Advanced Programming

CHarkn1H

2 Advanced Programming Resources

COPYRIGHT 1994-2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity Incorporated.
It may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior consent, in writing, from SoftVelocity
Incorporated.

This publication supports Clarion. It is possible that it may contain technical or typographical
errors. SoftVelocity Incorporated provides this publication “as is,” without warranty of any kind,
either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:

SoftVelocity is a trademark of SoftVelocity Incorporated.

ClarionO is a trademark of SoftVelocity Incorporated.

Btrievel is a registered trademark of Pervasive Software.

Microsoftl], Windows[l, and Visual Basic[l are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (1003)

Contents 3

Contents:
Customizing the Development ENVIFONMENToiiiiiiiiieee et e e e e et r e e e s s er e e e e e s nnneeees 5
F N I @Y= Vo TR SR 5
CommaNd LiNE PArameEtersuuuiiiiiiiii ettt e e e e st a e nneeas 5
Non-Modifiable Clarion INI File SECHONScocuiiiiiiii e 6
USEE INFOIMMALION ...ttt ettt e e e st e e e sttt e e e s bt e e e e s sbbeeeessabeeeesbeeeeens 6
= 11 PSPPI 6
ENVIFONMENT OPLIONS ..ottt e e e e e ettt et e e e e e st b et e e e e e e e sannbbbeeeeaaeeeanneees 6
B L O =T (o g Y o] o]] £ TP RTTT PR 8
Modifying the Clarion ENVIFONMENT........c..eiiiiiie et e e e 9
Specifying User Defined APPIICALIONSooiiiiiiiiiieie e 9
Adding choices to the Clarion MENUccoiiiiiiiiiiiii e e e e eaeees 11
Adding choices to the Clarion SEtUP MENUoocuuiiiiiiiee e 12
Adding File Masks to File Types Drop DOWN LiStS.......cc.coviuiiiiiiieeiiiiiiiiiinee e e s ssseiiene e e e e e s 13
Adding Tabs to New, Open, or Pick File DIalOgsScccouicuriiiiieeeisiiiiiieeee e e ceeieeee e e e e e 15
SpPecCifyiNng MaKe File TYPES ..oiiii et e e e e e e e e s s e e e e e e e annrnraeeees 17
PriNt SPECITICALIONS ... vviiiie e et et s e e e e e e e s s e e e e e e s s ae e e e ee e e e s s nrnrneeeeeanann 17
ENnvironment OPLtioN SEHINGSuvuiiiieeieiiiiie e e e e e s e e e e e s s s e e e e e e e s s nnnrenereaeeeans 19
F U (ol o] o TU1F= 11T @ o] 1] 1SR 19
(DTt i o] g F=T g VA @])1 [o] o 1S3 P PR UTTPPPRPT 20
ProjeCt SYSIEM OPtIONS. ...ttt e e bt e e e e e e s e e bbb e e e e e e e e s e aanbaneeaaaaaaan 22
Application GeNerator OPLIONSai ettt e e e et r e e e e e e ababeeeeaae e e aasbbbeeeeaaeeeaans 24
Dictionary Synchronization OPLIONSueeiiiiiiiiiiiiiiie et e e e rreeaeeea e e e 29
Template RegIStry OPLIONS......coui ittt e e e e e e e e e s e ababeeeeaaeeeeaannne 32
VAT Lo (oY o] g g F= 1 (=T G @ o] 1 o] g 1= SRS 34
Control Default Size OPLIONS.......ccuuiieiie e e e e e e e e s s s e e e e e e s e snanraeeeees 38
[RT=ToTo] gl o] g 4= 11 (=T S @] o] 1 o] o O PESRR 40
o 11 (o] @ o 1T 1= USSR 43
o170 g =1 o 1 PRI 45
USING Clarion @S @ DDE SEIVETuuuiiiie i i ieciiieeee e e e e s ittt et e e e e s e st e eaeeesssnsteaeeeaeeessanasteaeeeaeeessannnnees a7
OVBIVIBW ...ttt ettt oottt a4 e o4 4ok bbbttt e e a4 e 4o a bttt et et e e e e e s R e bt be e e e e e e e e o nnbbbeeeeaaesaaannneeaaaaaeannn a7
Connect t0 Clarion @S DDE SEIVETccociiiiiiiiiiieie ettt a e e e snbeaeeeeeas 49
Disconnect from the Clarion DDE SEIVELc.coiiiiiiiiiiiie ettt e e eiaereee e e e 50
Export a Dictionary to Text (TXD) fOrmatl........ooocuuiiiiiiiiii e 51
Import a Dictionary from Text (TXD) fOrmat..........ouueiiiiiiiii e 51
Export an Application to Text (TXA) fOrmatcuueiiiiiiii e 52
Import an Application from Text (TXA) fOrmatuveevieei i 54
(I T= Lo = Vg A o] o] [= o) o 1SRRI 56
Generate an APPIICALION.iii i a e 57
Execute a Project or APPIICALIONcciiciiiiiiiee e e e ee e e e e e e e e e s s e e e e e e e e e e annns 58
RUNNING @ ULIlity TEMPIALEeeiieieeie et e e e s r e e e e e s s e ee e e e e e aans 59
Registering @ TeMPIALE CIASSciiii ittt e e e e e e e e e 61
Unregistering @ TEMPIAE ClaSS......cua ittt e e e e e e e e e e e e 62
Getting DDE EFTOr IMESSAQgES. ... uuuteieeeiaaaie ittt et e e e e e e etbee e e e e e e e s e aabbeeeeeaa e e s e anbbsseeeaaaesaaanrsseeens 63
(61 F=TqTo] BB] oy o] 1= TP URTP ORI 65

DDE Service Errors and associated MESSAQESuuuuiirieeiiiiiiieiiiaaaeasiiieieeeae e e s aeieeeeeeaaeeeaaes 65

4 Advanced Programming Resources

1D A 1 L= 0T 3 = 67
.TXD Files: Clarion Dictionaries in ASCI FOMMALcciiiiiiiieiiiiieeceeeeeeiee e e e eeaaaa s 67
TXD File OrganizZatiOoN.........cciicciiieeeie e e e e sese et e e e e s s s e e e e e e e s s st eeeeeeessssnteeeeeaeeesannnnreneneeaasnes 68

DD S 1 = (o o IR 68
R DB I S LR Y =Tox 1[0 F- T 70
10 (0 I (@ TN = 2 PR 70
L PSR 72
A N] PSPPI 87
L = A 10\ SRR 88
(000] 1010 ALY A IS U o 1= 1 0] 1 1 94
[LONGDESC] .iiiiiiiiiiitiieit i et e e e e e s e e e e e e e e st e e e e e e e aa b et e e e e e e e e aantrrareeaeeeeannrrnareeeeanns 94
L8] 10] 1 | PR 94
LI 1@ @ = I 1 1N SO PRS 94
[SCREENCONTROLS] .tettteiiiiiiiitiiette e e s s ittt e e e e e e s s sasteaee s e e e e s s asstaaeeeaeeesaasstaneeeeeeesansnsnnneaaesss 95
[REPORTCONTROLS] .oiitieiiiiiitiiiieee e e s ettt ee e e e s e s eteteeee e e e s s ssnnsaaseeeaeessssnnssaseeeaeessannnsseneeaaeesanns 95

1D, N a1 (Sl o] = T 97
.TXA Files: Clarion Applications in ASCI FOrMAL............coiiiiiiiiiiiiiiiiiee e 97
TXA FIlE OFQANIZALIONeeiiiie ittt ettt et e e e e e et e e e e e e e e s e anbbeeeeeaeeeaeannbeeeeasaannes 98

1D, NS (1 [=1 o] o IR 98
DO (SIS =T 0] 101
72 d = I [0 2N 1 N PSPPSR 101
L 0 28] = PRSP 103
[PROGRAMI] END] ..ttttiiiieieiiiiieir e e et e e e e e s s s ee e e e e e e s s st ae e e e e e e s e annntanneeeeeesesannnrnneees 104
L@ 71U = S =N) SRR 106
[PROCEDURE] ..o ittt ettt ettt e e e e s s e e e e e e e st e e e e e e e annntanneeeeeeesnnnnnrennees 107
COMMON SUDSECHIONSccciiieeeiiee et e e e e s e e e e e s ee e b eeeeseeeaabba e eeeseeesrannanans 110
[@X0 1Y 11Y, 1@ | RS PS 110
10N 1 PRSPPI 111
SRR 114
LR 2@ 1] OSSPSR 118
SV ST = S =N] TSR RR 121
7211 i 18] TSR 124

[T L= G 127

Customizing the Development Environment S

Customizing the Development Environment

An Overview

The Clarion Development Environment was set up in an optimal manner for developing
applications. However, it is also extensible to allow you to modify it to meet your specific needs.
You can add menu items to call built-in applets (a small application that performs a single task) or
any external tools you wish to use. Each portion of the Clarion Development Environment is an
applet that can be called to perform a task. For example, you can call the Source Editor (CWedt)
to open and edit a template file.

The configuration settings file —C60PE.INI or C60EE.INI—controls this extensibility. This is a
standard Windows .INI file that the Clarion GETINI and PUTINI statements can modify.

As is the case with most Windows applications, the Clarion Development Environment reads the
.INI file upon opening and writes to it upon closing. Keep this in mind when editing it. If you make
any changes to the .INI file while Clarion is open, these changes will be overwritten when you

close Clarion. For this reason, you should use Notepad or any other text editor to edit the .INI file.

Note: We strongly recommend making a backup copy before modifying your .INI file.

Command Line Parameters

There are several command line parameters you can use when you call C60EE.EXE to invoke
specified initial actions. All of them will automatically disable the Pick list and prevent it from
appearing as the opening dialog.

-Pname Sets the initial Project to the passed name.
-Mname Makes the Project name.

-Rname Makes and runs the Project name.
-Dname Makes and debugs the Project name.
-Ename Opens the name file.

Example:
C60EE. EXE -Rtutori al . app
C60EE. EXE - Ehel | 0. cl w

6 Advanced Programming Resources

Non-Modifiable Clarion INI File Sections

User Information

The Clarion Development Environment stores your user information (Name, Company, Serial
Number, and Key Number) in the [user] section of the .INI file. You should not modify this section.

Paths

The last opened project or Application is stored in the [paths] section of the .INI file. This is
updated every time the environment is closed.

You can modify this section of the INI file, but it is always overwritten when Clarion closes.

Example:
[pat hs]

prjfile=C\ C60\ APPS\ MYAPP. APP
Environment Options

The settings specified in the [Environment] section control the appearance of the Clarion
development environment. Two settings are specified in the [Environment] section which are
always overwritten when Clarion closes:

maximized=on|off

Specifies whether the environment opens maximized.
guickstart=on|off

Specifies whether Quick Start is on by default.

Other settings appear in this section which may be modified:
windows95dlgs=on|off

Specifies whether to use Windows 95-style common dialogs.
wallpaper=bmpfilename

Specifies the .BMP file the environment displays for wallpaper.
wallpapermode=tiled|centered|full

Specifies how to display the wallpaper BMP file: tiled, centered, or stretched to fill the
environment client area.

autopick=on|off

Specifies whether the Pick dialog appears when the environment first opens.

Customizing the Development Environment

Example:

[Envi ronnent]

maxi m zed=of f

qui ckst art =of f

wi ndows95d| gs=of f

wal | paper =c:\ C60\i nages\ C60wal | . bnp
wal | paper node=ti | ed

aut opi ck=on

8 Advanced Programming Resources

The Clarion Applets

The Clarion Development Environment has several built-in applets that you can call from a User
Defined Menu or a User Defined Tab on one of the File Dialogs (New, Open, or Pick). These
applets are “registered” through the [Clarion Applets] section of the INI file.

You should not modify this section. The applets are documented here so you know which ones
you can call from menus or tabs.

Applets marked with an asterisk (*) are for internal use only and cannot be called separately.
They are listed here for informational purposes only.

C60edt The Source Code Editor
C60cif The Compiler Interface
C60scr The Window Formatter*
C60prj The Project Editor

C60rpt The Report Formatter*
C60adm The Data Dictionary Editor
C60gen The Application Generator
C60asv Application Generator Services*
C60frm The Formula Editor*
C60brw The Database Manager
C60qck The QuickStart Wizard*
C60tty The Search Files Utility
C60rpc IDE 32-bit interface*

These are listed in the [Clarion Applets] section of the .INI file.

For example:

[Carion Applets]
_versi on=44
C60edt =on
C60ci f =on
C60scr =on
C60prj =on
C60r pt =on
C60adn¥on
C60gen=on
C60asv=on
C60f r m=on
C60br w=on
C60gck=on
C60t t y=on
C60r pc=on

Customizing the Development Environment 9

Modifying the Clarion Environment

Specifying User Defined Applications

To call an application or applet form the Clarion development environment, you must first define
the application in the [User Applications] section of C60EE.INI. This “registers” the application
with the environment. To add your own, modify the [User Applications] section of C60EE.INI in
the following manner:

AppReference=CommandLine

AppReference
The name by which the application is referenced.

CommandLine
The text of the command to be launched. This text may contain either the %f or %a
expansion macros.

Example:

[User Applications]

not epad=not epad %

wor dpad=wor dpad %

not epad. 2=not epad c:\w ndows\w n. i ni
not epad. 3=not epad %a. t xt

Note: If your application is in a directory that is not in your PATH and is using Long
Filenames (Windows 95) you must use the DOS equivalent of the directory and
filenames. For example, if Wordpad is in the C:\Program Files\Accessories
directory, you must refer to it as: C:\Progra~1\ACCESS~1\wordpad.

Notice the last two lines of the example reference notepad.2 and notepad.3. This defines
notepad.2 to open Notepad to edit the WIN.INI file. Notepad.3 is defined to open (or create) a file
using the name of the current application with a .TXT extension. You can add an extension User
Applications to define multiple occurrences of the same application to behave in different
fashions.

The %f expansion macro shown in the example denotes the current filename. This is passed as a
command line parameter to the application. Valid expansion macros you can use as command
line parameters are:

%f Filename and Path
%-f Filename only
%a Current Application (*.APP) or Project (*.PRJ)

10 Advanced Programming Resources

Additionally, you can add an extension to an expansion macro to change the extension of the
filename passed to it. For example, calling notepad with the parameter %a.txt would open a file
using the current application’s filename and a .TXT extension. This enables you to define a User
Application that you can call to open (or create) a text file matching the current application name.

Customizing the Development Environment 11

Adding choices to the Clarion Menu

To call an external application from the Clarion development environment, you must first define
the application in the [User Applications] section of C60EE.INI as described above. This
“registers” the application with the environment.

Next, you add Menu(s) and define the menu selections in the [User Menus] section in the
following manner:

n=MenuDisplayText/MenuDisplayText|Applet
n The number of the entry
MenuDisplayText

The text to display in the action bar.
IltemDisplayText

The text to display in the Drop-Down List.
Applet

The applet to call.

Example:

[User Menus]

_version=1

1=&Edi t or s/ &Wr dpad| wor dpad

2=&Edi t or s/ &Not epad| not epad
3=&Utilities/&Cal cul ator| Cal cul at or
4=&Uti lities/ &Paint| Pai nt

Note: The first line (_version=1) denotes a version number used internally. You should
not modify that line.

12 Advanced Programming Resources

Adding choices to the Clarion Setup Menu

You can also add choices to the Setup Menu in the Clarion Development Environment. To call an
external application from the Clarion development environment, you must first define the
application in the [User Applications] section of C60EE.INI as described above. This “registers”
the application with the environment.

Next, you add menu choices and define the menu selections in the [Setup Menu] section as
shown in numbers 10 and 11 below. Number 11 uses a User Defined Application (See Specifying
User Defined Applications). Numbers 4, 8, and 10 create separators by using the n=- syntax.

n=Text|Application
n The number of the entry

Text
The text to display on the menu.

Application
The Clarion applet or application to open. Any external applications must be defined in
the [User Applications] section.

Example:

[Setup Menu]

_versi on=10

1=&Edi tor Opti ons| CWedt

2=&Di cti onary Options| CWadm

3=&Appl i cation Options| CWen. 1

4=-

5=&Tenpl at e Regi stry| C\Wjen. 103

6=Dat a&base Driver Registry| CWasl. 38
7=&VBX Custom Control Registry| C\Wasl . 37
8=-

9=Edit Redirection &File| CWasl. 36
10=-

11=Edit WN. I NI | not epad. 2

Note: The first line (_version=10) denotes a version number used internally. You should
not modify that line.

Customizing the Development Environment 13

Adding File Masks to File Types Drop Down Lists

The [File Types] section defines the masks used by the drop-down list in any of the Clarion file
dialogs (New, Open, or Pick) and the applet or application that opens or creates the file. One
additional entry should follow, in the format of ALL=n. This defines which should be used for ALL
files, allowing more than one entry to use *.* as the file mask.

Note: The first line (_version=41) denotes a version number used internally. You should
not modify that line.

The defaults are :

[File Types]

_version=41

1=Application (*.app)=*.app| CWen

2=Di ctionary (*.dct)=*.dct| C\adm

3=Project (*.prj)=*.prj| CWrj

4=Clarion source (*.clw, *.inc,*.trn)=*.clw *.inc;*.trn| C\edt
5=Report (*.txr)=*.txr| CWRW

6=Text (*.txt)=*.txt| Cnedt

7=Dat abase tabl es=*.tps;*.dbf;*.dat;*.db|] CWbrw
8=Al| Database tables (*.*)=*.*| CWrw

9=All files (*.*)=*.*| C\Wedt

all=9

To add your own, modify the [File Types] section of C60EE.INI in the following manner;
n=DisplayText=Filemask|Application
n The number of the entry
DisplayText The text to display in the Drop-Down List.
Filemask The mask to use when listing files.

Application The Clarion applet or external application to use to open the file. External
applications must be defined in the [User Applications] section.

14 Advanced Programming Resources

Example:

[File Types]

1=Application (*.app)=*.app| C\jen
2=Cl arion source (*.clw) =*.clw CWedt
3=Di ctionary (*.dct)=*.dct| Cadm
4=Project (*.prj)=*.prj| CWrj

5=Text (*.txt)=*.txt|notepad

6=Doc (*.doc)=*.doc|wordpad

7=Dat abase files=*.tps;*.dbf;*.dat;*. db|] CWbrw
8=Al| Database files (*.*)=*.*| CWbrw
9=All files (*.*)=*.*| C\Wedt

al | =9

Customizing the Development Environment 15

Adding Tabs to New, Open, or Pick File Dialogs

Each of the Clarion File dialogs can be modified to include TABs of your choice.

To add your own, modify the [Pick Dialog], [New Dialog], or ,[Open Dialog] sections of C60EE.INI
in the following manner:

n=TabText=FileMask|Application
n The number of the entry

TabTex
The text to display on the Tab.

FileMask
The extension of the files displayed.

Application
The Clarion applet or application to use to open the file. Any external applications must
be defined in the [User Applications] section.

Note: The first line (_version=41) denotes a version number used internally. You should
not modify that line.
Example:

[Pi ck Dial og]
_version=41

1=&Appl i cati on=app| CWjen
2=&Di cti onary=dct | CWAdm
3=&Pr oj ect =prj | CWprj
4=Dat a&base=*| CWbr w
5=&Sour ce=cl w| C\\édt
6=&Report =t xr | CWRW
7=A&l | =*| CVasl

Xpos=10

ypos=10

hei ght =160

wi dt h=320

defaul t=-2

[Open Di al og]

_versi on=41

1=&Appl i cat i on=app| CWjen
2=&Di cti onar y=dct | CWadm
3=&Pr oj ect =prj | CWprj
4=Dat a&base=*| CWor w
5=&Sour ce=cl W C\Wedt
6=&Report =t xr | C\RW

7=A&l | =*| CVasl

[New Di al og]
_versi on=41

16 Advanced Programming Resources

1=&Appl i cati on=app| CWjen
2=&Di cti onary=dct | CWAdm
3=&Pr oj ect =prj | CWbrj
4=&Sour ce=cl W C\Wedt
5=&Report =t xr | C\RW

The last two lines of each of these sections affect the TABs on each of the File Dialogs. The
lines=2 specifies that enough space should be allotted for two rows of TABs. This does not cause
TABs to split onto two lines, that is controlled automatically by the space needed.

The default= line controls which TAB appears on top when the dialog is called. If the number is
positive, the TAB equated to the number will always open on top. If the number is negative, the
environment will save the last open tab’s number to that position causing the dialog to reopen
with the TAB which was selected last on top.

Customizing the Development Environment 17

Specifying Make File Types

The Compiler Interface uses Project files or Application files when compiling and linking. If you
like, you can define alternate extensions for these types of files. By defining your own, for
example, you can compile a project file with an extension of .MAK. The file must be in the same
format as other project files (see Chapter 13—The Project System).

To add your own, modify the [Make File Types] section of C60EE.INI in the following manner:
n=DisplayText=Filemask|Applet
n The number of the entry

DisplayText
The text to display in the Drop-Down List.

Filemask
The mask to use when listing files.

Applet
The Clarion applet to use to open the file.

Note: The firstline (_version=41) denotes a version number used internally. You should
not modify that line.

Example:

[Make File Types]
ver si on=41

I=App| ication (*.app)=*.app| CWen

2=Project File (*.prj)=*.prj| CWif

3=Text Project File (*.pr)=*.pr|CWif
Print Specifications

By default, all files printed from the environment have a header listing the filename, date, and
page number. This is controlled by the [printing] section of the INI file. You can modify this section
to print a different header if desired. This uses any of the following expansion macros:

%F Filename
%D Current System Date
%T Current System Time

%P Current Page Number

18 Advanced Programming Resources

Note: The first line (_version=1) denotes a version number used internally. You should
not modify that line.

[printing]

_version=1

header=File: % Date: %O Tinme: % Page: %P

Customizing the Development Environment 19

Environment Option Settings

Auto Populate Options

The [Auto Populate] section specifies where controls are placed when auto populating (by
double-clicking) with the Fields Box in the formatters.

startX=5
Specifies the starting position on the X axis (horizontal axis) for the first control placed.

startY=5
Specifies the starting position on the Y axis (vertical axis) for the first control placed.

incrementX=50
Specifies the number of dialog units to increment the horizontal offset for controls from
the associated prompt.

incrementY=16
Specifies the number of dialog units to increment the vertical space between auto-
populated controls.

alighment=top
Specifies whether to vertically align controls to the top, bottom, center, or default (0) of its
associated prompt.

Example:

[Aut o Popul at e]
start X=5

start Y=5

i ncrement X=50

i ncrenent Y=16
al i gnnent =0

20 Advanced Programming Resources

Dictionary Options

Data Dictionary Options are controlled by the [Dictionary Editor] section of the INI file. These
options are all modifiable through the development environment, but you can also change them in
the INI file.

Default driver=DriverName
The default database driver for new files in a dictionary

Set threaded=on|off
Specifies whether or not new file definitions default to adding the THREAD attribute.

Assigh message=on|off
Specifies whether to use the field descriptions you specify when defining a field as the
text for the MSG attribute.

Order files=on|off
Specifies whether to display files in alphabetical order or in the order in which they were
created.

Display field type=on|off

Specifies whether to display the field’'s data type in the Fields list.
Display field prefix=on|off

Specifies whether to display the prefix in the Fields list.

Display field picture=on|off

Specifies whether to display the screen display picture in the Fields list.
Display field description=on|off

Specifies whether to display the description in the Fields list.
Display key type=on|off

Specifies whether to display the key type in the Key list.

Display key prefix=on|off

Specifies whether to display the prefix in the Key list.

Display key description=on|off

Specifies whether to display the description in the Key list.
Display key primary=on|off

Specifies whether to display “Primary” if the Key is the Primary Key.
Display key unique=on|off

Specifies whether to display “Unique” if the Key is unique.

Display key attributes=on|off

Specifies whether to display the other key attributes in the Key list.
Display file driver=on|off

Specifies whether to display the file driver in the Files list.

Display file prefix=on|off

Specifies whether to display the file prefix in the Files list.

Customizing the Development Environment

21

Display file description=on|off
Specifies whether to display the file description in the Files list.

Exanpl e:

[Dictionary Editor]

Def aul t driver="TOPSPEED'

Set threaded=on

Set COEM-of f

Assi gn nessage=on

Assi gn tool tip=on

O der tabl es=on

Di spl ay col um type=off

Di spl ay col um prefix=of f

Di spl ay col umm deri vi ati on=of f
Di spl ay col um picture=of f

Di spl ay colum descri pti on=on
Di spl ay key type=off

Di spl ay key prefix=off

Di spl ay key description=on
Di spl ay key pri mary=of f

Di spl ay key uni que=of f

Di spl ay key attri butes=of f

Di spl ay database driver=of f
Di spl ay dat abase prefix=of f
Di spl ay tabl e description=on
Pr onpt Qui ckLoad=on

UseQui ckLoad=of f

22 Advanced Programming Resources

Project System Options

Project System Options are controlled by the [Project System] section of the INI file. These
options are all modifiable through the development environment, but you can also change them in
the INI file.

automake=on|off

Specifies whether an application should be automatically compiled and linked (if
necessary) before running.

autosave=on|off

Specifies whether an application should be automatically saved before it is compiled and
linked.

runmin=on|off

Specifies whether the development environment should be minimized during execution of
the application.

runwait=on|off

Specifies whether the Project System should suspend Clarion until after you terminate
the application upon executing it with the Run command.

newtype=<extension>

Specifies any new project file types you have defined in the [Make File Types] section of
the .INI file. This line is added automatically by the environment when a new Make File
Type is added.

Default32bit=on|off
Specifies any new project is created as 32-bit by default (always on).
Debugresume=on|off

Specifies whether the debugger starts in “resume previous debug session” mode.

Customizing the Development Environment

Example:

[Project Systeni
aut onake=on

aut osave=on
runm n=of f
runwai t =of f

def aul t 32bi t =on
def max=of f

def x=0

defy=0

def w=200

def h=140

ndef x=0

ndef y=0

ndef w=225

ndef h=140

24 Advanced Programming Resources

Application Generator Options

Application Generator Options are controlled by the [Application] section of the INI file. These
options are all modifiable through the development environment, but you can also change them in
the INI file.

CondGeneration=on|off

Specify ON to ensure only source code modules changed since the last make should be
compiled.

DebugGeneration=on|off

Specifies whether or not to write to a text file to log events for the Application Generator,
and turns logging on and off. In case of a fatal error by the Application Generator, this log
provides a trace to identify where the problem occurred. You specify the file name in the
Debug Filename entry. This is particularly useful when designing templates.

Repeat Procedures=on|off

Specifies whether or not the Application Generator displays the names of all procedures,
as it encounters them in the source code modules, in the progress box displayed during
code generation.

PopulateMain=on|off

Specifies whether or not the Application Generator writes procedures to the main source
code module. When this option is off, the main module only contains the MAIN
procedure, program global code, internally generated procedures standard for every
application. All other procedures reside in other file(s).

RequireDictionary=on|off

Specifies whether each new application must have a data dictionary.
DefaultDictionary=dictionaryname

Specifies the name of the default data dictionary.

MultiUser=on|off

Specifies whether to use file management options for multiple developer projects. See
the Multi-Programmer Development appendix in the User’s Guide for more information.

ApplicationWizard=on|off

Specifies whether to use the Application Wizard by default when creating a new
application. You can override this choice when creating an application by checking or
unchecking the Application Wizard box in the Application Properties dialog.

Customizing the Development Environment 25

ProcedureWizard=on|off

Specifies whether to use a the appropriate Procedure Wizard by default when creating a
new procedure. You can override this choice when creating a procedure by checking or
unchecking the Procedure Wizard box in the Select Procedure Type dialog.

Advanced Programming Resources

NameClash=n

Specifies how the Application Generator handles procedure names from an imported
application file which clash with procedure names already resident.

The choices are:
0 - Query on First Clash
1 - Ask for Alternative
2 - Auto Rename
3 - Replace Previous
ModuleProcs=n

Specifies the number of procedures that the Application Generator writes to each source
code module. This can affect compile time when used with Conditional Generation turned
on. Specifying one procedure per module, for example, means that each successive
compile rebuilds only those procedures changed since the last one, and no more. The
down side to this is that it requires more disk space. Generally, a smaller number is
faster.

Debug File=filename
Specifies the file to which template debug information is written.
DisableField=on|off

Specifies whether or not template-generated field-specific (#FIELD) prompts will not
display. This does not disable prompts created by Control Templates.

Cw21ProcedureCall=on|off

When on, specifies the Procedures button on a Procedure Properties dialog calls the
Clarion version 2 Procedures dialog.

LocalMap=on|off
When on, specifies local MAP structures are generated in each source module.
TranslateControl=on|off

When on, specifies a dialog appears when controls are populated asking whether to
populate the control itself or a related Control Template.

AskOnOK=on|off

When on, specifies an action confirmation dialog appears when exiting with the OK
button.

AskOnCancel=on|off

When on, specifies an action confirmation dialog appears when exiting with the Cancel
button.

Customizing the Development Environment 27

AskOnClose=on|off
When on, specifies an action confirmation dialog appears when exiting.
LegacyAction=0|1|2

Specifies the appearance of Legacy embeds in the Embeditor and Embeds dialog: 0 =
Show All and Generate All, 1 = Show Filled and Generate All, 2 = Ignore All.

ShowPriority=on|off

When on, specifies priority embed numbers appear as comment in the Embeditor.
AlphaSortEmbeds=on|off

When on, specifies embed points appear alphabetically in the Embeds dialog.
CommentEmbeds=on|off

When on, specifies embed points appear with comments in the generated source and the
Embeditor.

StrictRuntimeError=on|off

IgnoreFamily=on|off

TranslateErrors=on|off

CacheGlobalEmbed=on|off

CacheProcedureEmbed=on|off

RefreshEmbedAfterSource=on|off

MaxCachedEmbeds=32

RecursiveText=" (Recursive)"
Specifies the description text to display for recursive procedures detected by the
Application Generator.

ExpandAboveText=" (Expanded Above)"
Specifies the description text to display for repeated functions marked by the Application
Generator.

LastSelectTab=1

28 Advanced Programming Resources

UselLongFilenames=on|off

ComplexEmbedTree=on|off

When ON, the filled embeds for a procedure show the expanded embed labels on the
right pane. When OFF the embeds display without the descriptive labels.

Example:

[Appl i cation]
CondGener at i on=on

DebugGener at i on=of f

Repeat Procedur es=on

Popul at eMai n=of f

Requi reDi cti onary=on

Mul ti User =of f

Appl i cati onW zar d=on
Procedur eW zar d=on

Naned ash=0

Modul eProcs=1

Debug File="c:\tpl debug.txt"
Def aul t Di cti onary=""

Di sabl eFi el d=of f

Transl at eCont r ol =on

Local Map=on

AskOnOK=of f

AskOnCl ose=on

AskOnCancel =on

LegacyActi on=1

ShowPri ority=on

Al phaSort Embeds=on

Conmment Enbeds=of f
StrictRunti meError=on

| gnor eFani | y=of f

Cw21Pr ocedur eCal | =of f
Transl at eEr ror s=on

Cached obal Enbed=of f
CachePr ocedur eEnbed=of f

Ref r eshEnbedAf t er Sour ce=on
MaxCachedEnbeds=32

Recur si veText =" (Recursive)"
ExpandAboveText =" (Expanded Above)"
Last Sel ect Tab=1

UseLongFi | enanes=of f

Conpl exEnbedTr ee=on

Customizing the Development Environment 29

Dictionary Synchronization Options

Dictionary Synchronization Options are controlled by the [Control Synchronization] section of the
INI file. These options are all modifiable through the development environment, but you can also
change them in the INI file.

ApplicationLoad=on|off

Specify ON to re-synchonize the application with the dictionary every time the application
is opened.

Windows=on|off

Specify ON to re-synchonize windows with the dictionary when the application is re-
synchonized.

Reports=on|off

Specify ON to re-synchonize reports with the dictionary when the application is re-
synchonized.

SyncVariables=on|off

Specify ON to re-synchonize controls for memory variables when the application is re-
synchonized.

PrimaryAttrOnly=on|off

Specify ON to re-synchonize only the “primary” attributes.
ChangeControlTypes=on|off

Specify ON to allow control types to change.
SyncDropNonDrop=on|off

Specify ON to allow a LIST with the DROP attribute to change to a LIST without the
DROP attribute.

ClearHelpEtc=on|off

Specify ON to clear the Help tab attributes for a control when omitted in the dictionary.
OverrideSize=on|off

Specify ON to allow the dictionary to override the size of controls.
Refreeze=on|off

Specify ON to refreeze a frozen control after synchronization.
IgnoreFreeze=on|off

Specify ON to synchronize all controls, despite their freeze settings.
SyncListbox=on|off

Specify ON to synchronize LIST box FORMAT strings.
SyncHeading=0|1|2|3

30

Advanced Programming Resources

Specify heading sychronization: 0 for Always, 1 for In Dictionary, 2 for Dictionary and
Window, and 3 for Never.

WarnDialog=on|off

Specify ON to display a warning dialog if problem occur during synchronization.
WarnOnResize=on|off

Specify ON to add a warning to the log file when a control changes size.
WarnFile=textfile.txt

Specify the name of the .TXT file to receive the synchronization report.
ClearAlrtEtc=on|off

Specify ON to clear all miscellaneous attributes if blank in the dictionary.
ClearFont=on|off

Specify ON to clear the FONT attribute if blank in the dictionary.
ClearCursor=on|off

Specify ON to clear the CURSOR attribute if blank in the dictionary.
Clearlcon=on|off

Specify ON to clear the ICON attribute if blank in the dictionary.
ClearAlert=on|off

Specify ON to clear the ALRT attribute if blank in the dictionary.
ClearKey=on|off

Specify ON to clear the KEY attribute if blank in the dictionary.
ClearColor=on|off

Specify ON to clear the COLOR attribute if blank in the dictionary.
ClearTally=on|off

Specify ON to clear the TALLY attribute if blank in the dictionary.

Example:

[Control Synchronization]
Appl i cati onLoad=of f

W ndows=on

Report s=on

SyncVar i abl es=of f
PrimaryAttrOnl y=of f
ChangeCont r ol Types=on
SyncDr opNonDr op=of f

Cl ear Hel pEt c=of f

Cl ear Al rt Et c=of f
Overri deSi ze=on

Ref r eeze=on

Customizing the Development Environment

31

| gnor eFr eeze=of f
SynclLi st box=on
SyncHeadi ng=2
War nDi al og=on
War nOnResi ze=of f
War nFi | e="sync. txt"
Cl ear Font =of f

C ear Cur sor =of f
Cl ear | con=of f

C ear Al ert =of f
Cl ear Key=of f

d ear Col or =of f
Cl earTal | y=of f

32 Advanced Programming Resources

Template Registry Options

Template Language code can be logically split among many files. Clarion uses the files to
produce one logical template set for creating applications. The Registry Options are mainly for
programmers who produce their own template files or make modifications to the default
templates. These options are all modifiable through the development environment, but you can
also change them in the INI file. Template Registry Options are controlled by the [Registry]
section of the INI file.

Reregister if changed=on|off

Specify ON to automatically re-register your templates when the Application Generator
detects a change.

Update Template Chain=on|off

Specify ON to automatically update the Template files when making a change in the
Template Registry.

Recreate deleted templates=on|off

Specify ON to specify the Application Generator should re-generate the .TPL and .TPW
files from REGISTRY.TRF, should the files be deleted.

MessageLines=3
Specifies what displays during generation. The choices are:
0-No Messages
1-Module Names
2-Module and Procedure Names
3-All Messages
Default Width
Specifies the default width of the template registry window.
Default Height
Specifies the default height of the template registry window.
Enable Assert
When set to ON, enables #ASSERT checking.

Customizing the Development Environment

33

Example:

[Regi stry]

Reregi ster if changed=on
Updat e Tenpl ate Chai n=on
Recreate del eted tenpl at es=of f
MessagelLi nes=2

Def aul t W dt h=300

Def aul t Hei ght =200

Enabl eAssert =on

34 Advanced Programming Resources

Window Formatter Options

Window Formatter Options are controlled by the [Window Formatter] section of the INI file. These
options are all modifiable through the development environment, but you can also change them in
the INI file.

grid=on|off

Specifies whether or not the Snap to Grid function is enabled on the sample window.
GridX=n

Specify the horizontal distance between the grid dots (x axis).

GridY=n

Specify the vertical distance between the grid dots (x axis).
GridOriginX=n

Specify the horizontal coordinate at which to begin placing the grid dots.
GridOriginY=n

Specify the vertical coordinate at which to begin placing the grid dots.
ScreenExtents=on|off

Specifies whether or not the screen resolution boundaries are displayed on the sample
window.

SnapResize=on|off

Specifies whether or not to snap to the nearest grid point grid when resizing from the right
or bottom edges.

showtoolbox=on|off

Toggles displaying the Controls tool box.
showalignbox=on|off

Toggles displaying the Alignment Box.
showpropertybox=on|off

Toggles displaying the Property Box.
showfieldbox=on|off

Toggles displaying the Fields Box
commandbox_app_docked =on|off
Designates whether or not the Command Toolbox is docked.
commandbox_app_Xpos =n

The horizontal position of the Command Toolbox.

Customizing the Development Environment 35

commandbox_app_ypos =n
The vertical position of the Command Toolbox.
commandbox_app_width =n

The width of the Command Toolbox.

commandbox_app_height=n

The height of the Command Toolbox.
controlbox_app_docked =on|off

Designates whether or not the Controls Toolbox is docked.
controlbox_app_xpos =n

The horizontal position of the Controls Toolbox.
controlbox_app_ypos =n

The vertical position of the Controls Toolbox.
controlbox_app_width =n

The width of the Controls Toolbox.
controlbox_app_height=n

The height of the Controls Toolbox.
controlbox_app_horiz=n

The number of buttons to display on each row.
propertybox_app_docked =on|off
Designates whether or not the Property Box is docked.
propertybox_app_xpos =n

The horizontal position of the Property Box.
propertybox_app_ypos =n

The vertical position of the Property Box.
propertybox_app_width=n

The width of the Property Box.
propertybox_app_height=n

The height of the Property Box.
propertybox_app_horiz=n

The number of buttons to display on each row.

alignbox_app_docked =on|off

36

Advanced Programming Resources

Designates whether or not the Alignment Toolbox is docked.
alignbox_app_xpos =n

The horizontal position of the Alignment Box.
alignbox_app_ypos=n

The vertical position of the Alignment Box.
alignbox_app_width=n

The width of the Alignment Box.

alignbox_app_height=n

The height of the Alignment Box.

alignbox_app_horiz=n

The number of buttons to display on each row.

Customizing the Development Environment

Example:

[Wndow Formatter]
_version=51

G i d=of f

GidX=4

Gidy=4

GidOigi nX=0
GidOiginYy=0

Scr eenExt ent s=on

SnapResi ze=of f
conmandbox_app_docked=2
commandbox_app_xpos=0
conmandbox_app_ypos=0
commandbox_app_wi dt h=215
conmandbox_app_hei ght =18
propertybox_app_docked=16
propertybox_app_xpos=20
propertybox_app_ypos=0
propertybox_app_w dt h=130
propertybox_app_hei ght =59
propertybox_app_horiz=2
cont r ol box_app_docked=16
control box_app_xpos=20
cont r ol box_app_ypos=20
control box_app_w dt h=92
cont r ol box_app_hei ght =104
control box_app_hori z=5

al i gnbox_app_docked=16

al i gnbox_app_xpos=80

al i gnbox_app_ypos=20

al i gnbox_app_wi dt h=74

al i gnbox_app_hei ght =88

al i gnbox_app_hori z=4

38 Advanced Programming Resources

Control Default Size Options

Control Default Size Options are controlled by the [Control Defaults] section of the INI file.
These options are all modifiable through the development environment under the Window
Formatter Options, but you can also change them in the INI file.

All these options receive the default value for the size (width or height) of the specified control. If
the value assigned is zero (0), the size defaults to the default values assigned by the runtime
library (no value appears in the control’s AT attribute). Positive values indicate the default value
for the control if no other control’s of that type have been populated (otherwise, the size of the
most common control of that type is used). Negative values indicate the (absolute) value for the
control, whether other control’s of that type have been populated or not.

entry_h=n

Specifies the default height of an ENTRY control.
entry_w=n

Specifies the default width of an ENTRY control.
button_h=n

Specifies the default height of a BUTTON control.
button_w=n

Specifies the default width of a BUTTON control.
spin_h=n

Specifies the default height of a SPIN control.
spin_w=n

Specifies the default width of a SPIN control.
text_h=n

Specifies the default height of a TEXT control.
text_w=n

Specifies the default width of a TEXT control.

Customizing the Development Environment

list_ h=n

Specifies the default height of a LIST control.
list w=n

Specifies the default width of a LIST control.
combo_h=n

Specifies the default height of a COMBO control.
combo_w=n

Specifies the default width of a COMBO control.

Example:

[control defaults]
entry_h=-10
entry_w=0
button_h=-14
button_w=48
spi n_h=-10
spi n_w=0

t ext _h=50
text _w=50

l'i st_h=100
list_w=0
conbo_h=-10
conbo_w=0

40 Advanced Programming Resources

Report Formatter Options

Report Formatter Options are controlled by the [Report Formatter] section of the INI file. These
options are all modifiable through the development environment, but you can also change them in
the INI file.

grid=on|off

Specifies whether or not the Snap to Grid function is enabled on the sample window.
GridX=n

Specify the horizontal distance between the grid dots (x axis).
GridY=n

Specify the vertical distance between the grid dots (x axis).
showtoolbox=on|off

Toggles displaying the Controls tool box.
showalignbox=on|off

Toggles displaying the Alignment Box.
showpropertybox=on|off

Toggles displaying the Property Box.

showfieldbox=on|off

Toggles displaying the Fields Box
commandbox_app_docked =on|off

Designates whether or not the Command Toolbox is docked.
commandbox_app_Xpos =n

The horizontal position of the Command Toolbox.
commandbox_app_ypos =n

The vertical position of the Command Toolbox.
commandbox_app_width =n

The width of the Command Toolbox.
commandbox_app_height=n

The height of the Command Toolbox.
controlbox_app_docked =on|off

Designates whether or not the Controls Toolbox is docked.
controlbox_app_xpos =n

The horizontal position of the Controls Toolbox.

Customizing the Development Environment 41

controlbox_app_ypos =n
The vertical position of the Controls Toolbox.
controlbox_app_width =n

The width of the Controls Toolbox.

controlbox_app_height=n

The height of the Controls Toolbox.
controlbox_app_horiz=n

The number of buttons to display on each row.
propertybox_app_docked =on|off
Designates whether or not the Property Box is docked.
propertybox_app_xpos =n

The horizontal position of the Property Box.
propertybox_app_ypos =n

The vertical position of the Property Box.
propertybox_app_width=n

The width of the Property Box.
propertybox_app_height=n

The height of the Property Box.
propertybox_app_horiz=n

The number of buttons to display on each row.
alignbox_app_docked =on|off

Designates whether or not the Alignment Toolbox is docked.
alignbox_app_xpos =n

The horizontal position of the Alignment Box.
alignbox_app_ypos=n

The vertical position of the Alignment Box.
alignbox_app_width=n

The width of the Alignment Box.
alignbox_app_height=n

The height of the Alignment Box.

alignbox_app_horiz=n

42

Advanced Programming Resources

The number of buttons to display on each row.

pagewidth=n

The default paper size width
pageheight=n

The default paper size height.

Example:

[report formatter]
_version=51

grid=of f
showf i el dbox=of f
commandbox_app_docked=2
conmandbox_app_xpos=0
commandbox_app_ypos=0
conmandbox_app_wi dt h=177
commandbox_app_hei ght =18
propertybox_app_docked=16
propertybox_app_xpos=20
pr oper t ybox_app_ypos=0
propertybox_app_w dt h=130
propertybox_app_hei ght =59
propertybox_app_horiz=2
control box_app_docked=16
cont r ol box_app_xpos=20
control box_app_ypos=20
cont r ol box_app_w dt h=80
control box_app_hei ght =66
cont rol box_app_hori z=4
al i gnbox_app_docked=16
al i gnbox_app_xpos=80

al i gnbox_app_ypos=20

al i gnbox_app_wi dt h=56

al i gnbox_app_hei ght =72
al i gnbox_app_hori z=3

gri dx=100

gridy=100

pagew dt h=8500
pagehei ght =11000

Customizing the Development Environment 43

Editor Options

The Source Editor’s Options are controlled by the [editor] section of the INI file. These options
are all modifiable through the development environment, but you can also change them in the INI
file.

Note: The first line (_version=4) denotes a version number used internally. You should not
modify that line.

font=system

Specifies the font to use in the editor. The default is the system font—the default monospaced
font on your system.

fontsize=n

Specifies the font size to use in the editor. The default size is 8.
maximized=off

Specifies whether the Source Editor window is maximized.
insert=on

Specifies whether the Source Editor is in Insert mode.

Example:

[editor]
_version=4

font =system
fontsize=8

i nsert=on
maxi m zed=of f
zonedi nsert =of f
aut oi ndent =on
wor dwr ap=0on
entersplit=on
splitfirstbel ow=of f
aut odel et e=on
mar kl i ne=of f
mar kcol =of f
honet obol =of f
showf i el dbox=on
copyr enbl ock=on
synt axcol or =on
aut or el oad=of f
nobackup=of f
aut obackup=0

t absi ze=4
sc_ext ensi ons=cl w; cl a; equ; i nc

44 Advanced Programming Resources
Additional Editor options are found in an associated INI file, C60OEDT.INI. These options are
described in detail in the User’s Guide - Chapter 9 - Text Editor INI File. In that section, Key and
Color Mapping are discussed. Although these options are generally set up in the environment,
there are some custom key and color mappings only available by modifying the INI file.

Customizing the Development Environment 45

Editor Tabs

These options are all modifiable and stored internally through the development environment, but
you can also change them externally in the INI file using the following syntax.

Extension=TabSpacing

Extension The file extension for which the specified tabs are used. Any valid DOS
file extension can be used including wildcards.

TabSpacing The spacing of tabs to use.

Note: The first line (_version=1) denotes a version number used internally. You should not
modify that line.

Example:
[Edi tor Tabs]
_version=1
CLWAT. .. T...T...T...T...
TXT=T...T...T...T...T...
?°=T...T...T...T T

— =
— =
— =
— =
— =
A
—
— =
— =
— =
— =
— =

— =

46

Advanced Programming Resources

Using Clarion as a DDE Server 47

Using Clarion as a DDE Server

Overview

Dynamic Data Exchange (DDE) is a very powerful Windows tool that allows a user to send or
access data from another separately executing Windows application. The Clarion development
environment is a DDE server which you can call from a client application. Using Clarion as a DDE
server allows you to write programs which call the Clarion development environment to perform a
task or a set of tasks.

For example, you can write a program to register a new template class during the template set’s
installation program. Another example is a program that manages all of your development
projects and will generate, compile, and link multiple applications.

DDE is based upon establishing “conversations” (links) between two concurrently executing
Windows applications. One of the applications acts as the DDE server to provide the data, and
the other is the DDE client that receives the data. A single application may be both a DDE client
and server, getting data from other applications and providing data to other applications. Multiple
DDE “conversations” can occur concurrently between any given DDE server and multiple clients.

When Clarion opens, it establishes itself as a DDE server. To accomplish this it must:

. Register with Windows as a DDE server, using the DDESERVER procedure.

. Provide services that are available to client applications. The available services are
detailed in this chapter.

. When DDE is no longer required, it terminates the link by using the DDECLOSE
statement. It will terminate the DDE connection automatically when the user closes
Clarion.

To be a DDE client, a Clarion application must:

. Open at least one window, since all DDE services must be associated with a window.
Additionally, the application should set the SYSTEM’s DDETimeout property
(SYSTEM{Prop:DDETimeOut} = nn) to an appropriate amount of time (depending on the
service the application will request).

. Open a link to a DDE server as its client, using the DDECLIENT procedure.

The DDE process posts DDE-specific field-independent events to the ACCEPT loop of
the window that opened the link between applications as a server or client.

48 Advanced Programming Resources

. Ask the server for data, using the DDEREAD statement, or ask the server for a service
using the DDEEXECUTE statement.
. When DDE is no longer required, terminate the link by using the DDECLOSE statement.

The DDE procedures are prototyped in the DDE.CLW file, which you must INCLUDE in your
program’s MAP structure.

Using Clarion as a DDE Server

49

To INCLUDE the file in the Application Generator:

1.

o > 0N

o

Connect to Clarion as DDE Server
Server=DDECLIENT(‘ClarionWin’)

Press the Global button.

Press the Embeds button.

Highlight Inside the Global Map, then press the Insert button.

Highlight Source, then press the Select button.

In the Source Editor, type the following:

| NCLUDE(' dde. ¢l w)

Save and Exit the Source Editor.

Press the Close button, then press the Ok button.

Server A LONG variable to hold the DDE client channel number.

DDECLIENT This procedure returns a new DDE client channel number for the
application and topic. If the application is not currently executing,
DDECLIENT returns zero (0).

ClarionWin The identifier for Clarion.

This connects your client application to the Clarion environment to use it as a
server. A connection must be made to the server before any other commands

can be issued.

The example below demonstrates how you can determine if C60EE is running

and RUN it if it isn't.

Example:

I Enbedded Source in Wndow Event Handling- after generated code, Timer

Server = DDECLIENT('C ari onWn')

| F Server !
DO ProcedureReturn !
ELSI F NOT Fl ag# !
RUN(" C60EE') !
Fl ag# =1 !
END

If the server is running

Return to caller

Check flag to see if RUN has been issued
Start it

Set flag to show run has been issued

50 Advanced Programming Resources

Disconnect from the Clarion DDE Server

DDECLOSE(Server)
DDECLOSE The procedure which terminates the DDE server link.
Server A LONG variable to hold the DDE client channel number.

This terminates the DDE channel between your client application and the Clarion
environment server. The connection must be made to the server before any other

commands can be issued.

Example:
Server = DDECLIENT(' d ari onWn')

I...sonme executabl e code

DDECLOSE(Ser ver)

Using Clarion as a DDE Server o1

Export a Dictionary to Text (TXD) format

DDEEXECUTE(Server, [ExportDct(DctName, TextFile,ScreenOutput)]’)
DDEEXECUTE Send a command string to a DDE server.

Server A LONG containing the DDE client channel number.
ExportDct The service of Exporting a Dictionary to Text format
DctName Clarion Dictionary from which the TXD will export.
TextFile The file to which the dictionary is exported.

ScreenOutput If one (1) or TRUE, screen output is displayed, if zero (0) or
FALSE, screen display is suppressed. If omitted, screen output
is suppressed.

This service allows you to export a dictionary to text format (.TXD). A connection
must be made to the server before this (or any other) command can be issued.
You can export a TXD file from an open Dictionary.

Example:

Server LONG
DDEEr r or Msg CSTRI NG 300)
DDEEr r or Num USHORT

CCDE

SYSTEM PROP: DDETi neCut} = 12000 I Time out after two mnutes
DDEEXECUTE(Ser ver, ' [Export Dct (c¢: \ C60\ APPS\ Myappl. DCT, MYTXD. TXD, 0)]")
DO CheckDDEEr r or

CheckDDEEr r or ROUTI NE
DDEErrorMsg = "'
err# = ERRORCODE()
I Check for DDE error
IF err# > 600 I ERRORCODE i s DDE rel ated
| F err# = 603 'l DDEExecute Failed
DDEREAD(Ser ver, DDE: manual, ' Get ErrorNumi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEErrorMsg)
MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))
ELSIF err# = 605 ! Tineout Error
MESSACE("' DDE ti nmeout')
ELSE
VESSAGE(er r #)
END
END

Import a Dictionary from Text (TXD) format

52 Advanced Programming Resources

DDEEXECUTE(Server, [ImportDct(TextFile,DctName,ScreenOutput)]’)
DDEEXECUTE Send a command string to a DDE server.

Server A LONG containing the DDE client channel number.
ImportDct The service of Importing a Dictionary from Text format
TextFile The file from which the dictionary is imported.
DctName Clarion Dictionary to which the TXD will import.

ScreenOutput If one (1) or TRUE, screen output is displayed, if zero (0) or
FALSE, screen display is suppressed. If omitted, screen output
is suppressed.

This service allows you to import a dictionary from text format (.TXD). A
connection must be made to the server before this (or any other) command can
be issued. You cannot import a TXD file to an open Dictionary.

Example:

Server LONG
DDEEr r or Msg CSTRI NG(300)
DDEEr r or Num USHORT

CODE

SYSTEM PROP: DDETi neCut} = 12000 I Time out after two mnutes
DDEEXECUTE(Ser ver, ' [| nport Dct (MYTXD. TXD, c: \ C60\ APPS\ Myappl. DCT,0)]")
DO CheckDDEEr r or

CheckDDEEr r or ROUTI NE

DDEErrorMsg = "'

err# = ERRORCODE()

I Check for DDE error

IF err# > 600 ! ERRORCODE is DDE rel ated

|F err# = 603 'l DDEExecute Fail ed
DDEREAD(Ser ver, DDE: manual, ' Get ErrorNumi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEError Msg)
MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))
ELSIF err# = 605 ! Tineout Error
MESSACE("' DDE ti nmeout')

ELSE
VESSAGE(er r #)

END

END

Export an Application to Text (TXA) format

DDEEXECUTE(Server, [ExportApp(AppName, TextFile,ScreenOutput)]’)

Using Clarion as a DDE Server 53

DDEEXECUTE Send a command string to a DDE server.

Server A LONG containing the DDE client channel number.
ExportApp The service of Exporting an Application to Text format
AppName Clarion Application from which the TXA will export.
TextFile The file to which the Application is exported.
ScreenOutput If one (1) or TRUE, screen output is displayed, if zero (0)

or FALSE, screen display is suppressed. If omitted,
screen output is suppressed.

This service allows you to export an Application to text format (.TXA). A
connection must be made to the server before this (or any other) command can
be issued. The service will operate on the specified application regardless of any
APP file that is currently open in the Clarion development environment.

Example:

Server LONG
DDEEr r or Msg CSTRI NG(300)
DDEEr r or Num USHORT

CODE
SYSTEM PROP: DDETi neCut} = 12000 I Time out after two mnutes
DDEEXECUTE(Ser ver, ' [Export App(c: \ C60\ APPS\ Myappl. APP, MyTXA. TXA, 0)]")
DO CheckDDEEr r or
CheckDDEEr r or ROUTI NE
DDEErrorMsg = "'
err# = ERRORCODE()
I Check for DDE error
IF err# > 600 ! ERRORCODE i s DDE rel ated
|F err# = 603 !l DDEExecute Fail ed
DDEREAD(Ser ver, DDE: manual, ' Get Error Numi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEErrorMsg)
MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))
ELSIF err# = 605 ! Tineout Error
MESSACE(' DDE ti neout')
ELSE
VESSAGE(er r #)
END
END

54

Advanced Programming Resources

Import an Application from Text (TXA) format

DDEEXECUTE(Server, [ImportApp(TextFile,AppName,ScreenOutput,NameClash)]’)

DDEEXECUTE
Server
ImportApp
TextFile
AppName

ScreenOutput

NameClash

Send a command string to a DDE server.

A LONG containing the DDE client channel number.
The service of Importing an Application from Text format
The file from which the dictionary is imported.

Clarion Application to which the TXA will import.

If one (1) or TRUE, screen output is displayed, if zero (0)
or FALSE, screen display is suppressed. If omitted,
screen output is suppressed.

Specifies how the Application Generator handles
procedure name clashes. Specify “Rename” to
automatically rename any procedures which clash with
existing procedures. Specify “Replace” to automatically
replace existing procedures with procedures of the same
name being imported. If omitted, the user is prompted to
specify how to handle name clashes.

This service allows you to import an Application from text format (.TXA). A
connection must be made to the server before this (or any other) command can
be issued. The service will operate on the specified application regardless of any
APP file that is currently open in the Clarion development environment.

Using Clarion as a DDE Server

55

Example:

Server LONG
DDEEr r or Msg CSTRI NG 300)
DDEEr r or Num USHORT

CODE

SYSTEM PROP: DDETi neCQut} = 12000 I Tinme out after two mnutes

DDEEXECUTE(Ser ver, |
"[1 mport App(MYTXA. TXA, c: \ C60\ APPS\ Myappl. APP, 0, Repl ace)]")
DO CheckDDEEr r or
CheckDDEEr r or ROUTI NE
DDEErrorMsg = "'
err# = ERRORCODE()
I Check for DDE error
IF err# > 600 ! ERRORCODE i s DDE rel ated
| F err# = 603 !l DDEExecute Fail ed
DDEREAD(Ser ver, DDE: manual, ' Get ErrorNumi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEErrorMsg)

MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEErrorMsg))

ELSIF err# = 605 ! Tinmeout Error
MESSACE(' DDE ti neout')

ELSE
VESSAGE(er r #)

END

END

56 Advanced Programming Resources

Load an Application

DDEEXECUTE(Server, [LoadApplication(AppName)]’)

DDEEXECUTE Send a command string to a DDE server.

Server A LONG containing the DDE client channel number.
LoadApplication The service of Loading an Application.

AppName The name of the Clarion Application to load.

This service allows you to load an Application into the Application Generator. A
connection must be made to the server before this (or any other) command can
be issued.

Example:

Server LONG
DDEEr r or Msg CSTRI NG(300)
DDEEr r or Num USHORT

CODE

SYSTEM PROP: DDETi neCQut} = 12000 I Tinme out after two mnutes
DDEEXECUTE(Ser ver, ' [LoadAppl i cati on(c:\ C60\ APPS\ Myapp. app, 0)] ')
DO CheckDDEEr r or

CheckDDEEr r or ROUTI NE

DDEErrorMsg = "'
err# = ERRORCODE()
I Check for DDE error
I|F err# > 600 ! ERRORCODE is DDE rel ated
| F err# = 603 'l DDEExecute Failed
DDEREAD(Ser ver, DDE: manual , ' Get Error Numi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEErrorMsg)
MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))
ELSIF err# = 605 ! Tineout Error
MESSACE("' DDE ti nmeout')
ELSE
VESSAGE(er r #)
END
END

Using Clarion as a DDE Server S7

Generate an Application

DDEEXECUTE(Server,'[GenerateApp(AppName,ScreenOutput)]’)

DDEEXECUTE Send a command string to a DDE server.

Server A LONG containing the DDE client channel number.
GenerateApp The service of Generating an Application.

AppName Clarion Application to generate.

ScreenOutput If one (1) or TRUE, screen output is displayed, if zero (0)

or FALSE, screen display is suppressed. If omitted,
screen output is suppressed.

This service allows you to generate the source code for an Application. A
connection must be made to the server before this (or any other) command can
be issued. The service will operate on the specified application regardless of any
APP file that is currently open in the Clarion development environment.

Example:

Server LONG
DDEEr r or Msg CSTRI NG 300)
DDEEr r or Num USHORT

CCDE

SYSTEM PROP: DDETi neCut} = 12000 I Time out after two mnutes
DDEEXECUTE(Ser ver, ' [Gener at eAPP(c: \ C60\ APPS\ Myapp. app, 0)] ')
DO CheckDDEEr r or

CheckDDEEr r or ROUTI NE

DDEErrorMsg = "'

err# = ERRORCODE()

I Check for DDE error

I|F err# > 600 | ERRORCODE is DDE rel ated

| F err# = 603 'l DDEExecute Fail ed
DDEREAD(Ser ver, DDE: manual , ' Get Error Numi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEErrorMsg)
MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))
ELSIF err# = 605 ! Tineout Error
MESSACE(' DDE ti neout')

ELSE
VESSAGE(er r #)

END

END

58 Advanced Programming Resources

Execute a Project or Application

DDEEXECUTE(Server, [ExecuteProject(ProjectName)]’)

DDEEXECUTE Send a command string to a DDE server.

Server A LONG containing the DDE client channel number.

ExecuteProject The service of compiling and linking a Project (.PRJ) or
Application (LAPP).

ProjectName The Clarion Project or Application to execute.

This service allows you to compile and link a Project or Application. A connection
must be made to the server before this (or any other) command can be issued.
The service will operate on the specified application regardless of any .APP file
that is currently open in the Clarion development environment. The screen output
is displayed, but the window will close upon completion without any interaction.

Example:

Server LONG
DDEEr r or Msg CSTRI NG 300)
DDEEr r or Num USHORT

CCDE

SYSTEM PROP: DDETi meQut} = 12000 I Tine out after two minutes
DDEEXECUTE(Ser ver, ' [Execut eProj ect (c: \ C60\ APPS\ Myapp. app)]')
DO CheckDDEEr r or

CheckDDEEr r or ROUTI NE

DDEErrorMsg = "'
err# = ERRORCODE()
I Check for DDE error
I|F err# > 600 I ERRORCODE is DDE rel ated
I F err# = 603 'l DDEExecute Fail ed
DDEREAD(Ser ver, DDE: manual , ' Get Error Numi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEErrorMsg)
MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))
ELSIF err# = 605 ! Tineout Error
MESSACE(' DDE ti neout')
ELSE
VESSAGE(er r #)
END
END

Using Clarion as a DDE Server

59

Running a Utility Template

DDEEXECUTE(Server, [GenerateUtilityTemplate(UtiITemplateName,AppName,ScreenOutput)]’)

DDEEXECUTE

Server

GenerateUtilityTemplate

UtilTemplateName

AppName

ScreenOutput

Send a command string to a DDE server.

A LONG containing the DDE client channel
number.

The service of Generating a Utility Template on
the specified Application.

The Utility template to generate.

The Clarion Application to which the Utility
Template is generated.

If one (1) or TRUE, screen output is displayed, if
zero (0) or FALSE, screen display is
suppressed. If omitted, screen output is
suppressed.

This service allows you to run a Utility template on an Application. A connection
must be made to the server before this (or any other) command can be issued.
The service will operate on the specified application regardless of any .APP file
that is currently open in the Clarion development environment.

60 Advanced Programming Resources

Example:

Server LONG
DDEEr r or Msg CSTRI NG 300)
DDEEr r or Num USHORT

CODE

SYSTEM PROP: DDETi neCut} = 12000 I Time out after two mnutes

DDEEXECUTE(Ser ver , |
"[GenerateUtilityTenplate(M/Util, c:\C60\ APPS\ Myapp. APP, 0)] ")
DO CheckDDEEr r or

CheckDDEEr r or ROUTI NE

DDEErrorMsg = "'

err# = ERRORCODE()

I Check for DDE error

IF err# > 600 ! ERRORCODE i s DDE rel ated

|F err# = 603 'l DDEExecute Fail ed
DDEREAD(Ser ver, DDE: manual, ' Get Error Numi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEErrorMsg)

MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))

ELSIF err# = 605 ! Tinmeout Error
MESSACE("' DDE ti neout')

ELSE
VESSAGE(er r #)

END

END

Using Clarion as a DDE Server 61

Registering a Template Class

DDEEXECUTE(Server, [RegisterTemplateChain(TemplateName,ScreenOutput)]’)

DDEEXECUTE Send a command string to a DDE server.

Server A LONG containing the DDE client channel
number.

RegisterTemplateChain The service of registering a specified template
set.

TemplateName The name of the template set to register.

ScreenOutput If one (1) or TRUE, screen output is displayed, if

zero (0) or FALSE, screen display is
suppressed. If omitted, screen output is
suppressed.

This feature is primarily intended for add-on products for Clarion. By allowing a
template set to be registered by a client application, template developers can add
this functionality to the installation procedure. This eliminates the need for end
users to register add-on template sets.

Example:

Server LONG
DDEEr r or Msg CSTRI NG 300)
DDEEr r or Num USHORT

CODE

SYSTEM PROP: DDETi neCQut} = 12000 I Tinme out after two mnutes
DDEEXECUTE(Ser ver, ' [Regi st er Tenpl at eChai n(MYTPL. TPL, 0)]")
DO CheckDDEEr r or

CheckDDEEr r or RQOUTI NE

DDEErrorMsg = "'

err# = ERRORCODE()

I Check for DDE error

I|F err# > 600 I ERRORCODE is DDE rel ated

| F err# = 603 'l DDEExecute Failed
DDEREAD(Ser ver, DDE: manual , ' Get Error Numi, DDEError Num
DDEREAD(Ser ver, DDE: manual, ' GetErrorMsg', DDEErrorMsg)
MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))
ELSIF err# = 605 ! Tineout Error
MESSACE(' DDE ti neout')

ELSE
VESSAGE(er r #)

END

END

62 Advanced Programming Resources

Unregistering a Template Class

DDEEXECUTE(Server, [UnRegisterTemplateChain(TemplateName,ScreenOutput)]’)

DDEEXECUTE Send a command string to a DDE server.

Server A LONG containing the DDE client channel
number.

UnRegisterTemplateChain The service of unregistering a specified template
set.

TemplateName The name of the template set to unregister.

ScreenOutput If one (1) or TRUE, screen output is displayed, if

zero (0) or FALSE, screen display is
suppressed. If omitted, screen output is
suppressed.

This feature is primarily intended for add-on products for Clarion. By allowing a
template set to be unregistered by a client application, template developers can
add this functionality to the installation procedure.

Example:

Server LONG
DDEEr r or Msg CSTRI NG(300)
DDEEr r or Num USHORT

CODE

SYSTEM PROP: DDETi neCQut} = 12000 I Tine out after two mnutes
DDEEXECUTE(Ser ver, ' [UnRegi st er Tenpl at eChai n(MYTPL. TPL, 0)] ')
DO CheckDDEEr r or

CheckDDEEr r or RQOUTI NE

DDEErrorMsg = "'

err# = ERRORCODE()

I Check for DDE error

I|F err# > 600 I ERRORCODE is DDE rel ated

| F err# = 603 'l DDEExecute Failed
DDEREAD(Ser ver, DDE: manual , ' Get Error Numi, DDEError Num
DDEREAD(Ser ver, DDE: manual , ' GetErrorMsg', DDEError Msg)
MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))
ELSIF err# = 605 ! Tinmeout Error
MESSACE(' DDE ti nmeout')

ELSE
VESSAGE(er r #)

END

END

Using Clarion as a DDE Server

63

Getting DDE Error Messages

DDEREAD(Server,DDE:Manual,’GetErrorMsg’,ErrorMessageText)
DDEREAD(Server,DDE:Manual,’GetErrorNum’,DDEErrorNum)

DDEREAD
Server
DDE:Manual

‘GetErrorMsg’

‘GetErrorNum’

ErrorMessageText

DDEErrorNum

Get data from the DDE server.
A LONG containing the DDE client channel number.

An EQUATE defining the type of data link as manual
(defined in EQUATES.CLW).

Request for the error message data item from the
server. This must be provided exactly as shown.

Request for the error number data item from the server.
This must be provided exactly as shown.

A STRING(255) variable to which the error message text
is assigned.

A USHORT variable to which the error number is
assigned.

This feature is provided to allow error checking in your DDE client application.
You can check the Clarion ERRORCODE to determine if the error posted is
DDE-related, then query the DDE server and evaluate the DDE error returned.

64 Advanced Programming Resources

Example:

Server LONG
DDEEr r or Msg CSTRI NG 300)
DDEEr r or Num USHORT

CODE
DDEEXECUTE(Ser ver, ' [Gener at e APP(c: \ C60\ APPS\ Myapp. app, 0)] ')
DO CheckDDEEr r or

CheckDDEEr r or RQOUTI NE

DDEErrorMsg = "'

err# = ERRORCODE()

I Check for DDE error

IF err# > 600 I ERRORCODE i s DDE rel ated

| F err# = 603 I'l DDEExecute Failed
DDEREAD(Ser ver, DDE: manual, ' Get ErrorNumi, DDEError Num
DDEREAD(Ser ver, DDE: manual , ' GetErrorMsg', DDEErrorMsg)

MESSAGE(' Error ' & DDEErrorNum & ' : ' & CLI P(DDEError Msg))

ELSIF err# = 605 ! Tinmeout Error
MESSACE(' DDE ti nmeout')

ELSE
VESSAGE(er r #)

END

END

Using Clarion as a DDE Server

65

Clarion DDE Errors
601 I nvalid DDE Channe
602 DDE Channel Not Open
603 DDEEXECUTE Fai | ed
604 DDEPOKE Fai |l ed

605 Tine Qut

DDE Service Errors and associated messages

"Screen output nmust be either 'TRUE' or 'FALSE "
"Cannot open specified dictionary"
"Cannot create specified text file"
"Cannot open specified text file"

"Cannot create specified dictionary"
"Cannot open specified application”
"Cannot create specified application”
"Cannot open specified tenplate file"
"Cannot open specified project file"

10 "Wong nunber of paraneters”

11 "Requested DDE service is not supported”

OCoOoO~NOUOPWNE

The following errors return a dynani c nmessage generated by the requested
service:

12 Export dictionary failed

13 Inmport dictionary failed

14 Export application failed

15 Inmport application failed

16 Register tenplated chained failed
17 Generate utility tenplate failed
18 Generate application failed

19 Error in Make

66

Advanced Programming Resources

TXD File Format 67

.TXD File Format

.TXD Files: Clarion Dictionaries in ASCIl Format

.TXD files are simply ASCII text versions of Clarion .DCT files. .DCT files are where the Clarion
environment stores all the reusable information about a database. A .TXD file contains all the
information stored in an .DCT file (except for prior versions), but in a text format that is readable
(and writable) by most text editors.

You can easily create a .TXD file for any .DCT file by loading the dictionary into the Clarion
development environment, then choosing File > Export Text from the menu.

Why would you need a .TXD file? For at least three reasons:

Backup Because a .TXD file can be imported just as easily as it is exported, it
may serve as a backup of the current version of your .DCT file. Previous
versions are not available in the .TXD.

Mass Changes Because a .TXD file may be manipulated in your favorite text editor, you
can use the power of the text editor to make mass changes to your
dictionary, or for that matter, any changes that would be easier with a
text editor.

First Aid Occasionally, a .DCT file may exhibit some strange behavior in the
development environment. Exporting to a .TXD file, then importing from
that same file can, highlight problems which will enable you to correct
any problems in the dictionary.

68 Advanced Programming Resources

.TXD File Organization

There are four major sections in the .TXD file: [DICTIONARY], [FILES], [ALIASES], and
[RELATIONS]. These sections correspond to the main Clarion language database structures, and
they contain subsections and keywords that fully describe these structures, for example, the
[FILES] section contains, amang other things, the field and key definitions for the file.

.TXD Skeleton

The following is an ordered list of .TXD sections, subsections, and keywords. This list is designed
to give you a feel for the overall structure and organization of the .TXD file.

Each section begins with its title enclosed in square brackets and ends with the beginning of
another section. Each section may contain subsections and keywords.

Subsections begin just like the major sections—with its title surrounded by square brackets.

Keywords appear as a keyword name in all capitals followed by the keyword value. The keyword
values appear in various formats described below on a case by case basis.

The spacing and indentations in the list are for readability and do not appear in the actual .TXD
files.

Following the skeleton is a detailed discussion of each .TXD section, subsection, and keyword.

[DI CTI ONARY]
VERSI ON
CREATED
MODI FI ED
PASSWORD
[DESCRI PTI ON]
[TOOLOPTI ON]

[FI LES]
[LONGDESC]
[QUI CKCODE]
[USERCPTI ON| |File Definition G oup—+epeatabl e
[TOOLOPTI ON|
File Definition
I'l> Keyword List

[LONGDESC]
[QUI CKCODE]
[USERCPTI ON| | Key Definition Goup—eptional,repeatable
[TOOLOPTI O\

Key Definition
I'l> Keyword List

[LONGDESC]

[QUI CKCODE]
[USEROPTI ON|
[SCREENCONTROLS] Menmo Definition Group—eptional, repeatable

TXD File Format 69

[REPORTCONTROLS]
Meno Definition
I'l> Keyword List

[LONGDESC]
[QUI CKCODE]

[USERCPTI ON]
[TOOLOPTI O\
[SCREENCONTROLS] Bl ob Definition Group—eptional, repeatable
[REPORTCONTROLS]
Bl ob Definition
I'l> Keyword List

Record Definition
[LONGDESC]
[QUI CKCODE]
[USEROPTI ON]
[TOOLOPTI O\
[SCREENCONTROLS] Fi el d Definition G oup—eptional,repeatable
[REPORTCONTROLS]
Field Definition
I'l> Keyword List

END

END

[ALI ASES] Opti onal
[LONGDESC]
[QUI CKCODE]
[USERCPTI ON| L Alias Definition G oup—repeatable
[TOOLOPTI ON]
Alias Definition
I'l> Keyword List

[RELATI ONS] Opti onal
[LONGDESC]
[USERCPTI ON| | Relation Definition Goup—+epeatable
[TOOLOPTI ON|

Rel ation Definition

70 Advanced Programming Resources

.TXD File Sections

[DICTIONARY]

The dictionary section is required, although all of its individual keywords and subsections are
optional. The dictionary section contains the following keywords and subsections:

[DI CTI ONARY]
VERSI ON
CREATED
MODI FI ED
PASSWORD
[DESCRI PTI ON]
[TOOLOPTI ON]

VERSION Lists the version number of the dictionary (optional). Version is ignored on import
of .TXD. For example:

VERSION ‘1. O’

CREATED Lists the date and time the dictionary was originally created (optional). For
example:
CREATED ' 19 AUG 95" ' 11:02: 33AM

MODIFIED Lists the date and time the dictionary was last saved (optional). For example:
MODI FI ED * 7 NOV 95 *‘ 9:44:18AM

PASSWORD Lists the password needed to access the dictionary (optional). Use the Password
button in the Dictionary Properties dialog to establish the password for your
dictionary.

The password is not case sensitive. The password is encrypted in the .DCT file,
but is not encrypted when exported to the .TXD file. For example:

PASSWORD cabl ecar

[DESCRIPTION]
Lists up to 1000 characters of descriptive text on multiple lines (optional). Each
line of text begins with an exclamation point (!) and contains up to 75
characters. The text comes from the Comments tab in the Dictionary Properties
dialog.

TXD File Format

71

A [DESCRIPTION] will be split into lines of 75 characters each in the .TXD. If the
text is separated by a carriage return (<CR>) then it will write out an extra empty
line. This is true for any description ((DESCRIPTION] and [LONGDESC]) within

the .TXD and for variables in the .TXA. For example:
Original text in the dictionary:

This is a description : <CR>

and it continues on the next line whereby the text from now on is written without

carriage returns.

Text in the .TXD:

IThis is a description :

land it continues on the next |ine whereby the text fromnowon is !witten

wi t hout carriage returns.

[TOOLOPTION] See Common Subsections below (optional).

Example—[DICTIONARY]

[DI CTI ONARY]

VERSION ‘1.0’

CREATED ' 19 AUG 95' ' 11:02: 33AM
MODIFIED * 7 NOV 95 * 9:44:18AM
PASSWORD cabl ecar

[DESCRI PTI ON|

IUp to 1000 characters of text describing this dictionary.
IEach line of up to 75 characters begins with an exclanmati on point.

72 Advanced Programming Resources

[FILES]

The files section appears only once in the .TXD file. All files in the dictionary are defined in this
section. Fields and keys are also defined in this section as an integral part of the definition of
each file.

File Definition Group

The file definition group is a series of .TXD subsections and keywords that fully describes a single
FILE within the data dictionary. The group is repeated for every FILE in the dictionary, so that all
are fully documented. The file definition group contains the following keywords and subsections:

[FI LES]
[TRI GGERDATA]
[TRI GGERS]
[TRI GGER]

[SOURCE]
[LONGDESC]

[QUI CKCODE]
[USEROPTI ON]
[TOOLOPTI ON|
File Definition G oup—+epeatable
File Definition
I'l> Keyword List

[TRIGGERS] Begins the triggers group for the associated file.
[TRIGGER]
Identifies the location of the trigger source. Valid values are:

BEFORE_INSERT
BEFORE_UPDATE
BEFORE_DELETE
AFTER_INSERT
AFTER_UPDATE
AFTER_DELETE

[SOURCE]

Identifies the source code that will be inserted in the {TRIGGER} location
directly preceding it.

[LONGDESC] See Common Subsections (optional).

TXD File Format

73

[QUICKCODE]

[USEROPTION]
[TOOLOPTION]

File Definition

Information used by the Clarion Wizards to configure your Wizard
generated applications and procedures (optional). Use the Options tab of
the File Properties dialog to input the [QUICKCODE] information.

The only Wizard/QUICKCODE option available for files is
NOPOPULATE. NOPOPULATE means the Wizards will not generate a
form, a browse, or a report procedure for this file.

See Common Subsections (optional).
See Common Subsections (optional).

Begins with the first line of the Clarion language FILE declaration
statements for this file (required). Optionally includes a comment up to
40 characters long. The file definition also includes the keyword list, plus
the key, memo, blob, record, and field definition groups. The entire
structure ends with END. For example:

Custoners FI LE, DRI VER(‘ TOPSPEED), PRE(CUS) , CREATE
Key Definition G oup
Menmo Definition G oup
Bl ob Definition G oup
Record Definition G oup
Field Definition G oup

Keyword List

IDENT()

1> IDENT(1)
USAGE()

END

A list of internal keywords that describe options not specified on the FILE
statement (optional). The list begins with !>,

The internal reference number the development environment uses to
identify the FILE (optional).

Contains either FILE, GLOBAL, or POOL to identify whether the FILE is
global data or a field pool (optional).

I'1> | DENT(1), USAGE(POOL)

LAST

Specifies USAGE(GLOBAL) data which should generate last (optional).

11> | DENT(1), USAGE(GLOBAL), LAST

74 Advanced Programming Resources

Example—File Definition Group

[FI LES]

[TRI GGERS]
[TRI GGER|
I 1 > BEFORE_UPDATE

[SOURCE]

I 1 Add date and tine changed to Pr_info

I PBl:Pr_info = CLIP(PBI:Pr_info) & <13,10>Date changed
" &FORVAT(TODAY() , @i1) & . <13, 10>’

[LONGDESC]

I'This is the main customer file. Contains names addresses and
I phone numbers. One record per custoner. Each custonmer has a uni que
lkey that is auto nunbered...

[QUI CKCODE]

I NOPOPULATE

[USEROPTI ON]

I Thi rdPartyTenpl at eSwi t ch(on)

I Thi rdPartyPreProcessLevel (rel ease)

Custonmers FILE, DRI VER(' TOPSPEED), PRE(CUS) , CREATE, THREAD

11> | DENT(1)

END

Key Definition Group

The key definition group is optional. It is a series of .TXD subsections and keywords that fully
describe a single KEY or INDEX for a file. The group is repeated for every KEY or INDEX to the
file, so that all are fully documented. The key definition group contains the following keywords and
subsections:

[LONGDESC]

[QUICKCODE]

[USEROPTION]

[TOOLOPTION]

Key Definition Group—optional, repeatable

Key Definition

11> Keyword List

[LONGDESC] See Common Subsections below (optional).

[QUICKCODE] Information used by the Clarion Wizards to configure your Wizard

generated applications and procedures (optional). Use the Options tab of
the Key Properties dialog to input the [QUICKCODE] information.

TXD File Format

75

NOPOPULATE

ORDER()

[QUICKCODE] information may be specified on multiple lines, each line
beginning with an exclamation point. However, multiple lines are
concatenated to one string by the development environment. Therefore
keywords should be separated by a comma, even when on different lines
in the .TXD.

The Wizard/QUICKCODE options available for keys are NOPOPULATE
and ORDER:

The Wizards do not generate reports or browses sorted on this key
(optional).

The order in which browses and reports sorted on this key appear within
Wizard generated menus and browse boxes (optional).

The order may be specified as Normal, First, or Last. Normal displays
items in the order in which they are found in the dictionary. First forces
the item to appear before all Normal and Last items. Conversely, Last
forces the item to appear after all First and Normal items. For example:

[QUI CKCODE]
I ORDER(Fi rst)

[USEROPTION]
[TOOLOPTION]
KEY Definition

Keyword List

IDENT()

AUTO

See Common Subsections (optional).
See Common Subsections (optional).

Lists the Clarion language KEY or INDEX declaration (required).
Optionally includes a comment up to 40 characters long. For example:

KeyCust KEY(CUS:CustNumber),NOCASE !Auto-number

A list of internal keywords that describe options not specified on the KEY
statement (optional). The list begins with !'>. The two valid keywords for
keys are IDENT and AUTO.

The internal reference number the development environment uses to
identify the KEY (optional).

The key is auto-numbered (optional). This means the application
generator will supply code to automatically increment the value of the
key. Use the Attributes tab of the Key Properties dialog to set the auto-
number keyword. For example:

Il> IDENT(1),AUTO

Example—Key Definition Group

KeyCust Nurmber KEY(CUS: Cust Nunber), NOCASE, OPT ! Aut o- nunbered Cust Key

11> | DENT(1), AUTO

[QUI CKCODE]

76

Advanced Programming Resources

I ORDER(Fi rst)

Memo Definition Group

The memo definition group is optional. It is a series of .TXD subsections and keywords that fully
describes a single MEMO field in a file. The group is repeated for each MEMO field in the file, so
that all are fully documented. The memo definition group contains the following keywords and

subsections:

[LONGDESC]

[QUI CKCODE]

[USEROPTI QN

[TOOLOPTI O\

[SCREENCONTROLS]
[REPORTCONTROLS]
MEMO Definition
I'l> Keyword List

[LONGDESC]
[QUICKCODE]

NOPOPULATE

ORDER()

VERTICALSPACE

TAB()

Mermo Definition G oup—eptional, repeatable

See Common Subsections (optional).

Information used by the Clarion Wizards to configure your Wizard
generated applications and procedures (optional). Use the Options tab of
the Field Properties dialog to input the [QUICKCODE] information.

[QUICKCODE] information may be specified on multiple lines, each line
beginning with an exclamation point. However, multiple lines are
concatenated to one string by the development environment. Therefore
keywords should be separated by a comma, even when on different lines
in the .TXD.

Wizard/QUICKCODE options available for MEMOs are NOPOPULATE,
ORDER(), VERTICALSPACE, and TAB():

This field is not included on Wizard generated reports, forms, and
browses (optional).

Not meaningful for MEMOs. MEMOs always appear alone on a separate
tab, in the order in which they appear in the dictionary.

Not meaningful for MEMOs. MEMOs always appear alone on a separate
tab.

Not meaningful for MEMOs. MEMOs always appear alone on a separate
tab.

[QUI CKCODE]
I NOPOPULATE

[USEROPTION]
[TOOLOPTION]

See Common Subsections (optional).

See Common Subsections (optional).

TXD File Format 7

[SCREENCONTROLS] MEMOs always appear in TEXT controls. See Common Subsections
below (optional).

[REPORTCONTROLS] MEMOs always appear in TEXT controls. See Common Subsections
below (optional).

MEMO Definition The Clarion language MEMO declaration (required). Optionally includes
a comment up to 40 characters long. For example:

Cust oner Meno MEMOJ(500) !500 character text field

Keyword List—MEMOSs

A list of internal keywords that describe options not specified by the Clarion language MEMO
statement. The list begins with !> and is optional. Within the .TXD, the keyword list appears on a
single line, with keywords separated by commas.

The keywords in this list are set using the Field Properties dialog. Many of the keywords
correspond directly to Clarion language keywords. See the Language Reference for more
information on these keywords.

78 Advanced Programming Resources

Following is a complete list of keywords available for memos:

| DENT()
VALI D()

I NI TIAL()
PROVPT()
HEADER()
HELP()
VESSAGE()
TOOLTI P()
PI CTURE()
CASE()
TYPEMODE()
PASSWORD
READONLY

Notice that the keywords in the list correspond closely to the tabs and prompts in the Field
Properties dialog. This is because the Field Properties dialog is where these values are set (see
the User’s Guide, the Language Reference, and the on-line help for more information on these
fields).

IDENT() The internal ID number that the development environment uses to
reference this item (optional). For example:
| DENT(3)

VALID() Specifies the validity checking code that is generated for this field

(optional). The VALID keyword has a significant parameter list which is
diagrammed as follows, where the vertical list represents alternative
parameters and the curly braces represent optional parameters:

VALI D{ NONZERO
I NRANGE({ mi ni nunt {, maxi mun})

BOOLEAN
I NFI LE(fil enane, parentfile:childfile)
INLIST(“itenl|itenR|...|item’")

For example, a required field has:

VALI D{ NONZERO)

A non-negative numeric field has:

VALI D(| NRANGE(0))

A binary logical field (yes/no, true/false) has:
VALI D{ BOOLEAN)

A field validated against another file has:

VALI D(| NFI LE(St at es, Custoners: St ates))
A field validated against a fixed, finite list has:
VALI D(| NLI ST(‘ Left| Center|Right’))

TXD File Format

79

INITIAL()

PROMPT()

HEADER()

HELP()

MESSAGE()

TOOLTIP()

PICTURE()

CASE()

The Validity Checks tab in the Field Properties dialog specifies these
values. See Using the Dictionary Editor in the User’s Guide for more
information on validity checks.

The initial value of the field (optional). The Attributes tab in the Field
Properties dialog sets this value. For example:

| NI TI AL(0)

The text string used as the default prompt for this field on a screen

(optional). The General tab in the Field Properties dialog sets this
value. For example:

PROVPT(‘* &Pr oduct Nunber’)
The text string used as the default column title for reports and list boxes

(optional). This value is set on the General tab of the Field Properties
dialog. For example:

HEADER(* PRODUCT NUMBER')

The help topic for this field. This value is set on the Help tab of the Field
Properties dialog. For example:

HELP(* PRODNUMBER)

Up to 75 characters of default message text for this field (optional). This

value is set on the Help tab of the Field Properties dialog. For example:
MESSACGE(‘ Enter the 6 digit product nunber’)

Up to 75 characters of default tool tip (balloon help) text for this field

(optional). This value is set on the Help tab of the Field Properties
dialog. For example:

TOOLTIP(‘ Enter the 6 digit product nunber’)

The default screen picture token for this field (optional). See the
Language Reference for a complete list of picture tokens and their uses.
This value is set on the General tab of the Field Properties dialog. For
example:

Pl CTURE(* @6')
The default case translation for this field (optional). The choices are
UPPER and CAPS. UPPER converts all text to uppercase. CAPS

converts all text to mixed case word capitalization. This value is set on
the Attributes tab of the Field Properties dialog. For example:

CASE(‘ UPPER)

80

Advanced Programming Resources

TYPEMODE()

PASSWORD

READONLY

For example:

The default typing mode for this field (optional). The choices are INS and
OVR. INS preserves existing text by inserting new characters. OVR
discards existing text by overwriting it with new text. This value is set on
the Attributes tab of the Field Properties dialog. For example:

TYPEMODE(‘ I NS’)

Text typed in this field is displayed as asterisks (optional). This value is
set on the Attributes tab of the Field Properties dialog. For example:
PASSVORD

The field is read only and therefore will not accept input (optional). This

value is set on the Attributes tab of the Field Properties dialog. For
example:

READONLY

11> | DENT(47), PROVPT(* Cust omer Meno: '), Pl CTURE(@255)

Example—Memo Definition Group

[LONGDESC]

I'Long description of Meno field

[QUI CKOODE]

I TAB(‘ TabNare’), ORDER(Last), VERTI CALSPACE

[SCREENCONTROLS]

I PROVPT(' Custoner Meno:’), USE(?CUS: Cust oner Meno: Pronpt)
I TEXT, USE(CUS: Cust oner Menp)

[REPORTCONTROLS]

I TEXT, USE(CUS: Cust oner Menp)

Cust omrer Meno

MEMO(500)

11> | DENT(47), PROVPT(* Cust oner Meno:’), Pl CTURE(@255)

TXD File Format 81

Blob Definition Group

The blob definition group is optional. It is a series of .TXD subsections and keywords that fully
describes a single BLOB field in a file. The group is repeated for each BLOB field in the file, so
that all are fully documented. The blob definition group contains the following keywords and
subsections:

[LONGDESC]

[QUI CKCODE]

[USEROPTI ON]

[TOOLOPTI ON]

[SCREENCONTROLS] Bl ob Definition Goup—eptional, repeatable
[REPORTCONTROLS]

BLOB Definition

I'l> Keyword List

[LONGDESC] See Common Subsections (optional).
[QUICKCODE] Not meaningful for BLOBs.

[USEROPTION] See Common Subsections (optional).
[TOOLOPTION] See Common Subsections (optional).

[SCREENCONTROLS] See Common Subsections (optional).
[REPORTCONTROLS] See Common Subsections (optional).

BLOB Definition Lists the Clarion language BLOB declaration (required). Optionally
includes a comment up to 40 characters long. For example:

Cust oner Phot o BLOB, Bl NARY ! Cust oner | mage/ Logo

Keyword List A list of internal keywords that describe options not specified on the
BLOB statement (optional). The list begins with !>,

The only valid keyword for a BLOBs is IDENT. IDENT supplies the
internal reference number by which the development environment
identifies the FILE. For example:

11> | DENT(48)

82 Advanced Programming Resources

Example—Blob Definition Group

[LONGDESC]

IThis digitized i mage may contain custoner | ogo or photograph
[QUI CKCODE]

I TAB(‘ Personal '), ORDER(First)

[SCREENCONTROLS]

I | MAGE, USE(?CUS: Cust oner Phot 0)

[REPORTCONTROLS]

I | MAGE, USE(?CUS: Cust oner Phot 0)

Cust oner Phot o BLOB, Bl NARY ! Cust oner | rmage/ Logo
1> | DENT(48)

Record Definition

The record definition is required. It begins with the Clarion language RECORD declaration
statements for this file. The RECORD definition then includes all the field definition groups for the
file. The entire structure ends with END. For example:

Cust orer Record RECORD

field definition groups

END

Field Definition Group

The field definition group is optional. It is a series of .TXD subsections and keywords that fully
describes a single field in a file. The group is repeated for each field in the file, so that all are fully
documented. The field definition group contains the following keywords and subsections:

[LONGDESC]

[QUI CKCODE]

[USEROPTI ON]

[TOOLOPTI O\

[SCREENCONTROLS] Field Definition Group—eptional, repeatable
[REPORTCONTROLS]

Field Definition

I'l> Keyword List

[LONGDESC] See Common Subsections (optional).

[QUICKCODE] Information used by the Clarion Wizards to configure your Wizard
generated applications and procedures (optional). Use the Options tab of
the Field Properties dialog to input the [QUICKCODE] information.

TXD File Format

83

NOPOPULATE

ORDER()

VERTICALSPACE

TAB()

[USEROPTION]
[TOOLOPTION]
[SCREENCONTROLS]
[REPORTCONTROLS]
Field Definition

[QUICKCODE] information may be specified on multiple lines, each line
beginning with an exclamation point. However, multiple lines are
concatenated to one string by the development environment. Therefore
keywords should be separated by a comma, even when on different lines
in the .TXD.

The Wizard/QUICKCODE options available for fields are NOPOPULATE,
ORDER, VERTICALSPACE, and TAB:

The Wizards do not include this field on browses, forms, and reports
(optional).

The order in which this field is populated on Wizard generated browses,
forms, and reports (optional).

The order may be specified as Normal, First, or Last. Normal displays
items in the order in which they are found in the dictionary. First forces
the item to appear before all Normal and Last items. Conversely, Last
forces the item to appear after all First and Normal items.

Extra space is inserted between this field and the preceding field on
Wizard generated forms.

The name of the TAB on which this field appears on Wizard generated
forms.

For example:

[QUI CKCODE]
I ORDER(Last), VERTI CALSPACE, TAB(' Personal ')

See Common Subsections (optional).
See Common Subsections (optional).
See Common Subsections (optional).
See Common Subsections (optional).

The Clarion language field declaration statement (required). Optionally
includes a comment up to 40 long. For example:

Cust Nunber DECI MAL(7,2) !unique key

84 Advanced Programming Resources

Keyword List—Fields

A list of internal keywords that describe options not specified by the Clarion language field
declaration statement. The list begins with !'> and is optional. Within the .TXD, the keyword list
appears on a single line, with keywords separated by commas.

The keywords in this list are set using the Field Properties dialog. Many of the keywords
correspond directly to Clarion language keywords. See the Language Reference for more
information on these keywords.

Following is a complete list of keywords available for data dictionary fields.:

| DENT()
VALI D()
VALUES()

I NITIAL()
PROVPT()
HEADER()
HELP()
VESSAGE()
TOOLTI P()
Pl CTURE()
CASE()
TYPEMODE()
PASSWORD
READONLY

Notice that the keywords in the list correspond closely to the tabs and prompts in the Field
Properties dialog. This is because the Field Properties dialog is where these values are set
(see the User’s Guide, the Language Reference, and the on-line help for more information these
fields).

IDENT() The internal ID number that the development environment uses
to reference this item (optional). For example:
IDENT(3)

VALID() Specifies the validity checking code that is generated for this

field (optional). The VALID keyword has a significant parameter
list which is diagrammed as follows, where the vertical list
represents alternative parameters and the curly braces represent
optional parameters:

VALI D{ NONZERO)
I NRANGE({ mi ni munt {, maxi munj)
BOOLEAN
I NFI LE(fil enane, parentfile:childfile)
INLIST(“itenl|itenR|...|item’")

NOCHECKS(‘“itenml|iten?|...|item’)

TXD File Format

85

VALUES()

INITIAL()

PROMPT()

HEADER()

HELP()

MESSAGE()

For example, a required field has:
VALI D{ NONZERO)

A non-negative numeric field has:
VALI D(| NRANGE(0))

A binary logical field (yes/no, true/false) has:
VALI D{ BOOLEAN)

A field validated against another file has:
VALI D(| NFI LE(St at es, Cust oner s: St at es))

A field validated against a fixed, finite list has:
VALI D(| NLI ST(‘ Left| Center|Right'))

The Validity Checks tab in the Field Properties dialog specifies
these values. See Using the Dictionary Editor in the User’s
Guide for more information on validity checks.

Specifies the displayed list of selections for validity checking
code that is generated for this field (optional). This is related to
the VALID keyword and is active for NOCHECKS, INLIST, and
BOOLEAN. The Validity Checks tab in the Field Properties
dialog specifies these values. See Using the Dictionary Editor in
the User’s Guide for more information on validity checks.

The initial value of the field (optional). The Attributes tab in the
Field Properties dialog sets this value. For example:

| NI TI AL(0)

The text string used as the default prompt for this field on a

screen (optional). The General tab in the Field Properties
dialog sets this value. For example:

PROVPT(‘* &Pr oduct Number’)

The text string used as the default column title for reports and list
boxes (optional). This value is set on the General tab of the
Field Properties dialog. For example:

HEADER(* PRODUCT NUMBER')

The help topic for this field. This value is set on the Help tab of
the Field Properties dialog. For example:

HELP(* PRODNUMBER')

Up to 75 characters of default message text for this field
(optional). This value is set on the Help tab of the Field
Properties dialog. For example:

MESSACGE(‘ Enter the 6 digit product nunber’)

86

Advanced Programming Resources

TOOLTIP()

PICTURE()

CASE()

TYPEMODE()

PASSWORD

READONLY

For example:

Up to 75 characters of default tool tip (balloon help) text for this
field (optional). This value is set on the Help tab of the Field
Properties dialog. For example:

TOOLTIP(‘ Enter the 6 digit product nunber’)

The default screen picture token for this field (optional). See the
Language Reference for a complete list of picture tokens and
their uses. This value is set on the General tab of the Field
Properties dialog. For example:

PI CTURE(* @6’)

The default case translation for this field (optional). The choices
are UPPER and CAPS. UPPER converts all text to uppercase.
CAPS converts all text to mixed case word capitalization. This
value is set on the Attributes tab of the Field Properties dialog.
For example:

CASE(* UPPER)

The default typing mode for this field (optional). The choices are
INS and OVR. INS preserves existing text by inserting new
characters. OVR discards existing text by overwriting it with new
text. This value is set on the Attributes tab of the Field
Properties dialog. For example:

TYPEMODE(‘ | NS')
Text typed in this field is displayed as asterisks (optional). This

value is set on the Attributes tab of the Field Properties dialog.
For example:

PASSWORD
The field is read only and therefore will not accept input

(optional). This value is set on the Attributes tab of the Field
Properties dialog. For example:

READONLY

11> | DENT(5), PROVPT(* &Cust Number:’), Pl CTURE(@4)

Example—Field Definition Group

[QUI CKCODE]

I ORDER(Fi rst)

[SCREENCONTROLS]

I PROMPT(' &Cust Nunber:’), USE(?CUS: Cust Nunber : Pronpt)
| ENTRY(@4) , USE(CUS: Cust Nunber)

TXD File Format

87

[REPORTCONTROLS]

I STRI NG @4) , USE(CUS: Cust Nurber)

Cust Nunber

DECI MAL(7, 2)

I'1> | DENT(5), PROVPT(‘ & ust Number:’), HEADER(‘ Cust Number’), Pl CTURE(@4)

[ALIASES]

The aliases section appears once in the .TXD file. This section is optional, and all aliases in the

dictionary are defined here.

Alias Definition Group

The alias definition group is a series of .TXD subsections and keywords that fully describes a
single alias within the data dictionary. The group is repeated for every alias in the dictionary. The
alias definition group contains the following keywords and subsections:

[ALl ASES]

[LONGDESC]

[QUI CKCODE]
[USEROPTI ON]
[TOOLOPTI ON]

Alias Definition Group—repeatable
Alias Definition
I'l> Keyword List

[LONGDESC]
[QUICKCODE]

[USEROPTION]
[TOOLOPTION]

Alias Definition

Keyword List

See Common Subsections (optional).

Information used by the Clarion Wizards to configure your
Wizard generated applications and procedures (optional). Use
the Options tab of the Alias Properties dialog to input the
[QUICKCODE] information.

The only Wizard/QUICKCODE option available for aliases is
NOPOPULATE. NOPOPULATE means the Wizards will not
generate a form, a browse, or a report procedure for this alias.

See Common Subsections (optional).
See Common Subsections (optional).

Specifies the file the alias is redefining, and the new prefix for the
alias (required). Optionally includes a comment up to 40
characters long. For example:

Sal es ALI AS(Orders), PRE(SAL) !'Alias for O der

A list of internal keywords that describe options not specified in
the alias definition (optional). The list begins with !>,

88 Advanced Programming Resources

The only valid keyword for an alias is IDENT. IDENT supplies the
internal reference number by which the development
environment identifies the alias. For example:

11> | DENT(6)

Example—Alias Definition Group

[ALl ASES]

[QUI CKCODE]
I NOPOPULATE
Sal es ALl AS(Orders), PRE(SAL) !'Alias for Order

11> | DENT(6)

[RELATIONS]

The relations section appears once in the .TXD file. This section is optional, and all file
relationships in the dictionary are defined here. Referential Integrity constraints are also defined
here as an integral part of each relationship.

Relation Definition Group

The relation definition group is a series of .TXD subsections, keywords, and a special relation
definition that fully describes a relationship between two files in the data dictionary. The group is
repeated for each relationship in the dictionary. The relation definition group contains the
following keywords and subsections:

[RELATI ONS]
[LONGDESC]
[USERCPTI ON|
[TOOLOPTI ON|
Rel ati on Definition Goup—repeatable Rel ation Definition

[LONGDESC] See Common Subsections (optional).
[USEROPTION] See Common Subsections (optional).
[TOOLOPTION] See Common Subsections (optional).
Relation Definition A relationship defined in the Edit Relationship Properties

dialog (required). The .TXD relation definition is diagrammed as
follows, where the vertical lists represent alternative parameters
and the curly braces enclose optional parameters:

RELATI ON, ONE: MANY, UPDATE(RESTRI CT), DELETE(RESTRICT)
MANY: ONE CASCADE CASCADE
CLEAR CLEAR
filename FILE({key})

TXD File Format 89

fil ename RELATED FILE({key})
{ FI LE_TO_RELATED_KEY

FIELD(filefieldnane,relatedfilefieldnane) repeat abl e
NOLI NK, NOLI NK
END}
{ RELATED_FI LE_TO _KEY
FIELD(relatedfilefieldnane,filefieldnane) repeat abl e
NOLI NK, NOLI NK
END}
END
RELATION The beginning of the relationship’s definition.

ONE:MANY | MANY:ONE
The type of relationship (required).

UPDATE The action taken to maintain database referential integrity when the
parent file’s linking key field values are changed (optional). The action is
either RESTRICT, CASCADE, or CLEAR.

RESTRICT The update is not allowed if there are related child records.

CASCADE The update is cascaded to the linking key fields of all related child
records.

CLEAR The update is cascaded in the form of blanks, zeros, or nulls to the

linking key fields of all related child records.
RESTRICT_SERVER

The back-end server will prevent the user from deleting or changing an
entry if the value is used in a foreign key.

CASCADE_SERVER

The back-end server will update or delete the foreign key record.
CLEAR_SERVER

The back-end server will set the foreign key to null or zero.

DELETE The action taken to maintain database referential integrity when the
parent file's record is deleted (optional). The action is either RESTRICT,
CASCADE, or CLEAR.

RESTRICT The delete is not allowed if there are related child records.
CASCADE The delete is allowed, and the related child records are deleted too.
CLEAR The delete is cascaded in the form of blanks, zeros, or nulls to the linking

key fields of all related child records.
RESTRICT_SERVER

90 Advanced Programming Resources

The back-end server will prevent the user from deleting or changing an
entry if the value is used in a foreign key.

CASCADE_SERVER

The back-end server will update or delete the foreign key record.
CLEAR_SERVER

The back-end server will set the foreign key to null or zero.
filename FILE({key})

The key in the first file in the relationship that contains the field(s)
common to both files (optional). This file is either the parent in a 1:MANY
relationship, or the child in a MANY:1 relationship. key is optional for a
“one-way” or “lookup” relationship.

filename RELATED_FILE({key})

The key in the second file in the relationship that contains the field(s)
common to both files (optional). This file is either the child in a 1:MANY
relationship, or the parent in a MANY:1 relationship. key is optional for a
“one-way” or “lookup” relationship.

TXD File Format a1

RELATI ON, ONE: MANY, UPDATE(RESTRICT), DELETE(RESTRICT)
MANY: ONE CASCADE CASCADE
CLEAR CLEAR

filename FILE({key})
fil ename RELATED FILE({key})
{ FI LE_TO_RELATED_KEY
FIELD(filefieldnane,relatedfilefieldnane) repeat abl e
NOLI NK, NOLI NK
END}
{ RELATED_FI LE_TO _KEY
FIELD(rel atedfilefieldnane,filefieldnane) repeat abl e
NOLI NK, NOLI NK
END}
END

FILE_TO_RELATED_KEY

Defines the links between the two files (optional—for a “one-way” or
“lookup” relationship). Linked fields are compared, and those records
with matching values are deemed related.

FIELD Identifies a pair of linked fields between the related files (required).
filefieldname | NOLINK

filefieldname is the label of the field in the first file that is linked
(compared) to a field in the related file. NOLINK indicates no
comparison is made to the field in the related file.

relatedfilefieldname | NOLINK

relatedfilefieldname is the label of the field in the related file that is linked
(compared) to a field in the first file. NOLINK indicates no comparison is
made to the field in the first file.

RELATED_FILE_TO_KEY

Defines the links between the two files (optional—for a “one-way” or
“lookup” relationship). Linked fields are compared, and those records
with matching values are deemed related.

92 Advanced Programming Resources

FIELD Identifies a pair of linked fields between the related files (required).
relatedfilefieldname | NOLINK

relatedfilefieldname is the label of the field in the related file that is linked
(compared) to a field in the first file. NOLINK indicates no comparison is
made to the field in the first file.

filefieldname | NOLINK

filefieldname is the label of the field in the first file that is linked
(compared) to a field in the related file. NOLINK indicates no
comparison is made to the field in the related file.

TXD File Format

Example—Relation Definition Group

[RELATI ONS]

RELATI ON, MANY: ONE, UPDATE(RESTRI CT) , DELETE(RESTRI CT)
OrderDetails FI LE(DTL: KeyPr oduct Nunber)
Product s RELATED_FI LE(PRO KeyPr oduct Nunber)
FI LE_TO_RELATED_KEY
FI ELD({ DTL: Product Nunber , PRO Pr oduct Nunber)
END
RELATED_FI LE_TO_KEY
FI ELD{ PRO: Pr oduct Nunber, DTL: Product Nunber)
END
END
RELATI ON, MANY: ONE
Cust oners FI LE()
St ates RELATED_FI LE(STA: Key St at eCode)
FI LE_TO_RELATED_KEY
FI ELD(CUS: St at e, STA: St at eCode)
END
END
RELATI ON, ONE: MANY, UPDATE(CASCADE) , DELETE(RESTRI CT)
Cust oner FI LE(CUS: KeyCust Nunber)
O ders RELATED_FI LE(ORD: KeyCust Dat)
FI LE_TO_RELATED_KEY
FI ELD(CUS: Cust Number , ORD: Cust Nurber)
FI ELD(NOLI NK, ORD: Dat €)
END
RELATED_FI LE_TO_KEY
FI ELD({ ORD: Cust Number , CUS: Cust Nurnber)
END
END

94 Advanced Programming Resources

Common Subsections

The following subsections appear in many instances within the .TXD file. Their syntax and
structure is consistent wherever they are found within the file.

[LONGDESC]

Lists up to 1000 characters of descriptive text on multiple lines (optional). Each line of text begins
with an exclamation point (!) and contains up to 75 characters. The text comes from the
Comments tab of the respective Properties dialog for the Dictionary, File, Alias, Relation, Field,
or Key. For example:

[LONGDESC]
I'Up to 1000 characters of text describing this item
IEach line of up to 75 characters begins with an excl amati on point.

[USEROPTION]

Lists up to 1000 characters of text that is available to templates (optional). Each line of text
begins with an exclamation point (!) and contains up to 75 characters.

The text is available to any templates that process the file, alias, field, key, etc. See the
EXTRACT procedure documented in the Template Language Reference for more information.

The text comes from the Options tab of the respective Properties dialog for the File, Alias,
Relation, Field, or Key. For example:

[USEROPTI ON|
I ThirdPartyTenpl at eAttri but e(on)
I Def aul t W ndowSi ze=Max

[TOOLOPTION]

Lists up to 1000 characters of text that is available to templates (optional). Each line of text
begins with an exclamation point (!) and contains up to 75 characters.

The text is available to any templates that process the file, alias, field, key, etc. See the
EXTRACT procedure documented in the Template Language Reference for more information.

The text comes from third-party add-ons and does not appear on any dialog in the Dictionary
Editor. For example:

[TOOLOPTI O\
I MyTool (* A obal option = A")
I Hi sTool (* True')

TXD File Format 95

[SCREENCONTROLS]

Marks the beginning of the subsection that describes the default window controls used to manage
a data dictionary field, MEMO, or BLOB (optional).

Following [SCREENCONTROLS], an exclamation point (!) plus a space marks the beginning of
a control declaration. The control declaration is the Clarion language statement that defines a
window control used to manage the data item. There may be several controls associated with the
data item, so there may be several control declarations, beginning immediately after
[SCREENCONTROLS] and continuing until the next subsection, usually [REPORTCONTROLS],
begins. For example:

[SCREENCONTROLS]
I PROVPT(' Current Tab: '), USE(?Current Tab: Pronpt)
I ENTRY(@80), USE(Curr ent Tab)

[REPORTCONTROLS]

Marks the beginning of the subsection that describes the default report controls used to manage
a data dictionary field, MEMO, or BLOB (optional).

Following [REPORTCONTROLS], an exclamation point (!) plus a space marks the beginning of
a control declaration. The control declaration is the Clarion language statement that defines a
report control used to manage the data item. There may be several controls associated with the
data item, so there may be several control declarations, beginning immediately after
[REPORTCONTROLS] and continuing until the field definition begins. For example:

[REPORTCONTROLS]
| STRI NG @80), USE(Cur r ent Tab)

96

Advanced Programming Resources

TXA File Format 97

.TXA File Format
.TXA Files: Clarion Applications in ASCIlI Format

.TXA files are simply ASCII text versions of Clarion .APP files. .APP files are where the Clarion
for Windows environment stores all the application specific information necessary to generate
and make an application. A .TXA file contains all the information stored in an .APP file (except for
project system information), but in a text format that is readable (and writable) by most text
editors.

You can easily create a .TXA file for any .APP file by loading the application into the Clarion for
Windows development environment, then choosing File > Export Text from the menu.

Why would you need a .TXA file? For at least three reasons:

Backup Because a .TXA file can be imported just as easily as it is exported, it
may serve as a backup of your .APP file.

Mass Changes Because a .TXA file may be manipulated in your favorite text editor, you
can use the power of the text editor to make mass changes to your
application, or for that matter, any changes that would be easier with a
text editor.

First Aid Occasionally, an .APP file may exhibit some strange behavior in the
development environment. Exporting to a .TXA file, then importing from
that same file can, in some cases, create a clean .APP file.

98 Advanced Programming Resources

.TXA File Organization

The organization and syntax of the .TXA file reflects the Application-Program-Module-Procedure
paradigm on which Clarion for Windows generated applications are based. The Class Clarion
templates define this paradigm.

There are five major sections in the .TXA file that roughly correspond to the files produced by the
Application Generator.

. [APPLICATION] section corresponds to the appname.APP file.

. [PROJECT] section contains the project system settings within the appname.APP file.
. [PROGRAM] section corresponds to the appname.CLW file.

. [MODULE] sections correspond to the appna00n.CLW files.

. [PROCEDURE] sections correspond to the procedures defined in the Application Tree

and stored in the appna00n.CLW files.

.TXA Skeleton

On the following page is an ordered list of .TXA sections, subsections, and keywords. This list is
designed to give you a feel for the overall structure and organization of the .TXA file.

Each section begins with its title enclosed in square brackets and ends with [END], or with the
beginning of another section. Each section may contain subsections and keywords.

Subsections begin just like the major sections—with a title surrounded by square brackets.

Keywords appear in all capitals followed by the keyword value. The keyword values appear in
various formats described below on a case by case basis.

The indentations in the list are provided here for readability and do not appear in the actual .TXA
file.

Following the skeleton is a detailed discussion of each .TXA section, subsection, and keyword.

TXA File Format

99

[APPLI CATI ON]
VERSI ON opti onal
HLP opti onal

DI CTI ONARY opti onal
PROCEDURE opti onal

[COWON]
DESCRI PTI ON opti onal
LONG opti onal
FROM
[DATA]
[FI LES] opti onal
[PROVPTS]
[EMBED] opti onal
[ADDI TION] optional
[PERSI ST]
[PRQJECT]
[PROGRAM
NAME opti onal
I NCLUDE opti onal

NOPOPULATE opti onal

repeat abl e

[

COVVON|
DESCRI PTI ON opt i onal

LONG opti onal
FROM
[DATA]
[FI LES] opti onal
[PROVPTS]
[EMBED] opti onal
[ADDI TION] optional repeatable
[PROCEDURE] optional repeatable
NAMVE opti onal
PROTOTYPE opti onal
[COMVON]
DESCRI PTI ON opti onal
LONG opti onal
READONLY optional procedure only
FROM
[DATA]
[FI LES] opti onal
[PROVPTS]
[EMBED) opti onal
[ADDI TION] optional repeatable
[CALLS] opti onal
[W NDOW opti onal
[REPORT] opti onal
[FORMULA] opti onal

[END]

Common Body

Common Body

Comon Body

100

Advanced Programming Resources

[MODULE] optional repeatable
NAME opti onal
I NCLUDE opti onal
NOPOPULATE opti onal
[cCOwWoN|
DESCRI PTI ON opti onal
LONG opti onal
FROM
[DATA] I
[FI LES] opti onal
[PROWPTS]
[EMBED] opti onal
[ADDI TI ON] optional repeatable
[PROCEDURE] optional repeatable

[END]

Common Body

TXA File Format 101

.TXA File Sections

[APPLICATION]

The application section is required and appears only once at the top of each .TXA file (unless
only a portion of the application is exported, e.g. a .TXA file may contain a single module or
procedure, in which case the file begins with [MODULE] or [PROCEDURE] respectively). This
section begins with [APPLICATION] and ends with the beginning of the [PROGRAM] section. The
application section contains the following keywords and subsections that pertain to the entire
application.

[APPLI CATI ON]
VERSI ON opti onal
HLP opti onal

DI CTI ONARY opti onal
PROCEDURE opti onal

[COMWON|
DESCRI PTI ON opti onal

LONG opti onal
FROM
[DATA]
[FI LES] opti onal
[PROVPTS]
[EMBED] opti onal
[ADDI TION] optional repeatable
[PERSI ST]
VERSION The version number of the application (optional). This value reflects the version
of generator, and changes when the TXA format changes. For example:
VERSI ON 10.
HLP The Windows help file called by the application (optional). The file name may be

fully qualified or not. If not, Clarion searches in the current directory, the system
path, then in paths specified by the redirection file (C:\C60\BIN\C60EE.RED). For
example:

HLP * C:\ C60\ . APPS\ MY. APP. HLP’

DICTIONARY The data dictionary file used by the application (optional). The file name may be
fully qualified or not. If not, Clarion searches the paths specified by the
redirection file (C:\C60\BIN\C60EE.RED). For example:

DI CTI ONARY ‘ TUTORI AL. DCT’

102 Advanced Programming Resources

PROCEDURE The name of the first procedure in the application (optional—- no meaning for a
.LIB or .DLL). This procedure calls all other procedures in the application, either
directly, or indirectly. For example:

PROCEDURE Mai n

[COMMON] The common subsection appears in the [APPLICATION], [PROGRAM],
[MODULE], and [PROCEDURE] sections (required). This subsection begins with
[COMMON] and ends with the beginning of the next subsection. This subsection
can vary substantially in length and appearance, depending on the section in
which it resides and on the subsections it contains or omits. See the [COMMON]
section below for a full discussion.

[PERSIST] Information about the application that is “remembered” across sessions
(required). Although these items appear in .TXA [PROMPT] format, they do not
appear to the developer as prompts, rather, they are #DECLAREd in the
application template with the SAVE attribute, which causes them to be saved in
the .APP file so they are available for each new session.

See [PROMPT] below for more information on the syntax of these application
keywords.

TXA File Format

103

Example—[APPLICATION]

[APPLI CATI ON]

VERSI ON 10

HLP ‘ C:\ C60\ . APPS\ MY. APP. HLP’
DI CTI ONARY * TUTORI AL. DCT’
PROCEDURE Mai n

[COVVON]

[PROJECT]

The project section is always present and appears only once, after the [APPLICATION] section of

each .TXA file. The project section begins with [PROJECT] and ends with [PROGRAM]. It is

generated (exported) automatically for each application.

This section contains the project system settings specified for this application. It is provided so
that project system settings are preserved when you export an application to a .TXA file, then

import the .TXA back into an .APP file.

[PRQJECT]

-- Cenerator

#noedi t

#system wi n

#nmodel clarion dll

#pragma debug(vi d=>full)

#conpi |l e Bl G_RD. CLW / def i ne(GENERATED=>0n) - -
#conpi l e Bl G_RU. CLW / def i ne(GENERATED=>0n) - -
#conpi |l e Bl G_SF. CLW / def i ne(GENERATED=>0n) - -
#conpi | e ResCode. d w / def i ne(GENERATED=>0n) - -

GENERATED

GENERATED

GENERATED
GENERATED

#conpil e Bl G cl w / defi ne(GENERATED=>0n) - - GENERATED

#conpi |l e Bl Q01. cl w / def i ne(GENERATED=>0n) - -
#conpi | e Bl G002. cl w / def i ne(GENERATED=>0n) - -
#pragma | i nk(CUL9RAS4%E% LI B) - - GENERATED
#li nk Bl G EXE

[PROGRAM

See Project System for complete information on project system syntax and pragmas.

GENERATED
GENERATED

104

Advanced Programming Resources

[PROGRAM]—[END]

The program section is required and appears only once, after the [APPLICATION] section of each
.TXA file. The program section begins with [PROGRAM] and ends with [END]. This section
contains the following keywords and subsections that pertain to the source file that contains the

PROGRAM statement.

[PROGRAM
NANVE
| NCLUDE
NOPOPULATE
[COWVON]

DESCRI PTI ON

LONG

FROM

[DATA]

[FI LES]

[PROVPTS]

[EVBED]

[ADDI TI ON]
[PROCEDURE]

[END]

NAME

INCLUDE

NOPOPULATE

[COMMON]

opti onal
opti onal
opti onal

opti onal
opti onal

opti onal

opti onal
optional repeatable
optional repeatable

The name of the source file that contains the PROGRAM statement for
this application (optional).). If omitted it defaults to the application name.
For example:

NAME ‘ TUTORI AL. CLW

The name of a source file that is included in the data declaration section
of the program source file (optional). For example:

| NCLUDE ‘ EQUATES. CLW

The Application Generator may not store procedures in this source file
(optional). This is typically present for external modules. For example:

NOPOPULATE

The common subsection appears in the [APPLICATION], [PROGRAM)],
[MODULE], and [PROCEDURE] sections (required). This subsection
begins with [COMMON)] and ends with the beginning of the next
subsection. This subsection can vary substantially in length and
appearance, depending on the section in which it resides and on the
subsections it contains or omits. See the [COMMON] section below for a
full discussion.

TXA File Format 105

[PROCEDURE]

Information that fully defines a procedure (optional). The procedure
subsection may be repeated for each procedure in the module. The
information stored in this subsection applies only to the procedure
identified by the NAME keyword.

See the [PROCEDURE] section below for more information on the
structure and syntax of this subsection.

106 Advanced Programming Resources

Example—[PROGRAMI]-[END]

[PROGRAM

NAME © TUTORI AL. CLW
I NCLUDE ‘ EQUATES. CLW
NOPOPULATE

[COMVON]

[END]

[MODULE]—[END]

The structure and syntax of the module section is identical to that of the program section. The
module section is optional and may be repeated as many times as necessary. The section begins
with [MODULE] and ends with [END].

Although identical in syntax and structure, the module subsection differs in the scope of it's
applicability. The module section is repeated once for each module in the application, and, the
information it contains applies only to the source file identified by its NAME keyword, that is, only
to those procedures that reside within this module. Data defined in its [DATA] section is “module”
data, and is available to all procedures in the module.

TXA File Format 107

[PROCEDURE]

The procedure subsection is optional and is repeated for each procedure in the program or
module. The subsection begins with [PROCEDURE] and ends with the next [PROCEDURE], or
the [END] of the module or program. This subsection contains information that pertains only to
the procedure identified by the NAME keyword.

[PROCEDURE]
NANVE
PROTOTYPE

optional repeatable
opti onal
opti onal

COVMON]
DESCRI PTI ON opti onal

LONG
READONLY
FROM
[DATA]
[FI LES]
[PROVPTS]
[EMBED]
[ADDI TI ON]
[CALLS]
[W NDOW
[REPORT]
[FORMULA]

NAME

PROTOTYPE

[COMMON]

[CALLS]

[WINDOW]

opti onal
opti onal

opti onal

opti onal
optional repeatable
opti onal
opti onal
opti onal
opti onal

The name of the procedure the keywords in this section apply to (optional). For
example:

NAME Br owseCust oner s

The prototype for the procedure (optional). See the Language Reference for
more information on prototyping your procedures. For example:

PROTOTYPE ‘ LONG Count, REAL Sumi

The common subsection appears in the [APPLICATION], [PROGRAM],
[MODULE], and [PROCEDURE] sections (required). This subsection begins with
[COMMON] and ends with the beginning of the next subsection. This subsection
can vary substantially in length and appearance, depending on the section in
which it resides and on the subsections it contains or omits. See the [COMMON]
section below for a full discussion.

Procedures called by this procedure (optional). For example:

[CALLS]
Updat eCust oner s
BrowseOr der s

Clarion Language statements that define the window managed by this procedure
(optional).

108 Advanced Programming Resources

In addition to the Clarion Language statements defining the WINDOW structure,
the window subsection may contain the following four keywords which are used
internally by the development environment:

#SEQ(instance number)

All controls populated from a control template have this keyword which gives the
instance number of the control template of which they are a member.

#ORIG(original name of control)

The original name of the control as given in the control template.
#FIELDS(list of fields in a list box)

The list of fields to display in a LIST control.
#LINK(field equate label of linked fields)

If several controls are populated from the same control template, they are linked together
in a cycle, each being linked to the next. If a field is populated from the dictionary the
prompts are also linked to the entry fields.

For example:
[W NDOW
Qui ckW ndow W NDOW ‘ Browse the Custoners File'), AT(,, 358, 188), SYSTEM GRAY, MDI
LI ST, AT(8, 20, 342, 124), USE(?Br owse: 1), | MM HVSCROLL, FORVAT(" 16L| M~Cust’ & ‘ Nurmber ~@4@0L| M-Cong

Name~@20@0L| M-Addr ess~@20@0L| M-C t y~@520' &
' @L| M-St at e~@2@0L| M-Zi p~@5@) , FROM Queue: Browse: 1), #SEQ(1) , #ORl (?Li st), |
#FI ELDS(CUS: Cust Nunber , CUS: ConpanyNane, CUS: Addr ess, CUS: Ci ty, CUS: St at e, CUS: Zi p)
BUTTON(‘ & nsert’), AT(207, 148, 45, 14), USE(?I nsert: 2), #SEQ 2), #ORl (?I nsert), #LI NK(?Change: 2)
BUTTON(‘ &Change’), AT(256, 148, 45, 14) , USE(?Change: 2) , DEFAULT, #SEQ(2) , #ORI ((?Change) , #LI NK(?Del et e:
BUTTON(‘ &Del et e’), AT(305, 148, 45, 14), USE(?Del et e: 2), #SEQ 2) , #ORI G(?Del et e) , #LI NK(?I nsert: 2)
END

[REPORT] Clarion Language statements that define the REPORT managed by this
procedure (optional). In addition to the Clarion Language statements, the report
subsection may contain the four keywords above.

TXA File Format 109

[FORMULA] Describes each formula defined for this procedure by the Formula Editor
(optional). Notice that the keywords and their values correspond exactly to the
Formula Editor dialog. See the User’s Guide and the on-line help for more
information on these fields. For example:

[FORMULA]

DEFI NE O der Tax

ASSI GN Or der Tax

CLASS After Lookups

DESCRI PTI ON Cal cul ate State Tax
= OderTotal * StateTaxRate

[ENDJ

le—[PROCEDURE]

JRE]
wmseCust oner s
E * LONG Count, REAL Sumi [CALLS]

Ist oner s
ders

idow W NDOW ‘ Browse Custoners’), AT(,, 358, 188), SYSTEM GRAY, MDI

(8, 20, 342, 124) , USE(?Br owse: 1), | MM FORVAT(’ 16L| M~Cust’ &

-@4@0L| M-Nane~@20@0L| M~Addr ess~@20@0L| M-Ci t y~@520' &

-St ~@2@0L| M-Zi p~@5@) , FROM Queue: Browse: 1), #SEQ(1) , #ORl (?Li st), |

3(CUS: Cust Nunber, CUS: ConpanyNane, CUS: Addr ess, CUS: G ty, CUS: St at e, CUS: Zi p)

(& nsert’), AT(207, 148, 45, 14) , USE(?I nsert: 2), #SEQ 2), #ORl (?I nsert), #LI NK(?Change: 2)

{(* & hange’), AT(256, 148, 45, 14) , USE(?Change: 2) , DEFAULT, #SEQ(2) , #ORl G(?Change) , #LI NK(?Del et e: 2)
I(* &Del et e’), AT(305, 148, 45, 14) , USE(?Del et e: 2) , #SEQ(2) , #ORI (?Del et e) , #LI NK(?I nsert: 2)

]
¥ der Tax

¥ der Tax

ter Lookups

TON Cal culate State Tax
‘otal * StateTaxRate

110

Advanced Programming Resources

Common Subsections

[COMMON]

The common subsection appears in the [APPLICATION], [PROGRAM], [MODULE], and
[PROCEDURE] sections. This subsection begins with [COMMON] and ends with the beginning of
the next subsection. This subsection is required, although many of its keywords and subsections
are optional. This subsection can vary substantially in length and appearance, depending on the
section in which it resides and on the subsections it includes or omits. [COMMON] contains the
following keywords and subsections.

[COVVON]
DESCRI PTI ON

LONG

FROM

MODI FI ED

[DATA]

[FI LES]

[PROVPTS]
[EVBED]

[ADDI TI ON|

DESCRIPTION

LONG

READONLY

opti onal
opti onal

opti onal

opti onal
opti onal repeat abl e

Up to 40 characters of text describing the application, program,
module, or procedure (optional). For example:

DESCRI PTION ‘ Print dynamic | abel report’

Up to 1000 characters of text describing the application,
program, module, or procedure (optional). For example: The text
is actually split into several lines that are concatenated together
as they are read. For example:

‘

LONG ‘ Print dynamic |abel report. At runtine, the
LONG ‘ user selects (or adds a new description of)
LONG ‘a | abel paper fromthe LAB file. This proced’
LONG ‘ure then nmakes property assignnents to adjus’
LONG ‘'t the size and | ocation of the |abel text.®

The procedure may be viewed, but not modified from the Clarion
for Windows environment (optional). Only allowed in a
[PROCEDURE] subsection. READONLY cannot currently be
added to a procedure by the environment, but is provided for
future use so that SoftVelocity’s developers can implement multi-
developer environments that allow a procedure to be “checked
out” and “checked in” in order to preserve code integrity. For
example:

READONLY

TXA File Format 111

FROM The name of the template class for an application, or the name
of the template class and the specific template from which the
program, module, or procedure is generated (optional - can only
be omitted for a ToDo procedure). For example:

[APPLICATION]

FROM Clarion
or
[PROCEDURE]

FROM Clarion Report

MODIFIED The date and time the procedure was last modified. For
example:
[PROCEDURE]
MODI FI ED * 1998/ 07/02’ ‘10: 43: 32

Example—[COMMON]

[COMVON]

DESCRI PTION ‘ Print dynamic | abel report’

LONG ‘ Print dynamic |abel report. At runtine, the user selects (or adds a new
description of) a |abel paper fromthe LAB file. This procedure then makes
property assignments to adjust the size and location of the |abel text to fit
the sel ected | abel paper.’

READONLY

FROM C ari on Report

[DATA]

The data subsection is an optional part of the [COMMON] subsection. It may contain several
subsections and keywords that describe each memory variable defined for this procedure,
module, program, or application. See the .TXD File Format chapter of this book for a discussion
of how this same syntax applies to data dictionary fields. Also see Defining Procedure Data in the
User’s Guide.

For each memory variable defined, there is a series of optional subsections and keywords that
fully describe the variable, as well as any default formatting conventions the Application
Generator is expected to follow. The complete list of possible subsections and keywords is:

112

Advanced Programming Resources

[DATA]
[LONGDESC]
[USERCPTI ON|
[SCREENCONTROLS]
[REPORTCONTROLS]
field definition
keyword i st

[LONGDESC]

[USEROPTION]

[SCREENCONTROLS]

[REPORTCONTROLS]

opti onal
opti onal
opti onal
opti onal

opti onal

Up to thirteen (13) lines of text, up to seventy-five (75) characters in
length each (optional). Each line of text begins with an exclamation point
(!). Comes from the Comments tab of the Field Properties dialog. For
example:

[LONGDESC]

ICurrentTab is used internally by the tenplate

I generated code to store the nunber/id of the ! TAB
control that has focus.

Up to thirteen (13) lines of text up to seventy-five (75) characters in
length each (optional). Each line of text begins with an exclamation point
(!). The text is available to templates. See the EXTRACT procedure in
the Template Language Reference. Comes from the Options tab of the
Field Properties dialog. For example:

[USEROPTI ON]
I ThirdPartyTenpl ateAttri but e: Det ai | s(on)
I ThirdPartyTenpl ateAttri but e: W zar dHel p(of f)

The beginning of the subsection that describes the default window
controls used to manage the memory variable (optional). Use the
Window tab of the Field Properties dialog to set the default controls.

Following [SCREENCONTROLS], an exclamation point (!) marks the
beginning of a control declaration. The control declaration is the Clarion
language statement that defines a window control. There may be several
controls associated with the memory variable, so there may be several
control declarations, beginning immediately after [SCREENCONTROLS]
and continuing until the next subsection, usually [REPORTCONTROLS].
For example:

[SCREENCONTROLS]
I PROMPT(' Current Tab: '), USE(?Current Tab: Pronpt)
I ENTRY(@80), USE(Cur r ent Tab)

The beginning of the subsection that describes the default report controls
used to manage the memory variable (optional). Use the Report tab of
the Field Properties dialog to set the default controls.

TXA File Format

113

Field Definition

Keyword List

Following [REPORTCONTROLS], an exclamation point (!) marks the
beginning of a control declaration. The control declaration is the Clarion
language statement that defines a report control. There may be several
controls associated with the memory variable, so there may be several
control declarations, beginning immediately after [REPORTCONTROLS]
and continuing until the field definition begins. For example:

[REPORTCONTROLS]
I STRI NG @80), USE(Curr ent Tab)

Lists the Clarion language field declaration (required). Optionally
includes a text description of up to 40 characters. The text description
begins with an exclamation point (!). For example:

Current Tab STRI N 80) !user selected tab

The keywords that specify various attributes of the memory variable
(optional). The list begins with !>,

The keywords in this list are set using the Field Properties dialog. Many
of the keywords correspond directly to Clarion language keywords. See
the Language Reference for more information on these keywords.

See the .TXD File Format chapter of this book for a complete discussion
of the keywords and their effects. Also see the User’s Guide, the
Language Reference, and the on-line help for more information on
particular Clarion language keywords.

Notice that the keywords in the [DATA] subsection correspond closely to the tabs and prompts in
the Field Properties dialog. This is because the Field Properties dialog is where these values

are set

Example—[DATA]

For any given variable, you will usually see only a fraction of the possible subsections and
keywords, because, some are mutually exclusive, and many others are simply not required. The
one item that is required is the Clarion Language field definition.

114 Advanced Programming Resources

Let's examine each line of the following typical example to illustrate how this subsection works:

[DATA]

[SCREENCONTROLS]

I PROMPT(' Current Tab: '), USE(?Current Tab: Pronpt)
I ENTRY(@80), USE(Cur r ent Tab)

[REPORTCONTROLS]
I STRI NG @80), USE(Curr ent Tab)
Current Tab STRING 80) ! Tab sel ected by user

I'l> | DENT(4294967206) , PROVPT(‘ Current Tab: '), HEADER(‘ Current Tab’),
Pl CTURE(@80)
[SCREENCONTROLS]

[DATA] marks the beginning of this subsection which describes all the memory variables for this
application, program, module, or procedure.

[SCREENCONTROLS] marks the beginning of the subsection that describes the default window
controls used to manage the first memory variable.

Following [SCREENCONTROLS], the exclamation point (!) marks the beginning of a control
declaration. The control declaration is the Clarion language statement that defines a window
control used to manage the memory variable. There may be several controls associated with the
variable, so there may be several control declarations beginning immediately after
[SCREENCONTROLS] and continuing until a new subsection, usually [REPORTCONTROLS],
begins.

[REPORTCONTROLS] marks the end of the [SCREENCONTROLS] subsection, and the
beginning of the subsection that describes the default report controls used to display the memory
variable. The control declaration is the Clarion language statement that defines a report control
used to manage the memory variable. There may be several controls associated with the
variable, so there may be several control declarations beginning immediately after
[REPORTCONTROLS] and continuing until the field definition begins.

Following the report control declaration, is the Clarion Language field definition for the variable:
“CurrentTab String(80).” This is the only required keyword for each memory variable
described in the .TXA file. It may optionally be followed by an exclamation point (!) and the short
description for the variable.

Finally, “!'>" marks the beginning of the keyword list associated with the memory variable. The
keywords are separated by commas, and the list continues, wrapping onto multiple lines if
necessary, until the next subsection begins. See the .TXD File Format chapter of this book for a
complete discussion of the keywords and their effects.

[FILES]

The files subsection is an optional part of the [COMMON] subsection. It may contain several
subsections and keywords that describe the files used by this procedure, module, program, or
application. In Class Clarion generated applications, the [FILES] subsection is most commonly

TXA File Format 115

seen in the [PROCEDURE] subsection, since the procedures do most of the file access, while
applications, programs, and modules are more concerned with managing the user’s environment.

For each file used by the procedure, module, program, or application, there is a series of
subsections and keywords that identify the file, the key, and any related files that will also be
used. The complete list of possible subsections and keywords is:

[FI LES] opti onal
[PRI MARY] optional, repeatable
[1 NSTANCE]
[KEY] opti onal
[SECONDARY] optional, repeatable

[OTHERS] opti onal

[FILES]

[PRIMARY]

[INSTANCE]

[KEY]

The beginning of this subsection which identifies the essential information about
the files used by this procedure (optional).

The beginning of the subsection which describes a single primary file tree for a
control template in this procedure (required). There may be a [PRIMARY]
subsection for each control template in the procedure.

Primary simply means that this is the main file processed by the associated
control template. Any other files processed by the control template are
dependent files.

The line immediately after [PRIMARY] lists the filename. For example:

[PRI MARY]
Cust orrer s

Introduces the instance number of the control template for which this file is
primary (required). See Common Subsections—[ADDITION] for more information
on instance numbers. For example:

[| NSTANCE]
6

Introduces the key used to access this file (optional). For example:

[KEY]
CUS: KeyCust Nunber

[SECONDARY] Introduces the child and the parent file accessed by this control template

(optional). This subsection is repeated for each related file.

Both files are named in order to avoid any ambiguity when there is more than
one related file. The first file listed is always the “child” file, and the second file
listed is always the “parent” file.

The [SECONDARY] file identities are part of the [PRIMARY] subsection, that is, a
[SECONDARY] does not mark the end of the [PRIMARY] subsection but is a
continuation of it. For example:

116 Advanced Programming Resources

[SECONDARY]
Phones Cust oners

[OTHERS] Introduces other files accessed by the procedure, but not by a control template
(optional). It also marks the end of the prior [PRIMARY] subsection. The only
code generated for an [OTHERS] file is just that code necessary to open the file
at the beginning of the procedure, then close the file at the end of the procedure.
For example:

[OTHERS]
Label s

Example—[FILES]

[FI LES]
[PRI MARY]
Cust orrer s

[| NSTANCE]
6

[KEY]

CUS: KeyCust Nunber
[SECONDARY]
Phones Cust oners
[SECONDARY]
Orders Custoners
[OTHERS]

Label s

Let's examine each line of the following comprehensive example to illustrate how this subsection
works:

[FILES] marks the beginning of this subsection, which identifies the essential information about
the files that are used by this procedure.

[PRIMARY] marks the beginning of the subsection, which describes a single primary file tree for a
control template. Primary simply means that this is the main file processed by the associated
control template. Any other files processed by the control template are dependent files.

The line immediately after [PRIMARY] shows the filename, that is, Customers.

[INSTANCE] means the following line shows the instance number of the control template for
which this file is primary. The development environment uses the instance number to link the
appropriate file to the appropriate control template.

[KEY] means the following line shows the key used to access the primary, that is,
CUS:KeyCustNumber.

[SECONDARY] means the following line shows a related file that is also accessed by this control
template: Phones. Notice that the line naming the secondary file also names the parent file:

TXA File Format 117

Customers. This is to avoid any ambiguity when there is more than one related file. For example,
if the Orders file was listed as a secondary file as well as the Phones file, it would be important to
know if the Orders file is related to the Phones file or the Customers file.

Similarly, the order in which the two file names appear is significant. The first file listed is always
the “child” file, and the second file listed is always the “parent” file.

Finally, [OTHERS] means the following lines show other files accessed by the procedure, but not
a control template. It also marks the end of the prior [PRIMARY] subsection.

118 Advanced Programming Resources

[PROMPTS]

The prompts subsection is part of the common subsection. It lists the template prompts
associated with the application, program, module, or procedure, plus the values supplied for the
prompts by the developer. See the Template Language Reference in the on-line help for more
information on template prompts.

Template prompts may be found in several different subsections, including [PERSIST] (see
[APPLICATION]), [PROMPTS], and [FIELDPROMPT].

The template prompts and their associated values appear in two different formats: simple and
dependent.

Simple Prompts

Both formats begin with the prompt name. The prompt name begins with the percent sign (%).
The simple format follows the prompt name with a prompt type and a value enclosed in
parentheses.

Available prompt types are @picture, LONG, REAL, STRING, FILE, FIELD, KEY, COMPONENT,
PROCEDURE, and DEFAULT. The prompt type may optionally be further qualified as UNIQUE or
as MULTI. MULTI means the prompt has multiple values. UNIQUE also indicates multiple values,
however, the values are in ascending order and there are no duplicates.

The simple format syntax is diagrammed as follows, where the vertical columns show alternative
parameters, the curly braces show optional parameters, and value is the value for the prompt:

%name {UNIQUE} @picture (‘value’)
{MULTI} LONG (‘valuel’,’'value?’,'valuen’)
REAL
STRING
FILE
FIELD
KEY
COMPONENT
PROCEDURE
DEFAULT
Following is a description of the available prompt types:
@picture The value is a picture token.
LONG The value is a number in LONG format (4 byte unsigned integer).
REAL The value is a number in REAL format (8 byte floating point format).
STRING The value is a character string.
FILE The value is the label of a data file.
FIELD The value is the label of a field in a data file.

KEY The value is the label of a key.

TXA File Format 119

COMPONENT The value is the label of a key component.
PROCEDURE The value is the label of a procedure.

DEFAULT Typically the same as STRING, but stored differently internally. DEFAULT
variables do not have an explicit type. If they are assigned to, the variable takes
the type of the value that is assigned to it.

For example:

[PROVPTS]

% ast Pr ogr anExt ensi on DEFAULT (‘ EXE')

%5i zePref erences MIULTI LONG (3, 3)

9%RangeFi el d COVWONENT (PHO Cust Nunber)
%Jpdat ePr ocedur e PROCEDURE (Updat ePhones)

Let's examine each line of this example.

%LastProgramExtension is the template name of the stored value. DEFAULT indicates the value
is stored as a string (since ‘EXE’ is a string). The (‘EXE’) indicates the value of
%LastProgramExtension is ‘EXE.’

%SizePreferences is the template name of the stored value. The value is stored in LONG format
and MULTI means there are multiple values. The (3,3) indicates the values for %SizePreferences
are 3 and 3.

%RangeField is the template name of the stored value. The value stored is the label of a KEY
COMPONENT, and PHO:CustNumber is that label.

%UpdateProcedure is the template name of the information stored. The information stored is the
label of a PROCEDURE and UpdatePhones is that label.

Dependent Prompts

Like simple prompts, dependent prompts begin with the prompt name. The prompt name begins
with the percent sign (%). The dependent format follows the prompt name with the keyword
DEPEND and is spread over multiple lines.

120 Advanced Programming Resources

The dependent format is diagrammed as follows, where the vertical columns show alternative
parameters, the curly braces show optional parameters, and the WHEN lines represent all the
possible values for both the %Prompt and the %ParentSymbol:

%Prompt DEPEND %ParentSymbol{UNIQUE} @picture TIMES n
{MULTI} LONG
REAL
STRING
FILE
FIELD
KEY
COMPONENT
DEFAULT
WHEN (‘ParentSymbolValue’) (‘promptvalue’)l
WHEN (‘ParentSymbolValue’) (‘promptvalue’)2
WHEN (‘ParentSymbolValue’) (‘promptvalue’)n

The %ParentSymbol following the DEPEND keyword represents a template symbol that the value
of %Prompt depends upon. That is, the %ParentSymbol may have multiple different values, and
the value of %Prompt depends on the current value of %ParentSymbol.

For example:

[PROVPTS]
%Cener ati onConpl et ed DEPEND %vbdul e DEFAULT TI MES 4
WHEN (‘' TUTORIAL.clw) (*1")

WHEN (‘ TUTOROO1.clw) (‘1)
WHEN (* TUTORO02.clw) ('1")
WHEN (‘ TUTOR003.clw) (‘1)

Again, let's examine each line of the example. %GenerationCompleted is the name of the prompt
for which the value is stored. The value of %GenerationCompleted DEPENDs on the value of
%Module. The values are stored as strings. TIMES 4 means %Module has 4 different possible
values.

On the following 4 lines, 1 for each possible value of %Module, WHEN indicates a possible value
for %Module—TUTORIAL.CLW’, followed by the corresponding value for
%GenerationCompleted—'1".

TXA File Format 121

Nested Dependent Prompts

Dependent prompts can also show more than one level of dependency. The WHEN instances are
nested for each additional level of dependency. For example:

%-or egr oundNor mal DEPEND %Control DEPEND %Control Fiel d LONG TI MES 2
WHEN (* ?Browse: 1) TIMES 2

WHEN (‘ CUS: Cust Number’) (4294967295)

VWHEN (* CUS: ConpanyNane’) (4294967295)

WHEN (‘?Browse:2’) TIMES 4

VWHEN (‘ CUS: Address’) (4294967295)

WHEN (‘CUS:City’) (4294967295)

WHEN (‘' CUS: State’) (4294967295)

WHEN (‘ CUS: Zi pCode’) (4294967295)

In this example, the value of %ForegroundNormal depends on the value of %Control, and then on
the value of %ControlField. %Control can have 2 possible values: ?Browse:1 and ?Browse:2. For
each of these values, there is a WHEN...TIMES line that shows the number of possible values of
%ControlField associated with this value of %Control.

Then, following each WHEN...TIMES line, are more WHEN lines showing each possible value for
%ControlField, followed by the corresponding value for %ForegroundNormal. Note the
precedence, %controlfield is dependent on the current value of %control.

[EMBED]—[END]

The embed subsection is an optional part of the common subsection. It may contain several
subsections and keywords that describe each embed point defined for this procedure, module, or
program with the Embedded Source dialog. See Defining Embedded Source in the User’s Guide.

The [EMBED] subsection may contain the following subsections and keywords:

[EMBED] opti onal
EMBED r epeat abl e
[I NSTANCES] optional, repeatable
VWHEN
[DEFI NI TI ON|
[SOURCE] optional, repeatable

[TEMPLATE] optional, repeatable
[PROCEDURE] optional, repeatable
[GROUP] optional, repeatable
I NSTANCE 4
[ENDJ
[ENDJ
[ENDJ

122 Advanced Programming Resources

[EMBED]-[END] Marks the beginning of this subsection that describes each
embed point defined for this procedure (optional).

EMBED The string following this keyword identifies the embed point
(required). EMBED appears once for each “filled” embed point.
For example:

EMBED %Cont r ol PreEvent Handl i ng

[INSTANCES]-[END] Indicates there is more than one instance of this embed point
(optional). See the example below.

WHEN Indicates in which instance of the embed point the source
statements are embedded (required). For example:

[1 NSTANCES]
VWHEN ‘ ?Change: 2’

[DEFINITION]-[END] Marks the beginning of the subsection that defines the
embedded source statements (required).

[SOURCE] Identifies the source statements as free-form text from the Text
Editor (optional). This may contain omittable information
delimited by PROPERTY:BEGIN and PROPRETY:END
statements. For example:

[SOURCE]

PROPERTY: BEG N

PRI ORI TY 4000

PROPERTY: END

IThis is a source enbed point

[TEMPLATE] Identifies the source statements as free-form text from the Text
Editor which includes Template Language statements (optional).
For example:

[TEMPLATE]
IThis is a tenplate coded enbed point
#FOR(%.ocal Dat a)

I %.ocal Data
#ENDFOR
[PROCEDURE] Identifies the embedded source statements as a procedure call
from the Procedure to Call dialog. For example:
[PROCEDURE]
EnbeddedPr ocedur eCal |
[GROUP] Identifies the embedded source as a code template.
INSTANCE Identifies the instance number of the embedded code template.
For example:
[GROUP]

| NSTANCE 4

TXA File Format 123

Example—[EMBED]-[END]

Let's examine a comprehensive example to illustrate each component of the [EMBED]
subsection. First, notice how the .TXA text is very similar to the text in the Embedded Source
dialog:

[EMBED]

EMBED %Cont r ol Pr eEvent Handl i ng
[1 NSTANCES]

VWHEN ‘ ?Change: 2’

[1 NSTANCES]

VWHEN ‘ Accept ed’

[DEFI NI TI ON]

[SOURCE]

IThis is a source enbed point
[PROCEDURE]

EnbeddedPr ocedur eCal |

[GROUP]

| NSTANCE 4

[ENDJ

[ENDJ

[ENDJ

EMBED %Cont r ol Event Handl i ng

[END]

[EMBED] marks the beginning of the subsection. The [EMBED] subsection always ends with
[END].

EMBED %ControlPreEventHandling identifies the embed point where the source is embedded.
Notice that the name for the embed point in the [EMBED] subsection is slightly different than in
the Embedded Source dialog. The names in the Embedded Source dialog are expanded for
maximum clarity.

[INSTANCES] indicates there is more than one instance of the %ControlPreEventHandling
embed point, that is, there is one instance of this embed point for each control in the procedure.
Each [INSTANCES] ends with [END].

WHEN ‘?Change:2’ indicates in which instance of the embed point the source statements are
embedded. At code generation time, there is a variable (or macro) named %Control that has the
value ‘?Change:2’ indicating which control, and thus which instance of the embed point, is
processed.

The fifth and sixth lines indicate yet another level of instances for this embed point. Not only does
the embed point have an instance for each control in the procedure, it has an instance for each
event associated with each control. At code generation time, there is a variable (or macro) named
%ControlEvent that has the value ‘Accepted’ indicating which control event, and thus which
instance of the embed point, is processed.

[DEFINITION] marks the beginning of the subsection that defines the embedded source
statements. The [DEFINITION] ends with [END].

124 Advanced Programming Resources

[SOURCE] indicates the type of embedded source: free-form source from the Text Editor. The
free-form source follows on the next line and continues until the next .TXA subsection begins.

[PROCEDURE] indicates another type of embedded source: a procedure call. The procedure call
follows on the next line.

[GROUP] indicates the third type of embedded source: a code template. Code templates are
described in the [ADDITION] subsection. INSTANCE 4 indicates the instance subsection within
the addition subsection where the embedded code template is described. (The name [GROUP],
rather than [CODE] is used for historical reasons.)

[ADDITION]

The addition subsection is an optional part of the common subsection and appears once for each
code template used. It may contain several subsections and keywords that describe each control,
code, and extension template defined for this procedure, module, or program. See Using Control,
Code, and Extension Templates in the User’s Guide.

The [ADDITION] subsection may contain the following subsections and keywords:

[ADDI TI ON] repeat abl e
NAMVE
[FI ELDPROVPT] opti onal
[| NSTANCE] r epeat abl e

| NSTANCE

PARENT opti onal
PROCPROP opti onal
[PROVPTS] opti onal

[ADDITION] Marks the beginning of the subsection (optional). Appears once for each
template type used. That is, if BrowseBox is used twice in a procedure,
there is only one BrowseBox [ADDITION] in the [PROCEDURE] section,
but with multiple [INSTANCE]s (see below).

NAME Identifies the template class and the specific template invoked (required).
Appears once for each [ADDITION] subsection. For example:

NAME C arion BrowseUpdat eButtons

TXA File Format

125

[FIELDPROMPT]

[INSTANCE]

INSTANCE

PARENT

PROCPROP

[PROMPTS]

Indicates a prompt and its associated type and value (optional). This is
only generated if you use a #FIELD statement in your templates. The
prompts begin on the following line. See [PROMPTS] for a full discussion
of prompt syntax. For example:

[FI ELDPROVPT]
o0vadel t Up LONG (1)

Introduces the INSTANCE number on the following line. Appears once
for each control, code, or extension template in the application, program,
module, or procedure. See NAME above.

Indicates the instance number (identification number) of this particular
template addition. For example:

[| NSTANCE]
| NSTANCE 2

Indicates this control template depends on another control template
(optional). PARENT is followed by the instance number of the control
template upon which this control template depends. For example:

PARENT 1

Means the prompts for this control template are shown in the Procedure
Properties dialog (optional). If PROCPROP is absent, the prompts will
not be displayed in the Procedure Properties dialog. For example:

PROCPROP

Marks the beginning of the list of prompts for this control template, and
the values supplied by the developer for each prompt (optional). The
prompts begin on the following line and continue until the beginning of
the next .TXA subsection. See the [PROMPTS] section above for a
complete discussion of prompt syntax. For example:

[PROVPTS]

%Jpdat ePr ocedur e PROCEDURE (Updat ePhones)
%Edi t Vi aPopup LONG (1)

126 Advanced Programming Resources

Example—[ADDITION]

Again, let's examine a comprehensive example to illustrate each component of the [ADDITION]
subsection.

[ADDI TI ON|

NAME C arion BrowseUpdat eButtons
[FI ELDPROVPT]

%vhdel tUp LONG (1)

[1 NSTANCE]

| NSTANCE 2

PARENT 1

PROCPROP

[PROWPTS]

%Jpdat ePr ocedur e PROCEDURE (Updat ePhones)
%Edi t Vi aPopup LONG (1)

[| NSTANCE]
| NSTANCE 4
PARENT 3

[ADDITION] marks the beginning of the subsection.

NAME identifies the template class (Clarion) and the specific template (BrowseUpdateButtons)
invoked.

[FIELDPROMPT] indicates a prompt and its associated type and value. This is only generated if
you use a #FIELD statement in your templates. The prompts begin on the following line. See
[PROMPTS] above for a full discussion of prompt syntax.

[INSTANCE] introduces the INSTANCE number. On the following line, INSTANCE 2 indicates the
instance number of this particular template addition.

PARENT 1 indicates this control template depends on another control template whose
INSTANCE number is 1. That is, the BrowseUpdateButtons template only makes sense if there is
also a BrowseBox template. Further, the BrowseUpdateButtons are associated with this particular
BrowseBox whose INSTANCE number is 1. This is very important when there is more than one
BrowseBox in the procedure.

PROCPROP means the prompts for this control template are shown in the Procedure
Properties dialog. If PROCPROP is absent, the prompts will not be displayed in the Procedure
Properties dialog.

[PROMPTS] marks the beginning of the list of prompts for this control template, and the values
supplied by the developer for each prompt. The prompts begin on the following line and continue
until the beginning of the next .TXA subsection. See the [PROMPTS] section above for a
complete discussion of this subsection.

127

Index

Index:

Adding choices to the Clarion Menu.......... 11 Execute a Project..........ccoceeeeeiiniiiiinennenn, 58
Adding File Maskscccocvvvveeeiniicinnnnnn. 13 Export a Dictionary to Textccccvveeeenn. 51
Adding Tabs ... 15 Export an Application to Text..........cccce...... 52
Application Generator Options 24 Generate an Applicationccccceeveeeiennns 57
Auto Populatecccccveeeiiviiiiieeee e, 19 Import a Dictionary from Text...........c........ 51
=01 0] o] o] QPR 6 Import an Application from Text................. 54
COBOEE.INI....ceiiiiiiiee e 5 MAXIMIZEd.......coeiiiiiieiiie e 6
CBOPE.INI...vviiiiiiiee et 5 Paths.....cooiiiiiiee e 6
Clarion AppIets ... 8 Print Specificationsccccccoiiiiiieenenn. 17
Clarion as a DDE Serverccccoceeeeeeene 47 Project System Optionsc..ccovvivviieeeeenn. 22
Clarion DDE EITOrS.......cueiiieeiiiiiiieeeeaeeenne 65 QUICKSTAIM.eeiiieieiiiieeee e 6
Command Line Parameters...........cccccceeeenn. 5 Registering a Template...........ccooeuvieeeeenn. 61
Common TXA Subsectionscccc...... 110 Report Formatter Options.............cccvveeeeeenn. 40
CondGenerationcccueeveeevesciiieeeeeennenns 24 Running a Utility.........cooccvieeee e, 59
Connectto Clarion........cccceeeeveiciiieeeeeeeene 49 Setup MENU...cvvveeieiciiiiiiee e 12
Control Default Size Options.........ccccec..... 38 Template Registry Optionsccccceeeeenes 32
DDE client.....c..cvviiiiiiieiiiiee e 47 TXA File Format.......ccccoevvieeeiiiieeeiiieeeee 97
DDE Error MeSSages........ccccvvvveereeeeeeiininnns 63 TXA File Organization.............ccccvveveeennnnns 98
DDE Service EIorscccceevvveeeeiniineeennnne, 65 TXA File SEctionscccovvveeeeiiieeneiinenn, 101
DDECLOSEooiiivieieeciie et 50 TXA SKeleton......cccevvvveeiiiiiee e 98
DDEEXECUTEovtiiiiiiiiiiiiiiieeeee e 51 TXD Common Subsectionsccc.e..... 94
DebugGenerationccoecvvvieeeeeeninnnnnee. 24 TXD File Formatcccvveeeiieiiiiiiiiieeeeeene 67
Default driver ... 20 TXD File Organizationc.ccccvveeeeeeennns 68
Dictionary Optionsccovviviiieeieeniininnee 20 TXD File SECtionscceevveiiiiiiiiiiieeeeees 70
Dictionary Synchronization Options 29 TXD SKeleton.......ccoocccvvvveeeeee i 68
Disconnect from Clarioncccccceeevennes 50 Unregistering a Templatec.ccoocevveeeen. 62
Dynamic Data Exchange (DDE)................ 47 User Defined Applicationsccccccuvveeeen. 9
Editor Options.......cccevveveeiiiiiiieeeee e 43 User Informationcccccoevecvvvieeeeeeen i, 6
Editor Tabscoocvivei e 45 WallPAPEN ... 6
Environment Option Settings.............cce... 19 Window Formatter Options..............ccceee..... 34

Environment OptionSccuvveeieeeiniiiiiineen. 6

128 Advanced Programming Resources

	Customizing the Development Environment
	An Overview
	Command Line Parameters

	Non-Modifiable Clarion INI File Sections
	User Information
	Paths
	Environment Options
	The Clarion Applets

	Modifying the Clarion Environment
	Specifying User Defined Applications
	Adding choices to the Clarion Menu
	Adding choices to the Clarion Setup Menu
	Adding File Masks to File Types Drop Down Lists
	Adding Tabs to New, Open, or Pick File Dialogs
	Specifying Make File Types
	Print Specifications

	Environment Option Settings
	Auto Populate Options
	Dictionary Options
	Project System Options
	Application Generator Options
	Dictionary Synchronization Options
	Template Registry Options
	Window Formatter Options
	Control Default Size Options
	Report Formatter Options
	Editor Options
	Editor Tabs

	Using Clarion as a DDE Server
	Overview
	Connect to Clarion as DDE Server
	Disconnect from the Clarion DDE Server
	Export a Dictionary to Text (TXD) format
	Import a Dictionary from Text (TXD) format
	Export an Application to Text (TXA) format
	Import an Application from Text (TXA) format
	Load an Application
	Generate an Application
	Execute a Project or Application
	Running a Utility Template
	Registering a Template Class
	Unregistering a Template Class
	Getting DDE Error Messages
	Clarion DDE Errors
	DDE Service Errors and associated messages

	.TXD File Format
	.TXD Files: Clarion Dictionaries in ASCII Format
	.TXD File Organization
	.TXD Skeleton

	.TXD File Sections
	[DICTIONARY]
	[FILES]
	File Definition Group
	Example—File Definition Group
	Key Definition Group
	Example—Key Definition Group
	Memo Definition Group
	Keyword List—MEMOs
	Example—Memo Definition Group
	Blob Definition Group
	Example—Blob Definition Group
	Record Definition
	Field Definition Group
	Keyword List—Fields
	Example—Field Definition Group
	[ALIASES]
	Alias Definition Group
	Example—Alias Definition Group
	[RELATIONS]
	Relation Definition Group
	Example—Relation Definition Group

	Common Subsections
	[LONGDESC]
	[USEROPTION]
	[TOOLOPTION]
	[SCREENCONTROLS]
	[REPORTCONTROLS]

	.TXA File Format
	.TXA Files: Clarion Applications in ASCII Format
	.TXA File Organization
	.TXA Skeleton

	.TXA File Sections
	[APPLICATION]
	Example—[APPLICATION]
	[PROJECT]
	[PROGRAM]—[END]
	Example—[PROGRAM]-[END]
	[MODULE]—[END]
	[PROCEDURE]
	Example—[PROCEDURE]

	Common Subsections
	[COMMON]
	Example—[COMMON]
	[DATA]
	Example—[DATA]
	[FILES]
	Example—[FILES]
	[PROMPTS]
	Simple Prompts
	Dependent Prompts
	Nested Dependent Prompts
	[EMBED]—[END]
	Example—[EMBED]-[END]
	[ADDITION]
	Example—[ADDITION]

	Index

