
OpenVMS Guide to System
Security
Order Number: AA–Q2HLE–TE

April 2001

This guide describes the security features available through the
OpenVMS operating system. It explains the purpose and proper
application of each feature in the context of specific security needs.

Revision/Update Information: This manual supersedes the OpenVMS
Guide to System Security, Version 7.2

Software Version: OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS and Tru64 are trademarks of Compaq Information Technologies Group, L.P. in the United
States and other countries.

Microsoft, MS-DOS, Visual C++, Windows, and Windows NT are trademarks of Microsoft
Corporation in the United States and other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein.

The information in this document is provided ‘‘as is’’ without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6346

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xvii

Part I Security Overview

1 Understanding System Security

1.1 Types of Computer Security Problems . 1–1
1.2 Levels of Security Requirements . 1–2
1.3 Building a Secure System Environment . 1–3

2 OpenVMS Security Model

2.1 Structure of a Secure Operating System . 2–1
2.1.1 Reference Monitor Concept . 2–1
2.1.2 How the Reference Monitor Enforces Security Rules 2–2
2.2 Implementation of the Reference Monitor . 2–3
2.2.1 Subjects . 2–3
2.2.2 Objects . 2–4
2.2.3 Authorization Database . 2–4
2.2.4 Audit Trail . 2–5
2.2.5 Reference Monitor . 2–6
2.2.6 Authorization Database Represented as an Access Matrix 2–6
2.3 Summary: System Security Design . 2–9

Part II Security for the User

3 Using the System Responsibly

3.1 Choosing a Password for Your Account . 3–1
3.1.1 Obtaining Your Initial Password . 3–1
3.1.2 Observing System Restrictions on Passwords 3–2
3.2 Knowing What Type of Password to Use . 3–2
3.2.1 Entering a System Password . 3–3
3.2.2 Entering a Secondary Password . 3–4
3.3 Password Requirements for Different Types of Accounts 3–4
3.4 Types of Logins and Login Classes . 3–4
3.4.1 Logging In Interactively: Local, Dialup, and Remote Logins 3–5
3.4.2 Logging In Using External Authentication . 3–5
3.4.3 Reading Informational Messages . 3–5
3.4.4 When the System Logs In for You: Network and Batch Logins 3–7
3.5 Login Failures: When You Are Unable to Log In . 3–7
3.5.1 Using a Terminal That Requires a System Password 3–8
3.5.2 Observing Your Login Class Restrictions . 3–8

iii

3.5.3 Using an Account Restricted to Certain Days and Times 3–8
3.5.4 Failing to Enter the Correct Password During a Dialup Login 3–9
3.5.5 Knowing When Break-In Evasion Procedures Are in Effect 3–9
3.6 Changing Your Password . 3–9
3.6.1 Selecting Your Own Password . 3–10
3.6.2 Using Generated Passwords . 3–10
3.6.3 Changing a Secondary Password . 3–11
3.6.4 Changing Your Password As You Log In . 3–12
3.7 Password and Account Expiration Times . 3–12
3.7.1 Changing an Expired Password . 3–12
3.7.2 Renewing an Expired Account . 3–13
3.8 Guidelines for Protecting Your Password . 3–13
3.9 Network Security Considerations . 3–14
3.9.1 Protecting Information in Access Control Strings 3–15
3.9.2 Using Proxy Login Accounts to Protect Passwords 3–15
3.10 Auditing Access to Your Account and Files . 3–17
3.10.1 Observing Your Last Login Time . 3–17
3.10.2 Adding Access Control Entries to Sensitive Files 3–18
3.10.3 Asking Your Security Administrator to Enable Auditing 3–18
3.10.3.1 Auditing File Access . 3–18
3.10.3.2 Additional Events to Audit . 3–19
3.11 Logging Out Without Compromising System Security 3–20
3.11.1 Clearing Your Terminal Screen . 3–20
3.11.2 Disposing of Hardcopy Output . 3–20
3.11.3 Removing Disconnected Processes . 3–21
3.11.4 Breaking the Connection to a Dialup Line . 3–21
3.11.5 Turning Off a Terminal . 3–21
3.12 Checklist for Contributing to System Security . 3–22

4 Protecting Data

4.1 Contents of a User’s Security Profile . 4–1
4.1.1 Per-Thread Security . 4–2
4.1.2 Persona Security Block Data Structure (PSB) 4–2
4.1.3 Previous Security Model . 4–2
4.1.4 Per-Thread Security Model . 4–3
4.1.5 User Identification Code (UIC) . 4–4
4.1.5.1 Format of a UIC . 4–4
4.1.5.2 Guidelines for Creating a UIC . 4–4
4.1.5.3 How Your Process Acquires a UIC . 4–5
4.1.6 Rights Identifiers . 4–5
4.1.6.1 Types of Identifiers . 4–5
4.1.6.2 Process and System Rights Lists . 4–6
4.1.6.3 Displaying the Rights Identifiers of Your Process 4–6
4.1.6.4 How Rights Identifiers Appear in the Audit Trail 4–7
4.1.7 Privileges . 4–7
4.2 Security Profile of Objects . 4–8
4.2.1 Definition of a Protected Object . 4–8
4.2.2 Contents of an Object’s Profile . 4–9
4.2.2.1 Owner . 4–9
4.2.2.2 Protection Code . 4–9
4.2.2.3 Access Control List (ACL) . 4–10
4.2.3 Displaying a Security Profile . 4–11
4.2.4 Modifying a Security Profile . 4–11

iv

4.2.5 Specifying an Object’s Class . 4–11
4.2.6 Access Required to Modify a Profile . 4–13
4.3 How the System Determines If a User Can Access a Protected Object . . . 4–13
4.4 Controlling Access with ACLs . 4–18
4.4.1 Using Identifier Access Control Entries (ACEs) 4–18
4.4.2 Granting Access to Particular Users . 4–19
4.4.3 Preventing Users from Accessing an Object . 4–19
4.4.4 Limiting Access to a Device . 4–20
4.4.5 Limiting Access to an Environment . 4–20
4.4.6 Ordering ACEs Within a List . 4–20
4.4.7 Establishing an Inheritance Scheme for Files 4–21
4.4.8 Displaying ACLs . 4–22
4.4.9 Adding ACEs to an Existing ACL . 4–23
4.4.10 Deleting an ACL . 4–24
4.4.11 Deleting ACEs from an ACL . 4–24
4.4.12 Replacing Part of an ACL . 4–24
4.4.13 Restoring a File’s Default ACL . 4–25
4.4.14 Copying an ACL . 4–25
4.5 Controlling Access with Protection Codes . 4–26
4.5.1 Format of a Protection Code . 4–26
4.5.2 Types of Access in a Protection Code . 4–27
4.5.3 Processing a Protection Code . 4–27
4.5.4 Changing a Protection Code . 4–28
4.5.5 Enhancing Protection for Sensitive Objects . 4–28
4.5.6 Providing a Default Protection Code for a Directory Structure 4–29
4.5.7 Restoring a File’s Default Security Profile . 4–29
4.6 Understanding Privileges and Control Access . 4–30
4.6.1 How Privileges Affect Protection Mechanisms 4–30
4.6.2 Using Control Access to Modify an Object Profile 4–30
4.6.3 Object-Specific Access Considerations . 4–31
4.7 Auditing Protected Objects . 4–31
4.7.1 Kinds of Events the System Audits . 4–31
4.7.2 Enabling Auditing for a Class of Objects . 4–31
4.7.3 Adding Security-Auditing ACEs . 4–32

5 Descriptions of Object Classes

5.1 Capabilities . 5–1
5.1.1 Naming Rules . 5–1
5.1.2 Types of Access . 5–1
5.1.3 Template Profile . 5–2
5.1.4 Kinds of Auditing Performed . 5–2
5.1.5 Permanence of the Object . 5–2
5.2 Common Event Flag Clusters . 5–2
5.2.1 Naming Rules . 5–2
5.2.2 Types of Access . 5–2
5.2.3 Template Profile . 5–3
5.2.4 Privilege Requirements . 5–3
5.2.5 Kinds of Auditing Performed . 5–3
5.2.6 Permanence of the Object . 5–3
5.3 Devices . 5–3
5.3.1 Naming Rules . 5–3
5.3.2 Types of Access . 5–4
5.3.3 Access Requirements for I/O Operations . 5–4

v

5.3.4 Template Profile . 5–6
5.3.5 Setting Up Profiles for New Devices . 5–6
5.3.6 Privilege Requirements . 5–8
5.3.7 Kinds of Auditing Performed . 5–8
5.3.8 Permanence of the Object . 5–8
5.4 Files . 5–8
5.4.1 Naming Rules . 5–8
5.4.2 Types of Access . 5–9
5.4.3 Access Requirements . 5–9
5.4.4 Creation Requirements . 5–10
5.4.5 Profile Assignment . 5–10
5.4.5.1 Rules for Assigning Ownership . 5–10
5.4.5.2 Rules for Assigning a Protection Code and ACL 5–11
5.4.5.3 Using the COPY and RENAME Commands 5–12
5.4.6 Kinds of Auditing Performed . 5–12
5.4.7 Protecting Information When Disk Space Is Reassigned 5–12
5.4.7.1 Overwriting Disk Blocks . 5–12
5.4.7.2 Setting a High-water Mark . 5–13
5.4.7.3 Accessibility of Data in a File . 5–13
5.4.8 Suggestions for Optimizing File Security . 5–14
5.5 Global Sections . 5–14
5.5.1 Naming Rules . 5–15
5.5.2 Types of Access . 5–15
5.5.3 Template Profile . 5–15
5.5.4 Privilege Requirements . 5–15
5.5.5 Kinds of Auditing Performed . 5–16
5.5.6 Permanence of the Object . 5–16
5.6 Logical Name Tables . 5–16
5.6.1 Naming Rules . 5–16
5.6.2 Types of Access . 5–16
5.6.3 Template Profile . 5–16
5.6.4 Privilege Requirements . 5–17
5.6.5 Kinds of Auditing Performed . 5–17
5.6.6 Permanence of the Object . 5–17
5.7 Queues . 5–17
5.7.1 Naming Rules . 5–17
5.7.2 Types of Access . 5–18
5.7.3 Template Profile . 5–18
5.7.4 Privilege Requirements . 5–18
5.7.5 Kinds of Auditing Performed . 5–18
5.7.6 Permanence of the Object . 5–19
5.8 Resource Domains . 5–19
5.8.1 Naming Rules . 5–19
5.8.2 Types of Access . 5–19
5.8.3 Template Profile . 5–19
5.8.4 Privilege Requirements . 5–19
5.8.5 Kinds of Auditing Performed . 5–20
5.8.6 Permanence of the Object . 5–20
5.9 Security Classes . 5–20
5.9.1 Naming Rules . 5–20
5.9.2 Types of Access . 5–20
5.9.3 Template Profile . 5–21
5.9.4 Kinds of Auditing Performed . 5–21
5.9.5 Permanence of the Object . 5–21

vi

5.10 Volumes . 5–21
5.10.1 Naming Rules . 5–21
5.10.2 Types of Access . 5–21
5.10.3 Template Profile . 5–22
5.10.4 Privilege Requirements . 5–22
5.10.5 Kinds of Auditing Performed . 5–22
5.10.6 Permanence of the Object . 5–22

Part III Security for the System Administrator

6 Managing the System and Its Data

6.1 Role of a Security Administrator . 6–1
6.2 Site Security Policies . 6–2
6.3 Tools for Setting Up a Secure System . 6–4
6.4 Account Requirements for a Security Administrator 6–4
6.5 Training the New User . 6–5
6.6 Logging a User’s Session . 6–6
6.7 Ongoing Tasks to Maintain a Secure System . 6–8

7 Managing System Access

7.1 Defining Times and Conditions for System Access 7–1
7.1.1 Restricting Work Times . 7–2
7.1.2 Restricting Modes of Operation . 7–3
7.1.3 Restricting Account Duration . 7–3
7.1.4 Disabling Accounts . 7–3
7.1.5 Restricting Disk Volumes . 7–3
7.1.6 Marking Accounts for External Authentication 7–4
7.2 Assigning Appropriate Accounts to Users . 7–4
7.2.1 Types of System Accounts . 7–4
7.2.1.1 Interactive Account Example . 7–5
7.2.1.2 Limited-Account Example . 7–5
7.2.2 Privileged Accounts . 7–6
7.2.3 Interactive Accounts . 7–7
7.2.4 Captive Accounts . 7–7
7.2.4.1 Setting Up Captive Accounts . 7–8
7.2.4.2 Guidelines for Captive Command Procedures 7–9
7.2.5 Restricted Accounts . 7–11
7.2.6 Automatic Login Accounts . 7–11
7.2.7 Guest Accounts . 7–12
7.2.8 Proxy Accounts . 7–13
7.2.9 Externally Authenticated Accounts . 7–13
7.3 Using Passwords to Control System Access . 7–13
7.3.1 Types of Passwords . 7–13
7.3.1.1 Primary Passwords . 7–13
7.3.1.2 System Passwords . 7–14
7.3.1.3 Secondary Passwords . 7–16
7.3.1.4 Console Passwords . 7–17
7.3.1.5 Authentication Cards . 7–17

vii

7.3.2 Enforcing Minimum Password Standards . 7–18
7.3.2.1 Expiring Passwords . 7–18
7.3.2.2 Enforcing Change of Expired Password . 7–19
7.3.2.3 Requiring a Minimum Password Length . 7–19
7.3.2.4 Generated Passwords . 7–20
7.3.2.5 Site Password Algorithms . 7–20
7.3.3 Screening New Passwords . 7–21
7.3.3.1 System Dictionary . 7–21
7.3.3.2 History Lists . 7–21
7.3.3.3 Site-Specific Filters . 7–22
7.3.4 Password Protection Checklist . 7–23
7.4 Enabling External Authentication . 7–24
7.4.1 Overriding External Authentication . 7–25
7.4.2 Setting a New Password . 7–25
7.4.3 Case Sensitivity in Passwords and User Names 7–25
7.4.4 User Name Mapping and Password Verification 7–26
7.4.5 Password Synchronization . 7–26
7.4.6 Specifying the SYS$SINGLE_SIGNON Logical Name Bits 7–27
7.5 Controlling the Login Process . 7–28
7.5.1 Informational Display During Login . 7–28
7.5.1.1 Announcement Message . 7–28
7.5.1.2 Welcome Message . 7–28
7.5.1.3 Last Login Messages . 7–29
7.5.1.4 New Mail Announcements . 7–29
7.5.2 Limiting Disconnected Processes . 7–29
7.5.3 Providing Automatic Login . 7–30
7.5.4 Using the Secure Server . 7–30
7.5.5 Detecting Intruders . 7–31
7.5.6 Understanding the Intrusion Database . 7–31
7.5.6.1 How Intrusion Detection Works . 7–33
7.5.6.2 Setting the Exclusion Period . 7–34
7.5.6.3 System Parameters Controlling Login Attempts 7–34
7.5.7 Security Server Process . 7–35

8 Controlling Access to System Data and Resources

8.1 Designing User Groups . 8–1
8.1.1 Example of UIC Group Design . 8–1
8.1.2 Limitations to UIC Group Design . 8–2
8.2 Naming Individual Users in ACLs . 8–3
8.3 Defining Sharing of Rights . 8–3
8.4 Conditionalizing Identifiers for Different Users . 8–4
8.5 Designing ACLs . 8–4
8.6 Populating the Rights Database . 8–5
8.6.1 Displaying the Database . 8–6
8.6.2 Adding Identifiers . 8–6
8.6.3 Restoring the Rights Database . 8–6
8.6.4 Assigning Identifiers to Users . 8–7
8.6.5 Removing Holder Records . 8–7
8.6.6 Removing Identifiers . 8–7

viii

8.6.7 Customizing Identifiers . 8–8
8.6.7.1 Dynamic Attribute . 8–8
8.6.7.2 Holder Hidden Attribute . 8–9
8.6.7.3 Name Hidden Attribute . 8–9
8.6.7.4 No Access Attribute . 8–9
8.6.7.5 Resource Attribute . 8–10
8.6.7.6 Subsystem Attribute . 8–11
8.6.8 Modifying a System or Process Rights List . 8–11
8.7 Giving Users Privileges . 8–12
8.7.1 Categories of Privilege . 8–12
8.7.2 Suggested Privilege Allocations . 8–13
8.7.3 Limiting User Privileges . 8–14
8.7.4 Installing Images with Privilege . 8–14
8.7.5 Restricting Command Output . 8–15
8.8 Setting Default Protection and Ownership . 8–15
8.8.1 Controlling File Access . 8–16
8.8.1.1 Adjusting Protection Defaults . 8–19
8.8.1.2 Setting Defaults for a Directory Owned by a Resource

Identifier . 8–20
8.8.1.2.1 Setting Up the Resource Identifier . 8–21
8.8.1.2.2 Setting Up the Directory of a Resource Identifier 8–21
8.8.1.2.3 Setting Up the ACL . 8–21
8.8.2 Setting Defaults for Objects Other Than Files 8–22
8.8.2.1 Displaying Class Defaults . 8–23
8.8.2.2 Modifying Class Templates . 8–24
8.9 Added Protection for System Data and Resources 8–24
8.9.1 Precautions to Take When Installing New Software 8–25
8.9.1.1 Potentially Harmful Programs . 8–25
8.9.1.2 Installing Programs with Privilege . 8–26
8.9.2 Protecting System Files . 8–26
8.9.3 Restricting DCL Command Usage . 8–28
8.9.4 Encrypting Files . 8–28
8.9.5 Protecting Disks . 8–28
8.9.5.1 Erasing Techniques . 8–29
8.9.5.2 Prevention Through High-Water Marking 8–29
8.9.5.3 Summary of Prevention Techniques . 8–30
8.9.6 Protecting Backup Media . 8–30
8.9.6.1 Backing Up Disks . 8–30
8.9.6.2 Protecting a Backup Save Set . 8–30
8.9.6.3 Retrieving Files from Backup Save Sets . 8–31
8.9.7 Protecting Terminals . 8–32
8.9.7.1 Restricting Terminal Use . 8–32
8.9.7.2 Restricting Application Terminals and Miscellaneous Devices 8–32
8.9.7.3 Configuring Terminal Lines for Modems . 8–32

9 Security Auditing

9.1 Overview of the Auditing Process . 9–1
9.2 Reporting Security-Relevant Events . 9–2
9.2.1 Ways to Generate Audit Information . 9–2
9.2.1.1 Auditing Categories of Activity . 9–2
9.2.1.2 Attaching a Security-Auditing ACE . 9–5
9.2.1.3 Modifying a User Authorization Record . 9–6

ix

9.2.2 Kinds of System Activity the Operating System Can Report 9–7
9.2.2.1 Suppression of Certain Privilege Audits . 9–8
9.2.2.2 Suppression of Certain Process Control Audits 9–9
9.2.3 Sources of Event Information . 9–9
9.3 Developing an Auditing Plan . 9–10
9.3.1 Assessing Your Auditing Requirements . 9–10
9.3.2 Selecting a Destination for the Event Message 9–12
9.3.3 Considering the Performance Impact . 9–13
9.4 Methods of Capturing Event Messages . 9–13
9.4.1 Using an Audit Log File . 9–14
9.4.1.1 Maintaining the File . 9–14
9.4.1.2 Moving the File from the System Disk . 9–15
9.4.2 Enabling a Terminal to Receive Alarms . 9–15
9.4.3 Secondary Destinations for Event Messages . 9–16
9.4.3.1 Using a Remote Log File . 9–16
9.4.3.2 Using a Listener Mailbox . 9–17
9.5 Analyzing a Log File . 9–18
9.5.1 Recommended Procedure . 9–18
9.5.2 Invoking the Audit Analysis Utility . 9–19
9.5.3 Providing Report Specifications . 9–20
9.5.4 Using the Audit Analysis Utility Interactively 9–22
9.5.5 Examining the Report . 9–22
9.6 Managing the Auditing Subsystem . 9–24
9.6.1 Tasks Performed by the Audit Server . 9–24
9.6.2 Disabling and Reenabling Startup of the Audit Server 9–26
9.6.3 Changing the Point in Startup When the Operating System Initiates

Auditing . 9–26
9.6.4 Choosing the Number of Outstanding Messages That Trigger Process

Suspension . 9–27
9.6.4.1 Controlling Message Flow . 9–27
9.6.4.2 Preventing Process Suspension . 9–28
9.6.5 Reacting to Insufficient Memory . 9–28
9.6.6 Maintaining the Accuracy of Message Time-Stamping 9–29
9.6.7 Adjusting the Transfer of Messages to Disk . 9–29
9.6.8 Allocating Disk Space for the Audit Log File . 9–29
9.6.9 Error Handling in the Auditing Facility . 9–30
9.6.9.1 Disabling Disk Monitoring . 9–30
9.6.9.2 Losing the Link to a Remote Log File . 9–30

10 System Security Breaches

10.1 Forms of System Attacks . 10–1
10.2 Indications of Trouble . 10–2
10.2.1 Reports from Users . 10–2
10.2.2 Monitoring the System . 10–2
10.3 Routine System Surveillance . 10–3
10.3.1 System Accounting . 10–3
10.3.2 Security Auditing . 10–4
10.4 Handling a Security Breach . 10–6
10.4.1 Unsuccessful Intrusion Attempts . 10–6
10.4.1.1 Detecting Intrusion Attempts . 10–6
10.4.1.2 Identifying the Perpetrator . 10–6
10.4.1.3 Preventing Intrusion Attempts . 10–6

x

10.4.2 Successful Intrusions . 10–7
10.4.2.1 Identifying the Successful Perpetrator . 10–7
10.4.2.2 Securing the System . 10–8
10.4.2.3 Repair After a Successful Intrusion . 10–8

11 Securing a Cluster

11.1 Overview of Clusters . 11–1
11.2 Building a Common Environment . 11–2
11.2.1 Required Common System Files . 11–2
11.2.2 Recommended Common System Files . 11–3
11.2.3 Synchronizing Multiple Versions of Files . 11–3
11.3 Synchronizing Authorization Data . 11–4
11.4 Managing the Audit Log File . 11–5
11.5 Protecting Objects . 11–6
11.6 Storing Profiles and Auditing Information . 11–6
11.7 Cluster-Wide Intrusion Detection . 11–7
11.8 Using the System Management Utility . 11–7
11.9 Managing Cluster Membership . 11–7
11.10 Using DECnet Between Cluster Nodes . 11–8

12 Security in a Network Environment

12.1 Managing Network Security . 12–1
12.1.1 Requirements for Achieving Security . 12–1
12.1.2 Auditing in the Network . 12–2
12.2 Hierarchy of Access Controls . 12–3
12.2.1 Using Explicit Access Control . 12–3
12.2.2 Using Proxy Logins . 12–4
12.2.3 Using Default Application Accounts . 12–4
12.3 Proxy Access Control . 12–4
12.3.1 Special Security Measures with Proxy Access 12–5
12.3.2 Setting Up a Proxy Database . 12–5
12.3.2.1 Enabling and Disabling Incoming Proxy Access 12–7
12.3.2.2 Removing Proxy Access . 12–7
12.3.2.3 Procedure for Creating a Proxy Account . 12–8
12.3.3 Example of a Proxy Account . 12–8
12.4 Using DECnet Application (Object) Accounts . 12–9
12.4.1 Summary of Network Objects . 12–10
12.4.2 Configuring Network Objects Manually . 12–11
12.4.3 Removing Default DECnet Access to the System 12–13
12.4.4 Setting Privilege Requirements for Remote Object Connections 12–14
12.5 Specifying Routing Initialization Passwords . 12–14
12.5.1 Establishing a Dynamic Asynchronous Connection 12–15
12.6 Sharing Files in a Network . 12–19
12.6.1 Using the Mail Utility . 12–20
12.6.2 Setting Up Accounts for Local and Remote Users 12–20
12.6.3 Admitting Remote Users to Multiple Accounts 12–21

xi

13 Using Protected Subsystems

13.1 Advantages of Protected Subsystems . 13–1
13.2 Applications for Protected Subsystems . 13–2
13.3 How Protected Subsystems Work . 13–2
13.4 Design Considerations . 13–3
13.5 System Management Requirements . 13–3
13.6 Building the Subsystem . 13–4
13.7 Enabling Protected Subsystems on a Trusted Volume 13–5
13.8 Giving Users Access . 13–6
13.9 Example of a Protected Subsystem . 13–6
13.9.1 Protecting the Top-Level Directory . 13–7
13.9.2 Protecting Subsystem Directories . 13–8
13.9.3 Protecting the Images and Data Files . 13–9
13.9.4 Protecting the Printer . 13–10
13.9.5 Command Procedure for Building the Subsystem 13–10

A Assigning Privileges

A.1 ACNT Privilege (Devour) . A–1
A.2 ALLSPOOL Privilege (Devour) . A–2
A.3 ALTPRI Privilege (System) . A–2
A.4 AUDIT Privilege (System) . A–2
A.5 BUGCHK Privilege (Devour) . A–3
A.6 BYPASS Privilege (All) . A–3
A.7 CMEXEC Privilege (All) . A–4
A.8 CMKRNL Privilege (All) . A–4
A.9 DIAGNOSE Privilege (Objects) . A–5
A.10 DOWNGRADE Privilege (All) . A–6
A.11 EXQUOTA Privilege (Devour) . A–6
A.12 GROUP Privilege (Group) . A–6
A.13 GRPNAM Privilege (Devour) . A–6
A.14 GRPPRV Privilege (Group) . A–7
A.15 IMPERSONATE Privilege (All) (Formerly DETACH) A–8
A.16 IMPORT Privilege (Objects) . A–8
A.17 LOG_IO Privilege (All) . A–8
A.18 MOUNT Privilege (Normal) . A–9
A.19 NETMBX Privilege (Normal) . A–9
A.20 OPER Privilege (System) . A–9
A.21 PFNMAP Privilege (All) . A–12
A.22 PHY_IO Privilege (All) . A–12
A.23 PRMCEB Privilege (Devour) . A–13
A.24 PRMGBL Privilege (Devour) . A–13
A.25 PRMMBX Privilege (Devour) . A–13
A.26 PSWAPM Privilege (System) . A–14
A.27 READALL Privilege (Objects) . A–14
A.28 SECURITY Privilege (System) . A–14
A.29 SETPRV Privilege (All) . A–15
A.30 SHARE Privilege (All) . A–15
A.31 SHMEM Privilege (Devour) . A–15
A.32 SYSGBL Privilege (Files) . A–16
A.33 SYSLCK Privilege (System) . A–16
A.34 SYSNAM Privilege (All) . A–16
A.35 SYSPRV Privilege (All) . A–17
A.36 TMPMBX Privilege (Normal) . A–18

xii

A.37 UPGRADE Privilege (All) . A–18
A.38 VOLPRO Privilege (Objects) . A–18
A.39 WORLD Privilege (System) . A–19

B Protection for OpenVMS VAX System Files

B.1 Standard Ownership and Protection . B–1
B.2 Listing of OpenVMS VAX System Files . B–3
B.2.1 Files in Top-Level Directories . B–3
B.2.2 Files in DECW$DEFAULTS.SYSTEM and MOM$SYSTEM B–3
B.2.3 Files in SYS$KEYMAP . B–4
B.2.4 Files in SYS$KEYMAP.DECW.SYSTEM . B–4
B.2.5 Files in SYS$LDR . B–5
B.2.6 Files in SYS$STARTUP and SYS$ERR . B–6
B.2.7 Files in SYSEXE . B–7
B.2.8 Files in SYSFONT and SYSFONT.DECW . B–9
B.2.9 Files in DECW.100DPI . B–9
B.2.10 Files in DECW.75DPI . B–12
B.2.11 Files in SYSFONT.DECW.COMMON . B–15
B.2.12 Files in SYSHLP . B–17
B.2.13 Files in SYSLIB . B–19
B.2.14 Files in SYSMGR . B–21
B.2.15 Files in SYSMSG . B–21
B.2.16 Files in SYSTEST . B–22
B.2.17 Files in SYSUPD . B–22
B.2.18 Files in VUE$LIBRARY . B–23

C Running an OpenVMS System in a C2 Environment

C.1 Introduction to C2 Systems . C–1
C.1.1 Definition of the C2 Environment . C–1
C.1.2 Documentation . C–2
C.2 Trusted Computing Base (TCB) for C2 Systems . C–2
C.2.1 Hardware in the TCB . C–2
C.2.2 Software in the TCB . C–2
C.2.3 Site-Specific Additions to the TCB . C–4
C.3 Protecting Objects . C–4
C.4 Protecting the TCB . C–5
C.4.1 Protecting Files . C–5
C.4.2 Privileges for Trusted Users . C–5
C.4.3 Privileges for Untrusted Users . C–6
C.4.4 Physical Security . C–6
C.5 Configuring a C2 System . C–7
C.5.1 Keeping Individuals Accountable . C–7
C.5.2 Managing the Auditing Trail . C–8
C.5.3 Reusing Objects . C–9
C.5.4 Configuring Clusters . C–10
C.5.5 Starting Up and Operating the System . C–10
C.5.6 Forcing Immediate Reauthentication of a Specified Subject After a

Change in Access Rights . C–11
C.6 Checklist for Generating a C2 System . C–12

xiii

D Alarm Messages

Glossary

Index

Examples

3–1 Local Login Messages . 3–6
4–1 Authorized Versus Default Process Privileges 4–8
6–1 Sample Security Administrator’s Account . 6–5
7–1 Creating a Typical Interactive User Account . 7–5
7–2 Creating a Limited-Access Account . 7–6
7–3 Sample Captive Procedure for Privileged Accounts 7–10
7–4 Sample Captive Command Procedure for Unprivileged Accounts 7–10
7–5 Intrusion Database Display . 7–33
9–1 Sample Alarm Message . 9–2
9–2 Audit Generated by an Object Access Event . 9–5
9–3 Auditing Events for a Site with Moderate Security Requirements 9–11
9–4 Brief Audit Report . 9–21
9–5 One Record from a Full Audit Report . 9–21
9–6 Summary of Events in an Audit Log File . 9–21
9–7 Identifying Suspicious Activity in the Audit Report 9–23
9–8 Scrutinizing a Suspicious Record . 9–24
9–9 Default Characteristics of the Audit Server . 9–25
12–1 Sample Proxy Account . 12–8
12–2 UAF Record for MAIL$SERVER Account . 12–13
12–3 Sample Commands for a Dynamic Asynchronous Connection 12–19
12–4 Protected File Sharing in a Network . 12–21
13–1 Subsystem Command Procedure . 13–10

Figures

2–1 Reference Monitor . 2–2
2–2 Authorization Access Matrix . 2–7
2–3 Authorization Access Matrix with Labeled Cross-Points 2–8
4–1 Previous Per-Thread Security Model . 4–3
4–2 Per-Thread Security Profile Model . 4–3
4–3 Flowchart of Access Request Evaluation . 4–14
8–1 Flowchart of File Creation . 8–17
8–2 Security Class Object . 8–23
12–1 The Reference Monitor in a Network . 12–2
12–2 A Typical Dynamic Asynchronous Connection 12–19
13–1 How Protected Subsystems Differ from Normal Access Control 13–2
13–2 Directory Structure of the Taylor Company’s Subsystem 13–7

xiv

Tables

1–1 Event Tolerance as a Measure of Security Requirements 1–3
2–1 Objects Protected by Security Controls . 2–4
2–2 Information Stored in the Authorization Database 2–5
2–3 Security Auditing Overview . 2–6
3–1 Secure and Insecure Passwords . 3–1
3–2 Types of Passwords . 3–2
3–3 Reasons for Login Failure . 3–7
4–1 Major Types of Rights Identifiers . 4–5
4–2 Classes of Protected Objects . 4–12
5–1 Access Requirements for Non-File-Oriented Devices 5–5
6–1 Example of a Site Security Policy . 6–2
7–1 Authorize Qualifiers Controlling Login Times and Conditions 7–1
7–2 Login Qualifiers Not Allowed by Captive Accounts 7–8
7–3 Qualifiers Required to Define Captive Accounts 7–8
7–4 Defaults for Password History List . 7–22
7–5 SYS$SINGLE_SIGNON Logical Name Bits . 7–27
7–6 Intrusion Example . 7–34
7–7 Parameters for Controlling Login Attempts . 7–35
8–1 Employee Grouping by Department and Function 8–2
8–2 OpenVMS Privileges . 8–12
8–3 Minimum Privileges for System Users . 8–14
8–4 DCL Commands Used to Protect Files . 8–26
9–1 Event Classes Audited by Default . 9–3
9–2 Access Control Entries (ACEs) for Security Auditing 9–6
9–3 Kinds of Security Events the System Can Report 9–7
9–4 Events to Monitor Depending on a Site’s Security Requirements 9–10
9–5 Characteristics of the Audit Log File . 9–14
9–6 Qualifiers for the Audit Analysis Utility . 9–20
9–7 Controlling the Flow of Audit Event Messages 9–27
10–1 System Files Benefiting from ACL-Based Auditing 10–5
11–1 System Files That Must Be Common in a Cluster 11–2
11–2 System Files Recommended to Be Common . 11–3
11–3 Using Multiple Versions of Required Cluster Files 11–4
11–4 Fields in SYSUAF.DAT Requiring Synchronization 11–5
11–5 Summary of Object Behavior in a Cluster . 11–6
12–1 AUTHORIZE Commands for Managing Network Proxy Access 12–6
12–2 Network Object Defaults . 12–12
B–1 Exceptions to Standard OpenVMS VAX System File Protection B–1
C–1 Software Not Included in the C2-Evaluated System C–3
C–2 Privileges for Untrusted Users . C–6

xv

Preface

Intended Audience
This guide is designed for users and for administrators responsible for
protecting operating systems from tampering, observation, or theft of services by
unauthorized users. The term security administrator is used in this guide to
refer to the person or persons responsible for system security.

Document Structure
This guide contains the following information:

• Part I: Overview

Gives security administrators an overview of security issues, conceptual
design features, and security features specific to OpenVMS systems.

– Chapter 1 discusses levels of security requirements and describes three
sources of security failures.

– Chapter 2 introduces the reference monitor concept of security design and
provides an overview of the operating system’s security features.

• Part II: Security for the User

Describes security actions and features for the general user.

– Chapter 3 provides information for the general user about the login and
logout processes and the responsible use of passwords.

– Chapter 4 and Chapter 5 describe object protection features in detail.

• Part III: Security for the System Administrator

Describes security actions and features for the security administrator.

– Chapter 6 describes the general tasks of a security administrator.

– Chapter 7 describes methods of controlling system access.

– Chapter 8 describes methods of controlling access to system data and
resources.

– Chapter 9 describes security-auditing features.

– Chapter 10 describes how to recognize when a system is under attack and
how to protect and defend your system.

– Chapter 11 describes security-related actions specific to clustered systems,
such as setting up common system files and synchronizing authorization
data.

– Chapter 12 describes security considerations for systems using
networking.

xvii

– Chapter 13 describes how to set up and manage protected subsystems.

– Appendix A provides a summary of all the user privileges available on the
operating system and describes who may need them.

– Appendix B lists the protection codes and ownership that Compaq
provides for critical system files.

– Appendix C describes how to operate OpenVMS systems in a Division C,
Class 2 (C2) security environment.

– Appendix D provides examples of security alarm messages.

• The Glossary provides definitions of security-related terms introduced in this
guide.

Related Documents
The OpenVMS Guide to System Security assumes you are familiar with the
reference material in the OpenVMS System Management Utilities Reference
Manual pertaining to the following security-related utilities:

• Access control list editor (ACL editor)

• Accounting utility

• Audit Analysis utility

• Authorize utility

• Backup utility

• System Management (SYSMAN) utility

You might find helpful the amplified security information in the following
manuals:

• OpenVMS DCL Dictionary

• OpenVMS System Manager’s Manual

• OpenVMS Cluster Systems

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

xviii

How to Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

xix

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xx

Part I
Security Overview

The chapters in this part discuss the following topics:

• Sources of security failures (Section 1.1)

• Levels of security requirements (Section 1.2)

• Reference monitor concept of security design (Section 2.1)

• Security features of the operating system (Section 2.2)

1
Understanding System Security

Effective operating system security measures help prevent unauthorized access
and theft of computer time and any kind of sensitive information, such as
marketing plans, formulas, or proprietary software. These measures can also
protect equipment, software, and files from damage caused by tampering.

This chapter provides security administrators with an overview of security
measures available with the operating system. Part III provides more specific
information regarding site security policies, the tasks of security administrators,
and methods of protecting site computer systems and resources.

1.1 Types of Computer Security Problems
On any system there can be two types of users: authorized and unauthorized.
Any person authorized to use the computer system has the right to access the
system and its resources according to the authorization criteria set up by the
site security administrator. Usage criteria may include the time of day, types
of logins, use of different resources like printers and terminals, and so on.
Unauthorized users have no right to use the system at all or only at a given time
of day, or they have no right to use certain system resources.

On a computer system, security breaches usually result from one of four types of
actions:

• User irresponsibility refers to situations where the user purposely or
accidentally causes some noticeable damage. One example would be a user
who is authorized to access certain files making a copy of a key file to sell.

There is little that an operating system can do to protect sites from this
source of security failure. The problem frequently lies in application design
deficiencies or inconsistent use of available controls by users and the security
administrator. Sometimes the failure to enforce adequate environmental
security unwittingly encourages this type of security problem.

Even the best security system will fail if implemented inconsistently. This,
along with the failure to motivate your users to observe good security
practices, will make your system vulnerable to security failures caused by
user irresponsibility. Chapter 3 discusses what users can do to help maintain
system security.

• User probing refers to situations where a user exploits insufficiently
protected parts of the system. Some users consider gaining access to a
forbidden system area as an intellectual challenge, playing a game of user
versus system. Although intentions may be harmless, theft of services is a
crime. Users with more serious intent may seek confidential information,
attempt embezzlement, or even destroy data by probing. Always treat user
probing seriously.

Understanding System Security 1–1

Understanding System Security
1.1 Types of Computer Security Problems

The system provides many security features to combat user probing. Based
on security needs, the security administrator implements features on either a
temporary or permanent basis. See Chapter 4 for information on protecting
data and resources with protection codes and access control lists.

• User penetration refers to situations where the user breaks through
security controls to gain access to the system. While the system has security
features that make penetration extremely difficult, it is impossible to make
any operating system completely impenetrable.

A user who succeeds in penetrating a system is both skilled and malicious.
Thus, penetration is the most serious and potentially dangerous type of
security breach. With proper implementation of the OpenVMS security
features, however, it is also the rarest security breach, requiring unusual
skills and perseverance.

• Social engineering refers to situations in which an intruder gains access
to a system not by technical means, but by deceiving users, operators, or
administrators. Potential intruders may impersonate authorized users over
the phone. Potential intruders may request information that gains them
access to the system, such as telephone numbers or passwords, or they may
request an unwitting operator to perform some action that compromises the
security of the system.

As the technical security features of operating systems have strengthened in
recent years, social engineering has been a factor in a growing percentage of
security incidents. Operator training, administrative procedures, and user
awareness are all critical factors to ensure that access is not inadvertantly
granted to unauthorized persons.

The following chapters explain how to avoid these problems:

• Chapter 8 explains how to augment the protection of system files and
resources.

• Chapter 7 describes the intrusion detection system and how to set its
parameters.

• Chapter 9 explains how to monitor system activity and be notified by
malicious activity.

• Chapter 10 suggests how to handle system intrusions.

• Chapter 3 and Chapter 6 list topics to include in your site training programs.

1.2 Levels of Security Requirements
Each site has unique security requirements. Some sites require only limited
measures because they are able to tolerate some forms of unauthorized access
with little adverse effect. At the other extreme are those sites that cannot
tolerate even the slightest probing, such as strategic military defense centers. In
between are many commercial sites, such as banks.

While there are many considerations in determining your security needs, the
questions in Table 1–1 can get you started. Your answers can help determine the
levels of your security needs. Also refer to Section 6.2 for a more specific example
of site security requirements.

1–2 Understanding System Security

Understanding System Security
1.2 Levels of Security Requirements

Table 1–1 Event Tolerance as a Measure of Security Requirements

Question: Could you tolerate
the following event?

Level of Security Requirements
Based on Toleration Responses

Low Medium High

A user knowing the images being
executed on your system Y Y N

A user knowing the names of
another user’s files Y Y N

A user accessing the file of another
user in the group Y Y N

An outsider knowing the name of the
system just dialed into Y Y N

A user copying files of other
users Y N N

A user reading another user’s
electronic mail Y N N

A user writing data into another
user’s file Y N N

A user deleting another user’s
file Y N N

A user being able to read
sections of a disk that might
contain various old files Y N N

A user consuming machine time
and resources to perform
unrelated or unauthorized work,
possibly even playing games Y N N

If you can tolerate most of the events listed, your security requirements are quite
low. If your answers are mixed, your requirements are in the medium to high
range. Generally, those sites that are most intolerant to the listed events have
very high levels of security requirements.

When you review your site’s security needs, do not confuse a weakness in site
operations or recovery procedures as a security problem. Ensure that your
operations policies are effective and consistent before evaluating your system
security requirements.

1.3 Building a Secure System Environment
There are two sources of security problems outside the operating system domain:
employee carelessness and facility vulnerability. If you have a careless or
malicious employee or your facility is insecure, none of the security measures
discussed in this guide will protect you from security breaches.

Most system penetration occurs through these environmental weaknesses. It is
much easier to physically remove a small reel of tape than it is to break access
protection codes or change file protection.

Compaq strongly encourages you to stress environmental considerations as well
as operating system protection when reviewing site security.

Understanding System Security 1–3

Understanding System Security
1.3 Building a Secure System Environment

This book discusses operating system security measures. When deciding which
of these measures to implement, it is important for you to assess site security
needs realistically. While instituting adequate security for your site is essential,
instituting more security than actually necessary is costly and time-consuming.

When deciding which security measures to apply to your system, remember the
following:

• The most secure system is also the most difficult to use.

• Increasing security can increase costs in terms of slower access to data,
slower machine operations, and slower system performance.

• More security measures require more personnel time.

The operating system provides the basic mechanisms to control access to the
system and its data. It also provides monitoring tools to ensure that access is
restricted to authorized users. However, many computer crimes are committed by
authorized users with no violation of the operating system’s security controls.

Therefore, the security of your operation depends on how you apply these
security features and how you control your employees and your site. By first
building appropriate supervisory controls into your application and designing
your application with the goal of minimizing opportunities for abuse, you can
then implement operating system and site security features and produce a less
vulnerable environment. For an example of one organization’s security plan, see
Chapter 6.

If you require your system to meet the United States government rating of a C2
secure operating system, please refer to Appendix C in this manual.

If you need a higher level of computer security for your OpenVMS secure system,
Compaq offers SEVMS, which is the security enhanced version of OpenVMS that
provides mandatory access controls to enforce a system-wide security policy.

SEVMS is a U.S. Department of Defense B1-rated secure operating system.

1–4 Understanding System Security

2
OpenVMS Security Model

This chapter presents the concepts that guided the design and implementation
of the security features and mechanisms incorporated into the operating system.
The intent is to provide a framework for thinking about your total system
security picture. Subsequent chapters present details about the security features
and their use.

2.1 Structure of a Secure Operating System
In the late 1960s, a great deal of research and development was dedicated to
the problem of achieving security in multiuser computer systems. Much of the
development work involved attempts to find all the things that could go wrong
with a system’s security and then to correct those flaws one by one. It became
apparent to the researchers that this process was ineffective; effective system
security could result only from a basic model of the structure of a secure computer
system. The reference monitor concept was proposed as such a model and gained
wide acceptance.

2.1.1 Reference Monitor Concept
According to the reference monitor concept, a computer system can be depicted
in terms of subjects, objects, an authorization database, an audit trail, and a
reference monitor, as shown in Figure 2–1. The reference monitor is the
control center that authenticates subjects and implements and enforces the
security policy for every access to an object by a subject.

OpenVMS Security Model 2–1

OpenVMS Security Model
2.1 Structure of a Secure Operating System

Figure 2–1 Reference Monitor

ZK−2446A−GE

Authorization Database

Reference Monitor

Audit Trail

ObjectSubject

3

1

4

2

The following table describes the elements shown in Figure 2–1:

Item Element Description

1 Subjects Active entities, such as user processes, that gain
access to information on behalf of people.

2 Objects Passive repositories of information to be protected,
such as files.

3 Authorization database Repository for the security attributes of subjects
and objects. From these attributes, the reference
monitor determines what kind of access (if any) is
authorized.

4 Audit trail Record of all security-relevant events, such as
access attempts, successful or not.

2.1.2 How the Reference Monitor Enforces Security Rules
The reference monitor enforces the security policy by authorizing the creation
of subjects, by granting subjects access to objects based on the information in a
dynamic authorization database, and by recording events, as necessary, in the
audit trail. In an ideal system, the reference monitor must meet the following
three requirements:

• Mediate every attempt by a subject to gain access to an object

• Provide a tamperproof database and audit trail that are thoroughly protected
from unauthorized observation and modification

• Remain a small, simple, and well-structured piece of software so that it is
effective in enforcing security requirements

These are the requirements proposed for systems that are secure even against
penetration. In such systems, the reference monitor is implemented by a security-
related subset, or security kernel, of the operating system.

2–2 OpenVMS Security Model

OpenVMS Security Model
2.2 Implementation of the Reference Monitor

2.2 Implementation of the Reference Monitor
While the OpenVMS operating system does not implement the reference monitor
as a security-related subset, or security kernel, its interface to users and system
managers does mirror the basic structure dictated by the reference monitor
concept. Experience shows that incorporating such a structure is the best way to
build a system resistant to probing and to most attempts at penetration.

The following sections describe the OpenVMS operating system’s implementation
of the reference monitor model.

2.2.1 Subjects
Subjects are the users or user agents (the user processes) that access information
and, in some cases, may be prevented from accessing information. Subjects can
be interactive processes, network processes, or batch jobs, and:

• Must pass security controls

During process creation
During information access

• Require identification

User names
Passwords
User identification codes
Rights identifiers

When a user logs in to use the operating system interactively or when a batch
or network job starts, the operating system creates a process that includes the
identity of the user. That process gains access to information as the agent for the
user, as described in Chapter 4.

Processes are vulnerable to security breaches while they are being created and
while they are accessing information. The system manages process access to
information by using its authorization data and internal mechanisms, such
as hardware controls. Because process creation has many areas of security
vulnerability, many operating security features concentrate on the area of process
(or subject) creation.

When a user attempts to log in to a system, the user provides a user name (a
name that will be given to the resulting process) and a password. The password
serves as an authenticator that should be known only to the user and to the
operating system.

Because a short or obvious password is likely to fail this requirement, the system
incorporates many password protection mechanisms that can be invoked by the
user or required by the security administrator (see Chapter 7). The operating
system is also capable of limiting the number of attempts that an intruder can
make to guess a password.

The file of users’ passwords is part of the security database that must be
protected from unauthorized observation and modification. The system meets
this requirement by storing the passwords in a file protected from general access,
the system user authorization file (SYSUAF.DAT). The system takes the
additional precaution of storing passwords in an encoded form that is hard to use
if stolen.

OpenVMS Security Model 2–3

OpenVMS Security Model
2.2 Implementation of the Reference Monitor

Once the operating system creates a process for a user, it assigns a user
identification code or UIC from the user authorization record to that process.
The UIC corresponds to the name of the user who created the process (as
authenticated by the user’s password). In addition, the UIC indicates the user’s
membership in a group that can correspond to the user’s department, project,
or function. The system can also attach additional information to the process
regarding the creation of the process and the affiliation of the process owner with
other groups. This additional information plays a part in the application of the
authorization database. (Both Chapter 4 and Chapter 8 discuss UICs.)

2.2.2 Objects
In the reference monitor concept, objects are passive repositories of information.
In the OpenVMS system, there are many objects, such as files and devices,
that are subject to protection, as described in Table 2–1. The operating system
protects objects from unauthorized access and provides a variety of mechanisms
(described in Chapter 4 and Chapter 5) for sharing them in a controlled manner.
These mechanisms are also used to control access to system resources.

Table 2–1 Objects Protected by Security Controls

Class Name Definition

Capability A resource to which the system controls access; currently, the
only defined capability is the vector processor.

Common event flag
cluster

A set of 32 event flags that enable cooperating processes to post
event notifications to each other.

Device A class of peripherals connected to a processor that are capable
of receiving, storing, or transmitting data.

File Files-11 On-Disk Structure Level 2 (ODS-2) files and directories.

Group global section A shareable memory section potentially available to all processes
in the same group.

Logical name table A shareable table of logical names and their equivalence names
for the system or a particular group.

Queue A set of jobs to be processed in a batch, terminal, server, or print
job queue.

Resource domain A namespace controlling access to the lock manager’s resources.

Security class A data structure containing the elements and management
routines for all members of the security class.

System global section A shareable memory section potentially available to all processes
in the system.

Volume A mass storage medium, such as a disk or tape, that is in ODS-2
format. Volumes contain files and may be mounted on devices.

2.2.3 Authorization Database
According to the reference monitor model, each subject’s authorization to gain
access to an object is based on an abstract authorization database. This database
is a set of dynamic security attributes that govern a subject’s access to an object
at any given time. In the OpenVMS system, the database is distributed and
stored in association with the objects that must be protected. For example, the
authorization data for a file or directory is stored in the file header for that file
or directory. Table 2–2 summarizes the information stored in the authorization
database.

2–4 OpenVMS Security Model

OpenVMS Security Model
2.2 Implementation of the Reference Monitor

Table 2–2 Information Stored in the Authorization Database

File Contents Data Used to Interpret

SYSUAF.DAT User names Logins

Passwords Logins

UICs Access control checks

NETPROXY.DAT User names Logins

NET$PROXY.DAT User names Logins

RIGHTSLIST.DAT Rights identifiers Access control checks

VMS$OBJECTS.DAT UICs Access control checks

Protection codes Access control checks

Access control lists Access control checks

VMS$AUDIT_
SERVER.DAT

Auditable events Reporting of events

As Section 2.2.2 suggests, different objects in the OpenVMS system can be shared
with differing levels of flexibility. Protected objects are subject to a protection
code. This code specifies whether access is allowed or denied to processes run on
behalf of system users, the user who is owner of the object, other members of the
UIC group of the owner, and all other users.

In addition to the protection code, objects can be shared under control of access
control lists (ACLs). ACLs provide a finer granularity of access control
than UIC-based protection, especially for user groups or subsets of groups.
ACLs list individual users or groups of users who are to be allowed or denied
particular types of access to the object. ACLs specify sharing on the basis of UIC
identification as well as other groupings or identifiers that can be associated
with a process. For example, it is possible to specify that a file should never be
read by a process connected to a terminal on a dialup line. Section 2.2.6 uses
an access matrix to explain the concept of an ACL. Section 4.4 gives a general
discussion of ACLs and identifiers, and Chapter 8 explains how you, as security
administrators, can create identifiers and construct ACLs for system resources.

2.2.4 Audit Trail
All security-relevant events can be recorded in an audit log file, sent to an
operator terminal, or both. A terminal can be designated as a security operator
terminal where all auditable events can be displayed. An audit log file provides
a permanent record of security events. Many times a security administrator can
find a pattern of activity, called an audit trail, by studying the log file.

The operating system audits the classes of security events shown in Table 2–3
by default. You can select other events for auditing, such as volume mounts or
changes to system time.

OpenVMS Security Model 2–5

OpenVMS Security Model
2.2 Implementation of the Reference Monitor

Table 2–3 Security Auditing Overview

Destination Events Audited by Default

Log file or terminal display Authorization database changes

Intrusion attempts

Login failures

Use of DCL command SET AUDIT

Events triggered by Audit or Alarm ACEs

The audit log allows users and security administrators to record many events.
Because it is time-consuming to examine every event, it is most efficient to audit
events that will contribute the most information to your security picture. See
Chapter 9 for a description of security auditing.

2.2.5 Reference Monitor
In the OpenVMS operating system, the executive performs the role of the
reference monitor. All system programs that run in kernel and executive mode
help implement the reference monitor, as do the command line interpreter and
certain user-mode images that run with privilege. While the volume of code
comprising the executive is large, Compaq attempts to ensure that none of the
code can be used to bypass system security.

Some privileges can grant a user the authority to modify or subvert the reference
monitor. For example, a process with the CMKRNL privilege can execute code
of its own within the system kernel, gaining access to the reference monitor’s
internal data and the internal representation of protected objects. Clearly,
granting such critical privileges should be severely limited.

Similarly, give privileges such as SYSPRV and SECURITY only to users whose
processes help maintain the reference monitor and authorization database.

2.2.6 Authorization Database Represented as an Access Matrix
The reference monitor model specifies an authorization database, which describes
all access authorizations in the system for all subjects and all objects. This
database is often represented as an access matrix, which lists subjects on one
axis and objects on the other (see Figure 2–2). Each crosspoint in the matrix thus
represents the access that one subject has to one object.

2–6 OpenVMS Security Model

OpenVMS Security Model
2.2 Implementation of the Reference Monitor

Figure 2–2 Authorization Access Matrix

Objects:

Subjects:

V W X Y Z

*A

B

C

D

E

*

*

*

**

*

*

**

*

*

**

*

*

ZK−1061A−GE

In this access matrix, an asterisk (*) denotes that the subject has access to that
object. (Different types of access, such as read and write, are omitted from this
example for simplicity.) Thus, subjects B, C, and D all have access to objects W,
X, and Y. In addition, subject A has access to objects W and Z, subject D to object
V, and subject E to object V.

Breaking up the access matrix by rows yields a capability-based model, in which
each subject carries a list of the objects that it can access. Thus, a capability
representation of this access matrix would appear as follows:

A: W, Z
B: W, X, Y
C: W, X, Y
D: V, W, X, Y
E: V

It is also possible to break up the access matrix by columns, listing for each
object the subjects that have access to it. This results in an authority-based
model, implemented in the OpenVMS system by ACLs (see Chapter 4). The ACL
representation appears as follows:

V: D, E
W: A, B, C, D
X: B, C, D
Y: B, C, D
Z: A

The ACL and identifier controls used by the operating system combine the
properties of both the capability- and authority-based systems. In OpenVMS
systems, both subjects and objects carry identifiers. Subjects can access objects
if they have matching identifiers and if the objects’ access statements grant the
requested access.

The result of combining properties of the capability- and authority-based systems
is an extremely powerful and flexible system capable of representing complex
access matrixes in a compact and convenient manner. Consider what happens
to the previous example of an access matrix when some of the cross-points have
labels, as shown in Figure 2–3.

OpenVMS Security Model 2–7

OpenVMS Security Model
2.2 Implementation of the Reference Monitor

Figure 2–3 Authorization Access Matrix with Labeled Cross-Points

Objects:

Subjects:

V W X Y Z

*A

B

C

D

E

*

ZK−1062A−GE

P

P

Q

Q

Q

Q

Q

Q

Q

Q

Q

Some labeled cross-points can be grouped and treated as a single entity. Thus,
the points that are labeled Q in Figure 2–3 represent the access that subjects
B, C, and D have to objects W, X, and Y. All the Q points can be considered as
a single area of interest. The system provides the concept of identifiers to take
practical advantage of this grouping of areas of interest.

You can define identifiers to represent the two groups of access, P and Q, in
Figure 2–3. Note that two of the cross-points in the matrix remain unlabeled.
Identifiers can also represent individual subjects and thus allow the traditional
ACL facility.

To represent the access matrix, the OpenVMS operating system uses two
structures, one for each dimension:

• The rights list (RIGHTSLIST.DAT) represents the rows of the access matrix
and thus corresponds to the capability-based model. For the matrix in
Figure 2–3, you would need the following rights list:

B: Q
C: Q
D: P, Q
E: P

• ACLs for the protected objects represent the columns of the access matrix.
For this example, you would need the following ACLs:

V: P
W: A, Q
X: Q
Y: Q
Z: A

Note that the system structures required to represent the access matrix are
simpler than either the traditional capability- or authority-based model and
require fewer terms in total. In the example, the difference is slight. However,
complexity of the access matrix increases with the square of its size.

2–8 OpenVMS Security Model

OpenVMS Security Model
2.3 Summary: System Security Design

2.3 Summary: System Security Design
When designing an overall system security plan, ask yourself the following
questions:

• How are users associated with subjects? What is the reliability of the
authentication mechanism?

• What objects contain sensitive information in this system or application? Is
access to those objects controlled?

• Does the authorization database reflect the site’s security policy? Who is
authorized to gain access to sensitive objects? Are adequate restrictions in
place?

• Is the audit trail recording enough or too much information? Who will
monitor it? How often will it be examined?

• What programs are functioning as part of the reference monitor? Which users
can modify the security policy and the authorization database? Is this the
desired configuration?

These considerations, as well as the underlying reference monitor design, apply
equally to a timesharing system, a widespread network, or a single application on
a system that grants access to records in a file or database. The operating system
provides general mechanisms that users and security administrators must apply
to achieve system security. See Chapter 6 for more information on designing and
implementing a security policy.

OpenVMS Security Model 2–9

Part II
Security for the User

The chapters in this part discuss the following topics:

• Login and logout processes (Chapter 3)

• Password use (Chapter 3)

• Security profiles of subjects and objects (Chapter 4)

• Object protection mechanisms (Chapter 4)

• Characteristics of object classes (Chapter 5)

3
Using the System Responsibly

This chapter provides basic information on how to use the system securely. If
you apply this knowledge consistently and accurately, while observing your site’s
specific security policies, you can make the difference between a secure system
and one that is vulnerable to unauthorized users.

3.1 Choosing a Password for Your Account
To choose a secure password, use the following guidelines:

• Include both numbers and letters in the password. Although a 6-character
password that contains only letters is secure, a 6-character password with
both letters and numbers is much more secure.

• Choose passwords that contain 6 to 10 characters. Adequate length makes
passwords more secure. You can choose a password as long as 32 characters.

• Do not select passwords from a dictionary or from your native language.

• Avoid choosing words readily associated with your computer site or yourself,
such as the name of a product or the model of your car.

• Choose new passwords each time. Do not reuse old ones.

Your security administrator may set up additional restrictions, for example, not
allowing passwords with fewer than 10 characters.

Table 3–1 provides examples of secure as opposed to risky passwords.

Table 3–1 Secure and Insecure Passwords

Secure Passwords Insecure Passwords

Nonsense syllables:
aladaskgam
eojfuvcue
joxtyois

Words with a strong personal association:
your name
the name of a loved one
the name of your pet
the name of your town
the name of your automobile

A mixed string:
492_weid
$924spa
zu_$rags

A work-related term:
your company name
a special project
your work group name

3.1.1 Obtaining Your Initial Password
Typically, when you learn that an account has been created for you on the system,
you are told whether a user password is required. If user passwords are in effect,
you are told to use a specific password for your first login. This password has
been placed in the system user authorization file (SYSUAF.DAT) with other
information about how your account can be used.

Using the System Responsibly 3–1

Using the System Responsibly
3.1 Choosing a Password for Your Account

It is inadvisable to have passwords that can be easily guessed. Ask the person
creating an account for you to specify a password that is difficult to guess. If you
have no control over the password you are given, you might be given a password
that is the same as your first name. If so, change it immediately after you log in.
(The use of first or last names as passwords is a practice so well known that it is
undesirable from a security standpoint.)

Log in to your account soon after it is created to change your password. If there
is a time lapse from the moment when your account is created until your first
login, other users might log in to your account successfully, gaining a chance
to damage the system. Similarly, if you neglect to change the password or are
unable to do so, the system remains vulnerable. Possible damage depends largely
on what other security measures are in effect.

At the time your account is created, you should also be told a minimum length for
your password and whether you can choose your new password or let the system
generate the password for you.

3.1.2 Observing System Restrictions on Passwords
The system screens passwords for acceptability, as follows:

• It automatically compares new passwords to a system dictionary. This helps
to ensure that a password is not a native language word.

• It maintains a history list of your old passwords and compares each new
password to this list to be sure that you do not reuse an old password.

• It enforces a minimum password length, which the system manager specifies
in your UAF record.

3.2 Knowing What Type of Password to Use
There are several types of passwords recognized by the OpenVMS operating
system. In general, you need to provide a user password when you log in. In
some cases, you might also need to provide a system password to gain access to
a particular terminal before logging in with your user password. If you are using
a system with high security requirements, you might need to provide a primary
password and a secondary password.

If you are an externally authenticated user with external authentication
enabled on your system, you enter your LAN Manager password at the OpenVMS
password prompt. See Section 7.4 for more information. Table 3–2 describes each
type of password.

Table 3–2 Types of Passwords

Password Description

User password Required for most accounts. After you enter your user name,
you are prompted for a password. If the account requires
both primary and secondary passwords, you must enter two
passwords.

(continued on next page)

3–2 Using the System Responsibly

Using the System Responsibly
3.2 Knowing What Type of Password to Use

Table 3–2 (Cont.) Types of Passwords

Password Description

System password Controls access to particular terminals and is required at the
discretion of the security administrator. System passwords
are usually necessary to control access to terminals that
might be targets for unauthorized use, such as dialup and
public terminal lines.

Primary password The first of two user passwords to be entered for an account
requiring both primary and secondary passwords.

Secondary password The second of two user passwords to be entered for an
account requiring both primary and secondary passwords.
The secondary password provides an additional level of
security on user accounts. Typically, the general user does
not know the secondary password; a supervisor or other key
person must be present to supply it. For certain applications,
the supervisor may also decide to remain present while
the account is in use. Thus, secondary passwords facilitate
controlled logins and the actions taken after a login.

Secondary passwords can be time-consuming and
inconvenient. They are justified only at sites with maximum
security requirements. An example of an account that
justifies dual passwords would be one that bypasses normal
access controls to permit emergency repair to a database.

3.2.1 Entering a System Password
Your security administrator will tell you if you must specify a system password to
log in to one or more of the terminals designated for your use. Ask your security
administrator for the current system password, how often it changes, and how to
obtain the new system password when it does change.

To specify a system password, do the following:

1. Press the Return key until the terminal responds with the recognition
character, which is normally a bell.

Return

<bell>

2. Enter the system password, and press Return.

Return

As this example shows, there is no prompt and no echo of the characters you
type. If you fail to specify the correct system password, the system does not
notify you. (Initially, you might think the system is malfunctioning unless
you know that a system password is required at that terminal.) If you do not
receive a response from the system, assume that you have entered the wrong
password, and try again.

3. When you enter the correct system password, you receive the system
announcement message, if there is one, followed by the Username: prompt.

For example:

MAPLE - A member of the Forest Cluster
Unauthorized Access Is Prohibited

Username:

Using the System Responsibly 3–3

Using the System Responsibly
3.2 Knowing What Type of Password to Use

3.2.2 Entering a Secondary Password
Your security administrator decides whether to require the use of secondary
passwords for your account at the time your account is created. When your
account requires primary and secondary passwords, you need two passwords to
log in. Minimum password length, which the security administrator specifies in
your UAF record, applies to both passwords.

An example of a login requiring primary and secondary passwords follows:

WILLOW - A member of the Forest Cluster
Welcome to OpenVMS on node WILLOW

Username: RWOODS
Password: Return

Password: Return

Last interactive login on Friday, 11-DEC-1993 10:22
$

As with a single password login, the system allots a limited amount of time for
the entire login. If you do not enter a secondary password in time, the login
period expires.

3.3 Password Requirements for Different Types of Accounts
Five types of user accounts are available on OpenVMS systems:

• Accounts secured with passwords that you or the security administrator
change periodically. This account type is the most common.

• Accounts secured with authentication cards that have your password
programmed onto the device. Many third-party products support this type of
authentication mechanism.

• Accounts that always require passwords but prohibit you from changing the
password. By locking the password (setting the LOCKPWD flag in the UAF
record), the security administrator controls all changes made to the password.

• Restricted accounts limit your use of the system and sometimes require a
password.

• Open accounts require no password; the password is null. When you log
in to an open account, the system does not prompt you for a password, and
you do not need to enter one. You can begin entering commands immediately.
Because open accounts allow anyone to gain access to the system, they are
used only at sites with minimal security requirements and should normally
be set up as restricted accounts.

3.4 Types of Logins and Login Classes
Logins can be either interactive or noninteractive. When you log in interactively,
you enter an OpenVMS user name and a password. In noninteractive logins,
the system performs the identification and authentication for you; you are not
prompted for a user name and password. (The term interactive, as used here,
differs from an interactive mode process defined by the DCL lexical function
F$MODE(). For a description of the F$MODE function, see the OpenVMS DCL
Dictionary.)

3–4 Using the System Responsibly

Using the System Responsibly
3.4 Types of Logins and Login Classes

In addition to interactive and noninteractive logins, the OpenVMS operating
system recognizes different classes of logins. How you log in to the system
determines the login class to which you belong. Based on your login class, as
well as the time of day or day of the week, the system manager controls your
access to the system.

3.4.1 Logging In Interactively: Local, Dialup, and Remote Logins
Interactive logins include the following login classes:

• Local

You log in from a terminal connected directly to the central processor or from
a terminal server that communicates directly with the central processor.

• Dialup

You log in to a terminal that uses a modem and a telephone line to make
a connection to the computer system. Depending on the terminal that your
system uses, you might need to execute a few additional steps. Your site
security administrator can give you the necessary details.

• Remote

You log in to a node over the network by entering the DCL command SET
HOST. For example, to access the remote node HUBBUB, you enter the
following command:

$ SET HOST HUBBUB

If you have access to an account on node HUBBUB, you can log in to that
account from your local node. You have access to the facilities on node
HUBBUB, but you remain physically connected to your local node.

3.4.2 Logging In Using External Authentication
If you are an externally authenticated user, you log in by entering your LAN
Manager user ID and password at the OpenVMS login prompts. Your LAN
Manager user ID may or may not be the same as your OpenVMS user name.

See Section 7.4 for more information on logging in with external authentication
enabled on your system.

3.4.3 Reading Informational Messages
When you log in from a terminal that is directly connected to a computer,
the OpenVMS system displays informational system messages. Example 3–1
illustrates most of these messages.

! The announcement message identifies the node (and, if relevant, the cluster).
It may also warn unauthorized users that unlawful access is prohibited. The
system manager or security administrator can control both the appearance
and the content of this message.

" A disconnected job message informs you that your process was disconnected
at some time after your last successful login but is still available. You have
the option of reconnecting to the old process and returning your process to its
state before you were disconnected.

Using the System Responsibly 3–5

Using the System Responsibly
3.4 Types of Logins and Login Classes

Example 3–1 Local Login Messages

WILLOW - A member of the Forest Cluster !

Unlawful Access is Prohibited

Username: RWOODS
Password:

You have the following disconnected process: "
Terminal Process name Image name
VTA52: RWOODS (none)
Connect to above listed process [YES]: NO

Welcome to OpenVMS on node WILLOW #
Last interactive login on Wednesday, 1-DEC-1993 10:20 $
Last non-interactive login on Monday, 30-NOV-1993 17:39%

2 failures since last successful login &

You have 1 new mail message. ’

$

The system displays the disconnected job message only when the following
conditions exist:

• The terminal where the interruption occurred is set up as a virtual
terminal.

• Your terminal is set up as one that can be disconnected.

• During a recent session, your connection to the central processing unit
(CPU) through that terminal was broken before you logged out.

In general, the security administrator should allow you to reconnect to a
disconnected job because this ability poses no special problems for system
security. However, the security administrator can disable this function by
changing the setup on terminals and by disabling virtual terminals on the
system.

A welcome message indicates the version number of the OpenVMS operating
system that is running and the name of the node on which you are logged
in. The system manager can choose a different message or can suppress the
message entirely.

$ The last successful interactive login message provides the time of the last
completed login for a local, dialup, or remote login. (The system does not
count logins from a subprocess whose parent was one of these types.)

% The last successful noninteractive login message provides the time the last
noninteractive (batch or network) login finished.

& The number of login failures message indicates the number of failed attempts
at login. (An incorrect password is the only source of login failure that is
counted.) To attract your attention, a bell rings after the message appears.

’ The new mail message indicates if you have any new mail messages.

A security administrator can suppress the announcement and welcome messages,
which include node names and operating system identification. Because login
procedures differ from system to system, it is more difficult to log in without this
information.

3–6 Using the System Responsibly

Using the System Responsibly
3.4 Types of Logins and Login Classes

The last login success and failure messages are optional. Your security
administrator can enable or disable them as a group. Sites with medium-level
or high-level security needs display these messages because they can indicate
break-in attempts. In addition, by showing that the system is monitoring logins,
these messages can be a deterrent to potential illegal users.

Each time you log in, the system resets the values for the last successful login
and the number of login failures. If you access your account interactively and do
not specify an incorrect password in your login attempts, you may not see the last
successful noninteractive login and login failure messages.

3.4.4 When the System Logs In for You: Network and Batch Logins
Noninteractive logins include network logins and batch logins.

The system performs a network login when you start a network task on a remote
node, such as displaying the contents of a directory or copying files stored in a
directory on another node. Both your current system and the remote system must
be nodes in the same network. In the file specification, you identify the target
node and provide an access control string, which includes your user name and
password for the remote node.

For example, a network login occurs when user Greg, who has an account on
remote node PARIS, enters the following command:

$ DIRECTORY PARIS"GREG 8G4FR93A"::WORK2:[PUBLIC]*.*;*

This command displays a listing of all the files in the public directory on disk
WORK2. It also reveals the password 8G4FR93A. A more secure way to perform
the same task would be to use a proxy account on node PARIS. For an example of
a proxy login, see Section 3.9.2.

The system performs a batch login when a batch job that you submitted runs.
Authorization to build the job is determined at the time the job is submitted.
When the system prepares to execute the job, the job controller creates a
noninteractive process that logs in to your account. No password is required
when the job logs in.

3.5 Login Failures: When You Are Unable to Log In
Logins can fail for any number of reasons. One of your passwords might have
changed, or your account might have expired. You might be attempting to log
in over the network or from a modem but be unauthorized to do so. Table 3–3
summarizes common reasons for login failure.

Table 3–3 Reasons for Login Failure

Failure Indicator Reason

No response from the terminal. A defective terminal, a terminal that
requires a system password, a terminal
that is not powered on, or a communications
problem caused by defective wiring or by a
misconfigured or malfunctioning modem.

No response from any terminal. The system is down or overloaded.

(continued on next page)

Using the System Responsibly 3–7

Using the System Responsibly
3.5 Login Failures: When You Are Unable to Log In

Table 3–3 (Cont.) Reasons for Login Failure

Failure Indicator Reason

No response from the terminal when you
enter the system password.

The system password changed.

System messages:

‘‘User authorization failure’’ A typing error in your user name or password.
The account or password expired.

‘‘Not authorized to log in from this
source’’

Your particular class of login (local, dialup,
remote, interactive, batch, or network) is
prohibited.

‘‘Not authorized to log in at this time’’ You do not have access to log in during this
hour or this day of the week.

‘‘User authorization failure’’ (and no
known user failure occurred)

An apparent break-in has been attempted at
the terminal using your user name, and the
system has temporarily disabled all logins at
that terminal by your user name.

The following sections describe the reasons for login failure in more detail.

3.5.1 Using a Terminal That Requires a System Password
You cannot log in if the terminal you attempt to use requires a system password
and you are unaware of the requirement. All attempts at logging in fail until you
enter the system password.

If you know the system password, perform the steps described in Section 3.2.1.
If your attempts fail, it is possible that the system password has been changed.
Move to a different terminal that does not require a system password, or request
the new system password.

If you do not know the system password and you suspect that this is the problem,
try logging in at another terminal.

3.5.2 Observing Your Login Class Restrictions
If you attempt a class of login that is prohibited in your UAF record, your login
fails. For example, your security administrator can restrict you from logging in
over the network. If you attempt a network login, you receive a message stating
that you are not authorized to log in from this source.

Your security administrator can restrict your logins to include or exclude any of
the following classes: local, remote, dialup, batch, or network. (For a description
of these classes, see Section 3.4.1 and Section 3.4.4.)

3.5.3 Using an Account Restricted to Certain Days and Times
Another cause of login difficulty is failure to observe your shift restrictions.
A system manager or security administrator can control access to the system
based on the time of day or the day of the week. These restrictions are imposed
on classes of logins. The security administrator can apply the same work-time
restrictions to all classes of logins or choose to place different restrictions on
different login classes. If you attempt a login during a time prohibited for that
login class, your login fails. The system notifies you that you are not authorized
to log in at this time.

3–8 Using the System Responsibly

Using the System Responsibly
3.5 Login Failures: When You Are Unable to Log In

When shift restrictions apply to batch jobs, jobs you submit that are scheduled
to run outside your permitted work times are not run. The system does not
automatically resubmit such jobs during your next available permitted work time.
Similarly, if you have initiated any kind of job and attempt to run it beyond your
permitted time periods, the job controller aborts the uncompleted job when the
end of your allocated work shift is reached. This job termination behavior applies
to all jobs.

3.5.4 Failing to Enter the Correct Password During a Dialup Login
Your security administrator can control the number of chances you are given
to enter a correct password during a dialup login before the connection is
automatically broken.

If your login fails and you have attempts remaining, press the Return key and try
again. You can do this until you succeed or reach the limit. If the connection is
lost, you can redial the access line and start again.

The typical reason for limiting the number of dialup login failures is to discourage
unauthorized users attempting to learn passwords by trial and error. They
already have the advantage of anonymity because of the dialup line. Of course,
limiting the number of tries for each dialup does not necessarily stop this kind of
intrusion. It only requires the would-be perpetrator to redial and start another
login.

3.5.5 Knowing When Break-In Evasion Procedures Are in Effect
If anyone has made a number of failed attempts to log in at the same terminal
with your user name, the system concludes that an intruder is attempting to gain
illegal access to the system by using your user name.

At the discretion of your security administrator, break-in evasion measures can
be in effect for all users of the system. The security administrator controls how
many password attempts are allowed over what period of time. Once break-in
evasion tactics are triggered, you cannot log in to the terminal—even with your
correct password—during a defined interval. Your security administrator can tell
you how long you must wait before reattempting the login, or you can move to
another terminal to attempt a login.

If you suspect that break-in evasion is preventing your login and you have
not personally experienced any login failures, you should contact your security
administrator immediately. Together, you should attempt another login and
check the message that reveals the number of login failures since the last login
to confirm or deny your suspicion of intrusion attempts. (If your system does
not normally display the login message, your security administrator can use the
Authorize utility (AUTHORIZE) to examine the data in your UAF record.) With
prompt action, your security administrator can locate someone attempting logins
at another terminal.

3.6 Changing Your Password
Changing passwords on a regular basis promotes system security. To change your
password, enter the DCL command SET PASSWORD.

The system manager can allow you to select a password on your own or can
require that you use the automatic password generator when you change your
password. If you select your own password, note that the password must follow
system restrictions on length and acceptability (see Section 3.1.2). For example,
if your password choice is too short, the system displays the following message:

Using the System Responsibly 3–9

Using the System Responsibly
3.6 Changing Your Password

%SET-E-INVPWDLEN, invalid password length - password not changed

Section 3.1 provides guidelines and examples for specifying secure passwords.

There is no restriction on how many times you can change your password in a
given period of time.

3.6.1 Selecting Your Own Password
If your system manager does not require use of the automatic password generator,
the SET PASSWORD command prompts you to enter the new password. It then
prompts you to reenter the new password for verification, as follows:

$ SET PASSWORD Return

New password:
Verification:

If you fail to enter the same password twice, the password is not changed. If you
succeed in these two steps, there is no notification. The command changes your
password and returns you to the DCL prompt.

Even though your security administrator may not require the password generator,
you are strongly encouraged to use it to promote the security of your system.
Section 3.6.2 describes how to use generated passwords.

3.6.2 Using Generated Passwords
If your system security administrator decides that you must let the system
generate the password for you automatically, the system provides you with a list
of password choices when you enter the DCL command SET PASSWORD. (When
the system does not require generated passwords, add the /GENERATE qualifier
to SET PASSWORD for a list of password choices.) The character sequence
resembles native language words to make it easy to remember, but it is unusual
enough to be difficult for outsiders to guess. Because system-generated passwords
vary in length, they become even more difficult to guess.

Note

The password generator uses basic syllabic rules to generate words but
has no real knowledge of any language. As a result, it can unintentionally
produce words that are offensive.

In the following OpenVMS VAX example, the system automatically generates
a list of passwords made up of random sequences of characters. The minimum
password length for the user in the following example has been set to 8 in the
UAF record.

$ SET PASSWORD
Old password: Return !

reankuna rean-ku-na "
cigtawdpau cig-tawd-pau
adehecun a-de-he-cun
ceebatorai cee-ba-to-rai
arhoajabad ar-hoa-ja-bad

Choose a password from this list, or press Return to get a new list #
New password: Return $

Verification: Return %

$ &

3–10 Using the System Responsibly

Using the System Responsibly
3.6 Changing Your Password

The preceding example illustrates the following:

! The user correctly specifies the old password and presses the Return key.

" The system responds with a list of five password choices ranging in length
from 8 to 10 characters. There are representations of the same word divided
into syllables to the right of each password choice. Usually the password that
is easiest to pronounce is easiest to remember and, therefore, the best choice.

The system informs the user that it is possible to request a new list by
pressing the Return key in response to the prompt for a new password.

$ The user enters one of the first five possible passwords and presses the
Return key.

% The system recognizes that this password is one provided by the automatic
password generator and responds with the verification prompt. The user
enters the new password again and presses Return.

& The system changes the password and responds with the DCL prompt.

One disadvantage of automatic password generation is the possibility that you
might not remember your password choice. However, if you dislike all the
password choices in your list or think none are easy to remember, you can always
request another list.

A more serious drawback of automatic password generation is the potential
disclosure of password choices from the display the command produces. To
protect your account, change your password in private. If you perform the change
on a video terminal, clear the display of password choices from the screen after
the command finishes. If you perform the change in a DECwindows environment,
use the Clear Lines Off Top option from the Commands menu to remove the
passwords from the screen recall buffer. If you use a printing terminal, properly
dispose of all hardcopy output.

If you later realize that you failed to protect your password in these ways, change
your password immediately. Depending on site policy or your own judgment
concerning the length of time your account was exposed, you might decide to
notify your security administrator that a security breach could have occurred
through your account.

3.6.3 Changing a Secondary Password
To change a secondary password, use the DCL command SET
PASSWORD/SECONDARY. You are prompted to specify the old secondary
password and the new secondary password, just as in the procedure for changing
the primary password. To remove a secondary password, press the Return key
when you are prompted for a new password and verification.

You can change primary and secondary passwords independently, but both are
subject to the same change frequency because they share the same password
lifetime. See Section 3.7 for information on password lifetimes.

Using the System Responsibly 3–11

Using the System Responsibly
3.6 Changing Your Password

3.6.4 Changing Your Password As You Log In
Even if your current password has not yet expired, you can change your password
when you log in to the system by including the /NEW_PASSWORD qualifier with
your user name, as follows:

WILLOW - A member of the Forest Cluster

Username: RWOODS/NEW_PASSWORD
Password:

Welcome to OpenVMS on node WILLOW
Last interactive login on Tuesday, 7-NOV-1993 10:20
Last non-interactive login on Monday, 6-NOV-1993 14:20

Your password has expired; you must set a new password to log in
New password:
Verification:

Entering the /NEW_PASSWORD qualifier after your user name forces you to set
a new password immediately after login.

3.7 Password and Account Expiration Times
Your system manager can set up your account so that your password, or the
account itself, expires automatically on a particular date and time. Password
expiration times promote system security by forcing you to change your password
on a regular basis. Account expiration times help to ensure that accounts are
available only for as long as they are needed.

3.7.1 Changing an Expired Password
As you approach the expiration time of your password, you receive an advance
warning message. The message first appears 5 days before the expiration date
and at each subsequent login. The message appears immediately below the new
mail message and sounds the bell character on your terminal to attract your
attention. The message indicates that your password is expiring, as follows:

WARNING -- Your password expires on Thursday 19-DEC-1993 15:00

If you fail to change your password before it expires, you receive the following
message when you log in:

Your password has expired; you must set a new password to log in
New password:

The system prompts you for a new password or, if automatic password generation
is enabled, asks you to select a new password from those listed (see Section 3.6.2).
You can abort the login by pressing Ctrl/Y. At your next login attempt, the system
again prompts you to change your password.

When You Are Using a Secondary Password
If secondary passwords are in effect for your account (see Section 3.2), the
secondary password may expire at the same time as the primary one. You
are prompted to change both passwords. If you change the primary password and
press Ctrl/Y before changing the secondary password, the login fails. The system
does not record a password change.

3–12 Using the System Responsibly

Using the System Responsibly
3.7 Password and Account Expiration Times

When You Fail to Change Your Password
If the system manager decides not to force you to change your expired password
upon logging in, you receive one final warning when you log in after your
password expires, as follows:

WARNING -- Your password has expired; update immediately with
SET PASSWORD!

At this point, if you do not change the password or if the system fails before you
have the opportunity to do so, you will be unable to log in again. To regain access,
see your system manager.

3.7.2 Renewing an Expired Account
If you need your account for a specific purpose for a limited time only, the person
who creates your account may specify a period of time after which the account
lapses. For example, student accounts at universities are typically authorized for
a single semester at a time.

The system automatically denies access to expired accounts. You receive no
advance warning message before the account expiration date, so it is important
to know in advance your account duration. The account expiration resides in
the UAF record, which can be accessed and displayed only through the use of
the Authorize utility (AUTHORIZE) by users with the SYSPRV privilege or
equivalent—normally, your system manager or security administrator.

When your account expires, you receive an authorization failure message at your
next attempted login. If you need an extension, follow the procedures defined at
your site.

3.8 Guidelines for Protecting Your Password
Illegal system access through the use of a known password is most often caused
by the owner’s disclosing the password. It is vital that you do not reveal your
password to anyone.

You can best protect your password by observing the following rules:

• Select reasonably long passwords that cannot be guessed easily. Avoid using
words in your native language that appear in a dictionary. Consider including
numbers in your password. Alternatively, let the system generate passwords
for you automatically.

• Never write down your password.

• Never give your password to another user. If another user obtains your
password, change it immediately.

• Do not include your password in any file, including the body of an electronic
mail message. (If anyone else reveals a password to you, delete the
information promptly.)

The character strings that appear with your actual password can make it easy
for someone to find your password in a file. For example, a quotation mark
followed by two colons ("::) always comes after a user name and password in
an access control string. Someone attempting to break into the system could
obtain your password by searching inadequately protected files for this string.
Another way in which you might reveal your password is by using the word
‘‘password’’ in a text file, for example:

My password is GOBBLEDYGOOK.

Using the System Responsibly 3–13

Using the System Responsibly
3.8 Guidelines for Protecting Your Password

• If you submit a batch job on cards, do not leave your password card where
others may be able to obtain your password from it.

• Do not use the same password for accounts on different systems.

An unauthorized user can try one password on every system where you have
an account. The account that first reveals the password might hold little
information of interest, but another account might yield more information or
more privileges, ultimately leading to a far greater security breach.

• Before you log in to a terminal that is already on, invoke the secure terminal
server feature (if enabled) by pressing the Break key. The secure server
ensures that the OpenVMS login program is the only program able to receive
your login and thereby eliminates the possibility of revealing a password
to a password grabber program. This is particularly relevant when you are
working in a public terminal room.

A password grabber program is a special program that displays an
empty video screen, a screen that appears to show the system has just been
initialized after a crash, or a screen that shows a nonexistent logout. When
you attempt to log in, the program runs through the normal login sequence
so you think you are entering your user name and password in a normal
manner. However, once the program receives this key information and passes
it on to the perpetrator, it displays a login failure. You might think you
mistyped your password and be unaware that you have just revealed it to
someone else.

• Unless you share your password, change it every 3 to 6 months. Compaq
warns against sharing passwords. If you do share your password, change it
every month.

• Change your password immediately if you have any reason to suspect it might
have been discovered. Report such incidents to your security administrator.

• Do not leave your terminal unattended after you log in.

You might think the system failed and came back up again, when actually
someone has loaded a password-stealing program. Even a terminal that
displays an apparently valid logout message might not reflect a normally
logged out process.

• Routinely check your last login messages. A password-stealing program
cannot actually increase the login failure count, although it looks like a login
failure to you. Be alert for login failure counts that do not appear after you
log in incorrectly or that are one less than the number you experienced. If
you observe this or any other abnormal failure during a login, change your
password immediately, and notify your security administrator.

3.9 Network Security Considerations
This section describes how to use access control strings in file specifications and
how to use proxy logins to help make network access more secure.

3–14 Using the System Responsibly

Using the System Responsibly
3.9 Network Security Considerations

3.9.1 Protecting Information in Access Control Strings
Network access control strings can be included in the file specifications of DCL
commands working across the DECnet for OpenVMS network. They permit a
user on a local node to access a file on a remote node.

An access control string consists of the user name for the remote account and
the user’s password enclosed within quotation marks, as follows:

NODE"username password"::disk:[directory]file.typ

Because access control strings include sufficient information to allow someone to
break in to the remote account, they create serious security exposure. To protect
access control string information, do the following:

• Avoid revealing the information on either hardcopy or video terminals. If
you use a hardcopy terminal, dispose of the output properly. If you use a
video terminal, clear the screen, and empty the recall buffer with the DCL
command RECALL/ERASE when the network job is completed. This prevents
another user from seeing the password, either by displaying the command
line with the Ctrl/B key sequence or with the DCL command RECALL/ALL.
DECwindows users can clear the screen with the Clear Lines Off Top option
from the Commands menu. Otherwise, a DECwindows user could use the
scroll bar to view previously entered text.

• Do not place networking commands that include access control strings in
command procedures where they would be likely targets for discovery.

• If you must put access control strings in your command procedures, provide
these files with optimum file protection by using the techniques described in
Chapter 4.

• The use of access control strings in not permitted in an evaluated
configuration. Please see your system administrator to determine if your
system is running in an evaluated configuration.

To avoid the need for access control strings, you might prefer to use proxy login
accounts, which are described in Section 3.9.2.

3.9.2 Using Proxy Login Accounts to Protect Passwords
Proxy logins let you access files across a network without specifying a user
name or password in an access control string. Thus, proxy logins have the
following security benefits:

• Passwords are not echoed on the terminal where the request originates.

• Passwords are not passed between systems where they might be intercepted
in unencrypted form.

• Passwords are not needed in command files to perform the remote access
steps.

Before you can initiate a proxy login, the system or security administrator at the
remote node must create a proxy account for you. Proxy accounts, like regular
accounts, are created with the Authorize utility (AUTHORIZE). They are usually
nonprivileged accounts. Security administrators can allow you access to one
default proxy account and up to 15 other proxy accounts. While proxy logins
require more setup effort on the part of system managers, they provide more
secure network access and eliminate the need for users to enter access control
strings.

Using the System Responsibly 3–15

Using the System Responsibly
3.9 Network Security Considerations

The following examples illustrate the differences between a normal network login
request and a proxy login request. For each example, the following conditions
exist:

• The user KMAHOGANY has two user accounts:

An account on node BIRCH with the password XYZ123ABC

An account on node WALNUT with the password A25D3255

• KMAHOGANY has logged in to node BIRCH.

• KMAHOGANY wants to copy the file BIONEWS.MEM from the default
device and directory of the account on the node WALNUT.

The following diagram illustrates these conditions:

BIONEWS.MEM

ZK−2036−GE

Password: A25D3255
Username: KMAHOGANY

Password: XYZ123ABC
Username: KMAHOGANY

WALNUT
Remote Node

BIRCH
At Home Node

Seeks from

A copy of the file

STAFFDEV:[KMAHOGANY] STAFFDEV:[KMAHOGANY]

The user KMAHOGANY could use an access control string to copy the file
BIONEWS.MEM, as follows:

$ COPY WALNUT"KMAHOGANY A25D3255"::BIONEWS.MEM BIONEWS.MEM

Notice that the password A25D3255 echoes. Anyone who observes the screen can
see it. In contrast, if KMAHOGANY has proxy access from node BIRCH to the
account on node WALNUT, the command for copying the file BIONEWS.MEM is
as follows:

$ COPY WALNUT::BIONEWS.MEM BIONEWS.MEM

KMAHOGANY does not need to specify a password in an access control string.
Instead, the system performs a proxy login from the account on node BIRCH into
the account on node WALNUT. There is no exchange of passwords.

Using a General Access Proxy Account
Your security administrator can also authorize groups of users from foreign nodes
to share in the use of a general access proxy account. For example, the security
administrator at node WALNUT can create a general access account with the
following conditions:

• The user name GENACCESS.

• Access limited to network logins.

• A password known only to the owner of the account. (None of the remote
users need to know it.) This helps to protect the account.

3–16 Using the System Responsibly

Using the System Responsibly
3.9 Network Security Considerations

• The default device and directory STAFFDEV:[BIOSTAFF].

If the security administrator grants BIRCH::KMAHOGANY proxy access to the
GENACCESS account, the user KMAHOGANY can copy the file BIONEWS.MEM
by entering the following command:

$ COPY WALNUT::[KMAHOGANY]BIONEWS.MEM BIONEWS.MEM

Note that KMAHOGANY must specify the directory [KMAHOGANY] because
the file BIONEWS.MEM is not in the default device and directory for the
GENACCESS account (STAFFDEV:[BIOSTAFF]). In addition, the protection
for the file BIONEWS.MEM must permit access to the GENACCESS account.
Otherwise, the command fails.

When You Need to Specify the Name of a Proxy Account
If you have access to more than one proxy account on a given node and you do
not want to use the default proxy account, specify the name of the proxy account.
For example, to use a proxy account called PROXY2 instead of the GENACCESS
account (the default), KMAHOGANY enters the following command:

$ COPY WALNUT"PROXY2"::[KMAHOGANY]BIONEWS.MEM BIONEWS.MEM

This command uses the PROXY2 account to copy the file BIONEWS.MEM from
the [KMAHOGANY] directory on node WALNUT.

3.10 Auditing Access to Your Account and Files
Although it is the security administrator’s job to monitor the system for possible
intrusions, you can help the security administrator to audit access to your account
and files.

This section describes how to monitor your last login time for possible intrusions.
It also describes how to work with your security administrator to enable certain
types of auditing.

3.10.1 Observing Your Last Login Time
The operating system maintains information in your UAF record about the last
time you logged in to your account. Your security administrator decides whether
the system should display this information at login time. Sites with medium to
high security requirements frequently display this information and ask users
to check it for unusual or unexplained successful logins and unexplained failed
logins.

If there is a report of an interactive or a noninteractive login at a time when
you were not logged in, report it promptly to your security administrator. Also
change your password. The security administrator can investigate further by
using accounting files and audit logs.

If you receive a login failure message and cannot account for the failure, it is
likely that someone has been trying to access your account unsuccessfully. Check
your password to ensure that it adheres to all recommendations for password
security described in Section 3.8. If not, change your password immediately.

If you expect to see a login failure message and it does not appear or if the count
of failures is too low, change your password. Report either of these indications of
login failure problems to your security administrator.

Using the System Responsibly 3–17

Using the System Responsibly
3.10 Auditing Access to Your Account and Files

3.10.2 Adding Access Control Entries to Sensitive Files
If you have key files that may have been accessed improperly, you may want to
develop a strategy with your security administrator to audit access to the files.

Once you review the situation and ensure that you have done everything possible
to protect your files with standard protection codes and general ACLs (described
in Chapter 4), you may conclude that security auditing is required.

To specify security auditing, you can add special access control entries (ACEs) to
files you own or to which you have control access. Keep in mind, however, that
the audit log file is a systemwide mechanism, so Compaq recommends that a
site security administrator control the use of file auditing. Although you can add
auditing ACEs to files over which you have control, the security administrator
has to enable auditing of files on a system level.

For example, if user RWOODS and his security administrator agree that
they must know when a highly confidential file, CONFIDREVIEW.MEM, is
being accessed, RWOODS can add an entry to the existing ACL for the file
CONFIDREVIEW.MEM, as follows:

$ SET SECURITY/ACL=(AUDIT=SECURITY,ACCESS=READ+WRITE-
_$ +DELETE+CONTROL+FAILURE+SUCCESS) CONFIDREVIEW.MEM

After RWOODS adds the security-auditing entry, the security administrator
enables file-access auditing so that access attempts are recorded. See
Section 3.10.3.1 for more information on file-access auditing.

An access violation of one file frequently indicates access problems with other
files. Therefore, the security administrator may need to monitor access to all key
files having security-auditing ACEs. When undesired access is gained to key files,
the security administrator must take immediate action.

3.10.3 Asking Your Security Administrator to Enable Auditing
A security administrator can direct the operating system to send an audit
message to the system security audit log file or an alarm to terminals enabled
as security operator terminals whenever security-relevant events occur. For
example, the security administrator might identify one or more files for which
write access is prohibited. An audit message can be sent to indicate attempted
access to these files.

3.10.3.1 Auditing File Access
If you suspect intrusion attempts to your account, the security administrator may
temporarily enable auditing for all file access. The security administrator can
also enable auditing to monitor read access to your files to catch file browsers.

For example, assume you decide to audit the file CONFIDREVIEW.MEM, which
has a security-auditing ACE (see Section 3.10.2). If user ABADGUY accesses
CONFIDREVIEW.MEM and has delete access, the following audit record is
written to the system security audit log file:

3–18 Using the System Responsibly

Using the System Responsibly
3.10 Auditing Access to Your Account and Files

%%%%%%%%%%% OPCOM 7-DEC-1993 07:21:11.10 %%%%%%%%%%%
Message from user AUDIT$SERVER on BOSTON
Security audit (SECURITY) on BOSTON, system id: 19424
Auditable event: Attempted file access
Event time: 7-DEC-1993 07:21:10.84
PID: 23E00231
Username: ABADGUY
Image name: BOSTON$DUA0:[SYS0.SYSCOMMON.][SYSEXE]DELETE.EXE
Object name: _BOSTON$DUA1:[RWOODS]CONFIDREVIEW.MEM;1
Object type: file
Access requested: DELETE
Status: %SYSTEM-S-NORMAL, normal successful completion
Privileges used: SYSPRV

The auditing message reveals the name of the perpetrator, the method of access
(successful deletion accomplished by using the program [SYSEXE]DELETE.EXE),
time of access (7:21 a.m.), and the use of a privilege (SYSPRV) to gain access to
the file. With this information, the security administrator can take action.

Note that the security audit message is written to the security audit log
file every time any file is accessed and meets the conditions specified in the
audit entry of the ACL for that file (see Section 3.10.2). Access to the file
CONFIDREVIEW.MEM, as well as access to any file on the system that is
protected with security auditing, prompts an audit record to be written to the
security audit log file.

After auditing has been introduced, check with your security administrator
periodically to see if any additional intrusions have occurred.

3.10.3.2 Additional Events to Audit
In addition to file auditing, the security administrator can select other types of
events that warrant special attention when they occur. Events triggering an
audit or alarm may include the following:

Events Initiating Security Audits or Alarms

Logins, logouts, login failures, and
break-in attempts

Volume mounts and dismounts

Modifications to:
System and user passwords
System time
System authorization file
Network proxy file
Rights database
SYSGEN parameters

Connection or termination of logical
links

Execution of:
SET AUDIT command
NCP commands

Creation and deletion of selected
protected objects

Installation of images

Selected types of access and
deaccess to selected protected
objects

Access event requested by an ACL on a protected
object

Successful or unsuccessful use of
a privilege or an identifier

Use of the process control system services,
including $CREPRC and $DELPRC

Using the System Responsibly 3–19

Using the System Responsibly
3.11 Logging Out Without Compromising System Security

3.11 Logging Out Without Compromising System Security
Logging out of a session conserves system resources and protects your files.
Leaving a terminal on line represents one of the greatest sources of inside
intrusions. When you leave your terminal on line and your office open, you have
effectively given away your password and your privileges and have left your files
and those of the other members of your group unprotected. Any user can easily
and quickly transfer all files accessible through your account. A malicious insider
could rename and delete your files and any other files to which you have write
access. If you have special privileges, especially privileges in the Files or All
category, a malicious user can do major damage.

Log out when you leave your office even for a brief period of time. If you have
performed remote logins, you must log out of each node. The following sections
describe security considerations for logging out of specific types of terminals or
sessions.

3.11.1 Clearing Your Terminal Screen
You may want to clear your screen each time you log out from a terminal to
ensure that your user name, node name, and operating system are not revealed
to anyone else. If you are logging out after a remote login, the name of the node
to which you return (the local node) is also revealed. If you access multiple
accounts remotely (over the network), the final sequence of logout commands
reveals all the nodes and user names that are accessible to you on each node
(excluding the name of the furthest node reached). To those who can recognize
the operating system from the prompt or a logout message, these displays also
reveal the operating system.

At some sites, it may be important to leave nothing but the logout message on
your screen, as follows:

• If you are using a VT200- or later series terminal, you can clear the screen
by pressing the Set-Up key and selecting the item from the resulting menu
that corresponds to the DECwindows Clear Display menu option on the
Commands menu.

• If you are using a VT100-series terminal, press the Set-Up key. Then press
the key marked for reset (the 0 key) followed by the Return key.

Alternatively, to preserve temporary parameters, press the Set-Up key, and
then press the key marked 80/132 columns (the 9 key) twice.

After the screen clears, the cursor is positioned at the top of the screen, next to
the DCL prompt. Enter the DCL command LOGOUT at the prompt. The only
information remaining after you log out is your logout command and the logout
completion message, for example:

$ LOGOUT
RDOGWOOD logged out at 14-AUG-1993 19:39:01.43

3.11.2 Disposing of Hardcopy Output
After you log out from a hardcopy terminal, properly remove, file, or dispose
of all hardcopy output that might reveal sensitive information. Your security
administrator should provide direction on preferred procedures. Many sites use
paper shredders or locked receptacles for this purpose. Handle output that you
plan to save just as carefully.

3–20 Using the System Responsibly

Using the System Responsibly
3.11 Logging Out Without Compromising System Security

You should also dispose of hardcopy output if the system fails before you log out.
In addition, if you will not be present when the system is initialized, turn your
terminal off.

3.11.3 Removing Disconnected Processes
The system automatically removes your disconnected processes after a certain
interval. You can conserve system resources, however, if you directly log out of
any disconnected processes, as follows:

1. Enter the DCL command SHOW USERS to determine if you have other
disconnected jobs.

2. Enter the DCL command CONNECT/LOGOUT to log out of the current
process. Connect back through each of the associated virtual terminals (as
noted by the terminal prefix of VTA) until you reach the last existing process.

3. Enter the DCL command LOGOUT.

3.11.4 Breaking the Connection to a Dialup Line
Your security administrator may ask you to break the connection to a dialup line
when you log out. If you anticipate no further immediate use of the line, use the
LOGOUT command with the /HANGUP qualifier. The /HANGUP qualifier directs
the system to automatically break the connection to the dialup line after you log
out.

Note

The effectiveness of the /HANGUP qualifier depends on how your system
manager configures your modem line and how the line connects to the
computer. It does not work on lines connected to a terminal server.

Breaking the connection to a dialup line prevents someone from taking advantage
of an open access line. To access the line, someone must know the access number
and must personally redial. Breaking the connection is especially important if the
dialup line you use is in a public area or where someone might use the terminal
after you.

This practice also saves resources by reducing the required number of dialup
lines.

3.11.5 Turning Off a Terminal
If your site has moderate or high security requirements, your security
administrator may ask you to turn off your terminal after logging out. This
resets terminal characteristics and clears memory buffers. Some Trojan horse
attacks use hardware frame buffers and the answerback capabilities that are
built into newer terminals.

On VAX systems, users working in a C2 environment must turn off their
terminals. (C2 is a United States government rating of the security of an
operating system. Appendix C describes its requirements.)

Using the System Responsibly 3–21

Using the System Responsibly
3.12 Checklist for Contributing to System Security

3.12 Checklist for Contributing to System Security
Although security features are implemented by the security administrator as
requirements for all users, this chapter has described ways in which you can
contribute to system security. The following list reviews voluntary security
actions:

Choose a secure password by following the guidelines in Section 3.1.

Protect your password, and change it often.

Check your last login messages each time you log in, and report any
unexplained messages to your security administrator (Section 3.4.3).

Use proxy logins when possible (Section 3.4).

Log out and lock up when you leave your terminal and area (Section 3.11).

Use the /HANGUP qualifier with your final LOGOUT command from a dialup
line (Section 3.11.4).

Properly dispose of hardcopy output from your terminal (Section 3.11.2).

Clear your screen, or turn off your video terminal to erase revealing displays
(Section 3.6.2 and Section 3.11.1).

Lock up backup media. Anyone who has the media in hand can access the
information that is stored on the tape or disk.

Ask your security administrator to enable security auditing for any protected
objects, such as files, that you suspect have been accessed improperly
(Section 3.10.3.1).

3–22 Using the System Responsibly

4
Protecting Data

This chapter extends the discussion of security design introduced in Chapter 2.
It describes how the operating system controls the way a user process or an
application can access a protected object.

To summarize, the operating system controls access to any object that contains
shareable information. These objects are known as protected objects. Devices,
volumes, logical name tables, files, common event flag clusters, group and system
global sections, resource domains, queues, capabilities, and security classes fall
into this category. An accessing process carries credentials in the form of rights
identifiers, and all protected objects list a set of access requirements specifying
who has a right to access the object in a given manner.

This chapter:

• Describes the types of identification the system assigns to processes to define
their access rights to objects (Section 4.1)

• Looks at the access controls that objects can hold (Section 4.2)

• Shows how the operating system processes access requests (Section 4.3)

• Explains how to control access to objects (Sections 4.4, 4.5, 4.6, 4.7)

Chapter 5 describes the unique features of each class of protected object.

4.1 Contents of a User’s Security Profile
User processes and applications as well as objects have
security profiles, which contain a consistent set of elements.
Before a process can access a file, device, global section, or
any other protected object, the operating system checks to
ensure that the requesting process has the authority to access
the object in the manner requested. To establish this, the
operating system examines the security profile of both the
requesting process and the object.

The profile of a user process or application includes the following elements:

• User identification code (UIC) identifying the user

• Rights identifiers held by the process

• Privileges, if any

Protecting Data 4–1

Protecting Data
4.1 Contents of a User’s Security Profile

4.1.1 Per-Thread Security
OpenVMS Alpha Version 7.2 includes the implementation of thread-level security.
This feature, known as per-thread security, allows each execution thread of a
multithreaded process to run an independent security profile without impacting
the security profiles of other threads in the process.

Security profile information previously contained in various process level data
structures and data cells is now stored in a single data structure, the Persona
Security Block (PSB), which is then bound to a thread of execution. All associated
references within OpenVMS have been redirected accordingly. Every process in
the system has at least one PSB that is the natural persona of the process. The
natural persona is created during process creation.

Interaction between a thread manager (for example, the thread manager
incorporated within Compaq POSIX Threads Library) and the security subsystem
provides for the automatic switching of profiles while threads are scheduled for
execution.

4.1.2 Persona Security Block Data Structure (PSB)
The user’s security profile (privileges, rights, and identity information) has
shifted from the process level to the user thread level. The security information
previously stored in several structures (including the Access Rights Block
(ARB), Process Control Block (PCB), Process Header Descriptor (PHD), Job
Information Block (JIB), and Control (CTL) region fields) has moved to a new
Persona Security Block (PSB) data structure and all references are redirected
accordingly. OpenVMS no longer uses some of the fields in these structures. The
affected fields are now considered obsolete. (See the Obsolete Data Cells and
New Location of Security Information table in the OpenVMS Version 7.2 Release
Notes.)

Each process has a persona array containing the addresses of all persona blocks
allocated to the process.

The new persona block (PSB) contains the following:

• UIC

• Persona, and system rights chains

• Permanent, authorized, and working privileges

• Account name

• User name

• Auditing flags and counters

The kernel threads block (KTB) points to the persona block for the currently
active thread.

4.1.3 Previous Security Model
In previous versions of OpenVMS, the information that constitutes a user’s
security profile was bound at the process level, common to all threads of execution
within the process. Figure 4–1 illustrates this relationship.

4–2 Protecting Data

Protecting Data
4.1 Contents of a User’s Security Profile

Figure 4–1 Previous Per-Thread Security Model

ZK−9134A−GE

Security profile

Thread 1

Security profile Security profile

Thread 2 Thread 4

Profile

Execution

Security profile

Thread 3

Generic
Security Profile

(ARB, PCB, JIB, ...)

DATA DATA DATA DATA

Modifications made to the security profile by one thread are potentially visible to
other threads, depending on how the threads perform profile management among
themselves.

4.1.4 Per-Thread Security Model
In OpenVMS Version 7.2, each thread of execution can share a security profile
with other threads or have a thread-specific security profile. Figure 4–2
illustrates these relationships.

Figure 4–2 Per-Thread Security Profile Model

ZK−9135A−GE

Thread 1 Thread 2 Thread 3

Security
Profile 1
(PSB)

Security Security
Profile 2 Profile 3
(PSB) (PSB)

Thread 4

Profile

Execution

As is the case in the previous model, modifications to a shared profile are
potentially visible to all threads that share the profile. However, modifications
made to a thread-specific security profile are only applicable to the particular
thread.

Protecting Data 4–3

Protecting Data
4.1 Contents of a User’s Security Profile

4.1.5 User Identification Code (UIC)
The first element of a subject’s security profile is the user identification code
(UIC). Your UIC tells what system group you belong to and what your unique
identification is within that group.

4.1.5.1 Format of a UIC
A UIC specification always appears in brackets, but its format can differ. Valid
formats include the following:

• An alphanumeric UIC consists of a member name and, optionally, a group
name:

[member]

or

[group,member]

The group and member names can each contain up to 31 alphanumeric
characters, at least one of which is alphabetic. The names can include upper-
and lowercase characters A through Z, dollar signs ($), underscores (_), and
the numbers 0 through 9.

• A numeric UIC contains a group number and a member number:

[group,member]

The group number is an octal number in the range of 1 through 37776; the
member number is an octal number in the range of 0 through 177776. You
can omit leading zeros when you are specifying group and member numbers.
Compaq reserves group 1 and groups 300–377 for its own use.

The following table illustrates several UICs in proper UIC notation:

Type of UIC Example Meaning

Alphanumeric [USER,FRED] Group USER, member FRED

[EXEC,JONES] Group EXEC, member JONES

[JONES] Group EXEC,1 member JONES

Numeric [200,10] Group 200, member 10

[3777,3777] Group 3777, member 3777

1Only one user can have the member name JONES; therefore JONES must belong to the EXEC
group.

4.1.5.2 Guidelines for Creating a UIC
UICs cannot be arbitrarily assigned. A security administrator has to observe the
following guidelines when creating them:

• Member names must be unique for each user on the system.

• No member can participate in more than one UIC group.

These guidelines exist because the system translates a UIC to a 32-bit value
that represents a group number and a member number; the high-order 16 bits
contain the group number, and the low-order 16 bits contain the member number.
When translating an alphanumeric UIC such as [J_JONES], the operating system
equates the member part of the alphanumeric UIC to both the group and member
parts of a numeric UIC. The resulting 32-bit numeric UIC is kept in the rights

4–4 Protecting Data

Protecting Data
4.1 Contents of a User’s Security Profile

database (which is a file containing information about identifiers, their attributes,
and holders). For example, you could not have the two UICs [GROUP1,JONES]
and [GROUP2,JONES] on the same system because the member JONES can
have only one associated numeric UIC. The member name of the alphanumeric
UIC is normally the same as the associated login user name.

4.1.5.3 How Your Process Acquires a UIC
When you log in to a system, the operating system copies your UIC from
your user authorization (UAF) record in the system user authorization file
(SYSUAF.DAT) and assigns it to your process. It serves as an identification
for the life of the process.

By default, detached processes (created by the DCL command SUBMIT or RUN)
and subprocesses (created by the DCL command SPAWN) take the same UICs as
their creators. If you have IMPERSONATE privilege, you can create a detached
process with a different UIC (by using the /UIC qualifier of the RUN command).

4.1.6 Rights Identifiers
The second element of a subject’s security profile is a set of rights identifiers.

A rights identifier represents an individual user or a group of users. Using the
Authorize utility (AUTHORIZE), security administrators create and remove
identifiers and assign users to hold these identifiers. Rights identifiers can
be a temporary way of identifying a group of users because users hold certain
identifiers only as long as they are necessary.

4.1.6.1 Types of Identifiers
The operating system supports several types of rights identifiers. Table 4–1
shows the identifiers that are most commonly used in access control.

Table 4–1 Major Types of Rights Identifiers

Type Description Format Example

Environmental
identifiers

Describe different types
of users based on their
initial entry into the
system.

Alphanumeric strings
automatically created
by the system. See
Section 3.4 for details.

BATCH, NETWORK,
INTERACTIVE,
LOCAL, DIALUP,
REMOTE

General
identifiers

Defined by the security
administrator.

Alphanumeric strings of 1
through 31 characters
with at least one
alphabetic character.
Valid characters include
numbers 0 through 9,
characters A through
Z and a through z, the
dollar sign ($) and the
underscore (_).

SALES,
PERSONNEL,
DATA_ENTRY,
RESERVE_DESK

(continued on next page)

Protecting Data 4–5

Protecting Data
4.1 Contents of a User’s Security Profile

Table 4–1 (Cont.) Major Types of Rights Identifiers

Type Description Format Example

UIC identifiers Based on a user’s
identification code (UIC),
which uniquely identifies
a user on the system and
defines the group to which
the user belongs.

Alphanumeric UICs, with
or without brackets. Valid
characters are the same
as those for a general
identifier.

[GROUP1,JONES],
[JONES],
GROUP1,
JONES

Facility
identifiers

Defined by the
application.

Same as a general
identifier. See the
OpenVMS Programming
Concepts Manual for
details.

DBM$MOD_SCHEMA

In addition to the identifiers listed in Table 4–1, a system node identifier of
the form SYS$NODE_node_name is created by the system startup procedure
(STARTUP.COM in SYS$SYSTEM).

4.1.6.2 Process and System Rights Lists
Associated with your process is a rights list that contains all the identifiers
granted to it. In addition, there is a system rights list that is shared by all users
on the system. The system manager or the system software grants identifiers
to the system rights list that are granted to all users currently logged on to the
system.

4.1.6.3 Displaying the Rights Identifiers of Your Process
You can display the identifiers for your current process with the SHOW PROCESS
command, for example:

$ SHOW PROCESS/ALL
25-JUN-1991 15:23:18.08 User: GREG Process ID: 34200094

Node: ACCOUNTS Process name: "_TWA2:"

Terminal: TWA2:
User Identifier: [DOC,GREG] !
Base priority: 4
Default file spec: WORK1:[GREG.FISCAL_91]

Devices allocated: ACCOUNTS$TWA2:

Process Quotas:
.
.
.

Process rights:
INTERACTIVE "
LOCAL #
SALES $
MINDCRIME resource %

System rights:
SYS$NODE_ACCOUNTS &

Output from this SHOW PROCESS command displays three types of identifiers:

! UIC identifier, indicating user Greg is a member of the DOC group

" Environmental identifier, indicating user Greg is an interactive user

Environmental identifier, indicating user Greg is logged in locally

4–6 Protecting Data

Protecting Data
4.1 Contents of a User’s Security Profile

$ General identifier, indicating user Greg is also a member of the SALES group

% General identifier, indicating Greg holds the MINDCRIME identifier with the
resource attribute so he can charge disk space to the identifier

& Environmental identifier, indicating user Greg is working from the
ACCOUNTS node

4.1.6.4 How Rights Identifiers Appear in the Audit Trail
The rights identifiers of a process also appear in audit records. If a security
administrator chooses to audit access to objects, then the operating system can
produce a record of which users accessed objects and when. Although a single
audit record rarely tells very much, the trail of records can, over a period of time,
reveal a pattern of behavior that tells a story.

The following audit record shows that user Greg attempted to delete a file but
was prevented from doing so because he holds the identifier MINDCRIME. The
file 93_FORECAST.DAT has an ACE preventing access by processes with the
identifier MINDCRIME. (Relevant lines in the audit record are highlighted.)

Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) and security audit (SECURITY) on ACCOUNTS, system id: 19662
Auditable event: Object deletion
Event information: file deletion request (IO$_DELETE)
Event time: 24-APR-1992 13:17:24.59
PID: 34200094
Process name: _TWA2:
Username: GREG
Process owner: [DOC,GREG]
Terminal name: TWA2:
Image name: DSA2264:[SYS51.SYSCOMMON.][SYSEXE]DELETE.EXE
Object class name: FILE
Object owner: [SYSTEM]
Object protection: SYSTEM:RWEDC, OWNER:RWEDC, GROUP:RE, WORLD:RE
File name: _DSA2200:[GREG]93_FORECAST.DAT;1
File ID: (17481,6299,1)
Access requested: DELETE
Matching ACE: (IDENTIFIER=MINDCRIME,ACCESS=NONE)
Sequence key: 00008A41
Status: %SYSTEM-F-NOPRIV, no privilege for attempted operation

4.1.7 Privileges
A third (optional) element of a subject’s security profile is a set of privileges.

Privileges let you use or perform system functions that ordinarily would be
denied to you. Security administrators can grant privileges to users under special
circumstances so they can perform necessary tasks without changing existing
protection authorizations.

Privileges vary in power. Some allow normal network operations; for example,
NETMBX and TMPMBX let you send and receive mail across the network. But
others, such as SYSNAM, grant the ability to influence system operations. A user
with the SYSNAM privilege can modify the system logical name table.

A user’s privileges are recorded in the user’s UAF record in a 64-bit privilege
mask. When a user logs in to the system, the user’s privilege vector is stored in
the subject’s (process) security profile.

Protecting Data 4–7

Protecting Data
4.1 Contents of a User’s Security Profile

You can use the DCL command SET PROCESS/PRIVILEGES to enable and
disable privileges for which you are are authorized, thus controlling the privileges
available to the images you run. Example 4–1 shows user Puterman has a large
number of authorized privileges, which are available for use when necessary, yet
Puterman’s process runs by default with only two privileges enabled: NETMBX
and TMPMBX.

Example 4–1 Authorized Versus Default Process Privileges

$ SHOW PROCESS/PRIVILEGE

8-OCT-1992 16:58:58.77 User: PUTERMAN Process ID: 27E00496
Node: FNORD Process name: "Hobbit"

Authorized privileges:
ACNT ALLSPOOL ALTPRI AUDIT BUGCHK BYPASS CMEXEC CMKRNL
DIAGNOSE DOWNGRADE EXQUOTA GROUP GRPNAM GRPPRV IMPERSONATE IMPORT
LOG_IO MOUNT NETMBX OPER PFNMAP PHY_IO PRMCEB PRMGBL
PRMMBX PSWAPM READALL SECURITY SETPRV SHARE SHMEM SYSGBL
SYSLCK SYSNAM SYSPRV TMPMBX UPGRADE VOLPRO WORLD

Process privileges:
NETMBX may create network device
TMPMBX may create temporary mailbox

Puterman can enable specific authorized privileges as he needs them; for example,
he needs ALLSPOOL to allocate a spooled device and LOG_IO to perform logical
I/O operations.

4.2 Security Profile of Objects

0101011
001

11010001
1000100

01011

10010

0101011
00010

100

Because the operating system supports many users
simultaneously, it has built-in security mechanisms
to prevent one user’s activities from interfering with
another’s. Protection codes, access controls, and
hardware design together protect the use of memory,
shareable devices, and data so that many users can
share the system.

4.2.1 Definition of a Protected Object
The objects of the OpenVMS operating system that require protection are all
passive repositories that either contain or receive information. These objects
are protected because once you have access to the object, you have access to the
information it holds. Some examples of protected objects include:

• A file in memory or on a storage device

• A hardware device or a virtual device

• A data structure, such as a common event flag cluster or a logical name table

Section 4.2.5 lists the classes of objects that OpenVMS protects; refer to Chapter 5
for an in-depth description of each class.

4–8 Protecting Data

Protecting Data
4.2 Security Profile of Objects

4.2.2 Contents of an Object’s Profile
The security elements of any object comprise its security profile. An object’s
security profile contains the following types of information:

• The owner of the object. The system uses this element in interpreting the
protection code.

• The protection code defining access to objects based on the categories
of system, owner, group, and world. This protection code controls broad
categories of users.

• The access control list (ACL) controlling access to objects by individual
users or groups of users.

With the exception of files, a new object inherits its security elements from a
system-supplied template profile, which the site security administrator may
modify. Files have a more complicated inheritance mechanism, one that affords
greater control over the security elements of new objects. In all cases, you can
assign security elements during object creation rather than using the operating
system defaults.

This section gives an overview of protection codes and ACLs. Section 4.4 and
Section 4.5 explore these protection mechanisms in greater detail. Refer to
Chapter 5 for a description of individual object classes.

4.2.2.1 Owner
The first element of an object’s security profile is the UIC of its owner.

In most cases, if you create an object, you are its owner. As the owner, you can
modify its security profile. The system automatically assigns your UIC to the
object and uses it in making access decisions.

There are some exceptions to the ownership rule. Files owned by resource
identifiers do not have a UIC. When a user creates a file in the directory of a
resource identifier, the file may be owned by the resource identifier and not the
user who created the file (see Section 5.4.5). Refer to Chapter 5 for an explanation
of the ownership rules for each object class.

The owner of any object except a file can reassign ownership to another user with
the SET SECURITY/OWNER command, as described in Section 4.2.4. Changing
the owner of a file usually requires privilege (see Section 5.4.2).

4.2.2.2 Protection Code
The second element of an object’s security profile is the object’s protection code.

The system automatically assigns a protection code to each new object. The
protection code associated with an object determines the type of access allowed
to a user, based on the relationship between the user UIC and the owner UIC.
With the exception of files and pseudo-terminal (FT) devices, the code a protected
object receives is derived from a template profile for the class. (A file’s protection
code originates from another source, described in Section 5.4.)

Typically, you rely on the protection code to protect an object if the object is to
be accessed by: (a) only the owner, (b) all users on the system, or (c) a specific
UIC-based group of users. If you want to grant access to specific groups of users
outside the UIC group but not to all users on the system, then you need to add an
ACL (see Section 4.2.2.3).

Protecting Data 4–9

Protecting Data
4.2 Security Profile of Objects

Interpreting a Protection Code
A protection code defines the access rights for four categories of users: (a) the
owner, (b) the users who share the same group UIC as the owner (the group
category), (c) all users on the system (the world category), and (d) those with
system privileges or rights (the system category). A code lists access rights in a
fixed order: the system category (S), then owner (O), then group (G), and then
world (W). It has the following syntax:

[user category: access allowed (,user category: access allowed,...)]

When the operating system processes a request to use a protected object, it
compares the user’s UIC to the UIC of the object’s owner. If the user’s UIC is
the same as the UIC of the object’s owner, the user is granted the access of the
owner protection field. Failing a match of UICs, the system progresses through
the other user categories. The system tries to find a match of the group fields to
determine if there is a common group membership. The system may also evaluate
whether the UIC group number indicates the user belongs to the system category
of users. The world category applies to all users.

For example, user Jones has a UIC of [14,1], and he tries to read a file that is
owned by UIC [14,5]. Because Jones is in the same group (14), the system might
grant access to the file. The final decision depends on the access rights specified
in the protection code.

See Section 4.5 for a complete description of how to interpret and create
protection codes.

4.2.2.3 Access Control List (ACL)
The third (optional) element of an object’s security profile is the object’s access
control list.

An access control list (ACL) is a collection of entries that define the access rights
a user or group of users has to a particular protected object, such as a file,
directory, or device.

ACLs may be created by default when an object is created, they may be created
by the security administrator, or they may be created by users for objects to which
they have control access (see Section 4.6.2).

Because security administrators can set up default ACLs, some users may be
unaware that their objects have ACLs and may never change ACLs themselves.
(You can use the DCL command DIRECTORY/SECURITY or SHOW SECURITY
to see if there are ACLs on your files.) Other users are actively involved in
creating and maintaining their own ACLs.

Using ACLs is optional. Although ACLs can enhance the security of objects in
any installation through a more detailed definition of who is allowed what kind of
access, users have to spend time creating and maintaining the ACLs.

You use the DCL commands SET SECURITY and SHOW SECURITY for creating
and displaying ACLs, although the access control list editor (ACL editor) is an
important utility for more extensive work.

Section 4.4 continues the discussion of ACLs and how to use them.

4–10 Protecting Data

Protecting Data
4.2 Security Profile of Objects

4.2.3 Displaying a Security Profile
To see the security profile of any protected object, use the DCL command SHOW
SECURITY. For example, the following command requests security information
about the file 93_FORECAST.TXT:

$ SHOW SECURITY 93_FORECAST.TXT

WORK_DISK$:[GREG]93_FORECAST.TXT;1 object of class FILE
Owner: [ACCOUNTING,GREG]
Protection: (System: RWED, Owner: RWED, Group: RE, World)
Access Control List: <empty>

The display indicates the file 93_FORECAST.TXT is owned by user Greg. It
also lists the file’s protection code, which gives read, write, execute, and delete
access to system users and the owner. The code grants read and execute access
to group users and provides no access to world users. (See Section 4.5 for further
explanation.) There is no ACL on the file as yet.

4.2.4 Modifying a Security Profile
You can provide new values for the owner, protection code, or ACL of a protected
object or even copy a profile from one object to another by using the SET
SECURITY command.

For example, the SHOW SECURITY display in Section 4.2.3 shows the file 93_
FORECAST.TXT is owned by user Greg. As owner, he can change the protection
code for that file. Originally, the code gave no access to users in the world
category. Now, Greg changes that to allow read and write access to world users:

$ SET SECURITY/PROTECTION=(W:RW) 93_FORECAST.TXT

The SHOW SECURITY command verifies the new protection code for the file:

$ SHOW SECURITY 93_FORECAST.TXT

93_FORECAST.TXT object of class FILE

Owner: [GREG]
Protection: (System: RWED, Owner: RWED, Group: RE, World: RW)
Access Control List: <empty>

Section 4.2.5 shows how to modify other elements in a profile. Section 4.4 and
Section 4.5 discuss protection codes and ACLs extensively. For a full description
of the SET SECURITY and SHOW SECURITY commands, see the OpenVMS
DCL Dictionary.

4.2.5 Specifying an Object’s Class
Groups of objects that behave in a particular way and have a common set of
attributes are divided into classes. Files, queues, and volumes are very common
examples. As Table 4–2 shows, the operating system supports 11 classes of
protected objects.

When you modify the profile of an object, you need to specify the class of the
object; otherwise, the SET SECURITY command assumes the object is a file.

Protecting Data 4–11

Protecting Data
4.2 Security Profile of Objects

For example, the following command sequence changes the profile of an object
and uses the /CLASS qualifier to identify the object LNM$GROUP as a logical
name table:

$ SET SECURITY /CLASS=LOGICAL_NAME_TABLE-
_$ /OWNER=ACCOUNTING /PROTECTION=(S:RWCD, O:RWCD, G:R, W:R)-
_$ /ACL=((IDENTIFIER=CHEKOV,ACCESS=CONTROL),-
_$ (IDENTIFIER=WU,ACCESS=READ+WRITE)) LNM$GROUP

The SET SECURITY command makes the Accounting group owner of the logical
name table. It changes the protection code to allow read, write, create, and delete
access for the owner and for system users and to limit group and world users to
read access. Finally, it creates an ACL to allow control access for user Chekov
and to allow read and write access for user Wu.

The SHOW SECURITY command displays the results of the changes.

$ SHOW SECURITY LNM$GROUP /CLASS=LOGICAL_NAME_TABLE

LNM$GROUP object of class LOGICAL_NAME_TABLE

Owner: [ACCOUNTING]
Protection: (System: RWCD, Owner: RWCD, Group: R, World: R)
Access Control List:

(IDENTIFIER=[USER,CHEKOV],ACCESS=CONTROL)
(IDENTIFIER=[USER,WU],ACCESS=READ+WRITE)

Table 4–2 Classes of Protected Objects

Class Name Definition

Capability A resource to which the system controls access; currently, the
only defined capability is the vector processor.

Common event flag
cluster

A set of 32 event flags that enable cooperating processes to post
event notifications to each other.

Device A class of peripherals connected to a processor that are capable
of receiving, storing, or transmitting data.

File Files-11 On-Disk Structure Level 2 (ODS-2) files and directories.

Group global section A shareable memory section potentially available to all processes
in the same group.

Logical name table A shareable table of logical names and their equivalence names
for the system or a particular group.

Queue A set of jobs to be processed in a batch, terminal, server, or print
job queue.

Resource domain A namespace controlling access to the lock manager’s resources.

Security class A data structure containing the elements and management
routines for all members of the security class.

System global section A shareable memory section potentially available to all processes
in the system.

Volume A mass storage medium, such as a disk or tape, that is in ODS-2
format. Volumes contain files and may be mounted on devices.

Refer to Chapter 5 for a detailed description of each class.

4–12 Protecting Data

Protecting Data
4.2 Security Profile of Objects

4.2.6 Access Required to Modify a Profile
To modify a security profile, you need control access to the object. An ACL grants
control access explicitly, whereas a protection code grants it implicitly to anyone
who belongs to the owner or system category. (Refer to Section 4.6.2 for a full
description of how you can acquire control access.)

4.3 How the System Determines If a User Can Access a Protected
Object

When a user tries to access a protected object, the operating system calls the
Check Protection ($CHKPRO) system service to compare the security profile of
the user process with the security profile of the object. In the protection check,
$CHKPRO compares the user’s security profile against the protected object’s
profile using the following sequence:

1. Evaluate the access control list (ACL).

If the object has an ACL, the system scans it, looking for an entry that
matches any of the user’s rights identifiers. If a matching access control
entry (ACE) is found, the system either grants or denies access, and further
checking of the ACL stops.

When the matching ACE denies access, a user can still gain access either
through the system and owner fields of the protection code or through
privilege. When an ACL has no matching ACE, the system checks all fields of
the protection code.

2. Evaluate the protection code.
If the ACL did not grant access and the object’s owner UIC is not zero,1 the
operating system evaluates the protection code. The operating system grants
or denies access based on the relationship between the user’s identification
code (UIC) and the object’s protection code.

For cases where an ACL has denied access, the system examines two fields
in the protection code—the system and owner fields—to determine if the user
is allowed access. The user can still acquire access by being a member of
the system or owner categories or by possessing privileges. A user holding
GRPPRV (with a matching group UIC) or SYSPRV is granted the access
specified for the system category of the protection code.

3. Look for special privileges.

If access was not granted by the ACL or the protection code, privileges are
evaluated.

Users with certain system privileges may be entitled to access regardless
of the protection offered by the ACLs or the protection code. The bypass
privilege (BYPASS), group privilege (GRPPRV), read all privilege (READALL),
or system privilege (SYSPRV) amplifies the holder’s access to objects. (See
Section 4.6.1 for more information on how privileges affect access.)

1 When an object has an owner UIC of zero, the protection code is not checked. Users
have all but control access to the object, provided the ACL has no Identifier ACEs. If
Identifier ACEs are present, then access has to be granted explicitly through the ACL or
through privilege.

Protecting Data 4–13

Protecting Data
4.3 How the System Determines If a User Can Access a Protected Object

4. Consider access overrides.

For some object classes, access may be granted based on alternate privileges.
For example, the queue object allows full access to all queues for users with
operator privilege (OPER), and the logical name table object allows access to
the system table for users with system name privilege (SYSNAM).

Figure 4–3 charts the sequence the operating system follows when it evaluates
an access request and shows how the controlling components (ACLs, protection
codes, privileges, and access overrides) interact.

Figure 4–3 Flowchart of Access Request Evaluation

ZK−2039.1−GE

AA
No

No

Yes

YesNo

Yes

to an object.
type of access

made for a
A request is

Yes
go to II.
Grant access;

No

BB HH

option) ?

matching Identifier
there aIs

 ACE (with no default

Grant access
go to II.

;

Is the
owner’s
UIC 0 ?

access?
requested

requester the
ACE grant the

Does the

Check for an
Identifier ACE.

ACL?

any Identifier
 ACEs in the object’s

Are there

(continued on next page)

4–14 Protecting Data

Protecting Data
4.3 How the System Determines If a User Can Access a Protected Object

Figure 4–3 (Cont.) Flowchart of Access Request Evaluation

ZK−2039.2−GE

GG

No

Yes

No

No

Yes

owner identifier?
as the object’s
UIC the same
requester’s

Is the
No

DD

access?
grant the requested
the protection code

owner field in
Does the

Yes

access?
grant the requested
the protection code

world field in
Does the

Yes
DD

EE
No

owner?
object’s

group as the
in the same
requester

Is the

Yes

access?
grant the requested
the protection code

group field in
Does the

identifier
have a UIC

object’s owner
Does the

EE
No

Yes

?

AA

Grant access;
IIgo to .

Grant access;
IIgo to .

Grant access;
IIgo to .

Check the
protection code.

(continued on next page)

Protecting Data 4–15

Protecting Data
4.3 How the System Determines If a User Can Access a Protected Object

Figure 4–3 (Cont.) Flowchart of Access Request Evaluation

ZK−2039.3−GE

No

Yes

No

No

Yes

No

GG
privilege?

the GRPPRV
requester have

Does the
Yes

FF

EE

FF

access?
entitled to system

requester
Is the

access?
grant the requested
the protection code

system field in
Does the

No

Yes

HH

privilege?
the BYPASS

requester have
Does the

Yes

HH

privilege?
the READALL
requester have

Does the
No

object?
access to the

 read
requester want

Did the
Yes

Deny access;
IIgo to .

Grant access;
IIgo to .

Deny access;
IIgo to .

Grant access;
IIgo to .

Grant access;
IIgo to .

Check for
access through
the system field.

Check for BYPASS or
READALL privileges.

(continued on next page)

4–16 Protecting Data

Protecting Data
4.3 How the System Determines If a User Can Access a Protected Object

Figure 4–3 (Cont.) Flowchart of Access Request Evaluation

ZK−2039.4−GE

Check for
access through
the owner field.

No

Yes

owner identifier?
as the object’s
UIC the same
requester’s

Is the
No

access?
grant the requested
the protection code

owner field in
Does the

JJ

Yes Grant access;
IIgo to .

BB

Yes

KK
No

owner?
object’s

group as the
in the same
requester

Is the

identifier
have a UIC

object’s owner
Does the

KK
No

Yes

?

No

Yes

No

privilege?
the GRPPRV

requester have
Does the

Yes
LL

KK

LL

access?
entitled to system

requester
Is the

access?
grant the requested
the protection code

system field in
Does the

No

Yes

HH

Grant access;
IIgo to .

HH

JJ

(continued on next page)

Protecting Data 4–17

Protecting Data
4.3 How the System Determines If a User Can Access a Protected Object

Figure 4–3 (Cont.) Flowchart of Access Request Evaluation

ZK−2039.5−GE

No

Yes

II

Does the
override grant

access?

Does the
object have an

access override?

Has the
user been

granted access?

Access denied;
exit.

Access granted;
exit.

Access denied;
exit.

Access granted;
exit.

No

No

Yes

Yes

Check for any
class−specific
access method.

4.4 Controlling Access with ACLs
Section 4.2.2.3 introduced access control lists (ACLs) as one element of an object’s
security profile. This section explores this protection mechanism in depth and
provides examples of how to use ACLs effectively to protect objects.

Many users do not need to bother with ACLs because the protection codes that
the operating system automatically assigns to objects are often sufficient. But
there are times when you need to allow specific users access to your files, for
example, when you are working on a common project. Because ACLs are an
effective mechanism for protecting critical system files, devices, volumes, and
other protected objects, system managers and security administrators use ACLs
more often than general users.

4.4.1 Using Identifier Access Control Entries (ACEs)
Each entry in an access control list (ACL) is called an access control entry
(ACE). An ACL can have many entries, each of which defines some attribute
of an object. There are many kinds of ACEs, which you can read about in the
OpenVMS System Management Utilities Reference Manual. Of interest here is
the Identifier ACE, which controls access to objects.

An Identifier ACE includes one or more rights identifiers and a list of the types
of access the users holding the identifier have permission to exercise. When the
system evaluates a user’s rights to an object, it scans the object’s ACL until it
finds an Identifier ACE that matches one or more rights identifiers held by the
accessing user;2 it grants or denies access based on that entry.

2 If an Identifier ACE holds the Default attribute, the ACE is ignored in access evaluations.
See Section 4.4.7.

4–18 Protecting Data

Protecting Data
4.4 Controlling Access with ACLs

The types of access that are granted (or denied) by an ACE depend on the object
you are protecting. For example, you can read, write to, execute, and delete
a file; whereas you can perform physical and logical operations on a device as
well as reading and writing to it. Thus, a file supports read, write, execute, and
delete access, and a device supports read, write, physical, and logical access. See
Chapter 5 for information on the types of access other object classes support.

To create an ACL with an Identifier ACE, use the DCL command SET SECURITY
in the following format:

SET SECURITY/ACL=(IDENTIFIER=identifier,ACCESS=access-type)

For example, to let user Fred read your file PROJECT-DATA.TXT, you would
enter the following command:

$ SET SECURITY/ACL=(IDENTIFIER=FRED,ACCESS=READ) PROJECT-DATA.TXT

The term FRED is the member name of a user identification code (UIC). As such,
it serves as a UIC identifier for the entry that grants user Fred read access to the
file PROJECT-DATA.TXT.

4.4.2 Granting Access to Particular Users
Because identifiers define the rights of individual users or groups of users
(see Section 4.1.6.1), you use them in an Identifier ACE to define the access
granted (or denied) to those who hold them. A UIC identifier easily identifies an
individual user or a group of users on the system. When a group of users from
diverse functional groups (and therefore, diverse UIC groups) all need access to a
protected object, a security administrator creates a general identifier and grants
the identifier to all the users who need access.

For example, the following command grants user Pat, who is identified by the
UIC identifier [PAT], read, write, and execute access to a file located in the
ROBERTS directory on DISK1. The ACL denies Pat delete and control access
because it omits them from the access statement.

$ SET SECURITY/ACL=(IDENTIFIER=[PAT],ACCESS=READ+WRITE+EXECUTE)-
_$ DISK1:[ROBERTS]JULY-SALES.TXT

A security administrator uses the Authorize utility to create a general identifier
and grant it to all users who need to use it. Assume, for example, that a security
administrator has created and assigned the identifier PAYROLL to employees
who need access to a payroll file. For the holders of the identifier to actually
access the file, the administrator has to add an Identifier ACE to the file. For
example, the following command creates an ACL for the PAYROLL file that gives
holders of the PAYROLL identifier read access to the file:

$ SET SECURITY/ACL=(IDENTIFIER=PAYROLL,ACCESS=READ) PAYROLL.DAT

The order of ACEs in an ACL is important because of the operating system’s
processing rules. See Section 4.4.6 for information on ordering ACEs.

4.4.3 Preventing Users from Accessing an Object
Besides providing access to objects, an Identifier ACE is often used to deny
certain users access to an object. Some sites might use an ACL to restrict
users who log in from a modem or over the network. Other sites might place a
restricting ACE on expensive equipment or volumes containing sensitive files.

Protecting Data 4–19

Protecting Data
4.4 Controlling Access with ACLs

To deny all access to holders of a particular identifier, use the NONE keyword
as the access type name. For example, the following command denies holders of
the environmental identifier DIALUP any access to the files in the PROJECT-
ACCOUNTS directory:

$ SET SECURITY/ACL=(IDENTIFIER=DIALUP,ACCESS=NONE)-
_$ /CLASS=FILE PROJECT-ACCOUNTS.DIR

Denying access with the NONE keyword requires some additional planning. You
must position the ACE correctly in the ACL, as Section 4.4.6 describes, because
the operating system grants or denies access based on the first matching ACE.
(Alternatively, you can eliminate any access allowed through the group or world
category of the protection code [see Section 4.3 and Section 4.5.5, in particular].)
Security administrators may also want to rescind privileges that can override the
matching ACE.

4.4.4 Limiting Access to a Device
Although a security administrator may want to provide access to a common file,
such as the payroll file described in Section 4.4.2, the administrator would want
to ensure that only a limited number of people could use the letter-quality printer
designated for printing checks. Otherwise, any holder of the payroll identifier
could access the check forms that are always loaded in the printer TTA8.

Because the check printer in the current example is never used for logins and
no queues are directed to it, the security administrator can add an ACL to the
printer to ensure that only one user, McGrey, is allowed read and write access. At
the same time, the administrator must block printer access for all other identifier
holders. The following command sequence creates such an ACL:

$ SET SECURITY/ACL=((IDENTIFIER=MCGREY,ACCESS=READ+WRITE)-
_$ (IDENTIFIER=*,ACCESS=NONE))/CLASS=DEVICE TTA8

While McGrey acquires read and write access, all other users are denied access
with the NONE keyword, explained in Section 4.4.3. Still, the ACL on the
printer TTA8 might not work exactly as intended until the security administrator
modifies the printer’s protection code. See Section 4.5.5 for details.

4.4.5 Limiting Access to an Environment
With an Identifier ACE, it is possible to provide conditional access by combining
certain kinds of identifiers. A common situation is to use a UIC identifier with
one of the environmental identifiers like batch or interactive. (For a complete
list of environmental identifiers, see Section 4.1.6.1.) Thus, a user can access a
protected object only when running in batch mode or interactively but never over
a dialup line. For example, the next command grants user Fred both submit and
manage access to a print queue, but only while he is running a batch job:

$ SET SECURITY/ACL=(IDENTIFIER=[FRED]+BATCH,ACCESS=SUBMIT+MANAGE)-
_$ /CLASS=QUEUE SYSTEM6$LPA0

4.4.6 Ordering ACEs Within a List
An ACL can contain one entry or many entries. With multiple ACEs, the order
of the entries is critical because the system determines access based on the first
matching ACE. The operating system searches an ACL sequentially and grants a
user the access specified in the first matching ACE, thus ignoring all subsequent
entries. See Section 4.3 for a description of the evaluation process.

4–20 Protecting Data

Protecting Data
4.4 Controlling Access with ACLs

When writing ACLs, keep the following principles in mind:

• ACEs giving access to critical users belong at the top of the list.

• ACEs giving specific access to smaller groups belong before ACEs giving
access to larger groups.

• ACEs giving more access rights belong before ACEs giving fewer access
rights, unless you mean to selectively deny access.

The following ACL on the directory file PROJECT-ACCOUNTS.DIR demonstrates
how to order entries in an ACL. It places ACEs giving access to critical users
(Jones and Fred) at the top of the list and places general ACEs after them. The
ACE denying access goes at the end.

$ SET SECURITY/ACL=(-
_$ (IDENTIFIER=[ACCOUNTING,JONES],ACCESS=READ+WRITE+EXECUTE),-
_$ (IDENTIFIER=[FRED]+BATCH,ACCESS=READ+WRITE+EXECUTE),-
_$ (IDENTIFIER=PAYROLL,ACCESS=READ),-
_$ (IDENTIFIER=DIALUP,ACCESS=NONE)) PROJECT-ACCOUNTS.DIR

The ACL on the project accounts directory allows read, write, and execute access
to Jones all the time and to Fred while he is running a batch job. It gives read
access to users holding the PAYROLL identifier. All users who are logging in from
a modem are denied access unless they gain access through an earlier ACE. For
example, Jones, Fred, or holders of the PAYROLL identifier might be dialing in,
but, because their ACE precedes the DIALUP ACE, they would be granted access.

The next example shows an ACL for the data file STAFFING.DAT. It
demonstrates how you place the entry providing the greatest amount of file
access at the top of an ACL.

$ SET SECURITY/ACL=(-
_$ (IDENTIFIER=SECURITY,OPTIONS=PROTECTED,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL),-
_$ (IDENTIFIER=PERSONNEL,ACCESS=READ+WRITE+EXECUTE+DELETE),-
_$ (IDENTIFIER=SECRETARIES,ACCESS=READ+WRITE),-
_$ (IDENTIFIER=[PUB,*],ACCESS=READ),-
_$ (IDENTIFIER=NETWORK,ACCESS=NONE),-
_$ (IDENTIFIER=[SALES,JONES],ACCESS=NONE)) STAFFING.DAT

In this ACL, any users holding the SECURITY identifier obtain maximum access
rights through the first ACE, and users holding the PERSONNEL identifier have
the next greatest access. User Jones is prohibited from any access to the file
unless Jones also happens to hold one of the general identifiers. (This might be
an oversight on the part of the creator of the ACL.) If you want to be absolutely
certain that user Jones cannot gain access to the file, move the entry at the
bottom of the ACL to the top.

4.4.7 Establishing an Inheritance Scheme for Files
You can create a plan for controlling access to files within a directory or a
directory structure, develop an appropriate ACL for the files, and then direct the
operating system to automatically assign this ACL to new files. To do this, create
an Identifier ACE with the Default attribute, and then add the ACE to the
directory file cataloging the files you want to affect. Use the OPTIONS keyword
to include the Default attribute.

For example, if you want all new files in the directory [MALCOLM] to have an
ACL entry that permits read and write access to users with the PERSONNEL

Protecting Data 4–21

Protecting Data
4.4 Controlling Access with ACLs

identifier, you can add the following ACE to the file MALCOLM.DIR:

$ SET SECURITY/ACL=(IDENTIFIER=PERSONNEL,OPTIONS=DEFAULT,-
_$ ACCESS=READ+WRITE) [000000]MALCOLM.DIR

As a result of this ACE, any file created in the [MALCOLM] directory has the
following ACL:

$ SHOW SECURITY APRIL_INTERVIEWS.TXT

WORK_DISK$:[MALCOLM]APRIL_INTERVIEWS.TXT;1 object of class FILE

Owner: [SALES,MALCOLM]
Protection: ...
Access Control List:

(IDENTIFIER=PERSONNEL,ACCESS=READ+WRITE)
.
.
.

Notice that the Default attribute does not appear within a new file’s
ACL but only in the ACL of directory files. However, any subdirectory
created in the MALCOLM directory automatically has the entry
(IDENTIFIER=PERSONNEL,OPTIONS=DEFAULT,ACCESS=READ+WRITE)
as part of its ACL. In this way, the ACE is propagated throughout the entire
directory tree.

The ACE is not applied retroactively to existing versions of files in
MALCOLM.DIR. To attach an ACE to existing files, you can use the /DEFAULT
qualifier, described in Section 4.5.7, or use the following command:

$ SET SECURITY/ACL=(IDENTIFIER=PERSONNEL,ACCESS=READ+WRITE)-
_$ [MALCOLM]*.*;*

Any ACE with a Default attribute controls only the propagation of the ACE; it
has no effect on access control. To control access to the directory as well as all its
files, you have to insert two ACEs in the directory’s ACL, as follows:

$ SET SECURITY/ACL=-

_$ ((IDENTIFIER=PERSONNEL,ACCESS=READ+WRITE),-
_$ (IDENTIFIER=PERSONNEL,OPTIONS=DEFAULT,ACCESS=READ+WRITE))-
_$ [000000]MALCOLM.DIR

4.4.8 Displaying ACLs
The DCL command SHOW SECURITY displays an object’s ACL. When working
with objects other than files, you must supply a class name as well as the object
name. For example, the following display shows the security attributes of a
device called PPA0. It is owned by the operating system, and its protection code
gives full access (read, write, physical, and logical) to users in the system and
owner categories but no access to group and world users; its ACL gives control
access to user Svensen.

$ SHOW SECURITY /CLASS=DEVICE PPA0:

_ACCOUNTS$PPA0: object of class DEVICE

Owner: [SYSTEM]
Protection: (System: RWPL, Owner: RWPL, Group, World)
Access Control List:

(IDENTIFIER=[ADMIN,SVENSEN],ACCESS=CONTROL)

4–22 Protecting Data

Protecting Data
4.4 Controlling Access with ACLs

There are many other ways of displaying ACLs. The access control list editor
(ACL editor) is a useful tool for extensive work with ACLs; see the ACL editor
documentation in the OpenVMS System Management Utilities Reference Manual.
But any of the following DCL commands display ACLs:

SHOW SECURITY

DIRECTORY/ACL

DIRECTORY/SECURITY

DIRECTORY/FULL

SHOW LOGICAL/FULL/STRUCTURE

SHOW DEVICE/FULL

SHOW QUEUE/FULL

Applications sometimes add a Hidden attribute to an ACE to indicate that the
ACE should be changed only by the application that adds the ACE. Unless users
have the SECURITY privilege, they cannot display a hidden ACE by using DCL
commands. The ACL editor does display ACEs holding the Hidden attribute but
only to show its relative position within the ACL; however, unauthorized users
cannot edit the ACE.

Sometimes you see other kinds of ACEs, unrelated to access control, in an ACL.
For example, if the security administrator places a security-auditing ACE on
the LN03$PRINT queue, you will see an ACE at the top of the list that has the
format (AUDIT=SECURITY,ACCESS=access-types). Such an ACE is part of the
security-auditing system and has no effect on access, so you can ignore it.

4.4.9 Adding ACEs to an Existing ACL
Section 4.4.2 through Section 4.4.5 discuss how to add entries to an empty
ACL with the DCL command SET SECURITY. To modify ACLs extensively,
use the ACL editor; however, in many cases the SET SECURITY command is
more appropriate. This section and those that follow describe how to use SET
SECURITY to change an ACL.

To add more entries to an ACL, you can use the /ACL qualifier with the SET
SECURITY command and specify the new ACEs. For example, to give the
writers access to the print queue LN03$PRINT, use the following command:

$ SET SECURITY/CLASS=QUEUE/ACL=(IDENTIFIER=WRITERS,-
_$ ACCESS=READ+WRITE) LN03$PRINT

By default, the system places the new ACE at the top of the ACL, as you see in
the following SHOW SECURITY display:

$ SHOW SECURITY /CLASS=QUEUE LN03$PRINT

_LN03$PRINT: object of class QUEUE

Owner: [SYSTEM]
Protection: (System: RWPL, Owner: RWPL, Group, World)
Access Control List:

(IDENTIFIER=WRITERS,ACCESS=READ+WRITE)
(IDENTIFIER=[PUB,*],ACCESS=READ)
(IDENTIFIER=NETWORK,ACCESS=NONE)

Protecting Data 4–23

Protecting Data
4.4 Controlling Access with ACLs

Because the default behavior for SET SECURITY is to place a new ACE at the
top of an ACL, you need to use the /AFTER qualifier if you want to put the ACE
in another position. For example, to position the TRADERS ACE in the queue’s
ACL after the WRITERS ACE:

$ SET SECURITY/CLASS=QUEUE/ACL=(IDENTIFIER=TRADERS,ACCESS=WRITE)-
_$ /AFTER=(IDENTIFIER=WRITERS,ACCESS=READ+WRITE) LN03$PRINT

The resulting display confirms the effectiveness of the /AFTER qualifier. The new
ACE is put second in the list.

$ SHOW SECURITY /CLASS=QUEUE LN03$PRINT

_LN03$PRINT: object of class QUEUE

Owner: [SYSTEM]
Protection: (System: RWPL, Owner: RWPL, Group, World)
Access Control List:

(IDENTIFIER=WRITERS,ACCESS=READ+WRITE)
(IDENTIFIER=TRADERS,ACCESS=WRITE)
(IDENTIFIER=[PUB,*],ACCESS=READ)
(IDENTIFIER=NETWORK,ACCESS=NONE)

4.4.10 Deleting an ACL
The /DELETE qualifier on the SET SECURITY command erases an ACL.
Depending on how the qualifier is used, you can delete all or part of an ACL. For
example, the following command deletes a disk’s ACL:

$ SET SECURITY/CLASS=DEVICE/ACL/DELETE DUA0

An ACE can be protected against inadvertent deletion if it holds the Protected
attribute. To eliminate a protected ACE, you need to delete it explicitly or use
the /DELETE=ALL qualifier on the SET SECURITY/ACL command.

4.4.11 Deleting ACEs from an ACL
You can eliminate a subset of an ACL by listing the unwanted ACEs with the
/ACL qualifier and including the /DELETE qualifier. For example, the following
command deletes the ACEs giving holders of the TRADERS identifier and the
NETWORK identifier write access to volume DBA0:

$ SET SECURITY/CLASS=VOLUME/ACL=-
_$ (IDENTIFIER=TRADERS,ACCESS=WRITE),-
_$ (IDENTIFIER=NETWORK,ACCESS=WRITE)/DELETE DBA0:

4.4.12 Replacing Part of an ACL
To replace one contiguous set of ACEs within an ACL with another set, specify
the new ACEs with the /REPLACE qualifier and the ACEs to be deleted with the
/ACL qualifier, as follows:

$ SET SECURITY/CLASS=VOLUME/ACL=(IDENTIFIER=TRADERS,ACCESS=WRITE)-
_$ /REPLACE=((IDENTIFIER=RESEARCH,ACCESS=WRITE)-
_$ (IDENTIFIER=STATE_DEPARTMENT,ACCESS=READ+WRITE),-
_$ (IDENTIFIER=ENERGY_DEPARTMENT,ACCESS=READ+WRITE)-
_$ DBA0:

The TRADERS ACE specified by /ACL is deleted. Following the deletion, the
ACEs specified by the /REPLACE qualifier (RESEARCH, STATE_DEPARTMENT,
ENERGY_DEPARTMENT) are inserted at the location of the old ACE.

4–24 Protecting Data

Protecting Data
4.4 Controlling Access with ACLs

4.4.13 Restoring a File’s Default ACL
If you want to restore the default ACL to a file, you can use the /DEFAULT
qualifier to the SET SECURITY command. This qualifier regenerates the full
security profile for a file. See Section 4.5.7 for a description.

4.4.14 Copying an ACL
You can copy the security profile of one object to another by using the /LIKE
qualifier to the SET SECURITY command. For example, you can save a
complicated ACL on a nonpermanent object like a logical name table by copying
it to a permanent object such as a file. Some administrators create a file to serve
as a template in copy operations. This way, they can easily transfer an ACL from
one object to another. For example, the following command copies the ACL from
file ACL_TEMPLATE.TXT to the logical name table LNM$GROUP:

$ SET SECURITY/LIKE=NAME=ACL_TEMPLATE.TXT-
_$ /COPY_ATTRIBUTE=ACL/CLASS=LOGICAL_NAME_TABLE LNM$GROUP

If you add the /COPY_ATTRIBUTE qualifier to the /LIKE qualifier, then you can
copy one or two elements rather than the complete profile. Notice the ACL on the
following directory, KITE_FLYING:

$ SHOW SECURITY [000000]KITE_FLYING.DIR;1 -

WORK_DISK$:[000000]KITE_FLYING.DIR;1 object of class FILE

Owner: [PROJECTX]
Protection: (System: RWED, Owner: RWED, Group:, World)
Access Control List:

IDENTIFIER=PROJECTX,ACCESS=READ+WRITE+EXECUTE
IDENTIFIER=PROJECTX,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE

The following command copies the ACL from directory KITE_FLYING to the
directory KITE_DESIGNS:

$ SET SECURITY/LIKE=KITE_FLYING.DIR;1 -
_$ /COPY_ATTRIBUTE=ACL KITE_DESIGNS.DIR;1

$ SHOW SECURITY [000000]KITE_DESIGNS.DIR;1 -

WORK_DISK$:[000000]KITE_DESIGNS.DIR;1 object of class FILE

Owner: [ENGINEERING]
Protection: (System: RWED, Owner: RWED, Group:R, World:R)
Access Control List:

IDENTIFIER=PROJECTX,ACCESS=READ+WRITE+EXECUTE
IDENTIFIER=PROJECTX,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE

The SET SECURITY/LIKE command does not always duplicate the entire ACL
of the source object. For example, the command does not copy any ACEs from
the source ACL that have the Nopropagate attribute. The command also does
not overwrite protected ACEs. It preserves protected ACEs on the target object
and adds them to the ACL being copied. (For example, applications often use a
special type of protected ACE to explain how to display file data correctly, and
these ACEs have to be preserved.)

Refer to the ACL editor documentation in the OpenVMS System Management
Utilities Reference Manual for details on the different attributes an ACE can
have, and refer to the OpenVMS Programming Concepts Manual for a description
of all ACE types.

Protecting Data 4–25

Protecting Data
4.5 Controlling Access with Protection Codes

4.5 Controlling Access with Protection Codes
A protection code controls the type of access allowed (or denied) to a particular
user or group of users. Access types identify the capabilities required to perform
an operation on a protected object. The operating system can have multiple
access requirements to complete an operation (see Section 4.7.2). A user can
gain access to an object as soon as the operating system finds a category within
the protection code for which the user qualifies that allows the access requested
(provided an ACL does not deny access).

4.5.1 Format of a Protection Code
A protection code has the following format:

[user category: list of access allowed (, user category: list of access allowed,...)]

user category
User categories include system (S), owner (O), group (G), and world (W). Each
category can be abbreviated to its first character. Categories have the following
definitions:

• System: Members of this category can include any of the following:

– Users with low group numbers, usually from 1 to 10 (octal). These group
numbers are generally for system managers, security administrators,
and system programmers. (The exact range of system group numbers
is determined by the security administrator in the setting of the system
parameter MAXSYSGROUP. It can range as high as 37776 (octal).)

– Users with the SYSPRV privilege.

– Users with the GRPPRV privilege whose UIC group matches the UIC
group of the object’s owner.

– In access requests to files on a disk volume, users whose UIC matches the
UIC of the volume’s owner.

• Owner: The user with the same UIC as the user who currently owns the
object. In general, the creator of an object is entitled to owner access unless
explicit action is taken to secure the object from its creator.

• Group: All users who are in the same UIC group as the object’s owner.

• World: All users, including those in the first three categories.

When specifying more than one user category, separate the categories with
commas, and enclose the entire code in parentheses. You can specify user
categories and access types in any order (although the system always displays
them in the order system, owner, group, world).

To deny all access to a user category, specify the user category without any access
types. Omit the colon after the user category when you are denying access to a
category of users.

Omitting a category entirely means access to the category is unspecified. The
current access allowed that category of user remains unchanged. If the protection
code applies to an object being created (for example, with a COPY/PROTECTION
command), the omitted category is assigned the default value.

4–26 Protecting Data

Protecting Data
4.5 Controlling Access with Protection Codes

access-list
Access types are object-dependent and are described in Chapter 5. For files, the
access types include read (R), write (W), execute (E), and delete (D). The access
type is assigned to each user category and is separated from its user category by a
colon (:), for example, SET SECURITY/PROTECTION=(S:RWE,O:RWE,G:RE,W).

4.5.2 Types of Access in a Protection Code
Each category of user can be allowed or denied different types of access. The
exact type is dependent on the object being protected. Each object class defines
access types appropriate for its class and representative of the ways in which
users operate on the data. For example, while the file object supports read,
write, execute, and delete access, devices (such as terminals, printers, and disks)
support read, write, physical I/O, and logical I/O access. See Chapter 5 for a
listing of the access types each object class supports.

All protected objects also support control access, which allows a user to examine
and modify the security elements (ACL, protection code, UIC) and possibly other
attributes of the object. Control access is explicitly stated in an ACL but never
appears in the UIC-based protection code. All users who qualify for the system or
owner categories of a protection code have control access. Users in the group and
world categories never receive control access through a protection code, but they
could receive access through an ACL. See Section 4.6.2 for more information.

The capabilities conveyed by the access types read, write, execute, delete, and
control vary depending on the situation where they apply. For example, execute
access permits different operations depending on whether it is granted for file
access or directory access. Chapter 5 explains the capabilities that each access
type allows for each type of protected object.

4.5.3 Processing a Protection Code
When the system evaluates a protection code, it looks first at the owner field,
then at the world field, the group field, and finally the system field. As soon as a
user qualifies as a member of the category and that category grants the necessary
access, the operating system stops processing the code (see Figure 4–3).

The following protection code specifies that users in the system and owner
categories have read (R), write (W), execute (E), and delete (D) access, while users
in the group and world categories have only read and execute access:

$ SET SECURITY/PROTECTION=(SYSTEM:RWED, OWNER:RWED, GROUP:RE, WORLD:RE)-
_$ TAXES_91.DAT

When you want to deny access to a user category, you must deny access to all
the outermost categories. As Section 4.5.1 shows, any user process or application
qualifies for world access. The group category is more restrictive yet not as
restrictive as the owner and system categories.

The following protection code, for example, appears to deny delete access to the
owner category:

$ SHOW SECURITY TAXES_91.DAT

WORK_DISK$:[GREG]TAXES_91.DAT;1 object of class FILE

Owner: [FINANCE,GREG]
Protection: (System: RWED, Owner: RW, Group:RW, World:RWED)
Access Control List: . . .

However, the owner of the file can still delete the file. Although delete access
is not allowed through the owner category, the system continues to check the

Protecting Data 4–27

Protecting Data
4.5 Controlling Access with Protection Codes

remaining categories for permission to grant access. Because the owner also
fits in the world category (which applies to all users) and the world category is
permitted delete access, the system grants delete access to the owner.

4.5.4 Changing a Protection Code
You can change the UIC-based protection on an existing object with the SET
SECURITY command. The following command modifies the protection code of
the file SURVEY.DIR so that anyone in the system and owner categories has
read, write, execute, and delete access; whereas members of the group and world
categories have read and execute access:

$ SET SECURITY/PROTECTION=(SYSTEM:RWED,OWNER:RWED, -
_$ GROUP:RE,WORLD:RE) SURVEY.DIR

Whenever you omit a category from a protection code, the current access remains
unchanged. For example, consider the protection code for the file RECORDS_
91.DAT:

$ SHOW SECURITY RECORDS_91.DAT

WORK_DISK$:[GREG]RECORDS_91.DAT object of class FILE
Owner: [VMS,GREG]
Protection: (System: RWED, Owner: RWED, Group: RWED, World: RE)

As it stands, the file RECORDS_91 allows read, write, execute, and delete access
to users in the system, owner, and group categories; it allows read and execute
access to users in the world category. The following DCL command resets the
protection code for RECORDS_91.DAT to deny write and delete access to the
group category and to deny all access to the world category:

$ SET SECURITY/PROTECTION=(G:RE,W) RECORDS_91.DAT

The next command confirms the modified protection code. It shows that the
system and owner categories of users continue to hold read, write, execute, and
delete access, while group users have only read and execute access and world
users have no access.

$ SHOW SECURITY RECORDS_91.DAT

WORK_DISK$:[GREG]RECORDS_91.DAT object of class FILE
Owner: [VMS,GREG]
Protection: (System: RWED, Owner: RWED, Group: RE, World:)

4.5.5 Enhancing Protection for Sensitive Objects
Section 4.4.4 describes how to place an ACL on an important printer so that only
one user can have access to it. Before the ACL can be effective, however, the
security administrator has to eliminate all access provided through the printer’s
protection code by using the following command:

$ SET SECURITY/PROTECTION=(S,O,G,W)/CLASS=DEVICE TTA8:

The security administrator then uses an ACL to assign access explicitly.

4–28 Protecting Data

Protecting Data
4.5 Controlling Access with Protection Codes

For example, to limit access to a queue, you can remove submit access for the
world category. Then you can set up an ACL that specifies which users (from
the world category) are permitted to submit jobs to the queue. The following
command stipulates that only holders of the identifier PROJECTX can submit
jobs to the LN03$PRINT queue:

$ SET SECURITY/CLASS=QUEUE/PROTECTION=(W) -
_$ /ACL=(IDENTIFIER=PROJECTX,ACCESS=SUBMIT) -
_$ LN03$PRINT

Important files frequently need special protection. You can prevent users from
seeing the contents of a directory by denying them read access. To further
protect the files, you can add a Default Protection ACE to the directory file, as
Section 4.5.6 describes.

4.5.6 Providing a Default Protection Code for a Directory Structure
To specify default protection for new files in a particular directory, place a
Default Protection ACE in the ACL of the directory file. The Default Protection
ACE affects files that are subsequently created in the directory and in any
subdirectories under that directory unless protection is specified for one of those
files individually. This ACE type has the following format:

(DEFAULT_PROTECTION[,options],protection-code)

For example, the following ACE specifies that users in the system and owner
categories have read, write, execute, and delete access to any files subsequently
created in the directory and that group and world users have no access:

$ SET SECURITY/ACL=(DEFAULT_PROTECTION,S:RWED,O:RWED,G,W) ARCHIVE.DIR

Be aware that the default protection is associated only with newly created files—
not existing files in the current directory and its subdirectories. If you add a
Default Protection ACE to a directory file and want the same protection applied
to existing files, you must explicitly change the protection with the following
command:

$ SET DEFAULT [ARCHIVE]

$ SET SECURITY/PROTECTION=(S:RWED,O:RWED,G,W) [...]*.*;*

4.5.7 Restoring a File’s Default Security Profile
The /DEFAULT qualifier of the SET SECURITY command regenerates the
security profile of a file. The /DEFAULT qualifier resets the protection code, the
ACL, and the owner elements of the file to the defaults specified by the file’s
parent directory (that is, to the directory’s default ACL, default protection ACE, if
any, and owner UIC).

The profile is recreated according to the following rules:

• The protection code is propagated from the Default Protection ACE on the
directory (if one exists), or else it is propagated from the process default.

• The ACL is propagated from the parent directory for those ACEs that have
the Default attribute.

• The owner is set to the owner of the parent directory. (Be aware that
modifying a file’s owner generally requires privilege; see Section 5.4.2.)

Protecting Data 4–29

Protecting Data
4.5 Controlling Access with Protection Codes

With subdirectory files, SET SECURITY assigns the owner, protection, and ACL
elements of the parent directory.
SET SECURITY does not copy any ACE on the source object if it holds the
Nopropagate attribute, nor does it change any ACE on the target object if it holds
the Protected attribute. To apply new elements to all versions of the file, specify
;* in the object name.

Refer to Section 5.4.5 for more information on propagation rules.

4.6 Understanding Privileges and Control Access
Although an object can be carefully protected by an ACL and a protection code, a
user can still gain access through the use of privilege or control access.

4.6.1 How Privileges Affect Protection Mechanisms
Security administrators can assign privileges to users when they create or modify
user accounts. The system privileges READALL and BYPASS affect user access,
regardless of the access dictated by an ACL for the object or by other elements in
its security profile. The privileges SYSPRV and GRPPRV are controlled through
the system category of the protection code. The privileges have the following
meanings:

BYPASS A user with BYPASS privilege receives all types of access to the object,
regardless of its protection.

GRPPRV A user with GRPPRV privilege whose UIC group matches the group of
the owner of the object receives the same access accorded to users in
the system category. Thus, the user with GRPPRV privilege is able to
manage any of the group’s objects.

READALL A user with READALL privilege receives read access to the object, even
if that access is denied by the ACL and the protection code. In addition,
the user can receive any other access granted through the protection
code.

SYSPRV A user with SYSPRV privilege receives the access accorded to users in
the system category.

When you define ACLs or protection codes for your objects, remember that users
with amplified privileges are entitled to special access to objects throughout the
system. For example, there is no way to stop a user with the BYPASS privilege
from accessing your files. Users with GRPPRV privilege have the power to
perform many system management functions for other members of their UIC
group. Protection of your objects depends on the judgment of your security
administrator in granting these privileges.

4.6.2 Using Control Access to Modify an Object Profile
Any user with control access to an object can change its protection code and ACL
and thereby gain access to an object. For all object classes but files, control access
also allows a user to modify the object’s owner. To modify the owner of a file
generally requires privilege (see Section 5.4.2).

You obtain control access in any of the following ways:

• You hold an identifier to which the object’s ACL gives control access.

• You have the same UIC as the owner of the object.

4–30 Protecting Data

Protecting Data
4.6 Understanding Privileges and Control Access

• You qualify as a member of the system user category, and the object has an
owner with a nonzero UIC. For example, you hold GRPPRV (with a matching
group UIC) or SYSPRV. (Refer to Section 4.5 for a full description of system
users.)

• You hold BYPASS privilege.

Sometimes object classes allow control access through other means. Refer to
Section 4.6.3 and to the individual descriptions of classes in Chapter 5 for any
special conditions that may apply.

4.6.3 Object-Specific Access Considerations
For some objects, access can be granted either by a special privilege (beyond those
listed in Section 4.6.1) or by an all-inclusive type of access. This is particularly
true of a queue. A user with operator (OPER) privilege is granted all types of
access to a queue. A user with manage access implicitly possesses the three other
types of queue access: read, submit, and delete. Chapter 5 lists each object class
with its access types and meanings and any special privilege.

4.7 Auditing Protected Objects
Whenever a process uses an object or modifies its security profile (see
Section 4.2.4), the system can send an alarm to an operator terminal or write a
message to the audit log file. By reading the log file, a security administrator can
review system activity to see how protected objects are being used, when they are
being used, and who is using them.

Exactly which type of information is reported through the auditing system
depends on how the security administrator defines the site’s requirements. If
system administrators choose to have object use audited, they can enable auditing
for the appropriate categories of events.

The operating system can filter security-related events and send system
administrators messages only when objects are accessed in certain ways. Sites
are often more interested in the privileged use of a file or the failure to access a
file than in every file access. Such a site can request auditing messages whenever
a process fails in accessing a file, but not when it is successful. The system can
report how the process exercised, or failed to exercise, the right to access the
object in the first place: through a protection code, an ACE, or a privilege.

4.7.1 Kinds of Events the System Audits
Each object class has its own auditing profile, described in Chapter 5, and so
it is possible to receive more information on some classes of objects than on
others. For any object, the system can send an auditing message whenever a
user or application accesses the object or modifies its security elements. In some
instances, the system can send a notification when a process creates an object,
stops using it (deaccesses it), or deletes it.

4.7.2 Enabling Auditing for a Class of Objects
When you are auditing object access events, keep in mind that the operating
system may check a user’s right to an object several times during a single
operation. A file operation, for example, can involve checks for both directory and
file access. Before a user deletes a file, the system checks for delete access to the
file and write access to the directory.

Protecting Data 4–31

Protecting Data
4.7 Auditing Protected Objects

For this reason, it is best for a security administrator to enable auditing for
all types of object access events. For example, to track all instances where
a user tries to access a file but fails, a security administrator would use the
/ENABLE=ACCESS=FAILURE=ALL qualifier to the SET AUDIT command.

For object classes that support deaccess auditing (for example, the file class),
once a process gains access to an object, the system does not audit subsequent
access attempts to the object unless the process attempts an operation that is
incompatible with the access modes previously granted. When this occurs, the
system performs an additional protection check that is audited. This access
window continues until the object is deaccessed (for example, the file is closed).

4.7.3 Adding Security-Auditing ACEs
Rather than audit an entire class of objects, security administrators and users
with control access to an object can single out a specific object for auditing by
attaching an Alarm or Audit ACE to it (see Section 3.10.2). Although you can
add an auditing ACE to any file that you own or have control access to, it is best
to consult your security administrator before doing so. As with object classes,
the security administrator has to enable the ACL auditing category before any
auditing messages are generated.

4–32 Protecting Data

5
Descriptions of Object Classes

This chapter describes the unique features of each class of protected object: files,
volumes, devices, and so on. Each class description contains information on the
following topics:

Topic Description

Naming rules A summary of naming conventions for objects in the class.

Types of access Access types supported for the class. Boldface type
indicates the abbreviation of an access type, such as R
for read access.

Template profile The default profile applied to new objects of the class. Site
security administrators can modify the default profiles.
Use the SHOW SECURITY command to display current
template settings.

Privilege requirements Privileges, if any, required for certain operations on the
object.

Kinds of auditing performed Events that trigger an audit event message (assuming the
event class is enabled).

Permanence of the object Storage of security profiles. Explains if the security
elements are stored from one system startup to another
and if so, where the elements are stored.

If a given topic does not apply to a class, the topic is omitted.

5.1 Capabilities
A capability is a resource to which a site controls access, using the standard
access control mechanisms. The ability to execute vector instructions is a
capability object. Only sites with a vector processor have such an object.

5.1.1 Naming Rules
The only valid name for a capability object is VECTOR.

5.1.2 Types of Access
The capability class supports the following types of access:

Use Gives a process the right to make use of the vector processor

Control Gives you the right to change the protection and ownership elements of
the object

Descriptions of Object Classes 5–1

Descriptions of Object Classes
5.1 Capabilities

5.1.3 Template Profile
The capability class provides the following template profile:

Template Name Owner UIC Protection Code

DEFAULT [SYSTEM] S:U,O:U,G:U,W:U

Modifications to the VECTOR template take effect the next time you boot the
system. If you want to change the elements of the VECTOR object after the
system is booted, you must modify the object directly. For example:

$ SET SECURITY/CLASS=CAPABILITY/PROTECTION=(S:U,O:U,G:U,W) VECTOR

5.1.4 Kinds of Auditing Performed
The operating system can audit the following type of event:

Event
Audited When Audit Occurs

Access The first time after image activation that the process uses a vector
instruction

5.1.5 Permanence of the Object
The capability object’s security profile needs to be reset each time the system
starts up.

5.2 Common Event Flag Clusters
A common event flag cluster is a set of 32 event flags that enable cooperating
processes to post event notifications to each other.

Event flags in the cluster can be set or cleared to indicate the occurrence of an
event. All event flags are contained within clusters of 32 event flags, and each
process has access to four clusters (numbered 0 through 3). Two of the clusters
are local to a single process. Event flag clusters 2 and 3 are called common event
flag clusters and are used for interprocess synchronization. A subject may be
associated with up to two common event flag clusters. Each common event flag in
a cluster is referenced by an event flag number.

5.2.1 Naming Rules
The name of the object is whatever character string was supplied as an argument
to the Associate Common Event Flag Cluster system service ($ASCEFC).
Remember that common event flag cluster names are qualified by your UIC
group number.

5.2.2 Types of Access
The common event flag cluster class supports the following types of access:

Associate Gives a process the right to establish an association with the named
cluster so the process can access event flags.

Delete Gives a process the right to mark a permanent event flag cluster for
deletion with the Delete Common Event Flag Cluster ($DLCEFC) system
service. The actual deletion occurs once all processes disassociate from the
cluster.

5–2 Descriptions of Object Classes

Descriptions of Object Classes
5.2 Common Event Flag Clusters

Control Gives you the right to modify the protection elements of the common event
flag cluster.

5.2.3 Template Profile
The common event flag cluster class provides one template profile. Although the
template assigns an owner UIC of [0,0], this value is only temporary. As soon as
the object is created, the operating system replaces a 0 value with the value in
the corresponding field of the creating process’s UIC.

Template Name Owner UIC Protection Code

DEFAULT [0,0] S:AD,O:AD,G:A,W

When the process creating the common event flag cluster supplies a prot
argument to $ASCEFC that has a value of 1, then the system modifies the
template so the process UIC is the owner, and the protection code denies group
access.

5.2.4 Privilege Requirements
Creation of a permanent common event flag cluster requires the PRMCEB
privilege. This privilege also grants delete access for permanent clusters.

5.2.5 Kinds of Auditing Performed
The system can audit the following types of events:

Event
Audited When Audit Occurs

Creation When the first process to associate with a particular cluster calls
$ASCEFC

Access Whenever subsequent callers to $ASCEFC associate with the cluster

Deaccess When a process calls $DACEFC or associates with another cluster or at
image rundown

Deletion When the process calls $DLCEFC

5.2.6 Permanence of the Object
A common event flag cluster and its security profile need to be reset each time a
system starts up.

5.3 Devices
A device is a peripheral, physically connected or logically known to a processor
and capable of receiving, storing, or transmitting data. A device can be physical,
like a disk or terminal, or it can be virtual, like a mailbox or pseudoterminal.
Virtual devices are implemented entirely in software.

5.3.1 Naming Rules
You can use physical, logical, or generic names to refer to devices. In addition,
if your system is part of a clustered system, certain devices are accessible to all
members of the cluster. They have the following formats:

• Most physical device names consist of three parts:

A device code (dd), which represents the hardware device type.

Descriptions of Object Classes 5–3

Descriptions of Object Classes
5.3 Devices

A controller designator (c), which identifies the hardware controller to
which the device is attached.

The unit number (U), which uniquely identifies a device on a particular
controller.

The maximum length of the device name field, including the controller and
the unit number, is 15 characters.

• Logical device names equate the somewhat cryptic physical device name to a
short, meaningful name. You can use these logical device names, rather than
the physical device names, to refer to devices.

• A generic device name consists of the device code and omits the specific
controller or unit number.

• A cluster device name includes the name of the node to which the device is
attached and the physical device name, separated by a dollar sign ($).

See the OpenVMS System Manager’s Manual and the OpenVMS User’s Manual
for a full description of device names.

5.3.2 Types of Access
Devices can be shared and thus have concurrent users or be unshared and have a
single user.

Shared devices support the following types of access:

Read Gives you the right to read data from the device

Write Gives you the right to write data to the device

Physical Gives you the right to perform physical I/O operations to the device

Logical Gives you the right to perform logical I/O operations to the device

Control Gives you the right to change the protection elements and owner of the
device

Unshared devices support only read, write, and control access. The device driver
rather than the operating system’s security policy defines the access requirements
for other types of operations.

5.3.3 Access Requirements for I/O Operations
Access requirements for I/O operations on devices can be quite complex. The
following list explains access requirements for typical operations:

• Assigning a channel with $ASSIGN

Assigning a channel to a nonspooled, nonshareable device requires read
access, write access, control access, or any combination. Assigning a channel
to a shareable device has no access requirement.

• Allocating a device with $ALLOC

Allocating any device with $ALLOC requires read, write, or control access.

• $QIO to spooled devices

Access is handled as described for OpenVMS mounted volumes. See the next
list item, $QIO to file-oriented devices.

• $QIO to file-oriented devices: disks and tapes

5–4 Descriptions of Object Classes

Descriptions of Object Classes
5.3 Devices

With file-oriented devices, logical I/O and physical I/O functions have common
elements. Any logical I/O function requires physical or logical access plus
read access to read a block (READLBLK) or write access to write a block
(WRITELBLK). Any physical I/O function requires physical access plus either
read access to read a block (READPBLK) or write access to write a block
(WRITEPBLK). Logical and physical I/O also require LOG_IO and PHY_IO
privileges, respectively.

Beyond this, access requirements depend on how the volume is mounted:

OpenVMS supported volumes

Any virtual I/O to the volume has the same access requirements as the
File or Volume class (see Section 5.4 and Section 5.10).

Volumes mounted foreign (/FOREIGN)

Virtual read and write functions are converted to logical I/O. All other
functions are not processed by the operating system and are sent to the
device driver for processing. Physical I/O functions also require PHY_IO
privilege.

Devices without a mounted volume

Access to devices without mounted volumes requires privilege.

• $QIO to devices that are not file-oriented

With non-file-oriented devices, OpenVMS converts virtual read and write I/O
requests to logical I/O before processing them. Other kinds of access requests
are not processed by OpenVMS; instead, the request is passed to the device
driver for processing.

In general, access requirements for devices that are not file oriented depend
on whether the device is shareable or nonshareable:

Shareable devices

With shareable devices, such as mailboxes, any virtual I/O function other
than READVBLK/WRITEVBLK is handled by the system I/O driver
program. Any logical I/O function requires privilege or logical access to
the device. Any physical I/O function requires privilege or physical access
to the device.

Unshareable devices

With unshareable devices, such as terminals or printers, the operating
system checks only for read or write access to perform virtual and logical
I/O functions. Any physical I/O function requires privilege.

Table 5–1 show the access requirements for devices that are not file oriented.

Table 5–1 Access Requirements for Non-File-Oriented Devices

Functions Requiring Read Access

READHEAD READVBLK TTYREADALL

READPBLK REREADN TTYREADPALL

READLBLK REREADP

(continued on next page)

Descriptions of Object Classes 5–5

Descriptions of Object Classes
5.3 Devices

Table 5–1 (Cont.) Access Requirements for Non-File-Oriented Devices

Functions Requiring Read Access

READTRACKD READPROMPT

Functions Requiring Write Access

WRITECHECK WRITELBLK WRITETRACKD

WRITECHECKH WRITEPBLK WRITEVBLK

WRITEHEAD WRITERET

5.3.4 Template Profile
The device class provides the following template profiles:

Template Name Device Type Owner UIC Protection Code

BUS DC$_BUS [SYSTEM] S:RWPL,O:RWPL,G,W

CARDREADER DC$_CARD [SYSTEM] S:RWPL,O:RWPL,G,W

COMMUNICATION DC$_SCOM [SYSTEM] S:RWPL,O:RWPL,G,W

DEFAULT [SYSTEM] S:RWPL,O:RWPL,G:RWPL,W:RWPL

DISK DC$_DISK [SYSTEM] S:RWPL,O:RWPL,G:R,W

MAILBOX DC$_MAILBOX [SYSTEM] S:RWPL,O:RWPL,G:RWPL,W:RWPL

PRINTER DC$_LP [SYSTEM] S:RWPL,O:RWPL,G,W

REALTIME DC$_REALTIME [SYSTEM] S:RWPL,O:RWPL,G:RWPL,W:RWPL

TAPE DC$_TAPE [SYSTEM] S:RWPL,O:RWPL,G:R,W

TERMINAL DC$_TERM [SYSTEM] S:RWPL,O:RWPL,G,W

WORKSTATION DC$_
WORKSTATION

[SYSTEM] S:RWPL,O:RWPL,G:RWPL,W:RWPL

5.3.5 Setting Up Profiles for New Devices
A device usually derives its security profile from the template profile associated
with its device type; however, the template is often modified. The following list
describes how the operating system assigns a profile to different types of devices:

• Devices created during system configuration

Devices introduced during system configuration with the system commands
CONNECT and LOAD (for example, pseudodevices and workstations) take
their profiles from the template appropriate for the device type.

• Disks and tapes

Disk or tape devices take their profile from the DISK or TAPE template
profile, respectively. Once the device is visible within a cluster, its profile,
with any modifications, is retained across system restarts. Changes to the
DISK or TAPE template profile after a device has its security profile do not
apply to that device; therefore, it is necessary to reset the specific object
profile by using the DCL command SET SECURITY (see Section 4.2.4).

• Devices cloned from template devices

5–6 Descriptions of Object Classes

Descriptions of Object Classes
5.3 Devices

Devices cloned from template devices (for example, Ethernet devices) assume
the security profile of the template device from which they are cloned.
Template devices are loaded during the autoconfiguration process; at this
time, their profile is taken from the profile template appropriate for the
device.

• Mailboxes

Mailbox devices assume a modified version of the MAILBOX template profile.
The system modifies the template so the UIC of the creating process becomes
the owner and the protection code is set to the value of the promsk argument
to the Create Mailbox ($CREMBX) system service (provided the value is
nonzero).

To maintain compatibility with earlier versions of the operating system, the
MAILBOX template has a protection code of 0 (allowing all access). Some
applications may need a more restrictive default than the template provides.
If you do choose to restrict mailbox access, be aware that the more restrictive
access can cause applications to fail in ways that are difficult to diagnose.

• Terminals

Terminal devices assume a modified version of the TERMINAL template
profile.

Note

In OpenVMS Version 7.2-1 and earlier, all pseudo-terminal (FT) device
protection codes were set by the driver to (S:RWLP,O:RWLP,G,W). In
OpenVMS Version 7.3 and later, only device FTA0 is set to this forced
protection. This allows the system manager the option of modifying the
FTA0 device protection later in the boot process. This new protection is
inherited from FTA0 by any new FT devices created thereafter (as well as
other settings originating from the SECURITY class DEVICE TERMINAL
template profile, such as ACLs).

A system manager can modify FTA0 manually, or change the
SYSTARTUP_VMS.COM command procedure. For example:

$ SET SECURITY/CLASS=DEVICE/PROTECTION=(S:RWLP,O:RWLP,G:RW,W:R) FTA0:

If the device protection for FTA0 is left unmodified, the behavior is
unchanged from versions of OpenVMS prior to Version 7.3. That behavior
is that all terminals except FT pseudo-terminal devices inherit their
device protection and other security characteristics from the TERMINAL
template profile. All FTA pseudo-terminal devices inherit their protection
from FTA0, which by default is set to (S:RWLP,O:RWLP,G,W). Other
settings, such as ACLs, are inherited from the TERMINAL template
profile. This ensures compatibility with existing applications.

When a user logs in on a terminal, the operating system modifies the profile
so the owner becomes the UIC of the process logging in to the terminal. The
original security profile for the terminal is restored when the user logs out.

Descriptions of Object Classes 5–7

Descriptions of Object Classes
5.3 Devices

5.3.6 Privilege Requirements
All logical or physical I/O to a spooled device requires privilege.

The LOG_IO privilege allows the user’s process to execute the Queue I/O Request
($QIO) system service to perform logical-level I/O operations. LOG_IO privilege
is also required for certain device-control functions, such as setting permanent
terminal elements.

The PHY_IO privilege allows the user’s process to execute the Queue I/O Request
($QIO) system service to perform physical-level I/O operations. The PHY_IO
privilege also grants LOG_IO privilege.

To create a permanent mailbox or mark it for deletion requires PRMMBX
privilege.

5.3.7 Kinds of Auditing Performed
The following types of events can be audited, provided the security administrator
enables auditing for the appropriate event class:

Event
Audited When Audit Occurs

Access For nonshareable devices, when the process calls $ASSIGN; for a
shareable device, when the process calls $QIO

Creation When a process creates a virtual device like a mailbox

Deletion When a process deletes a virtual device like a mailbox

5.3.8 Permanence of the Object
The profile of clusterwide disks and tapes is stored in the object database
VMS$OBJECTS.DAT, but other object profiles have to be reset each time the
system starts up.

5.4 Files
A file is a named array of fixed-size (512-byte) data blocks with an associated
set of attributes. In OpenVMS systems, the file class includes both data files
and directory files. The operating system provides full security protection for
individual disk files stored on Files-11 On-Disk Structure Level 2 (ODS-2)
volumes. Tape files are collectively protected by the protection code on the volume
but are not protected on an individual basis.

The file object differs from other protected objects in one important way: because
files provide more flexibility than any other object class, files do not acquire their
profiles from a template. Section 5.4.5 describes the rules the operating system
applies in assigning a profile.

5.4.1 Naming Rules
A file specification is a string of 1 to 255 characters. See the OpenVMS User’s
Manual for a full description.

5–8 Descriptions of Object Classes

Descriptions of Object Classes
5.4 Files

5.4.2 Types of Access
The file class supports the following types of access:

Read Gives you the right to read, print, or copy a disk file. With directory files,
read access gives you the right to read or list a file and use a file name
with wildcard characters to look up files. Read access implies execute
access.

Write Gives you the right to write to or change the contents of a file but not
delete it. Write access allows modification of the file elements that describe
the contents of the file. Write access allows creation of a new version of an
existing file’s primary name. With directory files, write access gives you
the right to make or delete an entry in the catalog of files.

Execute Gives you the right to execute a file that contains an executable program
image or DCL command procedure. With a directory file, execute access
gives you the right to look up files whose names you know.

Delete Gives you the right to delete a file. To delete a file, you must have delete
access to the file and write access to the directory that contains the file. To
remove or rename a file’s primary name also requires delete access.

Control Gives you the right to change the protection code and ACL. You need to
satisfy one of the following conditions to change the owner:

• Hold both the old and the new owner identifier.

• Hold the Resource attribute to the identifier that owns the object
while also being allowed control access to the object through an ACL
on the object.

• Qualify as a system user, hold SYSPRV or BYPASS privilege, or hold
a UIC that matches that of the owner of the volume containing the file
or directory.

• Hold the GRPPRV privilege while also holding a UIC in the same
group as the object owner.

5.4.3 Access Requirements
The following conditions apply to file access:

• General rules

To access a file, you must have permission to access the file and the volume
on which it resides. When attempting to access a file by name, you must have
read or execute access to the directory containing the file. An access check of
the volume is required before either a directory or a file access is considered.
The protection of a directory file can restrict access to files in the directory, so
even though a group of users has access to a file, they can be prevented from
accessing it by name if they lack proper access to the directory in which the
file is located.

Note

You can access a file by its file identifier. When users do so, they bypass
the directory file protection. Therefore, you must not rely entirely on
directory file protection to control access to a file.

• For write access

To write to a file, the operating system requires that you have both read and
write access.

Descriptions of Object Classes 5–9

Descriptions of Object Classes
5.4 Files

• File ownership changes

To change the ownership of a file, you must have control access and hold
both the old and new identifiers with the Resource attribute. (Your own UIC
identifier always carries the Resource attribute.)

5.4.4 Creation Requirements
Before you can create a file, the operating system checks to see that you have
satisfied the following conditions:

• You must have adequate disk space. This includes both available disk blocks
and sufficient disk quota (assuming quotas are enabled).

• You have read and write access to the previous file version. You must also
have delete access to the oldest file version if the file has a nonzero version
limit and the new version would exceed this number.

• You have write access to the directory where the file is being created.

• You have read, write, and create access to the volume on which the file is to
be stored.

5.4.5 Profile Assignment
The new file obtains its owner, protection code, and ACL from a number of
sources. The ownership assignment of a new file is done independently of
protection and ACL.

5.4.5.1 Rules for Assigning Ownership
If any of the following conditions are true, then you can assign an identifier as
the owner of a file:

• The identifier matches your process UIC.

• You hold the identifier with the Resource attribute.

• You hold GRPPRV privilege and the identifier’s group number matches your
UIC group.

• You hold SYSPRV privilege.

A file receives its owner identifier from the first applicable source that you are
allowed to assign:

• The explicit assignment of an owner at creation with the /OWNER_UIC
qualifier to the CREATE or COPY command

• The previous version

• The parent directory

• The process UIC

See Section 8.8.1.2 for a description of how resource identifiers can own files and
directories.

5–10 Descriptions of Object Classes

Descriptions of Object Classes
5.4 Files

5.4.5.2 Rules for Assigning a Protection Code and ACL
The sources of a new file’s protection code and ACL are similar to those of
ownership and are considered in the same order. The system assigns a file’s
protection code and ACL from one of the following sources:

1. The explicit assignment of elements at creation

You can create a file with the CREATE command or the COPY command. You
use the CREATE/DIRECTORY command in the case of a directory.

To assign a protection code when creating a file, add the /PROTECTION
qualifier to the COPY or CREATE command. After creating the file, you can
use the SECURITY/ACL command to add an ACL.

For example, the following command copies a file from the device USE1 to
the default disk directory. The protection code defines the protection for the
newly created file PAYSORT.DAT so that users with system UICs can read
and write to the file. The owner has all types of access, and other users in the
owner’s group can read and write to the file. All other users have no access
through the protection code.

$ COPY USE1:[PAYDATA]PAYROLL.DAT PAYSORT.DAT -
_$ /PROTECTION=(SYSTEM:RW,OWNER:RWED,GROUP:RW,WORLD)

2. The profile of the previous version of the file, if one exists

Whenever you create a new version of the file, the new version is created
with the protection code and ACL of the earlier version (unless, of course, you
make an explicit assignment).

3. A Default Protection ACE and Default ACL on the parent directory

Without either an explicit assignment or a previous version of a file, the
operating system looks at the directory where the file is being created.

With data files, the system looks for a Default Protection ACE and assigns
the protection code specified by that ACE. (See Section 4.5.6 for an example.)
If any ACE in the directory’s ACL has the Default attribute, then the file
inherits that ACE as well. (Refer to Section 4.4.7 for an example.)

With directory files, the system assigns the protection code of the parent
directory, less any delete access. If the directory happens to be a top-level
directory, the protection is taken from the master file directory (MFD). Newly
created subdirectories inherit the ACL of the parent directory, even ACEs
with the Default attribute. Only ACEs with the Nopropagate attribute are
omitted.

4. The UIC and protection defaults of the process issuing the command

If the directory ACL does not have a Default Protection ACE, the default
process protection is used. The system parameter RMS_FILEPROT
establishes this value, and the operating system assigns it to your process
during login. However, the value derived at login may be changed with the
DCL command SET PROTECTION/DEFAULT. (For example, you can put
this command in your login command procedure to set default protection.)
Use the DCL command SHOW PROTECTION to display the default process
protection.

5. One of the above with provision for the user creating the file

When you create a file in a directory owned by a resource identifier and
you hold the identifier with the Resource attribute, the new file inherits its
protection code and ACL in the same way as any other file.

Descriptions of Object Classes 5–11

Descriptions of Object Classes
5.4 Files

The operating system modifies the file’s ACL in some cases to provide the
creator with access to the new file. If the directory ACL has a Creator ACE,
that ACE defines the access the creator has to the file. If the Creator ACE
specifies no access, no additional ACE is created. Without such an ACE, the
operating system adds an ACE to the file’s ACL that gives the creator control
access plus the access specified in the owner field of the file’s protection code.

5.4.5.3 Using the COPY and RENAME Commands
The output file of a COPY command is treated as a newly created file and so
is assigned a new security profile. The security profiles of the input files are
immaterial.

However, a renamed file by default retains its existing security profile. To assign
a new security profile, as if the file were newly created, use the DCL command
RENAME/INHERIT_SECURITY. This causes the file to be assigned a security
profile.

Section 5.4.5.1 and Section 5.4.5.2 explain how a security profile is assigned.

5.4.6 Kinds of Auditing Performed
The following types of events can be audited, provided the security administrator
enables auditing for the appropriate event class:

Event
Audited When Audit Occurs

Access When a process opens, reads, writes, or executes a file or inquires about
its attributes

Creation When a process creates a file

Deaccess When a process closes a file

Deletion When a process deletes a file

5.4.7 Protecting Information When Disk Space Is Reassigned
Ordinary file protection mechanisms control who can access a file, but they do
not address the problem of protecting old data that remains on disk after a file is
deleted.

When a file is deleted, its header is removed from the directory, but its contents
remain intact on disk until it is overwritten. Because data exists on a disk, it is
necessary to protect deleted or purged file information from disk scavenging.

The OpenVMS operating system solves the problem of disk scavenging with the
combination of the two following techniques:

• Overwriting disk blocks before they are allocated

• Setting a high-water mark on allocated blocks

5.4.7.1 Overwriting Disk Blocks
A security administrator or user can apply an erasure pattern to individual files
on a volume or to a complete volume. An erasure pattern is a repeated sequence
of bits written over a file when the file is deleted or purged.

The security administrator can ensure that every block on a volume starts off
with the erasure pattern by specifying the /ERASE qualifier when the volume is
initialized, as follows:

INITIALIZE/ERASE device-name[:] volume-label

5–12 Descriptions of Object Classes

Descriptions of Object Classes
5.4 Files

If the volume is mounted, the security administrator can automatically apply the
erasure pattern to the space occupied by a file when it is deleted by specifying the
/ERASE_ON_DELETE qualifier, as follows:

SET VOLUME/ERASE_ON_DELETE device-spec[:]

Note that this technique has no effect on existing files.

Alternatively, the security administrator may ask users to specify the erasure
pattern on a file-by-file basis by using the /ERASE qualifier when entering the
DCL commands SET FILE, DELETE, and PURGE.

Security administrators can also write an erase routine by using the $ERAPAT
system service. The routine specifies to the system the erasure pattern and
number of passes to be used to erase disk blocks.

5.4.7.2 Setting a High-water Mark
When the operating system allocates disk blocks for a file, it automatically sets
a high-water mark. The high-water mark indicates how far the file has been
written in its allotted space on the disk. All blocks in the file up to the high-water
mark are guaranteed to have been written since they were allocated to the file.
Users are not permitted to read beyond the high-water mark and thus cannot
read stale data that they did not actually write.

A more conservative but costly technique is to erase all disk blocks before
allocation. The erase-on-allocate technique is used when the file is open
allowing any form of shared access or nonsequential access. When blocks are
erased on allocation, the file’s high-water mark is set to point to the end of the
newly allocated and erased space.

By default, high-water marking is enabled when the volume is initialized. The
security administrator can disable high-water marking for a specific volume by
using the DCL command SET VOLUME/NOHIGHWATER_MARKING.

5.4.7.3 Accessibility of Data in a File
Once the file system allocates disk blocks for a file, users can read or write to
them at any time. The high-water mark identifies the physical end of file, beyond
which the user cannot read. However, an application can reposition the logical
end-of-file mark and leave data in the area between the logical and the physical
end of the file. Any block of file data can later be read, regardless of the logical
end-of-file mark.

An application largely determines how allocated disk blocks are managed. For
example, OpenVMS RMS services shorten a sequential file by resetting the logical
end-of-file position to the beginning of the current record. It does not deallocate
space between the end-of-file position and the physical end of the file, nor does it
overwrite the records between the end-of-file position and the physical end of the
file with an erase pattern.

Thus, blocks written to a file can remain available regardless of the end-of-file
mark. If you want to erase the data between the logical end of the file and the
physical end of the file, your application program must overwrite the data you
want deleted. On OpenVMS systems, a common way to accomplish this is to
create a new version of the file using the DCL command COPY.

Descriptions of Object Classes 5–13

Descriptions of Object Classes
5.4 Files

5.4.8 Suggestions for Optimizing File Security
Use the following precautions to protect your files and directories:

• Purge your files regularly. Delete unnecessary files. This keeps your
directories to a minimum and simplifies the task of regularly checking
the protection and ownership on your files.

• Use the DCL command DIRECTORY/SECURITY regularly to monitor the
ownership, protection code, and ACLs on your files. A user who succeeds
in obtaining sufficient privilege may change the protection or ownership on
your files, allowing access immediately and in the future. If you perform
these checks frequently, you can detect and report unexplained changes in file
protection or ownership.

• Pay special attention to the protection on your mail files; normally, they
should be accessible only to you and the system (for mail delivery and
backups).

• When you place ACLs on your files, be sure you know exactly which users
hold the identifiers you have specified. (This generally requires consultation
with your site security administrator.)

• Follow your site security administrator’s recommendations to prevent disk
scavenging. You may be requested to use the /ERASE qualifier on the SET
FILE, DELETE, and PURGE commands for some or all of your files.

• Always protect files and directories that contain command procedures and
executable programs. Carefully control the granting of write access to these
directories and files. This is particularly important if you have any of the
more powerful privileges or access to sensitive files.

Caution

Do not run a command procedure or program given to you by another user
unless you inspect it. Inspect a program or procedure to see if it tries to
exercise your special privileges or access sensitive files. Test the software
in an unprivileged account. Programs or command procedures offered
under one guise, when actually intended to penetrate your defenses
and disrupt your system security, are sometimes called Trojan horse
programs.

5.5 Global Sections
OpenVMS memory management services allow processes to communicate through
shared memory pages called global sections. Using global sections, two or more
processes can map the same page into their individual virtual address spaces,
thereby sharing the same page of code or data.

A global section can provide access to a disk file (called a file-backed global
section), provide access to dynamically created storage (called a page file-backed
global section), or provide access to specific physical memory (called a page frame
number [PFN] global section). A global section object may be either temporary or
permanent.

The operating system supports two types of global section objects:

• Group global sections are shareable memory sections potentially available
to all processes in the same group.

5–14 Descriptions of Object Classes

Descriptions of Object Classes
5.5 Global Sections

• System global sections are shareable memory sections potentially available
to all processes in the system.

5.5.1 Naming Rules
The name of the object is a string of 1 to 44 characters. For group global sections,
the name is qualified by your UIC group number.

5.5.2 Types of Access
The global section class supports the following types of access:

Read Gives you the right to map the section for read access.

Write Gives you the right to map the section for write access.

Execute Gives you the right to map the section for read access. Only software
running in executive or kernel mode can request this access.

Control Gives you the right to modify the protection elements of PFN global
sections and page file-backed global sections.

5.5.3 Template Profile
File-backed global sections share the security profile of the associated disk file.
Whenever the profile of the backing file is modified, the global section’s profile
automatically changes. To modify the protection elements of file-backed global
sections, you must modify the backing file instead.

The global section class provides the following template profiles. Although the
template assigns an owner UIC of [0,0], this value is only temporary. As soon as
the object is created, the operating system replaces a 0 value with the value in
the corresponding field of the creating process’s UIC.

Type Template Name Owner UIC Protection Code

System DEFAULT [0,0] S:RWE,O:RWE,G:RWE,W:RWE

Group DEFAULT [0,0] S:RWE,O:RWE,G:RWE,W:RWE

The operating system modifies the templates according to the values provided in
the prot argument to $CRMPSC. The prot argument is ignored for file-backed
sections.

To maintain compatibility with earlier versions of the operating system, the
DEFAULT templates have protection codes allowing world access. Some
applications may need a more restrictive default than the templates provide. If
you do choose to restrict global section access, be aware that the more restrictive
access can cause applications to fail in ways that are difficult to diagnose.

5.5.4 Privilege Requirements
The SYSGBL privilege is required to create or delete a system global section. The
PFNMAP privilege is necessary to create or delete a page frame section, and the
PRMGBL privilege is required to create or delete a permanent global section.

Descriptions of Object Classes 5–15

Descriptions of Object Classes
5.5 Global Sections

5.5.5 Kinds of Auditing Performed
The following types of events can be audited, provided the security administrator
enables auditing for the appropriate event class:

Event
Audited When Audit Occurs

Creation When a page file-backed or a PFN global section is created by the Create
and Map Section system service ($CRMPSC).

Access When an existing page file-backed or a PFN global section is accessed with
either $CRMPSC or the Map Global Section system service ($MGBLSC).
The operating system audits access to a file-backed global section as a file
access.

Deaccess At image or process rundown when the process virtual address space is
reset or deleted.

Deletion If a process with PRMGBL privilege, PFNMAP privilege, or SYSGBL
privilege (in the case of a system global section) deletes a permanent
global section, the operating system audits the event through the use of
privilege.

5.5.6 Permanence of the Object
A global section and its security profile need to be reset after every system boot.

5.6 Logical Name Tables
Logical name assignments are maintained in logical name tables. A logical name
table can be accessible to only one process, or it can be shareable if its parent
table is shareable. All shareable name tables are listed in the LNM$SYSTEM_
DIRECTORY, the system directory table. It is shareable logical name tables that
the operating system protects.

5.6.1 Naming Rules
The name of a logical name table is a string of 1 to 32 characters.

5.6.2 Types of Access
The logical name table class supports the following types of access:

Read Gives you the right to look up (translate) logical names in the table

Write Gives you the right to create and delete logical names in the table

Create Gives you the right to create a descendant logical name table, including
the right to use a subset of the dynamic memory allocated to the parent
logical name table when creating the descendant logical name table

Delete Gives you the right to delete the table

Control Gives you the right to modify the protection elements and owner of the
table

5.6.3 Template Profile
The logical name table class provides the following template profiles. Although
the template assigns an owner UIC of [0,0], this value is only temporary. As soon
as the object is created, the operating system replaces a 0 value with the value in
the corresponding field of the creating process’s UIC.

5–16 Descriptions of Object Classes

Descriptions of Object Classes
5.6 Logical Name Tables

Template Name Owner UIC Protection Code

DEFAULT [0,0] S:RW,O:RW,G:R,W:R

GROUP [0,*] S:RWCD,O:R,G:R,W

JOB [0,0] S:RWCD,O:RWCD,G,W

5.6.4 Privilege Requirements
The operating system allows read and write access to the group logical name
tables with GRPNAM privilege and to the system logical name table with
SYSNAM privilege.

Deletion of a shared table from the system directory requires SYSNAM privilege,
and deletion of a logical name from the group directory requires GRPNAM
privilege. Deletion of a parent logical name table results in the deletion of all its
descendant logical name tables.

Creation or deletion of an inner-mode logical name or logical name table requires
SYSNAM privilege (or being in an inner mode).

5.6.5 Kinds of Auditing Performed
The following events can be audited, provided the security administrator enables
auditing for the event class:

Event
Audited When Audit Occurs

Access When translating a name, when creating a name or a descendent table, or
when deleting a name or a descendent table

Creation During access to a parent table for the right to create a table or when the
table itself is created

5.6.6 Permanence of the Object
A logical name table and its security profile must be reset each time the system
is rebooted.

5.7 Queues
A queue is a set of jobs to be processed. In general, queues are of two types,
generic or execution. No processing takes place in generic queues. Execution
queues hold jobs that will execute on an execution queue when one is available.
Execution queues can be batch queues, printer queues, server queues, or terminal
queues.

5.7.1 Naming Rules
A queue name is a string of 1 to 31 characters, including any alphanumeric
character, the dollar sign ($), or the underscore (_).

Descriptions of Object Classes 5–17

Descriptions of Object Classes
5.7 Queues

5.7.2 Types of Access
The queue class supports the following types of access:

Read Gives you the right to see the security elements of either a queue or a job
in the queue.

Submit Gives you the right to place jobs in the queue.

Delete Gives you the right to either delete a job in the queue or modify the
elements of a job.

Manage Gives you the right to affect any job in the queue. You can start, stop, or
delete a queue and change its status and any elements that are unrelated
to security.

Control Gives you the right to modify the protection elements and owner of a
queue.

Note: When a process receives read or delete access through a protection code,
it can operate on only its job in the queue. However, when granted through an
ACL, read and delete access allow a process to operate on all jobs in the queue.

5.7.3 Template Profile
The queue class provides the following template profile:

Template Name Owner UIC Protection Code

DEFAULT [SYSTEM] S:M,O:D,G:R,W:S

5.7.4 Privilege Requirements
You need SYSNAM and OPER privileges to stop or start the queue manager.
OPER is necessary to either create and delete queues, or to change the symbiont
definition.

5.7.5 Kinds of Auditing Performed
The following events can be audited, provided the security administrator enables
auditing for the event class:

Event
Audited When Audit Occurs

Access When a job is submitted to the queue and when either a job or queue is
modified.

Creation When a queue is initialized.

Deletion When a process deletes a job from the queue or when the queue itself
is deleted. (To enable auditing for queue deletions, enable auditing for
manage [M] access to the queue.)

If access auditing is enabled for both files and queues, one queue operation can
generate a number of auditing messages because, within a single operation, the
operating system performs several access checks. For example, before a job is
executed on a print queue, the system checks to see if you have read access to the
file, and it checks for read access again before printing the file.

5–18 Descriptions of Object Classes

Descriptions of Object Classes
5.7 Queues

5.7.6 Permanence of the Object
Queues are permanent objects. They are stored in the system queue database
together with their security profiles.

5.8 Resource Domains
Processes that access shared resources can coordinate access using the services
of the lock manager. These services allow processes to associate a name with a
resource, such as a file or a data structure, to arbitrate access to that resource,
and to exchange limited information through a lock value block. The namespaces
that catalog resources on which locks can be taken are called resource domains.

A process must become a member of a resource domain to take and release locks
and to read and write value blocks associated with resources in that resource
domain. A process implicitly joins the system and group domains, but it explicitly
joins other domains through a call to the $SET_RESOURCE_DOMAIN system
service. Access to all locks and value blocks within a domain is controlled by
access to the domain itself.

5.8.1 Naming Rules
A resource domain is identified to $SET_RESOURCE_DOMAIN by a longword
binary value. However, the name of the resource domain object is a string
containing the resource number interpreted in octal surrounded by brackets [] or
angle brackets <>. Alternatively, the name of the resource domain object can be
expressed as an identifier enclosed in brackets or angle brackets. The identifier
must translate to a UIC value; the group field of the UIC is used as the resource
domain number.

5.8.2 Types of Access
The resource domain class supports the following types of access:

Read Gives you the right to read lock value blocks in the domain, including the
right to use the $GETLKI system service to retrieve it

Write Gives you the right to write to lock value blocks in the domain

Lock Gives you the right to take locks using $ENQ, release locks using $DEQ,
and obtain information about the lock database using $GETLKI

Control Gives you the right to modify the protection elements of a resource domain

5.8.3 Template Profile
The resource domain class provides the following template profile. The template
assigns an owner UIC of [n,*] where n is the resource domain’s number.

Template Name Owner UIC Protection Code

DEFAULT [n,*] S:RWL,O:RWL,G:RWL,W

5.8.4 Privilege Requirements
The SYSLCK privilege allows lock access to the system resource domain (Domain
0).

Descriptions of Object Classes 5–19

Descriptions of Object Classes
5.8 Resource Domains

5.8.5 Kinds of Auditing Performed
The following events can be audited, provided the security administrator enables
auditing for the event class:

Event
Audited When Audit Occurs

Access When a process calls $SET_RESOURCE_DOMAIN or $ENQ to join a
domain

Creation The first time a process joins the resource domain

Deaccess When a process called $SET_RESOURCE_DOMAIN or at image or process
rundown

5.8.6 Permanence of the Object
Both the resource domain and its security elements are saved in
SYS$SYSTEM:VMS$OBJECTS.DAT.

5.9 Security Classes
The security class is the parent of all classes of protected objects. It protects the
template profiles associated with the various object classes. Each object in the
security class holds the following information:

• An object name

• A security profile for new objects of the class

• One or more template profiles

• A set of access names

• Auditing controls

Chapter 8 discusses how to manage objects in the security class.

5.9.1 Naming Rules
The security class has the following members:

CAPABILITY COMMON_EVENT_CLUSTER

DEVICE FILE

GROUP_GLOBAL_SECTION LOGICAL_NAME_TABLE

QUEUE RESOURCE_DOMAIN

SECURITY_CLASS SYSTEM_GLOBAL_SECTION

VOLUME

5.9.2 Types of Access
Security class objects support the following types of access:

Read Gives you the right to read a template profile. Template profiles contain
the security elements assigned to new objects.

Write Gives you the right to modify the values of a template profile.

Control Gives you the right to modify the security profile of a security class object.
Control access implies read and write access.

5–20 Descriptions of Object Classes

Descriptions of Object Classes
5.9 Security Classes

5.9.3 Template Profile
The security class object provides the following template profile:

Template Name Owner UIC Protection Code

DEFAULT [SYSTEM] S:RW,O:RW,G:R,W:R

5.9.4 Kinds of Auditing Performed
The following events can be audited, provided the security administrator enables
auditing for the event class:

Event
Audited When Audit Occurs

Access When a process enters the DCL command SET SECURITY or SHOW
SECURITY with the /CLASS=SECURITY_CLASS qualifier or when it
uses the name SECURITY_CLASS in a call to the system service $SET_
SECURITY or $GET_SECURITY

5.9.5 Permanence of the Object
The security profiles of the security class object and all its members are stored in
the security object database.

5.10 Volumes
A volume object is one or more ODS-2 disk volumes. The object consists of
multiple volumes when they are part of a bound volume set. Although you might
have access to the directories and files on the volume, you cannot access them if
you do not have access to the volume itself.

For access information on tapes and foreign volumes, see the OpenVMS System
Manager’s Manual and the Mount utility documentation in the OpenVMS System
Management Utilities Reference Manual.

5.10.1 Naming Rules
A volume name can be the volume label, the name of the device on which the
volume is mounted, or a user-specified logical name. Volume label names can be
from 0–12 characters in length.

5.10.2 Types of Access
The volume class supports the following types of access:

Read Gives you the right to examine file names and print and copy files on a
volume.

Write Gives you the right to modify or write to existing files on a volume.
Whether the subject may perform the operation on a specific file is
determined by the file’s protection. To be meaningful, write access requires
read access.

Create Gives you the right to create files on a disk volume and to subsequently
modify them. Create access also requires read and write access.

Delete Gives you the right to delete files on a disk volume, provided the user has
proper access rights at the directory and file level. Delete access requires
read access.

Descriptions of Object Classes 5–21

Descriptions of Object Classes
5.10 Volumes

Control Gives you the right to change the protection and ownership elements of
the volume.

5.10.3 Template Profile
The class provides the following template profile and assigns the values during
initialization. Although the template assigns an owner UIC of [0,0], this value is
only temporary. As soon as the object is created, the operating system replaces a
0 value with the value in the corresponding field of the creating process’s UIC.

Template Name Owner UIC Protection Code

DEFAULT [0,0] S:RWCD,O:RWCD,G:RWCD,W:RWCD

5.10.4 Privilege Requirements
Users with the VOLPRO privilege always have control access to a volume.
Mounting a file-structured volume as foreign requires VOLPRO privilege or
control access.

5.10.5 Kinds of Auditing Performed
All volume access can be audited, provided the security administrator enables
auditing for the Access event class.

Event
Audited When Audit Occurs

Access During any file system operation

5.10.6 Permanence of the Object
The security profile for a volume object is saved in the master file directory (MFD)
of the disk as [000000]SECURITY.SYS.

5–22 Descriptions of Object Classes

Part III
Security for the System Administrator

The chapters in this part discuss the following topics:

• Role of a security administrator (Chapter 6)

• Securing the system (Chapter 7)

• Securing data and resources (Chapter 8)

• Security auditing (Chapter 9)

• Responding to security breaches (Chapter 10)

• Creating a secure cluster (Chapter 11)

• Considerations for systems using networking (Chapter 12)

• Setup and management of protected subsystems (Chapter 13)

This part of the manual also includes information on the following topics:

• User privileges and who may need them (Appendix A)

• Default UIC-based protection of critical system files (Appendix B)

• Guidelines for operating in a C2 security environment (Appendix C)

• Examples of security alarm messages (Appendix D)

6
Managing the System and Its Data

This chapter explains how you, as security administrator, implement security
features of the OpenVMS operating system. It provides an overview of security
management, based on the security needs of a commercial installation with
average security needs. It discusses the following topics:

• Your role as security administrator

• Site security policies

• Tools for security administrators

• Account requirements for a security administrator

• Suggestions for training users

• Logging the activities of a new user

• Tasks to include in your weekly routine

Compaq recommends that you read the entire chapter and the three chapters
that follow before establishing any security measures. After reading the chapters,
you will better be able to decide which security measures are appropriate for your
site, and you will have the tools to implement them.

6.1 Role of a Security Administrator
Your role as security adminstrator is to implement and maintain the
organization’s security policy. Some organizations include security administrators
in the development of the security policy; other organizations charter security
administrators to implement and maintain an established policy. For an example
of a company security policy, see Section 6.2.

As security administrator (or officer), your job is to see that the security policy
is implemented and maintained. Regularly monitoring the system for possible
security violations and vulnerabilities is absolutely necessary. Whenever you
detect problems, you should see that they are corrected.

Many times organizations divide the duties of computer administrators. The
security administrator monitors the system and reports problems, and the system
manager implements policy and manages the system. In this management
structure, the security administrator works in tandem with the system manager.
Some system managers choose to employ an accounts clerk to set up user
accounts and process the required paperwork justifying the need for an account.
This is always a highly trusted individual who essentially acts as a co-system
manager. With a division of labor, it is critical for the system manager and
security administrator to communicate regularly. The security administrator
should report security problems to users or, if necessary, to system managers or
the accounts clerk so problems are corrected.

Managing the System and Its Data 6–1

Managing the System and Its Data
6.1 Role of a Security Administrator

Another division of duties, common to many OpenVMS installations, combines
the roles of security administrator and system manager. One person implements
the security policy and maintains the system to meet its requirements.

Secure system management, however it is organized, involves training users,
setting up accounts and passwords, protecting sensitive system files and
resources, and auditing and analyzing security-relevant events. Learning how
systems are used and recognizing ‘‘normal’’ system activity are critical to secure
management.

6.2 Site Security Policies
An organization’s management usually establishes a brief security policy for its
employees to emphasize the behavior it expects of them. For example, such a
policy may state that employees should not give away company data or share
passwords.

The managers of divisions or computer sites develop the detailed security policy.
It is a written set of guidelines on the use of passwords and system accounts,
physical access to the computer systems, communication devices, and computer
terminals, and the types of security-relevant events to audit. These security
guidelines might be followed by more specific statements applying to particular
operating system enviroments.

The complexity of a security policy eventually depends on whether the division
has high, medium, or low security requirements. Chapter 1 provides a set of
questions that can help an organization determine its needs.

As an example, a site security policy often defines which company employees
have access to certain systems and the type of access available to the personnel
performing nonroutine tasks and development. Sometimes a policy can provide
an intricate set of rules for determining system access. Table 6–1 presents the
policy developed by one division.

Table 6–1 Example of a Site Security Policy

Security Area Site Requirements

Passwords Schedule for password changes.

Process for controlling minimum password length and
expiration periods.

Schedule for system password changes.

Accounts Procedure to grant accounts on computer systems, for
example, statement of need, signature of requester,
requester’s manager, system manager, or person
setting up the account. (Accounts can never be
shared.)

Procedure to deactivate accounts due to organizational
changes, for example, employee transfers or
terminations.

Timetable for reauthorizing accounts, usually once
every 6 to 12 months.

Directive to deactivate accounts that are not used on a
regular basis.

(continued on next page)

6–2 Managing the System and Its Data

Managing the System and Its Data
6.2 Site Security Policies

Table 6–1 (Cont.) Example of a Site Security Policy

Security Area Site Requirements

Time periods for access.

Timetable for expiring accounts.

Procedure for requesting privileges that rigorously
controls allocation.

Requirement to use nonprivileged accounts for
privileged users performing normal system activity.

Schedule for verifying inactive accounts.

List of approved security tools.

Security events to audit Logins from selected or all sources.

Changes to authorization file records.

Other uses of privilege and system management
actions.

Modifications to the known file list through the Install
utility.

Modification to the network configuration database,
using the network control program (NCP).

Physical access to the computer
room

A written list of authorized personnel with the reason
for access included. Typically, one person would be
responsible for keeping this list current.

Storage of a visitor log in a secure area.

Locked access doors and a documented procedure for
assigning keys, key cards, and combinations. (These
access controls change periodically and on transfer or
termination of employees.)

Physical access to terminals
and personal computers located
outside the computer room

Use of programs to log out terminals that have not
been used for a given period of time.

Security awareness programs for the organization
(beyond computer personnel); topics may include:

• Maintaining a list of approved software.

• Keeping desktops clear of hardcopy information
relating to the computer system, network
passwords, and other system account information.

• Locking disks and file cabinets.

• Keeping diskettes inaccessible in or near
workstations.

• Keeping keys out of open view.

Dialup numbers List of authorized users.

Schedule for changing numbers periodically and
procedures for notifying users of number changes.

A policy to minimize publishing dialup numbers.

(continued on next page)

Managing the System and Its Data 6–3

Managing the System and Its Data
6.2 Site Security Policies

Table 6–1 (Cont.) Example of a Site Security Policy

Security Area Site Requirements

Policy about changing passwords periodically and
when employees with access are terminated.

Password protection, either in the modems or terminal
servers, or system passwords on host dialup ports.

Documentation available about:

• A dial-back system

• Details about the network

• Terminal equipment installed

• Terminal switching systems

• Details about all terminal devices connected to the
network

• Details about all dialup equipment

Communications Denial of access into privileged accounts if using
passwords over TCP/IP, LAT, or Ethernet links.

Use of authentication cards for network logins into
privileged accounts.

6.3 Tools for Setting Up a Secure System
The following chapters describe how to set up a secure system according to your
security policy. The Authorize utility (AUTHORIZE) is the primary tool for
implementing system security. AUTHORIZE is described fully in the OpenVMS
System Management Utilities Reference Manual. The AUTOGEN command
procedure, which you use to modify the system parameters file, is described in
the OpenVMS System Manager’s Manual and the OpenVMS System Management
Utilities Reference Manual. Many DCL commands are also important security
tools. DCL commands are described in the OpenVMS DCL Dictionary.

6.4 Account Requirements for a Security Administrator
You need an account with privileges to perform the tasks of a security
administrator.

An administrator who reviews security violations and possible vulnerabilities
requires at least three privileges:

• SECURITY and AUDIT privileges to enable security auditing and to set up
security operator terminals

• READALL privilege to review the protection of files and resources

In many cases, a security administrator serves as both the security administrator
and the system manager. This person requires a full set of privileges. The
OpenVMS System Manager’s Manual describes the necessary characteristics of a
system management account.

6–4 Managing the System and Its Data

Managing the System and Its Data
6.4 Account Requirements for a Security Administrator

Example 6–1 illustrates a number of AUTHORIZE qualifiers appropriate for a
security administrator’s account. Notice the following:

! The requirement that the automatic password generator be used to change
passwords.

" The use of a short password lifetime.

Measures 1 and 2 are important to protect the account because it affords
many valuable privileges and access rights.

SECURITY, AUDIT, and READALL privileges allow monitoring of the system
but no modification. If you perform the tasks of a system manager, then
you would need an account with SYSPRV. With SYSPRV, you can access
protected objects by the system protection field and change the owner UIC
and protection. You can change an object’s protection to gain access to it.

In Example 6–1, any value not specified defaults to the value provided by the
default record in SYSUAF.DAT.

Example 6–1 Sample Security Administrator’s Account

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD RIRONWOOD/PASSWORD=VALTERSY/UIC=[001,100] -
_UAF> /DEVICE=SYS$SYSDEVICE/DIRECTORY=[RIRONWOOD] -
_UAF> /OWNER="Russ Ironwood"/ACCOUNT=SECURITY/FLAGS=GENPWD - !
_UAF> /PWDLIFETIME=30-/PWDMINIMUM=8 - "
_UAF> /PRIVILEGES=(AUDIT,SECURITY,READALL)#
identifier for value:[000001,000100] added to RIGHTSLIST.DAT
UAF>

6.5 Training the New User
Teaching new users about system security is an important security tool. It is
important to involve users in security methods and goals; the more they know
about the system and how break-ins occur, the better equipped they are to guard
against them.

Include the following topics in your user training:

• What is the location of the user’s account? Specifically, which system, where
is it located, what is the proper node name if on a network, and, if the system
is part of a cluster, what other nodes are available?

• Which terminals can be used for logging in, and where are they located?

• Is the account restricted with regard to local, dialup, remote, interactive,
network, or batch operations? If so, describe both permitted use and
restrictions.

• Can the account be accessed by dialing in? If so, provide the access telephone
number, and describe the procedure. Specify how many retries are allowed
and the maximum number of seconds allowed between each retry before the
connection is lost.

• Are system passwords implemented for any terminals that the user may be
using? If so, describe which terminals, how often the system password is
changed, and how the user can learn the new system password.

Managing the System and Its Data 6–5

Managing the System and Its Data
6.5 Training the New User

• What is the account duration? When will it expire? From whom should the
user request an extension?

• What is the user name? What identifiers are held by the user, if any? What
are the group and member numbers associated with the user?

• What password information is required? Specifically, what is the initial
password? Is the password locked? If the password is not locked, how
often must the password be changed? What is the minimum length for the
password? Is there a secondary password for this account, and who will
know it? Is the user free to select passwords, or must they be automatically
generated? See Section 3.12 for a checklist of good practices for users.

• What is the default device and directory?

• What is the default protection?

• Are there quotas on disk usage? If so, what are the values?

• Are there restrictions on use? For example, are there certain days or hours of
the day that are suggested or enforced? Explain primary and secondary days
if applicable.

• Are there files or directories that are shared? If so, provide the details.

• Are there ACLs that affect the user? What identifiers does the user need to
know?

• Which privileges does the user hold and what do they mean?

• What is the command language interpreter?

• Which type of account is this: open, captive, restricted, or interactive?

• Which nodes permit proxy logins for this user, if any?

• What are the names of the queues the user may need to use?

• What actions should the user take to ensure physical site security, such as
locking up materials?

6.6 Logging a User’s Session
While users are learning the system, you may choose to monitor terminal sessions
if the user performs an especially sensitive function, such as accessing sensitive
data or controlling a system operation. (Sometimes users may choose to log their
own sessions so they have a record of their actions. If this is the case, they can
use the command SET HOST 0/LOG interactively after their initial login.) This
section describes one method of logging users’ sessions by setting up a restricted
account. Many third-party products provide other ways of monitoring sessions
that are more efficient. Regardless of the method you select, you should check
with your legal department to make sure this is acceptable practice.

By using a special restricted account and appropriate command procedures, you
can enforce the logging of terminal sessions for selected users. These users would
need to log in to the restricted account first and then log in to their own account.
The restricted account ensures that the session is logged.

6–6 Managing the System and Its Data

Managing the System and Its Data
6.6 Logging a User’s Session

The following example provides guidelines on how to set up the restricted
account (named USER_LOG in this example) and includes samples of appropriate
command procedures:

1. Set up the restricted account USER_LOG as follows:

UAF> ADD USER_LOG /FLAGS=(RESTRICTED,DISMAIL,DISNEWMAIL)-
_UAF> /LGICMD=SYS$SYSROOT:[USER_LOG]SESSIONLOG-
_UAF> DEV=SYS$SYSROOT: /DIR=[USER_LOG]-
_UAF> /NONETWORK /NOBATCH /UIC=[200,256]

2. The SESSIONLOG.COM command procedure enables logging of the terminal
session:

$! SESSIONLOG.COM - log in to specified account with terminal session
$! logging enabled.
$
!
$ WRITE SYS$OUTPUT "Please log in to the account of your choice."
$ WRITE SYS$OUTPUT "Your terminal session will be recorded."
$ WRITE SYS$OUTPUT ""
$!
$! Acquire the intended user name and save it in a temporary file. Use
$! it to name the log file, and pass it as the first line of input to
$! LOGIN.
$!
$ READ/PROMPT="Username: " SYS$COMMAND USERNAME
$ PID = F$GETJPI (0, "PID")
$ OPEN/WRITE OUTPUT USERNAME’PID’.TMP
$ WRITE OUTPUT USERNAME
$ CLOSE OUTPUT
$ DEFINE/USER SYS$INPUT USERNAME’PID’.TMP
$ SET HOST 0 /LOG=’USERNAME’.LOG
$ DELETE USERNAME’PID’.TMP;0
$ LOGOUT

3. Set up each account for which session auditing is to be enforced. The
following command sets up the account for user Smith:

UAF> MODIFY SMITH /FLAGS=RESTRICTED /NOLOCAL /NODIALUP -
_UAF> /LGICMD=SYS$SYSROOT:[USER_LOG]CHECKLOG

Because the restricted login command procedure ensures that the login is
coming from the USER_LOG account using a SET HOST command, the
session is logged.

4. You may also want to disable batch and network access for each user account
to allow only local logins from the USER_LOG account. For example:

UAF> MODIFY SMITH/FLAGS=RESTRICTED/NOLOCAL/NODIALUP/NOBATCH -
/NONETWORK/LGICMD=SYS$SYSROOT:[USER_LOG]CHECKLOG

5. The following CHECKLOG.COM command procedure verifies that the user is
logging in to the USER_LOG account. For this procedure to work correctly,
you must have enabled DECnet proxy accounts as described in Section 12.3.2.

Managing the System and Its Data 6–7

Managing the System and Its Data
6.6 Logging a User’s Session

$! CHECKLOG.COM - ensure that the account is being logged in to
$! the USER_LOG account.
$!
$ IF F$MODE () .NES. "INTERACTIVE" THEN EXIT
$!
$! Verify that the connection originated from the local node and
$! from the USER_LOG account.
$!
$ IF F$LOGICAL ("SYS$NODE") .EQS. F$LOGICAL ("SYS$REM_NODE")-
_$.AND. F$LOGICAL ("SYS$REM_ID") .EQS. "USER_LOG"-
_$ THEN GOTO OK
$ WRITE SYS$OUTPUT "You may log in to this account only with ",-
_$ "the USER_LOG account."
$ LOGOUT

$!
$! When the login has been verified, enable Ctrl/Y to
$! release the account, invoke the user’s LOGIN.COM, and turn
$! control over to the user.
$!
$ OK:
$ SET CONTROL_Y
$ IF F$SEARCH ("LOGIN.COM") .EQS. "" THEN EXIT
$ @LOGIN

6.7 Ongoing Tasks to Maintain a Secure System
Maintaining a secure system requires continuous surveillance. The following
ongoing tasks are important to you in your role as security administrator:

Use the MONITOR IO report to develop a familiarity with the normal
amounts of I/O on your system at various times. Watch for abnormal changes.

Keep informed of the images installed on your system. Use the Install utility
(INSTALL) to look for unexpected additions. When monitoring the known file
list, compare the current list with a valid hardcopy listing.

Use the AUTHORIZE command SHOW on a regular basis to check for
unauthorized user names.

Use the AUTHORIZE command SHOW/PROXY regularly to quickly recognize
all proxy access that you have authorized. Watch for unexpected additions.
Remove any remote users who no longer require access. Institute regular
communications with system managers at remote nodes.

Apply the Accounting utility (ACCOUNTING) on a regular basis to give you a
basis of normal amounts of processing time. Watch for unexplained changes.

Regularly check the accounting report produced by ACCOUNTING for known
user names, unknown user names, and appropriate hours of system use.

Develop sufficient familiarity with your system’s workload so that you notice
normal (as well as abnormal) processing activity occurring at unusual hours.

Monitor device allocations routinely with the DCL command SHOW DEVICE
so that you immediately notice any that are unexpected.

Become familiar with the recurring types of batch jobs that run on the batch
queues and what times they are most likely to run.

Monitor the protection and ownership of critical files with the
DIRECTORY/SECURITY command. Watch for unexplained changes in
each.

6–8 Managing the System and Its Data

Managing the System and Its Data
6.7 Ongoing Tasks to Maintain a Secure System

Maintain familiarity with the rights list. Keep current listings so that you
can recognize identifiers that have been added or new holders of the current
identifiers.

Remove identifiers that are not in use. Keep the rights list current.

Regularly review the templates that you use to set up UAF records. Make
any necessary changes.

Use the security-auditing features described in Chapter 9.

Apply the Audit Analysis utility (ANALYZE/AUDIT) regularly to detect
abnormal auditing activity.

When you allow new users to change their initial passwords, assign
passwords that users will want to change or use the password generator.
Check back to see if you can log in with the password you originally assigned.
Where necessary, follow up with the user to determine why the change did
not occur as requested.

Try searching unprotected user files for passwords embedded in network
access control strings. The password will precede the 3-character terminator
("::). Also search for the noun password, and see if any passwords are
revealed nearby.

Check that your users are logging out properly. Make physical checks at the
end of normal business hours.

Check that your users have appropriate default protections in place.

Keep informed about your inventory of magnetic tapes, disks, and program
listings. Routinely check that inventory for possible indications that physical
security has degraded.

Keep your office and all important listings locked up.

Managing the System and Its Data 6–9

7
Managing System Access

This chapter explains how you give users access to a system by assigning user
accounts and passwords. Descriptions are based on the security needs of a
commercial installation with average security needs, where accounts require
protection. Descriptions of above-average security needs are also noted. Refer to
Chapter 8 for information on controlling access to system data and resources. See
Chapter 6 and Chapter 9 for information on auditing user actions.

The Authorize utility (AUTHORIZE) is the primary tool for establishing accounts
and passwords. See the OpenVMS System Management Utilities Reference
Manual: A–L for a description of the utility.

7.1 Defining Times and Conditions for System Access
The level of system access a user enjoys depends on your site requirements, that
user’s role in the organization, and your management of his or her account. A
site with low security requirements and plenty of system resources may allow
access at any time of day whereas a site with moderate security requirements
may limit logins to daytime hours and permit dialup or network connections only
to a subset of users.

Using the Authorize utility, you control when and how users can access the
system. Table 7–1 identifies the applicable qualifiers.

Table 7–1 Authorize Qualifiers Controlling Login Times and Conditions

Categories Qaulifier Description

Time of day /ACCESS By default, a user has full access every day. By specifying
an access time, you prevent access at all other times.
Identify hours on primary days with the keyword
PRIMARY; identify hours on secondary days with the
keyword SECONDARY.

/DIALUP Specifies hours of access permitted for dialup logins.

/LOCAL Specifies hours of access for interactive logins from local
terminals.

Days of week /PRIMEDAYS Defines the primary and secondary days of the week for
logging in.

Mode of operation /BATCH Specifies the hours of access permitted for batch jobs.

/INTERACTIVE Specifies the hours of access for interactive logins.

/NETWORK Specifies the hours of access permitted for network batch
jobs.

(continued on next page)

Managing System Access 7–1

Managing System Access
7.1 Defining Times and Conditions for System Access

Table 7–1 (Cont.) Authorize Qualifiers Controlling Login Times and Conditions

Categories Qaulifier Description

/REMOTE Specifies hours during which access is permitted for
interactive logins from network remote terminals (with
the DCL command SET HOST).

Allocation of
resources

/DEVICE Specifies the name of the user’s default device at login.

/DIRECTORY Specifies the name of the user’s default directory at login.

Validity of account /EXPIRATION Specifies the expiration date and time of the account.

/FLAGS=DISUSER Disables the account so the user cannot log in.

External
authentication

/FLAGS=EXTAUTH Specifies that the user is externally authenticated.

7.1.1 Restricting Work Times
AUTHORIZE qualifiers let you restrict system use to certain days of the week
and certain periods of the day. Restricting work times is useful to better balance
the workload on your system. Restricting access to accounts is also an effective
way of preventing unauthorized use of the system outside of normal working
hours.

Define primary and secondary days of the week with the /PRIMEDAYS qualifier,
or conform to the default where primary days are Monday through Friday and
secondary days are Saturday and Sunday. For example, to modify the defaults for
a user who works Tuesday through Saturday, you would specify the /PRIMEDAYS
qualifier as follows:

/PRIMEDAYS=(NOMONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY,SATURDAY,NOSUNDAY)

Occasionally an operational change occurs that conflicts with the normal day
assignments at your site, such as a holiday falling on a primary day. To
override the normal day assignment, use the DCL command SET DAY, and
specify the day-type interpretation you want for the current day. This requires
OPER privilege. Note that this change applies to all logged-in users, as well as
those who will log in during the day. If users who are currently logged in are
unauthorized for the day-type once it changes, they are logged out of the system
at the next hour. (The job controller enforces time restrictions on an hourly
basis.)

Decide which types of login access should be restricted to certain hours. The login
access qualifiers are: /LOCAL, /REMOTE, /DIALUP, /INTERACTIVE, /BATCH,
and /NETWORK. However, if your site applies one set of primary and secondary
hours for all types of logins, you can specify the /ACCESS qualifier, which applies
to all modes of access.

The following example shows how to apply the /BATCH qualifier to a user’s
account to disable the user from running batch jobs during normal working
hours:

/NOBATCH=(PRIMARY, 9-17)

This specification permits the user to run batch jobs only during the hours of 6:00
p.m. through 8:59 a.m. on primary days but all day on secondary days.

7–2 Managing System Access

Managing System Access
7.1 Defining Times and Conditions for System Access

7.1.2 Restricting Modes of Operation
The following concerns might cause you to prohibit network access for some of
your users:

• The user has data that should be accessed only through the local node.

• Penetration attempts are more likely to occur over a network because of
the increased anonymity of the connection. (This concern is also relevant to
dialup connections.)

Use the AUTHORIZE qualifier /NONETWORK to prevent specific users from
having network access, as shown in the following example:

UAF> ADD JSMITH /NONETWORK, . . .

Any of the AUTHORIZE access mode qualifiers (/LOCAL, /REMOTE, /DIALUP,
/INTERACTIVE, /BATCH, or /NETWORK) can be negated in this manner to
restrict access to the system.

7.1.3 Restricting Account Duration
It is good practice to set an account expiration time that matches the maximum
length of time you expect the user to require access. When the expiration time
arrives, the system automatically prohibits access to the account. You must still
remove the UAF record and delete the user’s files.

Use of the /EXPIRATION qualifier also forces you to periodically review accounts
and reauthorize only those that are necessary.

To set the account expiration time, use the AUTHORIZE qualifier /EXPIRATION
in the user’s UAF record. For example, the following qualifier specifies that the
user’s account will expire on the 30th of December 1995:

/EXPIRATION=30-DEC-1995

7.1.4 Disabling Accounts
You may want to severely restrict the use of certain accounts. For example,
you may want to disable specific accounts used only periodically, such as the
SYSTEST and FIELD accounts, to limit possible misuse of these accounts.
Disable the accounts with the /FLAGS=DISUSER qualifier. Temporarily enable
the accounts with the /FLAGS=NODISUSER qualifier when needed.

7.1.5 Restricting Disk Volumes
Identify the user’s default device and directory in the UAF record with the
AUTHORIZE qualifiers /DEVICE and /DIRECTORY. You can limit the number
of blocks available to the user on that disk (and any other disk) through the disk
quota feature of the System Management utility (SYSMAN), as described in the
OpenVMS System Management Utilities Reference Manual: A–L.

The volume protection in place on other disks controls how much access a user
can obtain to the disks. The user’s privileges, which can be extended or limited
through the AUTHORIZE qualifier /PRIVILEGES, also influence the access
available (see Section 8.7).

Managing System Access 7–3

Managing System Access
7.1 Defining Times and Conditions for System Access

7.1.6 Marking Accounts for External Authentication
Mark a user’s account in the UAF record with the AUTHORIZE qualifier
/FLAGS=EXTAUTH to allow the user to be externally authenticated.

See Section 7.4 for more information.

7.2 Assigning Appropriate Accounts to Users
The type of system access a user holds largely depends on his or her need for
system resources and your site’s security requirements. This section describes the
types of user accounts that are available on OpenVMS systems and explains why
one type of account may be preferable to another. For a step-by-step description
of adding user accounts, refer to the OpenVMS System Manager’s Manual.

7.2.1 Types of System Accounts
There are two major types of accounts:

• Interactive accounts have access to system software. Usually, such an
account is considered an individual account.

• Limited-access accounts provide controlled login to the system and, in
some cases, controlled access to user software. Limited-access accounts
ensure that the system and process login command procedures, as well as any
command procedures they call, are executed.
There are two types of limited accounts: captive and restricted. Guest, proxy,
and automatic login accounts are forms of captive and restricted accounts.
DECwindows software does not currently support captive or restricted logins
in the traditional sense. Once a user is logged in and creates a DECterm
window, however, the traditional environment of a captive or restricted
account applies.

Both interactive and limited-access accounts can be privileged accounts, and can
be externally authenticated, as Section 7.2.2 describes.

The following table shows the kind of account to create based on the task a user
performs:

If Users Need to... Type of Account to Create

Perform work of a general nature, such as program
development or text editing

Interactive

Perform routine computer tasks requiring limited
activities

Captive

Run batch operations during unsupervised periods Captive

Run applications programs with confidential information Captive

Use network applications like MAIL Restricted

Access resources on your system from a remote system (in
a limited manner)

Captive or restricted

Use network proxy accounts Restricted

Use authentication systems like smart cards Restricted

Use accounts created as part of a layered product
installation

Restricted

7–4 Managing System Access

Managing System Access
7.2 Assigning Appropriate Accounts to Users

If Users Need to... Type of Account to Create

Perform privileged operations Interactive, restricted, or
captive

Access resources from a remote system without a
password

Captive

Automatically log in to an application terminal Captive or restricted

Log in at the OpenVMS login prompt using their external
user IDs and passwords

Externally authenticated

You may develop one or more templates that work for many of your users.
However, do not oversimplify the process of account creation to the point that
you simply apply a template. The danger in relying solely on templates is that
you might overlook special considerations that apply to individual users, thereby
forfeiting important controls that only you can exercise.

Examine templates regularly to be sure they are valid and reflect the way you
want your operations to proceed. Templates become obsolete rapidly.

7.2.1.1 Interactive Account Example
Example 7–1 shows how to create an interactive user account with moderate
restrictions, typical of an account at a commercial site where security is a concern
and the average user has limited access. Notice the following:

! Only one password is required.

" The password has a minimum length of 6 characters.

The user’s password is valid for 90 days, a much longer lifetime than the
manager’s password shown in Example 6–1.

$ The user is allowed access during the week and on Saturdays.

% During those six days, the user has access during a 15-hour period.

Example 7–1 Creating a Typical Interactive User Account

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD RDOGWOOD /PASSWORD=TRALAYAM/UIC=[231,010] - !
_UAF> /DEVICE=BOTANYDEV/DIRECTORY=[RDOGWOOD] -
_UAF> /OWNER="Robert Dogwood"/ACCOUNT=BOTNYDPT -
_UAF> /FLAGS=(GENPWD)/PWDMINIMUM=6 - "

_UAF> /EXPIRATION=15-JUNE-1994/PWDLIFETIME=90- #

_UAF> /PRIMEDAYS=(MON,TUES,WED,THURS,FRI,SAT,NOSUN) - $

_UAF> /NOACCESS=(PRIMARY,23-6,SECONDARY)/NODIALUP %
identifier for value:[000231,000010] added to RIGHTSLIST.DAT
UAF>

7.2.1.2 Limited-Account Example
Example 7–2 shows how to create an applications production account where the
user is highly restricted. This account is designed to perform two functions: list
the grades at State University, and produce mailings to each student’s home.

In the example, any value not specified defaults to the value provided by the
default record in SYSUAF.DAT.

Managing System Access 7–5

Managing System Access
7.2 Assigning Appropriate Accounts to Users

Notice the following:

! Account users do not see the normal system welcome message. The account
may not receive mail. It is restricted to running under control of its login
command procedure and the default command interpreter (DCL).

" The user who initiates the login must specify the password, GROBWACH.
(Most likely only the security administrator will change the password.)

When the job is run through a local login, it is restricted to the hours of 8
a.m. through 5:59 p.m., Monday through Friday. (Notice that only batch and
local logins are allowed, and batch mode does not have time restrictions.)

$ The job may not be run over dialup lines or as a remote job. The account also
denies network access.

% The process runs under the control of a special login command procedure
(GRADES.COM), which presumably provides the operator with a menu of
functions.

& The process is restricted to the commands defined in the CLI table GRADES_
TABLES.

Example 7–2 Creating a Limited-Access Account

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD REPGRADES /DEVICE=ADMINDEV/DIRECTORY=[REPGRADES] -

_UAF> /FLAGS=(CAPTIVE,DISWELCOME,DISNEWMAIL,DISMAIL,DEFCLI) - !
_UAF> /PASSWORD=GROBWACH/UIC=[777,031] - "
_UAF> /OWNER="Campus Admin"/ACCOUNT=ADMIN -

_UAF> /LOCAL=(PRIMARY,8-17)/PRIMEDAYS=(MON,TUES,WED,THU, - #
_UAF> FRI,NOSAT,NOSUN) -

_UAF> /NONETWORK/NOREMOTE/NODIALUP - $

_UAF> /LGICMD=GRADES % /CLITABLES=GRADES_TABLES - &

.

.

.
user record successfully added
identifier for value:[000777,000031] added to RIGHTSLIST.DAT

7.2.2 Privileged Accounts
Privileges determine the functions users are authorized to perform on the system.
Any account with privileges beyond TMPMBX and NETMBX is considered
privileged. Such an account can be interactive, restricted, or captive.

Because abuse of privileged accounts can result in serious losses, consider
imposing special controls on accounts with the most powerful privileges as
follows:

• Limit access to the account. For example, you can prohibit dialup or network
access with the /NODIALUP or /NONETWORK qualifier to discourage
outsiders from attempting break-ins from remote locations.

• Impose security alarms to detect use of the privileges pertaining to file
protection: BYPASS, SYSPRV, READALL, and GRPPRV. For information
about setting up and monitoring security alarms, see Chapter 9.

7–6 Managing System Access

Managing System Access
7.2 Assigning Appropriate Accounts to Users

For all but the SYSTEM account, also add the following restrictions:

• Use the /PRIMEDAYS and /NOACCESS qualifiers to restrict the time of day
or days of the week that logins can be performed. Select periods of time that
can be monitored for appropriate use.

• Disable the account when not in use with the AUTHORIZE qualifier
/FLAGS=DISUSER.

• Use a captive login command procedure for additional validation. Captive
login command procedures are described in Section 7.2.4.

Naturally, you need to set controls on the SYSTEM account. The most secure
practice is to disable it for all but batch access and perform system management
through individual privileged user accounts, which provide accountability.

Special-Purpose Privileged Captive Accounts
Because the safety of a captive account depends on the integrity of its command
procedures, it is unadvisable to set up privileged captive accounts for untrusted
users. However, there are some situations that require privilege, and it is safer
to perform specific sensitive functions through captive privileged accounts than
through general purpose privileged accounts. For example, users who perform
backup operations require the READALL privilege. By making the account that
performs backups captive, you can ensure that the procedures are carried out
according to your system’s backup policy.

See Section 7.2.4 for guidelines for setting up captive accounts.

7.2.3 Interactive Accounts
Interactive accounts are very common in environments with low to moderate
security requirements. They are well suited to work of a general nature, such as
program development or text editing. The OpenVMS System Manager’s Manual
explains the procedure for setting up this type of account. Section 7.2.1.1 provides
an example.

7.2.4 Captive Accounts
A captive account limits the activities of the user and, when properly
administered, denies the user access to the DCL command level. You can set
up the account to limit the user to running under the complete control of a
specific program or the captive login command procedure.

The primary feature of the captive account is its login command procedure.
This type of account ensures that the system login command procedure
(SYLOGIN.COM) and the process login command procedure (specified by the
/LGICMD qualifier in SYSUAF.DAT), as well as any command procedures they
call, are executed. A user cannot specify any of the qualifiers shown in Table 7–2
to modify the captive command procedures when logging in.

Once logged in to a captive account, a user cannot escape to the DCL command
level through the Ctrl/Y sequence, the SPAWN command, or the INQUIRE
command. Because the DISCTLY flag in the UAF record is turned on, any use
of Ctrl/Y fails. If unhandled errors or attempted interrupts occur, a system error
message is generated, and the session is logged out. Unless the SPAWN command
carries the /TRUSTED qualifier, it is ineffective within a captive account. SPAWN
is also disabled from MAIL and the DEC Text Processing Utility (DECTPU) (as
a built-in procedure). The INQUIRE command is also disabled to prevent the
possible execution of user-specified lexical functions.

Managing System Access 7–7

Managing System Access
7.2 Assigning Appropriate Accounts to Users

Table 7–2 Login Qualifiers Not Allowed by Captive Accounts

Qualifier Description

/CLI Specifies the name of an alternate command language interpreter

/COMMAND Overrides the default login command procedure

/NOCOMMAND Disables execution of the default login command procedure

/DISK Requests an alternate default disk

/TABLES Specifies the name of an alternate CLI table

7.2.4.1 Setting Up Captive Accounts
You define a captive account with AUTHORIZE by including the following
qualifier when creating the account:

/FLAGS=(CAPTIVE)

A captive account also requires the qualifiers described in Table 7–3.

Table 7–3 Qualifiers Required to Define Captive Accounts

Qualifier Action

/LGICMD Identifies the captive account login command procedure and
overrides the default login command procedure (LOGIN.COM
in the user’s default directory).

/UIC Assigns a unique UIC group. Use the following form of the
AUTHORIZE command SHOW to verify the uniqueness of
the UIC group:

SHOW [groupuic,*]

By keeping the account in a separate group, you can ensure
that the captive account users can access only world-
accessible files and files owned by the captive account. It
ensures that the account is not a member of the system
group (that is, has a group value less than or equal to 108,
unless modified by the system parameter MAXSYSGROUP).

/NOPASSWORD or
/FLAGS=LOCKPWD

Sets up the password. With a captive account, either require
no password, or lock the password so that only the security
administrator can change it.

Locked passwords are generally preferable to open captive
accounts (those with no password). If you assign a locked
password, give that password to all users of the captive
account.

/PRCLM Sets the subprocess limit to 0, thus preventing the user
from spawning out of the account. (Verify that the system
parameter PQL_MPRCLM—the minimum subprocess limit—
is set to 0.)

In addition to the required settings, you may want to specify additional
characteristics for the account:

• You may want to disable the welcome announcement and electronic mail for
the captive account. This is done by setting the DISWELCOME, DISMAIL,
and DISNEWMAIL login flags.

• You may want to allow only interactive use of the account from a local
terminal. Include the qualifiers /NODIALUP, /NOREMOTE, /NOBATCH, and
/NONETWORK when establishing the account.

7–8 Managing System Access

Managing System Access
7.2 Assigning Appropriate Accounts to Users

• Your application may have special requirements. You may need to impose
additional AUTHORIZE qualifiers on the account, such as /NODIALUP, to
restrict modes of operation. Consider imposing restrictions for the periods of
the day and days of the week when the process can run.

• You can define a special set of DCL tables by using the /CLITABLES qualifier,
or you can emulate DCL through the use of a DCL command procedure.
It is more efficient to define DCL tables than to resort to a DCL command
procedure to emulate DCL. See the description of the Command Definition
utility (CDU) in the OpenVMS System Management Utilities Reference
Manual: A–L for help when defining the DCL tables. Be aware that the
DCL tables defined by the /CLITABLES qualifier are not used in network
jobs, such as those using the TASK object.

• You can grant privileges, although you rarely need to grant any privilege
other than TMPMBX to a captive account.

• You can limit the disk quota for the captive account to the amount needed.

7.2.4.2 Guidelines for Captive Command Procedures
When writing captive command procedures for your site, be sure to observe the
following guidelines:

• Use the DCL command READ/PROMPT in command procedures. For
example, to request the user to enter the date, enter the following command
in the command procedure:

READ/PROMPT="Enter date: " SYS$COMMAND DATE

• Avoid use of the INQUIRE command in a captive command procedure. It
produces an error that, if unhandled by a previous ON declaration, results in
deletion of the process.

• When user input is required, never execute it directly. First compare it to
what is expected, and screen for illegal characters such as apostrophe (’), at
sign (@), dollar sign ($), quotation mark ("), ampersand (&), or hyphen (-).

• Avoid any use of the construction ’x, where x contains a string entered by the
user. Never permit a restricted command procedure to attempt an evaluation
of a symbol that the user enters. Use of lexical functions could break the
command procedure.

• Avoid executing a line in a captive command procedure that contains the
characters @TT:.

• Put Audit ACEs on the captive command procedure and its home directory to
detect any modification of the file. See Section 9.2.1.2 for more information on
Audit ACEs.

• If the captive account user is allowed to create or perform other operations on
files, make certain that write access to the login command procedure and its
directory is denied. (The user does need execute access.)

If the function of the command procedure requires text preparation, you may
need to give users access to a text editor. Use caution, however. Editors
such as TECO or DECTPU can be dangerous because users can manipulate
files and exit from the editor to the DCL interface. When designing this
environment, remember that most text editors are capable of reading and
writing files (within the access rights of the account). Provide an editor that
gives users the tools they require but does not allow them to escape from the
captive environment.

Managing System Access 7–9

Managing System Access
7.2 Assigning Appropriate Accounts to Users

Example 7–3 and Example 7–4 provide sample command procedures for
privileged and unprivileged accounts.

Example 7–3 Sample Captive Procedure for Privileged Accounts

$ if f$mode() .nes. "INTERACTIVE" then $logout
$ term = f$logical("SYS$COMMAND")
$ if f$locate("_T", term) .eq. 0 then $goto allow
$ if f$locate("_OP",term) .ne. 0 then $logout
$allow:
$ set control=(y,t)

Example 7–4 Sample Captive Command Procedure for Unprivileged Accounts

$ deassign sys$input
$ previous_sysinput == f$logical("SYS$INPUT")
$ on error then goto next_command
$ on control_y then goto next_command
$ set control=(y,t)
$
$next_command:
$ on error then goto next_command
$ on control_y then goto next_command
$
$ if previous_sysinput .nes. f$logical("SYS$INPUT") then deassign sys$input
$ read/end=next_command/prompt="$ " sys$command command
$ command == f$edit(command,"UPCASE,TRIM,COMPRESS")
$ if f$length(command) .eq. 0 then goto next_command
$
$ delete = "delete"
$ delete/symbol/local/all
$ if f$locate("@",command) .ne. f$length(command) then goto illegal_command
$ if f$locate("=",command) .ne. f$length(command) then goto illegal_command
$ if f$locate("F$",command) .ne. f$length(command) then goto illegal_command
$ verb = f$element(0," ",command)
$
$ if verb .eqs. "LOGOUT" then goto do_logout
$ if verb .eqs. "HELP" then goto do_help
$
$ write sys$output "%CAPTIVE-W-IVVERB, unrecognized command \",verb,"\"
$ goto next_command
$
$illegal_command:
$ write sys$output "%CAPTIVE-W-ILLEGAL, bad characters in command line"
$ goto next_command
$
$do_logout:
$ logout
$ goto next_command
$
$do_help:
$ define sys$input sys$command
$ help
$ goto next_command

7–10 Managing System Access

Managing System Access
7.2 Assigning Appropriate Accounts to Users

7.2.5 Restricted Accounts
Certain limited-access accounts require a less restrictive environment than
captive accounts. Accounts under which network objects run, for example, require
temporary access to DCL. Such accounts must be set up as restricted accounts,
not captive accounts. Restricted accounts are indistinguishable from regular
accounts once the login sequence finishes. The purpose behind restricted accounts
is to ensure a trusted login wherein SYLOGIN, LOGIN, and their descendants
execute completely.

Define a restricted account with the Authorize utility by including the following
qualifier when creating the account:

/FLAGS=(RESTRICTED)

This flag ensures that the account is noted as restricted. A restricted account
provides the same features as those listed for a captive account in Section 7.2.4
except that restricted accounts allow the user access to the DCL command level
following the execution of the system and process login command procedures.

Sometimes it is appropriate to allow the user to enter the Ctrl/Y key sequence
after the command procedure starts. For example:

• You may want to provide users with a Ctrl/Y feature at points during the
execution of the restricted login command procedure. Include ON CONTROL_
Y commands in the procedure where you want to test for the Ctrl/Y features,
as shown in Example 7–4.

• You may have a restricted command procedure that ultimately turns
control over to the user. For example, consider a SYLOGIN.COM command
procedure that performs additional security validation; its execution should
be guaranteed to ensure its effectiveness. However, once SYLOGIN.COM has
done its job, control can be passed to the user. To do this, mark the account
as restricted, and enter the DCL command SET CONTROL=Y when you are
ready to release control to the user.

7.2.6 Automatic Login Accounts
To force individuals at specific terminals to log in to an application program,
create a separate captive account for the application. Then set up automatic
logins to the new account for the desired users using the System Management
utility (SYSMAN).

Once you set up a terminal for automatic login, it can be used only for the
designated account. This is most useful for applications terminals used by people
who may be unfamiliar with computers.

The automatic login feature suppresses the user name prompt. All other login
features (system password, primary and secondary passwords, and messages)
function normally, if enabled.

Passwords are optional. If you want the account to be open to all users where the
terminals are located, eliminate the password. When no password is required,
the user has no data to enter at login. The operating system logs the terminal in
automatically in response to the Break key or the Return key and immediately
enters the application if the account is under the control of a captive login
command procedure.

Managing System Access 7–11

Managing System Access
7.2 Assigning Appropriate Accounts to Users

The automatic login file (ALF) lists the terminals and the users who are
authorized to access the application account. However, automatic login accounts
are potentially accessible from terminals and sources other than the terminals
listed in the ALF file and, therefore, require protection, especially if they have no
password. Use the following precautions:

• Restrict network and dialup access, as appropriate, with the AUTHORIZE
qualifiers /NODIALUP, /NONETWORK, and /NOREMOTE.

• Set the AUTOLOGIN flag in the account’s UAF record. This flag makes the
account available only by autologin, batch, and network proxy.

7.2.7 Guest Accounts
Guest accounts are forms of captive or restricted accounts that allow multiple
remote users access to resources on your system through a common account.
For example, users across the network may need access to your system to report
problems or to read corporate memos.

Compaq does not recommend the practice of setting up guest accounts. Guest
accounts, however unprivileged, offer malicious users a chance to compromise
your system security. Most needs for a guest account can be handled by special
proxy login accounts, which should also be limited-access accounts.

If you still need a guest account, take the following steps to make the account
secure:

• Use an obscure password for the guest account. Change the password
frequently. Never use easily guessed account name and password
combinations such as GUEST/GUEST or USER/USER.

• Maintain a list of people allowed to use the account. (Changing the password
regularly helps you keep this list current.)

• Set up the guest account in a separate UIC group. Make sure that the
account is not a member of the system group.

• Place the default login command procedure in the directory SYS$MANAGER
by using the AUTHORIZE command MODIFY, as follows:

MODIFY guest-account/LGICMD=SYS$MANAGER:filename.COM

• Make the guest account restricted or captive by setting the AUTHORIZE
qualifiers /FLAGS=RESTRICTED or /FLAGS=CAPTIVE, respectively.

• If the guest account is set up as a restricted account, limit the number of
subprocesses that the account can create to 0 using the AUTHORIZE qualifier
/PRCLM=0. (Ensure that the system parameter PQL_MPRCLM is also set to
0.)

• Assign the guest account only TMPMBX privilege.

• To handle error conditions, include the following commands in the default
login command procedure:

SET ON
SET NOCONTROLY
ON ERROR THEN LOGOUT/BRIEF

7–12 Managing System Access

Managing System Access
7.2 Assigning Appropriate Accounts to Users

• If the system has LOGOUT defined as a global symbol and points to a
command procedure (enter the DCL command SHOW SYMBOL LOGOUT
to confirm this), include the following DCL command in the default login
command procedure for the account:

DELETE/SYMBOL LOGOUT/GLOBAL

This command eliminates the possibility that the user could break the
restricted account at logout time by pressing Ctrl/Y.

• To prevent outsiders from misusing your system resources through the
submission of batch jobs under the guest account, include the AUTHORIZE
qualifier /NOBATCH when you create the account.

• Limit the disk quota for the guest account UIC to the amount needed.

• Do not allow the DCL command INQUIRE to appear in any of the command
procedures.

7.2.8 Proxy Accounts
Generally, proxy login accounts should be set up as restricted accounts. Proxy
login accounts permit remote users to access a local account without specifying
a password. Section 12.3.3 describes proxy login accounts. Note that many
recommendations are the same as those for restricted accounts.

7.2.9 Externally Authenticated Accounts
Externally authenticated accounts are those that are marked with the EXTAUTH
flag in the user’s SYSUAF record. This enables these users to log in at the
OpenVMS login prompt using their external user IDs and passwords. See
Section 7.4 for more information on external authentication.

7.3 Using Passwords to Control System Access
A site needing average security protection always requires use of passwords.
Sites with more security needs frequently impose a generated password scheme
(see Section 7.3.2.4) and possibly system passwords as well.

This section describes password management.

7.3.1 Types of Passwords
With the exception of an automatic login account, all users must have at least
one password to log in. Sites with moderate or high security requirements may
impose additional passwords (see Table 3–2).

Externally authenticated users enter their external password at the OpenVMS
password prompt. See Section 7.4 for more information.

This section explains how to assign passwords using DCL and AUTHORIZE
commands.

7.3.1.1 Primary Passwords
When you open an account for a new user with AUTHORIZE, you must give
the user a user name and an initial password. When you assign temporary
initial passwords, observe all guidelines recommended in Section 3.8. Avoid any
obvious pattern when you assign passwords. You may want to use the automatic
password generator.

Managing System Access 7–13

Managing System Access
7.3 Using Passwords to Control System Access

To use the automatic password generator while using AUTHORIZE to open an
account, add the /GENERATE_PASSWORD qualifier to either the ADD or the
COPY command. The system responds by offering you a list of automatically
generated password choices. Select one of these passwords, and continue setting
up the account.

Note

There are restrictions on using the /GENERATE_PASSWORD qualifier
with the /PWDMINIMUM qualifier. Generated passwords have an
absolute length of 12 characters (see Section 7.3.2.3). Whenever there
is a conflict between the value of /PWDMINIMUM and a generated
password, the operating system uses the lesser of the two values.

Passwords you specify with AUTHORIZE are defined as expired by default.
This forces the user to change the initial password when first logging in. See
Section 7.3.2 for more information. Be sure to include information on the first
login in your user training so that users know what to expect. If you do not want
the password you define with AUTHORIZE to be pre-expired, add the qualifier
/NOPWDEXPIRED when entering the password. This is necessary for accounts
when users are not permitted to set their own password.

Pre-expired passwords are conspicuous in the UAF record listing. The entry for
the date of the last password change carries the following notation:

(pre-expired)

7.3.1.2 System Passwords
Section 3.2.1 introduces system passwords, which control access to particular
terminals. System passwords are used to control access to terminals that might
be targets for unauthorized use, as follows:

• All terminals using dialup lines or public data networks for access

• Terminals on lines that are publicly accessible and not tightly secured, such
as those in computer laboratories at universities

• Terminals not frequently inspected

• Terminals intended for use only as spare devices

• Terminals you want to reserve for security operations

Execute the following steps to to implement system passwords:

1. Establish a record in the SYSUAF database for a system password by
invoking the Authorize utility and entering the following command:

UAF> MODIFY/SYSTEM_PASSWORD=password

Note

You need to establish a record in the SYSUAF database only the first
time a system password is set up on the system. However, if no record is
present,the SET PASSWORD/SYSTEM command returns the following
error:

%SET-F-UAFERR, error accessing authorization file
-RMS-E-RNF, record not found

7–14 Managing System Access

Managing System Access
7.3 Using Passwords to Control System Access

2. Decide which terminals require system passwords. Then, for each terminal,
enter the DCL command SET TERMINAL/SYSPWD/PERMANENT. When
you are satisified that you have selected the right terminals, incorporate
these commands into SYS$MANAGER:SYSTARTUP_VMS.COM so that the
terminal setup work is done automatically at system startup. You can remove
the restriction on a terminal at any time by invoking the DCL command SET
TERMINAL/NOSYSPWD/PERMANENT for that terminal.

3. Choose a system password, and implement it with the DCL command SET
PASSWORD/SYSTEM, which requires the SECURITY privilege. This
command prompts you for the password and then prompts you again for
verification, just as for user passwords. To request automatic password
generation, include the /GENERATE qualifier.

To enable the use of the system password for the remote class of logins (those
accomplished through the DCL command SET HOST), set the appropriate
bit in the default terminal characteristics parameter by using AUTOGEN.
This is bit 19 (hexadecimal value 80000) in the parameter TTY_DEFCHAR2.
Note that if you set this bit, you must invoke the DCL command SET
TERMINAL/NOSYSPWD/PERMANENT to disable system passwords for each
terminal where you do not want the feature. (As before, consider placing the
SET TERMINAL commands you have tested in SYS$MANAGER:SYSTARTUP_
VMS.COM.) Then follow the previously defined steps to set the system password.

When choosing a system password, follow the recommendations presented in
Section 3.8. Choose a string of characters and digits, with a minimum length
of 6, that is not a valid word. Although the system password is not subject to
expiration, change the password frequently. Always change the system password
as soon as a person who knows the password leaves the group. Share the system
password only with those who need to know.

The system password is stored in a separate UAF record and cannot be displayed.
The DCL command SET PASSWORD/SYSTEM (the normal means of setting
and changing the system password) requires that you enter the old system
password before changing it. Use the AUTHORIZE command MODIFY/SYSTEM_
PASSWORD to change the system password without specifying the old password,
as shown in the following command:

UAF> MODIFY/SYSTEM_PASSWORD=ABRACADABRA

The primary function of the system password is to form a first line of defense
for publicly accessible ports and to prevent potential intruders from learning
the identity of the system. However, requiring system passwords can appear
confusing when authorized users are unaware that they are required on certain
terminals. To avoid false reports of defective terminals or systems, inform your
users which terminals allocated for their use require system passwords.

Where system passwords are not applied to either control access through
dialup lines or on publicly accessed lines, few people may know the system
password. Operations are hampered if the personnel who know the password
are unavailable, incapacitated, or forgetful. Solve this problem by invoking
AUTHORIZE and entering the MODIFY/SYSTEM_PASSWORD command.
SYSPRV privilege is required.

Managing System Access 7–15

Managing System Access
7.3 Using Passwords to Control System Access

7.3.1.3 Secondary Passwords
Sites with high-level security concerns can require a second password on user
accounts. Typically, the user does not know the secondary password, and
a supervisor or other key person must be present to supply it. For certain
applications, the supervisor may also decide to remain present while the
account is in use. The effectiveness of a secondary password depends on the
trustworthiness of the supervisor who supplies it because the supervisor can
remove the secondary password by changing it to a null string.

Although the use of dual passwords is cumbersome, they do offer the following
advantages:

• When used on a widespread basis, dual passwords help verify the identity of
each user at login time because the supervisor or other key person can check
each user.

• When used in limited cases, dual passwords single out accounts that can be
logged in to only when two persons are present.

• Dual passwords also prevent the use of access control strings when users
access accounts through DECnet software.

Sites with medium security requirements may use dual passwords as a tool when
there are unexplained intrusions after the password has been changed and use
of the password generator has been enforced. Select problem accounts, and make
them a temporary target of this restriction. If the problem goes away when
you institute personal verification through the secondary password, you know
you have a personnel problem. Most likely, the authorized user is revealing the
password for the account to one or more other users who are abusing the account.

Implement dual passwords with the AUTHORIZE qualifier /PASSWORD. For
example, to impose dual passwords on a new account, invoke AUTHORIZE and
use the following form of the ADD command:

ADD newusername /PASSWORD=(primarypwd, secondarypwd)

To impose a secondary password on an existing account, use the following form of
the MODIFY command:

MODIFY username /PASSWORD=("", secondarypwd)

This command does not affect the primary password that already exists for the
account but adds the requirement that a secondary password be provided at
each subsequent login. The secondary password acquires the same password
lifetime and minimum length values in effect for the primary password. If the
/FLAGS=GENPWD qualifier has been specified for this account, the secondary
password can be changed only under the control of the automatic password
generator. You cannot use wildcards in the user name parameter to apply a
secondary password to multiple users with a single command.

Note

While you can specify secondary passwords for accounts requiring remote
access through the DCL command SET HOST, you cannot specify them
for accounts requiring network file access using access control strings. If
an account with a secondary password is to be used for network access
(for example, remote file access), you must set up proxy access for all
remote nodes from which the account may be accessed.

7–16 Managing System Access

Managing System Access
7.3 Using Passwords to Control System Access

7.3.1.4 Console Passwords
The console terminal controls operation of the CPU and, consequently, operation
of the system. Sites with high security requirements should consider using the
password security feature when it is available. (Certain VAXstation 3100s and
later models offer it.)

Once the console password is enabled, operators must enter it before using any
privileged command in console mode. Privileged commands include the following
two types:

• Commands that examine or modify memory and registers, such as SET,
EXAMINE, DEPOSIT, FIND, and SHOW.

• Commands that transfer control of the CPU from the console monitor to
another program, such as BOOT and START. (Invoking the default boot,
which requires a BOOT command with no parameters, is not a privileged
command and is allowed without the password.)

To enable the console password feature, take the following steps:

1. Enter the privileged command:

>>> SET PSWD

2. In response, the console prompts for a password:

1 >>>

Enter the new password, and press the Return key. Note that the console
does not display the password as you enter it.

The password must be a hexadecimal string of characters (0 through 9 and A
through F) with a length of exactly 16 characters.

3. If the password character string is of the right length, the console prompts for
you to reenter the new password for verification:

2 >>>

Reenter the new password, and press Return. Again, note that the password
is not displayed.

4. Enable the password security feature with the following command:

>>> SET PSE 1

To place the workstation in privileged mode and make all console commands
accessible, use the LOGIN command. The SHOW PSE command displays the
current status of the password feature. (If a 1 is displayed, the feature is enabled;
a 0 indicates it is disabled.) To disable the feature, use the SET PSE command
with a 0 argument.

Because the password is stored in nonvolatile memory, you must call the
Customer Support Center if you forget it.

7.3.1.5 Authentication Cards
Rather than distribute passwords and account information, some sites choose to
provide system users with hand-held devices called authentication cards or smart
tokens.

Managing System Access 7–17

Managing System Access
7.3 Using Passwords to Control System Access

Authentication devices have the user’s password programmed onto them.
Depending on the complexity of the hardware design, these devices can support
additional login information (for example, an account name and billing reference
number). A variety of authentication devices are available from third-party
vendors. Such devices are supported by a software module that communicates
with the login program (LOGINOUT.EXE). See the OpenVMS Utility Routines
Manual for a description of the LOGINOUT routines supporting authentication
cards.

7.3.2 Enforcing Minimum Password Standards
You can use AUTHORIZE to impose minimum password standards for individual
users. Specifically, qualifiers and login flags provided by AUTHORIZE control
how soon passwords will expire, whether the user is forced to change passwords
at expiration, and the minimum password length.

7.3.2.1 Expiring Passwords
With the AUTHORIZE qualifier /PWDLIFETIME, you can establish the
maximum length of time that can elapse before the user is forced to change the
password or lose access to the account. By default, the value of /PWDLIFETIME
is 90 days. You can change the frequency requirements for user password changes
by specifying a different delta time value for the qualifier. For example, to require
a user to change the password every 30 days, you would specify the qualifier as
/PWDLIFETIME=30-0.

The /PWDLIFETIME qualifier applies to both primary and secondary user
passwords but not to the system password. Each primary and secondary
password for a user is subject to the same maximum lifetime. However, the
passwords can change at separate times. As soon as the user completes a
password change, that individual password’s clock is reset; the new password
value can exist unchanged for the length of time dictated by /PWDLIFETIME.

AUTHORIZE also provides two login flags related to primary and secondary
password expiration. These flags, PWD_EXPIRED and PWD2_EXPIRED, are
specified with the /FLAGS qualifier. The first flag, PWD_EXPIRED, is set after
the primary password expires and the user has had one last chance to change the
password and has failed to do so. The second flag, PWD2_EXPIRED, is set after
the secondary password expires and the user has had one last chance to change
the secondary password and has failed to do so. If either PWD_EXPIRED or
PWD2_EXPIRED is set, the account is disabled for logins because the user failed
to employ the last chance to change the password during the last login.

As soon as the user successfully changes the password, the system resets the
flags, as appropriate. The flag PWD_EXPIRED becomes NOPWD_EXPIRED as
soon as the primary password is changed. Similarly, the flag PWD2_EXPIRED
becomes NOPWD2_EXPIRED as soon as the secondary password is changed. As
security administrator, you may choose to invoke AUTHORIZE and reset the
flags, giving the user another chance to reset the password.

The use of a password lifetime forces the user to change passwords regularly.
The lifetime can be different for different users. Users with access to critical files
generally should have the shortest password lifetimes.

System passwords have an unlimited lifetime. It is your responsibility as security
administrator to change the system password regularly.

7–18 Managing System Access

Managing System Access
7.3 Using Passwords to Control System Access

Note

SYS$PASSWORD_HISTORY_LIFETIME should be made larger than
the UAF parameter PWDLIFETIME. If you set the SYS$PASSWORD_
HISTORY_LIFETIME value to less than PWDLIFETIME, passwords will
expire out of the history file before they expire in SYSUAF. This defeats
the purpose of the password history file. For more information about
PWDLIFETIME parameter, see Section 7.3.2.2.

7.3.2.2 Enforcing Change of Expired Password
By default, users are forced to change expired passwords when logging in. Users
whose passwords have expired are prompted for new passwords at login. This
password feature is valid only when a password expiration date is specified with
the /PWDLIFETIME qualifier.

To disable forced password changes, specify the following qualifier to the ADD or
the MODIFY command:

/FLAGS=DISFORCE_PWD_CHANGE

Once you disable the forced password feature, you can reenable it by clearing the
login flag, as shown in the following:

/FLAGS=NODISFORCE_PWD_CHANGE

Users who log in and are prompted to change expired passwords can cancel the
login by pressing Ctrl/Y.

Note

If secondary passwords are in effect and both primary and secondary
passwords have expired, the user is forced to change both passwords.
If the user changes the primary password and presses Ctrl/Y before
changing the secondary password, the user is logged out, and no password
change is recorded.

7.3.2.3 Requiring a Minimum Password Length
With the AUTHORIZE qualifier /PWDMINIMUM, you can direct that all
password choices, both primary and secondary, must contain a minimum number
of characters. (Users can still specify passwords up to the maximum length of 32
characters.)

A user’s minimum password length is either the default of 6 characters or another
value established by the /PWDMINIMUM qualifier (provided the number is 10 or
less).

On Alpha systems, the password generator creates passwords of the exact length
specified but limited to 10 characters.

On VAX systems, the password generator creates passwords that range in length
between n and n+2, where the minimum length n is a value ranging from 1
to 10. So the length of a generated password (/GENERATE_PASSWORD or
SET PASSWORD/GENERATE) can conflict with the value provided with the
/PWDMINIMUM qualifier.

Managing System Access 7–19

Managing System Access
7.3 Using Passwords to Control System Access

When there is a conflict between n and the value set by the /PWDMINIMUM
qualifier, the operating system uses the lesser value, but never more than 10.
For example, if you specify a length of 25 with the /PWDMINIMUM qualifier, the
operating system generates passwords of 10 to 12 characters. The system does
not notify you of the difference in values.

The length of a generated password produced by the AUTHORIZE qualifier
/GENERATE_PASSWORD comes from the Pwdminimum field of the source UAF
record: the DEFAULT record or the UAF record copied. The Pwdminimum field
is updated with the value set by /PWDMINIMUM, so passwords created with
SET PASSWORD/GENERATE use the new value.

The system password is not subject to a minimum length. Guidelines that apply
to user passwords are equally applicable to system passwords. Choose system
passwords that are 1 to 32 characters long.

7.3.2.4 Generated Passwords
The /FLAGS=GENPWD qualifier in AUTHORIZE lets you force use of the
automatic password generator when a user changes a password. At some sites, all
accounts are created with this qualifier. At other sites, the security administrator
may be more selective.

If users will have access to sensitive data that must not be compromised by an
intrusion, require them to use the password generator.

If your policy is to request voluntary use of the password generator and users
are not cooperating, you can force users to use the password generator by adding
the /FLAGS=GENPWD qualifier to pertinent user accounts. You can also add
the AUTHORIZE qualifier /FLAGS=LOCKPWD to user accounts to prevent users
from changing passwords. Only you will be authorized to change passwords.

7.3.2.5 Site Password Algorithms
The operating system protects passwords from disclosure through encryption.
OpenVMS algorithms transform passwords from plaintext strings into ciphertext,
which is then stored in the system user authorization file (SYSUAF.DAT).
Whenever a password check is done, the check is based on the encrypted
password, not the plaintext password. The system password is always encrypted
with an algorithm known to the operating system.

The /ALGORITHM qualifier in AUTHORIZE allows you to define which algorithm
the operating system should use to encrypt a user’s password. Your choices are
the current OpenVMS algorithm or a site-specific algorithm. You can specify the
encryption algorithm independently for each account’s primary and secondary
passwords. The syntax is as follows:

/ALGORITHM=keyword=type [=value]

To assign the OpenVMS password encryption algorithm for a user, you would
enter a command like the following:

UAF> MODIFY HOBBIT/ALGORITHM=PRIMARY=VMS

If a site-specific algorithm is selected, you must give a value to identify the
algorithm, for example:

UAF> MODIFY HOBBIT/ALGORITHM=CURRENT=CUSTOMER=128

7–20 Managing System Access

Managing System Access
7.3 Using Passwords to Control System Access

The OpenVMS Programming Concepts Manual provides directions for using a
customer algorithm. You must create a site-specific system service in which you
write code that recognizes the algorithm number you choose and encrypts the
password appropriately. This number has to correspond with the number used in
the AUTHORIZE command MODIFY/ALGORITHM.

Whenever a user is assigned a site-specific algorithm, AUTHORIZE reports this
information in the display provided by the SHOW command.

7.3.3 Screening New Passwords
The system generally compares new passwords against a system dictionary stored
in SYS$LIBRARY to ensure that a password is not a native language word.
It also maintains a history list of a user’s passwords and compares each new
password against this list to guarantee that an old password is not reused. You
can screen passwords further by developing and installing an image that filters
passwords for words that are particularly sensitive to a site.

7.3.3.1 System Dictionary
The DCL command SET PASSWORD takes a user’s proposed password, converts
it to lowercase (if necessary), and compares it to entries in a system dictionary to
ensure that a password is not a native language word. If a proposed password is
found in the dictionary, it is rejected as a valid user password, and the user has
to provide another.

You may want to modify the system password dictionary to include words of
significance to your site. The following procedure lets you add words to the
system dictionary. The procedure also lets you retain a file of the passwords that
you consider unacceptable.

1. Create a file containing passwords you would like to add to the dictionary.
Each password should be on a separate line and in lowercase, as follows:

$ CREATE LOCAL_PASSWORD_DICTIONARY.DATA
somefamous
localheroes

Ctrl/Z

2. Enable SYSPRV and merge your local additions:

$ SET PROCESS/PRIVILEGE=SYSPRV
$ CONVERT/MERGE/PAD LOCAL_PASSWORD_DICTIONARY.DATA -
_$ SYS$LIBRARY:VMS$PASSWORD_DICTIONARY.DATA

You can disable the dictionary search by using AUTHORIZE with the
DISPWDDIC option to the /FLAGS qualifier.

7.3.3.2 History Lists
The operating system maintains a list of a user’s passwords from the last 365
days and compares each proposed password against this list to ensure that
passwords are not reused.

Once a user successfully creates a new password, the system enters the old
password on the history list and updates the file. The password history list can
hold a large number of words, but it is limited to 60 by default. If this number
is exceeded, the user has to use generated passwords. A password remains on
the password history list for 365 days (or the default set by SYS$PASSWORD_
HISTORY_LIFETIME). Whenever a user account is deleted, the system removes
all password records belonging to that account.

Managing System Access 7–21

Managing System Access
7.3 Using Passwords to Control System Access

Using the DCL command DEFINE, you can change the defaults for the capacity
and lifetime of the password history list to any of the values indicated in
Table 7–4.

Table 7–4 Defaults for Password History List

System Logical Name Default Min Max Units

SYS$PASSWORD_HISTORY_LIFETIME 365 1 28000 Days

SYS$PASSWORD_HISTORY_LIMIT 60 1 2000 Absolute count

For example, to increase the capacity of the history list from 60 passwords to 100,
add the following line to the command procedure SYLOGICALS.COM, which is
located in SYS$MANAGER:

$ DEFINE/SYSTEM/EXEC SYS$PASSWORD_HISTORY_LIMIT 100

There is a correspondence between the lifetime of a password history list and
the number of passwords allowed on the list. For example, if you increase the
password history lifetime to 4 years and your passwords expire every 2 weeks,
you would need to increase the password history limit to at least 104 (4 years
times 26 passwords a year). The password history lifetime and limit can be
changed dynamically, but they should be consistent across all nodes on the
cluster.

Sites using secondary passwords may need to double the password limit to
account for the secondary password storage.

The password history list is located in SYS$SYSTEM. You can move the
list off the system disk by using the logical name VMS$PASSWORD_
HISTORY. Define this logical name as /SYSTEM/EXEC, and place it in
SYS$MANAGER:SYLOGICALS.COM.

You disable the history search with the DISPWDHIS option to the /FLAGS
qualifier in AUTHORIZE.

7.3.3.3 Site-Specific Filters
Besides screening passwords against a system dictionary and a history list, you
can develop a site-specific password filter to ensure that passwords are properly
constructed and are not words readily associated with your site. A filter can check
for password length, the use of special characters or combinations of characters,
and the use of product names or personnel names.

To create a list of site-specific words, you write the source code, create a shareable
image, install the image, and, finally, enable the policy by setting a system
parameter. See the OpenVMS Programming Concepts Manual for instructions.

Installing and enabling a site-specific password filter requires both SYSPRV and
CMKRNL privileges. Multiple security alarms are generated when the password
filter image is installed if INSTALL and SYSPRV file-access auditing are enabled
and the required change to the system parameter is noted on the operator console.

The shareable image contains two global routines that are called by the Set
Password utility (SET PASSWORD) whenever a user changes a password.

Caution

The two global routines let you obtain both the proposed plaintext
password and its equivalent quadword hash value. All security

7–22 Managing System Access

Managing System Access
7.3 Using Passwords to Control System Access

administrators should be aware of this feature because its subversion
by a malicious privileged user will compromise the system’s security.

Compaq recommends that you place security Alarm ACEs on the
password filter image and its parent directory. See the OpenVMS
Programming Concepts Manual for instructions.

7.3.4 Password Protection Checklist
In addition to all the recommendations included in Section 3.8, observe the
following guidelines to protect passwords:

Make certain the passwords on the standard accounts like SYSTEM are
secure and changed regularly. You can disable accounts (for example, FIELD
and SYSTEST) with the AUTHORIZE qualifier /FLAGS=DISUSER when
they are not in use.

Do not permit an outside or in-house service organization to dictate the
password for an account they use to service your system. Such service groups
tend to use the same password on all systems, and their accounts are usually
privileged.

On seldom-used accounts, set the AUTHORIZE qualifier /FLAGS=DISUSER,
and enable the account only when it is needed. Change the password
immediately after each use, and notify the service group of the new password
when they need it next.

Delete accounts no longer in use.

Do not leave listings of user names where they can be read or stolen because
they can be used as a basis for system attack. (If you do need listing files, use
ACLs to limit access only to selected individuals.)

Maintain adequate protection of authorization files. Note that the system
user authorization file (SYSUAF.DAT), the network proxy authorization file
(NETPROXY.DAT), and the rights list (RIGHTSLIST.DAT) are owned by the
system account ([SYSTEM]). Do not create any other user accounts in this
group. Normally the default UIC-based file protection for these authorization
files is adequate. The system account also owns the file NET$PROXY.DAT.

Make certain that all users have unique UICs.

The following actions reduce the potential of password detection or limit the
extent of the damage if passwords are discovered or bypassed:

• Avoid giving multiple users access to the same account.

• Protect telephone numbers for dialup lines connected to your system, and
consider setting a system password (SET TERMINAL/SYSPASSWORD) on
dialup lines.

• If your system has accounts available to outside users, such as guest accounts
or accounts for direct customer inquiry, make these accounts captive (limited-
access) accounts contained by captive command procedures. (See Section 7.2.4
for information about setting up captive accounts.)

• Make captive all accounts that do not require a password.

• Extend privileges to users carefully.

• Protect your own files using all the techniques recommended in Section 5.4.8.

Managing System Access 7–23

Managing System Access
7.3 Using Passwords to Control System Access

• Ensure that the files containing components of the operating system are
adequately protected (see Section 8.9.2).

• Use the AUTHORIZE qualifiers /NOINTERACTIVE and /NOBATCH when
setting up proxy login accounts to permit only file access from other nodes.
Interactive and batch logins are disabled for the account.

7.4 Enabling External Authentication
External authentication allows users to log in (or sign on) at the OpenVMS login
prompt using their external user IDs and passwords. The PATHWORKS and
Advanced Server for OpenVMS authentication modules are supported as external
authenticators, providing NT-compatible authentication of OpenVMS users.

When successfully authenticated, the external user ID is mapped to the
appropriate OpenVMS user name and the correct user profile is obtained.

By default, external authentication is disabled at both the system and user levels.
However, when you invoke PATHWORKS or Advanced Server for OpenVMS,
external authentication is automatically enabled, if the system administrator
has defined logical names in SYSTARTUP_VMS.COM and marked user accounts
in the SYSUAF, as described in the following paragraphs. No additional
configuration is necessary on cluster members running the Advanced Server to
enable the Advanced Server to participate in the external authentication process.

Before users can log in, the system administrator must enable external
authentication by performing the following:

• Defining logical names in SYSTARTUP_VMS.COM

• Marking user accounts in the System User Authorization File (SYSUAF)

These tasks are discussed in the following sections.

Defining External Authentication Logical Names
At the system level, external authentication is enabled by defining two system-
wide executive-mode logical names:

• SYS$SINGLE_SIGNON

• SYS$ACME_MODULE

Note

The SYS$SINGLE_SIGNON logical name is automatically defined
to 1 (enabled) by PWRK$ACME_STARTUP.COM (the PATHWORKS
and Advanced Server for OpenVMS startup procedure) if it has not
yet been defined in SYSTARTUP_VMS.COM. If you want to disable
external authentication or set the SYS$SINGLE_SIGNON logical name to
another value, define SYS$SINGLE_SIGNON in SYSTARTUP_VMS.COM
before PATHWORKS or Advanced Server for OpenVMS is started. (See
Table 7–5 for more information on the SYS$SINGLE_SIGNON logical
name bits.)

For example:

$ DEFINE/SYSTEM/EXECUTIVE SYS$SINGLE_SIGNON 0

7–24 Managing System Access

Managing System Access
7.4 Enabling External Authentication

Marking User Accounts in the SYSUAF
At the user level, external authentication is enabled by a flag, EXTAUTH, in the
SYSUAF record. When set, the EXTAUTH flag denotes that the user is to be
externally authenticated. For example, in the Authorize utility, you would enter
commands similar to the following:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD username /FLAGS=([NO]EXTAUTH)
UAF> MODIFY username /FLAGS=([NO]EXTAUTH)

(See the OpenVMS System Management Utilities Reference Manual: A–L for
more information on the Authorize utility EXTAUTH flag. See the OpenVMS
System Services Reference Manual: GETUTC–Z for more information on the
UAI$V_EXTAUTH bit in the SYS$GETUAI and SYS$SETUAI system services
UAI$_FLAGS item code.)

7.4.1 Overriding External Authentication
Users can enter the /LOCAL_PASSWORD qualifier after their OpenVMS user
name at the login prompt to inform OpenVMS to perform local authentication
instead of external authentication. Users should specify their OpenVMS user
name and password when using the /LOCAL_PASSWORD qualifier.

Because the use of the /LOCAL_PASSWORD qualifier is effectively overriding the
security policy established by the system manager, it is only allowed under the
following conditions:

• When the account being logged into has SYSPRV as an authorized privilege.

• When bit 1 is set in the SYS$SINGLE_SIGNON logical name, nonprivileged
users (who are normally externally authenticated) can request local
authentication.

See the OpenVMS Utility Routines Manual for more information on the /LOCAL_
PASSWORD qualifier to LOGINOUT.

7.4.2 Setting a New Password
If you are an externally authenticated user, the DCL command SET PASSWORD
sends the password change request to the external authenticator and changes
your password on your OpenVMS system.

A system manager can set an externally authenticated user’s password by using
a utility provided by the external authenticator. In the case of NT-compatible
authentication, PATHWORKS and Advanced Server for OpenVMS provide the
ADMINISTRATOR SET PASSWORD command. Using this method, the new
password is propagated to the external authenticator immediately.

7.4.3 Case Sensitivity in Passwords and User Names
You can enter a case-sensitive user name at the OpenVMS username prompt
if you enclose it in quotes. If you do not enclose the user name in quotes,
LOGINOUT converts the user name to uppercase characters.

You can restore previous behavior on your OpenVMS system by setting the forced
uppercase configuration bit (bit 3) in the SYS$SINGLE_SIGNON logical name.
(See Table 7–5 for more information.)

OpenVMS and LAN Manager user names are not case-sensitive. Therefore,
quotes are not necessary if you enter an OpenVMS user name or a LAN Manager
user ID.

Managing System Access 7–25

Managing System Access
7.4 Enabling External Authentication

Valid characters for LAN Manager user IDs and passwords belong to the standard
IBM extended (8-bit) ASCII character set. LOGINOUT and SET PASSWORD
pass these strings to LAN Manager case preserved, although the external
authentication service uppercases both strings according to this character set.

LAN Manager passwords can contain characters that are not valid in OpenVMS
passwords. If a LAN Manager password contains a character that is invalid in an
OpenVMS password, password synchronization is not performed and a message is
issued.

OpenVMS passwords are limited to the 7-bit ASCII characters A-Z, 0-9, _, and $.

7.4.4 User Name Mapping and Password Verification
To be externally authenticated, a user provides his or her external user ID and
password at the OpenVMS login prompt. When performing user name mapping,
OpenVMS first tries to locate a match in the SYSUAF and uses that name if it
finds a match; otherwise, it queries the external authentication database for a
matching user ID. When successfully authenticated, the LAN Manager user ID is
mapped to the appropriate OpenVMS user name to obtain the correct user profile,
and the login sequence is completed.

External authentication is supported for interactive logins (including
DECwindows) and network logins where a proxy is used or a user ID/password is
supplied.

If you have external authentication enabled on your system, target user names
specified in DECnet proxies or Auto-Login (ALF) databases must exist in the
SYSUAF. Externally-authenticated users who want to use DECnet proxies must
have the same user name in the SYSUAF file and LAN Manager database.

When using DECnet proxies, it is important to maintain unique user names
across OpenVMS and LAN Manager domains. If the same user name appears
in the SYSUAF file and LAN Manager database identifying two different users,
the use of this user name as a proxy is ambiguous. LOGINOUT treats the name
as an OpenVMS user name for login purposes, even though the same name
in LAN Manager may map to a different OpenVMS user name. This occurs
because name-mapping rules specify that OpenVMS attempt to find a match in
the SYSUAF before LAN Manager.

Externally authenticated users are considered to have a single password and are
not subject to normal OpenVMS password policy (password expiration, password
history, minimum and maximum password length restrictions), but are instead
subject to any defined external authenticator policy. All other OpenVMS account
restrictions remain in effect, such as disabled accounts, modal time restrictions,
quotas, and so on.

Externally authenticated users are identified by having the EXTAUTH flag
set in their SYSUAF record. OpenVMS users whose accounts do not have the
EXTAUTH flag set are not affected by external authentication.

7.4.5 Password Synchronization
Although passwords are verified using the external authenticator database,
OpenVMS attempts to keep the external and SYSUAF password fields
synchronized.

Password synchronization is enabled by default.

7–26 Managing System Access

Managing System Access
7.4 Enabling External Authentication

Synchronization takes place at the completion of a successful externally
authenticated login. If the external password is different than the password
stored in the SYSUAF file, LOGINOUT updates the SYSUAF password field with
the external password. (Synchronization may not be possible due to the different
sets of valid characters allowed by OpenVMS and the external authenticator.)

If required, password synchronization can be selectively turned off. (See
Table 7–5 for more information on the SYS$SINGLE_SIGNON logical name
bits, which control the enabling and disabling of password synchronization.)

7.4.6 Specifying the SYS$SINGLE_SIGNON Logical Name Bits
The SYS$SINGLE_SIGNON system-wide executive-mode logical name controls
overall external authentication operation. The logical name is translated as
a hexadecimal string and treated as a bit vector, with each bit controlling a
separate component.

Table 7–5 contains the definitions of the SYS$SINGLE_SIGNON logical name
bits, which are numbered from right to left (with the least significant bit first).

Table 7–5 SYS$SINGLE_SIGNON Logical Name Bits

Bit # Status Description

0 ON Enable external authentication. Users who are tagged in the SYSUAF file
as externally authenticated use the external authenticator to log in.

OFF Disable external authentication. If local authentication is enabled (that
is, bit 1 is ON), then the system attempts local authentication with the
user’s normal SYSUAF user name and password. If local authentication is
disabled, login is not allowed for externally authenticated users.

1 ON Enable local authentication. If bit 0 is off, the system automatically logs
the user in using local authentication. (The system effectively ignores
the EXTAUTH flag in the user’s SYSUAF record.) If bit 0 is on but the
external authentication server is not running, the user can request local
authentication using the /LOCAL_PASSWORD qualifier.

OFF Disable local authentication. A user can force local authentication using
the /LOCAL_PASSWORD qualifier. You must have SYSPRV privilege to
use this qualifier when bit 1 is OFF.

2 ON Reserved by Compaq.

OFF Reserved by Compaq.

3 ON Enable forced uppercase terminal input during login; this is equivalent to
the RMS ROP$V_CVT option for the login device. Setting this bit restores
previous OpenVMS behavior but does not allow case-sensitive input of user
name and password.

OFF Disable forced uppercase terminal input during login.

4 ON Disable local password synchronization. The system does not perform
password synchronization from the external authenticator to the SYSUAF.

OFF Enable local password synchronization. During a successful login, the
system attempts to synchronize the SYSUAF password with the external
password (if they are different) by calculating the OpenVMS hash value
of the external password used for logins and storing the hash value in the
SYSUAF file.

(continued on next page)

Managing System Access 7–27

Managing System Access
7.4 Enabling External Authentication

Table 7–5 (Cont.) SYS$SINGLE_SIGNON Logical Name Bits

Bit # Status Description

31 ON Enable OPCOM debug messages, which are displayed when users log in
or use the SET PASSWORD command. These messages can help diagnose
potential problems with the configuration of external authentication.

OFF Disable OPCOM debug messages.

If SYS$SINGLE_SIGNON is undefined or equates to an invalid hexadecimal
string, all bits are considered OFF.

The following example definition enables external authentication (bit 0). All other
components take their default values.

$ DEFINE/SYSTEM/EXECUTIVE SYS$SINGLE_SIGNON 1

The following example definition enables external authentication (bit 0), forces
uppercase terminal input at the username prompt (bit 3), and disables password
synchronization (bit 4).

$ DEFINE/SYSTEM/EXECUTIVE SYS$SINGLE_SIGNON 19 !19 HEX

7.5 Controlling the Login Process
This section describes many operating system features designed to secure systems
from unauthorized users.

7.5.1 Informational Display During Login
This section describes how you can control the display of various pieces of
information that appear by default at login time, such as announcement,
welcome, last login, and new mail messages. So that you can understand the
effect of login restrictions, it also describes how the operating system processes
the login fields of the system user authorization file (SYSUAF.DAT). In addition,
this section describes the use of the secure server and how to set up intrusion
detection.

7.5.1.1 Announcement Message
To provide an announcement message on your system, define the system
logical name SYS$ANNOUNCE in the site-specific startup command procedure
SYS$MANAGER:SYSTARTUP_VMS.COM. The OpenVMS System Manager’s
Manual describes how to do this. The announcement message appears at login.

The definition you provide here affects all users on the system. Because this
message may provide a clue to the identity of the operating system, you may
decide not to display it.

7.5.1.2 Welcome Message
Similar to the announcement message, the welcome message is controlled through
a system logical name, SYS$WELCOME. If you do not define SYS$WELCOME,
a standard welcome message is provided for all users. This welcome message
reveals the operating system and version number, as well as the node if
SYS$NODE is defined.

7–28 Managing System Access

Managing System Access
7.5 Controlling the Login Process

To define another message for SYS$WELCOME, you can create a text file
containing the message. To display the contents of this file, use the following
line in SYSTARTUP_VMS.COM:

$ DEFINE/SYSTEM SYS$WELCOME "@SYS$MANAGER:WELCOME.TXT"

To disable the welcome message, place the following DCL command in
SYS$MANAGER:SYSTARTUP_VMS.COM. This command prints a blank line
in place of the standard welcome message.

$ DEFINE/SYSTEM SYS$WELCOME " "

If you prefer to selectively disable the message for individual users, you can use
the AUTHORIZE qualifier /FLAGS=DISWELCOME on individual UAF records.

7.5.1.3 Last Login Messages
By default, the system displays three messages that provide information about
the last logins and the number of failed login attempts (see Section 3.4.3).
You can selectively disable the appearance of these three messages. Enter the
AUTHORIZE qualifier /FLAGS=DISREPORT for specific users.

7.5.1.4 New Mail Announcements
By default, the system tells users the number of new mail messages when
they log in. You can prevent users from receiving this notice by specifying the
AUTHORIZE qualifier /FLAGS=DISNEWMAIL.

The new mail announcement is primarily a user convenience, not a security issue.
If a user with a restricted account cannot invoke the Mail utility (MAIL), then
you might want to disable the new mail message at the same time you prohibit
mail access. The following AUTHORIZE qualifier accomplishes both tasks:

/FLAGS=(DISMAIL,DISNEWMAIL)

7.5.2 Limiting Disconnected Processes
Virtual terminals let users maintain more than one disconnected process at
a time. Virtual terminals are also required by the secure server feature (see
Section 7.5.4). You may want to restrict the use of virtual terminals. For
example, if you are concerned about the amount of nonpaged pool, you may not
want to enable this feature on a systemwide basis.

Virtual terminals can be disabled at the terminal, user, or system level:

• To prevent particular terminals from being used as virtual terminals, use the
DCL command SET TERMINAL/PERMANENT/NODISCONNECT.

• To prevent specific users from attaching to disconnected processes, set the
AUTHORIZE qualifier /FLAGS=DISRECONNECT for those users. (An
applications account used by multiple users is a good candidate for the
DISRECONNECT flag to prevent the users from connecting to each other’s
processes.)

• To disable virtual terminals on a systemwide basis, remove the
DISCONNECT attribute from the system parameter TTY_DEFCHAR2.

You can also set the amount of time allowed for reconnection to less than the
default of 15 minutes with the system parameter TTY_TIMEOUT. A process that
remains disconnected for longer than the timeout value is automatically logged
out by the system. Limiting the connection time tends to minimize the number
of users who receive messages, but it also affects the usefulness of the connection
feature.

Managing System Access 7–29

Managing System Access
7.5 Controlling the Login Process

For more information on setting up and reconnecting to virtual terminals, refer to
the OpenVMS System Manager’s Manual.

7.5.3 Providing Automatic Login
You can assign accounts to particular terminals to enable an automatic
login feature (see Section 7.2.6). This feature permits users to log in without
specifying a user name. The operating system associates the user name with the
terminal (or terminal server port) and maintains these assignments in the file
SYS$SYSTEM:SYSALF.DAT, referred to as the automatic login file or the ALF
file. Maintain this file with the following System Management utility (SYSMAN)
commands:

Task Command Example

Adding terminal/user name
association

ALF ADD ALF ADD TTA5 RENOLDS

Adding terminal server/user
name association

ALF ADD/PORT "M34C3/LC-1-2" RENOLDS

Displaying records in ALF
file

ALF SHOW ALF SHOW TTA5
ALF SHOW
/USERNAME=PONTRE

Removing terminal/user
name association

ALF REMOVE ALF REMOVE TTA3
ALF REMOVE
/USERNAME=DOUGLAS

The ALF file consists of one record for each terminal on which automatic logins
are enabled. Each record consists of two fields: the device name or terminal
server port name of the terminal, followed by the user name of an account. The
device names must be unique within the file. However, the same user name can
occur in any number of records; that is, one account can be automatically logged
in to an unlimited number of terminals.

The ALF file is an indexed file that does not need to be purged, but it should be
backed up after a modification.

7.5.4 Using the Secure Server
Section 3.8 describes password grabbers as a class of programs designed to steal
passwords from unsuspecting users who log in to terminals left on. The operating
system provides a secure terminal server that stops any currently executing
process before the start of a login at that terminal.

Invoke the secure server separately for each terminal with the following DCL
command:

SET TERMINAL/PERMANENT/SECURE/DISCONNECT term-id

The user must then press the Break key followed by the Return key to start a
login. The login proceeds as usual.

If you apply the secure server to all terminals, you can make the login procedure
consistent throughout the site by putting the SET TERMINAL commands in the
site-specific startup command procedure. However, certain applications that may
use the terminal as a communications line need to use the Break key for their
own purposes, which would be incompatible with the secure terminal server.

7–30 Managing System Access

Managing System Access
7.5 Controlling the Login Process

The secure terminal server feature is also incompatible with autobaud handling.
However, because autobaud handling is necessary only on modem terminals
(switched and dialup terminals), the modem handling on such terminals performs
the equivalent of secure server functions. For secure operation, set up the
terminal characteristics as follows:

• For local terminals (direct-wired), use the following SET TERMINAL
qualifiers:

/NOMODEM/SECURE/DISCONNECT/NOAUTOBAUD/PERMANENT

• For switched terminals (data-switch and dialup), use the following SET
TERMINAL qualifiers:

/MODEM/AUTOBAUD/NOSECURE/DISCONNECT/PERMANENT

Specify the /DIALUP qualifier if the terminal port is accessible through a
telephone line or the equivalent, regardless of the path (direct modem, data
switch, terminal server, or public data network).

Always specify the /DISCONNECT qualifier to guard against password grabbers.
To prevent disconnected jobs from filling up your system, set the system
parameter TTY_TIMEOUT to a low timeout value, which determines when
disconnected processes are deleted.

If you decide to apply the secure server to individual terminals, include directly
wired terminals located in public areas or remote, unsecured areas. Terminals
never used for local or dialup logins are not subject to this security problem.
Terminals closely supervised during logins may also not require this measure.

7.5.5 Detecting Intruders
Occasionally people fail to log in correctly because they enter an expired password
or make a typing error. But not all failures are benign: some occur because an
unauthorized person is trying to log in through an expired account or with an
unknown user name or is attempting to guess passwords on a valid account.

The operating system is sensitive to login failures. After one failure, it begins to
monitor the terminal, terminal server connection, or network connection where
the login is taking place. At first, the operating system records unsuccessful
logins in an intrusion database. As failures continue, the operating system not
only records failures but takes restrictive measures. The person attempting login
is monitored more closely and limited to a certain number of login retries within a
limited period of time. Once a person exceeds either the retry or time limitation,
he or she cannot log in for a while, even with a valid user name and password.
At a later point, the restriction eases, and login is allowed once again.

7.5.6 Understanding the Intrusion Database
The DCL command SHOW INTRUSION displays the contents of the intrusion
database; Example 7–5 shows a sample display. The database captures the
following types of information on login failures:

Managing System Access 7–31

Managing System Access
7.5 Controlling the Login Process

Field Description

Intrusion class The general source of failure:

• Network: failure originating from a remote node, using a valid
user name

• Terminal: failure originating from one terminal

• Term_User: failure originating from one terminal, using a valid
user name

• Username: failure attempting to create a detached process

Type Severity of login failure:

• Suspect

• Intruder

The system parameters for threshold count (LGI_BRK_LIM) and
monitoring period (LGI_BRK_TMO) define when a suspect becomes
an intruder.

Count Number of login failures associated with a particular source.

Expiration Date and time when a suspect’s record is deleted or when an
intruder is allowed another chance to log in. When an intruder’s
record reaches its expiration time, it becomes a suspect, and the
failure count is reset to LGI_BRK_LIM. The expiration time is reset
to the old expiration plus LGI_BRK_TMO.

Source Origin of the login failure:

• Node and user name if Network class

• Terminal if Terminal class

• Terminal and user name if Term_User class

• User name if Username class

Whenever the system detects an intruder, it sends an auditing message to the
security operator terminal or the log file to alert you. Using the DCL command
SHOW INTRUSION, you can display the source and type of intrusion. For
example, Example 7–5 shows a problem with a user named MAPLE who is
logging in over the network. The user has tried to log in 8 times. Because the
user failed to log in within the monitoring period, the operating system suspended
all logins from OMNI:.BOSTON.BIRCH::MAPLE. Table 7–6 gives a more detailed
explanation of how the system decides to suspend logins.

Notice that many suspects appear in the display. Sometimes users forget their
passwords or type them incorrectly. To remove an entry from the database, use
the DCL command DELETE/INTRUSION_RECORD.

7–32 Managing System Access

Managing System Access
7.5 Controlling the Login Process

Example 7–5 Intrusion Database Display

$ SHOW INTRUSION

Intrusion Type Count Expiration Source
NETWORK SUSPECT 1 2-Jan-1995 13:20:30.89 PCD025::

Intrusion Type Count Expiration Source
NETWORK SUSPECT 5 2-Jan-1995 13:36:39.42 DENIM::SYSTEM
NETWORK SUSPECT 2 2-Jan-1995 13:25:17.30 N1KDO::SYSTEM

Intrusion Type Count Expiration Source
NETWORK SUSPECT 2 2-Jan-1995 13:07:57.95 OMNI:.LOWELL.ASH::TESTER
NETWORK INTRUDER 8 2-Jan-1995 11:06:50.51 OMNI:.BOSTON.BIRCH::MAPLE

Intrusion Type Count Expiration Source
NETWORK SUSPECT 2 2-Jan-1995 13:20:10.09 JETTE::TIPH
NETWORK SUSPECT 1 2-Jan-1995 13:21:40.75 FTSR::TFREDERICK

7.5.6.1 How Intrusion Detection Works
Once a login failure occurs, a user becomes a suspect and is monitored for further
failures for a period of time. The operating system tolerates only so many login
failures by the suspect during this given period of time before it declares the
source of login failure to be an intruder. In other words, suspects become
intruders by exceeding their allowed chances for login during the monitoring
period.

The chance count, set by the system parameter LGI_BRK_LIM, defines how
many times a person can try logging in; the standard limit is five times. The
chance parameter works in tandem with a time factor controlled by the system
parameter LGI_BRK_TMO. At each login failure, the suspect’s monitoring period
is increased by the value of LGI_BRK_TMO. Thus, with each failure, the suspect
is monitored for a longer period of time.

Table 7–6 illustrates a situation where evasive action results when user George
fails five times to log in. At each failure, the monitoring period is extended by
5 minutes. On the fifth failure, the operating system labels George an intruder
and refuses to log him in. (Notice that the example assumes the parameters
LGI_BRK_LIM and LGI_BRK_TMO are both set to 5.)

Managing System Access 7–33

Managing System Access
7.5 Controlling the Login Process

Table 7–6 Intrusion Example

Time of Login
Failure

Failure
Count Extension of Monitoring Period

6:00 0 George fails to log in, and the system starts to monitor
logins from George’s terminal. It monitors for the next 5
minutes.

6:00:30 1 Thirty seconds later, with 4.5 minutes left in the
monitoring period, George fails again. The monitoring
period is extended by 5 minutes. Thus, the system
monitors George for login failures during the next 9.5
minutes.

6:01 2 Thirty seconds later, 9 minutes remain in his monitoring
period, and the system extends it by 5 minutes.

6:02 3 One minute later, George has 13 minutes in his monitoring
period, and the system extends it by 5 minutes.

6:02:30 4 Thirty seconds later, George has 17.5 minutes in the
monitoring perod, and the system extends it by 5 minutes.
Thus, the system monitors George for login failures during
the next 22.5 minutes.

6:04:30 5 Two minutes later, George makes a sixth attempt. Even
though the monitoring period allows the time, he runs out
of chances. He becomes an intruder and can no longer
access the system.

7.5.6.2 Setting the Exclusion Period
An intruder can be excluded temporarily or permanently, depending on system
settings:

• Temporary exclusion is controlled by the product of LGI_HID_TIM and a
random number between 1 and 1.5. At the end of the temporary exclusion
period, the subject is reclassified as a suspect. The monitoring period of the
suspect is set by the value of LGI_BRK_TMO. For the new monitoring period,
the failure count is set to LGI_BRK_LIM, allowing one more chance to log in
before the subject is reclassified as an intruder.

• Permanent exclusion results if LGI_BRK_DISUSER is set because this
enables the DISUSER flag in a user authorization record when the operating
system detects an intrusion.

Enabling the LGI_BRK_DISUSER parameter can have serious consequences
because that user name is disabled until you manually intervene. If LGI_BRK_
DISUSER is enabled, a malicious user can put all known accounts, including
yours, out of service in a short time. To recover, you must log in on the system
console where the SYSTEM account is always allowed to log in.

7.5.6.3 System Parameters Controlling Login Attempts
Table 7–7 describes the system parameters controlling login and intrusion
detection.

7–34 Managing System Access

Managing System Access
7.5 Controlling the Login Process

Table 7–7 Parameters for Controlling Login Attempts

If You Want to Control... Set the Parameter Description

Login time period LGI_PWD_TMO Allows time to:

• Enter the correct system password (if used).

• Enter personal account passwords.

• Enter the old password, enter a new
password, and verify it when using the
SET PASSWORD command.

Number of times a person can
try to log in over a phone line or
network connection

LGI_RETRY_LIM Allows a person to retry the login sequence
without losing the phone connection or network
link as long as the retry time (LGI_RETRY_
TMO) allows. Someone can reconnect and
reattempt login as long as the break-in limit
(LGI_BRK_LIM) has not been exceeded during
the monitoring period.

Interval between login attempts
over phone lines or network
connection

LGI_RETRY_TMO Specifies the number of seconds allowed between
login attempts after a login failure. If there is
no user response after a login failure for LGI_
RETRY_TMO seconds, LOGINOUT disconnects
the session.

Number of login chances LGI_BRK_LIM Specifies the number of login failures during the
monitoring period that triggers evasive action.
The failure count applies independently to login
attempts by each user name, terminal, and node.

Length of failure monitoring
period

LGI_BRK_TMO Indicates the time increment added to the
suspect’s expiration time each time a login
failure occurs. Once the expiration period passes,
prior failures are discarded, and the subject is
given a clean slate.

Association of user name and
terminal name in intrusion
database source name

LGI_BRK_TERM Controls whether failures from terminal class
logins are counted by terminal, by user (the
default), or by user across all terminals. LAT is
tracked back to the originating port based on the
contents of the TT_ACCPORNAM field.

Duration of login denial LGI_HID_TIM Specifies the duration of login denial. The
value of this parameter times a random number
(between 1 and 1.5) determines the actual length
of evasive action when the failure count has
exceeded LGI_BRK_LIM.

Intruder’s account LGI_BRK_
DISUSER

Enables the DISUSER flag in user’s
authorization record, permanently locking out
that account.

7.5.7 Security Server Process
The Security Server process, which is created as part of the normal operating
system startup, performs the following tasks:

• Creates and manages the system’s intrusion database

• Maintains the network proxy database file (NET$PROXY.DAT)

Managing System Access 7–35

Managing System Access
7.5 Controlling the Login Process

The system uses the intrusion database to keep track of failed login attempts.
This information is scanned during process login to determine if the system
should take restrictive measures to prevent access to the system by a
suspected intruder. You can display the contents of this database by issuing
the DCL command SHOW INTRUSION, as shown in Example 7–5. You
can delete information from the database by issuing the DCL command
DELETE/INTRUSION.

The network proxy database file (NET$PROXY.DAT) is used during network
connection processing to determine if a specific remote user may access a local
account without using a password. You can manage the information in this
database with the Authorize utility.

7–36 Managing System Access

8
Controlling Access to System Data and

Resources

This chapter describes how you design user groups and provide users with the
identification (UICs, identifiers, privileges) they need to do their work. As part
of the discussion, the chapter shows how to assign proper protection codes and
ACLs to objects so that the user can work efficiently while, at the same time,
system data and resources are properly protected. The chapter assumes you are
familiar with the material in Chapter 4 and Chapter 5.

8.1 Designing User Groups
As you design user groups, remember that the groups you establish have an
impact on data and resource protection and influence those who receive the
GROUP, GRPNAM, and GRPPRV privileges. You may want to map out the
functions you expect your users to perform. Look for groups of users involved
with a common function, such as accounting, engineering, marketing, and
personnel.

Think ahead to future plans in your organization. Incorporate these ideas
into your strategy. You can fine-tune the group design at any time, but it is
most important to gain a perspective on the logical groupings according to the
functions your users perform.

Following are two guidelines for determining the placement of users in UIC
groups:

• Sharing: Users who typically share data and control of processes should be
arranged in the same group.

• Protection: Users who should not have access to each other’s data or control
each other’s processes should be assigned to separate groups.

However, there are limitations to UIC group design. You may want to give only
a few members of your UIC group access to files that you own, or you may want
to grant access to your files to members of several UIC groups without having to
grant world access. These limitations are described in Section 8.1.2.

8.1.1 Example of UIC Group Design
The fictitious Rainbow Paint Company is a distribution company with five
departments: executive, accounting, marketing, shipping, and administration.
Table 8–1 identifies the employees in the various departments who need computer
resources. The table also lists the job responsibilities of the employees.

Controlling Access to System Data and Resources 8–1

Controlling Access to System Data and Resources
8.1 Designing User Groups

Table 8–1 Employee Grouping by Department and Function

Department Employee Function

Executive Samuel Gibson President

Olivia Westwood Treasurer
Head of Computer Operations

Accounting Carlo Ruiz Payroll

Rich Smith Bookkeeping

Rod Jacobs Clerk

Ruth Crandall Clerk

Marketing Jason Chang Forecasting

Alana Mack Sales Reporting

Shipping Scott Giles Inventory Control

Administration Jane Simon Correspondence Management
Paycheck Printing

The fact that the company has been organized into departments suggests that
individuals in the same department perform many of the same functions. For
example, the advantage of grouping all the employees who perform bookkeeping
tasks for the company in the accounting department is that employees can easily
communicate with one another and gain access to the data they must share.

As the system manager of Rainbow Paint’s computer resources, Olivia Westwood
will set up UIC groups based on the existing organizational structure. For
example, the employees in the accounting department (Ruiz, Smith, Jacobs, and
Crandall) could be members of the UIC group ACCOUNTING. Setting up the
UIC group in this way ensures that user Ruiz has easy access to data from user
Smith, and so on.

Effective department organization ensures that only selected employees will
have access to all data and employees in the company. For example, one of
the functions of the accounting department concerns payroll. Because payroll
information is confidential, employees in the shipping and marketing departments
should not have access to that information.

As the system manager of Rainbow Paint’s computer resources, Westwood sets up
the UIC groups—ACCOUNTING, EXECUTIVE, MARKETING, SHIPPING, and
ADMINISTRATION—corresponding to the various departments in the company.
Members of a UIC group can be given common access to files, as shown in the
following example:

$ SET SECURITY/PROTECTION=G:RWE GROUP_STATS.DAT

With this command, the owner of the file GROUP_STATS.DAT allows each
member of the UIC group read, write, and execute access to the file.

8.1.2 Limitations to UIC Group Design
In some cases, UIC-based protection does not present the best solution to your
object protection needs. If users in several UIC groups need access to common
files and other resources on the system, the only UIC-based alternatives are
to give world access to the object (all users can access the object) or to grant
extended privileges to each user. Neither choice is desirable.

8–2 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.1 Designing User Groups

You may also need to allow users in a UIC group several types of access to files;
you may want to deny access to the object to some users in the same group.
Again, UIC-based protection does not offer a good solution to meet these needs.

Access control lists (ACLs), described in the following sections, offer another way
to protect files and other objects on the system.

As the site security administrator, it is extremely important to familiarize
yourself with the subtleties of the UIC categories, as described in Section 4.5.
Putting users in certain UIC groups may grant them system privileges, and
a user with system privilege has control access to any protected object on the
system. The SYSPRV privilege is given by default to all UIC groups less than
or equal to 10, but the actual range for the system UIC category is determined
by the value of the MAXSYSGROUP system parameter. Putting users with the
GRPPRV privilege in groups that own system files might also cause security
problems.

8.2 Naming Individual Users in ACLs
Rather than attempting to restructure UIC groups to solve data and resource
protection problems, you may be able to achieve your goals by using access control
lists (ACLs). (Section 4.4 provides a detailed description of ACLs.) The UIC can
serve as an identifier in an ACE, so you can easily construct ACLs that allow
specific users across various UIC groups access to an object.

For example, consider the ACL that you might construct to allow specific users
from the Rainbow Paint Company to access the file PAYROLL.DAT:

(IDENTIFIER=OWESTWOOD,ACCESS=READ+WRITE+EXECUTE+DELETE)
(IDENTIFIER=CRUIZ,ACCESS=READ+WRITE+EXECUTE+DELETE)
(IDENTIFIER=RSMITH,ACCESS=READ+WRITE+EXECUTE+DELETE)
(IDENTIFIER=JSIMON,ACCESS=READ)
(IDENTIFIER=SGIBSON,ACCESS=READ)

8.3 Defining Sharing of Rights
Many users often share the same access needs, and an ACL consisting strictly
of UIC identifiers can become too lengthy. To shorten the ACL, you can include
environmental identifiers, which are system-defined, or create general identifiers
(see Table 4–1).

When creating general identifiers, you design the names of the identifiers you
want on your system and compose the set of holders for the identifiers. Then
you add the identifiers to the rights database and assign the identifiers to the
intended users.

For example, the Rainbow Paint Company decided to add the identifier PAYROLL
to the rights database. The holders of that identifier were all users who needed
read, write, execute, and delete access to PAYROLL.DAT: OWESTWOOD, CRUIZ,
and RSMITH.

Once the identifier and its holders were defined, the security administrator used
the following ACL to specify the same type of access to PAYROLL.DAT:

(IDENTIFIER=PAYROLL,ACCESS=READ+WRITE+EXECUTE+DELETE)
(IDENTIFIER=JSIMON,ACCESS=READ)
(IDENTIFIER=SGIBSON,ACCESS=READ)

Controlling Access to System Data and Resources 8–3

Controlling Access to System Data and Resources
8.4 Conditionalizing Identifiers for Different Users

8.4 Conditionalizing Identifiers for Different Users
A final step in designing ACLs and identifiers is to consider how and when
different identifiers are going to be used. Users often need to hold an identifier for
different reasons, such as updating databases or performing system operations.
For this reason, you may want to qualify the use of an identifier.

There are several ways to qualify identifiers. One way is to use environmental
identifiers, and another is to add special attributes to identifiers, as described in
Section 8.6.7.

Environmental identifiers describe different types of users based on their initial
entry into the system. These identifiers—local, dialup, remote, interactive,
network, and batch—let you define a large potential group of users according
to their use of the system. Typically, these types of identifiers are used in
combination with other identifiers.

For example, the following ACE permits user Martin to have read, write, execute,
and delete access to the object only when logged in from a local terminal:

(IDENTIFIER=MARTIN+LOCAL,ACCESS=READ+WRITE+EXECUTE+DELETE)

You can use the environmental identifiers in ACLs to deny access to an entire
class of logins. For example, the following ACE denies access to all dialup users:

(IDENTIFIER=DIALUP,ACCESS=NONE)

In assigning these environmental identifiers to users in a DECwindows
environment, remember that DECwindows processes can be virtually any
type of process. For example, a user may choose to run DECwindows Mail in a
batch job. Even though the process is communicating interactively with a user
through a DECwindows workstation, it is still classified as a batch job.

8.5 Designing ACLs
There are several factors to consider when designing ACLs:

• Using shorter ACLs with general identifiers has several advantages. The
operating system processes shorter ACLs more rapidly. In addition, when
employees change but the functions remain the same, you do not have to
change every ACL across the system. Instead, you change the holders of
the identifier. If employees leave the project, you can edit their records
in RIGHTSLIST.DAT so they no longer hold the identifier, or if they leave
the company, you can remove their user authorization file (UAF) records
altogether. When new employees are hired for the same jobs, grant the new
users the right to hold the identifier. The new users then have the same
ACL-based access as the former users.

• Your overall design should consider the types of files and other objects on your
system and the protection needs of each. If you have successfully designated
groups and identifiers, you should be able to easily design ACLs and define
standard protection. Time spent clarifying the common access needs of your
users simplifies the design of identifiers and ACLs. You will also simplify the
job for your users who place ACLs on their files.

• Do not use ACLs indiscriminately. They consume paged system dynamic
memory when files are open. They also require additional processing time.
ACLs are best applied where protection is really needed. If your

8–4 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.5 Designing ACLs

ACLs become too long (for example, more than 200 entries or so), you
might consider grouping users into discrete categories and creating general
identifiers.

• At the same time, do not create excessive numbers of identifiers. In
particular, do not grant too many identifiers to one user. Having a user hold
more than 10 or 20 identifiers may result in excessive time spent processing
ACLs. If you find an individual holding too many identifiers, you may want
to reconsider how your groups are structured. Or, if this is an exception case,
consider putting the individual directly on the necessary ACLs.

For more information on defining identifiers, see Section 8.6 and the description
of AUTHORIZE in the OpenVMS System Management Utilities Reference Manual.
For more information about creating and maintaining ACLs, see Chapter 4. For
extensive work, using the access control list editor (ACL editor) is appropriate;
the ACL editor is described in the OpenVMS System Management Utilities
Reference Manual.

8.6 Populating the Rights Database
Once you have designed the names of the identifiers you want on your system
and composed the set of holders for the identifiers, use AUTHORIZE to add the
identifiers to the rights database and assign the identifiers to the intended users.
These associations are kept in the rights database (RIGHTSLIST.DAT), which
you maintain as you add or remove users and identifiers.

Initially, the rights database is created at system installation and is located in
the [SYSEXE] directory. At creation, it contains the names of the environmental
identifiers. As you add users to the authorization file, one identifier is added for
each authorized user. The identifier, called a UIC identifier, is associated with
the user’s UIC and user name.

There is also an identifier in the rights database equivalent to each UIC group
name. When you add a new user as the first member of a new UIC group and you
specify an account group name with the user, an identifier corresponding to the
account group name is added to the rights database, as shown in the following
example:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD ROB/PASSWORD=SP0152/UIC=[014,006] -
_UAF> /DIRECTORY=WORK:[ROB]/ACCOUNT=MGMT
UAF-I-ADDMSG, user record successfully added
UAF-I-RDBADDMSGU, identifier ROB value: [000014,000006] added to RIGHTSLIST.DAT
UAF-I-RDBADDMSGU, identifier MGMT value: [000014,177777] added to RIGHTSLIST.DAT

Because the account name MGMT is specified when adding ROB’s account and
no UIC group of that name exists, the MGMT identifier is added to the rights
database.

Each site adapts its own rights database according to actual use and needs.

Note that when you use AUTHORIZE to add, remove, or change user names
in the system user authorization file (SYSUAF.DAT), AUTHORIZE makes
corresponding changes for you in RIGHTSLIST.DAT so that the rights list
corresponds to SYSUAF.DAT.

Controlling Access to System Data and Resources 8–5

Controlling Access to System Data and Resources
8.6 Populating the Rights Database

Because of the automatic creation and maintenance of the rights database, you
seldom need to use the AUTHORIZE command CREATE/RIGHTS. However, if
the rights database is damaged or deleted, you can create a new one with this
command. (See the OpenVMS System Management Utilities Reference Manual for
more information.)

8.6.1 Displaying the Database
You should regularly display the rights database to check that it is correct and
current. Two AUTHORIZE commands are used for this: SHOW/IDENTIFIER
and SHOW/RIGHTS. To display all holders of an identifier, use the
SHOW/IDENTIFIER command, as shown in the following example:

UAF> SHOW/IDENTIFIER/FULL NETWORK

Use the asterisk (*) wildcard to display all holders of all identifiers on the system,
as follows:

UAF> SHOW/IDENTIFIER/FULL *

To display the identifiers held by a particular user, use the SHOW/RIGHTS
command, as follows:

UAF> SHOW/RIGHTS/USER=ROBIN

Use the asterisk wildcard to display all identifiers held by all users, as follows:

UAF> SHOW/RIGHTS/USER=*
UAF> SHOW/RIGHTS/USER=[*,*]

The first command displays users alphabetically. The second command displays
users according to UICs.

8.6.2 Adding Identifiers
You add identifiers to the rights list with the AUTHORIZE command
ADD/IDENTIFIER, for example:

UAF> ADD/IDENTIFIER PAYROLL
identifier PAYROLL value %X80080011 added to RIGHTSLIST.DAT

To grant users an identifier with any of the attributes described in Section 8.6.7,
you must name that attribute when adding the identifier. For example, to allow
users to add or modify an identifier, specify the Dynamic attribute:

UAF> ADD/IDENTIFIER PROJECT_TEAM1 /ATTRIBUTES=DYNAMIC

8.6.3 Restoring the Rights Database
If you accidentally deleted the rights list and it cannot be recovered from a
backup copy, recreate RIGHTSLIST.DAT by entering the CREATE/RIGHTS
command, followed by the ADD/IDENTIFIER command, as follows:

UAF> CREATE/RIGHTS
{message}
UAF> ADD/IDENTIFIER/USER=* or ADD/IDENTIFIER/USER=[*,*]
{messages}

The ADD/IDENTIFIER command generates a UIC identifier in the rights list
corresponding to each user name in SYSUAF.DAT. To complete the task, use the
ADD/IDENTIFIER command to add all general identifiers that were lost. Then
redefine the holders of the identifiers with GRANT/IDENTIFIER commands, as
described in Section 8.6.4.

8–6 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.6 Populating the Rights Database

8.6.4 Assigning Identifiers to Users
After adding identifiers, you associate users as holders of the existing identifiers
by using the AUTHORIZE command GRANT/IDENTIFIER, as shown in the
following example:

UAF> GRANT/IDENTIFIER PAYROLL MARTIN
UAF-I-GRANTMSG, identifier PAYROLL granted to MARTIN
UAF> GRANT/IDENTIFIER PAYROLL IPPOLITO
UAF-I-GRANTMSG, identifier PAYROLL granted to IPPOLITO

To give user Martin the EXECUTIVE identifier in addition to the
PAYROLL identifier would require another use of the GRANT/IDENTIFIER
command. You can introduce only one holder association at a time with the
GRANT/IDENTIFIER command.

In all cases shown above, AUTHORIZE associates the PAYROLL identifier with
the UIC identifier corresponding to the user, specifically Martin and Ippolito.
Both the identifiers must exist in the rights database.

8.6.5 Removing Holder Records
When a user leaves the company, remove the UAF record for that user. Notify
the managers of all sites where that user has access to proxy accounts to remove
proxy access information in the remote node’s NETPROXY.DAT file. When you
run AUTHORIZE to remove a user’s UAF record, AUTHORIZE also removes the
user’s connections as a holder of identifiers in the rights database. However, if
a departed user is the only remaining holder of a given identifier, remove that
identifier to avoid future confusion.

8.6.6 Removing Identifiers
Before you remove an identifier from the rights database:

1. Remove all occurrences of the identifier from ACLs on the system. For
example, the following command removes the obsolete identifier 87SUMMER
from the ACL of multiple files:

$ SET SECURITY/ACL=(IDENTIFIER=87SUMMER)-
_$/DELETE/LOG *.*;*

You receive errors for files that do not contain the ACE, but the ACE is
deleted from all files that do contain it.

2. Remove the identifier 87SUMMER from the rights database with the
AUTHORIZE command REMOVE/IDENTIFIER. For example, use the
following AUTHORIZE command to remove the identifier 87TERM3:

UAF> REMOVE/IDENTIFIER 87TERM3
{message}

Identifiers in hexadecimal format in an ACE indicate that a general identifier
has been deleted from the rights database. Similarly, if you see an identifier
displayed as a numeric UIC, the original identifier was a UIC that has been
removed. Delete ACEs with numeric UIC or hexadecimal identifiers.

It is wise not to reuse UICs after an employee leaves. The new employee may
gain some or all of the access rights of the previous employee through ACL
entries that still reference the old UIC in numeric format.

Controlling Access to System Data and Resources 8–7

Controlling Access to System Data and Resources
8.6 Populating the Rights Database

To rename an identifier, use the AUTHORIZE command RENAME/IDENTIFIER
in the following format:

RENAME/IDENTIFIER old-identifier new-identifier

Renaming an identifier preserves the set of resources available through that
identifier. ACLs containing the renamed identifier automatically display the new
identifier name.

8.6.7 Customizing Identifiers
Whenever you add identifiers to the rights list or grant identifiers to users, you
can stipulate that the identifier carry special characteristics called attributes.
Although there are many possible attributes, most sites commonly use the
following ones:

Dynamic attribute Allows holders of the identifier to remove and to restore
the identifier from the process rights list by using the DCL
command SET RIGHTS_LIST.

Resource attribute Allows holders of the identifier to charge disk space to the
identifier. It is used for file objects.

Subsystem attribute Allows holders of the identifier to create and maintain
protected subsystems by assigning the Subsystem ACE to
the application images in the subsystem.

No Access attribute Makes any access rights of the identifier null and void. This
attribute is intended as a modifier for a resource identifier or
for purposes unrelated to access control.

Sites with high security requirements are likely to use two other attributes,
which discourage users from scanning the rights database:

Holder Hidden attribute Prevents someone from getting a list of users who hold an
identifier unless that person owns the identifier.

Name Hidden attribute Allows holders of an identifier to have it translated (either
from binary to ASCII or vice versa), but prevents unauthorized
users from translating the identifier.

Read access to RIGHTSLIST.DAT overrides the Holder Hidden and Name Hidden
attributes. The rights list by default denies access to world users; it has a
protection of S:RWED,O;RWED,G:R,W:.

The following sections describe each attribute and explain when you might want
to add them to some of your site’s identifiers.

8.6.7.1 Dynamic Attribute
Once you grant an identifier to a user, processes created by that user hold the
identifier for the life of the process. However, if you grant the identifier with the
Dynamic attribute, the user who holds the identifier can use the DCL command
SET RIGHTS_LIST to add or remove the identifier or its attributes from the
process rights list as needed.

To allow users to modify an identifier, specify the Dynamic attribute when adding
the identifier to the rights database by using AUTHORIZE, as shown in the
following example:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD/IDENTIFIER MGMT101 /ATTRIBUTES=DYNAMIC

8–8 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.6 Populating the Rights Database

To allow specific holders of the identifier to modify the identifier, include the
Dynamic attribute when granting the identifier, as follows:

UAF> GRANT/IDENTIFIER MGMT101/ATTRIBUTES=DYNAMIC SCHWARTZ

User Schwartz could then use the following command to remove the MGMT101
identifier from the process rights list:

$ SET RIGHTS_LIST/DISABLE MGMT101

Users who hold identifiers with the Dynamic and Resource attributes can also
use the SET RIGHTS_LIST command to remove only the Resource attribute on
the identifier.

Because users might be able to circumvent intended security policy by removing
their identifiers, be careful when granting users an identifier with the Dynamic
attribute. If an identifier is used in an ACL to deny access to users who hold that
identifier with the Dynamic attribute, users may be able to gain access to the
object through another ACL entry by removing the identifier from their process
rights lists.

8.6.7.2 Holder Hidden Attribute
Sites with high security requirements can conceal the holders of certain
identifiers, thereby preventing malicious users from determining which accounts
are more interesting to target for break-ins.

You place the attribute on an identifier the user holds by using the AUTHORIZE
command MODIFY/IDENTIFIER, for example:

UAF> MODIFY/IDENTIFIER /ATTRIBUTES=HOLDER_HIDDEN SECRET_PROJECT

Now the prober cannot discover who is on the secret project.

8.6.7.3 Name Hidden Attribute
Sites with high security requirements can hide the names of identifiers. For
example, sites implementing mandatory access controls can hide the names
of identifiers associated with their security categories. This prevents people
from seeing the names of identifiers unless they personally hold them. When
an identifier holds the Name Hidden attribute, the operating system refuses to
translate the identifier from its binary value to ASCII or from ASCII to the binary
value unless the requesting process holds the identifier.

To assign the attribute to an identifier, use the AUTHORIZE command
MODIFY/IDENTIFIER:

UAF> MODIFY/IDENTIFIER SECRET_NEWS /ATTRIBUTES=NAME_HIDDEN

8.6.7.4 No Access Attribute
The No Access attribute allows a process to hold an identifier but not have the
identifier considered in determining access rights to the object.

For example, a user with the Resource and No Access attributes can charge disk
space to the identifier but not have access to objects owned by the identifier. Or a
system manager can manage data and perform tasks connected with the data but
cannot read from or write to any of the files.

Controlling Access to System Data and Resources 8–9

Controlling Access to System Data and Resources
8.6 Populating the Rights Database

You can allow file space to be owned by and charged to an identifier yet prevent
the files from being accessed in any way. Use AUTHORIZE to specify the No
Access attribute with the Resource attribute when adding the identifier to the
rights database, as shown in the following example:

UAF> ADD/IDENTIFIER/ATTRIBUTES=(RESOURCE,NOACCESS)-
_UAF> MGMT101

To limit the rights of users holding an identifier with the Resource attribute,
grant the identifier with the No Access attribute as well as the Resource attribute
to all desired users:

UAF> GRANT/IDENTIFIER/ATTRIBUTES=(RESOURCE,NOACCESS)-
_UAF> MGMT101 SCHWARTZ

8.6.7.5 Resource Attribute
Consumption of disk space is generally charged to the creator of each file by
subtracting the disk space from the file owner’s disk quota. System managers
and security administrators might prefer to track the use of disk space according
to logical groups of users (such as departments or projects) rather than individual
users. General identifiers are used to specify these groups. Thus, when general
identifiers own directories, disk space used by files created in the directories may
be charged to the identifier rather than the UIC of the file’s creator.

To allow file space to be owned by and charged to an identifier, use AUTHORIZE
to specify the Resource attribute when adding the identifier to the rights
database, as shown in the following example:

UAF> ADD/IDENTIFIER MGMT101 /ATTRIBUTES=RESOURCE

To allow specific holders of the identifier to charge disk space to the identifier,
perform the following steps:

1. Grant the identifier with the Resource attribute to all desired users:

UAF> GRANT/IDENTIFIER MGMT101/ATTRIBUTES=RESOURCE SCHWARTZ

2. Modify the directory to allow read and write access to the resource identifier:

$ SET SECURITY/ACL=(-
_$ (IDENTIFIER=MGMT101,ACCESS=READ+WRITE) -
_$ (IDENTIFIER=MGMT101,OPTIONS=DEFAULT,ACCESS=READ+WRITE))-
_$ INVENTORY.DIR

3. Change the ownership of the parent directory so that any files in it are owned
by the identifier by default:

$ SET SECURITY/OWNER=MGMT01 INVENTORY.DIR

Because resource identifier MGMT101 is going to own any file you create in
directory INVENTORY.DIR, you use ACEs to determine the type of file access you
receive. Include a Creator ACE (CREATOR,ACCESS=READ+WRITE+
EXECUTE+DELETE) to set the access granted to the file’s creator. Alternatively,
you can let the system assign an ACE; its ACE grants control access to the file’s
creator plus the access specified in the owner field of the protection code. You
can set up the protection code by including a Default Protection ACE in the ACL
for INVENTORY.DIR, for example, (DEFAULT_PROTECTION, ACCESS=O:RW).
(Refer to Section 8.8.1.2 for further information.)

8–10 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.6 Populating the Rights Database

Not everyone who holds the identifier will also hold the Resource attribute
associated with that identifier. If you create a file in a directory owned by an
identifier but you do not have the Resource attribute for that identifier, the file
will be owned by your UIC, and the required disk space is subtracted from your
disk quota.

8.6.7.6 Subsystem Attribute
You can authorize users to manage protected subsystems by granting them a
subsystem identifier with the Subsystem attribute. This empowers users to
enable images to access the objects managed by the subsystem. (See Chapter 13
for a discussion of protected subsystems.)

In the following example, user Schwartz is given the authority to create a
subsystem with the identifier MAIL_SUBSYSTEM. Schwartz is also given control
access to the application image to set access controls.

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD/IDENTIFIER MAIL_SUBSYSTEM /ATTRIBUTES=SUBSYSTEM
UAF> GRANT/IDENTIFIER MAIL_SUBSYSTEM -
_UAF> /ATTRIBUTES=SUBSYSTEM SCHWARTZ
UAF> Exit
$ SET SECURITY/ACL=(IDENTIFIER=MAIL_SUBSYSTEM,ACCESS=CONTROL)-
_$ MEMBER_LIST.EXE

8.6.8 Modifying a System or Process Rights List
As a privileged security administrator, you can use the SET RIGHTS_LIST
command to modify the rights list of any process on the system or to modify
identifiers in the system rights list. Adding an identifier to the system rights
list effectively grants it to all users. You can also use the SET RIGHTS_LIST
command to add attributes to existing identifiers.

A possible use of the system rights list is to enable site-specific environmental
conditions. For example, a batch job scheduled to run at 8:00 a.m. could add the
following identifier:

$ SET RIGHTS_LIST/SYSTEM/ENABLE DAY_SHIFT

Another batch job scheduled for 5:00 p.m. could remove the identifier DAY_
SHIFT:

$ SET RIGHTS_LIST/SYSTEM/DISABLE DAY_SHIFT

The effect is to enable access to protected objects with the identifier DAY_SHIFT
during the 8:00 a.m. to 5:00 p.m. period.

The command in the next example modifies a process rights list by adding
the SALES identifier to the rights list of the process DEDNAM. Specifying the
Resource attribute allows the holders of the SALES identifier to charge disk space
to it.

$ SET RIGHTS_LIST/ENABLE/ATTRIBUTES=RESOURCE/PROCESS=DEDNAM SALES

Controlling Access to System Data and Resources 8–11

Controlling Access to System Data and Resources
8.7 Giving Users Privileges

8.7 Giving Users Privileges
Some system activities are limited to users who hold specific privileges. These
restrictions protect the integrity of the operating system’s performance and, thus,
the integrity of service provided to users. Grant privileges to each user on the
basis of two factors: (a) whether the user has a legitimate need for the privilege
and (b) whether the user has the skill and experience to use the privilege without
disrupting the system.

A user’s privileges are recorded in the user’s UAF record in two privilege vectors.
One vector stores the authorized privileges, and the other vector stores the
default privileges. The default privileges are the subset of authorized privileges
that a user process receives at login.

When a user logs in to the system, the user’s privilege vector is stored in the
header of the user’s process. In this way, the user’s privileges are passed on
to the process created for the user. Users can use the DCL command SET
PROCESS/PRIVILEGES to enable and disable privileges for which they are
authorized.

The operating system monitors and audits the use of privilege. You can enable
auditing for specific privileges and examine the audit log file to see what
privileges were used to execute DCL commands or system services. See Chapter 9
for further information.

8.7.1 Categories of Privilege
Privileges are divided into the following seven categories according to the damage
that the user possessing them could cause the system:

• None: No privileges

• Normal: Minimum privileges to effectively use the system

• Group: Potential to interfere with members of the same group

• Devour: Potential to consume noncritical systemwide resources

• System: Potential to interfere with normal system operation

• Objects: Potential to compromise object security

• All: Potential to control the system

Table 8–2 categorizes the privileges and includes a brief definition of the powers
associated with each privilege.

Table 8–2 OpenVMS Privileges

Category Privilege Activity Permitted

None None Deny activities requiring privileges

Normal NETMBX
TMPMBX

Create network connections
Create temporary mailbox

Group GROUP
GRPPRV

Control processes in the same group
Gain access through the system protection field of the
group’s objects

(continued on next page)

8–12 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.7 Giving Users Privileges

Table 8–2 (Cont.) OpenVMS Privileges

Category Privilege Activity Permitted

Devour ACNT
ALLSPOOL
BUGCHK
EXQUOTA
GRPNAM
PRMCEB
PRMGBL
PRMMBX
SHMEM

Disable accounting
Allocate spooled devices
Make bugcheck error log entries
Exceed disk quotas
Insert group logical names in the name table
Create/delete permanent common event flag clusters
Create permanent global sections
Create permanent mailboxes
Create/delete structures in shared memory

System ALTPRI
AUDIT
OPER
PSWAPM
WORLD
SECURITY
SYSLCK

Set base priority higher than allotment
Generate audit records
Perform operator functions
Change process swap mode
Control any process
Perform security-related functions
Lock systemwide resources

Objects DIAGNOSE
IMPORT
MOUNT
READALL
SYSGBL
VOLPRO

Diagnose devices
Mount a nonlabeled tape volume
Execute mount volume QIO
Possess read access to all system objects
Create systemwide global sections
Override volume protection

All BYPASS
CMEXEC
CMKRNL
IMPERSONATE
DOWNGRADE

LOG_IO
PFNMAP
PHY_IO
SETPRV
SHARE
SYSNAM
SYSPRV
UPGRADE

Disregard protection
Change to executive mode
Change to kernel mode
Create detached processes of arbitrary UIC
Write to a lower secrecy object or lower an object’s
classification
Issue logical I/O requests
Map to specific physical pages
Issue physical I/O requests
Enable any privilege
Access devices allocated to other users
Insert system logical names in the name table
Access objects through the system protection field
Write to a higher integrity object or raise an object’s
integrity level

8.7.2 Suggested Privilege Allocations
Appendix A lists all user privileges and includes recommendations on when to
grant them. When allocating user privileges, be conservative.

The summary guidelines in Table 8–3 indicate the minimum privilege
requirements for common classes of system users.

Controlling Access to System Data and Resources 8–13

Controlling Access to System Data and Resources
8.7 Giving Users Privileges

Table 8–3 Minimum Privileges for System Users

Type of User Minimum Privileges

General TMPMBX, NETMBX

Operator OPER

Group manager GROUP, GRPPRV

System manager/administrator SYSPRV, OPER, SYSNAM, CMKRNL1

Security administrator SECURITY, AUDIT, READALL

1The general purpose system manager often needs an authorized privilege set consisting of all
privileges except BYPASS.

8.7.3 Limiting User Privileges
Granting privileges allows users those privileges until you remove them. To avoid
such blanket permission, you may want to grant privileges on an as-needed basis.
For example, certain users may need to run a program requiring one of the more
powerful privileges. You can install the program with the necessary privilege by
using the Install utility (INSTALL). Section 8.7.4 discusses installing privileged
images in more detail.

An alternative to granting blanket privileges is to set up emergency or specialized
privileged accounts. Users would log in to these privileged accounts only to
perform specific functions. You have two options with this technique:

• Establish a limited group of users who know about the account and are
informed how to use it.

• Create two accounts for the user, giving the privileges to one account but
not to the other. In this case, the user would have the same UIC and the
same default directory in each account. (This is the only case where Compaq
recommends shared UICs, because there is still only one actual user.) If you
decide to adopt this dual account practice, avoid obvious user names that
reveal which account is the privileged account.

With both options, you can place special restrictions on the privileged account,
such as long passwords, brief password lifetimes, restricted hours, and limited
modes of operation (no dialup, network, remote, or batch logins). In addition,
limited account durations would force frequent consideration of privilege
requirements.

Yet another alternative is to use protected subsystems, which are described in
Chapter 13, and thereby eliminate the need for any system privileges.

8.7.4 Installing Images with Privilege
A user cannot execute an image that requires a privilege the user does not
possess unless the image is installed as a known image with the privilege in
question. (See the OpenVMS System Management Utilities Reference Manual
for instructions on installing known images.) Execution of a known image with
privileges grants those privileges to the user process executing the image for the
duration of the image’s execution. Thus, you should install images with amplified
privileges (other than the normal Compaq-supplied configuration) only after
ensuring that the privileges are required by the image’s function and that the
image operates safely. Also consider restricting access to the image to a selected
set of users.

8–14 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.7 Giving Users Privileges

Images installed with privileges are activated with all amplified privileges
enabled. For maximum safety, images designed to run with amplified privilege
should use the $SETPRV system service to disable all amplified privileges
immediately on activation, and enable them only when they are needed.

Following is an example of installing an image with privilege. The System
Dump Analyzer utility (SDA) requires CMKRNL privilege to analyze the running
system.

1. Install SDA.EXE with the CMKRNL privilege, as follows:

$ INSTALL SDA.EXE /PRIVILEGED=CMKRNL

2. Place an ACL on SDA.EXE, and also set the UIC-based protection to deny all
access to the world category of users, as follows:

$ SET SECURITY/ACL=(IDENTIFIER=SDA,ACCESS=EXECUTE)-
_$ SYS$SYSTEM:SDA.EXE
$ SET SECURITY/PROTECTION=(WORLD) SYS$SYSTEM:SDA.EXE

3. Use the AUTHORIZE command to confirm that the users who hold the
SDA identifier are those intended to run the program. If necessary, make
adjustments to this list of users.

Note

All images that you install with privilege must be linked with the
/NOTRACEBACK qualifier to prevent online debugging and traceback.

Compaq ensures that all system programs that are supplied with the
operating system (such as the SDA) are linked with the /NOTRACEBACK
qualifier to prevent online debugging or traceback.

8.7.5 Restricting Command Output
Some DCL commands behave differently depending on the privileges that the
user holds.

For example, unless a user holds the GROUP or WORLD privilege, the SHOW
PROCESS command limits the display of process information to the user’s
process. A user with GROUP privilege can display other processes in the user’s
UIC group; a user with WORLD privilege can display any process on the system.

8.8 Setting Default Protection and Ownership
After designing user groups and identifiers, you need to address which protected
objects your users need permission to access and which ones can be unrestricted.
Become familiar with the default protection of new objects, shown in Chapter 5,
and when necessary modify the defaults, as shown in the following sections.

The procedure for setting up object protection and ownership defaults varies,
depending on whether the object is a file or another class of protected object.

Controlling Access to System Data and Resources 8–15

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

8.8.1 Controlling File Access
As Section 5.4.5 explains, there are four possible areas where you can specify
protection defaults that would affect the user. In order of increasing influence,
they are as follows:

• The system parameter RMS_FILEPROT sets the systemwide default for file
protection. You can change the value of RMS_FILEPROT with AUTOGEN.
However, the effectiveness of this value may be overridden by any of the
following defaults.

• The DCL command SET PROTECTION/DEFAULT can specify the file
protection placed on files created or modified by the user during the terminal
session. While the command typically appears in the user’s login command
procedure, the user can also enter this command at any time during a session
to override the value set by a previous SET PROTECTION/DEFAULT
command. The SET PROTECTION/DEFAULT command negates the
influence of the systemwide protection for this user.

• The default protection for the specific directory can be specified in an ACL
applied to the directory. If a Default Protection ACE exists for the directory,
all new files added to the directory, including subdirectories and their files,
are subject to this protection code. This code overrides the systemwide default
and the user-specified default (if any).

• In special cases where the file being created is not owned by the user
identification code (UIC) of the process creating the file (for example, when a
directory is owned by a resource identifier), the default protection for the new
file can be modified by a Creator ACE within the directory’s ACL. Refer to
Section 5.4.5 for a discussion of the Creator ACE.

Also consider the protection imposed on the volume through the DCL command
SET VOLUME/PROTECTION. This protection code, if specified, prevents a user
from accessing any part of the volume, regardless of the protection code on the
directory or the file. If no volume protection is specified with the SET VOLUME
command, the volume is accessible to all users.

The assignment of file ownership affects the outcome of any protection check. The
operational effect of this combined protection structure is depicted in Figure 8–1.

8–16 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

Figure 8–1 Flowchart of File Creation

ZK−2034.1−GE

Yes

No

create a file.
User attempts to

protection.
Assign file

code; go to BB.
protection
Obtain this

code; go to BB.
protection
Obtain its

Yes

No

No

No

code.
volume protection
volume? Check

have access to the
Does the user

No

written.
file not
Exit;

to the directory?
have write access

Does the user No

written.
file not
Exit;

protection code?
user specify a

Did the Yes

code; go to BB.
protection
specified
Obtain the

of the file?
previous version

there a
Is

Yes

subdirectory?
on the directory or

Default Protection ACE
an ACL with a

Is there

Yes

process?
default for the
user−specified

Is there a
Yes

code; go to BB.
protection
Obtain this

AA

(continued on next page)

Controlling Access to System Data and Resources 8–17

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

Figure 8–1 (Cont.) Flowchart of File Creation

ZK−2034.2−GE

No

Yes

previously obtained.
protection mask
and apply the
Create the file

No

of the file?
previous version

Is there a

to previous version?
have ownership privileges

Does the creator Yes

of file; go to CC.
previous version
Set owner from

to directory?
have ownership privileges

the creator
Does

Yes

file; go to CC.
the directory
Set owner from

creator’s UIC.
Set owner to

CC

No

parameter RMS_FILEPROT.
default from the

Obtain the systemwide

BB

AA

(continued on next page)

8–18 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

Figure 8–1 (Cont.) Flowchart of File Creation

ZK−5228A−GE

DD

Yes

No

option.
removing the default

directory’s ACL,
default from the

Copy all ACEs marked

file?
version of the

a previous
Is there

UIC?
from the creator’s
owner different

Is the file’s

available to file owner.
access plus access

the file’s creator control
of the ACL that gives

Place an ACE at the top

Done; exit.

Done; exit.

No

Yes

Set up ACL.

CC

go to DD.
marked Nopropagate;
removing any ACEs
previous version,
Copy ACL from the

Yes

No

EE

Does the directory’s
ACL contain a
Creator ACE?

Yes

No

Does the Creator
ACE specify

ACCESS=NONE?

Copy protection from ACE
into a new ACE at the top
of the ACL to grant access

to the creator.

EE

EE

8.8.1.1 Adjusting Protection Defaults
You may want to make adjustments to control default behavior. The systemwide
default protection code specified by the system parameter RMS_FILE PROT sets
the user’s default protection to the following:

(S:RWED,O:RWED,G:RE,W)

Controlling Access to System Data and Resources 8–19

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

Assume that the volume protection has been set by the operator to the following:

(S:RWED,O:RWED,G:R,W)

The file protection on the directory [PROJECT] has been set to the following:

(S:RWED,O:RW,G:R,W)

If all the files created in the subdirectory [PROJECT.DIARY] demand more
protection, you, or any user who has control access to the directory, could define a
specific default protection code for this specific directory with an ACL consisting
of a Default Protection ACE, as follows:

(DEFAULT_PROTECTION,S:RWED,O:RWED,G,W)

The following DCL command would provide the desired default protection:

$ SET SECURITY/ACL=(DEFAULT_PROTECTION,S:RWED,O:RWED)-
_$ [PROJECT]DIARY.DIR

Once this ACE is placed on the directory file, files created or modified in the
directory are subject to the default protection code. Because these protection
codes are only defaults, a user who has control access to a file in the directory can
include a specific protection code as a replacement for the default value on the file
by using the following DCL commands:

• SET SECURITY/PROTECTION

• COPY/PROTECTION

• APPEND/PROTECTION

• CREATE/PROTECTION

Once the default protection code is replaced, the new code becomes the default
and is propagated to subsequent versions of the file.

If you provide a special login command procedure for some of your users, you
may want to supplement the systemwide default process protection specified by
the system parameter RMS_FILEPROT for this group of users. Add the SET
PROTECTION/DEFAULT command to the login command procedure to specify
the default process protection, as follows:

SET PROTECTION=(S:RWED,O:RWED,G,W)/DEFAULT

Files created in users’ directories receive this default protection code unless
explicitly overridden.

8.8.1.2 Setting Defaults for a Directory Owned by a Resource Identifier
To allow for more flexible data management as well as more accurate accounting
of disk space, you can set up a directory that is owned by a resource identifier
and rely on ACLs to control access to the directory and to files created within it.

The ACL can limit file access to all project members holding the project identifier.
To achieve this kind of access restriction, you add an Identifier ACE to define
the group’s access to files. A second Identifier ACE is added that duplicates the
first but holds the Default attribute. It is the Default attribute that ensures the
ACE is copied to all files created within the directory. Sometimes a third ACE is
necessary—a Default Protection ACE, depending on the default protection code
for the directory. A Default Protection ACE establishes the protection code for the
directory’s files. (As Section 4.3 explains, if an ACL denies access to a file, it is
still possible to gain access through a protection code.)

8–20 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

In addition to limiting the group’s access to files, an ACL can control the type of
access users have to files that they have created within the common directory.
Because the file is created in the resource identifier’s directory, the resource
identifier owns the file. For users to access files they have created, the operating
system normally gives control access to the file’s creator plus the access specified
in the owner field of the protection code. However, you can modify this behavior
by adding a Creator ACE to the directory’s ACL. A Creator ACE defines the type
of access users have to files they have created in the project’s directory.

8.8.1.2.1 Setting Up the Resource Identifier A security administrator used
the following command sequence to set up the project identifier PROJECTX
and grant it to members of the project. Notice that the identifier is added to
the rights database with the resource identifier, and it is also granted to users
with the resource identifier. The project identifier needs to carry the Resource
attribute so it can own disk space.

$ RUN SYS$SYSTEM:AUTHORIZE
UAF> ADD/IDENTIFIER PROJECTX /ATTRIBUTES=RESOURCE

UAF> GRANT/IDENTIFIER PROJECTX user1 /ATTRIBUTES=RESOURCE
UAF> GRANT/IDENTIFIER PROJECTX user2 /ATTRIBUTES=RESOURCE

.

.

.

8.8.1.2.2 Setting Up the Directory of a Resource Identifier When a project- or
department-specific identifier is the owner of a directory, the space used by files
created in the directory can be charged to the appropriate department or project
rather than to the individual who creates them. When users work on multiple
projects, they can charge their disk space requirements to the related project
rather than to their personal accounts.

In setting up a directory for a resource identifier, you first create the disk quota
authorization for the project identifier. For example, the following command
invokes the System Management utility (SYSMAN) and assigns the identifier
PROJECTX 2000 blocks of disk quota with 200 blocks of overdraft:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> DISKQUOTA ADD PROJECTX /PERMQUOTA=2000 /OVERDRAFT=200

After setting up the disk quota, you create the project directory. For example,
the following DCL command creates the project directory [PROJECTX] and
establishes the identifier PROJECTX as its owner:

$ CREATE/DIRECTORY [PROJECTX] /OWNER=[PROJECTX]

8.8.1.2.3 Setting Up the ACL In setting up the directory [PROJECTX], you use
an ACL to provide file access to project members. The following example shows
how several ACEs are used to define access:

$ SET SECURITY [PROJECTX] /ACL= (-
_$ (DEFAULT_PROTECTION,S:RWED,O:RWED,G,W),- !
_$ (IDENTIFIER=PROJECTX,ACCESS=READ+WRITE+EXECUTE),- "
_$ (IDENTIFIER=PROJECTX,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE),- #
_$ (CREATOR,ACCESS=READ+WRITE+EXECUTE+DELETE)) $

! The Default Protection ACE sets up a protection code for files created within
the directory. The ACE denies access to group and world users.

" The first Identifier ACE gives holders of the PROJECTX identifier read, write,
and execute access to the directory.

Controlling Access to System Data and Resources 8–21

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

The second Identifier ACE guarantees that all files created in the directory
will carry the first Identifier ACE.

$ The Creator ACE specifies that a user who creates a file in the PROJECTX
directory will receive read, write, execute, and delete access to it.

Thus, when project member Crandall creates the file SEPTEMBER-
REPORTS.TXT in the [PROJECTX] directory, the file receives the following
security profile:

$ SHOW SECURITY/CLASS=FILE [PROJECTX]SEPTEMBER-REPORTS.TXT

SEPTEMBER-REPORTS.TXT object of class FILE
Owner: [PROJECTX]
Protection: (System: RWED, Owner: RWED, Group, World)
Access Control List:

(IDENTIFIER=CRANDALL,ACCESS=READ+WRITE+EXECUTE+DELETE)
(IDENTIFIER=PROJECTX,ACCESS=READ+WRITE+EXECUTE)

Project members are not allowed to delete (or control) files created by others;
however, the Creator ACE gives them delete access to files they have created.

Without a Creator ACE, project members each have complete access to files they
have created in the directory. For example, Crandall would receive the following
access to files created in the project directories:

$ SHOW SECURITY/CLASS=FILE [PROJECTX]SEPTEMBER-REPORTS.TXT

SEPTEMBER-REPORTS.TXT object of class FILE
Owner: [CRANDALL]
Protection: (System: RWED, Owner: RWED, Group, World)
Access Control List:

(IDENTIFIER=CRANDALL,OPTIONS=NOPROPAGATE,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=PROJECTX,ACCESS=READ+WRITE+EXECUTE)

To negate this behavior, you can add a Creator ACE to the ACL that specifies
ACCESS=NONE.

8.8.2 Setting Defaults for Objects Other Than Files
With the exception of files and pseudo-terminal (FT) devices, all classes of
protected objects offer one or more template profiles that provide security
elements for new objects. You can thus use a single mechanism to establish the
default protection code, ACL, and ownership elements for objects. The operating
system always stores these values so they are available from one system startup
to the next. The SHOW SECURITY command displays the current default values
for your particular site. Refer to Chapter 5 for a listing of the operating system’s
default values.

The operating system generates the security profiles of new objects from data
stored by security class objects. These objects are all logical constructs used to
keep track of such class elements as the valid access types, the templates, and
the types of auditing that have been enabled. As Figure 8–2 shows, every class of
protected object has a member in the security class. All members have a security
profile template, except for files, which have their own rules.

8–22 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

Figure 8–2 Security Class Object

ZK−2445A−GE

Management Interface

Common Event Flag Cluster
Device
File
Group Global Section
Logical Name Table
Queue
Resource Domain
System Global Section
Volume
Capability

Members

Security Class Object

DCL Commands:
 SET SECURITY
 SHOW SECURITY

System Services:
$SET_SECURITY
$GET_SECURITY

8.8.2.1 Displaying Class Defaults
To display any class template, use the SHOW SECURITY/CLASS=SECURITY_
CLASS command. The following command, for example, displays templates
available for logical name tables. The logical name table object has the following
three templates:

$ SHOW SECURITY/CLASS=SECURITY_CLASS LOGICAL_NAME_TABLE
.
.
.

Template: GROUP
Owner: [TTSY,SYSTEM]
Protection: (System: RWCD, Owner: R, Group: R, World:R)
Access Control List: <empty>

Template: JOB
Owner: [TTSY,SYSTEM]
Protection: (System: RWCD, Owner: RWCD, Group, World)
Access Control List: <empty>

Template: DEFAULT
Owner: [TTSY,SYSTEM]
Protection: (System: RW, Owner: RW, Group, World)
Access Control List: <empty>

All objects in the security class are protected in the same manner as other objects.
For this reason, any SHOW SECURITY display of a security class object begins
with the security profile for the object itself. The following display shows a profile
for the logical name table object in the security class. The object is owned by the
system, and its protection code allows read access to any user category but allows
write access only to system and owner categories.

$ SHOW SECURITY/CLASS=SECURITY_CLASS LOGICAL_NAME_TABLE

LOGICAL_NAME_TABLE object of class SECURITY_CLASS
Owner: [SYSTEM]
Protection: (System: RW, Owner: RW, Group: R, World: R)
Access Control List: <empty>

Controlling Access to System Data and Resources 8–23

Controlling Access to System Data and Resources
8.8 Setting Default Protection and Ownership

8.8.2.2 Modifying Class Templates
Security administrators and users with control access to a security class object
can modify the elements of a given template with the following command:

SET SECURITY/CLASS=SECURITY_CLASS/PROFILE=TEMPLATE=template-name

The following command modifies the MAILBOX template for the
device class. It changes the template values from a protection of
S:RWPL,O:RWPL,G:RWPL,W:RWPL to a protection that disallows group and
world access.

$ SET SECURITY/CLASS=SECURITY_CLASS/TEMPLATE=MAILBOX -
_$ /PROTECTION=(S:RWPL,ORWPL,G,W) DEVICE

The operating system applies this value to all new mailboxes. To change the
protection for each existing mailbox, enter an explicit SET SECURITY command
for each existing mailbox. For example:

$ SET SECURITY/CLASS=DEVICE -
_$ /PROTECTION=(S:RWPL,ORWPL,G,W) mailbox_name

The operating system saves the default object protections specified in security
templates, so rebooting the system automatically ensures that all objects created
after the reboot are created with the new default protections.

Note

In OpenVMS Version 7.2-1 and earlier, all pseudo-terminal (FT) device
protection codes were set by the driver to (S:RWLP,O:RWLP,G,W). In
OpenVMS Version 7.3 and later, only device FTA0 is set to this forced
protection. This allows the system manager the option of modifying the
FTA0 device protection later in the boot process. This new protection is
inherited from FTA0 by any new FT devices created thereafter (as well as
other settings originating from the SECURITY class DEVICE TERMINAL
template profile, such as ACLs).

A system manager can either modify FTA0 manually, or change the
SYSTARTUP_VMS.COM command procedure. For example:

$ SET SECURITY/CLASS=DEVICE/PROTECTION=(S:RWLP,O:RWLP,G:RW,W:R) FTA0:

If the device protection for FTA0 is left unmodified, the behavior is
unchanged from versions of OpenVMS prior to Version 7.3. That behavior
is that all terminals, except FT pseudo-terminal devices, inherit their
device protection and other security characteristics from the TERMINAL
template profile. All FTA pseudo-terminal devices inherit their protection
from FTA0, which by default is set to (S:RWLP,O:RWLP,G,W). Other
settings, such as ACLs, are inherited from the TERMINAL template
profile. This ensures compatibility with existing applications.

The DCL command SHOW SECURITY displays all available templates with the
site values. Chapter 5 lists the default system values.

8.9 Added Protection for System Data and Resources
This section describes additional ways to restrict the data and resources available
to users.

8–24 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.9 Added Protection for System Data and Resources

8.9.1 Precautions to Take When Installing New Software
When you install new software, you must address several security concerns. You
want to ensure that you are not admitting software that will in any way corrupt
or undermine your usual security precautions. You must also consider whether
to install the software with any privileges. This section discusses the security
aspects of installing new software.

8.9.1.1 Potentially Harmful Programs
New software can contain programs that are potentially harmful to your system.
These programs, called Trojan horse programs, are designed to do damage and
frequently include features that do the following:

• Pass privileges of the person running the program back to the author of the
program

• Allow unauthorized access to the system

• Change protection of system files

• Patch the system (add special software to the operating system)

• Create jobs that scan for easily guessed passwords

To protect your system from this type of intrusion, always buy software from
reputable sources. When training new users, stress the importance of avoiding
use of software from an unknown source.

Another risk to programs and directories is known as the virus. While Trojan
horse software must rely on the innocent user to unwittingly accept the damaging
software by using it, the virus requires no user cooperation. It is a program that
takes advantage of faulty file protection, working its way through your system
and modifying command procedures and executable programs. By modifying
command procedures, it can propagate by making use of user access rights and
privileges.

Viruses are less of a problem in the OpenVMS environment than in an
environment of personal computers. The OpenVMS protection features and
the environment’s larger scale and diversity make virus attacks more difficult.
However, no environment that permits the sharing of software and data is
immune from virus attacks.

The user’s login command procedure is a prime target for this type of security
breach. Login command procedures generally contain easily modified DCL
commands and are executed regularly.

ACLs are also targets. File protection designed with users sharing access
privileges allows this type of program to run through many users’ programs,
acquiring new privileges along the way.

Well-designed file protection is critical for protection from this type of security
breach. Make sure that likely targets cannot be modified by users. For example,
set up file protection so that your login command procedure permits at most
read access to all other users. Also make sure the directory containing the login
command procedure permits write access only to users in the system and owner
categories.

Because most damage occurs when programs like these reach a target account
with privileges, users with privileges should be especially cautious with the
protection of their root directory, executable files, and command procedures. To
deter Trojan horse attacks, users should never execute a command procedure or

Controlling Access to System Data and Resources 8–25

Controlling Access to System Data and Resources
8.9 Added Protection for System Data and Resources

run an image in a privileged account without inspecting the command procedure
or the image’s sources. Application images should be rebuilt from source to
ensure that the binary image reflects the accompanying source.

8.9.1.2 Installing Programs with Privilege
Some software requires privilege to run. You can extend the privilege to all users
you expect will need to run the software, or you can install the program with
the required privileges. When you install privileged software, you allow users
to execute it whether or not they personally possess the required privilege. In
effect, you extend the privilege to the process while it runs the software. While
this offers some advantages, it also introduces several security-related dangers.
Section 8.7 describes these options in greater detail.

8.9.2 Protecting System Files
Even on the most open system, you will want protection for the system software.
Normally, Compaq delivers system programs and databases with adequate UIC
protection. However, if for any reason you are dissatisfied with the default
protection, you can change it with the techniques outlined in Chapter 4, provided
you have the necessary SYSPRV privilege. You might also add an ACL to any file
that you decide needs additional protection.

You can obtain a full listing of system files from the system manager’s account
during an OpenVMS installation with the following DCL command:

$ DIRECTORY/SECURITY/OUTPUT=SYSTEM_FILES.LIS SYS$SYSROOT:[*...]

Compaq recommends you generate such a listing and store it for
reference. Regularly compare these values with current system file
protection to ensure that no tampering has occurred. (The DCL commands
DIRECTORY/SECURITY/OUTPUT and DIFFERENCES facilitate such checks.)

On Alpha systems, you can obtain a listing of system files and their protections
from the read-only compact disc distribution media. Your OpenVMS software
should have this set of protection codes following a correct installation.

On VAX systems, refer to Appendix B for a listing of system files and their
protections. Your OpenVMS software should have this set of protection codes
following a correct installation.

Table 8–4 provides a summary of DCL commands you use to set up and display
file protection; these commands are described in the OpenVMS DCL Dictionary.

Table 8–4 DCL Commands Used to Protect Files

Command Function

DIRECTORY/ACL Displays the ACL for the file

DIRECTORY/OWNER Displays the file owner’s UIC

DIRECTORY/PROTECTION Displays the file’s protection code

DIRECTORY/SECURITY Combines and displays file information produced
by DIRECTORY/ACL, DIRECTORY/OWNER, and
DIRECTORY/PROTECTION

(continued on next page)

8–26 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.9 Added Protection for System Data and Resources

Table 8–4 (Cont.) DCL Commands Used to Protect Files

Command Function

EDIT/ACL Invokes the access control list editor (ACL editor)

SET PROTECTION/DEFAULT Establishes the default protection to be applied to
all files subsequently created

SET SECURITY Modifies the security profile of any object: the
owner, protection code, and ACL

SHOW SECURITY Displays the ownership, UIC protection code, and
ACL of a protected object

The OpenVMS installation procedure does not initially install MAIL.EXE
with any privileges (because MAIL.EXE does not require privileges to perform
its functions). Prior versions of the OpenVMS operating system did include
mechanisms that allowed MAIL.EXE to check, ignore, grant, or override certain
privileges that a system manager might assign when reinstalling MAIL.EXE.
Because these regulatory mechanisms sometimes created unexpected or
undesirable conditions, they have been removed.

Caution

If you reinstall MAIL.EXE with certain privileges, you must carefully
consider possible ramifications, including the potential for security
breaches. For example, because MAIL.EXE confers its privileges on any
user who invokes the Mail utility, that user will inherit those privileges if
the user creates a subprocess from within Mail by specifying the SPAWN
command.

As indicated, Compaq provides default protection for the system programs that
it provides. However, if you have a special requirement, you might examine the
potential of ACLs for your needs. For example, you might use ACLs to restrict
the use of system programs such as compilers. (Any number of considerations
might prompt this action, ranging from performance to licensing issues.)

You might also ask if there are cases where you do not want some or all of your
users to be able to initialize media. If there are, you can put an ACL to good
use on the system program SYS$SYSTEM:INIT.EXE. Ensure that you grant no
access to the world category in the UIC-based protection code. Then create an
ACL for the file that grants access to specific users.

Similarly, if a department in your company has paid for a license to a software
product, you may want to make that software available to them but not to others.
Ensure that the world category receives no access through the standard UIC-
based protection code, and create an entry in the ACL for that file that allows
access through the department’s identifier.

You may also find that ACL protection is relevant to protect your applications
databases, limiting the access to certain users or to protected subsystems.

Controlling Access to System Data and Resources 8–27

Controlling Access to System Data and Resources
8.9 Added Protection for System Data and Resources

8.9.3 Restricting DCL Command Usage
There are several ways that you can affect the use of DCL commands by your
users. Among them are the following:

• Impose ACLs on the system program files in the directories
SYS$SYSROOT:[SYSEXE] and SYS$SYSROOT:[SYSLIB].

• Set the AUTHORIZE flag DISIMAGE to prevent use of the MCR or the RUN
command. This prevents users from executing system or user-written images
or from executing images defined as foreign commands.
Because the DISIMAGE flag is enforced by the DCL command language
interpreter (CLI), you must ensure that the account for which the DISIMAGE
flag is set has access to the DCL CLI only. Use the DISIMAGE flag in
conjunction with the AUTHORIZE flag DEFCLI or within a restricted
account. (Setting the RESTRICTED flag for an account implicitly sets the
DEFCLI flag.)

• Remove or modify DCL command definitions, and rebuild the DCL
tables. (The OpenVMS System Management Utilities Reference Manual
describes how to create command definitions.) Use the /CLITABLES
qualifier in the user’s UAF record to specify the modified tables.
Also specify /FLAGS=DEFCLI to ensure that the user can log in
only with the specified command language interpreter (CLI) and
tables. Protect the original DCL tables from unauthorized access
by imposing ACLs on the system program files in the directories
SYS$SYSROOT:[SYSEXE] and SYS$SYSROOT:[SYSLIB]. In particular,
protect SYS$LIBRARY:DCLTABLES.EXE and SYS$SYSTEM:CDU.EXE.

8.9.4 Encrypting Files
File encryption refers to the process of applying an algorithm to data to conceal
its content. Decryption reverses the operation and converts encoded information
back to its original content. If you need to copy proprietary software onto media
for removal to another site, you might use file encryption. The software on the
media is useless without the correct decryption code.

Different file encryption systems, both software and hardware, are available.
Consult your Compaq support channel for information on which products are
available in your country.

8.9.5 Protecting Disks
Disk scavenging is the process of reading magnetic imprints of data after deletion
of the file header following a purge or delete operation. (When users delete files
from the system, only the file header is deleted.) Until the data is overwritten,
it is a potential target for disk scavenging. Sites with medium or high security
needs should be concerned about this procedure.

After establishing overall security features, restrict access to disks containing
valuable information by using UIC-based volume protection. Because disk
scavenging is frequently performed by authorized users, consider implementing
erasure patterns and high-water marking, as described in the following sections.

8–28 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.9 Added Protection for System Data and Resources

8.9.5.1 Erasing Techniques
There are several ways to implement erasing of disks.

• The inclusion of the /ERASE qualifier with the DELETE or the PURGE
command causes the system to write an erasure pattern of zeros over the
entire file location when you delete or purge that file. You can encourage
users to use this qualifier voluntarily or make inclusion automatic by
including the following command definitions in the system login command
procedure (usually SYS$MANAGER:SYLOGIN.COM):

DEL*ETE :== "DELETE/ERASE"
PUR*GE :== "PURGE/ERASE"

However, any user can bypass these definitions by adding the /NOERASE
qualifier to the DELETE or the PURGE command.

• To guarantee erase-on-delete, turn on the feature for the entire volume by
using the DCL command SET VOLUME/ERASE_ON_DELETE. When files
are deleted, this command overwrites all files on the volume with the erasure
pattern of zeros.

• To completely erase the volume and enable erase-on-delete for the volume at
volume initialization, use the DCL command INITIALIZE/ERASE.

By default, when erase-on-delete is enabled, the operating system writes
a default data security erase (DSE) pattern of zeros, applied during a
single write operation over the area. If you feel that the default pattern of
zeros or the single rather than multiple number of erasures does not suit
your requirements, you can use the $ERAPAT (Get Security Erase Pattern)
system service to write a customized erasure pattern. See the description
of $ERAPAT in the OpenVMS System Services Reference Manual for more
information.

For sites with high-level security requirements, a random pattern is preferable
to a fixed pattern. The technology is already available that can detect and use
faint residual magnetic impressions. Thus, if you conclude there is sufficient
danger that a disk might be removed and read using some of this specialized
analysis equipment, you may need to rewrite the erasure pattern several times.
You can learn how to customize the data security erase pattern to fit your
needs by studying the information provided in the file SYS$EXAMPLES:DOD_
ERAPAT.MAR.

Employ erasing patterns only on disks where the security needs are the greatest.
Erasures are time-consuming and affect system performance.

8.9.5.2 Prevention Through High-Water Marking
High-water marking refers to a technique that tracks the furthest extent to which
each file has been written and prohibits user attempts at reading data beyond
that point.

The operating system implements true high-water marking for all sequential,
exclusively accessed files, such as the set of files output from various text editors,
compilers, and linkers, that is, most files a process writes. The high-water mark
is updated in the file header whenever the logical end-of-file mark is updated
(usually when the file is closed).

Controlling Access to System Data and Resources 8–29

Controlling Access to System Data and Resources
8.9 Added Protection for System Data and Resources

For shared files (both indexed and sequential), the operating system uses the
principle of erase-on-allocate to achieve a result similar to true high-water
marking. When a file is about to be created or extended, the system determines
how much disk space (the extent of the file) is required and applies the security
erasure pattern of zeros to the areas (extents) it allocates for writing. The file is
then written into the area just erased for it. Thus, if any user gains access to the
file (including its full extent) and attempts to read the area beyond where the file
has been written, only the data security erase pattern is readable.

By default, the operating system turns on high-water marking for all volumes.
High-water marking is a deterrent to disk scavenging attempts. However, it does
require additional I/O, which affects system performance.

You can turn off high-water marking and erase-on-allocate on a volume-by-
volume basis by specifying the DCL command SET VOLUME/NOHIGHWATER_
MARKING.

8.9.5.3 Summary of Prevention Techniques
As security administrator, you can apply the following controls to discourage disk
scavengers:

• Provide tight physical security, particularly on those disks with the most
valuable information.

• Provide tight volume protection through UIC-based protection.

• Encourage the use of the /ERASE qualifier when key files are purged or
deleted through user participation or volume enforcement.

• Permit default high-water marking on your most valuable disks.

8.9.6 Protecting Backup Media
You can guard against data loss or corruption by creating copies of your files,
directories, and disks. In case of a problem, you can restore the backup copy and
continue your work. Secure media storage and controlled access to media are
essential parts of the process. It is best to store backup media off site.

8.9.6.1 Backing Up Disks
Having an effective backup schedule is critical to protect your data. By
performing regularly scheduled backup operations, you prevent the loss of
accidentally deleted or damaged files.

Refer to the OpenVMS System Management Utilities Reference Manual for
information about performing backups and setting up backup schedules. Be
aware that the Backup utility (BACKUP) does not implement security policy; you
must direct it explicitly. It runs with the security profile of the operator, which
can often be privileged.

8.9.6.2 Protecting a Backup Save Set
Limiting access to backup save sets is an important part of system security. The
file system treats a backup save set as a single file, whether it is stored on disk
or on magnetic tape. Therefore, anyone with access to a save set can read any file
in the save set. BACKUP does not check protection on individual files.

To maintain system security, it is crucial that you protect save sets adequately.
Assign restrictive protection to save sets on disk and to magnetic tape volumes by
using the output save-set qualifiers /BY_OWNER and /PROTECTION. Sufficient
protection can prevent nonprivileged users from mounting a save-set volume
or from reading files from a save set. You should also take physical security

8–30 Controlling Access to System Data and Resources

Controlling Access to System Data and Resources
8.9 Added Protection for System Data and Resources

precautions with save sets stored off line by keeping backup media in locked
cabinets.

When you write a save set to a Files–11 disk or a sequential disk and do not
specify the /PROTECTION qualifier, BACKUP applies the process default
protection to the save set. If you specify /PROTECTION, any protection categories
that you do not specify default to your default process protection.

Protection information is written to the volume header record of a magnetic tape
and applies to all save sets stored on the tape. Therefore, the output save-set
qualifiers /BY_OWNER and /PROTECTION are effective on magnetic tape save
sets only if you specify the output save-set qualifier /REWIND. This qualifier
allows the tape to rewind to its beginning, to write the protection data to the
volume header record, and to initialize the tape. If you specify /PROTECTION,
any protection categories that you do not specify default to your default process
protection. If you do not specify /REWIND with the /PROTECTION and /BY_
OWNER qualifiers, the magnetic tape retains its existing protection. However,
specifying /REWIND alone results in a magnetic tape without any protection.

The following example illustrates how a directory is backed up to tape:

$ BACKUP
_FROM: [PAYROLL]
_TO: MFA2:KNOX.BCK/LABEL=BANK01 - !
_$ /REWIND/BY_OWNER_UIC=[030,003] - "

_$ /TAPE_EXPIRATION=15-JAN-1993 - #
_$ /PROTECTION=(S:RWE,O:RWED,G:RE,W) $

! The contents of the directory [PAYROLL] is copied to file KNOX.BCK on the
magnetic tape drive MFA2. The output save-set qualifier /LABEL provides
the label BANK01 for the tape.

" The output save-set qualifier /BY_OWNER assigns an owner UIC of [030,003]
to the save set.

The output save-set qualifier /TAPE_EXPIRATION assigns an expiration date
of January 15, 1993 to the tape.

$ The output save-set qualifier /PROTECTION assigns the owner of the volume
read, write, execute, and delete access. System users are assigned read, write,
and execute access; group users are assigned read and execute access; world
users are assigned no access.

8.9.6.3 Retrieving Files from Backup Save Sets
Anyone who has access to a save set can read any file in the save set. Never give
a copy of your backup media to a user; a malicious user could restore the files
from the tape or disk and compromise the security of the system.

When a nonprivileged user wants to restore a particular file, do not lend the
volume containing the save set. You could give away access to all the files on the
volume. The safest way to restore a particular file is to restore the file selectively,
as shown in the following example:

$ BACKUP MTA0:JULY.BCK/SELECT=[JONES.TEXTPROC]LASTMONTH.DAT -
_$ [*...]/BY_OWNER=ORIGINAL

The selected file is restored with its original directory, ownership, and protection.
In this way, the file system determines if the user is permitted access to the file.

Controlling Access to System Data and Resources 8–31

Controlling Access to System Data and Resources
8.9 Added Protection for System Data and Resources

8.9.7 Protecting Terminals
The next sections describe the controls available for restricting the use of
terminals.

8.9.7.1 Restricting Terminal Use
Through the device object class template TERMINAL, the operating system sets
up terminals to be accessible to the SYSTEM account only. When a user logs in,
the operating system transfers ownership from a system UIC to the UIC of the
current process.

You can limit logins on specific terminals in the following ways:

• Assign a system password.

• Set the terminal to /NOTYPE_AHEAD, making it impossible to log in.

The application of system passwords limits the use of those terminals to users
who know the system password.

8.9.7.2 Restricting Application Terminals and Miscellaneous Devices
To make terminals accessible to certain users as application terminals, you
may want to change any or all of the device’s security characteristics. You
can include the DCL command SET SECURITY/CLASS=DEVICE for specific
terminals (with appropriate protection codes) in the command procedure
SYS$MANAGER:SYSTARTUP_VMS.COM. This DCL command can limit access
to any device that is not file structured. You might also place an ACL on the
device to limit user access.

8.9.7.3 Configuring Terminal Lines for Modems
When configuring terminal lines for modems, never set the /COMMSYNC
qualifier to the DCL command SET TERMINAL (or the TT$M_COMMSYNC
characteristic for the TTDRIVER interface) on a line with a modem hookup that
is intended for interactive use.

The qualifier disables the modem terminal characteristic that disconnects a user
process from the terminal line in case of a modem phone line failure. With the
/COMMSYNCH qualifier enabled, the next call on the terminal line could be
attached to the previous user’s process. The /COMMSYNC qualifier is intended
to allow connection of asynchronous printers and other devices to terminal ports
by using modem signals as flow control.

8–32 Controlling Access to System Data and Resources

9
Security Auditing

This chapter describes how to use and manage the OpenVMS auditing system.
It explains how you can monitor security-relevant activity on your system by
recording events as they occur on the system and subsequently analyzing this
audit log.

9.1 Overview of the Auditing Process
Auditing is the recording of security-relevant activity as it occurs on the system
and the subsequent analysis of this audit log. With auditing, you can monitor
users’ activity on the system and, if necessary, reconstruct events leading up to
attempts to compromise the security of your system. Thus, it is not as much
a method of protecting the system and its data as a method of analyzing and
recording system use.

Anything that has to do with a user’s access to the system or to a protected object
within the system is considered a security-relevant activity. Such activities are
called events. Typical events include the following:

• Logins, logouts, or login failures

• Changes to the authorization database

• Access to a protected object, such as a file, device, or global section

• Changes in privileges or the security attributes of protected objects

The operating system can record both successful and unsuccessful events.
Sometimes the unsuccessful can be more revealing. For example, it is less
important to record that a programmer displayed a file to which he had access
than that the same programmer tried to but was prevented from displaying a
protected file.

The event message itself can be written to two places: an audit log file or
an operator terminal that is enabled to receive security class messages. As
Example 9–1 shows, a message contains the following data:

! Date and time of the message

" Type of event

Date and time the event occurred

$ The process identification (PID) of the user who caused the event

Additional information in auditing messages is specific to the type of event. See
Appendix D for examples of different messages.

Security Auditing 9–1

Security Auditing
9.2 Reporting Security-Relevant Events

Example 9–1 Sample Alarm Message

%%%%%%%%%%% OPCOM 25-JUL-1995 16:07:09.20 %%%%%%%%%%% !
Message from user AUDIT$SERVER on GILMORE
Security alarm (SECURITY) on GILMORE, system id: 20300
Auditable event: Process suspended ($SUSPND) "
Event time: 25-JUL-1995 16:07:08.77 #
PID: 30C00119 $
Process name: Hobbit
Username: HUBERT
Process owner: [LEGAL,HUBERT]
Terminal name: RTA1:
Image name: 99DUA0:[SYS0.SYSCOMMON.][SYSEXE]SET.EXE
Status: %SYSTEM-S-NORMAL, normal successful completion
Target PID: 30C00126
Target process name: SMISERVER
Target username: SYSTEM
Target process owner: [SYSTEM]

9.2 Reporting Security-Relevant Events
Beyond a certain set of default reporting (see Table 9–1), the kind of security
event information you receive depends on the kind of information you select from
a long list of possible events. This section explains how to enable the reporting of
security event information. Specifically, it discusses the following topics:

• Ways to generate event messages

• Types of events the system can report

• Sources of event information

9.2.1 Ways to Generate Audit Information
Whenever you install or upgrade your system, the OpenVMS operating system
automatically audits a limited number of events. These event categories, which
are shown in Table 9–1, represent major changes in the security of your system.
Depending on your site’s requirements, you may want to enable other forms of
reporting.

You can have the operating system report on security-related activity in three
different ways:

• By enabling a category of events for auditing. For example, all login failures
or all changes to system parameters can be reported.

• By attaching an access control entry (ACE) to a protected object. For example,
any time a user modifies a particular file, a message can be generated.

• By modifying a user’s authorization record so the system audits all operations
performed from the account.

9.2.1.1 Auditing Categories of Activity
Security-relevant events are divided into a number of categories called event
classes. The operating system audits several event classes by default (see
Table 9–1). If the security requirements at your site justify additional auditing,
you enable security auditing for additional event classes by using the DCL
command SET AUDIT.

9–2 Security Auditing

Security Auditing
9.2 Reporting Security-Relevant Events

To enable auditing for different event classes, use the following command format:

SET AUDIT /ENABLE=event-class[,...] {/ALARM | /AUDIT}

The command requires two qualifiers to enable events:

• The /ENABLE qualifier defines the event classes you want audited. See
Table 9–3 for a list of event classes.

• The /AUDIT qualifier or the /ALARM qualifier defines the destination for the
event message.

The /AUDIT qualifier directs the message to the audit log file, whereas the
/ALARM qualifier directs the message to an operator terminal that has been
enabled to receive security event messages. Critical events should be reported
as both audits and alarms; less critical events can be written to a log file for
later examination. The default event classes listed in Table 9–1 are audited
as both alarms and audits.

The operating system begins auditing the new events on all nodes of the cluster
as soon as you enable them. It continues auditing until you explicitly disable
the classes with the /DISABLE qualifier. The current auditing configuration is
recorded in SYS$MANAGER:VMS$AUDIT_SERVER.DAT and so it is preserved
across system boots.

For more information about the SET AUDIT command, see the OpenVMS DCL
Dictionary.

Table 9–1 Event Classes Audited by Default

Class Description

ACL Access to any object holding a security-auditing ACE.

Audit All uses of the SET AUDIT command. This category cannot be
disabled.

Authorization All changes to the authorization database:

• System user authorization file (SYSUAF.DAT)

• Network proxy authorization file (NETPROXY.DAT or
NET$PROXY.DAT)

• Rights database (RIGHTSLIST.DAT)

Break-in All intrusion attempts: batch, detached, dialup, local, network,
remote.

Logfailure All login failures: batch, dialup, local, remote, network, subprocess,
detached, server.

To see the event classes your site currently audits, enter the DCL command
SHOW AUDIT. Example 9–3 displays the audit settings for a site with moderate
security requirements.

Example of Enabling Event Classes
Although you can enable auditing for every possible class of security activity
(/ENABLE=ALL), such an approach can result in an excessive number of auditing
messages and generates too much information to analyze in a meaningful
way. Therefore, Compaq suggests that you evaluate your needs, as described
in Section 9.3.1, and selectively audit system activity.

Security Auditing 9–3

Security Auditing
9.2 Reporting Security-Relevant Events

You can enable auditing of event classes with different levels of granularity. You
can use the following methods:

• Enable a class

To enable auditing for all login failures, for example, you enable the logfailure
class by entering the following command:

$ SET AUDIT/AUDIT/ENABLE=LOGFAILURE=ALL

As a result of this command, the audit server reports all login failures in the
security audit log file.

• Enable a subset of a class

With certain events, you may want to be more selective in the kinds of
reporting you enable. For example, it makes more sense to enable network
and remote login events rather than to enable all login events.

To enable auditing of only the network and remote logins, enter the following
command:

$ SET AUDIT/AUDIT/ENABLE=LOGIN=(NETWORK,REMOTE)

• Enable successful, unsuccessful, or privileged events

Event messages that report on normal system use can easily be eliminated if
you enable only unsuccessful event reports or reports for activity performed
through a certain privilege.

When auditing access events to protected objects, in particular, you need
to define your information requirements more finely than you would with
event classes like logins or use of the Install utility. Files and certain other
protected objects are accessed so often that full enabling of the related access
event class can result in an overwhelming number of event messages—
so many that they can possibly mask the unusual events that do require
investigation. For this reason, it is recommended that you enable access
auditing only for unusual conditions, such as unsuccessful or privileged access
events.

To enable auditing of unsuccessful file access events, enter the following
command:

$ SET AUDIT/AUDIT/ENABLE=ACCESS=FAILURE/CLASS=FILE

Notice that the previous command enables auditing for all failed file accesses,
not just failed read or write access attempts. This is recommended because
access operations can be quite involved: what appears to be a simple write
operation can involve several types of access. (For example, before writing to
the file, the operation requires access to the volume and read access to the
directory as well as access to the file within it.)

Example 9–2 displays an event message from a file access failure. User
Robinson tried to delete the file FOO.BAR, but an ACE on the file prevented
it. Apparently, Robinson holds the identifier MINDCRIME, and an Identifier
ACE on FOO.BAR denies access to those holding such an identifier.
Furthermore, because the system owns the file, Robinson cannot gain delete
access to the file through the protection code either.

9–4 Security Auditing

Security Auditing
9.2 Reporting Security-Relevant Events

Example 9–2 Audit Generated by an Object Access Event

Message from user AUDIT$SERVER on BILBO
Security alarm (SECURITY) and security audit (SECURITY) on BILBO, system id: 19662
Auditable event: Object deletion
Event information: file deletion request (IO$_DELETE)
Event time: 24-APR-1992 13:17:24.59
PID: 47400085
Process name: Hobbit
Username: ROBINSON
Process owner: [ACCOUNTING,ROBINSON]
Terminal name: OPA0:
Image name: DSA2264:[SYS51.SYSCOMMON.][SYSEXE]DELETE.EXE
Object class name: FILE
Object owner: [SYSTEM]
Object protection: SYSTEM:RWED, OWNER:RWED, GROUP:RE, WORLD:RE
File name: _DSA2200:[ROBINSON]FOO.BAR;1
File ID: (17481,6299,1)
Access requested: DELETE
Matching ACE: (IDENTIFIER=MINDCRIME,ACCESS=NONE)
Sequence key: 00008A41
Status: %SYSTEM-F-NOPRIV, no privilege for attempted operation

9.2.1.2 Attaching a Security-Auditing ACE
As Section 9.2.1.1 describes, auditing access to protected objects requires careful
thought because this type of event occurs so frequently. Too many event messages
can overwhelm you and possibly mask the unusual events that do require
investigation.

A more selective method of auditing protected objects is to include an auditing
ACE in an object’s access control list (ACL) and enable the ACL event class. With
this approach, only access to objects with security-auditing ACEs results in an
event message, not all objects of a class.

You can use two different types of auditing ACEs, depending on where you want
the event reported. Alarm ACEs direct event messages to the operator terminal;
whereas Audit ACEs direct event messages to the audit log file. Table 9–2
summarizes the auditing ACEs, and the OpenVMS System Management Utilities
Reference Manual provides a full description of them. See Table 10–1 for a list of
system files benefiting from auditing ACEs.

Security Auditing 9–5

Security Auditing
9.2 Reporting Security-Relevant Events

Table 9–2 Access Control Entries (ACEs) for Security Auditing

ACE Type Description

Alarm ACE Writes an event message to the operator terminal whenever the object is
accessed in the specified manner. It has the following syntax:

(ALARM=SECURITY[,OPTIONS=options],ACCESS=access-
type[+access-type...])

Audit ACE Writes an event message to the security audit log file whenever the object
is accessed in the specified manner. It has the following syntax:

(AUDIT=SECURITY [,OPTIONS=options],ACCESS=access-
type[+access-type...])

You attach an ACE to sensitive objects by using the DCL command SET
SECURITY/ACL or the access control list editor (ACL editor). Always include
the SUCCESS or FAILURE keyword (or both) in the ACCESS statement of an
auditing ACE.

It is a good idea to define auditing ACEs for critical system files that are not
automatically audited, such as the automatic login file SYSALF.DAT, the operator
log file OPERATOR.LOG, or the system accounting file ACCOUNTING.DAT.
Do not monitor all access conditions, however, because such an approach can
generate a large volume of messages, many of which are not useful. For example,
tracking successful write operations to OPERATOR.LOG probably will not
produce interesting information, but tracking unsuccessful attempts probably
will.

You can add auditing ACEs to any protected object, although files are the most
common objects to audit. You may want to add an auditing ACE to either a print
queue that is handling sensitive documents or to a terminal to catch attempted
password grabbers (see Section 3.8).

Example of Adding an Auditing ACE
To establish an Alarm ACE for the file ACCOUNTING.DAT, enter the following
command:

$ SET SECURITY/ACL=(ALARM=SECURITY,ACCESS=DELETE+CONTROL+SUCCESS+FAILURE)-
_$ SYS$MANAGER:ACCOUNTING.DAT

The ACL event class is enabled by default, but if it has been disabled at a site,
you must enter the following command to reenable the use of auditing ACEs:

$ SET AUDIT/ALARM/AUDIT/ENABLE=ACL

9.2.1.3 Modifying a User Authorization Record
Sometimes you may see users acting in a suspicious way. Perhaps they are
logging in from a number of terminals or logging in at unusual times of the day
or the week. You can monitor users’ actions by modifying the auditing attribute
in their user authorization records. Run the AUTHORIZE utility and set the
Audit flag.

9–6 Security Auditing

Security Auditing
9.2 Reporting Security-Relevant Events

Note that setting the AUDIT flag generates an extremely large number of audit
messages. The following command sequence modifies the account of user Robin:

$ RUN SYS$SYSTEM:AUTHORIZE
UAF> MODIFY ROBIN/FLAGS=AUDIT
%UAF-I-MDFYMSG, user record(s) updated

With the Audit flag set, the operating system audits the user’s process. The
audit log file contains a report of any action the user performs that the operating
system is capable of auditing (see Section 9.2.2). You can use the Audit Analysis
utility to review the user’s actions. For example, to get a report on the activities
of user Robin, enter the following command:

$ ANALYZE/AUDIT/SELECT=(FLAGS=MANDATORY,USERNAME=ROBIN) -
_$ SECURITY.AUDIT$JOURNAL

See Section 9.5 for a full description of the Audit Analysis utility.

9.2.2 Kinds of System Activity the Operating System Can Report
With the DCL command SET AUDIT, you can enable auditing for one or more of
the event classes shown in Table 9–3. Many of the events classes have keywords
permitting you to define a subset of the event class.

Table 9–3 Kinds of Security Events the System Can Report

Event Class Description

Access Access requests to all objects in a class. You can audit selected
types of access, both privileged and nonprivileged, to all
protected objects of a particular class.

ACL Events requested by a security Audit or Alarm ACE in the
ACL of an object.

Authorization Modification of any portion of SYSUAF.DAT, NETPROXY.DAT,
NET$PROXY.DAT, or RIGHTSLIST.DAT.

Breakin Intrusion attempts.

Connection Logical link connections or terminations through SYSMAN,
DECnet Phase IV,1 Compaq DECwindows Motif for OpenVMS,
or an interprocess communication (IPC) call.

Create Creation of a protected object.

Deaccess Deaccess from a protected object.

Delete Deletion of a protected object.

Identifier Use of identifiers as privileges.

Install Modifications made to the known file list through the Install
utility.

Logfailure Unsuccessful login attempts.

Login Successful login attempts.

Logout Logouts.

Mount Volume mounts and dismounts.

NCP Modification to the network configuration database, using the
network control program (NCP).

1VAX specific

(continued on next page)

Security Auditing 9–7

Security Auditing
9.2 Reporting Security-Relevant Events

Table 9–3 (Cont.) Kinds of Security Events the System Can Report

Event Class Description

Privilege Successful or unsuccessful use of privilege.

Process Use of one or more of the process control system services.

SYSGEN Modification of a system parameter with the System
Generation utility (SYSGEN) or AUTOGEN.

Time Modification of system time.

9.2.2.1 Suppression of Certain Privilege Audits
Although a site may enable the privilege event class, the operating system does
not report every event in this class. It suppresses the following types of audits:

• Successful use of privileges with which an image is installed
For example, the image SHOW.EXE is installed with WORLD privilege.
When unprivileged users enter the SHOW SYSTEM command, SHOW.EXE
uses WORLD privilege to perform wildcard $GETJPI system service
calls. This use of WORLD privilege is not audited. However, if the same
unprivileged users attempt to use the SHOW PROCESS command to display
process attributes for a process that they do not have access to, the operation
fails. This lack of WORLD privilege is audited even though SHOW.EXE is
installed with WORLD privilege.

• Successful use of a lesser privilege than installed with the image
When an image is installed with a greater privilege than used, the lesser
privilege is not audited if the request is successful. For example, if an image
installed with CMKRNL privilege successfully executes a $CMEXEC system
service call, the use of the CMEXEC privilege is not audited. The following
relationships exist:

Greater Privilege Privilege It Implies

PRMMBX TMPMBX

CMKRNL CMEXEC

SYSNAM GRPNAM

WORLD GROUP

SYSPRV GRPPRV

BYPASS SYSPRV, GRPPRV, READALL, DOWNGRADE, UPGRADE

• Any use of SETPRV privilege by an image installed with SETPRV
Although the operating system does not audit use of SETPRV, it does audit
the use of any privilege enabled with SETPRV. Compaq recommends that you
install an image with the privileges that it actually needs and avoid installing
images with SETPRV.

• With protected subsystems, successful access by using a subsystem identifier

9–8 Security Auditing

Security Auditing
9.2 Reporting Security-Relevant Events

9.2.2.2 Suppression of Certain Process Control Audits
Although a site may enable the process event class, the operating system does not
report every event in this class. It suppresses the following types of audits:

• Server processes created with the DCL command RUN/TRUSTED or the
Create Process system service ($CREPRC) with the PRC$M_TCB flag set
Server applications that do need to audit information regarding their clients
can set the auditing flags NSA$M_SERVER or CHP$M_SERVER, which
override the process no-audit setting for the duration of the auditing call.

• Process control events inside your process’s job tree that have the same UIC
as the requestor
You do not see any process control audits when granting or revoking
identifiers to or from your own process. However, events related to the
use of $CREPRC and $DELPRC are always audited.

9.2.3 Sources of Event Information
Applications and system programs can contribute security event information by
calling the following system services:

• $AUDIT_EVENT

• $CHECK_PRIVILEGE

• $CHKPRO and $CHECK_ACCESS

Audit Event ($AUDIT_EVENT) System Service
The operating system calls the $AUDIT_EVENT system service every time a
security-relevant event occurs on the system. By looking at the SET AUDIT
settings, the system service determines whether you enabled auditing for
the event. When the event is enabled for alarms or audits, $AUDIT_EVENT
generates an audit record that identifies the process (subject) involved and lists
event information supplied by its caller.

Check Privilege ($CHECK_PRIVILEGE) System Service
The operating system calls the $CHECK_PRIVILEGE system service any time
a user attempts to perform a privileged function. (The current set of OpenVMS
privileges is listed in Appendix A.) The system service performs the privilege
check and looks at the SET AUDIT settings to determine whether you enabled
privilege auditing. When privilege auditing is enabled, $CHECK_PRIVILEGE
generates an audit record. The audit record identifies the process (subject)
and privilege involved, provides the result of the privilege check, and lists
supplemental event information supplied by its caller. Privilege audit records
usually contain the DCL command line or system service name associated with
the privilege check.

Check Protection ($CHKPRO) and Check Access ($CHECK_ACCESS) System
Services
The operating system calls the $CHKPRO system service any time a process
(subject) attempts to access a protected object. The system service performs the
access arbitration according to the rules described in Section 4.3. By looking
at the SET AUDIT settings for the associated object class, the service also
determines whether you enabled auditing for the associated object access event.
When an alarm or an audit is required, $CHKPRO generates an audit record that
identifies the process (subject) and object involved and includes the final outcome
and any supplemental event information supplied by its caller.

Security Auditing 9–9

Security Auditing
9.2 Reporting Security-Relevant Events

Privileged server processes use the $CHECK_ACCESS system service to
determine whether their clients should be allowed access to the protected objects
being served. The $CHECK_ACCESS system service provides a calling interface
appropriate for servers and is layered on top of the $CHKPRO service. As a
result, it performs object access auditing in the same manner as $CHKPRO.

9.3 Developing an Auditing Plan
As system manager or site security administrator, you have to determine the
level of security required at your site before you can understand which security
events to audit.

9.3.1 Assessing Your Auditing Requirements
Assessing your auditing requirements is a two-step process:

1. Determine your site’s general security requirements: are they high, moderate,
or low? Table 1–1 provides some guidance on determining your security
needs.

2. Once you know your site’s needs, refer to Table 9–4 for a suggested list of
event classes to enable.

After developing a general notion of your site requirements, you need to consider
how much security reporting is realistic. Balance the suggestions in Table 9–4
with the following site factors:

• The sensitivity of the data at your site

• The amount of time you have to analyze log files

• The disk space you have available

• Your knowledge of a security threat: where is it coming from or likely to come
from

• The tuning requirements of your system (See Section 9.3.3 for information
about performance impact.)

Table 9–4 Events to Monitor Depending on a Site’s Security Requirements

Low Medium High

Goal Monitor local events with
high impact

Track changes to system
definition

Monitor database changes;
track use of process control
system services
Monitor network connections
through DECnet Phase IV
(VAX only)

Classes to
Enable as
Alarms

ACL, authorization, break-
in (all types), logfailure (all
types)

Same as low category plus
use of SECURITY privilege

Same as medium category
plus INSTALL, time,
SYSGEN, unsuccessful
privilege use

(continued on next page)

9–10 Security Auditing

Security Auditing
9.3 Developing an Auditing Plan

Table 9–4 (Cont.) Events to Monitor Depending on a Site’s Security Requirements

Low Medium High

Classes to
Enable as
Audits

ACL, authorization, breakin
(all types), logfailure (all
types)

All of low category plus
INSTALL; time; SYSGEN;
privilege; logins (all types);
logouts (all types); access
of files through BYPASS,
SYSPRV, and READALL
privileges; unsuccessful
access to files, devices, and
volumes

All of medium category
plus identifier, process,
unsuccessful access to
protected objects, NCP,
connection (VAX only)

In Table 9–4, the event classes suggested for a low-security site are the default
settings for the operating system. If these classes are not the current defaults on
your system, you can enable them with the following command:

$ SET AUDIT/ALARM/AUDIT/ENABLE=(ACL,AUTHORIZATION,BREAKIN:ALL,LOGFAILURE:ALL)

In a site with moderate security requirements, you want to audit events that
can redefine your system. You watch for changes to system files, system time,
or system parameters. You also monitor image installations and the use of
privilege. Example 9–3 shows the auditing setting for a site with moderate
security requirements.

Example 9–3 Auditing Events for a Site with Moderate Security Requirements

System security alarms currently enabled for:
Authorization
Breakin: dialup,local,remote,network,detached

System security audits currently enabled for:
ACL
Authorization
INSTALL
Time
SYSGEN
Breakin: dialup,local,remote,network,detached
Login: batch,dialup,local,remote,network,subprocess,detached,server
Logfailure: batch,dialup,local,remote,network,subprocess,detached,server
Logout: batch,dialup,local,remote,network,subprocess,detached,server
Privilege use:
ACNT ALLSPOOL ALTPRI AUDIT BUG BYPASS CMEXEC CMKRNL
DIAGNOSE DOWNGRADE EXQUOTA GROUP GRPNAM GRPPRV IMPORT IMPERSONATE
LOG_IO MOUNT NETMBX OPER PFNMAP PHY_IO PRMCEB PRMGBL
PRMMBX PSWAPM READALL SECURITY SETPRV SHARE SHMEM SYSGBL
SYSLCK SYSNAM SYSPRV TMPMBX UPGRADE VOLPRO WORLD

Privilege failure:
ACNT ALLSPOOL ALTPRI AUDIT BUGCHK BYPASS CMEXEC CMKRNL
DIAGNOSE DOWNGRADE EXQUOTA GROUP GRPNAM GRPPRV IMPORT IMPERSONATE
LOG_IO MOUNT NETMBX OPER PFNMAP PHY_IO PRMCEB PRMGBL
PRMMBX PSWAPM READALL SECURITY SETPRV SHARE SHMEM SYSGBL
SYSLCK SYSNAM SYSPRV TMPMBX UPGRADE VOLPRO WORLD

Security Auditing 9–11

Security Auditing
9.3 Developing an Auditing Plan

FILE access:
SYSPRV: read,write,execute,delete,control
BYPASS: read,write,execute,delete,control
READALL: read,write,execute,delete,control

To enable the settings for a moderate level of auditing, assuming the default
events are already in effect, enter the following set of commands:

$ SET AUDIT/ALARM/AUDIT/ENABLE=PRIVILEGE=(SUCCESS:SECURITY,FAILURE:SECURITY)
$ SET AUDIT/AUDIT/ENABLE=(INSTALL,SYSGEN,TIME,PRIVILEGE=(SUCCESS,FAILURE))
$ SET AUDIT/AUDIT/ENABLE=ACCESS=(BYPASS,SYSPRV,READALL)/CLASS=FILE
$ SET AUDIT/AUDIT/ENABLE=ACCESS=FAILURE/CLASS=(FILE,DEVICE,VOLUME)

A site with high security requirements expands its auditing breadth to include
network activity. It needs to monitor changes to the network database, network
connections (VAX only), the use of identifiers as privileges, and privileged
file access. Monitor all file access through SYSPRV, BYPASS, or READALL
privilege, and watch both successful and unsuccessful file access through
GRPPRV privilege. To enable the settings for a high level of auditing, assuming a
medium level is in effect, enter the following set of commands:

$ SET AUDIT/ALARM/ENABLE=(INSTALL,SYSGEN,TIME,PRIVILEGE=(FAILURE:ALL))
$ SET AUDIT/AUDIT/ENABLE=(CONNECTION,IDENTIFIER,NCP,PROCESS:ALL)
$ SET AUDIT/AUDIT/ENABLE=ACCESS=FAILURE/CLASS=*

To enable all auditing:

$ SET AUDIT/AUDIT/ENABLE=ALL/CLASS=*

To disable all auditing:

$ SET AUDIT/AUDIT/DISABLE=ALL/CLASS=*

See Section 10.3.2 for more suggestions of event classes to enable.

9.3.2 Selecting a Destination for the Event Message
The operating system can report a security event as either an alarm or an audit
(see Section 9.2.1.1). Which form you select depends on the nature of the event.
Real-time events or events that should be treated immediately, such as break-in
attempts or changes to the system user authorization file (SYSUAF.DAT), are
classes to enable as both alarms and audits. Less critical events can be enabled
just as audits. Unless you have a hardcopy operator terminal, the alarm record
is quickly superseded by other system messages. Audit event records, which
are written to the system security audit log, are saved so you can study them in
volume.

There is an advantage to studying event messages. Many times an isolated
auditing message offers little insight, but numerous audit records reveal a
pattern of activity that might indicate security violations. With auditing of object
access, for example, a security administrator can see a pattern of time, types
of objects being accessed, and other system information that, in total, paint a
complete picture of system activity. Section 9.5 describes how to produce reports
from audit log files.

9–12 Security Auditing

Security Auditing
9.3 Developing an Auditing Plan

9.3.3 Considering the Performance Impact
The default auditing performed by the operating system primarily tracks changes
to the authorization databases. System events like changes to the system user
authorization file (SYSUAF.DAT) or the installation of images do not occur too
often and therefore are not a drain on system resources.

Auditing additional event classes, particularly access events and privilege events,
can consume significant system resources if a site enables the event classes
without understanding how their system is used and without evaluating the
value of the audit information. In this respect, implementation of the audit
reporting system is similar to system tuning: it takes a little while to reach
the appropriate level of reporting that is free of spurious details. For this
reason, Compaq recommends you turn auditing on in phases, not all at once, and
gradually add or subtract event classes until you reach a satisfactory balance.
Use the following guidelines:

• Evaluate your auditing requirements, as described in Section 9.3.1.

• Be selective in auditing object access events. Object access events occur all
the time and therefore have the greatest impact on system performance.
Audit file-access failures in most cases rather than successful file access, or
put auditing ACEs on key files rather than enable auditing for the entire file
class.

• Examine the layered products you are running so you understand which
privileges they may use. Also become familiar with site-specific procedures,
such as the use of the READALL privilege during a backup operation.
Because privilege events occur frequently, they have a great impact on system
performance.

• Enable a few event classes at a time and then add or subtract, if necessary,
until you have sufficient event information. The more classes you enable, the
more overhead you have and the fewer resources you have for useful work on
the system.

Two commands in particular generate a large number of audit messages:

• The DCL PIPE command can create a large number of subprocesses to
execute a single PIPE command. This can mean a potential increase in
auditing events that are related to subprocess activities (for example, process
creation, process deletion, login, logfailure, and logout).

• The UAF command MODIFY USER/FLAG=AUDIT generates a very large
number of audit messages. It is not usually necessary to set this flag; if you
have a particular AUDIT enabled, you do not need to have the user flag set
as well.

9.4 Methods of Capturing Event Messages
The operating system can send event messages to an audit log file or to an
operator terminal. If a site wants additional copies, it can send duplicate
messages to a remote log file or an application listener mailbox.

Security Auditing 9–13

Security Auditing
9.4 Methods of Capturing Event Messages

9.4.1 Using an Audit Log File
The operating system writes all security event messages to the latest version
of the security audit log file. This log file is created by default during
system startup in the SYS$COMMON:[SYSMGR] directory and named
SECURITY.AUDIT$JOURNAL. Table 9–5 describes some of its more notable
characteristics.

Ordinarily, all cluster events are written to a single audit log file. The use of one
security audit log file in a cluster results in a single record of all security-relevant
events on the system. For this reason, one clusterwide log file is preferable to
node-specific audit logs, which lose the interrelationship of events across the
cluster, thus producing an incomplete analysis of security events. You can, if
you wish, create node-specific audit logs (see Section 9.4.1.1), but this is not the
recommended procedure.

Table 9–5 Characteristics of the Audit Log File

Characteristic Advantage

Binary A binary file requires the least amount of disk space.

Clusterwide A clusterwide file, when processed by the Audit Analysis utility, results
in one report of security-relevant events in the cluster.

Sequential
record format

A sequential record format is easily analyzed by user-written programs.
See the OpenVMS System Management Utilities Reference Manual for a
description of the message format of the security audit log file.

The usefulness of the security audit log file depends upon the procedures you
adopt:

• Maintain the log file so events are recognized early and the file does not get
too big (see Section 9.4.1.1).

• Routinely review the log file and scrutinize suspicious activity (see
Section 9.5).

9.4.1.1 Maintaining the File
The security audit log file continues to grow until action is taken, so you must
devise a plan for maintaining it.

Typically, sites rename each day’s log file and create a new one. To open a new,
clusterwide version of the security audit log file, use the following command:

$ SET AUDIT/SERVER=NEW_LOG

To create a new, node-specific log, precede the SET AUDIT/SERVER=NEW_LOG
command with the command SET AUDIT/DESTINATION=filespec where the
file specification includes a logical name that resolves to a node-specific file (for
example, SYS$SPECIFIC:[SYSMGR]SECURITY).

Once you have opened the new log, rename the old version with a name that
incorporates a beginning or ending date for the data.

To save space on the system disk, you may want to copy the file to another disk
and delete the log from the system disk. Even sites with a dedicated auditing
disk, which is common to environments with high security requirements, may
want to relocate the old version to make space for future messages.

9–14 Security Auditing

Security Auditing
9.4 Methods of Capturing Event Messages

Once you archive the file, run the Audit Analysis utility on the old log (see
Section 9.5.2). By archiving this file, you maintain a clusterwide history of
auditing messages. If you ever discover a security threat on the system, you
can analyze the archived log files for a trail of suspicious user activity during a
specified period of time.

9.4.1.2 Moving the File from the System Disk
To relocate the file from the SYS$COMMON:[SYSMGR] directory, edit the
command procedure SYSECURITY.COM. This procedure executes each time
the system is rebooted, before the audit server is started.

To relocate the file, perform the following steps:

1. Change the startup sequence by adding a line to SYSECURITY.COM that
directs the operating system to mount the designated auditing disk before the
audit server process is started rather than after. For example:

$ IF .NOT. F$GETDVI("$1$DUA2","MNT") -
_$ THEN MOUNT/SYSTEM 1DUA2 AUDIT AUDIT$ /NOREBUILD

The command in this example mounts a volume labeled AUDIT on 1DUA2
and makes it available systemwide. MOUNT also assigns the logical name
AUDIT$.

2. Move the audit server database to the auditing disk, if you choose. The
database remains small and fairly stable so this step is not essential.

To move the database, add a second line to SYSECURITY.COM to define the
system logical name VMS$AUDIT_SERVER. (The line follows the one that
mounts the auditing disk.) In the command, define a system logical name and
assign it to the VMS$AUDIT_SERVER data file on the disk with the logical
name AUDIT$. For example:

$ DEFINE/SYSTEM/EXEC VMS$AUDIT_SERVER AUDIT$:[AUDIT]VMS$AUDIT_SERVER.DAT

This command redirects the audit server database to the volume on 1DUA2,
which was mounted in step 1.

3. From the DCL level, redirect the security audit log file to the volume mounted
in SYSECURITY.COM (see step 1). Use the SET AUDIT command to update
the audit server database with the new location of the security audit log file,
and instruct the audit server process on each node in the cluster to begin
using the file. For example:

$ SET AUDIT/JOURNAL=SECURITY -
_$ /DESTINATION=AUDIT$:[AUDIT]SECURITY

Do not repeat this command on each system restart.

If you use a logical name in the specification of the security audit log file, it
must be defined as a /SYSTEM logical name in SYSECURITY.COM.

9.4.2 Enabling a Terminal to Receive Alarms
The operating system sends alarm messages to terminals enabled for security
class messages. In most cases, these security alarms appear on the system
console by default. Because messages scroll quickly off the screen, it is a good
practice to enable a separate terminal for security class messages and disable
message delivery to the system console. Choose either a terminal in a secure
location that provides hardcopy output or have dedicated staff monitor the
security operator terminal. Any number of terminals can be enabled as security
operators.

Security Auditing 9–15

Security Auditing
9.4 Methods of Capturing Event Messages

To set up a terminal to receive security class alarms, enter the following DCL
command from the designated terminal:

$ REPLY/ENABLE=SECURITY

For long-term use of a specific terminal, you can modify your site-specific startup
command procedure to automatically enable the terminal. For example, the
following command lines in a startup command procedure disable the delivery of
security alarms to the system console and enable alarms on terminal TTA3:

$ DEFINE/USER SYS$COMMAND OPA0:
$ REPLY/DISABLE=SECURITY
$ DEFINE/USER SYS$COMMAND TTA3:
$ REPLY/ENABLE=SECURITY

The authorization and SYSGEN event classes occasionally produce such lengthy
alarm messages that the messages get truncated. For this reason, it is best to
enable these classes for both alarms and audits. When an alarm message is
truncated, the text indicates it is incomplete. As long as you have enabled the
classes for audit messages, you can use ANALYZE/AUDIT to display the complete
message.

9.4.3 Secondary Destinations for Event Messages
The operator terminal and the audit log file are the primary destinations for
security event messages. A site can choose to send copies of audit messages to a
remote log file (called an archive file) or a listener mailbox.

9.4.3.1 Using a Remote Log File
The operating system allows workstations and other users with limited
management resources to duplicate their audit log file on another node.
This secondary log, the security archive file, is then available to a security
administrator on a remote node who has the skills to analyze the file. In some
situations, the archive file can also provide insurance should the local audit log
file be tampered with in some way. One node can direct auditing messages to
an archive file. Once enabled, the audit server writes a copy of each auditing
message to the security archive file as well as to the security audit log file.

Note

Each node in a cluster must have its own archive file. An archive file
cannot be shared by multiple nodes in a cluster.

Use the following procedure to write security audit messages to a remote security
archive file:

1. Log in to the node where the archive file is located, and create an account for
the audit server. To the account, assign a user name like AUDIT_ARCHIVE;
make the account unprivileged with only network access. Be sure the account
has access to the device and directory containing the security archive file.

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD AUDIT_ARCHIVE /ACCESS=NETWORK /DEVICE=WORK2-
_UAF> /DIRECTORY=[AUDIT_ARCHIVE]

9–16 Security Auditing

Security Auditing
9.4 Methods of Capturing Event Messages

2. Add a proxy account on the remote node for AUDIT$SERVER. This allows
the audit server process to write data to its account on the remote node. For
example, the following commands grant the audit server process on node
SMLNOD proxy access to the AUDIT_ARCHIVE account on node BIGNOD:

UAF> ADD/PROXY SMLNOD::AUDIT$SERVER AUDIT_ARCHIVE/DEFAULT
UAF> EXIT

See Section 12.3.2 for further information about setting up proxy accounts.

3. Log out from the remote node. On the local node, enable archiving of the log
file to the node by entering the following command:

$ SET AUDIT/ARCHIVE=ALL/DESTINATION=BIGNOD::WORK2:-
_$ [AUDIT_ARCHIVE]SMLNOD_MAY_93.AUDIT$JOURNAL

You must supply a complete directory specification. If you include any logical
names, ensure the local audit server process can translate them.

To create a new archive file, rename the current file; the next time the system
starts up, it creates a new one for you.

If the network goes down, messages intended for the security archive file are
lost. Security operator terminals receive notice of the lost connection and the
number of lost messages. Once the network is up, the audit server reestablishes
connection to the original archive file and continues writing event messages.

Analyzing the security archive file is identical, in most respects, to analysis of the
security audit log file. You can analyze a remote security archive file at any time,
even while the file is open. See Section 9.5 for more information.

9.4.3.2 Using a Listener Mailbox
As an additional feature of the security auditing facility, you can create a listener
device to receive a binary copy of all security-auditing messages. (A listener
device is a permanent or temporary mailbox that you create with the Create
Mailbox [$CREMBX] system service.) You can set up an application to receive
and process auditing information and react to events as they occur on the system.
Each system can have one listener device, and it can receive only events that are
occurring on the local node.

To enable the listener device to receive security-auditing messages, execute the
SET AUDIT/LISTENER command in the following format:

SET AUDIT/LISTENER=device-name

For the device-name parameter, supply either the logical name specified when you
created the mailbox or the equivalence name of the mailbox, in the form of MBAn,
where n represents the unit number of the mailbox. If you create the device as
a temporary mailbox, you must use the Get Device and Volume Information
($GETDVI) system service to return the mailbox device name.

To disable an audit listener device, enter the following command:

$ SET AUDIT/NOLISTENER

On VAX systems, refer to the files AUDSRV_LISTENER.B32 (a VAX BLISS
program) and AUDSRV_LISTENER.MAR (a VAX MACRO program) in the
SYS$EXAMPLES directory for examples of a program that processes audit-event
messages sent to a listener mailbox on a DECtalk device.

Security Auditing 9–17

Security Auditing
9.5 Analyzing a Log File

9.5 Analyzing a Log File
Collecting security audit messages in the security audit log file is useless without
periodically reviewing it for suspicious activity. You use the Audit Analysis utility
(ANALYZE/AUDIT) to examine the data in the security audit log file.

ANALYZE/AUDIT generates a report from the log file so that you become familiar
with normal activity on your system and can easily spot atypical activity. It
summarizes events for you and plots where activity is occurring on the cluster.
The utility also helps you analyze atypical activity because it is capable of
selecting a subset of information from an audit report and of providing fuller
information for your analysis. While the analysis of a single audit log file might
not be significant, audit records can, over time, reveal a pattern of activity that
indicates security violations.

9.5.1 Recommended Procedure
This section describes how to analyze audit log files on your system. Although
the way you use ANALYZE/AUDIT depends upon the security needs at your site,
there are a number of common steps that you should follow, regardless of the
extent to which you use the utility. Before you can recognize potential security
problems, you need to become familiar with the normal operation of your system.
Then you can develop a procedure for generating and reviewing audit reports
on a periodic basis. Whenever your regular analysis of audit log files leads you
to suspect a security problem, you should perform a detailed investigation of
selected security events.

Step 1: Know What Is Normal
As a security administrator, you should be able to answer the following questions
before analyzing an audit log file:

• What are the typical hours of operation for most users of the system?

• Are there specific users who normally operate with advanced privileges?

• Which images generate system security events as part of other applications?

• Are there any regular batch or network jobs that run at specific times of the
day?

By knowing the answers to these questions, you can eliminate false alarms, which
otherwise may cause you to wrongly suspect a security problem.

Step 2: Periodically Analyze the Audit Report
The most common type of report to generate is a brief, daily listing of events. You
can create a command procedure that runs in a batch job every evening before
midnight to generate a report of the day’s security event messages. (You can use
the same procedure to create a new version of the audit log [see Section 9.4.1.1].)

The following example shows the ANALYZE/AUDIT command line to generate
this report:

$ ANALYZE/AUDIT/SINCE=TODAY/OUTPUT=31DEC2000.AUDIT - !
_$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL
$ MAIL/SUBJECT="Security Events" 31DEC2000.AUDIT SYSTEM "

! The first command in this example produces an audit report named
31DEC2000.AUDIT, which contains one-line descriptions of all the security
event messages generated during the current day.

9–18 Security Auditing

Security Auditing
9.5 Analyzing a Log File

" The second command mails the file to the security administrator for
examination.

Depending on the number of security events that you are auditing on your
system, it can be impractical to review every audit record written to the audit log
file. In this case, you can select a specific set of records from the log file, such as
all audit records related to changes in the authorization database and break-in
attempts, or all events occurring outside normal business hours.

Analyze any subprocess-related audits with the knowledge that a pipe subprocess
(created by the DCL PIPE command) can generate the audits. The PIPE
command can create a large number of subprocesses to execute a single PIPE
command. This can mean a potential increase in auditing events that are related
to subprocess activities (for example, process creation, process deletion, login,
logfailure, and logout).

It is important that you review audit reports as soon as possible. The sooner
you inspect the reports, the sooner you become aware of any possible breach of
security on the system and can determine the extent of the problem. You can
make the inspection of the previous day’s audit report a regular part of your
morning routine, or you can create a program that reviews the report and notifies
you through the Mail utility (MAIL) when suspicious events appear.

Step 3: Scrutinize Suspicious Activity
If, during your review, you find any security events that appear suspicious or out
of place, like login attempts outside normal business hours, then use the Audit
Analysis utility to perform a more detailed inspection of the security audit log file.
A full report can help you determine which security events logged to the audit log
file warrant a more thorough investigation.

The following command generates a full report of selected security audit records:

$ ANALYZE/AUDIT/FULL/SINCE=TODAY/OUTPUT=31DEC2000.AUDIT -
_$ /EVENT_TYPE=(BREAKIN,RIGHTSDB,SYSUAF)
$ MAIL/SUBJECT="Security Events" 31DEC2000.AUDIT SYSTEM

The audit report for December 31, 2000 contains information on all
intrusion attempts and all modifications to the system user authorization file
(SYSUAF.DAT) and the rights database (RIGHTSLIST.DAT).

9.5.2 Invoking the Audit Analysis Utility
The Audit Analysis utility is the tool you use to produce a meaningful report from
a binary log file. This section and the sections that follow describe how to use the
utility, but refer to the OpenVMS System Management Utilities Reference Manual
for complete documentation of the utility’s commands and qualifiers.

To invoke the Audit Analysis utility, use the following DCL command:

ANALYZE/AUDIT file-name

For the file-name parameter, substitute the name of the file from which audit
reports are to be generated. The default name of the security audit log file is
SECURITY.AUDIT$JOURNAL. You must specify the directory: SYS$MANAGER.

Security Auditing 9–19

Security Auditing
9.5 Analyzing a Log File

9.5.3 Providing Report Specifications
With the Audit Analysis utility, you are able to extract all or some of the security
event messages from a single audit log and produce reports with various levels of
detail.

The audit report reflects events from the set of event classes a site has enabled
(see Section 9.2). You can tailor the report so only a subset of events are
extracted. The selection criteria can be based on time, on event class, or on
field of data within the event message. (See the documentation of the /SELECT
qualifier in the OpenVMS System Management Utilities Reference Manual.)
Table 9–6 summarizes the qualifiers that determine the content of the report.

Table 9–6 Qualifiers for the Audit Analysis Utility

Type Qualifier Description

Content /BEFORE Extracts event messages logged before the specified
time.

/SINCE Extracts event messages logged after the specified
of time.

/EVENT_TYPE Extracts event messages of a specific event class
(see Table 9–3).

/SELECT Extracts event messages based on
data in the messages. (For example,
/SELECT=USERNAME=JSNOOP lists only
security event messages generated by user
JSNOOP.)

/IGNORE Excludes event messages from the report based on
data in the messages.

Format /BRIEF Produces a report with one line of information about
each record in the audit log file, such as the type
of event, when it occurred, and the terminal from
which it originated (see Example 9–4). This is the
default.

/FULL Provides all possible data for each record in the
audit log file being processed (see Example 9–5).
Appendix D provides sample alarm messages for
each event class.

/SUMMARY Lists the total number of audit messages for each
event class in the log file being analyzed (see
Example 9–6). It can also plot the aggregate events
per hour on each node.

/BINARY Produces a binary file so you can extract records
for further analysis using your own data reduction
tools. See the OpenVMS System Management
Utilities Reference Manual for a description of the
audit message record format.

Destination /OUTPUT Specifies the report destination. By default, it goes
to SYS$OUTPUT.

ANALYZE/AUDIT produces audit reports in different formats (see Table 9–6).
The utility produces a one-line summary of each record in the log file by default.
Brief, one-line reports are most useful for routine analysis of a log file. The
more detailed full reports provide the detail necessary for analyzing records of
a suspicious nature. If you are interested in archiving portions of a log file, the
binary listing lets you store a subset of an audit log file.

9–20 Security Auditing

Security Auditing
9.5 Analyzing a Log File

A summary report helps you identify potential security problems quickly. For
each class of security event, a summary report can list the total number of audit
messages extracted from the security audit log file being analyzed. A summary
report can also display a plot of auditing activity, based on the system generating
the event message, the time when it occurred, and the total number of events
seen.

Example 9–4 shows a brief report of all the security audit events logged to the
system security audit log file. In the ANALYZE/AUDIT command that generates
the report, substitute the name of your audit log file.

Example 9–4 Brief Audit Report

$ ANALYZE/AUDIT/BRIEF SYS$MANAGER:SECURITY.AUDIT$JOURNAL

Date / Time Type Subtype Node Username ID Term
--
1-NOV-2000 16:00:03.37 ACCESS FILE_ACCESS HERE SYSTEM 5B600AE4
1-NOV-2000 16:00:59.66 LOGIN SUBPROCESS GONE ROBINSON 3BA011D4
1-NOV-2000 16:02:37.31 LOGIN SUBPROCESS GONE MILANT 000000D5
1-NOV-2000 16:06:36.40 LOGFAIL LOCAL SUPER MBILLS 000000E5 _TTA1:
.
.
.

Example 9–5 shows one record from a full format audit report. In the
ANALYZE/AUDIT command that generates the report, substitute the name
of your audit log file.

Example 9–5 One Record from a Full Audit Report

$ ANALYZE/AUDIT/FULL SYS$MANAGER:SECURITY.AUDIT$JOURNAL

Security audit (SECURITY) on FNORD, system id: 19728
Auditable event: Object access
Event time: 6-AUG-2000 11:54:16.21
PID: 3D200117
Process name: Hobbit
Username: PATTERSON
Process owner: [ACCOUNTING,PATTERSON]
Terminal name: RTA1:
Object class name: LOGICAL_NAME_TABLE
Object name: LNM$SYSTEM_DIRECTORY
Access requested: WRITE
Status: %SYSTEM-S-NORMAL, normal successful completion
Privileges used: SYSPRV

Example 9–6 shows a summary report. In the ANALYZE/AUDIT command that
generates the report, substitute the name of your audit log file.

Example 9–6 Summary of Events in an Audit Log File

$ ANALYZE/AUDIT/SUMMARY SYS$MANAGER:SECURITY.AUDIT$JOURNAL

(continued on next page)

Security Auditing 9–21

Security Auditing
9.5 Analyzing a Log File

Example 9–6 (Cont.) Summary of Events in an Audit Log File

Total records read: 9701 Records selected: 9701
Record buffer size: 1031
Successful logins: 542 Object creates: 1278
Successful logouts: 531 Object accesses: 3761
Login failures: 35 Object deaccesses: 2901
Breakin attempts: 2 Object deletes: 301
System UAF changes: 10 Volume (dis)mounts: 50
Rights db changes: 8 System time changes: 0
Netproxy changes: 5 Server messages: 0
Audit changes: 7 Connections: 0
Installed db changes: 50 Process control audits: 0
Sysgen changes: 9 Privilege audits: 91
NCP command lines: 120

9.5.4 Using the Audit Analysis Utility Interactively
When you send output to a terminal, you can analyze an audit log file
interactively. At any time during the display of a listing, you can interrupt
the report being displayed by pressing Ctrl/C. This automatically initiates a full
listing and gives you the Command> prompt. In command mode, you can advance
or return to earlier records in the report and study them in greater detail.

At the Command> prompt, you can enter any of the ANALYZE/AUDIT commands
listed in the OpenVMS System Management Utilities Reference Manual to modify
the analysis criteria, to change position within the audit report, or to toggle
between full and brief displays. To return to an audit report listing, enter the
CONTINUE command.

9.5.5 Examining the Report
When a routine analysis of an audit log file leads you to suspect that the
security of your system has been compromised (through an actual or attempted
intrusion, repeated login failures, or any other suspicious security events),
you can investigate the source of the security event through a more detailed
inspection of the security audit log file.

For example, assume that you see the security events shown in Example 9–7
during a routine inspection of the previous day’s audit report.

9–22 Security Auditing

Security Auditing
9.5 Analyzing a Log File

Example 9–7 Identifying Suspicious Activity in the Audit Report

Date / Time Type Subtype Node Username ID Term
--

.

.

.
26-OCT-2000 16:06:09.17 LOGFAIL REMOTE BOSTON KOVACS 5BC002EA _RTA14:
26-OCT-2000 16:06:22.01 LOGFAIL REMOTE BOSTON KOVACS 5BC002EA _RTA14:
26-OCT-2000 16:06:34.17 LOGFAIL REMOTE BOSTON KOVACS 5BC002EA _RTA14:
26-OCT-2000 16:06:45.50 LOGFAIL REMOTE BOSTON KOVACS 5BC002EA _RTA14:
26-OCT-2000 16:07:12.39 LOGIN REMOTE BOSTON KOVACS 5BC002EA _RTA14:
26-OCT-2000 16:23:42.45 SYSUAF SYSUAF_ADD BOSTON KOVACS 5BC002EA _RTA14:

.

.

.

The security events displayed in the report shown in Example 9–7 indicate that
user Kovacs logged in to the system following four unsuccessful login attempts.
Shortly after logging in, user Kovacs created a new account in the system user
authorization file (SYSUAF.DAT).

At this point, you must determine whether this behavior is normal or abnormal.
Is user Kovacs authorized to add new user accounts to the system? If you
believe that the security of your system has been compromised, use the following
command to generate a more detailed report from the security audit log file to
determine if damage has been done to your system:

$ ANALYZE/AUDIT/FULL/SINCE=26-OCT-2000:16:06

The command in this example generates a full report of all security audit events
written to the audit log file since user Kovacs first attempted to log in to the
system. In a full format report, all the data for each record in the audit log file
is displayed. Using the full report, you can determine the name of the remote
user who logged in under the local KOVACS account and the node from which the
login was made, as shown in Example 9–8.

Security Auditing 9–23

Security Auditing
9.5 Analyzing a Log File

Example 9–8 Scrutinizing a Suspicious Record
.
.
.

Security alarm (SECURITY) and security audit (SECURITY) on BOSTON, system id: 19941
Auditable event: Remote interactive login failure
Event time: 26-OCT-2000 16:06:09.17
PID: 5BC002EA
Username: KOVACS
Terminal name: _RTA14:
Remote nodename: NACHWA Remote node id: 7300
Remote username: FOLLEN
Status: %LOGIN-F-INVPWD, invalid password

.

.

.
Security alarm (SECURITY) and security audit (SECURITY) on BOSTON, system id: 19941
Auditable event: Remote interactive login
Event time: 26-OCT-2000 16:07:12.39
PID: 5BC002EA
Username: KOVACS
Terminal name: _RTA14:
Remote nodename: NACHWA Remote node id: 7300
Remote username: FOLLEN

The information displayed in Example 9–8 indicates that the login failures and
subsequent successful login were made by user Follen from the remote node
NACHWA. Your next step is to determine whether the security events were
generated by user Follen or by someone who has broken into the remote node
NACHWA through the FOLLEN account.

9.6 Managing the Auditing Subsystem
This section discusses how to manage the auditing system. Management tasks
include the following:

• Enabling and disabling startup of the audit server process

• Changing the point in startup when the operating system initiates auditing

• Choosing the number of outstanding messages that trigger process suspension

• Choosing the audit server response to memory exhaustion

• Maintaining the accuracy of message time-stamping

• Adjusting the transfer of messages from system auditing buffers to disk

• Choosing the amount of disk space periodically allocated to the system audit
log

9.6.1 Tasks Performed by the Audit Server
The operating system creates the audit server as a detached process during
system startup to perform the following tasks:

• Create a clusterwide security audit log file (SECURITY.AUDIT$JOURNAL)
in SYS$COMMON:[SYS$MGR]

• Control the logging of security events to the log file and the delivery of alarms
to any operator terminals enabled to receive security class messages

9–24 Security Auditing

Security Auditing
9.6 Managing the Auditing Subsystem

• Enable auditing of a site-defined set of security events

• Monitor disk and memory resources

• Maintain a database of security-auditing characteristics

The audit server sends informational and error messages to the operator
communication manager (OPCOM). OPCOM broadcasts these messages to
operator terminals and writes the messages to the operator log file.

Example 9–9 displays the audit server’s initial operating values. These
settings are stored in the audit server database, VMS$AUDIT_SERVER.DAT
in SYS$COMMON:[SYSMGR]. Any time you modify security-auditing
characteristics by using the DCL command SET AUDIT, the audit server
database is updated. Each time the system is rebooted, it takes the auditing
values from this database.

Example 9–9 Default Characteristics of the Audit Server

$ SHOW AUDIT/ALL

List of audit journals:
Journal name: SECURITY
Journal owner: (system audit journal)
Destination: SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL
Monitoring: enabled
Warning thresholds, Block count: 100 Duration: 2 00:00:00.0
Action thresholds, Block count: 25 Duration: 0 00:30:00.0

Security auditing server characteristics:
Database version: 4.4
Backlog (total): 100, 200, 300
Backlog (process): 5, 2
Server processing intervals:
Archive flush: 0 00:01:00.00
Journal flush: 0 00:05:00.00
Resource scan: 0 00:05:00.00

Final resource action: purge oldest audit events

Security archiving information:
Archiving events: none
Archive destination:

System security alarms currently enabled for:
ACL
Authorization
Breakin: dialup,local,remote,network,detached
Logfailure: batch,dialup,local,remote,network,subprocess,detached,server

System security audits currently enabled for:
ACL
Authorization
Breakin: dialup,local,remote,network,detached
Logfailure: batch,dialup,local,remote,network,subprocess,detached,server

Security Auditing 9–25

Security Auditing
9.6 Managing the Auditing Subsystem

9.6.2 Disabling and Reenabling Startup of the Audit Server
All operating systems start the audit server process and OPCOM by default.

If the physical memory or disk storage space on your system is especially limited
and logging of security-related events is not important, you can remove the
audit server and OPCOM processes from the system startup procedure. Before
you do so, be aware that cluster object support requires the audit server (see
Chapter 11). The following example shows how you would remove these processes
with the System Management utility (SYSMAN):

$ SET PROCESS/PRIVILEGES=(OPER,BYPASS)
$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> STARTUP SET DATABASE STARTUP$STARTUP_VMS
SYSMAN> STARTUP DISABLE FILE VMS$CONFIG-050_OPCOM.COM/NODE=*
SYSMAN> STARTUP DISABLE FILE VMS$CONFIG-050_AUDIT_SERVER.COM /NODE=*
SYSMAN> EXIT

$ SET PROCESS/PRIVILEGES=(NOOPER,NOBYPASS)

To delete the audit server process and shut down security auditing on the system,
enter the following commands on each node in the cluster:

$ SET AUDIT/ALARM/AUDIT/DISABLE=ALL/CLASS=*
$ SET AUDIT/SERVER=EXIT

You can restart security auditing and OPCOM on the system by executing the
following DCL command lines:

$ @SYS$SYSTEM:STARTUP OPCOM

$ @SYS$SYSTEM:STARTUP AUDIT_SERVER

To start the OPCOM and the audit server processes for all subsequent system
boots, reverse your previous edits of the system startup procedure. Use the
following SYSMAN commands:

$ SET PROCESS/PRIVILEGES=(OPER,BYPASS)
$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> STARTUP SET DATABASE STARTUP$STARTUP_VMS
SYSMAN> STARTUP ENABLE FILE VMS$CONFIG-050_OPCOM.COM/NODE=*
SYSMAN> STARTUP ENABLE FILE VMS$CONFIG-050_AUDIT_SERVER.COM -
_SYSMAN> /NODE=*

SYSMAN> EXIT

$ SET PROCESS/PRIVILEGES=(NOOPER,NOBYPASS)

See the OpenVMS System Management Utilities Reference Manual for more
information about SYSMAN.

9.6.3 Changing the Point in Startup When the Operating System Initiates
Auditing

Ordinarily, the operating system starts sending audit-event messages just
before SYSTARTUP_VMS.COM executes. However, a site that is not interested
in receiving audit-event messages during startup can alter this behavior by
redefining the logical name SYS$AUDIT_SERVER_INHIBIT.

9–26 Security Auditing

Security Auditing
9.6 Managing the Auditing Subsystem

To change the point where the operating system begins to deliver security event
messages, add the following line to the SYS$MANAGER:SYLOGICALS.COM
command procedure:

$!
$ DEFINE /SYSTEM /EXECUTIVE SYS$AUDIT_SERVER_INHIBIT yes
$!

A system manager can choose another phase of system startup to initiate
auditing, perhaps at the end of SYSTARTUP_VMS. However, be sure to initiate
auditing before allowing any general logins to the system (that is, before any SET
LOGINS/INTERACTIVE command). To initiate delivery of auditing messages,
add the following line to the appropriate command file:

$!
$ SET AUDIT/SERVER=INITIATE
$!

9.6.4 Choosing the Number of Outstanding Messages That Trigger Process
Suspension

Unless the audit server controls the influx of messages, it is possible under some
conditions to run out of memory. A very slow I/O device, a disk space problem,
or even a sudden onslaught of messages can exceed the server’s ability to write
messages to disk. To prevent memory exhaustion, the audit server constantly
monitors the total number of outstanding messages and tallies the number
of messages contributed by each active process. If the server receives more
events than it can log to disk, it begins applying flow control to those processes
generating audit events.

9.6.4.1 Controlling Message Flow
Message volume is controlled on a per-process basis. Table 9–7 shows the three
stages of flow control:

1. When there are 100 messages in memory, the operating system suspends any
process that has five or more outstanding messages. Once a process has all
its messages written to the log file, it can resume processing.

2. When there are 200 messages in memory, the operating system suspends
any process that has submitted two or more messages until all messages are
written to disk.

3. When there are 300 messages in memory, any process with messages in
memory is suspended until all messages are written to disk.

Table 9–7 Controlling the Flow of Audit Event Messages

Control Stages Total Message Backlog (Default) Process Backlog Limit (Default)

1 100 5

2 200 2

3 300 None

You can establish site-specific values for controlling messages by using the
/BACKLOG qualifier to the SET AUDIT command. For example, the following
command raises the action thresholds so that the operating system starts
controlling the influx of messages when it has 125 unprocessed messages in

Security Auditing 9–27

Security Auditing
9.6 Managing the Auditing Subsystem

its queue and a contributing process has eight messages outstanding:

$ SET AUDIT/BACKLOG=(TOTAL=(125,250,350),PROCESS=(8,4))

9.6.4.2 Preventing Process Suspension
Naturally, the operating system never suspends certain critical processes.
Realtime processes and any of the following processes are exempt:

CACHE_SERVER CLUSTER_SERVER

CONFIGURE DFS$COM_ACP

DNS$ADVER IPCACP

JOB_CONTROL NETACP

NET$ACP OPCOM

REMACP SHADOW_SERVER

SMISERVER SWAPPER

TP_SERVER VWS$DISPLAYMGR

VWS$EMULATORS

You can prevent the suspension of a process by adding its process identifier (PID)
to the process exclusion list. Use the following form of the SET AUDIT command:

SET AUDIT/EXCLUDE=process-id

Be aware that processes (PIDs) are not automatically removed from the process
exclusion list when processes log out of the system. To remove a process from the
exclusion list, use the SET AUDIT/NOEXCLUDE command. Processes excluded
by the operating system cannot be removed.

9.6.5 Reacting to Insufficient Memory
When processes on the exclusion list (see Section 9.6.4.2) produce so many audit
messages that the audit server runs out of memory, the default behavior of the
audit server is to remove old event messages until memory is available. It saves
the most current messages.

The audit server has other alternatives when it encounters memory limitations:

Option Description

Crash Crash the system if the audit server runs out of memory.

Ignore_New Ignore new event messages until memory is available. New event
messages are lost but event messages in memory are saved.

Purge_Old
(default)

Remove old event messages until memory is available for the most
current messages.

To alter the default behavior of the audit server and instruct it to ignore all new
audit messages rather than purge the old ones, enter the following command:

$ SET AUDIT/SERVER=FINAL_ACTION=IGNORE_NEW

The audit server runs with a fixed virtual memory limit (PGFLQUOTA) of 20,480
pages. This may be further limited by the size of page files installed on the
system. You can adjust the size of page files by running AUTOGEN. Whenever it
detects a page file problem, AUTOGEN automatically resets the size to alleviate
the problem.

9–28 Security Auditing

Security Auditing
9.6 Managing the Auditing Subsystem

9.6.6 Maintaining the Accuracy of Message Time-Stamping
If you are auditing a set of security events in which the order of occurrence is
important, all clocks within a cluster need to remain synchronized. This ensures
that message time-stamping on all nodes in the cluster closely reflects the order
in which events occurred.

Because each node in a cluster configuration maintains time independently, it
is possible for cluster times to drift apart over time. To prevent drifting, use
the SYSMAN command CONFIGURATION SET TIME at regular intervals.
The OpenVMS System Management Utilities Reference Manual provides a
sample command procedure that you can run every hour to maintain clock
synchronization to within a second.

9.6.7 Adjusting the Transfer of Messages to Disk
The audit server stores security event messages in memory and periodically
transfers groups of messages from its buffers to the audit log file on disk.
Usually, the audit server transfers auditing messages every 5 minutes and
archived messages (see Section 9.4.3.1) every minute. Except for some high-
security environments and instances where extreme numbers of audit messages
are being generated on the system, this default should be sufficient.

High-security sites can transfer event messages to disk at higher than normal
rates by modifying the interval of log transfer operations. The following
command, for example, changes the audit server’s characteristics so it writes
event messages to the audit log file every 2 minutes:

$ SET AUDIT/INTERVAL=JOURNAL_FLUSH=00:02

Frequent message transfers can impact system performance, however, because
the system performs more I/O operations rather than store messages in the
system buffers associated with the audit server process.

To immediately force all audit messages to the log file, enter the following
command:

$ SET AUDIT/SERVER=FLUSH

9.6.8 Allocating Disk Space for the Audit Log File
The audit server constantly monitors the disk space allocated to the security
audit log file to ensure there is adequate space for event messages. Whenever the
file runs low on available blocks, the audit server extends the audit log file. If
disk resource limitations prevent the server from allocating more blocks to the log
file, it takes one of the following actions:

• Warns you by sending warning messages to the operator terminal. This
occurs by default when less than 100 disk blocks are available.

The following command changes the default so the warning occurs when 150
blocks are available:

$ SET AUDIT /JOURNAL=SECURITY /THRESHOLD=WARNING=150

• Takes action by suspending processes that are generating audit records.
(Certain processes are immune to this: see Section 9.6.4.2.) When resource
monitoring is enabled for the log file, process suspension occurs when less
than 25 disk blocks are available.

Security Auditing 9–29

Security Auditing
9.6 Managing the Auditing Subsystem

To modify the action threshold to 50 blocks, enter the following command:

$ SET AUDIT /JOURNAL=SECURITY /THRESHOLD=ACTION=50

The threshold values may be expressed in blocks or as a delta time. Delta time
values are multiplied by the average space consumption rate to yield a number
of blocks. The maximum of the block and time threshold values is used as the
active threshold value.

9.6.9 Error Handling in the Auditing Facility
Resources consumed by the OpenVMS security-auditing facility vary with
the number and type of system events being recorded. Three different error
conditions can develop related to the auditing facility:

• The audit server can run out of memory. Section 9.6.5 describes different
methods of handling the situation.

• The disk storing the audit log file can run out of space.

• The network connection for a remote log file (archive file) can break.

This section discusses the default behavior of the auditing system in monitoring
disk space and logging to an archive file.

9.6.9.1 Disabling Disk Monitoring
The audit server monitors the audit log file and regularly pre-extends its disk
block allocation to ensure there is adequate space for incoming event messages.
Whenever disk space is unavailable, the server first warns you through operator
messages and then resorts to suspending certain contributing processes (see
Section 9.6.8). If you find many processes suspended for no apparent reason, it is
probably because your audit disk is full. Once you correct the disk space problem,
you can resume suspended processes with the SET AUDIT/SERVER=RESUME
command (rather than wait for the next resource scan).

You can disable resource monitoring altogether by entering the following
command:

$ SET AUDIT/JOURNAL=SECURITY/RESOURCE=DISABLE

However, if you disable disk resource monitoring, you eliminate the opportunity to
receive warning messages until it is too late. The audit server begins to suspend
processes that are generating too many audits, as Section 9.6.4 describes, and if
it runs out of memory, the server takes the action described in Section 9.6.5: it
ignores messages, purges old messages, or, possibly, crashes the system.

Once disk space becomes available, the audit server extends the log file and
resumes any processes it suspended.

9.6.9.2 Losing the Link to a Remote Log File
If you are writing auditing messages to a remote log file, as described in
Section 9.4.3.1, the link between the local and remote node can fail. Should
this happen, the audit server broadcasts a warning message to all operator
terminals and attempts to reestablish the link every minute until the connection
is made.

9–30 Security Auditing

10
System Security Breaches

Along with developing a security policy and selecting appropriate security
measures to implement that policy, a site needs to establish and test procedures
for handling system, site, or network compromises. The procedure should address
two areas:

• Appropriate responses once a breach is suspected or confirmed. Site
guidelines should help determine whether to increase site security
(eliminating all possibility of further compromise), put proactive measures in
place to apprehend the offender, or collect evidence to initiate a criminal or
civil suit. Each decision has its own set of rules and guidelines.

• Appropriate contacts and resources outside of the site that may be needed
should such an event occur. For example, a company might want to become
familiar with local, state, and federal authorities (as applicable), local phone
carriers (security division), and the Compaq support groups.1

This chapter describes how to recognize when an attack on the system is in
progress or has taken place and what countermeasures can be taken.

10.1 Forms of System Attacks
As security administrator, you must monitor the system on a regular basis for
possible security breaches. Following are the most common forms of system
attacks:

• Hunting for access lines

• Hunting for passwords

• Attempting a break-in

• Changing or creating user authorization file (UAF) records

• Granting/stealing extra privileges

• Introducing apparently innocent software (Trojan horse software) that is
intended to steal user passwords or do other damage to the system

• Introducing viruses in command procedures and programs to gain access to
privileged accounts

• Scavenging disks

• Using a node as a gateway to other nodes

1 Compaq support groups include the Software Security Response Team (SSRT) in the
United States and the European Security Program Office (ESPO).

System Security Breaches 10–1

System Security Breaches
10.2 Indications of Trouble

10.2 Indications of Trouble
When your system is vulnerable and possibly under attack, your first indications
may come from the following sources:

• Reports from users

• System monitoring, for example:

Unexplained changes or behavior in applications or normal processes

Unexplained messages from OPCOM or the audit server

Unexplained changes to user accounts in the system authorization
database (privilege changes, protections, priorities, quotas)

10.2.1 Reports from Users
User observations frequently point to system security problems. A user may
contact you with the following situations:

• Files are missing.

• There are unexplained forms of last login messages, such as successful logins
the user did not perform or unexplained login failures.

• A user cannot log in, suggesting the user password might have been changed
since the last successful login or some other form of tampering has occurred.

• Break-in evasion appears to be in effect, and the user cannot log in.

• Reports from the SHOW USERS command indicate that the user is logged in
on another terminal when the user did not do so.

• A disconnected job message appears during a login for a process the user
never initiated.

• Files exist in the user’s directories that the user did not create.

• Unexplained changes have been found in the protection or ownership of user
files.

• Listings appear that are generated under the user name without the user
requesting the listing.

• A sudden reduction occurs in the availability of resources, such as dialup
lines.

Follow up promptly when one of these items is reported to you. You must confirm
or deny that the condition exists. If you find the complaint is valid, seek a cause
and solution.

10.2.2 Monitoring the System
Section 6.7 lists those tasks that can help you detect potential security breaches
on your system. The following list details possible warning signs you may uncover
while performing the recommended tasks:

• A user appears on the SHOW USERS report that you know could not be
currently logged in.

• You observe an unexplained change in the system load or performance.

• You discover media or program listings are missing or notice other indications
that physical security has degraded.

10–2 System Security Breaches

System Security Breaches
10.2 Indications of Trouble

• Your locked file cabinet has been tampered with, and the list of authorized
users has disappeared.

• You find unfamiliar software in the system executable image library
[SYSEXE] or in [SYSLIB].

• You observe unfamiliar images running when you examine the MONITOR
SYSTEM report.

• You observe unauthorized user names when you enter the DCL command
SHOW USER. When you examine the listing that the Authorize utility
(AUTHORIZE) produces with the SHOW command, you find that those users
have been given system access.

• You discover proxy users that you never authorized.

• The accounting report reveals unusual amounts of processing time expended
recently, suggesting outside access.

• You observe unexplained batch jobs on the batch queues.

• You observe unexpected device allocations when you enter the SHOW
DEVICE command.

• You observe a high level of processing activity at unusual hours.

• The protection codes or the access control lists (ACLs) change on critical files.
Identifiers are added, or holders of identifiers are added to the rights list.

• There is high personnel turnover or low morale.

All these conditions warrant further investigation. Some indicate that you
already have a problem, and some may have simple explanations, while others
may indicate serious potential problems.

10.3 Routine System Surveillance
The operating system provides a number of mechanisms that allow systematic
surveillance of the activity in your system. There are many mechanisms
available for monitoring the system either manually or by user-written command
procedures, for example:

• Accounting utility (ACCOUNTING)

• Authorize utility (AUTHORIZE)

• Install utility (INSTALL)

• System Management utility (SYSMAN)

Proper use of such mechanisms should help you verify settings, alert you to
problems, and allow you to intervene. This section describes the most important
system surveillance mechanisms–ACCOUNTING and ANALYZE/AUDIT.

10.3.1 System Accounting
You can learn what the normal pattern of resource use is by studying
reports of the Accounting utility (ACCOUNTING). To obtain a report, you
run the utility image SYS$SYSTEM:ACC.EXE. The resulting data file is
SYS$MANAGER:ACCOUNTNG.DAT. Review ACCOUNTING reports because
they can provide early indications of problems. Check for the following:

• Unfamiliar user names

System Security Breaches 10–3

System Security Breaches
10.3 Routine System Surveillance

• Unfamiliar patterns of use, such as unusual activity for a particular time of
day or day of week

• Use of an unusual amount of resources

• Unfamiliar sources of login, such as network nodes or remote terminals

10.3.2 Security Auditing
As the security administrator, you can have the operating system report on
security-related activity by enabling categories of events for auditing using the
DCL command SET AUDIT. Using the Audit Analysis utility (ANALYZE/AUDIT),
you can periodically review event messages collected in the security audit log file.
(See Chapter 9 for a full description of the process.)

The operating system can send event messages to an audit log file or to an
operator terminal. You define whether events are reported as audits or alarms in
the following way:

• Ordinarily, enable audits rather than alarms for security-related events
because the audit records are written to the system security audit log where
you can study them in volume and archive log files for future reference. While
an isolated auditing message may offer little insight, numerous audit records
produce a pattern of security violations. For example, with auditing of object
access, you can see a pattern of time, types of objects being accessed, and
other system information that, in total, paint a picture of how the system is
being used at different times of day.

To enable audits for unsuccessful access to files, devices, and volumes, enter
the following command:

$ SET AUDIT/AUDIT/ENABLE=ACCESS=FAILURE/CLASS=(FILE,DEVICE,VOLUME)

This command records unsuccessful access events in the security audit log file
but sends no alarms to the operator terminal.

• Enable security alarms for real-time events or events that should be reviewed
immediately, for example, intrusion attempts or changes to the system
user authorization file (SYSUAF.DAT). For example, to enable alarms for
modification to the known file list and changes to system time, enter the
following command:

$ SET AUDIT/ALARM/ENABLE=(INSTALL,TIME)

This command sends event messages to the operator terminal. To keep a
hardcopy record of these alarms, use a hardcopy operator terminal, or enable
the events as both alarms and audits.

Because security auditing affects system performance, enable auditing only for
the most important events. The following security-auditing actions are presented
in order of decreasing priority and increasing system cost:

1. Enable security auditing for login failures and break-ins. This is the best way
to detect probing by outsiders (and insiders looking for accounts). All sites
needing security should enable alarms for these events.

2. Enable security auditing for logins. Auditing successful logins from the more
suspicious sources like remote and dialup users provides the best way to
track which accounts are being used. An audit record is written before users
logging in to a privileged account can disguise their identity.

10–4 System Security Breaches

System Security Breaches
10.3 Routine System Surveillance

3. Enable security auditing for unsuccessful file access (ACCESS=FAILURE).
This technique audits all file-protection violations and is an excellent method
of catching probers.

4. Apply ACL-based file access auditing to detect write access to critical system
files. The most important files to audit are shown in Table 10–1. (Table 9–2
presents an example of how to establish security entries in ACLs.) You may
want to audit only successful access to these files to detect penetration, or you
may want to audit access failures to detect probing as well.

Note that some of the files in Table 10–1 are written during normal system
operation. For example, SYSUAF.DAT is written during each login, and
SYSMGR.DIR is written when the system boots.

Table 10–1 System Files Benefiting from ACL-Based Auditing

Device and Directory File Name

SYS$SYSTEM AUTHORIZE.EXE

F11BXQP.EXE

LOGINOUT.EXE

DCL.EXE

JOBCTL.EXE

SYSUAF.DAT

NETPROXY.DAT

RIGHTSLIST.DAT

STARTUP.COM

VMS$OBJECTS.DAT

SYS$LIBRARY SECURESHR.EXE

SECURESHRP.EXE

SYS$MANAGER VMS$AUDIT_SERVER.DAT

SY*.COM

VMSIMAGES.DAT

SYS$SYSROOT [000000]SYSEXE.DIR

[000000]SYSLIB.DIR

[000000]SYS$LDR.DIR

[000000]SYSMGR.DIR

5. Enable security auditing for modifications to system parameters or the known
file list (/ENABLE=(SYSGEN,INSTALL)).

6. Audit use of privilege to access files (either write access or all
forms of access). Implement the security audit with the keywords
ACCESS=(SYSPRV,BYPASS,READALL,GRPPRV). Note that this class of
auditing can produce a large volume of output because privileges are often
used in normal system operation for such tasks as mail delivery and operator
backups.

Section 9.3 provides further discussion of recommended sets of security events to
audit.

System Security Breaches 10–5

System Security Breaches
10.4 Handling a Security Breach

10.4 Handling a Security Breach
There are four phases that security administrators experience while handling a
security breach, whether the breach actually occurred or was attempted:

1. Detection of a problem

2. Identification of the perpetrator

3. Prevention of further security violations

4. Repair of damage

The following sections describe these phases for both attempted and successful
break-ins.

In all phases, train personnel to retain information and data as evidence, should
there be a need to apprehend and prosecute the perpetrator.

10.4.1 Unsuccessful Intrusion Attempts
Unsuccessful intrusion attempts include situations where someone has attempted
to guess passwords or browse through files.

10.4.1.1 Detecting Intrusion Attempts
You usually detect intrusion attempts through the following sources:

• Reports from users about unexplained login failures

• Unusual system activity or unavailability of dialup lines

• Security alarms for login failures, break-in attempts, and file-protection
violations

• Examination of the intrusion database

10.4.1.2 Identifying the Perpetrator
Enabling file auditing simplifies identification of file browsers. If, however,
browsing is being initiated from another node in the network, you must inspect
the network server log file (NETSERVER.LOG) that corresponds to the times
of the protection violations. Coordinate your investigation with the security
administrator at the remote node.

Identifying a perpetrator who is guessing passwords is considerably more difficult,
especially when the source is anonymous, as from a dialup line. Usually, you
must trade identification for prevention. Often the only way to positively identify
an outsider attempting to enter the system requires that you permit further
attempts while establishing the perpetrator’s identity.

10.4.1.3 Preventing Intrusion Attempts
The prevention phase for this kind of attack involves preventing the would-be
intruder from actually gaining access to the system and making future attempts
more difficult.

Password Guessing
To reduce the opportunities for successful password guessing:

• Make certain your users choose appropriate passwords. Consider use of the
password generator (see Section 7.3.2.4).

10–6 System Security Breaches

System Security Breaches
10.4 Handling a Security Breach

• Enable system passwords at the points of entry. While a minor inconvenience
to your users, system passwords are the best protection against further
probing. If you already had a system password enabled, change it (see
Section 7.3.1.2).

• Enable auditing of successful logins to catch the event if the intruder succeeds
in getting in (see Section 10.3.2).

File Browsing
To reduce the opportunities for successful file browsing:

• If you can identify the perpetrator, take action as established at your site.

• Warn your users about the importance of adequate protection of their files,
and consider inspecting the protection of user files.

• If file browsing from other nodes in the network becomes a persistent
problem, eliminate the default FAL account and authorize individual users
through proxy login accounts (see Section 12.3.2).

10.4.2 Successful Intrusions
A successful security breach can include a successful password guessing scheme,
theft or modification of either information or system resources, and placement
of damaging software on the system. An intrusion may require a considerable
amount of time to repair, depending upon the skill and intent of the perpetrator.

10.4.2.1 Identifying the Successful Perpetrator
Identification is often the most difficult part of handling an intrusion. First,
you must establish whether the perpetrator is an authorized user or not. This
determines the nature of the preventive measures that you will take. However,
the distinction between insiders and outsiders may be difficult to achieve.

Tradeoff Between Identification and Prevention
You may have to make a tradeoff between a positive identification of the intruder
and preventing future attacks. Often, the data available initially does not allow
complete identification. If it is important to identify the perpetrator, you will
often find it necessary to permit continued intrusions while you analyze the
intrusion activity. Increase your auditing. Consider planting traps in system
procedures that are under your control (such as SYLOGIN.COM) to obtain
additional information. Increase your system backup efforts to permit easier
recovery if files become damaged.

Identification of Outsiders
Identifying external intruders is particularly difficult, especially if they use any
switched forms of communication (such as dialup lines or public data networks).
DECnet for OpenVMS software provides many features to help you trace the
activity through the network back to the source node. If a local terminal is
involved, physical surveillance may be appropriate.

When a switched connection is involved, one of the major computer security
problems is the telephone system itself. Tracing a telephone or public data
network connection is time-consuming. Chasing an intruder through the
telephone system is likely to take months and will require the assistance of
law enforcement authorities. The existence of multiple long-distance telephone
services compounds the problem by increasing the number of organizations with
whom you must deal.

System Security Breaches 10–7

System Security Breaches
10.4 Handling a Security Breach

As a result, identifying an outside intruder is usually worthwhile only when you
have sustained substantial financial damage. In many cases, it may be more
useful if you concentrate on preventing recurrences of the problem.

10.4.2.2 Securing the System
The actions you must take to secure your system after an intrusion depend on the
nature and source of that intrusion. This section describes these actions in order
of priority.

1. Restore SYSUAF.DAT, NETPROXY.DAT, NET$PROXY.DAT and
RIGHTSLIST.DAT (if damaged) from backups. Alternatively, generate listings
of the files and inspect them closely, looking for improper entries, additional
privileges, and changed UICs. If you are unsure of when SYSUAF.DAT
might first have been modified, inspect it carefully regardless of whether you
are using a backup copy or proceeding with the existing one. Be sure all
authorization files are secure.

2. The perpetrator may have discovered passwords by browsing either through
files or from other nodes in the network and may be using seldom accessed
accounts for personal use. Change passwords for accounts, and have your
users appear in person to learn their new passwords. At a minimum, change
passwords on all privileged accounts. Do not use the same new password for
all accounts.

3. A sophisticated penetrator may have planted ways to provide future access
to the system even though you have taken the obvious steps of securing
your system. Therefore, you may have to restore selected components of
the OpenVMS software from backups or from your OpenVMS distribution
kit. If the intruder was an outsider, the two critical components are
LOGINOUT.EXE and NETACP.EXE, which validate all entries to the system.

However, if the intruder was an authorized user, restore all system files
from backup copies. Authorized users can make use of a wide variety of
illicit software patches (called trap doors) that they insert in the executive
(SYS.EXE), the file system (F11BXQP.EXE), DCL, and other system files. The
penetrator may have planted damaging software in any piece of software or
command procedure likely to be used by a privileged user. Thus, complete
assurance of a secure system requires a wholesale restoration of files from
backups. Also reinstall any image (even from layered products) installed with
privileges because it can also be used for a trap door. An alternate strategy
is to restore trustworthy copies of the obvious targets of attack and to rely on
increased auditing for a period of time to catch suspicious events.

4. Consider implementing additional security features, such as system
passwords, password generation, increased auditing, and more stringent
file protection to prevent a recurrence.

10.4.2.3 Repair After a Successful Intrusion
After an intrusion, restore corrupted files. Decide whether it is appropriate either
to do a wholesale restoration of your system’s data or to repair problems as they
are discovered. Look for modifications to file protection that would have created
paths for viruses and for Trojan horses that were introduced into the system and
may still reside there.

10–8 System Security Breaches

11
Securing a Cluster

This chapter describes concerns for security administrators of clustered systems.
Clustered systems refer to those systems using hardware and software that
permit sharing of disks, resources, and a common operating system among
various computers. Clusters of VAX processors are said to be joined in a
VAXcluster environment; whereas clusters including both Alpha processors and
VAX processors are said to be joined in a VMScluster environment. To properly
secure your cluster, you should be familiar with the information in the OpenVMS
Cluster Systems Manual.

The OpenVMS Cluster Systems Manual describes the tasks of the cluster
manager. The cluster manager’s job is the same as that of any system manager,
but the cluster manager has to implement changes across many nodes. The
security administrator for a cluster generally requires the same training and
skills as a cluster manager, and at some cluster sites, the same person serves in
the role of security administrator as well as cluster manager. At other sites, there
may be one or more security administrators in addition to a cluster management
team.

When a site separates the security administrator function from the cluster
management function, coordination, cooperation, and communication between
these functions becomes vital. As in previous chapters, this chapter uses the title
of security administrator to refer to individuals who have the responsibility for
system security, regardless of what other responsibilities they hold.

11.1 Overview of Clusters
Clustered systems provide a uniform computing environment that is highly
scalable, highly available, and secure. It is critical that there be a single set of
authorized users and that these users be able to have processes executing on any
cluster member.

To achieve a uniform computing environment, a cluster relies on the following
components operating across all cluster members:

• Lock manager system services ($ENQ/$DEQ) (to provide a framework for
building distributed applications)

• File and record management subsystems (coordinated through the lock
manager)

• Batch and print services

• Process control system services

• Security auditing system

Securing a Cluster 11–1

Securing a Cluster
11.1 Overview of Clusters

Within a cluster, authorization data for users and the security profiles of objects
must be consistent across all nodes so that each cluster member makes the same
access control decision when presented with a particular user’s access request for
a particular object. Section 11.2 and Section 11.3 describe how to achieve a single
security domain.

11.2 Building a Common Environment
Within a cluster, access control is mediated by individual nodes using a common
set of authorization information. In the single security domain model, a process,
acting on behalf of an authorized individual, requests access to a cluster-visible
object, and a coordinating node determines the outcome by comparing its copy of
the common authorization database with the security profile for the object being
accessed. This model enforces security only when the authorization information
and the object security profiles are consistent across all nodes in the cluster.

To achieve data consistency within the cluster, a site needs to:

• Maintain a common set of data, as described in Section 11.2.1, Section 11.2.2,
and Section 11.2.3

• Execute changes to system parameters consistently
When changing any LGI system parameters, use the System Management
utility (SYSMAN) (see Section 11.8).

11.2.1 Required Common System Files
The easiest way to ensure a single security domain is to maintain a single copy
of each of the files listed in Table 11–1 on one or more cluster-mounted disks. As
soon as any required file is created on one node, it must be created or commonly
referenced on all remaining cluster members. When a cluster is configured with
multiple system disks, you can use system logical names to ensure that only a
single copy of each file exists.

The files in Table 11–1 contain data that must be synchronized. If your site
chooses to maintain multiple versions of these files, you must synchronize the
data, as Section 11.2.3 explains.

Table 11–1 System Files That Must Be Common in a Cluster

File Description

NETOBJECT.DAT Contains the DECnet object database. Among the information
contained in this file is the list of known DECnet server
accounts and passwords.

NETPROXY.DAT
NET$PROXY.DAT

Contains the network proxy database. This file is maintained
by the Authorize utility (AUTHORIZE).

QMAN$MASTER.DAT Contains the master queue manager database. This file
contains the security information for all shared batch and
print queues. If two or more nodes intend to participate in
a shared queuing system, a single copy of this file must be
maintained on a shared disk.

RIGHTSLIST.DAT Contains the rights identifier database. This file is maintained
by AUTHORIZE and by various rights identifier system
services.

(continued on next page)

11–2 Securing a Cluster

Securing a Cluster
11.2 Building a Common Environment

Table 11–1 (Cont.) System Files That Must Be Common in a Cluster

File Description

SYSALF.DAT Contains the system autologin file. This file is maintained by
the System Management utility (SYSMAN).

SYSUAF.DAT Contains the system user authorization file. This file is
maintained by AUTHORIZE and modifiable through the Set
User Authorization Information ($SETUAI) system service.

SYSUAFALT.DAT Contains the system alternate user authorization file. This file
serves as a backup to SYSUAF.DAT and is enabled through
the SYSUAFALT system parameter.

VMS$OBJECTS.DAT Contains the cluster-visible object database. Among the
information contained in this file are the security profiles
for all cluster-visible objects.

11.2.2 Recommended Common System Files
Although Compaq does not require that the files listed in Table 11–2 be common
to all cluster members, it does recommend that the data in the files be fully
synchronized. Table 11–3 explains how to coordinate these files and suggests
possible consequences of poor synchronization.

Some of the recommended files are created only on request and may not exist in
all configurations. Note that a file may be absent on one node only if it is absent
on all other nodes. As soon as any required file is created on one node, it must be
created or commonly referenced on all remaining cluster members.

Table 11–2 System Files Recommended to Be Common

File Description

VMS$AUDIT_
SERVER.DAT

Contains information related to security auditing, such as
enabled security-auditing events and the destination of the
system security audit log file.

VMS$PASSWORD_
HISTORY.DATA

Contains the system password history database. This file is
maintained by the SET PASSWORD utility.

VMSMAIL_
PROFILE.DATA

Contains the system mail database. This file is maintained
by the Mail utility (MAIL). It holds mail profiles for all
system users as well as a list of all mail forwarding addresses
in use on the system.

VMS$PASSWORD_
DICTIONARY.DATA

Contains the system password dictionary. The system
password dictionary is a list of English words and phrases
that cannot be used as account passwords.

VMS$PASSWORD_
POLICY

Contains any site-specific password filters. This file is
created and installed by the security administrator or system
manager. (See Section 7.3.3.3 for details on password filters.)

11.2.3 Synchronizing Multiple Versions of Files
Using shared files is not the only way of achieving a single security domain.
Some sites may have requirements for multiple copies of one or more of these
system files on different nodes in a cluster. As long as the security information
available to each node in the cluster is exactly the same, these sites operate in a
single security domain.

Securing a Cluster 11–3

Securing a Cluster
11.2 Building a Common Environment

Table 11–3 lists the files that require coordination, explains when to update these
files, and suggests possible consequences of poor synchronization.

Table 11–3 Using Multiple Versions of Required Cluster Files

File Coordination Required Result of Poor Synchronization

VMS$AUDIT_SERVER.DAT Update after any SET AUDIT
command.

Possible partitioning of auditing
domains

NETOBJECT.DAT Update all versions after any NCP
SET OBJECT or DEFINE OBJECT
command.

Unexplained network login failures
and unauthorized network access

NETPROXY.DAT
NET$PROXY.DAT

Update all versions after any
AUTHORIZE proxy command.

Unexplained network login failures
and unauthorized network access

RIGHTSLIST.DAT Update all versions after any
change to any identifier or holder
records.

Possible unauthorized system
access and unauthorized access to
protected objects

SYSALF.DAT Update all versions after any
SYSMAN ALF command.

Unexplained login failures and
unauthorized system access

SYSUAF.DAT Update all versions so the
fields listed in Table 11–4 are
synchronized for each user record.

Possible unexplained login failures
and unauthorized system access.

SYSUAFALT.DAT Update all versions after any
change to any authorization records
in this file.

Possible unexplained login failures
and unauthorized system access

VMS$OBJECTS.DAT Update all versions after any
change to the security profile of
a cluster-visible object or after new
cluster-visible objects are created.
(See Section 11.5 for details.)

Possible unauthorized access to
protected objects

VMSMAIL_PROFILE.DATA Update all versions after any
changes to mail forwarding
parameters.

Possible authorized disclosure of
information

VMS$PASSWORD_
HISTORY.DATA

Update all versions after any
password change.

Possible violation of the system
password policy

VMS$PASSWORD_
DICTIONARY.DATA

Update all versions after any site-
specific additions.

Possible violation of the system
password policy

VMS$PASSWORD_POLICY Install common version on all nodes. Possible violation of the system
password policy

11.3 Synchronizing Authorization Data
On a cluster, all elements of the user authorization data should exist in a common
database. These authorization elements include the system user authorization
files (SYSUAF.DAT and its backup SYSUAFALT.DAT), the rights database
(RIGHTSLIST.DAT), the network authorization file (NETPROXY.DAT) and its
object database file (NETOBJECTS.DAT), which are present on all OpenVMS
systems, and optionally, the autologin file, SYSALF.DAT.

A secure cluster requires that the authorization data be synchronized across
all nodes. If a site chooses to maintain multiple versions of these files, then
you must synchronize the data. Each user should have the same UIC, group
number, and set of identifiers defined on every node. Coordination of privileges
and access rights is also critical. A shared disk is protected only as much as its
least protected node. If you maintain separate authorization files on each node in
the cluster, ensure that user privileges are common across all copies of the system

11–4 Securing a Cluster

Securing a Cluster
11.3 Synchronizing Authorization Data

user authorization file (SYSUAF.DAT). Table 11–4 lists the fields of SYSUAF.DAT
that must be identical on each node.

Table 11–4 Fields in SYSUAF.DAT Requiring Synchronization

Internal Name $SETUAI Item Code

UAF$R_DEF_CLASS UAI$_DEF_CLASS

UAF$Q_DEF_PRIV UAI$_DEF_PRIV

UAF$B_DIALUP_ACCESS_P UAI$_DIALUP_ACCESS_P

UAF$B_DIALUP_ACCESS_S UAI$_DIALUP_ACCESS_S

UAF$B_ENCRYPT UAI$_ENCRYPT

UAF$B_ENCRYPT2 UAI$_ENCRYPT2

UAF$Q_EXPIRATION UAI$_EXPIRATION

UAF$L_FLAGS UAI$_FLAGS

UAF$B_LOCAL_ACCESS_P UAI$_LOCAL_ACCESS_P

UAF$B_LOCAL_ACCESS_S UAI$_LOCAL_ACCESS_S

UAF$B_NETWORK_ACCESS_P UAI$_NETWORK_ACCESS_P

UAF$B_NETWORK_ACCESS_S UAI$_NETWORK_ACCESS_S

UAF$B_PRIME_DAYS UAI$_PRIMEDAYS

UAF$Q_PRIV UAI$_PRIV

UAF$Q_PWD UAI$_PWD

UAF$Q_PWD2 UAI$_PWD2

UAF$Q_PWD_DATE UAI$_PWD_DATE

UAF$Q_PWD2_DATE UAI$_PWD2_DATE

UAF$B_PWD_LENGTH UAI$_PWD_LENGTH

UAF$Q_PWD_LIFETIME UAI$_PWD_LIFETIME

UAF$B_REMOTE_ACCESS_P UAI$_REMOTE_ACCESS_P

UAF$B_REMOTE_ACCESS_S UAI$_REMOTE_ACCESS_S

UAF$R_MAX_CLASS UAI$_MAX_CLASS

UAF$R_MIN_CLASS UAI$_MIN_CLASS

UAF$W_SALT UAI$_SALT

UAF$L_UIC Not applicable

Use SYSMAN if you choose to create an autologin file and maintain the file in the
common authorization database with your authorization files and rights database.
On clustered systems, the autologin file must include the cluster node name as a
prefix to the terminal name. For example, the terminal TTA0 on node WILLOW
would be represented as WILLOW$TTA0. See Section 11.8 for an overview of
SYSMAN.

11.4 Managing the Audit Log File
The audit server database VMS$AUDIT_SERVER.DAT contains information
about events to be audited, the location of the audit log file, and information used
to monitor its consumption of resources.

Securing a Cluster 11–5

Securing a Cluster
11.4 Managing the Audit Log File

The audit log file resides in SYS$COMMON:[SYSMGR]. If you should decide
to redirect the audit log off the system disk, it is important to redirect
it uniformly across all nodes on the cluster. You use the command SET
AUDIT/JOURNAL=SECURITY/DESTINATION=filename. Make sure that
the file name you assign resolves to the same file throughout the cluster, not a
file unique to each node. The OpenVMS Cluster Systems Manual describes the
procedure in detail.

11.5 Protecting Objects
A single security domain is one in which each cluster member must make the
same access control decision when presented with a particular user’s access
request for a particular object. The operating system provides this level of
protection for files, queues, and other cluster-visible objects such as devices, disk
and tape volumes, and resource domains. Table 11–5 summarizes the behavior of
each object class and explains where each stores security profiles. See Chapter 5
for a description of each object class.

Table 11–5 Summary of Object Behavior in a Cluster

Class Visibility in Cluster Location of Profile

Capabilities Visible only to local node. Stored on local node.

Devices Some can be visible
clusterwide.

Profiles stored in
VMS$OBJECTS.

Files Visible clusterwide. Stored in file header.

Global sections Visible only to local node. Stored on local node.

Logical name tables Visible only to local node. Stored on local node.

Queues Visible clusterwide. Stored in job-controller queue
database (see Table 11–1).

Resource domains Visible clusterwide. Stored in VMS$OBJECTS.

Security class Visible clusterwide. Stored in VMS$OBJECTS.

Volumes Can be visible clusterwide. Stored on the volume.

11.6 Storing Profiles and Auditing Information
The audit server creates and maintains the security elements of
clusterwide objects in a database called VMS$OBJECTS.DAT, located in
SYS$COMMON:[SYSEXE]. You should ensure that the object database is present
on each node in the cluster by specifying a file name that resolves to the same file
through the cluster, not to a file that is unique to each node.

To reestablish the logical name after each system boot, define the logical in
SYSECURITY.COM. The command procedure SYSECURITY.COM has to be
defined before the audit server starts up.

The object database contains the following information:

• Audit and alarm settings for all objects, established through the DCL
command SET AUDIT

• Template profiles for all security profiles, as described in Chapter 5

• Security profiles for all resource domain objects, all security class objects, and
all cluster-visible devices (see Section 11.5)

11–6 Securing a Cluster

Securing a Cluster
11.6 Storing Profiles and Auditing Information

This database is updated whenever characteristics are modified, and the
information is distributed so that all nodes participating in the cluster share a
common view of the objects.

You cannot change security profiles or create protected objects when the object
server is absent and cannot update the cluster database VMS$OBJECTS.DAT.
However, you can modify the system parameter SECURITY_POLICY to allow
security profile changes to protected objects on a local node (bit 4) or the creation
of protected objects on a local node (bit 5).

11.7 Cluster-Wide Intrusion Detection
Cluster-wide intrusion detection extends protection against attacks of all types
throughout the cluster. Intrusion data and information from each system is
integrated to protect the cluster as a whole.

You can set the SECURITY_POLICY system parameter on the member systems
in your cluster to maintain either a local or a cluster-wide intrusion database of
unauthorized attempts and the state of any intrusion events.

If bit 7 in SECURITY_POLICY is cleared, all cluster members are made aware if
a system is under attack or has any intrusion events recorded. Events recorded
on one system can cause another system in the cluster to take restrictive action.
(For example, users attempting to log in are monitored more closely and are
limited to a certain number of login retries within a limited period of time. Once
users exceed either the retry or time limitation, they cannot log in.)

For information on the system services $DELETE_INTRUSION, $SCAN_
INTRUSION, and $SHOW_INTRUSION, see the OpenVMS System Services
Reference Manual.

For information on the DCL commands DELETE INTRUSION and SHOW
INTRUSION, see the OpenVMS DCL Dictionary.

11.8 Using the System Management Utility
The System Management utility (SYSMAN) is a facility supporting the cluster
work of the security administrator. Through its centralized management of nodes
and clusters, SYSMAN lets you perform system management tasks from your
local node that the utility executes on all nodes in the target environment.

To use SYSMAN requires OPER privilege on the local node and authorization for
the OPER privilege on any remote node. The utility does not require a password
when you are operating within a cluster in your own account. The operating
system audits any logical link connections or any operation in which the utility
requires a password.

System managers using SYSMAN should be careful that logical names are set to
the same name on each node.

11.9 Managing Cluster Membership
Clustered systems use a group number and a cluster password to both allow
multiple independent clustered systems to coexist on the same extended local
area network (LAN) and to prevent accidental access to a cluster by unauthorized
computers. The group number uniquely identifies each cluster system on a
LAN. The cluster password serves as an additional check to ensure the integrity
of individual clusters on the same LAN that accidentally use identical group

Securing a Cluster 11–7

Securing a Cluster
11.9 Managing Cluster Membership

numbers. The password also prevents an intruder who discovers the group
number from joining the cluster.

The cluster group number and password (in encrypted form) are maintained
in the cluster authorization file, SYS$COMMON:[SYSEXE]CLUSTER_
AUTHORIZE.DAT. This file is created during installation of the operating
system if you indicate that you want to set up a local area or mixed interconnect
cluster. The installation procedure then prompts you for the cluster group
number and password.

Under normal conditions, you need not alter records in the CLUSTER_
AUTHORIZE.DAT file interactively. However, if you suspect a security breach,
you may want to change the cluster password. In that case, you use SYSMAN to
make the change. The file is accessible only to users with the SYSPRV privilege.
Note that if you change either the group number or the password, you must
reboot the entire cluster.

If your configuration has multiple system disks, each disk must have a copy of
CLUSTER_AUTHORIZE.DAT. You must run SYSMAN to update all copies.

The following command sequence illustrates the use of SYSMAN to change the
cluster password:

SYSMAN> SET CLUSTER_AUTHORIZATION/GROUP_NUMBER=65353
SYSMAN> SET ENVIRONMENT/CLUSTER/NODE21
SYSMAN> SET PROFILE /PRIVILEGE=SYSPRV
SYSMAN> CONFIGURATION SET CLUSTER_AUTHORIZATION/PASSWORD=HOOVER
%SYSMAN-I-CAFOLDGROUP, existing group will not be changed
%SYSMAN-I-GRPNOCHG, Group number not changed
%SYSMAN-I-CAFREBOOT, cluster authorization file updated
The entire cluster should be rebooted.

11.10 Using DECnet Between Cluster Nodes
The cluster environment provides such a rich resource-sharing model (which
includes files and volumes, disk and tape devices, and batch and print queues)
that it is usually unnecessary to directly access another cluster node through
DECnet software. Nonetheless, there are situations where resources may
not be uniformly shared across the cluster. This is particularly true in mixed
interconnect or local area cluster configurations, where you may choose to limit
cluster access to a satellite’s disk or tape volumes. In such cases, users need
to use the DCL command SET HOST or some form of network access to access
a satellite’s resources from other cluster members. See Section 12.3 for more
information on network access through proxy logins.

11–8 Securing a Cluster

12
Security in a Network Environment

Security in a network environment is even more sensitive than security in
a single-system environment. Security is also harder to achieve because of
operational complexities and the decentralization of control that commonly
exist in networks. The larger the network, the more difficult the problem of
establishing control and communication between security administrators of the
numerous nodes.

There are limitations to the degree of security any networking site can expect
to achieve due to limitations currently present in networking technology. Being
sensitive to potential problems can help you avoid operations that could increase
the security exposure in your network. This chapter helps you recognize these
problem areas and adjust your operations accordingly.

See the OpenVMS System Manager’s Manual for information on the networking
software options for OpenVMS systems, including the following:

• Compaq TCP/IP Services for OpenVMS

• DECnet-Plus for OpenVMS (DECnet Phase V)

• DECnet for OpenVMS (DECnet Phase IV)

12.1 Managing Network Security
Networking software regulates access to the network on various levels:

• Privileges for access to the network.
To perform any kind of network activity, all network users must have
TMPMBX and NETMBX privileges. Privileged users hold privileges in
addition to TMPMBX and NETMBX.

• Access control.
To connect to a networked node, a user needs explicit access information, a
proxy account, an application account, or a default DECnet account. (See
Section 12.2.)

• Routing initialization passwords for connecting local nodes to remote nodes
over synchronous or asynchronous lines. (See Section 12.5.)

12.1.1 Requirements for Achieving Security
There are three critical requirements for achieving security in a network
environment:

• Common security policy

Security in a Network Environment 12–1

Security in a Network Environment
12.1 Managing Network Security

There must be a correspondence between the initiating process on the source
machine and the process on the target machine that works on behalf of the
initiating process (see Figure 12–1). This correspondence must be managed
by the two reference monitors and must be consistent with the security policy
intended on the target machine (which is ultimately responsible for protecting
the object). See Chapter 2 for a description of the reference monitor.

• Shared access control information

The authorization database on the target machine must have some access
authorization, such as an account or a proxy, that corresponds to the initiating
process on the source machine.

• Protected circuits, lines, terminals, and processors

There must be a protected means of communication between the two reference
monitors (source and target) so that correspondence between the local and
remote subjects can be reliably established and authenticated.

Figure 12–1 The Reference Monitor in a Network

ZK−2038−GE

Trail
Audit

Monitor
Reference
Network

Object

Target Machine

Trail
Audit

Monitor
Reference
Network

Database
Authorization

Subject

Source Machine

Database
Authorization

12.1.2 Auditing in the Network
Security administrators can audit network activity by enabling specific event
classes with the SET AUDIT command. Possible audits include:

• Use of NCP commands. Each NCP command line is audited along with its
completion status.

• Use of privilege. In a network environment, much of this privilege use is
related to the use of the OPER privilege in modifying the volatile network
database.

12–2 Security in a Network Environment

Security in a Network Environment
12.1 Managing Network Security

• Initiation and termination of connections.
On VAX systems running DECnet for OpenVMS, each network connection
results in four audits:

1. The source node, which initiates the connection, logs the first event
message.

2. The target node, which receives the incoming initiation message, logs the
second event.

3. The third event message is logged by whichever node terminates the
connection.

4. The last event message is logged by the node where the link is
terminated.

With an incoming network connection, the auditing message has a remote
user name field that identifies who initiated the connection. With outgoing
logical link connections, the remote logical link identifier is always 0.

12.2 Hierarchy of Access Controls
Whenever a DECnet node attempts to connect to a remote DECnet node, it sends
access control information to the remote node. Access control information can
come from a number of sources. The following list shows the hierarchy of access
control from highest to lowest priority:

1. The network user on the local node can explicitly supply access control
information. If this is the case, the remote node uses the access control
information. See Section 12.2.1 for information about explicit access control.

2. The local node checks to see if outgoing proxy access is enabled for a local
node or an application. If proxy is enabled, the local node sends the initiating
user name in the connect request. If proxy is also enabled on the remote
node, the DECnet software determines if the initiating user has proxy access.
See Section 12.2.2 and Section 12.3 for information about proxy access control.

3. When the remote node sees that no access control has been specified and that
no proxy is applicable, it checks the configuration database. If the database
contains an application user name, it uses that name. See Section 12.2.3 and
Section 12.4 for information about default application accounts.

4. If there is no default application user name in its configuration database,
the remote node checks the configuration database for default nonprivileged
DECnet user name information. If the information is there, the remote
node uses the default nonprivileged DECnet user name. See Section 12.4 for
information about the default DECnet account.

Finally, if none of these sources supply the information, the connection fails.

12.2.1 Using Explicit Access Control
Users can execute a either a DCL or an NCP command on a remote node by
supplying explicit access control information. The access control information
contains a user name and password and provides access to a specific account on
the remote system. To supply explicit access control information, you can use
either a standard OpenVMS node specification or an NCP command:

• In the OpenVMS node specification, the access control string consists of the
user name for the remote account and the user’s password enclosed within
quotation marks:

Security in a Network Environment 12–3

Security in a Network Environment
12.2 Hierarchy of Access Controls

NODE"username password"::disk:[directory]file.typ

In the following, user Puterman uses an access control string to copy the file
BIONEWS.MEM:

$ COPY WALNUT"PUTERMAN A25D3255"::BIONEWS.MEM BIONEWS.MEM

• If you want to execute an NCP command on a remote node, you can do so by
specifying a user name and password.
In the following example, you can display all characteristics information
about the application MAIL on the remote node TORONTO:

NCP> TELL TORONTO USER A_JOHNSTON PASSWORD XZZOQ87 SHOW OBJECT-
_NCP> MAIL CHARACTERISTICS

12.2.2 Using Proxy Logins
A proxy login enables a user logged in at a remote node to be logged in
automatically to a specific account at the local node, without having to supply
any access control information. Note that a proxy login is not the same as an
interactive login. A proxy login means that specific network access operations can
be executed, such as a copy operation. By contrast, an interactive login requires
a user to supply a user name and password before the user can perform any
interactive operations.

To establish a proxy login on the local node, the remote user must have a default
proxy account on the local node that maps to a local user name. The remote user
assumes the same file access, rights, and privileges as the local user name. You
can use the proxy login capability to increase security because it minimizes the
need to specify explicit access control information in node specifications passed
over the network or stored in command procedures.

Note that network applications can also be assigned proxy login access.

The use of access control strings is not permitted in an evaluated configuration.
Proxy login accounts should be used in the evaluated configuration.

12.2.3 Using Default Application Accounts
Another form of access control specific to network applications is default account
information used by inbound connects from remote nodes that send no access
control information. Because the remote node supplies no access control
information, the local node uses the default information you specify for the
application to make the connection.

You can use the following command to store default access control information
about the application in the network configuration database:

NCP> SET OBJECT FAL USER JILL

12.3 Proxy Access Control
Section 12.2.2 defines the concept of proxy logins. You can authorize proxy
access when you encounter situations where users either on different nodes or in
different groups want to share files on your system and you are reluctant to give
out passwords or to set the directory and file protection to W:RWE. With proxy
logins, there is no need to embed passwords in commands to copy a file across
the network. There is also no need to allow world read access to a file for file
transfers. The user enters the following form of the DCL command COPY to a
default proxy account:

12–4 Security in a Network Environment

Security in a Network Environment
12.3 Proxy Access Control

COPY remotenode::file-spec file-spec

To copy a file over the network using proxy access from an account other than
the default, the user includes the name of the proxy account in the access control
string of the DCL command, as follows:

COPY remotenode"proxyacct"::file-spec file-spec

12.3.1 Special Security Measures with Proxy Access
Proxy access is a selective merging of the authorization databases of the affected
systems. Therefore, the security is only as good as the security of the least secure
node.

Although proxy access eliminates passwords going over the network, it is possible
for a personal computer to bypass the proxy login mechanism by impersonating
one of the authorized nodes. For this reason, implement the following procedures:

• Do not enable incoming proxy access to sensitive data.

• Set up nonprivileged proxy accounts. If an account does need privilege, be
sure those privileges cannot damage your system. (This practice provides
a shield between systems in a network if one node is penetrated. The fact
that proxy logins provide admittance only to nonprivileged accounts at other
nodes may help contain the extent of damage if one system in the network
is penetrated.) If your site has high security requirements, do not grant
network or remote access to privileged user names.

• Extend proxy access only to nodes that are always or almost always on the
network. (It is easier for an intruder to impersonate a node when it is off the
network.) You must create a balance between using proxies and having access
control strings with passwords traveling over the network. A workstation or
personal computer on the network that is capable of impersonating a node is
also capable of monitoring network messages and thus capturing passwords.
Ultimately, you must ensure that all nodes connected to your local network
have some level of trustworthiness.

• Exercise caution when authorizing users. Ideally, you should receive a formal
authorization request from the security administrator at the remote site.

• Examine any login command procedures for a proxy account. Make certain
that they follow the recommendations in Section 7.2.4.2 for login command
procedures in captive accounts. Login command procedures should reside in
a well-protected directory owned by a user other than the owner of the proxy
account. They should prohibit write access for those who use the account.

12.3.2 Setting Up a Proxy Database
If a remote user’s connection request does not contain access control information,
the following conditions must be met for proxy access to be approved:

• The proxy database on the target node must contain a source node’s node
synonym and source user name combination that matches the remote source
node’s node synonym and source user name. In Example 12–1, for example,
the security administrator adds a proxy for KMahogany. KMahogany must
access the proxy accoun from node Birch.

• The target node’s user authorization file must contain a source user name that
matches the proxy database entry’s target source user name. Example 12–1
assumes that the SYSUAF.DAT file on node Birch has a user authorization
record for KMahogany.

Security in a Network Environment 12–5

Security in a Network Environment
12.3 Proxy Access Control

• Incoming proxy access must be enabled for the target node in the
configuration database. See Section 12.3.2.1.

• Incoming proxy access must be enabled for the target application in the
configuration database. See Section 12.3.2.1.

• Outgoing proxy must be enabled on the originating node for the node itself
and for all applications that expect to use proxy.

You can control the use of proxy logins at the local node. Use AUTHORIZE to
create and modify the permanent proxy database.

The default network proxy authorization file is NET$PROXY.DAT. However,
AUTHORIZE maintains the file NETPROXY.DAT for compatibility, for support of
many layered products, and for translation of DECnet for OpenVMS (Phase IV)
node names.

Each network proxy entry can map a single remote user to multiple proxy
user names on the local node (one default proxy user name and up to fifteen
additional proxy user names). If you are going to have access to more than one
proxy account from the same node and login name, indicate which proxy account
should be the default. The proxy database entry identifies the user in the form of
nodename::username or nodename::[group,member].

For example, to create a proxy file at a local node and add a default proxy entry
mapping user Martin on remote node Boston to user Allen at the local node, enter
the following commands:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE

UAF> CREATE/PROXY
UAF> ADD/PROXY BOSTON::MARTIN ALLEN/DEFAULT
UAF> EXIT

Similarly, the system manager at a remote node can create and maintain a proxy
database of network users having proxy access to specific accounts on that node.
Table 12–1 summarizes AUTHORIZE commands used to manage the proxy
database.

Table 12–1 AUTHORIZE Commands for Managing Network Proxy Access

Command Argument Description

ADD/PROXY node::remoteuser
localuser[,...]

Adds proxy access for the specified user.

CREATE/PROXY Creates a network proxy authorization file.

LIST/PROXY Creates a listing file of all proxy accounts and all remote
users with proxy access to the accounts.

MODIFY/PROXY node::remoteuser Modifies proxy access for the specified user.

REMOVE/PROXY Deletes proxy access for the specified user.

SHOW/PROXY *
node::remoteuser

Displays proxy access allowed for the specified user.

12–6 Security in a Network Environment

Security in a Network Environment
12.3 Proxy Access Control

12.3.2.1 Enabling and Disabling Incoming Proxy Access
You can control proxy access to your node and to particular applications.

Controlling Proxy Access to a Node
To accept proxy connections to your node, set the incoming proxy attribute in the
executor database in the following way:

NCP> SET EXECUTOR INCOMING PROXY ENABLE

To deny proxy connections to your node, set the outgoing proxy attribute in the
following way:

NCP> SET EXECUTOR INCOMING PROXY DISABLE

If proxy access to the node is disabled, the system ignores any proxy connection
request.

A comparable set of steps is necessary on the originating node so that proxy data
is transmitted in the connect request message. Set proxy attributes for both the
node and for all applications that expect to use proxy, for example:

NCP> SET EXECUTOR OUTGOING PROXY ENABLE
NCP> SET OBJECT MAIL PROXY BOTH
NCP> SET OBJECT MAIL PROXY INCOMING
NCP> SET OBJECT MAIL PROXY OUTGOING

In general, enabling outgoing proxy is a good idea, even if the target node
does not enable proxy for the object, because enabling outgoing proxy puts the
originating user name in the connect message. Thus the user name is available
for accounting and audit logs on the target node. Be aware that a small number
of DECnet applications depend on the nonproxy form of the connect message (for
example, some use the connect message space for application information rather
than user names) and do not function if outgoing proxy is enabled.

Controlling Proxy Access to an Application
To allow proxy access to a particular application, you must enable the proxy
access for both the node and the application. In addition, specify the name of the
application in the SET OBJECT command. For example, the following enables
proxy access to the application NML:

NCP> SET EXECUTOR INCOMING PROXY ENABLE
NCP> SET OBJECT NML INCOMING PROXY ENABLE

To disable proxy access to an application, identify the application in the SET
OBJECT command, and set the incoming proxy attribute to disable. For example,
the following disables proxy access to the application FAL:

NCP> SET OBJECT FAL INCOMING PROXY DISABLE

If incoming proxy is enabled for the application but the proxy access for the
node is disabled, the system in effect ignores any proxy access request to the
application.

12.3.2.2 Removing Proxy Access
Remove proxy access to the system when it is no longer needed. Invoke
AUTHORIZE, and enter the following command to remove proxy access:

UAF> REMOVE/PROXY BOSTON::MARTIN

Security in a Network Environment 12–7

Security in a Network Environment
12.3 Proxy Access Control

12.3.2.3 Procedure for Creating a Proxy Account
When you want to set up a proxy account on your node for use by one or more
users at other nodes, you must perform the following steps. Refer to the security
guidelines listed in Section 12.3.1 as you create the account.

1. Define the purpose of the account, its name, and which network users will be
admitted.

2. Create the local account, if necessary, with AUTHORIZE; if the account
already exists, make sure it is restricted and defined as /NOINTERACTIVE,
/NOBATCH, /NETWORK.

3. Review the privileges on the account. Generally avoid granting privileges to
proxy login accounts.

4. Create the network proxy authorization file, if necessary, with the
AUTHORIZE command CREATE/PROXY. (The system usually creates it
automatically.)

5. Allow as many remote users as necessary access to the proxy account with
the AUTHORIZE command ADD/PROXY.

6. Check the default protection on the directory, and customize it as necessary.

7. Examine any login command procedure specified by the /LGICMD qualifier
to the ADD command. In captive accounts, make certain that the login
command procedure follows the recommendations in Section 7.2.4.2. It should
reside in a well-protected directory owned by a user other than the owner
of the proxy account. It should prohibit write access for those who use the
account.

8. Notify the security administrator at the remote node about which users from
that node have been authorized for access to your node.

12.3.3 Example of a Proxy Account
In Example 12–1, the security administrator at the node WALNUT wants to
create a general access account called GENACCESS. At the same time the
administrator wants to take steps to allow proxy logins by three users from the
node BIRCH: KMahogany, PSumac, and WPine, as well as two users from the
node WILLOW: RDogwood and WCherry. No network proxy authorization file
currently exists.

Example 12–1 Sample Proxy Account

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD GENACCESS /PASSWORD=WHYNADGUM/UIC=[236,043] -
_UAF> /DEVICE=STAFFDEV/DIRECTORY=[GENACCESS] -
_UAF> /OWNER="Security Mgmt"/ACCOUNT=SEC -
_UAF> /FLAGS=(DISWELCOME,DISNEWMAIL,GENPWD,DISMAIL) -
_UAF> /NOBATCH/NOINTERACTIVE/MAXDETACH=8 -
_UAF> /LGICMD=LOGIN/MAXACCTJOBS=10

(continued on next page)

12–8 Security in a Network Environment

Security in a Network Environment
12.3 Proxy Access Control

Example 12–1 (Cont.) Sample Proxy Account

%UAF-I-ADDMSG, user record successfully added
%UAF-I-RDBADDMSGU, identifier GENACCESS value [000236,000043]
added to rights database
%UAF-I-RDBADDMSGU, identifier SEC value [000236,177777] added to
rights database
UAF> CREATE/PROXY
UAF> ADD/PROXY BIRCH::KMAHOGANY GENACCESS/DEFAULT
%UAF-I-NAFADDMSG, proxy from OMNI:.BOSTON.BIRCH::KMAHOGANY to
GENACCESS added
UAF> ADD/PROXY BIRCH::PSUMAC GENACCESS/DEFAULT
%UAF-I-NAFADDMSG, proxy from OMNI:.BOSTON.BIRCH::PSUMAC to
GENACCESS added
UAF> ADD/PROXY BIRCH::WPINE GENACCESS/DEFAULT
%UAF-I-NAFADDMSG, proxy from OMNI:.BOSTON.BIRCH::WPINE to
GENACCESS added
UAF> ADD/PROXY WILLOW::RDOGWOOD GENACCESS/DEFAULT
%UAF-I-NAFADDMSG, proxy from OMNI:.BOSTON.WILLOW::RDOGWOOD to
GENACCESS added
UAF> ADD/PROXY WILLOW::WCHERRY GENACCESS/DEFAULT
%UAF-I-NAFADDMSG, proxy from OMNI:.BOSTON.WILLOW::WCHERRY to
GENACCESS added

UAF> SHOW/PROXY *::*
Default proxies are flagged with a (D)

OMNI:.BOSTON.BIRCH::KMAHOGANY
GENACCESS (D)

OMNI:.BOSTON.BIRCH ::PSUMAC
GENACCESS (D)

OMNI:.BOSTON.BIRCH ::WPINE
GENACCESS (D)

OMNI:.BOSTON.WILLOW ::RDOGWOOD
GENACCESS (D)

OMNI:.BOSTON.WILLOW ::WCHERRY
GENACCESS (D)

UAF> EXIT
{messages}
$ DIRECTORY/SECURITY SYS$STAFF:[000000]GENACCESS.DIR

.

.

.
$ DIRECTORY/SECURITY SYS$STAFF:[GENACCESS]LOGIN.COM

.

.

.

12.4 Using DECnet Application (Object) Accounts
Network objects are system programs and user-written applications that permit
communication among nodes in a DECnet network. You need to identify the set
of network objects allowed access to your system, and set up the appropriate
access controls for each object. The following mechanisms are available:

Security in a Network Environment 12–9

Security in a Network Environment
12.4 Using DECnet Application (Object) Accounts

• DECnet object accounts
These are individual accounts for specific network objects (for example, MAIL)
automatically configured on your system. These provide more accountability
of remote access to an object than the default DECnet account provides.
(For example, an object can have a captive account with a login command
procedure that grants or denies access to the object based on the remote node
name or user name.)

• Default DECnet account
This type of account allows all network objects general access to the system.
It is appropriate for systems with low security requirements (for example,
a local area network of systems located within a site with no outside
connections or dialup lines).
The default DECnet user name lets users perform certain network operations,
such as the exchange of electronic mail between users on different nodes,
without having to supply a user name and password. The default DECnet
user name is also used for file operations when access control information is
not supplied. For example, it lets remote users access local files on which the
file protection has been set to allow world access. If you do not want remote
users accessing your node, do not create a default DECnet user name. See
Section 12.4.3 for information about removing default DECnet accounts.

12.4.1 Summary of Network Objects
You should understand the function of the network objects supplied with the
OpenVMS operating system before you determine the access control to apply to
them. This section provides a description of the most common network objects.

FAL
The file access listener (FAL) is the remote file access facility. FAL is an image
that receives and processes remote file access requests for files at the local node.

Use of general FAL access is strongly discouraged. Open access allows
general network access to any files marked world-accessible. It also allows
remote users to create files in any directory with world write access.

Sites with high security requirements, or sites where it is difficult to recognize all
the intended users, should not create a FAL account. To control which users gain
access, these sites may establish one or more proxy accounts for specific purposes
(see Section 12.3).

MAIL
MAIL is an image that provides personal mail services for OpenVMS systems. In
most cases, allow the MAIL object general access to the system.

MIRROR
MIRROR is an image used for particular forms of loopback testing. For example,
MIRROR is run during the DECnet phase of the UETP test package.

MOM
MOM is the Maintenance Operations Module. The MOM image downline loads
unattended systems, transferring a copy of an operating system file image from
an OpenVMS node to a target node. The MOM object is established during a
system installation.

12–10 Security in a Network Environment

Security in a Network Environment
12.4 Using DECnet Application (Object) Accounts

NML
NML is the network management listener. Remote users with access to NML can
use NCP TELL commands to gather and report network information from your
DECnet databases.

PHONE
PHONE is an image that allows online conversations with users on remote
OpenVMS systems. Note that if you allow default DECnet access to PHONE,
anyone in the network can get a list of users currently logged in to the local
system and attempt a login using the list of user names.

TASK
Through the default DECnet account, the TASK object allows arbitrary command
procedures (including those that might be used in intrusions) to be executed on
your system.

Note that if you do not allow default DECnet access on your system or if you
disable default DECnet access to the TASK object, you can allow remote user-
written command procedures (tasks) to run on your system through the use of
access control strings or proxy access.

VPM
VPM is the Virtual Performance Monitor Server. Access to VPM is required to
use the cluster monitoring features of the Monitor utility (MONITOR).

12.4.2 Configuring Network Objects Manually
The command procedure NETCONFIG.COM configures the network objects
on your system automatically, and the command procedure NETCONFIG_
UPDATE.COM updates the network objects automatically.

If you choose not to use the command procedures, you can perform the following
steps to allow network access to specific objects:

1. Create a top-level directory for each network object, and specify a unique
owner UIC and group UIC. For example, the following command sequence
creates a top-level directory for the MAIL object on the system disk:

$ SET DEFAULT SYS$SPECIFIC:[000000]
$ CREATE/DIRECTORY [MAIL$SERVER]/OWNER_UIC=[376,374]

Table 12–2 lists the directory names, user names, and UICs used by the
NETCONFIG.COM and NETCONFIG_UPDATE.COM command procedures
to create accounts for specific network accounts. For consistency, you
should specify the same information when manually creating network
object accounts.

Note that the MOM object is created by the operating system during
installation.

2. Using AUTHORIZE, create an account for the object, and use a generated
password. (Note that the user name and password that you specify must
match the password defined for the object in the network database [described
in step 3].)

For example, the following command sequence sets up an account for the
MAIL object:

Security in a Network Environment 12–11

Security in a Network Environment
12.4 Using DECnet Application (Object) Accounts

$ RUN SYS$SYSTEM:AUTHORIZE
UAF> ADD MAIL$SERVER/OWNER=MAIL$SERVER DEFAULT -
_UAF> /PASSWORD=MDU1294B/UIC=[376,374]/ACCOUNT=DECNET -
_UAF> /DEVICE=SYS$SPECIFIC: /DIRECTORY=[MAIL$SERVER] -
_UAF> /PRIVILEGE=(TMPMBX,NETMBX) /DEFPRIVILEGE=(TMPMBX,NETMBX) -
_UAF> /FLAGS=(RESTRICTED,NODISUSER,NOCAPTIVE) /LGICMD=NL: -
_UAF> /NOBATCH /NOINTERACTIVE

The AUTHORIZE command SHOW MAIL$SERVER displays the network
account set up for the MAIL object, as shown in Example 12–2.

3. Use the NCP DEFINE command to associate the user name and password of
the account with the specified object in the network database, as follows:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE OBJECT MAIL USER MAIL$SERVER PASSWORD MDU1294B
NCP> EXIT

4. Repeat steps 1 through 3 for each network object.

5. When finished, remove default DECnet access from the executor
database, and remove the default DECnet account from the SYSUAF (see
Section 12.4.3).

6. Finally, reboot the system to copy changes made to the permanent executor
and object databases to the running system.

Table 12–2 lists the network object defaults.

Table 12–2 Network Object Defaults

Object
Name

Directory and
User (Account) Name UIC

FAL FAL$SERVER [376,373]

MAIL MAIL$SERVER [376,374]

MIRROR MIRRO$SERVER1 [376,367]

$MOM VMS$COMMON:[MOM$SYSTEM]2 [376,375]

NML NML$SERVER [376,371]

PHONE PHONE$SERVER [376,372]

VPM VPM$SERVER [376,370]

1Because AUTHORIZE enforces a user name limit of 12 characters, you must truncate the user name
(and directory name) of the MIRROR object account to MIRRO$SERVER.
2MOM has no associated user name.

12–12 Security in a Network Environment

Security in a Network Environment
12.4 Using DECnet Application (Object) Accounts

Example 12–2 UAF Record for MAIL$SERVER Account

Username: MAIL$SERVER Owner: MAIL$SERVER
Account: MAIL$SERVER DEFAULT UIC: [376,374] ([DECNET,MAIL$SERVER])
CLI: DCL Tables:
Default: SYS$SPECIFIC:[MAIL$SERVER]
LGICMD:
Login Flags: Restricted
Primary days: Mon Tue Wed Thu Fri Sat Sun
Secondary days:
Primary 000000000011111111112222 Secondary 000000000011111111112222
Day Hours 012345678901234567890123 Day Hours 012345678901234567890123
Network: ##### Full access ###### ##### Full access ######
Batch: ----- No access ------ ----- No access ------
Local: ----- No access ------ ----- No access ------
Dialup: ----- No access ------ ----- No access ------
Remote: ----- No access ------ ----- No access ------
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: (none) Pwdchange: (none)
Last Login: (none) (interactive), (none) (non-interactive)
Maxjobs: 0 Fillm: 16 Bytlm: 12480
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 12 JTquota: 1024
Prclm: 0 DIOlm: 6 WSdef: 180
Prio: 4 ASTlm: 16 WSquo: 200
Queprio: 0 TQElm: 10 WSextent: 0
CPU: (none) Enqlm: 20 Pgflquo: 25600

Authorized Privileges:
TMPMBX NETMBX

Default Privileges:
TMPMBX NETMBX

12.4.3 Removing Default DECnet Access to the System
The default DECnet account is appropriate for systems with low security
requirements (see Section 12.4). If your site has moderate or high security
requirements, you should remove default DECnet access to the system once you
have set up accounts for individual network objects.

Caution

Before deleting your default DECNET account, as described in this
section, use the NCP command SHOW KNOWN OBJECTS and the
Authorize utility (AUTHORIZE) to verify that all network objects and
layered products that use network objects have network accounts set up
in the system user authorization file (SYSUAF.DAT). Otherwise, network
objects and layered products that use network objects may not work as
expected.

To do this, remove access to the DECNET account in the network configuration
database, and delete the DECNET account from the SYSUAF.

Removing Default DECnet Access
Execute the following NCP commands to remove the default DECnet access from
the network executor database:

NCP> DEFINE EXECUTOR NONPRIVILEGED USER DEFAULT_DECNET
NCP> PURGE EXECUTOR NONPRIVILEGED PASSWORD

Security in a Network Environment 12–13

Security in a Network Environment
12.4 Using DECnet Application (Object) Accounts

The DEFAULT_DECNET user specified in the first command is a nonexistent
user account that is specified for auditing purposes only. (A network login failure
message is written to the security audit log file each time access to your system is
attempted through the [nonexistent] DEFAULT_DECNET account.)

Deleting the DECNET Account
Using AUTHORIZE, remove the DECNET account from SYSUAF, as follows:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> REMOVE DECNET
UAF> EXIT

Delete any files in the [DECNET] directory structure.

Modifying the Volatile Configuration Database
To have the change take effect immediately, modify the volatile database with the
following NCP commands:

NCP> SET EXECUTOR NONPRIVILEGED USER DEFAULT_DECNET
NCP> CLEAR EXECUTOR NONPRIVILEGED PASSWORD

12.4.4 Setting Privilege Requirements for Remote Object Connections
You can select specific privileges to control the use of DECnet objects that are
specified during network configuration. In such instances, it becomes a privileged
operation either to connect to a privileged DECnet object or use an outgoing
DECnet object.

For example, the following command establishes the requirement that users
initiating a DECnet connection to the remote object MAIL must possess the
OPER and SYSNAM privileges:

NCP> DEFINE OBJECT MAIL OUTGOING CONNECT PRIVILEGES OPER,SYSNAM

This mechanism is a useful way of limiting access to certain DECnet applications
to privileged users or programs. However, in order to be effective, the privilege
requirement must be imposed consistently on all nodes in the network.

12.5 Specifying Routing Initialization Passwords
Point-to-point connections are connections over synchronous and asynchronous
lines. For point-to-point connections, especially over dialup lines, you can use
routing initialization passwords to verify that the initiating node is authorized
to form a connection with your node. Each end of a point-to-point circuit can
establish a verifier to transmit to the other node and specify a verifier expected
from the other node. Before the link is established, each node verifies that it
received the expected verifier from the other node.

Passwords are usually optional for point-to-point connections but are required
for dynamic asynchronous connections. To provide for increased security when
a remote node requests a dynamic asynchronous connection (which is normally
maintained only for the duration of a telephone call), the node requesting the
dynamic connection supplies a password, but the node receiving the login request
is prevented from revealing a password to the requesting node. The network
address, node name, and password of the requesting node has to match the local
system’s routing authorization data.

12–14 Security in a Network Environment

Security in a Network Environment
12.5 Specifying Routing Initialization Passwords

12.5.1 Establishing a Dynamic Asynchronous Connection
A dynamic asynchronous DECnet connection is a temporary connection between
two nodes, normally over a telephone line through the use of modems. The
line at each end of the connection can be switched from a terminal line to a
dynamic asynchronous DECnet line. Configuration of dynamic asynchronous
lines is performed automatically by DECnet during establishment of a dynamic
connection. A dynamic asynchronous connection is normally maintained only for
the duration of a telephone call.

Note

A dynamic asynchronous connection to an OpenVMS node can be initiated
from any node that supports the DECnet asynchronous DDCMP protocol.

On an OpenVMS node, you can perform steps 1 and 2 of the dynamic
asynchronous connection process before you turn on the network at your node
(step 3). The later steps of the process (starting with step 4) must occur when the
line is being switched to DECnet.

Follow the steps outlined below to establish a dynamic asynchronous DECnet
connection. This procedure assumes the local OpenVMS node is originating the
connection and switching the terminal line on for DECnet use. The connection
must be to an OpenVMS node on which you have an account with NETMBX
privilege. The steps also indicate the actions that the system manager at the
remote OpenVMS node must perform in order for the dynamic asynchronous
DECnet link to be established successfully.

1. Log in to the SYSTEM account and enter the following commands
interactively (or include them in the SYS$MANAGER:SYSTARTUP_
VMS.COM command procedure before you boot the system). These commands
load the asynchronous driver NODRIVER (NOA0) and install DYNSWITCH
software on your system.

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT NOA0/NOADAPTER
SYSGEN> EXIT
$ INSTALL:=SYSSYSTEM:INSTALL
$ INSTALL/COMMAND
INSTALL> CREATE SYS$LIBRARY:DYNSWITCH/SHARE -
_ /PROTECT/HEADER/OPEN
INSTALL> EXIT

The system manager of the remote OpenVMS node must also enter these
commands.

Additionally, the system manager at the remote OpenVMS node must
enter the commands given below. These commands enable the use of
virtual terminals for the terminal line that is to be switched, and set the
DISCONNECT characteristic for the terminal line. (The virtual terminal
capability permits the process to continue running if the physical terminal
you are using becomes disconnected.)

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT VTA0/NOADAPTER/DRIVER=TTDRIVER
SYSGEN> EXIT
$ SET TERMINAL/EIGHT_BIT/PERMANENT/MODEM/DIALUP -
_$ /DISCONNECT device-name:

Security in a Network Environment 12–15

Security in a Network Environment
12.5 Specifying Routing Initialization Passwords

Device-name is the name of the terminal port to which the dynamic
asynchronous connection is made.

2. Establish the required transmit password at the originating end of the
dynamic asynchronous dialup link. The transmit password is the password
sent to the remote node during connection startup. Use NCP to enter a
command to define the transmit password for the remote node. The password
can contain one to eight alphanumeric characters and should not contain any
spaces. Specify the following commands:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE node-id TRANSMIT PASSWORD password
NCP> EXIT

Node-id is the name of the remote node with which your node is forming a
connection.

In the following example, the node name of your local node is LOCALA,
the transmit password is PASSA, and the remote node with which you are
creating a dynamic asynchronous dialup link is REMOTC:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE REMOTC TRANSMIT PASSWORD PASSA
NCP> EXIT

For each remote node with which you will create a dynamic asynchronous
DECnet dialup link, you must define a transmit password in a separate
command.

The system manager for the node at the other end of the connection must
define that same password as a receive password for your node (the password
expected to be received from your node). The remote system manager should
also specify the parameter INBOUND ROUTER or INBOUND ENDNODE,
to indicate the type of node (router or end node) that is expected to initiate
the dynamic connection. These are the commands the remote manager should
enter:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE node-id -
_ RECEIVE PASSWORD password INBOUND node-type
NCP> EXIT

For example, if your node LOCALA is an end node and your transmit
password is PASSA, the manager at REMOTC should issue the following
command:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE LOCALA RECEIVE PASSWORD PASSA INBOUND ENDNODE
NCP> EXIT

3. Ensure that DECnet is running on both nodes for the remaining steps. If
you have not already done so, turn on the network by entering the following
command (and request that the remote system manager also do so):

$ @SYS$MANAGER:STARTNET

If the network was already running before you began the dynamic
asynchronous connection procedure, enter these commands to cause the
permanent database entry to be entered in the volatile database:

$ RUN SYS$SYSTEM:NCP
NCP> SET NODE node-id ALL
NCP> EXIT

12–16 Security in a Network Environment

Security in a Network Environment
12.5 Specifying Routing Initialization Passwords

4. The remaining steps can be performed by any OpenVMS user with NETMBX
privilege. Log in to your local OpenVMS system, and enter the following DCL
command on your terminal to cause your process to function as a terminal
emulator (which makes the remote terminal appear to be a local terminal
connection):

SET HOST/DTE device-name:

Device-name is the name of your local terminal port that is connected to
the modem. If both systems use modems with autodial capabilities, you can
optionally include the /DIAL qualifier on the SET HOST/DTE command to
cause automatic dialing of the modem on the remote node, as follows:

SET HOST/DTE/DIAL=number device-name:

5. If you are not using automatic dialing, dial in to the remote node manually.

6. Once the dialup connection is made and you receive the remote OpenVMS
system welcome message, log in to your account on the remote node.

7. While logged in to your account on the remote node, enter the following
command to cause the line to be switched to a DECnet line automatically:

$ SET TERMINAL/PROTOCOL=DDCMP/SWITCH=DECNET

The following message indicates that the DECnet link is being established:

%REM-S-END - control returned to local-nodename::
$

To check whether the communications link has come up, specify the following
command on the local system:

$ RUN SYS$SYSTEM:NCP
NCP> SHOW KNOWN CIRCUITS
NCP> EXIT

The resulting display should list a circuit identified by the mnemonic TT or
TX, depending on the asynchronous device installed on the line, and indicate
that it is in the ON state.

When the DCL prompt appears on your terminal screen, you can begin
to communicate with the remote node over the asynchronous DECnet
connection.

8. As an alternative to switching the terminal line to a DECnet line
automatically (as described in previous step 7), you can switch the line
manually. If you originate a dynamic connection to an OpenVMS node from a
node that is not running OpenVMS software, manual switching is required;
from an OpenVMS system, it is optional. If you are originating the connection
from a node that is not running OpenVMS software, follow system-specific
procedures to log in to the remote OpenVMS node by means of terminal
emulation.

Once you are logged in to the remote node, two steps are required to perform
manual switching:

a. Using your account on the remote OpenVMS node, specify the SET
TERMINAL command described in step 7, but add the /MANUAL
qualifier:

$ SET TERMINAL/PROTOCOL=DDCMP/SWITCH=DECNET/MANUAL

Security in a Network Environment 12–17

Security in a Network Environment
12.5 Specifying Routing Initialization Passwords

You receive the following message from the remote node indicating the
remote system is switching its line to DECnet use:

%SET-I-SWINPRG The line you are currently logged over is becoming
a DECnet line

b. You should exit from the terminal emulator and switch your line manually
to a DECnet line. The procedure depends on the specific operating system
on which you are logged in.

The following example shows how an OpenVMS user originating a
dynamic connection would perform this procedure:

• Exit from the terminal emulator by pressing the backslash (\) key
and the Ctrl key simultaneously on your OpenVMS system.

• Enter the following command to switch your terminal line to a
DECnet line manually:

$ SET TERMINAL/PROTOCOL=DDCMP TTA0:

TTA0 is the name of the terminal port on the local node.

• Enter NCP commands to turn on the line and circuit connected to
your terminal port TTA0 manually, as in the following example:

$ RUN SYS$SYSTEM:NCP
NCP> SET LINE TT-0-0 RECEIVE BUFFERS 4 -
_ LINE SPEED 2400 STATE ON
NCP> EXIT

Asynchronous DECnet is then started on the local OpenVMS node.

9. You can terminate the dynamic asynchronous link in one of two ways:

• Break the telephone connection.

• Run NCP and turn off either the asynchronous line or circuit. The two
commands you can use are as follows:

$ RUN SYS$SYSTEM:NCP
NCP> SET LINE dev-c-u STATE OFF
NCP> SET CIRCUIT dev-c-u STATE OFF
NCP> EXIT

If either of the above NCP commands is entered at the remote node, the
line returns to terminal mode immediately. If the command is entered at
the local (originating) OpenVMS node, the remote line and circuit remain
on for approximately four minutes and then the line returns to terminal
mode.

Figure 12–2 shows the establishment of a dynamic asynchronous connection.
The commands that must be entered at each end of the connection are shown in
Example 12–3.

12–18 Security in a Network Environment

Security in a Network Environment
12.5 Specifying Routing Initialization Passwords

Figure 12–2 A Typical Dynamic Asynchronous Connection

LOCALA

TTA0 TTB0

REMOTC

ModemModem
Telephone Line

ZK−7016A−GE

Node
Local

Node
Remote

Example 12–3 Sample Commands for a Dynamic Asynchronous Connection

Commands issued at both the local OpenVMS node (LOCALA) and the remote OpenVMS node
(REMOTC):

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT NOA0/NOADAPTER
SYSGEN> EXIT
$ INSTALL:=SYSSYSTEM:INSTALL
$ INSTALL/COMMAND
INSTALL> CREATE SYS$LIBRARY:DYNSWITCH/SHARE/PROTECT/HEADER/OPEN
INSTALL> EXIT

Commands issued at the remote node (REMOTC):

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT VTA0/NOADAPTER/DRIVER=TTDRIVER
SYSGEN> EXIT
$ SET TERMINAL/EIGHT_BIT/PERMANENT/MODEM/DIALUP/DISCONNECT TTB0:
$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE LOCALA RECEIVE PASSWORD PASSA INBOUND ENDNODE
NCP> SET NODE LOCALA ALL
NCP> EXIT

Commands issued at the local node (LOCALA):

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE REMOTC TRANSMIT PASSWORD PASSA
NCP> SET NODE REMOTC ALL
NCP> EXIT
$ SET HOST/DTE/DIAL=8556543 TTA0:

! After dialing in automatically to REMOTC, log in to your account on REMOTC.

$ SET TERMINAL/PROTOCOL=DDCMP/SWITCH=DECNET
%REM-S-END - control returned to LOCALA:
$

12.6 Sharing Files in a Network
Discourage users from sharing passwords and changing file and directory
protection codes to grant the world category read or execute access. Grant
BYPASS or READALL privilege cautiously.

The easiest way to share files on an occasional basis in a network environment
is through the Mail utility. You mail the file to the intended recipient; there
is no exposure of passwords, and the file is not made accessible to other users.
However, there is the disadvantage of having to ask the file owner and wait for
their response every time you want access. For an ongoing activity involving

Security in a Network Environment 12–19

Security in a Network Environment
12.6 Sharing Files in a Network

frequent access to shared files, it is better to set up proxy accounts and ACLs on
the directories and files.

12.6.1 Using the Mail Utility
The easiest way for a user to transfer a text file to another user is to invoke
the Mail utility (MAIL) and to send the user a copy of the file. This method
is reasonably secure, because passwords need not be revealed and the original
protection of the file is not changed. The receiving user simply includes a new
file name with the MAIL command EXTRACT/NOHEADER to place a copy in
the user’s own directory. The copy automatically acquires the user’s default
protection. The user then uses the MAIL command DELETE to remove the copy
from the mail file.

12.6.2 Setting Up Accounts for Local and Remote Users
A network manager may need to admit a number of users from outside nodes
into a directory on the local node for a specific task. Therefore, you create a proxy
account and add the proxy access to admit the outsiders into that one account
(see Section 12.3.2.3). If there are local users who need to share the files in
this account’s directory, then you provide that access and protect the files from
outsiders by placing ACLs on the directory and files.

Consider a situation where a corporation needs a central repository for sales
update information that is accessible to employees throughout the corporation.

1. The security administrator at the node where the files will reside (BNORD)
creates the special account SALES_READER. The SALES_READER account
is set up as a captive account with mail disabled. The default directory is
[SALESINFO], which has the following default protection code:

(S:RWED,O:RWED,G:R,W)

Note that this protection code permits users in the same group as SALES_
READER on the home node BNORD to read the files. Furthermore, only
the users in the system category or the owner category, or those who have
privileges that give them such access, can update the files in the directory.
ACLs are used to further define the access, as described in step 3.

2. The security administrator uses the AUTHORIZE command ADD/PROXY
to add the proxy access for the outside users. For example, to extend
proxy access to user Jackson on node DEXTER and user Goodwin on node
BANGOR, the commands would be as follows:

UAF> ADD/PROXY DEXTER::JACKSON SALES_READER/DEFAULT
UAF> ADD/PROXY BANGOR::GOODWIN SALES_READER/DEFAULT

3. If later it becomes clear that other users at the home node BNORD need
access and they do not belong to the same group as SALES_READER, ACLs
could be added to the files in the directory [SALESINFO]. For example,
suppose R. Grant needs control access to all the files and J. Martinez needs
read access to all the files. The following two DCL commands would define
the ACL for the directory and then propagate it to all existing files:

$ SET SECURITY/ACL=-
_$ ((IDENTIFIER=R_GRANT,ACCESS=CONTROL),-
_$ (IDENTIFIER=J_MARTINEZ,ACCESS=READ))-
_$ ((IDENTIFIER=R_GRANT,OPTIONS=DEFAULT,ACCESS=CONTROL),-
_$ (IDENTIFIER=J_MARTINEZ,OPTIONS=DEFAULT,ACCESS=READ))-
_$ [000000]SALESINFO.DIR
$ SET SECURITY/DEFAULT *.*;*

12–20 Security in a Network Environment

Security in a Network Environment
12.6 Sharing Files in a Network

12.6.3 Admitting Remote Users to Multiple Accounts
When a small number of outside users need access, for differing reasons, to files
requiring special protection, set up access to multiple proxy accounts, and apply
extensive ACLs.

For example, a large corporation with many branch offices might choose to
establish several proxy accounts for specific file-sharing purposes. Assume the
central office wants to grant two key users from its two nodes in the eastern
region read and write access to the project files for code name LEVIGRAY and
read-only access to the BETSEYHARLOW project files. At the same time,
there are three users from the western region who need read access to those
LEVIGRAY files and require read and write access to the BETSEYHARLOW
files. Only two users from the central office will have full access rights to the
LEVIGRAY files, and two other users from headquarters will have full access
rights to the BETSEYHARLOW files. For working purposes, the situation could
be represented in tabular form, as shown in Example 12–4.

Example 12–4 Protected File Sharing in a Network

Access Requirements to CENTRL::PROJ:[DESGN_PROJECTS]
Owned by [DESIGNERS,MGR]

Users & Nodes

Subdirectory LEVI Subdirectory BETSEY
Project Files Project Files
LEVIGRAY*.* BETSEYHARLOW*.*

FRISCO::ALBION R RW
FRISCO::ELTON R RW
LA::IRVING R RW

CENTRL::DIANTHA RWED NONE
CENTRL::BRITTANIA RWED NONE
CENTRL::ALBERT NONE RWED
CENTRL::DELIA NONE RWED

BOS::AYLMER RW R
WASH::LAVINA RW R

The following solution uses five proxy accounts in addition to the four local
accounts on node CENTRL, plus ACLs on the directory, subdirectories, and files:

1. The security administrator at headquarters uses AUTHORIZE to create new
proxy accounts on node CENTRL for the remote users Albion, Elton, Irving,
Aylmer, and Lavina. These accounts should be captive, disallow mail, and
be restricted to network access only. The accounts are even restricted to a
subset of DCL through CLI tables. The default directory should be [DESGN_
PROJECTS] for each user. The manager decides it makes sense to put them
into the DESIGNERS group to match their proposed uses of the files.

Presumably, accounts already exist for users Diantha, Brittania, Albert, and
Delia. They need not necessarily belong to the same group. They will be
informed which device and directory to use for their work.

2. The next step is to add the proxy records to the network proxy authorization
file with the following AUTHORIZE commands:

Security in a Network Environment 12–21

Security in a Network Environment
12.6 Sharing Files in a Network

UAF> ADD/PROXY FRISCO::ALBION ALBION/DEFAULT
UAF> ADD/PROXY FRISCO::ELTON ELTON/DEFAULT
UAF> ADD/PROXY LA::IRVING IRVING/DEFAULT
UAF> ADD/PROXY BOS::AYLMER AYLMER/DEFAULT
UAF> ADD/PROXY WASH::LAVINA LAVINA/DEFAULT

3. The security administrator at node CENTRL places an ACL on the top-level
directory for [DESGN_PROJECTS] with the following DCL command:

$ SET SECURITY/ACL=(DEFAULT_PROTECTION,S:RWED,O,G,W) -
_$ [000000]DESGN_PROJECTS.DIR

This ensures that no one outside of the system category of users can gain
any UIC-based access to the files in the directory or any of the subdirectories
unless they possess the BYPASS privilege. In fact, this restriction applies
to those five users in the group DESIGNERS as well. The plan is for
all files to possess ACLs that will admit the select group of users. It is
desirable to propagate this protection code to all the files in this directory
and its subdirectories. (The ACLs that will be placed on the files for further
protection will take precedence when one of these users actually seeks access
to a file.)

4. Two subdirectories are created in [DESGN_PROJECTS]:

• [DESGN_PROJECTS.LEVI]

• [DESGN_PROJECTS.BETSEY]

5. The security administrator uses the ACL editor to place the following
additional ACEs in the ACL for the top-level directory:

DESGN_PROJECTS.DIR

(IDENTIFIER=DIANTHA,OPTIONS=PROTECTED,ACCESS=EXECUTE)
(IDENTIFIER=BRITTANIA,OPTIONS=PROTECTED,ACCESS=EXECUTE)
(IDENTIFIER=ALBERT,OPTIONS=PROTECTED,ACCESS=EXECUTE)
(IDENTIFIER=DELIA,OPTIONS=PROTECTED,ACCESS=EXECUTE)
(IDENTIFIER=AYLMER,OPTIONS=PROTECTED,ACESS=EXECUTE)
(IDENTIFIER=LAVINA,OPTIONS=PROTECTED,ACCESS=EXECUTE)
(IDENTIFIER=ALBION,OPTIONS=PROTECTED,ACCESS=EXECUTE)
(IDENTIFIER=ELTON,OPTIONS=PROTECTED,ACCESS=EXECUTE)
(IDENTIFIER=IRVING,OPTIONS=PROTECTED,ACCESS=EXECUTE)

These protected ACEs ensure that only the select nine users can access the
top-level directory. Because no one receives write or delete access to the top
directory through the ACL, the directory and subdirectories are generally
protected from deletion and renaming of files. (Of course, the system category
of user obtains write and delete access through the UIC-based protection.)

6. Next, the security administrator creates ACLs on the subdirectories. The
ACEs that are required are shown for their respective subdirectories:

[DESGN_PROJECTS]LEVI.DIR

12–22 Security in a Network Environment

Security in a Network Environment
12.6 Sharing Files in a Network

(IDENTIFIER=DIANTHA,OPTIONS=PROTECTED,ACCESS=READ+WRITE+EXECUTE+CONTROL)
(IDENTIFIER=DIANTHA,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=BRITTANIA,OPTIONS=PROTECTED,ACCESS=READ+WRITE+EXECUTE+CONTROL)
(IDENTIFIER=BRITTANIA,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=AYLMER,OPTIONS=PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=AYLMER,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=LAVINA,OPTIONS=PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=LAVINA,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=ALBION,OPTIONS=PROTECTED,ACCESS=READ)
(IDENTIFIER=ALBION,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ)
(IDENTIFIER=ELTON,OPTIONS=PROTECTED,ACCESS=READ)
(IDENTIFIER=ELTON,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ)
(IDENTIFIER=IRVING,OPTIONS=PROTECTED,ACCESS=READ)
(IDENTIFIER=IRVING,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ)

[DESGN_PROJECTS]BETSEY.DIR

(IDENTIFIER=ALBERT,OPTIONS=PROTECTED,ACCESS=READ+WRITE+EXECUTE+CONTROL)
(IDENTIFIER=ALBERT,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=DELIA,OPTIONS=PROTECTED,ACCESS=READ+WRITE+EXECUTE+CONTROL)
(IDENTIFIER=DELIA,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=ALBION,OPTIONS=PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=ALBION,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=ELTON,OPTIONS=PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=ELTON,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=IRVING,OPTIONS=PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=IRVING,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ+WRITE)
(IDENTIFIER=AYLMER,OPTIONS=PROTECTED,ACCESS=READ)
(IDENTIFIER=AYLMER,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ)
(IDENTIFIER=LAVINA,OPTIONS=PROTECTED,ACCESS=READ)
(IDENTIFIER=LAVINA,OPTIONS=DEFAULT+PROTECTED,ACCESS=READ)

Note that both preceding ACLs include two ACEs for each identifier. The first
ACE controls the access to the subdirectory. It denies delete access for the
protection of the subdirectory and is not propagated to all the files created
in the subdirectory. The second ACE for each identifier will automatically
propagate to all files added to its respective subdirectories because of the
inclusion of the Default attribute. Furthermore, the Protected attribute
ensures that all the ACEs are protected from deletion except by specific
action.

At this point, all the groundwork has been completed. Over time, files are added
to the subdirectories. Thus, when the user Lavina in Washington enters the
following DCL command, the file LEVIGRAYMEM3.MEM is printed at node
WASH:

$ COPY CENTRL::LEVIGRAYMEM3.MEM LP:

However, if user Lavina tries to edit this file, the attempt fails because user
Lavina is denied write access through the ACL.

If there were many users involved in this scheme, it would soon become
worthwhile to grant additional identifiers to the users. For example, each
user that would be allowed read access to the files in the LEVI subdirectory
might be given the identifier LEVI_READER, and so forth. The ACLs could then
be shortened.

Security in a Network Environment 12–23

13
Using Protected Subsystems

For the most part, the OpenVMS operating system bases its security controls
on user identity. Protected objects, such as files and devices, are accessible
to individual users or groups of users. If an object’s ACL or protection code
allows a user the necessary access, then the user can use that object by using
any available software. (See Chapter 4 for a description of OpenVMS object
protection.)

In a protected subsystem, an application protected by normal access controls
serves as a gatekeeper to objects belonging to the subsystem. Users have no
access to the subsystem’s objects unless they execute the application serving as
gatekeeper. Once users run the application, their process rights list acquires
identifiers giving them access to objects owned by the subsystem. As soon as they
exit from the application, these identifiers and, therefore, the users’ access rights
to objects are taken away.

This chapter describes protected subsystems and explains how to build them.

13.1 Advantages of Protected Subsystems
Using protected subsystems offers several advantages:

• With protected subsystems, you have a mechanism to provide conditional
access to data that is not available with traditional OpenVMS access controls.
Traditionally, you give users privileges to bypass protection codes or access
control lists (ACLs). In giving these privileges, however, you grant users
a wide class of access. (Refer to Appendix A for information on the power
different privileges carry.) Protected subsystems avoid extensive privilege use
by individual users.

• Protected subsystems give you an alternative to installing images with
privilege. Writing a secure privileged image requires skill, and failures can
compromise system security.

• Protected subsystems give you an alternative to creating protected shareable
images (also called user-written system services).

• Protected subsystems make system management easier because unprivileged
users can manage them without much assistance from you. See Section 13.5
for details on system management requirements.

Using Protected Subsystems 13–1

Using Protected Subsystems
13.2 Applications for Protected Subsystems

13.2 Applications for Protected Subsystems
Protected subsystems have many applications, from databases to common system
management situations.

One use for a protected subsystem might be a group membership list that you
want to make available to all group members. The list contains the names,
addresses, personnel numbers, and interests of group members. When the
membership list is set up as a protected subsystem, all members of the group can
read selected information and update specific types of information.

A protected subsystem might also solve the problem of confidential information
being sent to printers in public areas. You could write an application to filter
data for sensitive information. Confidential files would be sent to printers in
restricted areas, while public files would be sent to any available printer. Any
user with execute access to the application could use the restricted printers, but
only through the protected subsystem.

13.3 How Protected Subsystems Work
A protected subsystem is an application that, when run, causes the process
running the application to be granted one or more identifiers. For as long as a
user runs the subsystem, the user’s process rights list carries these additional
identifiers. Figure 13–1 shows how a protected subsystem adds a second level of
access control to traditional controls.

Figure 13–1 How Protected Subsystems Differ from Normal Access Control

Traditional Access Control

Enhanced Access Control of Protected Subsystems

ZK−5229A−GE

Process
Rights

List

Protected
Object

Protection
Check

+

User

Protected
Subsystem

Image

Process
Rights List

with
Subsystem

IDs

Process
Rights

List

Protected
Object+

User

Protection
Check

Protection
Check

Users with execute access to the application gain access to the subsystem. Once
in the subsystem, users can work with the data files and other resources of the
subsystem.

A subsystem can have several identifiers because the resources consumed by the
subsystem (the files, printers, and so forth) can be protected differently.

13–2 Using Protected Subsystems

Using Protected Subsystems
13.3 How Protected Subsystems Work

Possession of subsystem identifiers is limited to the period users are executing
the application. Once the users exit from the application, the identifiers are
removed from their process rights lists. Subsystem identifiers are also removed
from the rights list whenever users enter a Ctrl/Y sequence or attempt to create a
subprocess with the DCL command SPAWN. (In this respect, use of the subsystem
identifiers is identical to the operation of images installed with privileges.)

The following identifiers are reserved for use in the security subsystem and
should not be granted to any user:

• SECSRV$CLIENT

• SECSRV$COMMUNICATION

• SECSRV$OBJECT

13.4 Design Considerations
Someone developing an application for a protected subsystem must link the
application images without the /DEBUG or /TRACEBACK qualifiers.

Although this kind of subsystem often precludes the need for privilege,
applications can be installed with privilege. For example, some applications
may need the PRMGBL privilege to create permanent global sections, or they
may need the AUDIT privilege to send security audit records to the system
security audit log file. Compaq does discourage the installation of a protected
subsystem application with privileges in the All category. This category includes
such privileges as BYPASS, CMKRNL, and SYSPRV—privileges that allow a
user to subvert OpenVMS access controls. See Table 8–2 for a list of OpenVMS
privileges and Appendix A for a description of the privileges.

Subsystem designers need to generate a list of identifiers that are necessary
for it to operate as intended. Then the designers approach you, as the security
administrator, to make the preparations described in Section 13.5.

13.5 System Management Requirements
Although an unprivileged user can build and manage a protected subsystem, you
need to be involved at two points in the process: at the beginning to create the
necessary identifiers for the subsystem and at the end to mount the volume with
the protected subsystem.

You need to perform the following tasks:

1. Create identifiers for the subsystem, each with the Subsystem attribute.
The Subsystem attribute empowers the identifier’s holder to manage the
subsystem.

2. Grant these subsystem identifiers with Subsystem attributes to the people
who will serve as managers of the subsystem. This enables them to assign
the subsystem identifier to the images that make up the subsystem.

3. Give the subsystem managers control access to application images. They need
control access so they can add Subsystem ACEs to the image ACLs.

4. Give the subsystem managers control access to existing resources that are to
be managed by the protected subsystem.

Using Protected Subsystems 13–3

Using Protected Subsystems
13.5 System Management Requirements

Although subsystem managers may need control access to key system
resources, the ACL on the objects limits their access rights to only those
resources. This may not be as dangerous as installing an image with
SYSPRV.

The following example shows how you can set up identifiers and the necessary
application access so that users can manage a membership list:
$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> ADD/IDENTIFIER MEMBERS_SUBSYSTEM- !
_UAF> /ATTRIBUTES=(SUBSYSTEM,RESOURCE)
UAF> GRANT/IDENTIFIER MEMBERS_SUBSYSTEM - "
_UAF> /ATTRIBUTES=(SUBSYSTEM,RESOURCE) LOUIS
UAF> GRANT/IDENTIFIER MEMBERS_SUBSYSTEM -
_UAF> /ATTRIBUTES=(SUBSYSTEM,RESOURCE) WU
$ SET SECURITY/ACL=(IDENTIFIER=MEMBERS_SUBSYSTEM,- #
_$ ACCESS=CONTROL) MEMBER_LIST.EXE

! Use AUTHORIZE to create a subsystem identifier called MEMBERS_
SUBSYSTEM. Notice that this identifier carries the Subsystem attribute.

" Make Louis and Wu holders of the identifier so they can manage the
subsystem.

Give Louis and Wu control access to the subsystem image MEMBER_
LIST.EXE.

Note that you create the subsystem identifier MEMBERS_SUBSYSTEM with
the Resource attribute. This allows disk space to be charged to the identifier
MEMBERS_SUBSYSTEM and not the individuals accessing the subsystem.
(When using the Resource attribute, be careful to set the appropriate ACLs on
directories [see Section 8.8.1.2.3].)

13.6 Building the Subsystem
Once managers of the subsystem have the appropriate identifiers and access
rights as described in Section 13.5, they can add the necessary ACEs to a
subsystem image. Two kinds of ACEs are necessary to construct a subsystem:
the application image receives a Subsystem ACE, and the objects managed by the
subsystem receive Identifier ACEs. Therefore, building a subsystem requires the
following steps:

1. Create a Subsystem ACE containing the subsystem identifier in the ACLs of
the application images. A Subsystem ACE has the following format:

(SUBSYSTEM,{IDENTIFIER=identifier[,ATTRIBUTES=attributes]})

2. Grant access to the objects managed by the subsystem. You need to add an
Identifier ACE to the ACL of the various objects belonging to the subsystem.
Each Identifier ACE contains one of the subsystem identifiers in the following
format:

(IDENTIFIER=identifier, ACCESS=access-type[+...])

In the following example, the subsystem manager uses the DCL command SET
SECURITY to associate the subsystem identifier with the images that make
up the subsystem. First, the subsystem manager adds a Subsystem ACE with
the identifier MEMBERS_SUBSYSTEM to the ACL of the application image
MEMBER_LIST.EXE:

13–4 Using Protected Subsystems

Using Protected Subsystems
13.6 Building the Subsystem

$ SET SECURITY/ACL=(SUBSYSTEM,IDENTIFIER=MEMBERS_SUBSYSTEM,-
_$ ATTRIBUTES=RESOURCE) MEMBER_LIST.EXE

Then the subsystem manager adds an Identifier ACE with the subsystem
identifier MEMBERS_SUBSYSTEM to the data files managed by the subsystem:

$ SET SECURITY/ACL=(IDENTIFIER=MEMBERS_SUBSYSTEM,-
_$ ACCESS=READ+WRITE) MEMBER_DATA*.DAT

The DCL command SHOW SECURITY displays the security attributes of the
files. For example:

$ SHOW SECURITY MEMBER_LIST.EXE

MEMBER_LIST.EXE object of class FILE

Owner: [STAFF]
Protection: (System: RWED, Owner: RWED, Group, World: RE)
Access Control List: (SUBSYSTEM,IDENTIFIER=MEMBERS_SUBSYSTEM,ATTRIBUTES=RESOURCE)

$ SHOW SECURITY MEMBER_DATA*.DAT

MEMBER_DATA_1.DAT object of class FILE

Owner: MEMBERS_SUBSYSTEM
Protection: (System: RWED, Owner: RWED, Group, World)
Access Control List: (IDENTIFIER=MEMBERS_SUBSYSTEM,ACCESS=READ+WRITE)

MEMBER_DATA_2.DAT object of class FILE

Owner: MEMBERS_SUBSYSTEM
Protection: (System: RWED, Owner: RWED, Group, World)
Access Control List: (IDENTIFIER=MEMBERS_SUBSYSTEM, ACCESS=READ+WRITE)

13.7 Enabling Protected Subsystems on a Trusted Volume
A person with the SECURITY privilege can enable subsystems on a volume
by using the /SUBSYSTEM qualifier on the MOUNT command. By default,
subsystems are enabled only on the system disk. For other disks, you need to
enable subsystems every time a volume is mounted.

In the following example, a security administrator uses the MOUNT command
with the /SUBSYSTEM qualifier to enable the processing of Subsystem ACEs on
device DUA0. Assume that this disk contains the subsystem with the identifier
MEMBERS_SUBSYSTEM.

$ MOUNT /SUBSYSTEM /SYSTEM DUA0: DOC WORK8

You can turn the processing of Subsystem ACEs on and off dynamically with the
DCL command SET VOLUME /SUBSYSTEM. This command is especially useful
for the system disk, which is not mounted using the MOUNT command.

Any person mounting a subsystem is responsible for knowing what is on the
volume being mounted. Without this knowledge, an operator or system manager
can inadvertently subvert system security. For example, it is easy for a user with
privileges on one cluster to put an application holding a subsystem identifier
on a volume and then take the volume to a naive operator on another cluster
and request that it be mounted. Because the application holds an appropriate
subsystem identifier, it feigns membership in a subsystem for which it is
unauthorized. Therefore, mount volumes of only those users whom you trust,
or thoroughly search a volume for Subsystem ACEs before you mount it with
subsystems enabled.

Using Protected Subsystems 13–5

Using Protected Subsystems
13.8 Giving Users Access

13.8 Giving Users Access
All users with execute access to the main application image of the subsystem
can use the data files and other objects under control of the subsystem if the
subsystem allows the access. However, managers of the subsystem can restrict
access to objects of the subsystem in the following ways:

• They can create special identifiers for resources belonging to the subsystem
that they do not want all members to access and add ACEs to these resources.

• They can use compound expressions in ACEs and thus grant access
conditionally. For example, the following ACE grants access to MEMBERS_
ADMIN when running MEMBERS_SUBSYSTEM but not to MEMBERS_
ADMIN alone nor to other users holding the MEMBERS_SUBSYSTEM
identifier:

(ID=MEMBERS_SUBSYSTEM+MEMBERS_ADMIN, ACCESS=READ+WRITE)

Remember that as long as users are executing the application image for the
subsystem, their process rights list contains the subsystem identifier as well
as their normal identifiers. However, as soon as users interrupt or exit from
the application, their process rights list loses the subsystem identifier, and they
lose access rights to the objects in the subsystem. Subsystem identifiers are not
propagated by default when subprocesses are spawned.

13.9 Example of a Protected Subsystem
R. D. Taylor Inc., a company specializing in building supplies, decides to set up
a protected subsystem for its purchasing and accounts payable departments.
Although the departments are in different parts of the company, they share a
common database for recording purchases from suppliers.

When the company’s inventory drops below the desired level, the purchasing
department is directed to order required supplies. Purchasing personnel find
suppliers (if necessary), assign purchase order numbers, and issue a purchase
orders.

When the goods arrive, the receiving and quality control departments check the
contents against what was ordered, ensure the goods meet quality standards, and
put the goods into inventory. Once the shipment is processed, the information
goes to the accounts payable department, which settles the invoices.

Administrators in the accounts payable department check the invoices against
purchase orders and run a payments program to calculate the monies due to
suppliers each week. Payments are recorded in a database, and checks are
printed on a printer loaded with company checks.

Using the subsystem lets the company meet two objectives:

• It gives purchasing personnel the right to reference or record purchase orders
in the company database, and it gives personnel in the accounts payable
department the right to verify suppliers’ invoices. Purchasing personnel with
these tasks hold the SUPPLIERS_ORDERS identifier. Accounts payable
personnel hold the ACCOUNTS_PAYABLE identifier.
These employees run ORDERS.EXE to update the supplier information. The
program stores data in ORDERS.DAT.

13–6 Using Protected Subsystems

Using Protected Subsystems
13.9 Example of a Protected Subsystem

• It gives trusted administrators in the accounts payable department the right
to update databases, calculate payments due, and print checks. (One printer,
loaded with company checks, is used for this purpose.) These administrators
hold the ACCOUNTS_PAYABLE identifier.

The administrators run PAYMENTS.EXE to perform these tasks. The
program records payments made in the data file PAYMENTS.DAT.

The company appoints one employee, McGrey, to design and manage the
subsystem. Figure 13–2 illustrates the directory structure of the Taylor
subsystem, and Example 13–1 shows the command procedure McGrey wrote
to implement it.

Figure 13–2 Directory Structure of the Taylor Company’s Subsystem

Master Directory

Top−Level Directory

Second−Level Directory

[000000]

SUPPLIERS_SUBSYSTEM.DIR

[SUPPLIERS_SUBSYSTEM]

[SUPPLIERS_SUBSYSTEM.EXE] [SUPPLIERS_SUBSYSTEM.LIB]

LIB.DIR
EXE.DIR

ORDERS.DAT
PAYMENTS.DAT

ORDERS.EXE
PAYMENTS.EXE

ZK−5970A−GE

13.9.1 Protecting the Top-Level Directory
McGrey implements a directory structure in which users can gain access to the
subsystem only by holding an appropriate identifier: purchasing personnel hold
the identifier SUPPLIERS_ORDERS, and the accounts payable administrators
hold the identifier ACCOUNTS_PAYABLE. As subsystem manager, McGrey holds
the identifier SUPPLIERS_SUBSYSTEM.

The top-level directory SUPPLIERS_SUBSYSTEM.DIR has the following
protection:
$ DIRECTORY/SECURITY SYS$SYSDEVICE:[000000]SUPPLIERS_SUBSYSTEM.DIR

Directory SYS$SYSDEVICE:[000000]

SUPPLIERS_SUBSYSTEM.DIR;1
SUPPLIERS_SUBSYSTEM (RWE,RWE,,) !

(CREATOR,ACCESS=NONE) "
(DEFAULT_PROTECTION,SYSTEM:RWED,OWNER:RWED,GROUP:,WORLD:) #

(IDENTIFIER=SUPPLIERS_SUBSYSTEM,ACCESS=READ+WRITE+CONTROL) $
(IDENTIFIER=SUPPLIERS_ORDERS,ACCESS=EXECUTE) %

(IDENTIFIER=ACCOUNTS_PAYABLE,ACCESS=EXECUTE) &

(IDENTIFIER=*,ACCESS=NONE) ’

Using Protected Subsystems 13–7

Using Protected Subsystems
13.9 Example of a Protected Subsystem

(IDENTIFIER=SUPPLIERS_SUBSYSTEM,OPTIONS=DEFAULT,ACCESS=READ+WRITE+CONTROL) (
(IDENTIFIER=SUPPLIERS_ORDERS,OPTIONS=DEFAULT,ACCESS=EXECUTE)
(IDENTIFIER=ACCOUNTS_PAYABLE,OPTIONS=DEFAULT,ACCESS=EXECUTE)
(IDENTIFIER=*,OPTIONS=DEFAULT,ACCESS=NONE)

Total of 1 file.

! The directory’s protection code gives read, write, and execute access to users
in the system and owner categories but no access to group or world users.
Therefore, group and world users have to gain access through the ACL.

" A Creator ACE ensures that users creating files in this directory have no
special access to them. (See Section 8.8.1.2 for information on Creator ACEs.)

A Default Protection ACE denies group and world users access to files created
in directory.

$ McGrey holds the subsystem identifier SUPPLIERS_SUBSYSTEM. This ACE
gives McGrey read, write, and control access so McGrey can manage the
subsystem directories and images.

% Holders of the SUPPIERS_ORDERS identifier have execute access so they
can access files in subdirectories.

& Holders of the ACCOUNTS_PAYABLE identifier have execute access so they
can access files in subdirectories.

’ Users holding any other identifiers have no access.

(McGrey added the Default attribute to all Identifier ACEs and includes them
here so all Identifier ACEs are propagated to subdirectory ACLs.

13.9.2 Protecting Subsystem Directories
The directory EXE.DIR has the same protection as the top-level directory because
subsystem users need to access the subsystem images: ORDERS.EXE and
PAYMENTS.EXE. The other directory, LIB.DIR, is more restricted because only
the subsystem images and McGrey need access.

$ DIRECTORY/SECURITY SYS$SYSDEVICE:[SUPPLIERS_SUBSYSTEM...]

Directory SYS$SYSDEVICE:[SUPPLIERS_SUBSYSTEM]

EXE.DIR;1 SUPPLIERS_SUBSYSTEM (RWE,RWE,,) !
(CREATOR,ACCESS=NONE)
(DEFAULT_PROTECTION,SYSTEM:RWED,OWNER:RWED,GROUP:,WORLD:)
(IDENTIFIER=SUPPLIERS_SUBSYSTEM,ACCESS=READ+WRITE+CONTROL)
(IDENTIFIER=SUPPLIERS_ORDERS,ACCESS=EXECUTE)
(IDENTIFIER=ACCOUNTS_PAYABLE,ACCESS=EXECUTE)
(IDENTIFIER=*,ACCESS=NONE)
(IDENTIFIER=SUPPLIERS_SUBSYSTEM,OPTIONS=DEFAULT,ACCESS=READ+WRITE+CONTROL)
(IDENTIFIER=SUPPLIERS_ORDERS,OPTIONS=DEFAULT,ACCESS=EXECUTE)
(IDENTIFIER=ACCOUNTS_PAYABLE,OPTIONS=DEFAULT,ACCESS=EXECUTE)
(IDENTIFIER=*,OPTIONS=DEFAULT,ACCESS=NONE)

13–8 Using Protected Subsystems

Using Protected Subsystems
13.9 Example of a Protected Subsystem

LIB.DIR;1 SUPPLIERS_SUBSYSTEM (RWE,RWE,,) "
(CREATOR,ACCESS=NONE)
(DEFAULT_PROTECTION,SYSTEM:RWED,OWNER:RWED,GROUP:,WORLD:)
(IDENTIFIER=SUPPLIERS_SUBSYSTEM,ACCESS=READ+WRITE+CONTROL)
(IDENTIFIER=*,ACCESS=NONE)
(IDENTIFIER=SUPPLIERS_SUBSYSTEM,OPTIONS=DEFAULT,ACCESS=READ+WRITE+CONTROL)
(IDENTIFIER=*,OPTIONS=DEFAULT,ACCESS=NONE)

Total of 2 files.
.
.
.

! [SUPPLIERS_SUBSYSTEM.EXE] has the same protection code and ACL as
the parent directory shown in Section 13.9.1. Subsystem users need to run
programs stored in this directory.

" [SUPPLIERS_SUBSYSTEM.LIB] has the same protection code but a more
restrictive ACL because only the subsystem manager and the subsystem
images need access.

13.9.3 Protecting the Images and Data Files
As the following listing shows, the necessary company personnel can access the
subsystem’s images, ORDERS.EXE and PAYMENTS.EXE, but only the images
can update the data files:

Directory SYS$SYSDEVICE:[SUPPLIERS_SUBSYSTEM.EXE]

ORDERS.EXE;1 SUPPLIERS_SUBSYSTEM (RWED,RWED,,) !
(SUBSYSTEM,IDENTIFIER=SUPPLIERS_SUBSYSTEM,ATTRIBUTES=RESOURCE)
(IDENTIFIER=SUPPLIERS_SUBSYSTEM,ACCESS=READ+WRITE+CONTROL)
(IDENTIFIER=SUPPLIERS_ORDERS,ACCESS=EXECUTE)
(IDENTIFIER=ACCOUNTS_PAYABLE,ACCESS=EXECUTE)
(IDENTIFIER=*,ACCESS=NONE)

PAYMENTS.EXE;1 SUPPLIERS_SUBSYSTEM (RWED,RWED,,) "
(SUBSYSTEM,IDENTIFIER=SUPPLIERS_SUBSYSTEM,ATTRIBUTES=RESOURCE)
(IDENTIFIER=SUPPLIERS_SUBSYSTEM,ACCESS=READ+WRITE+CONTROL)
(IDENTIFIER=ACCOUNTS_PAYABLE,ACCESS=EXECUTE)
(IDENTIFIER=*,ACCESS=NONE)

Total of 2 files.

Directory SYS$SYSDEVICE:[SUPPLIERS_SUBSYSTEM.LIB] #

ORDERS.DAT;1 SUPPLIERS_SUBSYSTEM (RWED,RWED,,)
(IDENTIFIER=SUPPLIERS_SUBSYSTEM,ACCESS=READ+WRITE)
(IDENTIFIER=*,ACCESS=NONE)

PAYMENTS.DAT;1 SUPPLIERS_SUBSYSTEM (RWED,RWED,,)
(IDENTIFIER=SUPPLIERS_SUBSYSTEM,ACCESS=READ+WRITE)
(IDENTIFIER=*,ACCESS=NONE)

Total of 2 files.

Grand total of 3 directories, 6 files.

! All subsystem users, those holding the SUPPLIERS_ORDERS or
ACCOUNTS_PAYABLE identifier, can run ORDERS.EXE.

" Only subsystem images and holders of the ACCOUNTS_PAYABLE identifier
can run PAYMENTS.EXE.

The data files for the subsystem reside in [SUPPLIERS_SUBSYSTEM.LIB].
Only the subsystem images and McGrey can access them.

Using Protected Subsystems 13–9

Using Protected Subsystems
13.9 Example of a Protected Subsystem

13.9.4 Protecting the Printer
The print queue for checks needs equal protection. Access is restricted to trusted
administrators because they are the only ones who hold both the subsystem and
the ACCOUNTS_PAYABLE identifiers. The following display shows that the
queue is protected in such a way that only the trusted administrators can queue
jobs to the printer:

$ SHOW SECURITY/CLASS=QUEUE TTA1

TTA1 object of class QUEUE
Owner: [SYSTEM]
Protection: (System: M, Owner: D, Group, World)
Access Control List:

(IDENTIFIER=SUPPLIERS_SUBSYSTEM+ACCOUNTS_PAYABLE,-
ACCESS=READ+SUBMIT+MANAGE+DELETE)
(IDENTIFIER=*,ACCESS=NONE)

13.9.5 Command Procedure for Building the Subsystem
Example 13–1 shows the command procedure used to create the R. D. Taylor
subsystem.

Example 13–1 Subsystem Command Procedure

$ SET NOON
$ OLD_PRIV = F$SETPRV("NOALL,SYSPRV,CMKRNL,OPER")
$ OLD_DEFAULT = F$ENVIRONMENT("DEFAULT")
$
$ ON CONTROL_Y THEN GOTO LEAVE
$
$ IF P1 .EQS. "REMOVE" THEN GOTO CLEANUP
$ IF P1 .EQS. "VERIFY" THEN SET VERIFY
$!
$! Create the subsystem identifier and the identifiers for personnel
$! performing two different tasks.
$!
$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
ADD/IDENTIFIER SUPPLIERS_SUBSYSTEM/ATTRIBUTES=(RESOURCE,SUBSYSTEM)
ADD/IDENTIFIER SUPPLIERS_ORDERS
ADD/IDENTIFIER ACCOUNTS_PAYABLE
!
! Grant the subsystem identifier to the subsystem manager: McGrey.
!
GRANT/IDENTIFIER SUPPLIERS_SUBSYSTEM MCGREY/ATTRIBUTE=(RESOURCE,SUBSYSTEM)
$!
$! Set up the print queue.

$!
$ INITIALIZE/QUEUE/START TTA1
$ SET SECURITY/ACL=(-

(ID=SUPPLIERS_SUBSYSTEM+ACCOUNTS_PAYABLE,ACCESS=READ+SUBMIT+MANAGE+DELETE), -
(ID=*,ACCESS=NONE))/PROTECTION=(G,W)/CLASS=QUEUE TTA1:

(continued on next page)

13–10 Using Protected Subsystems

Using Protected Subsystems
13.9 Example of a Protected Subsystem

Example 13–1 (Cont.) Subsystem Command Procedure

$!
$! Create the directory root to hold the subsystem.
$!
$!
$! Assume that we logged in as McGrey.
$!
$ SET RIGHTS_LIST/ENABLE SUPPLIERS_SUBSYSTEM/ATTRIBUTE=(RESOURCE,SUBSYSTEM)
$ SET DEFAULT SYS$SYSDEVICE:[SUPPLIERS_SUBSYSTEM]
$!
$! Create the directories for the images and the data files.
$!
$ CREATE/DIR [SUPPLIERS_SUBSYSTEM.EXE]/PROTECTION=(G,W)
$ CREATE/DIR [SUPPLIERS_SUBSYSTEM.LIB]/PROTECTION=(G,W)
$ SET SECURITY/ACL=((ID=SUPPLIERS_ORDERS,ACCESS=EXECUTE), -

(ID=ACCOUNTS_PAYABLE,ACCESS=EXECUTE), -
(ID=SUPPLIERS_ORDERS,OPTIONS=DEFAULT,ACCESS=EXECUTE), -
(ID=ACCOUNTS_PAYABLE,OPTIONS=DEFAULT,ACCESS=EXECUTE))/DELETE -

[SUPPLIERS_SUBSYSTEM]LIB.DIR
$!
$! Emulate the creation of the subsystem images.
$!
$ SET DEFAULT [.EXE]
$ CREATE ORDERS.MAR

.ENTRY START,0
$setpri_s pri=#0

10$: BRB 10$
ret
.END START

$ MACRO ORDERS
$ LINK ORDERS
$ SET SECURITY/PROTECTION=(W:RWED) ORDERS.MAR;*,.OBJ;*
$ DELETE ORDERS.MAR;*,.OBJ;*
$ COPY ORDERS.EXE PAYMENTS.EXE
$!
$! Apply the appropriate protection to the images.
$!
$ SET SECURITY/ACL=(ID=SUPPLIERS_ORDERS,ACCESS=EXECUTE)/DELETE PAYMENTS.EXE
$ SET SECURITY/ACL=(SUBSYSTEM,ID=SUPPLIERS_SUBSYSTEM,ATTRIBUTES=RESOURCE) ORDERS.EXE
$ SET SECURITY/ACL=(SUBSYSTEM,ID=SUPPLIERS_SUBSYSTEM,ATTRIBUTES=RESOURCE) PAYMENTS.EXE
$!
$! Create and protect the data files used by the applications.
$!
$ SET DEFAULT [-.LIB]
$ CREATE ORDERS.DAT
$ CREATE PAYMENTS.DAT
$ SET SECURITY/ACL=((ID=SUPPLIERS_SUBSYSTEM,ACCESS=READ+WRITE), -

(ID=*,ACCESS=NONE)) ORDERS.DAT
$ SET SECURITY/LIKE=(NAME=ORDERS.DAT) PAYMENTS.DAT
$!
$! Show the directory structure and the queue protection.
$!
$ SET DEFAULT ’OLD_DEFAULT’
$ DEFINE SYS$OUTPUT SUBSYS.LIS
$ DIRECTORY/SECURITY SYS$SYSDEVICE:[000000]SUPPLIERS_SUBSYSTEM.DIR
$ DIRECTORY/SECURITY SYS$SYSDEVICE:[SUPPLIERS_SUBSYSTEM...]

$ SHOW SECURITY/CLASS=QUEUE TTA1

(continued on next page)

Using Protected Subsystems 13–11

Using Protected Subsystems
13.9 Example of a Protected Subsystem

Example 13–1 (Cont.) Subsystem Command Procedure

$ DEASSIGN SYS$OUTPUT
$
$ LEAVE:
$ IF P1 .EQS. "VERIFY" THEN SET NOVERIFY
$ SET DEFAULT ’OLD_DEFAULT’
$ SET PROC/PRIV=(’OLD_PRIV’)
$ EXIT
$
$ CLEANUP:
$ SET PROC/PRIV=BYPASS
$ SET DEFAULT SYS$SYSDEVICE:[000000]
$ DELETE [SUPPLIERS_SUBSYSTEM...]*.*.*
$ DELETE [SUPPLIERS_SUBSYSTEM]EXE.DIR;
$ DELETE [SUPPLIERS_SUBSYSTEM]LIB.DIR;
$ DELETE SUPPLIERS_SUBSYSTEM.DIR;
$ STOP/QUE/NEXT TTA1
$ DELETE/QUEUE TTA1
$ GOTO LEAVE

13–12 Using Protected Subsystems

A
Assigning Privileges

Privileges restrict the use of certain system functions to processes created
on behalf of authorized users. These restrictions protect the integrity of the
operating system’s code, data, and resources and thus, the integrity of user
service. Grant privileges to individual users only after carefully considering the
following two factors:

• Whether the user has the skill and experience to use the privilege without
disrupting the system

• Whether the user has a legitimate need for the privilege

Privileges fall into the following seven categories according to the damage that
the user possessing them could cause the system:

• None: No privileges

• Normal: Minimum privileges to use the system effectively

• Group: Potential to interfere with members of the same group

• Devour: Potential to consume noncritical systemwide resources

• System: Potential to interfere with normal system operation

• Objects: Potential to compromise the security of protected objects (files,
devices, logical name tables, global sections, and so on)

• All: Potential to control the system

A user’s privileges are recorded in the user’s UAF record in a 64-bit privilege
mask. When a user logs in to the system, the user’s privileges are stored in
the header of the user’s process. In this way, the user’s privileges are passed
on to the process created for the user. Users can use the DCL command SET
PROCESS/PRIVILEGES to enable and disable privileges for which they are
authorized and to further control the privileges available to the images they run.
Moreover, any user with the SETPRV privilege can enable any privilege.

Table 8–2 lists the privileges by category and gives brief, general definitions
of them. The following sections describe all privileges available on OpenVMS
systems in detail; each section title identifies the privilege category (Normal,
Devour, and so on). For each privilege, the appendix describes the capabilities
granted by the privilege and the users who should receive them.

A.1 ACNT Privilege (Devour)
The ACNT privilege lets a process use the RUN (Process) command and
the Create Process ($CREPRC) system service to create processes in which
accounting is disabled. A process in which accounting is disabled is one whose
resource usage is not logged in the current accounting file.

Assigning Privileges A–1

Assigning Privileges
A.2 ALLSPOOL Privilege (Devour)

A.2 ALLSPOOL Privilege (Devour)
The ALLSPOOL privilege lets the user’s process allocate a spooled device by
executing the Allocate Device ($ALLOC) system service or by using the DCL
command ALLOCATE.

The $ALLOC system service lets a process allocate or reserve a device for its
exclusive use. A shareable mounted device cannot be allocated.

Grant this privilege only to users who need to perform logical or physical I/O
operations to a spooled device. Ordinarily, the privilege of allocating a spooled
device is granted only to symbionts.

A.3 ALTPRI Privilege (System)
The ALTPRI privilege allows the user’s process to:

• Increase its own base priority

• Set the base priority of a target process

• Change the priority of its batch or print jobs

The base priority is increased by executing the Set Priority ($SETPRI) system
service or the DCL command SET PROCESS/PRIORITY. As a rule, this system
service lets a process set its own base priority or the base priority of another
process. However, one process can set the priority of a second process only if one
of the following conditions applies:

• The process calling the $SETPRI system service has the same UIC as the
target process.

• The calling process has process control privilege (GROUP or WORLD) over
the target process.

With ALTPRI, a process can create a detached process with a priority higher than
its own. It creates such a process by using an optional argument to the Create
Process ($CREPRC) system service or to the DCL command RUN/PRIORITY.

ALTPRI also lets you adjust the scheduling priority of a job ($SNDJBC) to a value
even greater than that established with the system parameter MAXQUEPRI.

Do not grant this privilege widely; if unqualified users have the unrestricted
ability to set base priorities, fair and orderly scheduling of processes for execution
can easily be disrupted.

A.4 AUDIT Privilege (System)
The AUDIT privilege allows software to append audit records to the system
security audit log file using one of four system services: $AUDIT_EVENT,
$CHECK_PRIVILEGE, $CHKPRO, or $CHECK_ACCESS. In addition, the
$AUDIT_EVENT system service allows all components of an audit message to be
specified. As a result, this privilege permits the logging of events that appear to
have come from the operating system or a user process.

Grant this privilege only to trusted images that need to append audit messages
to the system audit log file. Users possessing this privilege can provoke a system
failure by attempting to log invalid events with the NSA$M_INTERNAL flag
set.

A–2 Assigning Privileges

Assigning Privileges
A.5 BUGCHK Privilege (Devour)

A.5 BUGCHK Privilege (Devour)
The BUGCHK privilege allows the process either to make bugcheck error log
entries from user, supervisor, or compatibility mode (EXE$BUG_CHECK) or to
send messages to the system error logger ($SNDERR). Restrict this privilege to
Compaq-supplied system software that uses the Bugcheck facility.

A.6 BYPASS Privilege (All)
The BYPASS privilege allows the user’s process full access to all protected objects,
totally bypassing UIC-based protection, access control list (ACL) protection, and
mandatory access controls. With the BYPASS privilege, a process has unlimited
access to the system. Among the operations that can be performed are

• Modification of all user authorization records (SYSUAF.DAT)

• Modification of all rights identifier and holder records (RIGHTSLIST.DAT)

• Modification of all network proxy records (NETPROXY.DAT or
NET$PROXY.DAT [VAX only])

• Modification of all DECnet object passwords and accounts (NETOBJECT.DAT)

• Unlimited access to all files on all volumes

Grant this privilege with extreme caution because it overrides all object
protection. It should be reserved for use by well-tested, reliable programs
and command procedures. The SYSPRV privilege is adequate for interactive
use because it ultimately grants access to all objects while still providing access
checks. The READALL privilege is adequate for backup operations.

The BYPASS privilege lets a process perform the following tasks:

Task Interface

Perform file system operations:

Modify file ownership SET SECURITY/OWNER, $QIO
request to F11BXQP

Access a file that is marked for deletion $QIO request to F11A ACP or
F11BXQP

Access a file that is deaccess locked $QIO request to F11A ACP or
F11BXQP

Override creation of an owner ACE on a newly
created file

$QIO request to F11BXQP

Clear the directory bit in a directory’s file header $QIO request to F11BXQP

Operate on an extension header $QIO request to F11BXQP

Acquire or release a volume lock $QIO request to F11BXQP

Force mount verification on a volume $QIO request to F11BXQP

Create a file access window with the no access
lock bit set

$QIO request to F11BXQP

Specify null lock mode for volume lock $QIO request to F11BXQP

Access a locked file $QIO request to F11BXQP

Enable or disable disk quotas on a volume $QIO request to F11BXQP

Assigning Privileges A–3

Assigning Privileges
A.6 BYPASS Privilege (All)

Operate on network databases:

Display permanent network database records NCP

Display permanent DECnet object password NCP

Display volatile DECnet object password NCP

Adjust discretionary or mandatory access
controls:

Read a user authorization record $GETUAI

Modify a user authorization record $SETUAI

Modify mailbox protection $QIO request request to the mailbox
driver (MBDRIVER)

Modify shared memory mailbox protection $QIO request request to the mailbox
driver (MBXDRIVER)

Bypass discretionary or mandatory object
protection

$CHKPRO

Miscellaneous:

Initialize a magnetic tape $INIT_VOL

Unload an InfoServer system $QIO request to the InfoServer
system (DADDRIVER)

A.7 CMEXEC Privilege (All)
The CMEXEC privilege allows the user’s process to execute the Change Mode to
Executive ($CMEXEC) system service.

This system service lets a process change its access mode to executive mode,
execute a specified routine, and then return to the access mode that was in effect
before the system service was called. While in executive mode, the process is
allowed to execute the Change Mode to Kernel ($CMKRNL) system service.

Grant this privilege only to users who need to gain access to protected and
sensitive data structures and internal functions of the operating system. If
unqualified users have unrestricted access to sensitive data structures and
functions, the operating system and service to other users can be easily disrupted.
Such disruptions can include failure of the system, destruction of all system and
user data, and exposure of confidential information.

A.8 CMKRNL Privilege (All)
The CMKRNL privilege allows the user’s process to execute the Change Mode to
Kernel ($CMKRNL) system service.

This system service lets a process change its access mode to kernel mode, execute
a specified routine, and then return to the access mode that was in effect before
the system service was called. While in kernel mode, a process can enable any
system privilege.

A process holding both CMKRNL and SYSNAM can set the system time.

Grant this privilege only to users who need to execute privileged instructions or
who need to gain access to the most protected and sensitive data structures and
functions of the operating system. If unqualified users have unrestricted use of
privileged instructions and unrestricted access to sensitive data structures and
functions, the operating system and service to other users can be easily disrupted.

A–4 Assigning Privileges

Assigning Privileges
A.8 CMKRNL Privilege (All)

Such disruptions can include failure of the system, destruction of all system and
user data, and exposure of confidential information.

The CMKRNL privilege lets a process perform the following tasks:

Task Interface

Modify a multiprocessor operation START/CPU, STOP/CPU

Modify systemwide RMS defaults SET RMS/SYSTEM

Suspend a process in kernel mode SET PROCESS/SUSPEND=KERNEL

Modify another process’ rights list or its
nondynamic identifier attributes

SET RIGHTS_LIST

Grant an identifier with modified attributes SET RIGHTS/ATTRIBUTE

Modify the system rights list SET RIGHTS_LIST/SYSTEM

Change a process UIC SET UIC

Modify the number of interlocked queue retries $QIO request to an Ethernet 802
driver (DEBNA/NI)

Connect to a device interrupt vector $QIO request to an interrupt vector
(CONINTERR)

Start or modify a line in Genbyte mode $QIO request to a synchronous
communications line (XGDRIVER)

Set the spin-wait time on the port command
register

$QIO request to an Ethernet 802
driver (DEBNA)

Modify a known image list INSTALL

Process the following item codes:

SJC$_ACCOUNT_NAME item
SJC$_UIC
SJC$_USERNAME

Send to Job Controller system service
($SNDJBC)

Create a detached process with unrestricted
quotas

RUN/DETACHED, $CREPRC

Examine the internals of the running system ANALYZE/SYSTEM

A.9 DIAGNOSE Privilege (Objects)
The DIAGNOSE privilege lets a process run online diagnostic programs and
intercept and copy all messages written to the error log file.

The DIAGNOSE privilege also lets a process perform the following tasks:

Task Interface

Issue a $QIO request with associated diagnostic
buffer

$QIO

Modify the number of interlocked queue retries $QIO request to an Ethernet 802
driver (DEBNA/NI)

Set the spin-wait time on the port command
register

$QIO request to an Ethernet 802
driver (DEBNA)

Access the Diagnostic and Utilities Protocol
(DUP) class driver

$QIO request to the DUP class driver
used by SET HOST/HSC (FYDRIVER)

Assigning Privileges A–5

Assigning Privileges
A.9 DIAGNOSE Privilege (Objects)

Task Interface

Execute a special passthrough function in the
SCSI generic class driver

$QIO request to the SCSI driver
(GKDRIVER)

Process a diagnostic buffer $QIO request to a TU58 magnetic
tape (TUDRIVER)

A.10 DOWNGRADE Privilege (All)
The DOWNGRADE privilege permits a process to manipulate mandatory access
controls. The privilege lets a process write to an object of lower secrecy, in
violation of the Bell and LaPadula confinement (*) property.1 This privilege is
reserved for enhanced security products like the Security Enhancement Service
software (SEVMS).

A.11 EXQUOTA Privilege (Devour)
The EXQUOTA privilege allows the space taken by the user’s files on given disk
volumes to exceed any usage quotas set for the user (as determined by UIC) on
those volumes.

A.12 GROUP Privilege (Group)
The GROUP privilege allows the user’s process to affect other processes in its
own group by executing the following process-control system services:

Suspend Process ($SUSPND)
Resume Process ($RESUME)
Delete Process ($DELPRC)
Set Priority ($SETPRI)
Wake ($WAKE)
Schedule Wakeup ($SCHDWK)
Cancel Wakeup ($CANWAK)
Force Exit ($FORCEX)

With GROUP privilege, a user’s process can control another process in the same
group. The user’s process is allowed to examine other processes in its own group
by executing the Get Job/Process Information ($GETJPI) system service. A
process with GROUP privilege can issue the SET PROCESS command for other
processes in its group.

GROUP privilege is not needed for a process to exercise control over, or to
examine, subprocesses that it created or other detached processes of its UIC. You
should, however, grant this privilege to users who need to exercise control over
the processes and operations of other members of their UIC group.

A.13 GRPNAM Privilege (Devour)
The GRPNAM privilege lets the user’s process bypass discretionary access
controls and insert names into (and delete names from) the logical name table of
the group to which the process belongs by the use of the Create Logical Name
($CRELNM) and Delete Logical Name ($DELLNM) system services.

1 Name of the restriction on write-downs. Multilevel security requires the complete
prohibition of write-downs by untrusted software.

A–6 Assigning Privileges

Assigning Privileges
A.13 GRPNAM Privilege (Devour)

In addition, the privileged process can issue the DCL commands ASSIGN and
DEFINE to add names to the group logical name table and the DCL command
DEASSIGN to delete names from the table. The privilege allows the use of the
/GROUP qualifier with the DCL commands MOUNT and DISMOUNT (as well as
the system services $MOUNT and $DISMOUNT) when sharing volumes among
group members.

Do not grant this privilege to all users of the system because it allows the user’s
process to create an unlimited number of group logical names. When unqualified
users have the unrestricted ability to create group logical names, excessive use of
system dynamic memory can degrade system performance. In addition, a process
with the GRPNAM privilege can interfere with the activities of other processes in
the same group by creating definitions of commonly used logical names such as
SYS$SYSTEM.

A.14 GRPPRV Privilege (Group)
When the process’s group matches the group of the object owner, the GRPPRV
privilege gives a process the access rights provided by the object’s system
protection field. GRPPRV also lets a process change the protection or the
ownership of any object whose owner group matches the process’s group by using
the DCL commands SET SECURITY.

Grant this privilege only to users who function as group managers. If this
privilege is given to unqualified users who have no need for it, they can modify
group UAF records to values equal to those of the group manager. They can
increase resource allocations and grant privileges for which they are authorized.

The GRPPRV privilege lets a process perform the following tasks:

Task Interface

Modify object ownership SET SECURITY/OWNER, $QIO
request to F11BXQP

Read or modify a user authorization record $GETUAI, $SETUAI

File system operations: $QIO request to F11BXQP

• Override the creation of an owner ACE on a
newly created file

• Clear the directory bit in a directory’s file
header

• Acquire or release a volume lock

• Force mount verification on a volume

• Create a file access window with the no
access lock bit set

• Specify a null lock mode for a volume lock

• Access a locked file

• Enable or disable disk quotas on a volume

Assigning Privileges A–7

Assigning Privileges
A.15 IMPERSONATE Privilege (All) (Formerly DETACH)

A.15 IMPERSONATE Privilege (All) (Formerly DETACH)
Processes can create detached processes that have their own UIC without the
IMPERSONATE privilege, provided the processes do not exceed their MAXJOBS
and MAXDETACH quotas. However, the IMPERSONATE privilege becomes
valuable when a process wants to specify a different UIC for the detached
process. There is no restriction on the UIC that can be specified for a detached
process if you have the IMPERSONATE privilege. Thus, there are no restrictions
on the files, directories, and other objects to which a detached process can gain
access. The IMPERSONATE privilege also lets a process create a detached
process with unrestricted quotas. A process can create detached processes by
executing the Create Process ($CREPRC) system service.

In addition, IMPERSONATE grants the ability to create a trusted server process
using the DCL command RUN/DETACH. Trusted processes are exempt from the
normal system security auditing policy.

Detached processes remain in existence even after the user who created them has
logged out of the system.

Note

The IMPERSONATE privilege was formerly called the DETACH privilege.
For backwards compatability, if you specify DETACH in a command line,
the command continues to work properly.

A.16 IMPORT Privilege (Objects)
The IMPORT privilege lets a process manipulate mandatory access controls. The
privilege lets a process mount unlabeled tape volumes. This privilege is reserved
for enhanced security products like SEVMS.

A.17 LOG_IO Privilege (All)
The LOG_IO privilege lets the user’s process execute the Queue I/O Request
($QIO) system service to perform logical-level I/O operations. LOG_IO privilege
is also required for certain device control functions, such as setting permanent
terminal characteristics. A process with the typical privileges of NETMBX and
TMPMBX that also holds LOG_IO and SYSNAM can reconfigure the Ethernet
using the Phase IV network configuration procedure, NICONFIG.COM.

Usually, process I/O requests are handled indirectly by use of an I/O package
such as OpenVMS Record Management Services (RMS). However, to increase
their control over I/O operations and to improve the efficiency of I/O operations,
skilled users sometimes prefer to handle the interface between their process and
a system I/O driver program directly. They can do this by executing $QIO; in
many instances, the operation called for is a logical-level I/O operation. Note
that logical level functions are permitted without LOG_IO privilege on a device
mounted with the /FOREIGN qualifier and on non-file-structured devices.

Grant this privilege only to users who need it because it allows a process to
access data anywhere on the selected volume without the benefit of any file
structuring. If this privilege is given to unqualified users who have no need for it,
the operating system and service to other processes can be easily disrupted. Such
disruptions can include the destruction of information on the system device, the
destruction of user data, and the exposure of confidential information.

A–8 Assigning Privileges

Assigning Privileges
A.17 LOG_IO Privilege (All)

The LOG_IO privilege also lets a process perform the following tasks:

Task Interface

Issue physical I/O calls to a private, non-file-
structured device

$QIO

Modify the following terminal attributes:
HANGUP
SET_SPEED
SECURE_SERVER

SET TERMINAL (or TTDRIVER)
/[NO]HANGUP
/[NO]SET_SPEED
/[NO]SECURE_SERVER

A.18 MOUNT Privilege (Normal)
The MOUNT privilege lets the user’s process execute the mount volume QIO
function. The use of this function should be restricted to system software supplied
by Compaq.

A.19 NETMBX Privilege (Normal)
The NETMBX privilege lets a process perform functions related to a DECnet
computer network. For example, it allows a process to switch a terminal line to
an asynchronous DECnet protocol or assign a channel to a network device. Grant
this privilege to general users who need to access the network.

A.20 OPER Privilege (System)
The OPER privilege allows a process to use the Operator Communication
Manager (OPCOM) process to reply to user’s requests, to broadcast messages
to all terminals logged in, to designate terminals as operators’ terminals and
specify the types of messages to be displayed on these operators’ terminals, and
to initialize and control the log file of operators’ messages. In addition, this
privilege lets the user spool devices, create and control all queues, and modify the
protection and ownership of all non-file-structured devices.

Grant this privilege only to the operators of the system. These are the users who
respond to the requests of ordinary users, who tend to the needs of the system’s
peripheral devices (mounting reels of tape and changing printer forms), and who
attend to all the other day-to-day chores of system operation. (A nonprivileged
user can log in on the console terminal to respond to operator requests, for
example, to mount a tape.)

The OPER privilege lets a process perform the following tasks:

Task Interface

Modify device protection SET PROTECTION/DEVICE

Modify device ownership SET PROTECTION/DEVICE/OWNER

Access the System Management utility SYSMAN

Perform operator tasks:

Issue a broadcast reply REPLY, $SNDOPR

Cancel a system operator request REPLY/ABORT, $SNDOPR

Initialize the system operator log file $SNDOPR

Assigning Privileges A–9

Assigning Privileges
A.20 OPER Privilege (System)

Task Interface

Reply to a pending system operator request REPLY/TO, REPLY/PENDING, REPLY/INITIALIZE_
TAPE, $SNDOPR

Issue a system operator request REQUEST, $SNDOPR

Enable system operator classes REPLY/ENABLE, $SNDOPR, $SNDMSG

Disable system operator classes REPLY/DISABLE, $SNDOPR

Send a broadcast message $BRKTHRU, $BRDCST

Write an event to the operator log $SNDOPR

Initialize a system operator log REPLY/LOG, $SNDOPR

Close the current operator log REPLY/NOLOG, $SNDOPR

Send a message to an operator REPLY, $SNDOPR

Enable or disable autostart $SNDJBC (SJC$_DISABLE_AUTO_START, SJC$_
ENABLE_AUTO_START)

Stop all queues $SNDJBC (SJC$_STOP_ALL_QUEUES_ON_NODE)

Modify the characteristics of devices:

Modify device availability SET DEVICE/[NO]AVAILABLE

Modify device dual-porting SET DEVICE/[NO]DUAL_PORT

Modify device error logging SET DEVICE/[NO]ERROR_LOGGING

Modify device spooling SET DEVICE/[NO]SPOOLED

Modify default definitions of days:

Set default day type to PRIMARY SET DAY/PRIMARY

Set default day type to SECONDARY SET DAY/SECONDARY

Return day type to DEFAULT SET DAY/DEFAULT

Modify or override login limits:

Modify interactive login limit SET LOGIN/INTERACTIVE

Modify network login limit SET LOGIN/NETWORK

Modify batch login limit SET LOGIN/BATCH

Create and modify queues:

Bypass discretionary access to a queue

Create a queue $SNDJBC (SJC$_CREATE_QUEUE)

Define queue characteristics $SNDJBC (SJC$_DEFINE_CHARACTERISTICS)

Define forms $SNDJBC (SJC$_DEFINE_FORM)

Delete characteristics $SNDJBC (SJC$_DELETE_CHARACTERISTICS)

Delete forms $SNDJBC (SJC$_DELETE_FORM)

Set the base priority of batch processes $SNDJBC (SJC$_BASE_PRIORITY)

Set the scheduling priority of a job $SNDJBC (SJC$_PRIORITY)

Start accounting SET ACCOUNTING/ENABLE, $SNDJBC (SJC$_
START_ACCOUNTING)

Stop accounting SET ACCOUNTING/DISABLE, $SNDJBC (SJC$_
STOP_ACCOUNTING)

Operate the LAT device:

Transmit LAT solicit information message $QIO request to a LAT port driver (LTDRIVER)

Set static rating for LAT service $QIO request to a LAT port driver (LTDRIVER)

A–10 Assigning Privileges

Assigning Privileges
A.20 OPER Privilege (System)

Task Interface

Read last LAT response message buffer $QIO request to a LAT port driver (LTDRIVER)

Change port type from dedicated to application $QIO request to a LAT port driver (LTDRIVER)

Change port type from application to dedicated $QIO request to a LAT port driver (LTDRIVER)

Modify tape operations:

Specify number of file window-mapping pointers MOUNT/WINDOWS, $MOUNT

Mount a volume with an alternate ACP MOUNT/PROCESSOR, $MOUNT

Mount a volume with alternate cache limits MOUNT/CACHE, $MOUNT

Modify write caching for a tape controller MOUNT/CACHE, $MOUNT

Modify ODS1 directory FCB cache limit SET VOLUME/ACCESSED, MOUNT/ACCESSED,
$MOUNT

Perform network operations:

Connect to an object while executor state is
restricted

Read network event-logging buffer NETACP

Modify network volatile database NETACP

Access the permanent database for an update DECnet/NML

Connect to a DECnet circuit $QIO request to the DECnet downline load and
loopback class driver (NDDRIVER)

Display the permanent DECnet service password NCP

Display the volatile DECnet service password NCP

Control character conversion by terminals:

Load terminal fallback table TFU, $QIO request to the terminal fallback driver
(FBDRIVER)

Unload terminal fallback table TFU, $QIO request to the terminal fallback driver
(FBDRIVER)

Establish system default terminal fallback table TFU, $QIO request to the terminal fallback driver
(FBDRIVER)

Control cluster operations:

Request expected votes modification SET CLUSTER/EXPECTED_VOTES

Request MSCP serving of a device SET DEVICE/SERVED

Request quorum modification SET CLUSTER/QUORUM

Add an adapter to the failover list $QIO request to the DEBNI BI bus NI driver
(EFDRIVER)

Remove an adapter from the failover list $QIO request to the DEBNI BI bus NI driver
(EFDRIVER)

Set an adapter to be the current adapter $QIO request to the DEBNI BI bus NI driver
(EFDRIVER)

Set the new adapter test interval $QIO request to the DEBNI BI bus NI driver
(EFDRIVER)

Used in combination with other privileges, OPER lets processes perform the
following tasks:

Assigning Privileges A–11

Assigning Privileges
A.20 OPER Privilege (System)

Privileges Task Interface

OPER and CMKRNL Mount a volume with a private
ACP

MOUNT/PROCESSOR, $MOUNT

OPER and LOG_IO Set the system time SET TIME, $SETIME

OPER and SYSNAM Start or stop the queue manager START/QUEUE/MANAGER,
STOP/QUEUE/MANAGER, $SNDJBC

OPER and VOLPRO Initialize a blank tape or
override access checks while
initializing a blank tape

$INIT_VOL, MOUNT, $MOUNT

A.21 PFNMAP Privilege (All)
The PFNMAP privilege lets a user’s process create and map page frame number
(PFN) global sections to specific pages of physical memory or I/O device registers,
no matter who is using the pages or registers. Such a privileged process can also
delete PFN-based global sections with the system service $DGBLSC.

Exercise caution when granting this privilege. If unqualified user processes have
unrestricted access to physical memory, the operating system and service to other
processes can be easily disrupted. Such disruptions can include failure of the
system, destruction of all system and user data, and exposure of confidential
information.

A.22 PHY_IO Privilege (All)
The PHY_IO privilege lets the user’s process execute the Queue I/O Request
($QIO) system service to perform physical-level I/O operations.

Usually, process I/O requests are handled indirectly by use of an I/O package such
as OpenVMS Record Management Services (RMS). However, to increase their
control over I/O operations and to improve the efficiency of their applications,
skilled users sometimes prefer to handle directly the interface between their
process and a system I/O driver program. They can do this by executing the $QIO
system service; in many instances, the operation called for is a physical-level I/O
operation.

Grant the PHY_IO privilege only to users who need it; grant this privilege
even more carefully than the LOG_IO privilege. If this privilege is given to
unqualified users who have no need for it, the operating system and service to
other users can be easily disrupted. Such disruptions can include the destruction
of information on the system device, the destruction of user data, and the
exposure of confidential information.

The PHY_IO privilege also lets a process perform the following tasks:

Task Interface

Access an individual shadow-set member unit $ASSIGN, $QIO

Create or delete a watchpoint $QIO request to the SMP watchpoint driver
(WPDRIVER)

Map an LTA device to a server/port (IO$_TTY_
PORT!IO$M_LT_MAPPORT)

$QIO request to a LAT port driver (LTDRIVER)

A–12 Assigning Privileges

Assigning Privileges
A.22 PHY_IO Privilege (All)

Task Interface

Issue the following I/O requests:

• Logical I/O request

• Logical or virtual I/O request with IO$M_
MSCPMODIFS modifier

• Physical I/O to private, non-file-structured
device

$QIO

Modify the following terminal attributes:
HANGUP
SET_SPEED
SECURE_SERVER

SET TERMINAL or the terminal driver (TTDRIVER)
/[NO]HANGUP
/[NO]SET_SPEED
/[NO]SECURE_SERVER

Issue IO$_ACCESS (diagnostic) function to
DEBNA/NI device driver

$QIO request to a synchronous communications line
(XGDRIVER)

Enable Ethernet promiscuous mode listening

Issue IO$_ACCESS (diagnostic) function to
Ethernet common driver

A.23 PRMCEB Privilege (Devour)
The PRMCEB privilege lets the user’s process create or delete a permanent
common event flag cluster by executing the Associate Common Event Flag
Cluster ($ASCEFC) or the Delete Common Event Flag Cluster ($DLCEFC)
system service. Common event flag clusters enable cooperating processes to
communicate with each other and thus synchronize their execution.

Grant this privilege with care. If permanent common event flag clusters are
not explicitly deleted, they tie up space in system dynamic memory, which may
degrade system performance.

A.24 PRMGBL Privilege (Devour)
The PRMGBL privilege lets the user’s process create or delete permanent global
sections by executing the Create and Map Section ($CRMPSC) or the Delete
Global Section ($DGBLSC) system service. In addition, a process with this
privilege (plus CMKRNL and SYSGBL privileges) can use the Install utility
(INSTALL).

Global sections are shared structures that can be mapped simultaneously in the
virtual address space of many processes. All processes see the same code or data.
Global sections are used for reentrant subroutines or data buffers.

Grant this privilege with care. If permanent global sections are not explicitly
deleted, they tie up space in the global section and global page tables, which are
limited resources.

A.25 PRMMBX Privilege (Devour)
The PRMMBX privilege lets the user’s process create or delete a permanent
mailbox by executing the Create Mailbox and Assign Channel ($CREMBX)
system service or the Delete Mailbox ($DELMBX) system service. The privilege
also allows the creation of temporary mailboxes with the $CREMBX service.

Mailboxes are buffers in virtual memory that are treated as if they were record-
oriented I/O devices. A mailbox is used for general interprocess communication.

Assigning Privileges A–13

Assigning Privileges
A.25 PRMMBX Privilege (Devour)

Do not grant PRMMBX to all users of the system. Permanent mailboxes are not
automatically deleted when the creating processes are deleted and, thus, continue
to use a portion of system dynamic memory. System performance degrades as
system dynamic memory becomes scarce.

A.26 PSWAPM Privilege (System)
The PSWAPM privilege lets the user’s process control whether it can be swapped
out of the balance set by executing the Set Process Swap Mode ($SETSWM)
system service. A process must have this privilege to lock itself in the balance set
(to disable swapping) or to unlock itself from the balance set (to enable swapping).

With this privilege, a process can create a process that is locked in the balance
set (swap mode is disabled) by using an optional argument to the Create
Process ($CREPRC) system service or, when the DCL command RUN is used to
create a process, by using the /NOSWAPPING qualifier of the RUN command.
Furthermore, a process can lock a page or range of pages in physical memory
using the Lock Pages in Memory ($LCKPAG) system service.

Grant this privilege only to users who need to lock a process in memory for
performance reasons. Typically, this will be a real-time process. If unqualified
processes have the unrestricted ability to lock processes in the balance set,
physical memory can be held unnecessarily and thereby degrade system
performance.

A.27 READALL Privilege (Objects)
The READALL privilege lets the process bypass existing restrictions that would
otherwise prevent the process from reading an object. However, unlike the
BYPASS privilege, which permits writing and deleting, READALL permits
only the reading of objects and allows updating of such backup-related file
characteristics as the backup date. See the OpenVMS System Management
Utilities Reference Manual and the OpenVMS System Manager’s Manual for a
discussion of backup operations.

READALL is intended to be an adequate privilege for backing up volumes, so
grant this privilege to operators so they can perform system backups.

The READALL privilege lets a process perform the following tasks:

Task Interface

Read a user authorization record $GETUAI

Display permanent network database records NCP

A.28 SECURITY Privilege (System)
The SECURITY privilege lets a process perform security-related functions
such as modifying the system password with the DCL command SET
PASSWORD/SYSTEM or modifying the system alarm and audit settings
using the DCL command SET AUDIT. The privilege not only lets a user process
start and stop the audit server process with SET AUDIT, it also permits the
process to use SET AUDIT to modify the characteristics of the auditing database,
including those of the audit server, the system audit journal, the security archive
file, resource monitoring, and the audit, alarm, or failure mode.

A–14 Assigning Privileges

Assigning Privileges
A.28 SECURITY Privilege (System)

Grant this privilege only to security administrators. Irresponsible users who
obtain this privilege can subvert the system’s security mechanisms, lock out users
through improper application of system passwords, and disable security auditing.

The SECURITY privilege also lets a process perform the following tasks:

Task Interface

Display system auditing information about the
system audit log file, audit server settings, and so
on

SHOW AUDIT

Display Hidden ACEs SHOW SECURITY

Display the system intrusion list or delete a
record

SHOW INTRUSION,
DELETE/INTRUSION

Enable the security operator terminal REPLY/ENABLE=SECURITY,
$SNDOPR

Enable protected subsystems on a volume MOUNT/SUBSYSTEM, $MOUNT,
SET VOLUME/SUBSYSTEM

A.29 SETPRV Privilege (All)
The SETPRV privilege lets the user’s process create processes whose privileges
are greater than its own either by executing the Create Process ($CREPRC)
system service with an optional argument or by issuing the DCL command RUN
to create a process. A process with this privilege can also execute the DCL
command SET PROCESS/PRIVILEGES to obtain any desired privilege.

Exercise the same caution in granting SETPRV as in granting any other privilege
because SETPRV lets a process enable any or all privileges.

A.30 SHARE Privilege (All)
The SHARE privilege lets processes assign channels to devices allocated to other
processes or to a nonshared device using the Assign I/O Channel ($ASSIGN)
system service.

Grant this privilege only to system processes such as print symbionts. Otherwise,
an irresponsible user can interfere with the operation of devices belonging to
other users.

A.31 SHMEM Privilege (Devour)
The SHMEM privilege lets the user’s process create global sections and mailboxes
(permanent and temporary) in memory shared by multiple processors if the
process also has appropriate PRMGBL, PRMMBX, SYSGBL, and TMPMBX
privileges. Just as in local memory, the space required for a temporary mailbox
in multiport memory counts against the buffered I/O byte count limit (BYTLM) of
the process.

The privilege also lets a user’s process create or delete an event flag cluster in
shared memory using the Associate Common Event Flag Cluster ($ASCEFC) or
the Disassociate Common Event Flag Cluster ($DACEFC) system service.

Assigning Privileges A–15

Assigning Privileges
A.32 SYSGBL Privilege (Files)

A.32 SYSGBL Privilege (Files)
The SYSGBL privilege lets the user’s process create or delete system global
sections by executing the Create and Map Section ($CRMPSC) or the Delete
Global Section ($DGBLSC) system service. In addition, a process with this
privilege (plus the CMKRNL and PRMGBL privileges) can use the Install utility
(INSTALL).

Exercise caution when granting this privilege. System global sections require
space in the global section and global page tables, which are limited resources.

A.33 SYSLCK Privilege (System)
The SYSLCK privilege lets the user’s process lock systemwide resources with
the Enqueue Lock Request ($ENQ) system service or obtain information about a
system resource with the Get Lock Information ($GETLKI) system service.

Grant this privilege to users who need to run programs that lock resources in
the systemwide resource namespace. However, exercise caution when granting
this privilege. Users who hold the SYSLCK privilege can interfere with the
synchronization of all system and user software.

A.34 SYSNAM Privilege (All)
The SYSNAM privilege lets the user’s process bypass discretionary access controls
and insert names into the system logical name table and delete names from that
table by using the Create Logical Name ($CRELNM) and Delete Logical Name
($DELLNM) system services. A process with this privilege can use the DCL
commands ASSIGN and DEFINE to add names to the system logical name table
in user or executive mode and can use the DEASSIGN command in either mode
to delete names from the table.

To mount a system volume or to dismount a system or group volume with the
appropriate mount or dismount command or system service, you must have the
SYSNAM privilege.

Grant this privilege only to the system operators or to system programmers who
need to define system logical names (such as names for user devices, library
directories, and the system directory). Note that a process with SYSNAM
privilege could redefine such critical system logical names as SYS$SYSTEM and
SYSUAF, thus gaining control of the system.

The SYSNAM privilege also lets a process perform the following tasks:

Task Interface

Access a MAIL maintenance record MAIL

Modify a MAIL forward record MAIL

Declare a network object NETACP

Create an IPC association $IPC

With CMKRNL, add or remove an identifier to
system rights list

SET RIGHTS_LIST/SYSTEM,
$GRANTID, $REVOKID

A–16 Assigning Privileges

Assigning Privileges
A.35 SYSPRV Privilege (All)

A.35 SYSPRV Privilege (All)
The SYSPRV privilege lets a process access protected objects by the system
protection field and also read and modify the owner (UIC), the UIC-based
protection code, and the ACL of an object. Even if an object is protected against
system access, a process with SYSPRV privilege can change the object’s protection
to gain access to it. Any process with SYSPRV privilege can add, modify, or delete
entries in the system user authorization file (SYSUAF.DAT).

Exercise caution when granting this privilege. Normally, grant this privilege
only to system managers and security administrators. If unqualified users have
system access rights, the operating system and service to others can be easily
disrupted. Such disruptions can include failure of the system, destruction of all
system and user data, and exposure of confidential information.

The SYSPRV privilege also lets a process perform the following tasks:

Task Interface

Modify a file’s expiration date SET FILE/EXPIRATION

Modify the number of interlocked queue retries $QIO request to an Ethernet 802
driver (DEBNA/NI)

Set the spin-wait time on the port command
register

$QIO request to an Ethernet 802
driver (DEBNA)

Set the FROM field in a mail message MAIL routines

Access a MAIL maintenance record MAIL

Modify or delete a MAIL database record MAIL

Modify the group number and password of a local
area cluster

CLUSTER_AUTHORIZE component
of SYSMAN

Perform transaction recovery, join a transaction
as coordinator, transition a transaction

DECdtm software

A process whose group UIC is less than or equal to the system parameter
MAXSYSGRP has implied SYSPRV. When a process has SYSPRV or implied
SYSPRV, it can also perform the following tasks:

Task Interface

Initialize a magnetic tape $INIT_VOL

Override creation of an owner ACE on a newly
created file

$QIO request to F11BXQP

Clear the directory bit in a directory’s file header $QIO request to the F11BXQP, SET
FILE/NODIRECTORY

Acquire or release a volume lock $QIO request to F11BXQP

Force mount verification on a volume $QIO request to F11BXQP

Create a file access window with the no access
lock bit set

$QIO request to F11BXQP

Specify null lock mode for a volume lock $QIO request to F11BXQP

Access a locked file $QIO request to F11BXQP

Disable disk quotas on volume $QIO request to F11BXQP

Enable disk quotas on volume $QIO request to F11BXQP

Assigning Privileges A–17

Assigning Privileges
A.36 TMPMBX Privilege (Normal)

A.36 TMPMBX Privilege (Normal)
The TMPMBX privilege lets the user’s process create a temporary mailbox by
executing the Create Mailbox and Assign Channel ($CREMBX) system service.

Mailboxes are buffers in virtual memory that are treated as if they were record-
oriented I/O devices. A mailbox is used for general interprocess communication.
Unlike a permanent mailbox, which must be explicitly deleted, a temporary
mailbox is deleted automatically when it is no longer referenced by any process.

Grant this privilege to all users of the system to facilitate interprocess
communication. System performance is not likely to be degraded by permitting
the creation of temporary mailboxes, because their number is controlled by limits
on the use of system dynamic memory (BYTLM quota).

A.37 UPGRADE Privilege (All)
The UPGRADE privilege lets a process manipulate mandatory access controls.
The privilege allows a process to write to an object of higher integrity, in violation
of the Biba confinement (*) property. This privilege is reserved for enhanced
security products like SEVMS.

A.38 VOLPRO Privilege (Objects)
The VOLPRO privilege lets the user’s process:

• Initialize a previously used volume with an owner UIC different from the
user’s own UIC

• Override the expiration date on a tape or disk volume owned by another user

• Use the /FOREIGN qualifier to mount a Files-11 volume owned by another
user

• Override the owner UIC protection of a volume

The VOLPRO privilege permits control only over volumes that the user’s process
can mount or initialize. Volumes mounted with the /SYSTEM qualifier are safe
from a process with the VOLPRO privilege as long as the process does not also
have the SYSNAM privilege.

Exercise extreme caution when granting the VOLPRO privilege. If unqualified
users can override volume protection, the operating system and service to others
can be disrupted. Such disruptions can include destruction of the database and
exposure of confidential information.

The VOLPRO privilege lets a process perform the following tasks:

Task Interface

Dismount a volume DISMOUNT/ABORT, $DISMOU

Initialize a volume $INIT_VOL

Mount foreign multivolume magnetic tape set MOUNT/MULTI_VOLUME

Override volume labels or accessibility $MOUNT

Initialize blank tape REPLY/BLANK_TAPE, $SNDOPR

Override access while initializing a magnetic tape
after a file access error

$INIT_VOL

A–18 Assigning Privileges

Assigning Privileges
A.38 VOLPRO Privilege (Objects)

Task Interface

Override write-locking of volume on errors $MOUNT

Override write protection of former shadow set
member

$MOUNT

Override volume expiration, protection, or
ownership

$MOUNT

A.39 WORLD Privilege (System)
The WORLD privilege lets the user’s process affect other processes both inside
and outside its group by executing the following process control system services:

Suspend Process ($SUSPND)
Resume Process ($RESUME)
Delete Process ($DELPRC)
Set Priority ($SETPRI)
Wake ($WAKE)
Schedule Wakeup ($SCHDWK)
Cancel Wakeup ($CANWAK)
Force Exit ($FORCEX)

The user’s process is also allowed to examine processes outside its own group
by executing the Get Job/Process Information ($GETJPI) system service. A
process with WORLD privilege can issue the SET PROCESS command for all
other processes. Any process with WORLD privilege can also obtain information
about a lock held by a process in another group using the Get Lock Information
($GETLKI) system service.

To exercise control over subprocesses that it created or to examine these
subprocesses, a process needs no special privilege. To affect or examine other
processes inside its own group, a process needs only the GROUP privilege. You
should, however, grant this privilege to users who need to affect or examine
processes outside their own group.

Assigning Privileges A–19

B
Protection for OpenVMS VAX System Files

This appendix lists OpenVMS VAX system files and their protections so you can
monitor them regularly to ensure that no tampering has occurred. Section B.1
identifies the protection codes and ownership assigned to the files and calls out
any exceptions. Section B.2 lists the system files supplied on OpenVMS VAX
media.

See Chapter 8, particularly Section 8.9.2 for a discussion of how to protect
OpenVMS system files.

B.1 Standard Ownership and Protection
The system (SYSTEM) owns all OpenVMS system files except one. The directory
MOM$SYSTEM is owned by UIC [376,375].

All files in SYS$DEVICE:[VMS$COMMON], except those listed in Table B–1,
have a protection code of S:RWED,O:RWED,G:RWED,W:RE.

Table B–1 Exceptions to Standard OpenVMS VAX System File Protection

Files Protection

[VMS$COMMON]

DECW$DEFAULTS.DIR MOM$SYSTEM.DIR S:RWE,O:RWE,G:RE,W:RE

SYS$KEYMAP.DIR; SYS$LDR.DIR

SYS$STARTUP.DIR SYSCBI.DIR

SYSERR.DIR SYSEXE.DIR

SYSFONT.DIR SYSHLP.DIR

SYSLIB.DIR SYSMAINT.DIR

SYSMGR.DIR SYSMSG.DIR

SYSTEST.DIR SYSUPD.DIR

VUE$LIBRARY.DIR

[VMS$COMMON.SYS$KEYMAP]

DECW.DIR S:RWE,O:RWE,G:RE,W:RE

[VMS$COMMON.SYS$KEYMAP.DECW]

SYSTEM.DIR USER.DIR S:RWE,O:RWE,G:RE,W:RE

(continued on next page)

Protection for OpenVMS VAX System Files B–1

Protection for OpenVMS VAX System Files
B.1 Standard Ownership and Protection

Table B–1 (Cont.) Exceptions to Standard OpenVMS VAX System File Protection

Files Protection

[VMS$COMMON.SYSEXE]

ISL_LVAX_061.SYS ISL_SVAX_061.SYS S:RWED,O:RWED,G:RE,W:RE

NETPROXY.DAT S:RWE,O:RWE,G:RWE,W

NET$PROXY.DAT S:RWE,O:RWE,G:RWE,W

MSGHLP$MAIN.EXE S:RE,O:RE,G:RE,W:RE

RIGHTSLIST.DAT S:RWED,O:RWED,G:R,W

SYSUAF.DAT S:RWE,O:RWE,G:RWE,W

VMS$OBJECTS.DAT S:RWE,O:RWE,G:RE,W

[VMS$COMMON.SYSFONT]

DECW.DIR PS_FONT_METRICS.DIR S:RWE,O:RWE,G:RE,W:RE

VWS.DIR XDPS.DIR

[VMS$COMMON.SYSFONT]

DECW.DIR PS_FONT_METRICS.DIR S:RWE,O:RWE,G:RE,W:RE

VWS.DIR XDPS.DIR

[VMS$COMMON.SYSFONT.DECW]

100DPI.DIR 75DPI.DIR S:RWE,O:RWE,G:RE,W:RE

COMMON.DIR CURSOR16.DIR

CURSOR32.DIR USER_100DPI.DIR

USER_75DPI.DIR USER_COMMON.DIR

USER_CURSOR16.DIR USER_CURSOR32.DIR

[VMS$COMMON.SYSHLP]

DECW.DIR VMSDOC.DIR S:RWE,O:RWE,G:RE,W:RE

MSGHLP$ENGLISH.EXE S:RE,O:RE,G:RE,W:RE

EXAMPLES.DIR S:RWE,O:RWE,G:RE,W:RE

[VMS$COMMON.SYSLIB]

CDA$ACCESS.EXE DECW$DWTLIBSHR.EXE S:RW,O:RWED,G:R,W:R

DECW$PRINTWGTSHR.EXE DECW$XLIBSHR.EXE

MSGHLP$ENGLISH.EXE MSGHLP$SHARE.EXE S:RE,O:RE,G:RE,W:RE

VMS$PASSWORD_DIC
TIONARY.DATA

S:RE,O:RE,G,W

XDPS$DPSBINDINGSSHR.EXE XDPS$DPSCLIENTSHR.EXE S:RW,O:RWED,G:R,W:R

XDPS$DPSLIBSHR.EXE XNL$SHR.EXE

(continued on next page)

B–2 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.1 Standard Ownership and Protection

Table B–1 (Cont.) Exceptions to Standard OpenVMS VAX System File Protection

Files Protection

[VMS$COMMON.SYSMGR]

SECURITY.AUDIT$JOURNAL S:RWED,O:RWED,G:RE,W

VMS$AUDIT_SERVER.DAT S:RWE,O:RWE,G:RE,W

WELCOME.TEMPLATE WELCOME.TXT S:RWED,O:RWED,G:RE,W:RE

[VMS$COMMON.VUE$LIBRARY]

SYSTEM.DIR USER.DIR S:RWE,O:RWE,G:RE,W:RE

B.2 Listing of OpenVMS VAX System Files
The following sections display system files in the order produced by the DCL
command DIRECTORY.

B.2.1 Files in Top-Level Directories
The files in the top-level directory, VMS$COMMON on clustered systems, contain
the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON]

DECW$DEFAULTS.DIR;1 MOM$SYSTEM.DIR;1
SYS$KEYMAP.DIR;1 SYS$LDR.DIR;1
SYS$STARTUP.DIR;1 SYSCBI.DIR;1
SYSERR.DIR;1 SYSEXE.DIR;1
SYSFONT.DIR;1 SYSHLP.DIR;1
SYSLIB.DIR;1 SYSMAINT.DIR;1
SYSMGR.DIR;1 SYSMSG.DIR;1
SYSTEST.DIR;1 SYSUPD.DIR;1
VUE$LIBRARY.DIR;1

Total of 17 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.DECW$DEFAULTS]

SYSTEM.DIR;1 USER.DIR;1

Total of 2 files.

B.2.2 Files in DECW$DEFAULTS.SYSTEM and MOM$SYSTEM
The directories DECW$DEFAULTS.SYSTEM and MOM$SYSTEM contain the
following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.DECW$DEFAULTS.SYSTEM]

DBG$HA_DEFAULTS.DAT;1 PCSI$MUI.UID;1
PCSI.DAT;1 VMSDEBUG.DAT;1

Total of 4 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.MOM$SYSTEM]

READ_ADDR.SYS;1

Total of 1 file.

Protection for OpenVMS VAX System Files B–3

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

B.2.3 Files in SYS$KEYMAP
The directory SYS$KEYMAP contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYS$KEYMAP]

DECW.DIR;1

Total of 1 file.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYS$KEYMAP.DECW]

SYSTEM.DIR;1 USER.DIR;1

Total of 2 files.

B.2.4 Files in SYS$KEYMAP.DECW.SYSTEM
The directory SYS$KEYMAP.DECW.SYSTEM contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYS$KEYMAP.DECW.SYSTEM]

AUSTRIAN_GERMAN_LK201LG_DP.DECW$KEYMAP;1 AUSTRIAN_GERMAN_LK201LG_TW.DECW$KEYMAP;1
AUSTRIAN_GERMAN_LK201NG_DP.DECW$KEYMAP;1 AUSTRIAN_GERMAN_LK201NG_TW.DECW$KEYMAP;1
AUSTRIAN_GERMAN_LK401AG_TW.DECW$KEYMAP;1 BELGIAN_FRENCH_LK201LP_DP.DECW$KEYMAP;1
BELGIAN_FRENCH_LK201LP_TW.DECW$KEYMAP;1 BELGIAN_FRENCH_LK401AP_DP.DECW$KEYMAP;1
BELGIAN_FRENCH_LK401AP_TW.DECW$KEYMAP;1 BELGIAN_LK444_VT.DECW$KEYMAP;1
BRITISH_LK201LE_DP.DECW$KEYMAP;1 BRITISH_LK201LE_TW.DECW$KEYMAP;1
BRITISH_LK401AA_DP.DECW$KEYMAP;1 BRITISH_LK401AA_TW.DECW$KEYMAP;1
CANADIAN_FRENCH_LK201LC_DP.DECW$KEYMAP;1 CANADIAN_FRENCH_LK201LC_TW.DECW$KEYMAP;1
CANADIAN_FRENCH_LK401AC_DP.DECW$KEYMAP;1 CANADIAN_FRENCH_LK401AC_TW.DECW$KEYMAP;1
CZECH_LK401_BV.DECW$KEYMAP;1 DANISH_LK201LD_DP.DECW$KEYMAP;1
DANISH_LK201LD_TW.DECW$KEYMAP;1 DANISH_LK201RD_DP.DECW$KEYMAP;1
DANISH_LK201RD_TW.DECW$KEYMAP;1 DANISH_LK401AD_DP.DECW$KEYMAP;1
DANISH_LK401AD_TW.DECW$KEYMAP;1 DENMARK_LK444_VT.DECW$KEYMAP;1
DUTCH_LK201LH_DP.DECW$KEYMAP;1 DUTCH_LK201LH_TW.DECW$KEYMAP;1
DUTCH_LK201NH.DECW$KEYMAP;1 DUTCH_LK401AH.DECW$KEYMAP;1
FINNISH_LK201LF_DP.DECW$KEYMAP;1 FINNISH_LK201LF_TW.DECW$KEYMAP;1
FINNISH_LK201NX_DP.DECW$KEYMAP;1 FINNISH_LK201NX_TW.DECW$KEYMAP;1
FINNISH_LK401AF_DP.DECW$KEYMAP;1 FINNISH_LK401AF_TW.DECW$KEYMAP;1
FLEMISH_LK201LB_DP.DECW$KEYMAP;1 FLEMISH_LK201LB_TW.DECW$KEYMAP;1
FLEMISH_LK401AB_DP.DECW$KEYMAP;1 FLEMISH_LK401AB_TW.DECW$KEYMAP;1
FRANCE_LK444_VT.DECW$KEYMAP;1 GERMANY_LK444_VT.DECW$KEYMAP;1
HUNGARIAN_LK401_BQ.DECW$KEYMAP;1 ICELANDIC_LK201LU_DP.DECW$KEYMAP;1
ICELANDIC_LK201LU_TW.DECW$KEYMAP;1 ITALIAN_LK201LI_DP.DECW$KEYMAP;1
ITALIAN_LK201LI_TW.DECW$KEYMAP;1 ITALIAN_LK401AI_DP.DECW$KEYMAP;1
ITALIAN_LK401AI_TW.DECW$KEYMAP;1 ITALY_LK444_VT.DECW$KEYMAP;1
NORTH_AMERICAN_LK201LA.DECW$KEYMAP;1 NORTH_AMERICAN_LK401AA.DECW$KEYMAP;1
NORWAY_LK444_VT.DECW$KEYMAP;1 NORWEGIAN_LK201LN_DP.DECW$KEYMAP;1
NORWEGIAN_LK201LN_TW.DECW$KEYMAP;1 NORWEGIAN_LK201RN_DP.DECW$KEYMAP;1
NORWEGIAN_LK201RN_TW.DECW$KEYMAP;1 NORWEGIAN_LK401AN_DP.DECW$KEYMAP;1
NORWEGIAN_LK401AN_TW.DECW$KEYMAP;1 POLISH_LK401_BP.DECW$KEYMAP;1
PORTUGAL_LK444_VT.DECW$KEYMAP;1 PORTUGUESE_LK201LV.DECW$KEYMAP;1
PORTUGUESE_LK401AV.DECW$KEYMAP;1 RUSSIAN_LK401_BT.DECW$KEYMAP;1
SLOVAK_LK401_CZ.DECW$KEYMAP;1 SPAIN_LK444_VT.DECW$KEYMAP;1
SPANISH_LK201LS_DP.DECW$KEYMAP;1 SPANISH_LK201LS_TW.DECW$KEYMAP;1
SPANISH_LK401AS_DP.DECW$KEYMAP;1 SPANISH_LK401AS_TW.DECW$KEYMAP;1
SWEDEN_LK444_VT.DECW$KEYMAP;1 SWEDISH_LK201LM_DP.DECW$KEYMAP;1
SWEDISH_LK201LM_TW.DECW$KEYMAP;1 SWEDISH_LK201NM_DP.DECW$KEYMAP;1
SWEDISH_LK201NM_TW.DECW$KEYMAP;1 SWEDISH_LK401AM_DP.DECW$KEYMAP;1
SWEDISH_LK401AM_TW.DECW$KEYMAP;1 SWISS_FRENCH_LK201LK_DP.DECW$KEYMAP;1
SWISS_FRENCH_LK201LK_TW.DECW$KEYMAP;1 SWISS_FRENCH_LK401AK_DP.DECW$KEYMAP;1
SWISS_FRENCH_LK401AK_TW.DECW$KEYMAP;1 SWISS_GERMAN_LK201LL_DP.DECW$KEYMAP;1
SWISS_GERMAN_LK201LL_TW.DECW$KEYMAP;1 SWISS_GERMAN_LK401AL_DP.DECW$KEYMAP;1
SWISS_GERMAN_LK401AL_TW.DECW$KEYMAP;1 SWISS_LK444_VT.DECW$KEYMAP;1
UK_LK201RE.DECW$KEYMAP;1 UK_LK401AA.DECW$KEYMAP;1
UK_LK444_VT.DECW$KEYMAP;1 US_LK201RE.DECW$KEYMAP;1

B–4 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

US_LK401AA.DECW$KEYMAP;1 US_LK443_VT.DECW$KEYMAP;1

Total of 92 files.

B.2.5 Files in SYS$LDR
The directory SYS$LDR contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYS$LDR]

CLASS_SCHEDULER.EXE;1 CNDRIVER.EXE;1
CONINTERR.EXE;1 CPULOA.EXE;1
CRDRIVER.EXE;1 CS9AQDRIVER.EXE;1
CSDRIVER.EXE;1 CTDRIVER.EXE;1
CVDRIVER.EXE;1 CWDRIVER.EXE;1
DBDRIVER.EXE;1 DDDRIVER.EXE;1
DDIF$RMS_EXTENSION.EXE;1 DKDRIVER.EXE;1
DLDRIVER.EXE;1 DMDRIVER.EXE;1
DQDRIVER.EXE;1 DRDRIVER.EXE;1
DSDRIVER.EXE;1 DUDRIVER.EXE;1
DVDRIVER.EXE;1 DXDRIVER.EXE;1
DYDRIVER.EXE;1 DZDRIVER.EXE;1
ECDRIVER.EXE;1 EFDRIVER.EXE;1
EPDRIVER.EXE;1 ERRORLOG.EXE;1
ESDRIVER.EXE;1 ESS$DADDRIVER.EXE;1
ESS$LADDRIVER.EXE;1 ESS$LASTDRIVER.EXE;1
ESS$MADDRIVER.EXE;1 ETDRIVER.EXE;1
EVENT_FLAGS_AND_ASTS.EXE;1 EXCEPTION.EXE;1
EXDRIVER.EXE;1 EXEC_INIT.EXE;1
EZDRIVER.EXE;1 FBDRIVER.EXE;1
FCDRIVER.EXE;1 FPEMUL.EXE;1
FQDRIVER.EXE;1 FTDRIVER.EXE;1
FXDRIVER.EXE;1 FYDRIVER.EXE;1
GAADRIVER.EXE;1 GABDRIVER.EXE;1
GBBDRIVER.EXE;1 GCADRIVER.EXE;1
GCBDRIVER.EXE;1 GDDRIVER.EXE;1
GEBDRIVER.EXE;1 GECDRIVER.EXE;1
GFBDRIVER.EXE;1 GKDRIVER.EXE;1
IKDRIVER.EXE;1 IMAGE_MANAGEMENT.EXE;1
IMDRIVER.EXE;1 INDRIVER.EXE;1
IO_ROUTINES.EXE;1 LADRIVER.EXE;1
LCDRIVER.EXE;1 LIDRIVER.EXE;1
LMF$GROUP_TABLE.EXE;1 LOCKING.EXE;1
LOGICAL_NAMES.EXE;1 LPDRIVER.EXE;1
LTDRIVER.EXE;1 MBXDRIVER.EXE;1
MESSAGE_ROUTINES.EXE;1 MKDRIVER.EXE;1
NDDRIVER.EXE;1 NET$CSMACD.EXE;1
NET$FDDI.EXE;1 NETDRIVER.EXE;1
NODRIVER.EXE;1 PADRIVER.EXE;1
PAGE_MANAGEMENT.EXE;1 PBDRIVER.EXE;1
PDDRIVER.EXE;1 PEDRIVER.EXE;1
PIDRIVER.EXE;1 PKBDRIVER.EXE;1
PKCDRIVER.EXE;1 PKIDRIVER.EXE;1
PKNDRIVER.EXE;1 PKRDRIVER.EXE;1
PKSDRIVER.EXE;1 PKXDRIVER.EXE;1
PRIMITIVE_IO.EXE;1 PROCESS_MANAGEMENT.EXE;1
PUDRIVER.EXE;1 PWDRIVER.EXE;1
RECOVERY_UNIT_SERVICES.EXE;1 RMS.EXE;1
RTTDRIVER.EXE;1 RXDRIVER.EXE;1
SECURITY.EXE;1 SHDRIVER.EXE;1
SNAPSHOT_SERVICES.EXE;1 SODRIVER.EXE;1
SYS$CLUSTER.EXE;1 SYS$IPC_SERVICES.EXE;1
SYS$NETWORK_SERVICES.EXE;1 SYS$SCS.EXE;1
SYS$TRANSACTION_SERVICES.EXE;1 SYS$UTC_SERVICES.EXE;1
SYS.EXE;2 SYSDEVICE.EXE;1
SYSGETSYI.EXE;1 SYSLDR_DYN.EXE;1

Protection for OpenVMS VAX System Files B–5

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

SYSLICENSE.EXE;1 SYSLOA1202.EXE;1
SYSLOA1302.EXE;1 SYSLOA1303.EXE;1
SYSLOA1701.EXE;1 SYSLOA410.EXE;1
SYSLOA41D.EXE;1 SYSLOA41W.EXE;1
SYSLOA420.EXE;1 SYSLOA42D.EXE;1
SYSLOA42S.EXE;1 SYSLOA42W.EXE;1
SYSLOA43.EXE;1 SYSLOA43D.EXE;1
SYSLOA43S.EXE;1 SYSLOA43W.EXE;1
SYSLOA440.EXE;1 SYSLOA46.EXE;1
SYSLOA49.EXE;1 SYSLOA520.EXE;1
SYSLOA60.EXE;1 SYSLOA600.EXE;1
SYSLOA640.EXE;1 SYSLOA64D.EXE;1
SYSLOA650.EXE;1 SYSLOA65D.EXE;1
SYSLOA660.EXE;1 SYSLOA66D.EXE;1
SYSLOA670.EXE;1 SYSLOA67D.EXE;1
SYSLOA690.EXE;1 SYSLOA69D.EXE;1
SYSLOA700.EXE;1 SYSLOA70D.EXE;1
SYSLOA730.EXE;1 SYSLOA750.EXE;1
SYSLOA780.EXE;1 SYSLOA790.EXE;1
SYSLOA8NN.EXE;1 SYSLOA8PS.EXE;1
SYSLOA8SS.EXE;1 SYSLOA9AQ.EXE;1
SYSLOA9CC.EXE;1 SYSLOA9RR.EXE;1
SYSLOAUV1.EXE;1 SYSLOAUV2.EXE;1
SYSLOAWS1.EXE;1 SYSLOAWS2.EXE;1
SYSLOAWSD.EXE;1 SYSTEM_DEBUG.EXE;1
SYSTEM_PRIMITIVES.EXE;1 SYSTEM_PRIMITIVES_MIN.EXE;1
SYSTEM_SYNCHRONIZATION.EXE;1 SYSTEM_SYNCHRONIZATION_MIN.EXE;1
SYSTEM_SYNCHRONIZATION_SPC.EXE;1 SYSTEM_SYNCHRONIZATION_UNI.EXE;1
TFDRIVER.EXE;1 TMDRIVER.EXE;1
TSDRIVER.EXE;1 TTDRIVER.EXE;1
TUDRIVER.EXE;1 TVDRIVER.EXE;1
VAXCLUSTER_CACHE.EXE;1 VAXEMUL.EXE;1
VBSS.EXE;1 VECTOR_PROCESSING.EXE;1
VMS$SYSTEM_IMAGES.DATA;1 VVIEF_BOOTSTRAP.EXE;1
WORKING_SET_MANAGEMENT.EXE;1 WPDRIVER.EXE;1
WSDRIVER.EXE;1 XADRIVER.EXE;1
XDDRIVER.EXE;1 XEDRIVER.EXE;1
XFDRIVER.EXE;1 XIDRIVER.EXE;1
XMDRIVER.EXE;1 XQDRIVER.EXE;1
XTDRIVER.EXE;1 YCDRIVER.EXE;1
YEDRIVER.EXE;1 YFDRIVER.EXE;1
YIDRIVER.EXE;1

Total of 195 files.

B.2.6 Files in SYS$STARTUP and SYS$ERR
The directories SYS$STARTUP and SYS$ERR contain the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYS$STARTUP]

DEBUG$STARTUP.COM;1 DECDTM$SHUTDOWN.COM;1
DECDTM$STARTUP.COM;1 DNS$CLERK_STARTUP.COM;1
DNS$CLERK_STOP.COM;1 ESS$LAD_STARTUP.COM;1
ESS$LAD_STARTUP.DAT;1 ESS$LAST_STARTUP.COM;1
ESS$LAST_STARTUP.DAT;1 ESS$STARTUP.COM;1
IPC$STARTUP.COM;1 LAT$CONFIG.COM;1
LAT$STARTUP.COM;1 LICENSE_CHECK.EXE;1
VMS$BASEENVIRON-050_LIB.COM;1 VMS$BASEENVIRON-050_SMISERVER.COM;1
VMS$BASEENVIRON-050_VMS.COM;1 VMS$CONFIG-050_AUDIT_SERVER.COM;1
VMS$CONFIG-050_CACHE_SERVER.COM;1 VMS$CONFIG-050_CSP.COM;1

B–6 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

VMS$CONFIG-050_ERRFMT.COM;1 VMS$CONFIG-050_JOBCTL.COM;1
VMS$CONFIG-050_LMF.COM;1 VMS$CONFIG-050_OPCOM.COM;1
VMS$CONFIG-050_SECURITY_SERVER.COM;1 VMS$CONFIG-050_SHADOW_SERVER.COM;1
VMS$CONFIG-050_VMS.COM;1 VMS$DEVICE_STARTUP.COM;1
VMS$INITIAL-050_CONFIGURE.COM;1 VMS$INITIAL-050_LIB.COM;1
VMS$INITIAL-050_VMS.COM;1 VMS$LAYERED.DAT;1
VMS$LPBEGIN-050_STARTUP.COM;1 VMS$PHASES.DAT;1
VMS$VMS.DAT;1

Total of 35 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSERR]

ERRSNAP.COM;1

Total of 1 file.

B.2.7 Files in SYSEXE
The directory SYS$EXE contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSEXE]

ACC.EXE;1 ACLEDT.EXE;1
AGEN$FEEDBACK.EXE;1 ANALAUDIT.EXE;1
ANALIMDMP.EXE;1 ANALYZBAD.EXE;1
ANALYZOBJ.EXE;1 ANALYZRMS.EXE;1
AUDIT_SERVER.EXE;1 AUTHORIZE.EXE;1
BACKUP.EXE;1 BADBLOCK.EXE;1
BOOT58.EXE;1 BOOTBLOCK.EXE;1
CDU.EXE;1 CHECKSUM.EXE;1
CIA.EXE;1 CLUE.EXE;1
CONFIGURE.EXE;1 CONVERT.EXE;1
CONVERT_PROXY.EXE;1 COPY.EXE;1
CREATE.EXE;1 CREATEFDL.EXE;1
CSP.EXE;1 CVTNAFV5.EXE;1
DBLMSGMGR.EXE;1 DCL.EXE;1
DCLDEF.STB;1 DECDTMDEF.STB;1
DECW$DWT_DECNET.EXE;1 DECW$DWT_FONT_DAEMON.EXE;1
DECW$DWT_STARTXTDRIVER.EXE;1 DECW$FONTCOMPILER.EXE;1
DECW$MKFONTDIR.EXE;1 DECW$SERVER_MAIN.EXE;1
DECW$SETSHODIS.EXE;1 DELETE.EXE;1
DIFF.EXE;1 DIRECTORY.EXE;1
DISKQUOTA.EXE;1 DISMOUNT.EXE;1
DNS$ADVER.EXE;1 DNS$ANALYZE.EXE;1
DNS$SOLICIT.EXE;1 DSRINDEX.EXE;1
DSRTOC.EXE;1 DTEPAD.EXE;1
DTR.COM;1 DTRECV.EXE;1
DTSEND.EXE;1 DUMP.EXE;1
EDF.EXE;1 EDT.EXE;1
ERF.EXE;1 ERFADPTR.EXE;1
ERFBRIEF.EXE;1 ERFBUS.EXE;1
ERFCNTRL.EXE;1 ERFCVAX.EXE;1
ERFDISK.EXE;1 ERFDISK2.EXE;1
ERFMISC.EXE;1 ERFMSCP.EXE;1
ERFNVAX.EXE;1 ERFRLTIM.EXE;1
ERFSCSI.EXE;1 ERFSUMM.EXE;1
ERFTAPE.EXE;1 ERFUVAX.EXE;1
ERFV14.EXE;1 ERFV9000.EXE;1
ERFVAX7XX.EXE;1 ERFVX8200.EXE;1
ERFVX8600.EXE;1 ERFVX87XX.EXE;1
ERFXRP.EXE;1 ERRFMT.EXE;1
ERRSNAP.EXE;1 ESS$ISL_VMSLOAD.EXE;1
ESS$LADCP.EXE;1 ESS$LASTCP.EXE;1
EVL.COM;1 EVL.EXE;1
EXCHANGE$NETWORK.EXE;1 EXCHANGE.EXE;1
F11AACP.EXE;1 F11BXQP.EXE;1

Protection for OpenVMS VAX System Files B–7

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

F11CACP.EXE;1 F11DACP.EXE;1
FAL.COM;1 FAL.EXE;1
FILESERV.EXE;1 HLD.COM;1
HLD.EXE;1 HSCPAD.EXE;1
IMGDEF.STB;1 INIT.EXE;1
INPSMB.EXE;1 INSTALL.EXE;1
IPCACP.EXE;1 IPCDEF.STB;1
ISL_LVAX_061.SYS;1 ISL_SVAX_061.SYS;1
JBC$COMMAND.EXE;1 JBC$JOB_CONTROL.EXE;1
LALOAD.EXE;1 LALOADER.EXE;1
LATACP.EXE;1 LATCP.EXE;1
LATSYM.EXE;1 LIBRARIAN.EXE;1
LINK.EXE;1 LMCP.EXE;1
LMF$LICENSE.LDB;1 LMF$LURT.DAT;1
LMF.EXE;1 LOGINOUT.EXE;1
LTPAD.EXE;1 MACRO32.EXE;1
MAIL.COM;1 MAIL.EXE;1
MAILEDIT.COM;1 MAIL_SERVER.EXE;1
MESSAGE.EXE;1 MIRROR.COM;1
MIRROR.EXE;1 MOM.COM;1
MOM.EXE;1 MONITOR.EXE;1
MSCP.EXE;1 MSGHLP$MAIN.EXE;1
MTAAACP.EXE;1 NCP.EXE;1
NCS.EXE;1 NET$NAME_SERVER.EXE;1
NETACP.EXE;1 NETDEF.STB;1
NETSERVER.COM;1 NETSERVER.EXE;1
NICONFIG.COM;1 NICONFIG.EXE;1
NML.COM;1 NML.EXE;1
OPCCRASH.EXE;1 OPCOM.EXE;1
PATCH.EXE;1 PCSI$MAIN.EXE;1
PHONE.COM;1 PHONE.EXE;1
PRTSMB.EXE;1 QMAN$QUEUE_MANAGER.EXE;1
QUEMAN.EXE;1 RECLAIM.EXE;1
RECOVER.EXE;1 REMACP.EXE;1
RENAME.EXE;1 REPLY.EXE;1
REQSYSDEF.STB;1 REQUEST.EXE;1
RIGHTSLIST.DAT;1 RMS.STB;1
RMSDEF.STB;1 RMSREC$SERVER.EXE;1
RTB.EXE;1 RTPAD.EXE;1
RUNDET.EXE;1 RUNOFF.EXE;1
SA_STARTUP.COM;1 SCSDEF.STB;1
SDA.EXE;1 SDLNPARSE.EXE;1
SEARCH.EXE;1 SECURITY_SERVER.EXE;1
SET.EXE;1 SETAUDIT.EXE;1
SETFILENOMOVE.COM;1 SETFILENOMOVE.EXE;1
SETP0.EXE;1 SETRIGHTS.EXE;1
SETSHOSECUR.EXE;1 SETSHOSERVER.EXE;1
SETWATCH.EXE;1 SHADOW_SERVER.EXE;1
SHOW.EXE;1 SHUTDOWN.COM;1
SHWCLSTR.EXE;1 SMGBLDTRM.EXE;1
SMGMAPTRM.EXE;1 SMGTERMS.TXT;1
SMISERVER.EXE;1 SMPUTIL.EXE;1
SNAPSHOT$DRIVER.DAT;1 SNAPSHOT$IMAGE.DAT;1
SNAPSHOT$LOADED_IMAGES.DAT;1 SNAPSHOT$WATCHDOG.EXE;1
SNAPSHOT.EXE;1 SORTMERGE.EXE;1
STABACCOP.EXE;1 STABACKUP.EXE;1
STACONFIG.EXE;1 STANDCONF.EXE;1
STARTUP.COM;1 STASYSGEN.EXE;1
STOPREM.EXE;1 SUBMIT.EXE;1
SUCCESS.COM;1 SUMSLP.EXE;1
SYS.MAP;1 SYS.STB;1
SYSBOOT.EXE;1 SYSBOOT_XDELTA.EXE;1
SYSDEF.STB;1 SYSGEN.EXE;1
SYSINIT.EXE;1 SYSMAN.EXE;1
SYSUAF.DAT;1 SYSUAF.TEMPLATE;1

B–8 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

TECO32.EXE;1 TERMTABLE.EXE;1
TERMTABLE.TXT;1 TERTIARY_VMB.EXE;1
TFF$MASTER.DAT;1 TFU.EXE;1
TMSCP.EXE;1 TPSERV.EXE;1
TPU.EXE;1 TYPE.EXE;1
UNLOCK.EXE;1 UTC$CONFIGURE_TDF.EXE;1
VERIFY.EXE;1 VMB.EXE;1
VMB9AQ.EXE;1 VMOUNT.EXE;1
VMS$CREATE_SYSDIRS.COM;1 VMS$FILE_ATTRIBUTES.DAT;1
VMS$IMAGE_VERSION.DAT;1 VMS$INSTALL_UPG_DATA.COM;1
VMS$OBJECTS.DAT;1 VMSHELP.EXE;1
VMSPARAMS.DAT;1 VPM.EXE;1
WP.EXE;1 WRITEBOOT.EXE;1
XFLOADER.EXE;1

Total of 245 files.

B.2.8 Files in SYSFONT and SYSFONT.DECW
The directories SYSFONT and SYSFONT.DECW contain the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT]

DECW.DIR;1 PS_FONT_METRICS.DIR;1
VWS.DIR;1 XDPS.DIR;1

Total of 4 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.DECW]

100DPI.DIR;1 75DPI.DIR;1
COMMON.DIR;1 CURSOR16.DIR;1
CURSOR32.DIR;1 USER_100DPI.DIR;1
USER_75DPI.DIR;1 USER_COMMON.DIR;1
USER_CURSOR16.DIR;1 USER_CURSOR32.DIR;1

Total of 10 files.

B.2.9 Files in DECW.100DPI
The directory DECW.100DPI contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.DECW.100DPI]

AVANTGARDE_BOOK10_100DPI.DECW$FONT;1 AVANTGARDE_BOOK12_100DPI.DECW$FONT;1
AVANTGARDE_BOOK14_100DPI.DECW$FONT;1 AVANTGARDE_BOOK18_100DPI.DECW$FONT;1
AVANTGARDE_BOOK24_100DPI.DECW$FONT;1 AVANTGARDE_BOOK8_100DPI.DECW$FONT;1
AVANTGARDE_BOOKOBLIQUE10_100DPI.DECW$FONT;1 AVANTGARDE_BOOKOBLIQUE12_100DPI.DECW$FONT;1
AVANTGARDE_BOOKOBLIQUE14_100DPI.DECW$FONT;1 AVANTGARDE_BOOKOBLIQUE18_100DPI.DECW$FONT;1
AVANTGARDE_BOOKOBLIQUE24_100DPI.DECW$FONT;1 AVANTGARDE_BOOKOBLIQUE8_100DPI.DECW$FONT;1
AVANTGARDE_DEMI10_100DPI.DECW$FONT;1 AVANTGARDE_DEMI12_100DPI.DECW$FONT;1
AVANTGARDE_DEMI14_100DPI.DECW$FONT;1 AVANTGARDE_DEMI18_100DPI.DECW$FONT;1
AVANTGARDE_DEMI24_100DPI.DECW$FONT;1 AVANTGARDE_DEMI8_100DPI.DECW$FONT;1
AVANTGARDE_DEMIOBLIQUE10_100DPI.DECW$FONT;1 AVANTGARDE_DEMIOBLIQUE12_100DPI.DECW$FONT;1
AVANTGARDE_DEMIOBLIQUE14_100DPI.DECW$FONT;1 AVANTGARDE_DEMIOBLIQUE18_100DPI.DECW$FONT;1
AVANTGARDE_DEMIOBLIQUE24_100DPI.DECW$FONT;1 AVANTGARDE_DEMIOBLIQUE8_100DPI.DECW$FONT;1
COURIER10_100DPI.DECW$FONT;1 COURIER12_100DPI.DECW$FONT;1
COURIER14_100DPI.DECW$FONT;1 COURIER18_100DPI.DECW$FONT;1
COURIER24_100DPI.DECW$FONT;1 COURIER8_100DPI.DECW$FONT;1
COURIER_BOLD10_100DPI.DECW$FONT;1 COURIER_BOLD12_100DPI.DECW$FONT;1
COURIER_BOLD14_100DPI.DECW$FONT;1 COURIER_BOLD18_100DPI.DECW$FONT;1
COURIER_BOLD24_100DPI.DECW$FONT;1 COURIER_BOLD8_100DPI.DECW$FONT;1
COURIER_BOLDOBLIQUE10_100DPI.DECW$FONT;1 COURIER_BOLDOBLIQUE12_100DPI.DECW$FONT;1
COURIER_BOLDOBLIQUE14_100DPI.DECW$FONT;1 COURIER_BOLDOBLIQUE18_100DPI.DECW$FONT;1
COURIER_BOLDOBLIQUE24_100DPI.DECW$FONT;1 COURIER_BOLDOBLIQUE8_100DPI.DECW$FONT;1

Protection for OpenVMS VAX System Files B–9

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

COURIER_OBLIQUE10_100DPI.DECW$FONT;1 COURIER_OBLIQUE12_100DPI.DECW$FONT;1
COURIER_OBLIQUE14_100DPI.DECW$FONT;1 COURIER_OBLIQUE18_100DPI.DECW$FONT;1
COURIER_OBLIQUE24_100DPI.DECW$FONT;1 COURIER_OBLIQUE8_100DPI.DECW$FONT;1
DECW$FONT_ALIAS_100DPI.DAT;1 DECW$FONT_ALIAS_GS_100DPI.DAT;1
DECW$FONT_DIRECTORY_100DPI.DAT;1 DECW$SESSION_100DPI.DECW$FONT;1
DUTCH801_DECMATH_EXTENSION10_100DPI.DECW$FONT;1 DUTCH801_DECMATH_EXTENSION12_100DPI.DECW$FONT;1
DUTCH801_DECMATH_EXTENSION14_100DPI.DECW$FONT;1 DUTCH801_DECMATH_EXTENSION8_100DPI.DECW$FONT;1
DUTCH801_DECMATH_ITALIC10_100DPI.DECW$FONT;1 DUTCH801_DECMATH_ITALIC12_100DPI.DECW$FONT;1
DUTCH801_DECMATH_ITALIC14_100DPI.DECW$FONT;1 DUTCH801_DECMATH_ITALIC8_100DPI.DECW$FONT;1
DUTCH801_DECMATH_SYMBOL10_100DPI.DECW$FONT;1 DUTCH801_DECMATH_SYMBOL12_100DPI.DECW$FONT;1
DUTCH801_DECMATH_SYMBOL14_100DPI.DECW$FONT;1 DUTCH801_DECMATH_SYMBOL8_100DPI.DECW$FONT;1
FIXED_100DPI.DECW$FONT;1 HELVETICA10_100DPI.DECW$FONT;1
HELVETICA12_100DPI.DECW$FONT;1 HELVETICA14_100DPI.DECW$FONT;1
HELVETICA18_100DPI.DECW$FONT;1 HELVETICA24_100DPI.DECW$FONT;1
HELVETICA8_100DPI.DECW$FONT;1 HELVETICA_BOLD10_100DPI.DECW$FONT;1
HELVETICA_BOLD12_100DPI.DECW$FONT;1 HELVETICA_BOLD14_100DPI.DECW$FONT;1
HELVETICA_BOLD18_100DPI.DECW$FONT;1 HELVETICA_BOLD24_100DPI.DECW$FONT;1
HELVETICA_BOLD8_100DPI.DECW$FONT;1 HELVETICA_BOLDOBLIQUE10_100DPI.DECW$FONT;1
HELVETICA_BOLDOBLIQUE12_100DPI.DECW$FONT;1 HELVETICA_BOLDOBLIQUE14_100DPI.DECW$FONT;1
HELVETICA_BOLDOBLIQUE18_100DPI.DECW$FONT;1 HELVETICA_BOLDOBLIQUE24_100DPI.DECW$FONT;1
HELVETICA_BOLDOBLIQUE8_100DPI.DECW$FONT;1 HELVETICA_OBLIQUE10_100DPI.DECW$FONT;1
HELVETICA_OBLIQUE12_100DPI.DECW$FONT;1 HELVETICA_OBLIQUE14_100DPI.DECW$FONT;1
HELVETICA_OBLIQUE18_100DPI.DECW$FONT;1 HELVETICA_OBLIQUE24_100DPI.DECW$FONT;1
HELVETICA_OBLIQUE8_100DPI.DECW$FONT;1 INTERIM_DM_EXTENSION14_100DPI.DECW$FONT;1
INTERIM_DM_ITALIC14_100DPI.DECW$FONT;1 INTERIM_DM_SYMBOL14_100DPI.DECW$FONT;1
LUBALINGRAPH_BOOK10_100DPI.DECW$FONT;1 LUBALINGRAPH_BOOK12_100DPI.DECW$FONT;1
LUBALINGRAPH_BOOK14_100DPI.DECW$FONT;1 LUBALINGRAPH_BOOK18_100DPI.DECW$FONT;1
LUBALINGRAPH_BOOK24_100DPI.DECW$FONT;1 LUBALINGRAPH_BOOK8_100DPI.DECW$FONT;1
LUBALINGRAPH_BOOKOBLIQUE10_100DPI.DECW$FONT;1 LUBALINGRAPH_BOOKOBLIQUE12_100DPI.DECW$FONT;1
LUBALINGRAPH_BOOKOBLIQUE14_100DPI.DECW$FONT;1 LUBALINGRAPH_BOOKOBLIQUE18_100DPI.DECW$FONT;1
LUBALINGRAPH_BOOKOBLIQUE24_100DPI.DECW$FONT;1 LUBALINGRAPH_BOOKOBLIQUE8_100DPI.DECW$FONT;1
LUBALINGRAPH_DEMI10_100DPI.DECW$FONT;1 LUBALINGRAPH_DEMI12_100DPI.DECW$FONT;1
LUBALINGRAPH_DEMI14_100DPI.DECW$FONT;1 LUBALINGRAPH_DEMI18_100DPI.DECW$FONT;1
LUBALINGRAPH_DEMI24_100DPI.DECW$FONT;1 LUBALINGRAPH_DEMI8_100DPI.DECW$FONT;1
LUBALINGRAPH_DEMIOBLIQUE10_100DPI.DECW$FONT;1 LUBALINGRAPH_DEMIOBLIQUE12_100DPI.DECW$FONT;1
LUBALINGRAPH_DEMIOBLIQUE14_100DPI.DECW$FONT;1 LUBALINGRAPH_DEMIOBLIQUE18_100DPI.DECW$FONT;1
LUBALINGRAPH_DEMIOBLIQUE24_100DPI.DECW$FONT;1 LUBALINGRAPH_DEMIOBLIQUE8_100DPI.DECW$FONT;1
LUCIDABRIGHT08_100DPI.DECW$FONT;1 LUCIDABRIGHT10_100DPI.DECW$FONT;1
LUCIDABRIGHT12_100DPI.DECW$FONT;1 LUCIDABRIGHT14_100DPI.DECW$FONT;1
LUCIDABRIGHT18_100DPI.DECW$FONT;1 LUCIDABRIGHT19_100DPI.DECW$FONT;1
LUCIDABRIGHT24_100DPI.DECW$FONT;1 LUCIDABRIGHT_DEMI08_100DPI.DECW$FONT;1
LUCIDABRIGHT_DEMI10_100DPI.DECW$FONT;1 LUCIDABRIGHT_DEMI12_100DPI.DECW$FONT;1
LUCIDABRIGHT_DEMI14_100DPI.DECW$FONT;1 LUCIDABRIGHT_DEMI18_100DPI.DECW$FONT;1
LUCIDABRIGHT_DEMI19_100DPI.DECW$FONT;1 LUCIDABRIGHT_DEMI24_100DPI.DECW$FONT;1
LUCIDABRIGHT_DEMIITALIC08_100DPI.DECW$FONT;1 LUCIDABRIGHT_DEMIITALIC10_100DPI.DECW$FONT;1
LUCIDABRIGHT_DEMIITALIC12_100DPI.DECW$FONT;1 LUCIDABRIGHT_DEMIITALIC14_100DPI.DECW$FONT;1
LUCIDABRIGHT_DEMIITALIC18_100DPI.DECW$FONT;1 LUCIDABRIGHT_DEMIITALIC19_100DPI.DECW$FONT;1
LUCIDABRIGHT_DEMIITALIC24_100DPI.DECW$FONT;1 LUCIDABRIGHT_ITALIC08_100DPI.DECW$FONT;1
LUCIDABRIGHT_ITALIC10_100DPI.DECW$FONT;1 LUCIDABRIGHT_ITALIC12_100DPI.DECW$FONT;1
LUCIDABRIGHT_ITALIC14_100DPI.DECW$FONT;1 LUCIDABRIGHT_ITALIC18_100DPI.DECW$FONT;1
LUCIDABRIGHT_ITALIC19_100DPI.DECW$FONT;1 LUCIDABRIGHT_ITALIC24_100DPI.DECW$FONT;1
LUCIDATYPEWRITER_BOLDSANS08_100DPI.DECW$FONT;1 LUCIDATYPEWRITER_BOLDSANS10_100DPI.DECW$FONT;1
LUCIDATYPEWRITER_BOLDSANS12_100DPI.DECW$FONT;1 LUCIDATYPEWRITER_BOLDSANS14_100DPI.DECW$FONT;1
LUCIDATYPEWRITER_BOLDSANS18_100DPI.DECW$FONT;1 LUCIDATYPEWRITER_BOLDSANS19_100DPI.DECW$FONT;1
LUCIDATYPEWRITER_BOLDSANS24_100DPI.DECW$FONT;1 LUCIDATYPEWRITER_SANS08_100DPI.DECW$FONT;1
LUCIDATYPEWRITER_SANS10_100DPI.DECW$FONT;1 LUCIDATYPEWRITER_SANS12_100DPI.DECW$FONT;1
LUCIDATYPEWRITER_SANS14_100DPI.DECW$FONT;1 LUCIDATYPEWRITER_SANS18_100DPI.DECW$FONT;1
LUCIDATYPEWRITER_SANS19_100DPI.DECW$FONT;1 LUCIDATYPEWRITER_SANS24_100DPI.DECW$FONT;1
LUCIDA_BOLDITALICSANS08_100DPI.DECW$FONT;1 LUCIDA_BOLDITALICSANS10_100DPI.DECW$FONT;1
LUCIDA_BOLDITALICSANS12_100DPI.DECW$FONT;1 LUCIDA_BOLDITALICSANS14_100DPI.DECW$FONT;1
LUCIDA_BOLDITALICSANS18_100DPI.DECW$FONT;1 LUCIDA_BOLDITALICSANS19_100DPI.DECW$FONT;1
LUCIDA_BOLDITALICSANS24_100DPI.DECW$FONT;1 LUCIDA_BOLDSANS08_100DPI.DECW$FONT;1
LUCIDA_BOLDSANS10_100DPI.DECW$FONT;1 LUCIDA_BOLDSANS12_100DPI.DECW$FONT;1
LUCIDA_BOLDSANS14_100DPI.DECW$FONT;1 LUCIDA_BOLDSANS18_100DPI.DECW$FONT;1
LUCIDA_BOLDSANS19_100DPI.DECW$FONT;1 LUCIDA_BOLDSANS24_100DPI.DECW$FONT;1
LUCIDA_ITALICSANS08_100DPI.DECW$FONT;1 LUCIDA_ITALICSANS10_100DPI.DECW$FONT;1
LUCIDA_ITALICSANS12_100DPI.DECW$FONT;1 LUCIDA_ITALICSANS14_100DPI.DECW$FONT;1
LUCIDA_ITALICSANS18_100DPI.DECW$FONT;1 LUCIDA_ITALICSANS19_100DPI.DECW$FONT;1
LUCIDA_ITALICSANS24_100DPI.DECW$FONT;1 LUCIDA_SANS08_100DPI.DECW$FONT;1

B–10 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

LUCIDA_SANS10_100DPI.DECW$FONT;1 LUCIDA_SANS12_100DPI.DECW$FONT;1
LUCIDA_SANS14_100DPI.DECW$FONT;1 LUCIDA_SANS18_100DPI.DECW$FONT;1
LUCIDA_SANS19_100DPI.DECW$FONT;1 LUCIDA_SANS24_100DPI.DECW$FONT;1
MENU10_100DPI.DECW$FONT;1 MENU12_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_BOLD10_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_BOLD12_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_BOLD14_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_BOLD18_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_BOLD24_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_BOLD8_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_BOLDITALIC10_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_BOLDITALIC12_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_BOLDITALIC14_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_BOLDITALIC18_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_BOLDITALIC24_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_BOLDITALIC8_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_ITALIC10_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_ITALIC12_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_ITALIC14_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_ITALIC18_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_ITALIC24_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_ITALIC8_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_ROMAN10_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_ROMAN12_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_ROMAN14_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_ROMAN18_100DPI.DECW$FONT;1
NEWCENTURYSCHLBK_ROMAN24_100DPI.DECW$FONT;1 NEWCENTURYSCHLBK_ROMAN8_100DPI.DECW$FONT;1
PRESENT_BULLETS10_100.DECW$FONT;1 PRESENT_BULLETS12_100.DECW$FONT;1
PRESENT_BULLETS14_100.DECW$FONT;1 PRESENT_BULLETS18_100.DECW$FONT;1
PRESENT_BULLETS24_100.DECW$FONT;1 PRESENT_BULLETS36_100.DECW$FONT;1
PRESENT_BULLETS48_100.DECW$FONT;1 PRESENT_BULLETS72_100.DECW$FONT;1
PRESENT_BULLETS8_100.DECW$FONT;1 SOUVENIR_DEMI10_100DPI.DECW$FONT;1
SOUVENIR_DEMI12_100DPI.DECW$FONT;1 SOUVENIR_DEMI14_100DPI.DECW$FONT;1
SOUVENIR_DEMI18_100DPI.DECW$FONT;1 SOUVENIR_DEMI24_100DPI.DECW$FONT;1
SOUVENIR_DEMI8_100DPI.DECW$FONT;1 SOUVENIR_DEMIITALIC10_100DPI.DECW$FONT;1
SOUVENIR_DEMIITALIC12_100DPI.DECW$FONT;1 SOUVENIR_DEMIITALIC14_100DPI.DECW$FONT;1
SOUVENIR_DEMIITALIC18_100DPI.DECW$FONT;1 SOUVENIR_DEMIITALIC24_100DPI.DECW$FONT;1
SOUVENIR_DEMIITALIC8_100DPI.DECW$FONT;1 SOUVENIR_LIGHT10_100DPI.DECW$FONT;1
SOUVENIR_LIGHT12_100DPI.DECW$FONT;1 SOUVENIR_LIGHT14_100DPI.DECW$FONT;1
SOUVENIR_LIGHT18_100DPI.DECW$FONT;1 SOUVENIR_LIGHT24_100DPI.DECW$FONT;1
SOUVENIR_LIGHT8_100DPI.DECW$FONT;1 SOUVENIR_LIGHTITALIC10_100DPI.DECW$FONT;1
SOUVENIR_LIGHTITALIC12_100DPI.DECW$FONT;1 SOUVENIR_LIGHTITALIC14_100DPI.DECW$FONT;1
SOUVENIR_LIGHTITALIC18_100DPI.DECW$FONT;1 SOUVENIR_LIGHTITALIC24_100DPI.DECW$FONT;1
SOUVENIR_LIGHTITALIC8_100DPI.DECW$FONT;1 SYMBOL10_100DPI.DECW$FONT;1
SYMBOL12_100DPI.DECW$FONT;1 SYMBOL14_100DPI.DECW$FONT;1
SYMBOL18_100DPI.DECW$FONT;1 SYMBOL24_100DPI.DECW$FONT;1
SYMBOL8_100DPI.DECW$FONT;1 TERMINAL10_100DPI.DECW$FONT;1
TERMINAL14_100DPI.DECW$FONT;1 TERMINAL18_100DPI.DECW$FONT;1
TERMINAL20_100DPI.DECW$FONT;1 TERMINAL28_100DPI.DECW$FONT;1
TERMINAL36_100DPI.DECW$FONT;1 TERMINAL_BOLD10_100DPI.DECW$FONT;1
TERMINAL_BOLD14_100DPI.DECW$FONT;1 TERMINAL_BOLD18_100DPI.DECW$FONT;1
TERMINAL_BOLD20_100DPI.DECW$FONT;1 TERMINAL_BOLD28_100DPI.DECW$FONT;1
TERMINAL_BOLD36_100DPI.DECW$FONT;1 TERMINAL_BOLD_DBLWIDE10_100DPI.DECW$FONT;1
TERMINAL_BOLD_DBLWIDE14_100DPI.DECW$FONT;1 TERMINAL_BOLD_DBLWIDE18_100DPI.DECW$FONT;1
TERMINAL_BOLD_DBLWIDE_DECTECH10_100DPI.DECW$FONT;1 TERMINAL_BOLD_DBLWIDE_DECTECH14_100DPI.DECW$FONT;1
TERMINAL_BOLD_DBLWIDE_DECTECH18_100DPI.DECW$FONT;1 TERMINAL_BOLD_DECTECH10_100DPI.DECW$FONT;1
TERMINAL_BOLD_DECTECH14_100DPI.DECW$FONT;1 TERMINAL_BOLD_DECTECH18_100DPI.DECW$FONT;1
TERMINAL_BOLD_DECTECH20_100DPI.DECW$FONT;1 TERMINAL_BOLD_DECTECH28_100DPI.DECW$FONT;1
TERMINAL_BOLD_DECTECH36_100DPI.DECW$FONT;1 TERMINAL_BOLD_NARROW10_100DPI.DECW$FONT;1
TERMINAL_BOLD_NARROW14_100DPI.DECW$FONT;1 TERMINAL_BOLD_NARROW18_100DPI.DECW$FONT;1
TERMINAL_BOLD_NARROW20_100DPI.DECW$FONT;1 TERMINAL_BOLD_NARROW28_100DPI.DECW$FONT;1
TERMINAL_BOLD_NARROW36_100DPI.DECW$FONT;1 TERMINAL_BOLD_NARROW_DECTECH10_100DPI.DECW$FONT;1
TERMINAL_BOLD_NARROW_DECTECH14_100DPI.DECW$FONT;1 TERMINAL_BOLD_NARROW_DECTECH18_100DPI.DECW$FONT;1
TERMINAL_BOLD_NARROW_DECTECH20_100DPI.DECW$FONT;1 TERMINAL_BOLD_NARROW_DECTECH28_100DPI.DECW$FONT;1
TERMINAL_BOLD_NARROW_DECTECH36_100DPI.DECW$FONT;1 TERMINAL_BOLD_WIDE10_100DPI.DECW$FONT;1
TERMINAL_BOLD_WIDE14_100DPI.DECW$FONT;1 TERMINAL_BOLD_WIDE18_100DPI.DECW$FONT;1
TERMINAL_BOLD_WIDE_DECTECH10_100DPI.DECW$FONT;1 TERMINAL_BOLD_WIDE_DECTECH14_100DPI.DECW$FONT;1
TERMINAL_BOLD_WIDE_DECTECH18_100DPI.DECW$FONT;1 TERMINAL_DBLWIDE10_100DPI.DECW$FONT;1
TERMINAL_DBLWIDE14_100DPI.DECW$FONT;1 TERMINAL_DBLWIDE18_100DPI.DECW$FONT;1
TERMINAL_DBLWIDE_DECTECH10_100DPI.DECW$FONT;1 TERMINAL_DBLWIDE_DECTECH14_100DPI.DECW$FONT;1
TERMINAL_DBLWIDE_DECTECH18_100DPI.DECW$FONT;1 TERMINAL_DECTECH10_100DPI.DECW$FONT;1
TERMINAL_DECTECH14_100DPI.DECW$FONT;1 TERMINAL_DECTECH18_100DPI.DECW$FONT;1
TERMINAL_DECTECH20_100DPI.DECW$FONT;1 TERMINAL_DECTECH28_100DPI.DECW$FONT;1
TERMINAL_DECTECH36_100DPI.DECW$FONT;1 TERMINAL_GS10_100DPI.DECW$FONT;1
TERMINAL_GS14_100DPI.DECW$FONT;1 TERMINAL_NARROW10_100DPI.DECW$FONT;1
TERMINAL_NARROW14_100DPI.DECW$FONT;1 TERMINAL_NARROW18_100DPI.DECW$FONT;1
TERMINAL_NARROW20_100DPI.DECW$FONT;1 TERMINAL_NARROW28_100DPI.DECW$FONT;1
TERMINAL_NARROW36_100DPI.DECW$FONT;1 TERMINAL_NARROW_DECTECH10_100DPI.DECW$FONT;1

Protection for OpenVMS VAX System Files B–11

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

TERMINAL_NARROW_DECTECH14_100DPI.DECW$FONT;1 TERMINAL_NARROW_DECTECH18_100DPI.DECW$FONT;1
TERMINAL_NARROW_DECTECH20_100DPI.DECW$FONT;1 TERMINAL_NARROW_DECTECH28_100DPI.DECW$FONT;1
TERMINAL_NARROW_DECTECH36_100DPI.DECW$FONT;1 TERMINAL_WIDE10_100DPI.DECW$FONT;1
TERMINAL_WIDE14_100DPI.DECW$FONT;1 TERMINAL_WIDE18_100DPI.DECW$FONT;1
TERMINAL_WIDE_DECTECH10_100DPI.DECW$FONT;1 TERMINAL_WIDE_DECTECH14_100DPI.DECW$FONT;1
TERMINAL_WIDE_DECTECH18_100DPI.DECW$FONT;1 TIMES_BOLD10_100DPI.DECW$FONT;1
TIMES_BOLD12_100DPI.DECW$FONT;1 TIMES_BOLD14_100DPI.DECW$FONT;1
TIMES_BOLD18_100DPI.DECW$FONT;1 TIMES_BOLD24_100DPI.DECW$FONT;1
TIMES_BOLD8_100DPI.DECW$FONT;1 TIMES_BOLDITALIC10_100DPI.DECW$FONT;1
TIMES_BOLDITALIC12_100DPI.DECW$FONT;1 TIMES_BOLDITALIC14_100DPI.DECW$FONT;1
TIMES_BOLDITALIC18_100DPI.DECW$FONT;1 TIMES_BOLDITALIC24_100DPI.DECW$FONT;1
TIMES_BOLDITALIC8_100DPI.DECW$FONT;1 TIMES_ITALIC10_100DPI.DECW$FONT;1
TIMES_ITALIC12_100DPI.DECW$FONT;1 TIMES_ITALIC14_100DPI.DECW$FONT;1
TIMES_ITALIC18_100DPI.DECW$FONT;1 TIMES_ITALIC24_100DPI.DECW$FONT;1
TIMES_ITALIC8_100DPI.DECW$FONT;1 TIMES_ROMAN10_100DPI.DECW$FONT;1
TIMES_ROMAN12_100DPI.DECW$FONT;1 TIMES_ROMAN14_100DPI.DECW$FONT;1
TIMES_ROMAN18_100DPI.DECW$FONT;1 TIMES_ROMAN24_100DPI.DECW$FONT;1
TIMES_ROMAN8_100DPI.DECW$FONT;1 VARIABLE_100DPI.DECW$FONT;1

Total of 350 files.

B.2.10 Files in DECW.75DPI
The directory DECW.75DPI contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.DECW.75DPI]

AVANTGARDE_BOOK10.DECW$FONT;1 AVANTGARDE_BOOK12.DECW$FONT;1
AVANTGARDE_BOOK14.DECW$FONT;1 AVANTGARDE_BOOK18.DECW$FONT;1
AVANTGARDE_BOOK24.DECW$FONT;1 AVANTGARDE_BOOK8.DECW$FONT;1
AVANTGARDE_BOOKOBLIQUE10.DECW$FONT;1 AVANTGARDE_BOOKOBLIQUE12.DECW$FONT;1
AVANTGARDE_BOOKOBLIQUE14.DECW$FONT;1 AVANTGARDE_BOOKOBLIQUE18.DECW$FONT;1
AVANTGARDE_BOOKOBLIQUE24.DECW$FONT;1 AVANTGARDE_BOOKOBLIQUE8.DECW$FONT;1
AVANTGARDE_DEMI10.DECW$FONT;1 AVANTGARDE_DEMI12.DECW$FONT;1
AVANTGARDE_DEMI14.DECW$FONT;1 AVANTGARDE_DEMI18.DECW$FONT;1
AVANTGARDE_DEMI24.DECW$FONT;1 AVANTGARDE_DEMI8.DECW$FONT;1
AVANTGARDE_DEMIOBLIQUE10.DECW$FONT;1 AVANTGARDE_DEMIOBLIQUE12.DECW$FONT;1
AVANTGARDE_DEMIOBLIQUE14.DECW$FONT;1 AVANTGARDE_DEMIOBLIQUE18.DECW$FONT;1
AVANTGARDE_DEMIOBLIQUE24.DECW$FONT;1 AVANTGARDE_DEMIOBLIQUE8.DECW$FONT;1
COURIER10.DECW$FONT;1 COURIER12.DECW$FONT;1
COURIER14.DECW$FONT;1 COURIER18.DECW$FONT;1
COURIER24.DECW$FONT;1 COURIER8.DECW$FONT;1
COURIER_BOLD10.DECW$FONT;1 COURIER_BOLD12.DECW$FONT;1
COURIER_BOLD14.DECW$FONT;1 COURIER_BOLD18.DECW$FONT;1
COURIER_BOLD24.DECW$FONT;1 COURIER_BOLD8.DECW$FONT;1
COURIER_BOLDOBLIQUE10.DECW$FONT;1 COURIER_BOLDOBLIQUE12.DECW$FONT;1
COURIER_BOLDOBLIQUE14.DECW$FONT;1 COURIER_BOLDOBLIQUE18.DECW$FONT;1
COURIER_BOLDOBLIQUE24.DECW$FONT;1 COURIER_BOLDOBLIQUE8.DECW$FONT;1
COURIER_OBLIQUE10.DECW$FONT;1 COURIER_OBLIQUE12.DECW$FONT;1
COURIER_OBLIQUE14.DECW$FONT;1 COURIER_OBLIQUE18.DECW$FONT;1
COURIER_OBLIQUE24.DECW$FONT;1 COURIER_OBLIQUE8.DECW$FONT;1
DECW$FONT_ALIAS.DAT;1 DECW$FONT_DIRECTORY.DAT;1
DECW$SESSION.DECW$FONT;1 DUTCH801_DECMATH_EXTENSION10.DECW$FONT;1
DUTCH801_DECMATH_EXTENSION12.DECW$FONT;1 DUTCH801_DECMATH_EXTENSION14.DECW$FONT;1
DUTCH801_DECMATH_EXTENSION8.DECW$FONT;1 DUTCH801_DECMATH_ITALIC10.DECW$FONT;1
DUTCH801_DECMATH_ITALIC12.DECW$FONT;1 DUTCH801_DECMATH_ITALIC14.DECW$FONT;1
DUTCH801_DECMATH_ITALIC8.DECW$FONT;1 DUTCH801_DECMATH_SYMBOL10.DECW$FONT;1
DUTCH801_DECMATH_SYMBOL12.DECW$FONT;1 DUTCH801_DECMATH_SYMBOL14.DECW$FONT;1
DUTCH801_DECMATH_SYMBOL8.DECW$FONT;1 FIXED.DECW$FONT;1
HELVETICA10.DECW$FONT;1 HELVETICA12.DECW$FONT;1
HELVETICA14.DECW$FONT;1 HELVETICA18.DECW$FONT;1
HELVETICA24.DECW$FONT;1 HELVETICA8.DECW$FONT;1
HELVETICA_BOLD10.DECW$FONT;1 HELVETICA_BOLD12.DECW$FONT;1
HELVETICA_BOLD14.DECW$FONT;1 HELVETICA_BOLD18.DECW$FONT;1
HELVETICA_BOLD24.DECW$FONT;1 HELVETICA_BOLD8.DECW$FONT;1

B–12 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

HELVETICA_BOLDOBLIQUE10.DECW$FONT;1 HELVETICA_BOLDOBLIQUE12.DECW$FONT;1
HELVETICA_BOLDOBLIQUE14.DECW$FONT;1 HELVETICA_BOLDOBLIQUE18.DECW$FONT;1
HELVETICA_BOLDOBLIQUE24.DECW$FONT;1 HELVETICA_BOLDOBLIQUE8.DECW$FONT;1
HELVETICA_OBLIQUE10.DECW$FONT;1 HELVETICA_OBLIQUE12.DECW$FONT;1
HELVETICA_OBLIQUE14.DECW$FONT;1 HELVETICA_OBLIQUE18.DECW$FONT;1
HELVETICA_OBLIQUE24.DECW$FONT;1 HELVETICA_OBLIQUE8.DECW$FONT;1
INTERIM_DM_EXTENSION14.DECW$FONT;1 INTERIM_DM_ITALIC14.DECW$FONT;1
INTERIM_DM_SYMBOL14.DECW$FONT;1 LUBALINGRAPH_BOOK10.DECW$FONT;1
LUBALINGRAPH_BOOK12.DECW$FONT;1 LUBALINGRAPH_BOOK14.DECW$FONT;1
LUBALINGRAPH_BOOK18.DECW$FONT;1 LUBALINGRAPH_BOOK24.DECW$FONT;1
LUBALINGRAPH_BOOK8.DECW$FONT;1 LUBALINGRAPH_BOOKOBLIQUE10.DECW$FONT;1
LUBALINGRAPH_BOOKOBLIQUE12.DECW$FONT;1 LUBALINGRAPH_BOOKOBLIQUE14.DECW$FONT;1
LUBALINGRAPH_BOOKOBLIQUE18.DECW$FONT;1 LUBALINGRAPH_BOOKOBLIQUE24.DECW$FONT;1
LUBALINGRAPH_BOOKOBLIQUE8.DECW$FONT;1 LUBALINGRAPH_DEMI10.DECW$FONT;1
LUBALINGRAPH_DEMI12.DECW$FONT;1 LUBALINGRAPH_DEMI14.DECW$FONT;1
LUBALINGRAPH_DEMI18.DECW$FONT;1 LUBALINGRAPH_DEMI24.DECW$FONT;1
LUBALINGRAPH_DEMI8.DECW$FONT;1 LUBALINGRAPH_DEMIOBLIQUE10.DECW$FONT;1
LUBALINGRAPH_DEMIOBLIQUE12.DECW$FONT;1 LUBALINGRAPH_DEMIOBLIQUE14.DECW$FONT;1
LUBALINGRAPH_DEMIOBLIQUE18.DECW$FONT;1 LUBALINGRAPH_DEMIOBLIQUE24.DECW$FONT;1
LUBALINGRAPH_DEMIOBLIQUE8.DECW$FONT;1 LUCIDABRIGHT08.DECW$FONT;1
LUCIDABRIGHT10.DECW$FONT;1 LUCIDABRIGHT12.DECW$FONT;1
LUCIDABRIGHT14.DECW$FONT;1 LUCIDABRIGHT18.DECW$FONT;1
LUCIDABRIGHT19.DECW$FONT;1 LUCIDABRIGHT24.DECW$FONT;1
LUCIDABRIGHT_DEMI08.DECW$FONT;1 LUCIDABRIGHT_DEMI10.DECW$FONT;1
LUCIDABRIGHT_DEMI12.DECW$FONT;1 LUCIDABRIGHT_DEMI14.DECW$FONT;1
LUCIDABRIGHT_DEMI18.DECW$FONT;1 LUCIDABRIGHT_DEMI19.DECW$FONT;1
LUCIDABRIGHT_DEMI24.DECW$FONT;1 LUCIDABRIGHT_DEMIITALIC08.DECW$FONT;1
LUCIDABRIGHT_DEMIITALIC10.DECW$FONT;1 LUCIDABRIGHT_DEMIITALIC12.DECW$FONT;1
LUCIDABRIGHT_DEMIITALIC14.DECW$FONT;1 LUCIDABRIGHT_DEMIITALIC18.DECW$FONT;1
LUCIDABRIGHT_DEMIITALIC19.DECW$FONT;1 LUCIDABRIGHT_DEMIITALIC24.DECW$FONT;1
LUCIDABRIGHT_ITALIC08.DECW$FONT;1 LUCIDABRIGHT_ITALIC10.DECW$FONT;1
LUCIDABRIGHT_ITALIC12.DECW$FONT;1 LUCIDABRIGHT_ITALIC14.DECW$FONT;1
LUCIDABRIGHT_ITALIC18.DECW$FONT;1 LUCIDABRIGHT_ITALIC19.DECW$FONT;1
LUCIDABRIGHT_ITALIC24.DECW$FONT;1 LUCIDATYPEWRITER_BOLDSANS08.DECW$FONT;1
LUCIDATYPEWRITER_BOLDSANS10.DECW$FONT;1 LUCIDATYPEWRITER_BOLDSANS12.DECW$FONT;1
LUCIDATYPEWRITER_BOLDSANS14.DECW$FONT;1 LUCIDATYPEWRITER_BOLDSANS18.DECW$FONT;1
LUCIDATYPEWRITER_BOLDSANS19.DECW$FONT;1 LUCIDATYPEWRITER_BOLDSANS24.DECW$FONT;1
LUCIDATYPEWRITER_SANS08.DECW$FONT;1 LUCIDATYPEWRITER_SANS10.DECW$FONT;1
LUCIDATYPEWRITER_SANS12.DECW$FONT;1 LUCIDATYPEWRITER_SANS14.DECW$FONT;1
LUCIDATYPEWRITER_SANS18.DECW$FONT;1 LUCIDATYPEWRITER_SANS19.DECW$FONT;1
LUCIDATYPEWRITER_SANS24.DECW$FONT;1 LUCIDA_BOLDITALICSANS08.DECW$FONT;1
LUCIDA_BOLDITALICSANS10.DECW$FONT;1 LUCIDA_BOLDITALICSANS12.DECW$FONT;1
LUCIDA_BOLDITALICSANS14.DECW$FONT;1 LUCIDA_BOLDITALICSANS18.DECW$FONT;1
LUCIDA_BOLDITALICSANS19.DECW$FONT;1 LUCIDA_BOLDITALICSANS24.DECW$FONT;1
LUCIDA_BOLDSANS08.DECW$FONT;1 LUCIDA_BOLDSANS10.DECW$FONT;1
LUCIDA_BOLDSANS12.DECW$FONT;1 LUCIDA_BOLDSANS14.DECW$FONT;1
LUCIDA_BOLDSANS18.DECW$FONT;1 LUCIDA_BOLDSANS19.DECW$FONT;1
LUCIDA_BOLDSANS24.DECW$FONT;1 LUCIDA_ITALICSANS08.DECW$FONT;1
LUCIDA_ITALICSANS10.DECW$FONT;1 LUCIDA_ITALICSANS12.DECW$FONT;1
LUCIDA_ITALICSANS14.DECW$FONT;1 LUCIDA_ITALICSANS18.DECW$FONT;1
LUCIDA_ITALICSANS19.DECW$FONT;1 LUCIDA_ITALICSANS24.DECW$FONT;1
LUCIDA_SANS08.DECW$FONT;1 LUCIDA_SANS10.DECW$FONT;1
LUCIDA_SANS12.DECW$FONT;1 LUCIDA_SANS14.DECW$FONT;1
LUCIDA_SANS18.DECW$FONT;1 LUCIDA_SANS19.DECW$FONT;1
LUCIDA_SANS24.DECW$FONT;1 MENU10.DECW$FONT;1
MENU12.DECW$FONT;1 NEWCENTURYSCHLBK_BOLD10.DECW$FONT;1
NEWCENTURYSCHLBK_BOLD12.DECW$FONT;1 NEWCENTURYSCHLBK_BOLD14.DECW$FONT;1
NEWCENTURYSCHLBK_BOLD18.DECW$FONT;1 NEWCENTURYSCHLBK_BOLD24.DECW$FONT;1
NEWCENTURYSCHLBK_BOLD8.DECW$FONT;1 NEWCENTURYSCHLBK_BOLDITALIC10.DECW$FONT;1
NEWCENTURYSCHLBK_BOLDITALIC12.DECW$FONT;1 NEWCENTURYSCHLBK_BOLDITALIC14.DECW$FONT;1
NEWCENTURYSCHLBK_BOLDITALIC18.DECW$FONT;1 NEWCENTURYSCHLBK_BOLDITALIC24.DECW$FONT;1
NEWCENTURYSCHLBK_BOLDITALIC8.DECW$FONT;1 NEWCENTURYSCHLBK_ITALIC10.DECW$FONT;1

Protection for OpenVMS VAX System Files B–13

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

NEWCENTURYSCHLBK_ITALIC12.DECW$FONT;1 NEWCENTURYSCHLBK_ITALIC14.DECW$FONT;1
NEWCENTURYSCHLBK_ITALIC18.DECW$FONT;1 NEWCENTURYSCHLBK_ITALIC24.DECW$FONT;1
NEWCENTURYSCHLBK_ITALIC8.DECW$FONT;1 NEWCENTURYSCHLBK_ROMAN10.DECW$FONT;1
NEWCENTURYSCHLBK_ROMAN12.DECW$FONT;1 NEWCENTURYSCHLBK_ROMAN14.DECW$FONT;1
NEWCENTURYSCHLBK_ROMAN18.DECW$FONT;1 NEWCENTURYSCHLBK_ROMAN24.DECW$FONT;1
NEWCENTURYSCHLBK_ROMAN8.DECW$FONT;1 PRESENT_BULLETS10_75.DECW$FONT;1
PRESENT_BULLETS12_75.DECW$FONT;1 PRESENT_BULLETS14_75.DECW$FONT;1
PRESENT_BULLETS18_75.DECW$FONT;1 PRESENT_BULLETS24_75.DECW$FONT;1
PRESENT_BULLETS36_75.DECW$FONT;1 PRESENT_BULLETS48_75.DECW$FONT;1
PRESENT_BULLETS72_75.DECW$FONT;1 PRESENT_BULLETS8_75.DECW$FONT;1
SOUVENIR_DEMI10.DECW$FONT;1 SOUVENIR_DEMI12.DECW$FONT;1
SOUVENIR_DEMI14.DECW$FONT;1 SOUVENIR_DEMI18.DECW$FONT;1
SOUVENIR_DEMI24.DECW$FONT;1 SOUVENIR_DEMI8.DECW$FONT;1
SOUVENIR_DEMIITALIC10.DECW$FONT;1 SOUVENIR_DEMIITALIC12.DECW$FONT;1
SOUVENIR_DEMIITALIC14.DECW$FONT;1 SOUVENIR_DEMIITALIC18.DECW$FONT;1
SOUVENIR_DEMIITALIC24.DECW$FONT;1 SOUVENIR_DEMIITALIC8.DECW$FONT;1
SOUVENIR_LIGHT10.DECW$FONT;1 SOUVENIR_LIGHT12.DECW$FONT;1
SOUVENIR_LIGHT14.DECW$FONT;1 SOUVENIR_LIGHT18.DECW$FONT;1
SOUVENIR_LIGHT24.DECW$FONT;1 SOUVENIR_LIGHT8.DECW$FONT;1
SOUVENIR_LIGHTITALIC10.DECW$FONT;1 SOUVENIR_LIGHTITALIC12.DECW$FONT;1
SOUVENIR_LIGHTITALIC14.DECW$FONT;1 SOUVENIR_LIGHTITALIC18.DECW$FONT;1
SOUVENIR_LIGHTITALIC24.DECW$FONT;1 SOUVENIR_LIGHTITALIC8.DECW$FONT;1
SYMBOL10.DECW$FONT;1 SYMBOL12.DECW$FONT;1
SYMBOL14.DECW$FONT;1 SYMBOL18.DECW$FONT;1
SYMBOL24.DECW$FONT;1 SYMBOL8.DECW$FONT;1
TERMINAL14.DECW$FONT;1 TERMINAL18.DECW$FONT;1
TERMINAL28.DECW$FONT;1 TERMINAL36.DECW$FONT;1
TERMINAL_BOLD14.DECW$FONT;1 TERMINAL_BOLD18.DECW$FONT;1
TERMINAL_BOLD28.DECW$FONT;1 TERMINAL_BOLD36.DECW$FONT;1
TERMINAL_BOLD_DBLWIDE14.DECW$FONT;1 TERMINAL_BOLD_DBLWIDE18.DECW$FONT;1
TERMINAL_BOLD_DBLWIDE_DECTECH14.DECW$FONT;1 TERMINAL_BOLD_DBLWIDE_DECTECH18.DECW$FONT;1
TERMINAL_BOLD_DECTECH14.DECW$FONT;1 TERMINAL_BOLD_DECTECH18.DECW$FONT;1
TERMINAL_BOLD_DECTECH28.DECW$FONT;1 TERMINAL_BOLD_DECTECH36.DECW$FONT;1
TERMINAL_BOLD_NARROW14.DECW$FONT;1 TERMINAL_BOLD_NARROW18.DECW$FONT;1
TERMINAL_BOLD_NARROW28.DECW$FONT;1 TERMINAL_BOLD_NARROW36.DECW$FONT;1
TERMINAL_BOLD_NARROW_DECTECH14.DECW$FONT;1 TERMINAL_BOLD_NARROW_DECTECH18.DECW$FONT;1
TERMINAL_BOLD_NARROW_DECTECH28.DECW$FONT;1 TERMINAL_BOLD_NARROW_DECTECH36.DECW$FONT;1
TERMINAL_BOLD_WIDE14.DECW$FONT;1 TERMINAL_BOLD_WIDE18.DECW$FONT;1
TERMINAL_BOLD_WIDE_DECTECH14.DECW$FONT;1 TERMINAL_BOLD_WIDE_DECTECH18.DECW$FONT;1
TERMINAL_DBLWIDE14.DECW$FONT;1 TERMINAL_DBLWIDE18.DECW$FONT;1
TERMINAL_DBLWIDE_DECTECH14.DECW$FONT;1 TERMINAL_DBLWIDE_DECTECH18.DECW$FONT;1
TERMINAL_DECTECH14.DECW$FONT;1 TERMINAL_DECTECH18.DECW$FONT;1
TERMINAL_DECTECH28.DECW$FONT;1 TERMINAL_DECTECH36.DECW$FONT;1
TERMINAL_GS14.DECW$FONT;1 TERMINAL_GS18.DECW$FONT;1
TERMINAL_NARROW14.DECW$FONT;1 TERMINAL_NARROW18.DECW$FONT;1
TERMINAL_NARROW28.DECW$FONT;1 TERMINAL_NARROW36.DECW$FONT;1
TERMINAL_NARROW_DECTECH14.DECW$FONT;1 TERMINAL_NARROW_DECTECH18.DECW$FONT;1
TERMINAL_NARROW_DECTECH28.DECW$FONT;1 TERMINAL_NARROW_DECTECH36.DECW$FONT;1
TERMINAL_WIDE14.DECW$FONT;1 TERMINAL_WIDE18.DECW$FONT;1
TERMINAL_WIDE_DECTECH14.DECW$FONT;1 TERMINAL_WIDE_DECTECH18.DECW$FONT;1
TIMES_BOLD10.DECW$FONT;1 TIMES_BOLD12.DECW$FONT;1
TIMES_BOLD14.DECW$FONT;1 TIMES_BOLD18.DECW$FONT;1
TIMES_BOLD24.DECW$FONT;1 TIMES_BOLD8.DECW$FONT;1
TIMES_BOLDITALIC10.DECW$FONT;1 TIMES_BOLDITALIC12.DECW$FONT;1
TIMES_BOLDITALIC14.DECW$FONT;1 TIMES_BOLDITALIC18.DECW$FONT;1
TIMES_BOLDITALIC24.DECW$FONT;1 TIMES_BOLDITALIC8.DECW$FONT;1
TIMES_ITALIC10.DECW$FONT;1 TIMES_ITALIC12.DECW$FONT;1
TIMES_ITALIC14.DECW$FONT;1 TIMES_ITALIC18.DECW$FONT;1
TIMES_ITALIC24.DECW$FONT;1 TIMES_ITALIC8.DECW$FONT;1
TIMES_ROMAN10.DECW$FONT;1 TIMES_ROMAN12.DECW$FONT;1
TIMES_ROMAN14.DECW$FONT;1 TIMES_ROMAN18.DECW$FONT;1
TIMES_ROMAN24.DECW$FONT;1 TIMES_ROMAN8.DECW$FONT;1
VARIABLE.DECW$FONT;1

Total of 325 files.

B–14 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

B.2.11 Files in SYSFONT.DECW.COMMON
The directory SYSFONT.DECW.COMMON contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.DECW.COMMON]

10X20.DECW$FONT;1 12X24.DECW$FONT;1
5X8.DECW$FONT;1 6X10.DECW$FONT;1
6X12.DECW$FONT;1 6X13.DECW$FONT;1
6X13B.DECW$FONT;1 6X9.DECW$FONT;1
7X13.DECW$FONT;1 7X13B.DECW$FONT;1
7X14.DECW$FONT;1 8X13.DECW$FONT;1
8X13B.DECW$FONT;1 8X16.DECW$FONT;1
9X15.DECW$FONT;1 9X15B.DECW$FONT;1
DECW$FONT_ALIAS_COMMON.DAT;1 DECW$FONT_DIRECTORY_COMMON.DAT;1
OLGL10.DECW$FONT;1 OLGL12.DECW$FONT;1
OLGL14.DECW$FONT;1 OLGL19.DECW$FONT;1
VT33018.DECW$FONT;1 VT33036.DECW$FONT;1
VT330_BOLD18.DECW$FONT;1 VT330_BOLD36.DECW$FONT;1
VT330_BOLD_DBLWIDE18.DECW$FONT;1 VT330_BOLD_DBLWIDE_DECTECH18.DECW$FONT;1
VT330_BOLD_DECTECH18.DECW$FONT;1 VT330_BOLD_DECTECH36.DECW$FONT;1
VT330_BOLD_NARROW18.DECW$FONT;1 VT330_BOLD_NARROW36.DECW$FONT;1
VT330_BOLD_NARROW_DECTECH18.DECW$FONT;1 VT330_BOLD_NARROW_DECTECH36.DECW$FONT;1
VT330_BOLD_WIDE18.DECW$FONT;1 VT330_BOLD_WIDE_DECTECH18.DECW$FONT;1
VT330_DBLWIDE18.DECW$FONT;1 VT330_DBLWIDE_DECTECH18.DECW$FONT;1
VT330_DECTECH18.DECW$FONT;1 VT330_DECTECH36.DECW$FONT;1
VT330_NARROW18.DECW$FONT;1 VT330_NARROW36.DECW$FONT;1
VT330_NARROW_DECTECH18.DECW$FONT;1 VT330_NARROW_DECTECH36.DECW$FONT;1
VT330_WIDE18.DECW$FONT;1 VT330_WIDE_DECTECH18.DECW$FONT;1

Total of 46 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.DECW.CURSOR16]

CURSOR.DECW$FONT;1 DECW$CURSOR.DECW$FONT;1
DECW$FONT_DIRECTORY_CURSOR16.DAT;1 OLCURSOR.DECW$FONT;1

Total of 4 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.DECW.CURSOR32]

DECW$C32X32.DECW$FONT;1 DECW$FONT_DIRECTORY_CURSOR32.DAT;1

Total of 2 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.PS_FONT_METRICS]

SYSTEM.DIR;1 USER.DIR;1

Total of 2 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.PS_FONT_METRICS.SYSTEM]

AVANTGARDE_BOOK.AFM;1 AVANTGARDE_BOOKOBLIQUE.AFM;1
AVANTGARDE_BOOKOBLIQUE_ISOLATIN1.AFM;1 AVANTGARDE_BOOK_ISOLATIN1.AFM;1
AVANTGARDE_DEMI.AFM;1 AVANTGARDE_DEMIOBLIQUE.AFM;1
AVANTGARDE_DEMIOBLIQUE_ISOLATIN1.AFM;1 AVANTGARDE_DEMI_ISOLATIN1.AFM;1
COURIER.AFM;1 COURIER_BOLD.AFM;1
COURIER_BOLDOBLIQUE.AFM;1 COURIER_BOLDOBLIQUE_ISOLATIN1.AFM;1
COURIER_BOLD_ISOLATIN1.AFM;1 COURIER_ISOLATIN1.AFM;1
COURIER_OBLIQUE.AFM;1 COURIER_OBLIQUE_ISOLATIN1.AFM;1
HELVETICA.AFM;1 HELVETICA_BOLD.AFM;1
HELVETICA_BOLDOBLIQUE.AFM;1 HELVETICA_BOLDOBLIQUE_ISOLATIN1.AFM;1
HELVETICA_BOLD_ISOLATIN1.AFM;1 HELVETICA_ISOLATIN1.AFM;1
HELVETICA_OBLIQUE.AFM;1 HELVETICA_OBLIQUE_ISOLATIN1.AFM;1

Protection for OpenVMS VAX System Files B–15

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

LUBALINGRAPH_BOOK.AFM;1 LUBALINGRAPH_BOOKOBLIQUE.AFM;1
LUBALINGRAPH_BOOKOBLIQUE_ISOLATIN1.AFM;1 LUBALINGRAPH_BOOK_ISOLATIN1.AFM;1
LUBALINGRAPH_DEMI.AFM;1 LUBALINGRAPH_DEMIOBLIQUE.AFM;1
LUBALINGRAPH_DEMIOBLIQUE_ISOLATIN1.AFM;1 LUBALINGRAPH_DEMI_ISOLATIN1.AFM;1
NEWCENTURYSCHLBK_BOLD.AFM;1 NEWCENTURYSCHLBK_BOLDITALIC.AFM;1
NEWCENTURYSCHLBK_BOLDITALIC_ISOLATIN1.AFM;1 NEWCENTURYSCHLBK_BOLD_ISOLATIN1.AFM;1
NEWCENTURYSCHLBK_ITALIC.AFM;1 NEWCENTURYSCHLBK_ITALIC_ISOLATIN1.AFM;1
NEWCENTURYSCHLBK_ROMAN.AFM;1 NEWCENTURYSCHLBK_ROMAN_ISOLATIN1.AFM;1
PRESENT_BULLETS.AFM;1 PRESENT_BULLETS.PS;1
SOUVENIR_DEMI.AFM;1 SOUVENIR_DEMIITALIC.AFM;1
SOUVENIR_DEMIITALIC_ISOLATIN1.AFM;1 SOUVENIR_DEMI_ISOLATIN1.AFM;1
SOUVENIR_LIGHT.AFM;1 SOUVENIR_LIGHTITALIC.AFM;1
SOUVENIR_LIGHTITALIC_ISOLATIN1.AFM;1 SOUVENIR_LIGHT_ISOLATIN1.AFM;1
SYMBOL.AFM;1 TIMES_BOLD.AFM;1
TIMES_BOLDITALIC.AFM;1 TIMES_BOLDITALIC_ISOLATIN1.AFM;1
TIMES_BOLD_ISOLATIN1.AFM;1 TIMES_ITALIC.AFM;1
TIMES_ITALIC_ISOLATIN1.AFM;1 TIMES_ROMAN.AFM;1
TIMES_ROMAN_ISOLATIN1.AFM;1

Total of 59 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.VWS]

100DPI.DIR;1 75DPI.DIR;1
USER_100DPI.DIR;1 USER_75DPI.DIR;1

Total of 4 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.XDPS]

FONT_MAP.DIR;1 OUTLINE.DIR;1
USER_OUTLINE.DIR;1

Total of 3 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.XDPS.FONT_MAP]

XDPS$FNMAP.DAT;1 XDPS$GLYPHATTR.DAT;1
XDPS$NISOGLYPHNAME.DAT;1

Total of 3 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSFONT.XDPS.OUTLINE]

AVANTGARDE-BOOK.XDPS$OUTLINE;1 AVANTGARDE-BOOKOBLIQUE.XDPS$OUTLINE;1
AVANTGARDE-DEMI.XDPS$OUTLINE;1 AVANTGARDE-DEMIOBLIQUE.XDPS$OUTLINE;1
COURIER-BOLD.XDPS$OUTLINE;1 COURIER-BOLDOBLIQUE.XDPS$OUTLINE;1
COURIER-OBLIQUE.XDPS$OUTLINE;1 COURIER.XDPS$OUTLINE;1
HELVETICA-BOLD.XDPS$OUTLINE;1 HELVETICA-BOLDOBLIQUE.XDPS$OUTLINE;1
HELVETICA-OBLIQUE.XDPS$OUTLINE;1 HELVETICA.XDPS$OUTLINE;1
LUBALINGRAPH-BOOK.XDPS$OUTLINE;1 LUBALINGRAPH-BOOKOBLIQUE.XDPS$OUTLINE;1
LUBALINGRAPH-DEMI.XDPS$OUTLINE;1 LUBALINGRAPH-DEMIOBLIQUE.XDPS$OUTLINE;1
NEWCENTURYSCHLBK-BOLD.XDPS$OUTLINE;1 NEWCENTURYSCHLBK-BOLDITALIC.XDPS$OUTLINE;1
NEWCENTURYSCHLBK-ITALIC.XDPS$OUTLINE;1 NEWCENTURYSCHLBK-ROMAN.XDPS$OUTLINE;1
SOUVENIR-DEMI.XDPS$OUTLINE;1 SOUVENIR-DEMIITALIC.XDPS$OUTLINE;1
SOUVENIR-LIGHT.XDPS$OUTLINE;1 SOUVENIR-LIGHTITALIC.XDPS$OUTLINE;1
SYMBOL.XDPS$OUTLINE;1 TIMES-BOLD.XDPS$OUTLINE;1
TIMES-BOLDITALIC.XDPS$OUTLINE;1 TIMES-ITALIC.XDPS$OUTLINE;1
TIMES-ROMAN.XDPS$OUTLINE;1

Total of 29 files.

B–16 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

B.2.12 Files in SYSHLP
The directory SYSHLP contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSHLP]

ACLEDT.HLB;1 ANALAUDIT$HELP.HLB;1
ANLRMSHLP.HLB;1 CLUE.HLB;1
DBG$HELP.HLB;1 DBG$HELP.PS;1
DBG$HELP.TXT;1 DBG$UIHELP.HLB;1
DISKQUOTA.HLB;1 DTEHELP.HLB;1
DTSDTR.HLB;1 EDFHLP.HLB;1
EDTHELP.HLB;1 EDTVT100.DOC;1
EDTVT52.DOC;1 ESS$LADCP.HLB;1
ESS$LASTCPHELP.HLB;1 EVE$HELP.HLB;1
EVE$KEYHELP.HLB;1 EXAMPLES.DIR;1
EXCHNGHLP.HLB;1 HELPLIB.HLB;1
INSTALHLP.HLB;1 LATCP$HELP.HLB;1
LMCP$HLB.HLB;1 MACRO$DWCI.HLB;1
MAILHELP.HLB;1 MNRHELP.HLB;1
MSGHLP$LIBRARY.MSGHLP$DATA;1 NCPHELP.HLB;1
OPENVMSDOC_SURVEY.TXT;1 PATCHHELP.HLB;1
PCSI$DCLHELP.HLP;1 PCSI$MUIHELP.DECW$BOOK;1
PHONEHELP.HLB;1 SDA.HLB;1
SHWCLHELP.HLB;1 SYSGEN.HLB;1
SYSMANHELP.HLB;1 TECO.HLB;1
TFF$TFUHELP.HLB;1 TPUHELP.HLB;1
UAFHELP.HLB;1 VMSDOC.DIR;1
WP.HLB;1 XA_PROFILE.PS;1
XA_PROFILE.TXT;1

Total of 47 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSHLP.EXAMPLES]

ADDRIVER.MAR;1 ADDUSER.COM;1
AUDSRV_LISTENER.B32;1 AUDSRV_LISTENER.MAR;1
BACKUSER.COM;1 BIND.CLD;1
BIND_MAIN.EXE;1 BIND_READ_ME.TXT;1
CBDRIVER.MAR;1 CDROM_AUDIO.C;1
CDROM_AUDIO.EXE;1 CLASS.C;1
CLU_MOUNT_DISK.COM;1 CMA_STDIO.H;1
CONNECT.COM;1 DAYLIGHT_SAVINGS.COM;1
DB_REQUESTER.C;1 DB_REQUESTER.MAR;1
DB_SERVER.C;1 DB_SERVER.MAR;1
DECDTM$EXAMPLE1.COM;1 DECDTM$EXAMPLE1.FOR;1
DECDTM$EXAMPLE2.C;1 DECDTM$EXAMPLE2.COM;1
DECW.DIR;1 DISKMOUNT.C;1
DISKMOUNT.H;1 DISKMOUNT_CHILD.C;1
DISKMOUNT_CREATE_DAT.COM;1 DISK_DRIVER.MAR;1
DOD_ERAPAT.MAR;1 DOD_ERAPAT_LNK.COM;1
DRCOPY.PRM;1 DRCOPYBLD.COM;1
DRMAST.MAR;1 DRMASTER.FOR;1
DRSLAVE.FOR;1 DRSLV.MAR;1
DTE_DF03.MAR;1 DTE_DF112.MAR;1
EVE$ADVANCED.TPU;1 EVE$BUILD.TPU;1
EVE$CONSTANTS.TPU;1 EVE$CONSTANTS.UIL;1
EVE$CORE.TPU;1 EVE$DECWINDOWS.TPU;1
EVE$EDIT.TPU;1 EVE$EDT.TPU;1
EVE$EXTEND.TPU;1 EVE$EXTRAS.TPU;1
EVE$FILE.TPU;1 EVE$FORMAT.TPU;1
EVE$HELP.TPU;1 EVE$INTERNATIONALIZATION.TPU;1
EVE$MASTER.FILE;1 EVE$MENUS.TPU;1

Protection for OpenVMS VAX System Files B–17

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

EVE$MOUSE.TPU;1 EVE$OPTIONS.TPU;1
EVE$PARSER.TPU;1 EVE$SHOW.TPU;1
EVE$SYNONYMS.TPU;1 EVE$TERMINALS.TPU;1
EVE$VERSION.DAT;1 EVE$WIDGETS_MOTIF.UIL;1
EVE$WILDCARD.TPU;1 EVE$WINDOWS.TPU;1
EVE$WPS.TPU;1 FULL_DUPLEX_TERMINAL.MAR;1
GBLSECUFO.MAR;1 GKTEST.C;1
HASH_PASSWORD.MAR;1 HASH_PASSWORD_LNK.COM;1
LABCHNDEF.FOR;1 LABIO.OPT;1
LABIOACQ.FOR;1 LABIOCIN.MAR;1
LABIOCIN.OPT;1 LABIOCOM.FOR;1
LABIOCOMP.COM;1 LABIOCON.FOR;1
LABIOLINK.COM;1 LABIOPEAK.FOR;1
LABIOSAMP.FOR;1 LABIOSEC.FOR;1
LABIOSTAT.FOR;1 LABIOSTRT.COM;1
LABMBXDEF.FOR;1 LAN802.MAR;1
LANETH.MAR;1 LAT.C;1
LAVC$BUILD.COM;1 LAVC$FAILURE_ANALYSIS.MAR;1
LAVC$START_BUS.MAR;1 LAVC$STOP_BUS.MAR;1
LBRDEMO.COM;1 LBRDEMO.FOR;1
LBRMAC.MAR;1 LOGGER.C;1
LOGGER.EXE;1 LOGIN.COM;1
LPATEST.FOR;1 LPMULT.B32;1
MAGNETIC_TAPE.MAR;1 MGRMENU.COM;1
MONITOR.COM;1 MONSUM.COM;1
MSCPMOUNT.COM;1 PEAK.FOR;1
PKVDRIVER.MAR;1 PREFER.B32;1
PREFER.CLD;1 PREFER.MAR;1
QKDRIVER.MAR;1 QLDRIVER.MAR;1
QSDRIVER.MAR;1 READ_VERIFY.MAR;1
RECOVERY_UNIT_SERVICES_.ADA;1 RESET_DEVICE_PROTECTION.COM;1
RESTUSER.COM;1 RMSJNL_EXAMPLE.C;1
RMSJNL_EXAMPLE.COB;1 RMSJNL_EXAMPLE.COM;1
RMSJNL_EXAMPLE.EXE;1 RMSJNL_XABTID_EXAMPLE.C;1
RUFEXAMPLE.ADA;1 RUFEXAMPLE.B32;1
RUFEXAMPLE.BAS;1 RUFEXAMPLE.C;1
RUFEXAMPLE.COB;1 RUFEXAMPLE.COM;1
RUFEXAMPLE.EXE;1 RUFEXAMPLE.FOR;1
RUFEXAMPLE.PAS;1 SCRFT.MAR;1
SKDRIVER.MAR;1 SKTEST.C;1
SUBMON.COM;1 SYSGTTSTR.MSG;1
TDRIVER.MAR;1 TESTLABIO.FOR;1
USING_BACKUP.DECW$BOOK;1 USING_BACKUP.PS;1
USING_BACKUP.TXT;1 USSDISP.MAR;1
USSLNK.COM;1 USSTEST.MAR;1
USSTSTLNK.COM;1 VMEL_PIOTEST.C;1
VME_PIOTEST.C;1 VMS$PASSWORD_POLICY.ADA;1
VMS$PASSWORD_POLICY.B32;1 VMS$PASSWORD_POLICY_LNK.COM;1
VMS_DEPENDABILITY_CHECKLIST.PS;1 VMS_DEPENDABILITY_CHECKLIST.TXT;1
XADRIVER.MAR;1 XALINK.MAR;1
XAMESSAGE.MAR;1 XATEST.COM;1
XATEST.FOR;1 XIDRIVER.MAR;1

Total of 160 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSHLP.EXAMPLES.DECW]

DECW$FONT_ALIAS_CHARTER.DAT;1 DECW$FONT_ALIAS_CHARTER_100DPI.DAT;1
DECW$FONT_ALIAS_FILENAMES.DAT;1 DECW$FONT_ALIAS_KANJI.DAT;1
DECW$FONT_ALIAS_LUCIDA.DAT;1 DECW$FONT_ALIAS_LUCIDA_100DPI.DAT;1
DECW$TRANSPORT_EXAMPLE.EXE;1 DEMO_XPORT_BUILD.COM;1
FONTS.ALIAS;1 XPORTEXAMPLEDEF.R32;1
XPORT_EXAMPLE.B32;1 XPORT_EXAMPLE_XFER.MAR;1

Total of 12 files.

B–18 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSHLP.VMSDOC]

VMSDOC_GLOSSARY.TXT;1 VMSDOC_MASTER_INDEX.TXT;1
VMSDOC_OVERVIEW.TXT;1

Total of 3 files.

B.2.13 Files in SYSLIB
The directory SYSLIB contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSLIB]

ACLEDIT.TPU;1 ACLEDT$SECTION.TPU$SECTION;1
ACLEDTSHR.EXE;1 ADARTL.EXE;1
BASRTL.EXE;1 BASRTL2.EXE;1
BLAS1RTL.EXE;1 CDA$ACCESS.EXE;2
CDDSHR.EXE;1 CLIMAC.REQ;1
CMA$LIB_SHR.EXE;1 CMA$OPEN_LIB_SHR.EXE;1
CMA$OPEN_RTL.EXE;1 CMA$RTL.EXE;1
CMA$TIS_SHR.EXE;1 CMA.H;1
CMA_CONFIG.H;1 CMA_CRTLX.H;1
CMA_LIBRARY.H;1 CMA_PX.H;1
CMA_TIS.H;1 COBRTL.EXE;1
CONVSHR.EXE;1 CRFSHR.EXE;1
CXXL$011_SHR.EXE;1 DBG$HA.UID;1
DBG$HA_KERNEL.EXE;1 DBG$HA_MAIN.EXE;1
DBGSSISHR.EXE;1 DBLRTL.EXE;1
DCLTABLES.EXE;1 DCXSHR.EXE;1
DEBUG.EXE;1 DEBUGSHR.EXE;1
DEBUGUISHR.EXE;1 DECC$EMPTY.EXE;1
DECC$SHR.EXE;1 DECCCURSE.OLB;1
DECCRTL.OLB;1 DECCRTLG.OLB;1
DECW$DRIVER.MLB;1 DECW$DWTLIBSHR.EXE;2
DECW$FONTCOMPILER.CLD;1 DECW$PRINTWGTSHR.EXE;2
DECW$SECURITY.EXE;1 DECW$SECURITY_VMS.EXE;1
DECW$SERVER_DDX_GA.EXE;1 DECW$SERVER_DDX_GB.EXE;1
DECW$SERVER_DDX_GC.EXE;1 DECW$SERVER_DDX_GE.EXE;1
DECW$SERVER_DDX_GF.EXE;1 DECW$SERVER_DIX.EXE;1
DECW$SESSIONSHRP.EXE;1 DECW$SVEXT_ADOBE_DPS_EXTENSION.EXE;1
DECW$SVEXT_D2DX_EXTENSIONS.EXE;1 DECW$SVEXT_DEC_XTRAP.EXE;1
DECW$SVEXT_MULTI_BUFFERING.EXE;1 DECW$SVEXT_X3D_PEX.EXE;1
DECW$SVEXT_X3D_PEX_GB.EXE;1 DECW$SVEXT_X3D_PEX_GB_UCODE.EXE;1
DECW$SVEXT_X3D_PEX_GE.EXE;1 DECW$SVEXT_X3D_PEX_STP.EXE;1
DECW$SVEXT_X3D_PEX_STP_UCODE.EXE;1 DECW$SVEXT_X3D_PEX_VCFB.EXE;1
DECW$SVEXT_XIE.EXE;1 DECW$TRANSPORT_COMMON.EXE;1
DECW$TRANSPORT_DECNET.EXE;1 DECW$TRANSPORT_LAT.EXE;1
DECW$TRANSPORT_LOCAL.EXE;1 DECW$TRANSPORT_TCPIP.EXE;1
DECW$XLIBSHR.EXE;2 DECW$XPORTCOM.H;1
DECW$XPORTCOM.MAR;1 DECW$XPORTCOM.R32;1
DECW$XPORTDEF.H;1 DECW$XPORTDEF.MAR;1
DECW$XPORTDEF.R32;1 DECW$XPORTMAC.R32;1
DECW$XPORTMSG.R32;1 DELTA.EXE;1
DELTA.OBJ;1 DISMNTSHR.EXE;1
DNS$CLIENT.EXE;1 DNS$RTL.EXE;1
DNS$SHARE.EXE;1 DNSDEF.BAS;1
DNSDEF.FOR;1 DNSDEF.H;1
DNSDEF.MAR;1 DNSDEF.PAS;1
DNSDEF.PLI;1 DNSDEF.R32;1
DNSMSG.BAS;1 DNSMSG.FOR;1

Protection for OpenVMS VAX System Files B–19

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

DNSMSG.H;1 DNSMSG.MAR;1
DNSMSG.PAS;1 DNSMSG.PLI;1
DNSMSG.R32;1 DTE_DF03.EXE;1
DTE_DF112.EXE;1 DTE_DMCL.EXE;1
DTI$SHARE.EXE;1 DTKSHR.EXE;1
DYNSWITCH.EXE;1 EDTSHR.EXE;1
ENCRYPSHR.EXE;1 EPC$FACILITY.TLB;1
EPC$SHR.EXE;1 EPM$SRVSHR.EXE;1
ERFCOMMON.EXE;1 ERFCTLSHR.EXE;1
ERFLIB.TLB;1 ERFSHR.EXE;1
ERFSHR2.EXE;1 EVE$SECTION.TPU$SECTION;1
EVE$WIDGETS_MOTIF.UID;1 EVE.DAT;1
EXC_HANDLING.H;1 FDLSHR.EXE;1
FORDEF.FOR;1 FORIOSDEF.FOR;1
FORRTL.EXE;1 FORRTL2.EXE;1
IMAGELIB.OLB;1 IMGDMP.EXE;1
INIT$SHR.EXE;1 IPC$SHARE.EXE;1
LAT$SHR.EXE;1 LBRSHR.EXE;1
LIB.MLB;1 LIB.REQ;1
LIBDEF.FOR;1 LIBRTL.EXE;1
LIBRTL2.EXE;1 LIBRTL_INSTRUMENTED.EXE;1
MAILSHR.EXE;1 MAILSHRP.EXE;1
MMEDEF.H;1 MMEMSG.H;1
MMESHR.EXE;1 MOUNTSHR.EXE;1
MSGHLP$ENGLISH.EXE;1 MSGHLP$SHARE.EXE;1
MTHDEF.FOR;1 MTHRTL.EXE;1
NCS$LIBRARY.NLB;1 NCSSHR.EXE;1
NISCS_LAA.EXE;1 NISCS_LOAD.EXE;1
NMLSHR.EXE;1 PASRTL.EXE;1
PCSI$MOTIFSHR.EXE;1 PCSI$SHR.EXE;1
PLIRTL.EXE;1 PPLRTL.EXE;1
PTD$SERVICES_SHR.EXE;1 PTHREAD.H;1
PTHREAD_EXC.H;1 RPGRTL.EXE;1
SCNRTL.EXE;1 SCRSHR.EXE;1
SDATP$SHARE.EXE;1 SDA_EXTEND_VECTOR.EXE;1
SECURESHR.EXE;1 SECURESHRP.EXE;1
SIGDEF.FOR;1 SMBSRVSHR.EXE;1
SMGSHR.EXE;1 SMI$OBJSHR.EXE;1
SMI$SHR.EXE;1 SNAPSHOT$SHARE.EXE;1
SORTSHR.EXE;1 SPISHR.EXE;1
STARLET.MLB;1 STARLET.OLB;1
STARLET.REQ;1 STARLETSD.TLB;1
SUMSHR.EXE;1 TC$LIBRARY.OLB;1
TECOSHR.EXE;1 TFFSHR.EXE;1
TPAMAC.REQ;1 TPU$CCTSHR.EXE;1
TPU$DEBUG.TPU;1 TPU$MOTIFSHR.EXE;1
TPU.DAT;1 TPUSHR.EXE;1
TRACE.EXE;1 UISSHR.EXE;1
UTIL$SHARE.EXE;1 UVMTHRTL.EXE;1
VAXC$EMPTY.EXE;1 VAXC$LCL.OPT;1
VAXC2DECC.EXE;1 VAXCCURSE.OLB;1
VAXCG2DECC.EXE;1 VAXCRTL.EXE;1
VAXCRTL.OLB;1 VAXCRTLG.EXE;1
VAXCRTLG.OLB;1 VBLAS1RTL.EXE;1
VECTOR_EMULATOR.EXE;1 VME$LIBRARY.OLB;1
VMESUPPORT.MLB;1 VMS$FORMAT_AUDIT_SYSTEM.EXE;1
VMS$PASSWORD_DICTIONARY.DATA;1 VMSDEBUGCUSTUIL.UID;1
VMSDEBUGUIL.UID;1 VMSRTL.EXE;1
VMTHRTL.EXE;1 XDPS$DPSBINDINGSSHR.EXE;2
XDPS$DPSCLIENTSHR.EXE;2 XDPS$DPSLIBSHR.EXE;2
XDPS$MASTERDPSVM.DAT;1 XFDEF.FOR;1
XNL$SHR.EXE;2

Total of 217 files.

B–20 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

B.2.14 Files in SYSMGR
The directory SYSMGR contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSMGR]

AGEN$NEW_NODE_DEFAULTS.DAT;1 AGEN$NEW_NODE_DEFAULTS.TEMPLATE;1
AGEN$NEW_SATELLITE_DEFAULTS.DAT;1 AGEN$NEW_SATELLITE_DEFAULTS.TEMPLATE;1
AGENPARAMS.EXE;1 ALFMAINT.COM;1
CLUSTER_CONFIG.COM;1 DBLSTRTUP.COM;1
DECW$DEVICE.COM;1 DECW$DEVICE_GE.COM;1
DECW$DEVICE_GF.COM;1 DECW$DEVICE_GG.COM;1
DECW$PRIVATE_SERVER_SETUP.TEMPLATE;1 DECW$RGB.DAT;1
DECW$STARTSERVER.COM;1 DECW$STARTXTERMINAL.COM;1
DNS$CHANGE_DEF_FILE.COM;1 DNS$CLIENT_STARTUP.COM;1
DNS$CLIENT_STOP.COM;1 EDTINI.TEMPLATE;1
LAT$SYSTARTUP.COM;1 LAT$SYSTARTUP.TEMPLATE;1
LIB$DT_STARTUP.COM;1 LOADNET.COM;1
LOGIN.COM;1 LOGIN.TEMPLATE;1
LPA11STRT.COM;1 LTLOAD.COM;1
MAKEROOT.COM;1 NETCONFIG.COM;1
RTTLOAD.COM;1 SECURITY.AUDIT$JOURNAL;1
SMISERVER.COM;1 SNAPSHOT$CLEANUP.COM;1
SNAPSHOT$NEW_DISK.COM;1 SNAPSHOT$SYCLEANUP.TEMPLATE;1
SNAPSHOT$SYSHUTDOWN.TEMPLATE;1 SNAPSHOT.COM;1
STARTNET.COM;1 SYCONFIG.COM;1
SYCONFIG.TEMPLATE;1 SYLOGICALS.COM;1
SYLOGICALS.TEMPLATE;1 SYLOGIN.COM;1
SYLOGIN.TEMPLATE;1 SYPAGSWPFILES.COM;1
SYPAGSWPFILES.TEMPLATE;1 SYSECURITY.COM;1
SYSECURITY.TEMPLATE;1 SYSHUTDWN.COM;1
SYSHUTDWN.TEMPLATE;1 SYSTARTUP_V5.COM;1
SYSTARTUP_VMS.COM;1 SYSTARTUP_VMS.TEMPLATE;1
TFF$STARTUP.COM;1 UTC$CONFIGURE_TDF.COM;1
VMS$AUDIT_SERVER.DAT;1 VMS$IMAGES_MASTER.DAT;1
VMSIMAGES.DAT;1 WELCOME.TEMPLATE;1
WELCOME.TXT;1

Total of 61 files.

B.2.15 Files in SYSMSG
The directory SYSMSG contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSMSG]

ADAMSG.EXE;1 CLIUTLMSG.EXE;1
CXXL$MSG_SHR.EXE;1 DBGTBKMSG.EXE;1
DBLRTLMSG.EXE;1 DECW$TRANSPORTMSG.EXE;1
DNS$MSG.EXE;1 EPC$MSG.EXE;1
FILMNTMSG.EXE;1 LMCP$MSG.EXE;1
LMF_MESSAGE.EXE;1 NETWRKMSG.EXE;1
PASMSG.EXE;1 PLIMSG.EXE;1
PPLMSG.EXE;1 PRGDEVMSG.EXE;1
RPGMSG.EXE;1 SCNMSG.EXE;1
SHRIMGMSG.EXE;1 SORTMSG.EXE;1
SYSMGTMSG.EXE;1 SYSMSG.EXE;1
TECOMSG.EXE;1 TPUMSG.EXE;1
VAXCMSG.EXE;1 VMSINSTAL_LANGUAGE.COM;1
VMSLICENSE_LANGUAGE.COM;1 VVIEFMSG.EXE;1

Total of 28 files.

Protection for OpenVMS VAX System Files B–21

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

B.2.16 Files in SYSTEST
The directory SYSTEST contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSTEST]

DECDTM_IVP.EXE;1 TCNTRL.CLD;1
UETCDRO00.EXE;1 UETCLIG00.COM;1
UETCLIG00.DAT;1 UETCLIG00.EXE;1
UETCOMS00.EXE;1 UETDISK00.EXE;1
UETDMPF00.EXE;1 UETDNET00.COM;1
UETDNET00.DAT;1 UETDR1W00.EXE;1
UETDR7800.EXE;1 UETFORT01.DAT;1
UETFORT01.EXE;1 UETFORT02.EXE;1
UETFORT03.EXE;1 UETINIT00.EXE;1
UETINIT01.EXE;1 UETLOAD00.DAT;1
UETLOAD02.COM;1 UETLOAD03.COM;1
UETLOAD04.COM;1 UETLOAD05.COM;1
UETLOAD06.COM;1 UETLOAD07.COM;1
UETLOAD08.COM;1 UETLOAD09.COM;1
UETLOAD10.COM;1 UETLOAD11.COM;1
UETLPAK00.EXE;1 UETMA7800.EXE;1
UETMEMY01.EXE;1 UETNETS00.EXE;1
UETP.COM;1 UETPHAS00.EXE;1
UETRSXFOR.EXE;1 UETSUPDEV.DAT;1
UETTAPE00.COM;1 UETTAPE00.EXE;1
UETTTYS00.EXE;1 UETUNAS00.EXE;1
UETVECTOR.COM;1 UETVECTOR.EXE;1

Total of 44 files.

B.2.17 Files in SYSUPD
The directory SYSUPD contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.SYSUPD]

AUTOGEN.COM;1 BOOTUPD.COM;1
CONSCOPY.COM;1 CREATE_IDX.EXE;1
DECW$KITBLD.DAT;1 DECW$KITBLD.IDX;1
DECW$MKFONTDIR.COM;1 DECW$OBSOLETE.DAT;1
DECW$OBSOLETE.IDX;1 DECW$TAILOR.EXE;1
DECW$TAILOR_ON.TEMPLATE;1 DXCOPY.COM;1
INSTALLED_PRDS.COM;1 LIBDECOMP.COM;1
NETCONFIG_UPDATE.COM;1 PCSI$CREATE_ACCOUNT.COM;1
PCSI$CREATE_NETWORK_OBJECT.COM;1 PCSI$CREATE_RIGHTS_IDENTIFIER.COM;1
PCSI$DELETE_ACCOUNT.COM;1 PCSI$DELETE_NETWORK_OBJECT.COM;1
PCSI$DELETE_RIGHTS_IDENTIFIER.COM;1 PCSI$REGISTER_PRODUCT.COM;1
REGISTER_PRIVILEGED_IMAGE.COM;1 SETDEFBOO.COM;1
SPKITBLD.COM;1 STABACKIT-TABLE.DAT;1
STABACKIT.COM;1 SWAPFILES.COM;1
TAILOR_ON.TEMPLATE;1 UPDATE_CONSOLE.COM;1
VMS$ROLLING_UPGRADE.COM;1 VMS$SYSTEM_IMAGES.COM;1
VMSINSTAL.COM;1 VMSINSTAL_LMFGROUPS.COM;1
VMSKITBLD.COM;1 VMSKITBLD.DAT;1
VMSKITBLD.IDX;1 VMSLICENSE.COM;1
VMSTAILOR.EXE;1 VMSUPDATE.COM;1
VMS_VERSION_OVERRIDE.DAT;1 VVIEF$DEINSTAL.COM;1
VVIEF$INSTAL.COM;1

Total of 43 files.

B–22 Protection for OpenVMS VAX System Files

Protection for OpenVMS VAX System Files
B.2 Listing of OpenVMS VAX System Files

B.2.18 Files in VUE$LIBRARY
The directory VUE$LIBRARY contains the following files:

Directory SYS$SYSDEVICE:[VMS$COMMON.VUE$LIBRARY]

SYSTEM.DIR;1 [SYSTEM] (RWE,RWE,RE,RE)
USER.DIR;1 [SYSTEM] (RWE,RWE,RE,RE)

Total of 2 files.

Directory SYS$SYSDEVICE:[VMS$COMMON.VUE$LIBRARY.SYSTEM]

MACRO$DWCI.EXE;1 [SYSTEM] (RWED,RWED,RWED,RE)
MACRO$DWCI.UID;1 [SYSTEM] (RWED,RWED,RWED,RE)

Total of 2 files.

Grand total of 35 directories, 2055 files.

Protection for OpenVMS VAX System Files B–23

C
Running an OpenVMS System in a C2

Environment

This appendix describes how to operate an OpenVMS operating system in a
C2 environment. C2 is a United States government rating of the security of
an operating system; it identifies OpenVMS VAX and OpenVMS Alpha as an
operating system that meets the criteria of a Division C, class 2 system, as
described in Section C.1.1. Terminology used in this appendix is drawn from the
United States government’s evaluation criteria.

Those versions of OpenVMS that have been evaluated by the National Computer
Security Center (NCSC) are listed in the Evaluated Products List, which is
available from the following source:

National Computer Security Center
9800 Savage Road
Fort George G. Meade
Maryland 20755-6000

This information is also available on the World Wide Web site at:

http://www.radium.NCSC.mil/tpep/epl/index.html

The security protection provided by OpenVMS VAX Version 6.1 and OpenVMS
AXP Version 6.1 has been evaluated by the National Computer Security Center
(NCSC) against the requirements specified by the "Department of Defense
Trusted Computer System Evaluation Criteria" dated December 1985. OpenVMS
VAX Version 6.1 and OpenVMS AXP Version 6.1 have been given a C2 rating.

C.1 Introduction to C2 Systems
This section describes the requirements for a C2 system and explains the
documentation that the OpenVMS product provides to support such a system.

C.1.1 Definition of the C2 Environment
A C2 environment is one that meets the United States Defense Department’s
criteria for trusted computer systems and that contains only those hardware and
software components of the trusted computing base (TCB) that were included in
the government’s evaluation of the OpenVMS operating system.

The criteria for C2 systems are defined in the Department of Defense Trusted
Computer System Evaluation Criteria, published by the Department of Defense
Computer Security Center (DOD 5200.28-STD). They include the following:

• Access controls, which if used, can identify individual users as well as groups
of users

• User accountability through login procedures that clearly identify a user

• Auditing of security-relevant events

Running an OpenVMS System in a C2 Environment C–1

Running an OpenVMS System in a C2 Environment
C.1 Introduction to C2 Systems

• Resource isolation so objects are erased before being reallocated

C.1.2 Documentation
The trusted facility manual is intended for the system administrator. The C2
trusted facility manual includes the following:

• Chapters 5–13 and the appendixes of this manual

• OpenVMS System Management Utilities Reference Manual, Audit Analysis
utility section

• OpenVMS AXP Version 6.1 Upgrade and Installation Manual

• OpenVMS VAX Version 6.1 Upgrade and Installation Manual

• OpenVMS AXP Version 6.1 Release Notes

• OpenVMS AXP Version 6.1 Release Notes Addendum

• OpenVMS VAX Version 6.1 Release Notes

• OpenVMS VAX Version 6.1 Release Notes Addendum

Part I and Part II of this guide constitute the security features user’s guide and
should be made available to all users.

C.2 Trusted Computing Base (TCB) for C2 Systems
The federal government’s evaluation of a computer system measures the trusted
computing base (TCB) against the criteria summarized in Section C.1.1. The
TCB is a combination of computer hardware and an operating system that
enforces a security policy.

C.2.1 Hardware in the TCB
The architectural design of VAX processors prevent competing programs from
interfering with the data of another program. VAX hardware prevents one
program from interfering with the memory of another program.

The security features described in this guide apply to any VAX processor in
the evaluated hardware configurations and to all supported mass storage and
communications devices. The Final Evaluation Report, Compaq Equipment
Corporation, OpenVMS VAX and SEVMS Version 6.1 provides a full listing of the
evaluated hardware.

C.2.2 Software in the TCB
In OpenVMS operating systems, the TCB encompasses much of the operating
system. It includes the entire executive and file system, all other system
components that do not execute in user mode (such as device drivers, RMS,
and DCL), most system programs installed with privilege, and a variety of other
utilities used by system managers to maintain data relevant to the TCB.

As a convenience to customers, the OpenVMS operating system ships with more
than the base operating system. The software package includes save sets and
supportive images for layered products typically run on OpenVMS operating
systems. Yet only the base operating system was evaluated as a C2 system.
Layered products, such as DECwindows software and Display PostScript support,
were not part of the evaluation. For this reason, the C2 rating does not extend to
OpenVMS VAX systems running the software listed in Table C–1. The exclusion
of these software components in no way implies they are insecure; it only means

C–2 Running an OpenVMS System in a C2 Environment

Running an OpenVMS System in a C2 Environment
C.2 Trusted Computing Base (TCB) for C2 Systems

that they were not part of the evaluated system. After the introduction of any
such software, the base system must be accredited for its particular usage.

Table C–1 Software Not Included in the C2-Evaluated System

Software Function Description

DECwindows software Windowing
interface

DECwindows is a layered product.
Although DECwindows has
been designed to meet the C2
requirements, it has not been
evaluated.

DECdns distributed name
service

Client support DECdns software requires server
software, which is a layered
product. A cluster can make
DECnet connections independently
of DECdns.

Compaq DECamds software Monitoring and
diagnostics

Compaq DECamds software
is outside the domain of the
evaluated configuration.

LASTport and
LASTport/DISK protocols

Protocol support Compaq’s Infoserver products,
which are outside the security
domain of a clustered system,
depend on these protocols.

LAT protocol Protocol support The LAT protocol is used for
connections to DECserver terminal
servers, which are outside
the domain of the evaluated
configuration.

DECnet/OSI Full Names Protocol support Support of the use of DECnet/OSI
(Phase V) node names within the
OpenVMS operating system. Use
of this feature is not in the C2
evaluated configuration.

HSM (Hierarchial Shelving
Manager)

Storage Support File Shelving is a layered product.
Use of the File Shelving facility
(HSM) is not supported in the C2
evaluated configuration.

MME (Media Management
Extension)

Client Support Media Management Extension
(MME) allows the use of storage
media programs. Use of media
management is outside of the
domain of the C2 evaluated
configuration.

OpenVMS Management
Station

The OpenVMS Management
Station provides PC-based system
management tools for OpenVMS.
The OpenVMS Management
Station has not been validated
in a C2 evaluated configuration.

Access control strings File access on a
remote node

You should use proxy accounts
instead of access control strings in
an evaluated configuration.

Running an OpenVMS System in a C2 Environment C–3

Running an OpenVMS System in a C2 Environment
C.2 Trusted Computing Base (TCB) for C2 Systems

C.2.3 Site-Specific Additions to the TCB
Site-specific additions to the evaulated TCB hardware and software discussed in
Section C.2.1 and Section C.2.2 include any of the following:

• Hardware, including modems, not on the evaluated product list (see
Section C.2.1).

• Software installed with a security-relevant privilege. Images can be installed
with a privilege in the Normal or Devour category (see Table C–2).

• Software installed as shared/protected, such as user-written system services.

• Software executing in supervisor, executive, or kernel mode.

• Software linked into a TCB executable with the SYSMAN command SYS_
LOADABLE.

• Software used for system administration by a privileged user.

Typical site additions may include DECwindows software, LOGINOUT callouts,
and other privileged Compaq or third-party products.

Before you add layered products, become familiar with the behavior of these
products and understand their impact on your existing system. Also study the
the SYSMAN database, from which layered products can be started, in the
context of a C2 environment.

All site-specific additions to the trusted computing base (TCB) must be controlled.
The C2 rating applies only to the software and hardware components described
in the Final Evaluation Report, Compaq Equipment Corporation, OpenVMS VAX
and SEVMS Version 6.1. If additional software or hardware is added to the
TCB, the new TCB must go through a system certification to demonstrate its
compliance with the C2 criteria.

C.3 Protecting Objects
The OpenVMS operating system controls access to objects that contain
information. Protected objects include ODS-2 disk files, common event flag
clusters, devices, all group and system global sections, logical name tables,
queues, resource domains, and ODS-2 disk volumes. The capability object and
the security class object enjoy full discretionary access protection but they are not
objects according to the C2 evaluation criteria.

Chapter 4 and Chapter 5 describe object protection and explain how the operating
system provides template profiles so all new objects have UICs, protection codes
and, possibly, ACLs. Section 4.4.7, Section 4.5.6, and Section 8.8, in particular,
explain how to set default protection for newly created objects.

The default protections assigned to global section and mailbox objects are less
restrictive than those assigned to other objects. This is due to the fact that
certain software products assume that mailbox and global section objects are
created, by default, with the less restrictive protections. You can modify the
template profiles for these objects so they have more stringent protection, but do
keep in mind that some software products may be adversely affected.

To change the default protection, you need to modify both the template profile for
the object and any existing object. For example, the following command modifies
the MAILBOX template for the device class:

C–4 Running an OpenVMS System in a C2 Environment

Running an OpenVMS System in a C2 Environment
C.3 Protecting Objects

$ SET SECURITY/CLASS=SECURITY_CLASS/PROFILE=TEMPLATE=MAILBOX -
_$ /PROTECTION=(S:RWPL,O:RWPL,G,W) DEVICE

The operating system applies this value to all new mailboxes. The protection
on each existing mailbox still has to be made more restrictive using the SET
SECURITY command. For example:

$ SET SECURITY/CLASS=DEVICE -
_$ /PROTECTION=(S:RWPL,O:RWPL,G,W) mailbox_name

The default object protections specified in security templates survive system
shutdown and reboot, so rebooting the system automatically ensures that all
objects created after the reboot are created with the new default protections
unless an object’s creator specifies an alternate protection.

C.4 Protecting the TCB
The code and data that make up the OpenVMS TCB reside in files and, in part,
in the address space of the running operating system. They are protected by the
use of file access controls and memory page protection. Memory page protection
is set up by the operating system as it executes and is normally not of concern to
the system manager.

C.4.1 Protecting Files
The files that make up the TCB are correctly protected when the operating
system is installed; however, sufficiently privileged users can alter the protection.
Appendix B of this guide describes the correct file protection of operating system
files.

When installing an OpenVMS operating system, avoid modifying any system files
except those specific to your site. You want to maintain the security of the base
operating system.

C.4.2 Privileges for Trusted Users
Certain privileges allow the holder to bypass normal file and memory access
controls directly or indirectly and, therefore, must not be granted to persons
other than the system manager, security administrator, or other trusted users.
Privileges in four categories are appropriate only for trusted users: Objects, All,
System, and Group. Refer to Table 8–2 for the privileges belonging to each of
these categories. The privileges themselves are described in detail in Appendix A.

Privileges in the Objects and All categories allow the holder to violate the
isolation of the TCB from untrusted users. Privileges in the System category
allow the holder to interfere with normal system operation and cause denial of
service, but they do not allow the holder to actually violate object access controls.
Some privileges in the System category also allow access controls to be ultimately
bypassed.

Privileges in the Group category permit the holder to interfere with the operations
of others in the same group. The GRPPRV privilege, in particular, permits the
holder to violate normal access controls within that holder’s group because it
grants access (through the system field of the protection code) to objects owned by
subjects sharing the same group UIC.

All trusted users should be familiar with all the effects of any operations they
perform. In particular, they need to know all software products an operation
might use because a trusted user’s privileges can allow untrusted software to
perform operations that OpenVMS security policy would otherwise preclude.

Running an OpenVMS System in a C2 Environment C–5

Running an OpenVMS System in a C2 Environment
C.4 Protecting the TCB

C.4.3 Privileges for Untrusted Users
Untrusted users can hold any privilege in the Normal and Devour category
with the exception of GRPNAM. Exercise caution in granting privileges from
the Devour category; however, for they permit the holder to consume resources
without limit, thereby causing possible denial of service and interference with
the operations of other users on the system. Table C–2 lists privileges allowed to
untrusted users.

Table C–2 Privileges for Untrusted Users

Category Privilege Activity Permitted

Normal NETMBX
TMPMBX

Create network connections
Create temporary mailbox

Devour ACNT
ALLSPOOL
BUGCHK
EXQUOTA
PRMCEB
PRMGBL
PRMMBX
SHMEM

Disable accounting
Allocate spooled devices
Make bugcheck error log entries
Exceed disk quotas
Create/delete permanent common event flag clusters
Create permanent global sections
Create permanent mailboxes
Create/delete structures in shared memory

C.4.4 Physical Security
Physical and environmental security are critical to the secure operation
of the system. All physical components of the TCB require adequate protection,
or unauthorized people can jeopardize the system’s security. Because the
following practices and features jeopardize the security of the TCB, they must not
be used in a C2 environment:

• Do not put the console terminal in a public area. The console terminal must
always be physically secured because it controls operation of the CPU and,
consequently, operation of the system.

• Do not leave the console password disabled if the console has the password
feature. (It is available on some VAXstation 3100s, most later models, and
the evaluated Alpha models.) The console password prevents unauthorized
personnel from using commands to boot from alternate media, to perform a
conversational boot, or to modify memory.

• Do not allow modems. Modems provide an avenue into the trusted system,
and the possibilities for compromising system security are enormous.

• Do not leave remote diagnostics enabled. Remote diagnostics provide another
avenue into the trusted system. Disable remote diagnostics by placing the
diagnostics switch in the off position.

• Do not allow authentication cards. These devices are not supported in a C2
evaluated configuration.

• Do not permit physical access to cluster communication media. Intruders can
penetrate the system if they have physical access to any processor or cable.

The operating system protects all communications interfaces against world
access by default. This includes the CI and local area network (LAN) devices,
such as the Ethernet, DSSI, FDDI, and SCSI. The CI interface is a trusted
interface among members of a CI cluster and is inaccessible to unprivileged
users. Unprivileged users should not be granted access to LAN devices.

C–6 Running an OpenVMS System in a C2 Environment

Running an OpenVMS System in a C2 Environment
C.4 Protecting the TCB

• Do not allow untrusted users to access the HSC console. Place the console
in an area where only authorized personnel can use it. You do not want
untrusted users to perform sensitive operations, such as backing up and
restoring disk volumes.

• Do not allow users to read printer output of other users. Protect printer
output so users have access only to their own data.

• Do not leave storage media, such as disks, tapes, and compact discs, where
unauthorized users can access it. Once users have the media in their
possession, they can read and modify its contents.

C.5 Configuring a C2 System
This section discusses C2 constraints on the use of OpenVMS features. It
includes the following topics:

• Requirements for maintaining individual accountability

• Correct management of the audit log file

• Correct use of terminals, volumes, and printers

• Cluster requirements

• Required settings for system parameters

• Commands and software excluded from system operation

C.5.1 Keeping Individuals Accountable
The proper use of names, UICs, and passwords ensures that individual
accountability is enforced by the OpenVMS operating system. As a general
practice, Compaq recommends that you use generated passwords on privileged
accounts. Because the following practices and features result in the loss of
individual accountability, they must not be used in a C2 environment:

• Do not assign the same UIC to more than one user. The UIC is used as the
universal internal user identifier; therefore, unique UICs must be assigned to
all users.

• Do not allow open accounts. Lack of a password makes an account available
to all users aware of its identity. The system manager can prevent open
accounts by never setting null passwords with the Authorize utility
(AUTHORIZE) and by ensuring that all accounts are set up with a nonzero
minimum password length.

• Do not allow group accounts. Individual accountability is lost when more than
one person shares an account. Each user must be given a unique account.

• Do not allow guest accounts because they allow multiple users access to
resources on your system through a common account. Most needs for a guest
account can be handled by special proxy login accounts.

• Do not enable autologin. The automatic login facility (ALF) associates
an account with a particular terminal instead of a particular person and,
therefore, causes a loss of individual accountability.

• Do not initiate network proxy accounts for groups. In order to preserve
individual accountability, each individual in a network must be given a
unique network proxy account on each node to which that user has access.

Running an OpenVMS System in a C2 Environment C–7

Running an OpenVMS System in a C2 Environment
C.5 Configuring a C2 System

Assign the same user name and UIC on all applicable nodes, and then set up
individual proxies among the corresponding accounts.

• Do not grant privileged access to proxy accounts.

• Do not grant the DBG$ENABLE_SERVER identifer in the rights database
unless it is needed to run the debug server.

• Do not log operator HSC activities to a video terminal. You must use a
hardcopy printer to log operator activities so it is possible to associate a
specific system operation with the person performing it.

• Ensure users are familiar with the restrictions on the use of access control
strings in the evaluated configuration. (See page 3-15 in the SFUG.)
Specifically, the use of access control strings is not permitted in an evaluated
configuration. The proxy login accounts should be used in the evaluated
configuration.

• Do not allow operators to perform any task from the HSC console without
signing the operator log. The sign-in log is required to track who performed
HSC console operations and when. Together with the hardcopy output, the
log provides a record of HSC operations.

C.5.2 Managing the Auditing Trail
The security-auditing system lets you to track security-relevant activity on the
system provided you manage it correctly. To follow a trail of activity in the audit
logs, you must have complete and accurate records. Security event messages
can be recorded in the security audit log file and on any terminal designated to
receive security-class event messages. Because the following practices jeopardize
a site’s ability to track security-relevant events in the system, they must not be
used in a C2 environment:

• Do not disable the audit server or OPCOM. The audit server must be running
to process audit event messages, and OPCOM is required to deliver alarms.

• Do not use multiple audit log files in a cluster. You must use the clusterwide
audit log file, which the system establishes by default. Without this
clusterwide file, it is difficult to show the precise relationship among events
that occur on various cluster nodes during any given time period.

• Do not use a video terminal as a security operator terminal. You must enable
a hardcopy terminal to receive security event messages.

• Do not place the security operator terminal in a public location. Physically
secure the terminal so that only authorized personnel have access to it.

• Do not ignore the audit log file. You must review the security audit log file
regularly for all audit events. In particular, notice whether any auditing
modifications have been made. (Any use of the SET AUDIT command
indicates some modification has taken place.) The audit log file is normally
protected against reading or modification by unauthorized users.

• Do not allow tampering with the audit log file. Always place security-auditing
ACEs on the system security audit log file to enable auditing of all attempts
to modify or delete the audit log file.

C–8 Running an OpenVMS System in a C2 Environment

Running an OpenVMS System in a C2 Environment
C.5 Configuring a C2 System

For example:

$ SET SECURITY SYS$MANAGER:SECURITY.AUDIT$JOURNAL -
_$ /ACL=((ALARM=SECURITY,ACCESS=WRITE+DELETE+CONTROL+SUCCESS+FAILURE),-
_$ (AUDIT=SECURITY,ACCESS=WRITE+DELETE+CONTROL+SUCCESS+FAILURE))

The operating system audits ACL events by default, and you can verify this
setting with the DCL command SHOW AUDIT. If necessary, reenable ACL
alarms and audits with the following command:

$ SET AUDIT/ALARM/AUDIT/ENABLE=ACL

• Do not allow trusted users to operate without supervision. You should audit
the actions of trusted users (such as operators, managers, and security
administrators) by enabling auditing of changes to the authorization
database. Also place security-auditing ACEs on captive login command
procedures and the directories containing them so you can detect
modifications.

C.5.3 Reusing Objects
Before allocating memory or protected objects like volumes and devices to new
users, sites must ensure that they are free of old data. The memory management
subsystem protects against the reuse of system memory pages, and it cannot be
defeated. Because the following practices jeopardize the clearing of old data from
volumes and terminals before reallocation, they must not be followed in a C2
environment:

• Do not disable high-water marking on system disk volumes. The high-water
marking and erase-on-delete features of the operating system protect against
reuse of disk blocks (see Section 8.9.5).

• Do not allow users to leave their terminals on after logging out. They must
turn off their terminals so the logout message is erased. The logout message
reveals a user name and sometimes a node name. Moreover, by turning off
the terminal, terminal characteristics are reset, and memory buffers are
cleared. Some Trojan horse attacks use hardware frame buffers and the
answerback capabilities that are built into newer terminals.

• Do not recycle tape volumes to new users until the tapes have been erased
externally by operations personnel. The operating system provides no
protection against reuse of tape volumes. (This is because the OpenVMS
operating system considers tape drives to be single-user devices. It provides
tape protection only at the volume level; an entire volume can be assigned
ownership and protection but individual files on the volume cannot.)

Compaq recommends that sites clear printers between jobs to ensure that print
jobs do not interfere with one another. A security administrator can reset
printers automatically at the start or end (or both) of each job by associating a
device control library with the print queue. Consult the documentation supplied
with your printer to determine the appropriate reset sequence, and then refer to
the OpenVMS System Manager’s Manual for directions on adding that sequence
to a library and associating the library with the queue.

Running an OpenVMS System in a C2 Environment C–9

Running an OpenVMS System in a C2 Environment
C.5 Configuring a C2 System

C.5.4 Configuring Clusters
All valid cluster configurations, when configured as common environment
clusters, fully support the OpenVMS security features. Because the following
practices and features result in the loss of a common environment cluster, they
must not be used in a C2 environment.

Note

OpenVMS clusters can consist of VAX and Alpha nodes.

• Do not operate with multiple authorization databases or audit log files. A
clustered system is considered a single security and management domain and
must operate with a shared authorization database and a single audit log file.
If you have multiple system disks for performance reasons, system managers
should ensure that the system files are identical.

The following files must be shared across all cluster members:

NETOBJECT.DAT NET$PROXY.DAT

NETPROXY.DAT QMAN$MASTER.DAT

RIGHTSLIST.DAT SYS$QUEUE_MANAGER.QMAN$QUEUES

SYSUAF.DAT SYSUAFALT.DAT

VMS$AUDIT_SERVER.DAT VMSMAIL_PROFILE.DATA

VMS$OBJECTS.DAT VMS$PASSWORD_DICTIONARY.DATA

VMS$PASSWORD_HISTORY.DATA VMS$PASSWORD_POLICY.EXE

• Do not attach nodes to the cluster that are not part of the evaluated system.
The evaluated OpenVMS configuration includes DECnet software bounded
to the cluster environment that is a single security domain. All physically
attached nodes must be part of the evaluated system.

C.5.5 Starting Up and Operating the System
A C2 system is the shipped system that has been configured according to the
guidelines in this appendix. When configuring your system, you must observe the
following guidelines:

• Set security-sensitive parameters to the following values:

System Parameter Setting Description

LGI_CALLOUTS 0 Disables use of LOGINOUT callouts

LOAD_PWD_POLICY 0 Disables site-specific password filters

MAXSYSGROUP 7 Sets the maximum UIC value for the
system category to single-digit UICs

NISCS_CONV_BOOT 0 Disables use of a conversational system
bootstrap

RMS_FILEPROT 65,280 Sets a default protection code for user’s
files of S:RWED,O:RWED,G,W

SECURITY_POLICY 0 Disables certain unevaluated operating
system components

C–10 Running an OpenVMS System in a C2 Environment

Running an OpenVMS System in a C2 Environment
C.5 Configuring a C2 System

System Parameter Setting Description

STARTUP_P1 " " Disables the minimum sequence of the
startup procedure

• Do not use the CONNECT CONSOLE command to connect to a console
storage device, except on a VAX 9000 system. On a VAX 9000 system, use
the console command SET SPU_UPDATE OFF to isolate the storage device.
Some console subsystems support a storage device, such as a tape or disk,
that is used to load system and diagnostic programs; however, the operating
system also supports the capability to read and write data on a console
storage device, so it is neccessary to isolate the console storage device from
the system. This command is not available on the evaluated Alpha platforms.

• Do not enable console operations by booting with FYDRIVER. FYDRIVER
would make two DCL commands operative:

SET HOST/HSC allows a user to initiate certain HSC console operations
from an OpenVMS node

SET HOST/DUP is used for configuring DSSI devices

If you need to install FYDRIVER during system startup to configure your
HSC devices and disks or perform necessary diagnostics, then perform a
minimum boot and install FYDRIVER so you can configure devices and so on.
Then shut down the system and reboot without FYDRIVER.

C.5.6 Forcing Immediate Reauthentication of a Specified Subject After a
Change in Access Rights

A system or security administrator may force untrusted subjects to reauthenticate
themselves at any time. This might be necessary when the subject’s access rights
have been modified. The procedure is as follows and can be performed only by a
trusted subject.

1. Make the changes to the subject’s authorization record in the authorization
file.

2. Obtain the owner’s UIC of the subject from the authorization file.

3. Enter the SYSMAN utility.

4. Use the SYSMAN utility to identify all processes owned by the subject.

a. In an OpenVMS Cluster environment, set the SYSMAN environment
clusterwide. If you are not in an OpenVMS Cluster environment, skip
this step.

b. Use SYSMAN DO SHOW SYSTEM/FULL to obtain a listing of all
processes on the system or OpenVMS cluster. This command also lists the
owner UIC and system PID of each process. Record this information.

5. From SYSMAN, stop every process on every system that is owned by the
subject.

Note: Any process created by the subject after Step 4 is bound by the
new access rights and does not need to be deleted. Therefore, this is not a
recursive procedure.

a. In the OpenVMS cluster environment, set the SYSMAN environment
to point to only one node. If you are not in the OpenVMS cluster
environment, skip this step.

Running an OpenVMS System in a C2 Environment C–11

Running an OpenVMS System in a C2 Environment
C.5 Configuring a C2 System

b. For each process on the system to be deleted, identify the PID from Step
2 and use the SYSMAN DO STOP/ID=pid command to stop the job.

c. Repeat Steps a and b until all desired processes on all nodes of the cluster
have been stopped.

C.6 Checklist for Generating a C2 System
The previous sections of this appendix describe the U.S. government requirements
for running the OpenVMS operating system in a C2 environment. The following
list reviews the government’s security requirements:

Installing the System

Did you perform a full installation (not an upgrade) as described in the
OpenVMS AXP Version 6.1 Upgrade and Installation Manual or OpenVMS
VAX Version 6.1 Upgrade and Installation Manual?

Using Evaluated Components

Is all hardware in your configuration listed on the evaluated hardware list?
(See Final Evaluation Report, Compaq Equipment Corporation, OpenVMS
VAX and SEVMS Version 6.0.)

Have you excluded the following software products: DECdns, LASTport,
LASTport/DISK, LAT?

Do system files have the same protection as when Compaq delivered them to
you? (See Appendix B.)

Did you avoid installing DECwindows software or other privileged layered
products?

Making Individuals Accountable

Have you trained privileged users so they understand the effect of operations
they may perform?

Does each user have a unique UIC?

Do all accounts have passwords of nonzero length?

Does each user have a separate account?

Have you eliminated any guest accounts?

Have you disabled all autologins?

Does each user have a unique proxy?

Are all proxy accounts nonprivileged?

Do you log operators’ HSC activities on a hardcopy printer?

Does the HSC console have a sign-in log, and are your operators trained to
use it?

Did you ensure that users are familiar with the restrictions on the use of
access control strings in the evaluated configuration?

C–12 Running an OpenVMS System in a C2 Environment

Running an OpenVMS System in a C2 Environment
C.6 Checklist for Generating a C2 System

Managing the Audit Reporting System

Are the audit server and OPCOM processes running?

Do you have one audit log file for the entire cluster?

Are you using a hardcopy terminal as the security operator terminal?

Is the security operator terminal accessible only to authorized personnel?

Do you have a procedure for reviewing the audit log file on a regular basis?

Does the audit log file have both Audit and Alarm ACEs?

Are the Authorization and ACL event classes enabled?

Did you put Audit ACEs on all captive login command procedures and their
home directories?

Reusing Disks, Tapes, and Terminals

Is high-water marking enabled on system disk volumes?

Are users trained to shut off their terminals after logging out?

Do you have a procedure for erasing tapes before they are used again?

Building a Single Security Domain

Does your cluster have only one copy of the following files?

NETOBJECT.DAT NET$PROXY.DAT

NETPROXY.DAT QMAN$MASTER.DAT

RIGHTSLIST.DAT SYS$QUEUE_MANAGER.QMAN$QUEUES

SYSUAF.DAT SYSUAFALT.DAT

VMS$AUDIT_SERVER.DAT VMSMAIL_PROFILE.DATA

VMS$OBJECTS.DAT VMS$PASSWORD_DICTIONARY.DATA

VMS$PASSWORD_HISTORY.DATA VMS$PASSWORD_POLICY.EXE

Are all nodes in the cluster part of the C2 configuration?

Starting the System

Did you set security-sensitive parameters to the following values?

LGI_CALLOUTS 0

LOAD_PWD_POLICY 0

MAXSYSGROUP 7

NISCS_CONV_BOOT 0

RMS_FILEPROT 65,280

SECURITY_POLICY 0

STARTUP_P1 " "

Is the CONNECT CONSOLE command disabled? (On VAX 9000 systems, is
the SET SPU_UPDATE_OFF command in effect?)

Have you excluded FYDRIVER from your system?

Running an OpenVMS System in a C2 Environment C–13

D
Alarm Messages

This appendix describes alarm messages that result from auditing various
system events. See Chapter 9 for a discussion of the auditing system and see the
OpenVMS System Management Utilities Reference Manual for a description of the
record format of audit messages.

The information included in the alarm message depends on the type of event.
In all cases, the alarm message contains the operator communication manager
(OPCOM) heading, which includes the date and time the alarm was sent. It
contains the type of alarm event, the date and time the alarm event occurred,
and the user who caused the event, as identified by the user name and process
identification (PID). Other information contained in alarm messages is specific to
the type of event that the alarm signaled.

Alarms Announcing an Object Access
You can audit successful or unsuccessful access to a protected object by specifying
the ACCESS keyword with the /ENABLE qualifier of the SET AUDIT command.
You designate the object type with the /CLASS qualifier. See Section 4.7 for a
description of object auditing. For example:

%%%%%%%%%%% OPCOM 17-SEP-1994 10:13:20.46 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 19728
Auditable event: Object access
Event time: 17-SEP-1994 10:13:20.09
PID: 30200117
Process name: Hobbit
Username: GREG
Process owner: [MTI,GREG]
Terminal name: RTA1:
Image name: DSA1:[GREG.TEST.ACCESS]ACCESS.EXE;50
Object class name: COMMON_EVENT_CLUSTER
Object name: FOO
Access requested: READ
Deaccess key: 808E3380
Status: %SYSTEM-S-NORMAL, normal successful completion
Privileges used: none

You can also audit access through the use of GRPPRV, READALL, SYSPRV, or
BYPASS privilege.

Alarm Messages D–1

Alarm Messages

Alarms Requested by an ACL
You can audit successful or unsuccessful access to individual protected objects
by adding an Alarm ACE or an Audit ACE to an object’s ACL and enabling ACL
events by specifying the ACL keyword with the /ENABLE qualifier of the SET
AUDIT command. For example:

%%%%%%%%%%% OPCOM 12-NOV-1994 10:53:16.34 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) and security audit (SECURITY) on FNORD, system id: 19681
Auditable event: Object deletion
Event information: file deletion request (IO$_DELETE)
Event time: 12-NOV-1994 10:53:16.30
PID: 20200158
Process name: FNORD$RTA2
Username: HUBERT
Process owner: [LEGAL,HUBERT]
Terminal name: RTA2:
Image name: 1DIA1:[SYS0.SYSCOMMON.][SYSEXE]DELETE.EXE
Object class name: FILE
Object owner: [SYSTEM]
Object protection: SYSTEM:RWE, OWNER:RWE, GROUP:, WORLD:
File name: _1DIA3:[USERS.HUBERT.TMP]FOO.BAR;2
File ID: (4134,20,0)
Access requested: DELETE
Sequence key: 0005E05F
Status: %SYSTEM-F-NOPRIV, insufficient privilege or object
protection violation

Alarms Due to Modification of the Authorization Databases
The Authorization class of security events is enabled by default. All changes to
the rights database, the system user authorization file, and the network proxy
authorization file immediately produce an audit event message.

Changes to the rights database result from such actions as the creation of a new
database or the addition, modification, or removal of an identifier. The audit
server also reports when there is a change in a user’s identifiers. Note that the
alarm message cites the image used to modify the rights database and the change
itself. For example:

%%%%%%%%%%% OPCOM 15-DEC-1994 12:27:17.44 %%%%%%%%%%%
Message from user AUDIT$SERVER on LASSIE
Security alarm (SECURITY) and security audit (SECURITY) on LASSIE, system id: 19661
Auditable event: Identifier modified
Event time: 15-DEC-1994 12:27:17.43
PID: 00000113
Username: SYSTEM
Image name: LASSIE$DMA0:[SYS0.SYSCOMMON.][SYSEXE]AUTHORIZE.EXE
Identifier name: ROBINSON
Identifier value: %X80010014 New attributes: RESOURCE

D–2 Alarm Messages

Alarm Messages

In reporting changes to the system or network user authorization files, the audit
server also notes any kind of modification as well as the record modified and the
change made. For example:

%%%%%%%%%%% OPCOM 18-DEC-1994 19:53:25.99 %%%%%%%%%%%
Message from user AUDIT$SERVER on LASSIE
Security alarm (SECURITY) and security audit (SECURITY) on LASSIE, system id: 19611
Auditable event: System UAF record addition
Event time: 18-DEC-1994 19:53:25.98
PID: 20200B25
Username: SYSTEM
Image name: 1DUS0:[SYS0.SYSCOMMON.][SYSEXE]AUTHORIZE.EXE
Object name: SYS$COMMON:[SYSEXE]SYSUAF.DAT;2
Object type: file
User record added: COOPER
Fields modified: FLAGS,PWDLIFETIME

The following alarm message is an example of an alarm resulting from a
password change:

%%%%%%%%%%% OPCOM 26-SEP-1994 15:12:35.95 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) and security audit (SECURITY) on FNORD, system id:
20300
Auditable event: System UAF record modification
Event time: 26-SEP-1994 15:12:35.92
PID: 52C00119
Process name: Hobbit
Username: GREG
Process owner: [RTB,GREG]
Terminal name: RTA2:
Image name: 99DUA0:[SYS0.SYSCOMMON.][SYSEXE]AUTHORIZE.EXE
Object name: CLU$COMMON:<SYSEXE>SYSUAF.DAT;1
Object type: file
User record: GREG
Password: New: 7C5E4DA2 F19176AF

Original: 7C5E4DA2 F19176AF
Password date: New: 0 00:00:00.00

Original: 26-SEP-1994 15:12

Alarms Announcing Break-In Attempts
Break-in attempts are audited by default in the operating system; it audits
dialup, local, remote, network and detached break-ins. Passwords used in break-
in attempts are not displayed on security operator terminals, but they are logged
to the security audit log file and can be displayed with the Audit Analysis utility.

This type of alarm notes the type of break-in attempt, the device user, the origin
of attempt (if the break-in type was remote or network), and the parent user
name (if the break-in type was detached). For example:

%%%%%%%%%%% OPCOM 7-DEC-1994 14:33:20.69 %%%%%%%%%%%
Message from user AUDIT$SERVER on LASSIE
Security alarm (SECURITY) on LASSIE, system id: 19611
Auditable event: Dialup interactive breakin detection
Event time: 7-DEC-1994 14:33:20.68
PID: 00000052
Username: SNIDELY
Terminal name: _LTA13: (AV47C1/LC-2-10)

Alarm Messages D–3

Alarm Messages

Alarms Announcing Creation of an Object
You can audit the creation of objects by specifying the CREATE keyword with the
/ENABLE qualifier of the SET AUDIT command. This type of alarm notes the
class of the object as well as its object name. For example:

%%%%%%%%%%% OPCOM 17-SEP-1994 10:13:20.29 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 19728
Auditable event: Object creation
Event time: 17-SEP-1994 10:13:20.01
PID: 30200117
Process name: Hobbit
Username: HUBERT
Process owner: [SST,HUBERT]
Terminal name: RTA1:
Image name: DSA1:[HUBERT.TEST.ACCESS]ACCESS.EXE;50
Object class name: COMMON_EVENT_CLUSTER
Object name: FOO
Status: %SYSTEM-S-NORMAL, normal successful completion

Alarms Announcing Deaccess from an Object
You can audit the deaccess of a process from an object by specifying the
DEACCESS keyword with the /ENABLE qualifier of the SET AUDIT command.
This type of alarm notes the class of the object. For example:

%%%%%%%%%%% OPCOM 17-SEP-1994 10:13:38.34 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 19728
Auditable event: Object deaccess
Event time: 17-SEP-1994 10:13:38.31
PID: 30200117
Object class name: COMMON_EVENT_CLUSTER
Deaccess key: 808E3380

Alarms Announcing Deletion of an Object
You can audit the deletion of objects by specifying the DELETE keyword with the
/ENABLE qualifier of the SET AUDIT command. This type of alarm notes the
class of the object as well as its object name. For example:

%%%%%%%%%%% OPCOM 17-SEP-1994 10:13:36.17 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 19728
Auditable event: Object access
Event time: 17-SEP-1994 10:13:36.08
PID: 30200117
Process name: Hobbit
Username: HUBERT
Process owner: [MTI,HUBERT]
Terminal name: RTA1:
Image name: DSA1:[HUBERT.TEST.ACCESS]ACCESS.EXE;50
Object class name: COMMON_EVENT_CLUSTER
Object name: FOO
Access requested: DELETE
Status: %SYSTEM-S-NORMAL, normal successful completion
Privileges used: none

D–4 Alarm Messages

Alarm Messages

Alarms Announcing Use of the Install Utility
You can audit the use of the Install utility (to install an image or to remove an
installed image) by specifying the INSTALL keyword with the /ENABLE qualifier
of the SET AUDIT command. Install alarms identify the type of operation, the
name of the image affected by the operation, the flags set by the Install operation,
and the privileges used. For example:

%%%%%%%%%%% OPCOM 7-DEC-1994 12:37:49.69 %%%%%%%%%%%
Message from user AUDIT$SERVER on LASSIE
Security alarm (SECURITY) on LASSIE, system id: 19661
Auditable event: Installed file addition
Event time: 7-DEC-1994 12:37:49.68
PID: 00000113
Username: SYSTEM
Object name: LASSIE$DMA0:[SYS0.SYSCOMMON.][SYSEXE]NCP.EXE;1
Object type: file
INSTALL flags: /OPEN/HEADER_RESIDENT/SHARED

Alarms Announcing Logins
You can audit successful logins by specifying the LOGIN keyword with the
/ENABLE qualifier of the SET AUDIT command. You can audit batch, dialup,
local, remote, network, subprocess and detached login classes. This type of alarm
notes the class of login, the device used, the origin of the login (if it was remote or
network), the parent PID (if the login was subprocess), and the parent user name
(if the login was detached). For example:

%%%%%%%%%%% OPCOM 18-DEC-1994 18:49:40.09 %%%%%%%%%%%
Message from user AUDIT$SERVER on LASSIE
Security alarm (SECURITY) on LASSIE, system id: 19611
Auditable event: Batch process login
Event time: 18-DEC-1994 18:49:40.08
PID: 20002001
Username: LEWIS

Alarms Announcing Login Failures
You can audit login failures by specifying the LOGFAILURE keyword with the
/ENABLE qualifier of the SET AUDIT command. You can audit the batch, dialup,
local, remote, network, subprocess and detached login failure classes. This type
of alarm contains the class of login, the device used, a status message detailing
the reason for the failure, the origin of the login (if it was remote or network), the
parent PID (if the login was subprocess), and the parent user name (if the login
was detached). For example:

%%%%%%%%%%% OPCOM 7-DEC-1994 12:48:43.50 %%%%%%%%%%%
Message from user AUDIT$SERVER on LASSIE
Security alarm (SECURITY) on LASSIE, system id: 19611
Auditable event: Network login failure
Event time: 7-DEC-1994 12:48:43.49
PID: 0000011D
Username: DECNET
Remote nodename: TIGER Remote node id: 3218
Remote username: PROBER
Status: %LOGIN-F-INVPWD, invalid password

Alarm Messages D–5

Alarm Messages

Alarms Announcing Logouts
You can audit logouts by specifying the LOGOUT keyword with the /ENABLE
qualifier of the SET AUDIT command. You can audit batch, dialup, local, remote,
network, subprocess and detached logout classes. This type of alarm contains
the class of logout, the device used, the origin of the login (if it was remote or
network), and the parent PID (if the login was subprocess). For example:

%%%%%%%%%%% OPCOM 18-DEC-1994 19:14:22.03 %%%%%%%%%%%
Message from user AUDIT$SERVER on LASSIE
Security alarm (SECURITY) on LASSIE, system id: 19611
Auditable event: Dialup interactive logout
Event time: 18-DEC-1994 19:14:22.02
PID: 20200001
Username: DANCER
Terminal name: _TTA1:

Alarms Announcing Volume Mounts and Dismounts
You can audit mount or dismount requests by specifying the MOUNT keyword
with the /ENABLE qualifier of the SET AUDIT command. This type of alarm
contains the name of the image used to mount or dismount the volume, the
device used, the log file recording the operation, the volume name, its UIC and
protection code, and the flags set during the operation. For example:

%%%%%%%%%%% OPCOM 18-DEC-1994 17:43:26.94 %%%%%%%%%%%
Message from user AUDIT$SERVER on CANINE
Security alarm (SECURITY) on CANINE, system id: 19681
Auditable event: Volume mount
Event time: 18-DEC-1994 17:43:26.04
PID: 00000038
Username: HOBBIT
Image name: CANINE$DUA0:[SYS0.SYSCOMMON.][SYSEXE]VMOUNT.EXE;1
Object name: _CANINE$MUA0:
Object type: device
Object owner: [DEVO,HOBBIT]
Object protection: SYSTEM:RWEDC, OWNER:RWEDC, GROUP:RWEDC, WORLD:RWEDC
Logical name: TAPE$DBACK1
Volume name: DBACK1
Mount flags: /OVERRIDE=IDENT/MESSAGE

Alarms Reporting Network Connections
On VAX systems, you can audit the creation and termination of logical links with
other nodes in the network when the connections were made through DECnet
for OpenVMS. To do so, specify the CONNECTION keyword with the /ENABLE
qualifier of the SET AUDIT command. For example:

Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 19681
Auditable event: DECnet logical link deleted
Event time: 12-NOV-1994 10:54:25.01
PID: 202002EB
Process name: FAL_16729
Username: HUBERT_N
Process owner: [ACCOUNTS,HUBERT]
Image name: 1DIA1:[SYS0.SYSCOMMON.][SYSEXE]FAL.EXE
Remote nodename: JPT
Remote node id: 19.130
Remote username: HUBERT
DECnet logical link ID: 16729
DECnet object name: FAL
DECnet object number: 17
Remote logical link ID: 35429
Status: %SYSTEM-S-NORMAL, normal successful completion

D–6 Alarm Messages

Alarm Messages

Alarms Reporting Use of Process Control System Services
You can audit use of the process control system services, such as $CREPRC or
$GETJPI, by specifying the PROCESS keyword with the /ENABLE qualifier of
the SET AUDIT command. This type of alarm reports the system service used to
control a process, the device used, the name of the process and its user name. For
example:

%%%%%%%%%%% OPCOM 25-JUL-1994 16:07:09.20 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 20300
Auditable event: Process suspended ($SUSPND)
Event time: 25-JUL-1994 16:07:08.77
PID: 30C00119
Process name: Hobbit
Username: HUBERT
Process owner: [LEGAL,HUBERT]
Terminal name: RTA1:
Image name: 99DUA0:[SYS0.SYSCOMMON.][SYSEXE]SET.EXE
Status: %SYSTEM-S-NORMAL, normal successful completion
Target PID: 30C00126
Target process name: SMISERVER
Target username: SYSTEM
Target process owner: [SYSTEM]

Alarms Reporting Use of Privilege
You can audit the use of privilege by specifying the PRIVILEGE keyword with the
/ENABLE qualifier of the SET AUDIT command. The alarm reports the privilege
used and what it was used to do. For example:

%%%%%%%%%%% OPCOM 17-SEP-1994 10:13:20.16 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 19728
Auditable event: Privilege used
Event information: PRMCEB used to create permanent common event flag
cluster ($ASCEFC)
Event time: 17-SEP-1994 10:13:20.01
PID: 30200117
Process name: Hobbit
Username: HUBERT
Process owner: [MTI,HUBERT]
Terminal name: RTA1:
Image name: DSA1:[HUBERT.TEST.ACCESS]ACCESS.EXE;50
Event flag cluster name: FOO
Privileges used: PRMCEB

Alarm Messages D–7

Alarm Messages

Alarms Reporting Modification of a System Parameter
You can audit the modification of a system parameter by specifying the SYSGEN
keyword with the /ENABLE qualifier of the SET AUDIT command. This type of
alarm reports on both the active parameters and the parameters stored on disk.
For example:

%%%%%%%%%%% OPCOM 25-JUL-1994 16:09:04.67 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 20300
Auditable event: SYSGEN parameter set
Event time: 25-JUL-1994 16:09:04.65
PID: 30C00119
Process name: Hobbit
Username: HUBERT
Process owner: [LEGAL,HUBERT]
Terminal name: RTA1:
Image name: 99DUA0:[SYS0.SYSCOMMON.][SYSEXE]SYSGEN.EXE
Parameters write: SYS$SYSROOT:[SYSEXE]VAXVMSSYS.PAR;68
Parameters inuse: SYS$SYSROOT:[SYSEXE]VAXVMSSYS.PAR;68
NSA_PAGES: New: 15

Original: 10

Alarms Reporting a Change in System Time
You can audit changes to system time by specifying the TIME keyword with the
/ENABLE qualifier of the SET AUDIT command. This type of alarm reports the
old and the new system time, the name of the user making the modification, and
the device used. For example:

%%%%%%%%%%% OPCOM 25-JUL-1994 16:08:25.23 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) on FNORD, system id: 20300
Auditable event: System time recalibrated
Event time: 25-JUL-1994 16:08:25.21
PID: 30C00119
Process name: Hobbit
Username: HUBERT
Process owner: [LEGAL,HUBERT]
Terminal name: RTA1:
Image name: 99DUA0:[SYS0.SYSCOMMON.][SYSEXE]SET.EXE
New system time: 25-JUL-1994 16:08:25.19
Old system time: 25-JUL-1994 16:08:25.18

Alarms Resulting from Execution of the SET AUDIT Command
All uses of the SET AUDIT command are automatically audited, and you cannot
disable it. The following alarm messages are examples of SET AUDIT alarms:

%%%%%%%%%%% OPCOM 12-NOV-1994 10:54:11.91 %%%%%%%%%%%
Message from user AUDIT$SERVER on FNORD
Security alarm (SECURITY) and security audit (SECURITY) on FNORD, system id: 19681
Auditable event: Security alarm state set
Event time: 12-NOV-1994 10:54:11.58
PID: 20200158
Alarm flags: ACL,AUTHORIZATION,CONNECTION

BREAKIN: (DIALUP,LOCAL,REMOTE,NETWORK,DETACHED)
LOGFAIL: (BATCH,DIALUP,LOCAL,REMOTE,NETWORK,

SUBPROCESS,DETACHED)

D–8 Alarm Messages

Glossary

This glossary provides definitions of security-related terms used in this guide.

access control

Restrictions on the ability of a subject (user or process) to use the system or an
object in the computing system. Authentication of the user name and password
controls access to the system, while protection codes, access control lists, and
privileges regulate access to protected objects in that system.

access control entry (ACE)

An entry in an access control list (ACL). Access control entries may specify
identifiers and the access rights to be granted or denied the holders of the
identifiers, default protection for directories, or security details. ACLs for each
object can hold many entries, limited only by overall space and performance
considerations. See also access control list, identifier.

access control list (ACL)

A list that defines the kinds of access to be granted or denied to users of an
object. Access control lists can be created for all protected objects such as files,
devices, and logical name tables. Each ACL consists of one or more entries
known as access control entries (ACEs). See also access control entry.

access control string

A character string used in remote logins. It consists of the user name for the
remote account and the user’s password enclosed within quotation marks.

access matrix

A table that lists subjects on one axis and objects on the other. Each crosspoint
in the matrix thus represents the access that one subject has to one object.

access type

The capability required to perform an operation on a protected object. OpenVMS
security policy can require multiple capabilities to complete an operation. The
most commonly accessed object, a file, can require read, write, execute, delete, or
control access.

ACE

See access control entry.

ACL

See access control list.

Glossary–1

ACL editor

An OpenVMS utility that helps users create and maintain access control lists.
See also access control list.

alarm

See security alarm.

ALF file

See automatic login.

alphanumeric UIC

A format of a user identification code (UIC). The group and member names
can each contain up to 31 alphanumeric characters, at least one of which is
alphabetic. The other format of a UIC is numeric: it contains a group number
and a member number. See also user identification code, numeric UIC.

attribute

In the security context, a characteristic of an identifier or the holder of an
identifier. Attributes can enhance or limit the rights granted with an identifier;
for example, a user holding an identifier with the Resource attribute can charge
disk space to the identifier.

audit

See security audit.

auditing

Recording the occurrence of security-relevant events as they occur on the system
and, later, examining system activity for possible security violations or improper
use of the system. Security-relevant events include activities such as logins,
break-ins, changes to the authorization database, and access to protected objects.
Event messages can be sent as alarms to an operator terminal or written as audit
records to a log file. See also security audit, security alarm.

audit trail

A pattern of security-relevant activity sometimes found in the audit log file.
The audit log file maintains a record of security-relevant events, such as access
attempts, successful or not, as required by the authorization database. See also
security audit.

authentication

The act of establishing the identity of users when they start to use the system.
OpenVMS systems (and most other commercial operating systems) use passwords
as the primary authentication mechanism. See also password.

authorization database

A database that contains the security attributes of subjects and objects. From
these attributes, the reference monitor determines what kind of access (if any) is
authorized.

authorization file

See system user authorization file.

Glossary–2

automatic login

A feature that permits users to log in without specifying a user name. The
operating system associates the user name with the terminal (or terminal server
port) and maintains these assignments in the file SYS$SYSTEM:SYSALF.DAT,
referred to as the automatic login file or the ALF file.

breach

A break in the system security that results in access to system resources or
objects in violation of the system’s security policy.

break-in attempt

An effort made by an unauthorized source to gain access to the system. Because
the first system access is achieved through logging in, intrusion attempts
primarily refer to attempts to log in illegally. These attempts focus on supplying
passwords for users known to have accounts on the system through informed
guesses or other trial-and-error methods. See also evasive action.

C2 system

A U.S. government rating of the security of an operating system; it identifies an
operating system as one that meets the criteria of a Division C, class 2 system.

capability

A resource to which the system controls access; currently, the only defined
capability is the vector processor.

OpenVMS security policy protects vector processors from improper access. An
operation can require use or control access.

captive account

A type of account that confines the user to the captive login command procedure.
The use of Ctrl/Y is disabled. If errors in the captive command procedure cause
the procedure to terminate and attempt to return the user to the DCL command
level, the process is deleted. (This type of account is synonymous with a turnkey
or tied account.)

common event flag cluster

A set of 32 event flags that enable cooperating processes to post event
notifications to each other.

OpenVMS security policy protects common event flag clusters from improper
access. An operation can require associate, delete, or control access.

control access

The right to modify an object’s security profile. Control access is granted
explicitly in an ACL and implicitly in a protection code. (All users qualifying for
system or owner categories have control access.)

decryption

The process that restores encoded information to its original unencoded form.
The information was encoded by using encryption.

Glossary–3

Default attribute

An option added to an ACE that indicates the ACE is to be included in the ACL
of any files created within a directory. When the entry is propagated, the Default
attribute is removed from the ACE of the created file. An Identifier ACE with the
Default attribute has no effect on access. See also access control entry, Identifier
ACE.

device

A class of peripherals connected to a processor that are capable of receiving,
storing, or transmitting data.

OpenVMS security policy protects devices from improper access. An operation
can require read, write, physical, logical, or control access.

discretionary controls

Security controls that are applied at the user’s option; that is, they are not
required. Access control lists (ACLs) are typical of such optional security
features. Discretionary controls are the opposite of mandatory controls.

disk scavenging

Any method of obtaining information from a disk that the owner intended to
discard. The information, although no longer accessible to the original owner
by normal means, retains a sufficient amount of its original magnetic encoding
that it can be retrieved and used by one of the scavenging methods. See also
erase-on-allocate, erase-on-delete, erasure pattern.

encryption

A process of encoding information so that its content is no longer immediately
obvious to anyone who obtains a copy of it. The information is decoded using
decryption.

environmental identifier

One of four classes of identifiers. Environmental identifiers are provided by
the system to identify groups of users according to their usage of the system.
Environmental identifiers correspond to login classes. For example, all users who
access the system by dialing up receive the dialup identifier. See also identifier.

erase-on-allocate

A technique that applies an erasure pattern whenever a new area is allocated
for a file’s extent. The new area is erased with the erasure pattern so that
subsequent attempts to read the area can yield only the erasure pattern and
not some valuable remaining data. This technique is used to discourage disk
scavenging. See also disk scavenging, erase-on-delete, erasure pattern, high-water
marking.

erase-on-delete

A technique that applies an erasure pattern whenever a file is deleted or purged.
This technique is used to discourage disk scavenging. See also disk scavenging,
erase-on-allocate, erasure pattern.

erasure pattern

A character string that can be used to overwrite magnetic media for the purpose
of erasing the information that was previously stored in that area.

Glossary–4

evasive action

A responsive behavior performed by the operating system to discourage break-in
attempts when they appear to be in progress. The operating system has a set of
criteria it uses to detect that an intrusion attempt may be underway. Typically,
once the operating system becomes suspicious that an unauthorized user is
attempting to log in, the evasive action consists of locking out all login attempts
by the offender for a limited period of time.

event classes

Categories of security-relevant events. The operating system audits several event
classes by default, and the security administrator can enable additional ones, if
desired.

event messages

In terms of security, any notification that has to do with a user’s access to the
system or to a protected object within the system. The operating system can
record both successful and unsuccessful events so the security administrator can
know when security-relevant activity occurs on the system.

facility identifier

An identifier whose binary value contains the facility code of the application
defining the identifier. See also identifier.

file

A set of data elements arranged in a structure significant to the user. A file is
any named, stored program or data, or both, to which the system has access.
Access can be of two types: read-only, meaning the file is not to be altered, and
read/write, meaning the contents of the file can be altered. See also volume.

OpenVMS security policy protects files from improper access. An operation can
require read, write, execute, delete, or control access.

file encryption

See encryption.

general identifier

One of four possible types of identifiers that specify one or more groups of users.
The general identifier is alphanumeric and typically is a convenient term that
symbolizes the function of the group of users. For example, typical general
identifiers might be PAYROLL for all users allowed to run payroll applications or
RESERVATIONS for operators at the reservations desk. See also identifier.

global section

A shared memory area (for example, Fortran global common) potentially available
to all processes in the system. A global section can provide access to a disk file
(called a file-backed global section), provide access to dynamically created storage
(called a page file-backed global section), or provide access to specific physical
memory (called a page frame number [PFN] global section). See also group global
section, system global section.

Glossary–5

group

A set of users in a system. Any user whose group UIC is identical to the group
UIC of the object qualifies for the access rights granted through a protection code.
The group name appears as the first field of a user identification code (UIC):
[group,member].

group global section

A shareable memory section potentially available to all processes in the same
group.

OpenVMS security policy protects group global sections from improper access.
Operations on file-backed sections require read, write, execute, delete, or control
access. Operations on other types of sections require read, write, execute, or
control access. See also global section, system global section.

group number

The number or its alphanumeric equivalent in the first field of a user
identification code (UIC): [group,member].

Hidden attribute

An option added to an access control entry that indicates the ACE should be
changed only by the application that adds it. Although the Hidden attribute is
valid for any ACE type, its intended use is to hide Application ACEs. See also
access control entry.

high-water mark

A mark identifying the highest file address written, beyond which the user cannot
read.

high-water marking

A technique for discouraging disk scavenging. This technique tracks the furthest
extent that the owner of a file has written into the file’s allocated area (the
high-water mark). It then prohibits any attempts at reading beyond the written
area, on the premise that any information that exists beyond the currently
written limit is information some user had intended to discard. The operating
system accomplishes the goals of high-water marking with a combination of true
high-water marking and an erase-on-allocate strategy. See also erase-on-allocate.

holder

A user who possesses a particular identifier. Users and the identifiers they hold
are recorded in the rights database. Whenever an object requires an accessor to
hold an identifier, the system checks the process rights list (which is built from
the rights database) in processing the access request.

identifier

An alphanumeric string representing a user or group of users recorded in the
rights database and used by the system in checking access requests. There are
four types of identifiers: environmental, facility, general, and UIC. See also
environmental identifier, facility identifier, general identifier, resource identifier,
UIC identifier.

Glossary–6

Identifier ACE

An access control entry that controls the type of access allowed to a particular
user or group of users.

journal

Name of the auditing log file where the system records events with security
implications, such as logins, break-ins, or changes to the authorization database.

locked password

A password that cannot be changed by the account’s owner. Only system
managers or users with the SYSPRV privilege can change locked passwords.

log

A record of performance or system-relevant events.

logical I/O access

Right to perform a set of I/O operations that allow restricted direct access to
device-level I/O operations using logical block addresses.

logical name table

A shareable table of logical names and their equivalence names for the operating
system or a particular group.

OpenVMS security policy protects logical name tables from improper access. An
operation can require read, write, create, delete, or control access.

login

The series of actions involved in authenticating a user to the system and creating
a process that runs on the user’s behalf.

login class

A user’s method of logging into the system. System managers can control system
access based on the login class: local, dialup, remote, batch, or network.

mandatory controls

Security controls that are imposed by the system upon all users. There are no
examples of mandatory controls within the OpenVMS system. Access controls on
this operating system are optional (discretionary).

NETPROXY

See network proxy authorization file.

network proxy authorization file (NETPROXY.DAT or NET$PROXY.DAT [VAX
only])

A file containing an entry for each user authorized to connect to the local system
from a remote node in the network.

nondiscretionary controls

See mandatory controls.

Glossary–7

nonprivileged

Describes a type of account with no privilege other than TMPMBX and NETMBX
and a user identification code (UIC) greater than the system parameter
MAXSYSGROUP.

Nopropagate attribute

An option added to an access control entry that indicates the ACE cannot
be copied by operations that usually propagate ACEs, such as SET
SECURITY/LIKE. See also access control entry.

numeric UIC

A format of a user identification code (UIC) that specifies the user’s group and
member number in numeric form. The group number is an octal number in the
range of 1 through 37776; the member number is an octal number in the range of
0 through 177776.

object

A passive repository of information to which the system controls access. Access
to an object implies access to the information it contains. See also capability,
common event flag cluster, device, file, group global section, logical name table,
queue, resource domain, security class, system global section, volume.

object class

A set of protected objects with common characteristics. For example, all files
belong to the file class; whereas all devices belong to the device class.

object security profile

A set of security elements that defines access requirements. The elements include
an owner (UIC), a UIC-based protection code, and, possibly, an ACL. See also
access control list, owner, protection code.

open accounts

Accounts that do not require passwords.

operator terminal

A terminal attended by a system operator. The system can send system event
messages to the terminal, provided the event class is enabled.

owner

A user with the same user identification code (UIC) as the protected object.
An owner always has control access to the object and can therefore modify the
object’s security profile. When the operating system processes an access request
from an owner, it considers the access rights in the owner field of a protection
code.

password

A character string that users provide at login time to validate their identity
and as a form of proof of their authorization to access the account. There are
system passwords and user passwords. User passwords include both primary and
secondary passwords. See also primary password, secondary password, system
password, user password.

Glossary–8

physical I/O access

The right to perform a set of I/O functions that allows access to all device-level
I/O operations except maintenance mode using physical block addresses.

primary password

A type of user password that is the first user password requested from the user.
Systems may optionally require a secondary password. A primary or a secondary
password must be associated with the user name in the user authorization file.
See also secondary password.

privileges

A means of protecting the use of certain system functions that can affect system
resources and integrity. System managers grant privileges according to users’
needs and deny them to users as a means of restricting their access to the
system.

process security profile

The set of security elements the system assigns to a process at creation.
Elements include the process UIC plus all of its identifiers and privileges. See
also identifier, privileges, user identification code.

Protected attribute

An option added to an access control entry that indicates the ACE is protected
against casual deletion. It can be deleted by using the ACL editor or by specifying
the ACE explicitly when deleting it.

protected object

An object containing shareable information to which the system controls access.
See also object.

protected subsystem

An application with enhanced access control. While users run the application,
their process rights list contains identifiers giving them access to objects owned
by the subsystem. As soon as the users exit the application, these identifiers and,
therefore, access rights to objects are taken away.

protection

The attributes of an object that limit the type of access available to users. See
also access control list, protection code, user identification code.

protection code

A code defining the type of access that users are allowed to objects, based on the
user’s relationship to the object’s owner. The code defines four sets of users: those
with system rights, those with ownership rights, those belonging to the same
group, and all users on the system, who are called world users. See also group,
owner, system, world.

proxy login

A type of login that permits a user from a remote node to effectively log in to a
local node as if the user owned an account on the local node. However, the user
does not specify a password in the access control string. The remote user may
own the account or share the account with other users.

Glossary–9

pseudodevice

An entity like a mailbox that is treated as an I/O device by the user or system,
although it is not any particular physical device.

queue

A set of jobs to be processed. There are four types of execution queues: batch,
terminal, server, and print.

OpenVMS security policy protects queues from improper access. An operation can
require read, submit, manage, delete, or control access.

reference monitor

The control center within the operating system that authenticates subjects and
implements and enforces the security policy for every access to an object by a
subject.

Resource attribute

An option specified when an identifier is added to the rights database, and later
when the identifier is granted to a user. When a user holds the identifier with
the Resource attribute, that user can charge disk space to the identifier.

resource domain

A namespace controlling access to OpenVMS distributed lock management
resources.

OpenVMS security policy protects resource domains from improper access. An
operation can require read, write, lock, or control access.

resource identifier

An identifier with the Resource attribute. Thus, holders of the identifier can
charge disk space to the identifier.

restricted account

A type of account with a secure login procedure. The user is not allowed to use
the Ctrl/Y key sequence during the system or process login command procedure.
Control may be turned over to the user following execution of the login command
procedures.

rights database

The collection of data the system maintains and uses to define identifiers and
associate identifiers with the holders of the identifiers.

rights identifier

See identifier.

rights list

The list associated with each process that includes all the identifiers the process
holds.

RWED

The abbreviation for read, write, execute, delete, which are types of access to data
files and directory files.

Glossary–10

secondary password

A user password that may be required at login time immediately after the
primary password has been submitted correctly. Primary and secondary
passwords can be known by separate users to ensure that more than one user is
present at the login. A less common use is to require a secondary password as a
means of increasing the password length so that the total number of combinations
of characters makes password guessing more time-consuming. See also primary
password.

secure terminal server

Operating system software designed to ensure that users can log in only to
terminals that are already logged out. When the user presses the Break key on
a terminal, the secure server (if enabled) responds by first disconnecting any
logged-in process and then initiating a login. If no process is logged in at the
terminal, the login can proceed immediately.

security administrator

The person or persons responsible for implementing and maintaining the
organization’s security policy. This role is sometimes performed by the same
person who functions as a system manager. It requires the same skills as the
system manager as well as knowledge of the security features provided with the
operating system.

security alarm

A message sent to an operator terminal that is enabled to receive messages
pertaining to security events. Security alarms are triggered by the occurrence
of an event previously designated as worthy of the alarm because of its security
implications.

security audit

An auditing message written to the security audit log file. These messages report
the occurrence of events with security implications, such as logins, break-ins, and
changes to the authorization database. A system administrator uses the log file
to examine system activity for possible security violations or improper use of the
system.

security auditing

See auditing.

security class

The object class whose members are all object classes. Each member defines the
object templates and management routines for its object class.

OpenVMS security policy protects security classes from improper access. An
operation can require read, write, or control access.

security officer

See security administrator.

Glossary–11

security operator terminal

A class of terminal that has been enabled to receive messages sent by OPCOM to
security operators. These messages are security alarm messages. Normally such
a terminal is a hardcopy terminal in a protected room. The output provides a log
of security-related events and details that identify the source of the event.

security profile

A set of elements that describe either an object’s access requirements or a
subject’s access rights. See also object security profile, process security profile.

social engineering

The act of gaining unauthorized access to or information about computer systems
and resources by enlisting the aid of unwitting users or operators. Often involves
impersonation or other fraud.

subject

A prinicpal, either a user process or an application, that accesses information or
is prevented from accessing information. The operating system controls access
to any object that contains shareable information. Therefore, subjects must be
authorized to access objects. See also process security profile.

system

In the context of a protection code, identifies a set of users in a system. System
users typically have a UIC is in the range 1 through 10 (octal); however, the exact
range of a system UIC is determined by the system parameter MAXSYSGROUP.
Other ways to become a system user include having SYSPRV privilege or being in
the same group as the owner and holding GRPPRV. System operators and system
managers are usually system users.

system-defined identifier

See environmental identifier.

system global section

A shareable memory section potentially available to all processes in the system.

OpenVMS security policy protects system global sections from improper access.
Operations on file-backed sections require read, write, execute, delete, or control
access. Operations on other types of sections require read, write, execute, or
control access.

system password

A password controlling access to particular terminals. System passwords
are usually necessary to control access to terminals that might be targets for
unauthorized use, such as dialup and public terminal lines. After an authorized
person enters the system password, a user can enter his user password. See also
user password.

system user authorization file (SYSUAF.DAT)

A file containing an entry for every user that the system manager authorizes to
gain access to the system. Each entry identifies the user name, password, default
account, user identification code (UIC), quotas, limits, and privileges assigned to
individuals who use the system.

Glossary–12

SYSUAF

See system user authorization file.

TCB

See trusted computing base.

template profile

The default set of security elements applied to new objects of a class. See also
object security profile.

tied account

See captive account.

trap door

An illicit piece of software or software modification in an operating system that
allows access in violation of the system’s established security policy.

Trojan horse program

A program that gains access to otherwise secured areas through its pretext of
serving one purpose when its real intent is far more devious and potentially
damaging. When an authorized user performs an legitimate operation using a
program, the unauthorized program within it (the Trojan horse) performs an
unauthorized function.

trusted computing base (TCB)

A combination of computer hardware and operating system software that enforces
a security policy.

In OpenVMS systems, the TCB includes the entire executive and file system,
all other system components that do not execute in user mode (such as device
drivers, RMS, and DCL), most system programs installed with privilege, and a
variety of other utilities used by system managers to maintain data relevant to
the TCB.

turnkey account

See captive account.

UAF

See system user authorization file.

UIC

See user identification code.

UIC identifier

An identifier in alphanumeric format that is based on a user’s identification code
(UIC). Such an identifier can appear with or without brackets. See also identifier.

UIC protection code

See protection code.

Glossary–13

user category

One of four fields in a protection code. The code defines the access rights for four
categories of users: (a) the owner, (b) the users who share the same group UIC as
the owner (the group category), (c) all users on the system (the world category),
and (d) those with system privileges or rights (the system category). A code lists
access rights in a fixed order: System, Owner, Group, World.

user identification code (UIC)

A 32-bit value assigned to users that tells what group users belong to on the
system and what their unique identification is within that group. Any UIC
specification is enclosed in brackets, but it can be in either an alphanumeric or
a numeric format. For example, the UIC [SALES,JONES] identifies Jones as a
member of the Sales group. Protected objects like files also have UICs. In most
cases, their UICs come from the users who created them.

user irresponsibility

Situations where the user purposely or accidentally causes some noticeable
damage on a computer system.

user name

The name a user enters to log in to the system. Together with a password, the
user name identifies and authenticates a person as a valid user of the system.
See also password, user password.

user password

A character string recorded in a user’s record in the system user authorization
file. The password and the user’s name must be correctly supplied when the user
attempts to log in so that the user is authenticated for access to the system. The
two types of user passwords are known as primary and secondary; the terms also
represent the sequence in which they are entered. See also primary password,
secondary password, system password.

user penetration

Situations where the user exploits defects in the system software or system
administration to break through security controls to gain access to the computer
system.

user probing

Situations where a user exploits insufficiently protected parts of a computer
system.

virus

A command procedure or executable image written and placed on the system
for the sole purpose of seeking unauthorized access to files and accounts on the
system. The virus seeks access to a user file through a flaw in the file protection.
If successful, the virus modifies the file so that it carries a copy of the virus. Each
time an unsuspecting user executes the code that contains the virus, the virus
attempts to propagate itself into other poorly protected procedures or images.
The virus seeks to find its way into a procedure that will be run from a privileged
account so that the virus can inflict damage to the system.

Glossary–14

volume

A mass storage medium, such as a disk or tape, that is in ODS-2 format. Volumes
contain files and may be mounted on devices.

OpenVMS security policy protects volumes from improper access. An operation
can require read, write, create, delete, or control access.

world

A category of users whose access rights to an object are identified in the last field
of a protection code. The world category encompasses all users or applications on
the system, including system operators, system managers, and users both in the
owner’s group and any other group.

worm

A procedure that replicates itself over many nodes in a network, typically using
default network access or known security flaws. The usual effect of a worm is
severe performance degradation as replicas of the worm saturate the computing
capacity and bandwidth of the network. In contrast to a virus, which spreads by
modifying existing programs and executing when some user runs the program, a
worm stands by itself, operates in its own process context, and initiates its own
offspring.

Glossary–15

Index

A
Access

auditing of processes, 9–7
BYPASS privilege, 4–13
class-specific overrides, 4–14
denying, 4–28
how the system determines, 4–13
object-oriented, 2–7
performance impact of auditing, 9–13
privileges bypassing ACLs, 4–30
privileges bypassing protection codes, 4–30
subject-oriented, 2–7
through ACLs, 4–19
through GRPPRV privilege, 4–13
through protection codes, 4–9
through READALL privilege, 4–13
through SYSPRV privilege, 4–13
to deleted file data, 5–13

Access categories, 4–26
See also Protection codes

Access control
See also Access types
See also Identifier ACEs
ACE order, importance of, 4–20
assigning file defaults, 4–21
bypassing ACLs, 4–30
bypassing protection codes, 4–30
comparing security profiles, 4–1
controlling in network environment, 12–5
default application account, 12–3
default for inbound connection, 12–4
denying access through an ACL, 4–19
denying a class of users, 8–4
evaluating a user’s access request, 4–13, 4–14
explicit, 12–3
for a network, 12–3
for applications, 12–4
for connections, 12–3
for protected objects, 4–1
Identifier ACEs and, 4–19
in a network environment, 12–1
limited-access accounts, 7–4
limiting access to an environment, 4–5, 4–20
limiting device access, 4–20
limiting logins, 7–1

Access control (cont’d)
matrix, 2–6
object security profiles, 4–8
object-specific considerations, 4–31
protection code processing rules, 4–13
protection code user categories, 4–10
proxy, 12–3, 12–4
routing initialization passwords, 12–14
through ACLs, 4–18, 4–20
using Identifier ACEs, 4–18, 4–22
using the NCP, 12–4

Access control entries
See ACE attributes
See ACEs

Access control lists
See ACLs

Access control strings, 3–15, 12–4
command procedures and, 3–15
exposing password in, 3–13
protecting information in, 3–15
secondary passwords with, 7–16

/ACCESS qualifier in Authorize utility, 7–2
Access requirements

allocating devices, 5–4
capability object, 5–1
common event flag clusters, 5–2
directories, 5–9
file-oriented devices, 5–4
files, 5–9
global sections, 5–15
I/O channel, 5–4
logical name tables, 5–16
non-file-oriented devices, 5–5
queues, 5–18
resource domains, 5–19
security class objects, 5–20
shareable devices, 5–5
spooled devices, 5–4
unshareable devices, 5–5
volumes, 5–5

Access types
abbreviations of, 4–27
ACLs, 4–22
associate, 5–2
capability class, 5–1
class-dependency of, 4–27
common event flag clusters, 5–2

Index–1

Access types (cont’d)
control, 4–27, 5–3

files, 5–9
objects in general, 4–30

create
logical name tables, 5–16
volumes, 5–21

delete
common event flag clusters, 5–2
files, 5–9
logical name tables, 5–16
queues, 5–18
volumes, 5–21

directories, 5–9
execute

files, 5–9
global sections, 5–15

files, 5–9
global sections, 5–15
lock, 5–19
logical I/O, 5–4
logical name tables, 5–16
manage, 5–18
physical I/O, 5–4
protection codes and, 4–27
queues, 5–18
read

devices, 5–4
files, 5–9
global sections, 5–15
logical name tables, 5–16
queues, 5–18
resource domains, 5–19
security class, 5–20
volumes, 5–21

resource domains, 5–19
security audit and, 3–19
security class, 5–20
shared devices, 5–4
submit, 5–18
unshared devices, 5–4
volumes, 5–21
write

devices, 5–4
files, 5–9
global section, 5–15
logical name tables, 5–16
resource domains, 5–19
security class, 5–20
volumes, 5–21

Accounting logs as security tool, 10–3
Accounts

See also Captive accounts
See also Privileged accounts
See also Proxy accounts
See also Restricted accounts
accessing after password expires, 3–13

Accounts (cont’d)
application, 12–3
auditing access, 3–17
captive, 7–5
DECNET account, removing, 12–13
designing secure accounts, 6–6, 7–4
disabling with DISUSER flag, 7–3
disguising identity, 10–4
expiration, 3–12, 3–13
first login, 3–2
group, C–7
guest, 7–12
initial password, 3–1
interactive, 7–4
limited-access, 7–4
network objects, 12–11
open, 3–4
password expiration and, 3–13
password requirements for, 3–4
passwords for multiple, 3–14
privileged, 7–6
project, 8–20
proxies for groups, C–7
proxy, 7–13
renewing expired, 3–13
restricted, 3–4, 7–5
secondary password, 3–3
setting duration of, 7–3
setting up to use project identifiers, 8–21
types of, 3–4, 7–4
user passwords for, 3–2

ACE attributes
Default, 4–22
Hidden, 4–23
None, 4–20
Nopropagate, 4–25, 4–30
Protected, 4–24, 4–25, 4–30

ACE options
See ACE attributes

ACEs (access control entries)
See also ACE attributes
See also Identifier ACEs
adding, 4–23
Alarm ACEs, 4–32, 9–5
Audit ACEs, 4–32, 9–5
creating, 4–19
Creator ACEs, 5–12, 8–10, 8–21
Default Protection ACEs, 4–29
deleting, 4–24
generating audit event messages, 9–2
inserting in a list, 4–23
order of, 4–13, 4–20, 4–23
replacing, 4–24
security auditing, 4–24
sensitive files and, 3–18
subsystem ACEs, 13–3 to 13–5
Subsystem ACEs, 8–8
types of, 4–18

Index–2

ACL editor
displaying ACLs, 4–10
modifying ACLs, 4–23

ACLs (access control lists), 4–18, 8–20
See also ACEs
ACE order, 4–13, 4–20, 4–23
alarms generated by, D–2
assigning by default to new files, 4–21
auditing in C2 systems, C–8
bypassing with special rights, 4–30
copying, 4–25
creating, 4–19
deleting, 4–24
deleting obsolete identifiers, 8–7
designing, 8–4
disadvantages of, 8–4
displaying, 4–10, 4–22
effect of privileges, 4–13
effect on performance, 8–4
granting access, 4–19
interaction with protection codes, 4–28
management overview, 8–3
modifying, 4–23
network file sharing, 12–20
priority in access evaluation, 4–13
protection codes and, 4–19
queue access rights, 5–18
reordering entries, 4–23
replacing ACEs, 4–24
restoring default ACL, 4–25
restoring file default, 4–29
security element of an object, 4–9
setting file protection, 8–16, 8–21
system program files, 8–28

ACNT privilege, A–1
ADD/IDENTIFIER command in Authorize utility,

8–6
ADD/PROXY command in Authorize utility, 12–8,

12–20
Alarm ACEs, 4–32

how to use, 9–5
position in ACL, 4–23

Alarm messages
See also Security alarms
ACL event, D–2
authorization database modification, D–2
break-in event, D–3
INSTALL event, D–5
login, D–5
login failure, D–5
logout, D–6
network connection, D–6
object access event, D–1
object creation, D–4
object deaccess, D–4
object deletion, D–4
privilege use, D–7

Alarm messages (cont’d)
process control event, D–7
SET AUDIT use, D–8
system parameter modification, D–8
time modification, D–8
volume mount/dismount, D–6

Alarms
See also Security alarms
enabling for security, 3–18

ALF
See Automatic login facility

ALF (automatic login facility), 7–30
Autologin account as security problem, 7–12
AUTOLOGIN flag, 7–12
C2 systems and, C–7
cluster requirements for ALF files, 11–4

ALLSPOOL privilege, A–2
Alphanumeric UICs, 4–4
ALTPRI privilege, A–2
ANALYZE/AUDIT command, 9–19

See also Audit Analysis utility
qualifier summary, 9–20

Announcement messages, 3–3, 3–5
security disadvantages, 7–28

APPEND command, /PROTECTION qualifier,
8–20

Applications, setting access control, 12–4
Archive files

analyzing security-relevant events, 9–17
enabling remote, 9–17
for security event messages, 9–16

Archive flush, 9–29
ASCII output from Audit Analysis utility, 9–21
Associate access, 5–2
Asynchronous connection, dynamic, 12–19
Asynchronous DDCMP driver, 12–15
Attacks, types of system, 10–1
Attributes

See ACE attributes
See Identifier attributes

Audit ACEs, 4–32
how to use, 9–5

Audit analysis
See Audit Analysis utility

Audit Analysis utility (ANALYZE/AUDIT), 9–1
analyzing archive files, 9–17
ASCII output from, 9–21
binary output from, 9–21
determining criteria of the analysis, 9–22
example, 9–23
generating daily reports, 9–18
interactive commands, 9–22
invoking, 9–19
overview, 9–18
prerequisites, 9–18
report formats, 9–20
types of output, 9–21

Index–3

Audit Analysis utility (ANALYZE/AUDIT) (cont’d)
when to ignore events, 9–18

Audit events
See Security-auditing events

Auditing
See also Audit Analysis Utility
See also Security auditing
applications, 10–4
as security feature, 10–4
of security events, 9–1

Audit listener mailboxes
capturing audit event messages, 9–17
disabling, 9–17
example of programs for, 9–17

Audit log files
See Audit Analysis utility
See Security auditing
See Security audit log files

AUDIT privilege, A–2
Audit reports

See Security audit reports
Audit server databases, 9–25
Audit server processes

changing disk transfer rate, 9–29
controlling message flow, 9–27
delaying delivery of event messages, 9–26
disabling, 9–26
enabling, 9–26
error handling, 9–29, 9–30
final server action, 9–28
managing, 9–24
memory limitations and, 9–28
pre-extending log files, 9–29
tasks performed by, 9–24

Audit trails
See also Security alarms
See also Security auditing
See also Security audit log files
See also Security audit reports
in security models, 2–2

$AUDIT_EVENT system service, reporting
security-relevant events, 9–9

Authentication, external, 7–24
Authentication cards, 7–17

C2 system requirements, C–6
Authority-based systems, 2–7
Authorization databases, 2–4

access matrix, 2–6, 2–7
adding users, 7–4
auditing, 9–3
auditing modifications to, 9–7
contents, 2–2
synchronizing authorization on clustered

systems, 11–4

Authorize utility (AUTHORIZE)
ADD/FLAG command, 7–25
ADD/IDENTIFIER command, 8–6, 8–21
ADD/PROXY command, 12–8, 12–20
CREATE/PROXY command, 12–8
CREATE/RIGHTS command, 8–6
EXTAUTH flag, 7–25
/GENERATE_PASSWORD qualifier, 7–14
GRANT/IDENTIFIER command, 8–7, 8–21
MODIFY/FLAG command, 7–25
MODIFY/SYSTEM_PASSWORD command,

7–15
REMOVE/IDENTIFIER command, 8–7
SHOW/IDENTIFIER command, 8–6
SHOW/RIGHTS command, 8–6

Autodial protocol, 12–17
Automatic password generation, 3–10

disadvantages, 3–11
example, 3–10
minimum length, 3–10

B
Backup operations

general recommendations, 8–30
performed from captive privileged account, 7–7

Batch identifiers, 4–5
Batch jobs

affected by shift restrictions, 3–8
authorization, 3–7
password protection and cardreaders, 3–14

Batch logins, 3–7
Binary output from Audit Analysis utility, 9–21
Break-in alarms, D–3
Break-in attempts, 1–2

auditing, 9–3, 9–7
counteraction through dual passwords, 7–16
detecting, 7–31, 7–34
evading, 3–9
security audit report and, 9–23

Break key and secure servers, 7–30
BUGCHK privilege, A–3
Buses, default security elements, 5–6
BYPASS privilege

description, A–3
effect on control access, 4–30
overriding access controls, 4–13, 4–30

C
C2 environments, C–1

See also TCB
C2 security, systems

checklist for generating, C–12
criteria, C–1
documentation, C–2
effect of site changes on certification, C–4
object protection and, C–4

Index–4

C2 security, systems (cont’d)
physical security requirements, C–6
software not included, C–3
SYSMAN databases, C–4
system parameters, C–10
system startup, C–10

Capability-based systems, 2–7
Capability objects

as protected objects, 4–12
elements of, 5–1
reestablishing profile, 5–2
template profile, 5–2
types of access, 5–1

Captive accounts, 3–4
See also Accounts
command procedures, 7–9
Ctrl/Y key sequence and, 7–7
disabling mail and notification of delivery,

7–29
example of production account, 7–5
locked passwords and, 7–8
when to use, 7–4

Card readers, default security elements, 5–6
Case sensitivity

in passwords and user names, 7–25
$CHECK_ACCESS system service, security

auditing and, 9–9
$CHECK_PRIVILEGE system service, reporting

privilege use, 9–9
$CHKPRO system service

role in access control, 4–13
security auditing and, 9–9

/CLITABLES qualifier, 7–9, 8–28
Cluster environments

building single security domain, 11–2
C2 system restrictions, C–10
managing audit log file, 11–5
protected object databases, 11–6
protected objects, 11–6
security considerations, 11–1
security implementation, 11–7
synchronizing authorization data, 11–4
SYSMAN requirements, 11–7
system file recommendations, 11–3
system file requirements, 11–2

Cluster managers and security administrators,
11–1

Clusterwide intrusion detection, 11–7
CLUSTER_AUTHORIZE.DAT files, 11–8
CMEXEC privilege, A–4
CMKRNL privilege, A–4
Command mode for Audit Analysis utility,

manipulating the display, 9–22
Command procedures

access control strings in, 3–15
STARTNET.COM, 12–16
SYSTARTUP_VMS.COM, 12–15

Commands, usage restrictions, 8–28
Common event flag clusters

as protected objects, 4–12
events audited, 5–3
privilege requirements, 5–3
reestablishing security profile, 5–3
security elements of, 5–2
system modifications of templates, 5–3
template profile, 5–3
types of access to, 5–2

Communications devices
C2 system requirements, C–6
default security elements, 5–6

Compilers, restricting use with ACLs, 8–27
Confidential files, security auditing and, 3–18
CONNECT command, /LOGOUT qualifier, 3–21
Connections, auditing of, 9–7
Consoles, enabling passwords for, 7–17
Console terminals

C2 system requirements, C–6
C2 systems and, C–11
HSC and C2 system requirements, C–6

Control access
acquiring, 4–13, 4–27, 4–30
common event flag clusters, 5–3
devices, 5–4
files, 5–9
global sections, 5–15
limitations, 4–31
logical name tables, 5–16
queues, 5–18
resource domains, 5–19
security class, 5–20
volumes, 5–21

COPY command
/PROTECTION qualifier, 8–20
security profile assigned, 5–12

CREATE/PROXY command in Authorize utility,
12–8

CREATE/RIGHTS command in Authorize utility,
8–6

Create access
logical name tables, 5–16
volumes, 5–21

Creator ACEs, 5–12
example, 8–21
with resource identifiers, 8–10

Ctrl/B key sequence, 3–15
Ctrl/Y key sequence and restricted accounts, 7–11

D
Database

volatile network, 12–16
Databases

authorization, 2–4, 2–6
protected objects, 11–6
rights, 8–6

Index–5

Databases (cont’d)
synchronizing authorization on clustered

systems, 11–4
Data security erase

See DSE
DBG$ENABLE_SERVER identifier

C2 system restriction, C–8
DCL commands

SET HOST/DTE in network operations, 12–17
SET TERMINAL in network operations, 12–15

DCL tables, modifications for security, 8–28
DDCMP (Digital Data Communications Message

Protocol)
asynchronous driver, 12–15

Debug server identifier, C2 system restriction,
C–8

DECamds, software not in C2 evaluation, C–3
DECdns distributed name service, not in C2

evaluation, C–3
DECnet

See also Network security
C2 system restrictions, C–10
cluster nodes and, 11–8
dynamic asynchronous connection, 12–16,

12–17
INBOUND parameter, 12–16
installing dynamic asynchronous connection,

12–15
nonprivileged user name, 12–10
receive passwords, 12–16
transmit passwords, 12–16

DECnet-Plus for OpenVMS, full names not in C2
evaluation, C–3

Decryption, 8–28
DECwindows screens, clearing, 3–11, 3–15, 3–20
DECwindows software, not in C2 evaluation, C–3
Default attribute for ACEs, 4–22
Default ownership

for directories, 8–22
for files, 8–19
for protected objects, 8–15, 8–22

Default protection
Alpha system files, 8–26
for directories, 5–11
for files, 5–11
for processes, 8–16, 8–19
for VAX system files, B–1
management, 8–15

Default Protection ACEs, 4–29, 8–16, 8–20
examples, 12–22
generating default file protection, 5–11

Delete access
common event flag clusters, 5–2
files, 5–9
granting through protection codes, 4–27
logical name tables, 5–16
queues

through ACLs, 5–18

Delete access
queues (cont’d)

through protection codes, 5–18
volumes, 5–21

DELETE command, /ERASE qualifier, 5–13
DETACH privilege, A–8
Devices

access requirements, 5–4
as protected objects, 4–12
controlling access through ACLs, 4–20
default security elements, 5–6
events audited, 5–8
modifying security profiles of, 5–6
privilege requirements, 5–8
profile storage, 5–8
protecting BACKUP save sets, 8–30
reusing in C2 systems, C–9
security elements of, 5–3
spooled, access requirements, 5–4
template security profiles, 5–6
terminal configuration, 8–32

DIAGNOSE privilege, A–5
Dialup identifiers, 4–5
Dialup lines

connection security, 12–16
controlling access to, 3–2
using for dynamic asynchronous connection,

12–15
using in a public area, 3–21

Dialup logins, 3–5
breaking connections, 3–21
controlling retries, 7–29
failures, 3–9
retries, 3–9

Directories
access control through ACLs, 4–21
access requirements, 5–9
assigning a security profile, 5–11
controlling access to files, 4–22, 8–16
creating, 5–10
events audited, 5–12
ownership

by resource identifier, 8–21
changing access to files, 8–16
setting default, 8–16

setting default file protection, 4–21
setting file protection, 8–16

DIRECTORY command, /SECURITY qualifier,
5–14

Disconnected job messages, 3–5
Disconnected processes

See Virtual terminals
DISFORCE_PWD_CHANGE flag, 7–19
Disk quotas

as restriction for users, 7–3
charging to identifiers, 8–10

Index–6

Disks
accessing deleted data, 5–13
changing message transfer rate, 9–29
default security elements, 5–6
erase-on-allocate, 5–12, 5–13
erasing, 5–13, 8–29
erasure patterns, 5–12
high-water marking, 5–12, 5–13
managing security profiles, 5–6
protecting after file deletion, 5–12

Disk scavenging
discouraging, 8–28
preventing, 5–12, 5–13

Disk space
charging to identifier, 8–21
requirements for security audit log file, 9–29
usage and charging, 8–10

Disk volumes
controlling access, 5–21
protecting, 5–21
restrictions, 7–3

DISMOUNT command, alarms, D–6
DOWNGRADE privilege, A–6
DSE (data security erase)

tailoring, 8–29
Dual passwords, 7–16
Dynamic asynchronous connections

automatic switching of terminal line, 12–17
connection example, 12–19
manual switching of terminal line, 12–17
passwords for, 12–16
procedure for establishing, 12–15
security, 12–16
switching of terminal line, 12–15
terminating the link, 12–18
verifier, 12–14

Dynamic attribute for identifiers, 8–8

E
Echoing, passwords and, 3–3
EDIT/ACL command

See ACL editor
Editing ACLs, 4–23 to 4–25

See also ACL editor
Editors

See ACL editor
Emergency accounts and privileges, 8–14
Emulator

terminal, 12–18
Encryption, 8–28
Environmental factors in security, 1–3
Environmental identifiers

conditionalizing general identifiers, 8–4
example, 4–5, 4–7, 4–21
Identifier ACEs and, 4–20

Erase-on-allocate, 5–12, 5–13
Erase-on-delete, 5–13, 8–29

C2 systems and, C–9
Erasing disks, 8–29
Erasure patterns, 5–12, 5–13, 8–29
Event classes

See Security-auditing events
Event tolerance and security levels, 1–2
Execute access

files, 5–9
global sections, 5–15
granting through protection codes, 4–27

Expiration
of account, 3–13
of password, 3–12, 7–14
of secondary password, 3–12
password system messages, 3–12

/EXPIRATION qualifier, 7–3
Expired passwords, system message, 3–12
EXQUOTA privilege, A–6
EXTAUTH flag, 7–25
External authentication, 7–24

defining logical names, 7–24
disabling when network is down, 7–25
marking user accounts, 7–25
NET PASSWORD command, 7–25
password verification, 7–26
setting a password, 7–25
specifying SYS$SINGLE_SIGNON logical name

bits, 7–27
using the /LOCAL_PASSWORD qualifier, 7–25

F
F$MODE lexical function, 3–4
Facility identifiers, 4–6
Failure

See Login failures
FAL (file access listener) recommendations, 12–10
File access

See File protection
File browsers, 3–18, 10–5, 10–6
File protection, 4–9, 5–8, 8–16

See also Files
auditing, 10–5
C2 systems, C–5
DCL commands for, 8–26
setting default ACLs, 4–21

Files
See also File protection
See also Security auditing
access control through ACLs, 4–21
accessing

allocated disk blocks, 5–13
by file identifier, 5–9

access requirements, 5–9, 5–10
adding ACEs for security auditing, 3–18, 4–32

Index–7

Files (cont’d)
applying an alarm to, 3–18
as protected objects, 4–12
assigning protection codes, 5–11
assigning security profiles, 5–10, 5–11, 8–16
auditing access to, 3–17, 3–18, 4–31
changing security profiles, 5–11
confidential, protecting, 3–18
controlling access with Identifier ACEs, 4–19
copying

from remote account, 3–17
creating

dependency on directory ownership, 8–16
requirements for, 5–10

default protection, 4–29
encrypting, 8–28
erasing data from disks, 5–13
events audited, 5–12
exceptions to ownership rules, 4–9
managing directory defaults, 8–22
naming rules, 5–8
optimizing security, 5–14
owned by resource identifier, 5–11, 8–21
ownership rules, 5–10
protecting data after deletion, 5–12
protecting mail, 5–14
protection required for proxy access, 3–17
restoring default security elements, 4–25
restoring default security profiles, 4–29
security auditing and, 3–18, 5–12
security elements of, 5–8
setting default protection and ownership, 8–16
sharing and exchanging in network

environment, 12–19, 12–23
sharing for a cluster system, 11–5
transfers with MAIL, 12–19

/FLAGS=CAPTIVE qualifier, 7–8
/FLAGS=DISIMAGE qualifier, 8–28
/FLAGS=DISMAIL qualifier, 7–29
/FLAGS=DISNEWMAIL qualifier, 7–29
/FLAGS=DISPWDDIC qualifier, 7–21
/FLAGS=DISPWDHIS qualifier, 7–21
/FLAGS=DISRECONNECT qualifier, 7–29
/FLAGS=DISREPORT qualifier, 7–29
/FLAGS=DISUSER qualifier, 7–23
/FLAGS=DISWELCOME qualifier, 7–29
/FLAGS=GENPWD qualifier, 7–16, 7–20
/FLAGS=LOCKPWD qualifier, 7–20
/FLAGS=PWD_EXPIRED qualifier, 7–18
/FLAGS=RESTRICTED qualifier, 7–11
Flushing messages to disk, 9–29
Flush interval, 9–29
Foreign volumes, access requirements, 5–5
Formats

Identifier ACE, 4–19
protection code, 4–26
rights identifiers, 4–5
security-auditing ACE, 9–6

Formats (cont’d)
UIC (user identification code), 4–4

FYDRIVER, C2 systems and, C–11

G
General identifiers, 4–19

design considerations, 8–3
example, 4–7, 4–21
format, 4–5

Generated passwords, 3–10
disadvantages, 3–11
example, 3–10
initial passwords, 7–13
length, 7–19
minimum length, 3–10
requiring, 7–16, 7–21

Global sections
default protection, C–4
events audited, 5–16
group, 4–12
privilege requirements, 5–15
reestablishing security profile, 5–16
restricting access, 5–15
security elements of, 5–14
system, 4–12
template profiles, 5–15
types of access, 5–15

Group accounts, C2 systems and, C–7
Group global sections

See Global sections
Group numbers

in UICs, 4–4
reserved UICs, 4–4
uniqueness requirement for clustered systems,

11–5
Group numbers and passwords, setting up for

cluster, 11–7
GROUP privilege, A–6
Groups

design of, 8–6
guidelines for organization, 8–1
UIC design, 8–1

Group UIC names, 4–4
Group users (security category), 4–10, 4–26
GRPNAM privilege, 5–17, A–6, C–6
GRPPRV privilege

description, A–7
effect on protection mechanisms, 4–30
giving rights of system user, 4–13, 4–26
granting control access, 4–30
trusted users and, C–5

Guest accounts
as limited-access accounts, 7–12
C2 systems and, C–7

Index–8

H
Hardcopy output

disposal of, 3–20
Hardcopy terminals, logout considerations, 3–20
Hidden attribute, 4–23
High-water marking, 5–12, 5–13, 8–29

C2 systems and, C–9
performance and, 8–30

History, 7–21
Holder Hidden attribute, 8–9
Holders of a rights identifier

associating with identifier, 8–7
displaying records, 8–6
granting access to, 4–19
removing from rights database, 8–7

HSC console terminals
C2 system requirements, C–6
C2 system restrictions, C–8

HSM (Hierarchical Shelving Manager), not in C2
evaluation, C–3

I
I/O channels, access requirements, 5–4
I/O operations, access requirements for devices,

5–4
Identifier ACEs

See also Identifier attributes
ACE order, 4–20
adding to an ACL, 4–23
conditionalizing access, 4–20
creating, 4–19
Default attribute, 4–21
denying access, 4–19
format, 4–19
interpreting, 4–19
protected subsystems and, 13–4
using general identifiers, 4–19

Identifier attributes
description of, 8–8
Dynamic, 8–8
Holder Hidden, 8–9
Name Hidden, 8–9
No Access, 8–9
Resource, 8–10
Subsystem, 8–11

Identifiers
See also Identifier attributes
adding to rights database, 8–6
as directory owners, 8–21
as file owners, 5–10, 5–11
assigning to users, 8–7
auditing use of, 9–7
creating, 4–19
customizing, 8–4
displaying process, 4–6

Identifiers (cont’d)
environmental, 4–5, 4–6, 8–4
facility, 4–6
format, 4–5
general, 4–5, 4–6, 4–19
in ACEs, 4–18
of a process, 4–1
protected subsystems and, 13–6
removing, 8–7
reserved, 13–3
security audit reports and, 4–7
types, 4–5
UIC, 4–5, 4–6
uniqueness requirement, 11–5

Images, installing
security ramifications, 8–14, 13–1
subsystem images, 13–1, 13–3

IMPERSONATE privilege, A–8
IMPORT privilege, A–8
INBOUND parameter for node type specification,

12–16
Incoming proxy access, enabling or disabling,

12–7
INITIALIZE command, /ERASE qualifier, 5–13,

8–29
Install utility (INSTALL)

alarms, D–5
auditing changes made through, 9–7
security ramifications, 8–14, 13–1

Interactive accounts, 7–4
Interactive identifiers, 4–5
Interactive logins, 3–4

classes, 3–5
dialup, 3–5, 3–9
local, 3–5
remote, 3–5
system message, 3–6

Interactive mode
processes, 3–4

Intrusion databases, 7–32
Intrusions

attempts, 3–9
detection, 7–31

cluster-wide, 11–7
counteraction through dual passwords,

7–16
database, 7–31
evasive procedures, 3–9
reporting events, 3–19
setting exclusion period, 7–34
system parameters for, 7–33

J
Job controllers

affected by shift restrictions, 3–8
enforcing work time restrictions, 7–2

Index–9

Job terminations imposed by shift restrictions,
3–8

Journal flush, 9–29

L
Last login messages, 3–17

disabling, 7–29
LASTport and LASTport/DISK protocols

not in C2 evaluation, C–3
LAT protocol, not in C2 evaluation, C–3
Levels of security

See Security levels
/LGICMD qualifier and captive accounts, 7–8
LGI system parameters

controlling login attempts, 7–34
LGI_BRK_DISUSER, 7–35
LGI_BRK_LIM, 7–35
LGI_BRK_TERM, 7–35
LGI_BRK_TMO, 7–35
LGI_CALLOUTS, C–10
LGI_HID_TIM, 7–35
LGI_RETRY_LIM, 7–35
LGI_RETRY_TMO, 7–35
LGI_TWD_TMO, 7–35

Lifetime of accounts, 3–13
Lifetime of passwords, 3–10, 3–11
Limited-access accounts, 7–4
LINK command, /NOTRACEBACK qualifier, 8–15
Links

terminating dynamic asynchronous, 12–18
Listener devices, example of programs for, 9–17
LOAD_PWD_POLICY system parameter, C–10
Local identifiers, 4–5
/LOCAL_PASSWORD qualifier, 7–25
Lock access, 5–19
LOCKPWD flag, 3–4
Logging

access to protected objects, 4–31
security audit events, 9–2, 9–13
terminal sessions, 6–6

Logging out
breaking dialup connection, 3–21
deciding when it is necessary, 3–20
from disconnected processes, 3–21
reasons for, 3–20
security considerations, 3–20

Logical I/O access, 5–4
Logical names

defining for external authentication, 7–24
Logical name tables

as protected objects, 4–12
events audited, 5–17
privilege requirements, 5–17
reestablishing security profile, 5–17
security elements of, 5–16
template profiles, 5–16

Logical name tables (cont’d)
types of access, 5–16

Login alarms, D–5
enabling, 9–7

Login classes, 3–5
See also Logins
batch, 3–7
dialup, 3–5
interactive, 3–5
local, 3–5
network, 3–7
noninteractive, 3–7
remote, 3–5
restrictions on, 3–8

Login command procedures
for restricted accounts, 7–7, 7–9
proper protection for, 8–25

Login failures
alarms, D–5
auditing, 9–7
break-in evasion and, 3–9
causes of, 3–7
dialup logins, 3–9
expired accounts, 3–13
login class restrictions and, 3–8
messages, 3–6, 3–17
password grabber programs, 3–14
retries and, 3–9
security audit report and, 9–23
shift restrictions, 3–8
system passwords and, 3–8

Login messages
announcement, 3–5
controlling, 7–28, 7–29
disconnected job, 3–5
expired password, 3–12
last successful interactive login, 3–6
last successful noninteractive login, 3–6
new mail, 3–6
number of login failures, 3–6
suppressing, 3–6, 3–17
welcome, 3–6

Login programs, authentication by secure terminal
server, 3–14

Logins
See also Proxy logins
auditing, 9–7
batch, 3–7
changing password, 3–2
changing password during, 3–12
controlling, 3–3
default process protection and, 5–11
dialup, 3–5

supplying password, 3–9
disabled

by break-in evasion, 3–9
by shift restriction, 3–8

expired accounts, 3–13

Index–10

Logins (cont’d)
flags, 7–19
interactive, 3–4

classes of, 3–5
most recent, 3–6

local, 3–5
monitoring last, 3–17
network, 3–7
noninteractive, 3–4

classes of, 3–7
most recent, 3–6

permitted time periods, 3–8
remote, 3–5
restricting with system passwords, 7–15
secure terminal server, 3–14, 7–30
security implications, 3–2
simplifying for user with ALF (automatic login

facility), 7–11
system parameters controlling, 7–34
time out, 3–4
with external authentication, 3–5

Logout alarms, D–6
Logout auditing, 9–7
LOGOUT command, 3–20

/HANGUP qualifier, 3–21
LOG_IO privilege, 5–8, A–8

M
MAIL.EXE

reinstalling with privileges, 8–27
Mailboxes

default protection, C–4
default security elements, 5–6
for audit event messages, 9–13
modifying security profiles, 5–7
privilege requirements, 5–8

Mail files, recommended protection for, 5–14
MAIL objects, recommended access, 12–10
Mail utility (MAIL)

controlling notification messages, 7–29
transferring text files, 12–19

Maintenance Operations Module
See MOM objects

Maintenance tasks for secure systems, 6–8
Manage access, 5–18
Master file directory

See MFD
MAXSYSGROUP system parameter, 4–26, C–10
Media initialization

access requirements, 5–21
restricting with ACLs, 8–27

Member numbers in UICs, 4–4
Member UIC names, 4–4
Memory consumption by ACLs, 8–4

Messages
announcement, 3–5
auditing, 9–2
auditing security-relevant events, 3–19
disabling last login, 7–29
last successful interactive login, 3–6
login, 3–5
login failures, 3–17
suppressing, 3–6, 7–28
suppressing last login, 3–17
welcome, 3–6

MFD (master file directory), 5–11
MIRROR objects, 12–10
MME (Media Management Extension), not in C2

evaluation, C–3
Modems, 12–15

C2 system requirements, C–6
MODIFY/SYSTEM_PASSWORD command in

Authorize utility, 7–15
MODIFY user/FLAG=AUDIT command in

Authorize utility, 9–6, 9–13
MOM (maintenance operations module) objects,

12–10
MOUNT command, alarms, D–6
Mounting volumes

access requirements, 5–21
security audits and, 3–19
with protected subsystems, 13–5

MOUNT privilege, A–9

N
Name Hidden attribute, 8–9
Naming rules

capability objects, 5–1
common event flag clusters, 5–2
devices, 5–3
files, 5–8
global sections, 5–15
logical name tables, 5–16
queues, 5–17
resource domains, 5–19
security class, 5–20

NCP (Network Control Program)
auditing database modifications, 9–7

NET$PROXY.DAT files, 12–6
auditing, 9–3

NETMBX privilege, A–9
NET PASSWORD command, 7–25
NETPROXY.DAT files, 12–6

auditing, 9–3
normal protection, 7–23

Network access control strings, 3–13, 3–15, 7–16,
12–3

Network accounts
DECNET account, removing, 12–13
network objects, 12–11

Index–11

Network Control Program
See NCP

Network databases, 12–16
Network identifiers, 4–5
Network logins, 3–4, 3–7
Network management listener

See NML objects
Network proxy authorization files

See NETPROXY.DAT files
Networks

access control, 12–3
INBOUND parameter, 12–16
proxy login for applications, 12–4

Network security, 3–14
C2 systems and, C–7
events audited, 12–2
limitations, 12–1
network object configuration, 12–11
requirements for, 12–1

NISCS_CONV_BOOT system parameter, C–10
NML (network management listener) objects,

12–11
No Access attribute, 8–9
Nodes, types of, 12–16
None attribute (ACEs), 4–20
Non-file-oriented devices, access requirements,

5–5
Noninteractive logins, 3–4

batch, 3–7
classes, 3–7
network, 3–7

Nopropagate attribute, 4–25, 4–30, 5–11
Numeric UICs, 4–4

O
Object classes

See also Objects
descriptions of, 5–1
security attributes of, 4–11

Object ownership
assigning during file creation, 8–16
by resource identifiers, 5–10
changing, 4–9, 4–11
exceptions to the rules, 4–9
files, 5–10
managing defaults, 8–15, 8–19
managing directory defaults, 8–22
qualifying for, 4–9
reassigning, 4–9
restoring file defaults, 4–29
security element of an object, 4–9
zero UICs in protection checks, 4–13

Object permanence
capability object, 5–2
common event flag cluster, 5–3
devices, 5–8

Object permanence (cont’d)
global sections, 5–16
logical name tables, 5–17
queues, 5–19
resource domains, 5–20
security class object, 5–21
volumes, 5–22

Object protection
See Objects
See Protection

Objects
See also Files
See also Protection
access arranged by, 2–7
access to, comparing security profiles, 4–1
ACLs and, 4–10
adding ACEs for security auditing, 4–32
alarms for creation, D–4
alarms for deaccess, D–4
alarms for deletion, D–4
auditing access, 4–31, 9–7
C2 systems and, C–4
capability class, 5–1
changing security profile, 4–11
characteristics of protected objects, 4–8
class descriptions, 5–1
classes of, 4–12
classes protected by operating system, 4–12,

5–1
class-specific access overrides, 4–31
class specification, 4–11
controlling access with Identifier ACEs, 4–19,

4–20
displaying default protection and ownership,

8–22
displaying security profiles, 4–11
global sections, 5–14
granting access through protection codes, 4–26
in security models, 2–2
kinds of events audited, 4–31
logical name tables, 5–16
managing default protection and ownership,

8–15
modifying class templates, 8–24
protection codes, 4–9, 4–26
queues, 5–17
reassigning ownership, 4–9
resource domains, 5–19
role in security models, 2–4
rules for determining access, 4–13
security class, 5–20
security elements source, 4–9
security management overview, 5–1
security profiles, 4–8, 4–13
volumes, 5–21

Index–12

OPCOM (operator communication manager),
security auditing and, 9–26

Open accounts, 3–4
C2 systems and, C–7
captive accounts and, 7–8
captive recommendation, 7–23

Open files and ACL consumption of memory, 8–4
OpenVMS Management Station, not in C2

evaluation, C–3
Operator communication manager

See OPCOM
OPER privilege, A–9

overriding access controls, 4–14
queue access, 4–31
queue management, 5–18

Owner
See also Object ownership
category of user access, 4–26

P
Paper shredders, 3–20
Password generators

obtaining initial password, 7–14
when to require, 7–20

Password grabber programs, 3–14, 7–30
catching with auditing ACEs, 9–6

Password history, 7–21
Password protection, 3–13, 7–23
Passwords

See also Password management
See also Password protection
acceptable, 3–2
automatically generated, 3–10
avoiding detection, 3–11, 10–6
chances to supply during dialups, 3–9
changing, 3–9, 3–10

at login, 3–12
expired, 3–12
frequency guidelines, 3–14
secondary, 3–11
using /NEW_PASSWORD qualifier, 3–12

cluster membership management, 11–7
console

C2 system requirements, C–6
console passwords, 7–17
dialup retries, 3–9
dual, 3–3, 7–13
eliminating for networks, 12–5
encoding, 2–3
encryption algorithms, 7–20
expiration, 3–12
expiration time, 7–18
failure to change, 3–13
first, 3–1
forced change, 3–12, 7–19
format, 3–1

Passwords (cont’d)
generated, 3–10, 3–11, 7–14
guessing, 3–1
history list, 3–2
how to preexpire, 7–14
incorrect, 3–6
initial, 3–1, 7–13
length, 3–1, 3–2, 7–19
lifetime of, 3–10, 3–11
locked, 3–4, 7–8, 7–20
minimum length, 3–2, 3–9, 7–19
multiple systems and, 3–14
new, 3–12
null as choice for captive account, 7–8
open accounts and, 3–4
password grabber programs, 3–14
primary, 3–3, 3–4, 7–13
proxy logins, 3–15
reason for changing, 3–17, 3–19
receive, 12–16
restrictions, 3–2, 7–18
reuse, 3–1
risky, 3–1
routing initialization, 12–14
screening

against dictionary, 7–21
against history list, 7–21
with site-specific filter, 7–22

secondary, 3–3, 7–16
changing, 3–11
changing expired, 3–12
entering, 3–4

secure, 3–1
secure choices for, 3–1
secure terminal servers and, 3–14
sharing, 3–13, 12–20
system, 3–2, 3–3, 7–14

dictionary, 3–2
transmit, 12–16
types, 3–2
uniqueness for each account, 3–14
user, 2–3, 3–2
user guidelines, 3–1
verifying change of, 3–10
when account is created, 3–2
when to change, 3–2

Password synchronization, 7–26
Performance

ACL length and, 8–4
high-water marking and, 8–30
security-auditing impact, 9–13

PFMGBL privilege, 5–15
PFNMAP privilege, 5–15, A–12
PHONE objects, 12–11
Physical I/O access, 5–4
Physical security, 1–3

C2 systems and, C–6
encrypting files, 8–28

Index–13

Physical security (cont’d)
restricting system access, 8–1
violation indicators, 10–2
when logging out, 3–20

PHY_IO privilege, 5–8, A–12
PIPE command, impact on subprocess auditing

events, 9–13
PIPE subprocess, analyzing audit messages, 9–19
Port, terminal, 12–17
/PRCLM qualifier in AUTHORIZE, 7–8
Primary passwords, 3–3
/PRIMEDAYS qualifier, example, 7–2
Printers

C2 systems and, C–9
default security elements, 5–6

Privileged accounts, 7–6, 8–14
Privilege requirements

common event flag clusters, 5–3
devices, 5–8
global sections, 5–15
logical name tables, 5–17
queues, 5–18
resource domains, 5–19
volumes, 5–22

Privileges
ACNT, A–1
affecting object access, 4–13
All category, 8–12, C–5
ALLSPOOL, A–2
ALTPRI, A–2
AUDIT, A–2
auditing use of, 3–19, 9–7
authorized process, 4–7, 8–12
BUGCHK, A–3
BYPASS, 4–13, 4–30, A–3
bypassing ACLs, 4–30
bypassing protection codes, 4–30
captive accounts and, 7–7
categories of, 8–12
CMEXEC, A–4
CMKRNL, A–4
default process, 4–7, 8–12
definition, 4–7
DETACH, A–8
Devour category, 8–12, C–6
DIAGNOSE, A–5
disabling, 4–7
DOWNGRADE, A–6
enabling through SETPRV, 4–7
EXQUOTA, A–6
file sharing and, 12–20
GROUP, A–6, A–7
Group category, 8–12, C–5
GRPNAM, A–6, C–6
GRPPRV, 4–13, 4–26, 4–30, C–5
IMPERSONATE, A–8
IMPORT, A–8
influence on object access, 4–13

Privileges (cont’d)
LOG_IO, A–8
MOUNT, A–9
NETMBX, A–9
network requirements, 12–1
Normal category, 8–12, C–6
Objects category, 8–12, C–5
OPER, 4–31, A–9
PFNMAP, A–12
PHY_IO, A–12
PRMCEB, A–13
PRMGBL, A–13
PRMMBX, A–13
process, A–1
PSWAPM, A–14
READALL, 4–13, 4–30, A–14
recommendations for different users, 8–13
related to group UIC, 8–1
reporting use with $CHECK_PRIVILEGE, 9–9
SECURITY, A–14
security administrator requirements, 6–4
SET PROCESS/PRIVILEGES, 4–7
SETPRV, A–15
SHARE, A–15
SHMEM, A–15
storage in UAF record, 8–12
summary of, 8–12, A–1
SYSGBL, A–16
SYSLCK, A–16
SYSNAM, A–16
SYSPRV, 4–13

controlling access through, 4–30
effect on protection mechanisms, 4–30
giving rights of system user, 4–26
tasks requiring, A–17

System category, 8–12
TMPMBX, A–18
trusted users and, C–5
UAF records and, 4–7
untrusted users and, C–6
UPGRADE, A–18
VOLPRO, A–18
WORLD, A–19

PRMCEB privilege, 5–3, A–13
PRMGBL privilege, A–13
PRMMBX privilege, 5–8, A–13
Probers, catching, 10–2, 10–5
Probing, as security problem, 1–1
Processes

access rights of, 4–1
activities permitted by privileges, 8–12
adding to exclusion list, 9–28
auditing of, 9–6, 9–7
auditing system services controlling, 9–7
audit server, 9–24
connecting restrictions, 3–6
creating with different UICs, 4–5
default protection for, 5–11

Index–14

Processes (cont’d)
disconnected, 3–5, 3–21
displaying default protection, 5–11
displaying process rights identifiers, 4–6
enabling privileges, 4–7
interactive mode, 3–4
logging out of current, 3–21
modifying the rights list, 8–11
reconnecting, 3–6
security profiles of, 4–1
suspending, 9–28
UIC identifiers, 4–5

Process exclusion list, 9–28
Process privileges

See Privileges
See Processes

Profiles
See Security profiles

Project accounts
as protected subsystems, 13–2
setting up, 8–21

Prompts, passwords and, 3–3
Propagating protection, example, 12–22
Protected attribute, 4–25, 4–30

deleting ACEs with, 4–24
Protected object databases, 11–6
Protected objects

See Objects
Protected subsystems

advantages of, 13–1
applications for, 13–2
constructing, 13–4
description of, 13–2, 13–6
design requirements, 13–3
enabling, 13–5
example, 13–6
file protection, 13–8, 13–9
mounting volumes with, 13–5
printer protection, 13–10
subsystem ACEs, 13–4
system management requirements, 13–3
user access, 13–6

Protection
See also Security profiles
ACL-based, 8–20
capability, 5–2
command procedures and, 8–25
common event flag clusters, 5–3
deleted data, 5–12, 5–13
devices, 5–6
global sections, 5–15
logical name tables, 5–16
managing defaults, 8–15, 8–19
objects, 4–8
queues, 5–18
resource domains, 5–19
security class, 5–21

Protection (cont’d)
through protected subsystems, 13–1
UIC-based codes, 4–9
volumes, 5–22

Protection checking
evaluating an object access request, 4–13
exception with zero UICs, 4–13
influenced by ownership, 8–16

Protection codes, B–1
access specification, 4–27
access types, 4–27
assigning during file creation, 8–16
bypassing with special rights, 4–30
changing, 4–28
default file protection, 4–29, 8–19
definition, 2–5, 4–9
denying all access, 4–28
effect of privileges, 4–13
evaluation sequence, 4–10
format, 4–26
granting control access, 4–27
Identifier ACEs and, 4–19
interaction with ACLs, 4–28
interpreting, 4–10
multiple user categories and, 4–27
null access specification, 4–26, 4–27
priority in access evaluation, 4–13
processing, 4–27
queue access rights, 5–18
reading, 4–27
restoring file default, 4–29
security element of an object, 4–9
sequence of checking categories, 4–27
user categories, 4–10

Protocols
autodial/master, 12–17

Protocols, autodial/nomaster, 12–17
Proxy access, 12–4

See also Proxy accounts
See also Proxy logins
access control, 12–3
removing, 12–7
setting up a proxy database for, 12–5
to applications, 12–7
to nodes, 12–7

Proxy accounts, 12–4, 12–9
as captive accounts, 12–8
as restricted accounts, 7–13
C2 systems and, C–8
default, 3–17
example, 12–8, 12–21
general-access, 3–16
maximum number allowed, 3–15
multiple-user, 3–16
naming, 3–17
recommended restrictions, 12–8
selecting from multiple, 3–17
single-user, 3–16

Index–15

Proxy database, 12–5
setting up, 12–6

Proxy logins, 3–7
access control, 12–4
account, 12–4
establishing and managing, 12–4, 12–5
NET$PROXY.DAT, 12–6
NETPROXY.DAT, 12–6
network applications, 12–4
security benefits, 3–15

PSWAPM privilege, A–14
PURGE command, /ERASE qualifier, 5–13
/PWDLIFETIME qualifier, 7–18
/PWDMINIMUM qualifier, 7–20

Q
Queues

access granted by OPER privilege, 4–31
ACL access rights, 5–18
as protected objects, 4–12
events audited, 5–18
privilege requirements, 5–18
profile storage, 5–19
protection code access rights, 5–18
security elements of, 5–17
template profiles, 5–18
types of access, 5–18

R
Read access

devices, 5–4
files, 5–9
global sections, 5–15
granting through ACLs, 4–22
granting through protection codes, 4–27
logical name tables, 5–16
queues

through ACLs, 5–18
through protection codes, 5–18

resource domains, 5–19
security class, 5–20
volumes, 5–21

READALL privilege, 4–13, 4–30, A–14
Recall buffers, 3–15
RECALL command, /ERASE qualifier, 3–15
Receive passwords, 12–16
Reconnection to processes, 7–29
Records displaying holder of a rights identifier,

8–6
Reference monitors

applying to networks, 12–2
concept in security, 2–1, 2–6
implementation, 2–3
requirements on, 2–2

Remote diagnostics, C2 system requirements, C–6
Remote identifiers, 4–5
Remote logins, 3–5

logging out, 3–20
system passwords and, 7–15

REMOVE/IDENTIFIER command in Authorize
utility, 8–7

Removing proxy access, 12–7
RENAME command, /INHERIT_SECURITY

qualifier, 5–12
Reserved UIC group numbers, 4–4
Resource attribute, 8–10, 8–21
Resource domains, 4–12

events audited, 5–20
privilege requirements, 5–19
profile storage, 5–20
security elements of, 5–19
template profile, 5–19
types of access, 5–19

Resource identifiers, 8–21
as file owners, 5–11

Resource monitoring, 9–30
disabling, 9–30

Restricted accounts, 3–4, 7–11
danger of process spawning, 7–8
setting up, 7–5
when to use, 7–4

Restrictions
See Security restrictions

Rights database
See also RIGHTSLIST.DAT files
adding identifiers, 8–6
assigning identifiers to users, 8–7
creating and maintaining, 8–5
displaying, 8–6
removing identifiers and holders, 8–7

Rights identifiers
See Identifiers

Rights list, access arranged by capability, 2–8
RIGHTSLIST.DAT files

auditing, 9–3
creating and maintaining, 8–6
how UICs are stored, 4–5

Rights of users
See also Identifiers
displaying, 8–6

RMS_FILEPROT system parameter, 5–11, 8–16,
8–19, C–10

Routing initialization passwords, 12–14

S
Save set (BACKUP), protection of, 8–30
Screen clearing, 3–20, C–9
SECAUDIT.COM

See Audit Analysis utility

Index–16

Secondary passwords, 3–3
See also Passwords
advantages, 7–16
changing, 3–11
changing expired, 3–12
disadvantages, 3–3
entering, 3–4
login expiration, 3–4
managing, 7–16
minimum length, 3–4

SECSRV$CLIENT, reserved identifier, 13–3
SECSRV$COMMUNICATION, reserved identifier,

13–3
SECSRV$OBJECT, reserved identifier, 13–3
Secure terminal servers, 7–30

password protection and, 3–14
Security, clusterwide intrusion detection, 11–7
SECURITY.AUDIT$JOURNAL files, 9–19
Security administrators

C2 requirements, C–12
checklist for maintaining a secure system, 6–8
cluster managers and, 11–1
goals of, 1–1
personal accounts, 6–4
privilege requirements, 6–4
role of, 6–1
system passwords and, 3–3
training users, 3–22, 6–5

Security alarms, 3–18
audit log file, C–8
disabling on system consoles, 9–16
events to enable as, 9–3, 9–12
events triggering, 3–19
example of enabling events, 9–11
sample messages, 9–1, D–1

Security archive files, losing the remote link to,
9–30

Security attacks, forms of, 1–1, 10–1
Security audit event messages

changing disk transfer rate, 9–29
controlling delivery to server, 9–27
delaying delivery at startup, 9–26
when to ignore, 9–18

Security auditing, 10–4
See also Audit server processes
See also Security-auditing events
See also Security audit log files
account and file access, 3–17
adding ACEs to files, 3–18
analyzing audit log files, 9–18
archive files, 9–17
assessing site requirements, 9–10
audit listener mailboxes, 9–17
audit server databases, 9–25
audit trails, 2–5, C–8
C2 system restrictions, C–8
capability objects, 5–2

Security auditing (cont’d)
cluster considerations, 11–5
common event flag clusters, 5–3
controlling event messages, 9–27
default auditing events, 2–6
default characteristics, 9–25
devices, 5–8
directories, 5–12
disabling auditing, 9–26
disabling events, 9–3
disabling resource monitoring, 9–30
effective use, 9–18
enabling auditing, 9–26
enabling event classes, 9–3
enabling events, 9–2
error handling, 9–29, 9–30
excluding processes from suspension, 9–28
files, 3–18, 5–12
global sections, 5–16
granularity of events, 4–31
high security needs, 1–2, 9–12
logical name tables, 5–17
low security needs, 1–2, 9–11
managing the audit server, 9–24
memory limitations and, 9–28
messages, 3–19
moderate security needs, 1–2, 9–11
object class enabled, 4–31
overview, 9–1
performance impact, 9–13
queues, 5–18
reporting object access, 4–31
reporting object use, 4–7
resource domains, 5–20
security class objects, 5–21
sending event messages to archive files, 9–16,

9–17
sending event messages to mailboxes, 9–17
sending event messages to operator terminals,

9–15
synchronizing cluster time, 9–29
volumes, 5–22

Security-auditing ACEs
See also Alarm ACEs
See also Audit ACEs
position in ACL, 4–23

Security-auditing events, 3–19
based on security needs, 9–10
classes of, 9–7
default classes, 9–1, 9–3, 9–11
disabling all classes, 9–12
displaying, 9–3
enabling all classes, 9–12
enabling as alarms, 9–11
enabling as audits, 9–11
example, 9–3
network, 12–2
reporting, 9–3, 9–12, 9–13

Index–17

Security-auditing events (cont’d)
sending to audit log files, 9–14
sending to listener mailboxes, 9–17
sending to operator terminals, 9–15
sending to remote archive files, 9–16
suppressing privilege audits, 9–8
suppressing process control audits, 9–9
system services for, 9–9

Security audit log files, 2–6, 3–18
See also Audit Analysis utility
See also Security auditing
See also Security audit reports
advantages of, 9–12
allocating disk space, 9–29
C2 systems and, C–8
changing location, 9–15
changing message transfer rate, 9–29
characteristics, 9–14
creating, 9–14
description, 9–14
events to report, 9–12
interactive analysis, 9–22
maintaining, 9–14
pre-extending, 9–30
procedures, 9–14
selecting records from, 9–21

Security audit reports
analyzing suspicious activity, 9–19
brief format, 9–21
creating, 9–18
defining contents of, 9–20, 9–21
destination, 9–20
detailed inspection, 9–22
examples, 9–21, 9–23
formats, 9–20
full format, 9–21
rights identifiers in, 4–7
routine inspections, 9–19
scheduling, 9–18
summary format, 9–21

Security breaches, handling, 1–1, 10–6
Security checklists

for C2 systems, C–12
for designing a secure system, 2–9
for maintaining a secure system, 6–8
for training users, 6–5
for users, 3–22

Security class object
definition, 4–12
events audited, 5–21
profile storage, 5–21
template profile, 5–21
types of access, 5–20

Security features
access controls, 4–1, 7–1
account duration, 3–12, 3–13, 7–3
auditing, 3–18, 9–1, 10–4

Security features (cont’d)
automatic password generation, 3–10, 7–13
dialup retries, 3–9
erase-on-allocate, 8–29
erase-on-delete, 8–29
high-water marking, 8–29
intrusion detection, 3–9, 7–16
login class restrictions, 3–8, 7–2
password changes, 3–9
password expiration, 3–12, 7–18
password protection, 3–13, 7–23
password requirements, 3–4, 7–19
password restrictions, 3–2, 7–13
passwords, 7–13 to 7–24
protected subsystems, 13–1
proxy accounts, 12–9
proxy logins, 3–15, 12–4
secondary passwords, 3–4, 3–11
secure terminal servers, 3–14, 7–30
security alarms, 3–18
shift restrictions, 3–8
system passwords, 3–3, 3–8

Security kernel, definition, 2–2
Security levels, 1–2, 1–4

event monitoring and, 9–10
high, 1–2, 3–17
low, 1–2, 3–17
medium, 1–2

Security management, 6–1
See also Access control
See also Password management
See also Protection
See also Security auditing
See also Security checklists
for clusters, 11–2, 11–3
managing audit log file, 11–5
modifying cluster group number, 11–8
modifying cluster password, 11–8
policy development, 1–2, 6–1, 10–1
protected objects

cluster-visible, 11–6
databases, 11–6

synchronizing authorization data, 11–4
SYSMAN requirements, 11–7

Security models, 2–1
Security objects

See Objects
Security operator terminals, 9–15
SECURITY privilege, A–14

hidden ACEs and, 4–23
Security problems

anonymity of network and dialup users, 7–3
autologin accounts, reducing, 7–11
categories of, 1–1
disk scavenging, 5–12
hardcopy terminal output, 3–20
logging out, 3–20

Index–18

Security problems (cont’d)
network access control strings, 3–15
password detection, 3–11
telephone system as, 10–7

Security profiles
assigning to new devices, 5–6
capability object, 5–2
common event flag clusters, 5–3
devices, 5–6
displaying class defaults, 8–23
files, 4–29, 5–8, 5–10
global sections, 5–15
in access evaluations, 4–13
logical name tables, 5–16
modification requirements, 4–13, 4–30
objects, 4–8

ACLs, 4–10
changing, 4–11
contents, 4–9
deleting ACLs, 4–24
displaying, 4–11
modifying class templates, 8–24
origin of, 4–9
owner element, 4–9
protection codes, 4–9, 4–26

processes, 4–1
displaying, 4–6
identifiers, 4–5
privileges, 4–7
UICs, 4–4

queues, 5–18
resource domains, 5–19
security class, 5–21
users, 4–1

displaying, 4–6
identifiers, 4–5
privileges, 4–7
UICs, 4–4, 4–5

volumes, 5–22
Security restrictions

captive command procedures, 7–9
login class, 3–8
on command usage, 8–28
on mode of operation, 7–3
shifts, 3–8, 7–2
time-of-day, 3–8, 7–2

Security Server process, 7–35
SECURITY_POLICY system parameter, 11–6,

C–10
Servers

audit, 9–24
secure terminals, 3–14
security, 7–35

SET AUDIT command
See also Audit server processes
alarms, D–8
enabling security-relevant events, 9–2
/EXCLUDE qualifier, 9–28

SET AUDIT command (cont’d)
/INTERVAL qualifier, 9–29
/LISTENER qualifier, 9–17
opening new log files, 9–14
/SERVER qualifier, 9–28, 9–29
suggested auditing applications, 10–4
/THRESHOLD qualifier, 9–29

SET FILE command, /ERASE qualifier, 5–13
SET HOST/DTE command, using over the

network, 12–17
SET HOST command, 3–5
SET PASSWORD command, 3–9

automatic password generation, 3–10
/GENERATE qualifier, 3–10, 7–20
/SECONDARY qualifier, 3–11
/SYSTEM/GENERATE qualifier, 7–15
/SYSTEM qualifier, 7–15

SET PROCESS command, /PRIVILEGES qualifier,
4–7, 8–12

SET PROTECTION/DEFAULT command, 8–16
SETPRV privilege, A–15
SET SECURITY command

/ACL qualifier, 4–23
adding Identifier ACEs, 4–19
deleting, 4–24
deleting ACEs, 4–24
example, 8–20
replacing ACEs, 4–24

/AFTER qualifier, 4–24
changing object security profile, 4–11
changing protection codes, 4–28
/CLASS=DEVICE qualifier, 8–32
/CLASS qualifier, 4–11, 4–20
copying ACLs, 4–25
/COPY_ATTRIBUTE qualifier, 4–25
creating an ACL, 8–22
/DEFAULT qualifier, 4–25, 12–20
/DELETE qualifier, 4–24
deleting ACEs, 4–24
example, 12–20
/LIKE qualifier, 4–25
managing site defaults, 8–22
/OWNER qualifier, 4–11
/PROTECTION qualifier, 4–11, 4–27

modifying codes, 4–28
modifying for devices, 8–32

/REPLACE qualifier, 4–24
restoring defaults for files, 4–29
setting default file protection, 8–20

SET TERMINAL command
/DISCONNECT qualifier, 7–29
/HANGUP qualifier, 3–21
/NOMODEM/SECURE qualifier, 7–31
/SECURE qualifier, 7–30
stopping password grabbers, 7–31
/SYSPWD qualifier, 7–14
using over the network, 12–15

Index–19

Set-Up key, 3–20
SET VOLUME command

/ERASE_ON_DELETE qualifier, 8–29
/NOHIGHWATER_MARKING qualifier, 5–13,

8–30
/PROTECTION qualifier, 8–16

SET VOLUME command, /ERASE_ON_DELETE
qualifier, 5–13

Shareable devices, access requirements, 5–5
Shared files, considerations for a cluster system,

11–5
SHARE privilege, A–15
Shift restrictions, 3–8
SHMEM privilege, A–15
SHOW/IDENTIFIER command in Authorize

utility, 8–6
SHOW/RIGHTS command in Authorize utility,

8–6
SHOW AUDIT command, 9–3, 9–25
SHOW INTRUSION command, 7–32
SHOW PROCESS command, 4–6

and WORLD privilege, 8–15
SHOW PROTECTION command, 5–11
SHOW SECURITY command, 4–22

displaying security profiles of objects, 4–11
displaying site defaults, 8–22, 8–23
displaying the object’s class, 4–11

SHOW USERS command, disconnected jobs and,
3–21

Sign-on, single, 7–24
Single sign-on, 7–24
Site security, 1–3
Social engineering as security problem, 1–2
SOGW user category abbreviation, 4–26
Spawning processes, security implications in

restricted accounts, 7–8
Spooled devices, access requirements, 5–4
STARTNET.COM command procedure, 12–16
STARTUP_P1 system parameter, C–11
Subjects in security models, 2–2, 2–3
Submit access, 5–18
Subprocesses

analyzing audit messages, 9–19
increase in auditing events, 9–13

subsystem ACEs, 8–8
Subsystem ACEs, 13–3 to 13–5

format, 13–4
Subsystem attribute, 8–11
Subsystems

See Protected subsystems
Surveillance guidelines, 6–8
Synchronization, password, 7–26
SYS$ACME_MODULE logical name, 7–24
SYS$ANNOUNCE logical name, 7–28
SYS$NODE logical name, 7–28

SYS$PASSWORD_HISTORY_LIFETIME, 7–21
SYS$PASSWORD_HISTORY_LIMIT, 7–21
SYS$SINGLE_SIGNON logical name, 7–24
SYS$SINGLE_SIGNON logical name bits, 7–27
SYS$WELCOME logical name, 7–28
SYSALF, ALF (automatic login facility) file, 7–30
SYSECURITY.COM command procedure, 9–15
SYSGBL privilege, 5–15, A–16
SYSLCK privilege, 5–19, A–16
SYSMAN databases and C2 environments, C–4
SYSNAM privilege, 5–17, A–16

modifying system operations, 4–7
overriding access controls, 4–14
queue management, 5–18

SYSPRV privilege, 4–13, 4–30
giving rights of system user, 4–26
tasks requiring, A–17

SYSTARTUP_VMS.COM command procedure,
12–15

System-defined identifiers
See Environmental identifiers

System failures, disposing of hardcopy output,
3–20

System files
adding ACLs, 8–27
Alpha default protection, 8–26
auditing recommendations, 10–5
benefiting from ACLs, 10–5
default protection, 8–26
protecting, 8–26
protection codes and ownership, B–1
recommended, 11–3
required, 11–2
VAX default protection, B–1

System Generation utility (SYSGEN), auditing
parameter modifications, 9–7

System global sections
See Global sections

System Management utility (SYSMAN)
managing clusters, 11–7
modifying cluster security data, 11–8
modifying LGI parameters, 11–2

System messages
See Messages

System parameters
auditing modification of, 9–7
controlling disconnected processes, 7–29
defining system users (security category), 4–31
required C2 settings, C–10

System passwords, 3–2
causing login failures, 3–8
disadvantages, 7–15
entering, 3–3
guidelines, 7–15
minimum length requirement, 7–20
modifying, 7–15
recommended change frequency, 7–18

Index–20

System passwords (cont’d)
setting up, 7–14
where stored, 7–15

Systems
controlling access to, 3–5
controlling use of, 3–3

System services, auditing event information, 9–9
System user authorization files

See SYSUAF.DAT files
System users (security category), 4–10, 4–31

defining with MAXSYSGROUP parameter,
4–26

qualifications for, 4–26
SYSUAF.DAT files

account expiration, 3–13
auditing modifications to, 9–3
LOCKPWD flag, 3–4
login class restrictions, 3–8
modifications and security audit, 3–19, 9–7
normal protection, 7–23
password storage, 2–3
privileges and, 8–12, A–1
recording privileges, 4–7
synchronization with rights database, 8–5

SYSUAFs (system user authorization files)
See SYSUAF.DAT files
marking for external authentication, 7–25

T
Tampering with system files, detecting, 10–5
Tapes

default security elements, 5–6
managing security profiles, 5–6

TASK objects, 12–11
TCB (trusted computing base)

file protection, C–5
hardware, C–2, C–4
privileges and, C–5
software, C–2, C–4
software not included, C–3

Template devices, security elements of, 5–6
Template profiles

See Security profiles
Terminal emulator, 12–18
Terminal lines, 12–17
Terminals

breaking dialup connection, 3–21
C2 system restrictions, C–8
clearing DECwindows screen, 3–15
clearing the screen, 3–15, 3–20
controlling access, 3–2, 7–14
default security elements, 5–6
dialup login, 3–5
failing to respond, 3–3
hardcopy, disposing of output, 3–20
limiting access, 8–32

Terminals (cont’d)
lines for modems, security of, 8–32
logout considerations, 3–20
modifying security profiles, 5–7
port, 12–17
requiring a system password, 3–8
security alarms and, 9–15
session logging, 6–6
system password, requirement for, 3–3
usage restrictions, 8–32
user, in C2 systems, C–9
virtual, 3–6, 3–21, 7–29, 12–15

Time
auditing changes to system time, 9–7
synchronizing cluster time, 9–29

Time-of-day login restrictions, 3–8
Time-stamp, synchronizing in cluster, 9–29
TMPMBX privilege, A–18
Training of users, importance to security, 6–5
Trojan horse programs, 5–14, 8–25
Trusted Computing Base

See TCB
TTY_DEFCHAR2 system parameter

disabling virtual terminals, 7–29
enabling system passwords for remote logins,

7–15
TTY_TIMEOUT system parameter, setting

reconnection time, 7–29
Turnkey accounts

See Captive accounts

U
UAFs (user authorization files), 3–1

See also SYSUAF.DAT files
enabling auditing through, 9–2, 9–6
MODIFY user/FLAG=AUDIT, 9–6, 9–13
performance impact of enabling auditing, 9–13
record of last login, 3–17

UIC-based protection
See Protection codes

UIC groups
designing, 8–1
design limitations, 8–2
impact on user privileges, 8–1

UIC identifiers
deleting when employee leaves, 8–7
example, 4–6, 4–21

UICs (user identification codes), 2–4
adding to rights database, 8–5
alphanumeric, 4–4
C2 systems and, C–7
changing an object’s, 4–9
format, 4–4
group restrictions, 4–4
guidelines for creating, 4–4
numeric, 4–4

Index–21

UICs (user identification codes) (cont’d)
object access evaluations and, 4–13
process, 4–5
storage of, 4–5
uniqueness requirement for clustered systems,

11–5
zero, 4–13

Unshareable devices, access requirements, 5–5
UPGRADE privilege, A–18
Use access, 5–1
User accounts, 6–6

security considerations, 7–4
User authorization

account expiration, 3–13
login class restrictions, 3–8
privilege use, 4–7
shift restrictions, 3–8

User authorization files
See SYSUAF.DAT files
See UAFs
See User authorization

User identification codes
See UICs

User irresponsibility
as security problem, 1–1
training as antidote, 6–5

User name mapping, 7–26
User names as identifiers, 2–3, 4–5
User passwords

See Passwords
User penetration as security problem, 1–2
User probing as security problem, 1–1
Users

access through ACEs, 4–19
C2 systems and, C–7
displaying process rights identifiers, 4–6
displaying rights, 8–6
file security and, 5–14
granting privileges, 8–12
introduction to system, 6–5
protection code categories, 4–26
requesting access, 4–14
security categories of, 4–10, 4–26 to 4–27
security profiles of, 4–1
setting default object protection, 8–15
training, 6–5
trusted, C–5, C–9
untrusted, C–6

User training, 6–5
User-written system services, C–4

replacing with protected subsystems, 13–1

V
VAXcluster environments, protected objects, 11–6
Verification using two passwords, 7–16
Video terminals

See Terminals
Virtual terminals, 7–29, 12–15

See also Terminals
disabling, 3–6
disconnected processes and, 3–21
logging out of, 3–21

Viruses, 8–25
VMS$OBJECTS.DAT file, 11–6
VMScluster environments

See Cluster environments
Volatile database, network, 12–16
VOLPRO privilege, 5–22, A–18
Volumes

See also Disk volumes
access requirements, 5–5
as protected objects, 4–12
auditing mounts or dismounts, 9–7
erasing data, 8–29
events audited, 5–22
foreign

access requirements, 5–5
privilege requirements, 5–22
profile storage, 5–22
protection, 5–21
reusing in C2 systems, C–9
security elements of, 5–21
template profile, 5–22
types of access, 5–21

VT100-series terminals, clearing screen, 3–20
VT200-series terminals, clearing screen, 3–20

W
Weekday login restrictions, 3–8
Welcome messages, 3–6

security disadvantages, 7–28
Wildcard characters

in ADD/IDENTIFIER command, 8–6
in SHOW/RIGHTS command, 8–6

Work restrictions, 7–2
Workstations

clearing screen, 3–20
default security elements, 5–6

WORLD privilege, A–19
impact on SHOW PROCESS command, 8–15

World users (security category), 4–10, 4–26
Write access

devices, 5–4
files, 5–9
global sections, 5–15
granting through ACLs, 4–22
granting through protection codes, 4–27

Index–22

Write access (cont’d)
logical name tables, 5–16
resource domains, 5–19
security class, 5–20
volumes, 5–21

Z
Zero UICs, protection checking and, 4–13

Index–23

	OpenVMS Guide to System Security
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How to Order Additional Documentation
	Conventions

	Part I Security Overview
	1 Understanding System Security
	1.1 Types of Computer Security Problems
	1.2 Levels of Security Requirements
	1.3 Building a Secure System Environment

	2 OpenVMS Security Model
	2.1 Structure of a Secure Operating System
	2.1.1 Reference Monitor Concept
	2.1.2 How the Reference Monitor Enforces Security Rules

	2.2 Implementation of the Reference Monitor
	2.2.1 Subjects
	2.2.2 Objects
	2.2.3 Authorization Database
	2.2.4 Audit Trail
	2.2.5 Reference Monitor
	2.2.6 Authorization Database Represented as an Access Matrix

	2.3 Summary: System Security Design

	Part II Security for the User
	3 Using the System Responsibly
	3.1 Choosing a Password for Your Account
	3.1.1 Obtaining Your Initial Password
	3.1.2 Observing System Restrictions on Passwords

	3.2 Knowing What Type of Password to Use
	3.2.1 Entering a System Password
	3.2.2 Entering a Secondary Password
	3.3 Password Requirements for Different Types of Accounts
	3.4 Types of Logins and Login Classes
	3.4.1 Logging In Interactively: Local, Dialup, and Remote Logins
	3.4.2 Logging In Using External Authentication
	3.4.3 Reading Informational Messages
	3.4.4 When the System Logs In for You: Network and Batch Logins

	3.5 Login Failures: When You Are Unable to Log In
	3.5.1 Using a Terminal That Requires a System Password
	3.5.2 Observing Your Login Class Restrictions
	3.5.3 Using an Account Restricted to Certain Days and Times
	3.5.4 Failing to Enter the Correct Password During a Dialup Login
	3.5.5 Knowing When Break-In Evasion Procedures Are in Effect

	3.6 Changing Your Password
	3.6.1 Selecting Your Own Password
	3.6.2 Using Generated Passwords
	3.6.3 Changing a Secondary Password
	3.6.4 Changing Your Password As You Log In

	3.7 Password and Account Expiration Times
	3.7.1 Changing an Expired Password
	3.7.2 Renewing an Expired Account

	3.8 Guidelines for Protecting Your Password
	3.9 Network Security Considerations
	3.9.1 Protecting Information in Access Control Strings
	3.9.2 Using Proxy Login Accounts to Protect Passwords

	3.10 Auditing Access to Your Account and Files
	3.10.1 Observing Your Last Login Time
	3.10.2 Adding Access Control Entries to Sensitive Files
	3.10.3 Asking Your Security Administrator to Enable Auditing

	3.11 Logging Out Without Compromising System Security
	3.11.1 Clearing Your Terminal Screen
	3.11.2 Disposing of Hardcopy Output
	3.11.3 Removing Disconnected Processes
	3.11.4 Breaking the Connection to a Dialup Line
	3.11.5 Turning Off a Terminal

	3.12 Checklist for Contributing to System Security

	4 Protecting Data
	4.1 Contents of a User’s Security Profile
	4.1.1 Per-Thread Security
	4.1.2 Persona Security Block Data Structure (PSB)
	4.1.3 Previous Security Model
	4.1.4 Per-Thread Security Model
	4.1.5 User Identification Code (UIC)
	4.1.6 Rights Identifiers
	4.1.7 Privileges

	4.2 Security Profile of Objects
	4.2.1 Definition of a Protected Object
	4.2.2 Contents of an Object’s Profile
	4.2.3 Displaying a Security Profile
	4.2.4 Modifying a Security Profile
	4.2.5 Specifying an Object’s Class
	4.2.6 Access Required to Modify a Profile

	4.3 How the System Determines If a User Can Access a Protected Object
	4.4 Controlling Access with ACLs
	4.4.1 Using Identifier Access Control Entries (ACEs)
	4.4.2 Granting Access to Particular Users
	4.4.3 Preventing Users from Accessing an Object
	4.4.4 Limiting Access to a Device
	4.4.5 Limiting Access to an Environment
	4.4.6 Ordering ACEs Within a List
	4.4.7 Establishing an Inheritance Scheme for Files
	4.4.8 Displaying ACLs
	4.4.9 Adding ACEs to an Existing ACL
	4.4.10 Deleting an ACL
	4.4.11 Deleting ACEs from an ACL
	4.4.12 Replacing Part of an ACL
	4.4.13 Restoring a File’s Default ACL
	4.4.14 Copying an ACL

	4.5 Controlling Access with Protection Codes
	4.5.1 Format of a Protection Code
	4.5.2 Types of Access in a Protection Code
	4.5.3 Processing a Protection Code
	4.5.4 Changing a Protection Code
	4.5.5 Enhancing Protection for Sensitive Objects
	4.5.6 Providing a Default Protection Code for a Directory Structure
	4.5.7 Restoring a File’s Default Security Profile

	4.6 Understanding Privileges and Control Access
	4.6.1 How Privileges Affect Protection Mechanisms
	4.6.2 Using Control Access to Modify an Object Profile
	4.6.3 Object-Specific Access Considerations

	4.7 Auditing Protected Objects
	4.7.1 Kinds of Events the System Audits
	4.7.2 Enabling Auditing for a Class of Objects
	4.7.3 Adding Security-Auditing ACEs

	5 Descriptions of Object Classes
	5.1 Capabilities
	5.1.1 Naming Rules
	5.1.2 Types of Access
	5.1.3 Template Profile
	5.1.4 Kinds of Auditing Performed
	5.1.5 Permanence of the Object

	5.2 Common Event Flag Clusters
	5.2.1 Naming Rules
	5.2.2 Types of Access
	5.2.3 Template Profile
	5.2.4 Privilege Requirements
	5.2.5 Kinds of Auditing Performed
	5.2.6 Permanence of the Object

	5.3 Devices
	5.3.1 Naming Rules
	5.3.2 Types of Access
	5.3.3 Access Requirements for I/O Operations
	5.3.4 Template Profile
	5.3.5 Setting Up Profiles for New Devices
	5.3.6 Privilege Requirements
	5.3.7 Kinds of Auditing Performed
	5.3.8 Permanence of the Object

	5.4 Files
	5.4.1 Naming Rules
	5.4.2 Types of Access
	5.4.3 Access Requirements
	5.4.4 Creation Requirements
	5.4.5 Profile Assignment
	5.4.6 Kinds of Auditing Performed
	5.4.7 Protecting Information When Disk Space Is Reassigned
	5.4.8 Suggestions for Optimizing File Security

	5.5 Global Sections
	5.5.1 Naming Rules
	5.5.2 Types of Access
	5.5.3 Template Profile
	5.5.4 Privilege Requirements
	5.5.5 Kinds of Auditing Performed
	5.5.6 Permanence of the Object

	5.6 Logical Name Tables
	5.6.1 Naming Rules
	5.6.2 Types of Access
	5.6.3 Template Profile
	5.6.4 Privilege Requirements
	5.6.5 Kinds of Auditing Performed
	5.6.6 Permanence of the Object

	5.7 Queues
	5.7.1 Naming Rules
	5.7.2 Types of Access
	5.7.3 Template Profile
	5.7.4 Privilege Requirements
	5.7.5 Kinds of Auditing Performed
	5.7.6 Permanence of the Object

	5.8 Resource Domains
	5.8.1 Naming Rules
	5.8.2 Types of Access
	5.8.3 Template Profile
	5.8.4 Privilege Requirements
	5.8.5 Kinds of Auditing Performed
	5.8.6 Permanence of the Object

	5.9 Security Classes
	5.9.1 Naming Rules
	5.9.2 Types of Access
	5.9.3 Template Profile
	5.9.4 Kinds of Auditing Performed
	5.9.5 Permanence of the Object

	5.10 Volumes
	5.10.1 Naming Rules
	5.10.2 Types of Access
	5.10.3 Template Profile
	5.10.4 Privilege Requirements
	5.10.5 Kinds of Auditing Performed
	5.10.6 Permanence of the Object

	Part III Security for the System Administrator
	6 Managing the System and Its Data
	6.1 Role of a Security Administrator
	6.2 Site Security Policies
	6.3 Tools for Setting Up a Secure System
	6.4 Account Requirements for a Security Administrator
	6.5 Training the New User
	6.6 Logging a User’s Session
	6.7 Ongoing Tasks to Maintain a Secure System

	7 Managing System Access
	7.1 Defining Times and Conditions for System Access
	7.1.1 Restricting Work Times
	7.1.2 Restricting Modes of Operation
	7.1.3 Restricting Account Duration
	7.1.4 Disabling Accounts
	7.1.5 Restricting Disk Volumes
	7.1.6 Marking Accounts for External Authentication

	7.2 Assigning Appropriate Accounts to Users
	7.2.1 Types of System Accounts
	7.2.2 Privileged Accounts
	7.2.3 Interactive Accounts
	7.2.4 Captive Accounts
	7.2.5 Restricted Accounts
	7.2.6 Automatic Login Accounts
	7.2.7 Guest Accounts
	7.2.8 Proxy Accounts
	7.2.9 Externally Authenticated Accounts

	7.3 Using Passwords to Control System Access
	7.3.1 Types of Passwords
	7.3.2 Enforcing Minimum Password Standards
	7.3.3 Screening New Passwords
	7.3.4 Password Protection Checklist

	7.4 Enabling External Authentication
	7.4.1 Overriding External Authentication
	7.4.2 Setting a New Password
	7.4.3 Case Sensitivity in Passwords and User Names
	7.4.4 User Name Mapping and Password Verification
	7.4.5 Password Synchronization
	7.4.6 Specifying the SYS$SINGLE_SIGNON Logical Name Bits

	7.5 Controlling the Login Process
	7.5.1 Informational Display During Login
	7.5.2 Limiting Disconnected Processes
	7.5.3 Providing Automatic Login
	7.5.4 Using the Secure Server
	7.5.5 Detecting Intruders
	7.5.6 Understanding the Intrusion Database
	7.5.7 Security Server Process

	8 Controlling Access to System Data and Resources
	8.1 Designing User Groups
	8.1.1 Example of UIC Group Design
	8.1.2 Limitations to UIC Group Design

	8.2 Naming Individual Users in ACLs
	8.3 Defining Sharing of Rights
	8.4 Conditionalizing Identifiers for Different Users
	8.5 Designing ACLs
	8.6 Populating the Rights Database
	8.6.1 Displaying the Database
	8.6.2 Adding Identifiers
	8.6.3 Restoring the Rights Database
	8.6.4 Assigning Identifiers to Users
	8.6.5 Removing Holder Records
	8.6.6 Removing Identifiers
	8.6.7 Customizing Identifiers
	8.6.8 Modifying a System or Process Rights List

	8.7 Giving Users Privileges
	8.7.1 Categories of Privilege
	8.7.2 Suggested Privilege Allocations
	8.7.3 Limiting User Privileges
	8.7.4 Installing Images with Privilege
	8.7.5 Restricting Command Output

	8.8 Setting Default Protection and Ownership
	8.8.1 Controlling File Access
	8.8.2 Setting Defaults for Objects Other Than Files

	8.9 Added Protection for System Data and Resources
	8.9.1 Precautions to Take When Installing New Software
	8.9.2 Protecting System Files
	8.9.3 Restricting DCL Command Usage
	8.9.4 Encrypting Files
	8.9.5 Protecting Disks
	8.9.6 Protecting Backup Media
	8.9.7 Protecting Terminals

	9 Security Auditing
	9.1 Overview of the Auditing Process
	9.2 Reporting Security-Relevant Events
	9.2.1 Ways to Generate Audit Information
	9.2.2 Kinds of System Activity the Operating System Can Report
	9.2.3 Sources of Event Information

	9.3 Developing an Auditing Plan
	9.3.1 Assessing Your Auditing Requirements
	9.3.2 Selecting a Destination for the Event Message
	9.3.3 Considering the Performance Impact

	9.4 Methods of Capturing Event Messages
	9.4.1 Using an Audit Log File
	9.4.2 Enabling a Terminal to Receive Alarms
	9.4.3 Secondary Destinations for Event Messages

	9.5 Analyzing a Log File
	9.5.1 Recommended Procedure
	9.5.2 Invoking the Audit Analysis Utility
	9.5.3 Providing Report Specifications
	9.5.4 Using the Audit Analysis Utility Interactively
	9.5.5 Examining the Report

	9.6 Managing the Auditing Subsystem
	9.6.1 Tasks Performed by the Audit Server
	9.6.2 Disabling and Reenabling Startup of the Audit Server
	9.6.3 Changing the Point in Startup When the Operating System Initiates Auditing
	9.6.4 Choosing the Number of Outstanding Messages That Trigger Process Suspension
	9.6.5 Reacting to Insufficient Memory
	9.6.6 Maintaining the Accuracy of Message Time-Stamping
	9.6.7 Adjusting the Transfer of Messages to Disk
	9.6.8 Allocating Disk Space for the Audit Log File
	9.6.9 Error Handling in the Auditing Facility

	10 System Security Breaches
	10.1 Forms of System Attacks
	10.2 Indications of Trouble
	10.2.1 Reports from Users
	10.2.2 Monitoring the System

	10.3 Routine System Surveillance
	10.3.1 System Accounting
	10.3.2 Security Auditing

	10.4 Handling a Security Breach
	10.4.1 Unsuccessful Intrusion Attempts
	10.4.2 Successful Intrusions

	11 Securing a Cluster
	11.1 Overview of Clusters
	11.2 Building a Common Environment
	11.2.1 Required Common System Files
	11.2.2 Recommended Common System Files
	11.2.3 Synchronizing Multiple Versions of Files

	11.3 Synchronizing Authorization Data
	11.4 Managing the Audit Log File
	11.5 Protecting Objects
	11.6 Storing Profiles and Auditing Information
	11.7 Cluster-Wide Intrusion Detection
	11.8 Using the System Management Utility
	11.9 Managing Cluster Membership
	11.10 Using DECnet Between Cluster Nodes

	12 Security in a Network Environment
	12.1 Managing Network Security
	12.1.1 Requirements for Achieving Security
	12.1.2 Auditing in the Network

	12.2 Hierarchy of Access Controls
	12.2.1 Using Explicit Access Control
	12.2.2 Using Proxy Logins
	12.2.3 Using Default Application Accounts

	12.3 Proxy Access Control
	12.3.1 Special Security Measures with Proxy Access
	12.3.2 Setting Up a Proxy Database
	12.3.3 Example of a Proxy Account

	12.4 Using DECnet Application (Object) Accounts
	12.4.1 Summary of Network Objects
	12.4.2 Configuring Network Objects Manually
	12.4.3 Removing Default DECnet Access to the System
	12.4.4 Setting Privilege Requirements for Remote Object Connections

	12.5 Specifying Routing Initialization Passwords
	12.5.1 Establishing a Dynamic Asynchronous Connection

	12.6 Sharing Files in a Network
	12.6.1 Using the Mail Utility
	12.6.2 Setting Up Accounts for Local and Remote Users
	12.6.3 Admitting Remote Users to Multiple Accounts

	13 Using Protected Subsystems
	13.1 Advantages of Protected Subsystems
	13.2 Applications for Protected Subsystems
	13.3 How Protected Subsystems Work
	13.4 Design Considerations
	13.5 System Management Requirements
	13.6 Building the Subsystem
	13.7 Enabling Protected Subsystems on a Trusted Volume
	13.8 Giving Users Access
	13.9 Example of a Protected Subsystem
	13.9.1 Protecting the Top-Level Directory
	13.9.2 Protecting Subsystem Directories
	13.9.3 Protecting the Images and Data Files
	13.9.4 Protecting the Printer
	13.9.5 Command Procedure for Building the Subsystem

	A Assigning Privileges
	A.1 ACNT Privilege (Devour)
	A.2 ALLSPOOL Privilege (Devour)
	A.3 ALTPRI Privilege (System)
	A.4 AUDIT Privilege (System)
	A.5 BUGCHK Privilege (Devour)
	A.6 BYPASS Privilege (All)
	A.7 CMEXEC Privilege (All)
	A.8 CMKRNL Privilege (All)
	A.9 DIAGNOSE Privilege (Objects)
	A.10 DOWNGRADE Privilege (All)
	A.11 EXQUOTA Privilege (Devour)
	A.12 GROUP Privilege (Group)
	A.13 GRPNAM Privilege (Devour)
	A.14 GRPPRV Privilege (Group)
	A.15 IMPERSONATE Privilege (All) (Formerly DETACH)
	A.16 IMPORT Privilege (Objects)
	A.17 LOG_IO Privilege (All)
	A.18 MOUNT Privilege (Normal)
	A.19 NETMBX Privilege (Normal)
	A.20 OPER Privilege (System)
	A.21 PFNMAP Privilege (All)
	A.22 PHY_IO Privilege (All)
	A.23 PRMCEB Privilege (Devour)
	A.24 PRMGBL Privilege (Devour)
	A.25 PRMMBX Privilege (Devour)
	A.26 PSWAPM Privilege (System)
	A.27 READALL Privilege (Objects)
	A.28 SECURITY Privilege (System)
	A.29 SETPRV Privilege (All)
	A.30 SHARE Privilege (All)
	A.31 SHMEM Privilege (Devour)
	A.32 SYSGBL Privilege (Files)
	A.33 SYSLCK Privilege (System)
	A.34 SYSNAM Privilege (All)
	A.35 SYSPRV Privilege (All)
	A.36 TMPMBX Privilege (Normal)
	A.37 UPGRADE Privilege (All)
	A.38 VOLPRO Privilege (Objects)
	A.39 WORLD Privilege (System)

	B Protection for OpenVMS VAX System Files
	B.1 Standard Ownership and Protection
	B.2 Listing of OpenVMS VAX System Files
	B.2.1 Files in Top-Level Directories
	B.2.2 Files in DECW$DEFAULTS.SYSTEM and MOM$SYSTEM
	B.2.3 Files in SYS$KEYMAP
	B.2.4 Files in SYS$KEYMAP.DECW.SYSTEM
	B.2.5 Files in SYS$LDR
	B.2.6 Files in SYS$STARTUP and SYS$ERR
	B.2.7 Files in SYSEXE
	B.2.8 Files in SYSFONT and SYSFONT.DECW
	B.2.9 Files in DECW.100DPI
	B.2.10 Files in DECW.75DPI
	B.2.11 Files in SYSFONT.DECW.COMMON
	B.2.12 Files in SYSHLP
	B.2.13 Files in SYSLIB
	B.2.14 Files in SYSMGR
	B.2.15 Files in SYSMSG
	B.2.16 Files in SYSTEST
	B.2.17 Files in SYSUPD
	B.2.18 Files in VUE$LIBRARY

	C Running an OpenVMS System in a C2 Environment
	C.1 Introduction to C2 Systems
	C.1.1 Definition of the C2 Environment
	C.1.2 Documentation

	C.2 Trusted Computing Base (TCB) for C2 Systems
	C.2.1 Hardware in the TCB
	C.2.2 Software in the TCB
	C.2.3 Site-Specific Additions to the TCB

	C.3 Protecting Objects
	C.4 Protecting the TCB
	C.4.1 Protecting Files
	C.4.2 Privileges for Trusted Users
	C.4.3 Privileges for Untrusted Users
	C.4.4 Physical Security

	C.5 Configuring a C2 System
	C.5.1 Keeping Individuals Accountable
	C.5.2 Managing the Auditing Trail
	C.5.3 Reusing Objects
	C.5.4 Configuring Clusters
	C.5.5 Starting Up and Operating the System
	C.5.6 Forcing Immediate Reauthentication of a Specified Subject After a Change in Access Rights

	C.6 Checklist for Generating a C2 System

	D Alarm Messages
	Glossary
	Index
	Examples
	Example 3–1 Local Login Messages
	Example 4–1 Authorized Versus Default Process Privileges
	Example 6–1 Sample Security Administrator’s Account
	Example 7–1 Creating a Typical Interactive User Account
	Example 7–2 Creating a Limited-Access Account
	Example 7–3 Sample Captive Procedure for Privileged Accounts
	Example 7–4 Sample Captive Command Procedure for Unprivileged Accounts
	Example 7–5 Intrusion Database Display
	Example 9–1 Sample Alarm Message
	Example 9–2 Audit Generated by an Object Access Event
	Example 9–3 Auditing Events for a Site with Moderate Security Requirements
	Example 9–4 Brief Audit Report
	Example 9–5 One Record from a Full Audit Report
	Example 9–6 Summary of Events in an Audit Log File
	Example 9–7 Identifying Suspicious Activity in the Audit Report
	Example 9–8 Scrutinizing a Suspicious Record
	Example 9–9 Default Characteristics of the Audit Server
	Example 12–1 Sample Proxy Account
	Example 12–2 UAF Record for MAIL$SERVER Account
	Example 12–3 Sample Commands for a Dynamic Asynchronous Connection
	Example 12–4 Protected File Sharing in a Network
	Example 13–1 Subsystem Command Procedure

	Figures
	Figure 2–1 Reference Monitor
	Figure 2–2 Authorization Access Matrix
	Figure 2–3 Authorization Access Matrix with Labeled Cross-Points
	Figure 4–1 Previous Per-Thread Security Model
	Figure 4–2 Per-Thread Security Profile Model
	Figure 4–3 Flowchart of Access Request Evaluation
	Figure 8–1 Flowchart of File Creation
	Figure 8–2 Security Class Object
	Figure 12–1 The Reference Monitor in a Network
	Figure 12–2 A Typical Dynamic Asynchronous Connection
	Figure 13–1 How Protected Subsystems Differ from Normal Access Control
	Figure 13–2 Directory Structure of the Taylor Company’s Subsystem

	Tables
	Table 1–1 Event Tolerance as a Measure of Security Requirements
	Table 2–1 Objects Protected by Security Controls
	Table 2–2 Information Stored in the Authorization Database
	Table 2–3 Security Auditing Overview
	Table 3–1 Secure and Insecure Passwords
	Table 3–2 Types of Passwords
	Table 3–3 Reasons for Login Failure
	Table 4–1 Major Types of Rights Identifiers
	Table 4–2 Classes of Protected Objects
	Table 5–1 Access Requirements for Non-File-Oriented Devices
	Table 6–1 Example of a Site Security Policy
	Table 7–1 Authorize Qualifiers Controlling Login Times and Conditions
	Table 7–2 Login Qualifiers Not Allowed by Captive Accounts
	Table 7–3 Qualifiers Required to Define Captive Accounts
	Table 7–4 Defaults for Password History List
	Table 7–5 SYS$SINGLE_SIGNON Logical Name Bits
	Table 7–6 Intrusion Example
	Table 7–7 Parameters for Controlling Login Attempts
	Table 8–1 Employee Grouping by Department and Function
	Table 8–2 OpenVMS Privileges
	Table 8–3 Minimum Privileges for System Users
	Table 8–4 DCL Commands Used to Protect Files
	Table 9–1 Event Classes Audited by Default
	Table 9–2 Access Control Entries (ACEs) for Security Auditing
	Table 9–3 Kinds of Security Events the System Can Report
	Table 9–4 Events to Monitor Depending on a Site’s Security Requirements
	Table 9–5 Characteristics of the Audit Log File
	Table 9–6 Qualifiers for the Audit Analysis Utility
	Table 9–7 Controlling the Flow of Audit Event Messages
	Table 10–1 System Files Benefiting from ACL-Based Auditing
	Table 11–1 System Files That Must Be Common in a Cluster
	Table 11–2 System Files Recommended to Be Common
	Table 11–3 Using Multiple Versions of Required Cluster Files
	Table 11–4 Fields in SYSUAF.DAT Requiring Synchronization
	Table 11–5 Summary of Object Behavior in a Cluster
	Table 12–1 AUTHORIZE Commands for Managing Network Proxy Access
	Table 12–2 Network Object Defaults
	Table B–1 Exceptions to Standard OpenVMS VAX System File Protection
	Table C–1 Software Not Included in the C2-Evaluated System
	Table C–2 Privileges for Untrusted Users

