

SoftVelocity Inc. www.softvelocity.com

 Page 2 of 6

SoftVelocity Inc. www.softvelocity.com

 Page 3 of 6

One of the advantages of Clarion 6 is that it is still possible to create an application that emulates
the behavior associated with cooperative threading. Clarion 6 provides the necessary hooks so
that you can decide whether your threads are preemptive, cooperative, or a mixture of the two.
This article introduces the concept and provides code samples.

Cooperative Threading Extension templates

All applications created prior to Clarion 6 had all threads other than the first one work in a
cooperative manner. All new applications, and applications migrated to Clarion 6 will, by default,
generate fully preemptive thread based applications.

If you decide to emulate the cooperative thread system, you will still have to convert some code
affected by the change in the underlying thread and memory management model (see the Multi-
Threaded Programming PDF).

If you use the Global Cooperative Threading extension template you are not limited to only have
cooperative threads. You can have some or all threads preemptive. To make a procedure thread
preemptive you need to activate the “Preemptive Procedure” procedure extension.

If your application is generated with preemptive threads, you can still make individual threads co-
operative by adding the Global Cooperative Threading extension and turning off the cooperative
option. Then, on each “Preemptive Procedure” procedure extension, turn off the preemptive
feature to make the target procedure thread cooperative.

SoftVelocity Inc. www.softvelocity.com

 Page 4 of 6

Cooperative Threads using Hand Code

To allow you to create cooperative threads under Clarion you need to add the following code to
your program

PROGRAM
INCLUDE('CWSYNCHM.INC'),ONCE
INCLUDE('CWSYNCHC.INC'),ONCE
MAP

UnlockProc()
LockProc()
LockedProc(),BYTE

END

ThreadLocker Mutex

CooperationClass CLASS,THREAD
Preemptive BYTE,PRIVATE
Locked BYTE,PRIVATE

PreemptiveThread PROCEDURE(BYTE newState)
IsPreemptive PROCEDURE(),BYTE
IsLocked PROCEDURE(),BYTE
Wait PROCEDURE
Release PROCEDURE

END

CODE
SYSTEM{PROP:UnlockThreadHook} = ADDRESS(UnlockProc)
SYSTEM{PROP:LockThreadHook} = ADDRESS(LockProc)
SYSTEM{PROP:ThreadLockedHook} = ADDRESS(LockedProc)
! Do everything

CooperationClass.PreemptiveThread PROCEDURE(BYTE newState)
CODE

IF newState AND NOT SELF.Preemptive
ThreadLocker.Release()

ELSIF NOT newState AND SELF.Preemptive
SELF.Preemptive = newState
ThreadLocker.Wait()

END
SELF.Preemptive = newState

CooperationClass.Wait PROCEDURE()
CODE

IF NOT SELF.Preemptive
ThreadLocker.Wait()
SELF.Locked = TRUE

END

CooperationClass.Release PROCEDURE()
CODE

IF NOT SELF.Preemptive
SELF.Locked = FALSE
ThreadLocker.Release()

END

SoftVelocity Inc. www.softvelocity.com

 Page 5 of 6

CooperationClass.IsPreemptive PROCEDURE()
CODE

RETURN SELF.Preemptive

CooperationClass.IsLocked PROCEDURE()
CODE

RETURN CHOOSE(SELF.Preemptive,FALSE,SELF.Locked)

UnlockProc PROCEDURE
CODE

CooperationClass.Release()

LockProc PROCEDURE
CODE

CooperationClass.Wait()

LockedProc PROCEDURE
CODE

RETURN CooperationClass.IsLocked()

If you want a thread to be preemptive, then you need to add the following line of code
near the start of the procedure that is called when the thread starts

CooperationClass.PreemptiveThread(TRUE)

SoftVelocity Inc. www.softvelocity.com

 Page 6 of 6

Functions that Unlock a Thread

You need to be aware that these functions will call UNLOCKTHREAD on entry to them
and LOCKTHREAD on exit. You cannot assume that static variables do not change their
contents across calls to these functions.

ACCEPT

COLORDIALOG

DELAY

FILEDIALOG

FONTDIALOG

MESSAGE

OPEN(File) for ODBC driver

RUN when waiting for process to terminate

YIELD

Warning: The Construct method of a threaded class is called before a thread is locked
and the Destruct method after the thread is unlocked.

Note: In an MDI based application you must not lock the main thread

	Cooperative Threading Extension templates
	Cooperative Threads using Hand Code
	Functions that Unlock a Thread

