

Multi Threaded Programming 2

COPYRIGHT 1994-2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity
Incorporated. It may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
consent, in writing, from SoftVelocity Incorporated.

This publication supports Clarion. It is possible that it may contain technical or
typographical errors. SoftVelocity Incorporated provides this publication “as is,” without
warranty of any kind, either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:

SoftVelocity is a trademark of SoftVelocity Incorporated.
Clarion is a trademark of SoftVelocity Incorporated.
Microsoft , Windows , and Visual Basic are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (0903)

Multi-Threaded Programming. 3

Contents:
Overview ...5

What is a threading model? .. 5
Threads Pre-Clarion 6... 6
Threads in Clarion 6.. 6

Code differences between Clarion 5.5 and Clarion 6..................................7
THREAD attribute on Classes.. 7
THREAD and EXTERNAL.. 7
ADDRESS of a threaded variable .. 8
LOCKTHREAD, UNLOCKTHREAD and THREADLOCKED 8

Coding techniques for Preemptive multi-threading...................................9
Don’t Use Static Variables.. 9
Initialize Once/Read Many ... 9
Non Queue static variables .. 9
Static Queues that are initialized at startup.. 9
Synchronize Access ... 10

Common Coding Practices that need to change .. 11
Using static variables to pass parameters ... 11
Using static queues .. 11
Queues that are only modified at startup ... 11

The WAIT() function.. 13
Thread Synchronization ..15

POST/EVENT... 15
SUSPEND/RESUME.. 15
INSTANCE ... 16

Synchronization Objects...19
IcriticalSection and CriticalSection ... 19
IWaitableSyncObject .. 22
IMutex... 22
IReaderWriterLock ... 26
CriticalProcedure .. 27

Summary of Synchronization Objects Properties and Methods31
Prototypes .. 31
Get Mutex ... 31
Get Semaphore .. 32
NewCriticalSection ... 32
NewMutex... 33
NewNamedSemaphore .. 34
NewReaderWriterLock ... 34
NewSemaphore.. 35
ICriticalSection.Wait() and IMutex.Wait() ... 36
ICriticalSection.Release() and IMutex.Release(count) .. 36
Kill() ... 36
ISemaphore.Wait() .. 36
ISemaphore.TryWait (ms) and IMutex.TryWait (ms).. 36
ISemaphore.Release() .. 37
ISemaphore.Handle() and IMutex.Handle() ... 37
IReaderWriterLock.Reader() ... 37
IReaderWriterLock.Writer() ... 37
CriticalProcedure.Init (syncObj).. 37

Conclusion ...39

Multi Threaded Programming 4

Multi-Threaded Programming. 5

Overview
This paper introduces programming techniques you implement when you program in a
preemptive multi-threading environment as introduced in Clarion 6.0. It identifies the type
of code and objects that require attention, and also provides code examples for adding
thread synchronization to properly handle access to shared non-threaded data.

Throughout this paper there are references to static variables. There are three ways of
creating a variable in Clarion such that it is static:
� The variable is declared in Global Data and does not have the THREAD attribute
� The variable is declared in Module Data and does not have the THREAD attribute
� The variable is declared in Procedure Data and has the STATIC attribute, but does

not have the THREAD attribute

Static variables are potentially dangerous in a preemptive environment, and should be
avoided where possible. Later sections in this paper will describe what to do when they
cannot be avoided.

What is a threading model?
A threading model describes how different threads work together under a multi-threading
operating system. There are two types of threading models: cooperative threading and
preemptive threading.

Under the cooperative threading model an application could have multiple threads
‘running’ at the same time. But only one of these threads could do anything at any point
in time. For another thread (or program) to get a chance to do anything the current
thread had to relinquish control of the PC back to the operating system. The operating
system would then choose which thread would next have a chance to do something.
Thus the threads cooperate with each other and the operating system to give each other
a chance to do something. This was easy to program, but it meant that programs could
behave badly and take full control of the PC locking out other programs.

When Windows NT arrived so did a new style of threading: Preemptive multi-threading.
Now threads could run simultaneously, either on separate CPUs or by having the
operating system suspend one thread and start another whenever the operating system
wanted. This released the power of multi-processor machines and stopped the problem
of badly behaved programs. But it was a much harder paradigm to program with.

Multi Threaded Programming 6

Threads Pre-Clarion 6
Clarion for Windows was designed to make programming easy. Therefore the problems
of preemptive threading were considered unnecessarily complex for the rewards. Clarion
threads were not cooperative by their nature. They were standard Win32 threads with
explicit synchronization implemented in the RTL to emulate cooperative behavior.

The emulation of cooperative threads made it easy to use variables that were global in
scope (can be used anywhere in your program), but whose contents were different
depending on what thread was active; for example a global variable with the THREAD
attribute. To do this some mechanism was required to make sure that the contents
changed each time a different thread became active. Due to the cooperative nature of
Clarion threads the RTL was responsible to swap the contents of the threaded variables
every time a thread gained or lost focus.

This made it very easy to program, but added the restriction that only one Clarion thread
could be active at any time

Threads in Clarion 6
Clarion 6 now supports the preemptive thread model. To do this, the automatic data
swapping that was done by the RTL had to end. In Clarion 6, the operating system
determines when a thread receives a CPU time slice. So there is no opportunity for the
RTL to swap the contents of variables.

Although Clarion now supports preemptive multi-threading, it does not mean you have to
suddenly rewrite all your programs. If you follow the guidelines set out in this paper for
avoiding the use of global variables whenever possible and using the synchronization
techniques described, you’ll be able to deliver new capabilities to your end-users.

Multi-Threaded Programming. 7

Code differences between Clarion 5.5 and
Clarion 6
To allow Clarion to support preemptive threads some changes were required in the
language. This was kept to a minimum so as to ease the migration to the new version.

THREAD attribute on Classes

Prior to Clarion 5.5 if you had a global variable that was an instance of a class the
THREAD attribute was ignored. In Clarion 6 any global instance of a class with the
THREAD attribute will have separate data for each running thread. The constructor of
the class will be called on thread initialization and the destructor will be called on thread
termination.

Thread “initialization" and thread “termination" must be defined because it is not always
obvious. In general, any DLL has some entry point called by the OS on attaching that
DLL to the process, detaching it from the process, on the start and closing a thread. The
Clarion RTL translates every such call, to chains of calls to initialize or cleanup data in all
modules which have application-wide or thread-wide variables declared. But in certain
situations the OS does not do calls to executables, for example, if it is an EXE rather than
DLL, or if the DLL is loaded dynamically by the call to LoadLibrary. In the latter case, the
OS calls that DLL's entry point for initializing application-wide data only. The CW RTL
handles all special cases and calls the code to initialize and also to cleanup threaded
data.

The order that class constructors are called is undefined. So do not assume that a
different class instance has been constructed when your constructor is called

This feature gives you a lot of power to control things on a thread by thread basis. The
ABC templates use this strategy to make sure the meta-information about your database
is available on each thread.

See the section below “Using hand code” for an example of a global threaded class.

THREAD and EXTERNAL

In versions of Clarion prior to version 6, a variable with the THREAD attribute was
allocated a fixed memory location and the runtime library handled swapping the thread
specific values of that variable in and out of that memory location. So if you had a file
definition in a DLL you would declare it as

AFile FILE,DRIVER(‘TopSpeed’),THREAD

Then in your EXE you would declare the file as

AFile FILE,DRIVER(‘TopSpeed’),EXTERNAL

With Clarion 6.0 a variable with the THREAD attribute has different memory allocated for
each thread. The compiler now generates code to make sure that the right memory is
accessed regardless of which thread is running. For the compiler to generate the right
code it needs to know if a variable has the THREAD attribute regardless of where the
variable is defined. So in Clarion 6.0 if you have a file definition in a DLL you declare it
as

AFile FILE,DRIVER(‘TopSpeed’),THREAD

Multi Threaded Programming 8

Then in your EXE you declare the file as

AFile FILE,DRIVER(‘TopSpeed’),EXTERNAL, THREAD

Notice the THREAD attribute is present in both declarations, unlike previous versions.

ADDRESS of a threaded variable

Before taking the ADDRESS() of a threaded variable would always return the same result
regardless of what thread is running. In Clarion 6.0 every thread has its own memory
location for a threaded variable. So ADDRESS() no longer will return the same value. If
you need a constant address for a threaded global variable you can use the new function
INSTANCE() and pass a Thread Number of 0. For example, to get a unique identifier for
a threaded FILE that you can be certain will be the same regardless of what thread you
are on you used to do ADDRESS(MyFile). You now do INSTANCE(MyFile, 0)

LOCKTHREAD, UNLOCKTHREAD and THREADLOCKED

As Clarion 6 now works with preemptive threads rather than cooperative threads these
functions do nothing by default. However, if you want to work in a cooperative threading
environment (see next paper) LOCKTHREAD will call the
SYSTEM{PROP:LockThreadHook} function, UNLOCKTHREAD will call the
SYSTEM{PROP:UnlockThreadHook} function and THREADLOCKED will call the
SYSTEM{PROP:ThreadLockedHook} function.

Multi-Threaded Programming. 9

Coding techniques for
Preemptive multi-threading

Don’t Use Static Variables
The easiest way to avoid problems is to avoid using static variables. A lot of static
variables are declared as static simply because it took less time to use a global or
module variable then to pass the data as a parameter. Check your static variables, and if
they are used to transfer information between threads pass them as a parameter as
needed.

Initialize Once/Read Many

Non Queue static variables

If you have static variables that you use to hold global information that never changes
during the running of a program, then you do not need to change them. Provided the
variables are initialized in the startup of the program and never changed, there is no need
to worry. For example, prior to Clarion 6, when there was no SYSTEM{PROP:DataPath},
it was common to have a file name initialized based on a path stored in an INI file. This
practice is still acceptable in a preemptive threading model.

Static Queues that are initialized at startup

A static queue that is initialized at startup and read many times is not safe. See the
section below on Common Coding Practices that need to change for ideas on how to
handle static queues.

Multi Threaded Programming 10

Synchronize Access
If you are using static variables as a way to share information between threads, then you
will need to synchronize thread access to these variables. The two main ways you will do
this is either using a Critical Section Object or a ReaderWriterLocks Object.

If the value to be protected is a LONG (and not in a GROUP) you are probably safe in not
synchronizing most thread accesses, since reads/writes happen in only one operation. If
a LONG is defined in a GROUP/RECORD/QUEUE then it might not be aligned data and
require more then one operation. In summary a LONG has fewer risks of corrupt half
updated data then strings, but still have some risks when multiple commands are
involved.

See the Synchronization Objects section below for descriptions and examples on how to
use these objects.

 IMPORTANT!

It is very important that you lock out other threads for as short a time as possible.
Ideally, copying the data you need into thread safe variables then releasing the
lock. You should not have any user input inside a piece of code that locks other
threads.

To guarantee that your static variables are protected it is best to move them into a static
class that has read and write methods for manipulating them. Make them PRIVATE,
create Get and Set methods, and have synchronization code to protect and manipulate
them.

Multi-Threaded Programming. 11

Common Coding Practices that need to
change
Using static variables to pass parameters
If you are using a static variable to pass values to a started procedure on a new thread,
change the prototype of that procedure so the values it requires are passed as
parameters. Both the ABC and Clarion template chains now support this feature.

Using static queues
Static queues that are shared amongst multiple threads will require you to make some
code changes with regard to how they are accessed to work in a preemptive threading
environment. The problem with queues is that they not only have a queue buffer, but
they also have position information. So if one thread reads from the first element of the
queue and another thread reads from the second element of the queue you could end up
with the following situation:

Thread 1 Thread 2
GET(Queue, 1)

 GET(Queue, 2)

 Assign Queue Data to local var

Assign Queue Data to local var

Thread 1 gets a time slice from the OS and reads from the Queue, then the OS give
thread 2 a time slice before thread 1 makes the assignment of the Queue data to a local
variable. Now both thread 1 and thread 2 ends up reading the information for element 2
of the Queue. To avoid this situation you need to synchronize access to the queue’s
buffer. To keep the time that other threads are locked out while the queue is accessed to
a minimum, you should read from the queue and assign the data from the queue’s buffer
into a threaded memory buffer. See the section below on ICriticalSection for a complete
example showing how to do this.

Queues that are only modified at startup

A common coding technique is to set up a static queue that contains data that does not
change, for example the states of the USA. This is initialized on program startup, and
used throughout the application.

This technique needs to be adjusted to work in a preemptive environment for the reasons
stated above. Luckily, the solution is easy -- put a THREAD attribute on the QUEUE

This means that every thread will have its own instance of the QUEUE. The trouble is
you need to get the data into that queue for every thread. To accomplish this you create
a threaded class to do the copying for you. Below is an example class that will populate
a queue for every thread.

Multi Threaded Programming 12

In the following example QLock is used to make sure that two threads starting up
simultaneously will not interfere with each other. The initial population of the Queue does
not need modification provided it is done on the main program thread before any other
threads are started. The example shown also makes use of the new INSTANCE()
language statement.

GlobalQ QUEUE,THREAD
Data STRING(10)

END

QLock &ICriticalSection
GlobalQueuePopulator CLASS,THREAD
Construct PROCEDURE
Destruct PROCEDURE

END

GlobalQueuePopulator.Construct PROCEDURE
BaseQ &GlobalQ
recs UNSIGNED,AUTO
i UNSIGNED,AUTO

CODE
IF THREAD() <> 1

QLock.Wait()
BaseQ &= INSTANCE(GlobalQ, 1)
recs = RECORDS(BaseQ)
LOOP i = 1 TO recs

GET(BaseQ, i)
GlobalQ.Data = BaseQ.Data
ADD(GlobalQ)

END
QLock.Release()

ELSE
QLock &= NewCriticalSection()

END

GlobalQueuePopulator.Destruct PROCEDURE
CODE

IF THREAD() = 1
QLock.Kill()

END

Multi-Threaded Programming. 13

The WAIT() function

The WAIT function will wait until no other threads want the object. It then takes hold of
the object until a subsequent call to Release. Other threads that call the WAIT function
will wait indefinitely until the other thread releases the object.

Proper programming techniques are essential here to avoiding a “deadly embrace”, or
deadlock.

For example, if you execute the following:

SyncObj1.Wait
SyncObj2.Wait

on one thread and

SyncObj2.Wait
SyncObj1.Wait

on another thread, you are risking a deadlock.

Deadlocks should not be a big issue if you make sure you have a hierarchy of
synchronization objects. Ideally, you only use one object at a time, but if you must use
multiple objects, always acquire a lock on the top synchronization object first, then the
other one. That way, you can never get into the aforementioned scenario.

Multi Threaded Programming 14

Multi-Threaded Programming. 15

Thread Synchronization
The Clarion runtime has a variety of built in interfaces and procedures to help you
maintain synchronization between your threads. The POST and EVENT functions have
always been in the Clarion language for thread synchronization. SUSPEND and
RESUME functions allow you to stop and start another thread, INSTANCE allows you to
get another thread’s contents for a variable and the ICriticalSection, IMutex, ISemaphore
and IReaderWriterLock are interfaces to objects that allow you to synchronize the
processing between multiple threads and also multiple processes.

POST/EVENT

You have always been able to synchronize thread processing by posting an event from
one thread to another using POST() to send the event and EVENT() to receive it. See
the SUSPEND/RESUME section below for an example on using these functions to
synchronize two threads.

SUSPEND/RESUME

SUSPEND allows you to stop another process. RESUME starts that process again. You
can issue multiple SUSPEND calls for a thread. The same number of RESUME calls
must be made for that thread to restart.

The SUSPEND procedure suspends a thread specified by the threadno parameter. If the
threadno parameter is a number of an active thread, its execution is suspended and a
suspending counter is incremented. Each additional SUSPEND statement issued to the
same active thread will increment the suspending counter by one. Therefore, a thread
that has been suspended with a given number of SUSPEND statements can only resume
thread execution when an equal number of RESUME statements has been executed.

EXTREME CAUTION should be taken with MDI programs using SUSPEND, as improper
use can cause program lockups. All MDI child windows have an MDI client window as a
parent, and the MDI client window can send rather than post messages to its child
windows.

For example, calling the inter-thread SendMessage modal function causes the calling
thread (the MDI client window) to suspend activity until the called thread (the MDI Child
window) returns from the call. If the called thread is suspended, we would have a
program lockup.

The SUSPEND and RESUME functions can be very useful for controlling threads that are
CPU intensive. For example, rebuilding keys on a file. Here is an example program that
starts a BUILD of a file and allows the user to pause the build and restart it.

PROGRAM
MAP

DoBuild(STRING)
END

MyFile FILE,DRIVER('TopSpeed'),PRE(F)
Key1 KEY(F:Field1),PRIMARY
Key2 KEY(F:Field2)
Key3 KEY(F:Field3, Field4)

RECORD
Field1 LONG
Field2 STRING(20)
Field3 STRING(20)
Field4 STRING(20)

END
END

Multi Threaded Programming 16

BuilderWin WINDOW('Building File'),AT(,,81,22),GRAY
BUTTON('Suspend Build'),AT(2,3,75,14),USE(?Button)
END

AllDone EQUATE(500H)
Building BYTE
ThreadID SIGNED,AUTO

CODE
OPEN(BuilderWin)
ThreadID = START(DoBuild, , THREAD())
Building = TRUE
ACCEPT

CASE EVENT()
OF AllDone

MESSAGE('Build Complete')
BREAK

OF Event:Accepted
IF ACCEPTED() = ?Button

IF Building
SUSPEND(ThreadID)
?Button{PROP:Text} = 'Resume Building'

ELSE
RESUME(ThreadID)
?Button{PROP:Text} = 'Suspend Build'

END
END

END
END

DoBuild PROCEDURE (parent)
CODE

MyFile{PROP:FullBuild} = TRUE
BUILD(MyFile)
POST(AllDone,,parent)

INSTANCE

In versions of Clarion prior to Clarion 6.0 a variable’s memory location was constant
regardless of which thread accessed the variable. Therefore this code would always
work:

PROGRAM
MAP

AFunc()
END

GlobVar SIGNED,THREAD
Addr LONG

CODE
Addr = ADDRESS(GlobVar,1)
START(AFunc)

AFunc PROCEDURE
CODE

IF Addr <> ADDRESS(GlobVar)
MESSAGE('Panic')

END

Multi-Threaded Programming. 17

This sort of code was used in ABFILE.CLW to make sure the file manager matched the
file it was meant to manage. To allow programs to know what variable they are really
using you can now use the INSTANCE function to get the address of the variable on any
thread, and most importantly on thread 1. The above code would need to be modified as
follows to work in Clarion 6.0.

PROGRAM
MAP

AFunc()
END

GlobVar SIGNED,THREAD
Addr LONG

CODE
Addr = ADDRESS(GlobVar)
START(AFunc)

AFunc PROCEDURE
CODE

IF Addr <> INSTANCE(GlobVar,0)
MESSAGE('Panic')

END

Multi Threaded Programming 18

Multi-Threaded Programming. 19

Synchronization Objects
A Synchronization Object is an object used to control how multiple threads cooperate in a
preemptive environment. There are four Synchronization Objects supplied by the Clarion
runtime: Critical Sections (ICriticalSection), Mutexes (IMutex), Semaphores
(ISemaphore), and Read/Write Locking (IReaderWriterLock).

WARNING:
Due to the fact that Windows uses procedure-modal methods when dealing with
MDI based applications (a program with an APPLICATION window) you must not
have any user input when you have control of a synchronization object with an
MDI based application. This is likely to lead to your application locking up

 If you must have user input, then you must release control of the synchronization
object while waiting for user input.

IcriticalSection and CriticalSection

You use an ICriticalSection when you want only one thread accessing some resource
(e.g. a global, non-threaded variable) at any one time. An ICriticalSection is faster than
an IMutex. If you do not need the extra features of an IMutex, use an IcriticalSection

CriticalSection is a built-in class that allows for easy creation of simple, global
synchronization objects.

Following are a couple of examples that make sure that only one thread is accessing a
static queue at a time.

PROGRAM

! This program assumes that only WriteToQueue and
! ReadFromQueue directly access NonThreadedQueue
! If other code accesses the queue and does not use
! the QueueLock critical section to synchronize
! access to the queue, then all the work inside WriteToQueue
! and ReadFromQueue is wasted

QueueData GROUP,THREAD
ThreadID LONG
Information STRING(20)

END

!Include CriticalSection
INCLUDE(‘CWSYNCHC.INC’),ONCE
MAP

WriteToQueue()
WriteToQueue(*QueueData)
ReadFromQueue()
ReadFromQueue(*QueueData)

END

NonThreadedQueue QUEUE
Data LIKE(QueueData)

END

Multi Threaded Programming 20

QueueLock CriticalSection

CODE

! Do everything

WriteToQueue PROCEDURE()
! Assumes QueueData is used to pass data. This is thread safe
! because QueueData has the THREAD attribute
CODE

QueueLock.Wait() !Lock access to NonThreadedQueue.
NonThreadedQueue.Data = QueueData
GET(NonThreadedQueue, NonThreadedQueue.Data.ThreadId)
IF ERRORCODE()

ADD(NonThreadedQueue)
ELSE

PUT(NonThreadedQueue)
END
QueueLock.Release() !Allow other access to the queue

WriteToQueue PROCEDURE(*QueueData in)
CODE

QueueLock.Wait() !Lock access to NonThreadedQueue.
NonThreadedQueue.Data = in
GET(NonThreadedQueue, NonThreadedQueue.Data.ThreadId)
IF ERRORCODE()

ADD(NonThreadedQueue)
ELSE

PUT(NonThreadedQueue)
END
QueueLock.Release() !Allow other access to the queue

ReadFromQueue PROCEDURE()
! Returns results in QueueData. This is thread safe
! because QueueData has the THREAD attribute
CODE

QueueLock.Wait() !Lock access to NonThreadedQueue.
NonThreadedQueue.Data.ThreadId = THREAD()
GET(NonThreadedQueue, NonThreadedQueue.Data.ThreadId)
QueueData = NonThreadedQueue.Data
QueueLock.Release() !Allow other access to the queue

ReadFromQueue PROCEDURE(*QueueData out)
CODE

QueueLock.Wait() !Lock access to NonThreadedQueue.
NonThreadedQueue.Data.ThreadId = THREAD()
GET(NonThreadedQueue, NonThreadedQueue.Data.ThreadId)
out = NonThreadedQueue.Data
QueueLock.Release() !Allow other access to the queue

Multi-Threaded Programming. 21

The previous example suffers from the problem that anyone can access the global queue
and they are not forced to use the matching QueueLock critical section. The following
example removes this problem by moving the non threaded queue and the critical section
into a static class.

PROGRAM

QueueData GROUP,THREAD
ThreadID LONG
Information STRING(20)

END

NonThreadedQueue QUEUE,TYPE
Data LIKE(QueueData)

END

QueueAccess CLASS
QueueData &NonThreadedQueue,PRIVATE
QueueLock &ICriticalSection,PRIVATE
Construct PROCEDURE
Destruct PROCEDURE
WriteToQueue PROCEDURE
WriteToQueue PROCEDURE(*QueueData)
ReadFromQueue PROCEDURE()
ReadFromQueue PROCEDURE(*QueueData)

END

INCLUDE(‘CWSYNCHC.INC’)
MAP
END

CODE
! Do everything

QueueAccess.Construct PROCEDURE
CODE

SELF.QueueLock &= NewCriticalSection()
SELF.QueueData &= NEW(NonThreadedQueue)

QueueAccess.Destruct PROCEDURE
CODE

SELF.QueueLock.Kill()
DISPOSE(SELF.QueueData)

QueueAccess.WriteToQueue PROCEDURE()
! Assumes QueueData is used to pass data. This is thread safe
! because QueueData has the THREAD attribute
CODE

SELF.QueueLock.Wait() !Lock access to NonThreadedQueue.
SELF.QueueData.Data = QueueData
GET(SELF.QueueData, SELF.QueueData.Data.ThreadId)
IF ERRORCODE()

ADD(SELF.QueueData)
ELSE

PUT(SELF.QueueData)
END
SELF.QueueLock.Release() !Allow other access to the queue

QueueAccess.WriteToQueue PROCEDURE(*QueueData in)
CODE

SELF.QueueLock.Wait() !Lock access to NonThreadedQueue.
SELF.QueueData.Data = in
GET(SELF.QueueData, SELF.QueueData.Data.ThreadId)
IF ERRORCODE()

Multi Threaded Programming 22

ADD(SELF.QueueData)
ELSE

PUT(SELF.QueueData)
END
SELF.QueueLock.Release() !Allow other access to the queue

QueueAccess.ReadFromQueue PROCEDURE()
! Returns results in QueueData. This is thread safe
! because QueueData has the THREAD attribute
CODE

SELF.QueueLock.Wait() !Lock access to NonThreadedQueue.
SELF.QueueData.Data.ThreadId = THREAD()
GET(SELF.QueueData, SELF.QueueData.Data.ThreadId)
QueueData = SELF.QueueData.Data

SELF.QueueLock.Release() !Allow other access to the queue

QueueAccess.ReadFromQueue PROCEDURE(*QueueData out)
CODE
SELF.QueueLock.Wait() !Lock access to NonThreadedQueue.
SELF.QueueData.Data.ThreadId = THREAD()
GET(SELF.QueueData, SELF.QueueData.Data.ThreadId)
out = SELF.QueueData.Data
SELF.QueueLock.Release() !Allow other access to the queue

IWaitableSyncObject

The IWaitableSyncObject is the base interface for IMutex and ISemaphore. This allows
you to create procedures that work with either type of synchronization object without
requiring the procedure to know exactly what type of object it is.

IMutex

An IMutex is used when you want to allow only one thread to access a resource. Just
like an ICriticalSection. However, IMutexes have the added features of being able to not
only synchronize threads, but also synchronize different processes. Thus, if you have a
resource that can only have one process accessing it at one time (e.g. a registration file
that controls access to multiple programs) then you will need to use an IMutex that is
created by calling NewMutex(Name). Name must be the same for all processes that use
it to access the same
set of shared resources.

Another time you would use an IMutex rather than an ICriticalSection is if you do not want
to always lock a thread.

Finally, an IMutex works better than an ICriticalSection in MDI applications as
ICriticalSection objects may cause deadlocks.

Multi-Threaded Programming. 23

A Mutex is a very simple way to limit the user to having one instance of your program
running at any time. The following example shows the use of the Name parameter for
creating a Mutex and the TryWait method to limit your program in this way.

PROGRAM
INCLUDE('CWSYNCHM.INC'),ONCE
MAP
END

Limiter &IMutex,AUTO
Result SIGNED,AUTO
LastErr LONG,AUTO !<< return error

CODE
Limiter &= NewMutex('MyApplicationLimiterMutex',,LastErr)
IF Limiter &= NULL
MESSAGE ('ERROR: Mutex can not be created ' & LastErr)
ELSE
Result = Limiter.TryWait(50)
IF Result <= WAIT:OK
!Do Everything
Limiter.Release() !release
ELSIF Result = WAIT:TIMEOUT
MESSAGE('Timeout')
ELSE
MESSAGE('Waiting is failed ' & Result) !show Result
END
Limiter.Kill()
END

The difference between an IMutex and an ISemaphore is an IMutex can only have one
thread successfully wait. An ISemaphore can have multiple threads successfully wait. It
is also possible to create a semaphore where no thread can successfully wait.

ISemaphore with multiple successful waits

An ISemaphore created with an initial thread count other than zero will allow you to call
Wait that number of times before the wait will lock. For example a semaphore created
with MySem &= NewSemaphore(,2) will allow MySem.Wait() to succeed twice
without any call to MySem.Release(). This is a very easy way to limit the number of
threads you have active at any one time.

If at any time you want to allow more calls to Wait to succeed, you can make additional
Release() calls. The number of extra threads that can be added in this way is limited by
the final parameter of NewSemaphore(). If you do not want to allow this feature, do not
specify the final a maximum.

See the following section for a semaphore that limits the number of threads of a specific
type to one.

Multi Threaded Programming 24

ISemaphore with no waits

A semaphore created with an initial thread count of 0 will block any call to Wait until a
Release is called. You use this type of semaphore to signal another thread that they can
do something. For example, signal a thread to send an email to someone because you
have sold the last candy bar.

Following is an example where the no wait style of semaphore is used to signal a reader
that there is something to read. A multiple successful waits semaphore is used to limit
the number of reader threads to 1.

PROGRAM

INCLUDE('CWSYNCHM.INC')
INCLUDE('CWSYNCHC.INC')
INCLUDE('ERRORS.CLW')
MAP

Reader()
Writer()

END

LogFile FILE,DRIVER('ASCII'),CREATE,NAME('LogFile.txt'),THREAD
RECORD

Line STRING(255)
END

END

AccessToGlobals CriticalSection
NewData Semaphore
LimitReaders &ISemaphore

GlobalStrings QUEUE,PRE(Q)
Data STRING(50)

END

AppFrame APPLICATION('Reader/Writer'),AT(,,400,240),SYSTEM,MAX,RESIZE
MENUBAR

MENU('&File'),USE(?FileMenu)
ITEM('E&xit'),USE(?Exit),STD(STD:Close)

END
MENU('&Launch'),USE(?LaunchMenu)

ITEM('Reader'),USE(?LaunchReader)
ITEM('Writer'),USE(?LaunchWriter)

END
END

END

CODE
LimitReaders &= NewSemaphore(1)
SHARE(LogFile)
IF ERRORCODE() = NoFileErr

CREATE(LogFile)
SHARE(LogFile)

END
IF ERRORCODE()

STOP('Log File could not be opened. Error: ' & ERROR())
END
OPEN(AppFrame)
ACCEPT

IF EVENT() = EVENT:Accepted
CASE ACCEPTED()
OF ?LaunchReader

START(Reader)
OF ?LaunchWriter

Multi-Threaded Programming. 25

START(Writer)
END

END
END
! Test to see if Reader is still alive
IF LimitReaders.TryWait(1) = WAIT:TIMEOUT

!It is, so lets kill it
AccessToGlobals.Wait()
Q:Data = 'exit'
ADD(GlobalStrings)
AccessToGlobals.Release()
NewData.Release() ! Release the reader that is waiting
LimitReaders.Wait() ! Wait for thread to terminate
LimitReaders.Release()

END
LimitReaders.Kill()

Reader PROCEDURE
CODE

! Check that there are no other readers
IF LimitReaders.TryWait(1) = WAIT:TIMEOUT

MESSAGE('Only One Reader Allowed at a time. ' &|
'Kill reader by typing ''exit'' in a sender')

RETURN
END
! If TryWait succeeds, then we have control of
! the LimitReaders Semaphore
SHARE(LogFile)

l1 LOOP
NewData.Wait() !Wait until a writer signals that there is some data
AccessToGlobals.Wait()
LOOP

GET(GlobalStrings,1)
IF ERRORCODE() THEN BREAK.
IF Q:Data = 'exit' THEN

FREE(GlobalStrings)
AccessToGlobals.Release()
BREAK l1

ELSE
LogFile.Line = Q:Data
ADD(LogFile)

END
DELETE(GlobalStrings)

END
AccessToGlobals.Release()

END
CLOSE(LogFile)
LimitReaders.Release() !Allow a new Reader
RETURN

Multi Threaded Programming 26

Writer PROCEDURE

LocString STRING(50)
Window WINDOW('Writer'),AT(,,143,43),GRAY

PROMPT('Enter String'),AT(2,9),USE(?Prompt1)
ENTRY(@s50),AT(45,9,95,10),USE(LocString)
BUTTON('Send'),AT(2,25,45,14),USE(?Send)
BUTTON('Close'),AT(95,25,45,14),USE(?Close)

END

CODE
OPEN(Window)
Window{PROP:Text} = 'Writer ' & THREAD()
ACCEPT

IF EVENT() = EVENT:Accepted
CASE ACCEPTED()
OF ?Send

AccessToGlobals.Wait()
Q:Data = LocString
ADD(GlobalStrings)
AccessToGlobals.Release()
NewData.Release() ! Release the reader that is waiting

OF ?Close
BREAK

END
END

END
RETURN

IReaderWriterLock

An IReaderWriterLock can be used to allow multiple threads to read from a global
resource, but for only one thread to write to it. No reader is allowed to read the resource
if someone is writing and no one can write to the resource if anyone is reading.

An example of this would be where the user specifies screen colors. This is stored in an
INI file and read on startup. As the user can change these at any time, the code that
changes the values needs to obtain a write lock and all those that read the color
information need to obtain a read lock.

Static queues cannot be synchronized via an IReaderWriterLock because reading a
queue also modifies its position. All queue access must be considered to cause writes.

Here is some simple code that reads and writes to some static variables. To make sure
that no one accesses the statics outside the locking mechanism, the variables are
declared as PRIVATE members of a static class.

PROGRAM

INCLUDE('CWSYNCHM.INC'),ONCE
MAP
END

GlobalVars CLASS
AccessToGlobals &IReaderWriterLock,PRIVATE
BackgroundColor LONG,PRIVATE
TextSize SHORT,PRIVATE
Construct PROCEDURE
Destruct PROCEDURE
GetBackground PROCEDURE(),LONG
PutBackground PROCEDURE(LONG)
GetTextSize PROCEDURE(),SHORT
PutTextSize PROCEDURE(SHORT)

END

Multi-Threaded Programming. 27

CODE

GlobalVars.Construct PROCEDURE
CODE

SELF.AccessToGlobals &= NewReaderWriterLock()

GlobalVars.Destruct PROCEDURE
CODE

SELF.AccessToGlobals.Kill()

GlobalVars.GetBackground PROCEDURE()
ret SHORT,AUTO
Reader &ISyncObject
CODE

! You need to copy the static variable
! to somewhere safe (A local variable) which
! can then be returned without fear that
! another thread will change it
Reader &= SELF.AccessToGlobals.Reader()
Reader.Wait()
ret = SELF.Background
Reader.Release()
RETURN ret

GlobalVars.PutBackground PROCEDURE(SHORT newVal)
Writer &ISyncObject
CODE

Writer &= SELF.AccessToGlobals.Writer()
Writer.Wait()
SELF.Background = newVal
Writer.Release()

GlobalVars.GetTextSize PROCEDURE()
ret SHORT,AUTO
Reader &ISyncObject
CODE

! You need to copy the static variable
! to somewhere safe (A local variable) which
! can then be returned without fear that
! another thread will change it
Reader &= SELF.AccessToGlobals.Reader()
Reader.Wait()
ret = SELF.TextSize
Reader.Release()
RETURN ret

GlobalVars.PutTextSize PROCEDURE(SHORT newVal)
Writer &ISyncObject
CODE

Writer &= SELF.AccessToGlobals.Writer()
Writer.Wait()
SELF.TextSize = newVal
Writer.Release()

CriticalProcedure

The CriticalProcedure class is a very easy way to use an ISyncObject interface. If you
create a local instance of a CriticalProcedure and initialize it, then it will look after the
waiting for a lock and releasing the lock on the ISyncObject for you. The main advantage
of using the CriticalProcedure class to handle the locking and releasing for you is that if
you have multiple RETURN statements in your procedure, you do not have to worry
about releasing the lock before each one. The destructor of the CriticalProcedure will
handle that for you.

Multi Threaded Programming 28

For example, the following code

PROGRAM
MAP
WRITETOFILE()
END

INCLUDE('CWSYNCHM.INC')

ERRORFILE FILE,DRIVER('ASCII'),PRE(EF)
RECORD RECORD
LINE STRING(100)

END
END

LOCKER &ICRITICALSECTION

CODE
Locker &= NewCriticalSection()
ASSERT(~Locker &= Null)
!do everything

WriteToFile PROCEDURE()
CODE

Locker.Wait()
OPEN(ErrorFile)
IF ERRORCODE()

Locker.Release()
RETURN

END
SET(ErrorFile)
NEXT(ErrorFile)
IF ERRORCODE()

Locker.Release()
RETURN

END
EF:Line = ‘Something’
PUT(ErrorFile)
CLOSE(ErrorFile)
Locker.Release()

Can be shortened, and made less error prone, to this:

PROGRAM
MAP
WRITETOFILE()
END

INCLUDE('CWSYNCHM.INC')

ERRORFILE FILE,DRIVER('ASCII'),PRE(EF)
RECORD RECORD
LINE STRING(12)

END
END

LOCKER &ICRITICALSECTION

CODE
Locker &= NewCriticalSection()
ASSERT(~Locker &= Null)
!do everything

WriteToFile PROCEDURE()

Multi-Threaded Programming. 29

CP CriticalProcedure

CODE
CP.Init(Locker)
OPEN(ErrorFile)
IF ERRORCODE()

RETURN
END
SET(ErrorFile)
NEXT(ErrorFile)
IF ERRORCODE()

RETURN
END
EF:Line = ‘Something’
PUT(ErrorFile)
CLOSE(ErrorFile)

Multi Threaded Programming 30

Multi-Threaded Programming. 31

Summary of Synchronization Objects
Properties and Methods
The following section provides a quick summary description of the common properties
and methods used with the Synchronization Objects discussed previously.

Prototypes
Note: The following prototypes can be found in CWSYNCHM.INC

Get Mutex

GetMutex(name, <error>)

Purpose:
Returns a reference to an IMutex for a Mutex that has already been created with
NewMutex()

name A string constant or variable that names the IMutex object.

err A LONG variable that returns any operating system error.

If the Mutex has not been previously created, a NULL is returned.

Example:

MySem &IMutex
CODE
MySem &= GetMutex('MyApp_RequestServer')
IF MySem &= NULL

MESSAGE('Server not running')
RETURN(False)

END

Multi Threaded Programming 32

Get Semaphore

GetSemaphore(name, <error>)

Purpose:
Returns a reference to an ISemaphore for a semaphore that has already been created
with NewNamedSemaphore()

name A string constant or variable that names the ISemaphore object.

err A LONG variable that returns any operating system error.

If the semaphore has not been previously created, a NULL is returned.

Example:

MySem &ISemaphore
CODE
MySem &= GetSemaphore('MyApp_RequestServer')
IF MySem &= NULL

MESSAGE('Server not running')
RETURN(False)

END

NewCriticalSection
NewCriticalSection ()

Purpose:
Returns a reference to a new ICriticalSection

Multi-Threaded Programming. 33

NewMutex

NewMutex (),
NewMutex (name, owner, <error>)

Description:
Returns a reference to a new IMutex. If the Mutex could not be created, a Null value will
be returned. Check the Error parameter for the reason. (Some reasons for failure can be
that another object (e.g., semaphore) exists with the same name, or a different user has
created the object (e.g., security error)).

Purpose:

name A string constant or variable that names the new IMutex object. If a name
parameter is not supplied, NewMutex is used for synchronizing threads
only. If a name is supplied, NewMutex can be used to synchronize
multiple processes rather than just the threads within a process.

owner A BYTE variable or constant that specifies the initial owner of the Mutex.
If this value is TRUE, and the caller creates the Mutex, the calling thread
obtains ownership of the Mutex. This is the equivalent of calling
Mutex.Wait immediately after NewMutex(). If the caller did not create
the mutex, then the calling thread does not obtain ownership of the
Mutex. To determine if the caller created the Mutex, you need to check
the value of Err

error A LONG variable or constant that returns any operating system error.
Err = ERROR_ALREADY_EXISTS (183) indicates that the caller did not
create the Mutex (a handle is still returned but owner is ignored) because
another process or thread has already created the Mutex.

Multi Threaded Programming 34

NewNamedSemaphore

NewNamedSemaphore (name, initial , max , <error>)

name A string constant or variable that names the new ISemaphore object.

initial A LONG variable or constant that indicates the maximum number of
threads that can access the semaphore. The default value is zero.

max A LONG variable or constant that indicates the maximum number of
threads that can simultaneously access the semaphore.

error A LONG variable that returns any operating system error. An
ERROR_ALREADY_EXISTS (183) error indicates that another process
or thread has already created the Mutex.

Purpose:
Returns a reference to a new ISemaphore. This semaphore can be used for
synchronizing threads or processes. If an ERROR_ALREADY_EXISTS (183) is posted to
error, then the Semaphore already existed, and initial and max are ignored.

Using the default settings, NewNamedSemaphore will create a semaphore that no
threads can wait on until someone calls a Release.

NewReaderWriterLock
NewReaderWriterLock (WritersHavePriority)

Purpose:
Returns a reference to a new IreaderWriterLock

WritersHavePrioruty A BYTE variable or constant that sets priority of the Writer.

If WritersHavePriority is TRUE, a Writer waiting for ownership of the
ReaderWriterLock object will take priority over any Readers that are
waiting for ownership.

If WritersHavePriority is FALSE, all Readers waiting for ownership of the
ReaderWriterLock object will take priority over any Writer waiting for
ownership.

Multi-Threaded Programming. 35

NewSemaphore

NewSemaphore (initial , max)

Purpose:
Returns a reference to a new ISemaphore

initial A LONG variable or constant that indicates the maximum number of
threads that can access the semaphore. The default value is zero.

max A LONG variable or constant that indicates the maximum number of
times that the semaphore can be owned. It is a maximum resource
count.

If initial is non-zero, then this indicates how many threads can initially and simultaneously
have access to the semaphore

max indicates the maximum number of threads that can simultaneously access the
semaphore. By default, this will create a semaphore that no threads can wait on until a
Release is called.

Multi Threaded Programming 36

Properties and Methods Summary

ICriticalSection.Wait() and IMutex.Wait()

Implementation:

The first time either method is called, the calling thread gains control of the
synchronization object. Any other threads that call Wait will wait until Release is called.

A thread can call Wait multiple times. Release() must be called once for each call to
Wait.

ICriticalSection.Release() and IMutex.Release(count)

Implementation:
Each method decrements the counter of Wait calls. When the Wait count reaches zero,
the synchronization object is released for any other thread to acquire control with a call to
Wait.

Count specifies to release a given number of times up to the number of previously
successful wait calls.

Kill()

Implementation:
Releases all resources allocated when the target synchronization object was created with
the appropriate NEW function.

ISemaphore.Wait()

Implementation:

This method will wait until shared control of the synchronization object is allowed. Once
this occurs, Wait will take partial control of the synchronization object.

A thread can call Wait() multiple times. Release() must be called once for each call to
Wait.

ISemaphore.TryWait (ms) and IMutex.TryWait (ms)

TryWait PROCEDURE(LONG milliseconds),SIGNED,PROC

Implementation:

Attempts to gain control of the synchronization object within the ms parameter time in
milliseconds. Return value is a signed EQUATE with one of the following results:

WAIT:OK
Control was acquired

WAIT:TIMEOUT
Control could not be acquired within the time limit

Multi-Threaded Programming. 37

WAIT:NOHANDLE
Something is seriously wrong

WAIT:FAILED
Something else is seriously wrong

WAIT:ABANDONED
Another thread that had control of the synchronization object has ended without calling
release. The caller now has the control the same way as if a WAIT:OK was returned.
This is more of a warning indicating a flaw in the program logic.

ISemaphore.Release()

Implementation:
Decrements the counter of Wait() calls. When the Wait() count reaches zero, the
synchronization object is released for any other thread to acquire control with a call to
Wait().

If more Release() calls are made than Wait() calls, the total number of threads allowed to
control the semaphore is incremented up to the maximum parameter of NewSemaphore.

Count specifies to release a given number of times up to the number of previously
successful wait calls.

ISemaphore.Handle() and IMutex.Handle()

For internal use only

IReaderWriterLock.Reader()

Purpose:
Returns a synchronization object that can be used to lock out writers. Any successful call
to Reader.Wait() will stop any attempt at Writer.Wait() until Reader.Release() is called.

IReaderWriterLock.Writer()

Purpose:
Returns a synchronization object that can be used to lock out any other writer and all
readers. Any successful call to Writer.Wait() will stop any attempt at Writer.Wait() and
Reader.Wait() until Writer.Release() is called

CriticalProcedure.Init (syncObj)

Purpose:
Calls syncObj.Wait(). syncObj.Release is called by the destructor.

Multi Threaded Programming 38

Multi-Threaded Programming. 39

Conclusion

Clarion 6 makes it very easy to take advantage of preemptive threads in your
applications. All template generated code uses threaded objects to ensure proper
behavior. When you embed code that works with threaded data you don’t have any
worries, but when you access shared non-threaded data you should use a
synchronization object.

	Overview
	What is a threading model?
	Threads Pre-Clarion 6
	Threads in Clarion 6

	Code differences between Clarion 5.5 and Clarion 6
	THREAD attribute on Classes
	THREAD and EXTERNAL
	ADDRESS of a threaded variable
	LOCKTHREAD, UNLOCKTHREAD and THREADLOCKED

	Coding techniques for Preemptive multi-threading
	Don’t Use Static Variables
	Initialize Once/Read Many
	Non Queue static variables
	Static Queues that are initialized at startup
	Synchronize Access
	Common Coding Practices that need to change
	Using static variables to pass parameters
	Using static queues
	Queues that are only modified at startup

	The WAIT() function

	Thread Synchronization
	POST/EVENT
	SUSPEND/RESUME
	INSTANCE

	Synchronization Objects
	IcriticalSection and CriticalSection
	IWaitableSyncObject
	IMutex
	IReaderWriterLock
	CriticalProcedure

	Summary of Synchronization Objects Properties and Methods
	Prototypes
	Get Mutex
	Get Semaphore
	NewCriticalSection
	NewMutex
	NewNamedSemaphore
	NewReaderWriterLock
	NewSemaphore
	ICriticalSection.Wait() and IMutex.Wait()
	ICriticalSection.Release() and IMutex.Release(count)
	Kill()
	ISemaphore.Wait()
	ISemaphore.TryWait (ms) and IMutex.TryWait (ms)
	ISemaphore.Release()
	ISemaphore.Handle() and IMutex.Handle()
	IReaderWriterLock.Reader()
	IReaderWriterLock.Writer()
	CriticalProcedure.Init (syncObj)

	Conclusion

