symbolic Arguments

Long Form Short Form Default Function

BINARY MEB NOSHOW Lists macro and repeat
block expansions that
generate binary code.
BINARY is a subset of
EXPANSIONS.

CALLS MC SHOW Lists macro calls and
repeat block specifiers.

CONDITIONALS CND SHOW Lists unsatisfied
conditional code
associated with the
conditional assembly
directives.

DEFINITIONS MD SHOW Lists macro and repeat
range definitions that
appear in an input source
file.

EXPANSIONS ME NOSHOW Lists macro and repeat
range expansions.

Description

.SHOW and .NOSHOW specify listing control options in the source text of a
program. You can use .SHOW and .NOSHOW with or without an argument list.

When you use them with an argument list, .SHOW includes and .NOSHOW
excludes the lines specified in Table 6–8. .SHOW and .NOSHOW control the
listing of the source lines that are in conditional assembly blocks (see the
description of .IF), macros, and repeat blocks.

6–88 VAX MACRO Assembler Directives

Assembler Directives
.SHOW .NOSHOW

When you use them without arguments, these directives alter the listing level
count. The listing level count is initialized to 0. Each time .SHOW appears in a
program, the listing level count is incremented; each time .NOSHOW appears in
a program, the listing level count is decremented.

When the listing level count is negative, the listing is suppressed (unless the
line contains an error). Conversely, when the listing level count is positive, the
listing is generated. When the count is 0, the line is either listed or suppressed,
depending on the value of the listing control symbolic arguments.

Notes

1. The listing level count allows macros to be listed selectively; a macro
definition can specify .NOSHOW at the beginning to decrement the listing
count and can specify .SHOW at the end to restore the listing count to its
original value.

2. The alternate forms of .SHOW and .NOSHOW are .LIST and .NLIST.

Example

.MACRO XX
.
.
.

.SHOW ; List next line
X=.

.NOSHOW ; Do not list remainder
. ; of macro expansion
.
.

.ENDM

.NOSHOW EXPANSIONS ; Do not list macro
; expansions

XX
X=.

VAX MACRO Assembler Directives 6–89

Assembler Directives
.SIGNED_BYTE

.SIGNED_BYTE

Signed byte data directive

Format

.SIGNED_BYTE expression-list

Parameters

expression-list
An expression or list of expressions separated by commas (,). You have the option
of following each expression with a repetition factor delimited by square brackets
([]).

An expression followed by a repetition factor has the format:

expression1[expression2]

expression1
An expression that specifies the value to be stored. The value must be in the
range -128 to +127.

[expression2]
An expression that specifies the number of times the value will be repeated. The
expression must not contain any undefined symbols and must be an absolute
expression (see Section 3.5). The square brackets are required.

Description

.SIGNED_BYTE is equivalent to .BYTE, except that VAX MACRO indicates that
the data is signed in the object module. The linker uses this information to test
for overflow conditions.

Note
Specifying .SIGNED_BYTE allows the linker to detect overflow conditions when
the value of the expression is in the range of 128 to 255. Values in this range can
be stored as unsigned data but cannot be stored as signed data in a byte.

Example

.SIGNED_BYTE LABEL1-LABEL2 ; Data must fit

.SIGNED_BYTE ALPHA[20] ; in byte

6–90 VAX MACRO Assembler Directives

Assembler Directives
.SIGNED_WORD

.SIGNED_WORD

Signed word storage directive

Format

.SIGNED_WORD expression-list

Parameters

expression-list
An expression or list of expressions separated by commas (,). You have the option
of following each expression with a repetition factor delimited by square brackets
([]).

An expression followed by a repetition factor has the format:

expression1[expression2]

expression1
An expression that specifies the value to be stored. The value must be in the
range -32,768 to +32,767.

[expression2]
An expression that specifies the number of times the value will be repeated. The
expression must not contain any undefined symbols and must be an absolute
expression (see Section 3.5). The square brackets ([]) are required.

Description

.SIGNED_WORD is equivalent to .WORD except that the assembler indicates
that the data is signed in the object module. The linker uses this information to
test for overflow conditions. .SIGNED_WORD is useful after the case instruction
to ensure that the displacement fits in a word.

Note
Specifying .SIGNED_WORD allows the linker to detect overflow conditions when
the value of the expression is in the range of 32,768 to 65,535. Values in this
range can be stored as unsigned data but cannot be stored as signed data in a
word.

VAX MACRO Assembler Directives 6–91

Assembler Directives
.SIGNED_WORD

Example

.MACRO CASE,SRC,DISPLIST,TYPE=W,LIMIT=#0,NMODE=S^#,?BASE,?MAX
; MACRO to use CASE instruction,
; SRC is selector, DISPLIST
; is list of displacements, TYPE
; is B (byte) W (word) L (long),
; LIMIT is base value of selector

CASE’TYPE SRC,LIMIT,NMODE’<<MAX-BASE>/2>-1
; Case instruction

BASE: ; Local label specifying base
.IRP EP,<DISPLIST> ; to set up offset list
.SIGNED_WORD EP-BASE ; Offset list
.ENDR ;

MAX: ; Local label used to count
.ENDM CASE ; args

CASE IVAR <ERR_PROC,SORT,REV_SORT> ; If IVAR=0, error
CASEW IVAR,#0,S^#<<30001-30000>/2>-1

30000$: ; Local label specifying base
.SIGNED_WORD ERR_PROC-30000$; Offset list
.SIGNED_WORD SORT-30000$; Offset list
.SIGNED_WORD REV_SORT-30000$; Offset list

30001$: ; Local label used to count args
; =1, forward sort; =2, backward
; sort

CASE TEST <TEST1,TEST2,TEST3>,L,#1
CASEL TEST,#1,S^#<<30003-30002>/2>-1

30002$: ; Local label specifying base
.SIGNED_WORD TEST1-30002$; Offset list
.SIGNED_WORD TEST2-30002$; Offset list
.SIGNED_WORD TEST3-30002$; Offset list

30003$: ; Local label used to count args
; Value of TEST can be 1, 2, or 3

In this example, the CASE macro uses .SIGNED_WORD to create a CASEB,
CASEW, or CASEL instruction.

6–92 VAX MACRO Assembler Directives

Assembler Directives
.SUBTITLE

.SUBTITLE

Subtitle directive

Format

.SUBTITLE comment-string

Parameter

comment-string
An ASCII string from 1 to 40 characters long; excess characters are truncated.

Description

.SUBTITLE causes the assembler to print the line of text, represented by
the comment-string, in the table of contents (which the assembler produces
immediately before the assembly listing). The assembler also prints the line of
text as the subtitle on the second line of each assembly listing page. This subtitle
text is printed on each page until altered by a subsequent .SUBTITLE directive
in the program.

Note
The alternate form of .SUBTITLE is .SBTTL.

Examples

1. .SUBTITLE CONDITIONAL ASSEMBLY

This directive causes the assembler to print the following text as the subtitle
of the assembly listing:

CONDITIONAL ASSEMBLY

It also causes the text to be printed out in the listing’s table of contents, along
with the source page number and the line sequence number of the source
statement where .SUBTITLE was specified. The table of contents would have
the following format:

2. TABLE OF CONTENTS

(1) 5000 ASSEMBLER DIRECTIVES
(2) 300 MACRO DEFINITIONS
(2) 2300 DATA TABLES AND INITIALIZATION
(3) 4800 MAIN ROUTINES
(4) 2800 CALCULATIONS
(4) 5000 I/O ROUTINES
(5) 1300 CONDITIONAL ASSEMBLY

VAX MACRO Assembler Directives 6–93

Assembler Directives
.TITLE

.TITLE

Title directive

Format

.TITLE module-name comment-string

Parameters

module-name
An identifier from 1 to 31 characters long.

comment-string
An ASCII string from 1 to 40 characters long; excess characters are truncated.

Description

.TITLE assigns a name to the object module. This name is the first 31 or fewer
nonblank characters following the directive.

Notes

1. The module name specified with .TITLE bears no relationship to the file
specification of the object module, as specified in the VAX MACRO command
line. The object module name appears in the linker load map and is also the
module name that the debugger and librarian recognize.

2. If .TITLE is not specified, VAX MACRO assigns the default name .MAIN to
the object module. If more than one .TITLE directive is specified in the source
program, the last .TITLE directive encountered establishes the name for the
entire object module.

3. When evaluating the module name, VAX MACRO ignores all spaces, tabs, or
both, up to the first nonspace/nontab character after .TITLE.

Example

.TITLE EVAL Evaluates Expressions

6–94 VAX MACRO Assembler Directives

Assembler Directives
.TRANSFER

.TRANSFER

Transfer directive

Format

.TRANSFER symbol

Parameter

symbol
A global symbol that is an entry point in a procedure or routine.

Description

.TRANSFER redefines a global symbol for use in a shareable image. The linker
redefines the symbol as the value of the location counter at the .TRANSFER
directive after a shareable image is linked.

To make program maintenance easier, programs should not need to be relinked
when the shareable images to which they are linked change. To avoid relinking
entire programs when their linked shareable images change, keep the entry
points in the changed shareable image at their original addresses. To do this,
create an object module that contains a transfer vector for each entry point.
Do not change the order of the transfer vectors. Link this object module at the
beginning of the shareable image. The addresses of the entry points remain
fixed even if the source code for a routine is changed. After each .TRANSFER
directive, create a register save mask (for procedures only) and a branch to the
first instruction of the routine.

The .TRANSFER directive does not cause any memory to be allocated and does
not generate any binary code. It merely generates instructions to the linker to
redefine the symbol when a shareable image is being created.

Use .TRANSFER with procedures entered by the CALLS or CALLG instruction.
In this case, use .TRANSFER with the .ENTRY and .MASK directives. The
branch to the actual routine must be a branch to the entry point plus 2 to bypass
the 2-byte register save mask.

Figure 6–1 illustrates the use of transfer vectors.

VAX MACRO Assembler Directives 6–95

Assembler Directives
.TRANSFER

Figure 6–1 Using Transfer Vectors

ZK−0535−GE

RET

;START OF ROUTINE
.ENTRY ROUTB,0

BRW
.MASK
.TRANSFER
BRW
.MASK
.TRANSFER

ROUTB+2
ROUTB
ROUTB
ROUTA+2
ROUTA
ROUTA

CALLS ROUTB

Linked with Shareable Image

CALLS ROUTB

Linked with Object Modules

RET

;START OF ROUTINE
.ENTRY ROUTB,0

Module
Vector
Transfer

Image
Shareable

Modules
Object
Other

Procedure
Calling
Program

Modules
Object

Procedure
Calling
Program

6–96 VAX MACRO Assembler Directives

Assembler Directives
.TRANSFER

Example

.TRANSFER ROUTINE_A

.MASK ROUTINE_A,^M<R4,R5> ; Copy entry mask
; and add registers
; R4 and R5

BRW ROUTINE_A+2 ; Branch to routine
; (past entry mask)

.

.

.
.ENTRY ROUTINE_A,^M<R2,R3> ; ENTRY point, save

; registers R2 and R3
.
.
.

RET

In this example, .MASK copies the entry mask of a routine to the new entry
address specified by .TRANSFER. If the routine is placed in a shareable image
and then called, registers R2, R3, R4, and R5 will be saved.

VAX MACRO Assembler Directives 6–97

Assembler Directives
.WARN

.WARN

Warning directive

Format

.WARN [expression] ;comment

Parameters

expression
An expression whose value is displayed when .WARN is encountered during
assembly.

;comment
A comment that is displayed when .WARN is encountered during assembly. The
comment must be preceded by a semicolon (;).

Description

.WARN causes the assembler to display a warning message on the terminal or in
the batch log file, and in the listing file (if there is one).

Notes

1. .WARN, .ERROR, and .PRINT are called the message display directives. Use
them to display information indicating that a macro call contains an error or
an illegal set of conditions.

2. When the assembly is finished, the assembler displays on the terminal or
in the batch log file, the total number of errors, warnings, and information
messages, and the page numbers and line numbers of the lines causing the
errors or warnings.

3. If .WARN is included in a macro library, end the comment with an additional
semicolon. If you omit the semicolon, the comment will be stripped from the
directive and will not be displayed when the macro is called.

4. The line containing the .WARN directive is not included in the listing file.

5. If the expression has a value of zero, it is not displayed in the warning
message.

6–98 VAX MACRO Assembler Directives

Assembler Directives
.WARN

Example

.IF DEFINED FULL

.IF DEFINED DOUBLE_PREC

.WARN ; This combination not tested

.ENDC

.ENDC

If the symbols FULL and DOUBLE_PREC are both defined, the following
warning message is displayed:

%MACRO-W-GENWRN, Generated WARNING: This combination not tested

VAX MACRO Assembler Directives 6–99

Assembler Directives
.WEAK

.WEAK

Weak symbol attribute directive

Format

.WEAK symbol-list

Parameter

symbol-list
A list of legal symbols separated by commas (,).

Description

.WEAK specifies symbols that are either defined externally in another module
or defined globally in the current module. .WEAK suppresses any object library
search for the symbol.

When .WEAK specifies a symbol that is not defined in the current module, the
symbol is externally defined. If the linker finds the symbol’s definition in another
module, it uses that definition. If the linker does not find an external definition,
the symbol has a value of zero and the linker does not report an error. The linker
does not search a library for the symbol, but if a module brought in from a library
for another reason contains the symbol definition, the linker uses it.

When .WEAK specifies a symbol that is defined in the current module, the
symbol is considered to be globally defined. However, if this module is inserted
in an object library, this symbol is not inserted in the library’s symbol table.
Consequently, searching the library at link time to resolve this symbol does not
cause the module to be included.

Example

.WEAK IOCAR,LAB_3

6–100 VAX MACRO Assembler Directives

Assembler Directives
.WORD

.WORD

Word storage directive

Format

.WORD expression-list

Parameters

expression-list
One or more expressions separated by commas (,). You have the option of
following each expression by a repetition factor delimited with square brackets
([]).

An expression followed by a repetition factor has the format:

expression1[expression2]

expression1
An expression that specifies the value to be stored.

[expression2]
An expression that specifies the number of times the value will be repeated. The
expression must not contain any undefined symbols and must be an absolute
expression (see Section 3.5). The square brackets are required.

Description

.WORD generates successive words (2 bytes) of data in the object module.

Notes

1. The expression is first evaluated as a longword, then truncated to a word.
The value of the expression should be in the range of -32,768 to +32,767 for
signed data or 0 to 65,535 for unsigned data. The assembler displays an error
if the high-order 2 bytes of the longword expression have a value other than
zero or ^XFFFF.

2. The .SIGNED_WORD directive is the same as .WORD except that the
assembler displays a diagnostic message if a value is in the range from
32,768 to 65,535.

Example

.WORD ^X3F,FIVE[3],32

VAX MACRO Assembler Directives 6–101

VAX Data Types and Instruction Set

Part II describes the VAX data types, addressing mode formats, instruction
formats, and the instructions themselves.

7
Terminology and Conventions

The following sections describe terminology and conventions used in Part II of
this volume.

7.1 Numbering
All numbers, unless otherwise indicated, are decimal. Where there is ambiguity,
numbers other than decimal are indicated with the base in English following the
number in parentheses. For example:

FF (hex)

7.2 UNPREDICTABLE and UNDEFINED
Results specified as UNPREDICTABLE may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as
UNPREDICTABLE. Operations specified as UNDEFINED may vary from
moment to moment, implementation to implementation, and instruction to
instruction within implementations. The operation might vary from causing
no effect to stopping system operation. UNDEFINED operations must not
cause the processor to hang—to reach an unhalted state from which there is
no transition to a normal state in which the machine executes instructions.
Note the distinction between result and operation. Nonprivileged software
cannot invoke UNDEFINED operations. When the operation of the VAX
scalar processor becomes UNDEFINED, so does the operation of its associated
processor. The converse is not true; when the operation of the vector processor
becomes UNDEFINED, the operation of the scalar processor need not become
UNDEFINED.

7.3 Ranges and Extents
Ranges are specified in English and are inclusive (for example, a range of integers
0 to 4 includes the integers 0, 1, 2, 3, and 4). Extents are specified by a pair of
numbers separated by a colon and are inclusive (that is, bits 7:3 specifies an
extent of bits including bits 7, 6, 5, 4, and 3).

7.4 MBZ
Fields specified as MBZ (must be zero) must never be filled by software with a
nonzero value. If the processor encounters a nonzero value in a field specified
as MBZ, a reserved operand fault or abort occurs if that field is accessible
to nonprivileged software. MBZ fields that are accessible only to privileged
software (kernel mode) cannot be checked for nonzero value by some or all VAX
implementations. Nonzero values in MBZ fields accessible only to privileged
software may produce UNDEFINED operation.

Terminology and Conventions 7–1

Terminology and Conventions
7.5 RAZ

7.5 RAZ
Fields specified as RAZ (read as zero) return a zero when read.

7.6 SBZ
Fields specified as SBZ (should be zero) should be filled by software with a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

7.7 Reserved
Unassigned values of fields are reserved for future use. In many cases, some
values are indicated as reserved to CSS and customers. Only these values
should be used for nonstandard applications. The values indicated as reserved to
Compaq and all MBZ (must be zero) fields are to be used only to extend future
standard architecture.

7.8 Figure Drawing Conventions
Figures that depict registers or memory follow the convention that increasing
addresses extend from right to left and from top to bottom.

7–2 Terminology and Conventions

8
Basic Architecture

The following sections describe the basic VAX architecture, including the
following:

– Address space

– Data types

– Processor status longword (PSL)

– Permanent exception enables

– Instruction and addressing mode formats

8.1 Basic Architecture
The VAX architecture represents a significant extension of the PDP-11 family
architecture. It shares byte addressing with the PDP-11 family, similar I/O and
interrupt structures, and identical data formats. Although the instruction set is
not strictly compatible with the PDP-11 system, it is related and can be mastered
easily by a PDP-11 programmer. Likewise, the similarity allows straightforward
manual conversion of existing PDP-11 programs to the VAX system. Existing
user-mode PDP-11 programs that do not need the extended features of a VAX
system can run unchanged in the PDP-11 compatibility mode provided in the VAX
architecture.

As compared to the PDP-11 architecture, VAX architecture offers a greatly
extended virtual address space, additional instructions and data types, and
new addressing modes. VAX architecture also provides a sophisticated memory
management and protection mechanism, and hardware-assisted process sharing
and synchronization.

A number of specific goals are achieved in the VAX design. For example:

• VAX architecture has maximal compatibility with the PDP-11 architecture
consistent with a significant extension of the virtual address space and a
significant functional enhancement.

• High bit efficiency is achieved by a wide range of data types and new
addressing modes.

• The systematic, elegant instruction set with orthogonality of operators, data
types, and addressing modes can be exploited easily, particularly by high-level
language processors.

• The VAX system is extensible. The instruction set is designed so that new
data types and operators can be included efficiently in a manner consistent
with the currently defined operators and data types.

• The architecture is suited, in terms of price and performance, to a wide range
of computer system implementations sold by Compaq Computer Corporation.

Basic Architecture 8–1

Basic Architecture
8.1 Basic Architecture

With the addition of vector processing, VAX architecture can be classified into the
following two parts:

• A vector part, which includes the instructions, registers, and execution model
for vector processing.

• A scalar part, which includes the remainder of the architecture.

Where confusion may be possible, this manual uses the term scalar to describe
objects belonging to the scalar part of the architecture — as in scalar instructions
and scalar processor. Similarily, the term vector is used to describe parts
belonging to the vector part of the architecture — as in vector registers, and
vector instructions. With the exception of Chapter 10, instructions, exceptions,
registers, and other objects described in the rest of the this manual refer to the
scalar part of the architecture unless otherwise stated.

8.2 VAX Addressing
The basic addressable unit in VAX MACRO is the 8-bit byte. Virtual addresses
are 32 bits long. Therefore, the virtual address space is 232 (approximately 4.3
billion) bytes. Virtual addresses as seen by the program are translated into
physical memory addresses by the memory management mechanism.

8.3 Data Types
The following sections describe the VAX data types.

8.3.1 Byte
A byte is 8 contiguous bits starting on an addressable byte boundary. The bits
are numbered from right to left 0 to 7.

7 0

: A

ZK−1119A−GE

A byte is specified by its address A. When interpreted arithmetically, a byte is a
two’s complement integer with bits of increasing significance ranging from bit 0 to
bit 6, with bit 7 the sign bit. The value of the integer is in the range -128 to +127.
For the purposes of addition, subtraction, and comparison, VAX instructions also
provide direct support for the interpretation of a byte as an unsigned integer
with bits of increasing significance ranging from bit 0 to bit 7. The value of the
unsigned integer is in the range 0 to 255.

8.3.2 Word
A word is 2 contiguous bytes starting on an arbitrary byte boundary. The 16 bits
are numbered from right to left 0 to 15.

ZK−1120A−GE

15 0

: A

A word is specified by its address, A, which is the address of the byte containing
bit 0. When interpreted arithmetically, a word is a two’s complement integer
with bits of increasing significance ranging from bit 0 to bit 14, with bit 15 the

8–2 Basic Architecture

Basic Architecture
8.3 Data Types

sign bit. The value of the integer is in the range -32,768 to +32,767. For the
purposes of addition, subtraction, and comparison, VAX instructions also provide
direct support for the interpretation of a word as an unsigned integer with bits
of increasing significance ranging from bit 0 to bit 15. The value of the unsigned
integer is in the range 0 to 65,535.

8.3.3 Longword
A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The 32
bits are numbered from right to left 0 to 31.

ZK−1121A−GE

31 0

: A

A longword is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, a longword is a two’s
complement integer with bits of increasing significance ranging from bit 0
to bit 30, with bit 31 the sign bit. The value of the integer is in the range -
2,147,483,648 to +2,147,483,647. For the purposes of addition, subtraction, and
comparison, VAX instructions also provide direct support for the interpretation
of a longword as an unsigned integer with bits of increasing significance ranging
from bit 0 to bit 31. The value of the unsigned integer is in the range 0 to
4,294,967,295.

8.3.4 Quadword
A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The 64
bits are numbered from right to left 0 to 63.

ZK−1122A−GE

31 0

: A

63 32

: A+4

A quadword is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, a quadword is a two’s
complement integer with bits of increasing significance ranging from bit 0 to
bit 62, with bit 63 the sign bit. The value of the integer is in the range -2**63 to
+2**63-1. The quadword data type is not fully supported by VAX instructions.

8.3.5 Octaword
An octaword is 16 contiguous bytes starting on an arbitrary byte boundary. The
128 bits are numbered from right to left 0 to 127.

Basic Architecture 8–3

Basic Architecture
8.3 Data Types

ZK−1123A−GE

31 0

: A

127 96

: A+4

: A+8

: A+12

An octaword is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, an octaword is a two’s
complement integer with bits of increasing significance ranging from bit 0 to
bit 126, with bit 127 the sign bit. The value of the integer is in the range -2**127
to +2**127-1. The octaword data type is not fully supported by VAX instructions.

8.3.6 F_floating
An F_floating datum is 4 contiguous bytes starting on an arbitrary byte boundary.
The 32 bits are labeled from right to left 0 to 31.

ZK−1124A−GE

15 14 0

S exp fraction

fraction

7 6

: A+2

: A

An F_floating datum is specified by its address, A, which is the address of the
byte containing bit 0. The form of an F_floating datum is sign magnitude with
bit 15 as the sign bit, bits 14:7 as an excess 128 binary exponent, and bits 6:0
and 31:16 as a normalized 24-bit fraction with the redundant most-significant
fraction bit not represented. Within the fraction, bits of increasing significance
range from bits 16 to 31 and 0 to 6. The 8-bit exponent field encodes the values
0 to 255. An exponent value of zero, together with a sign bit of zero, is taken to
indicate that the F_floating datum has a value of zero. Exponent values of 1 to
255 indicate true binary exponents of -127 to +127. An exponent value of zero,
together with a sign bit of 1, is taken as reserved. Floating-point instructions
processing a reserved operand take a reserved operand fault (see Appendix E).
The value of an F_floating datum is in the approximate range .29*10**-38 to
1.7*10**38. The precision of an F_floating datum is approximately one part in
2**23; that is, typically 7 decimal digits.

8.3.7 D_floating
A D_floating datum is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are labeled from right to left 0 to 63.

8–4 Basic Architecture

Basic Architecture
8.3 Data Types

ZK−1125A−GE

15 14 0

S exp fraction

7 6

: A+2

: A

fraction

fraction

fraction

: A+4

: A+6

A D_floating datum is specified by its address, A, which is the address of the byte
containing bit 0. The form of a D_floating datum is identical to an F_floating
datum except for additional 32 low-significance fraction bits. Within the fraction,
bits of increasing significance range from bits 48 to 63, 32 to 47, 16 to 31, and 0 to
6. The exponent conventions and the approximate range of values are the same
for D_floating as they are for F_floating. The precision of a D_floating datum is
approximately one part in 2**55, typically, 16 decimal digits.

8.3.8 G_floating
A G_floating datum is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are labeled from right to left 0 to 63.

ZK−1126A−GE

15 14 0

S exp fract

4 3

: A+2

: A

fraction

fraction

fraction

: A+4

: A+6

A G_floating datum is specified by its address, A, which is the address of the byte
containing bit 0. The form of a G_floating datum is sign magnitude, with bit 15
as the sign bit, bits 14:4 as an excess 1024 binary exponent, and bits 3:0 and
63:16 as a normalized 53-bit fraction with the redundant most-significant fraction
bit not represented. Within the fraction, bits of increasing significance range from
bits 48 to 63, 32 to 47, 16 to 31, and 0 to 3. The 11-bit exponent field encodes the
values 0 to 2047. An exponent value of zero, together with a sign bit of zero, is
taken to indicate that the G_floating datum has a value of zero. Exponent values
of 1 to 2047 indicate true binary exponents of -1023 to +1023. An exponent
value of zero, together with a sign bit of 1, is taken as reserved. Floating-point
instructions processing a reserved operand take a reserved operand fault (see
Appendix E). The value of a G_floating datum is in the approximate range
.56*10**-308 to .9*10**308. The precision of a G_floating datum is approximately
one part in 2**52; that is, typically 15 decimal digits.

Basic Architecture 8–5

Basic Architecture
8.3 Data Types

8.3.9 H_floating
An H_floating datum is 16 contiguous bytes starting on an arbitrary byte
boundary. The 128 bits are labeled from right to left 0 to 127.

ZK−1127A−GE

15 14 0

S

: A+2

: A

fraction

fraction

fraction

: A+4

: A+6

exponent

fraction

fraction

fraction

fraction

: A+8

: A+10

: A+12

: A+14

An H_floating datum is specified by its address, A, which is the address of the
byte containing bit 0. The form of an H_floating datum is sign magnitude with bit
15 as the sign bit, bits 14:0 as an excess 16,384 binary exponent, and bits 127:16
as a normalized 113-bit fraction with the redundant most-significant fraction bit
not represented. Within the fraction, bits of increasing significance range from
bits 112 to 127, 96 to 111, 80 to 95, 64 to 79, 48 to 63, 32 to 47, and 16 to 31. The
15-bit exponent field encodes the values 0 to 32,767. An exponent value of zero,
together with a sign bit of 0, is taken to indicate that the H_floating datum has
a value of zero. Exponent values of 1 to 32,767 indicate true binary exponents
of -16,383 to +16,383. An exponent value of zero, together with a sign bit of 1,
is taken as reserved. Floating-point instructions processing a reserved operand
take a reserved operand fault (see Appendix E). The value of an H_floating datum
is in the approximate range .84*10**-4932 to .59*10**4932. The precision of
an H_floating datum is approximately one part in 2**112, typically, 33 decimal
digits.

8.3.10 Variable-Length Bit Field
A variable-length bit field is 0 to 32 contiguous bits located arbitrarily with
respect to byte boundaries. A variable-length bit field is specified by three
attributes:

• Address A of a byte

• Bit position P, which is the starting location of the field with respect to bit 0
of the byte at A

• Size S of the field

The specification of a bit field is indicated by the following figure, where the field
is the shaded area.

ZK−1128A−GE

0

: A

P+S P+S−1 P P−1

S−1 0

8–6 Basic Architecture

Basic Architecture
8.3 Data Types

For bit strings in memory, the position is in the range -2**31 to 2**31-1 and is
conveniently viewed as a signed 29-bit byte offset and a 3-bit, bit-within-byte
field.

ZK−1129A−GE

031 3 2

byte offset bwb

The sign-extended, 29-bit byte offset is added to the address A; the resulting
address specifies the byte in which the field begins. The 3-bit, bit-within-byte
field encodes the starting position (0 to 7) of the field within that byte. The
VAX field instructions provide direct support for the interpretation of a field as
a signed or unsigned integer. When interpreted as a signed integer, it is two’s
complement with bits of increasing significance ranging from bits 0 to S-2; bit
S-1 is the sign bit. When interpreted as an unsigned integer, bits of increasing
significance range from bits 0 to S-1. A field of size zero has a value identically
equal to zero.

A variable-length bit field may be contained in 1 to 5 bytes. From a memory
management point of view, only the minimum number of aligned longwords
necessary to contain the field may be actually referenced.

For bit fields in registers, the position is in the range 0 to 31. The position
operand specifies the starting position (0 to 31) of the field in the register. A
variable-length bit field may be contained in two registers if the sum of position
and size exceeds 32.

ZK−1130A−GE

0

Rn

31 P P−1

P+S P+S−1

R [n+1]

For further details on the specification of variable-length bit fields, see the
descriptions of the variable-length bit field instructions in Section 9.2.3.

8.3.11 Character String
A character string is a contiguous sequence of bytes in memory. A character
string is specified by two attributes: the address A of the first byte of the string,
and the length L of the string in bytes. Thus, the format of a character string is
represented as follows:

Basic Architecture 8–7

Basic Architecture
8.3 Data Types

: A

ZK−1131A−GE

7 0

7 0

: A+L−1

The address of a string specifies the first character of a string. Thus ‘‘XYZ’’ is
represented as follows:

: A

ZK−1132A−GE

: A+1

: A+2

"X"

"Y"

"Z"

The length L of a string is in the range 0 to 65,535.

8.3.12 Trailing Numeric String
A trailing numeric string is a contiguous sequence of bytes in memory. The string
is specified by two attributes: the address A of the first byte (most-significant
digit) of the string, and the length L of the string in bytes.

All bytes of a trailing numeric string, except the least-significant digit byte, must
contain an ASCII decimal digit character (0 to 9).

The representation for the high-order digits is as follows:

Digit Decimal Hex
ASCII
Character

0 48 30 0

1 49 31 1

2 50 32 2

3 51 33 3

4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

The highest-addressed byte of a trailing numeric string represents an encoding
of both the least-significant digit and the sign of the numeric string. The VAX

8–8 Basic Architecture

Basic Architecture
8.3 Data Types

numeric string instructions support any encoding; however, Compaq software
uses three encodings. These are as follows:

• Unsigned numeric encoding, in which there is no sign and the least-significant
digit contains an ASCII decimal digit character

• Zoned numeric encoding

• Overpunched numeric encoding

Because compilers of many manufacturers over the years have used the
overpunch format and various card encodings, several variations in overpunch
format have evolved. Typically, these alternate forms are accepted on input;
the normal form is generated as the output for all operations. The valid
representations of the digit and sign in each of the latter two formats is indicated
in Table 8–1 and Table 8–2.

Table 8–1 Representation of Least-Significant Digit and Sign in Zoned Numeric
Format

Digit Decimal Hex
ASCII
Character

0 48 30 0

1 49 31 1

2 50 32 2

3 51 33 3

4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

-0 112 70 p

-1 113 71 q

-2 114 72 r

-3 115 73 s

-4 116 74 t

-5 117 75 u

-6 118 76 v

-7 119 77 w

-8 120 78 x

-9 121 79 y

Basic Architecture 8–9

Basic Architecture
8.3 Data Types

Table 8–2 Representation of Least-Significant Digit and Sign in Overpunch
Format

ASCII Character

Digit Decimal Hex Norm Alt.

0 123 7B { 0[?

1 65 41 A 1

2 66 42 B 2

3 67 43 C 3

4 68 44 D 4

5 69 45 E 5

6 70 46 F 6

7 71 47 G 7

8 72 48 H 8

9 73 49 I 9

-0 125 7D }]:!

-1 74 4A J

-2 75 4B K

-3 76 4C L

-4 77 4D M

-5 78 4E N

-6 79 4F O

-7 80 50 P

-8 81 51 Q

-9 82 52 R

The length L of a trailing numeric string must be in the range 0 to 31
(0 to 31 digits). The value of a zero-length string is zero.

The address A of the string specifies the byte of the string containing the most-
significant digit. Digits of decreasing significance are assigned to increasing
addresses. Thus ‘‘123’’ is represented as follows:

ZK−1133A−GE

: A

: A+1

: A+2

: A

: A+1

: A+2

Zoned Format or Unsigned

7 04 3

3

3

3

1

2

3

Overpunch Format

7 04 3

3

3

4

1

2

3

The trailing numeric string with a value of ‘‘-123’’ is represented as follows:

8–10 Basic Architecture

Basic Architecture
8.3 Data Types

ZK−1134A−GE

: A

: A+1

: A+2

: A

: A+1

: A+2

Zoned Format

7 04 3

3

3

7

1

2

3

Overpunch Format

7 04 3

3

3

4

1

2

C

8.3.13 Leading Separate Numeric String
A leading separate numeric string is a contiguous sequence of bytes in memory.
A leading separate numeric string is specified by two attributes: the address A of
the first byte (containing the sign character), and a length L, which is the length
of the string in digits and not the length of the string in bytes. The number of
bytes in a leading separate numeric string is L+ 1.

The sign of a separate leading numeric string is stored in a separate byte. Valid
sign bytes are indicated in the following table:

Sign Decimal Hex ASCII character

+ 43 2B +

+ 32 20 {blank}

- 45 2D -

The preferred representation for ‘‘+’’ is ASCII ‘‘+’’. All subsequent bytes contain
an ASCII digit character, as indicated in the following table:

Digit Decimal Hex ASCII character

0 48 30 0

1 49 31 1

2 50 32 2

3 51 33 3

4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

The length L of a leading separate numeric string must be in the range 0 to 31 (0
to 31 digits). The value of a zero-length string is zero.

The address A of the string specifies the byte of the string containing the sign.
Digits of decreasing significance are assigned to bytes of increasing addresses.
Thus ‘‘+123’’ is represented as follows:

Basic Architecture 8–11

Basic Architecture
8.3 Data Types

ZK−1135A−GE

: A

: A+1

: A+2

7 04 3

2

3

3

B

1

2

3 3 : A+3

The leading separate numeric string with a value of ‘‘-123’’ is represented as
follows:

ZK−1136A−GE

: A

: A+1

: A+2

7 04 3

2

3

3

D

1

2

3 3 : A+3

8.3.14 Packed Decimal String
A packed decimal string is a contiguous sequence of bytes in memory. A packed
decimal string is specified by two attributes: the address A of the first byte of
the string and a length L, which is the number of digits in the string and not the
length of the string in bytes. The bytes of a packed decimal string are divided
into two, 4-bit fields (nibbles). Each nibble except the low nibble (bits 3:0) of the
last (highest-addressed) byte must contain a decimal digit. The low nibble of the
highest-addressed byte must contain a sign. The representation for the digits and
sign is indicated as follows:

Digit or Sign Decimal Hexadecimal

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

+ 10,12,14, or 15 A,C,E, or F

- 11 or 13 B or D

The preferred sign representation is 12 for ‘‘+’’ and 13 for ‘‘-’’. The length L is the
number of digits in the packed decimal string (not counting the sign); L must be

8–12 Basic Architecture

Basic Architecture
8.3 Data Types

in the range 0 to 31. When the number of digits is odd, the digits and the sign
fit into a string of bytes whose length is defined by the following equation: L/2
(integer part only) + 1. When the number of digits is even, it is required that an
extra ‘‘0’’ digit appear in the high nibble (bits 7:4) of the first byte of the string.
Again, the length in bytes of the string is L/2 + 1.

The address A of the string specifies the byte of the string containing the most-
significant digit in its high nibble. Digits of decreasing significance are assigned
to increasing byte addresses and from high nibble to low nibble within a byte.
Thus, ‘‘+123’’ has a length of 3 and is represented as follows:

ZK−1137A−GE

: A

: A+1

7 04 3

1

3

2

12

The packed decimal number ‘‘-12’’ has a length of 2 and is represented as follows:

ZK−1138A−GE

: A

: A+1

7 04 3

0

2

1

13

8.4 Processor Status Longword (PSL)
The processor status longword (PSL) consists of a set of processor state variables
associated with each process. Bits 31:16 of the PSL have privileged status. For
information on this part of the PSL, refer to the VAX Architecture Reference
Manual. Bits 15:0 of the PSL are referred to separately as the processor status
word (PSW).

The format of the PSL is as follows:

MBZ IPL MBZ T N Z V C
C
M

T
P

CUR
MOD

PRV
MOD

F
P
D

M
B
Z

I
S

D
V

F
U

I
V

ZK−1139A−GE

3130 29 28 2726 2524 23 22 2120 16 15 8 7 6 5 4 3 2 1 0

The processor status word (PSW), bits 0 to 15 of the processor status longword,
contains the following codes:

• The condition codes, which give information on the results produced by
previous VAX scalar instructions.

• The exception enable codes, which control the processor action on certain VAX
scalar exception conditions (see Appendix E).

Basic Architecture 8–13

Basic Architecture
8.4 Processor Status Longword (PSL)

The condition codes are UNPREDICTABLE when they are affected by
UNPREDICTABLE results. The VAX procedure call instructions conditionally set
the IV and DV enable bits, clear the FU enable bit, and leave the T enable bit
unchanged at procedure entry.

The PSL is saved automatically on the stack when an exception or interrupt
occurs and is saved in the process control block on a process context switch. The
PSL can also be read by the MOVPSL instruction.

The vector processor does not use PSL(IV) and PSL(FU) to enable integer
overflow and floating underflow exception checking for vector instructions. Also,
vector instruction exceptions do not affect the values of the PSL condition codes
bits.

8.4.1 C Bit
The C (carry) condition code bit, when set, indicates that the last instruction that
affected C had a carry out of the most-significant bit of the result, or a borrow
into the most-significant bit. When C is clear, no carry or borrow occurred.

8.4.2 V Bit
The V (overflow) condition code bit, when set, indicates that the last instruction
that affected V produced a result whose magnitude was too large to be properly
represented in the operand that received the result, or that there was a
conversion error. When V is clear, no overflow or conversion error occurred.

8.4.3 Z Bit
The Z (zero) condition code, when set, indicates that the last instruction that
affected Z produced a result that was zero. When Z is clear, the result was
nonzero.

8.4.4 N Bit
The N (negative) condition code bit, when set, indicates that the last instruction
that affected N produced a negative result. When N is clear, the result was
positive (or zero).

8.4.5 T Bit
The T (trace) bit, when set at the beginning of an instruction, causes the TP bit
in the Processor Status Longword to be set. When TP is set at the end of an
instruction, a trace fault is taken before the execution of the next instruction. See
Appendix E for additional information on the TP bit and the trace fault.

8.4.6 IV Bit
The IV (integer overflow) bit, when set, forces an integer overflow trap after
execution of an instruction that produced an integer result that overflowed or had
a conversion error. When IV is clear, no integer overflow trap occurs. (However,
the condition code V bit is still set.)

8.4.7 FU Bit
The FU (floating underflow) bit, when set, forces a floating underflow fault if the
result of a floating-point instruction is too small in magnitude to be represented
in the result operand. When FU is clear, no underflow fault occurs.

8–14 Basic Architecture

Basic Architecture
8.4 Processor Status Longword (PSL)

8.4.8 DV Bit
The DV (decimal overflow) bit, when set, forces a decimal overflow trap after
execution of an instruction that produced an overflowed decimal (numeric string,
or packed decimal) result or had a conversion error. When DV is clear, no trap
occurs. (However, the condition code V bit is still set.)

8.5 Permanent Exception Enables
The processor action on certain exception conditions is not controlled by bits in
the PSW. Traps or faults always result from these exception conditions.

8.5.1 Divide by Zero
A divide-by-zero trap is forced after the execution of an integer or decimal
division instruction that has a zero divisor. A fault occurs on a floating-point
division instruction that has a zero divisor.

8.5.2 Floating Overflow
A floating overflow fault is forced after the execution of a floating-point instruction
that produced a result too large to be represented in the result operand.

8.6 Instruction and Addressing Mode Formats
The following sections describe the formats for instruction opcodes and for the
operand specifiers used with the various addressing modes.

8.6.1 Opcode Formats
An instruction is specified by the byte address A of its opcode.

ZK−1140A−GE

7 0

opcode : A

The opcode may extend over 2 bytes; the length depends on the contents of the
byte at address A. If, and only if, the value of the byte is FC (hex) to FF (hex),
the opcode is 2 bytes long.

ZK−1141A−GE

8 7 0

opcode : A

15

FC − FF

8.6.2 Operand Specifiers
Each instruction takes a specific sequence of operand specifier types. An operand
specifier type conceptually has two attributes: the access type and the data type.

The access types include the following:

1. Read—The specified operand is read only.

2. Write—The specified operand is written only.

3. Modify—The specified operand is read, potentially modified, and written.
This operation is not performed under a memory interlock.

Basic Architecture 8–15

Basic Architecture
8.6 Instruction and Addressing Mode Formats

4. Address—The address of the specified operand in the form of a longword is
the actual instruction operand. The specified operand is not accessed directly,
although the instruction may subsequently use the address to access that
operand.

5. Variable bit field base address—This access type is a special variant of the
address access type. Variable bit field base address type is the same as
address access type except for register mode. In register mode, the field is
contained in register n, designated by the operand specifier (or register n+1
concatenated with register n).

6. Branch—No operand is accessed. The operand specifier itself is a branch
displacement.

Access types 1 to 5 are general mode addressing. Type 6 is branch mode
addressing.

The data types include the following:

• Byte

• Word

• Longword and F_floating (equivalent for addressing mode considerations)

• Quadword, D_floating, and G_floating (equivalent for addressing mode
considerations)

• Octaword and H_floating (equivalent for addressing mode considerations)

For the address and branch access types, which do not directly reference
operands, the data type indicates:

• Address—the operand size to be used in the address calculation in
autoincrement, autodecrement, and index modes

• Branch—the size of the branch displacement

8.7 General Addressing Mode Formats
The following sections describe the operand specifier formats for the general
addressing modes. For descriptions and examples of the use of the general
addressing modes, see Chapter 5.

In Section 8.8, Table 8–5 is a summary of general register addressing and
Table 8–6 is a summary of program counter addressing.

Notation for Describing Addressing Modes
The following notation describes the addressing modes:

+ Addition

- Subtraction

* Multiplication

<- Is replaced by

= Is defined as

’ Concatenation

Rn or R[n] The contents of register n

PC or SP The contents of register 15 or 14, respectively

8–16 Basic Architecture

Basic Architecture
8.7 General Addressing Mode Formats

(x) The contents of a location in memory whose address is x

{ } Arithmetic parentheses that indicate precedence

SEXT(x) x is sign extended to size of operand needed

ZEXT(x) x is zero extended to size of operand needed

OA Operand address

! Comment delimiter

Note

In the formal descriptions of the addressing modes, the symbol for a
register (for example, Rn or PC) always means the contents of the register
(for example, the contents of register n or the contents of register 15).
However, in text, when there is no ambiguity, the symbol for a register is
often used as the name of a register (for example, Rn may be used for the
name of register n, and PC may be used for the name of register 15).

Each general mode addressing description includes the definition of the operand
address and the specified operand. For operand specifiers of address access type,
the operand address is the actual instruction operand. For other access types,
the specified operand is the instruction operand. The branch mode addressing
description includes the definition of the branch address.

8.7.1 Register Mode
The operand specifier format is as follows:

ZK−1142A−GE

7 04 3

5 Rn

No specifier extension follows.

In register mode addressing, the operand is the contents of either register n or
(for quadword, D_floating, and certain field operands) register n+1 concatenated
with register n.

operand = Rn ! If 1 register

or

R[n+1]’Rn ! If two registers

or

R[n+3]’R[n+2]’R[n+1]’Rn ! If four registers

The assembler notation for register mode is Rn.

8.7.2 Register Deferred Mode
The operand specifier format is as follows:

ZK−1143A−GE

7 04 3

6 Rn

Basic Architecture 8–17

Basic Architecture
8.7 General Addressing Mode Formats

No specifier extension follows.

In register deferred mode addressing, the address of the operand is the contents
of register n.

OA = Rn
operand = (OA)

The assembler notation for register deferred mode is (Rn).

8.7.3 Autoincrement Mode
The operand specifier format is as follows:

ZK−1144A−GE

7 04 3

8 Rn

No specifier extension follows. If Rn denotes the PC, immediate data follows, and
the mode is termed immediate mode.

In autoincrement mode addressing, the address of the operand is the contents
of register n. After the operand address is determined, the size of the operand
in bytes (1 for byte; 2 for word; 4 for longword and F_floating; 8 for quadword,
G_floating, and D_floating; and 16 for octaword and H_floating) is added to the
contents of register n, and the contents of register n are replaced by the result.

OA = Rn

Rn <- Rn + size

operand = (OA)

The assembler notation for autoincrement mode is (Rn)+. For immediate mode,
the notation is I^#constant, where constant is the immediate data that follows.

8.7.4 Autoincrement Deferred Mode
The operand specifier format is as follows:

ZK−1145A−GE

7 04 3

9 Rn

No specifier extension follows. If Rn denotes the PC, a longword address follows
and the mode is termed absolute mode.

In autoincrement deferred mode addressing, the address of the operand is the
contents of a longword whose address is the contents of register n. After the
operand address is determined, 4 (the size in bytes of a longword address) is
added to the contents of register n and the contents of register n are replaced by
the result.

OA = (Rn)

Rn <- Rn + 4

8–18 Basic Architecture

Basic Architecture
8.7 General Addressing Mode Formats

operand = (OA)

The assembler notation for autoincrement deferred mode is @(Rn)+. For absolute
mode, the notation is @#address, where address is the longword that follows.

8.7.5 Autodecrement Mode
The operand specifier format is as follows:

ZK−1146A−GE

7 04 3

7 Rn

No specifier extension follows.

In autodecrement mode addressing, the size of the operand in bytes (1 for byte;
2 for word; 4 for longword and F_floating; 8 for quadword, G_floating, and D_
floating; and 16 for octaword and H_floating) is subtracted from the contents of
register n, and the contents of register n are replaced by the result. The updated
contents of register n are the address of the operand.

Rn <- Rn - size

OA = Rn

operand = (OA)

The assembler notation for autodecrement mode is -(Rn).

8.7.6 Displacement Mode
There are three operand specifier formats.

ZK−1147A−GE

7 04 3

10 Rn

The specifier extension is a signed byte displacement that follows the operand
specifier. This is the byte displacement mode.

ZK−1148A−GE

7 04 3

12 Rn

The specifier extension is a signed word displacement that follows the operand
specifier. This is the word displacement mode.

7 4 3 0

14 Rn

ZK−1149A−GE

Basic Architecture 8–19

Basic Architecture
8.7 General Addressing Mode Formats

The specifier extension is a longword displacement that follows the operand
specifier. This is the longword displacement mode.

In displacement mode addressing, the displacement (after it is sign extended to
32 bits, if it is byte or word displacement) is added to the contents of register n,
and the result is the operand address.

OA = Rn + SEXT(displ) ! If byte or word displacement

or

Rn + displ ! If longword displacement

operand = (OA)

If Rn denotes PC, the updated contents of the PC are used. The address in the
PC (the updated contents) is the address of the first byte beyond the specifier
extension.

The assembler notation for byte, word, and long displacement mode is B^D(Rn),
W^D(Rn), and L^D(Rn), respectively, where D = displacement.

8.7.7 Displacement Deferred Mode
There are three operand specifier formats.

7 4 3 0

11 Rn

ZK−1150A−GE

The specifier extension is a signed byte displacement that follows the operand
specifier. This is the byte displacement deferred mode.

7 4 3 0

13 Rn

ZK−1151A−GE

The specifier extension is a signed word displacement that follows the operand
specifier. This is the word displacement deferred mode.

7 4 3 0

15 Rn

ZK−1152A−GE

The specifier extension is a longword displacement that follows the operand
specifier. This is the longword displacement deferred mode.

In displacement deferred mode addressing, the displacement (after it is sign
extended to 32 bits, if it is byte or word displacement) is added to the contents
of register n, and the result is the address of a longword whose contents are the
operand address.

8–20 Basic Architecture

Basic Architecture
8.7 General Addressing Mode Formats

OA = (Rn + SEXT(displ)) ! If byte or word displacement

or

(Rn + displ) ! If longword displacement

operand = (OA)

If Rn denotes PC, the updated contents of the PC are used. The address in the
PC (the updated contents) is the address of the first byte beyond the specifier
extension.

The assembler notation for byte, word, and longword displacement deferred mode
is @B^D(Rn), @W^D(Rn), and @L^D(Rn), respectively, where D = displacement.

8.7.8 Literal Mode
The operand specifier format is as follows:

7 6 5 0

0 literal

ZK−1153A−GE

No specifier extension follows.

For operands of data type byte, word, longword, quadword, and octaword, the
operand is the zero extension of the 6-bit literal field.

operand = ZEXT(literal)

Thus, for these data types, you may use literal mode for values in the range 0 to
63.

For operands of data type F_floating, G_floating, D_floating, and H_floating, the
6-bit literal field is composed of two, 3-bit fields. These fields are illustrated in
the following diagram, where exp is exponent and fra is fraction:

5 3 2 0

exp fra

ZK−1154A−GE

You use the exponent and fraction fields to form an F_floating or D_floating
operand as follows:

ZK−1155A−GE

15 14 7 6 4 3

0

0

0

0

0

:A + 2

:A + 4

:A + 6

128 + exp fra

0

Note that bits 63:32 are not present in an F_floating operand.

Basic Architecture 8–21

Basic Architecture
8.7 General Addressing Mode Formats

You use the exponent and fraction fields to form a G_floating operand as follows:

ZK−1156A−GE

15 14 4 3 1 0

0

0

0

0

0

: A + 2

: A + 4

: A + 6

1024 + exp fra

You use the exponent and fraction fields to form an H_floating operand as follows:

ZK−1157A−GE

15 14

0

0

0

0

:A + 2

:A + 4

:A + 6

16,384 + exp

fra

0

0

0

0

0

:A + 8

:A + 10

:A + 12

:A + 14

The range of values available is given in Table 8–3 and Table 8–4 in both decimal
and rational number notation.

Table 8–3 Floating-Point Literals Expressed as Decimal Numbers

Exponent 0 1 2 3 4 5 6 7

0 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375

1 1.0 1.125 1.25 1.37 1.5 1.625 1.75 1.875

2 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75

3 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

4 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

5 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

6 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0

7 64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0

8–22 Basic Architecture

Basic Architecture
8.7 General Addressing Mode Formats

Table 8–4 Floating-Point Literals Expressed as Rational Numbers

Exponent 0 1 2 3 4 5 6 7

0 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16

1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8

2 2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4

3 4 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2

4 8 9 10 11 12 13 14 15

5 16 18 20 22 24 26 28 30

6 32 36 40 44 48 52 56 60

7 64 72 80 88 96 104 112 120

The assembler notation for literal mode is S^#literal.

8.7.9 Index Mode
The operand specifier format is as follows:

ZK−1158A−GE

15 08 7 4 3

4 Rx

Bits 15:8 contain a second operand specifier (termed the base operand specifier)
for any of the addressing modes except register, literal, or index. The specification
of register, literal, or index addressing mode results in an illegal addressing
mode fault (see Appendix E). If the base operand specifier requires it, a specifier
extension immediately follows. The base operand specifier is subject to the same
restrictions as would apply if it were used alone. If the use of some particular
specifier is illegal (that is, causes a fault or UNPREDICTABLE behavior) under
some circumstances, then that specifier is similarly illegal as a base operand
specifier in index mode under the same circumstances.

The operand to be specified by index mode addressing is termed the primary
operand. You normally use the base operand specifier to determine an operand
address. This address is termed the base operand address (BOA). The address
of the primary operand specified is determined by multiplying the contents of
the index register x by the size of the primary operand in bytes (1 for byte; 2 for
word; 4 for longword and F_floating; 8 for quadword, D_floating, and G_floating;
and 16 for octaword and H_floating), adding BOA, and taking the result.

OA = BOA + {size * (Rx)}

operand = (OA)

If the base operand specifier is for autoincrement or autodecrement mode, the
increment or decrement size is the size in bytes of the primary operand.

Certain restrictions are placed on the index register x. You cannot use the PC
as an index register. If you use it, a reserved addressing mode fault occurs (see
Appendix E). If the base operand specifier is for an addressing mode that results
in register modification (that is, autoincrement mode, autodecrement mode, or
autoincrement deferred mode), the same register cannot be the index register. If
it is, the primary operand address is UNPREDICTABLE.

Basic Architecture 8–23

Basic Architecture
8.7 General Addressing Mode Formats

The names of the addressing modes resulting from index mode addressing are
formed by adding the suffix ‘‘indexed’’ to the addressing mode of the base operand
specifier. The following list gives the names and assembler notation (the index
register is designated Rx to distinguish it from the register Rn in the base
operand specifier):

• Register deferred indexed— (Rn)[Rx]

• Autoincrement indexed— (Rn)+[Rx]
or
Immediate indexed— I^#constant[Rx] (Immediate indexed is recognized by
the assembler, but is not generally useful. Note that the operand address is
independent of the value of the constant.)

• Autoincrement deferred indexed— @(Rn)+[Rx]
or
Absolute indexed— @#address[Rx]

• Autodecrement indexed— -(Rn)[Rx]

• Byte, word, or longword displacement indexed— B^D(Rn)[Rx],W^D(Rn)[Rx],
or L^D(Rn)[Rx]

• Byte, word, or longword displacement deferred indexed—
@B^D(Rn)[Rx],@W^D(Rn)[Rx], or @L^D(Rn)[Rx]

8.8 Summary of General Mode Addressing
This section provides summaries of general register and program counter (PC)
addressing.

Table 8–5 is a summary of general register addressing and Table 8–6 is a
summary of PC addressing.

8.8.1 General Register Addressing
The general register addressing format is as follows:

7 4 3 0

mode reg

ZK−1159A−GE

8–24 Basic Architecture

Basic Architecture
8.8 Summary of General Mode Addressing

Table 8–5 General Register Addressing

Hex Dec Name Assembler r mw a v PC SP
AP
FP

Can Be
Indexed?

0–3 0–3 Literal S^#literal y f f f f — — — f

4 4 Indexed i[Rx] y y y y y f y y f

5 5 Register Rn y y y f y u uq uo f

6 6 Register deferred (Rn) y y y y y u y y y

7 7 Autodecrement -(Rn) y y y y y u y y ux

8 8 Autoincrement (Rn)+ y y y y y p y y ux

9 9 Autoincrement @(Rn)+ y y y y y p y y ux

deferred

A 10 Byte displacement B^D(Rn) y y y y y p y y y

B 11 Byte displacement @B^D(Rn) y y y y y p y y y

deferred

C 12 Word displacement W^D(Rn) y y y y y p y y y

D 13 Word displacement @W^D(Rn) y y y y y p y y y

deferred

E 14 Longword displacement L^D(Rn) y y y y y p y y y

F 15 Longword displacement @L^D(Rn) y y y y y p y y y

deferred

Key:

D—Displacement
i—Any indexable addressing mode
- —Logically impossible
f—Reserved addressing mode fault
p—Program Counter addressing
u—UNPREDICTABLE
uq—UNPREDICTABLE for quadword, octaword, D_floating, H_floating, and G_floating, (and field if position and size
greater than 32)
uo—UNPREDICTABLE for octaword and H_floating
ux—UNPREDICTABLE for index register same as base register
y—Yes, always valid addressing mode
r—Read access
m—Modify access
w—Write access
a—Address access
v—Field access

8.8.2 Program Counter Addressing
The program counter addressing format is as follows:

mode 1 1 1 1

7 4 3 2 1 0

ZK−1326A−GE

Basic Architecture 8–25

Basic Architecture
8.8 Summary of General Mode Addressing

Table 8–6 Program Counter Addressing

Hex Dec Name Assembler r mw a v Can Be Indexed?

8 8 Immediate I^#constant y u u y y u

9 9 Absolute @#address y y y y y y

A 10 Byte relative B^address y y y y y y

B 11 Byte relative @B^address y y y y y y

deferred

C 12 Word relative W^address y y y y y y

D 13 Word relative @W^address y y y y y y

deferred

E 14 Longword L^address y y y y y y

relative

F 15 Longword @L^address y y y y y y

relative deferred

Key:

u—UNPREDICTABLE
y—Yes, always valid addressing mode
r—Read access
m—Modify access
w—Write access
a—Address access
v—Field access

8.9 Branch Mode Addressing Formats
There are two operand specifier formats.

7 0

displ

ZK−1160A−GE

The operand specifier is a signed byte displacement.

15 0

displ

ZK−1161A−GE

The operand specifier is a signed word displacement.

In branch displacement addressing, the byte or word displacement is sign
extended to 32 bits and added to the updated address in the PC. The updated
address in the PC is the location of the first byte beyond the operand specifier.
The result is the branch address A.

A = PC + SEXT(displ)

The assembler notation for byte and word branch displacement addressing is A,
where A is the branch address. Note that you must use the branch address, and
not the displacement.

8–26 Basic Architecture

9
VAX Instruction Set

The following sections describe the native-mode instruction set. The instructions
are divided into groups according to their function and are listed alphabetically
within each group.

9.1 Introduction to the VAX Instruction Set
This section describes the instructions generally used by all software across all
implementations of the VAX architecture.

You can find a more complete description of the instruction set in the VAX
Architecture Reference Manual. The VAX Architecture Reference Manual also
contains information on instructions that are generally used by privileged
software and are specific to specialized portions of the VAX architecture, such
as memory management, interrupts and exceptions, process dispatching, and
processor registers.

A list of instructions and opcode assignments appears in Appendix D.

9.2 Instruction Descriptions
The instruction set is divided into the following 12 major sections:

• Integer arithmetic and logical

• Address

• Variable-length bit field

• Control

• Procedure call

• Miscellaneous

• Queue

• Floating point

• Character string

• Cyclic redundancy check (CRC)

• Decimal string

• Edit

Within each major section, instructions that are closely related are combined into
groups and described together. The instruction group description is composed of
the following:

• The group name.

VAX Instruction Set 9–1

VAX Instruction Set
9.2 Instruction Descriptions

• The format of each instruction in the group, including the name and type
of each instruction operand specifier and the order in which it appears in
memory. Operand specifiers from left to right appear in increasing memory
addresses.

• The operation of the instruction. The operation is given as a sequence of
pseudocode statements in an ALGOL-like syntax. Each VAX processor may
implement the instruction in different or more efficient ways, but each
processor gives results consistent with the pseudocode, English descriptions,
and notes.

• The effect on condition codes.

• Exceptions specific to the instruction. Exceptions that are generally possible
for all instructions (for example, illegal or reserved addressing mode, T-bit,
and memory management violations) are not listed.

• The opcodes, mnemonics, and names of each instruction in the group. The
opcodes are given in hexadecimal.

• A description, in English, of the instruction.

• Optional notes on the instruction and programming examples.

Operand Specifier Notation
Operand specifiers are described as follows:

name . access-type data-type

name
A mnemonic name for the operand in the context of the instruction. The name is
often abbreviated.

access-type
A letter denoting the operand specifier access type:

a Calculate the effective address of the specified operand. Address is returned in a
longword that is the actual instruction operand. Context of address calculation
is given by data-type; that is, size to be used in autoincrement, autodecrement,
and indexing.

b No operand reference. Operand specifier is a branch displacement. Size of branch
displacement is given by data-type.

m Operand is read, potentially modified, and written. Note that this is not an
indivisible memory operation. Also note that if the operand is not actually
modified, it may not be written back. However, modify type operands are always
checked for both read and write accessibility.

r Operand is read only.

v Calculate the effective address of the specified operand. If the effective address
is in memory, the address is returned in a longword that is the actual instruction
operand. Context of address calculation is given by data-type. If the effective
address is Rn, the operand is in Rn or R[n+1]’Rn.

w Operand is written only.

data-type
A letter denoting the data type of the operand:

b Byte

d D_floating

9–2 VAX Instruction Set

VAX Instruction Set
9.2 Instruction Descriptions

f F_floating

g G_floating

h H_floating

l Longword

o Octaword

q Quadword

w Word

x First data type specified by instruction

y Second data type specified by instruction

Operation Description Notation
The operation of an instruction is given as a sequence of control and assignment
statements in an ALGOL-like syntax. No attempt is made to formally define
the syntax; it is assumed to be familiar to the reader. The notation used is an
extension of the notation introduced in Section 8.7.

+ Addition

- Subtraction, unary minus

* Multiplication

/ Division (quotient only)

** Exponentiation

’ Concatenation

<- Is replaced by

= Is defined as

Rn or R[n] Contents of register Rn

PC, SP, FP, or AP The contents of register R15, R14, R13, or R12,
respectively

PSW The contents of the processor status word

PSL The contents of the processor status longword

(x) Contents of memory location whose address is x

(x)+ Contents of memory location whose address is x; x
incremented by the size of operand referenced at x

-(x) x decremented by size of operand to be referenced at x;
contents of memory location whose address is x

<x:y> A modifier that delimits an extent from bit position x
to bit position y inclusive

<x1,x2,...,xn> A modifier that enumerates bits x1,x2,...,xn

{ } Arithmetic parentheses used to indicate precedence

AND Logical AND

OR Logical OR

XOR Logical XOR

NOT Logical (one’s) complement

LSS Less than signed

LSSU Less than unsigned

LEQ Less than or equal signed

VAX Instruction Set 9–3

VAX Instruction Set
9.2 Instruction Descriptions

LEQU Less than or equal unsigned

EQL Equal signed

EQLU Equal unsigned

NEQ Not equal signed

NEQU Not equal unsigned

GEQ Greater than or equal signed

GEQU Greater than or equal unsigned

GTR Greater than signed

GTRU Greater than unsigned

SEXT(x) x is sign extended to size of operand needed

ZEXT(x) x is zero extended to size of operand needed

REM(x,y) Remainder of x divided by y, such that x/y and
REM(x,y) have the same sign

MINU(x,y) Minimum unsigned of x and y

MAXU(x,y) Maximum unsigned of x and y

Use the following conventions:

• Other than alterations caused by (x)+, or -(x), and the advancement of the
program counter (PC), only operands or portions of operands appearing on the
left side of assignment statements are affected.

• No operator precedence is assumed, except that replacement (<-) has the
lowest precedence. Precedence is indicated explicitly by { }.

• All arithmetic, logical, and relational operators are defined in the context
of their operands. For example, ‘‘+’’ applied to floating operands means
a floating add, while ‘‘+’’ applied to byte operands is an integer byte add.
Similarly, ‘‘LSS’’ is a floating comparison when applied to floating operands,
while ‘‘LSS’’ is an integer byte comparison when applied to byte operands.

• Instruction operands are evaluated according to the operand specifier
conventions (see Chapter 8). The order in which operands appear in the
instruction description has no effect on the order of evaluation.

• Condition codes generally indicate the effect of an operation on the value
of actual stored results, not on ‘‘true’’ results (which might be generated
internally to greater precision). For example, two positive integers can be
added together and the sum stored as a negative value because of overflow.
The condition codes indicate a negative value even though the ‘‘true’’ result is
clearly positive.

9–4 VAX Instruction Set

VAX Instruction Set
9.2 Instruction Descriptions

9.2.1 Integer Arithmetic and Logical Instructions
The following instructions are described in this section:

Description and Opcode
Number of
Instructions

1. Add Aligned Word
ADAWI add.rw, sum.mw

1

2. Add 2 Operand
ADD{B,W,L}2 add.rx, sum.mx

3

3. Add 3 Operand
ADD{B,W,L}3 add1.rx, add2.rx, sum.wx

3

4. Add with Carry
ADWC add.rl, sum.ml

1

5. Arithmetic Shift
ASH{L,Q} cnt.rb, src.rx, dst.wx

2

6. Bit Clear 2 Operand
BIC{B,W,L}2 mask.rx, dst.mx

3

7. Bit Clear 3 Operand
BIC{B,W,L}3 mask.rx, src.rx, dst.wx

3

8. Bit Set 2 Operand
BIS{B,W,L}2 mask.rx, dst.mx

3

9. Bit Set 3 Operand
BIS{B,W,L}3 mask.rx, src.rx, dst.wx

3

10. Bit Test
BIT{B,W,L} mask.rx, src.rx

3

11. Clear
CLR{B,W,L,Q,O} dst.wx

5

12. Compare
CMP{B,W,L} src1.rx, src2.rx

3

13. Convert
CVT{B,W,L}{B,W,L} src.rx, dst.wy
All pairs except BB,WW,LL

6

14. Decrement
DEC{B,W,L} dif.mx

3

15. Divide 2 Operand
DIV{B,W,L}2 divr.rx, quo.mx

3

16. Divide 3 Operand
DIV{B,W,L}3 divr.rx, divd.rx, quo.wx

3

17. Extended Divide
EDIV divr.rl, divd.rq, quo.wl, rem.wl

1

18. Extended Multiply
EMUL mulr.rl, muld.rl, add.rl, prod.wq

1

19. Increment
INC{B,W,L} sum.mx

3

20. Move Complemented
MCOM{B,W,L} src.rx, dst.wx

3

21. Move Negated
MNEG{B,W,L} src.rx, dst.wx

3

22. Move
OV{B,W,L,Q} src.rx, dst.wx

4

VAX Instruction Set 9–5

VAX Instruction Set
9.2 Instruction Descriptions

Description and Opcode
Number of
Instructions

23. Move Zero-Extended
MOVZ{BW,BL,WL} src.rx, dst.wy

3

24. Multiply 2 Operand
MUL{B,W,L}2 mulr.rx, prod.mx

3

25. Multiply 3 Operand
MUL{B,W,L}3 mulr.rx, muld.rx, prod.wx

3

26. Push Long
PUSHL src.rl, {-(SP).wl}

1

27. Rotate Long
ROTL cnt.rb, src.rl, dst.wl

1

28. Subtract with Carry
SBWC sub.rl, dif.ml

1

29. Subtract 2 Operand
SUB{B,W,L}2 sub.rx, dif.mx

3

30. Subtract 3 Operand
SUB{B,W,L}3 sub.rx, min.rx, dif.wx

3

31. Test
TST{B,W,L} src.rx

3

32. Exclusive OR 2 Operand
XOR{B,W,L}2 mask.rx, dst.mx

3

33. Exclusive OR 3 Operand
XOR{B,W,L}3 mask.rx, src.rx, dst.wx

3

9–6 VAX Instruction Set

VAX Instruction Set
ADAWI

ADAWI

Add Aligned Word Interlocked

Format

opcode add.rw, sum.mw

Condition Codes

N <— sum LSS 0;
Z <— sum EQL 0;
V <— {integer overflow};
C <— {carry from most-significant bit};

Exceptions

reserved operand fault
integer overflow

Opcodes

58 ADAWI Add Aligned Word Interlocked

Description

The addend operand is added to the sum operand, and the sum operand is
replaced by the result. If the sum operand is contained in memory, then the
operation is interlocked against interlocked operations to the same address from
other processors. The destination must be aligned on a word boundary; that is,
bit 0 of the address of the sum operand must be zero. If it is not, a reserved
operand fault is taken.

Notes

1. Integer overflow occurs if the input operands to the add have the same
sign, and the result has the opposite sign. On overflow, the sum operand is
replaced by the low-order bits of the true result.

2. If the addend and the sum operands overlap, the result and the condition
codes are UNPREDICTABLE.

VAX Instruction Set 9–7

VAX Instruction Set
ADD

ADD

Add

Format

2operand: opcode add.rx, sum.mx

3operand: opcode add1.rx, add2.rx, sum.wx

Condition Codes

N <— sum LSS 0;
Z <— sum EQL 0;
V <— {integer overflow};
C <— {carry from most-significant bit};

Exceptions

integer overflow

Opcodes

80 ADDB2 Add Byte 2 Operand
81 ADDB3 Add Byte 3 Operand
A0 ADDW2 Add Word 2 Operand
A1 ADDW3 Add Word 3 Operand
C0 ADDL2 Add Long 2 Operand
C1 ADDL3 Add Long 3 Operand

Description

In 2 operand format, the addend operand is added to the sum operand and
the sum operand is replaced by the result. In 3 operand format, the addend 1
operand is added to the addend 2 operand and the sum operand is replaced by
the result.

Note
Integer overflow occurs if the input operands to the add have the same sign and
the result has the opposite sign. On overflow, the sum operand is replaced by the
low-order bits of the true result.

9–8 VAX Instruction Set

VAX Instruction Set
ADWC

ADWC

Add with Carry

Format

opcode add.rl, sum.ml

Condition Codes

N <— sum LSS 0;
Z <— sum EQL 0;
V <— {integer overflow};
C <— {carry from most-significant bit};

Exceptions

integer overflow

Opcodes

D8 ADWC Add with Carry

Description

The contents of the condition code C-bit and the addend operand are added to the
sum operand and the sum operand is replaced by the result.

Notes

1. On overflow, the sum operand is replaced by the low-order bits of the true
result.

2. The two additions in the operation are performed simultaneously.

VAX Instruction Set 9–9

VAX Instruction Set
ASH

ASH

Arithmetic Shift

Format

opcode cnt.rb, src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— {integer overflow};
C <— 0;

Exceptions

integer overflow

Opcodes

78 ASHL Arithmetic Shift Long
79 ASHQ Arithmetic Shift Quad

Description

The source operand is arithmetically shifted by the number of bits specified by
the count operand and the destination operand is replaced by the result. The
source operand is unaffected. A positive count operand shifts to the left, bringing
zeros into the least significant bit. A negative count operand shifts to the right,
bringing in copies of the most significant (sign) bit into the most significant bit.
A zero count operand replaces the destination operand with the unshifted source
operand.

Notes

1. Integer overflow occurs on a left shift if any bit shifted into the sign bit
position differs from the sign bit of the source operand.

2. If cnt GTR 32 (ASHL) or cnt GTR 64 (ASHQ), the destination operand is
replaced by zero.

3. If cnt LEQ -31 (ASHL) or cnt LEQ -63 (ASHQ), all the bits of the destination
operand are copies of the sign bit of the source operand.

9–10 VAX Instruction Set

VAX Instruction Set
BIC

BIC

Bit Clear

Format

2operand: opcode mask.rx, dst.mx

3operand: opcode mask.rx, src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

8A BICB2 Bit Clear Byte
8B BICB3 Bit Clear Byte
AA BICW2 Bit Clear Word
AB BICW3 Bit Clear Word
CA BICL2 Bit Clear Long
CB BICL3 Bit Clear Long

Description

In 2 operand format, the result of the logical AND on the destination operand and
the one’s complement of the mask operand replaces the destination operand. In 3
operand format, the result of the logical AND on the source operand and the one’s
complement of the mask operand replaces the destination operand.

VAX Instruction Set 9–11

VAX Instruction Set
BIS

BIS

Bit Set

Format

2operand: opcode mask.rx, dst.mx

3operand: opcode mask.rx, src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

88 BISB2 Bit Set Byte 2 Operand
89 BISB3 Bit Set Byte 3 Operand
A8 BISW2 Bit Set Word 2 Operand
A9 BISW3 Bit Set Word 3 Operand
C8 BISL2 Bit Set Long 2 Operand
C9 BISL3 Bit Set Long 3 Operand

Description

In 2 operand format, the result of the logical OR on the mask operand and the
destination operand replaces the destination operand. In 3 operand format, the
result of the logical OR on the mask operand and the source operand replaces the
destination operand.

9–12 VAX Instruction Set

VAX Instruction Set
BIT

BIT

Bit Test

Format

opcode mask.rx, src.rx

Condition Codes

N <— tmp LSS 0;
Z <— tmp EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

93 BITB Bit Test Byte
B3 BITW Bit Test Word
D3 BITL Bit Test Long

Description

The logical AND is performed on the mask operand and the source operand. Both
operands are unaffected. The only action is to modify condition codes.

VAX Instruction Set 9–13

VAX Instruction Set
CLR

CLR

Clear

Format

opcode dst.wx

Condition Codes

N <— 0;
Z <— 1;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

94 CLRB Clear Byte
B4 CLRW Clear Word
D4 CLRL Clear Long
7C CLRQ Clear Quad
7CFD CLRO Clear Octa

Description

The destination operand is replaced by zero.

Note
CLRx dst is equivalent to MOVx S^#0, dst, but is 1 byte shorter.

9–14 VAX Instruction Set

VAX Instruction Set
CMP

CMP

Compare

Format

opcode src1.rx, src2.rx

Condition Codes

N <— src1 LSS src2;
Z <— src1 EQL src2;
V <— 0;
C <— src1 LSSU src2;

Exceptions

None.

Opcodes

91 CMPB Compare Byte
B1 CMPW Compare Word
D1 CMPL Compare Long

Description

The source 1 operand is compared with the source 2 operand. The only action is
to modify the condition codes.

VAX Instruction Set 9–15

VAX Instruction Set
CVT

CVT

Convert

Format

opcode src.rx, dst.wy

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— {integer overflow};
C <— 0;

Exceptions

integer overflow

Opcodes

99 CVTBW Convert Byte to Word
98 CVTBL Convert Byte to Long
33 CVTWB Convert Word to Byte
32 CVTWL Convert Word to Long
F6 CVTLB Convert Long to Byte
F7 CVTLW Convert Long to Word

Description

The source operand is converted to the data type of the destination operand and
the destination operand is replaced by the result. Conversion of a shorter data
type to a longer one is done by sign extension; conversion of longer data type to a
shorter one is done by truncation of the higher-numbered (most significant) bits.

Note
Integer overflow occurs if any truncated bits of the source operand are not equal
to the sign bit of the destination operand.

9–16 VAX Instruction Set

VAX Instruction Set
DEC

DEC

Decrement

Format

opcode dif.mx

Condition Codes

N <— dif LSS 0;
Z <— dif EQL 0;
V <— {integer overflow};
C <— {borrow into most significant bit};

Exceptions

integer overflow

Opcodes

97 DECB Decrement Byte
B7 DECW Decrement Word
D7 DECL Decrement Long

Description

One is subtracted from the difference operand, and the difference operand is
replaced by the result.

Notes

1. Integer overflow occurs if the largest negative integer is decremented. On
overflow, the difference operand is replaced by the largest positive integer.

2. DECx dif is equivalent to SUBx S^#1, dif, but is 1 byte shorter.

VAX Instruction Set 9–17

VAX Instruction Set
DIV

DIV

Divide

Format

2operand: opcode divr.rx, quo.mx

3operand: opcode divr.rx, divd.rx, quo.wx

Condition Codes

N <— quo LSS 0;
Z <— quo EQL 0;
V <— {integer overflow} OR {divr EQL 0};
C <— 0;

Exceptions

integer overflow
divide by zero

Opcodes

86 DIVB2 Divide Byte 2 Operand
87 DIVB3 Divide Byte 3 Operand
A6 DIVW2 Divide Word 2 Operand
A7 DIVW3 Divide Word 3 Operand
C6 DIVL2 Divide Long 2 Operand
C7 DIVL3 Divide Long 3 Operand

Description

In 2 operand format, the quotient operand is divided by the divisor operand, and
the quotient operand is replaced by the result. In 3 operand format, the dividend
operand is divided by the divisor operand, and the quotient operand is replaced
by the result.

Notes

1. Division is performed so that the remainder has the same sign as the
dividend; that is, the result is truncated toward zero. (Note that a remainder
of zero is not saved.)

2. Integer overflow occurs only if the largest negative integer is divided by -1.
On overflow, operands are affected as in note 3 following.

3. If the divisor operand is zero, then in 2 operand format the quotient operand
is not affected; in 3 operand format the quotient operand is replaced by the
dividend operand.

9–18 VAX Instruction Set

VAX Instruction Set
EDIV

EDIV

Extended Divide

Format

opcode divr.rl, divd.rq, quo.wl, rem.wl

Condition Codes

N <— quo LSS 0;
Z <— quo EQL 0;
V <— {integer overflow} OR {divr EQL 0};
C <— 0;

Exceptions

integer overflow
divide by zero

Opcodes

7B EDIV Extended Divide

Description

The dividend operand is divided by the divisor operand, the quotient operand
is replaced by the quotient, and the remainder operand is replaced by the
remainder.

Notes

1. The division is performed such that the remainder operand (unless it is zero)
has the same sign as the dividend operand.

2. On overflow, the operands are affected as in note 3, following.

3. If the divisor operand is zero, then the quotient operand is replaced by bits
31:0 of the dividend operand, and the remainder operand is replaced by zero.

VAX Instruction Set 9–19

VAX Instruction Set
EMUL

EMUL

Extended Multiply

Format

opcode mulr.rl, muld.rl, add.rl, prod.wq

Condition Codes

N <— prod LSS 0;
Z <— prod EQL 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

7A EMUL Extended Multiply

Description

The multiplicand operand is multiplied by the multiplier operand, giving a
double-length result. The addend operand is sign extended to double length and
added to the result. The product operand is replaced by the final result.

9–20 VAX Instruction Set

VAX Instruction Set
INC

INC

Increment

Format

opcode sum.mx

Condition Codes

N <— sum LSS 0;
Z <— sum EQL 0;
V <— {integer overflow};
C <— {carry from most significant bit};

Exceptions

integer overflow

Opcodes

96 INCB Increment Byte
B6 INCW Increment Word
D6 INCL Increment Long

Description

One is added to the sum operand and the sum operand is replaced by the result.

Notes

1. Arithmetic overflow occurs if the largest positive integer is incremented. On
overflow, the sum operand is replaced by the largest negative integer.

2. INCx sum is equivalent to ADDx S^#1, sum, but is 1 byte shorter.

VAX Instruction Set 9–21

VAX Instruction Set
MCOM

MCOM

Move Complemented

Format

opcode src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

92 MCOMB Move Complemented Byte
B2 MCOMW Move Complemented Word
D2 MCOML Move Complemented Long

Description

The destination operand is replaced by the one’s complement of the source
operand.

9–22 VAX Instruction Set

VAX Instruction Set
MNEG

MNEG

Move Negated

Format

opcode src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— {integer overflow};
C <— dst NEQ 0;

Exceptions

integer overflow

Opcodes

8E MNEGB Move Negated Byte
AE MNEGW Move Negated Word
CE MNEGL Move Negated Long

Description

The destination operand is replaced by the negative of the source operand.

Note
Integer overflow occurs if the source operand is the largest negative integer
(which has no positive counterpart). On overflow, the destination operand is
replaced by the source operand.

VAX Instruction Set 9–23

VAX Instruction Set
MOV

MOV

Move

Format

opcode src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

90 MOVB Move Byte
B0 MOVW Move Word
D0 MOVL Move Long
7D MOVQ Move Quad
7DFD MOVO Move Octa

Description

The destination operand is replaced by the source operand.

9–24 VAX Instruction Set

VAX Instruction Set
MOVZ

MOVZ

Move Zero-Extended

Format

opcode src.rx, dst.wy

Condition Codes

N <— 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

9B MOVZBW Move Zero-Extended Byte to Word
9A MOVZBL Move Zero-Extended Byte to Long
3C MOVZWL Move Zero-Extended Word to Long

Description

For MOVZBW, bits 7:0 of the destination operand are replaced by the source
operand; bits 15:8 are replaced by zero. For MOVZBL, bits 7:0 of the destination
operand are replaced by the source operand; bits 31:8 are replaced by zero.
For MOVZWL, bits 15:0 of the destination operand are replaced by the source
operand; bits 31:16 are replaced by zero.

VAX Instruction Set 9–25

VAX Instruction Set
MUL

MUL

Multiply

Format

2operand: opcode mulr.rx, prod.mx

3operand: opcode mulr.rx, muld.rx, prod.wx

Condition Codes

N <— prod LSS 0;
Z <— prod EQL 0;
V <— {integer overflow};
C <— 0;

Exceptions

integer overflow

Opcodes

84 MULB2 Multiply Byte 2 Operand
85 MULB3 Multiply Byte 3 Operand
A4 MULW2 Multiply Word 2 Operand
A5 MULW3 Multiply Word 3 Operand
C4 MULL2 Multiply Long 2 Operand
C5 MULL3 Multiply Long 3 Operand

Description

In 2 operand format, the product operand is multiplied by the multiplier operand,
and the product operand is replaced by the low half of the double-length result.
In 3 operand format, the multiplicand operand is multiplied by the multiplier
operand, and the product operand is replaced by the low half of the double-length
result.

Note
Integer overflow occurs if the high half of the double-length result is not equal to
the sign extension of the low half of the double-length result.

9–26 VAX Instruction Set

VAX Instruction Set
PUSHL

PUSHL

Push Long

Format

opcode src.rl

Condition Codes

N <— src LSS 0;
Z <— src EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

DD PUSHL Push Long

Description

The longword source operand is pushed on the stack.

Notes

1. PUSHL is equivalent to MOVL src, -(SP), but is 1 byte shorter.

2. POPL is not a VAX instruction. However, the assembler recognizes the
inclusion of POPL destination in a program, for which it generates the code
for MOVL (SP)+,destination.

VAX Instruction Set 9–27

VAX Instruction Set
ROTL

ROTL

Rotate Long

Format

opcode cnt.rb, src.rl, dst.wl

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

9C ROTL Rotate Long

Description

The source operand is rotated logically by the number of bits specified by the
count operand, and the destination operand is replaced by the result. The source
operand is unaffected. A positive count operand rotates to the left. A negative
count operand rotates to the right. A zero count operand replaces the destination
operand with the source operand.

9–28 VAX Instruction Set

VAX Instruction Set
SBWC

SBWC

Subtract with Carry

Format

opcode sub.rl, dif.ml

Condition Codes

N <— dif LSS 0;
Z <— dif EQL 0;
V <— {integer overflow};
C <— {borrow into most significant bit};

Exceptions

integer overflow

Opcodes

D9 SBWC Subtract with carry

Description

The subtrahend operand and the contents of the condition code C-bit are
subtracted from the difference operand, and the difference operand is replaced by
the result.

Notes

1. On overflow, the difference operand is replaced by the low-order bits of the
true result.

2. The two subtractions in the operation are performed simultaneously.

VAX Instruction Set 9–29

VAX Instruction Set
SUB

SUB

Subtract

Format

2operand: opcode sub.rx, dif.mx

3operand: opcode sub.rx, min.rx, dif.wx

Condition Codes

N <— dif LSS 0;
Z <— dif EQL 0;
V <— {integer overflow};
C <— {borrow into most significant bit};

Exceptions

integer overflow

Opcodes

82 SUBB2 Subtract Byte 2 Operand
83 SUBB3 Subtract Byte 3 Operand
A2 SUBW2 Subtract Word 2 Operand
A3 SUBW3 Subtract Word 3 Operand
C2 SUBL2 Subtract Long 2 Operand
C3 SUBL3 Subtract Long 3 Operand

Description

In 2 operand format, the subtrahend operand is subtracted from the difference
operand, and the difference operand is replaced by the result. In 3 operand
format, the subtrahend operand is subtracted from the minuend operand, and the
difference operand is replaced by the result.

Note
Integer overflow occurs if the input operands to the subtract are of different
signs and the sign of the result is the sign of the subtrahend. On overflow, the
difference operand is replaced by the low-order bits of the true result.

9–30 VAX Instruction Set

VAX Instruction Set
TST

TST

Test

Format

opcode src.rx

Condition Codes

N <— src LSS 0;
Z <— src EQL 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

95 TSTB Test Byte
B5 TSTW Test Word
D5 TSTL Test Long

Description

The condition codes are modified according to the value of the source operand.

Note
The operand src is equivalent to CMPx src, S^#0, but is 1 byte shorter.

VAX Instruction Set 9–31

VAX Instruction Set
XOR

XOR

Exclusive OR

Format

2operand: opcode mask.rx, dst.mx

3operand: opcode mask.rx, src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

8C XORB2 Exclusive OR Byte 2 Operand
8D XORB3 Exclusive OR Byte 3 Operand
AC XORW2 Exclusive OR Word 2 Operand
AD XORW3 Exclusive OR Word 3 Operand
CC XORL2 Exclusive OR Long 2 Operand
CD XORL3 Exclusive OR Long 3 Operand

Description

In 2 operand format, the result of the logical XOR on the mask operand and the
destination operand replaces the destination operand. In 3 operand format, the
result of the logical XOR on the mask operand and the source operand replaces
the destination operand.

9–32 VAX Instruction Set

VAX Instruction Set
XOR

9.2.2 Address Instructions
The following instructions are described in this section.

Description and Opcode
Number of
Instructions

1. Move Address
MOVA{B,W,L=F,Q=D=G,O=H} src.ax, dst.wl

5

2. Push Address
PUSHA{B,W,L=F,Q=D=G,O=H} src.ax, {-(SP).wl}

5

VAX Instruction Set 9–33

VAX Instruction Set
MOVA

MOVA

Move Address

Format

opcode src.ax, dst.wl

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

9E MOVAB Move Address Byte
3E MOVAW Move Address Word
DE MOVAL Move Address Long

MOVAF Move Address F_floating
7E MOVAQ Move Address Quad

MOVAD Move Address D_floating
MOVAG Move Address G_floating

7EFD MOVAH Move Address H_floating
MOVAO Move Address Octa

Description

The destination operand is replaced by the source operand. The context in which
the source operand is evaluated is given by the data type of the instruction. The
operand whose address replaces the destination operand is not referenced.

Note
The access type of the source operand is address, which causes the address of the
specified operand to be moved.

9–34 VAX Instruction Set

VAX Instruction Set
PUSHA

PUSHA

Push Address

Format

opcode src.ax

Condition Codes

N <— src LSS 0;
Z <— src EQL 0;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

9F PUSHAB Push Address Byte
3F PUSHAW Push Address Word
DF PUSHAL Push Address Long,

PUSHAF Push Address F_floating
7F PUSHAQ Push Address Quad,

PUSHAD Push Address D_floating,
PUSHAG Push Address G_floating

7FFD PUSHAH Push Address H_floating
PUSHAO Push Address Octa

Description

The source operand is pushed on the stack. The context in which the source
operand is evaluated is given by the data type of the instruction. The operand
whose address is pushed is not referenced.

Notes

1. PUSHAx src is equivalent to MOVAx src, -(SP), but is one byte shorter.

2. The source operand is of address access type, which causes the address of the
specified operand to be pushed.

VAX Instruction Set 9–35

VAX Instruction Set
PUSHA

9.2.3 Variable-Length Bit Field Instructions
A variable-length bit field is specified by the following three operands:

1. A longword position operand.

2. A byte field size operand in the range 0 to 32; if out of this range, a reserved
operand fault occurs.

3. A base address. Use the position operand to locate the bit field relative to
this base address. The address is obtained from an operand of address access
type. However, unlike other instances of operand specifiers of address access
type, register mode can be designated in the operand specifier. In this case,
the field is contained in the register n designated by the operand specifier (or
register n+1 concatenated with register n). (See Chapter 8.) If the field is
contained in a register and the size operand is not zero, the position operand
must have a value in the range 0 to 31, or a reserved operand fault occurs.

Zero bytes are referenced if the field size is zero.

The following instructions are described in this section.

Description and Opcode
Number of
Instructions

1. Compare Field
CMPV pos.rl, size.rb, base.vb, {field.rv},
src.rl

1

2. Compare Zero-Extended Field
CMPZV pos.rl, size.rb, base.vb, {field.rv},
src.rl

1

3. Extract Field
EXTV pos.rl, size.rb, base.vb, {field.rv},
dst.wl

1

4. Extract Zero-Extended Field
EXTZV pos.rl, size.rb, base.vb, {field.rv},
dst.wl

1

5. Find First
FF{S,C} startpos.rl, size.rb, base.vb,
{field.rv}, findpos.wl

2

6. Insert Field
INSV src.rl, pos.rl, size.rb, base.vb,
{field.wv}

1

9–36 VAX Instruction Set

VAX Instruction Set
PUSHA

The following variable-length bit field instructions are described in Section 9.2.4:

Description and Opcode
Number of
Instructions

1. Branch on Bit
BB{S,C} pos.rl, base.vb, displ.bb,
{field.rv}

2

2. Branch on Bit (and modify without interlock)
BB{S,C}{S,C} pos.rl, base.vb, displ.bb,
{field.mv}

4

3. Branch on Bit (and modify) Interlocked
BB{SS,CC}I pos.rl, base.vb, displ.bb,
{field.mv}

2

VAX Instruction Set 9–37

VAX Instruction Set
CMP

CMP

Compare Field

Format

opcode pos.rl, size.rb, base.vb, src.rl

Condition Codes

N <— tmp LSS src;
Z <— tmp EQL src;
V <— 0;
C <— tmp LSSU src;

Exceptions

reserved operand

Opcodes

EC CMPV Compare Field
ED CMPZV Compare Zero-Extended Field

Description

The field specified by the position, size, and base operands is compared with
the source operand. For CMPV, the source operand is compared with the
sign-extended field. For CMPZV, the source operand is compared with the
zero-extended field. The only action is to affect the condition codes.

Notes

1. A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the registers

2. On a reserved operand fault, the condition codes are UNPREDICTABLE.

9–38 VAX Instruction Set

VAX Instruction Set
EXT

EXT

Extract Field

Format

opcode pos.rl, size.rb, base.vb, dst.wl

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

reserved operand

Opcodes

EE EXTV Extract Field
EF EXTZV Extract Zero-Extended Field

Description

For EXTV, the destination operand is replaced by the sign-extended field specified
by the position, size, and base operands. For EXTZV, the destination operand
is replaced by the zero-extended field specified by the position, size, and base
operands. If the size operand is zero, the only action is to replace the destination
operand with zero and to modify the condition codes.

Notes

1. A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the registers

2. On a reserved operand fault, the destination operand is unaffected, and the
condition codes are UNPREDICTABLE.

VAX Instruction Set 9–39

VAX Instruction Set
FF

FF

Find First

Format

opcode startpos.rl, size.rb, base.vb, findpos.wl

Condition Codes

N <— 0;
Z <— {bit not found};
V <— 0;
C <— 0;

Exceptions

reserved operand

Opcodes

EB FFC Find First Clear
EA FFS Find First Set

Description

A field specified by the start position, size, and base operands is extracted.
Starting at bit 0 and extending to the highest bit in the field, the field is tested
for a bit in the state indicated by the instruction. If a bit in the indicated state
is found, the find position operand is replaced by the position of the bit, and the
Z condition code bit is cleared. If no bit in the indicated state is found, the find
position operand is replaced by the position (relative to the base) of a bit one
position to the left of the specified field, and the Z condition code bit is set. If the
size operand is zero, the find position operand is replaced by the start position
operand, and the Z condition code bit is set.

Notes

1. A reserved operand fault occurs if:

• size GTRU 32

• startpos GTRU 31, size NEQ 0, and the field is contained in the
registers

2. On a reserved operand fault, the find position operand is unaffected, and the
condition codes are UNPREDICTABLE.

9–40 VAX Instruction Set

VAX Instruction Set
INSV

INSV

Insert Field

Format

opcode src.rl, pos.rl, size.rb, base.vb

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

reserved operand

Opcodes

F0 INSV Insert Field

Description

The field specified by the position, size, and base operands is replaced by bits
size � 1 : 0 of the source operand. If the size operand is zero, the instruction has
no effect.

Notes

1. When executing INSV, a processor may read in the entire aligned longword or
longwords that contains the field, replace the field portion of the aligned
longword with the source operand, and write back the entire aligned
longword. Because of this, data written to the nonfield portion of the aligned
longword in memory by another processor or I/O device during the execution
of INSV may be written over when the INSV is completed.

2. A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the registers

3. On a reserved operand fault, the field is unaffected, and the condition codes
are UNPREDICTABLE.

VAX Instruction Set 9–41

VAX Instruction Set
INSV

9.2.4 Control Instructions
In most implementations of the VAX architecture, improved execution speed will
result if the target of a control instruction is on an aligned longword boundary.

The following instructions are described in this section.

Description and Opcode
Number of
Instructions

1. Add Compare and Branch
ACB{B,W,L,F,D,G,H} limit.rx, add.rx,
index.mx, displ.bw
Compare is LE on positive add, GE on
negative add.

7

2. Add One and Branch Less Than or Equal
AOBLEQ limit.rl, index.ml, displ.bb

1

3. Add One and Branch Less Than
AOBLSS limit.rl, index.ml, displ.bb

1

4. Conditional Branch

Condition Name

LSS Less Than

LEQ Less Than or Equal

EQL, EQLU Equal, Equal Unsigned

NEQ, NEQU Not Equal, Not Equal Unsigned

GEQ Greater Than or Equal

GTR Greater Than

LSSU, CS Less Than Unsigned, Carry Set

LEQU Less Than or Equal Unsigned

GEQU, CC Greater Than or Equal Unsigned,
Carry Clear

GTRU Greater Than Unsigned

VS Overflow Set

VC Overflow Clear

12

5. Branch on Bit
BB{S,C} pos.rl, base.vb, displ.bb,
{field.rv}

2

6. Branch on Bit
(and modify without interlock)
BB{S,C}{S,C} pos.rl, base.vb, displ.bb,
{field.mv}

4

7. Branch on Bit (and modify) Interlocked
BB{SS,CC}I pos.rl, base.vb, displ.bb,
{field.mv}

2

8. Branch on Low Bit
BLB{S,C} src.rl, displ.bb

2

9. Branch with {Byte, Word} Displacement
BR{B,W} displ.bx

2

9–42 VAX Instruction Set

VAX Instruction Set
INSV

Description and Opcode
Number of
Instructions

10. Branch to Subroutine with {Byte, Word}
Displacement BSB{B,W} displ.bx, {-(SP).wl}

2

11. Case
CASE{B,W,L} selector.rx, base.rx,
limit.rx, displ.bw-list

3

12. Jump
JMP dst.ab

1

13. Jump to Subroutine
JSB dst.ab, {-(SP).wl}

1

14. Return from Subroutine
RSB {(SP)+.rl}

1

15. Subtract One and Branch Greater Than
or Equal SOBGEQ index.ml, displ.bb

1

16. Subtract One and Branch Greater Than
SOBGTR index.ml, displ.bb

1

VAX Instruction Set 9–43

VAX Instruction Set
ACB

ACB

Add Compare and Branch

Format

opcode limit.rx, add.rx, index.mx, displ.bw

Condition Codes

N <— index LSS 0;
Z <— index EQL 0;
V <— {integer overflow};
C <— C;

Exceptions

integer overflow
floating overflow
floating underflow
reserved operand

Opcodes

9D ACBB Add Compare and Branch Byte
3D ACBW Add Compare and Branch Word
F1 ACBL Add Compare and Branch Long
4F ACBF Add Compare and Branch F_floating
4FFD ACBG Add Compare and Branch G_floating
6F ACBD Add Compare and Branch D_floating
6FFD ACBH Add Compare and Branch H_floating

Description

The addend operand is added to the index operand and the index operand is
replaced by the result. The index operand is compared with the limit operand. If
the addend operand is positive (or zero) and the comparison is less than or equal
to zero, or if the addend is negative and the comparison is greater than or equal
to zero, the sign-extended branch displacement is added to the program counter
(PC), and the PC is replaced by the result.

Notes

1. ACB efficiently implements the general FOR or DO loops in high-level
languages, since the sense of the comparison between index and limit is
dependent on the sign of the addend.

2. On integer overflow, the index operand is replaced by the low-order bits of the
true result. Comparison and branch determination proceed normally on the
updated index operand.

9–44 VAX Instruction Set

VAX Instruction Set
ACB

3. On floating underflow, if FU is clear, the index operand is replaced by zero,
and comparison and branch determination proceed normally. A fault occurs if
FU is set, and the index operand is unaffected.

4. On floating overflow, the instruction takes a floating overflow fault, and the
index operand is unaffected.

5. On a reserved operand fault, the index operand is unaffected, and condition
codes are UNPREDICTABLE.

6. Except for the circumstance described in note 5, the C-bit is unaffected.

VAX Instruction Set 9–45

VAX Instruction Set
AOBLEQ

AOBLEQ

Add One and Branch Less Than or Equal

Format

opcode limit.rl, index.ml, displ.bb

Condition Codes

N <— index LSS 0;
Z <— index EQL 0;
V <— {integer overflow};
C <— C;

Exceptions

integer overflow

Opcodes

F3 AOBLEQ Add One and Branch Less Than or Equal

Description

One is added to the index operand, and the index operand is replaced by the
result. The index operand is compared with the limit operand. If the comparison
is less than or equal to zero, the sign-extended branch displacement is added to
the program counter (PC), and the PC is replaced by the result.

Notes

1. Integer overflow occurs if the index operand before addition is the largest
positive integer. On overflow, the index operand is replaced by the largest
negative integer, and the branch is taken.

2. The C-bit is unaffected.

9–46 VAX Instruction Set

VAX Instruction Set
AOBLSS

AOBLSS

Add One and Branch Less Than

Format

opcode limit.rl, index.ml, displ.bb

Condition Codes

N <— index LSS 0;
Z <— index EQL 0;
V <— {integer overflow};
C <— C;

Exceptions

integer overflow

Opcodes

F2 AOBLSS Add One and Branch Less Than

Description

One is added to the index operand and the index operand is replaced by the
result. The index operand is compared with the limit operand. If the comparison
result is less than zero, the sign-extended branch displacement is added to the
program counter (PC), and the PC is replaced by the result.

Notes

1. Integer overflow occurs if the index operand before addition is the largest
positive integer. On overflow, the index operand is replaced by the largest
negative integer, and thus (unless the limit operand is the largest negative
integer), the branch is taken.

2. The C-bit is unaffected.

VAX Instruction Set 9–47

VAX Instruction Set
B

B

Branch on (condition)

Format

opcode displ.bb

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

14 {N OR Z} EQL 0 BGTR Branch on Greater Than (signed)
15 {N OR Z} EQL 1 BLEQ Branch on Less Than or Equal

(signed)
12 Z EQL 0 BNEQ, Branch on Not Equal (signed)

BNEQU Branch on Not Equal Unsigned
13 Z EQL 1 BEQL, Branch on Equal (signed)

BEQLU Branch on Equal Unsigned
18 N EQL 0 BGEQ Branch on Greater Than or Equal

(signed)
19 N EQL 1 BLSS Branch on Less Than (signed)
1A {C OR Z} EQL 0 BGTRU Branch on Greater Than

Unsigned
1B {C OR Z} EQL 1 BLEQU Branch Less Than or Equal

Unsigned
1C V EQL 0 BVC Branch on Overflow Clear
1D V EQL 1 BVS Branch on Overflow Set
1E C EQL 0 BGEQU, Branch on Greater Than or Equal

Unsigned
BCC Branch on Carry Clear

1F C EQL 1 BLSSU, Branch on Less Than Unsigned
BCS Branch on Carry Set

9–48 VAX Instruction Set

VAX Instruction Set
B

Description

The condition codes are tested. If the condition indicated by the instruction is
met, the sign-extended branch displacement is added to the program counter
(PC), and the PC is replaced by the result.

Notes
The VAX conditional branch instructions permit considerable flexibility in
branching but require care in choosing the correct branch instruction. The
conditional branch instructions are best seen as three overlapping groups:

1. Overflow and Carry Group

BVS V EQL 1
BVC V EQL 0
BCS C EQL 1
BCC C EQL 0

Typically, you would use these instructions to check for overflow (when
overflow traps are not enabled), for multiprecision arithmetic, and for other
special purposes.

2. Unsigned Group

BLSSU C EQL 1
BLEQU {C OR Z} EQL 1
BEQLU Z EQL 1
BNEQU Z EQL 0
BGEQU C EQL 0
BGTRU {C OR Z} EQL 0

These instructions typically follow integer and field instructions where
the operands are treated as unsigned integers, address instructions, and
character string instructions.

3. Signed Group

BLSS N EQL 1
BLEQ {N OR Z} EQL 1
BEQL Z EQL 1
BNEQ Z EQL 0
BGEQ N EQL 0
BGTR {N OR Z} EQL 0

These instructions typically follow floating-point instructions, decimal string
instructions, and integer and field instructions where the operands are being
treated as signed integers.

VAX Instruction Set 9–49

VAX Instruction Set
BB

BB

Branch on Bit

Format

opcode pos.rl, base.vb, displ.bb

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

reserved operand

Opcodes

E0 BBS Branch on Bit Set
E1 BBC Branch on Bit Clear

Description

The single bit field specified by the position and base operands is tested. If it is in
the test state indicated by the instruction, the sign-extended branch displacement
is added to the program counter (PC), and the PC is replaced by the result.

Notes

1. A reserved operand fault occurs if pos GTRU 31 and the bit specified is
contained in a register.

2. On a reserved operand fault, the condition codes are UNPREDICTABLE.

9–50 VAX Instruction Set

VAX Instruction Set
BB

BB

Branch on Bit (and modify without interlock)

Format

opcode pos.rl, base.vb, displ.bb

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

reserved operand

Opcodes

E2 BBSS Branch on Bit Set and Set
E3 BBCS Branch on Bit Clear and Set
E4 BBSC Branch on Bit Set and Clear
E5 BBCC Branch on Bit Clear and Clear

Description

The single bit field specified by the position and base operands is tested. If it is in
the test state indicated by the instruction, the sign-extended branch displacement
is added to the program counter (PC), and the PC is replaced by the result.
Regardless of whether the branch is taken or not, the tested bit is put in the new
state as indicated by the instruction.

Notes

1. A reserved operand fault occurs if pos GTRU 31 and the bit is contained in a
register.

2. On a reserved operand fault, the field is unaffected, and the condition codes
are UNPREDICTABLE.

3. The modification of the bit is not an interlocked operation. See BBSSI and
BBCCI for interlocking instructions.

VAX Instruction Set 9–51

VAX Instruction Set
BB

BB

Branch on Bit Interlocked

Format

opcode pos.rl, base.vb, displ.bb

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

reserved operand

Opcodes

E6 BBSSI Branch on Bit Set and Set Interlocked
E7 BBCCI Branch on Bit Clear and Clear Interlocked

Description

The single bit field specified by the position and base operands is tested. If it is in
the test state indicated by the instruction, the sign-extended branch displacement
is added to the program counter (PC), and the PC is replaced by the result.
Regardless of whether the branch is taken, the tested bit is put in the new state
as indicated by the instruction. If the bit is contained in memory, the reading of
the state of the bit and the setting of the bit to the new state is an interlocked
operation. No other processor or I/O device can do an interlocked access on this
bit during the interlocked operation.

Notes

1. A reserved operand fault occurs if pos GTRU 31 and the specified bit is
contained in a register.

2. On a reserved operand fault, the field is unaffected, and the condition codes
are UNPREDICTABLE.

3. Except for memory interlocking, BBSSI is equivalent to BBSS, and BBCCI is
equivalent to BBCC.

4. This instruction is designed to modify interlocks with other processors or
devices. For example, to implement ‘‘busy waiting’’:

1$: BBSSI bit,base,1$

9–52 VAX Instruction Set

VAX Instruction Set
BLB

BLB

Branch on Low Bit

Format

opcode src.rl, displ.bb

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

E8 BLBS Branch on Low Bit Set
E9 BLBC Branch on Low Bit Clear

Description

The low bit (bit 0) of the source operand is tested. If it is equal to the test state
indicated by the instruction, the sign-extended branch displacement is added to
the program counter (PC), and the PC is replaced by the result.

VAX Instruction Set 9–53

VAX Instruction Set
BR

BR

Branch

Format

opcode displ.bx

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

11 BRB Branch with Byte Displacement
31 BRW Branch with Word Displacement

Description

The sign-extended branch displacement is added to the program counter (PC),
and the PC is replaced by the result.

9–54 VAX Instruction Set

VAX Instruction Set
BSB

BSB

Branch to Subroutine

Format

opcode displ.bx

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

10 BSBB Branch to Subroutine with Byte Displacement
30 BSBW Branch to Subroutine with Word Displacement

Description

The program counter (PC) is pushed on the stack as a longword. The sign-
extended branch displacement is added to the PC, and the PC is replaced by the
result.

VAX Instruction Set 9–55

VAX Instruction Set
CASE

CASE

Case

Format

opcode selector.rx, base.rx, limit.rx,
displ[0].bw,
...,
displ[limit].bw

Condition Codes

N <— tmp LSS limit;
Z <— tmp EQL limit;
V <— 0;
C <— tmp LSSU limit;

Exceptions

None.

Opcodes

8F CASEB Case Byte
AF CASEW Case Word
CF CASEL Case Long

Description

The base operand is subtracted from the selector operand, and the result replaces
a temporary operand. The temporary operand is compared with the limit
operand; if it is less than or equal unsigned, a branch displacement selected by
the temporary value is added to the program counter (PC), and the PC is replaced
by the result. Otherwise, twice the sum of the limit operand and 1 is added to
the PC, and the PC is replaced by the result. This operation causes the PC to be
moved past the array of branch displacements. Regardless of the branch taken,
the condition codes are modified as a result of the comparison of the temporary
operand with the limit operand.

Notes

1. After operand evaluation, the PC points at displ[0], not to the next
instruction. The branch displacements are relative to the address of displ[0].

2. The selector and base operands can both be considered as either signed or
unsigned integers.

In the following example, the CASEB instruction selects one of eight
displacements immediately following the instruction. The example is for
illustration only. An actual instruction would use run-time variables instead
of the assembly-time static values shown. Also, in an actual instruction, the
displacements selected by the CASEB instruction would be branches to various
routines.

9–56 VAX Instruction Set

VAX Instruction Set
CASE

.PSECT CODE, PIC, SHR, WRT, EXE, LONG
TABIND: .WORD 4

.ENTRY START,^M<>
CLRW R4
CLRW R5
MOVW #0,R4
MOVW #7,R5
CASEB TABIND,R4,R5

TAB: .WORD 1$-TAB
.WORD 2$-TAB
.WORD 3$-TAB
.WORD 4$-TAB
.WORD 5$-TAB
.WORD 6$-TAB
.WORD 7$-TAB
BRB 9$

1$: .ASCII /AT 1/
2$: .ASCII /AT 2/
3$: .ASCII /AT 3/
4$: .ASCII /AT 4/
5$: .ASCII /AT 5/
6$: .ASCII /AT 6/
7$: .ASCII /AT 7/
8$: .ASCII /AT 8/
9$: $EXIT_S

.END START

The objective of the CASE instruction is to transfer control to one of many
possible locations depending on the value of ‘‘selector,’’ or TABIND, as shown in
the example. These locations are labeled in the example from 1$: to 8$:.

In the example, the table contains eight branch displacements. In all cases, the
limit operand (here shown as R5, which contains a 7) is one less than the number
of displacements (8) in the table. The base operand (here shown as R4, which
contains a zero) is the lowest permissible value for TABIND.

The CASE instruction subtracts base (contents of R4, a zero) from the value of
TABIND to produce a zero-origin index into the table. The limit (contents of R5,
a 7) is compared with this index to ensure that the table limit is not exceeded.

After operand evaluation, the program counter (PC) points to TAB:. The locations
to which branching occurs are represented in the table as displacements. The
displacement in the table selected by TABIND is added to the PC to form a
destination address. The destination selected in the example is at location 5$:. In
practical usage, this location would contain a branch to a specific routine.

VAX Instruction Set 9–57

VAX Instruction Set
JMP

JMP

Jump

Format

opcode dst.ab

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

17 JMP Jump

Description

The program counter (PC) is replaced by the destination operand.

9–58 VAX Instruction Set

VAX Instruction Set
JSB

JSB

Jump to Subroutine

Format

opcode dst.ab

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

16 JSB Jump to Subroutine

Description

The program counter (PC) is pushed onto the stack as a longword. The PC is
replaced by the destination operand.

Note
Because the operand specifier conventions cause the evaluation of the destination
operand before saving the PC, you can use JSB for coroutine calls with the stack
used for linkage. The form of this call is:

JSB @(SP)+

VAX Instruction Set 9–59

VAX Instruction Set
RSB

RSB

Return from Subroutine

Format

opcode

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

05 RSB Return from Subroutine

Description

The program counter (PC) is replaced by a longword popped from the stack.

Notes

1. Use RSB to return from subroutines called by the BSBB, BSBW, and JSB
instructions.

2. RSB is equivalent to JMP @(SP)+, but is 1 byte shorter.

9–60 VAX Instruction Set

VAX Instruction Set
SOBGEQ

SOBGEQ

Subtract One and Branch Greater Than or Equal

Format

opcode index.ml, displ.bb

Condition Codes

N <— index LSS 0;
Z <— index EQL 0;
V <— {integer overflow};
C <— C;

Exceptions

integer overflow

Opcodes

F4 SOBGEQ Subtract One and Branch Greater Than or
Equal

Description

One is subtracted from the index operand, and the index operand is replaced
by the result. If the index operand is greater than or equal to zero, the sign-
extended branch displacement is added to the program counter (PC), and the PC
is replaced by the result.

Notes

1. Integer overflow occurs if the index operand before subtraction is the largest
negative integer. On overflow, the index operand is replaced by the largest
positive integer; therefore, the branch is taken.

2. The C-bit is unaffected.

VAX Instruction Set 9–61

VAX Instruction Set
SOBGTR

SOBGTR

Subtract One and Branch Greater Than

Format

opcode index.ml, displ.bb

Condition Codes

N <— index LSS 0;
Z <— index EQL 0;
V <— {integer overflow};
C <— C;

Exceptions

integer overflow

Opcodes

F5 SOBGTR Subtract One and Branch Greater Than

Description

One is subtracted from the index operand, and the index operand is replaced by
the result. If the index operand is greater than zero, the sign-extended branch
displacement is added to the program counter (PC), and the PC is replaced by the
result.

Notes

1. Integer overflow occurs if the index operand before subtraction is the largest
negative integer. On overflow, the index operand is replaced by the largest
positive integer, and thus, the branch is taken.

2. The C-bit is unaffected.

9–62 VAX Instruction Set

VAX Instruction Set
SOBGTR

9.2.5 Procedure Call Instructions
The following three instructions implement a standard procedure calling
interface:

• CALLG

• CALLS

• RET

CALLG and CALLS call the procedure. The RETURN instruction returns from
the procedure. Refer to the OpenVMS Programming Concepts Manual for the
procedure calling standard.

The CALLG instruction calls a procedure with the argument list in an arbitrary
location.

The CALLS instruction calls a procedure with the argument list on the stack.
Upon return after a CALLS instruction, this list is automatically removed from
the stack. Both call instructions specify the address of the entry point of the
procedure being called. The entry point is assumed to consist of a word called the
entry mask followed by the procedure’s instructions. The procedure terminates by
executing a RET instruction.

The entry mask specifies the register use and overflow enables of the
subprocedure.

15 0

ZK−1162A−GE

MBZ Registers

14 13 12 11

D
V

I
V

At the occurrence of one of the call instructions, the stack is aligned to a longword
boundary, and the trap enables in the processor status longword (PSW) are set
to a known state to ensure consistent behavior of the called procedure. Integer
overflow enable and decimal overflow enable are affected according to bits 14
and 15 of the entry mask, respectively. Floating underflow enable is cleared.
Registers R11 to R0, specified by bits 11 to 0, respectively, are saved on the stack
and are restored by the RET instruction. In addition, the program counter (PC),
stack pointer (SP), frame pointer (FP), and argument pointer (AP) are always
preserved by the CALL instructions and restored by the RET instruction.

All external procedure calls generated by standard Compaq language processors
and all intermodule calls to major VAX software subsystems comply with
the procedure calling software standard (see the VAX Procedure Calling and
Condition Handling Standard in the OpenVMS Programming Concepts Manual).
The procedure calling standard requires that all registers in the range R2 to R11
used in the procedure must appear in the mask. R0 and R1 are not preserved by
any called procedure that complies with the procedure calling standard.

To preserve the state, the CALL instructions form a structure on the stack termed
a call frame or stack frame. The call frame contains the saved registers, the
saved PSW, the register save mask, and several control bits. The frame also
includes a longword that the CALL instructions clear. The system uses this
longword to implement the OpenVMS condition handling facility (see the
VAX Procedure Calling and Condition Handling Standard in the OpenVMS
Programming Interfaces: Calling a System Routine). At the end of execution of

VAX Instruction Set 9–63

VAX Instruction Set
SOBGTR

the CALL instruction,the frame pointer (FP) contains the address of the stack
frame. The RET instruction uses the contents of FP to find the stack frame and
the restore state. The condition handling facility assumes that FP always points
to the stack frame.

The stack frame has the following format:

Condition Handler (Initially 0)

SPA S 0 Mask<11:0> Saved PSW<15:5> 0

Saved AP

Saved FP

Saved PC

Saved R0 (...)

Saved R11 (...)

(0 to 3 bytes specified by SPA, Stack Pointer Alignment)

S = set if CALLS; clear if CALLG.

ZK−1163A−GE

: (FP)

Note that the saved condition codes and the saved trace enable (PSW<T>) are
cleared.

The contents of the frame PSW<3:0> at the time RET is executed will become
the condition codes resulting from the execution of the procedure. Similarly, the
content of the frame PSW<4> at the time the RET is executed will become the
PSW<T> bit.

The following instructions are described in this section.

Description and Opcode
Number of
Instructions

1. Call Procedure with General Argument List
CALLG arglist.ab, dst.ab, {-(SP).w*}

1

2. Call Procedure with Stack Argument List
CALLS numarg.rl, dst.ab, {-(SP).w*}

1

3. Return from Procedure
RET {(SP)+.r*}

1

9–64 VAX Instruction Set

VAX Instruction Set
CALLG

CALLG

Call Procedure with General Argument List

Format

opcode arglist.ab, dst.ab

Condition Codes

N <— 0;
Z <— 0;
V <— 0;
C <— 0;

Exceptions

reserved operand

Opcodes

FA CALLG Call Procedure with General Argument List

Description

The stack pointer (SP) is saved in a temporary register. Bits 1:0 are replaced by
zero, so that the stack is longword aligned. The procedure entry mask is scanned
from bit 11 to bit 0, and the contents of registers whose numbers correspond to
set bits in the mask are pushed on the stack as longwords. The program counter
(PC), frame pointer (FP), and argument pointer (AP) are pushed on the stack as
longwords. The condition codes are cleared. A longword containing the saved
low 2 bits of the SP in bits 31:30, a zero in bits 29 and 28, the low 12 bits of
the procedure entry mask in bits 27:16, and the processor status word (PSW)
in bits 15:0 with T cleared are pushed on the stack. A longword zero is pushed
on the stack. The FP is replaced by the SP. The AP is replaced by the arglist
operand. The trap enables in the PSW are set to a known state. Integer overflow
and decimal overflow are affected according to bits 14 and 15 of the entry mask,
respectively; floating underflow is cleared. The T-bit is unaffected. The PC is
replaced by the sum of destination operand plus 2, which transfers control to the
called procedure at the byte beyond the entry mask.

ZK−1164A−GE

Stack

Frame

: (SP)

: (FP)

(0 to 3 bytes specified by SPA)

Notes

1. If bits 13:12 of the entry mask are not zero, a reserved operand fault occurs.

2. On a reserved operand fault, condition codes are UNPREDICTABLE.

VAX Instruction Set 9–65

VAX Instruction Set
CALLG

3. The procedure calling standard and the condition handling facility require the
following register saving conventions:

• R0 and R1 are always available for function return values and are never
saved in the entry mask.

• All registers R2 to R11 that are modified in the called procedure must be
preserved in the mask.

Refer to the VAX Procedure Calling and Condition Handling Standard in the
OpenVMS Programming Concepts Manual.

9–66 VAX Instruction Set

VAX Instruction Set
CALLS

CALLS

Call Procedure with Stack Argument List

Format

opcode numarg.rl, dst.ab

Condition Codes

N <— 0;
Z <— 0;
V <— 0;
C <— 0;

Exceptions

reserved operand

Opcodes

FB CALLS Call Procedure with Stack Argument List

Description

The numarg operand is pushed on the stack as a longword (byte 0 contains
the number of arguments; Compaq software uses the high-order 24 bits). The
stack pointer (SP) is saved in a temporary register, and then bits 1:0 of the SP
are replaced by zero so that the stack is longword aligned. The procedure entry
mask is scanned from bit 11 to bit 0, and the contents of registers whose numbers
correspond to set bits in the mask are pushed on the stack. The program counter
(PC), frame pointer (FP), and argument pointer (AP) are pushed on the stack as
longwords. The condition codes are cleared. A longword containing the saved
low 2 bits of the SP in bits 31:30, a 1 in bit 29, a zero in bit 28, the low 12 bits
of the procedure entry mask in bits 27:16, and the processor status word (PSW)
in bits 15:0 with T cleared is pushed on the stack. A longword zero is pushed on
the stack. The FP is replaced by the SP. The AP is set to the value of the stack
pointer after the numarg operand was pushed on the stack. The trap enables
in the PSW are set to a known state. Integer overflow and decimal overflow are
affected according to bits 14 and 15 of the entry mask, respectively. Floating
underflow is cleared. The T-Bit is unaffected.

VAX Instruction Set 9–67

VAX Instruction Set
CALLS

The PC is replaced by the sum of destination operand plus 2, which transfers
control to the called procedure at the byte beyond the entry mask. The
appearance of the stack after CALLS is executed is:

ZK−1165A−GE

Stack

Frame

: (SP)

: (FP)

(0 to 3 bytes specified by SPA)

N longwords of argument list

N : (AP)

Notes

1. If bits 13:12 of the entry mask are not zero, a reserved operand fault occurs.

2. On a reserved operand fault, the condition codes are UNPREDICTABLE.

3. Normal use is to push the arglist onto the stack in reverse order prior to the
CALLS. On return, the arglist is removed from the stack automatically.

4. The procedure calling standard and the condition handling facility require the
following register saving conventions:

• R0 and R1 are always available for function return values and are never
saved in the entry mask.

• All registers R2 to R11 that are modified in the called procedure must
be preserved in the entry mask. Refer to the VAX Procedure Calling and
Condition Handling Standard in the OpenVMS Programming Concepts
Manual.

9–68 VAX Instruction Set

VAX Instruction Set
RET

RET

Return from Procedure

Format

opcode

Condition Codes

N <— tmp1<3>;
Z <— tmp1<2>;
V <— tmp1<1>;
C <— tmp1<0>;

Exceptions

reserved operand

Opcodes

04 RET Return from Procedure

Description

The stack pointer (SP) is replaced by the frame pointer (FP) plus 4. A longword
containing stack alignment bits in bits 31:30, a CALLS/CALLG flag in bit 29,
the low 12 bits of the procedure entry mask in bits 27:16, and a saved processor
status word (PSW) in bits 15:0 is popped from the stack and saved in a temporary.
The program counter (PC), frame pointer (FP), and argument pointer (AP) are
replaced by longwords popped from the stack. A register restore mask is formed
from bits 27:16 of the temporary. Scanning from bit 0 to bit 11 of the restore
mask, the contents of registers whose numbers are indicated by set bits in the
mask are replaced by longwords popped from the stack. The SP is incremented
by 31:30 of the temporary. The PSW is replaced by bits 15:0 of the temporary. If
bit 29 in the temporary is 1 (indicating that the procedure was called by CALLS),
a longword containing the number of arguments is popped from the stack. Four
times the unsigned value of the low byte of this longword is added to the SP, and
the SP is replaced by the result.

Notes

1. A reserved operand fault occurs if tmp1<15:8> NEQ 0.

2. On a reserved operand fault, the condition codes are UNPREDICTABLE.

3. The value of tmp1<28> is ignored.

4. The procedure calling standard and condition handling facility assume that
procedures which return a function value or a status code do so in R0, or
R0 and R1. Refer to the VAX Procedure Calling and Condition Handling
Standard in the OpenVMS Programming Concepts Manual.

VAX Instruction Set 9–69

VAX Instruction Set
RET

9.2.6 Miscellaneous Instructions
The following instructions are described in this section.

Description and Opcode
Number of
Instructions

1. Bit Clear PSW
BICPSW mask.rw

1

2. Bit Set PSW
BISPSW mask.rw

1

3. Breakpoint Fault
BPT {-(KSP).w*}

1

4. Halt
HALT {-(KSP).w*}

1

5. Index
INDEX subscript.rl, low.rl, high.rl,
size.rl, indexin.rl, indexout.wl

1

6. Move from PSL
MOVPSL dst.wl

1

7. No Operation
NOP

1

8. Pop Registers
POPR mask.rw, {(SP)+.r*}

1

9. Push Registers
PUSHR mask.rw, {-(SP).w*}

1

10. Extended Function Call
XFC {unspecified operands}

1

9–70 VAX Instruction Set

VAX Instruction Set
BICPSW

BICPSW

Bit Clear PSW

Format

opcode mask.rw

Condition Codes

N <— N AND {NOT mask<3>};
Z <— Z AND {NOT mask<2>};
V <— V AND {NOT mask<1>};
C <— C AND {NOT mask<0>};

Exceptions

reserved operand

Opcodes

B9 BICPSW Bit Clear PSW

Description

The result of the logical AND on processor status word (PSW) and the one’s
complement of the mask operand replaces PSW.

Note
A reserved operand fault occurs if mask<15:8> is not zero. On a reserved operand
fault, the PSW is not affected.

VAX Instruction Set 9–71

VAX Instruction Set
BISPSW

BISPSW

Bit Set PSW

Format

opcode mask.rw

Condition Codes

N <— N OR mask<3>;
Z <— Z OR mask<2>;
V <— V OR mask<1>;
C <— C OR mask<0>;

Exceptions

reserved operand

Opcodes

B8 BISPSW Bit Set PSW

Description

The result of the logical OR on processor status word (PSW) and the mask
operand replaces PSW.

Note
A reserved operand fault occurs if mask<15:8> is not zero. On a reserved operand
fault, the PSW is not affected.

9–72 VAX Instruction Set

VAX Instruction Set
BPT

BPT

Breakpoint Fault

Format

opcode

Condition Codes

N <— 0; ! Condition codes cleared after BPT fault
Z <— 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

03 BPT Breakpoint Fault

Description

To understand the operation of this instruction, refer to Appendix E. This
instruction, together with the T-bit, is used to implement debugging facilities.

VAX Instruction Set 9–73

VAX Instruction Set
HALT

HALT

Halt

Format

opcode

Condition Codes

N <— 0; ! If privileged instruction fault,
Z <— 0; ! condition codes are cleared after
V <— 0; ! the fault. PSL saved on stack
C <— 0; ! contains condition codes prior to HALT.

N <— N; ! If processor halt
Z <— Z;
V <— V;
C <— C;

Exceptions

privileged instruction

Opcodes

00 HALT Halt

Description

If the process is running in kernel mode, the processor is halted. Otherwise, a
privileged instruction fault occurs. For information about privileged instruction
faults, refer to Appendix E.

Note
This opcode is zero to trap many branches to data.

9–74 VAX Instruction Set

VAX Instruction Set
INDEX

INDEX

Compute Index

Format

opcode subscript.rl, low.rl, high.rl, size.rl, indexin.rl,
indexout.wl

Condition Codes

N <— indexout LSS 0;
Z <— indexout EQL 0;
V <— 0;
C <— 0;

Exceptions

subscript range

Opcodes

0A INDEX index

Description

The indexin operand is added to the subscript operand and the sum multiplied
by the size operand. The indexout operand is replaced by the result. If the
subscript operand is less than the low operand or greater than the high
operand, a subscript range trap is taken.

Notes

1. No arithmetic exception other than subscript range can result from this
instruction. Therefore, no indication is given if overflow occurs in either the
add or the multiply steps. If overflow occurs on the add step, the sum is the
low-order 32 bits of the true result. If overflow occurs on the multiply step,
the indexout operand is replaced by the low-order 32 bits of the true product
of the sum and the subscript operand. In the normal use of this instruction,
overflow cannot occur without a subscript range trap occurring.

2. The index instruction is useful in index calculations for arrays of the fixed-
length data types (integer and floating) and for index calculations for arrays
of bit fields, character strings, and decimal strings. The indexin operand
permits cascading INDEX instructions for multidimensional arrays. For one-
dimensional bit field arrays, it also permits introduction of the constant
portion of an index calculation that is not readily absorbed by address
arithmetic. The following notes show some of the uses of INDEX.

VAX Instruction Set 9–75

VAX Instruction Set
INDEX

3. The following example shows a sequence of COBOL statements and the VAX
MACRO code their compilation might generate:

COBOL:

01 A-ARRAY.
02 A PIC X(10) OCCURS 15 TIMES.

01 B PIC X(10).
MOVE A(I) TO B.

MACRO:

INDEX I, #1, #15, #10, #0, R0

MOVC3 #10, A-10[R0], B.

4. The following example shows a sequence of PL/I statements and the VAX
MACRO code their compilation might generate:

PL/I:

DCL A(-3:10) BIT (5);
A(I) = 1;

MACRO:

INDEX I, #-3, #10, #5, #3, R0

INSV #1, R0, #5, A ; Assumes A is byte aligned

5. The following example shows a sequence of FORTRAN statements and the
VAX MACRO code their compilation might generate:

FORTRAN:

INTEGER*4 A(L1:U1, L2:U2), I, J
A(I,J) = 1

MACRO:

INDEX J, #L2, #U2, #M1, #0, R0; M1=U1-L1+1
INDEX I, #L1, #U1, #1, R0, R0;
MOVL #1, A-a[R0]; a = {{L2*M1} + L1} *4

9–76 VAX Instruction Set

VAX Instruction Set
MOVPSL

MOVPSL

Move from PSL

Format

opcode dst.wl

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

DC MOVPSL Move from PSL

Description

The destination operand is replaced by processor status longword (PSL).

VAX Instruction Set 9–77

VAX Instruction Set
NOP

NOP

No Operation

Format

opcode

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

01 NOP No Operation

Description

No operation is performed. Because the time delay caused by a NOP instruction
is dependent on processor type, Compaq recommends that you do not use NOP as
a means of delaying program execution. When you must have a program wait for
a specified period, you should use a macro, such as the TIMEDWAIT macro, or
code sequence that is not dependent on the processor’s internal speed.

9–78 VAX Instruction Set

VAX Instruction Set
POPR

POPR

Pop Registers

Format

opcode mask.rw

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

BA POPR Pop Registers

Description

The contents of registers whose numbers correspond to set bits in the mask
operand are replaced by longwords popped from the stack. R[n] is replaced if
mask<n> is set. The mask is scanned from bit 0 to bit 14. Bit 15 is ignored.

VAX Instruction Set 9–79

VAX Instruction Set
PUSHR

PUSHR

Push Registers

Format

opcode mask.rw

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

None.

Opcodes

BB PUSHR Push Registers

Description

The contents of registers whose numbers correspond to set bits in the mask
operand are pushed on the stack as longwords. R[n] is pushed if mask<n> is set.
The mask is scanned from bit 14 to bit 0. Bit 15 is ignored.

Note
The order of pushing is specified so that the contents of higher-numbered
registers are stored at higher memory addresses. An example of a result of
this would be a double-floating datum stored in adjacent registers being stored by
PUSHR in memory in the correct order.

9–80 VAX Instruction Set

VAX Instruction Set
XFC

XFC

Extended Function Call

Format

opcode

Condition Codes

N <— 0;
Z <— 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

FC XFC Extended Function Call

Description

To understand the operation of this instruction, refer to Appendix E and the VAX
Architecture Reference Manual. This instruction provides for customer-defined
extensions to the instruction set.

VAX Instruction Set 9–81

VAX Instruction Set
XFC

9.2.7 Queue Instructions
A queue is a circular, doubly linked list. A queue entry is specified by its address.
Each queue entry is linked to the next by a pair of longwords. The first longword
is the forward link; it specifies the location of the succeeding entry. The second
longword is the backward link; it specifies the location of the preceding entry.
Because a queue contains redundant links, it is possible to create ill-formed
queues. The VAX instructions produce UNPREDICTABLE results when used on
ill-formed queues.

A queue is classified by the type of link that it uses. The VAX supports two
distinct types of links: absolute and self-relative.

9.2.7.1 Absolute Queues
Absolute queues use absolute addresses as links. Queue entries are linked by
a pair of longwords. The first (lowest-addressed) longword is the forward link;
it is the address of the succeeding queue entry. The second (highest-addressed)
longword is the backward link; it is the address of the preceding queue entry.

A queue is specified by a queue header, which is identical to a pair of queue
linkage longwords. The forward link of the header is the address of the entry
called the head of the queue. The backward link of the header is the address of
the entry termed the tail of the queue. The forward link of the tail points to the
header.

Two general operations can be performed on queues: insertion of entries and
removal of entries. Generally, entries can be inserted or removed only at the head
or tail of a queue. (Under certain restrictions they can be inserted or removed
elsewhere; this is discussed later.)

The following text contains examples of queue operations. An empty queue is
specified by its header at address H.

ZK−1166A−GE

: H

31 0

H

H

31 0

: H+4

If an entry at address B is inserted into an empty queue (at either the head or
the tail), the queue appears as follows:

ZK−1167A−GE

: H

31 0

B

B

31 0

: H+4

: B

31 0

H

H

31 0

: B+4

9–82 VAX Instruction Set

VAX Instruction Set
XFC

If an entry at address A is inserted at the head of the queue, the queue appears
as follows:

ZK−1168A−GE

: B

31 0

H

A

31 0

: B+4

: A

31 0

B

H

31 0

: A+4

: H

31 0

A

B

31 0

: H+4

VAX Instruction Set 9–83

VAX Instruction Set
XFC

Finally, if an entry at address C is inserted at the tail, the queue appears as
follows:

ZK−1169A−GE

: A

31 0

B

H

31 0

: A+4

: H

31 0

A

C

31 0

: H+4

: B

31 0

C

A

31 0

: B+4

: C

31 0

H

B

31 0

: C+4

Following the preceding steps in reverse order gives the effect of removal at the
tail and removal at the head.

If more than one process can perform operations on a queue simultaneously,
insertions and removals should only be done at the head or tail of the queue. If
only one process (or one process at a time) can perform operations on a queue,
insertions and removals can be made at other than the head or tail of the queue.
In the preceding example with the queue containing entries A, B, and C, the
entry at address B can be removed, giving the following:

9–84 VAX Instruction Set

VAX Instruction Set
XFC

ZK−1170A−GE

: A

31 0

C

H

31 0

: A+4

: H

31 0

A

C

31 0

: H+4

: C

31 0

H

A

31 0

: C+4

The reason for this restriction is that operations at the head or tail are always
valid because the queue header is always present. Operations elsewhere in the
queue depend on specific entries being present and may become invalid if another
process is simultaneously performing operations on the queue.

Two instructions are provided for manipulating absolute queues: INSQUE and
REMQUE. INSQUE inserts an entry specified by an entry operand into the queue
following the entry specified by the predecessor operand. REMQUE removes the
entry specified by the entry operand. Queue entries can be on arbitrary byte
boundaries. Both INSQUE and REMQUE are implemented as noninterruptible
instructions.

9.2.7.2 Self-Relative Queues
Self-relative queues use displacements from queue entries as links. Queue entries
are linked by a pair of longwords. The first (lowest addressed) longword is the
forward link; it is the displacement of the succeeding queue entry from the
present entry. The second (highest-addressed) longword is the backward link; it
is the displacement of the preceding queue entry from the present entry.

A queue is specified by a queue header, which also consists of two longword links.
The forward link of the header is the address of the entry called the head of the
queue. The backward link of the header is the address of the entry called the tail
of the queue. The forward link of the tail points to the header.

The following text contains examples of queue operations. An empty queue is
specified by its header at address H. Because the queue is empty, the self-relative
links must be zero, as shown.

ZK−1171A−GE

: H

31 0

0

0

31 0

: H+4

VAX Instruction Set 9–85

VAX Instruction Set
XFC

If an entry at address B is inserted into an empty queue (at either the head or
tail), the queue appears as follows:

ZK−1172A−GE

: H

31 0

B − H

B − H

31 0

: H+4

: B

31 0

H − B

H − B

31 0

: B+4

If an entry at address A is inserted at the head of the queue, the queue appears
as follows:

ZK−1173A−GE

: B

31 0

H − B

A − B

31 0

: B+4

: H

31 0

A − H

B − H

31 0

: H+4

: A

31 0

B − A

H − A

31 0

: A+4

Finally, if an entry at address C is inserted at the tail, the queue appears as
follows:

9–86 VAX Instruction Set

VAX Instruction Set
XFC

ZK−1174A−GE

: H

31 0

A − H

C − H

31 0

: H+4

: A

31 0

B − A

H − A

31 0

: A+4

: B

31 0

C − B

A − B

31 0

: B+4

: C

31 0

H − C

B − C

31 0

: C+4

Following the previous steps in reverse order gives the effect of removal at the
tail and at the head.

The following four instructions manipulate self-relative queues:

1. INSQHI—Insert entry into queue at head, interlocked.

2. INSQTI—Insert entry into queue at tail, interlocked.

3. REMQHI—Remove entry from queue at head, interlocked.

4. REMQTI—Remove entry from queue at tail, interlocked.

These operations are interlocked to allow cooperating processes in a
multiprocessor system to access a shared list without additional synchronization.
Queue entries must be quadword aligned. A hardware-supported interlocked
memory access mechanism is used to read the queue header. Bit 0 of the queue
header is used as a secondary interlock; it is set when the queue is being accessed.

If an interlocked queue instruction encounters the secondary interlock set, then,
if no exception conditions exist, it terminates after setting the condition codes
to indicate failure to gain access to the queue. If the secondary interlock bit is
not set, then the interlocked queue instruction sets the secondary interlock bit
during instruction execution and clears the secondary interlock bit at instruction
completion. In this way, other interlocked queue instructions are prevented from
operating on the same queue.

If an interlocked queue instruction encounters both the secondary interlock
set and an exception condition resulting from instruction execution, then it is
UNPREDICTABLE whether the exception occurs or the instruction terminates
after setting the condition codes.

VAX Instruction Set 9–87

VAX Instruction Set
XFC

9.2.7.3 Instruction Descriptions
The following instructions are described in this section:

Description and Opcode
Number of
Instructions

1. Insert Entry into Queue at Head, Interlocked
INSQHI entry.ab, header.aq

1

2. Insert Entry into Queue at Tail, Interlocked
INSQTI entry.ab, header.aq

1

3. Insert Entry in Queue
INSQUE entry.ab, pred.ab

1

4. Remove Entry from Queue at Head, Interlocked
REMQHI header.aq, addr.wl

1

5. Remove Entry from Queue at Tail, Interlocked
REMQTI header.aq, addr.wl

1

6. Remove Entry from Queue
REMQUE entry.ab, addr.wl

1

9–88 VAX Instruction Set

VAX Instruction Set
INSQHI

INSQHI

Insert Entry into Queue at Head, Interlocked

Format

opcode entry.ab, header.aq

Condition Codes

if {insertion succeeded} then
begin
N <— 0;
Z <— (entry) EQL (entry+4); ! First entry in queue
V <— 0;
C <— 0;
end;
else
begin
N <— 0;
Z <— 0;
V <— 0;
C <— 1; ! Secondary interlock failed
end;

Exceptions

reserved operand

Opcodes

5C INSQHI Insert Entry into Queue at Head, Interlocked

Description

The entry specified by the entry operand is inserted into the queue following the
header. If the entry inserted was the first one in the queue, the condition code
Z-bit is set; otherwise it is cleared. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process even in a
multiprocessor environment. Before performing any part of the operation, the
processor validates that the entire operation can be completed. This method
ensures that if a memory management exception occurs (see Appendix E), the
queue is left in a consistent state. If the instruction fails to acquire the secondary
interlock, then, if no exception conditions exist, the instruction sets condition
codes and terminates.

VAX Instruction Set 9–89

VAX Instruction Set
INSQHI

Notes

1. Because the insertion is noninterruptible, processes running in kernel mode
can share queues with interrupt service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are implemented
such that cooperating software processes in a multiprocessor may access a
shared list without additional synchronization.

3. To set a software interlock realized with a queue, you can use the following:

INSERT:
INSQHI ... ; Was queue empty?
BEQL 1$; Yes
BCS INSERT ; Try inserting again
CALL WAIT(...) ; No, wait

1$:

4. During access validation, any access that cannot be completed results in
a memory management exception even though the queue insertion is not
started.

5. A reserved operand fault occurs if entry or header is an address that is not
quadword aligned (that is, <2:0> NEQU 0) or if header<2:1> is not zero. A
reserved operand fault also occurs if header equals entry. In this case, the
queue is not altered.

6. If an interlocked queue instruction encounters both the secondary interlock
set and an exception condition resulting from instruction execution, then
it is UNPREDICTABLE whether the exception occurs or the instruction
terminates after setting the condition codes.

9–90 VAX Instruction Set

VAX Instruction Set
INSQTI

INSQTI

Insert Entry into Queue at Tail, Interlocked

Format

opcode entry.ab, header.aq

Condition Codes

if {insertion succeeded} then
begin
N <— 0;
Z <— (entry) EQL (entry+4); ! First entry in queue
V <— 0;
C <— 0;
end;
else
begin
N <— 0;
Z <— 0;
V <— 0;
C <— 1; ! Secondary interlock failed
end;

Exceptions

reserved operand

Opcodes

5D INSQTI Insert Entry into Queue at Tail, Interlocked

Description

The entry specified by the entry operand is inserted into the queue preceding the
header. If the entry inserted was the first one in the queue, the condition code
Z-bit is set; otherwise, it is cleared. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process even in a
multiprocessor environment. Before performing any part of the operation, the
processor validates that the entire operation can be completed. This method
ensures that if a memory management exception occurs (see Appendix E), queue
is left in a consistent state. If the instruction fails to acquire the secondary
interlock, then, if no exception conditions exist, the instruction sets condition
codes and terminates.

VAX Instruction Set 9–91

VAX Instruction Set
INSQTI

Notes

1. Because the insertion is noninterruptible, processes running in kernel mode
can share queues with interrupt service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are implemented
such that cooperating software processes in a multiprocessor may access a
shared list without additional synchronization.

3. To set a software interlock realized with a queue, you can use the following:

INSERT:
INSQHI ... ; Was queue empty?
BEQL 1$; Yes
BCS INSERT ; Try inserting again
CALL WAIT(...) ; No, wait

1$:

4. During access validation, any access that cannot be completed results in
a memory management exception even though the queue insertion is not
started.

5. A reserved operand fault occurs if entry, header, or (header+4) is
an address that is not quadword aligned (that is, <2:0> NEQU 0) or if
header<2:1> is not zero. A reserved operand fault also occurs if header
equals entry. In this case, the queue is not altered.

6. If the instruction encounters both the secondary interlock set and an
exception condition resulting from instruction execution, then it is
UNPREDICTABLE whether the exception occurs or the instruction
terminates after setting the condition codes.

9–92 VAX Instruction Set

VAX Instruction Set
INSQUE

INSQUE

Insert Entry in Queue

Format

opcode entry.ab, pred.ab

Condition Codes

N <— (entry) LSS (entry+4);
Z <— (entry) EQL (entry+4); ! First entry in queue
V <— 0;
C <— (entry) LSSU (entry+4);

Exceptions

None.

Opcodes

0E INSQUE Insert Entry in Queue

Description

The entry specified by the entry operand is inserted into the queue following the
entry specified by the predecessor operand. If the entry inserted was the first one
in the queue, the condition code Z-bit is set; otherwise it is cleared. The insertion
is a noninterruptible operation. Before performing any part of the operation,
the processor validates that the entire operation can be completed. This method
ensures that if a memory management exception occurs (see Appendix E), the
queue is left in a consistent state.

Notes

1. The following three types of insertion can be performed by appropriate choice
of the predecessor operand:

• Insert at head:

INSQUE entry, h ; h is queue head

• Insert at tail:

INSQUE entry,@h+4 ; h is queue head
(Note "@" in this case only)

• Insert after arbitrary predecessor:

INSQUE entry,p ; p is predecessor

2. Because the insertion is noninterruptible, processes running in kernel mode
can share queues with interrupt service routines.

3. The INSQUE and REMQUE instructions are implemented such that
cooperating software processes in a single processor may access a shared
list without additional synchronization, if the insertions and removals are
only at the head or tail of the queue.

VAX Instruction Set 9–93

VAX Instruction Set
INSQUE

4. To set a software interlock realized with a queue, you can use the following:

INSQUE ... ; Was queue empty?
BEQL 1$; Yes
CALL WAIT(...) ; No, wait

1$:

5. During access validation, any access that cannot be completed results in
a memory management exception, even though the queue insertion is not
started.

9–94 VAX Instruction Set

VAX Instruction Set
REMQHI

REMQHI

Remove Entry from Queue at Head, Interlocked

Format

opcode header.aq, addr.wl

Condition Codes

if {removal succeeded} then
begin
N <— 0;
Z <— (header) EQL 0; ! Queue empty after removal
V <— {queue empty before this instruction};
C <— 0;
end;
else
begin
N <— 0;
Z <— 0;
V <— 1; ! Did not remove anything
C <— 1; ! Secondary interlock failed
end;

Exceptions

reserved operand

Opcodes

5E REMQHI Remove Entry from Queue at Head,
Interlocked

Description

If the secondary interlock is clear, the queue entry following the header is
removed from the queue and the address operand is replaced by the address of
the entry removed. If the queue was empty prior to this instruction, or if the
secondary interlock failed, the condition code V-bit is set; otherwise it is cleared.

If the interlock succeeded and the queue is empty at the end of this instruction,
the condition code Z-bit is set; otherwise, it is cleared. The removal is interlocked
to prevent concurrent interlocked insertions or removals at the head or tail
of the same queue by another process even in a multiprocessor environment.
The removal is a noninterruptible operation. Before performing any part of the
operation, the processor validates that the entire operation can be completed.
This ensures that if a memory management exception occurs (see Appendix E),
the queue is left in a consistent state. If the instruction fails to acquire the
secondary interlock, then, if no exception conditions exist, the instruction sets
condition codes and terminates.

VAX Instruction Set 9–95

VAX Instruction Set
REMQHI

Notes

1. Because the removal is noninterruptible, processes running in kernel mode
can share queues with interrupt service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are implemented
so that cooperating software processes in a multiprocessor may access a
shared list without additional synchronization.

3. To release a software interlock realized with a queue, you can use the
following:

1$: REMQHI ... ; Removed last?
BEQL 2$; Yes
BCS 1$; Try removing again
CALL ACTIVATE(...) ; Activate other waiters

2$:

4. To remove entries until the queue is empty, you can use the following:

1$: REMQHI ... ; Anything removed?
BVS 2$; No
.

process removed entry
.

BR 1$;
.

2$ BCS 1$; Try removing again
queue empty

5. During access validation, any access that cannot be completed results in
a memory management exception, even though the queue removal is not
started.

6. A reserved operand fault occurs if header or (header + (header)) is
an address that is not quadword aligned (that is, <2:0> NEQU 0) or if
(header)<2:1> is not zero. A reserved operand fault also occurs if the header
address operand equals the address of the addr operand. In this case, the
queue is not altered.

7. If the instruction encounters both the secondary interlock set and an
exception condition resulting from instruction execution, then it is
UNPREDICTABLE whether the exception occurs or the instruction
terminates after setting the condition codes.

9–96 VAX Instruction Set

VAX Instruction Set
REMQTI

REMQTI

Remove Entry from Queue at Tail, Interlocked

Format

opcode header.aq, addr.wl

Condition Codes

if {removal succeeded} then
begin
N <— 0;
Z <— (header + 4) EQL 0; ! Queue empty after removal
V <— {queue empty before this instruction};
C <— 0;
end;
else
begin
N <— 0;
Z <— 0;
V <— 1; ! Did not remove anything
C <— 1; ! Secondary interlock failed
end;

Exceptions

reserved operand

Opcodes

5F REMQTI Remove Entry from Queue at Tail, Interlocked

Description

If the secondary interlock is clear, the queue entry preceding the header is
removed from the queue and the address operand is replaced by the address of
the entry removed. If the queue was empty prior to this instruction, or if the
secondary interlock failed, the condition code V-bit is set; otherwise it is cleared.

If the interlock succeeded and the queue is empty at the end of this instruction,
the condition code Z-bit is set; otherwise it is cleared. The removal is interlocked
to prevent concurrent interlocked insertions or removals at the head or tail
of the same queue by another process, even in a multiprocessor environment.
The removal is a noninterruptible operation. Before performing any part of the
operation, the processor validates that the entire operation can be completed.
This ensures that if a memory management exception occurs (see Appendix E),
the queue is left in a consistent state. If the instruction fails to acquire the
secondary interlock, then, if no exception conditions exist, the instruction sets
condition codes and terminates.

VAX Instruction Set 9–97

VAX Instruction Set
REMQTI

Notes

1. Because the removal is noninterruptible, processes running in kernel mode
can share queues with interrupt service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are implemented
to allow cooperating software processes in a multiprocessor system to access a
shared list without additional synchronization.

3. To release a software interlock realized with a queue, you can use the
following:

1$: REMQTI ... ; Removed last?
BEQL 2$; Yes
BCS 1$; Try removing again
CALL ACTIVATE(...) ; Activate other waiters

2$:

4. To remove entries until the queue is empty, you can use the following:

1$: REMQTI ... ; Anything removed?
BVS 2$; No
.

process removed entry
.

BR 1$;
.

2$: BCS 1$; Try removing again
queue empty

5. During access validation, any access that cannot be completed results in
a memory management exception, even though the queue removal is not
started.

6. A reserved operand fault occurs if header, (header + 4), or (header +
(header + 4)+4) is an address that is not quadword aligned (that is, <2:0>
NEQU 0), or if (header)<2:1> is not zero. A reserved operand fault also
occurs if the header address operand equals the address of the addr operand.
In this case, the queue is not altered.

7. If the instruction encounters both the secondary interlock set and an
exception condition resulting from instruction execution, then it is
UNPREDICTABLE whether the exception occurs or the instruction
terminates after setting the condition codes.

9–98 VAX Instruction Set

VAX Instruction Set
REMQUE

REMQUE

Remove Entry from Queue

Format

opcode entry.ab,addr.wl

Condition Codes

N <— (entry) LSS (entry+4);
Z <— (entry) EQL (entry+4); ! Queue empty
V <— (entry) EQL (entry+4); ! No entry to remove
C <— (entry) LSSU (entry+4);

Exceptions

None.

Opcodes

0F REMQUE Remove Entry from Queue

Description

The queue entry specified by the entry operand is removed from the queue. The
address operand is replaced by the address of the entry removed. If there was no
entry in the queue to be removed, the condition code V-bit is set; otherwise it is
cleared. If the queue is empty at the end of this instruction, the condition code
Z-bit is set; otherwise it is cleared. The removal is a noninterruptible operation.
Before performing any part of the operation, the processor validates that the
entire operation can be completed. This ensures that if a memory management
exception occurs (see Appendix E), the queue is left in a consistent state.

Notes

1. The following three types of removal can be performed by suitable choice of
entry operand:

• Remove at head:

REMQUE @h,addr ; h is queue header

• Remove at tail:

REMQUE @h+4,addr ; h is queue header

• Remove arbitrary entry:

REMQUE entry,addr

2. Because the removal is noninterruptible, processes running in kernel mode
can share queues with interrupt service routines.

3. The INSQUE and REMQUE instructions are implemented so that cooperating
software processes in a single processor may access a shared list without
additional synchronization, if the insertions and removals are only at the
head or tail of the queue.

VAX Instruction Set 9–99

VAX Instruction Set
REMQUE

4. To release a software interlock realized with a queue, you can use the
following:

REMQUE ... ; Queue empty?
BEQL 1$; Yes
CALL ACTIVATE(...) ; Activate other waiters

1$:

5. To remove entries until the queue is empty, you can use the following:

1$: REMQUE ... ; Anything removed?
BVS EMPTY ; No
.
.
.

BR 1$

6. During access validation, any access that cannot be completed results in
a memory management exception, even though the queue removal is not
started.

9–100 VAX Instruction Set

VAX Instruction Set
REMQUE

9.2.8 Floating-Point Instructions
Floating-point instructions operate on the following four data types:

• F_floating, standard on all VAX processors

• D_floating, standard on all VAX processors

• G_floating, optional on the VAX-11/780 and the VAX-11/750, and standard on
the VAX-11/730

• H_floating, optional on the VAX-11/780 and the VAX-11/750, and standard on
the VAX-11/730

To be consistent with the floating-point instruction set, which faults on reserved
operands (see Chapter 8), software-implemented floating-point functions (for
example, the absolute function) should verify that no input operands are reserved.
An easy way to do this is a floating move or test of the input operands.

To make high-speed, floating-point operations easier, restrictions are placed on the
addressing mode combinations usable within a single floating-point instruction.
These combinations involve the logically inconsistent simultaneous use of a value
as both a floating-point operand and an address.

If, within the same instruction, you use the contents of register Rn as both
a part of a floating-point input operand (an .rf, .rd, .rg, .rh, .mf, .md, .mg,
or .mh operand) and as an address in an addressing mode that modifies Rn
(autoincrement, autodecrement, or autoincrement deferred), the value of the
floating-point operand is UNPREDICTABLE.

9.2.8.1 Introduction
Mathematically, a floating-point number may be defined as having the following
form:

(+or�)(2 � �K) � f

where K is an integer and f is a nonnegative fraction. For a nonvanishing
number, K and f are uniquely determined by imposing the following condition:

1/2 LEQ f LSS 1.

The fractional factor, f, of the number is then said to be binary normalized.
For the number 0, f must be assigned the value zero, and the value of K is
indeterminate.

VAX derives these floating-point data formats from this mathematical
representation for floating-point numbers. Four types of floating-point data
are provided: the two standard PDP-11 formats (F_floating and D_floating),
and two extended-range formats (G_floating and H_floating). Single-precision,
or floating, data is 32 bits long. Double-precision, or D_floating, data is 64
bits long. Extended-range double-precision, or G_floating, data is 64 bits long.
Extended-range quadruple-precision, or H_floating, data is 128 bits long. Use
sign magnitude notation as follows:

1. Nonzero floating-point numbers:

The most significant bit of the floating-point data is the sign bit: 0 for positive
and 1 for negative.

VAX Instruction Set 9–101

VAX Instruction Set
REMQUE

The fractional factor f is assumed normalized, so that its most significant
bit must be 1. This 1 is the ‘‘hidden’’ bit: it is not stored in the data word,
but the hardware restores it before carrying out arithmetic operations. The
F_floating and D_floating data types use 23 and 55 bits, respectively, for f,
which, with the hidden bit, imply effective significance of 24 bits and 56 bits
for arithmetic operations. The extended-range (G_floating and H_floating)
data types use 52 and 112 bits, respectively, for f, which, with the hidden bit,
imply effective significance of 53 and 113 bits for arithmetic operations.

In the F_floating and D_floating data types, 8 bits are reserved for the storage
of the exponent K in excess 128 notation. Thus, exponents from -128 to +127
could be represented, in biased form, by 0 to 255. For reasons given later, a
biased exponent of zero (the true exponent of -128) is reserved for floating-
point zero. Thus, for F_floating and D_floating data types, exponents are
restricted to the range -127 to +127 inclusive or, in excess 128 notation, 1 to
255.

In the G_floating data type, 11 bits are reserved for the storage of the
exponent in excess 1024 notation. In the H_floating data type, 15 bits are
reserved for the storage of the exponent in excess 16,384 notation. A biased
exponent of zero is reserved for floating-point zero. Thus, exponents are
restricted to -1023 to +1023 inclusive (in excess notation, 1 to 2047), and
-16,383 to +16,383 inclusive (in excess notation, 1 to 32,767) for G_floating
and H_floating data types, respectively.

2. Floating-point 0:

Because of the hidden bit, the fractional factor is not available to distinguish
between zero and nonzero numbers whose fractional factor is exactly 1/2.
Therefore, the VAX reserves a sign-exponent field of zero for this purpose.
Any positive floating-point number with a biased exponent of zero is treated
as if it were an exact zero by the floating-point instruction set. In particular,
a floating-point operand whose bits are all zeros is treated as zero, and this is
the format generated by all floating-point instructions for which the result is
zero.

3. The reserved operands:

A reserved operand is defined to be any bit pattern with a sign bit of 1 and a
biased exponent of zero. On the VAX, all floating-point instructions generate
a fault if a reserved operand is encountered. A reserved operand is never
generated as a result of a floating-point instruction. Scalar floating-point
instructions never generate a reserved operand. However, vector floating-
point instructions can generate reserved operands.

9.2.8.2 Overview of the Instruction Set
The VAX has the standard arithmetic operations ADD, SUB, MUL, and DIV
implemented for all four floating-point data types. The results of these operations
are always rounded, as described in Section 9.2.8.3. In addition, VAX has two
composite operations, EMOD and POLY, also implemented for all four floating-
point data types. EMOD generates a product of two operands and then separates
the product into its integer and fractional terms. POLY evaluates a polynomial,
given the degree, the argument, and a pointer to a table of coefficients. Details on
the operation of EMOD and POLY are given in their respective descriptions. All
of these instructions are subject to the rounding errors associated with floating-
point operations, as well as to exponent overflow and underflow. Accuracy is
discussed in Section 9.2.8.3. Exceptions are discussed in Appendix E.

9–102 VAX Instruction Set

VAX Instruction Set
REMQUE

The VAX architecture also has a complete set of instructions for conversion from
integer arithmetic types (byte, word, longword) to all floating types (F_floating,
D_floating, G_floating, H_floating), and vice versa. The VAX architecture also
has a set of instructions for conversion between all of the floating types except
between D_floating and G_floating. Many of these instructions are exact, in the
sense defined in Section 9.2.8.3. However, a few may generate rounding error,
floating overflow, or floating underflow, or induce integer overflow. Details are
given in the description of the CVT instructions.

The following move-type instructions are always exact: MOV, NEG, CLR, CMP,
and TST. The ACB (Add Compare and Branch) instruction is subject to rounding
errors, overflow, and underflow.

All of the floating-point instructions on the VAX architecture fault if they
encounter a reserved operand. Floating-point instructions also fault on the
occurrence of floating overflow or divide by zero, and the condition codes are
UNPREDICTABLE. The FU bit in the processor status word (PSW) is available
to enable or disable an exception on underflow. If the FU bit is clear, no exception
occurs on underflow and zero is returned as the result. If the FU bit is set,
a fault occurs on underflow. Further details on the actions taken if any of
these exceptions occurs are included in the descriptions of the instructions and
discussed in Appendix E.

9.2.8.3 Accuracy
This section discusses general comments on the accuracy of the VAX floating-
point instruction set. The descriptions of the individual instructions may include
additional details on their accuracy.

An instruction is defined to be exact if its result, extended on the right by an
infinite sequence of zeros, is identical to that of an infinite precision calculation
involving the same operands. The prior accuracy of the operands is ignored. For
all arithmetic operations except DIV, a zero operand implies that the instruction
is exact. The instruction is exact for DIV if the 0 operand is the dividend. If the
0 operand is the divisor, division is undefined and the instruction faults.

For nonzero floating-point operands, the fractional factor is binary normalized
with 24 or 56 bits for single-precision (F_floating) or double-precision (D_floating),
respectively; and 53 or 113 bits for extended-range double-precision (G_floating),
and extended-range quadruple-precision (H_floating), respectively. The ADD,
SUB, MUL, and DIV instructions require an overflow bit (on the left) and two
guard bits (on the right) to guarantee the return of a rounded result identical
to the corresponding infinite precision operation rounded to the specified word
length. With these two guard bits, a rounded result has an error bound of 1/2
LSB (least significant bit).

Note that an arithmetic result is exact if no nonzero bits are lost in chopping the
infinite precision result to the data length to be stored. Chopping is defined to
mean that the 24 (F_floating), 56 (D_floating), 53 (G_floating), or 113 (H_floating)
high-order bits of the normalized fractional factor of a result are stored; the
rest of the bits are discarded. The first bit lost in chopping is referred to as the
‘‘rounding’’ bit. The value of a rounded result is related to the chopped result as
follows:

• If the rounding bit is 1, the rounded result is the chopped result incremented
by an LSB (least significant bit).

• If the rounding bit is zero, the rounded and chopped results are identical.

VAX Instruction Set 9–103

VAX Instruction Set
REMQUE

All VAX processors implement rounding to produce results identical to the results
produced by the following algorithm: add a 1 to the rounding bit and propagate
the carry, if it occurs. Note that a renormalization may be required after rounding
takes place. If this occurs, the new rounding bit will be 0; therefore, it can occur
only once. The following statements summarize the relations among chopped,
rounded, and true (infinite precision) results:

• If a stored result is exact:

roundedvalue = choppedvalue = truevalue

• If a stored result is not exact:

Its magnitude is always less than that of the true result for chopping.

Its magnitude is always less than that of the true result for rounding if
the rounding bit is zero.

Its magnitude is greater than that of the true result for rounding if the
rounding bit is 1.

9.2.8.4 Instruction Descriptions
The following instructions are described in this section:

Description and Opcode
Number of
Instructions

1. Add 2 Operand
ADD{F,D,G,H}2 add.rx, sum.mx

4

2. Add 3 Operand
ADD{F,D,G,H}3 add1.rx, add2.rx, sum.wx

4

3. Clear
CLR{L=F,Q=D=G,O=H} dst.wx

3

4. Compare
CMP{F,D,G,H} src1.rx, src2.rx

4

5. Convert
CVT{F,D,G,H}{B,W,L,F,D,G,H} src.rx, dst.wy
CVT{B,W,L}{F,D,G,H} src.rx, dst.wy
All pairs except FF,DD,GG,HH,DG, and GD

34

6. Convert Rounded
CVTR{F,D,G,H}L src.rx, dst.wl

4

7. Divide 2 Operand
DIV{F,D,G,H}2 divr.rx, quo.mx

4

8. Divide 3 Operand
DIV{F,D,G,H}3 divr.rx, divd.rx, quo.wx

4

9. Extended Modulus
EMOD{F,D} mulr.rx, mulrx.rb, muld.rx,
int.wl, fract.wx
EMOD{G,H} mulr.rx, mulrx.rw, muld.rx,
int.wl, fract.wx

4

10. Move Negated
MNEG{F,D,G,H} src.rx, dst.wx

4

11. Move
MOV{F,D,G,H} src.rx, dst.wx

4

12. Multiply 2 Operand
MUL{F,D,G,H}2 mulr.rx, prod.mx

4

9–104 VAX Instruction Set

VAX Instruction Set
REMQUE

Description and Opcode
Number of
Instructions

13. Multiply 3 Operand
MUL{F,D,G,H}3 mulr.rx, muld.rx, prod.wx

4

14. Polynomial Evaluation F_floating
POLYF arg.rf, degree.rw, tbladdr.ab,
{R0-3.wl}

1

15. Polynomial Evaluation D_floating
POLYD arg.rd, degree.rw, tbladdr.ab,
{R0-5.wl}

1

16. Polynomial Evaluation G_floating
POLYG arg.rg, degree.rw, tbladdr.ab,
{R0-5.wl}

1

17. Polynomial Evaluation H_floating
POLYH arg.rh, degree.rw, tbladdr.ab,
{R0-5.wl,-16(SP):-1(SP).wb}

1

18. Subtract 2 Operand
SUB{F,D,G,H}2 sub.rx, dif.mx

4

19. Subtract 3 Operand
SUB{F,D,G,H}3 sub.rx, min.rx, dif.wx

4

20. Test
TST{F,D,G,H} src.rx

4

The following floating-point instructions are described in Section 9.2.4.

Description and Opcode
Number of
Instructions

1. Add Compare and Branch
ACB{F,D,G,H} limit.rx, add.rx, index.mx,
displ.bw

4

Compare is LE on positive add, GE on
negative add.

VAX Instruction Set 9–105

VAX Instruction Set
ADD

ADD

Add

Format

2operand: opcode add.rx, sum.mx

3operand: opcode add1.rx, add2.rx, sum.wx

Condition Codes

N <— sum LSS 0;
Z <— sum EQL 0;
V <— 0;
C <— 0;

Exceptions

floating overflow
floating underflow
reserved operand

Opcodes

40 ADDF2 Add F_floating 2 Operand
41 ADDF3 Add F_floating 3 Operand
60 ADDD2 Add D_floating 2 Operand
61 ADDD3 Add D_floating 3 Operand
40FD ADDG2 Add G_floating 2 Operand
41FD ADDG3 Add G_floating 3 Operand
60FD ADDH2 Add H_floating 2 Operand
61FD ADDH3 Add H_floating 3 Operand

Description

In 2 operand format, the addend operand is added to the sum operand, and the
sum operand is replaced by the rounded result. In 3 operand format, the addend
1 operand is added to the addend 2 operand, and the sum operand is replaced by
the rounded result.

Notes

1. On a reserved operand fault, the sum operand is unaffected, and the condition
codes are UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. Zero is stored as the result
of floating underflow only if FU is clear. On a floating underflow fault, the
sum operand is unaffected. If FU is clear, the sum operand is replaced by
zero, and no exception occurs.

3. On floating overflow, the instruction faults, the sum operand is unaffected,
and the condition codes are UNPREDICTABLE.

9–106 VAX Instruction Set

VAX Instruction Set
CLR

CLR

Clear

Format

opcode dst.wx

Condition Codes

N <— 0;
Z <— 1;
V <— 0;
C <— C;

Exceptions

None.

Opcodes

D4 CLRF Clear F_floating
7C CLRD Clear D_floating,

CLRG Clear G_floating
7CFD CLRH Clear H_floating

Description

The destination operand is replaced by zero.

Note
CLRx dst is equivalent to MOVx S^#0, dst, but is 1 byte shorter.

VAX Instruction Set 9–107

VAX Instruction Set
CMP

CMP

Compare

Format

opcode src1.rx, src2.rx

Condition Codes

N <— src1 LSS src2;
Z <— src1 EQL src2;
V <— 0;
C <— 0;

Exceptions

reserved operand

Opcodes

51 CMPF Compare F_floating
71 CMPD Compare D_floating
51FD CMPG Compare G_floating
71FD CMPH Compare H_floating

Description

The source 1 operand is compared with the source 2 operand. The only action is
to affect the condition codes.

9–108 VAX Instruction Set

VAX Instruction Set
CVT

CVT

Convert

Format

opcode src.rx, dst.wy

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— {integer overflow};
C <— 0;

Exceptions

integer overflow
floating overflow
floating underflow
reserved operand

Opcodes

4C CVTBF Convert Byte to F_floating
6C CVTBD Convert Byte to D_floating
4CFD CVTBG Convert Byte to G_floating
6CFD CVTBH Convert Byte to H_floating
4D CVTWF Convert Word to F_floating
6D CVTWD Convert Word to D_floating
4DFD CVTWG Convert Word to G_floating
6DFD CVTWH Convert Word to H_floating
4E CVTLF Convert Long to F_floating
6E CVTLD Convert Long to D_floating
4EFD CVTLG Convert Long to G_floating
6EFD CVTLH Convert Long to H_floating
48 CVTFB Convert F_floating to Byte
68 CVTDB Convert D_floating to Byte
48FD CVTGB Convert G_floating to Byte
68FD CVTHB Convert H_floating to Byte
49 CVTFW Convert F_floating to Word
69 CVTDW Convert D_floating to Word
49FD CVTGW Convert G_floating to Word
69FD CVTHW Convert H_floating to Word
4A CVTFL Convert F_floating to Long

VAX Instruction Set 9–109

VAX Instruction Set
CVT

4B CVTRFL Convert Rounded F_floating to Long
6A CVTDL Convert D_floating to Long
6B CVTRDL Convert Rounded D_floating to Long
4AFD CVTGL Convert G_floating to Long
4BFD CVTRGL Convert Rounded G_floating to Long
6AFD CVTHL Convert H_floating to Long
6BFD CVTRHL Convert Rounded H_floating to Long
56 CVTFD Convert F_floating to D_floating
99FD CVTFG Convert F_floating to G_floating
98FD CVTFH Convert F_floating to H_floating
76 CVTDF Convert D_floating to F_floating
32FD CVTDH Convert D_floating to H_floating
33FD CVTGF Convert G_floating to F_floating
56FD CVTGH Convert G_floating to H_floating
F6FD CVTHF Convert H_floating to F_floating
F7FD CVTHD Convert H_floating to D_floating
76FD CVTHG Convert H_floating to G_floating

Description

The source operand is converted to the data type of the destination operand, and
the destination operand is replaced by the result. The form of the conversion is
as follows:

Form Instructions

Exact CVTBF, CVTBD, CVTBG, CVTBH, CVTWF, CVTWD, CVTWG,
CVTWH, CVTLD, CVTLG, CVTLH, CVTFD, CVTFG, CVTFH,
CVTDH, CVTGH

Truncated CVTFB, CVTDB, CVTGB, CVTHB, CVTFW, CVTDW, CVTGW,
CVTHW, CVTFL, CVTDL, CVTGL, CVTHL

Rounded CVTLF, CVTRFL, CVTRDL, CVTRGL, CVTRHL, CVTDF,
CVTGF, CVTHF, CVTHD, CVTHG

Notes

1. Only CVTDF, CVTGF, CVTHF, CVTHD, and CVTHG can result in a floating
overflow fault; the destination operand is unaffected, and the condition codes
are UNPREDICTABLE.

2. Only converts with a floating-point source operand can result in a reserved
operand fault. On a reserved operand fault, the destination operand is
unaffected, and the condition codes are UNPREDICTABLE.

3. Only converts with an integer destination operand can result in integer
overflow. On integer overflow, the destination operand is replaced by the
low-order bits of the true result.

4. Only CVTGF, CVTHF, CVTHD, and CVTHG can result in floating underflow.
If FU is set, a fault occurs. On a floating underflow fault, the destination
operand is unaffected. If FU is clear, the destination operand is replaced by
zero, and no exception occurs.

9–110 VAX Instruction Set

VAX Instruction Set
DIV

DIV

Divide

Format

2operand: opcode divr.rx, quo.mx

3operand: opcode divr.rx, divd.rx, quo.wx

Condition Codes

N <— quo LSS 0;
Z <— quo EQL 0;
V <— 0;
C <— 0;

Exceptions

floating overflow
floating underflow
divide by zero
reserved operand

Opcodes

46 DIVF2 Divide F_floating 2 Operand
47 DIVF3 Divide F_floating 3 Operand
66 DIVD2 Divide D_floating 2 Operand
67 DIVD3 Divide D_floating 3 Operand
46FD DIVG2 Divide G_floating 2 Operand
47FD DIVG3 Divide G_floating 3 Operand
66FD DIVH2 Divide H_floating 2 Operand
67FD DIVH3 Divide H_floating 3 Operand

Description

In 2 operand format, the quotient operand is divided by the divisor operand and
the quotient operand is replaced by the rounded result. In 3 operand format, the
dividend operand is divided by the divisor operand, and the quotient operand is
replaced by the rounded result.

Notes

1. On a reserved operand fault, the quotient operand is unaffected, and the
condition codes are UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. On a floating underflow
fault, the quotient operand is unaffected. If FU is clear, the quotient operand
is replaced by zero, and no exception occurs.

VAX Instruction Set 9–111

VAX Instruction Set
DIV

3. On floating overflow, the instruction faults, the quotient operand is unaffected,
and the condition codes are UNPREDICTABLE.

4. On divide by zero, the quotient operand and condition codes are affected, as
in note 3.

9–112 VAX Instruction Set

VAX Instruction Set
EMOD

EMOD

Extended Multiply and Integerize

Format

EMODF and EMODD:

opcode mulr.rx, mulrx.rb, muld.rx, int.wl, fract.wx

EMODG and EMODH:

opcode mulr.rx, mulrx.rw, muld.rx, int.wl, fract.wx

Condition Codes

N <— fract LSS 0;
Z <— fract EQL 0;
V <— {integer overflow};
C <— 0;

Exceptions

integer overflow
floating underflow
reserved operand

Opcodes

54 EMODF Extended Multiply and Integerize F_floating
74 EMODD Extended Multiply and Integerize D_floating
54FD EMODG Extended Multiply and Integerize G_floating
74FD EMODH Extended Multiply and Integerize H_floating

Description

The multiplier extension operand is concatenated with the multiplier operand
to gain 8 (EMODD and EMODF), 11 (EMODG), or 15 (EMODH) additional low-
order fraction bits. The low-order 5 or 1 bits of the 16-bit multiplier extension
operand are ignored by the EMODG and EMODH instructions, respectively.
The multiplicand operand is multiplied by the extended multiplier operand.
The multiplication result is equivalent to the exact product truncated (before
normalization) to a fraction field of 32 bits in F_floating, 64 bits in D_floating
and G_floating, and 128 bits in H_floating. The result is regarded as the sum of
an integer and fraction of the same sign. The integer operand is replaced by the
integer part of the result, and the fraction operand is replaced by the rounded
fractional part of the result.

VAX Instruction Set 9–113

VAX Instruction Set
EMOD

Notes

1. On a reserved operand fault, the integer operand, and the fraction operand
are unaffected. The condition codes are UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. On a floating underflow
fault, the integer and fraction parts are unaffected. If FU is clear, the integer
and fraction parts are replaced by zero, and no exception occurs.

3. On integer overflow, the integer operand is replaced by the low-order bits of
the true result.

4. Floating overflow is indicated by integer overflow; however, integer overflow
is possible in the absence of floating overflow.

5. The signs of the integer and fraction are the same unless integer overflow
results.

6. Because the fraction part is rounded after separation of the integer part, it is
possible that the value of the fraction operand is 1.

9–114 VAX Instruction Set

VAX Instruction Set
MNEG

MNEG

Move Negated

Format

opcode src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— 0;

Exceptions

reserved operand

Opcodes

52 MNEGF Move Negated F_floating
72 MNEGD Move Negated D_floating
52FD MNEGG Move Negated G_floating
72FD MNEGH Move Negated H_floating

Description

The destination operand is replaced by the negative of the source operand.

VAX Instruction Set 9–115

VAX Instruction Set
MOV

MOV

Move

Format

opcode src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— 0;
C <— C;

Exceptions

reserved operand

Opcodes

50 MOVF Move F_floating
70 MOVD Move D_floating
50FD MOVG Move G_floating
70FD MOVH Move H_floating

Description

The destination operand is replaced by the source operand.

Note
On a reserved operand fault, the destination operand is unaffected, and the
condition codes are UNPREDICTABLE.

9–116 VAX Instruction Set

VAX Instruction Set
MUL

MUL

Multiply

Format

2operand: opcode mulr.rx, prod.mx

3operand: opcode mulr.rx, muld.rx, prod.wx

Condition Codes

N <— prod LSS 0;
Z <— prod EQL 0;
V <— 0;
C <— 0;

Exceptions

floating overflow
floating underflow
reserved operand

Opcodes

44 MULF2 Multiply F_floating 2 Operand
45 MULF3 Multiply F_floating 3 Operand
64 MULD2 Multiply D_floating 2 Operand
65 MULD3 Multiply D_floating 3 Operand
44FD MULG2 Multiply G_floating 2 Operand
45FD MULG3 Multiply G_floating 3 Operand
64FD MULH2 Multiply H_floating 2 Operand
65FD MULH3 Multiply H_floating 3 Operand

Description

In 2 operand format, the product operand is multiplied by the multiplier operand,
and the product operand is replaced by the rounded result. In 3 operand format,
the multiplicand operand is multiplied by the multiplier operand, and the product
operand is replaced by the rounded result.

Notes

1. On a reserved operand fault, the product operand is unaffected, and the
condition codes are UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. On a floating underflow
fault, the product operand is unaffected. If FU is clear, the product operand
is replaced by zero, and no exception occurs.

3. On floating overflow, the instruction faults, the product operand is unaffected,
and the condition codes are UNPREDICTABLE.

VAX Instruction Set 9–117

VAX Instruction Set
POLY

POLY

Polynomial Evaluation

Format

opcode arg.rx, degree.rw, tbladdr.ab

Condition Codes

N <— R0 LSS 0;
Z <— R0 EQL 0;
V <— 0;
C <— 0;

Exceptions

floating overflow
floating underflow
reserved operand

Opcodes

55 POLYF Polynomial Evaluation F_floating
75 POLYD Polynomial Evaluation D_floating
55FD POLYG Polynomial Evaluation G_floating
75FD POLYH Polynomial Evaluation H_floating

Description

The table address operand points to a table of polynomial coefficients. The
coefficient of the highest-order term of the polynomial is pointed to by the table
address operand. The table is specified with lower-order coefficients stored
at increasing addresses. The data type of the coefficients is the same as the
data type of the argument operand. The evaluation is carried out by Horner’s
method, and the contents of R0 (R1’R0 for POLYD and POLYG, R3’R2’R1’R0
for POLYH) are replaced by the result. The result computed is:

if d = degree
and x = arg
result = C[0]+x**0 + x*(C[1] + x*(C[2] + ... x*C[d]))

The unsigned word degree operand specifies the highest-numbered coefficient to
participate in the evaluation. POLYH requires four longwords on the stack to
store arg in case the instruction is interrupted.

Notes

1. After execution:

POLYF:
R0 = result
R1 = 0
R2 = 0
R3 = table address + degree*4 + 4

9–118 VAX Instruction Set

VAX Instruction Set
POLY

POLYD and POLYG:
R0 = high-order part of result
R1 = low-order part of result
R2 = 0
R3 = table address + degree*8 + 8
R4 = 0
R5 = 0
POLYH:
R0 = highest-order part of result
R1 = second-highest-order part of result
R2 = second-lowest-order part of result
R3 = lowest-order part of result
R4 = 0
R5 = table address + degree*16 + 16

2. On a floating fault:

• If PSL<FPD> = 0, the instruction faults, and all relevant side effects are
restored to their original state.

• If PSL<FPD> = 1, the instruction is suspended, and the state is saved in
the general registers as follows:

POLYF:
R0 = tmp3 ! Partial result after iteration

! prior to the one causing the
! overflow/underflow

R1 = arg
R2<7:0> = tmp1 ! Number of iterations remaining
R2<31:8> = implementation specific
R3 = tmp2 ! Points to table entry causing

! exception

POLYD and POLYG:
R1’R0 = tmp3 ! Partial result after iteration

! prior to the one causing the
! overflow/underflow

R2<7:0> = tmp1 ! Number of iterations remaining
R2<31:8> = implementation specific
R3 = tmp2 ! Points to table entry causing

! exception
R5’R4 = arg

POLYH:
R3’R2’R1’R0 = tmp3 ! Partial result after iteration

! prior to the one causing the
! overflow/underflow

R4<7:0> = tmp1 ! Number of iterations remaining
R4<31:8> = implementation specific
R5 = tmp2 ! Points to table entry causing

! exception

arg is saved on the stack in use during the faulting instruction.

Implementation-specific information is saved to allow the instruction to
continue after possible scaling of the coefficients and partial result by the
fault handler.

3. If the unsigned word degree operand is zero and the argument is not a
reserved operand, the result is C[0].

4. If the unsigned word degree operand is greater than 31, a reserved operand
fault occurs.

VAX Instruction Set 9–119

VAX Instruction Set
POLY

5. On a reserved operand fault:

• If PSL<FPD> = 0, the reserved operand is either the degree operand
(greater than 31), or the argument operand, or some coefficient.

• If PSL<FPD> = 1, the reserved operand is a coefficient, and R3 (except
for POLYH) or R5 (for POLYH) is pointing at the value that caused the
exception.

• The state of the saved condition codes and the other registers is
UNPREDICTABLE. If the reserved operand is changed and the contents
of the condition codes and all registers are preserved, the fault can be
continued.

6. On floating underflow after the rounding operation at any iteration of the
computation loop, a fault occurs if FU is set. If FU is clear, the temporary
result (tmp3) is replaced by zero and the operation continues. In this case,
the final result may be nonzero if underflow occurred before the last iteration.

7. On floating overflow after the rounding operation at any iteration of the
computation loop, the instruction terminates with a fault.

8. If the argument is zero and one of the coefficients in the table is the reserved
operand, whether a reserved operand fault occurs is UNPREDICTABLE.

9. For POLYH, some implementations may not save arg on the stack until after
an interrupt or fault occurs. However, arg will always be on the stack if an
interrupt or floating fault occurs after FPD is set. If the four longwords on the
stack overlap any of the source operands, the results are UNPREDICTABLE.

Example

; To compute P(x) = C0 + C1*x + C2*x**2
; where C0 = 1.0, C1 = .5, and C2 = .25

POLYF X,#2,PTABLE
.
.
.

PTABLE: .FLOAT 0.25 ; C2
.FLOAT 0.5 ; C1
.FLOAT 1.0 ; C0

9–120 VAX Instruction Set

VAX Instruction Set
SUB

SUB

Subtract

Format

2operand: opcode sub.rx, dif.mx

3operand: opcode sub.rx, min.rx, dif.wx

Condition Codes

N <— dif LSS 0;
Z <— dif EQL 0;
V <— 0;
C <— 0;

Exceptions

floating overflow
floating underflow
reserved operand

Opcodes

42 SUBF2 Subtract F_floating 2 Operand
43 SUBF3 Subtract F_floating 3 Operand
62 SUBD2 Subtract D_floating 2 Operand
63 SUBD3 Subtract D_floating 3 Operand
42FD SUBG2 Subtract G_floating 2 Operand
43FD SUBG3 Subtract G_floating 3 Operand
62FD SUBH2 Subtract H_floating 2 Operand
63FD SUBH3 Subtract H_floating 3 Operand

Description

In 2 operand format, the subtrahend operand is subtracted from the difference
operand, and the difference is replaced by the rounded result. In 3 operand
format, the subtrahend operand is subtracted from the minuend operand, and the
difference operand is replaced by the rounded result.

VAX Instruction Set 9–121

VAX Instruction Set
SUB

Notes

1. On a reserved operand fault, the difference operand is unaffected, and the
condition codes are UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. Zero is stored as the result
of floating underflow only if FU is clear. On a floating underflow fault, the
difference operand is unaffected. If FU is clear, the difference operand is
replaced by zero, and no exception occurs.

3. On floating overflow, the instruction faults, the difference operand is
unaffected, and the condition codes are UNPREDICTABLE.

9–122 VAX Instruction Set

VAX Instruction Set
TST

TST

Test

Format

opcode src.rx

Condition Codes

N <— src LSS 0;
Z <— src EQL 0;
V <— 0;
C <— 0;

Exceptions

reserved operand

Opcodes

53 TSTF Test F_floating
73 TSTD Test D_floating
53FD TSTG Test G_floating
73FD TSTH Test H_floating

Description

The condition codes are affected according to the value of the source operand.

Notes

1. TSTx src is equivalent to CMPx src, #0, but is 5 (F_floating) or 9
(D_floating or G_floating) or 17 (H_floating) bytes shorter.

2. On a reserved operand fault, the condition codes are UNPREDICTABLE.

VAX Instruction Set 9–123

VAX Instruction Set
TST

9.2.9 Character String Instructions
A character string is specified by the following two operands:

1. An unsigned word operand that specifies the length of the character string in
bytes.

2. The address of the lowest-addressed byte of the character string. This is
specified by a byte operand of address access type.

Each of the character string instructions uses general registers R0 to R1, R0 to
R3, or R0 to R5 to contain a control block that maintains updated addresses and
state during the execution of the instruction. At completion, these registers are
available to software to use as string specification operands for a subsequent
instruction on a contiguous character string. During the execution of the
instructions, pending interrupt conditions are tested. If any conditions are
found, the control block is updated, a first-part-done bit is set in the processor
status longword (PSL), and the instruction is interrupted (refer to Appendix E).
After the interruption, the instruction resumes transparently. The format of the
control block is as follows:

ZK−1175A−GE

: R0LENGTH 1

ADDRESS 1 : R1

: R2LENGTH 2

ADDRESS 2 : R3

: R4LENGTH 3

ADDRESS 3 : R5

The fields LENGTH 1, LENGTH 2 (if required), and LENGTH 3 (if required)
contain the number of bytes remaining to be processed in the first, second, and
third string operands, respectively. The fields ADDRESS 1, ADDRESS 2 (if
required), and ADDRESS 3 (if required) contain the address of the next byte to
be processed in the first, second, and third string operands, respectively.

Memory access faults do not occur when a zero-length string is specified because
no memory reference occurs.

The following instructions are described in this section.

Description and Opcode
Number of
Instructions

1. Compare Characters 3 Operand
CMPC3 len.rw, src1addr.ab, src2addr.ab,
{R0-3.wl}

1

2. Compare Characters 5 Operand
CMPC5 src1len.rw, src1addr.ab, fill.rb,
src2len.rw, src2addr.ab, {R0-3.wl}

1

3. Locate Character
LOCC char.rb, len.rw, addr.ab, {R0-1.wl}

1

9–124 VAX Instruction Set

VAX Instruction Set
TST

Description and Opcode
Number of
Instructions

4. Match Characters
MATCHC len1.rw, addr1.ab, len2.rw, addr2.ab,
{R0-3.wl}

1

5. Move Character 3 Operand
MOVC3 len.rw, srcaddr.ab, dstaddr.ab,
{R0-5.wl}

1

6. Move Character 5 Operand
MOVC5 srclen.rw, srcaddr.ab, fill.rb,
dstlen.rw, dstaddr.ab, {R0-5.wl}

1

7. Move Translated Characters
MOVTC srclen.rw, srcaddr.ab, fill.rb,
tbladdr.ab, dstlen.rw, dstaddr.ab, {R0-5.wl}

1

8. Move Translated Until Character
MOVTUC srclen.rw, srcaddr.ab, esc.rb,
tbladdr.ab, dstlen.rw, dstaddr.ab, {R0-5.wl}

1

9. Scan Characters
SCANC len.rw, addr.ab, tbladdr.ab, mask.rb,
{R0-3.wl}

1

10. Skip Character
SKPC char.rb, len.rw, addr.ab, {R0-1.wl}

1

11. Span Characters
SPANC len.rw, addr.ab, tbladdr.ab,
mask.rb, {R0-3.wl}

1

VAX Instruction Set 9–125

VAX Instruction Set
CMPC

CMPC

Compare Characters

Format

3operand: opcode len.rw, src1addr.ab,
src2addr.ab

5operand: opcode src1len.rw, src1addr.ab, fill.rb,
src2len.rw, src2addr.ab

Condition Codes

N <— {first byte} LSS {second byte};
Z <— {first byte} EQL {second byte};
V <— 0;
C <— {first byte} LSSU {second byte};

Exceptions

None.

Opcodes

29 CMPC3 Compare Characters 3 Operand
2D CMPC5 Compare Characters 5 Operand

Description

In 3 operand format, the bytes of string1 specified by the length and address1
operands are compared with the bytes of string2 specified by the length and
address2 operands. Comparison proceeds until inequality is detected or all the
bytes of the strings have been examined. Condition codes are affected by the
result of the last byte comparison. In 5 operand format, the bytes of the string1
operand specified by the length1 and address1 operands are compared with the
bytes of the string2 operand specified by the length2 and address2 operands. If
one string is longer than the other, the shorter string is conceptually extended to
the length of the longer by appending (at higher addresses) bytes equal to the fill
operand. Comparison proceeds until inequality is detected or all the bytes of the
strings have been examined. Condition codes are affected by the result of the last
byte comparison. For either CMPC3 or CMPC5, two zero-length strings compare
equal (that is, Z is set and N, V, and C are cleared).

Notes

1. After execution of CMPC3:

R0 = Number of bytes remaining in string1 (including byte that
terminated comparison); R0 is zero only if strings are equal

R1 = Address of the byte in string1 that terminated comparison; if strings
are equal, address of 1 byte beyond string1

9–126 VAX Instruction Set

VAX Instruction Set
CMPC

R2 = R0
R3 = Address of the byte in string2 that terminated comparison; if strings

are equal, address of 1 byte beyond string2

2. After execution of CMPC5:

R0 = Number of bytes remaining in string1 (including byte that
terminated comparison); R0 is zero only if string1 and string2 are of
equal length and equal or string1 was exhausted before comparison
terminated

R1 = Address of the byte in string1 that terminated comparison; if
comparison did not terminate before string1 exhausted, address
of 1 byte beyond string1

R2 = Number of bytes remaining in string2 (including byte that
terminated comparison); R2 is zero only if string2 and string1 are of
equal length or string2 was exhausted before comparison terminated

R3 = Address of the byte in string2 that terminated comparison; if
comparison did not terminate before string2 was exhausted, address
of 1 byte beyond string2

3. If both strings have zero length, condition code Z is set and N, V, and C are
cleared just as in the case of two equal strings.

VAX Instruction Set 9–127

VAX Instruction Set
LOCC

LOCC

Locate Character

Format

opcode char.rb, len.rw, addr.ab

Condition Codes

N <— 0;
Z <— R0 EQL 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

3A LOCC Locate Character

Description

The character operand is compared with the bytes of the string specified by the
length and address operands. Comparison continues until equality is detected or
all bytes of the string have been compared. If equality is detected, the condition
code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1. After execution:

R0 = Number of bytes remaining in the string (including located one) if
byte located; otherwise, zero

R1 = Address of the byte located if byte located; otherwise, address of 1
byte beyond the string

2. If the string has zero length, condition code Z is set just as though each byte
of the entire string were unequal to character.

9–128 VAX Instruction Set

VAX Instruction Set
MATCHC

MATCHC

Match Characters

Format

opcode objlen.rw, objaddr.ab, srclen.rw, srcaddr.ab

Condition Codes

N <— 0;
Z <— R0 EQL 0; !match found
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

39 MATCHC Match Characters

Description

The source string specified by the source length and source address operands is
searched for a substring that matches the object string specified by the object
length and object address operands. If the substring is found, the condition code
Z-bit is set; otherwise, it is cleared.

Notes

1. After execution:

R0 = If a match occurred, zero; otherwise, the number of bytes in the
object string

R1 = If a match occurred, the address of 1 byte beyond the object string;
that is, objaddr + objlen; otherwise, the address of the object string

R2 = If a match occurred, the number of bytes remaining in the source
string; otherwise, zero

R3 = If a match occurred, the address of 1 byte beyond the last byte
matched; otherwise, the address of 1 byte beyond the source string;
that is, srcaddr + srclen

For zero-length source and object strings, R3 and R1 contain the source and
object addresses, respectively.

2. If both strings have zero length, or if the object string has zero length,
condition code Z is set, and registers R0 to R3 are left just as though the
substring were found.

3. If the source string has zero length and the object string has nonzero length,
condition code Z is cleared, and registers R0 to R3 are left just as though the
substring were not found.

VAX Instruction Set 9–129

VAX Instruction Set
MOVC

MOVC

Move Character

Format

3operand: opcode len.rw, srcaddr.ab, dstaddr.ab

5operand: opcode srclen.rw, srcaddr.ab, fill.rb,
dstlen.rw, dstaddr.ab

Condition Codes

N <— 0; !MOVC3
Z <— 1;
V <— 0;
C <— 0;

N <— srclen LSS dstlen; !MOVC5
Z <— srclen EQL dstlen;
V <— 0;
C <— srclen LSSU dstlen;

Exceptions

None.

Opcodes

28 MOVC3 Move Character 3 Operand
2C MOVC5 Move Character 5 Operand

Description

In 3 operand format, the destination string specified by the length and destination
address operands is replaced by the source string specified by the length and
source address operands. In 5 operand format, the destination string specified
by the destination length and destination address operands is replaced by the
source string specified by the source length and source address operands. If the
destination string is longer than the source string, the highest-addressed bytes
of the destination are replaced by the fill operand. If the destination string is
shorter than the source string, the highest-addressed bytes of the source string
are not moved. The operation of the instruction is such that overlap of the source
and destination strings does not affect the result.

Notes

1. After execution of MOVC3:

R0 = 0
R1 = Address of 1 byte beyond the source string

9–130 VAX Instruction Set

VAX Instruction Set
MOVC

R2 = 0
R3 = Address of 1 byte beyond the destination string
R4 = 0
R5 = 0

2. After execution of MOVC5:

R0 = Number of unmoved bytes remaining in source string. R0 is nonzero
only if source string is longer than destination string

R1 = Address of 1 byte beyond last byte in source that was moved
R2 = 0
R3 = Address of 1 byte beyond the destination string
R4 = 0
R5 = 0

3. MOVC3 is the preferred way to copy one block of memory to another.

4. MOVC5 with a zero source length operand is the preferred way to fill a block
of memory with the fill character.

VAX Instruction Set 9–131

VAX Instruction Set
MOVTC

MOVTC

Move Translated Characters

Format

opcode srclen.rw, srcaddr.ab, fill.rb, tbladdr.ab,
dstlen.rw, dstaddr.ab

Condition Codes

N <— srclen LSS dstlen;
Z <— srclen EQL dstlen;
V <— 0;
C <— srclen LSSU dstlen;

Exceptions

None.

Opcodes

2E MOVTC Move Translated Characters

Description

The source string specified by the source length and source address operands is
translated. It replaces the destination string specified by the destination length
and destination address operands. Translation is accomplished by using each
byte of the source string as an index into a 256-byte table whose first entry (entry
number 0) address is specified by the table address operand. The byte selected
replaces the byte of the destination string. If the destination string is longer
than the source string, the highest-addressed bytes of the destination string are
replaced by the fill operand. If the destination string is shorter than the source
string, the highest-addressed bytes of the source string are not translated and
moved. The operation of the instruction is such that overlap of the source and
destination strings does not affect the result.

If the destination string overlaps the translation table, the destination string is
UNPREDICTABLE.

9–132 VAX Instruction Set

VAX Instruction Set
MOVTC

Notes

1. After execution:

R0 = Number of untranslated bytes remaining in source string; R0 is
nonzero only if source string is longer than destination string

R1 = Address of 1 byte beyond the last byte in source string that was
translated

R2 = 0
R3 = Address of the translation table
R4 = 0
R5 = Address of 1 byte beyond the destination string

VAX Instruction Set 9–133

VAX Instruction Set
MOVTUC

MOVTUC

Move Translated Until Character

Format

opcode srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab,
dstlen.rw, dstaddr.ab

Condition Codes

N <— srclen LSS dstlen;
Z <— srclen EQL dstlen;
V <— {terminated by escape};
C <— srclen LSSU dstlen;

Exceptions

None.

Opcodes

2F MOVTUC Move Translated Until Character

Description

The source string specified by the source length and source address operands
is translated. It replaces the destination string specified by the destination
length and destination address operands. Translation is accomplished by using
each byte of the source string as an index into a 256-byte table whose first
entry address (entry number 0) is specified by the table address operand. The
byte selected replaces the byte of the destination string. Translation continues
until a translated byte is equal to the escape byte, or until the source string or
destination string is exhausted. If translation is terminated because of escape,
the condition code V-bit is set; otherwise, it is cleared.

If the destination string overlaps the table, the destination string and registers
R0 to R5 are UNPREDICTABLE. If the source and destination strings overlap
and their addresses are not identical, the destination string and registers R0 to
R5 are UNPREDICTABLE. If the source and destination string addresses are
identical, the translation is performed correctly.

Notes

1. After execution:

R0 = Number of bytes remaining in source string (including the byte that
caused the escape); R0 is zero only if the entire source string was
translated and moved without escape

R1 = Address of the byte that resulted in destination string exhaustion or
escape; or if no exhaustion or escape, address of 1 byte beyond the
source string

9–134 VAX Instruction Set

VAX Instruction Set
MOVTUC

R2 = 0
R3 = Address of the table
R4 = Number of bytes remaining in the destination string
R5 = Address of the byte in the destination string that would have received

the translated byte that caused the escape or would have received
a translated byte if the source string were not exhausted; or if no
exhaustion or escape, the address of 1 byte beyond the destination
string

VAX Instruction Set 9–135

VAX Instruction Set
SCANC

SCANC

Scan Characters

Format

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

Condition Codes

N <— 0;
Z <— R0 EQL 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

2A SCANC Scan Characters

Description

The assembler successively uses the bytes of the string specified by the length
and address operands to index into a 256-byte table whose first entry (entry
number 0) address is specified by the table address operand. The logical AND
is performed on the byte selected from the table and the mask operand. The
operation continues until the result of the AND is nonzero, or until all the bytes
of the string have been exhausted. If a nonzero AND result is detected, the
condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1. After execution:

R0 = Number of bytes remaining in the string (including the byte that
produced the nonzero AND result); R0 is zero only if there was no
nonzero AND result

R1 = Address of the byte that produced the nonzero AND result; if no
nonzero result, address of 1 byte beyond the string

R2 = 0
R3 = Address of the table

2. If the string has zero length, condition code Z is set just as though the entire
string were scanned.

9–136 VAX Instruction Set

VAX Instruction Set
SKPC

SKPC

Skip Character

Format

opcode char.rb, len.rw, addr.ab

Condition Codes

N <— 0;
Z <— R0 EQL 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

3B SKPC Skip Character

Description

The character operand is compared with the bytes of the string specified by the
length and address operands. Comparison continues until inequality is detected
or all bytes of the string have been compared. If inequality is detected, the
condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1. After execution:

R0 = Number of bytes remaining in the string (including the unequal one)
if unequal byte located; otherwise, zero

R1 = Address of the byte located if byte located; otherwise, address of 1
byte beyond the string

2. If the string has zero length, condition code Z is set just as though each byte
of the entire string were equal to the character.

VAX Instruction Set 9–137

VAX Instruction Set
SPANC

SPANC

Span Characters

Format

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

Condition Codes

N <— 0;
Z <— R0 EQL 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

2B SPANC Span Characters

Description

The assembler successively uses the bytes of the string specified by the length
and address operands to index into a 256-byte table whose first entry (entry
number 0) address is specified by the table address operand. The logical AND
is performed on the byte selected from the table and the mask operand. The
operation continues until the result of the AND is zero, or until all the bytes of
the string have been exhausted. If a zero AND result is detected, the condition
code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1. After execution:

R0 = Number of bytes remaining in the string (including the byte that
produced the zero AND result); R0 is zero only if there was no zero
AND result

R1 = Address of the byte that produced a zero AND result; if no nonzero
result, address of 1 byte beyond the string

R2 = 0
R3 = Address of the table

2. If the string has zero length, the condition code Z-bit is set just as though the
entire string were spanned.

9–138 VAX Instruction Set

VAX Instruction Set
SPANC

9.2.10 Cyclic Redundancy Check Instruction
This instruction implements the calculation of a cyclic redundancy check (CRC)
string for any CRC polynomial up to 32 bits. Cyclic redundancy checking is
an error detection method involving a division of the data stream by a CRC
polynomial. The data stream is represented as a standard VAX string in memory.
Error detection is accomplished by computing the CRC at the source and again
at the destination, comparing the CRC computed at each end. The choice of the
polynomial minimizes the number of undetected block errors of specific lengths.
The choice of a CRC polynomial is not given here.

The operands of the CRC instruction are a string descriptor, a 16-longword table,
and an initial CRC. The string descriptor is a standard VAX operand pair of the
length of the string in bytes (up to 65,535) and the starting address of the string.
The contents of the table are a function of the CRC polynomial to be used. It can
be calculated from the polynomial by the algorithm in the notes. Several common
CRC polynomials are also included in the notes. The system uses the initial CRC
to start the polynomial correctly. Typically, the CRC has the value zero or -1. If
the data stream is represented by a sequence of noncontiguous strings, the value
would vary from 0 to -1.

The CRC instruction scans the string and includes each byte of the data stream
in the CRC being calculated. The instruction includes the byte of the data stream
by performing a logical exclusive OR (XOR) with it and the rightmost 8 bits of
the CRC. Then the instruction shifts the CRC right 1 bit and inserts a zero on
the left. The instruction uses the rightmost bit of the CRC (lost by the shift)
to control the logical XOR operation of the CRC polynomial with the resultant
CRC. If the bit is a 1, the instruction performs a logical XOR with the polynomial
and the CRC. The instruction again shifts the CRC to the right and performs
a conditional logical XOR on the polynomial with the result, for a total of eight
times. The actual algorithm used can shift by 1, 2, or 4 bits at a time using the
appropriate entries in a specially constructed table. The instruction produces
a 32-bit CRC. For shorter polynomials, the result must be extracted from the
32-bit field. The data stream must be either a multiple of 8 bits in length or
right-adjusted in the string with leading zero bits.

VAX Instruction Set 9–139

VAX Instruction Set
CRC

CRC

Calculate Cyclic Redundancy Check

Format

opcode tbl.ab, inicrc.rl, strlen.rw, stream.ab

Condition Codes

N <— R0 LSS 0;
Z <— R0 EQL 0;
V <— 0;
C <— 0;

Exceptions

None.

Opcodes

0B CRC Calculate Cyclic Redundancy Check

Description

The CRC of the data stream described by the string descriptor is calculated.
The initial CRC is given by inicrc; it is normally zero or -1, unless the CRC is
calculated in several steps. The result is left in R0. If the polynomial is less than
order 32, the result must be extracted from the low-order bits of R0. The CRC
polynomial is expressed by the contents of the 16-longword table. See the notes
for the calculation of the table.

Notes

1. After execution:

R0 = Result of CRC
R1 = 0
R2 = 0
R3 = Address 1 byte beyond the end of the source string

2. If the data stream is not a multiple of 8 bits, it must be right-adjusted with
leading zero fill.

3. If the CRC polynomial is less than order 32, the result must be extracted from
the low-order bits of R0.

4. Use the following algorithm to calculate the CRC table given a polynomial
expressed:

polyn<n> <- {coefficient of x**{order -1-n}}

9–140 VAX Instruction Set

VAX Instruction Set
CRC

The following routine is system library routine LIB$CRC_TABLE (poly.r1,
table.ab). The table is the location of the 64-byte (16-longword) table into
which the result will be written.

SUBROUTINE LIB$CRC_TABLE (POLY, TABLE)

INTEGER*4 POLY, TABLE(0:15), TMP, X

DO 190 INDEX = 0, 15

TMP = INDEX
DO 150 I = 1, 4
X = TMP .AND. 1
TMP = ISHFT(TMP,-1) !logical shift right one bit
IF (X .EQ. 1) TMP = TMP .XOR. POLY

150 CONTINUE
TABLE(INDEX) = TMP

190 CONTINUE
RETURN
END

5. The following are descriptions of some commonly used CRC polynomials:

CRC-16 (used in DDCMP and Bisync)

polynomial: x^16 + x^15 + x^2 + 1
poly: 120001 (octal)
initialize: 0
result: R0<15:0>

CCITT (used in ADCCP, HDLC, SDLC)

polynomial: x^16 + x^12 + x^5 + 1
poly: 102010 (octal)
initialize: -1<15:0>
result: one’s complement of R0<15:0>

AUTODIN-II

polynomial: x^32+x^26+x^23+x^22+x^16+x^12
+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

poly: EDB88320 (hex)
initialize: -1<31:0>
result: one’s complement of R0<31:0>

6. The CRC instruction produces an UNPREDICTABLE result unless the table
is well-formed, like the one produced in note 3. Note that for any well-
formed table, entry[0] is always zero and entry[8] is always the polynomial
expressed as in note 3. The operation can be implemented using shifts of 1, 2,
or 4 bits at a time, as follows:

Shift (s)
Steps per
Byte (limit) Table Index

Table Index
Multiplier (i)

Use Table
Entries

1 8 tmp3<0> 8 [0]=0,[8]
2 4 tmp3<1:0> 4 [0]=0,[4],[8],[12]
4 2 tmp3<3:0> 1 all

7. If the stream has zero length, R0 receives the initial CRC.

VAX Instruction Set 9–141

VAX Instruction Set
CRC

9.2.11 Decimal String Instructions
Decimal string instructions operate on packed decimal strings.

The decimal string instructions in this section operate on the following data
types:

• Packed decimal string

• Trailing numeric string (overpunched and zoned)

• Leading separate numeric string

Where the phrase ‘‘decimal string’’ is used, it means any of the three data types.
Conversion instructions are provided between the data types. Where necessary, a
specific data type is identified.

A decimal string is specified by two operands:

1. For all decimal strings, the length is the number of digits in the string. The
number of bytes in the string is a function of the length and the type of
decimal string referenced (see Chapter 8).

2. The address of the lowest-addressed byte of the string. This byte contains the
most significant digit for trailing numeric and packed decimal strings, as well
as a sign for leading separate numeric strings. The address is specified by a
byte operand of address access type.

Each of the decimal string instructions uses general registers R0 to R3 or R0 to
R5 to hold a control block that maintains updated addresses and state during the
execution of the instruction. At completion, the registers containing addresses are
available to the software for use as string specification operands for a subsequent
instruction on the same decimal strings.

During the execution of the instructions, pending interrupt conditions are tested;
if any is found, the control block is updated. The first part done is set in the
processor status longword (PSL), and the instruction is interrupted (refer to
Appendix E). After the interruption, the instruction resumes transparently. The
format of the control block at completion is as follows:

ZK−1176A−GE

: R00

ADDRESS 1 : R1

: R20

ADDRESS 2 : R3

: R40

ADDRESS 3 : R5

31 0

The fields ADDRESS 1, ADDRESS 2, and ADDRESS 3 (if required) contain the
address of the byte containing the most significant digit of the first, second, and
third (if required) string operands, respectively.

The decimal string instructions treat decimal strings as integers with the decimal
point assumed immediately beyond the least significant digit of the string. If
a string in which a result is to be stored is longer than the result, its most
significant digits are filled with zeros.

9–142 VAX Instruction Set

VAX Instruction Set
CRC

9.2.11.1 Decimal Overflow
Decimal overflow occurs if the destination string is too short to contain all of the
digits (excluding leading zeros) of the result. On overflow, the destination string
is replaced by the correctly signed least significant digits of the true result (even
if the stored result is -0). Note that neither the high nibble of an even-length
packed decimal string nor the sign byte of a leading separate numeric string is
used to store result digits.

9.2.11.2 Zero Numbers
A zero result has a positive sign for all operations that complete without decimal
overflow, except for CVTPT, which does not change a -0 to a +0. However, when
digits are lost because of overflow, a zero result receives the sign (positive or
negative) of the correct result.

A decimal string with value -0 is treated as identical to a decimal string with
value +0. Thus, for example, +0 compares as equal to -0. When condition codes
are affected on a -0 result, they are affected as if the result were +0; that is, N is
cleared and Z is set.

9.2.11.3 Reserved Operand Exception
A reserved operand abort occurs if the length of a decimal string operand is
outside the range 0 to 31, or if an invalid sign or digit is encountered in CVTSP
or CVTTP. The program counter (PC) points to the opcode of the instruction
causing the exception.

9.2.11.4 UNPREDICTABLE Results
The result of any operation is UNPREDICTABLE if any source decimal string
operand contains invalid data. Except for CVTSP and CVTTP, the decimal string
instructions do not verify the validity of source operand data.

If the destination operands overlap any source operands, the result of an
operation will be UNPREDICTABLE. The destination strings, registers used by
the instruction, and condition codes will be UNPREDICTABLE when a reserved
operand abort occurs.

9.2.11.5 Packed Decimal Operations
Packed decimal strings generated by the decimal string instructions always
have the preferred sign representation: 12 for ‘‘+’’ and 13 for ‘‘-’’. An even-length
packed decimal string is always generated with a ‘‘0’’ digit in the high nibble of
the first byte of the string.

VAX Instruction Set 9–143

VAX Instruction Set
CRC

A packed decimal string contains an invalid nibble if:

• A digit occurs in the sign position

• A sign occurs in a digit position

• A nonzero nibble occurs in the high-order nibble of the lowest-addressed byte
in an even length string

9.2.11.6 Zero-Length Decimal Strings
The length of a packed decimal string can be zero. In this case, the value is zero
(plus or minus) and 1 byte of storage is occupied. This byte must contain a ‘‘0’’
digit in the high nibble and the sign in the low nibble.

The length of a trailing numeric string can be zero. In this case, no storage is
occupied by the string. If a destination operand is a zero-length trailing numeric
string, the sign of the operation is lost. Memory access faults do not occur when
a zero-length trailing numeric operand is specified because no memory reference
occurs. The value of a zero-length trailing numeric string is identically zero.

The length of a leading separate numeric string can be zero. In this case, 1
byte of storage is occupied by the sign. Memory is accessed when a zero-length
operand is specified, and a reserved operand abort will occur if an invalid sign is
detected. The value of a zero-length leading separate numeric string is zero.

9.2.11.7 Instruction Descriptions
The following instructions are described in this section:

Description and Opcode
Number of
Instructions

1. Add Packed 4 Operand
ADDP4 addlen.rw, addaddr.ab, sumlen.rw,
sumaddr.ab, {R0-3.wl}

1

2. Add Packed 6 Operand
ADDP6 add1len.rw, add1addr.ab, add2len.rw,
add2addr.ab, sumlen.rw, sumaddr.ab,
{R0-5.wl}

1

3. Arithmetic Shift and Round Packed
ASHP cnt.rb, srclen.rw, srcaddr.ab,
round.rb, dstlen.rw, dstaddr.ab,
{R0-3.wl}

1

4. Compare Packed 3 Operand
CMPP3 len.rw, src1addr.ab, src2addr.ab,
{R0-3.wl}

1

5. Compare Packed 4 Operand
CMPP4 src1len.rw, src1addr.ab, src2len.rw,
src2addr.ab, {R0-3.wl}

1

6. Convert Long to Packed
CVTLP src.rl, dstlen.rw, dstaddr.ab,
{R0-3.wl}

1

7. Convert Packed to Long
CVTPL srclen.rw, srcaddr.ab, {R0-3.wl},
dst.wl

1

8. Convert Packed to Leading Separate
CVTPS srclen.rw, srcaddr.ab, dstlen.rw,
dstaddr.ab, {R0-3.wl}

1

9–144 VAX Instruction Set

VAX Instruction Set
CRC

Description and Opcode
Number of
Instructions

9. Convert Packed to Trailing
CVTPT srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab, {R0-3.wl}

1

10. Convert Leading Separate to Packed
CVTSP srclen.rw, srcaddr.ab, dstlen.rw,
dstaddr.ab, {R0-3.wl}

1

11. Convert Trailing to Packed
CVTTP srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab, {R0-3.wl}

1

12. Divide Packed
DIVP divrlen.rw, divraddr.ab, divdlen.rw,
divdaddr.ab, quolen.rw, quoaddr.ab,
{R0-5.wl, -16(SP):-1(SP).wb}

1

13. Move Packed
MOVP len.rw, srcaddr.ab, dstaddr.ab,
{R0-3.wl}

1

14. Multiply Packed
MULP mulrlen.rw, mulraddr.ab, muldlen.rw,
muldaddr.ab, prodlen.rw, prodaddr.ab,
{R0-5.wl}

1

15. Subtract Packed 4 Operand
SUBP4 sublen.rw, subaddr.ab, diflen.rw,
difaddr.ab, {R0-3.wl}

1

16. Subtract Packed 6 Operand
SUBP6 sublen.rw, subaddr.ab, minlen.rw,
minaddr.ab, diflen.rw, difaddr.ab,
{R0-5.wl}

1

VAX Instruction Set 9–145

VAX Instruction Set
ADDP

ADDP

Add Packed

Format

opcode addlen.rw, addaddr.ab, sumlen.rw,
sumaddr.ab

opcode add1len.rw, add1addr.ab, add2len.rw,
add2addr.ab, sumlen.rw, sumaddr.ab

Condition Codes

N <— {sum string} LSS 0;
Z <— {sum string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

20 ADDP4 Add Packed 4 Operand
21 ADDP6 Add Packed 6 Operand

Description

In 4 operand format, the addend string specified by the addend length and
addend address operands is added to the sum string specified by the sum length
and sum address operands, and the sum string is replaced by the result.

In 6 operand format, the addend1 string specified by the addend1 length and
addend1 address operands is added to the addend2 string specified by the
addend2 length and addend2 address operands. The sum string specified by the
sum length and sum address operands is replaced by the result.

Notes

1. After execution of ADDP4:

R0 = 0
R1 = Address of the byte containing the most significant digit of the

addend string
R2 = 0
R3 = Address of the byte containing the most significant digit of the sum

string

9–146 VAX Instruction Set

VAX Instruction Set
ADDP

2. After execution of ADDP6:

R0 = 0
R1 = Address of the byte containing the most significant digit of the

addend1 string
R2 = 0
R3 = Address of the byte containing the most significant digit of the

addend2 string
R4 = 0
R5 = Address of the byte containing the most significant digit of the sum

string

3. The sum string, R0 to R3 (or R0 to R5 for ADDP6) and the condition codes
are UNPREDICTABLE if: the sum string overlaps the addend, addend1, or
addend2 strings; the addend, addend1, addend2, or sum (4 operand only)
strings contain an invalid nibble; or a reserved operand abort occurs.

VAX Instruction Set 9–147

VAX Instruction Set
ASHP

ASHP

Arithmetic Shift and Round Packed

Format

opcode cnt.rb, srclen.rw, srcaddr.ab, round.rb,
dstlen.rw, dstaddr.ab

Condition Codes

N <— {dst string} LSS 0;
Z <— {dst string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

F8 ASHP Arithmetic Shift and Round Packed

Description

The source string specified by the source length and source address operands is
scaled by a power of 10 specified by the count operand. The destination string
specified by the destination length and destination address operands is replaced
by the result.

A positive count operand effectively multiplies, a negative count effectively
divides, and a zero count just moves and affects condition codes. When a negative
count is specified, the result is rounded using the round operand.

Notes

1. After execution:

R0 = 0
R1 = Address of the byte containing the most significant digit of the source

string
R2 = 0
R3 = Address of the byte containing the most significant digit of the

destination string

2. The destination string, R0 to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string, the
source string contains an invalid nibble, or a reserved operand abort occurs.

3. When the count operand is negative, the result is rounded by decimally
adding bits 3:0 of the round operand to the most significant low-order digit
discarded and propagating the carry, if any, to higher-order digits. Both the

9–148 VAX Instruction Set

VAX Instruction Set
ASHP

source operand and the round operand are considered to be quantities of the
same sign for the purpose of this addition.

4. If bits 7:4 of the round operand are nonzero, or if bits 3:0 of the round operand
contain an invalid packed decimal digit, the result is UNPREDICTABLE.

5. When the count operand is zero or positive, the round operand has no effect
on the result except as specified in note 4.

6. The round operand is normally 5. Truncation can be accomplished by using a
zero round operand.

VAX Instruction Set 9–149

VAX Instruction Set
CMPP

CMPP

Compare Packed

Format

3operand: opcode len.rw, src1addr.ab,
src2addr.ab

4operand: opcode src1len.rw, src1addr.ab,
src2len.rw, src2addr.ab

Condition Codes

N <— {src1 string} LSS {src2 string};
Z <— {src1 string} EQL {src2 string};
V <— 0;
C <— 0;

Exceptions

reserved operand

Opcodes

35 CMPP3 Compare Packed 3 Operand
37 CMPP4 Compare Packed 4 Operand

Description

In 3 operand format, the source 1 string specified by the length and source 1
address operands is compared to the source 2 string specified by the length and
source 2 address operands. The only action is to affect the condition codes.

In 4 operand format, the source 1 string specified by the source 1 length and
source 1 address operands is compared to the source 2 string specified by the
source 2 length and source 2 address operands. The only action is to affect the
condition codes.

Notes

1. After execution of CMPP3 or CMPP4:

R0 = 0
R1 = Address of the byte containing the most significant digit of string1
R2 = 0
R3 = Address of the byte containing the most significant digit of string2

2. R0 to R3 and the condition codes are UNPREDICTABLE if the source strings
overlap, if either string contains an invalid nibble, or if a reserved operand
abort occurs.

9–150 VAX Instruction Set

VAX Instruction Set
CVTLP

CVTLP

Convert Long to Packed

Format

opcode src.rl, dstlen.rw, dstaddr.ab

Condition Codes

N <— {dst string} LSS 0;
Z <— {dst string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

F9 CVTLP Convert Long to Packed

Description

The source operand is converted to a packed decimal string. The destination
string operand specified by the destination length and destination address
operands is replaced by the result.

Notes

1. After execution:

R0 = 0
R1 = 0
R2 = 0
R3 = Address of the byte containing the most significant digit of the

destination string

2. The destination string, R0 to R3, and the condition codes are
UNPREDICTABLE on a reserved operand abort.

3. Overlapping operands produce correct results.

VAX Instruction Set 9–151

VAX Instruction Set
CVTPL

CVTPL

Convert Packed to Long

Format

opcode srclen.rw, srcaddr.ab, dst.wl

Condition Codes

N <— dst LSS 0;
Z <— dst EQL 0;
V <— {integer overflow};
C <— 0;

Exceptions

reserved operand
integer overflow

Opcodes

36 CVTPL Convert Packed to Long

Description

The source string specified by the source length and source address operands is
converted to a longword, and the destination operand is replaced by the result.

Notes

1. After execution:

R0 = 0
R1 = Address of the byte containing the most significant digit of the source

string
R2 = 0
R3 = 0

2. The destination operand, R0 to R3, and the condition codes are
UNPREDICTABLE on a reserved operand abort, or if the string contains
an invalid nibble.

3. The destination operand is stored after the registers are updated as specified
in note 1. You may use R0 to R3 as the destination operand.

4. If the source string has a value outside the range -2,147,483,648 to
+2,147,483,647, integer overflow occurs and the destination operand is
replaced by the low-order 32 bits of the correctly signed infinite precision
conversion. On overflow, the sign of the destination may be different from the
sign of the source.

5. Overlapping operands produce correct results.

9–152 VAX Instruction Set

VAX Instruction Set
CVTPS

CVTPS

Convert Packed to Leading Separate Numeric

Format

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

Condition Codes

N <— {src string} LSS 0;
Z <— {src string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

08 CVTPS Convert Packed to Leading Separate Numeric

Description

The source packed decimal string specified by the source length and source
address operands is converted to a leading separate numeric string. The
destination string specified by the destination length and destination address
operands is replaced by the result.

Conversion is effected by replacing the lowest-addressed byte of the destination
string with the ASCII character ‘‘+’’ or ‘‘-’’, determined by the sign of the source
string. The remaining bytes of the destination string are replaced by the ASCII
representations of the values of the corresponding packed decimal digits of the
source string.

Notes

1. After execution:

R0 = 0
R1 = Address of the byte containing the most significant digit of the source

string
R2 = 0
R3 = Address of the sign byte of the destination string

2. The destination string, R0 to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string, the
source string contains an invalid nibble, or a reserved operand abort occurs.

VAX Instruction Set 9–153

VAX Instruction Set
CVTPS

3. This instruction produces an ASCII ‘‘+’’ or ‘‘-’’ in the sign byte of the
destination string.

4. If decimal overflow occurs, the value stored in the destination might be
different from the value indicated by the condition codes (Z and N bits).

5. If the conversion produces a -0 without overflow, the destination leading
separate numeric string is changed to a +0 representation.

9–154 VAX Instruction Set

VAX Instruction Set
CVTPT

CVTPT

Convert Packed to Trailing Numeric

Format

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dstaddr.ab

Condition Codes

N <— {src string} LSS 0;
Z <— {src string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

24 CVTPT Convert Packed to Trailing Numeric

Description

The source packed decimal string specified by the source length and source
address operands is converted to a trailing numeric string. The destination string
specified by the destination length and destination address operands is replaced
by the result. The condition code N and Z bits are affected by the value of the
source packed decimal string.

Conversion is effected by using the highest-addressed byte of the source string
(the byte containing the sign and the least significant digit), even if the source
string value is -0. The assembler uses this byte as an unsigned index into a
256-byte table whose first entry (entry number 0) address is specified by the
table address operand. The byte read from the table replaces the least significant
byte of the destination string. The remaining bytes of the destination string are
replaced by the ASCII representations of the values of the corresponding packed
decimal digits of the source string.

Notes

1. After execution:

R0 = 0
R1 = Address of the byte containing the most significant digit of the source

string
R2 = 0
R3 = Address of the most significant digit of the destination string

VAX Instruction Set 9–155

VAX Instruction Set
CVTPT

2. The destination string, R0 to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string or
the table; if the source string or the table contains an invalid nibble; or if a
reserved operand abort occurs.

3. The condition codes are computed on the value of the source string even if
overflow results. In particular, condition code N is set only if the source is
nonzero and contains a minus sign (-).

4. By appropriate specification of the table, you can convert any form of trailing
numeric string. See Chapter 8 for the preferred form of trailing overpunch,
zoned and unsigned data. In addition, the table can be set up for absolute
value, negative absolute value, or negated conversions. The translation table
may be referenced even if the length of the destination string is zero.

5. Decimal overflow occurs if the destination string is too short to contain the
converted result of a nonzero packed decimal source string (not including
leading zeros). Conversion of a source string with zero value never results in
overflow; conversion of a nonzero source string to a zero-length destination
string results in overflow.

6. If decimal overflow occurs, the value stored in the destination may be
different from the value indicated by the condition codes (Z and N bits).

9–156 VAX Instruction Set

VAX Instruction Set
CVTSP

CVTSP

Convert Leading Separate Numeric to Packed

Format

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

Condition Codes

N <— {dst string} LSS 0;
Z <— {dst string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

09 CVTSP Convert Leading Separate Numeric to Packed

Description

The source numeric string specified by the source length and source address
operands is converted to a packed decimal string, and the destination string
specified by the destination address and destination length operands is replaced
by the result.

Notes

1. A reserved operand abort occurs if:

• The length of the source leading separate numeric string is outside the
range 0 to 31

• The length of the destination packed decimal string is outside the range 0
to 31

• The source string contains an invalid byte. An invalid byte is any
character other than an ASCII ‘‘0’’ to ‘‘9’’ in a digit byte or an ASCII
‘‘+’’, ‘‘<space>’’, or ‘‘-’’ in the sign byte

2. After execution:

R0 = 0
R1 = Address of the sign byte of the source string
R2 = 0
R3 = Address of the byte containing the most significant digit of the

destination string

VAX Instruction Set 9–157

VAX Instruction Set
CVTSP

3. The destination string, R0 to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string, or
if a reserved operand abort occurs.

4. srclen is the length of the passed string minus the sign byte.

9–158 VAX Instruction Set

VAX Instruction Set
CVTTP

CVTTP

Convert Trailing Numeric to Packed

Format

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dstaddr.ab

Condition Codes

N <— {dst string}LSS 0;
Z <— {dst string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

26 CVTTP Convert Trailing Numeric to Packed

Description

The source trailing numeric string specified by the source length and source
address operands is converted to a packed decimal string, and the destination
packed decimal string specified by the destination address and destination length
operands is replaced by the result.

Conversion is effected by using the highest-addressed (trailing) byte of the source
string as an unsigned index into a 256-byte table whose first entry (entry number
0) is specified by the table address operand. The byte read from the table replaces
the highest-addressed byte of the destination string (the byte containing the sign
and the least significant digit). The remaining packed digits of the destination
string are replaced by the low-order 4 bits of the corresponding bytes in the
source string.

Notes

1. A reserved operand abort occurs if:

• The length of the source trailing numeric string is outside the range 0 to
31

• The length of the destination packed decimal string is outside the range 0
to 31

• The source string contains an invalid byte. An invalid byte is any value
other than ASCII ‘‘0’’ to ‘‘9’’ in any high-order byte (that is, any byte
except the least significant byte)

• The translation of the least significant digit produces an invalid packed
decimal digit or sign nibble

VAX Instruction Set 9–159

VAX Instruction Set
CVTTP

2. After execution:

R0 = 0
R1 = Address of the most significant digit of the source string
R2 = 0
R3 = Address of the byte containing the most significant digit of the

destination string

3. The destination string, R0 to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string or
the table, or if a reserved operand abort occurs.

4. If the convert instruction produces a -0 without overflow, the destination
packed decimal string is changed to a +0 representation, condition code N is
cleared, and Z is set.

5. If the length of the source string is zero, the destination packed decimal string
is set equal to zero, and the translation table is not referenced.

6. By appropriate specification of the table, you can convert any form of trailing
numeric string. See Chapter 8 for the preferred form of trailing overpunch,
zoned and unsigned data. In addition, the table can be set up for absolute
value, negative absolute value, or negated conversions.

7. If the table translation produces a sign nibble containing any valid sign, the
preferred sign representation is stored in the destination packed decimal
string.

9–160 VAX Instruction Set

VAX Instruction Set
DIVP

DIVP

Divide Packed

Format

opcode divrlen.rw, divraddr.ab, divdlen.rw,
divdaddr.ab, quolen.rw, quoaddr.ab

Condition Codes

N <— {quo string} LSS 0;
Z <— {quo string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow
divide by zero

Opcodes

27 DIVP Divide Packed

Description

The dividend string specified by the dividend length and dividend address
operands is divided by the divisor string specified by the divisor length and
divisor address operands. The quotient string specified by the quotient length
and quotient address operands is replaced by the result.

Notes

1. This instruction allocates a 16-byte workspace on the stack. After execution,
the stack pointer (SP) is restored to its original contents, and the contents of
{(SP)-16}:{(SP)-1} are UNPREDICTABLE.

2. The division is performed, resulting in the following conditions:

• The absolute value of the remainder (which is lost) is less than the
absolute value of the divisor

• The product of the absolute value of the quotient times the absolute value
of the divisor is less than or equal to the absolute value of the dividend

• The sign of the quotient is determined by the rules of algebra from the
signs of the dividend and the divisor; if the value of the quotient is zero,
the sign is always positive

3. After execution:

R0 = 0

VAX Instruction Set 9–161

VAX Instruction Set
DIVP

R1 = Address of the byte containing the most significant digit of the divisor
string

R2 = 0
R3 = Address of the byte containing the most significant digit of the

dividend string
R4 = 0
R5 = Address of the byte containing the most significant digit of the

quotient string

4. The quotient string, R0 to R5, and the condition codes are UNPREDICTABLE
if: the quotient string overlaps the divisor or dividend strings; the divisor or
dividend string contains an invalid nibble; the divisor is zero; or a reserved
operand abort occurs.

9–162 VAX Instruction Set

VAX Instruction Set
MOVP

MOVP

Move Packed

Format

opcode len.rw, srcaddr.ab, dstaddr.ab

Condition Codes

N <— {dst string} LSS 0;
Z <— {dst string} EQL 0;
V <— 0;
C <— C;

Exceptions

reserved operand

Opcodes

34 MOVP Move Packed

Description

The destination string specified by the length and destination address operands is
replaced by the source string specified by the length and source address operands.

Notes

1. After execution:

R0 = 0
R1 = Address of the byte containing the most significant digit of the source

string
R2 = 0
R3 = Address of the byte containing the most significant digit of the

destination string

2. The destination string, R0 to R3, and the condition codes are
UNPREDICTABLE if: the destination string overlaps the source string;
the source string contains an invalid nibble; or a reserved operand abort
occurs.

3. If the source is -0, the result is +0, N is cleared, and Z is set.

VAX Instruction Set 9–163

VAX Instruction Set
MULP

MULP

Multiply Packed

Format

opcode mulrlen.rw, mulraddr.ab, muldlen.rw,
muldaddr.ab, prodlen.rw, prodaddr.ab

Condition Codes

N <— {prod string} LSS 0;
Z <— {prod string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

25 MULP Multiply Packed

Description

The multiplicand string specified by the multiplicand length and multiplicand
address operands is multiplied by the multiplier string specified by the multiplier
length and multiplier address operands. The product string specified by the
product length and product address operands is replaced by the result.

Notes

1. After execution:

R0 = 0
R1 = Address of the byte containing the most significant digit of the

multiplier string
R2 = 0
R3 = Address of the byte containing the most significant digit of the

multiplicand string
R4 = 0
R5 = Address of the byte containing the most significant digit of the

product string

2. The product string, R0 to R5, and the condition codes are UNPREDICTABLE
if: the product string overlaps the multiplier or multiplicand strings; the
multiplier or multiplicand strings contain an invalid nibble; or a reserved
operand abort occurs.

9–164 VAX Instruction Set

VAX Instruction Set
SUBP

SUBP

Subtract Packed

Format

4operand: opcode sublen.rw, subaddr.ab,
diflen.rw, difaddr.ab

6operand: opcode sublen.rw, subaddr.ab,
minlen.rw, minaddr.ab,
diflen.rw, difaddr.ab

Condition Codes

N <— {dif string} LSS 0;
Z <— {dif string} EQL 0;
V <— {decimal overflow};
C <— 0;

Exceptions

reserved operand
decimal overflow

Opcodes

22 SUBP4 Subtract Packed 4 Operand
23 SUBP6 Subtract Packed 6 Operand

Description

In 4 operand format, the subtrahend string specified by the subtrahend length
and subtrahend address operands is subtracted from the difference string
specified by the difference length and difference address operands, and the
difference string is replaced by the result.

In 6 operand format, the subtrahend string specified by the subtrahend length
and subtrahend address operands is subtracted from the minuend string specified
by the minuend length and minuend address operands. The difference string
specified by the difference length and difference address operands is replaced by
the result.

Notes

1. After execution of SUBP4:

R0 = 0
R1 = Address of the byte containing the most significant digit of the

subtrahend string
R2 = 0

VAX Instruction Set 9–165

VAX Instruction Set
SUBP

R3 = Address of the byte containing the most significant digit of the
difference string

2. After execution of SUBP6:

R0 = 0
R1 = Address of the byte containing the most significant digit of the

subtrahend string
R2 = 0
R3 = Address of the byte containing the most significant digit of the

minuend string
R4 = 0
R5 = Address of the byte containing the most significant digit of the

difference string

3. The difference string, R0 to R3 (R0 to R5 for SUBP6), and the condition codes
are UNPREDICTABLE if: the difference string overlaps the subtrahend or
minuend strings; the subtrahend, minuend, or difference (4 operand only)
strings contain an invalid nibble; or a reserved operand abort occurs.

9–166 VAX Instruction Set

VAX Instruction Set
SUBP

9.2.12 The EDITPC Instruction and Its Pattern Operators
The EDITPC instruction implements the common editing functions that occur
when handling fixed-format output. The operation consists of converting an input
packed decimal number to an output character string and generating characters
for the output. When converting digits, options include filling in leading zeros,
protecting leading zeros, insertion of floating sign, insertion of floating currency
symbol, insertion of special sign representations, and blanking an entire field
when it is zero. An example of this operation is a MOVE to a numeric edited
(PICTURE) item in COBOL or PL/I. Many other applications are possible.

The operands to the EDITPC instruction are as follows:

1. A packed decimal string descriptor (as input). This is a standard VAX
operand pair consisting of the length of the decimal string in digits (up to 31)
and the starting address of the string.

2. A pattern specification, consisting of the starting address of a pattern
operation editing sequence. VAX MACRO interprets a pattern specification in
the same way as it interprets normal instructions.

3. The starting address of the output string. The output string is
described by its starting address only, because the pattern defines the
length unambiguously.

The EDITPC instruction manipulates two character registers and the four
condition codes:

The fill register (R2<7:0>) contains the fill character. This is normally an ASCII
blank but could be changed to an asterisk (*), for instance, for check protection.

The sign register (R2<15:8>) contains the sign character. Initially this register
contains either an ASCII blank or a minus sign (-), depending upon the sign
of the input. You can change the contents of this register to allow other sign
representations such as plus/minus or plus/blank. You can also manipulate it to
output special notations such as CR or DB. To implement a floating currency sign,
you can change the sign register to the currency sign.

After execution, the condition codes describe the following:

N The sign of the input

Z The presence of a zero source

V An overflow condition

C The presence of significant digits

Condition code N is determined at the start of the instruction and remains
unchanged (except for correcting a -0 input). The processor computes and updates
the other condition codes as the instruction proceeds.

When the EDITPC instruction completes processing, registers R0 to R5 contain
the values they would normally have after a decimal instruction.

VAX Instruction Set 9–167

VAX Instruction Set
EDITPC

EDITPC

Edit Packed to Character String

Format

opcode srclen.rw, srcaddr.ab, pattern.ab, dstaddr.ab

Condition Codes

N <— {src string} LSS 0; !N <- 0 if src is -0
Z <— {src string} EQL 0;
V <— {decimal overflow}; !nonzero digits lost
C <— {significance};

Exceptions

reserved operand
decimal overflow

Opcodes

38 EDITPC Edit Packed to Character String

Description

The destination string specified by the pattern and destination address operands
is replaced by the edited version of the source string specified by the source
length and source address operands. The editing is performed according to the
pattern string, starting at the address of the pattern operand and extending until
a pattern end pattern operator (EO$END) is encountered.

The pattern string consists of 1-byte pattern operators. Some pattern operators
take no operands. Some take a repeat count that is contained in the rightmost
nibble of the pattern operator itself. The rest take a 1-byte operand that
immediately follows the pattern operator. This operand is either an unsigned
integer length or a byte character.

Table 9–1 lists the pattern operators that can be used with the EDITPC
instruction to form a pattern. Subsequent pages define each pattern operator
in a format similar to that of the normal instruction descriptions. In each case, if
there is an operand, it is either a repeat count (r) from 1 to 15, an unsigned byte
length (len), or a character byte (ch). The encoding of the pattern operators is
represented graphically in Table 9–2.

See Appendix E for information about exceptions that affect the EDITPC
instruction.

Notes

1. A reserved operand abort occurs if srclen GTRU 31.

2. The destination string is UNPREDICTABLE if any of the following is true:

• The source string contains an invalid nibble.

• The EO$ADJUST_INPUT operand is outside the range 1 to 31.

9–168 VAX Instruction Set

VAX Instruction Set
EDITPC

• The source and destination strings overlap.

• The pattern and destination strings overlap.

3. After execution, the following general registers have contents as specified:

R0 = Length of source string
R1 = Address of the byte containing the most significant digit of the source

string
R2 = 0
R3 = Address of the byte containing the EO$END pattern operator
R4 = 0
R5 = Address of 1 byte beyond the last byte of the destination string

If the destination string is UNPREDICTABLE, R0 to R5 and the condition
codes are UNPREDICTABLE.

4. If V is set at the end and DV is enabled, a numeric overflow trap occurs
unless the conditions in note 9 are satisfied.

5. The destination length is specified exactly by the pattern operators in
the pattern string. If the pattern is incorrectly formed or if it is modified
during the execution of the instruction, the length of the destination string is
UNPREDICTABLE.

6. If the source is -0, the result may be -0 unless a fixup pattern operator is
included (EO$BLANK_ZERO or EO$REPLACE_SIGN).

7. The contents of the destination string and the memory preceding it
are UNPREDICTABLE if the length covered by EO$BLANK_ZERO or
EO$REPLACE_SIGN is zero, or if it is outside the destination string.

8. If more input digits are requested by the pattern than are specified, a
reserved operand abort is taken with R0 = -1 and R3 = location of the
pattern operator that requested the extra digit. The condition codes and
other registers are as specified in note 11. This abort cannot be continued.

9. If fewer input digits are requested by the pattern than are specified, a
reserved operand abort is taken with R3 = location of EO$END pattern
operator. The condition codes and other registers are as specified in note 11.
This abort cannot be continued.

10. On an unimplemented or reserved pattern operator, a reserved operand fault
is taken with R3 = location of the faulting pattern operator. The condition
codes and other registers are as specified in note 11. This fault can be
continued as long as the defined register state is manipulated according to
the pattern operator description and the state specified as ‘‘implementation
dependent’’ is preserved.

VAX Instruction Set 9–169

VAX Instruction Set
EDITPC

11. On a reserved operand exception, as specified in notes 8 to 10, FPD is set and
the condition codes and registers are as follows:

N = {src has minus sign}
Z = All source digits zero so far
V = Nonzero digits lost
C = Significance
R0<31:16> = -(count of source zeros to supply)
R0<15:0> = Remaining srclen
R1 = Current source location
R2<31:16> = Implementation dependent
R2<15:8> = Current contents of sign register
R2<7:0> = Current contents of fill register
R3 = Location of edit pattern operator causing exception
R4 = Implementation dependent
R5 = Location of next destination byte

Table 9–1 Summary of EDITPC Pattern Operators

Name Operand Summary

Insert operators

EO$INSERT ch Insert character, fill if insignificant
EO$STORE_SIGN — Insert sign
EO$FILL r Insert fill

Move operators

EO$MOVE r Move digits, fill if insignificant
EO$FLOAT r Move digits, floating sign
EO$END_FLOAT — End floating sign

Fixup operators

EO$BLANK_ZERO len Fill backward when 0
EO$REPLACE_SIGN len Replace with fill if -0

Load operators

EO$LOAD_FILL ch Load fill character
EO$LOAD_SIGN ch Load sign character
EO$LOAD_PLUS ch Load sign character if positive
EO$LOAD_MINUS ch Load sign character if negative

Key:

ch—One character
r—Repeat count in the range 1 to 15
len—Length in the range 1 to 255

(continued on next page)

9–170 VAX Instruction Set

VAX Instruction Set
EDITPC

Table 9–1 (Cont.) Summary of EDITPC Pattern Operators

Name Operand Summary

Control operators

EO$SET_SIGNIF — Set significance flag
EO$CLEAR_SIGNIF — Clear significance flag
EO$ADJUST_INPUT len Adjust source length
EO$END — End edit

Key:

ch—One character
r—Repeat count in the range 1 to 15
len—Length in the range 1 to 255

Table 9–2 EDITPC Pattern Operator Encoding

Hex Symbol Notes

00 EO$END —
01 EO$END_FLOAT —
02 EO$CLEAR_SIGNIF —
03 EO$SET_SIGNIF —
04 EO$STORE_SIGN —
05 . . . 1F — Reserved to Compaq
20 . . . 3F — Reserved for all time
40 EO$LOAD_FILL Character is in next byte
41 EO$LOAD_SIGN Character is in next byte
42 EO$LOAD_PLUS Character is in next byte
43 EO$LOAD_MINUS Character is in next byte
44 EO$INSERT Character is in next byte
45 EO$BLANK_ZERO Unsigned length is in next byte
46 EO$REPLACE_SIGN Unsigned length is in next byte
47 EO$ADJUST_INPUT Unsigned length is in next byte
48 . . . 5F — Reserved to Compaq
60 . . . 7F — Reserved to CSS and customers
80,90,A0 — Reserved to Compaq
81 . . . 8F EO$FILL —
91 . . . 9F EO$MOVE Repeat count is <3:0>
A1 . . . AF EO$FLOAT —
B0 . . . FE — Reserved to Compaq
FF — Reserved for all time

VAX Instruction Set 9–171

VAX Instruction Set
EO$ADJUST_INPUT

EO$ADJUST_INPUT

Adjust Input Length

Format

opcode pattern len

Pattern Operators

47 EO$ADJUST_INPUT Adjust Input Length

Description

The EO$ADJUST_INPUT pattern operator is followed by an unsigned byte
integer length in the range 1 to 31. If the source string has more digits than
this length, the excess leading digits are read and discarded. If any discarded
digits are nonzero, the overflow is set, significance is set, and zero is cleared.
If the source string has fewer digits than this length, a counter is set of the
number of leading zeros to supply. This counter is stored as a negative number in
R0<31:16>.

Note
If the length is not in the range 1 to 31, the destination string, condition codes,
and R0 to R5 are UNPREDICTABLE.

9–172 VAX Instruction Set

VAX Instruction Set
EO$BLANK_ZERO

EO$BLANK_ZERO

Blank Backwards when Zero

Format

opcode pattern len

Pattern Operators

45 EO$BLANK_ZERO Blank Backwards when Zero

Description

The EO$BLANK_ZERO pattern operator is followed by an unsigned byte integer
length. If the value of the source string is zero, then the contents of the fill
register are stored into the last length bytes of the destination string.

Notes

1. The length must be nonzero and within the destination string already
produced. If it is not, the contents of the destination string and the memory
preceding it are UNPREDICTABLE.

2. Use this pattern operator to blank out any characters stored in the
destination under a forced significance such as a sign or the digits following
the radix point.

VAX Instruction Set 9–173

VAX Instruction Set
EO$END

EO$END

End Edit

Format

opcode pattern

Pattern Operators

00 EO$END End Edit

Description

The EO$END pattern operator terminates the edit operation.

Notes

1. If there are still input digits, a reserved operand abort is taken.

2. If the source value is -0, the N condition code is cleared.

9–174 VAX Instruction Set

VAX Instruction Set
EO$END_FLOAT

EO$END_FLOAT

End Floating Sign

Format

opcode pattern

Pattern Operators

01 EO$END_FLOAT End Floating Sign

Description

The EO$END_FLOAT pattern operator terminates a floating sign operation.
If the floating sign has not yet been placed in the destination (if significance
is not set), the contents of the sign register are stored in the destination, and
significance is set.

Note
Use this pattern operator after a sequence of one or more EO$FLOAT pattern
operators that start with significance clear. The EO$FLOAT sequence can include
intermixed EO$INSERTs and EO$FILLs.

VAX Instruction Set 9–175

VAX Instruction Set
EO$FILL

EO$FILL

Store Fill

Format

opcode pattern r

Pattern Operators

8x EO$FILL Store Fill

Description

The rightmost nibble of the pattern operator is the repeat count. The EO$FILL
pattern operator places the contents of the fill register into the destination the
number of times specified by the repeat count.

Note
Use this pattern operator for fill (blank) insertion.

9–176 VAX Instruction Set

VAX Instruction Set
EO$FLOAT

EO$FLOAT

Float Sign

Format

opcode pattern r

Pattern Operators

Ax EO$FLOAT Float Sign

Description

The EO$FLOAT pattern operator moves digits, floating the sign across
insignificant digits. The rightmost nibble of the pattern operator is the repeat
count. For the number of times specified in the repeat count, the following
algorithm is executed:

The next digit from the source is examined. If it is nonzero and significance is
not yet set, then the contents of the sign register are stored in the destination,
significance is set, and zero is cleared. If the digit is significant, it is stored
in the destination; otherwise, the contents of the fill register are stored in the
destination.

Notes

1. If r is greater than the number of digits remaining in the source string, a
reserved operand abort is taken.

2. Use this pattern operator to move digits with a floating arithmetic sign. The
sign must already be set up as for EO$STORE_SIGN. A sequence of one
or more EO$FLOATs can include intermixed EO$INSERTs and EO$FILLs.
Significance must be clear before the first pattern operator of the sequence.
The sequence must be terminated by one EO$END_FLOAT.

3. Use this pattern operator to move digits with a floating currency sign. The
sign must already be set up with an EO$LOAD_SIGN. A sequence of one
or more EO$FLOATs can include intermixed EO$INSERTs and EO$FILLs.
Significance must be clear before the first pattern operator of the sequence.
The sequence must be terminated by one EO$END_FLOAT.

VAX Instruction Set 9–177

VAX Instruction Set
EO$INSERT

EO$INSERT

Insert Character

Format

opcode pattern ch

Pattern Operators

44 EO$INSERT Insert Character

Description

The EO$INSERT pattern operator is followed by a character. If significance is
set, the character is placed into the destination. If significance is not set, the
contents of the fill register are placed into the destination.

Note
Use this pattern operator for inserts that can be made blank (for example,
comma (,)) and fixed inserts (for example, slash (/)). Fixed inserts require that
significance be set (by EO$SET_SIGNIF or EO$END_FLOAT).

9–178 VAX Instruction Set

VAX Instruction Set
EO$LOAD_

EO$LOAD_

Load Register

Format

opcode pattern ch

Pattern Operators

40 EO$LOAD_FILL Load Fill Register
41 EO$LOAD_SIGN Load Sign Register
42 EO$LOAD_PLUS Load Sign Register If Plus
43 EO$LOAD_MINUS Load Sign Register If Minus

Description

The pattern operator is followed by a character. For EO$LOAD_FILL, this
character is placed into the fill register. For EO$LOAD_SIGN, this character is
placed into the sign register. For EO$LOAD_PLUS, this character is placed into
the sign register if the source string has a positive sign. For EO$LOAD_MINUS,
this character is placed into the sign register if the source string has a negative
sign.

Notes

1. Use EO$LOAD_FILL to set up check protection (* instead of space).

2. Use EO$LOAD_SIGN to set up a floating currency sign.

3. Use EO$LOAD_PLUS to set up a nonblank plus sign.

4. Use EO$LOAD_MINUS to set up a nonminus minus sign (such as CR, DB, or
the PL/I +).

VAX Instruction Set 9–179

VAX Instruction Set
EO$MOVE

EO$MOVE

Move Digits

Format

opcode pattern r

Pattern Operators

9x EO$MOVE Move Digits

Description

The EO$MOVE pattern operator moves digits, filling for insignificant digits. The
rightmost nibble of the pattern operator is the repeat count. For the number of
times specified in the repeat count, the following algorithm is executed:

The next digit is moved from the source to the destination. If the digit is nonzero,
significance is set and zero is cleared. If the digit is not significant (that is, a
leading zero), it is replaced by the contents of the fill register in the destination.

Notes

1. If r is greater than the number of digits remaining in the source string, a
reserved operand abort is taken.

2. Use this pattern operator to move digits without a floating sign. If leading-
zero suppression is desired, significance must be clear. If leading zeros should
be explicit, significance must be set. A string of EO$MOVEs intermixed with
EO$INSERTs and EO$FILLs will handle suppression correctly.

3. If check protection (*) is desired, EO$LOAD_FILL must precede the
EO$MOVE.

9–180 VAX Instruction Set

VAX Instruction Set
EO$REPLACE_SIGN

EO$REPLACE_SIGN

Replace Sign when Zero

Format

opcode pattern len

Pattern Operators

46 EO$REPLACE_SIGN Replace Sign when Zero

Description

The EO$REPLACE_SIGN pattern operator is followed by an unsigned byte
integer length. If the value of the source string is zero (that is, if Z is set), the
contents of the fill register are stored in the byte of the destination string that is
len bytes before the current position.

Notes

1. The length must be nonzero and within the destination string already
produced. If it is not, the contents of the destination string and the memory
preceding it are UNPREDICTABLE.

2. You can use this pattern operator to correct a stored sign
(EO$END_FLOAT or EO$STORE_SIGN) if a minus was stored and the
source value turned out to be zero.

VAX Instruction Set 9–181

VAX Instruction Set
EO$_SIGNIF

EO$_SIGNIF

Significance

Format

opcode pattern

Pattern Operators

02 EO$CLEAR_SIGNIF Clear Significance
03 EO$SET_SIGNIF Set Significance

Description

The significance indicator is set or cleared. This controls the treatment of leading
zeros (leading zeros are zero digits for which the significance indicator is clear).

Notes

1. Use EO$CLEAR_SIGNIF to initialize leading-zero suppression (EO$MOVE)
or floating sign (EO$FLOAT) following a fixed insert (EO$INSERT with
significance set).

2. Use EO$SET_SIGNIF to avoid leading-zero suppression (before EO$MOVE)
or to force a fixed insert (before EO$INSERT).

9–182 VAX Instruction Set

VAX Instruction Set
EO$STORE_SIGN

EO$STORE_SIGN

Store Sign

Format

opcode pattern

Pattern Operators

04 EO$STORE_SIGN Store Sign

Description

The EO$STORE_SIGN pattern operator places contents of the sign register into
the destination.

Note
Use this pattern operator for any nonfloating arithmetic sign. Precede it with
either a EO$LOAD_PLUS or EO$LOAD_MINUS, or both, if the default sign
convention is not desired.

VAX Instruction Set 9–183

VAX Instruction Set
EO$STORE_SIGN

9.2.13 Other VAX Instructions
The following table lists other VAX instructions:

Description and Opcode
Number of
Instructions

1. Probe {Read, Write} Accessibility
PROBE{R,W} mode.rb, len.rw, base.ab

2

2. Change Mode
CHM{K,E,S,U} param.rw, {-(ySP).w*}
Where y=MINU(x, PSL<current_mode>)

4

3. Return from Exception or Interrupt
REI {(SP)+.r*}

1

4. Load Process Context
LDPCTX {PCB.r*, -(KSP).w*}

1

5. Save Process Context
SVPCTX {(SP)+.r*, PCB.w*}

1

6. Move to Process Register
MTPR src.rl, procreg.rl

1

7. Move from Processor Register
MFPR procreg.rl, dst.wl

1

8. Bugcheck with {word, longword} message identifier
BUG{W,L} message.bx

2

9–184 VAX Instruction Set

VAX Instruction Set
PROBEx

PROBEx

Probe Accessibility

Format

opcode mode.rb, len.rw, base.ab

Condition Codes

N <— 0;
Z <— if {both accessible} then 0 else 1;
V <— 0;
C <— C;

Exceptions

translation not valid

Opcodes

0C PROBER Probe Read Accessibility
0D PROBEW Probe Write Accessibility

Description

The PROBE instruction checks the read or write accessibility of the first and last
byte specified by the base address and the zero-extended length. Note that the
bytes in between are not checked. System software must check all pages if they
will be accessed between the two end bytes.

The protection is checked against the larger (and therefore less privileged) of the
modes specified in bits <1:0> of the mode operand and the previous mode field of
the processor status longword (PSL). Note that probing with a mode operand of
zero is equivalent to probing the mode specified in the previous-mode field of the
PSL.

VAX Instruction Set 9–185

VAX Instruction Set
PROBEx

Example

MOVL 4(AP),R0 ; Copy the address of first arg so
; that it cannot be changed

PROBER #0,#4,(R0) ; Verify that the longword pointed to
; by the first arg could be read by
; the previous access mode
; Note that the arg list itself must
; already have been probed

BEQL violation ; Branch if either byte gives an
; access violation

MOVQ 8(AP),R0 ; Copy length and address of buffer
; arg so that they cannot change

PROBER #0,R0,(R1) ; Verify that the buffer described by
; the 2nd and 3rd args could be
; written by the previous access
; mode
; Note that the arg list must already
; have been probed and that the 2nd
; arg must be known to be less than
; 512

BEQL violation ; Branch if either byte gives an
; access violation

Note that for the PROBE instruction, probing an address returns only the
accessibility of the pages and has no effect on their residency. However, probing
a process address may cause a page fault in the system address space on the
per-process page tables.

Notes

1. If the valid bit of the examined page table entry is set, it is
UNPREDICTABLE whether the modify bit of the examined page table entry
is set by a PROBER. If the valid bit is clear, the modify bit is not changed.

2. Except for note 1, above, the valid bit of the page table entry, PTE<31>,
mapping the probed address is ignored.

3. A length violation gives a status of ‘‘not-accessible.’’

4. On the probe of a process virtual address, if the valid bit of the system page
table entry is zero, a Translation Not Valid Fault occurs. This allows for the
demand paging of the process page tables.

5. On the probe of a process virtual address, if the protection field of the system
page table entry indicates No Access, a status of ‘‘not-accessible’’ is given.
Thus, a single No Access page table entry in the system map is equivalent to
128 No Access page table entries in the process map.

9–186 VAX Instruction Set

VAX Instruction Set
CHM

CHM

Change Mode

Format

opcode code.rw

Condition Codes

N <— 0;
Z <— 0;
V <— 0;
C <— 0;

Exceptions

halt

Opcodes

BC CHMK Change Mode to Kernel
BD CHME Change Mode to Executive
BE CHMS Change Mode to Supervisor
BF CHMU Change Mode to User

Description

Change mode instructions allow processes to change their access mode in a
controlled manner. The instruction increases privilege only (decreases the access
mode).

A change in mode also results in a change of stack pointers; the old pointer
is saved, and the new pointer is loaded. The processor status longword (PSL),
program counter (PC), and code passed by the instruction are pushed onto the
stack of the new mode. The saved PC addresses the instruction following the
CHMx instruction. The code is sign extended. After execution, the appearance of
the new stack is as follows:

ZK−1177A−GE

: (SP)Sign−Extended Code

PC of next instruction

Old PSL

The destination mode selected by the opcode is used to obtain a location from
the system control block (SCB). This location addresses the CHMx dispatcher
for the specified mode. If the vector<1:0> code is NEQU 0, then the operation is
UNDEFINED.

VAX Instruction Set 9–187

VAX Instruction Set
CHM

Notes

1. As usual for faults, any Access Violation or Translation Not Valid fault saves
the PC and the PSL, and leaves the stack pointer (SP) as it was at the
beginning of the instruction except for any pushes onto the kernel stack. Note
that addresses just off the top of the target stack may have been written.

2. The noninterrupt stack pointers may be fetched and stored either in
privileged registers or in their allocated slots in the process control block
(PCB). Only LDPCTX and SVPCTX always fetch and store in the PCB. MFPR
and MTPR always fetch and store the pointers whether in registers or the
PCB.

3. By software convention, negative codes are reserved to CSS and customers.

Examples

1. CHMK #7 ; Request the kernel mode service
; specified by code 7

CHME #4 ; Request the executive mode service
; specified by code 4

CHMS #-2 ; Request the supervisor mode service
; specified by customer code -2

9–188 VAX Instruction Set

VAX Instruction Set
REI

REI

Return from Exception or Interrupt

Format

opcode

Condition Codes

N <— saved PSL<3>;
Z <— saved PSL<2>;
V <— saved PSL<1>;
C <— saved PSL<0>;

Exceptions

reserved operand

Opcodes

02 REI Return from Exception or Interrupt

Description

A longword is popped from the current stack and held in a temporary program
counter (PC). A second longword is popped from the current stack and held in a
temporary processor status longword (PSL).

The popped PSL is checked for internal consistency. If the processor is running
virtual machine (VM) mode, the popped PSL is compared with the Virtual-
Machine Processor Status Longword (VMPSL) to determine that the transition
from current VMPSL to popped PSL is allowed, and a VM-emulation trap is
taken. If the processor is running a real machine, the popped PSL is compared
with the current PSL to determine that the transition from current PSL to
popped PSL is allowed.

If the processor is not in kernel mode and is attempting to return to a PSL
with the VMPSL VM bit set, a reserved operand fault occurs. The current stack
pointer (SP) is saved, and a new SP is selected according to the new PSL CUR_
MOD and IS fields. The level of the highest privilege asynchronous system trap
(AST) is checked against the current mode to see whether a pending AST can be
delivered. Execution resumes with the instruction being executed at the time of
the exception or interrupt.

After completing an REI, a processor will correctly execute a modified instruction
stream.

Notes

1. The exception or interrupt service routine is responsible for restoring any
registers saved and for removing any parameters from the stack.

2. As usual for faults, any Access Violation or Translation Not Valid conditions
on the stack pops restore the stack pointer and fault.

VAX Instruction Set 9–189

VAX Instruction Set
REI

3. The noninterrupt stack pointers may be fetched and stored either in
privileged registers or in their allocated slots in the process control block
(PCB). Only LDPCTX and SVPCTX always fetch and store in the PCB. MFPR
and MTPR always fetch and store the pointers, whether in registers or in the
PCB.

9–190 VAX Instruction Set

VAX Instruction Set
LDPCTX

LDPCTX

Load Process Context

Format

opcode

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

reserved operand
privileged instruction

Opcodes

06 LDPCTX Load Process Context

Description

If the processor is in virtual machine (VM) mode, and the virtual machine is in
kernel mode, then a VM-emulation trap is taken. Otherwise, if the processor is
not in kernel mode, a privileged-instruction fault is taken. If neither exception
is taken, the processor loads the process state in the process control block (PCB)
specified by the privileged process control block base register (PCBB).

The general registers, process-space memory management registers, and the
address space number register (if implemented) are loaded from the PCB into the
scalar processor. Execution is switched to the kernel stack. The program counter
(PC) and processor status longword (PSL) are moved from the PCB to the stack,
suitable for use by a subsequent REI instruction.

If the processor implements an address space number (ASN) register, the process
translation buffer (TB) state associated with the new value of the ASN (that
is, the one loaded by the LDPCTX instruction) is flushed if the process last ran
on a different processor. This is indicated by the previous CPU (PRVCPU) field
being not equal to the CPU identification (CPUID) register. If the processor does
not implement the ASN register, the process-space TB state is unconditionally
flushed.

Notes

1. Some processors keep a copy of each of the per-process stack pointers (SPs) in
internal registers. In those processors, LDPCTX loads the internal registers
from the PCB. Processors that do not keep a copy of all four per-process stack
pointers in internal registers keep only the current access mode register in an
internal register and switch this with the PCB contents whenever the current
access mode field changes.

VAX Instruction Set 9–191

VAX Instruction Set
LDPCTX

2. The preferred implementation of UNDEFINED operation is reserved operand
abort.

3. LDPCTX does not invalidate the per-process translation buffer (TB) state in
the vector processor TB. To invalidate the TB state on the vector processor
use the invalidate all (TBIA), invalidate single (TBIS), or vector invalidate all
(VTBIA) internal processor registers.

4. LDPCTX does not load the vector processor memory management registers, if
such copies reside there.

5. To guarantee correct operation, an LDPCTX instruction must be followed by
an REI instruction.

9–192 VAX Instruction Set

VAX Instruction Set
SVPCTX

SVPCTX

Save Process Context

Format

opcode

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

privileged instruction

Opcodes

07 SVPCTX Save Process Context

Description

If the processor is in virtual machine (VM) mode, and the virtual machine is in
kernel mode, then a VM-emulation trap is taken. Otherwise, the process control
block (PCB) is specified by the privileged process control block base register
(PCBB). The general registers are saved into the PCB. The program counter (PC)
and processor status longword (PSL) currently on the top of the current stack
are popped and stored in the PCB. If the processor implements the adress space
number (ASN) register, then the CPU identification (CPUID) register is saved
in the previous CPU (PRVCPU) field in the PCB. If a SVPCTX instruction is
executed when the interrupt stack (IS) is clear, then IS is set, the interrupt stack
pointer (ISP) is activated, and interrupt priority level (IPL) is maximized with 1
because of the switch to the IS.

Notes

1. The map, ASTLVL, and PME contents of the process control block (PCB) are
not saved because they are rarely changed. Thus, not writing them saves
overhead.

2. Some processors keep a copy of each of the per-process stack pointers in
internal registers. In those processors, SVPCTX stores the internal registers
in the PCB. Processors that do not keep a copy of all four per-process stack
pointers in internal registers keep only the current access mode register in an
internal register and switch this access mode register with the PCB contents
whenever the current access mode field changes.

3. Between the SVPCTX instruction that saves the state for one process and
the LDPCTX that loads the state of another, the ISPs may not be referenced
by MFPR or MTPR instructions. This implies that interrupt service routines
invoked at a priority higher than the lowest one used for context switching
must not reference the process stack pointers (SPs).

VAX Instruction Set 9–193

VAX Instruction Set
SVPCTX

MTPR

Move to Processor Register

Format

opcode src.rl, procreg.rl

Condition Codes

N <— UNPREDICTABLE
Z <— UNPREDICTABLE
V <— UNPREDICTABLE
C <— UNPREDICTABLE

Exceptions

reserved operand fault
reserved instruction fault

Opcodes

DA MTPR Move to Processor Register

Description

If the processor is in virtual machine (VM) mode, and the virtual machine is in
kernel mode, then a VM-emulation trap is taken. MTPR loads the source operand
specified by src into all copies of the processor register specified by procreg that
are implemented on the vector and scalar processors. The procreg operand is
a longword that contains the processor register number. Execution may have
register-specific side effects.

Notes

1. If the processor internal register does not exist, a reserved operand fault
occurs.

2. A reserved instruction fault occurs if instruction execution is attempted in
other than kernel mode.

3. A reserved operand fault occurs on a move to a read-only register.

4. After an MTPR instruction, the condition codes are UNPREDICTABLE,
unless noted otherwise under the description of the specific processor register.

9–194 VAX Instruction Set

VAX Instruction Set
MFPR

MFPR

Move from Processor Register

Format

opcode procreg.rl, dst.wl

Condition Codes

N <— UNPREDICTABLE
Z <— UNPREDICTABLE
V <— UNPREDICTABLE
C <— UNPREDICTABLE

Exceptions

reserved operand fault
reserved instruction fault

Opcodes

DB MFPR Move from Processor Register

Description

If the processor is in virtual machine (VM) mode, and the virtual machine is
in kernel mode, then a VM-emulation trap is taken. The destination operand
is replaced by the contents of the processor register specified by procreg. The
procreg operand is a longword that contains the processor register number.
Execution may have register-specific side effects.

Notes

1. If the processor internal register does not exist, a reserved operand fault
occurs.

2. A reserved instruction fault occurs if instruction execution is attempted in
other than kernel mode.

3. A reserved operand fault occurs on a move from a write-only register.

4. After an MFPR instruction, the condition codes are UNPREDICTABLE,
unless noted otherwise under the description of the specific processor register.

VAX Instruction Set 9–195

VAX Instruction Set
BUG

BUG

Bugcheck

Format

opcode message.bx

Condition Codes

N <— N;
Z <— Z;
V <— V;
C <— C;

Exceptions

reserved instruction

Opcodes

FEFF BUGW Bugcheck with word message identifier
FDFF BUGL Bugcheck with longword message identifier

Description

The hardware treats these opcodes as reserved to Compaq and as faults. The
OpenVMS operating system treats them as requests to report software detected
errors. The inline message identifier is zero extended to a longword (BUGW) and
interpreted as a condition value (see the VAX Procedure Calling and Condition
Handling Standard in the OpenVMS Programming Interfaces: Calling a System
Routine). If the process is privileged to report bugs, a log entry is made. If the
process is not privileged, a reserved instruction is signaled.

Examples

1. BUGW ; Bugcheck with word message
.WORD 4 ; identifier 4

BUGL ; Bugcheck with longword
.LONG 5 ; message identifier 5

9–196 VAX Instruction Set

10
VAX Vector Architecture

This chapter describes an extension to the VAX architecture for integrated vector
processing. Some VAX vector architecture departs from the traditional VAX
scalar architecture, especially in the areas of UNPREDICTABLE results, vector
processor exceptions, and instruction/memory synchronization.

10.1 Introduction to VAX Vector Architecture
Implementation of the VAX vector architecture is optional. VAX processors that
do implement the vector architecture do so as specified in this chapter. Operating
system software may emulate the vector architecture on processors that omit this
feature.

On VAX processors that omit the vector architecture, vector instructions result in
a reserved-instruction fault.

The vector architecture features include additional instructions, vector registers,
and vector control registers.

All descriptions and examples of vector instructions in this chapter use the
assembler notation form of instructions, as described in Section 10.5. The number
and order of operands for the assembler notation differ from that defined in
the instruction stream format. See Section 10.3 and Section 10.5 for additional
information.

10.2 VAX Vector Architecture Registers
This section identifies and describes the vector, vector control, and internal
processor registers used in processing vector architecture operations.

10.2.1 Vector Registers
There are 16 vector registers, V0 to V15. Each vector register contains 64
elements numbered 0 to 63. Each element is 64 bits wide. Figure 10–1 depicts a
vector register.

VAX Vector Architecture 10–1

VAX Vector Architecture
10.2 VAX Vector Architecture Registers

Figure 10–1 Vector Register

ZK−1445A−GE

63

Element 0

Element 63

0

:Vn

A vector instruction that performs a register-to-register operation is defined as a
vector operate instruction. A vector operate instruction that reads or writes
F_floating data, or integer data for shifts or integer arithmetic operations, reads
bits <31:0> of each source element and writes bits <31:0> of each destination
element. Bits <63:32> of the destination are UNPREDICTABLE for F_floating,
integer arithmetic, and shift instructions.

Vector logical instructions read bits <31:0> of each source element and write the
result into bits <31:0> of each destination element; bits <63:32> of the destination
element receive bits <63:32> of the corresponding element of the Vb source
operand.

For vector instructions that read longword data from memory into a vector
register (VLDL and VGATHL), bits <63:32> of the destination elements are
UNPREDICTABLE.

If the same vector register is used as both source and destination in a Gather
Memory Data into Vector Register (VGATH) instruction, the result of the VGATH
instruction is UNPREDICTABLE.

For the IOTA vector instruction, bits <63:32> of the destination elements are
UNPREDICTABLE.

10.2.2 Vector Control Registers
The 7-bit Vector Length Register (VLR), shown in Figure 10–2, limits the highest
vector element to be processed by a vector instruction. VLR is loaded prior
to executing the vector instruction using a Move to Vector Processor (MTVP)
instruction. The value in VLR may range from 0 to 64. If the vector length is
zero, no vector elements are processed. If a vector instruction is executed with
a vector length greater than 64, the results are UNPREDICTABLE. Elements
beyond the vector length in the destination vector register are not modified.

Figure 10–2 Vector Length Register (VLR)

ZK−1446A−GE

31 07 6

lengthSBZ/RAZ

The Vector Mask Register (VMR), shown in Figure 10–3, has 64 bits, each
corresponding to an element of a vector register. Bit <0> corresponds to vector
element 0. See Section 10.3.1 for information on masked operations.

10–2 VAX Vector Architecture

VAX Vector Architecture
10.2 VAX Vector Architecture Registers

Figure 10–3 Vector Mask Register (VMR)

ZK−1447A−GE

63 01

The 7-bit Vector Count Register (VCR), shown in Figure 10–4, receives the length
of the offset vector generated by the IOTA instruction.

Figure 10–4 Vector Count Register (VCR)

ZK−1448A−GE

31 07 6

countSBZ/RAZ

These registers are read and written by Move from/to Vector Processor
(MFVP/MTVP) instructions.

10.2.3 Internal Processor Registers
The vector processor contains the following internal processor registers (IPRs)
that can be accessed by the scalar processor using MTPR/MFPR instructions:

• Vector Processor Status Register (VPSR)

• Vector Arithmetic Exception Register (VAER)

• Vector Memory Activity Check (VMAC)

• Vector Translation Buffer Invalidate All (VTBIA)

• Vector State Address Register (VSAR)

The VPSR is shown in Figure 10–5, and is described in Table 10–1.

Figure 10–5 Vector Processor Status Register (VPSR)

ZK−1449A−GE

31 30 25 24 23 8 7 6 5 4 3 2 1 0

I
V
O

I
M
P

A
E
X

P
M
F

M
F

R
L
D

S
T
S

R
S
T

V
E
N

BS
S
Y

00 0

VAX Vector Architecture 10–3

VAX Vector Architecture
10.2 VAX Vector Architecture Registers

Table 10–1 Description of the Vector Processor Status Register (VPSR)

Extent Type Description

<0> R/W Vector Processor Enabled (VEN). The vector processor is enabled by writing a one
to this bit. Writing a zero disables the vector processor. If VPSR<VEN> is cleared
by software while VPSR<BSY> is set, then once the new state of VPSR becomes
synchronized with subsequent vector instructions, no more instructions are sent
and the vector processor completes execution of all pending instructions in its
instruction queue. See Section 10.6.3, Vector Processor Disabled, for more details.

<1> W Vector Processor State Reset (RST). Writing a one to this bit clears VPSR and
VAER. If VPSR<RST> is set by software while VPSR<BSY> is set, the operation
of the vector processor is UNDEFINED. This bit is read as zero (RAZ).

<2> W Vector State Store (STS). Writing a one to this bit initiates storing of
implementation-specific vector state information to memory using the address in
VSAR for the asynchronous method of handling memory management exceptions.
If the synchronous method is implemented, write operations to VPSR<STS> are
ignored. This bit is RAZ.

<3> W Vector State Reload (RLD). Writing a one to this bit initiates reloading of
implementation-specific vector state information from memory using the address
in VSAR for the asynchronous method of handling memory management
exceptions. If the synchronous method is implemented, write operations to
VPSR<RLD> are ignored. This bit is RAZ.

<4> R 0

<5> R/W1C Memory Fault (MF). This bit is set by the vector processor when there is a
memory reference to be retried due to an asynchronous memory management
exception. Writing a one to VPSR<MF> clears it. Writing a zero to VPSR<MF>
has no effect. If the synchronous method of handling memory management
exceptions is implemented, this bit is always zero.

<6> R/W1C Pending Memory Fault (PMF). This bit is set by the vector processor when
an asynchronous memory management exception is pending. Writing a one to
VPSR<PMF> clears it. Writing a zero to VPSR<PMF> has no effect. If the
synchronous method of handling memory management exceptions is implemented,
this bit is always zero.

<7> R/W1C Vector Arithmetic Exception (AEX). This bit is set by the vector processor when
disabling itself due to an arithmetic exception. Information regarding the nature
of the exception can be found in VAER. Writing a one to VPSR<AEX> clears
VPSR<AEX> and VAER. Writing a zero to VPSR<AEX> has no effect.

<23:8> R 0

<24> R/W1C Implementation-Specific Hardware Error (IMP). This bit is set by the vector
processor when disabling itself due to an implementation-specific hardware error.
Writing a one to VPSR<IMP> clears it. Writing a zero to VPSR<IMP> has no
effect.

An implementation may choose not to implement VPSR<IMP>. In this case,
writing VPSR<IMP> with either value must have no effect and must not generate
any error. Also, its value when read must be zero.

<25> R/W1C Illegal Vector Opcode (IVO). This bit is set by the vector processor when disabling
itself due to receiving an illegal vector opcode. Writing a one to VPSR<IVO>
clears it. Writing a zero to VPSR<IVO> has no effect.

An implementation may choose not to implement VPSR<IVO>. In this case,
writing VPSR<IVO> with either value must have no effect and must not generate
any error. Also, its value when read must be zero.

<30:26> R 0

(continued on next page)

10–4 VAX Vector Architecture

VAX Vector Architecture
10.2 VAX Vector Architecture Registers

Table 10–1 (Cont.) Description of the Vector Processor Status Register (VPSR)

Extent Type Description

<31> R Vector Processor Busy (BSY). When this bit is set, the vector processor is executing
vector instructions. When it is clear, the vector processor is idle, or the vector
processor has suspended instruction execution due to an asynchronous memory
management exception or hardware error. Writing to VPSR<BSY> has no effect.

Table 10–2 shows the possible settings of VPSR<3:0> in the same MTPR
instruction, and the resulting action for the vector processor. The state of
the vector processor is determined by the encoding of Vector Processor Enabled
(VPSR<VEN>) and Vector Processor Busy (VPSR<BSY>). The vector processor
state for possible encodings is shown in Table 10–3.

Table 10–2 Possible VPSR<3:0> Settings for MTPR

RLD STS RST VEN Meaning

0 0 0 0 Disable vector processor

0 0 0 1 Enable vector processor

0 0 1 0 Reset state and disable vector processor

0 0 1 1 Reset state and enable vector processor

0 1 0 0 Store state (must disable vector processor)

1 0 0 0 Reload state and disable vector processor

1 0 0 1 Reload state and then enable vector processor

Table 10–3 State of the Vector Processor

VEN BSY Meaning

0 0 The vector processor is not executing any instructions now, and
either has no pending instructions or will not execute pending
instructions. No more instructions should be sent.

0 1 The vector processor is executing at least one pending instruction.
No more instructions should be sent.

1 0 The vector processor is not executing any instructions now, and
either has no pending instructions or will not execute pending
instructions. New instructions can be sent to the vector processor.

1 1 The vector processor is executing at least one instruction now. New
instructions can be sent.

Note that because the vector and scalar processors can execute asynchronously, a
VPSR state transition may not be seen immediately by the scalar processor. After
performing an MTPR to VPSR, software must then issue an MFPR from VPSR
to ensure that the new state of VPSR (and VAER if cleared by VPSR<RST>) will
affect the execution of subsequently issued vector instructions. The MFPR in
this case will not complete until the new state of the vector processor becomes
visible to the scalar processor. If software does not issue the MFPR, then it is
UNPREDICTABLE whether this synchronization between the new state of VPSR
(and VAER) and subsequently issued vector instructions occurs.

VAX Vector Architecture 10–5

VAX Vector Architecture
10.2 VAX Vector Architecture Registers

The VAER, shown in Figure 10–6, is a read-only register used to record
information regarding vector arithmetic exceptions. Table 10–4 shows the
encoding for the exception condition types. The destination register mask field
of VAER records which vector registers have received default results due to
arithmetic exceptions. VAER<16+n> corresponds to vector register Vn, where
n is between 0 and 15. For more information, refer to Section 10.6.2, Vector
Arithmetic Exceptions.

Figure 10–6 Vector Arithmetic Exception Register (VAER)

ZK−1450A−GE

31 0

vector destination register mask exception condition summary

16 15

Table 10–4 VAER Exception Condition Summary Word Encoding

Bit Exception Condition

<0> Floating underflow

<1> Floating divide by zero

<2> Floating reserved operand

<3> Floating overflow

<4> 0

<5> Integer overflow

<15:6> 0

The Vector Memory Activity Check (VMAC) register, shown in Figure 10–7,
is used to guarantee the completion of all prior vector memory accesses. For
more information on this function of VMAC, refer to Section 10.7.2.2. An MFPR
from VMAC also ensures that all hardware errors encountered by previous
vector memory instructions are reported before the MFPR completes. For more
information on this function of VMAC, refer to Section 10.9, Hardware Errors.
The value returned by MFPR from VMAC is UNPREDICTABLE.

Figure 10–7 Vector Memory Activity Check (VMAC) Register

ZK−1451A−GE

31 0

The Vector Translation Buffer Invalidate All (VTBIA) register, shown
in Figure 10–8, is a write-only register that may be omitted in some
implementations. If the vector processor contains its own translation buffer,
moving zero into VTBIA using the MTPR instruction invalidates the entire
vector translation buffer. For more information, refer to Section 10.8, Memory
Management.

10–6 VAX Vector Architecture

VAX Vector Architecture
10.2 VAX Vector Architecture Registers

Figure 10–8 Vector Translation Buffer Invalidate All (VTBIA) Register

ZK−1451A−GE

31 0

The Vector State Address Register (VSAR), shown in Figure 10–9, is a read/write
register that contains a quadword-aligned virtual address of memory assigned
by software for storing implementation-specific vector hardware state when
the asynchronous method of handling memory management exceptions is
implemented. The length of this memory area is implementation specific.
Software must guarantee that accessing the memory pointed to by the address
does not result in a memory management exception. If the synchronous method
of handling memory management exceptions is implemented, this register
is omitted. For more information, refer to Section 10.6.1, Vector Memory
Management Exception Handling.

Figure 10–9 Vector State Address Register (VSAR)

ZK−1452A−GE

31 0

Virtual Memory Address SBZ

3 2

With the exception of VPSR (and VAER), an MTPR to any other writable vector
internal processor register (IPR) ensures that the new state of the IPR affects
the execution of all subsequently issued vector instructions. Vector instructions
issued before an MTPR to any writable vector IPR are unaffected by the new
state of the IPR (and any implicitly changed vector IPR) except in one case: when
the MTPR sets VPSR<RST> while VPSR<BSY> is set. (See Table 10–1 for more
details.)

Except for the following two cases, the operations of the scalar and vector
processors are UNDEFINED after execution of MTPR to a read-only vector IPR,
MTPR to a nonexistent vector IPR, MTPR of a nonzero value to a MBZ field, or
MTPR of a reserved value to a vector IPR. The preferred implementation is to
cause reserved-operand fault.

• If an implementation supports an optional vector processor, but the vector
processor is not installed, MTPR to VPSR has no effect.

• If an implementation supports an optional vector processor, but either the
vector processor is not installed, or the scalar/vector processor pair uses a
common translation buffer (TB), MTPR to VTBIA has no effect.

In each of these cases, MTPR is implemented as a no-op.

Except for the following two cases, the operations of the scalar and vector
processors are UNDEFINED after execution of MFPR from a nonexistent vector
IPR, or MFPR from a write-only vector IPR. The preferred implementation is to
cause reserved-operand fault.

• If an implementation supports an optional vector processor, but the vector
processor is not installed, MFPR from VPSR returns zero.

VAX Vector Architecture 10–7

VAX Vector Architecture
10.2 VAX Vector Architecture Registers

• If an implementation supports an optional vector processor, but the vector
processor is not installed, MFPR from VMAC has no effect.

The internal processor register (IPR) assignments for these registers are found in
Table 10–5.

Table 10–5 IPR Assignments

Offset (Hex) IPR

90 VPSR

91 VAER

92 VMAC

93 VTBIA

94 VSAR

95–9B Reserved for vector architecture use

9C–9F Reserved for vector implementation use

10.3 Vector Instruction Formats
Vector instructions use 2-byte opcodes and normal VAX operand specifiers. For
more information on VAX operand specifiers, refer to the VAX Architecture
Reference Manual. The vector registers to be used by a vector instruction are
specified by the vector control word operand. The MFVP, MTVP, and Synchronize
Vector Memory Access (VSYNC) instructions do not use a vector control word
operand. The general format of the vector control word operand is shown in
Figure 10–10. Table 10–6 describes the fields of the vector control word operand
(cntrl). The actual format of the vector control word operand is instruction
dependent. (Refer to the instruction descriptions later in this chapter for more
detail.) The vector control word operand is passed by the VAX scalar processor to
the vector processor.

Figure 10–10 Vector Control Word Operand (cntrl)

or

15 14 13 12 11 8 7 4 3 0

Va Vb Vc0
E
X
C

M
T
F

M
O
E

ZK−1453A−GE

M
I

15 14 13 12 11 8 7 4 3 0

Va Vb Vc0
M
T
F

M
O
E

10–8 VAX Vector Architecture

VAX Vector Architecture
10.3 Vector Instruction Formats

Table 10–6 Description of the Vector Control Word Operand

Extent Description

<3:0> Vc. This field selects the vector register to be used as the Vc operand.
For the Vector Floating Compare (VCMP) instruction, it specifies the
compare function.

<7:4> Vb. This field selects the vector register to be used as the Vb operand.

<11:8> Va. This field selects the vector register to be used as the Va operand.
For the Vector Convert (VVCVT) instruction, it specifies the convert
function.

<12> 0

<13> Modify Intent (MI). Used only in Load Memory Data into Vector
Register (VLD) and VGATH instructions. instructions to indicate
that a majority of the memory locations being loaded by the VLD or
VGATH will later be stored into by VST/VSCAT instructions. This bit
is optional to implement. See Section 10.3.3, Modify Intent bit, for
more details.

<13> Exception Enable (EXC). Used only in vector integer and floating-
point instructions to enable integer overflow and floating underflow,
respectively.

<14> Match True/False (MTF). When masked operations have been enabled
(cntrl<MOE> EQL 1), only elements for which the corresponding VMR
bit matches cntrl<MTF> are operated on. See previous description.
Cntrl<MTF> is also used by the VMERGE and IOTA instructions.

<15> Masked Operation Enable (MOE). This bit enables operations under
the control of the Vector Mask Register (VMR) for vector instructions.
When set, masked operations are enabled, and only elements for which
the corresponding VMR bit matches cntrl<MTF> are operated on. If
cntrl<MOE> is clear, all elements are operated upon. In either case,
the Vector Length Register (VLR) limits the highest element operated
upon.

The vector control word operand may determine some or all of the following:

• Enabling of masked operations

• Enabling of floating underflow for floating-point instructions and integer
overflow for integer operations

• Which vector registers to use as sources, destinations, or both

• Which type of operation to perform (for the convert and compare instructions)

10.3.1 Masked Operations
Masked operations are enabled by the use of cntrl<15:14> of the vector control
word operand. Cntrl<15> is the Masked Operation Enable (MOE) bit, and
cntrl<14> is the Match True/False (MTF) bit. When cntrl<MOE> is set, masked
operations are enabled. Only elements for which the corresponding Vector Mask
Register (VMR) bit matches cntrl<MTF> are operated upon. If cntrl<MOE> is
clear, all elements are operated upon. In either case, the Vector Length Register
(VLR) limits the highest element operated upon.

Cntrl<MOE> should be zero for VMERGE and IOTA instructions; otherwise
the results are UNPREDICTABLE. Both the Vector Mask Register (VMR) and
the Match True/False bit (cntrl<MTF>) are always used by these instructions.
VMERGE and IOTA operate upon vector register elements up to the value
specified in VLR.

VAX Vector Architecture 10–9

VAX Vector Architecture
10.3 Vector Instruction Formats

10.3.2 Exception Enable Bit
The vector processor does not use the IV and FU bits in the processor status
longword (PSL) to enable integer overflow and floating underflow exception
conditions. These exception conditions are enabled or disabled on a per
instruction basis for vector integer and floating-point instructions by bit <13>
in the vector control word operand (cntrl<EXC>). When cntrl<EXC> is set,
floating underflow is enabled for vector floating-point instructions, and integer
overflow is enabled for vector integer instructions. When cntrl<EXC> is clear,
floating underflow and integer overflow are disabled. Note that for VLD/VGATH
instructions bit<13> is used and labeled differently.

10.3.3 Modify Intent Bit
The Modify Intent (MI) bit is used by the software to indicate to the vector
processor that a majority of the memory locations being loaded by VLD/VGATH
instructions will later be stored into, and so become modified, by VST/VSCAT
instructions. When informed of software’s intent to modify, some vector processor
implementations can optimize the vector loads and stores performed on these
locations.

The MI bit resides in bit<13> of the vector control word operand (cntrl<MI>) and
is used only in VLD and VGATH instructions. A vector processor implementation
is not required to implement cntrl<MI>.

For vector processors that implement cntrl<MI>, software uses the bit in a VLD
or VGATH instruction in the following way:

• By setting cntrl<MI> to zero, software indicates that less than a majority of
the locations loaded by the VLD/VGATH instructions will later be stored into
by VST/VSCAT instructions.

• By setting cntrl<MI> to 1, software indicates that a majority of the
locations loaded by the VLD/VGATH instructions will later be stored into
by VST/VSCAT instructions.

Vector processors that do not implement cntrl<MI> ignore the setting of this bit
in the control word for VLD and VGATH.

The results of VLD/VGATH and VST/VSCAT are unaffected by the setting of
cntrl<MI>. This includes memory management, where access-checking is done
with read intent for VLD/VGATH even if cntrl<MI> is set. However, incorrectly
setting cntrl<MI> can prevent the optimization of these instructions.

10.3.4 Register Specifier Fields
The Va (cntrl<11:8>), Vb (cntrl<7:4>), and Vc (cntrl<3:0>) fields of the vector
control word operand are generally used to select vector registers. Some vector
instructions use these fields to encode other instruction-specific information as
shown later in this section.

10.3.5 Vector Control Word Formats
Depending on the instruction, the vector control word can specify up to two vector
registers as sources, and one vector register as a destination. Other information
may be encoded in the vector control word, as shown in Figure 10–11a to
Figure 10–11n. Bits that are shown as ‘‘0’’ should be zero (SBZ). Execution of
vector instructions with illegal, inconsistent, or unspecified control word fields
produces UNPREDICTABLE results.

Figure 10–11a depicts the vector control word for VLDL and VLDQ.

10–10 VAX Vector Architecture

VAX Vector Architecture
10.3 Vector Instruction Formats

Figure 10–11b depicts the vector control word for VSTL and VSTQ.

Figure 10–11c depicts the vector control word for VGATHL and VGATHQ.

Figure 10–11d depicts the vector control word for VSCATL and VSCATQ.

Figure 10–11e depicts the vector control word for VVADDL/F/D/G,
VVSUBL/F/D/G, VVMULL/F/D/G, and VVDIVF/D/G.

Figure 10–11f depicts the vector control word for VVSLLL, VVSRLL, VVBISL,
VVXORL, and VVBICL. Cntrl<EXC> should always be zero for these instructions,
otherwise the results are UNPREDICTABLE.

Figure 10–11g depicts the vector control word for VVCMPL/F/D/G. The Vc field
(cntrl<3:0>) is used to specify the compare function.

Figure 10–11h depicts the vector control word for VVCVT. The Va field (cntrl
<11:8>) is used to specify the convert function.

Figure 10–11i depicts the vector control word for VVMERGE.

Figure 10–11j depicts the vector control word for VSADDL/F/D/G, VSSUBL/F/D/G,
VSMULL/F/D/G, and VSDIVF/D/G.

Figure 10–11k depicts the vector control word for VSSLLL, VSSRLL, VSBISL,
VSXORL, and VSBICL. Cntrl<EXC> should be zero for these instructions;
otherwise, the results are UNPREDICTABLE.

Figure 10–11l depicts the vector control word for VSCMPL/F/D/G. The Vc field
(cntrl<3:0>) is used to specify the compare function.

Figure 10–11m depicts the vector control word for VSMERGE.

Figure 10–11n depicts the vector control word for IOTA.

VAX Vector Architecture 10–11

VAX Vector Architecture
10.3 Vector Instruction Formats

Figure 10–11 Vector Control Word Format

ZK−5053A−GE

15 14 13 12 11 8 7 4 3 0

0 00
M
T
F

M
O
E

a. Vector Control Word Format for VLDL and VLDQ

dst / src
vec reg

num

M
I

15 14 13 12 11 8 7 4 3 0

0 00
M
T
F

M
O
E

b. Vector Control Word Format for VSTL and VSTQ

dst / src
vec reg

num
0

15 14 13 12 11 8 7 4 3 0

00
M
T
F

M
O
E

c. Vector Control Word Format for VGATHL and VGATHQ

dst / src
vec reg

num

M
I

src
vec reg

num

15 14 13 12 11 8 7 4 3 0

00
M
T
F

M
O
E

d. Vector Control Word Format for VSCATL and VSCATQ

dst / src
vec reg

num

src
vec reg

num
0

15 14 13 12 11 8 7 4 3 0

0
M
T
F

M
O
E

e. Vector Control Word Format for VVADDL/F/D/G, VVSUBL/F/D/G, and VVDIVF/D/G

src2
vec reg

num

src1
vec reg

num

E
X
C

15 14 13 12 11 8 7 4 3 0

0
M
T
F

M
O
E

f. Vector Control Word Format for VVSLLL, VVSRLL, VVBISL, VVXORL, and VVBICL

dst
vec reg

num

src2
vec reg

num

src1
vec reg

num
0

15 14 13 12 11 8 7 4 3 0

0
M
T
F

M
O
E

g. Vector Control Word Format for VVCMPL/F/D/G

src2
vec reg

num
0 cmp

func

dst
vec reg

num

15 14 13 12 11 8 7 4 3 0

0
M
T
F

M
O
E

h. Vector Control Word Format for VVCVT

src
vec reg

num

E
X
C

cvt
func

dst
vec reg

num

src1
vec reg

num

(continued on next page)

10–12 VAX Vector Architecture

VAX Vector Architecture
10.3 Vector Instruction Formats

Figure 10–11 (Cont.) Vector Control Word Format

ZK−5054A−GE

15 14 13 12 11 8 7 4 3 0

0
M
T
F

i. Vector Control Word Format for VVMERGE

src2
vec reg

num

dst
vec reg

num
00

src1
vec reg

num

15 14 13 12 11 8 7 4 3 0

0
M
T
F

j. Vector Control Word Format for VSADDL/F/D/G, VSSUBL/F/D/G, VSMULL/F/D/G and VSDIVF/D/G

src
vec reg

num

dst
vec reg

num
0

E
X
C

M
O
E

15 14 13 12 11 8 7 4 3 0

0
M
T
F

k. Vector Control Word Format for VSSLLL, VSSRLL, VSBISL, VSXORL, and VSBICL

src
vec reg

num

dst
vec reg

num
0

M
O
E

0

15 14 13 12 11 8 7 4 3 0

0
M
T
F

l. Vector Control Word Format for VSCMPL/F/D/G

src
vec reg

num
0

M
O
E

0 cmp
func

15 14 13 12 11 8 7 4 3 0

0
M
T
F

m. Vector Control Word Format for VSMERGE

src
vec reg

num
00 cmp

func0

15 14 13 12 11 8 7 4 3 0

0
M
T
F

n. Vector Control Word Format for IOTA

000 0
dst

vec reg
num

10.3.6 Restrictions on Operand Specifier Usage
Certain restrictions are placed on the addressing mode combinations usable
within a single vector instruction. These combinations involve the logically
inconsistent simultaneous use of a value as both a source operand (that is, a .rw,
.rl, or .rq operand) and an address. Specifically, if within the same instruction
the contents of register Rn is used as both a part of a source operand and as
an address in an addressing mode that modifies Rn (that is, autodecrement,
autoincrement, or autoincrement deferred), the value of the scalar source operand
is UNPREDICTABLE.

Use of short literal mode for the scalar source operand of a vector floating-point
instruction causes UNPREDICTABLE results.

VAX Vector Architecture 10–13

VAX Vector Architecture
10.3 Vector Instruction Formats

If a Store Vector Register Data into Memory (VST) or Scatter Memory Data into
Vector Register (VSCAT) instruction overwrites anything needed for calculation
of the memory addresses to be written, the result of the VST or VSCAT is
UNPREDICTABLE.

If the same vector register is used as both source and destination in a Gather
Memory Data into Vector Register (VGATH) instruction, the result of the VGATH
is UNPREDICTABLE.

When the addressing mode of the BASE operand used in a VLD, VST,
VGATH, or VSCAT instruction is immediate, the results of the instruction
are UNPREDICTABLE.

10.3.7 VAX Condition Codes
The vector instructions do not affect the condition codes in the processor status
longword (PSL) of the associated scalar processor.

10.3.8 Illegal Vector Opcodes
An illegal vector opcode is defined as a vector opcode to which no vector processor
function is currently assigned. Opcodes that are not identified in Appendix D as
vector opcodes are neither decoded nor executed by the vector processor.

An implementation is permitted to report an illegal vector opcode in one of the
following ways:

1. Reserved-instruction fault. This is the recommended implementation.

2. Illegal vector opcode. The vector processor disables itself and sets
VPSR<IVO>. The remainder of the vector processor state is left unmodified.

The way in which a particular illegal vector opcode is reported is implementation
specific.

10.4 Assembler Notation
The assembler notation uses a format that is different from the operand specifiers
for the vector instructions. The number and order of operands is not the same as
the instruction-stream format. For example, vector-to-vector addition is denoted
by the assembler as ‘‘VVADDL V1, V2, V3’’ instead of ‘‘VVADDL X123’’. The
assembler always generates immediate addressing mode (I#constant) for vector
control word operands. The assembler notation for vector instructions uses
opcode qualifiers to select whether vector processor exception conditions are
enabled or disabled, and to select the value of cntrl<MTF> in masked, VMERGE,
and IOTA operations. The appropriate opcode is followed by a slash (/). The
following qualifiers are supported:

• The qualifier U enables floating underflow. The qualifier V enables integer
overflow. Both of these qualifiers set cntrl<EXC>. The default is no vector
processor exception conditions are enabled.

• The qualifier 0 denotes masked operation on elements for which the Vector
Mask Register (VMR) bit is 0. The qualifier 1 denotes masked operation on
elements for which the VMR bit is 1. Both qualifiers set cntrl<MOE>. The
default is no masked operations.

• For the VMERGE and IOTA instructions only, the qualifier 0 denotes
cntrl<MTF> is 0. The qualifier 1 denotes cntrl<MTF> is 1. Cntrl<MTF> is 1
by default. Cntrl<MOE> is not set in this case.

10–14 VAX Vector Architecture

VAX Vector Architecture
10.4 Assembler Notation

• For the VLD and VGATH instructions only, the qualifier M indicates modify
intent (cntrl<MI> is 1). The default is no modify intent (cntrl<MI> is 0).

The following examples use several of these qualifiers:

VVADDF/1 V0, V1, V2 ;Operates on elements with mask bit set
VVMULD/0 V0, V1, V2 ;Operates on elements with mask bit clear
VVADDL/V V0, V1, V2 ;Enables exception conditions

(integer overflow here)
VVSUBG/U0 V0, V1, V2 ;Enables floating underflow and

;Operates on elements with mask bit clear

VLDL/M base,#4,V1 ;Indicates Modify Intent

10.5 Execution Model
A typical processor consists of a VAX scalar processor and its associated vector
processor, which contains vector registers and vector function units. The scalar
and vector processors may execute asynchronously. The VAX scalar processor
decodes both scalar and vector instructions following the operand specifier
evaluation rules stated in the VAX Architecture Reference Manual, but executes
only the scalar instructions. The scalar processor passes the information required
to execute a vector instruction to the vector processor. This information may
include the vector opcode, scalar source operands, and vector control words. The
vector processor performs the required operation, such as loading data from
memory, storing data to memory, or manipulating data already loaded into its
vector registers.

The scalar processor may decode a vector instruction before checking whether
the vector processor should receive it. Exceptions on vector instruction operands
may occur during this decoding and may be taken before the attempt to send
the decoded instruction to the vector processor. The scalar processor performs
one of the following operations when sending a decoded vector instruction to the
vector processor. Recall that because the vector and scalar processors can execute
asynchronously, a VPSR state transition may not be seen immediately by the
scalar processor.

• If the scalar processor views the vector processor as enabled (the scalar
processor sees VPSR<VEN> as set), the decoded vector instruction is sent to
the vector processor. The vector processor queues instructions sent by the
scalar processor until they can be executed.

• If the scalar processor views the vector processor as disabled (the scalar
processor sees VPSR<VEN> as clear), attempting to send the decoded vector
instruction to the vector processor results in a vector processor disabled fault.

The following flow details how vector instruction decode proceeds from the scalar
processor:

DO WHILE (the scalar processor has a decoded vector instruction for
the vector processor)

IF (the vector processor is viewed as disabled -- the scalar processor
sees VPSR<VEN> as clear) THEN

VAX Vector Architecture 10–15

VAX Vector Architecture
10.5 Execution Model

enter the vector processor disabled fault handler.
ELSE

IF (asynchronous memory management handling is implemented
AND VPSR<PMF> is set) THEN
enter the memory management exception handler.
{The vector processor clears VPSR<PMF>.}

ELSE

BEGIN
{If asynchronous memory management handling is
implemented and VPSR<MF> is set, the vector processor
clears VPSR<MF>, and retries the faulting memory
reference before any new vector instructions in the
queue are executed.}
IF (the vector processor instruction queue is not full) THEN

BEGIN
Send the decoded instruction to the vector processor
for execution.
IF (the decoded instruction is a vector memory access

instruction AND synchronous memory management
handling is implemented) THEN
ensure instruction completion without the occurrence
of memory management exceptions.

END
END

END

If asynchronous memory management handling is implemented, and VPSR<MF>
is set when the scalar processor sends the vector processor an instruction, the
vector processor clears VPSR<MF>, and retries the faulting memory reference
before any new vector instructions in the queue are executed.

The VAX scalar processor need not wait for the vector processor to complete its
operation before processing other instructions. Thus, the scalar processor could
be processing other VAX instructions while the vector processor is performing
vector operations. However, if the scalar processor issues an MFVP instruction
to the vector processor, the scalar processor must wait for the MFVP result to be
written before processing other instructions.

Because the scalar and vector processors may execute asynchronously, it is
possible to context switch the scalar processor before the vector processor is idle.
Software is responsible for ensuring that scalar and vector memory management
remains synchronized, and that all exceptions get reported in the context of the
process where they occurred. This is achieved by making sure all vector memory
accesses complete, and then disabling the vector processor before any scalar
context switch.

The vector processor may have its own translation buffer (TB) and cache and may
have separate paths to memory, or it may share these resources with the scalar
processor.

10.5.1 Access Mode Restrictions
In general, processes are expected to use the vector processor in only one mode.
However, multimode use of the vector processor by a process is allowed. Software
decides whether to allow vector processor exceptions from vector instructions
executed in a previous access mode to be reported in the current mode. The
preferred method is to report all vector processor exceptions in the access mode
where they occurred. This is achieved by requiring a process that uses the vector

10–16 VAX Vector Architecture

VAX Vector Architecture
10.5 Execution Model

processor to execute a SYNC instruction before changing to an access mode where
additional vector instructions are executed.

For correct access checking of vector memory references, the vector processor
must know the access mode in effect when a vector memory access instruction is
issued by the scalar processor.

10.5.2 Scalar Context Switching
With the addition of a vector processor, the required steps in performing a scalar
context switch change. The following procedure outlines the required method
software should use for scalar context switching:

1. Disable the vector processor so that no new vector instructions will be
accepted. Writing zero to the VPSR using the MTPR instruction clears
VPSR<VEN> and disables the vector processor without affecting VPSR<31:1>.
(See Section 10.6.3, Vector Processor Disabled, for more details.)

2. Ensure that no more vector memory read or write operations can occur.
Reading the VMAC internal processor register (IPR) using the MFPR
instruction does the required scalar/vector memory synchronization
without any exceptions being reported. Reading VMAC also ensures that
all unreported hardware errors encountered by previous vector memory
instructions are reported before the MFPR completes. For more information
on this function of VMAC, refer to Section 10.9, Hardware Errors.

3. Set a software scalar-context-switch flag and perform a normal scalar
processor context switch, for example SVPCTX, and so on, leaving the vector
processor state as is.

Although not required by the architecture, software may wait for VPSR<BSY>
to be clear after disabling the vector processor when performing a scalar context
switch, which provides the following advantages:

• The vector processor cannot be executing non-memory-access instructions
from the previous process while a normal scalar context switch to a new
process is being performed—which may be desirable to an operating system.

• All unreported hardware errors encountered by previous non-memory-
access instructions will be reported by the time the vector processor clears
VPSR<BSY> and thus known to software before scalar-context switching
continues (refer to Section 10.9, Hardware Errors, for more details).

• The MFPR from VPSR used to read VPSR<BSY> also ensures that the scalar
processor views the vector processor as disabled.

If software does not wait for VPSR<BSY> to be clear, it is possible that while
a normal scalar context switch to a new process is being performed, the vector
processor may still be executing non-memory-access instructions from the
previous process.

The required steps for Vector Context Switching are discussed in Section 10.6.4,
Handling Disabled Faults and Vector Context Switching.

VAX Vector Architecture 10–17

VAX Vector Architecture
10.5 Execution Model

10.5.3 Overlapped Instruction Execution
To improve performance, the vector processor may overlap the execution of
multiple instructions—that is, execute them concurrently. Further, when no
data dependencies are present, the vector processor may complete instructions
out of order relative to the order in which they were issued. A vector processor
implementation can perform overlapped instruction execution by having separate
function units for such operations as addition, multiplication, and memory access.
Both data-dependent and data-independent instructions can be overlapped; the
former by a technique known as chaining, which is described in the next section.
In many instances, overlapping allows an operation from one instruction to be
performed in any order with respect to an operation of another instruction.

When vector arithmetic exceptions occur during overlapped instruction execution,
exception handling software may not see the same instruction state and exception
information that would be returned from strictly sequential execution. Most
notably, the VAER could indicate the exception conditions and destination
registers of a number of vector instructions that were executing concurrently
and encountered exceptions. Exception reporting during chained execution is
discussed further in Section 10.5.3.1.

To ensure correct program results and exception reporting, the architecture does
place requirements on the ordering among the operations of one vector instruction
and those of another. The primary goal of these requirements is to ensure that
the results obtained from both the overlapped and strictly sequential execution
of data-dependent instructions are identical. A secondary goal is to establish
places within the instruction stream where software is guaranteed to receive the
reporting of exceptions from a chain of data-dependent instructions.

In many cases, these requirements ensure the obvious: for example, an output
vector register element of one arithmetic instruction must be computed before
it can be used as an input element to a subsequent instruction. But, a number
of the things ensured are not obvious: for example, a Memory Instruction
Synchronization (MSYNC) instruction must report exceptions encountered in
generating a value of Vector Mask Register (VMR) that is used in a previously
issued masked store instruction.

To precisely define the requirements on the ordering among operations,
Section 10.5.3.3 discusses the ‘‘dependence’’ among their results (the vector
register elements and control register bits produced by the operations).

10.5.3.1 Vector Chaining
The architecture allows vector chaining, where the results of one vector
instruction are forwarded (chained) to another before the input vector of the
first instruction has been completely processed. In this way, the execution of
data-dependent vector instructions may be overlapped. Thus, chaining is an
implementation-dependent feature that is used to improve performance.

With some restrictions stated below, the vector processor may chain a number
of instructions. Usually, each instruction is performed by a separate function
unit. The number and types of instructions allowed within a chained sequence
(often referred to as a ‘‘chain’’) are implementation dependent. Typically,
implementations will attempt to chain sequences of two or three instructions
such as: operate-operate, operate-store, load-operate, operate-operate-store, and
load-operate-store. Load-operate-operate-store may also be possible.

10–18 VAX Vector Architecture

VAX Vector Architecture
10.5 Execution Model

The following is an example of a sequence that an implementation will often
chain:

VVADDF V0, V1, V2
VVMULF V2, V3, V4

The destination of the VVADDF is a source of the succeeding VVMULF. The
VVMULF begins executing when the first sum element of the VVADDF is
available.

A number of instructions within a chained sequence can encounter exceptions.
For each instruction that encounters an exception, the vector processor records
the exception condition type and destination register number in the Vector
Arithmetic Exception Register (VAER). When the last instruction within the
chain completes, the VAER will show the exception condition type and destination
register number of all instructions that encountered exceptions within the chain.
Furthermore, when the vector processor disabled fault is finally generated for the
exceptions, the VAER may also indicate exception state for instructions issued
after the last instruction within the chain. This effect is possible due to the
asynchronous exception-reporting nature of the vector processor.

Furthermore, for each instruction that encounters an exception within a chain,
the default result, as defined in Section 10.6.2, is forwarded as the source operand
to the next instruction. This has the effect that default results and exceptions can
propagate down through a chain. Note that the default result of one instruction
may be overwritten by another instruction before the exception is taken.

Consider the following:

VVADDG V1, V2, V3 ;gets Floating Overflow
VVGEQG V3, V4 ;gets Floating Reserved Operand
VVMULG V4, V5, V3 ;overwrites V3

For the previous example, assume that an exception is taken after the completion
of the VVMULG. The VAER will indicate: Floating Overflow and Floating
Reserved Operand exception condition types; and V3 as a destination register.
However, no default result will be found in the appropriate element of V3 because
it has been overwritten by the VVMULG.

The architecture allows a vector load to be chained into a vector operate
instruction provided the operate instruction can be suspended and resumed
to produce the correct result if the vector load gets a memory management
exception. Consider this example:

VLDL A, #4, V0
VVADDF V0, V1, V1

In synchronous memory management mode, the VVADDF cannot be chained into
the VLDL until the VLDL is ensured to complete without a memory management
exception. This occurs because the scalar processor is not even allowed to issue
the VVADDF to the vector processor until the memory management checks for
the VLDL have been completed. In asynchronous memory management mode,
the VVADDF may be chained into the VLDL prior to the completion of memory
management exception checking. This is possible because a memory management
exception in asynchronous memory management mode provides sufficient state
to restart both the VLDL and the VVADDF when the memory management
exception is corrected.

VAX Vector Architecture 10–19

VAX Vector Architecture
10.5 Execution Model

The architecture allows a vector operate instruction to be chained into a store
instruction. If the vector operate instruction encounters an arithmetic exception,
the exception condition type and destination register number are recorded in the
Vector Arithmetic Exception Register (VAER). The default result generated by
that instruction (in some cases an encoded reserved operand) may be written to
memory by the store instruction before the exception is reported.

10.5.3.2 Register Conflict
When overlapping the execution of instructions, the vector processor must deal
with register conflict. This occurs when one instruction is intending to write a
register while previously issued instructions are reading from that register. The
following is an example of vector register conflict:

VVADDF V1, V2, V3
VVMULF V4, V5, V1

In the example, the VVADDF and VVMULF cannot both begin execution
simultaneously because the elements of V1 generated by the VVMULF would
overwrite the original elements of V1 required as input by the VVADDF. However,
a vector processor implementation can still overlap the execution of these two
instructions in a number of ways. One way would be by not starting the
VVMULF until the first element of V1 has been read by the VVADDF. In this
manner, as the VVADDF reads the next elements from V1 and V2, the VVMULF
writes its product into the previous element of V1. This process continues until
all the elements have been processed by both instructions. The VVADDF will
finish execution while the VVMULF still has at least one product to store.

In the case of the Vector Mask Register (VMR), the vector processor ensures that
register conflict does not occur. This is often accomplished by making a copy
of the VMR value under which a pending vector instruction is to execute, and
using this copy when execution begins. This allows the vector processor to begin
executing an instruction that writes VMR before it completes prior instructions
that read VMR.

10.5.3.3 Dependencies Among Vector Results
To achieve correct results and exception reporting during overlapped execution,
the vector processor must maintain certain dependencies among the register
elements and control register bits produced by various vector instructions.
Because of the vector processor’s asynchronous exception reporting nature and
out-of-order completion of instructions, these dependencies differ from those
ensured by the VAX scalar processor. In addition, these dependencies are at the
level of vector register elements and vector control register bits; rather than at
the level of vector registers and vector control registers.

Among other things, these dependencies determine the exception reporting
nature of the MFVP instruction. The value of the vector control register (VCR,
VLR, VMR<31:0>, VMR<63:32>) delivered by an MFVP depends upon the value
of certain vector register elements and vector control register bits. Unreported
exceptions that occur in the production of these elements and control register bits
are reported by the vector processor prior to the completion of the MFVP from the
vector control register.

The dependencies are expressed formally for the various classes of vector
instructions by the tables of pseudo-code in this section. These are the only
dependencies that software should rely upon the vector processor to ensure.

10–20 VAX Vector Architecture

VAX Vector Architecture
10.5 Execution Model

A vector processor implementation is allowed to ensure more than just these
dependencies providing that this larger set of dependencies yields correct results
and exception reporting.

Note

Note the implications of the following sequence for Table 10–7, Table 10–8,
Table 10–9, Table 10–10, Table 10–11, Table 10–12, Table 10–13, and
Table 10–14:

VVSUBF V5, V6, V7
VVADDF V1, V2, V7
VVMULF V7, V7, V3
VVDIVF V1, V4, V7

Implicit in statements of the form: ‘‘result DEPENDS on B’’ is the
requirement that the result depends only on the value of ‘‘B’’ generated by
the most immediate previously issued instruction relative to the result’s
own generating instruction. For instance, in the following example, the
V3 produced by the VVMULF has the dependence: ‘‘V3[i] DEPENDS
on V7[i]’’. This means that the value of V3[i] produced by the VVMULF
depends only on the value of V7[i] produced by the VVADDF.

Table 10–7 Dependencies for Vector Operate Instructions

Instructions Dependence

VVADDx, VSADDx,
VVSUBx, VSSUBx,
VVMULx, VSMULx,
VVDIVx, VSDIVx,
VVCVTxy, VVBICL,
VSBICL, VVBISL,
VSBISL, VVXORL,
VSXORL, VVSLLL,
VSSLLL, VVSRLL,
VSSRLL

for i = 0 to VLR-1
begin
Vc[i] DEPENDS on VLR;
if {MOE EQL 1} then Vc[i] DEPENDS on VMR<i>;

if ({MOE EQL 1} AND {VMR<i> EQL MTF}) OR {MOE EQL 0} then
begin
Vc[i] DEPENDS on Vb[i];
if {Vector-Vector Operation} AND NOT {VVCVTxy} then

Vc[i] DEPENDS on Va[i];
end;

end;

VAX Vector Architecture 10–21

VAX Vector Architecture
10.5 Execution Model

Table 10–8 Dependencies for Vector Load and Gather Instructions

Instructions Dependence

VLDx, VGATHx

for i = 0 to VLR-1
begin
Vc[i] DEPENDS on VLR;
if {MOE EQL 1} then Vc[i] DEPENDS on VMR<i>;
if ({MOE EQL 1} AND {VMR<i> EQL MTF}) OR {MOE EQL 0} then

if VGATH then
begin
Vc[i] DEPENDS on Vb[i];
k = BASE + Vb[i];
end

else
k = BASE + i * STRIDE;

Vc[i] DEPENDS on LOAD_COMPLETED(k);
end;

Table 10–9 Dependencies for Vector Store and Scatter Instructions

Instructions Dependence

VSTx, VSCATx

j = 0;
for i = 0 to VLR-1

begin
if ({MOE EQL 1} AND {VMR<i> EQL MTF}) OR {MOE EQL 0} then

begin
if {MOE EQL 1} then ELEMENT_STORED[j] depends on VMR<i>;
ELEMENT_STORED[j] DEPENDS on Vc[i];
ELEMENT_STORED[j] DEPENDS on VLR;
if VSCAT then

begin
ELEMENT_STORED[j] DEPENDS on Vb[i];
k = BASE + Vb[i];
end

else
k = BASE + i * STRIDE;

STORE_COMPLETED(k) DEPENDS on ELEMENT_STORED[j];
j = j+1;
end;

end;

10–22 VAX Vector Architecture

VAX Vector Architecture
10.5 Execution Model

Table 10–10 Dependencies for Vector Compare Instructions

Instructions Dependence

VVCMPx, VSCMPx

for i = 0 to VLR-1
begin
VMR<i> DEPENDS on VLR;
if {MOE EQL 1} then VMR<i> DEPENDS on VMR<i>
if ({MOE EQL 1} AND {VMR<i> EQL MTF}) OR {MOE EQL 0} then

begin
VMR<i> DEPENDS on Vb[i];
if VVCMP then VMR<i> DEPENDS on Va[i];
end;

end;

Table 10–11 Dependencies for Vector MERGE Instructions

Instructions Dependence

VVMERGE,
VSMERGE

for i = 0 to VLR-1
begin
Vc[i] DEPENDS on VLR;
Vc[i] DEPENDS on VMR<i>;
if {VMR<i> EQL MTF} then

begin
if VVMERGE then Vc[i] DEPENDS on Va[i];
end

else
Vc[i] DEPENDS on Vb[i];

end;

Table 10–12 Dependencies for IOTA Instruction

Instruction Dependence

IOTA

j = 0;
for i = 0 to VLR-1

begin
Vc[j] DEPENDS on VLR;
if {VMR<i> EQL MTF} then

begin
Vc[j] DEPENDS on VMR<0..i>;
j = j+1;
end;

end;
VCR DEPENDS on VMR<0..VLR-1>;

VAX Vector Architecture 10–23

VAX Vector Architecture
10.5 Execution Model

Table 10–13 Dependencies for MFVP Instructions

Instructions Dependence

MSYNC DEPENDS on the following:

• All STORE_COMPLETED(x) of previously issued VST and VSCAT
instructions

• All LOAD_COMPLETED(X) of previously issued VLD and VGATH
instructions

SYNC DEPENDS on the vector register elements and vector control register bits
produced and stored by all previous vector instructions

MFVMRLO DEPENDS on VMR<0..31>

MFVMRHI DEPENDS on VMR<32..63>

MFVCR DEPENDS on VCR

MFVLR DEPENDS on VLR

Table 10–14 Miscellaneous Dependencies

Item Dependence

VSYNC Depends on nothing, but for each memory location, x forces all subsequent LOAD_
COMPLETED(x) and STORE_COMPLETED(x) to DEPEND on all previous
LOAD_COMPLETED(x) and STORE_COMPLETED(x).

MTVP DEPENDS on nothing.

Value of a memory
location

The value of a memory location DEPENDS on nothing and is not DEPENDED on
by any vector instruction.

Transitive dependence

if {a DEPENDS on b} AND {b DEPENDS on c} then a DEPENDS on c

10.6 Vector Processor Exceptions
There are two major classes of vector processor exceptions as follows:

• Vector memory management

Access control violation

Vector access control violation
Vector alignment
Vector I/O space reference

Translation not valid

Modify

• Vector Arithmetic

Floating underflow

Floating divide by zero

Floating reserved operand

Floating overflow

Integer overflow

10–24 VAX Vector Architecture

VAX Vector Architecture
10.6 Vector Processor Exceptions

Floating underflow and integer overflow can be disabled on a per-instruction
basis by clearing cntrl<EXC>.

Vector processor arithmetic exceptions cause the vector processor to disable itself
(see Section 10.6.3, Vector Processor Disabled). The vector processor does not
disable itself for vector processor memory management exceptions.

10.6.1 Vector Memory Management Exception Handling
Vector processor memory management exceptions are taken through the
system control block (SCB) vector for their scalar counterparts. Figure 10–12
illustrates the memory management fault stack frame that contains the memory
management fault parameter.

Figure 10–12 Memory Management Fault Stack Frame (as Sent by the Vector Processor)

ZK−1456A−GE

0 M P L

31 6 5 4 3 2 1 0

: (SP)

Some virtual address in the faulting page

PC at time fault taken

PSL at time fault taken

V
A
S

V
I
O

V
A
L

• The length (L) bit, the Page Table Entry (PTE) reference (P) bit, and the
modify or write intent (M) bit are defined in the VAX Architecture Reference
Manual. Vector processor memory management exceptions set these bits in
the same way as required for scalar memory management exceptions.

• The vector alignment exception (VAL) bit must be set when an access control
violation has occurred due to a vector element not being properly aligned in
memory.

• The vector I/O space reference (VIO) bit is set by some implementations
to indicate that an access control violation has occurred due to a vector
instruction reference to I/O space.

• The vector asynchronous memory management exception (VAS) bit must be
set to indicate that a vector processor memory management exception has
occurred when the following asynchronous memory management scheme is
implemented.

If more than one kind of memory management exception could occur on a
reference to a single page, then access control violation takes precedence over
both translation not valid and modify. If more than one kind of access control
violation could occur, the precedence of vector access control violation, vector
alignment exception, and vector I/O space reference is UNPREDICTABLE.

VAX Vector Architecture 10–25

VAX Vector Architecture
10.6 Vector Processor Exceptions

The architecture allows an implementation to choose one of two methods for
dealing with vector processor memory management exceptions. The two methods
are as follows:

• Synchronous memory management handling and restart from the beginning.

• Asynchronous memory management handling and store/reload
implementation-specific state using VSAR.

With the synchronous method, no new instructions are processed by the vector
or the scalar processor until the vector memory access instruction is guaranteed
to complete without incurring memory management exceptions. In such an
implementation, the vector memory access instruction is backed up when a
memory management exception occurs and a normal VAX memory management
(access control violation, translation not valid, modify) fault taken with the
program counter (PC) pointing to the faulting vector memory access instruction.
If the synchronous method is implemented, VSAR is omitted. After fixing the
vector processor memory management exception, software may REI back to the
faulting vector instruction. Alternately, software may context switch to another
process. For further details, see Section 10.6.4.

With the asynchronous method, vector memory management exceptions set
VPSR<PMF> and VPSR<MF>. The vector processor does not inform the scalar
processor of the exception condition; the scalar processor continues processing
instructions. All pending vector instructions that have started execution are
allowed to complete if their source data is valid. The scalar processor is notified
of an exception condition or conditions when it sends the next vector instruction
to the vector processor and a normal VAX memory management fault is taken.
The saved PC points to this instruction, which is not the vector memory access
instruction that incurred the memory management exception. At this point, the
vector processor clears VPSR<PMF>. After fixing the vector processor memory
management exception, software may allow the current scalar/vector process to
continue. Before vector processor instruction execution resumes using state that
already exists in the vector processor, the vector processor clears VPSR<MF>
and the faulting memory reference is retried. Alternately, software may context
switch to another process. For further details, see Section 10.6.4.

When a vector processor memory management exception is encountered by a VLD
or VGATH instruction, the contents of the destination vector register elements are
UNPREDICTABLE. When a vector processor memory management exception is
encountered by a VSTL or VSCAT instruction, it is UNPREDICTABLE whether
the vector processor writes any result location for which an exception did not
occur. In either case, if the fault condition can be eliminated by software and the
instruction restarted, then the vector processor will ensure that all destination
register elements or result locations are written.

10.6.2 Vector Arithmetic Exceptions
Vector operate instructions are always executed to completion, even if a vector
arithmetic exception occurs. If an exception occurs, a default result is written.
The default result is as follows:

• The low-order 32 bits of the true result for integer overflow.

• Zero for floating underflow if exceptions are disabled.

10–26 VAX Vector Architecture

VAX Vector Architecture
10.6 Vector Processor Exceptions

• An encoded reserved operand for floating divide by zero, floating overflow,
reserved operand, and enabled floating underflow. For vector convert
instructions that convert floating-point data to integer data, where the
source element is a reserved operand, the value written to the destination
element is UNPREDICTABLE.

The exception condition type and destination register number are always recorded
in the Vector Arithmetic Exception Register (VAER) when a vector arithmetic
exception occurs. Refer to Section 10.2.3, Internal Processor Registers, for more
information.

10.6.3 Vector Processor Disabled
As a result of error conditions or software control, the vector processor signals the
scalar processor not to issue any more vector instructions. The vector processor is
disabled when this signal is generated and its state is reflected in VPSR<VEN>.
Because the scalar and vector processors can execute asynchronously, the scalar
processor may not receive this signal immediately. As a result, the scalar
processor may continue to view the vector processor as enabled and send it vector
instructions. Once the scalar processor receives this signal, it will view the vector
processor as disabled and will not send it any more vector instructions (including
MFVP/MTVP). While the vector processor is disabled, and in the absence of
hardware errors, it will complete all pending instructions in its instruction queue
including those sent by the scalar processor after the vector processor became
disabled.

The vector processor can either disable itself or be disabled by software. The
following error conditions cause the vector processor to disable itself:

• Vector arithmetic exception (flagged by VPSR<AEX>)

• Hardware error (flagged by VPSR<IMP> in some implementations)

• On some implementations, receipt of an illegal vector opcode (flagged by
VPSR<IVO>)

In these cases, the vector processor clears VPSR<VEN> and flags the error
condition by setting the appropriate bit in VPSR. (See Table 10–1.)

Software disables the vector processor by writing a zero into VPSR<VEN> using
an MTPR instruction. Once the vector processor is disabled, only software can
enable it. The software does this by writing a one to VPSR<VEN> using an
MTPR. Recall that after performing an MTPR to VPSR, software must then
issue an MFPR from VPSR to ensure that the new state of VPSR will affect
the execution of subsequently issued vector instructions. The MFPR will not
complete in this case until the new state of the vector processor becomes visible
to the scalar processor.

When the vector processor disables itself due to a hardware error, it is
implementation dependent whether the vector processor completes any pending
vector instruction. However, in this case, the vector processor ensures when
it is reenabled that all incompleted instructions have been flushed from the
instruction queue.

If the scalar processor attempts to issue a vector instruction after it views the
vector processor as disabled, then a vector processor disabled fault occurs. The
vector processor disabled fault uses SCB offset 68 (hex). The exception handling
software (running on the scalar processor) can then read the vector internal
processor registers (IPRs) with MFPR instructions to determine what exception

VAX Vector Architecture 10–27

VAX Vector Architecture
10.6 Vector Processor Exceptions

conditions are recorded in the vector processor and if the vector processor is still
busy processing other unfinished instructions.

Once the scalar processor views the vector processor as disabled, the only
operations that can be issued to the vector processor are MTPR and MFPR to and
from the vector IPRs.

10.6.4 Handling Disabled Faults and Vector Context Switching
The following flow outlines the required steps for handling a vector processor
disabled fault.

If the new process executing on the scalar processor has a vector instruction to
execute, saving and restoring the state of the vector processor—that is, vector
context switching—is done as part of handling a subsequent vector processor
disabled fault.

If a vector processor disabled fault occurs and the current scalar process is also
the current vector process, then software must perform the following procedure:

1. Obtain the vector processor status by reading the VPSR using the MFPR
instruction.

2. Perform the following checks to see if any of these conditions caused the
vector processor to be disabled. If any of these conditions exist, a decision to
not continue this flow may occur.

a. If VPSR<IVO> is set, then write one to clear VPSR<IVO> using the
MTPR instruction, and report an illegal vector opcode error.

b. If VPSR<IMP> is set, then write one to clear VPSR<IMP> using the
MTPR instruction, and report an implementation-specific error.

c. If VPSR<AEX> is set, then write one to clear VPSR<AEX> using the
MTPR instruction, and enter the vector arithmetic exception handler with
information in VAER.

3. If the software scalar-context-switch flag is set, indicating that a scalar
context switch has been done, then perform the following:

a. Make sure the vector processor has access to correct P0LR, P0BR, P1LR,
and P1BR values.

b. If any vector translation buffer needs to be invalidated, then write zero
into the VTBIA IPR using the MTPR instruction. Vector translation
buffer flushing is required if the process was swapped out and the
mapping change has not yet been made known to the vector translation
buffer.

c. Clear the software scalar-context-switch flag.

4. Enable the vector processor by writing one to VPSR<VEN> using the MTPR
instruction. Ensure the new state of the vector processor becomes visible to
the scalar processor by reading VPSR with the MFPR instruction.

5. REI to retry the vector instruction at the time of the vector processor disabled
fault. If there is an asynchronous memory management exception pending, it
is taken when that vector instruction is reissued to the vector processor.

10–28 VAX Vector Architecture

VAX Vector Architecture
10.6 Vector Processor Exceptions

If a vector processor disabled fault occurs and the current scalar process is not
the current vector process, then software must perform the following procedure:

1. Check if there is a current vector process. If there is one, then perform the
following procedure:

a. Wait for VPSR<BSY> to be clear using the MFPR instruction.

b. Perform the following check to see if this condition caused the vector
processor to be disabled. If this condition exists, a decision to not continue
this flow may occur.

1. If VPSR<IMP> is set, then report an implementation-specific error.

2. If VPSR<IVO> is set, then set a software IVO flag for this process.
The illegal vector opcode error is handled when this process next tries
to execute in the vector processor.

3. If VPSR<AEX> is set, then set a software AEX flag for this process,
and save vector arithmetic exception state from VAER using the
MFPR instruction. Any vector arithmetic exception conditions
are handled when this process next tries to execute in the vector
processor.

c. At this point there cannot be a synchronous memory management
exception pending. But, if asynchronous memory management handling
is implemented, there may be an asynchronous memory management
exception pending. Because scalar/vector memory synchronization was
required before scalar context switching, all such pending exceptions are
known at this time. So, if VPSR<PMF> is set, then perform the following
procedure:

1. Set a software asynch-memory-exception-pending flag for this process.

2. Store implementation-specific vector state in memory starting at the
address in VSAR by writing one to VPSR<STS> using the MTPR
instruction.

d. Reset the vector processor state to clear VAER and VPSR, and enable the
vector processor. Writing a one to both VPSR<RST> and VPSR<VEN>
using the same MTPR instruction accomplishes this. Ensure the new
state of the vector processor becomes visible to the scalar processor by
reading VPSR with the MFPR instruction.

e. Store the current vector (V0–V15) and vector control (VLR, VMR, and
VCR) register values using VST and MFVP instructions.

f. Read the VMAC IPR using the MFPR instruction. This ensures
scalar/vector memory synchronization and that all hardware errors
encountered by previous vector memory instructions have been reported.

2. Make the current scalar process also the current vector process.

3. Clear the software scalar-context-switch flag.

4. Make sure the vector processor has access to correct P0LR, P0BR, P1LR, and
P1BR values, and invalidate any vector translation buffer by writing zero to
the VTBIA IPR using the MTPR instruction.

5. Load the saved vector (V0–V15) and vector control (VLR, VMR, and VCR)
register values using VLD and MTVP instructions.

VAX Vector Architecture 10–29

VAX Vector Architecture
10.6 Vector Processor Exceptions

6. If the software IMP, IVO, or AEX flags for this process are set, perform the
following procedure:

a. Disable the vector processor by writing zero to VPSR<VEN> using
the MTPR instruction. Ensure the new state of the vector processor
becomes visible to the scalar processor by reading VPSR with the MFPR
instruction.

b. If set, clear the software IMP flag for this process and finish handling the
implementation-specific error. A decision to not continue this flow may
occur.

c. If set, clear the software IVO flag for this process and report an illegal
vector opcode error occurred. A decision to not continue this flow may
occur.

d. If set, clear the software AEX flag for this process and enter the vector
arithmetic exception handler with saved VAER state. A decision to not
continue this flow may occur.

7. If the software async-memory-exception-pending flag for this process is set,
perform the following procedure:

a. Clear the software async-memory-exception-pending flag for this process.

b. Send the vector processor the memory address that points to
implementation-specific vector state for this process by writing VSAR
using the MTPR instruction.

c. Reload the implementation-specific vector state for this process and
leave the vector processor enabled by writing one to both VPSR<RLD>
and VPSR<VEN> using the same MTPR instruction. From this state,
the vector processor determines if VPSR<PMF>, VPSR<MF>, or both
need to be set, and does it. Ensure the new state of the vector processor
becomes visible to the scalar processor by reading VPSR with the MFPR
instruction.

8. REI to retry the vector instruction at the time of the vector processor disabled
fault. If there is an asynchronous memory management exception pending, it
is taken when that vector instruction is reissued to the vector processor.

10.6.5 MFVP Exception Reporting Examples
This section gives examples of Move from Vector Processor (MFVP) exception
reporting that are ensured by the vector processor. The rules used to determine
the correct result for each example are found in: the tables of dependencies
found in Section 10.5.3.3, the description of MSYNC in Section 10.7.2, and the
description of MFVP in Section 10.15.

Examples of Exceptions That Cause MSYNC to Fault
The following examples illustrate which exceptions are ensured by the vector
processor to always cause MSYNC to fault:

10–30 VAX Vector Architecture

VAX Vector Architecture
10.6 Vector Processor Exceptions

1. VVMULF V1, V1, V2
VVADDF V3, V2, V3
MTVLR #1
VSTL V2, A, #4
VVCVTFD V2, V3
MSYNC R0

The MSYNC faults if exceptions occur in the production of V2[0] by the
VVMULF or in the storage of V2[0] by the VSTL. MSYNC need not fault
if exceptions occur in the production of: V2[1..VLR-1] by the VVMULF,
V3[0..VLR-1] by the VVADDF, or V3[0..VLR-1] by the VVCVTFD.

2. VVADDF V1, V1, V0
VLDL A, #4, V0
MSYNC R0

The MSYNC faults if exceptions occur in the loading of V0[0..VLR-1] from
memory. MSYNC need not fault if exceptions occur in the production of
V0[0..VLR-1] by the VVADDF.

3. VVADDF V1, V1, V2
VLDL A, #4, V1
MSYNC R0

The MSYNC faults if exceptions occur in the loading of V1[0..VLR-1] from
memory. MSYNC need not fault if exceptions occur in the production of
V2[0..VLR-1] by the VVADDF.

4. VVMULF V1, V1, V2
VVGTRF V2, V3
VSTL/1 V0, A, #4
MSYNC R0

The MSYNC faults if exceptions occur: in the production of V2[0..VLR-1] by
the VVMULF, in the production of VMR<0..VLR-1> by the VVGTRF, or in the
storage by the VSTL/1 of elements of V0 for which the corresponding VMR bit
is one.

Examples of Exceptions the Processor Reports Prior to MFVP Completion
The following examples illustrate which exceptions the vector processor will
report prior to the completion of an MFVP from a vector control register:

1. VLDL A, #4, V1
VVMULF V1, V1, V2
MTVLR #1
VVGTRF V2, V3
MFVMRHI R1
MFVMRLO R2

Unreported exceptions that occur: in the loading of V1[0] from memory by
the VLDL, in the production of V2[0] by the VVMULF, and VMR<0> by the
VVGTRF are reported by the vector processor prior to the completion of the
MFVMRLO. The vector processor need not at that time report any exceptions
that occur in the loading of V1[1..63] from memory by the VLDL or in the
production of V2[1..63] by the VVMULF. Note that the vector processor need
not report any exceptions before completing MFVMRHI.

VAX Vector Architecture 10–31

VAX Vector Architecture
10.6 Vector Processor Exceptions

2. VVGTRF V0, V1
MTVMRLO #patt
MFVMRLO R1

For any value of ‘‘i’’ in the range of 0 to 31 inclusive: the value of VMR<i>
delivered by MFVMRLO only depends on the value placed into VMR<i> by
the MTVMRLO. As a result, the vector processor need not report exceptions
that occur in the production of VMR by the VVGTRF prior to completing the
MFVMRLO.

3. VVMULF/1 V1, V1, V2
MTVMRLO #patt
MFVMRLO R1

For any value of ‘‘i’’ in the range of 0 to 31 inclusive: the value of VMR<i>
delivered by MFVMRLO only depends on the value placed into VMR<i> by
the MTVMRLO. As a result, the vector processor need not report exceptions
that occur in the production of V2[0..VLR-1] by the VVMULF/1 prior to
completing the MFVMRLO.

4. MTVLR #64
VVMULF V0, V0, V2
VVGTRF V0, V2
MTVLR #32
IOTA #str, V4
MFVCR R1

Prior to the completion of the MFVCR, the vector processor must report
any exceptions that occurred in the production of V2[0..31] by the VVMULF
and VMR<0..31> by the VVGTRF. Note that VCR produced by an IOTA
depends only on VMR<0..VLR-1>. Recall that no exceptions can occur in the
production of V4[0..VCR-1] by IOTA.

5. MTVLR #64
VLDL A, #4, V2
VVGTRF V0, V1
VSGTRF/1 #3.0, V2
MFVMRLO R1

For any value of ‘‘i’’ in the range of 0 to 31 inclusive: prior to the completion
of the MFVMRLO, the vector processor must report any exceptions that
occurred: in the loading of V2[i] from memory for which V0[i] is greater than
V1[i], in the production of VMR<0..31> by the VVGTRF, and in the production
of VMR<0..31> by the VSGTRF/1.

6. VVMULF V1, V1, V1
VSTL V1, base, #str
MTVMRLO base
MFVMRLO R1

In this example, the value of VMR<31:0> delivered by MFVMRLO only
depends on the value placed into VMR<31:0> by the MTVMRLO – whether
this value is V1[0] or the previous value of the location is UNPREDICTABLE.
As a result, the vector processor need not report exceptions that occur in the
production of V1 by the VVMULF or in the storage of V1 by the VSTL.

10–32 VAX Vector Architecture

VAX Vector Architecture
10.7 Synchronization

10.7 Synchronization
For most cases, it is desirable for the vector processor to operate concurrently
with the scalar processor so as to achieve good performance. However, there
are cases where the operation of the vector and scalar processors must be
synchronized to ensure correct program results. Rather than forcing the vector
processor to detect and automatically provide synchronization in these cases,
the architecture provides software with special instructions to accomplish the
synchronization. These instructions synchronize the following:

• Exception reporting between the vector and scalar processors

• Memory accesses between the scalar and vector processors

• Memory accesses between multiple load/store units of the vector processor

Software must determine when to use these synchronization instructions to
ensure correct results.

The following sections describe the synchronization instructions.

10.7.1 Scalar/Vector Instruction Synchronization (SYNC)
A mechanism for scalar/vector instruction synchronization between the scalar
and vector processors is provided by SYNC, which is implemented by the MFVP
instruction. SYNC allows software to ensure that the exceptions of previously
issued vector instructions are reported before the scalar processor proceeds with
the next instruction. SYNC detects both arithmetic exceptions and asynchronous
memory management exceptions and reports these exceptions by taking the
appropriate VAX instruction fault. Once it issues the SYNC, the scalar processor
executes no further instructions until the SYNC completes or faults.

In beginning the execution of SYNC, the vector processor determines if any
previously issued vector instruction has encountered exceptions which have yet
to be reported to the scalar processor. If so, the SYNC is faulted; otherwise, the
vector processor waits for either of the following conditions to be true:

• A pending or currently executing vector instruction encounters an exception—
in which case the SYNC faults

• The vector processor determines that all pending and currently executing
vector instructions (including memory instructions in asynchronous memory
management mode) will execute to completion without encountering vector
exceptions. In that case the SYNC completes.

When SYNC completes, a longword value (which is UNPREDICTABLE) is
returned to the scalar processor. The scalar processor writes the longword value
to the scalar destination of the MFVP and then proceeds to execute the next
instruction. If the scalar destination is in memory, it is UNPREDICTABLE
whether the new value of the destination becomes visible to the vector processor
until scalar/vector memory synchronization is performed.

When SYNC faults, it is not completed by the vector processor and the scalar
processor does not write a longword value to the scalar destination of the
MFVP. Also, depending on the exception condition encountered, the SYNC
itself takes either a vector processor disabled fault or memory management
fault. If both faults are encountered while the vector processor is performing
SYNC, then the SYNC itself takes a vector processor disabled fault. Note that
it is UNPREDICTABLE whether the vector processor is idle when the fault is

VAX Vector Architecture 10–33

VAX Vector Architecture
10.7 Synchronization

generated. After the appropriate fault has been serviced, the SYNC may be
returned to through an REI.

SYNC only affects the scalar/vector processor pair that executed it. It has no
effect on other processors in a multiprocessor system.

10.7.2 Scalar/Vector Memory Synchronization
Scalar/vector memory synchronization allows software to ensure that the memory
activity of the scalar/vector processor pair has ceased and the resultant memory
write operations have been made visible to each processor in the pair before
the pair’s scalar processor proceeds with the next instruction. Two ways are
provided to ensure scalar/vector memory synchronization: using MSYNC, which
is implemented by the MFVP instruction, and using the MFPR instruction to
read the VMAC (Vector Memory Activity Check) internal processor register (IPR).
Section 10.7.2.1 discusses MSYNC in detail. Section 10.7.2.2 discusses VMAC in
detail.

Scalar/vector memory synchronization does not mean that previously issued
vector memory instructions have completed; it only means that the vector and
scalar processors are no longer performing memory operations. While both VMAC
and MSYNC provide scalar/vector memory synchronization, MSYNC performs
significantly more than just that function. In addition, VMAC and MSYNC differ
in their exception behavior.

Note that scalar/vector memory synchronization only affects the scalar/vector
processor pair that executed it. It has no effect on other processors in a
multiprocessor system. Scalar/vector memory synchronization does not ensure
that the write operations made by one scalar/vector pair are visible to any other
scalar or vector processor. Software can make data visible and shared between a
scalar/vector pair and other scalar and vector processors by using the mechanisms
described in the VAX Architecture Reference Manual. Software must first make
a memory write operation by the vector processor visible to its associated scalar
processor through scalar/vector memory synchronization before making the write
operation visible to other processors. Without performing this scalar/vector
memory synchronization, it is UNPREDICTABLE whether the vector memory
write will be made visible to other processors even by the mechanisms described
in the VAX Architecture Reference Manual.

Lastly, waiting for VPSR<BSY> to be clear does not guarantee that a vector write
operation is visible to the scalar processor.

10.7.2.1 Memory Instruction Synchronization (MSYNC)
While MSYNC performs scalar/vector memory synchronization, it does more
than that. MSYNC allows software to ensure that all previously issued memory
instructions of the scalar/vector processor pair are complete and their results
made visible before the scalar processor proceeds with the next instruction.

MSYNC is implemented through the nonprivileged MFVP instruction. Arithmetic
and asynchronous memory management exceptions encountered by previous
vector instructions can cause MSYNC to fault.

Once it issues MSYNC, the scalar processor executes no further instructions until
MSYNC completes or faults.

MSYNC completes when the following events occur:

• All previously issued scalar and vector memory instructions have completed.

10–34 VAX Vector Architecture

VAX Vector Architecture
10.7 Synchronization

• All resultant memory write operations (scalar write operations and vector
store operations) have been made visible to both the scalar and vector
processor.

• No exception that should cause MSYNC to fault has occurred. (See the next
paragraph.)

MSYNC faults when any unreported exception has occurred in the production or
storage of any result (vector register element or vector control register bit) that
MSYNC depends upon. Such results include all elements loaded or stored by a
previously issued vector memory instruction as well as any element or control
register bit that these elements depend upon.

It is UNPREDICTABLE whether MSYNC faults due to exceptions that occur in
the production and storage of results (vector register elements and vector control
register bits) that MSYNC does not depend upon. Software should not rely on
such exceptions being reported by MSYNC for program correctness.

When MSYNC completes, a longword value (which is UNPREDICTABLE) is
returned to the scalar processor, which writes it to the scalar destination of the
MFVP. The scalar processor then proceeds to execute the next instruction. If
the scalar destination is in memory, it is UNPREDICTABLE whether the new
value of the destination becomes visible to the vector processor until another
scalar/vector memory synchronization instruction is performed.

When MSYNC faults, it is not ensured that all previously issued scalar and vector
memory instructions have finished. In this case, the scalar processor writes no
longword value to the scalar destination of the MFVP. Depending on the exception
encountered by the vector processor, the MSYNC takes a vector processor disabled
fault or memory management fault. Note that it is UNPREDICTABLE whether
the vector processor is idle when the fault is generated. After the fault has been
serviced, the MSYNC may be returned to through an REI.

Section 10.5.3.3 gives the necessary rules and examples to determine what vector
control register elements and vector control register bits MSYNC depends upon.

10.7.2.2 Memory Activity Completion Synchronization (VMAC)
Privileged software needs a way to ensure scalar/vector memory synchronization
that will not result in any exceptions being reported. Reading the VMAC internal
processor register (IPR) with the privileged MFPR instruction is provided for
these situations. It is especially useful for context switching.

Once a MFPR from VMAC is issued by the scalar processor, the scalar processor
executes no further instructions until VMAC completes, which it does when the
following events occur:

• All vector and scalar memory activities have ceased.

• All resultant memory write operations have been made visible to both the
scalar and vector processor.

• A longword value (which is UNPREDICTABLE) is returned to the scalar
processor.

After writing the longword value to the scalar destination of the MFPR, the
scalar processor then proceeds to execute the next instruction. If the scalar
destination is in memory, it is UNPREDICTABLE whether the new value of the
destination becomes visible to the vector processor until another scalar/vector
memory synchronization operation is performed.

VAX Vector Architecture 10–35

VAX Vector Architecture
10.7 Synchronization

As stated in Section 10.7.2, Scalar/Vector Memory Synchronization, the ceasing of
vector and scalar memory activities does not mean that previously issued vector
memory instructions have completed. For example, consider a vector memory
instruction that has suspended execution due to an asynchronous memory
management exception or hardware error. Once it becomes suspended, the
instruction will write no further elements and its memory activity will cease.
As a result, a subsequently issued VMAC will complete as soon as those write
operations that were made by the memory instruction before it was suspended
are visible to both the scalar and vector processor. But, after the completion of
the VMAC, the memory instruction is not completed and remains suspended.

Vector arithmetic and memory management exceptions of previous vector
instructions never fault an MFPR-from-VMAC and never suspend its execution.

10.7.3 Other Synchronization Between the Scalar and Vector Processors
Synchronization between the scalar and vector processors also occurs in the
following situations:

• In the absence of pending vector arithmetic exceptions, reading a vector
control register using the MFVP instruction waits for all previous write
operations to that register to complete. In addition, the scalar processor must
wait for the MFVP result to be written before processing other instructions.
An MFVP instruction that reads a vector control register must fault if there
is any unreported exception that has occurred in the production of the value
of the control register.

• Writing to VTBIA or VSAR with MTPR causes the new state of the
changed vector IPR to affect the execution of all subsequently issued vector
instructions.

• Reading from VPSR with MFPR after writing to VPSR with MTPR causes
the new state of VPSR (and VAER if cleared by VPSR<RST>) to affect the
execution of subsequently issued vector instructions.

10.7.4 Memory Synchronization Within the Vector Processor (VSYNC)
The vector processor may concurrently execute a number of vector memory
instructions through the use of multiple load/store paths to memory. When it
is necessary to synchronize the accesses of multiple vector memory instructions
the MSYNC instruction can be used; however, there are cases for which this
instruction does more than is needed. If it is known that only synchronization
between the memory accesses of vector instructions is required, the VSYNC
instruction is more efficient.

VSYNC orders the conflicting memory accesses of vector-memory instructions
issued after VSYNC with those of vector-memory instructions issued before
VSYNC. Specifically, VSYNC forces the access of a memory location by any
subsequent vector-memory instruction to wait for (depend upon) the completion
of all prior conflicting accesses of that location by previous vector-memory
instructions.

VSYNC does not have any synchronizing effect between scalar and vector memory
access instructions. VSYNC also has no synchronizing effect between vector load
instructions because multiple load accesses cannot conflict. It also does not
ensure that previous vector memory management exceptions are reported to the
scalar processor.

10–36 VAX Vector Architecture

VAX Vector Architecture
10.7 Synchronization

10.7.5 Required Use of Memory Synchronization Instructions
Table 10–15 shows for all possible pairs of vector or scalar read and write
operations to a common memory location, whether one of the scalar/vector
memory synchronization instructions or the VSYNC instruction must be issued
after the first reference and before the second. Since the MSYNC instruction also
includes the VSYNC function, it can always be used instead of VSYNC.

In general, these rules apply to any sequence of instructions that access a
common memory location, no matter how many other vector or scalar instructions
are issued between the first instruction that accesses the common location and
the second instruction that accesses the same location. For example, the following
code sequence depicts a vector load followed by a scalar write operation to the
same memory location. Between these two instructions are other scalar/vector
instructions that do not access the common memory location. A scalar/vector
memory synchronization instruction (MSYNC or VMAC) must be executed
sometime after the vector read operation and before the scalar write operation to
the common location. (Here MSYNC is shown.)

VLDL A, #4, V0
.

other scalar/vector instructions
that do not access A

.
MSYNC Dst
MOVL R0, A

In most cases, MSYNC is the preferred method for ensuring scalar/vector memory
synchronization. However, there are special cases, usually encountered by an
operating system, when VMAC is more appropriate.

Cases when scalar/vector memory synchronization is required are as follows:

• After a vector instruction that stores to memory and before a peripheral
(I/O) data transfer of the stored location is initiated by an application
program. This ensures that the value stored will be transferred to the output
device. The application must ensure that this requirement is met by using
MSYNC. Using VMAC in this case is not sufficient because unlike MSYNC,
VMAC does not ensure that all previous vector memory instructions have
successfully completed.

• After a vector instruction that stores to memory and before the associated
scalar processor can execute a HALT instruction. This ensures that a read
operation or modify operation by another processor will access the updated
memory value. VMAC is the preferred method for this case.

• Before the vector processor state is saved as a result of power failure. A
read or modify operation of the same memory must read the updated value
(provided that the duration of the power failure does not exceed the maximum
nonvolatile period of the main memory). Also, software is responsible for
saving any pending vector processor exception status. VMAC is the preferred
method for this case.

• Before a context switch. Software is responsible for ensuring that the vector
processor has completed all its memory accesses before performing a context
switch. Software is also responsible for saving any pending vector processor
exception status. VMAC is the preferred method for this case.

VAX Vector Architecture 10–37

VAX Vector Architecture
10.7 Synchronization

The scalar/vector memory synchronization instructions are the only ones that
guarantee that the memory operations of the vector and scalar processors are
synchronized. Write operations to I/O space, changes in access mode, machine
checks, interprocessor interrupts, execution of a HALT, REI, or interlocked
instruction do not make the results of vector instructions that write to memory
visible to the scalar processor, I/O subsystem, or other processors. Execution of
a scalar/vector memory synchronization instruction must precede any of these
mechanisms to ensure synchronization of all system components.

10–38 VAX Vector Architecture

VAX Vector Architecture
10.7 Synchronization

Table 10–15 Possible Pairs of Read and Write Operations When Scalar/Vector
Memory Synchronization (M) or VSYNC (V) Is Required Between
Instructions That Reference the Same Memory Location

First Reference
Second Reference

Scalar
Scalar

Scalar
Vector

Vector
Scalar

Vector
Vector

Operation Sequence

Read, Read No1;2 No1 No1 No1

Read, Write No2 No3 M V5

Write, Read No2 M4 M V

Write, Write No2 M4 M V

1Scalar/vector memory synchronization or VSYNC is never required between two read accesses to a
memory location.
2Scalar/vector memory synchronization is never required between two accesses by the VAX scalar
processor to a memory location.
3The scalar read is synchronous and will have completed before a vector memory operation is issued.
4Although a scalar write operation is a synchronous instruction, scalar/vector memory synchronization
is required to ensure that the written data is visible to the vector processor before the vector memory
reference is executed.
5See Section 10.7.5.1 for the conditions when VSYNC is not required between a vector memory
read/write pair.

10.7.5.1 When VSYNC Is Not Required
There exist conditions when VSYNC is not required between conflicting vector
memory accesses. A VSYNC is not required before a vector memory store
instruction (VST/VSCAT) if, for each memory location to be accessed by the
store, both of the following conditions are met:

• Each of the store’s accesses to the location does not conflict with any access to
the location by previously issued vector store instructions. Conflict is avoided
in this case because one of the following events occurred:

The location is not shared.

All accesses to the location by previous store instructions were forced to
complete by the issue of an MSYNC or VMAC.

• Each of the store’s accesses to the location does not conflict with any access
to the location by previously issued vector load (VLD/VGATH) instructions.
Conflict is avoided in this case because one of the following events occurred:

The location is not shared.

All accesses to the location by previous load instructions were forced to
complete by the issue of an MSYNC or VMAC.

Each of the store’s accesses to the location depends on the completion (as
seen by the vector processor) of all accesses to the location by previous
LOAD instructions. (The examples immediately following demonstrate
this concept.)

In all other cases of conflicting vector memory accesses, VSYNC is necessary to
ensure correct results.

Examples Where VSYNC Is Not Required
In the following examples, VSYNC is not required because both of the previous
conditions have been met for each location accessed by the store instruction:

VAX Vector Architecture 10–39

VAX Vector Architecture
10.7 Synchronization

1. VLDL A, #4, V0
VSTL V0, A, #4

2. VLDL A, #4, V0
VSSUBL R0, V0, V1
VSTL V1, A, #4

3. VLDL/0 A, #4 ,V0
VSMULL/0 #3, V0, V0
VLDL/1 A, #4 ,V1
VVMULL/1 V1, V1, V1
VVMERGE/1 V1, V0, V2
VSTL V2, A, #4

4. VLDL A, #4 ,V0
VSGTRF #0, V0
VLDL/1 B, #4, V1
VLDL/0 C, #4, V2
VVMERGE/0 V2, V1, V3
VSTL V3, A, #4

Examples Where VSYNC Is Required
In the following examples, VSYNC is required before the vector memory store
instruction:

1. VLDL/1 A,#4,V0
VSLSSL #0,V1
VSYNC
VSTL/1 V1,A,#4

If the VSYNC is not included, V0 could contain incorrect data at the end of
the sequence since the vector processor is allowed to begin the VSTL before
the VLDL is finished. This occurs because there is no dependence between
the VMR value used by the VLDL and the VSTL.

2. VLDL A, #4, V0
VVMERGE/0 V0, V1, V1
VSYNC
VSTL V1, A, #4

Unless the programmer can ensure that the VMR mask being used by the
VVMERGE will force the access of each location by the VSTL to depend on
the access to that location by the VLDL, a VSYNC is required. Note that in
general, when masked operations provide a conditional path of dependence
between conflicting memory accesses, a VSYNC is usually necessary to ensure
correct results.

10–40 VAX Vector Architecture

VAX Vector Architecture
10.7 Synchronization

3. VSTL V1, A, #4
MTVLR #32
VSYNC
VLDL A+128, #4, V2

In this example, the VSTL writes locations A to A+255 and the VLDL reads
locations A+128 to A+255. Without the VSYNC, the vector processor is
allowed to start reading locations A+128 to A+255 for the VLDL before the
vector processor completes (or even starts) writing locations A+128 to A+255
for the VSTL. Consequently, V2[0:31] will not contain V1[32:63], which is
the intended result. Note that the rules on when VSYNC is not required
(found in Section 10.7.5.1) only apply to waiving the use of VSYNC prior to
VST/VSCAT instructions.

4. VGATHL A, V2, V0 ; let at least two elements
; of V2 be equal

VVMULL V9, V0, V1
VSYNC
VSCATL V1, A, V2

The VSYNC is needed in this example because the VSCATL may store
elements of V1 into a common location before the VGATHL has finished
loading that location into all the appropriate elements of V0. As a result,
elements of V0 fetched from the same location may be unequal. Suppose in
the example that V2[0] = V2[63] = 0 and that the original value of location A
before the sequence starts is X. Then it is possible without the VSYNC that
V0[63] = X*V9[0] and that (A)= V1[63] = V9[63]*V9[0]*X after the sequence
completes.

5. VLDL A, #0, V0
VVMULL V9, V0, V1
VSYNC
VSTL V1, A, #0

The VSYNC is needed in this example because the VSTL may store elements
of V1 into A before the VLDL has finished loading all elements of V0 from
A. As a result, the elements of V0 may be unequal and so produce incorrect
results.

10.8 Memory Management
The vector processor may include its own translation buffer and maintain its own
copies of SBR, SLR, SPTEP, P0BR, P0LR, P1BR, and P1LR as a group, or may
use the scalar processor’s memory management unit. Hardware implementations
must ensure that MTPR to these registers update the copy retained by the vector
processor. Changes to P0BR, P0LR, P1BR, and P1LR due to a LDPCTX do not
update the copies in the vector processor. Before software enables the vector
processor again, explicit MTPRs to P0BR, P0LR, P1BR, and P1LR are required to
guarantee correct operation.

An MTPR to TBIS must also invalidate the corresponding TB entry in the vector
processor, and an MTPR to TBIA must also invalidate the entire TB in the vector
processor. However, the vector TB is not invalidated by a LDPCTX instruction.
Software can use an MTPR to the Vector TB Invalidate All (VTBIA) register to
invalidate only the vector TB. An MTPR to VTBIA results in no operation on a
processor that uses a common TB for the scalar and vector processors.

VAX Vector Architecture 10–41

VAX Vector Architecture
10.8 Memory Management

Updates to memory management registers and invalidates of translation buffer
entries in the vector processor take place even when the vector processor
is disabled (VPSR<VEN> is clear). However, the vector processor may load
translation buffer entries only when the vector processor is executing a vector
memory access instruction.

The vector processor implements the modify-fault option if its scalar processor
implements the virtual-machine option.

Vector memory access instructions must not be used to read or write page
tables. If a vector instruction is used to read or write page tables, the results are
UNPREDICTABLE.

Vector instructions are not allowed to reference I/O space. If a vector instruction
references I/O space, the results are UNPREDICTABLE.

Issuing vector instructions with memory management disabled causes the
operation of the vector processor to be UNDEFINED. Disabling memory
management when the vector processor is busy (VPSR<BSY> is set) also causes
the operation of the vector processor to be UNDEFINED.

10.9 Hardware Errors
A vector processor implementation may experience error conditions (such as chip
malfunctions, parity errors, or bus errors) that prevent it from executing and
completing instructions and from which it cannot recover through its own means.
Such errors are termed hardware errors and may occur at anytime, even when
the vector processor is already disabled. Vector processor hardware errors do not
normally halt the scalar processor.

At some point after the error condition occurs, the vector processor reports the
error to the scalar processor. The reporting may be accomplished through a
machine check; or by disabling the vector processor, setting VPSR<IMP>, and
generating a vector processor disabled fault when the next vector instruction
is issued. After the error is reported, the appropriate software handler will be
invoked to diagnose the vector processor and to determine the severity of the
hardware error and whether the vector processor can be restarted.

During execution, software may wish to force the reporting of hardware errors
encountered by previous vector instructions before issuing further ones. This can
be accomplished by reading the VMAC internal processor register (IPR) and by
waiting for VPSR<BSY> to become clear.

An MFPR from VMAC ensures that all pending vector memory instructions have
finished or are suspended by an asynchronous memory management exception,
and that all vector-processor hardware errors encountered by these instructions
are reported by the time the MFPR completes. Errors are handled as follows:

• If the errors are reported by machine check, then the exception is taken
either upon the VMAC itself, or upon the instruction immediately following
the VMAC.

• If the errors are reported through VPSR<IMP>, the vector processor sets
VPSR<IMP> and disables itself by the time the scalar processor completes
VMAC. Subsequently, a vector processor disabled fault will occur when the
next vector instruction is issued. A read of VPSR immediately after the
VMAC completes will find the vector processor disabled and VPSR<IMP> set.

10–42 VAX Vector Architecture

VAX Vector Architecture
10.9 Hardware Errors

Waiting for VPSR<BSY> to become clear before issuing further instructions
ensures that all previous non-memory-access instructions have been finished or
are suspended by an asynchronous memory management exception, and that all
vector-processor hardware errors encountered by these instructions are reported
by the time VPSR<BSY> becomes clear. Errors are handled as follows:

• If the errors are reported by machine check, then the exception is taken
either upon the first instruction during which the new state of VPSR<BSY>
becomes visible to the scalar processor or upon the instruction immediately
thereafter.

• If the errors are reported through VPSR<IMP>, the vector processor
sets VPSR<IMP> and disables itself by the time it clears VPSR<BSY>.
Subsequently, a vector processor disabled fault will occur when the next vector
instruction is issued. The first MFPR instruction that reads VPSR<BSY> as
clear will also read VPSR<VEN> as clear and VPSR<IMP> as set.

VMAC does not ensure that hardware errors encountered by pending non-
memory-access instructions will be reported. Waiting for VPSR<BSY> to become
clear does not ensure that vector-processor hardware errors encountered by vector
memory instructions are reported.

Software can force the reporting of hardware errors encountered during the
execution of previous vector instructions (both memory and non-memory) by
waiting for VPSR<BSY> to become clear and then by issuing an MFPR from
VMAC. This technique can be used during scalar context switching to cause
hardware errors resulting from the execution of vector instructions for the
current process to be reported before that process is context-switched.

10.10 Vector Memory Access Instructions
There are alignment, stride, address specifier context, and access mode
considerations for the vector memory access instructions.

10.10.1 Alignment Considerations
Vector memory access instructions require their vector operands to be naturally
aligned in memory. Longwords must be aligned on longword boundaries.
Quadwords must be aligned on quadword boundaries. If any vector element
is not naturally aligned in memory, an access control violation occurs. For further
details, see Section 10.6.1, Vector Memory Management Exception Handling.

The scalar operands need not be naturally aligned in memory.

10.10.2 Stride Considerations
A vector’s stride is defined as the number of memory locations (bytes) between
the starting address of consecutive vector elements. A contiguous vector that has
longword elements has a stride of four; a contiguous vector that has quadword
elements has a stride of eight.

10.10.3 Context of Address Specifiers
The base address specifier used by the vector memory access instructions is
of byte context, regardless of the data type. Arrays are addressed as byte
strings. Index values in array specifiers are multiplied by one, and the amount of
autoincrement or autodecrement, when either of these modes is used, is one.

VAX Vector Architecture 10–43

VAX Vector Architecture
10.10 Vector Memory Access Instructions

10.10.4 Access Mode
A vector memory access instruction is executed using the access mode in effect
when the instruction is issued by the scalar processor.

10.10.5 Memory Instructions
This section describes VAX vector architecture memory instructions.

10–44 VAX Vector Architecture

VAX Instruction Set
VLD

VLD

Load Memory Data into Vector Register

Format

VLDL [/M[0 | 1]] base, stride, Vc

VLDQ [/M[0 | 1]] base, stride, Vc

Architecture

Format
opcode cntrl.rw, base.ab, stride.rl

Opcodes

34FD VLDL Load Longword Vector from Memory to Vector Register
36FD VLDQ Load Quadword Vector from Memory to Vector Register

Vector Control Word

ZK−1457A−GE

0 0 Vc0
M
O
E

M
T
F

M
I

15 14 13 12 11 8 7 4 3 0

Exceptions

access control violation
translation not valid
vector alignment

Description

The source operand vector is fetched from memory and is written to vector
destination register Vc. The length of the vector is specified by VLR. The
virtual address of the source vector is computed using the base address and
the stride. The address of element i (0 LEQU i LEQU (VLR-1)) is computed as
{base+{i*stride}}. The stride can be positive, negative, or zero.

In VLDL, bits <31:0> of each destination vector element receive the memory data
and bits <63:32> are UNPREDICTABLE.

If any vector element operated upon is not naturally aligned in memory, a vector
alignment exception occurs.

The results of VLD are unaffected by the setting of cntrl<MI>. For more details
about the use of cntrl<MI>, see Section 10.3.3, Modify Intent bit.

If the addressing mode of the BASE operand is immediate, the results of the
instruction are UNPREDICTABLE.

VAX Vector Architecture 10–45

VAX Instruction Set
VLD

An implementation may load the elements of the vector in any order, and more
than once. When a vector processor memory management exception occurs, the
contents of the destination vector elements are UNPREDICTABLE.

10–46 VAX Vector Architecture

VAX Instruction Set
VGATH

VGATH

Gather Memory Data into Vector Register

Format

VGATHL [/M[0 | 1]] base, Vb, Vc

VGATHQ [/M[0 | 1]] base, Vb, Vc

Architecture

Format
opcode cntrl.rw, base.ab

Opcodes

35FD VGATHL Gather Longword Vector from Memory to Vector
Register

37FD VGATHQ Gather Quadword Vector from Memory to Vector
Register

vector_control_word

ZK−1458A−GE

0 Vb Vc0
M
O
E

M
T
F

M
I

15 14 13 12 11 8 7 4 3 0

Exceptions

access control violation
translation not valid
vector alignment

Description

The source operand vector is fetched from memory and is written to vector
destination register Vc. The length of the vector is specified by VLR. The virtual
address of the vector is computed using the base address and the 32-bit offsets
in vector register Vb. The address of element i (0 LEQU i LEQU (VLR-1)) is
computed as {base+Vb[i]}. The 32-bit offset can be positive, negative, or zero.

In VGATHL, bits <31:0> of each destination vector element receive the memory
data and bits <63:32> are UNPREDICTABLE.

If any vector element operated upon is not naturally aligned in memory, a vector
alignment exception occurs.

The results of VGATH are unaffected by the setting of cntrl<MI>. For more
details about the use of cntrl<MI>, see Section 10.3.3, Modify Intent bit.

If the addressing mode of the BASE operand is immediate, the results of the
instruction are UNPREDICTABLE.

VAX Vector Architecture 10–47

VAX Instruction Set
VGATH

An implementation may load the elements of the vector in any order, and more
than once. When a vector processor memory management exception occurs, the
contents of the destination vector elements are UNPREDICTABLE.

If the same vector register is used as both source and destination, the result of
the VGATH is UNPREDICTABLE.

10–48 VAX Vector Architecture

VAX Instruction Set
VST

VST

Store Vector Register Data into Memory

Format

VSTL [/0 | 1] Vc, base, stride

VSTQ [/0 | 1] Vc, base, stride

Architecture

Format
opcode cntrl.rw, base.ab, stride.rl

Opcodes

9CFD VSTL Store Longword Vector from Vector Register to Memory
9EFD VSTQ Store Quadword Vector from Vector Register to Memory

vector_control_word

ZK−1459A−GE

0 Vc0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

0 0

Exceptions

access control violation
translation not valid
vector alignment
modify

Description

The source operand in vector register Vc is written to memory. The length of the
vector is specified by the Vector Length Register (VLR). The virtual address of
the destination vector is computed using the base address and the stride. The
address of element i (0 LEQU i LEQU (VLR-1)) is computed as {base+{i*stride}}.
The stride can be positive, negative, or zero.

If any vector element operated upon is not naturally aligned in memory, a vector
alignment exception occurs.

For a nonzero stride value, an implementation may store the vector elements
in parallel; therefore the order in which these elements are stored is
UNPREDICTABLE. Furthermore, if the nonzero stride causes result locations in
memory to overlap, then the values stored in the overlapping result locations are
also UNPREDICTABLE.

For a stride value of zero, the highest numbered register element destined for the
single memory location becomes the final value of that location.

VAX Vector Architecture 10–49

VAX Instruction Set
VST

When a vector processor memory management exception occurs, it is
UNPREDICTABLE whether the vector processor writes any result location
for which an exception did not occur. If the fault condition can be eliminated by
software and the instruction restarted, then the vector processor will ensure that
all destination locations are written.

If the destination vector overlaps the vector instruction control word, base, or
stride operand, the result of the instruction is UNPREDICTABLE.

If the addressing mode of the BASE operand is immediate, the results of the
instruction are UNPREDICTABLE.

10–50 VAX Vector Architecture

VAX Instruction Set
VSCAT

VSCAT

Scatter Vector Register Data into Memory

Format

VSCATL [/0 | 1] Vc, base, Vb

VSCATQ [/0 | 1] Vc, base, Vb

Architecture

Format
opcode cntrl.rw, base.ab

Opcodes

9DFD VSCATL Scatter Longword Vector from Vector Register to
Memory

9FFD VSCATQ Scatter Quadword Vector from Vector Register to
Memory

vector_control_word

ZK−1460A−GE

0 Vc0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

0 Vb

Exceptions

access control violation
translation not valid
vector alignment
modify

Description

The source vector operand Vc is written to memory. The length of the vector is
specified by the Vector Length Register (VLR) register. The virtual address of
the destination vector is computed using the base address operand and the 32-bit
offsets in vector register Vb. The address of element i (0 LEQU i LEQU (VLR-1))
is computed as {base+Vb[i]}. The 32-bit offset can be positive, negative, or zero.

If any vector element operated upon is not naturally aligned in memory, a vector
alignment exception occurs.

An implementation may store the vector elements in parallel; therefore, the order
in which elements are stored to different memory locations is UNPREDICTABLE.
In the case where multiple elements are destined for the same memory location,
the highest numbered element among them becomes the final value of that
location.

VAX Vector Architecture 10–51

VAX Instruction Set
VSCAT

When a vector processor memory management exception occurs, it is
UNPREDICTABLE whether the vector processor writes any result location
for which an exception did not occur. If the fault condition can be eliminated by
software and the instruction restarted, then the vector processor will ensure that
all destination locations are written.

If the destination vector overlaps the vector instruction control word or base
operand, the result of the instruction is UNPREDICTABLE.

If the addressing mode of the BASE operand is immediate, the results of the
instruction are UNPREDICTABLE.

10.11 Vector Integer Instructions

This section describes VAX vector architecture integer instructions.

10–52 VAX Vector Architecture

VAX Instruction Set
VADDL

VADDL

Vector Integer Add

Format

vector + vector:

VVADDL [/0 | 1] Va, Vb, Vc

scalar + vector:

VSADDL [/0 | 1] scalar, Vb, Vc

Architecture

Format
vector + vector: opcode cntrl.rw

scalar + vector: opcode cntrl.rw, addend.rl

Opcodes

80FD VVADDL Vector Vector Add Longword
81FD VSADDL Vector Scalar Add Longword

vector_control_word

ZK−1461A−GE

Vc0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

E
X
C

Exceptions

integer overflow

Description

The scalar addend or Va operand is added, elementwise, to vector register Vb and
the 32-bit sum is written to vector register Vc. Only bits <31:0> of each vector
element participate in the operation. Bits <63:32> of the elements of vector
register Vc are UNPREDICTABLE. The length of the vector is specified by the
Vector Length Register (VLR).

If integer overflow is detected and cntrl<EXC> is set, the exception type and
destination register number are recorded in the Vector Arithmetic Exception
Register (VAER) and the vector operation is allowed to complete. On integer
overflow, the low-order 32 bits of the true result are stored in the destination
element.

VAX Vector Architecture 10–53

VAX Instruction Set
VCMPL

VCMPL

Vector Integer Compare

Format

vector–vector:8>>>>><
>>>>>:

VVGTRL
VVEQLL
VVLSSL
VVLEQL
VVNEQL
VVGEQL

9>>>>>=
>>>>>;

[/0 | 1] Va, Vb

scalar–vector:8>>>>><
>>>>>:

VSGTRL
VSEQLL
VSLSSL
VSLEQL
VSNEQL
VSGEQL

9>>>>>=
>>>>>;

[/0 | 1] src, Vb

Architecture

Format
vector–vector: opcode cntrl.rw

scalar–vector: opcode cntrl.rw, src.rl

Opcodes

C0FD VVCMPL Vector Vector Compare Longword
C1FD VSCMPL Vector Scalar Compare Longword

vector_control_word

ZK−1462A−GE

0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

cmp
func0

10–54 VAX Vector Architecture

VAX Instruction Set
VCMPL

The condition being tested is determined by cntrl<2:0>, as follows:

Value of cntrl<2:0> Meaning

0 Greater than
1 Equal
2 Less than
3 Reserved1

4 Less than or equal
5 Not equal
6 Greater than or equal
7 Reserved1

1Vector integer compare instructions that specify reserved values of cntrl<2:0> produce
UNPREDICTABLE results.

Description

The scalar or Va operand is compared, elementwise, with vector register Vb. The
length of the vector is specified by the Vector Length Register (VLR). For each
element comparison, if the specified relationship is true, the Vector Mask Register
bit (VMR<i>) corresponding to the vector element is set to one; otherwise, it
is cleared. If cntrl<MOE> is set, VMR bits corresponding to elements that do
not match cntrl<MTF> are left unchanged. VMR bits beyond the vector length
are left unchanged. Only bits <31:0> of each vector element participate in the
operation.

VAX Vector Architecture 10–55

VAX Instruction Set
VMULL

VMULL

Vector Integer Multiply

Format

vector * vector:

VVMULL [/V[0 | 1]] Va, Vb, Vc

scalar * vector:

VSMULL [/V[0 | 1]] scalar, Vb, Vc

Architecture

Format
vector * vector: opcode cntrl.rw

scalar * vector: opcode cntrl.rw, mulr.rl

Opcodes

A0FD VVMULL Vector Vector Multiply Longword
A1FD VSMULL Vector Scalar Multiply Longword

vector_control_word

ZK−1463A−GE

0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

0 Vc

Exceptions

integer overflow

Description

The scalar multiplier or vector operand Va is multiplied, elementwise, by vector
operand Vb and the least significant 32 bits of the signed 64-bit product
are written to vector register Vc. Only bits <31:0> of each vector element
participate in the operation. Bits <63:32> of the elements of vector register Vc
are UNPREDICTABLE. The length of the vector is specified by the Vector Length
Register (VLR).

10–56 VAX Vector Architecture

VAX Instruction Set
VMULL

If integer overflow is detected and cntrl<EXC> is set, the exception condition type
and destination register number are recorded in the Vector Arithmetic Exception
Register (VAER) and the vector operation is allowed to complete. On integer
overflow, the low-order 32 bits of the true result are stored in the destination
element.

VAX Vector Architecture 10–57

VAX Instruction Set
VSUBL

VSUBL

Vector Integer Subtract

Format

vector–vector:

VVSUBL [/V[0 | 1]] Va, Vb, Vc

scalar–vector:

VSSUBL [/V[0 | 1]] scalar, Vb, Vc

Architecture

Format
vector–vector: opcode cntrl.rw

scalar–vector: opcode cntrl.rw, min.rl

Opcodes

88FD VVSUBL Vector Vector Subtract Longword
89FD VSSUBL Vector Scalar Subtract Longword

vector_control_word

ZK−1461A−GE

Vc0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

E
X
C

Exceptions

integer overflow

Description

The vector operand Vb is subtracted, elementwise, from the scalar minuend or
vector operand Va. The 32-bit difference is written to vector register Vc. Only
bits <31:0> of each vector element participate in the operation. Bits <63:32>
of the elements of vector register Vc are UNPREDICTABLE. The length of the
vector is specified by the Vector Length Register (VLR).

If integer overflow is detected and cntrl<EXC> is set, the exception condition type
and destination register number are recorded in the Vector Arithmetic Exception
Register (VAER) and the vector operation is allowed to complete. On integer
overflow, the low-order 32 bits of the true result are stored in the destination
element.

10–58 VAX Vector Architecture

VAX Instruction Set
10.12 Vector Logical and Shift Instructions

10.12 Vector Logical and Shift Instructions

This section describes VAX vector architecture logical and shift instructions.

VAX Vector Architecture 10–59

VAX Instruction Set
VBIC, VBIS, and VXOR

VBIC, VBIS, and VXOR

Vector Logical Functions

Format

vector op vector:(
VVBISL
VVXORL
VVBICL

)
[/V[0 | 1]] Va, Vb, Vc

vector op scalar:(
VSBISL
VSXORL
VSBICL

)
[/V[0 | 1]] scalar, Vb, Vc

Architecture

Format
vector op vector: opcode cntrl.rw

vector op scalar: opcode cntrl.rw, src.rl

Opcodes

C8FD VVBISL Vector Vector Bit Set Longword
E8FD VVXORL Vector Vector Exclusive-OR Longword
CCFD VVBICL Vector Vector Bit Clear Longword
C9FD VSBISL Vector Scalar Bit Set Longword
E9FD VSXORL Vector Scalar Exclusive-OR Longword
CDFD VSBICL Vector Scalar Bit Clear Longword

vector_control_word

ZK−1463A−GE

0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

0 Vc

Exceptions

None.

10–60 VAX Vector Architecture

VAX Instruction Set
VBIC, VBIS, and VXOR

Description

The scalar src or vector operand Va is combined, elementwise, using the
specified Boolean function, with vector register Vb and the result is written
to vector register Vc. Only bits <31:0> of each vector element participate in the
operation. Bits <63:32> of the elements of Vb are written into bits <63:32> of the
corresponding elements of Vc. The length of the vector is specified by the Vector
Length Register (VLR).

VAX Vector Architecture 10–61

VAX Instruction Set
VSL

VSL

Vector Shift Logical

Format

vector shift count:n
VVSRLL
VVSLLL

o
[/V[0 | 1]] Va, Vb, Vc

scalar shift count:n
VSSRLL
VSSLLL

o
[/V[0 | 1]] cnt, Vb, Vc

Architecture

Format
vector shift count: opcode cntrl.rw

scalar shift count: opcode cntrl.rw, cnt.rl

Opcodes

E0FD VVSRLL Vector Vector Shift Right Logical Longword
E4FD VVSLLL Vector Vector Shift Left Logical Longword
E1FD VSSRLL Vector Scalar Shift Right Logical Longword
E5FD VSSLLL Vector Scalar Shift Left Logical Longword

vector_control_word

ZK−1463A−GE

0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

0 Vc

Exceptions

None.

Description

Each element in vector register Vb is shifted logically left or right 0 to 31 bits
as specified by a scalar count operand or vector register Va. The shifted results
are written to vector register Vc. Zero bits are propagated into the vacated
bit positions. Only bits <4:0> of the count operand and bits <31:0> of each Vb
element participate in the operation. Bits <63:32> of the elements of vector
register Vc are UNPREDICTABLE. The length of the vector is specified by the
Vector Length Register (VLR).

10–62 VAX Vector Architecture

VAX Instruction Set
10.13 Vector Floating-Point Instructions

10.13 Vector Floating-Point Instructions

The VAX vector architecture provides instructions for operating on F_floating,
D_floating, and G_floating operand formats. The floating-point arithmetic
instructions are add, subtract, compare, multiply, and divide. Data conversion
instructions are provided to convert operands between D_floating, G_floating,
F_floating, and longword integer.

Rounding is performed using standard VAX rounding rules. The accuracy of
the vector floating-point instructions matches that of the scalar floating-point
instructions. Refer to the section on floating-point instructions in the VAX
Architecture Reference Manual for more information.

10.13.1 Vector Floating-Point Exception Conditions

All vector floating-point exception conditions occur asynchronously with respect
to the scalar processor. These exception conditions do not interrupt the scalar
processor. If the exception condition is enabled, then the exception condition type
and destination register number are recorded in the Vector Arithmetic Exception
Register (VAER), and a reserved operand in the format of the instruction’s data
type is written into the destination register element. Encoded in this reserved
operand is the exception condition type. After recording the exception and writing
the appropriate result into the destination register element, the instruction
encountering the exception continues executing to completion.

If a vector convert floating to integer instruction encounters a source element
that is a reserved operand, an UNPREDICTABLE result rather than a reserved
operand is written into the destination register element.

Figure 10–13 shows the encoding of the reserved operand that is written for
vector floating-point exceptions. Consistent with the definition of a reserved
operand, the sign bit (bit <15>) is one and the exponent (bits <14:7> for F_
floating and D_floating, and bits <14:4> for G_floating) is zero. When the
reserved operand is written in F_floating or D_floating format, bits <6:4> are
also zero. The exception condition type (ETYPE) is encoded in bits <3:0>, as
shown in Table 10–16. If a reserved operand is divided by zero, both ETYPE
bits may be set. The state of all other bits in the result (denoted by shading) is
UNPREDICTABLE.

If the floating underflow exception condition is suppressed by cntrl<EXC>, a
zero result is written to the destination register element and no further action is
taken. Floating overflow, floating divide by zero, and floating reserved operand
are always enabled.

VAX Vector Architecture 10–63

VAX Instruction Set
10.13 Vector Floating-Point Instructions

Figure 10–13 Encoding of the Reserved Operand

ZK−1464A−GE

F_floatinga.

:Vc [i] <31:0>

31 16 15 14 7 6 4 3 0

1 0 0 ETYPE

G_floatingc.

:Vc [i] <31:0>

:Vc [i] <63:32>

31 16 15 14 4 3 0

1 0 ETYPE

D_floatingb.

:Vc [i] <31:0>

:Vc [i] <63:32>

31 16 15 14 7 6 4 3 0

1 0 0 ETYPE

Table 10–16 Encoding of the Exception Condition Type (ETYPE)

Bit Exception Condition Type

<0> Floating underflow
<1> Floating divide by zero
<2> Floating reserved operand
<3> Floating overflow

10.13.2 Floating-Point Instructions

This section describes VAX vector architecture floating-point instructions.

10–64 VAX Vector Architecture

VAX Instruction Set
VADD

VADD

Vector Floating Add

Format

vector + vector:(
VVADDF
VVADDD
VVADDG

)
[/U[0 | 1]] Va, Vb, Vc

scalar + vector:(
VSADDF
VSADDD
VSADDG

)
[/U[0 | 1]] scalar, Vb, Vc

Architecture

Format
vector + vector:

opcode cntrl.rw

scalar + vector (F_floating):

opcode cntrl.rw, addend.rl

scalar + vector (D_ and G_floating):

opcode cntrl.rw, addend.rq

Opcodes

84FD VVADDF Vector Vector Add F_Floating
85FD VSADDF Vector Scalar Add F_Floating
86FD VVADDD Vector Vector Add D_Floating
87FD VSADDD Vector Scalar Add D_Floating
82FD VVADDG Vector Vector Add G_Floating
83FD VSADDG Vector Scalar Add G_Floating

vector_control_word

ZK−1461A−GE

Vc0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

E
X
C

Exceptions

floating overflow
floating reserved operand
floating underflow

VAX Vector Architecture 10–65

VAX Instruction Set
VADD

Description

The source addend or vector operand Va is added, elementwise, to vector register
Vb and the sum is written to vector register Vc. The length of the vector is
specified by the Vector Length Register (VLR).

In VxADDF, only bits <31:0> of each vector element participate in the operation.
Bits <63:32> of the destination vector elements are UNPREDICTABLE.

If a floating underflow occurs when cntrl<EXC> is set or if a floating overflow
or floating reserved operand occurs, an encoded reserved operand is stored as
the result and the exception condition type and destination register number
are recorded in the Vector Arithmetic Exception Register (VAER). The vector
operation is then allowed to complete. If cntrl<EXC> is clear, zero is written to
the destination element when an exponent underflow occurs and no other action
is taken.

10–66 VAX Vector Architecture

VAX Instruction Set
VCMP

VCMP

Vector Floating Compare

Format

vector–vector:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

VVGTRF
VVGTRD
VVGTRG
VVEQLF
VVEQLD
VVEQLG
VVLSSF
VVLSSD
VVLSSG
VVLEQF
VVLEQD
VVLEQG
VVNEQF
VVNEQD
VVNEQG
VVGEQF
VVGEQD
VVGEQG

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

[/U[0 | 1]] Va, Vb

scalar–vector:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

VSGTRF
VSGTRD
VSGTRG
VSEQLF
VSEQLD
VSEQLG
VSLSSF
VSLSSD
VSLSSG
VSLEQF
VSLEQD
VSLEQG
VSNEQF
VSNEQD
VSNEQG
VSGEQF
VSGEQD
VSGEQG

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

[/U[0 | 1]] src, Vb

VAX Vector Architecture 10–67

VAX Instruction Set
VCMP

Architecture

Format
vector–vector:

opcode cntrl.rw

scalar–vector (F_floating):

opcode cntrl.rw, src.rl

scalar–vector (D_ and G_floating):

opcode cntrl.rw, src.rq

Opcodes

C4FD VVCMPF Vector Vector Compare F_floating
C5FD VSCMPF Vector Scalar Compare F_floating
C6FD VVCMPD Vector Vector Compare D_floating
C7FD VSCMPD Vector Scalar Compare D_floating
C2FD VVCMPG Vector Vector Compare G_floating
C3FD VSCMPG Vector Scalar Compare G_floating

vector_control_word

ZK−1462A−GE

0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

cmp
func0

The condition being tested is determined by cntrl<2:0>, as follows:

Value of cntrl<2:0> Meaning

0 Greater than
1 Equal
2 Less than
3 Reserved1

4 Less than or equal
5 Not equal
6 Greater than or equal
7 Reserved1

1Vector integer compare instructions that specify reserved values of cntrl<2:0> produce
UNPREDICTABLE results.

10–68 VAX Vector Architecture

VAX Instruction Set
VCMP

Note

Cntrl<3> should be zero; if it is set, the results of the instruction are
UNPREDICTABLE.

Exceptions

floating reserved operand

Description

The scalar or vector operand Va is compared, elementwise, with vector register
Vb. The length of the vector is specified by the Vector Length Register (VLR). For
each element comparison, if the specified relationship is true, the Vector Mask
Register bit (VMR<i>) corresponding to the vector element is set to one, otherwise
it is cleared. If cntrl<MOE> is set, VMR bits corresponding to elements that do
not match cntrl<MTF> are left unchanged. VMR bits beyond the vector length
are left unchanged. If an element being compared is a reserved operand, VMR<i>
is UNPREDICTABLE. In VxCMPF, only bits <31:0> of each vector element
participate in the operation.

If a floating reserved operand exception occurs, the exception condition type is
recorded in the Vector Arithmetic Exception Register (VAER) and the vector
operation is allowed to complete.

Note that for this instruction, no bits are set in the VAER destination register
mask when an exception occurs.

VAX Vector Architecture 10–69

VAX Instruction Set
VVCVT

VVCVT

Vector Convert

Format8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

VVCVTLF
VVCVTLD
VVCVTLG
VVCVTFL
VVCVTRFL
VVCVTFD
VVCVTFG
VVCVTDL
VVCVTDF
VVCVTRDL
VVCVTGL
VVCVTGF
VVCVTRGL

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

[/U[0 | 1]] Vb, Vc

Architecture

Format
opcode cntrl.rw

Opcodes

ECFD VVCVT Vector Convert

vector_control_word

ZK−1465A−GE

0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb Vccvt
func

E
X
C

Cntrl<11:8> specifies the conversion to be performed, as follows:

cntrl<11:8> Meaning

1 1 1 1 CVTRGL (Convert Rounded G_Floating to Longword)
1 1 1 0 Reserved1

1 1 0 1 CVTGF (Convert Rounded G_Floating to F_Floating)
1 1 0 0 CVTGL (Convert Truncated G_Floating to Longword)
1 0 1 1 Reserved1

1 0 1 0 CVTRD (Convert Rounded D_Floating to Longword)

1Vector convert instructions that specify reserved values of cntrl<11:8> produce UNPREDICTABLE
results.

10–70 VAX Vector Architecture

VAX Instruction Set
VVCVT

cntrl<11:8> Meaning

1 0 0 1 CVTDF (Convert Rounded D_Floating to F_Floating)
1 0 0 0 CVTDL (Convert Truncated D_Floating to Longword)
0 1 1 1 CVTFG (Convert F_Floating to G_Floating (exact))
0 1 1 0 CVTFD (Convert F_Floating to D_Floating (exact))
0 1 0 1 CVTRF (Convert Rounded F_Floating to Longword)
0 1 0 0 CVTFL (Convert Truncated F_Floating to Longword)
0 0 1 1 CVTLG (Convert Longword to G_Floating (exact))
0 0 1 0 CVTLD (Convert Longword to D_Floating (exact))
0 0 0 1 CVTLF (Convert Rounded Longword to F_Floating)
0 0 0 0 Reserved1

1Vector convert instructions that specify reserved values of cntrl<11:8> produce UNPREDICTABLE
results.

Exceptions

floating overflow
floating reserved operand
floating underflow
integer overflow

Description

The vector elements in vector register Vb are converted and results are written
to vector register Vc. Cntrl<11:8> specifies the conversion to be performed.
The length of the vector is specified by the Vector Length Register (VLR). Bits
<63:32> of Vc are UNPREDICTABLE for instructions that convert from D_
floating or G_floating to F_floating or longword. When CVTRGL, CVTRDL, and
CVTRFL round, the rounding is done in sign magnitude, before conversion to
two’s complement.

If an integer overflow occurs when cntrl<EXC> is set, the low-order 32 bits of
the true result are written to the destination element as the result, and the
exception condition type and destination register number are recorded in the
Vector Arithmetic Exception Register (VAER). The vector operation is then
allowed to complete. If integer overflow occurs when cntrl<EXC> is clear, the
low-order 32 bits of the true result are written to the destination element, and no
other action is taken.

For vector convert floating to integer, where the source element is a reserved
operand, the value written to the destination element is UNPREDICTABLE. In
addition, the exception type and destination register number are recorded in the
VAER. The vector operation is then allowed to complete.

For vector convert floating to floating instructions, if floating underflow occurs
when cntrl<EXC> is clear, zero is written to the destination element, and no
other action is taken. The vector operation is then allowed to complete.

For vector convert floating to floating instructions, if floating underflow occurs
with cntrl<EXC> set or if a floating overflow or reserved operand occurs, an
encoded reserved operand is written to the destination element, and the exception
condition type and destination register number are recorded in the VAER. The
vector operation is then allowed to complete.

VAX Vector Architecture 10–71

VAX Instruction Set
VDIV

VDIV

Vector Floating Divide

Format

vector/vector:(
VVDIVF
VVDIVD
VVDIVG

)
[/U[0 | 1]] Va, Vb, Vc

scalar/vector:(
VSDIVF
VSDIVD
VSDIVG

)
[/U[0 | 1]] scalar, Vb, Vc

Architecture

Format
vector/vector:

opcode cntrl.rw

scalar/vector (F_floating):

opcode cntrl.rw, divd.rl

scalar/vector (D_ and G_floating):

opcode cntrl.rw, divd.rq

Opcodes

ACFD VVDIVF Vector Vector Divide F_floating
ADFD VSDIVF Vector Scalar Divide F_floating
AEFD VVDIVD Vector Vector Divide D_floating
AFFD VSDIVD Vector Scalar Divide D_floating
AAFD VVDIVG Vector Vector Divide G_floating
ABFD VSDIVG Vector Scalar Divide G_floating

vector_control_word

ZK−1461A−GE

Vc0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

E
X
C

Exceptions

floating divide by zero
floating overflow
floating reserved operand

10–72 VAX Vector Architecture

VAX Instruction Set
VDIV

floating underflow

Description

The scalar dividend or vector register Va is divided, elementwise, by the divisor
in vector register Vb and the quotient is written to vector register Vc. The length
of the vector is specified by the Vector Length Register (VLR).

In VxDIVF, only bits <31:0> of each vector element participate in the operation;
bits <63:32> of the destination vector elements are UNPREDICTABLE.

If a floating underflow occurs when cntrl<EXC> is set or if a floating overflow,
divide by zero, or reserved operand occurs, an encoded reserved operand is stored
as the result and the exception condition type and destination register number
are recorded in the Vector Arithmetic Exception Register (VAER). The vector
operation is then allowed to complete. If cntrl<EXC> is clear, zero is written to
the destination element when an exponent underflow occurs and no other action
is taken.

VAX Vector Architecture 10–73

VAX Instruction Set
VMUL

VMUL

Vector Floating Multiply

Format

vector * vector:
VVMULF
VVMULD
VVMULG

[/U[0 | 1]] Va, Vb, Vc

scalar * vector:(
VSMULF
VSMULD
VSMULG

)
[/U[0 | 1]] scalar, Vb, Vc

Architecture

Format
vector * vector:

opcode cntrl.rw

scalar * vector (F_floating):

opcode cntrl.rw, mulr.rl

scalar * vector (D_ and G_floating):

opcode cntrl.rw, mulr.rq

Opcodes

A4FD VVMULF Vector Vector Multiply F_floating
A5FD VSMULF Vector Scalar Multiply F_floating
A6FD VVMULD Vector Vector Multiply F_floating
A7FD VSMULD Vector Scalar Multiply D_floating
A2FD VVMULG Vector Vector Multiply G_floating
A3FD VSMULG Vector Scalar Multiply G_floating

vector_control_word

ZK−1461A−GE

Vc0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

E
X
C

Exceptions

floating overflow
floating reserved operand
floating underflow

10–74 VAX Vector Architecture

VAX Instruction Set
VMUL

Description

The multiplicand in vector register Vb is multiplied, elementwise, by the scalar
multiplier or vector operand Va and the product is written to vector register Vc.
The length of the vector is specified by the Vector Length Register (VLR).

In VxMULF, only bits <31:0> of each vector element participate in the operation.
Bits <63:32> of the destination vector elements are UNPREDICTABLE.

If a floating underflow occurs when cntrl<EXC> is set or if a floating overflow
or reserved operand occurs, an encoded reserved operand is stored as the result
and the exception condition type and destination register number are recorded
in the Vector Arithmetic Exception Register (VAER). The vector operation is then
allowed to complete. If cntrl<EXC> is clear, zero is written to the destination
element when an exponent underflow occurs and no other action is taken.

VAX Vector Architecture 10–75

VAX Instruction Set
VSUB

VSUB

Vector Floating Subtract

Format

vector–vector:(
VSUBF
VVSUBD
VVSUBG

)
[/U[0 | 1]] Va, Vb, Vc

scalar–vector:(
VSSUBF
VSSUBD
VSSUBG

)
[/U[0 | 1]] scalar, Vb, Vc

Architecture

Format
vector–vector:

opcode cntrl.rw

scalar–vector (F_floating):

opcode cntrl.rw, min.rl

scalar–vector (D_ and G_floating):

opcode cntrl.rw, min.rq

Opcodes

8CFD VVSUBF Vector Vector Subtract F_floating
8DFD VSSUBF Vector Scalar Subtract F_floating
8EFD VVSUBD Vector Vector Subtract D_floating
8FFD VSSUBD Vector Scalar Subtract D_floating
8AFD VVSUBG Vector Vector Subtract G_floating
8BFD VSSUBG Vector Scalar Subtract G_floating

vector_control_word

ZK−1461A−GE

Vc0
M
O
E

M
T
F

15 14 13 12 11 8 7 4 3 0

Vb
Va
or
0

E
X
C

Exceptions

floating overflow
floating reserved operand
floating underflow

10–76 VAX Vector Architecture

VAX Instruction Set
VSUB

Description

Vector register Vb is subtracted, elementwise, from the scalar minuend or vector
register Va and the difference is written to vector register Vc. The length of the
vector is specified by the Vector Length Register (VLR).

In VxSUBF, only bits <31:0> of each vector element participate in the operation;
bits <63:32> of the destination vector elements are UNPREDICTABLE.

If a floating underflow occurs when cntrl<EXC> is set or if a floating overflow
or reserved operand occurs, an encoded reserved operand is stored as the result
and the exception condition type and destination register number are recorded
in the Vector Arithmetic Exception Register (VAER). The vector operation is then
allowed to complete. If cntrl<EXC> is clear, zero is written to the destination
element when an exponent underflow occurs and no other action is taken.

10.14 Vector Edit Instructions

This section describes VAX vector architecture edit instructions.

VAX Vector Architecture 10–77

VAX Instruction Set
VMERGE

VMERGE

Vector Merge

Format

vector vector merge:

VVMERGE [/0 | 1] Va, Vb, Vc

vector scalar merge:8><
>:

VSMERGE
VSMERGEF
VSMERGED
VSMERGEG

9>=
>; f [/0 | 1] src, Vb, Vc g

Architecture

Format
vector-vector: opcode cntrl.rw

vector-scalar: opcode cntrl.rw,src.rq

Opcodes

EEFD VVMERGE Vector Vector Merge
EFFD VSMERGE Vector Scalar Merge

vector_control_word

ZK−1466A−GE

0
M
T
F

15 14 13 12 11 8 7 4 3 0

Vb Vc
Va
or
0

00

Exceptions

None.

Description

The scalar src or vector operand Va is merged, elementwise, with vector register
Vb and the resulting vector is written to vector register Vc. The length of the
vector operation is specified by the Vector Length Register (VLR).

For each vector element, i, if the corresponding Vector Mask Register bit
(VMR<i>) matches cntrl<MTF>, src or Va[i] is written to the destination vector
element Vc[i]. If VMR<i> does not match cntrl<MTF>, Vb[i] is written to the
destination vector element.

10–78 VAX Vector Architecture

VAX Instruction Set
IOTA

IOTA

Generate Compressed Iota Vector

Format

IOTA [/0 | 1] stride, Vc

Architecture

Format
opcode cntrl.rw, stride.rl

Opcodes

EDFD IOTA Generate Compressed Iota Vector

vector_control_word

ZK−1467A−GE

0
M
T
F

15 14 13 12 11 8 7 4 3 0

0 Vc00 0

Exceptions

None.

Description

IOTA constructs a vector of offsets for use by the vector gather/scatter
instructions VGATH and VSCAT.

IOTA first generates an iota vector of length VLR using the stride operand. An
iota vector is a vector whose first element is zero and whose subsequent elements
are spaced by the stride increment. The stride can be positive, negative, or zero.
For example:

0*stride, 1*stride, 2*stride, 3*stride, ..., {VLR-1}*stride

The iota vector is then compressed using the contents of the Vector Mask Register
(VMR). Elements of the iota vector for which the corresponding Vector Mask
Register bit matches cntrl<MTF> are written in contiguous elements of the
destination vector register Vc. Only bits <31:0> of each iota and destination
vector element participate in the operation. Bits <63:32> of the destination vector
elements are UNPREDICTABLE.

The number of elements written to Vc is returned in the Vector Count Register
(VCR). The values of elements in the destination vector register between the new
value of VCR and the vector length are UNPREDICTABLE.

VAX Vector Architecture 10–79

VAX Instruction Set
IOTA

Note

If a large value is specified for the stride.rl operand, there is a chance for
integer overflow during calculation of the "tmp <- tmp + stride" step. In
this case, the overflow is ignored. For example:

tmp <- tmp + stride

Value of tmp before above step: FFFFFF00
Value of Stride: FFFFFF00

Value of tmp + stride: 1 FFFFFE00

Since the overflow is ignored, the new value of tmp
is FFFFFE00.

10.15 Miscellaneous Instructions

This section describes VAX vector architecture miscellaneous instructions.

10–80 VAX Vector Architecture

VAX Instruction Set
MFVP

MFVP

Move from Vector Processor

Format8>>>>><
>>>>>:

MFVCR
MFVLR
MFVMRLO
MFVMRHI
SYNCH
MSYNCH

9>>>>>=
>>>>>;

dst

Architecture

Format
opcode regnum.rw, dst.wl

Opcodes

31FD MFVP Move from Vector Processor

vector_control_word
None.

Exceptions

None.

MFVP instructions that specify reserved values of the regnum operand produce
UNPREDICTABLE results.

Description

This instruction can be used to read the Vector Count, Length, and Mask
Registers, and to synchronize a scalar processor with its associated vector
processor.

When the scalar processor issues an MFVP instruction to the vector processor,
the scalar processor waits for the MFVP result to be written before processing
other instructions.

MFVP from VCR or VLR does not read that register until all previous write
operations to the register are completed. MFVP from VMR<31:0> or VMR<63:32>
does not read that longword of VMR until all previous write operations to the
same longword of VMR are completed; however, this is not true for previous write
operations to the other longword.

SYNC allows software to ensure that the unreported exceptions of all previously
issued vector instructions (including vector memory instructions in asynchronous
memory management mode) are detected and reported to the scalar processor
before the scalar processor proceeds with further instructions. For more
details about SYNC and its exception reporting nature refer to Section 10.7.1,
Scalar/Vector Instruction Synchronization.

VAX Vector Architecture 10–81

VAX Instruction Set
MFVP

MSYNC allows software to ensure that all previously issued memory instructions
of the scalar/vector processor pair are complete before the scalar processor
proceeds with further instructions. For more details about MSYNC and
its exception reporting nature, refer to Section 10.7.2, Memory Instruction
Synchronization.

The value of the vector control register (VCR, VLR, VMR<31:0>, VMR<63:32>)
delivered by an MFVP depends upon the value of certain vector register
elements and vector control register bits. Unreported exceptions that occur
in the production of these elements and control register bits are reported by the
vector processor prior to the completion of the MFVP from the vector control
register.

In addition, there are vector register elements and vector control register bits
that the value of a vector control register delivered by an MFVP does not depend
upon. It is UNPREDICTABLE whether unreported exceptions that occur in
the production of these elements and control register bits are reported by the
vector processor prior to the completion of the MFVP from the vector control
register. Software must not rely upon the reporting of these exceptions prior to
the completion of the MFVP for the correctness of program results.

Section 10.5.3.3, Dependencies Among Vector Results, gives the necessary
rules to determine what vector control register elements and vector control
register bits the value of a vector control register delivered by an MFVP depends
upon. Examples of MFVP exception reporting using these rules are found in
Section 10.6.5.

When a vector arithmetic exception or memory management exception (in
asynchronous memory management mode) is reported prior to the completion of
an MFVP, the following occur:

• The operation of the MFVP does not complete.

• No longword result is written to the scalar destination of the MFVP by the
scalar processor.

• The MFVP itself (rather than the next vector instruction) takes either a
vector processor disabled fault or a memory management fault.

After the appropriate fault has been serviced, the MFVP may be returned to
through an REI. If both exception conditions are encountered by an MFVP,
then the MFVP itself takes a vector processor disabled fault. In this case, after
the vector processor disabled fault has been serviced, returning to the MFVP
instruction will cause the asynchronous memory management exception to be
reported.

10–82 VAX Vector Architecture

VAX Instruction Set
MTVP

MTVP

Move to Vector Processor

Format8><
>:

MTVCR
MTVLR
MTVMRLO
MTVMRHI

9>=
>; src

Architecture

Format
opcode regnum.rw, src.rl

Opcodes

A9FD MTVP Move to Vector Processor

vector_control_word
None.

Exceptions

None.

Move to Vector Processor instructions that specify reserved values of the regnum
operand produce UNPREDICTABLE results.

Description

This instruction can be used to write the Vector Count, Length, and Mask
Registers.

The new value of VCR, VLR, or VMR does not affect any prior instructions. The
new value remains in effect for all subsequent vector instructions executed until
a new value is loaded.

VAX Vector Architecture 10–83

VAX Instruction Set
VSYNC

VSYNC

Synchronize Vector Memory Access

Format

VSYNCH

Architecture

Format
opcode regnum.rw

Opcodes

A8FD VSYNC Synchronize Vector Memory Access

vector_control_word
None.

Exceptions

None.

Synchronize Vector Memory Access instructions that specify reserved values of
the regnum operand produce UNPREDICTABLE results.

Description

The VSYNC instruction can be used to synchronize memory access within the
vector processor. The instruction allows software to order the conflicting memory
accesses of vector-memory instructions issued after VSYNC with those of vector-
memory instructions issued before VSYNC. Specifically, VSYNC forces the access
of a memory location by any subsequent vector-memory instruction to wait for
(depend upon) the completion of all prior conflicting accesses of that location by
previous vector-memory instructions. See Section 10.7.1 for more details.

See Section 10.7.5, Required Use of Memory Synchronization Instructions, for the
conditions when VSYNC is not required before a vector store instruction.

10–84 VAX Vector Architecture

A
ASCII Character Set

Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII

0010 0016 NUL 3210 2016 SP 6410 4016 @ 9610 6016 ’

0110 0116 SOH 3310 2116 ! 6510 4116 A 9710 6116 a

0210 0216 STX 3410 2216 " 6610 4216 B 9810 6216 b

0310 0316 ETX 3510 2316 # 6710 4316 C 9910 6316 c

0410 0416 EOT 3610 2416 $ 6810 4416 D 10010 6416 d

0510 0516 ENQ 3710 2516 % 6910 4516 E 10110 6516 e

0610 0616 ACK 3810 2616 & 7010 4616 F 10210 6616 f

0710 0716 BEL 3910 2716 ’ 7110 4716 G 10310 6716 g

0810 0816 BS 4010 2816 (7210 4816 H 10410 6816 h

0910 0916 HT 4110 2916) 7310 4916 I 10510 6916 i

1010 0A16 LF 4210 2A16 * 7410 4A16 J 10610 6A16 j

1110 0B16 VT 4310 2B16 + 7510 4B16 K 10710 6B16 k

1210 0C16 FF 4410 2C16 , 7610 4C16 l 10810 6C16 l

1310 0D16 CR 4510 2D16 - 7710 4D16 M 10910 6D16 m

1410 0E16 SO 4610 2E16 . 7810 4E16 N 11010 6E16 n

1510 0F16 SI 4710 2F16 / 7910 4F16 O 11110 6F16 o

1610 1016 DLE 4810 3016 0 8010 5016 P 11210 7016 p

1710 1116 DC1 4910 3116 1 8110 5116 Q 11310 7116 q

1810 1216 DC2 5010 3216 2 8210 5216 R 11410 7216 r

1910 1316 DC3 5110 3316 3 8310 5316 S 11510 7316 s

2010 1416 DC4 5210 3416 4 8410 5416 T 11610 7416 t

2110 1516 NAK 5310 3516 5 8510 5516 U 11710 7516 u

2210 1616 SYN 5410 3616 6 8610 5616 V 11810 7616 v

2310 1716 ETB 5510 3716 7 8710 5716 W 11910 7716 w

2410 1816 CAN 5610 3816 8 8810 5816 X 12010 7816 x

2510 1916 EM 5710 3916 9 8910 5916 Y 12110 7916 y

2610 1A16 SUB 5810 3A16 : 9010 5A16 Z 12210 7A16 z

2710 1B16 ESC 5910 3B16 ; 9110 5B16 [12310 7B16 {

2810 1C16 FS 6010 3C16 < 9210 5C16 \ 12410 7C16 |

2910 1D16 GS 6110 3D16 = 9310 5D16] 12510 7D16 }

3010 1E16 RS 6210 3E16 > 9410 5E16 ^ 12610 7E16 ~

3110 1F16 US 6310 3F16 ? 9510 5F16 _ 12710 7F16 DEL

ASCII Character Set A–1

B
Hexadecimal/Decimal Conversion

The following table lists the decimal value for each possible hexadecimal value
in each byte of a longword. The following sections contain instructions to use
the table to convert hexadecimal numbers to decimal and decimal numbers to
hexadecimal.

4,026,531,840
3,758,096,384
3,489,660,928
3,221,225,472
2,952,790,016
2,684,354,560
2,415,919,104
2,147,483,648
1,879,048,192
1,610,612,736
1,342,177,280
1,073,741,824

805,306,368
536,870,912
268,435,456

251,658,240
234,881,024
218,103,808
201,326,592
184,549,376
167,772,160
150,994,944
134,217,728
117,440,512
100,663,296
83,886,080
67,108,864
50,331,648
33,554,432
16,777,216

15,728,640
14,680,064
13,631,488
12,582,912
11,534,336
10,485,760
9,437,184
8,388,608
7,340,032
6,291,456
5,242,880
4,194,304
3,145,728
2,097,152
1,048,576

61,440
57,344
53,248
49,152
45,056
40,960
36,864
32,768
28,672
24,576
20,480
16,384
12,288
8,192
4,096

3,840
3,584
3,328
3,072
2,816
2,560
2,304
2,048
 1,792
1,536
1,280
1,024

768
512
256

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0 0

DECHEX

8

F

D
E

C
B
A
9
8
7
6
5
4
3
2
1
0

HEX

7

0

DEC

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

HEX

6

0

DEC

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

HEX

5

0

DEC

Hexadecimal to Decimal Conversion Table

983,040
917,504
851,968
786,432
720,896
655,360
589,824
524,288
458,752
393,216
327,680
262,144
196,608
131,072
65,536

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

HEX

0

DEC

4

F
E
D
C
B

9
A

8
7
6
5
4
3
2
1
0 0

DECHEX

3

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0 0

240
224
208
192
176
160
144
128
112
96
80
64
48
32
16

HEX DEC

2

ZK−2013−GE

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0 0

DECHEX

1

B.1 Hexadecimal to Decimal
For each integer position of the hexadecimal value, locate the corresponding
column integer and record its decimal equivalent in the conversion table. Add the
decimal equivalent to obtain the decimal value.

For example:

D0500AD0 (hex) = ?(dec)

D0000000 = 3,489,660,928
500000 = 5,242,880

A00 = 2,560
D0 = 208

D0500AD0 = 3,494,906,576

Hexadecimal/Decimal Conversion B–1

Hexadecimal/Decimal Conversion
B.2 Decimal to Hexadecimal

B.2 Decimal to Hexadecimal
To determine the hexadecimal equivalent of a given decimal value, perform the
following steps:

1. In the conversion table, locate the largest decimal value that does not exceed
the decimal number to be converted.

2. Record the hexadecimal equivalent, followed by the number of zeros that
corresponds to the integer column minus 1.

3. Subtract the table decimal value from the decimal number to be converted.

4. Repeat steps 1 to 3 until the subtraction balance equals zero. Add the
hexadecimal equivalents to obtain the hexadecimal value.

For example:

22,466 (dec) = ?(hex)

20,480 = 5000 22,466
1,792 = 700 -20,480
192 = C0
2 = 2 1,986

- 1,792
22,466 = 57C2

194
- 192

2
- 2

0

B.3 Powers of 2 and 16
This section lists the decimal values of powers of 2 and 16. These values are
useful in converting decimal numbers to hexadecimal.

Powers of 2 Powers of 16

2**n n 16**n n

256 8 1 0
512 9 16 1
1024 10 256 2
2048 11 4096 3
4096 12 65536 4
8192 13 1048576 5
16384 14 16777216 6
32768 15 268435456 7
65536 16 4294967296 8
131072 17 68719476736 9
262144 18 1099511627776 10
524288 19 17592186044416 11
1048576 20 281474976710656 12
2097152 21 4503599627370496 13
4194304 22 72057594037927936 14
8388608 23 1152921504606846976 15
16777216 24

B–2 Hexadecimal/Decimal Conversion

C
VAX MACRO Assembler Directives and

Language Summary

This appendix summarizes the general assembler and macro directives (in
alphabetical order), special characters, unary operators, binary operators, and
addressing modes.

C.1 Assembler Directives
Table C–1 summarizes the VAX MACRO assembler directives.

Table C–1 Assembler Directives

Format Operation

.ADDRESS address-list Stores successive longwords of
address data

.ALIGN keyword[,expression] Aligns the location counter to the
boundary specified by the keyword

.ALIGN integer[,expression] Aligns location counter to the
boundary specified by (2^integer)

.ASCIC string Stores the ASCII string (enclosed in
delimiters), preceded by a count byte

.ASCID string Stores the ASCII string (enclosed
in delimiters), preceded by a string
descriptor

.ASCII string Stores the ASCII string (enclosed in
delimiters)

.ASCIZ string Stores the ASCII string (enclosed in
delimiters) followed by a 0 byte

.BLKA expression Reserves longwords of address data

.BLKB expression Reserves bytes for data

.BLKD expression Reserves quadwords for double-
precision floating-point data

.BLKF expression Reserves longwords for single-
precision floating-point data

.BLKG expression Reserves quadwords for floating-point
data

.BLKH expression Reserves octawords for extended-
precision floating-point data

.BLKL expression Reserves longwords for data

(continued on next page)

VAX MACRO Assembler Directives and Language Summary C–1

VAX MACRO Assembler Directives and Language Summary
C.1 Assembler Directives

Table C–1 (Cont.) Assembler Directives

Format Operation

.BLKO expression Reserves octawords for data

.BLKQ expression Reserves quadwords for data

.BLKW expression Reserves words for data

.BYTE expression-list Generates successive bytes of data;
each byte contains the value of the
specified expression

.CROSS Enables cross-referencing of all
symbols

.CROSS symbol-list Cross-references specified symbols

.DEBUG symbol-list Makes symbol names known to the
debugger

.DEFAULT DISPLACEMENT, keyword Specifies the default displacement
length for the relative addressing
modes

.D_FLOATING literal-list Generates 8-byte double-precision
floating-point data

.DISABLE argument-list Disables functions specified in
argument-list

.DOUBLE literal-list Equivalent to .D_FLOATING

.DSABL argument-list Equivalent to .DISABLE

.ENABL argument-list Equivalent to .ENABLE

.ENABLE argument-list Enables functions specified in
argument-list

.END [symbol] Indicates logical end of source
program; optional symbol specifies
transfer address

.ENDC Indicates end of conditional assembly
block

.ENDM [macro-name] Indicates end of macro definition

.ENDR Indicates end of repeat block

.ENTRY symbol [,expression] Procedure entry directive

.ERROR [expression] ;comment Displays specified error message

.EVEN Ensures that the current location
counter has an even value (adds 1 if it
is odd)

.EXTERNAL symbol-list Indicates specified symbols are
externally defined

.EXTRN symbol-list Equivalent to .EXTERNAL

.F_FLOATING literal-list Generates 4-byte single-precision
floating-point data

.FLOAT literal-list Equivalent to .F_FLOATING

.G_FLOATING literal-list Generates 8-byte G_floating-point
data

(continued on next page)

C–2 VAX MACRO Assembler Directives and Language Summary

VAX MACRO Assembler Directives and Language Summary
C.1 Assembler Directives

Table C–1 (Cont.) Assembler Directives

Format Operation

.GLOBAL symbol-list Indicates specified symbols are global
symbols

.GLOBL Equivalent to .GLOBAL

.H_FLOATING literal-list Generates 16-byte extended-precision
H_floating-point data

.IDENT string Provides means of labeling object
module with additional data

.IF condition [,] argument(s) Begins a conditional assembly block of
source code, which is included in the
assembly only if the stated condition
is met with respect to the arguments
specified

.IFF Equivalent to .IF_FALSE

.IF_FALSE Appears only within a conditional
assembly block; begins block of code to
be assembled if the original condition
tests false

.IFT Equivalent to .IF_TRUE

.IFTF Equivalent to .IF_TRUE_FALSE

.IF_TRUE Appears only within a conditional
assembly block; begins block of code to
be assembled if the original condition
tests true

.IF_TRUE_FALSE Appears only within a conditional
assembly block; begins block of code
to be assembled unconditionally

.IIF condition argument(s), statement Acts as a 1-line conditional assembly
block where the condition is tested for
the argument specified; the statement
is assembled only if the condition
tests true

.IRP symbol,<argument list> Replaces a formal argument with
successive actual arguments specified
in an argument list

.IRPC symbol,<BIT_STRING> Replaces a formal argument with
successive single characters specified
in string

.LIBRARY macro-library-name Specifies a macro library

.LINK ‘‘file-spec’’ [/qualifier[=(module-
name[,...])],...]

Includes linker option records in
object module

.LIST [argument-list] Equivalent to .SHOW

.LONG expression-list Generates successive longwords of
data; each longword contains the
value of the specified expression

.MACRO macro-name [formal-argument-list] Begins a macro definition

.MASK symbol [,expression] Reserves a word for and copies a
register save mask

(continued on next page)

VAX MACRO Assembler Directives and Language Summary C–3

VAX MACRO Assembler Directives and Language Summary
C.1 Assembler Directives

Table C–1 (Cont.) Assembler Directives

Format Operation

.MCALL macro-name-list Specifies the system or user-defined
macros, or both, in libraries that
are required to assemble the source
program

.MDELETE macro-name-list Deletes from memory the macro
definitions of the macros in the list

.MEXIT Exits from the expansion of a macro
before the end of the macro is
encountered

.NARG symbol Determines the number of arguments
in the current macro call

.NCHR symbol,<BIT_STRING> Determines the number of characters
in a specified character string

.NLIST [argument-list] Equivalent to .NOSHOW

.NOCROSS Disables cross-referencing of all
symbols

.NOCROSS symbol-list Disables cross-referencing of specified
symbols

.NOSHOW Decrements listing level count

.NOSHOW argument-list Controls listing of macros and
conditional assembly blocks

.NTYPE symbol,operand Can appear only within a macro
definition; equates the symbol to
the addressing mode of the specified
operand

.OCTA literal Stores 16 bytes of data

.OCTA symbol Stores 16 bytes of data

.ODD Ensures that the current location
counter has an odd value (adds 1 if it
is even)

.OPDEF opcode value, operand-descriptor-list Defines an opcode and its operand list

.PACKED decimal-string [,symbol] Generates packed decimal data, 2
digits per byte

.PAGE Causes the assembly listing to skip
to the top of the next page and to
increment the page count

.PRINT [expression] ;comment Displays the specified message

.PSECT Begins or resumes the blank program
section

.PSECT section-name argument list Begins or resumes a user-defined
program section

.QUAD literal Stores 8 bytes of data

.QUAD symbol Stores 8 bytes of data

.REF1 operand Generates byte operand

.REF2 operand Generates word operand

(continued on next page)

C–4 VAX MACRO Assembler Directives and Language Summary

VAX MACRO Assembler Directives and Language Summary
C.1 Assembler Directives

Table C–1 (Cont.) Assembler Directives

Format Operation

.REF4 operand Generates longword operand

.REF8 operand Generates quadword operand

.REF16 operand Generates octaword operand

.REPEAT expression Begins a repeat block; the section of
code up to the next .ENDR directive
is repeated the number of times
specified by the expression

.REPT Equivalent to .REPEAT

.RESTORE Equivalent to .RESTORE_PSECT

.RESTORE_PSECT Restores program section context from
the program section context stack

.SAVE [LOCAL_BLOCK] Equivalent to .SAVE_PSECT

.SAVE_PSECT [LOCAL_BLOCK] Saves current program section context
on the program section context stack

.SBTTL comment-string Equivalent to .SUBTITLE

.SHOW Increments listing level count

.SHOW argument-list Controls listing of macros and
conditional assembly blocks

.SIGNED_BYTE expression-list Stores successive bytes of signed data

.SIGNED_WORD expression-list Stores successive words of signed data

.SUBTITLE comment-string Causes the specified string to be
printed as part of the assembly listing
page header; the string component of
each .SUBTITLE is collected into a
table of contents at the beginning of
the assembly listing

.TITLE module-name comment-string Assigns the first 15 characters in the
string as an object module name and
causes the string to appear on each
page of the assembly listing

.TRANSFER symbol Directs the linker to redefine the
value of the global symbol for use in a
shareable image

.WARN [expression] ;comment Displays specified warning message

.WEAK symbol-list Indicates that each of the listed
symbols has the weak attribute

.WORD expression-list Generates successive words of data;
each word contains the value of the
corresponding specified expression

C.2 Special Characters
Table C–2 summarizes the VAX MACRO special characters.

VAX MACRO Assembler Directives and Language Summary C–5

VAX MACRO Assembler Directives and Language Summary
C.2 Special Characters

Table C–2 Special Characters Used in VAX MACRO Statements

Character Character Name Functions

_ Underscore Character in symbol names

$ Dollar sign Character in symbol names

. Period Character in symbol names, current
location counter, and decimal point

: Colon Label terminator

= Equal sign Direct assignment operator and macro
keyword argument terminator

Tab Field terminator

Space Field terminator

Number sign Immediate addressing mode indicator

@ At sign Deferred addressing mode indicator and
arithmetic shift operator

, Comma Field, operand, and item separator

; Semicolon Comment field indicator

+ Plus sign Autoincrement addressing mode indicator,
unary plus operator, and arithmetic
addition operator

- Minus sign Autodecrement addressing mode indicator,
unary minus operator, arithmetic
subtraction operator, and line continuation
indicator

* Asterisk Arithmetic multiplication operator

/ Slash Arithmetic division operator

& Ampersand Logical AND operator

! Exclamation
point

Logical inclusive OR operator

\ Backslash Logical exclusive OR and numeric
conversion indicator in macro arguments

^ Circumflex Unary operator indicator and macro
argument delimiter

[] Square brackets Index addressing mode and repeat count
indicators

() Parentheses Register deferred addressing mode
indicators

<> Angle brackets Argument or expression grouping
delimiters

? Question mark Created label indicator in macro arguments

’ Apostrophe Macro argument concatenation indicator

% Percent sign Macro string operators

C.3 Operators
This section lists the VAX MACRO unary, binary, and macro string operators.

C–6 VAX MACRO Assembler Directives and Language Summary

VAX MACRO Assembler Directives and Language Summary
C.3 Operators

C.3.1 Unary Operators
Table C–3 summarizes the VAX MACRO unary operators.

Table C–3 Summary of Unary Operators

Unary
Operator Operator Name Example Effect

+ Plus sign +A Results in the positive
value of A (default)

- Minus sign -A Results in the negative
(two’s complement) value
of A

^B Binary ^B11000111 Specifies that 11000111 is
a binary number

^D Decimal ^D127 Specifies that 127 is a
decimal number

^O Octal ^034 Specifies that 34 is an
octal number

^X Hexadecimal ^XFCF9 Specifies that FCF9 is a
hexadecimal number

^A ASCII ^A/ABC/ Produces an ASCII string;
the characters between
the matching delimiters
are converted to ASCII
representation

^M Register mask ^M<R3,R4,R5> Specifies the registers R3,
R4, and R5 in the register
mask

^F Floating point ^F3.0 Specifies that 3.0 is a
floating-point number

^C Complement ^C24 Produces the one’s
complement value of
24 (decimal)

C.3.2 Binary Operators
Table C–4 summarizes the VAX MACRO binary operators.

Table C–4 Summary of Binary Operators

Binary
Operator Operator Name Example Operation

+ Plus sign A+B Addition

- Minus sign A-B Subtraction

* Asterisk A*B Multiplication

/ Slash A/B Division

@ At sign A@B Arithmetic Shift

& Ampersand A&B Logical AND

! Exclamation point A!B Logical inclusive OR

(continued on next page)

VAX MACRO Assembler Directives and Language Summary C–7

VAX MACRO Assembler Directives and Language Summary
C.3 Operators

Table C–4 (Cont.) Summary of Binary Operators

Binary
Operator Operator Name Example Operation

\ Backslash A\B Logical exclusive OR

C.3.3 Macro String Operators
Table C–5 summarizes the macro string operators. These operators can be used
only in macros.

Table C–5 Macro String Operators

Format Function

%LENGTH(string) Returns the length of the string

%LOCATE(string1,string2[,symbol]) Locates the substring string1
within string2 starting the
search at the character position
specified by symbol

%EXTRACT(symbol1,symbol2,string) Extracts a substring from
string that begins at character
position specified by symbol1
and has a length specified by
symbol2

C–8 VAX MACRO Assembler Directives and Language Summary

VAX MACRO Assembler Directives and Language Summary
C.4 Addressing Modes

C.4 Addressing Modes
Table C–6 summarizes the VAX MACRO addressing modes.

Table C–6 Summary of Addressing Modes

Type Addressing Mode Format Hex Value Description
Can Be
Indexed?

General
register

Register Rn 5 Register contains the
operand.

No

Register deferred (Rn) 6 Register contains the address
of the operand.

Yes

Autoincrement (Rn)+ 8 Register contains the address
of the operand; the processor
increments the register
contents by the size of the
operand data type.

Yes

Autoincrement
deferred

@(Rn)+ 9 Register contains the address
of the operand address; the
processor increments the
register contents by 4.

Yes

Autodecrement -(Rn) 7 The processor decrements the
register contents by the size
of the operand data type; the
register then contains the
address of the operand.

Yes

Displacement dis(Rn)
B^dis(Rn)
W^dis(Rn)
L^dis(Rn)

A
C
E

The sum of the contents
of the register and the
displacement is the address
of the operand; B^, W^, and
L^, respectively, indicate
byte, word, and longword
displacement.

Yes

Displacement
deferred

@dis(Rn)
@B^dis(Rn)
@W^dis(Rn)
@L^dis(Rn)

B
D
F

The sum of the contents
of the register and the
displacement is the address
of the operand address; B^,
W^, and L^, respectively,
indicate, byte, word, and
longword displacement.

Yes

Literal #literal
S^#literal 0-3

The literal specified is the
operand; the literal is stored
as a short literal.

No

Program
Counter

Relative address
B^address
W^address
L^address

A
C
E

The address specified is
the address of the operand;
the address is stored as a
displacement from the PC;
B^, W^, and L^, respectively,
indicate byte, word, and
longword displacement.

Yes

Key:

Rn—Any general register R0 to R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx cannot be the
same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis—An expression specifying a displacement.
address—An expression specifying an address.
literal—An expression, an integer constant, or a floating-point constant.

(continued on next page)

VAX MACRO Assembler Directives and Language Summary C–9

VAX MACRO Assembler Directives and Language Summary
C.4 Addressing Modes

Table C–6 (Cont.) Summary of Addressing Modes

Type Addressing Mode Format Hex Value Description
Can Be
Indexed?

Relative
deferred

@address
@B^address
@W^address
@L^address

B
D
F

The address specified is
the address of the operand
address; the address specified
is stored as a displacement
from the PC; B^, W^, and
L^ indicate byte, word, and
longword displacement,
respectively.

Yes

Absolute @#address 9 The address specified is the
address of the operand; the
address specified is stored as
an absolute virtual address,
not as a displacement.

Yes

Immediate #literal
I^#literal 8

The literal specified is the
operand; the literal is stored
as a byte, word, longword, or
quadword.

No

General G^address — The address specified is the
address of the operand; if
the address is defined as
relocatable, the linker stores
the address as a displacement
from the PC; if the address is
defined as an absolute virtual
address, the linker stores the
address as an absolute value.

Yes

Index Index base-mode[Rx] 4 The base-mode specifies the
base address, and the register
specifies the index; the sum
of the base address and the
product of the contents of Rx
and the size of the operand
data type is the address
of the operand; base mode
can be any addressing mode
except register, immediate,
literal, index, or branch.

No

Branch Branch address — The address specified is
the operand; this address
is stored as a displacement
from the PC; branch mode
can only be used with the
branch instructions.

No

Key:

Rn—Any general register R0 to R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx cannot be the
same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis—An expression specifying a displacement.
address—An expression specifying an address.
literal—An expression, an integer constant, or a floating-point constant.

C–10 VAX MACRO Assembler Directives and Language Summary

D
Permanent Symbol Table Defined for Use with

VAX MACRO

The permanent symbol table (PST) contains the symbols that VAX MACRO
automatically recognizes. These symbols consist of both opcodes and assembler
directives. Table D–1, Table D–2, and Table D–3 present the opcodes (instruction
set) in alphabetical and numerical order. Section C.1 (in Appendix C) presents
the assembler directives.

See Chapter 9 and Chapter 10 for detailed descriptions of the instruction set.

Table D–1 Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

9D ACBB Add compare and branch byte

6F ACBD Add compare and branch D_floating

4F ACBF Add compare and branch F_floating

4FFD ACBG Add compare and branch G_floating

6FFD ACBH Add compare and branch H_floating

F1 ACBL Add compare and branch longword

3D ACBW Add compare and branch word

58 ADAWI Add aligned word interlocked

80 ADDB2 Add byte 2 operand

81 ADDB3 Add byte 3 operand

60 ADDD2 Add D_floating 2 operand

61 ADDD3 Add D_floating 3 operand

40 ADDF2 Add F_floating 2 operand

41 ADDF3 Add F_floating 3 operand

40FD ADDG2 Add G_floating 2 operand

41FD ADDG3 Add G_floating 3 operand

60FD ADDH2 Add H_floating 2 operand

61FD ADDH3 Add H_floating 3 operand

C0 ADDL2 Add longword 2 operand

C1 ADDL3 Add longword 3 operand

20 ADDP4 Add packed 4 operand

21 ADDP6 Add packed 6 operand

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–1

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

A0 ADDW2 Add word 2 operand

A1 ADDW3 Add word 3 operand

D8 ADWC Add with carry

F3 AOBLEQ Add one and branch on less or equal

F2 AOBLSS Add one and branch on less

78 ASHL Arithmetic shift longword

F8 ASHP Arithmetic shift and round packed

79 ASHQ Arithmetic shift quadword

E1 BBC Branch on bit clear

E5 BBCC Branch on bit clear and clear

E7 BBCCI Branch on bit clear and clear interlocked

E3 BBCS Branch on bit clear and set

E0 BBS Branch on bit set

E4 BBSC Branch on bit set and clear

E2 BBSS Branch on bit set and set

E6 BBSSI Branch on bit set and set interlocked

1E BCC Branch on carry clear

1F BCS Branch on carry set

13 BEQL Branch on equal

13 BEQLU Branch on equal unsigned

18 BGEQ Branch on greater or equal

1E BGEQU Branch on greater or equal unsigned

14 BGTR Branch on greater

1A BGTRU Branch on greater unsigned

8A BICB2 Bit clear byte 2 operand

8B BICB3 Bit clear byte 3 operand

CA BICL2 Bit clear longword 2 operand

CB BICL3 Bit clear longword 3 operand

B9 BICPSW Bit clear program status word

AA BICW2 Bit clear word 2 operand

AB BICW3 Bit clear word 3 operand

88 BISB2 Bit set byte 2 operand

89 BISB3 Bit set byte 3 operand

C8 BISL2 Bit set longword 2 operand

C9 BISL3 Bit set longword 3 operand

B8 BISPSW Bit set program status word

A8 BISW2 Bit set word 2 operand

(continued on next page)

D–2 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

A9 BISW3 Bit set word 3 operand

93 BITB Bit test byte

D3 BITL Bit test longword

B3 BITW Bit test word

E9 BLBC Branch on low bit clear

E8 BLBS Branch on low bit set

15 BLEQ Branch on less or equal

1B BLEQU Branch on less or equal unsigned

19 BLSS Branch on less

1F BLSSU Branch on less unsigned

12 BNEQ Branch on not equal

12 BNEQU Branch on not equal unsigned

03 BPT Break point trap

11 BRB Branch with byte displacement

31 BRW Branch with word displacement

10 BSBB Branch to subroutine with byte displacement

30 BSBW Branch to subroutine with word displacement

1C BVC Branch on overflow clear

1D BVS Branch on overflow set

FA CALLG Call with general argument list

FB CALLS Call with stack

8F CASEB Case byte

CF CASEL Case longword

AF CASEW Case word

BD CHME Change mode to executive

BC CHMK Change mode to kernel

BE CHMS Change mode to supervisor

BF CHMU Change mode to user

94 CLRB Clear byte

7C CLRD Clear D_floating

DF CLRF Clear F_floating

7C CLRG Clear G_floating

7CFD CLRH Clear H_floating

D4 CLRL Clear longword

7CFD CLRO Clear octaword

7C CLRQ Clear quadword

B4 CLRW Clear word

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–3

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

91 CMPB Compare byte

29 CMPC3 Compare character 3 operand

2D CMPC5 Compare character 5 operand

71 CMPD Compare D_floating

51 CMPF Compare F_floating

51FD CMPG Compare G_floating

71FD CMPH Compare H_floating

D1 CMPL Compare longword

35 CMPP3 Compare packed 3 operand

37 CMPP4 Compare packed 4 operand

EC CMPV Compare field

B1 CMPW Compare word

ED CMPZV Compare zero-extended field

0B CRC Calculate cyclic redundancy check

6C CVTBD Convert byte to D_floating

4C CVTBF Convert byte to F_floating

4CFD CVTBG Convert byte to G_floating

6CFD CVTBH Convert byte to H_floating

98 CVTBL Convert byte to longword

99 CVTBW Convert byte to word

68 CVTDB Convert D_floating to byte

76 CVTDF Convert D_floating to F_floating

32FD CVTDH Convert D_floating to H_floating

6A CVTDL Convert D_floating to longword

69 CVTDW Convert D_floating to word

48 CVTFB Convert F_floating to byte

56 CVTFD Convert F_floating to D_floating

99FD CVTFG Convert F_floating to G_floating

98FD CVTFH Convert F_floating to H_floating

4A CVTFL Convert F_floating to longword

49 CVTFW Convert F_floating to word

48FD CVTGB Convert G_floating to byte

33FD CVTGF Convert G_floating to F_floating

56FD CVTGH Convert G_floating to H_floating

4AFD CVTGL Convert G_floating to longword

49FD CVTGW Convert G_floating to word

68FD CVTHB Convert H_floating to byte

(continued on next page)

D–4 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

F7FD CVTHD Convert H_floating to D_floating

F6FD CVTHF Convert H_floating to F_floating

76FD CVTHG Convert H_floating to G_floating

6AFD CVTHL Convert H_floating to longword

69FD CVTHW Convert H_floating to word

F6 CVTLB Convert longword to byte

6E CVTLD Convert longword to D_floating

4E CVTLF Convert longword to F_floating

4EFD CVTLG Convert longword to G_floating

6EFD CVTLH Convert longword to H_floating

F9 CVTLP Convert longword to packed

F7 CVTLW Convert longword to word

36 CVTPL Convert packed to longword

08 CVTPS Convert packed to leading separate

24 CVTPT Convert packed to trailing

6B CVTRDL Convert rounded D_floating to longword

4B CVTRFL Convert rounded F_floating to longword

4BFD CVTRGL Convert rounded G_floating to longword

6BFD CVTRHL Convert rounded H_floating to longword

09 CVTSP Convert leading separate to packed

26 CVTTP Convert trailing to packed

33 CVTWB Convert word to byte

6D CVTWD Convert word to D_floating

4D CVTWF Convert word to F_floating

4DFD CVTWG Convert word to G_floating

6DFD CVTWH Convert word to H_floating

32 CVTWL Convert word to longword

97 DECB Decrement byte

D7 DECL Decrement longword

B7 DECW Decrement word

86 DIVB2 Divide byte 2 operand

87 DIVB3 Divide byte 3 operand

66 DIVD2 Divide D_floating 2 operand

67 DIVD3 Divide D_floating 3 operand

46 DIVF2 Divide F_floating 2 operand

47 DIVF3 Divide F_floating 3 operand

46FD DIVG2 Divide G_floating 2 operand

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–5

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

47FD DIVG3 Divide G_floating 3 operand

66FD DIVH2 Divide H_floating 2 operand

67FD DIVH3 Divide H_floating 3 operand

C6 DIVL2 Divide longword 2 operand

C7 DIVL3 Divide longword 3 operand

27 DIVP Divide packed

A6 DIVW2 Divide word 2 operand

A7 DIVW3 Divide word 3 operand

38 EDITPC Edit packed to character

7B EDIV Extended divide

74 EMODD Extended modulus D_floating

54 EMODF Extended modulus F_floating

54FD EMODG Extended modulus G_floating

74FD EMODH Extended modulus H_floating

7A EMUL Extended multiply

EE EXTV Extract field

EF EXTZV Extract zero-extended field

EB FFC Find first clear bit

EA FFS Find first set bit

00 HALT Halt

96 INCB Increment byte

D6 INCL Increment longword

B6 INCW Increment word

0A INDEX Index calculation

5C INSQHI Insert into queue at head, interlocked

5D INSQTI Insert into queue at tail, interlocked

0E INSQUE Insert into queue

F0 INSV Insert field

EDFD IOTA Generate compressed iota vector

17 JMP Jump

16 JSB Jump to subroutine

06 LDPCTX Load program context

3A LOCC Locate character

39 MATCHC Match characters

92 MCOMB Move complemented byte

D2 MCOML Move complemented longword

B2 MCOMW Move complemented word

(continued on next page)

D–6 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

DB MFPR Move from processor register

31FD MFVP Move from vector processor

8E MNEGB Move negated byte

72 MNEGD Move negated D_floating

52 MNEGF Move negated F_floating

52FD MNEGG Move negated G_floating

72FD MNEGH Move negated H_floating

CE MNEGL Move negated longword

AE MNEGW Move negated word

9E MOVAB Move address of byte

7E MOVAD Move address of D_floating

DE MOVAF Move address of F_floating

7E MOVAG Move address of G_floating

7EFD MOVAH Move address of H_floating

DE MOVAL Move address of longword

7EFD MOVAO Move address of octaword

7E MOVAQ Move address of quadword

3E MOVAW Move address of word

90 MOVB Move byte

28 MOVC3 Move character 3 operand

2C MOVC5 Move character 5 operand

70 MOVD Move D_floating

50 MOVF Move F_floating

50FD MOVG Move G_floating

70FD MOVH Move H_floating

D0 MOVL Move longword

7DFD MOVO Move data

34 MOVP Move packed

DC MOVPSL Move program status longword

7D MOVQ Move quadword

2E MOVTC Move translated characters

2F MOVTUC Move translated until character

B0 MOVW Move word

0A MOVZBL Move zero-extended byte to longword

9B MOVZBW Move zero-extended byte to word

3C MOVZWL Move zero-extended word to longword

DA MTPR Move to processor register

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–7

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

A9FD MTVP Move to vector processor

84 MULB2 Multiply byte 2 operand

85 MULB3 Multiply byte 3 operand

64 MULD2 Multiply D_floating 2 operand

65 MULD3 Multiply D_floating 3 operand

44 MULF2 Multiply F_floating 2 operand

45 MULF3 Multiply F_floating 3 operand

44FD MULG2 Multiply G_floating 2 operand

45FD MULG3 Multiply G_floating 3 operand

64FD MULH2 Multiply H_floating 2 operand

65FD MULH3 Multiply H_floating 3 operand

C4 MULL2 Multiply longword 2 operand

C5 MULL3 Multiply longword 3 operand

25 MULP Multiply packed

A4 MULW2 Multiply word 2 operand

A5 MULW3 Multiply word 3 operand

01 NOP No operation

75 POLYD Evaluate polynomial D_floating

55 POLYF Evaluate polynomial F_floating

55FD POLYG Evaluate polynomial G_floating

75FD POLYH Evaluate polynomial H_floating

BA POPR Pop registers

0C PROBER Probe read access

0D PROBEW Probe write access

9F PUSHAB Push address of byte

7F PUSHAD Push address of D_floating

DF PUSHAF Push address of F_floating

7F PUSHAG Push address of G_floating

7FFD PUSHAH Push address of H_floating

DF PUSHAL Push address of longword

7FFD PUSHAO Push address of octaword

7F PUSHAQ Push address of quadword

3F PUSHAW Push address of word

DD PUSHL Push longword

BB PUSHR Push registers

02 REI Return from exception or interrupt

5E REMQHI Remove from queue at head, interlocked

(continued on next page)

D–8 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

5F REMQTI Remove from queue at tail, interlocked

0F REMQUE Remove from queue

04 RET Return from called procedure

9C ROTL Rotate longword

05 RSB Return from subroutine

D9 SBWC Subtract with carry

2A SCANC Scan for character

3B SKPC Skip character

F4 SOBGEQ Subtract one and branch on greater or equal

F5 SOBGTR Subtract one and branch on greater

2B SPANC Span characters

82 SUBB2 Subtract byte 2 operand

83 SUBB3 Subtract byte 3 operand

62 SUBD2 Subtract D_floating 2 operand

63 SUBD3 Subtract D_floating 3 operand

42 SUBF2 Subtract F_floating 2 operand

43 SUBF3 Subtract F_floating 3 operand

42FD SUBG2 Subtract G_floating 2 operand

43FD SUBG3 Subtract G_floating 3 operand

62FD SUBH2 Subtract H_floating 2 operand

63FD SUBH3 Subtract H_floating 3 operand

C2 SUBL2 Subtract longword 2 operand

C3 SUBL3 Subtract longword 3 operand

22 SUBP4 Subtract packed 4 operand

23 SUBP6 Subtract packed 6 operand

A2 SUBW2 Subtract word 2 operand

A3 SUBW3 Subtract word 3 operand

07 SVPCTX Save process context

95 TSTB Test byte

73 TSTD Test D_floating

53 TSTF Test F_floating

53FD TSTG Test G_floating

73FD TSTH Test H_floating

D5 TSTL Test longword

B5 TSTW Test word

35FD VGATHL Gather longword vector from memory to vector
register

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–9

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

37FD VGATHQ Gather quadword vector from memory to vector
register

34FD VLDL Load longword vector from memory to vector register

36FD VLDQ Load quadword vector from memory to vector register

87FD VSADDD Vector scalar add D_floating

85FD VSADDF Vector scalar add F_floating

83FD VSADDG Vector scalar add G_floating

81FD VSADDL Vector scalar add longword

CDFD VSBICL Vector scalar bit clear longword

C9FD VSBISL Vector scalar bit set longword

9DFD VSCATL Scatter longword vector from vector register to
memory

9FFD VSCATQ Scatter quadword vector from vector register to
memory

C7FD VSCMPD Vector scalar compare D_floating

C5FD VSCMPF Vector scalar compare F_floating

C3FD VSCMPG Vector scalar compare G_floating

C1FD VSCMPL Vector scalar compare longword

AFFD VSDIVD Vector scalar divide D_floating

ADFD VSDIVF Vector scalar divide F_floating

ABFD VSDIVG Vector scalar divide G_floating

EFFD VSMERGE Vector scalar merge

A7FD VSMULD Vector scalar multiply D_floating

A5FD VSMULF Vector scalar multiply F_floating

A3FD VSMULG Vector scalar multiply G_floating

A1FD VSMULL Vector scalar multiply longword

E5FD VSSLLL Vector scalar shift left logical longword

E1FD VSSRLL Vector scalar shift right logical longword

8FFD VSSUBD Vector scalar subtract D_floating

8DFD VSSUBF Vector scalar subtract F_floating

8BFD VSSUBG Vector scalar subtract G_floating

89FD VSSUBL Vector scalar subtract longword

9CFD VSTL Store longword vector from vector register to memory

9EFD VSTQ Store quadword vector from vector register to memory

E9FD VSXORL Vector scalar exclusive-OR longword

A8FD VSYNC Synchronize vector memory access

86FD VVADDD Vector vector add D_floating

84FD VVADDF Vector vector add F_floating

(continued on next page)

D–10 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–1 (Cont.) Opcodes (Alphabetic Order) and Functions

Hex
Value Mnemonic Functional Name

82FD VVADDG Vector vector add G_floating

80FD VVADDL Vector vector add longword

CCFD VVBICL Vector vector bit clear longword

C8FD VVBISL Vector vector bit set longword

C6FD VVCMPD Vector vector compare D_floating

C4FD VVCMPF Vector vector compare F_floating

C2FD VVCMPG Vector vector compare G_floating

C0FD VVCMPL Vector vector compare longword

ECFD VVCVT Vector convert

AEFD VVDIVD Vector vector divide D_floating

ACFD VVDIVF Vector vector divide F_floating

AAFD VVDIVG Vector vector divide G_floating

EEFD VVMERGE Vector vector merge

A6FD VVMULD Vector vector multiply F_floating

A4FD VVMULF Vector vector multiply F_floating

A2FD VVMULG Vector vector multiply G_floating

A0FD VVMULL Vector vector multiply longword

E4FD VVSLLL Vector vector shift left logical longword

E0FD VVSRLL Vector vector shift right logical longword

8EFD VVSUBD Vector vector subtract D_floating

8CFD VVSUBF Vector vector subtract F_floating

8AFD VVSUBG Vector vector subtract G_floating

88FD VVSUBL Vector vector subtract longword

E8FD VVXORL Vector vector exclusive-OR longword

FC XFC Extended function call

8C XORB2 Exclusive-OR byte 2 operand

8D XORB3 Exclusive-OR byte 3 operand

CC XORL2 Exclusive-OR longword 2 operand

CD XORL3 Exclusive-OR longword 3 operand

AC XORW2 Exclusive-OR word 2 operand

AD XORW3 Exclusive-OR word 3 operand

Table D–2 One_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

00 HALT 30 BSBW

01 NOP 31 BRW

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–11

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–2 (Cont.) One_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

02 REI 32 CVTWL

03 BPT 33 CVTWB

04 RET 34 MOVP

05 RSB 35 CMPP3

06 LDPCTX 36 CVTPL

07 SVPCTX 37 CMPP4

08 CVTPS 38 EDITPC

09 CVTSP 39 MATCHC

0A INDEX 3A LOCC

0B CRC 3B SKPC

0C PROBER 3C MOVZWL

0D PROBEW 3D ACBW

0E INSQUE 3E MOVAW

0F REMQUE 3F PUSHAW

10 BSBB 40 ADDF2

11 BRB 41 ADDF3

12 BNEQ, BNEQU 42 SUBF2

13 BEQL, BEQLU 43 SUBF3

14 BGTR 44 MULF2

15 BLEQ 45 MULF3

16 JSB 46 DIVF2

17 JMP 47 DIVF3

18 BGEQ 48 CVTFB

19 BLSS 49 CVTFW

1A BGTRU 4A CVTFL

1B BLEQU 4B CVTRFL

1C BVC 4C CVTBF

1D BVS 4D CVTWF

1E BGEQU, BCC 4E CVTLF

1F BLSSU, BCS 4F ACBF

20 ADDP4 50 MOVF

21 ADDP6 51 CMPF

22 SUBP4 52 MNEGF

23 SUBP6 53 TSTF

24 CVTPT 54 EMODF

25 MULP 55 POLYF

26 CVTTP 56 CVTFD

(continued on next page)

D–12 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–2 (Cont.) One_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

27 DIVP 57 Reserved to Compaq

28 MOVC3 58 ADAWI

29 CMPC3 59 Reserved to Compaq

2A SCANC 5A Reserved to Compaq

2B SPANC 5B Reserved to Compaq

2C MOVC5 5C INSQHI

2D CMPC5 5D INSQTI

2E MOVTC 5E REMQHI

2F MOVTUC 5F REMQTI

60 ADDD2 90 MOVB

61 ADDD3 91 CMPB

62 SUBD2 92 MCOMB

63 SUBD3 93 BITB

64 MULD2 94 CLRB

65 MULD3 95 TSTB

66 DIVD2 96 INCB

67 DIVD3 97 DECB

68 CVTDB 98 CVTBL

69 CVTDW 99 CVTBW

6A CVTDL 9A MOVZBL

6B CVTRDL 9B MOVZBW

6C CVTBD 9C ROTL

6D CVTWD 9D ACBB

6E CVTLD 9E MOVAB

6F ACBD 9F PUSHAB

70 MOVD A0 ADDW2

71 CMPD A1 ADDW3

72 MNEGD A2 SUBW2

73 TSTD A3 SUBW3

74 EMODD A4 MULW2

75 POLYD A5 MULW3

76 CVTDF A6 DIVW2

77 Reserved to Compaq A7 DIVW3

78 ASHL A8 BISW2

79 ASHQ A9 BISW3

7A EMUL AA BICW2

7B EDIV AB BICW3

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–13

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–2 (Cont.) One_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

7C CLRQ, CLRD, CLRG AC XORW2

7D MOVQ AD XORW3

7E MOVAQ, MOVAD, MOVAG AE MNEGW

7F PUSHAQ, PUSHAD, PUSHAG AF CASEW

80 ADDB2 B0 MOVW

81 ADDB3 B1 CMPW

82 SUBB2 B2 MCOMW

83 SUBB3 B3 BITW

84 MULB2 B4 CLRW

85 MULB3 B5 TSTW

86 DIVB2 B6 INCW

87 DIVB3 B7 DECW

88 BISB2 B8 BISPSW

89 BISB3 B9 BICPSW

8A BICB2 BA POPR

8B BICB3 BB PUSHR

8C XORB2 BC CHMK

8D XORB3 BD CHME

8E MNEGB BE CHMS

8F CASEB BF CHMU

C0 ADDL2 E0 BBS

C1 ADDL3 E1 BBC

C2 SUBL2 E2 BBSS

C3 SUBL3 E3 BBCS

C4 MULL2 E4 BBSC

C5 MULL3 E5 BBCC

C6 DIVL2 E6 BBSSI

C7 DIVL3 E7 BBCCI

C8 BISL2 E8 BLBS

C9 BISL3 E9 BLBC

CA BICL2 EA FFS

CB BICL3 EB FFC

CC XORL2 EC CMPV

CD XORL3 ED CMPZV

CE MNEGL EE EXTV

CF CASEL EF EXTZV

D0 MOVL F0 INSV

(continued on next page)

D–14 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–2 (Cont.) One_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

D1 CMPL F1 ACBL

D2 MCOML F2 AOBLSS

D3 BITL F3 AOBLEQ

D4 CLRL, CLRF F4 SOBGEQ

D5 TSTL F5 SOBGTR

D6 INCL F6 CVTLB

D7 DECL F7 CVTLW

D8 ADWC F8 ASHP

D9 SBWC F9 CVTLP

DA MTPR FA CALLG

DB MFPR FB CALLS

DC MOVPSL FC XFC

DD PUSHL FD ESCD to Compaq

DE MOVAL, MOVA FE ESCE to Compaq

DF PUSHAL, PUSHAF FF ESCF to Compaq

Table D–3 Two_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

00FD Reserved to Compaq 30FD Reserved to Compaq

01FD Reserved to Compaq 31FD MFVP

02FD Reserved to Compaq 32FD CVTDH

03FD Reserved to Compaq 33FD CVTGF

04FD Reserved to Compaq 34FD VLDL

05FD Reserved to Compaq 35FD VGATHL

06FD Reserved to Compaq 36FD VLDQ

07FD Reserved to Compaq 37FD VGATHQ

08FD Reserved to Compaq 38FD Reserved to Compaq

09FD Reserved to Compaq 39FD Reserved to Compaq

0AFD Reserved to Compaq 3AFD Reserved to Compaq

0BFD Reserved to Compaq 3BFD Reserved to Compaq

0CFD Reserved to Compaq 3CFD Reserved to Compaq

0DFD Reserved to Compaq 3DFD Reserved to Compaq

0EFD Reserved to Compaq 3EFD Reserved to Compaq

0FFD Reserved to Compaq 3FFD Reserved to Compaq

10FD Reserved to Compaq 40FD ADDG2

11FD Reserved to Compaq 41FD ADDG3

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–15

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–3 (Cont.) Two_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

12FD Reserved to Compaq 42FD SUBG2

13FD Reserved to Compaq 43FD SUBG3

14FD Reserved to Compaq 44FD MULG2

15FD Reserved to Compaq 45FD MULG3

16FD Reserved to Compaq 46FD DIVG2

17FD Reserved to Compaq 47FD DIVG3

18FD Reserved to Compaq 48FD CVTGB

19FD Reserved to Compaq 49FD CVTGW

1AFD Reserved to Compaq 4AFD CVTGL

1BFD Reserved to Compaq 4BFD CVTRGL

1CFD Reserved to Compaq 4CFD CVTBG

1DFD Reserved to Compaq 4DFD CVTWG

1EFD Reserved to Compaq 4EFD CVTLG

1FFD Reserved to Compaq 4FFD ACBG

20FD Reserved to Compaq 50FD MOVG

21FD Reserved to Compaq 51FD CMPG

22FD Reserved to Compaq 52FD MNEGG

23FD Reserved to Compaq 53FD TSTG

24FD Reserved to Compaq 54FD EMODG

25FD Reserved to Compaq 55FD POLYG

26FD Reserved to Compaq 56FD CVTGH

27FD Reserved to Compaq 57FD Reserved to Compaq

28FD Reserved to Compaq 58FD Reserved to Compaq

29FD Reserved to Compaq 59FD Reserved to Compaq

2AFD Reserved to Compaq 5AFD Reserved to Compaq

2BFD Reserved to Compaq 5BFD Reserved to Compaq

2CFD Reserved to Compaq 5CFD Reserved to Compaq

2DFD Reserved to Compaq 5DFD Reserved to Compaq

2EFD Reserved to Compaq 5EFD Reserved to Compaq

2FFD Reserved to Compaq 5FFD Reserved to Compaq

60FD ADDH2 90FD Reserved to Compaq

61FD ADDH3 91FD Reserved to Compaq

62FD SUBH2 92FD Reserved to Compaq

63FD SUBH3 93FD Reserved to Compaq

64FD MULH2 94FD Reserved to Compaq

65FD MULH3 95FD Reserved to Compaq

66FD DIVH2 96FD Reserved to Compaq

(continued on next page)

D–16 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–3 (Cont.) Two_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

67FD DIVH3 97FD Reserved to Compaq

68FD CVTHB 98FD CVTFH

69FD CVTHW 99FD CVTFG

6AFD CVTHL 9AFD Reserved to Compaq

6BFD CVTRHL 9BFD Reserved to Compaq

6CFD CVTBH 9CFD VSTL

6DFD CVTWH 9DFD VSCATL

6EFD CVTLH 9EFD VSTQ

6FFD ACBH 9FFD VSCATQ

70FD MOVH A0FD VVMULL

71FD CMPH A1FD VSMULL

72FD MNEGH A2FD VVMULG

73FD TSTH A3FD VSMULG

74FD EMODH A4FD VVMULF

75FD POLYH A5FD VSMULF

76FD CVTHG A6FD VVMULD

77FD Reserved to Compaq A7FD VSMULD

78FD Reserved to Compaq A8FD VSYNC

79FD Reserved to Compaq A9FD MTVP

7AFD Reserved to Compaq AAFD VVDIVG

7BFD Reserved to Compaq ABFD VSDIVG

7CFD CLRH, CLRO ACFD VVDIVF

7DFD MOVO ADFD VSDIVF

7EFD MOVAH, MOVAO AEFD VVDIVD

7FFD PUSHAH, PUSHAO AFFD VSDIVD

80FD VVADDL B0FD Reserved to Compaq

81FD VSADDL B1FD Reserved to Compaq

82FD VVADDG B2FD Reserved to Compaq

83FD VSADDG B3FD Reserved to Compaq

84FD VVADDF B4FD Reserved to Compaq

85FD VSADDF B5FD Reserved to Compaq

86FD VVADDD B6FD Reserved to Compaq

87FD VSADDD B7FD Reserved to Compaq

88FD VVSUBL B8FD Reserved to Compaq

89FD VSSUBL B9FD Reserved to Compaq

8AFD VVSUBG BAFD Reserved to Compaq

8BFD VSSUBG BBFD Reserved to Compaq

(continued on next page)

Permanent Symbol Table Defined for Use with VAX MACRO D–17

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–3 (Cont.) Two_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

8CFD VVSUBF BCFD Reserved to Compaq

8DFD VSSUBF BDFD Reserved to Compaq

8EFD VVSUBD BEFD Reserved to Compaq

8FFD VSSUBD BFFD Reserved to Compaq

C0FD VVCMPL E0FD VVSRLL

C1FD VSCMPL E1FD VSSRLL

C2FD VVCMPG E2FD Illegal Vector Opcode

C3FD VSCMPG E3FD Illegal Vector Opcode

C4FD VVCMPF E4FD VVSLLL

C5FD VSCMPF E5FD VSSLLL

C6FD VVCMPD E6FD Illegal Vector Opcode

C7FD VSCMPD E7FD Illegal Vector Opcode

C8FD VVBISL E8FD VVXORL

C9FD VSBISL E9FD VSXORL

CAFD Illegal Vector Opcode EAFD Illegal Vector Opcode

CBFD Illegal Vector Opcode EBFD Illegal Vector Opcode

CCFD VVBICL ECFD VVCVT

CDFD VSBICL EDFD IOTA

CEFD Illegal Vector Opcode EEFD VVMERGE

CFFD Illegal Vector Opcode EFFD VSMERGE

D0FD Reserved to Compaq F0FD Reserved to Compaq

D1FD Reserved to Compaq F1FD Reserved to Compaq

D2FD Reserved to Compaq F2FD Reserved to Compaq

D3FD Reserved to Compaq F3FD Reserved to Compaq

D4FD Reserved to Compaq F4FD Reserved to Compaq

D5FD Reserved to Compaq F5FD Reserved to Compaq

D6FD Reserved to Compaq F6FD CVTHF

D7FD Reserved to Compaq F7FD CVTHD

D8FD Reserved to Compaq F8FD Reserved to Compaq

D9FD Reserved to Compaq F9FD Reserved to Compaq

DAFD Reserved to Compaq FAFD Reserved to Compaq

DBFD Reserved to Compaq FBFD Reserved to Compaq

DCFD Reserved to Compaq FCFD Reserved to Compaq

DDFD Reserved to Compaq FCFE Reserved to Compaq

(continued on next page)

D–18 Permanent Symbol Table Defined for Use with VAX MACRO

Permanent Symbol Table Defined for Use with VAX MACRO

Table D–3 (Cont.) Two_Byte Opcodes (Numeric Order)

Hex
Value Mnemonic

Hex
Value Mnemonic

DEFD Reserved to Compaq FCFF Reserved to Compaq

DFFD Reserved to Compaq FDFF BUGL

FEFF BUGW

FFFF Reserved for all time

Permanent Symbol Table Defined for Use with VAX MACRO D–19

E
Exceptions That May Occur During Instruction

Execution

Exceptions can be grouped into the following six classes:

• Arithmetic traps and faults

• Memory management exceptions

• Exceptions detected during operand reference

• Tracing

• Serious system failures

E.1 Arithmetic Traps and Faults
This section contains the descriptions of the exceptions that occur as the result of
performing an arithmetic or conversion operation. They are mutually exclusive
and are all assigned the same vector in the system control block (SCB) and the
same signal ‘‘reason’’ code. Each exception indicates that an instruction has been
completed (trap) or backed up (fault). An appropriate distinguishing exception
type code is pushed onto the stack as a longword. Table E–1 lists the arithmetic
exception type codes.

Table E–1 Arithmetic Exception Type Codes

Exception Type Mnemonic
Decimal
Value

Hexadecimal
Value

Traps

integer overflow SS$_INTOVF 1 1

integer divide-by-zero SS$_INTDIV 2 2

floating overflow SS$_FLTOVF 3 3

floating or decimal
divide-by-zero

SS$_FLTDIV 4 4

floating underflow SS$_FLTUND 5 5

decimal overflow SS$_DECOVF 6 6

subscript range SS$_SUBRNG 7 7

Faults

floating underflow SS$_FLTOVF_F 8 8

floating divide-by-zero SS$_FLTDIV_F 9 9

(continued on next page)

Exceptions That May Occur During Instruction Execution E–1

Exceptions That May Occur During Instruction Execution
E.1 Arithmetic Traps and Faults

Table E–1 (Cont.) Arithmetic Exception Type Codes

Exception Type Mnemonic
Decimal
Value

Hexadecimal
Value

floating underflow SS$_FLTUND_F 10 A

E.1.1 Integer Overflow Trap
An integer overflow trap is an exception indicating that the last instruction
executed had an integer overflow, which set the processor status longword (PSL)
V bit, and that the integer overflow was enabled (the IV bit in the PSL was set).
The stored result is the low-order part of the correct result. The N and Z bits in
the PSL are set according to the stored result. The type code pushed onto the
stack is 1 (SS$_INTOVF).

E.1.2 Integer Divide-by-Zero Trap
An integer divide-by-zero trap is an exception indicating that the last instruction
executed had an integer zero divisor. The stored result is equal to the dividend,
and condition code V bit in the PSL is set. The type code pushed onto the stack is
2 (SS$_INTDIV).

E.1.3 Floating Overflow Trap
A floating overflow trap is an exception indicating that the last instruction
executed resulted in an exponent greater than the largest representable exponent
for the data type after normalization and rounding. The stored result contains
a one in the sign field and zeros in the exponent and fraction fields. This is a
reserved operand. It causes a reserved operand fault if used in a subsequent
floating-point instruction. The N and V condition code bits in the PSL are set,
and the Z and C bits in the PSL are cleared. The type code pushed onto the stack
is 3 (SS$_FLTOVF).

E.1.4 Divide-by-Zero Trap
A floating divide-by-zero trap is an exception indicating that the last instruction
executed had a floating zero divisor. The stored result is the reserved operand
described previously for the floating overflow trap. The condition codes are set as
they are for the floating overflow trap.

A decimal string divide-by-zero trap is an exception indicating that the last
instruction executed had a decimal-string zero divisor. The destination, R0 to R5,
and condition codes are UNPREDICTABLE. The zero divisor can be either +0 or
-0.

The type code pushed onto the stack for both types of divide-by-zero is 4 (SS$_
FLTDIV).

E.1.5 Floating Underflow Trap
A floating underflow trap is an exception indicating that the last instruction
executed resulted in an exponent less than the smallest representable exponent
for the data type after normalization and rounding, and that floating underflow
was enabled (FU set). The stored result is zero. The N, V, and C condition
codes bits in the PSL are cleared, and the Z bit in the PSL is set, except for
the polynomial evaluation instruction POLYx. In POLYx, the trap occurs on
completion of the instruction, which may be many operations after the underflow.

E–2 Exceptions That May Occur During Instruction Execution

Exceptions That May Occur During Instruction Execution
E.1 Arithmetic Traps and Faults

The condition codes are set on the final result in POLYx. The type code pushed
onto the stack is 5 (SS$_FLTUND).

E.1.6 Decimal String Overflow Trap
A decimal string overflow trap is an exception indicating that the last instruction
executed had a decimal-string result too large for the destination string provided,
and that decimal overflow was enabled (the DV bit in the PSL was set). The V
condition code bit in the PSL is always set. The type code pushed onto the stack
is 6 (SS$_DECOVF).

E.1.7 Subscript-Range Trap
A subscript range trap is an exception indicating that the last instruction was
an INDEX instruction with a subscript operand that failed the range check. The
value of the subscript operand is lower than the low operand or greater than the
high operand. The result is stored in indexout, and the condition codes are set
as if the subscript were within range. The type code pushed onto the stack is 7
(SS$_SUBRNG).

E.1.8 Floating Overflow Fault
A floating overflow fault is an exception indicating that the last instruction
executed resulted in an exponent greater than the largest representable exponent
for the data type after normalization and rounding. The destination was
unaffected, and the saved condition codes are UNPREDICTABLE. The saved
program counter (PC) points to the instruction causing the fault. The POLYx
instruction is suspended with the first-part-done bit (FPD) set. The type code
pushed onto the stack is 8 (SS$_FLTOVF_F).

E.1.9 Divide-by-Zero Floating Fault
A floating divide-by-zero fault is an exception indicating that the last instruction
executed had a floating zero divisor. The quotient operand was unaffected and
the saved condition codes are UNPREDICTABLE. The saved PC points to the
instruction causing the fault. The type code pushed onto the stack is 9 (SS$_
FLTDIV_F).

E.1.10 Floating Underflow Fault
A floating underflow fault is an exception indicating that the last instruction
executed resulted in an exponent less than the smallest representable exponent
for the data type after normalization and rounding, and that floating underflow
was enabled (the FU bit was set). The destination operand is unaffected. The
saved condition codes are UNPREDICTABLE. The saved PC points to the
instruction causing the fault. The POLYx instruction is suspended with FPD set.
The type code pushed onto the stack is 10 (SS$_FLTUND_F).

E.2 Memory Management Exceptions
A memory management exception can be either an access control violation fault
or a translation not valid fault.

E.2.1 Access Control Violation Fault
An access control violation fault is an exception indicating that the process
attempted a reference not allowed at the current access mode.

Exceptions That May Occur During Instruction Execution E–3

Exceptions That May Occur During Instruction Execution
E.2 Memory Management Exceptions

E.2.2 Translation Not Valid Fault
A translation not valid fault is an exception indicating that the process attempted
a reference to a page for which the valid bit in the page table had not been set.

Note that if a process attempts to reference a page for which the page table entry
specifies both translation not valid fault and access control violation, an access
control violation fault occurs.

E.3 Exceptions Detected During Operand Reference
Two exceptions are possible during operand reference: the reserved addressing
mode fault and the reserved operand exception.

E.3.1 Reserved Addressing Mode Fault
A reserved addressing mode fault is an exception indicating that an operand
specifier attempted to use an addressing mode that is disallowed. No parameters
are pushed.

E.3.2 Reserved Operand Exception
A reserved operand exception is an exception indicating that an accessed operand
has a format reserved for future use by Compaq. No parameters are pushed onto
the stack. This exception always backs up the saved PC to point to the opcode.
The exception service routine may determine the type of operand by examining
the opcode using the saved PC.

Note that only the changes made by instruction fetch and the changes made
because of operand specifier evaluation may be restored. Therefore, some
instructions are not restartable. These exceptions are labeled as aborts rather
than as faults. The saved PC is always restored properly unless the instruction
attempted to modify it in a manner that results in UNPREDICTABLE results.

The reserved operand exceptions are caused by the following:

• Bit field too wide

• Invalid combination of bits in PSL restored by the return from interrupt (REI)
instruction (fault)

• Invalid combination of bits in PSW mask longword during a return from
procedure (RET) instruction (fault)

• Invalid combination of bits in the bit set PSW (BISPSW) or bit clear PSW
(BICPSW) instructions (fault)

• Invalid call procedure with stack argument list (CALLS) or call procedure
with general argument list (CALLG) instructions entry mask (fault)

• Invalid register number in the move from processor register (MFPR)
instruction or move to processor register (MTPR) instruction (fault)

• Invalid PCB contents in the load processor context (LDPCTX) instruction for
some implementations (abort)

• Unaligned operand in the add aligned word interlocked (ADAWI) instruction
(fault)

• Invalid register contents in the move to processor register (MTPR) instruction
for some implementations (fault)

• Invalid operand addresses in insert and remove queue interlocked (INSQHI,
INSQTI, REMQHI, or REMQTI) instructions (fault)

E–4 Exceptions That May Occur During Instruction Execution

Exceptions That May Occur During Instruction Execution
E.3 Exceptions Detected During Operand Reference

• A floating-point number that has the sign bit set and the exponent zero in the
polynomial evaluation (POLY) instruction table (fault)

• POLY degree too large (fault)

• Decimal string too long (abort)

• Invalid digit in convert trailing numeric to packed (CVTTP) or convert
separate numeric to packed (CVTSP) instructions (abort)

• Reserved pattern operator in the edit packed to character string (EDITPC)
instruction (fault)

• Incorrect source string length at completion of EDITPC (abort)

E.4 Exceptions Occurring as the Consequence of an Instruction
The following exceptions may occur as a consequence of instruction execution:

• Reserved or privileged instruction fault

• Opcode reserved to customers fault

• Instruction emulation exceptions

• Compatibility mode exception

• Change mode trap

• Breakpoint fault

Each is described in the following subsections.

E.4.1 Reserved or Privileged Instruction Fault
A reserved or privileged instruction fault occurs when the processor encounters
an opcode that is not specifically defined or requires higher privileges than the
current mode. No parameters are pushed onto the stack. Opcode FFFF (hex) will
always fault.

E.4.2 Operand Reserved to Customers Fault
An opcode reserved to customers fault is an exception that occurs when an opcode
reserved to customers is executed. The operation is identical to the reserved or
privileged instruction fault, except that the event is caused by a different set of
opcodes and faults through a different vector. All opcodes reserved to customers
start with FC (hex), which is the XFC instruction. If the special instruction must
generate a unique exception, one of the reserved-to-customer vectors should be
used. An example might be an unrecognized second byte of the instruction.

The XFC fault is intended primarily for use with writable control store to
implement installation-dependent instructions. The method used to enable and
disable the handling of an XFC fault in user-written microcode is implementation
dependent. Some implementations may transfer control to microcode without
checking bits <1:0> of the exception vector.

Exceptions That May Occur During Instruction Execution E–5

Exceptions That May Occur During Instruction Execution
E.4 Exceptions Occurring as the Consequence of an Instruction

E.4.3 Instruction Emulation Exceptions
When a subset processor executes a string instruction that is omitted from its
instruction set, an emulation exception results. An emulation exception can occur
through either of two system control block (SCB) vectors, depending on whether
or not the first-part-done (FPD) bit in the program status longword was set at
the beginning of the instruction. If the FPD bit is clear, a subset emulation
trap occurs through the SCB vector at offset CB (hex), and a subset emulation
trap frame is pushed onto the current stack. If the FPD bit is set, a suspended
emulation fault occurs through the SCB vector at offset CC (hex), and the PC and
the PSL are pushed onto the current stack.

E.4.4 Compatibility Mode Exception
A compatibility mode exception is an exception that occurs when the processor is
in compatibility mode. A longword of information containing a code that indicates
the exception type is pushed onto the stack. Figure E–1 shows the stack frame,
which is the same as that for arithmetic exceptions.

Figure E–1 Compatibility Mode Exception Stack Frame

:(SP)

ZK−6351−GE

PSL

PC of Next Instruction to Execute

Type Code

The compatibility type codes are shown in Table E–2.

Table E–2 Compatibility Mode Exception Type Codes

Exception Type
Decimal
Value

Faults

reserved opcode 0

BPT instruction 1

IOT instruction 2

EMT instruction 3

TRAP instruction 4

illegal instruction 5

Aborts

odd address 6

All other exceptions in compatibility mode, including the access control violation
fault, the translation not valid fault, and the machine check abort, occur by
means of the regular native-mode vector.

E–6 Exceptions That May Occur During Instruction Execution

Exceptions That May Occur During Instruction Execution
E.4 Exceptions Occurring as the Consequence of an Instruction

E.4.5 Change Mode Trap
A change mode trap is an exception occurring when one of the change mode
instructions (CHMK, CHME, CHMS, or CHMU) is executed. The instruction
operand is pushed onto the exception stack.

E.4.6 Breakpoint Fault
A breakpoint fault is an exception that occurs when the breakpoint instruction
(BPT) is executed. The BPT instruction pushes the current PSL onto the stack.

To proceed from a breakpoint fault, a debugger or tracing program does the
following:

1. Restores the original contents of the location containing the BPT instruction.

2. Sets the T bit in the PSL saved by the BPT fault. The PSL is on the stack.

3. Resumes operation of the main instruction stream.

When the instruction that has a breakpoint completes execution, a trace exception
occurs. At this point, the tracing program takes control and does the following:

1. Reinserts the BPT instruction.

2. Restores the T bit to its original state (usually zero).

3. Resumes operation of the main instruction stream.

Note that if both tracing and breakpointing are in progress (if the PSL T bit
was set at the time of the BPT), both the BPT restoration and a normal trace
exception should be processed on the trace exception by the trace handler.

E.5 Trace Fault
Program tracing is used for many purposes. Debugging programs and evaluating
program performance are the most common uses of program tracing.

A trace fault is an exception that occurs between instructions when trace is
enabled. One trace fault occurs before the execution of each traced instruction.
The address in the PC saved when a trace fault occurs is the address of the
instruction after the trace fault that would normally be executed. The trace
exception for an instruction takes precedence over all other exceptions. The
detection of reserved instruction faults occurs after the trace fault. If a trace
fault and a memory management fault (or an odd address abort during a
compatibility mode instruction fetch) occur simultaneously, exceptions are taken
in UNPREDICTABLE order.

To ensure that exactly one trace occurs per instruction despite other traps and
faults, the PSL contains the trace enable (T) and trace pending (TP) bits.

The PSL TP bit generates a fault before any other processing at the start of the
next instruction.

The following are rules of operation for trace:

1. At the beginning of an instruction, if the trace pending (TP) bit is set, it is
cleared and a trace fault is taken.

2. The value of the trace enable (T) bit is loaded into the trace pending (TP) bit.

Exceptions That May Occur During Instruction Execution E–7

Exceptions That May Occur During Instruction Execution
E.5 Trace Fault

3. The detection of interrupts and other exceptions can occur during instruction
execution. In this case, TP is cleared before the exception or interrupt is
initiated. The system saves the entire PSL including the T bit and TP bit
on interrupt or exception initiation and restores the PSL at the end with an
REI. This makes interrupts and benign exceptions totally transparent to the
executing program.

The following are conditions and results that might occur during instruction
execution or before the next instruction:

a. If the instruction faults or an interrupt is serviced, the PSL TP bit is
cleared before the PSL is saved on the stack. The saved PC (the next
lower word on the stack after the saved PSL) is set to the start of the
faulting or interrupted instruction. Instruction execution is resumed at
step 1.

b. If the instruction aborts or takes an arithmetic trap, the PSL TP bit is not
changed before the PSL is saved on the stack.

c. If an interrupt is serviced after instruction completion and arithmetic
traps but before the presence of tracing is checked at the start of the next
instruction, the PSL TP bit is not changed before the PSL is saved on the
stack.

E.5.1 Trace Operation When Entering a Change Mode Instruction
The routine entered by a change mode (CHMx) instruction is not traced because
change mode clears T and TP in the new PSL that is used for whichever new
mode is entered. However, if the T bit was set in the old PSW (the one to be
saved) at the beginning of the change mode instruction, the system sets both the
T and the TP bit in the saved PSL. Trace faults resume with the instruction that
follows other returns from interrupt (REI) in the routine entered by the CHMx
instruction. An instruction following an REI faults if T was set when the REI
was executed, or if the TP bit in the saved PSL is set. In both cases, TP is set
after the REI.

E.5.2 Trace Operation Upon Return From Interrupt
Note that a trace fault that occurs for an instruction following an REI instruction
that had set the TP will be taken with the new PSL restored by the REI
instruction. Thus, special care must be taken if exception or interrupt routines
are traced.

E.5.3 Trace Operation After a BISPSW Instruction
If the T bit is set by a BISPSW instruction, trace faults begin with the second
instruction after the BISPSW.

E.5.4 Trace Operation After a CALLS or CALLG Instruction
The CALLS and CALLG instructions save a clear T bit, although the T bit in the
PSL is unchanged. This is done so that a debugger or trace program proceeding
from a BPT fault does not get a spurious trace from the RET that matches the
CALL.

E–8 Exceptions That May Occur During Instruction Execution

Exceptions That May Occur During Instruction Execution
E.6 Serious System Failures

E.6 Serious System Failures
The following are possible serious system failures:

• Kernel stack not valid abort

• Interrupt stack not valid halt

• Machine check exception

These system failures are described in the following sections.

E.6.1 Kernel Stack Not Valid Abort
The kernel stack not valid abort is an exception indicating that the kernel stack
was not valid while the processor was pushing information onto it during the
initiation of an exception or interrupt. This is usually an indication of a stack
overflow or other operating system error. During this process, the attempted
exception is transformed into an abort that uses the interrupt stack. Only the
PSL and PC of the original exception are pushed onto the interrupt stack. The
interrupt priority level (IPL) is raised to 1F (hex). If the exception vector bits
<1:0> are not both 1, the operation of the processor is UNDEFINED.

Software can abort the process without aborting the system. However, because of
the lost information, the process cannot be continued. If the kernel stack is not
valid during the normal execution of an instruction (including CHMx or REI), the
normal memory management fault is initiated.

E.6.2 Interrupt Stack Not Valid Halt
An interrupt stack not valid halt results when the interrupt stack was not valid
or a memory error occurred while the processor was pushing information onto
the interrupt stack during the initiation of an exception or interrupt. No further
interrupt requests are acknowledged on the processor. The processor leaves the
PC, the PSL, and the reason for the halt in registers so that they are available to
a debugger, to the normal bootstrap routine, or to an optional watchdog bootstrap
routine. A watchdog bootstrap routine can cause the processor to leave the halted
state.

E.6.3 Machine Check Exception
A machine check exception indicates that the processor detected an internal
error. As is usual for exceptions, a machine check is taken regardless of current
interrupt priority level (IPL). The machine check exception vector (bits 0 to 1)
must specify 1 or the operation of the processor is UNDEFINED. The exception is
taken on the interrupt stack, and IPL is raised to 1F (hex).

The processor pushes a machine check stack frame onto the interrupt stack,
consisting of a count longword, an implementation-dependent number of error
report longwords, a PC and a PSL. The count longword reports the number of
bytes of error report pushed. For example, if 4 longwords of error report are
pushed, the count longword will contain 16 (decimal).

Software can decide, on the basis of the information presented, whether to abort
the current process if the machine check came from the process. The machine
check includes any uncorrected bus and memory errors and any other processor-
detected errors. Some processor errors cannot ensure the state of the machine
at all. For such errors, the state is preserved as well as possible, given the
circumstances.

Exceptions That May Occur During Instruction Execution E–9

Index

A
Abort

kernel stack not valid, E–9
Absolute expression, 3–8
Absolute mode, 5–12

assembling relative mode as, 6–22
Absolute queue, 9–82

manipulating, 9–85
ACBB (Add Compare and Branch Byte)

instruction, 9–44
ACBD (Add Compare and Branch D_floating)

instruction, 9–44
ACBF (Add Compare and Branch F_floating)

instruction, 9–44
ACBG (Add Compare and Branch G_floating)

instruction, 9–44
ACBH (Add Compare and Branch H_floating)

instruction, 9–44
ACBL (Add Compare and Branch Long)

instruction, 9–44
ACBW (Add Compare and Branch Word)

instruction, 9–44
Access mode

vector, 10–16, 10–37, 10–44
ADAWI (Add Aligned Word Interlocked)

instruction, 9–7
ADDB2 (Add Byte 2 Operand) instruction, 9–8
ADDB3 (Add Byte 3 Operand) instruction, 9–8
ADDD2 (Add D_floating 2 Operand) instruction,

9–106
ADDD3 (Add D_floating 3 Operand) instruction,

9–106
ADDF2 (Add F_floating 2 Operand) instruction,

9–106
ADDF3 (Add F_floating 3 Operand) instruction,

9–106
ADDG2 (ADD G_floating 2 Operand) instruction,

9–106
ADDG3 (ADD G_floating 3 Operand) instruction,

9–106
ADDH2 (ADD H_floating 2 Operand) instruction,

9–106
ADDH3 (ADD H_floating 3 Operand) instruction,

9–106

ADDL2 (Add Long 2 Operand) instruction, 9–8
ADDL3 (Add Long 3 Operand) instruction, 9–8
ADDP4 (Add Packed 4 Operand) instruction,

9–146
ADDP6 (Add Packed 6 Operand) instruction,

9–146
Address

access type, 8–16
instructions, 9–33
storage directive (.ADDRESS), 6–4
translation vector, 10–41
virtual, 8–2

.ADDRESS directive, 6–4
Addressing mode, 5–1

absolute, 5–12, 6–22
autodecrement, 5–6
autoincrement, 5–4
autoincrement deferred, 5–5
branch, 5–16
determining, 6–68
displacement, 5–6
displacement deferred, 5–8
general, 5–14
general register, 5–1

summary, 8–25
immediate, 5–12

usage restricted in vector memory
instructions, 10–45, 10–47

index, 5–14
literal, 5–9, 5–13
operand specifier formats, 8–16
program counter, 5–10

summary, 8–26
register, 5–3
register deferred, 5–4
relative, 5–10, 6–19, 6–22
relative deferred, 5–11, 6–19
summary, 5–1, C–9

Address storage directive (.ADDRESS), 6–4
ADDW2 (Add Word 2 Operand) instruction, 9–8
ADDW3 (Add Word 3 Operand) instruction, 9–8
ADWC (Add with Carry) instruction, 9–9
.ALIGN directive, 6–5
Alignment vector, 10–25, 10–43
AND operator, 3–15

Index–1

AOBLEQ (Add One and Branch Less Than or
Equal) instruction, 9–46

AOBLSS (Add One and Branch Less Than)
instruction, 9–47

Architecture
description of basic VAX, 8–1

Argument
actual, 4–1
in a macro, 4–1
length, 6–64
number of, 6–63

Arithmetic instruction
decimal string, 9–142
floating-point, 9–101
integer, 9–5

Arithmetic shift operator, 3–14
.ASCIC directive, 6–8
.ASCID directive, 6–9
ASCII

character set, A–1
operator, 3–11

.ASCII directive, 6–10
ASCII string storage directive, 6–7

counted (.ASCIC), 6–8
string (.ASCII), 6–10
string-descriptor (.ASCID), 6–9
zero-terminated (.ASCIZ), 6–11

.ASCIZ directive, 6–11
ASHL (Arithmetic Shift Long) instruction, 9–10
ASHP (Arithmetic Shift and Round Packed)

instruction, 9–148
ASHQ (Arithmetic Shift Quad) instruction, 9–10
Assembler directives,

summary, C–1
Assembler notation, 10–14
Assembly termination, 6–25
Assembly termination directive (.END), 6–25
Assignment statement, 1–1, 3–15
Asynchronous memory management exception

handling, 10–16, 10–26
Autodecrement mode, 5–6

operand specifier format, 8–19
Autoincrement deferred mode, 5–5

operand specifier format, 8–18
Autoincrement mode, 5–4

operand specifier format, 8–18

B
Base operand specifier, 8–23
BBC (Branch on Bit Clear) instruction, 9–50
BBCC (Branch on Bit Clear and Clear) instruction,

9–51
BBCCI (Branch on Bit Clear and Clear

Interlocked) instruction, 9–52

BBCS (Branch on Bit Clear and Set) instruction,
9–51

BBS (Branch on Bit Set) instruction, 9–50
BBSC (Branch on Bit Set and Clear) instruction,

9–51
BBSS (Branch on Bit Set and Set) instruction,

9–51
BBSSI (Branch on Bit Set and Set Interlocked)

instruction, 9–52
BCC (Branch on Carry Clear) instruction, 9–48
BCS (Branch on Carry Set) instruction, 9–48
BEQL (Branch on Equal) instruction, 9–48
BEQLU (Branch on Equal Unsigned) instruction,

9–48
BGEQ (Branch on Greater Than or Equal)

instruction, 9–48
BGEQU (Branch on Greater Than or Equal

Unsigned) instruction, 9–48
BGTR (Branch on Greater Than) instruction,

9–48
BGTRU (Branch on Greater Than Unsigned)

instruction, 9–48
BICB2 (Bit Clear Byte 2 Operand) instruction,

9–11
BICB3 (Bit Clear Byte 3 Operand) instruction,

9–11
BICL2 (Bit Clear Long 2 Operand) instruction,

9–11
BICL3 (Bit Clear Long 3 Operand) instruction,

9–11
BICPSW (Bit Clear PSW) instruction, 9–71
BICW2 (Bit Clear Word 2 Operand) instruction,

9–11
BICW3 (Bit Clear Word 3 Operand) instruction,

9–11
Binary operator, 3–14

summary, C–7
BISB2 (Bit Set Byte 2 Operand) instruction, 9–12
BISB3 (Bit Set Byte 3 Operand) instruction, 9–12
BISL2 (Bit Set Long 2 Operand) instruction, 9–12
BISL3 (Bit Set Long 3 Operand) instruction, 9–12
BISPSW (Bit Set PSW) instruction, 9–72
BISW2 (Bit Set Word 2 Operand) instruction,

9–12
BISW3 (Bit Set Word 3 Operand) instruction,

9–12
BITB (Bit Test Byte) instruction, 9–13
BITL (Bit Test Long) instruction, 9–13
BITW (Bit Test Word) instruction, 9–13
BLBC (Branch on Low Bit Clear) instruction,

9–53
BLBS (Branch on Low Bit Set) instruction, 9–53
BLEQ (Branch on Less Than or Equal) instruction,

9–48
BLEQU (Branch on Less Than or Equal Unsigned)

instruction, 9–48

Index–2

Block storage allocation directives (.BLKx), 6–12
BLSS (Branch on Less Than) instruction, 9–48
BLSSU (Branch on Less Than Unsigned)

instruction, 9–48
BNEQ (Branch on Not Equal) instruction, 9–48
BNEQU (Branch on Not Equal Unsigned)

instruction, 9–48
BPT (Breakpoint Fault) instruction, 9–73
Branch access type, 8–16
Branch mode, 5–16

operand specifier format, 8–26
BRB (Branch Byte Displacement) instruction,

9–54
BRW (Branch Word Displacement) instruction,

9–54
BSBB (Branch to Subroutine Byte Displacement)

instruction, 9–55
BSBW (Branch to Subroutine Word Displacement)

instruction, 9–55
BUGL (Bugcheck Longword Message Identifier)

instruction, 9–196
BUGW (Bugcheck Word Message Identifier)

instruction, 9–196
BVC (Branch on Overflow Clear) instruction, 9–48
BVS (Branch on Overflow Set) instruction, 9–48
Byte data type, 8–2
.BYTE directive, 6–14
Byte storage directive (.BYTE), 6–14

C
Call frame, 9–63
CALLG (Call Procedure With General Argument

List) instruction, 9–65
CALLS (Call Procedure with Stack Argument List)

instruction, 9–67
Carry condition code (C), 8–14
CASEB (Case Byte) instruction, 9–56
CASEL (Case Long) instruction, 9–56
CASEW (Case Word) instruction, 9–56
Chaining of vector instructions, 10–18
Character set

in source statement, 3–1
special characters, C–5
table, A–1

Character string
data type, 8–7
instructions, 9–124
length, 6–64

CHME (Change Mode to Executive) instruction,
9–187

CHMK (Change Mode to Kernel) instruction,
9–187

CHMS (Change Mode to Supervisor) instruction,
9–187

CHMU (Change Mode to User) instruction, 9–187

CLRB (Clear Byte) instruction, 9–14
CLRD (Clear D_floating) instruction, 9–107
CLRF (Clear F_floating) instruction, 9–107
CLRG (Clear G_floating) instruction, 9–107
CLRH (Clear H_floating) instruction, 9–107
CLRL (Clear Long) instruction, 9–14
CLRO (Clear Octa) instruction, 9–14
CLRQ (Clear Quad) instruction, 9–14
CLRW (Clear Word) instruction, 9–14
CMPB (Compare Byte) instruction, 9–15
CMPC3 (Compare Characters 3 Operand)

instruction, 9–126
CMPC5 (Compare Characters 5 Operand)

instruction, 9–126
CMPD (Compare D_floating) instruction, 9–108
CMPF (Compare F_floating) instruction, 9–108
CMPG (Compare G_floating) instruction, 9–108
CMPH (Compare H_floating) instruction, 9–108
CMPL (Compare Long) instruction, 9–15
CMPP3 (Compare Packed 3 Operand) instruction,

9–150
CMPP4 (Compare Packed 4 Operand) instruction,

9–150
CMPV (Compare Field) instruction, 9–38
CMPW (Compare Word) instruction, 9–15
CMPZV (Compare Zero Extended Field)

instruction, 9–38
Colon (:)

in label field, 2–2
Complement operator, 3–13
Conditional assembly block directive

.ENDC, 6–26
(.IF), 6–40
listing unsatisfied code, 6–88

Condition code, 8–13, 9–4
carry (C), 8–14
negative (N), 8–14
overflow (V), 8–14
zero (Z), 8–14

Context switch
scalar, 10–16, 10–17, 10–37
vector, 10–28

Continuation character (-)
in listing file, 3–8
in source statement, 2–1

Control instructions, 9–42
CRC (Calculate Cyclic Redundancy Check)

instruction, 9–140
Created local label, 4–6

range, 3–7
.CROSS directive, 6–16
Cross-reference directive

.CROSS, 6–16

.NOCROSS, 6–16
(.NOCROSS), 6–66

Current location counter, 3–16

Index–3

CVTBD (Convert Byte to D_floating) instruction,
9–109

CVTBF (Convert Byte to F_floating) instruction,
9–109

CVTBG (Convert Byte to G_floating) instruction,
9–109

CVTBH (Convert Byte to H_floating) instruction,
9–109

CVTBL (Convert Byte to Long) instruction, 9–16
CVTBW (Convert Byte to Word) instruction, 9–16
CVTDB (Convert D_floating to Byte) instruction,

9–109
CVTDF (Convert D_floating to F_floating)

instruction, 9–109
CVTDH (Convert D_floating to H_floating)

instruction, 9–109
CVTDL (Convert D_floating to Long) instruction,

9–109
CVTDW (Convert D_floating to Word) instruction,

9–109
CVTFB (Convert F_floating to Byte) instruction,

9–109
CVTFD (Convert F_floating to D_floating)

instruction, 9–109
CVTFG (Convert F_floating to G_floating)

instruction, 9–109
CVTFH (Convert F_floating to H_floating)

instruction, 9–109
CVTFL (Convert F_floating to Long) instruction,

9–109
CVTFW (Convert F_floating to Word) instruction,

9–109
CVTGB (Convert G_floating to Byte) instruction,

9–109
CVTGF (Convert G_floating to F_floating)

instruction, 9–109
CVTGH (Convert G_floating to H_floating)

instruction, 9–109
CVTGL (Convert G_floating to Long) instruction,

9–109
CVTGW (Convert G_floating to Word) instruction,

9–109
CVTHB (Convert H_floating to Byte) instruction,

9–109
CVTHD (Convert H_floating to D_floating)

instruction, 9–109
CVTHF (Convert H_floating to F_floating)

instruction, 9–109
CVTHG (Convert H_floating to G_floating)

instruction, 9–109
CVTHL (Convert H_floating to Long) instruction,

9–109
CVTHW (Convert H_floating to Word) instruction,

9–109
CVTLB (Convert Long to Byte) instruction, 9–16

CVTLD (Convert Long to D_floating) instruction,
9–109

CVTLF (Convert Long to F_floating) instruction,
9–109

CVTLG (Convert Long to G_floating) instruction,
9–109

CVTLH (Convert Long to H_floating) instruction,
9–109

CVTLP (Convert Long to Packed) instruction,
9–151

CVTLW (Convert Long to Word) instruction, 9–16
CVTPL (Convert Packed to Long) instruction,

9–152
CVTPS (Convert Packed to Leading Separate

Numeric) instruction, 9–153
CVTPT (Convert Packed to Trailing Numeric)

instruction, 9–155
CVTRDL (Convert Rounded D_floating to Long)

instruction, 9–109
CVTRFL (Convert Rounded F_floating to Long)

instruction, 9–109
CVTRGL (Convert Rounded G_floating to Long)

instruction, 9–109
CVTRHL (Convert Rounded H_floating to Long)

instruction, 9–109
CVTSP (Convert Leading Separate Numeric to

Packed) instruction, 9–157
CVTTP (Convert Trailing Numeric to Packed)

instruction, 9–159
CVTWB (Convert Word to Byte) instruction, 9–16
CVTWD (Convert Word to D_floating) instruction,

9–109
CVTWF (Convert Word to F_floating) instruction,

9–109
CVTWG (Convert Word to G_floating) instruction,

9–109
CVTWH (Convert Word to H_floating) instruction,

9–109
CVTWL (Convert Word to Long) instruction, 9–16
Cyclic redundancy check instruction, 9–139

D
Data storage directive

.ADDRESS, 6–4

.ASCIC, 6–8

.ASCID, 6–9

.ASCII, 6–10

.ASCIZ, 6–11

.BYTE, 6–14

.D_FLOATING, 6–20

.F_FLOATING, 6–35

.G_FLOATING, 6–36

.H_FLOATING, 6–38

.LONG, 6–56

.OCTA, 6–70

.PACKED, 6–74

.QUAD, 6–81

Index–4

Data storage directive (cont’d)
.SIGNED_BYTE, 6–90
.SIGNED_WORD, 6–91
.WORD, 6–101

Data type, 8–2
byte, 8–2
character string, 8–7
floating-point, 8–4, 8–5, 8–6, 9–101
integer, 8–2
leading separate numeric string, 8–11
longword, 8–3
octaword, 8–3
packed decimal string, 8–12
quadword, 8–3
string, 8–7
trailing numeric string, 8–8
variable-length bit field, 8–6
word, 8–2

.DEBUG directive, 6–18
Debug directive (.DEBUG), 6–18
Debugger

module name, 6–23
routine name, 6–23

DECB (Decrement Byte) instruction, 9–17
Decimal/hexadecimal conversion, B–2

table, B–1
Decimal overflow enable (DV), 8–15
Decimal string instructions, 9–142
DECL (Decrement Long) instruction, 9–17
DECW (Decrement Word) instruction, 9–17
.DEFAULT directive, 6–19
Default displacement length directive (.DEFAULT),

6–19
Default result

vector arithmetic exceptions, 10–5, 10–26,
10–63

Delimiter
string argument, 4–3

Dependencies
vector results, 10–20

Direct assignment statement, 1–1, 3–15
Directive, 1–1, 6–1

as operator, 2–3
general assembler, 1–1, 6–1
macro, 1–1, 6–1, 6–2
summary, C–1

Disable assembler functions directive (.DISABLE),
6–21

Disabled fault
vector processor, 10–27, 10–28

.DISABLE directive, 6–21
Displacement deferred mode, 5–8

operand specifier formats, 8–20
Displacement mode, 5–6

operand specifier formats, 8–19
DIVB2 (Divide Byte 2 Operand) instruction, 9–18

DIVB3 (Divide Byte 3 Operand) instruction, 9–18
DIVD2 (Divide D_floating 2 Operand) instruction,

9–111
DIVD3 (Divide D_floating 3 Operand) instruction,

9–111
DIVF2 (Divide F_floating 2 Operand) instruction,

9–111
DIVF3 (Divide F_floating 3 Operand) instruction,

9–111
DIVG2 (Divide G_floating 2 Operand) instruction,

9–111
DIVG3 (Divide G_floating 3 Operand) instruction,

9–111
DIVH2 (Divide H_floating 2 Operand) instruction,

9–111
DIVH3 (Divide H_floating 3 Operand) instruction,

9–111
Divide-by-zero trap, 8–15
DIVL2 (Divide Long 2 Operand) instruction, 9–18
DIVL3 (Divide Long 3 Operand) instruction, 9–18
DIVP (Divide Packed) instruction, 9–161
DIVW2 (Divide Word 2 Operand) instruction,

9–18
DIVW3 (Divide Word 3 Operand) instruction,

9–18
.DOUBLE directive, 6–20
D_floating data type, 8–4, 9–102
.D_FLOATING directive, 6–20

E
Edit

instruction, 9–167
vector, 10–77

pattern operator, 9–168, 9–170
EDITPC (Edit Packed to Character String)

instruction, 9–168
EDIV (Extended Divide) instruction, 9–19
EMODD (Extended Multiply and Integerize

D_floating) instruction, 9–113
EMODF (Extended Multiply and Integerize

F_floating) instruction, 9–113
EMODG (Extended Multiply and Integerize

G_floating) instruction, 9–113
EMODH (Extended Multiply and Integerize

H_floating) instruction, 9–113
EMUL (Extended Multiply) instruction, 9–20
Enable assembler functions, 6–22
.ENABLE directive, 6–22, 6–34
.ENDC directive, 6–26
End conditional assembly directive (.END), 6–26
.END directive, 6–25
End macro definition directive (.ENDM), 6–27
.ENDM directive, 6–27
.ENDR directive, 6–28
.ENTRY directive, 6–29

Index–5

Entry mask, 9–63
Entry point

defining, 6–29
Entry point directive (.ENTRY), 6–29
EO$ADJUST_INPUT (Adjust Input Length)

pattern operator, 9–172
EO$BLANK_ZERO (Blank Backwards when Zero)

pattern operator, 9–173
EO$CLEAR_SIGNIF (Clear Significance) pattern

operator, 9–182
EO$END (End Edit) pattern operator, 9–174
EO$END_FLOAT (End Floating Sign) pattern

operator, 9–175
EO$FILL (Store Fill) pattern operator, 9–176
EO$FLOAT (Float Sign) pattern operator, 9–177
EO$INSERT (Insert Character) pattern operator,

9–178
EO$LOAD_FILL (Load Fill Register) pattern

operator, 9–179
EO$LOAD_MINUS (Load Sign Register If Minus)

pattern operator, 9–179
EO$LOAD_PLUS (Load Sign Register If Plus)

pattern operator, 9–179
EO$LOAD_SIGN (Load Sign Register) pattern

operator, 9–179
EO$MOVE (Move Digits) pattern operator, 9–180
EO$REPLACE_SIGN (Replace Sign when Zero)

pattern operator, 9–181
EO$SET_SIGNIF (Set Significance) pattern

operator, 9–182
EO$STORE_SIGN (Store Sign) pattern operator,

9–183
.ERROR directive, 6–31
ETYPE, 10–6, 10–64
.EVEN directive, 6–33
Exception, E–1

access control violation, E–3
arithmetic, E–1
arithmetic type code, E–1
breakpoint, E–7
change mode, E–7
compatibility mode, E–6

type code, E–6
control, 8–13
customer reserved opcode, E–5
decimal

string overflow, E–3
floating

divide-by-zero, E–2, E–3
overflow, E–2, E–3
underflow, E–2, E–3

instruction
emulation, E–6
execution, E–5

integer
divide-by-zero, E–2
overflow, E–2

kernel stack not valid, E–9

Exception (cont’d)
machine check, E–9
memory managment, E–3
operand reference, E–4
reserved

addressing mode, E–4
operand, E–4

subscript-range, E–3
trace, E–7
trace operation, E–7
translation not valid, E–4
vector processor, 10–10, 10–24, 10–30

arithmetic, 10–5, 10–19, 10–24, 10–26,
10–63

floating-point, 10–63
memory management, 10–25
Processor Status Longword, 8–14

Exception Condition Type
See ETYPE

Exclusive OR operator, 3–15
Execution model

vector processor, 10–15
Expression, 3–8

absolute, 3–8
evaluation of, 3–8
example of, 3–9
external, 3–9
global, 3–8
relocatable, 3–8, 3–16

Extent
syntax, 7–1

.EXTERNAL directive, 6–34
External expression, 3–9
External symbol, 6–100

attribute directive (.EXTERNAL), 6–34
defining, 6–22, 6–34

%EXTRACT operator, 4–10
EXTV (Extract Field) instruction, 9–39
EXTZV (Extract Zero Extended Field) instruction,

9–39

F
Fault

access control violation, E–3, E–4
arithmetic, E–1
arithmetic type code, E–1
breakpoint, E–7
customer reserved opcode, E–5
floating

divide-by-zero, E–3
overflow, E–2, E–3
underflow, E–3

instruction execution, E–5
memory management, E–3
privileged instruction, E–5
reserved

addressing mode, E–4

Index–6

Fault
reserved (cont’d)

opcode, E–5
trace, E–7
translation not valid, E–4

FFC (Find First Clear) instruction, 9–40
FFS (Find First Set) instruction, 9–40
Field, 2–1

comment, 2–1, 2–3
label, 2–1, 2–2
must be zero (MBZ), 7–1
operand, 2–3
operator, 2–3
read as zero (RAZ), 7–2
should be zero (SBZ), 7–2
variable-length bit, 8–6

.FLOAT directive, 6–35
Floating overflow fault, 8–15
Floating-point

accuracy, 9–103
rounding, 9–103
zero, 9–102

Floating-point constants (.D_FLOATING), 6–20
Floating-point data type, 8–4, 9–101

D_floating, 8–4
G_floating, 8–5
H_floating, 8–6

Floating-point instructions, 9–101
vector, 10–63

Floating-point number, 9–101
format, 3–3
.F_FLOATING, 6–35
.G_FLOATING, 6–36
.H_FLOATING, 6–38
in source statement, 3–3
rounding, 6–23
storage, 6–20
storing, 6–35, 6–36, 6–38
truncating, 6–23

Floating-point operator, 3–13
Floating-point storage directive

.D_FLOATING, 6–20
(.F_FLOATING), 6–35
(.G_FLOATING), 6–36

Floating underflow enable (FU), 8–14
Formal argument, 4–1
Frame

call, 9–63
stack, 9–63

F_floating data type, 8–4, 9–102
.F_FLOATING directive, 6–35

G
General mode, 5–14
General register mode, 5–1

summary, 8–25

.GLOBAL directive, 6–37
Global expression, 3–8
Global label, 2–2
Global symbol, 3–6, 6–100

attribute directive (.GLOBAL), 6–37
defining, 6–22, 6–34, 6–37
defining for shareable image, 6–95

G_floating data type, 8–5, 9–102
.G_FLOATING directive, 6–36

H
HALT (Halt) instruction, 9–74, 10–37

interrupt stack not valid, E–9
synchronizing vector memory before, 10–37

Hardware errors
vector, 10–27, 10–42

Hexadecimal/decimal conversion, B–1
table, B–1

H_floating data type, 8–6
.H_FLOATING directive, 6–38
H_floating-point storage directive (.H_FLOATING),

6–38

I
I/O space references

vector, 10–25, 10–37, 10–42
.IDENT directive, 6–39
Identification directive (.IDENT), 6–39
.IF directive, 6–40
.IF_FALSE directive, 6–43
.IF_TRUE directive, 6–43
.IF_TRUE_FALSE directive, 6–43
.IIF directive, 6–46
Immediate conditional assembly block directive

(.IIF), 6–46
Immediate mode, 5–12

contrasted with literal mode, 5–13
Immediate mode addressing

usage restricted in vector memory instructions,
10–45, 10–47

INCB (Increment Byte) instruction, 9–21
INCL (Increment Long) instruction, 9–21
Inclusive OR operator, 3–15
INCW (Increment Word) instruction, 9–21
Indefinite repeat argument directive (.IRP), 6–47
Indefinite repeat character directive (.IRPC), 6–49
INDEX (Compute Index) instruction, 9–75
Index mode, 5–14

operand specifier format, 8–23
INSQHI (Insert Entry into Queue at Head,

Interlocked) instruction, 9–89
INSQTI (Insert Entry into Queue at Tail,

Interlocked) instruction, 9–91

Index–7

INSQUE (Insert Entry in Queue) instruction,
9–93

Instruction, 1–1, 9–1
address, 9–33
arithmetic, 9–5, 9–101, 9–142
as operator, 2–3
character string, 9–124
control, 9–42
decimal string, 9–142
floating-point, 9–101
format, 8–15
integer, 9–5
logical, 9–5
packed decimal, 9–142
procedure call, 9–63
queue, 9–82
set, 9–1
string, 9–124, 9–142
variable-length bit field, 9–36
vector, 10–8, 10–15, 10–18

Instruction notation
operand specifier, 9–2
operation description, 9–3

INSV (Insert Field) instruction, 9–41
Integer

data type, 8–2
in source statement, 3–3
unsigned, 8–2, 8–3

Integer instructions, 9–5
vector, 10–52

Integer overflow enable (IV), 8–14
Interlocked instructions, 10–37
Internal processor register

See IPR
Interrupts, 10–37
IOTA (Generate Compressed Iota Vector)

instruction, 10–79
IPR (internal processor register)

vector, 10–3, 10–8
.IRPC directive, 6–49
.IRP directive, 6–47

J
JMP (Jump) instruction, 9–58
JSB (Jump to Subroutine) instruction, 9–59

K
Keyword argument, 4–2

L
Label

created local, 4–6
global, 2–2
user-defined local, 3–6, 4–6

LDPCTX (Load Process Context) instruction,
9–191, 10–41

Leading separate numeric string
data type, 8–11

%LENGTH operator, 4–7
.LIBRARY directive, 6–51
.LINK directive, 6–52

/INCLUDE qualifier, 6–52
/LIBRARY qualifier, 6–52
/SELECTIVE_SEARCH qualifier, 6–52
/SHAREABLE qualifier, 6–53

.LIST directive, 6–55
See also .SHOW directive

Listing control directive
.IDENT, 6–39
.LIST, 6–55
.NLIST, 6–65
.NOSHOW, 6–67, 6–88
.PAGE, 6–75
.SHOW, 6–88

Listing level count, 6–89
Listing table of contents, 6–93
Literal mode, 5–9

contrasted with immediate mode, 5–13
operand specifier format, 8–21

Local label
saving, 6–86
user-defined, 3–6

Local label block
ending, 6–22
starting, 6–22

Local symbol, 3–6
%LOCATE operator, 4–8
Location control directive

.ALIGN, 6–5

.BLKx, 6–12
Location counter alignment directive

(.ODD), 6–71
Location counter control directive

(.EVEN), 6–33
LOCC (Locate Character) instruction, 9–128
Logical AND operator

See AND operator
Logical exclusive OR operator

See Exclusive OR operator
Logical functions, vector, 10–59
Logical inclusive OR operator

See Inclusive OR operator
Logical instruction, 9–5
.LONG directive, 6–56
Longword data type, 8–3
Longword storage directive (.LONG), 6–56

Index–8

M
Machine checks, 10–37, 10–42
Macro, 4–1

nested, 4–4
passing numeric value to, 4–6
with the same name as an opcode, 6–58

Macro argument, 4–1
actual, 4–1
concatenated, 4–5
delimited, 4–3, 4–5
formal, 4–1
keyword, 4–2
positional, 4–2
string, 4–3

Macro call, 4–1
as operator, 2–3
listing, 6–88
number of arguments, 6–63

Macro call directive (.MCALL), 6–60
Macro definition, 4–1

default value, 4–2
end, 6–27
labeling in, 4–6
listing, 6–88

Macro definition directive
(.MACRO), 6–57

Macro deletion directive (.MDELETE), 6–61
.MACRO directive, 6–57
Macro exit directive (.MEXIT), 6–62
Macro expansion

listing, 6–88
printing, 4–1
terminating, 6–62

Macroinstruction
See Macro

Macro library
adding a name to, 6–51

Macro library directive (.LIBRARY), 6–51
Macro link directive (.LINK), 6–52
Macro name, 3–5
Macro operator

%EXTRACT, 4–10
%LENGTH, 4–7
%LOCATE, 4–8
string, 4–7

Macro string operator
summary, C–8

Mask
entry, 9–63
register, 3–12
register save, 6–29, 6–59

.MASK directive, 6–59
Masked vector operations, 10–9
MATCHC (Match Characters) instruction, 9–129

MBZ field, 7–1
.MCALL directive, 6–60
MCOMB (Move Complemented Byte) instruction,

9–22
MCOML (Move Complemented Long) instruction,

9–22
MCOMW (Move Complemented Word) instruction,

9–22
.MDELETE directive, 6–61
Memory

See Vector memory
Memory management

exception, E–3
fault, E–3
vector, 10–41

memory management disabled, 10–42
TB, 10–6, 10–7, 10–16, 10–28, 10–29,

10–36, 10–41
Memory management exceptions

vector, 10–25
asynchronous MME handling, 10–26
fault parameter, 10–25

PTE bit, 10–25
VAL bit, 10–25
VAS bit, 10–25
VIO bit, 10–25

fault stack frame, 10–25
synchronous MME handling, 10–26
system control block (SCB), 10–25

Memory synchronization
required use of, 10–37

Message display directive
(.ERROR), 6–31
(.PRINT), 6–76

Message warning display directive
(.WARN), 6–98

.MEXIT directive, 6–62
MFPR (Move from Processor Register) instruction,

9–195
vector IPRs, 10–3, 10–7, 10–28
VPSR, 10–5, 10–27, 10–36

MFVP (Move from Vector Processor) instruction,
10–16, 10–30

MNEGB (Move Negated Byte) instruction, 9–23
MNEGD (Move Negated D_floating) instruction,

9–115
MNEGF (Move Negated F_floating) instruction,

9–115
MNEGG (Move Negated G_floating) instruction,

9–115
MNEGH (Move Negated H_floating) instruction,

9–115
MNEGL (Move Negated Long) instruction, 9–23
MNEGW (Move Negated Word) instruction, 9–23
Modify access type, 8–15

Index–9

Modify-fault
vector, 10–42

Module name
made available to debugger, 6–23

MOVAB (Move Address Byte) instruction, 9–34
MOVAD (Move Address D_floating) instruction,

9–34
MOVAF (Move Address F_floating) instruction,

9–34
MOVAG (Move Address G_floating) instruction,

9–34
MOVAH (Move Address H_floating) instruction,

9–34
MOVAL (Move Address Long) instruction, 9–34
MOVAO (Move Address Octa) instruction, 9–34
MOVAQ (Move Address Quad) instruction, 9–34
MOVAW (Move Address Word) instruction, 9–34
MOVB (Move Byte) instruction, 9–24
MOVC3 (Move Character 3 Operand) instruction,

9–130
MOVC5 (Move Character 5 Operand) instruction,

9–130
MOVD (Move D_floating) instruction, 9–116
MOVF (Move F_floating) instruction, 9–116
MOVG (Move G_floating) instruction, 9–116
MOVH (Move H_floating) instruction, 9–116
MOVL (Move Long) instruction, 9–24
MOVO (Move Octa) instruction, 9–24
MOVP (Move Packed) instruction, 9–163
MOVPSL (Move PSL) instruction, 9–77
MOVQ (Move Quad) instruction, 9–24
MOVTC (Move Translated Characters) instruction,

9–132
MOVTUC (Move Translated Until Character)

instruction, 9–134
MOVW (Move Word) instruction, 9–24
MOVZBL (Move Zero-Extended Byte to Long)

instruction, 9–25
MOVZBW (Move Zero-Extended Byte to Word)

instruction, 9–25
MOVZWL (Move Zero-Extended Word to Long)

instruction, 9–25
MSYNC (Memory Instruction Synchronization)

instruction, 10–30, 10–34, 10–37, 10–39,
10–81

MTPR (Move to Processor Register) instruction,
9–194, 10–41

vector IPRs, 10–7, 10–41
MTVP (Move to Vector Processor) instruction,

10–83
MULB2 (Multiply Byte 2 Operand) instruction,

9–26
MULB3 (Multiply Byte 3 Operand) instruction,

9–26
MULD2 (Multiply D_floating 2 Operand)

instruction, 9–117

MULD3 (Multiply D_floating 3 Operand)
instruction, 9–117

MULF2 (Multiply F_floating 2 Operand)
instruction, 9–117

MULF3 (Multiply F_floating 3 Operand)
instruction, 9–117

MULG2 (Multiply G_floating 2 Operand)
instruction, 9–117

MULG3 (Multiply G_floating 3 Operand)
instruction, 9–117

MULH2 (Multiply H_floating 2 Operand)
instruction, 9–117

MULH3 (Multiply H_floating 3 Operand)
instruction, 9–117

MULL2 (Multiply Long 2 Operand) instruction,
9–26

MULL3 (Multiply Long 3 Operand) instruction,
9–26

MULP (Multiply Packed) instruction, 9–164
MULW2 (Multiply Word 2 Operand) instruction,

9–26
MULW3 (Multiply Word 3 Operand) instruction,

9–26
Must Be Zero

See also MBZ
See Field

N
.NARG directive, 6–63
.NCHR directive, 6–64
Negative condition code (N), 8–14
.NLIST directive, 6–65

See also .NOSHOW directive
.NOCROSS directive, 6–16, 6–66
NOP (No Operation) instruction, 9–78
.NOSHOW directive, 6–67, 6–88
.NTYPE directive, 6–68
Number

See also Integer, Floating-point number, and
Packed decimal string

in source statement, 3–2
Number of arguments directive (.NARG), 6–63
Number of characters directive (.NCHR), 6–64
Numeric control operator, 3–13
Numeric string

leading separate, 8–11
trailing, 8–8

O
Object module

identifying, 6–39
naming, 6–94
title, 6–94

.OCTA directive, 6–70

Index–10

Octaword data type, 8–3
Octaword storage directive (.OCTA), 6–70
.ODD directive, 6–71
One’s complement

of expression, 3–13
Opcode

creating, 6–72
defining, 6–82
format, 8–15
illegal vector, 10–14
redefining, 6–58, 6–72
summary, D–1

alphabetic order, D–1
numeric order, D–11

with the same name as a macro, 6–58
Opcode definition directive (.OPDEF), 6–72
.OPDEF directive, 6–72
Operand, 2–3

determining addressing mode of, 6–68
primary, 8–23
reserved, 9–102, 9–103, 9–143

Operand generation directive
(.REF16), 6–82
(.REF2), 6–82
(.REF4), 6–82
(.REF8), 6–82

Operand specifier, 8–15
access type notation, 9–2
access types, 8–15
base, 8–23
data type notation, 9–2
data types, 8–16
notation, 9–2
restrictions on usage for vector instructions,

10–13
Operand specifier addressing mode formats, 8–16

autodecrement mode, 8–19
autoincrement deferred mode, 8–18
autoincrement mode, 8–18
branch mode, 8–26
displacement deferred mode, 8–20
displacement mode, 8–19
index mode, 8–23
literal mode, 8–21
register deferred mode, 8–17
register mode, 8–17

Operand type directive (.NTYPE), 6–68
Operator, 2–3

AND, 3–15
arithmetic shift, 3–14
ASCII, 3–11
binary, 3–14, C–7
complement, 3–13
exclusive OR, 3–15
floating-point, 3–13
inclusive OR, 3–15
macro, 4–7
macro string, C–8

Operator (cont’d)
numeric control, 3–13
pattern, 9–170
radix control, 3–10
register, 3–12
summary, C–6
textual, 3–11
unary, 3–9, C–7

Overflow condition code (V), 8–14
Overlapped vector instruction execution, 10–18

P
Packed decimal instructions, 9–142
Packed decimal string, 9–142

data type, 8–12
format, 3–4
in source statement, 3–4
storing, 6–74

Packed decimal string directive (.PACKED), 6–74
.PACKED directive, 6–74
Page ejection directive (.PAGE), 6–75
Pattern operator, 9–168, 9–170
Period (.)

current location counter, 3–16
Permanent symbol, 3–4, 3–5
Permanent symbol table, D–1
POLYD (Polynomial Evaluation D_floating)

instruction, 9–118
POLYF (Polynomial Evaluation F_floating)

instruction, 9–118
POLYG (Polynomial Evaluation G_floating)

instruction, 9–118
POLYH (Polynomial Evaluation H_floating)

instruction, 9–118
POPL instruction, 9–27
POPR (Pop Registers) instruction, 9–79
Positional argument, 4–2
Power failure, 10–37
Primary operand, 8–23
.PRINT directive, 6–76
PROBER (Probe Read) instruction, 9–185
PROBEW (Probe Write) instruction, 9–185
Procedure call instructions, 9–63
Processor status longword (PSL), 8–13
Processor status word (PSW), 8–13

condition codes, 8–13
decimal overflow enable (DV), 8–15
floating underflow enable (FU), 8–14
integer overflow enable (IV), 8–14
trace trap enable (T), 8–14

Program counter mode, 5–10
summary, 8–26

Program execution time
delaying, 9–78

Program section
absolute, 6–79, 6–80
alignment, 6–80

Index–11

Program section (cont’d)
attributes, 6–77, 6–80
defining, 6–77
directive

(.PSECT), 6–77
(.RESTORE_PSECT), 6–85
(.SAVE_PSECT), 6–86

name, 6–77, 6–80
restoring context of, 6–85
saving context of, 6–86
saving local label, 6–86
unnamed, 6–79, 6–80

.PSECT directive, 6–77
PSL

See Processor status longword
PSW

See Processor status word
PUSHAB (Push Address Byte) instruction, 9–35
PUSHAD (Push Address D_floating) instruction,

9–35
PUSHAF (Push Address F_floating) instruction,

9–35
PUSHAG (Push Address G_floating) instruction,

9–35
PUSHAH (Push Address H_floating) instruction,

9–35
PUSHAL (Push Address Long) instruction, 9–35
PUSHAQ (Push Address Quad) instruction, 9–35
PUSHAW (Push Address Word) instruction, 9–35
PUSHL (Push Long) instruction, 9–27
PUSHR (Push Registers) instruction, 9–80

Q
.QUAD directive, 6–81
Quadword, 8–3
Quadword storage directive (.QUAD), 6–81
Queue, 9–82

absolute, 9–82
header, 9–82, 9–85
inserting entries, 9–82, 9–85
removing entries, 9–84, 9–87
self-relative, 9–85

Queue instructions, 9–82

R
Radix control operator, 3–10
Range

syntax, 7–1
RAZ field, 7–2
Read access type, 8–15
Read As Zero

See RAZ field
.REFn directive, 6–82

Register
vector, 10–1

control registers, 10–2
internal processor registers, 10–3

Register conflict
vector, 10–20

Register deferred mode, 5–4
operand specifier format, 8–17

Register mask operator, 3–12, 6–29
Register mode, 5–3

operand specifier format, 8–17
Register name, 3–4, 3–6
Register save mask, 6–29, 6–59
Register save mask directive (.MASK), 6–59
REI (Return from Exception or Interrupt)

instruction, 9–189
Relative deferred mode, 5–11

setting default displacement length, 6–19
Relative mode, 5–10

assembled as absolute mode, 6–22
setting default displacement length, 6–19

Relocatable expression, 3–8
REMQHI (Remove Entry from Queue at Head,

Interlocked) instruction, 9–95
REMQTI (Remove Entry from Queue at Tail,

Interlocked) instruction, 9–97
REMQUE (Remove Entry from Queue) instruction,

9–99
Repeat block

argument substitution, 6–47
character substitution, 6–49
end, 6–28
listing range definitions of, 6–88
listing range expansions of, 6–88
listing specifiers, 6–88
terminating repetition, 6–62

Repeat block directive (.REPEAT), 6–83
.REPEAT directive, 6–83
Repeat range end directive (.ENDR), 6–28
Reserved operand, 9–102, 9–103, 9–143
.RESTORE_PSECT directive, 6–85
RET (Return from Procedure) instruction, 9–69
ROTL (Rotate Long) instruction, 9–28
Routine name

made available to debugger, 6–23
RSB (Return from Subroutine) instruction, 9–60

S
.SAVE_PSECT directive, 6–86
SBWC (Subtract with Carry) instruction, 9–29
SBZ field, 7–2
Scalar/vector memory synchronization, 10–34
SCANC (Scan Characters) instruction, 9–136
Section name

made available to debugger, 6–23

Index–12

Self-relative queue, 9–85
Shift instruction

vector, 10–62
Shift operator, 3–14
Short literal mode

usage restricted in vector floating-point
instructions, 10–13

Should Be Zero
See SBZ field

.SHOW directive, 6–88
Signed byte storage directive (.SIGNED BYTE),

6–90
Signed word storage directive (.SIGNED_WORD),

6–91
.SIGNED_BYTE directive, 6–90
.SIGNED_WORD directive, 6–91
Significance indicator, 9–182
SKPC (Skip Character) instruction, 9–137
SOBGEQ (Subtract One and Branch Greater Than

or Equal) instruction, 9–61
SOBGTR (Subtract One and Branch Greater Than)

instruction, 9–62
Source statement

See Statement
SPANC (Span Characters) instruction, 9–138
Stack frame, 9–63
Statement, 1–1

character set, 3–1
comment, 2–3
continuation of, 2–1
format, 2–1
label, 2–2
operand, 2–3
operator, 2–3, C–6
special characters, C–5

Stride
vector, 10–43

String argument, 4–3
String data type

character, 8–7
leading separate numeric, 8–11
packed decimal, 8–12
trailing numeric, 8–8

String instructions, 9–124, 9–142
String operator

in macro, 4–7
SUBB2 (Subtract Byte 2 Operand) instruction,

9–30
SUBB3 (Subtract Byte 3 Operand) instruction,

9–30
Subconditional assembly block directive, 6–43

.IF_FALSE, 6–43

.IF_TRUE, 6–43

.IF_TRUE_FALSE, 6–43

Subconditional assembly block directive (.IF_x),
6–43

SUBD2 (Subtract D_floating 2 Operand)
instruction, 9–121

SUBD3 (Subtract D_floating 3 Operand)
instruction, 9–121

SUBF2 (Subtract F_floating 2 Operand)
instruction, 9–121

SUBF3 (Subtract F_floating 3 Operand)
instruction, 9–121

SUBG2 (Subtract G_floating 2 Operand)
instruction, 9–121

SUBG3 (Subtract G_floating 3 Operand)
instruction, 9–121

SUBH2 (Subtract H_floating 2 Operand)
instruction, 9–121

SUBH3 (Subtract H_floating 3 Operand)
instruction, 9–121

SUBL2 (Subtract Long 2 Operand) instruction,
9–30

SUBL3 (Subtract Long 3 Operand) instruction,
9–30

SUBP4 (Subtract Packed 4 Operand) instruction,
9–165

SUBP6 (Subtract Packed 6 Operand) instruction,
9–165

.SUBTITLE directive, 6–93
Subtitle listing control directive

(.SUBTITLE), 6–93
SUBW2 (Subtract Word 2 Operand) instruction,

9–30
SUBW3 (Subtract Word 3 Operand) instruction,

9–30
Summary of OPCODES

alphabetic order, D–1
numeric order, D–11

SVPCTX (Save Process Context) instruction,
9–193

Symbol, 3–4
cross-referencing, 6–16, 6–66
determining value of, 3–5
external, 6–34, 6–100
global, 3–6, 6–34, 6–37, 6–95, 6–100
in operand field, 3–6
in operator field, 3–5
local, 3–6
macro name, 3–5
made available to debugger, 6–22
permanent, 3–4, 3–5
register name, 3–4, 3–6
suppressing, 6–23
transferral to VAX Symbolic Debugger, 6–18
undefined, 6–22
user-defined, 3–5, 3–6

Symbol attribute directive
(.WEAK), 6–100

Index–13

Symbol definition for shareable image, 6–95
Symbol for shareable image directive

(.TRANSFER), 6–95
SYNC (Scalar/Vector Instruction Synchronization)

instruction, 10–16, 10–33, 10–81
Synchronization, 10–33
Synchronous memory management exception

handling, 10–26
System Control Block (SCB) vector, 10–25
System failure, E–9

T
Tab stops

in source statement, 2–1
TB (Translation buffer)

vector, 10–6, 10–7, 10–16, 10–28, 10–29,
10–36, 10–41

TBIA (TB Invalidate All) instruction, 10–41
TBIS (TB Invalidate Single) instruction, 10–41
Term in MACRO statement, 3–8
Textual operator, 3–11
.TITLE directive, 6–94
Title listing control directive

(.TITLE), 6–94
Traceback, 6–23
Trace trap enable (T), 8–14
Trailing numeric string

data type, 8–8
.TRANSFER directive, 6–95
Translation buffer

See TB
Trap

arithmetic, E–1
arithmetic type code, E–1
change mode, E–7
decimal

string overflow, E–3
decimal overflow, 8–15
divide by zero, 8–15
floating

divide-by-zero, E–2
overflow, E–2
underflow, E–2

integer
divide-by-zero, E–2
overflow, E–2

integer overflow, 8–14
subscript-range, E–3
trace, 8–14

TSTB (Test Byte) instruction, 9–31
TSTD (Test D_floating) instruction, 9–123
TSTF (Test F_floating) instruction, 9–123
TSTG (Test G_floating) instruction, 9–123
TSTH (Test H_floating) instruction, 9–123

TSTL (Test Long) instruction, 9–31
TSTW (Test Word) instruction, 9–31

U
Unary operator, 3–9

summary, C–7
UNDEFINED results, 7–1
UNPREDICTABLE results, 7–1
User-defined local label, 3–6

range, 3–7
User-defined symbol, 3–5, 3–6

V
VADD (Vector Floating Add) instruction, 10–65
VADDL (Vector Integer Add) instruction, 10–52
VAER (Vector Arithmetic Exception Register),

10–5
Variable bit base address access type, 8–16
Variable-length bit field

bytes referenced, 8–7
data type, 8–6

Variable-length bit field instructions, 9–36
VAX architecture, 8–1

scalar, 8–2
vector, 8–2

VAX condition codes, 10–14
VBIC (Vector Bit Clear) instruction, 10–59
VBIS (Vector Bit Set) instruction, 10–59
VCMP (Vector Floating Compare) instruction,

10–67
VCMPL (Vector Integer Compare) instruction,

10–54
VCR (Vector Count Register), 10–3, 10–81, 10–83
VDIV (Vector Floating Divide) instruction, 10–72
Vector address translation, 10–41
Vector code

assembling, 6–23
Vector control word, 10–8, 10–10, 10–14

EXC (Exception Enable) bit, 10–9, 10–10,
10–11, 10–14, 10–25, 10–53, 10–56, 10–58,
10–63, 10–66, 10–71, 10–73, 10–75, 10–77

MI (Modify Intent) bit, 10–9, 10–10, 10–15,
10–45, 10–47

MOE (Masked Operations Enable) bit, 10–9,
10–14

MTF (Match True/False) bit, 10–9, 10–14
register specifier fields, 10–10

Vector Count Register
See VCR

Vector instruction
decoding, 10–15
execution, 10–18
formats, 10–8

Index–14

Vector Length Register
See VLR

Vector Logical Functions, 10–59
Vector Mask Register

See VMR
Vector memory

accessing page tables, 10–42
access mode, 10–16, 10–44
alignment, 10–43
HALT considerations, 10–37
indicating intent to modify, 10–10
instructions, 10–43
management

See Memory management
required use of synchronization instructions,

10–37
scalar/vector synchronization of, 10–34
stride, 10–43

Vector Memory Activity Check Register
SeeVMAC

Vector opcode
See Appendix D

Vector processor disabled, 10–27, 10–28
Vector Processor Status Register

See VPSR
Vector registers, 10–1
Vector State Address Register

See VSAR
VGATH (Gather Memory Data into Vector

Register) instruction, 10–10, 10–13, 10–39
Virtual address, 8–2
Virtual-machine processor status longword

(VMPSL), 9–189
VLD (Load Memory Data into Vector Register)

instruction, 10–10, 10–13, 10–39, 10–45
VLR (Vector Length Register), 10–2, 10–81, 10–83
VMAC (Vector Memory Activity Check) Register,

10–6, 10–17, 10–35, 10–37, 10–39, 10–42
VMERGE (Vector Merge) instruction, 10–78
VMPSL

See Virtual-machine processor status longword
VMR (Vector Mask Register), 10–2, 10–20, 10–81,

10–83
VMUL (Vector Floating Multiply) instruction,

10–74
VMULL (Vector Integer Multiply) instruction,

10–56
VPSR (Vector Processor Status Register), 10–4,

10–5
AEX (Arithmetic Exception) bit, 10–4, 10–27,

10–28, 10–29, 10–30
BSY (Busy) bit, 10–4, 10–5, 10–7, 10–17,

10–29, 10–34, 10–42
IMP (Implementation-Specific Hardware Error)

bit, 10–4, 10–27, 10–28, 10–29, 10–30,
10–42, 10–43

VPSR (Vector Processor Status Register) (cont’d)
IVO (Illegal Vector Opcode) bit, 10–4, 10–14,

10–27, 10–28, 10–29, 10–30
MF (Memory Fault) bit, 10–4, 10–16, 10–26,

10–30
PMF (Pending Memory Fault) bit, 10–4, 10–16,

10–26, 10–29, 10–30
RLD (State Reload) bit, 10–4, 10–5, 10–30
RST (State Reset) bit, 10–4, 10–5, 10–7, 10–29,

10–36
STS (State Store) bit, 10–4, 10–5, 10–29
VEN (Enable) bit, 10–4, 10–5, 10–15, 10–17,

10–27, 10–28, 10–29, 10–30, 10–42, 10–43
VSAR (Vector State Address Register), 10–7
VSCAT (Scatter Vector Register Data into Memory)

instruction, 10–10, 10–13, 10–39, 10–51
VSL (Vector Shift Logical) instruction, 10–62
VST (Store Vector Register Data into Memory)

instruction, 10–10, 10–13, 10–39, 10–49
VSUB (Vector Floating Subtract) instruction,

10–76
VSUBL (Vector Integer Subtract) instruction,

10–58
VSYNC (Synchronize Vector Memory Access)

instruction, 10–36, 10–37, 10–39, 10–84
VTBIA (Vector TB Invalidate All) instruction,

10–6, 10–7, 10–28, 10–29, 10–36, 10–41
VVCVT (Vector Convert) instruction, 10–70
VXOR (Vector Exclusive Or) instruction, 10–59

W
.WARN directive, 6–98
.WEAK directive, 6–100
Word data type, 8–2
.WORD directive, 6–101
Word storage directive (.WORD), 6–101
Write access type, 8–15

X
XFC (Extended Function Call) instruction, 9–81
XORB2 (Exclusive OR Byte 2 Operand)

instruction, 9–32
XORB3 (Exclusive OR Byte 3 Operand)

instruction, 9–32
XORL2 (Exclusive OR Long 2 Operand)

instruction, 9–32
XORL3 (Exclusive OR Long 3 Operand)

instruction, 9–32
XORW2 (Exclusive OR Word 2 Operand)

instruction, 9–32
XORW3 (Exclusive OR Word 3 Operand)

instruction, 9–32

Index–15

Z
Zero condition code (Z), 8–14

Index–16

	VAXMACROand Instruction Set Reference Manual
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How to Order Additional Documentation
	Conventions

	VAX MACRO Language
	1 Introduction
	2 VAX MACRO Source Statement Format
	2.1 Label Field
	2.2 Operator Field
	2.3 Operand Field
	2.4 Comment Field

	3 Components of MACRO Source Statements
	3.1 Character Set
	3.2 Numbers
	3.2.1 Integers
	3.2.2 Floating-Point Numbers
	3.2.3 Packed Decimal Strings

	3.3 Symbols
	3.3.1 Permanent Symbols
	3.3.2 User-Defined Symbols and Macro Names
	3.3.3 Determining Symbol Values

	3.4 Local Labels
	3.5 Terms and Expressions
	3.6 Unary Operators
	3.6.1 Radix Control Operators
	3.6.2 Textual Operators
	3.6.3 Numeric Control Operators

	3.7 Binary Operators
	3.7.1 Arithmetic Shift Operator
	3.7.2 Logical AND Operator
	3.7.3 Logical Inclusive OR Operator
	3.7.4 Logical Exclusive OR Operator

	3.8 Direct Assignment Statements
	3.9 Current Location Counter

	4 Macro Arguments and String Operators
	4.1 Arguments in Macros
	4.2 Default Values
	4.3 Keyword Arguments
	4.4 String Arguments
	4.5 Argument Concatenation
	4.6 Passing Numeric Values of Symbols
	4.7 Created Local Labels
	4.8 Macro String Operators
	4.8.1 %LENGTH Operator
	4.8.2 %LOCATE Operator
	4.8.3 %EXTRACT Operator

	5 VAX MACRO Addressing Modes
	5.1 General Register Modes
	5.1.1 Register Mode
	5.1.2 Register Deferred Mode
	5.1.3 Autoincrement Mode
	5.1.4 Autoincrement Deferred Mode
	5.1.5 Autodecrement Mode
	5.1.6 Displacement Mode
	5.1.7 Displacement Deferred Mode
	5.1.8 Literal Mode

	5.2 Program Counter Modes
	5.2.1 Relative Mode
	5.2.2 Relative Deferred Mode
	5.2.3 Absolute Mode
	5.2.4 Immediate Mode
	5.2.5 General Mode

	5.3 Index Mode
	5.4 Branch Mode

	6 VAX MACRO Assembler Directives
	.ADDRESS
	.ALIGN
	.ASCIx
	.ASCIC
	.ASCID
	.ASCII
	.ASCIZ
	.BLKx
	.BYTE
	.CROSS .NOCROSS
	.DEBUG
	.DEFAULT
	.D_FLOATING .DOUBLE
	.DISABLE
	.ENABLE
	.END
	.ENDC
	.ENDM
	.ENDR
	.ENTRY
	.ERROR
	.EVEN
	.EXTERNAL
	.F_FLOATING .FLOAT
	.G_FLOATING
	.GLOBAL
	.H_FLOATING
	.IDENT
	.IF
	.IF_x
	.IIF
	.IRP
	.IRPC
	.LIBRARY
	.LINK
	.LIST
	.LONG
	.MACRO
	.MASK
	.MCALL
	.MDELETE
	.MEXIT
	.NARG
	.NCHR
	.NLIST
	.NOCROSS
	.NOSHOW
	.NTYPE
	.OCTA
	.ODD
	.OPDEF
	.PACKED
	.PAGE
	.PRINT
	.PSECT
	.QUAD
	.REFn
	.REPEAT
	.RESTORE_PSECT
	.SAVE_PSECT
	.SHOW .NOSHOW
	.SIGNED_BYTE
	.SIGNED_WORD
	.SUBTITLE
	.TITLE
	.TRANSFER
	.WARN
	.WEAK
	.WORD

	VAX Data Types and Instruction Set
	7 Terminology and Conventions
	7.1 Numbering
	7.2 UNPREDICTABLE and UNDEFINED
	7.3 Ranges and Extents
	7.4 MBZ
	7.5 RAZ
	7.6 SBZ
	7.7 Reserved
	7.8 Figure Drawing Conventions

	8 Basic Architecture
	8.1 Basic Architecture
	8.2 VAX Addressing
	8.3 Data Types
	8.3.1 Byte
	8.3.2 Word
	8.3.3 Longword
	8.3.4 Quadword
	8.3.5 Octaword
	8.3.6 F_floating
	8.3.7 D_floating
	8.3.8 G_floating
	8.3.9 H_floating
	8.3.10 Variable-Length Bit Field
	8.3.11 Character String
	8.3.12 Trailing Numeric String
	8.3.13 Leading Separate Numeric String
	8.3.14 Packed Decimal String

	8.4 Processor Status Longword (PSL)
	8.4.1 C Bit
	8.4.2 V Bit
	8.4.3 Z Bit
	8.4.4 N Bit
	8.4.5 T Bit
	8.4.6 IV Bit
	8.4.7 FU Bit
	8.4.8 DV Bit

	8.5 Permanent Exception Enables
	8.5.1 Divide by Zero
	8.5.2 Floating Overflow

	8.6 Instruction and Addressing Mode Formats
	8.6.1 Opcode Formats
	8.6.2 Operand Specifiers

	8.7 General Addressing Mode Formats
	8.7.1 Register Mode
	8.7.2 Register Deferred Mode
	8.7.3 Autoincrement Mode
	8.7.4 Autoincrement Deferred Mode
	8.7.5 Autodecrement Mode
	8.7.6 Displacement Mode
	8.7.7 Displacement Deferred Mode
	8.7.8 Literal Mode
	8.7.9 Index Mode

	8.8 Summary of General Mode Addressing
	8.8.1 General Register Addressing
	8.8.2 Program Counter Addressing

	8.9 Branch Mode Addressing Formats

	9 VAX Instruction Set
	9.1 Introduction to the VAX Instruction Set
	9.2 Instruction Descriptions
	9.2.1 Integer Arithmetic and Logical Instructions
	ADAWI
	ADD
	ADWC
	ASH
	BIC
	BIS
	BIT
	CLR
	CMP
	CVT
	DEC
	DIV
	EDIV
	EMUL
	INC
	MCOM
	MNEG
	MOV
	MOVZ
	MUL
	PUSHL
	ROTL
	SBWC
	SUB
	TST
	XOR

	9.2.2 Address Instructions
	MOVA
	PUSHA

	9.2.3 Variable-Length Bit Field Instructions
	CMP
	EXT
	FF
	INSV

	9.2.4 Control Instructions
	ACB
	AOBLEQ
	AOBLSS
	B
	BB
	BB
	BLB
	BR
	BSB
	CASE
	JMP
	JSB
	RSB
	SOBGEQ
	SOBGTR

	9.2.5 Procedure Call Instructions
	CALLG
	CALLS
	RET

	9.2.6 Miscellaneous Instructions
	BICPSW
	BISPSW
	BPT
	HALT
	INDEX
	MOVPSL
	NOP
	POPR
	PUSHR
	XFC

	9.2.7 Queue Instructions
	INSQHI
	INSQTI
	INSQUE
	REMQHI
	REMQTI
	REMQUE

	9.2.8 Floating-Point Instructions
	ADD
	CLR
	CMP
	CVT
	DIV
	EMOD
	MNEG
	MOV
	MUL
	POLY
	SUB
	TST

	9.2.9 Character String Instructions
	CMPC
	LOCC
	MATCHC
	MOVC
	MOVTC
	MOVTUC
	SCANC
	SKPC
	SPANC

	9.2.10 Cyclic Redundancy Check Instruction
	CRC

	9.2.11 Decimal String Instructions
	ADDP
	ASHP
	CMPP
	CVTLP
	CVTPL
	CVTPS
	CVTPT
	CVTSP
	CVTTP
	DIVP
	MOVP
	MULP
	SUBP

	9.2.12 The EDITPC Instruction and Its Pattern Operators
	EDITPC
	EO$ADJUST_INPUT
	EO$BLANK_ZERO
	EO$END
	EO$END_FLOAT
	EO$FILL
	EO$FLOAT
	EO$INSERT
	EO$LOAD_
	EO$MOVE
	EO$REPLACE_SIGN
	EO$_SIGNIF
	EO$STORE_SIGN

	9.2.13 Other VAX Instructions
	PROBEx
	CHM
	REI
	LDPCTX
	SVPCTX
	SVPCTX
	MTPR
	MFPR
	BUG

	10 VAX Vector Architecture
	10.1 Introduction to VAX Vector Architecture
	10.2 VAX Vector Architecture Registers
	10.2.1 Vector Registers
	10.2.2 Vector Control Registers
	10.2.3 Internal Processor Registers

	10.3 Vector Instruction Formats
	10.3.1 Masked Operations
	10.3.2 Exception Enable Bit
	10.3.3 Modify Intent Bit
	10.3.4 Register Specifier Fields
	10.3.5 Vector Control Word Formats
	10.3.6 Restrictions on Operand Specifier Usage
	10.3.7 VAX Condition Codes
	10.3.8 Illegal Vector Opcodes

	10.4 Assembler Notation
	10.5 Execution Model
	10.5.1 Access Mode Restrictions
	10.5.2 Scalar Context Switching
	10.5.3 Overlapped Instruction Execution

	10.6 Vector Processor Exceptions
	10.6.1 Vector Memory Management Exception Handling
	10.6.2 Vector Arithmetic Exceptions
	10.6.3 Vector Processor Disabled
	10.6.4 Handling Disabled Faults and Vector Context Switching
	10.6.5 MFVP Exception Reporting Examples

	10.7 Synchronization
	10.7.1 Scalar/Vector Instruction Synchronization (SYNC)
	10.7.2 Scalar/Vector Memory Synchronization
	10.7.3 Other Synchronization Between the Scalar and Vector Processors
	10.7.4 Memory Synchronization Within the Vector Processor (VSYNC)
	10.7.5 Required Use of Memory Synchronization Instructions

	10.8 Memory Management
	10.9 Hardware Errors
	10.10 Vector Memory Access Instructions
	10.10.1 Alignment Considerations
	10.10.2 Stride Considerations
	10.10.3 Context of Address Specifiers
	10.10.4 Access Mode
	10.10.5 Memory Instructions
	VLD
	VGATH
	VST
	VSCAT

	10.11 Vector Integer Instructions
	VADDL
	VCMPL
	VMULL
	VSUBL

	10.12 Vector Logical and Shift Instructions
	VBIC, VBIS, and VXOR
	VSL

	10.13 Vector Floating-Point Instructions
	10.13.1 Vector Floating-Point Exception Conditions
	10.13.2 Floating-Point Instructions
	VADD
	VCMP
	VVCVT
	VDIV
	VMUL
	VSUB

	10.14 Vector Edit Instructions
	VMERGE
	IOTA

	10.15 Miscellaneous Instructions
	MFVP
	MTVP
	VSYNC

	A ASCII Character Set
	B Hexadecimal/Decimal Conversion
	B.1 Hexadecimal to Decimal
	B.2 Decimal to Hexadecimal
	B.3 Powers of 2 and 16

	C VAX MACRO Assembler Directives and Language Summary
	C.1 Assembler Directives
	C.2 Special Characters
	C.3 Operators
	C.3.1 Unary Operators
	C.3.2 Binary Operators
	C.3.3 Macro String Operators

	C.4 Addressing Modes

	D Permanent Symbol Table Defined for Use with VAX MACRO
	E Exceptions That May Occur During Instruction Execution
	E.1 Arithmetic Traps and Faults
	E.1.1 Integer Overflow Trap
	E.1.2 Integer Divide-by-Zero Trap
	E.1.3 Floating Overflow Trap
	E.1.4 Divide-by-Zero Trap
	E.1.5 Floating Underflow Trap
	E.1.6 Decimal String Overflow Trap
	E.1.7 Subscript-Range Trap
	E.1.8 Floating Overflow Fault
	E.1.9 Divide-by-Zero Floating Fault
	E.1.10 Floating Underflow Fault

	E.2 Memory Management Exceptions
	E.2.1 Access Control Violation Fault
	E.2.2 Translation Not Valid Fault

	E.3 Exceptions Detected During Operand Reference
	E.3.1 Reserved Addressing Mode Fault
	E.3.2 Reserved Operand Exception

	E.4 Exceptions Occurring as the Consequence of an Instruction
	E.4.1 Reserved or Privileged Instruction Fault
	E.4.2 Operand Reserved to Customers Fault
	E.4.3 Instruction Emulation Exceptions
	E.4.4 Compatibility Mode Exception
	E.4.5 Change Mode Trap
	E.4.6 Breakpoint Fault

	E.5 Trace Fault
	E.5.1 Trace Operation When Entering a Change Mode Instruction
	E.5.2 Trace Operation Upon Return From Interrupt
	E.5.3 Trace Operation After a BISPSW Instruction
	E.5.4 Trace Operation After a CALLS or CALLG Instruction

	E.6 Serious System Failures
	E.6.1 Kernel Stack Not Valid Abort
	E.6.2 Interrupt Stack Not Valid Halt
	E.6.3 Machine Check Exception

	Index
	Figures
	Figure 6–1 Using Transfer Vectors
	Figure 10–1 Vector Register
	Figure 10–2 Vector Length Register (VLR)
	Figure 10–3 Vector Mask Register (VMR)
	Figure 10–4 Vector Count Register (VCR)
	Figure 10–5 Vector Processor Status Register (VPSR)
	Figure 10–6 Vector Arithmetic Exception Register (VAER)
	Figure 10–7 Vector Memory Activity Check (VMAC) Register
	Figure 10–8 Vector Translation Buffer Invalidate All (VTBIA) Register
	Figure 10–9 Vector State Address Register (VSAR)
	Figure 10–10 Vector Control Word Operand (cntrl)
	Figure 10–11 Vector Control Word Format
	Figure 10–12 Memory Management Fault Stack Frame (as Sent by the Vector Processor)
	Figure 10–13 Encoding of the Reserved Operand
	Figure E–1 Compatibility Mode Exception Stack Frame

	Tables
	Table 3–1 Special Characters Used in VAX MACRO Statements
	Table 3–2 Separating Characters in VAX MACRO Statements
	Table 3–3 Unary Operators
	Table 3–4 Binary Operators
	Table 5–1 Addressing Modes
	Table 5–2 Floating-Point Literals Expressed as Decimal Numbers
	Table 5–3 Floating-Point Literals Expressed as Rational Numbers
	Table 5–4 Index Mode Addressing
	Table 6–1 Summary of General Assembler Directives
	Table 6–2 Summary of Macro Directives
	Table 6–3 .ENABLE and .DISABLE Symbolic Arguments
	Table 6–4 Condition Tests for Conditional Assembly Directives
	Table 6–5 Operand Descriptors
	Table 6–6 Program Section Attributes
	Table 6–7 Default Program Section Attributes
	Table 6–8 .SHOW and .NOSHOW Symbolic Arguments
	Table 8–1 Representation of Least-Significant Digit and Sign in Zoned Numeric Format
	Table 8–2 Representation of Least-Significant Digit and Sign in Overpunch Format
	Table 8–3 Floating-Point Literals Expressed as Decimal Numbers
	Table 8–4 Floating-Point Literals Expressed as Rational Numbers
	Table 8–5 General Register Addressing
	Table 8–6 Program Counter Addressing
	Table 9–1 Summary of EDITPC Pattern Operators
	Table 9–2 EDITPC Pattern Operator Encoding
	Table 10–1 Description of the Vector Processor Status Register (VPSR)
	Table 10–2 Possible VPSR<3:0> Settings for MTPR
	Table 10–3 State of the Vector Processor
	Table 10–4 VAER Exception Condition Summary Word Encoding
	Table 10–5 IPR Assignments
	Table 10–6 Description of the Vector Control Word Operand
	Table 10–7 Dependencies for Vector Operate Instructions
	Table 10–8 Dependencies for Vector Load and Gather Instructions
	Table 10–9 Dependencies for Vector Store and Scatter Instructions
	Table 10–10 Dependencies for Vector Compare Instructions
	Table 10–11 Dependencies for Vector MERGE Instructions
	Table 10–12 Dependencies for IOTA Instruction
	Table 10–13 Dependencies for MFVP Instructions
	Table 10–14 Miscellaneous Dependencies
	Table 10–15 Possible Pairs of Read and Write Operations When Scalar/Vector Memory Synchronization (M) or VSYNC (V) Is Required Between Instructions That Reference the Same Memory Location
	Table 10–16 Encoding of the Exception Condition Type (ETYPE)
	Table C–1 Assembler Directives
	Table C–2 Special Characters Used in VAX MACRO Statements
	Table C–3 Summary of Unary Operators
	Table C–4 Summary of Binary Operators
	Table C–5 Macro String Operators
	Table C–6 Summary of Addressing Modes
	Table D–1 Opcodes (Alphabetic Order) and Functions
	Table D–2 One_Byte Opcodes (Numeric Order)
	Table D–3 Two_Byte Opcodes (Numeric Order)
	Table E–1 Arithmetic Exception Type Codes
	Table E–2 Compatibility Mode Exception Type Codes

