

Migrating from Prior Versions 2

COPYRIGHT 1994-2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity
Incorporated. It may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
consent, in writing, from SoftVelocity Incorporated.

This publication supports Clarion. It is possible that it may contain technical or
typographical errors. SoftVelocity Incorporated provides this publication “as is,” without
warranty of any kind, either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:
SoftVelocity is a trademark of SoftVelocity Incorporated.
Clarion is a trademark of SoftVelocity Incorporated.
Btrieve is a registered trademark of Pervasive Software.
Microsoft , Windows , and Visual Basic are registered trademarks of Microsoft
Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (1103)

Migrating from Prior Versions 3

Contents:
How to Migrate to Clarion 6 5

New fully pre-emptive threading model .. 6
General Recommendations.. 6
Launching a thread - behind the scenes .. 7

Moving from Clarion DOS versions .. 8
Tips and Techniques .. 8

Dictionary / Data tables.. 8
Applications.. 8

Projects from prior Clarion for Windows versions... 9
Dictionaries from prior Clarion for Windows versions... 10

Migrating Large Dictionaries and Data Paths... 10
Applications from prior Clarion for Windows versions .. 11

Dictionary Class.. 11
Dockable toolbar window with the MDI attribute .. 12
Global EIP Classes .. 12
Global Pools and GROUPs .. 13
Heap Overflow Error when migrating applications ... 14
INI Files – Migration Tip ... 14
Internet Connect / Web Builder / ClarioNET .. 14
Large WINDOW structures... 14
PVCS version control ... 15
RTF Control (Rich Text) ... 16
TXA Comparison Techniques .. 16
Use of ABC Classes with Clarion template based applications 16
Version specific image references ... 16

Advanced Topics 17
DLL Initialization.. 17

Initialization Schema .. 17
Compiler Initialization ... 18
Special Considerations for a one-piece (single) executable 18
Considerations when working with OLE objects .. 20

Use of Error Managers during DLL Initialization ... 21
Embedding code when closing a Process procedure... 22
Language / Runtime Library ... 23

POINTER(File) and POSITION(File).. 23
ISAM File Access Performance.. 23
Change of EVALUATE Error Codes... 23
LoadImage() ... 23
Deprecated ... 23

Migrating from Prior Versions 4

Clarion 6 Template Changes from Prior Clarion for Windows Versions 25
ABC... 25
Clarion... 25
3rd party template/library considerations.. 25

Enhancing Your Applications with New Clarion 6 Features 27
Global Application options (in appearance order) .. 27
Business Rules Manager .. 27
Client side triggers .. 27
Business Graphing.. 28
Data exchange using XML.. 28
Style Management .. 28
Report Output Generators .. 28

New and Changed Features Matrix 29

Migrating from Prior Versions 5

How to Migrate to Clarion 6
Tips on an efficient migration process, proven methods and spectacular results.
Find out how it's done.

This online document summarizes a wide variety of migration issues that you may
encounter (or need to be aware of) when migrating applications from prior versions to
Clarion 6. Please refer to the Contents page for a complete list of all topics.

For most applications there will be little or no required changes. In this document, we’ll
point out the changes that can impact migration and we’ll make recommendations for the
changes you can make to ensure an easy migration cycle.

Migrating from Prior Versions 6

New fully pre-emptive threading model
Clarion 6 introduces a new, and more powerful, thread support in the templates and
runtime library.

The new thread model now uses preemptive threads. Typical Clarion programs won’t
require more than a "compile and link" to get the benefits of the new thread model.

For more detailed information, see the Multi-Threaded Programming PDF

General Recommendations
1. Use the THREAD attribute on global Data (file, class, group, queue or simple types).

2. Use the THREAD attribute on module Data (file, class, group, queue or simple types).

3. Avoid the use of static variables when they can be accessed from multiple threads
simultaneously, or make them thread safe. Refer to the Multi Threaded Programming PDF
for detailed information on this process.

4. Don't pass the address of anything within a START command - this was a common trick
used by people to communicate between threads.

5. When the THREAD attribute is used with a FILE structure, it is important to remember that
the record buffer and other attributes using variables outside of the record buffer (OWNER,
NAME, DRIVER) are all threaded. It is permissible to use non-threaded variables for certain
attributes of threaded files, but never use a threaded variable for attributes of files that are
declared as non-threaded (no THREAD attribute).

Migrating from Prior Versions 7

Launching a thread - behind the scenes
With the advent of two new language statements supporting thread management in
Clarion 6 (SUSPEND and RESUME), it is important to understand that there are a few
things that are initialized and executed behind the scenes by the runtime library each
time a thread is STARTed.

Here is the sequence of actions performed by the launching thread and the runtime
library(RTL) each time a thread is STARTed:

1. Launching Thread executes START(ThreadProc)

2. RTL creates the physical thread in suspended state.

3. RTL resumes the launched thread created in step 2.

4. RTL sets an internal semaphore to a non-signaled state.

5. Launching Thread waits for the semaphore from the RTL.

6. RTL creates instances of threaded variables and calls initialization routines for them.

7. RTL sets the semaphore to signaled state.

8. RTL suspends the launched thread creates in step 2.

9. Launching Thread continues program execution.

The launching thread will continue until it encounters the ACCEPT statement. Upon
execution of the ACCEPT statement:

10. RTL resumes the launched thread.

11. RTL calls the entry point of the ThreadProc.

Therefore, a launched thread will remain suspended until the next call to ACCEPT from
the launching thread. Only initialization and constructors for threaded variables are
executed.

The use of RESUME with the START statement immediately executes Step 10 above
without waiting for the call to ACCEPT. In other words, use of RESUME with START
does not depend on the ACCEPT statement for resuming thread execution. This allows a
new thread to be started from windowless threads.

The same can be said by using the SUSPEND statement immediately after START, e.g.,
SUSPEND immediately stops thread execution and does not wait for the ACCEPT loop.

Migrating from Prior Versions 8

Moving from Clarion DOS versions
Tips and Techniques

The following techniques have been used to maximize the amount of work performed in
prior DOS versions, while minimizing the amount of time required when converting to a
Windows version of your application. Always make an archive copy of your project
files and data before attempting a conversion.

Dictionary / Data tables

• Use existing data files to reconstruct a dictionary by importing them and establishing the
keys / relationships as necessary.

Applications

• Create a new application from your reconstructed dictionary file utilizing the application
wizard.

• Open your Clarion DOS IDE and application, cutting and pasting the embed code to the
appropriate locations.

• A REPORT structure is never the default target for graphic primitive procedures.
Therefore, if your report is using these procedures to draw graphics to a specific band of
a report, use the SETTARGET statement and specify the band in the second parameter.

Example: SETTARGET(Report,?PageHeader)

See the SETTARGET statement in the Language Reference Manual for more information.

Migrating from Prior Versions 9

Projects from prior Clarion for Windows versions
All projects compiled in Clarion 6 are 32-bit. Prior to loading older project files (.PR or
.PRJ) into the Clarion 6 environment, load them into your favorite text editor and make
sure that the following pragma entry is set properly:

 #system win32

You can also load the project into the project editor. When you press OK to close the
project, the #system pragma will be automatically updated.

Migrating from Prior Versions 10

Dictionaries from prior Clarion for Windows versions
Migrating Large Dictionaries and Data Paths

One of the nice new features of this release is a new system property:
SYSTEM{PROP:DataPath}.

With this, you can set your data file names in the dictionary to have no path in them, and
then set the data path once in the program start up. From there, each file will inherit the
common data path.

With that in mind, dictionaries created in a prior version will continue to work. The only
issue is where file names and structures are stored exclusively in a DLL and referenced
from the EXE. In prior versions, you had to define these objects in the EXE as
EXTERNAL, and did not care if the files in this object were threaded or not. In this
release, any objects that contain threaded data must add the THREAD attribute to the
object definition.

Mixing threaded and non-threaded data in an object is dangerous and likely to cause
problems.

Migrating from Prior Versions 11

Applications from prior Clarion for Windows versions
Dictionary Class
The new Clarion threading model dictates that the existing File and Relation Managers use
threaded objects (i.e. a new instance on every thread).

One of the effects of this is that the traditional ABC code that initializes both File and Relation
Managers (contained in the DctInit generated procedure) now has to be executed whenever a
new thread is started. Likewise, the Managers’ kill code (traditionally contained in DctKill) must be
called whenever a thread is terminated.

To facilitate this, a small globally defined class called Dictionary will be generated into
every ABC template based application that does not have its global data defined external
to the application. (i.e. the File and Relation managers compiled locally). The Dictionary
object contains only construct and destruct methods but, more important, it is a threaded
object.

Example:

Dictionary CLASS,THREAD
Construct PROCEDURE
Destruct PROCEDURE

END

Dictionary.Construct PROCEDURE
CODE
DctInit()

Dictionary.Destruct PROCEDURE
CODE
DctKill()

This means that the Construct method will be called whenever a new thread comes into existence
and the Destruct method will be called whenever a thread is terminated. The constructor calls
DctInit and the destructor calls DctKill. Therefore, DctInit is called whenever a thread is started
and DctKill is now called whenever a thread is terminated; thus ensuring that threaded File and
Relation managers are created and destroyed correctly.

Migrating from Prior Versions 12

Dockable toolbar window with the MDI attribute
In Clarion 6, the MDI attribute is no longer permitted on any toolbar window that is dockable
(windows with the DOCK and TOOLBOX attributes).

Global EIP Classes

Some applications that use edit-in-place in prior versions will migrate to Clarion 6 with the
EditClass defined as the default edit-in-place class. In Clarion 6, this class needs to be changed
to the EditEntryClass. To do this, access the Global Properties in the Application Generator. In
the Classes tab, press the Browser button and change the default edit in place class from
EditClass to EditEntryClass (see below).

Migrating from Prior Versions 13

Global Pools and GROUPs
In Clarion versions prior to 5.5H, if a GROUP were defined in the dictionary’s Global Pool without
using a prefix, the prefix of the Global Pool (which is required) would be used in its place.

For example:

GLOB:GROUPONE GROUP,PRE() !`GLOB’ is the prefix of the Global Pool
GLOB:STRING1 STRING(20)
GLOB:STRING2 STRING(20)

END

With Clarion 6, this same group will be generated without the Global prefix, and would appear as
follows:

GLOB:GROUPONE GROUP,PRE() !`GLOB’ is the prefix of the Global Pool
STRING1 STRING(20)
STRING2 STRING(20)

END

Since it is possible to define multiple Global Pools in your dictionary, a second Global Pool could
be created as follows:

GLO2:GROUPTWO GROUP,PRE() !`GLO2’ is the prefix of the 2nd Global Pool
GLO2:STRING1 STRING(20)
GLO2:STRING2 STRING(20)

END

Which in Clarion 6 will be generated as follows:

GLO2:GROUPTWO GROUP,PRE() !`GLO2’ is the prefix of the 2nd Global Pool
STRING1 STRING(20)
STRING2 STRING(20)

END

This will cause the compiler to generate “Duplicate Label” warnings when migrating your
applications.

The solution to this is to add a prefix to each of your GROUPs that share common label names
across Global Pools.

For example:

GLOB:GROUPONE GROUP,PRE(GLOB) !`GLOB’ is the prefix of the 1st GROUP
STRING1 STRING(20)
STRING2 STRING(20)

END

GLO2:GROUPTWO GROUP,PRE(GLO2) !`GLO2’ is the prefix of the 2nd GROUP
STRING1 STRING(20)
STRING2 STRING(20)

END

Migrating from Prior Versions 14

Heap Overflow Error when migrating applications
During the early testing phase of Clarion 6, it was noted that some applications would post a
“Heap Overflow” error when attempting to load applications of prior Clarion versions into the
Clarion 6 IDE.

In nearly all cases, the solution is to first export the application to a text file (TXA), and then
import it as text into the Clarion 6 environment.

INI Files – Migration Tip
If an application you are migrating to Clarion 6 is dependent on one or more INI files (either by
template or custom control), make sure to check your INI entries after converting for possible
references to obsolete version information and/or search paths.

Internet Connect / Web Builder / ClarioNET
The Internet Connect Application Server and “linked-in broker” are no longer supported. The
executable Internet Connect Application Broker has been enhanced to support the Clarion based
thin-client TCP/IP solutions.

Large WINDOW structures
In each control that is populated in a WINDOW structure in Clarion 6, there is now extra
information for each control that takes about 10 extra bytes per control. This may cause some
large and complex windows to not import properly from prior versions.

You may need to shorten some use variables or remove controls and create/destroy them at
runtime or redesign the window to make it a bit more efficient.

Migrating from Prior Versions 15

PVCS version control
The PVCS Version Control interface has been replaced by a much more flexible version
control interface. The new interface permits the use of any command-line driven system
of your choice.

• Previous versions of Clarion Enterprise shipped with a DLL version of PVCS and are not
supported via the new interface. If you own a PVCS retail license you can use the
command line version and your existing projects will be accessible from the new
interface.

• RCS/CVS - http://www.componentsoftware.com/

o You can locate information on migrating your PVCS source files at this location:
http://www.componentsoftware.com/Products/RCS/faq/index.html

• How-to’s

o http://tldp.org/HOWTO/CVS-RCS-HOWTO.html

o http://tldp.org/HOWTO/RCS.html

o http://cvsbook.red-bean.com/

Migrating from Prior Versions 16

RTF Control (Rich Text)
The RTFControl has been replaced by the RTFTextControl, supporting templates and classes.
The RTFTextControl template works with the standard Clarion TEXT control which has a new
RTF attribute. All existing applications will be required to have the previous template version
removed and the new one populated. Additionally any code that specifically refers to the
declared object, methods or code templates will need to be reviewed to determine necessary
changes. Please refer to help system Templates by Topic, RTFTextControl.

When using the new RTF control for existing plain text, loading the plain text into the RTF control,
and making any change, will cause the plain text to be converted and saved as Rich Text.

TXA Comparison Techniques
If you are having troubles with applications converted to Clarion 6 using DLLs, there is a
possibility that the DLL that was converted contained hidden information (like a third party
library) that was not detected by the conversion process.

To confirm this, try the following:

1. Export the old DLL application to TXA format (Export Text)

2. Export a new Clarion 6 DLL application to TXA format (Export Text)

3. Next, compare the TXA's up through the first procedure (i.e., the program/global
area). This might give you some ideas regarding information converted from an old
application that may not be compatible, or does not exist in Clarion 6.

Use of ABC Classes with Clarion template based applications

This release of Clarion includes many new template features that are now supported in the
Clarion template chain, but rely on the use of the ABC Library Classes. Examples of this are the
support for RTF Text Controls, Pop-up Calendars, and the new enhanced edit-in-place.

The linking of the ABC class support requires the following default pragmas settings to be
included in the project system:

ABCDllMode=>0
ABCLinkMode=>1

Template support to automatically include these pragmas can be found in the Global Properties
Classes tab by checking the Enable the use of ABC Classes check box.

Version specific image references
Loading a C55 application into Clarion 6 that uses the default splash screen will produce
a link error that says 'C55.GIF' not found. The best workaround is to simply change the
icon, or just delete the old splash procedure and add a new one using the Clarion 6
default. This may occur for other image resources as well, we will however attempt to
resolve this wherever possible.

Migrating from Prior Versions 17

Advanced Topics
DLL Initialization

Enforcement of threaded variables in multi-DLL applications is critical in Clarion 6. In
older versions, if your file definitions are set to "open in current thread" in the dictionary
(the THREAD attribute is set in the FILE definition), your file definitions in your DLLs must
match that definition. To ensure this, examine each application’s global file control
section, and make sure that all of your files are set to 'ALL THREADED' in the Threaded
drop list.

You CANNOT mix thread and non-threaded attributes on files in a multi-dll
application. Although this programming style was permitted in earlier versions of Clarion,
the initialization of preemptive threads will not allow this in Clarion 6.

You can use either setting, thread or non-threaded, as long as it’s consistent across all
DLLs and your executable.

With the advent of the new threading model in this release, it is important to understand
how threaded and non-threaded data elements are initialized, and in what specific order.

Initialization Schema
Prior to this release, data elements in respective modules were initialized in the following
schema.

- non-threaded data of module1
- non-threaded data of module2
- ...
- non-threaded data of modulen

- threaded data of module1
- threaded data of module2
- ...
- threaded data of modulen

With the current release, the data initialization schema is as follows:

- non-threaded data of module1
- threaded data of module1
- non-threaded data of module2
- threaded data of module2
- ...
- non-threaded data of modulen
- threaded data of modulen

This means that a problem could arise if you attempt to access a threaded file from the
constructor of a non-threaded class module. The initialization sequence for objects has
changed so that non-threaded objects within a module are initialized before threaded
ones.

There are two solutions to overcome this issue.

1. Make the threaded file non-threaded, or:

Migrating from Prior Versions 18

2. Move the definition for the class into a different module and set its initialization priority
(init_priority) to a number less than the default initialization of 5.

PRAGMA ('define(init_priority=>4)') !add to the top of the module

Compiler Initialization
The compiler initialization sequence of data, and calls to constructors is as follows:

1) Patching for threaded data in module-1

2) Patching of non-threaded data in module-1

3) Constructors of non-threaded data in module-1

4) Constructors of threaded data in module-1

.... repeat (1)-(4) for additional modules.

Steps (1) and (2) can be required if FILEs or VIEWs use strings that are imported from
external DLLs.

Special Considerations for a one-piece (single) executable
A one-piece executable is defined as a project that has been linked into a single, stand-
alone executable. The Clarion runtime library and all of the application’s procedure calls
and libraries are linked into a single file.

Callback functions are a standard part of Windows programming in most programming
languages. A callback function is a PROCEDURE that you (the programmer) write to
handle specific situations that the operating system deems the programmer may need to
deal with. A callback function is called by the operating system whenever it needs to pass
on these situations. Therefore, a callback function does not appear to be part of the logic
flow, but instead appears to be separate and "magic" without any logical connection to
other procedures in your program.

Callbacks are valid when used in one-piece executables (EXEs), but there is a special
case which must be handled in a different manner.

Here is the case:
If the EXE makes some call to the Operating System, the Operating System starts a new
thread inside this call, and then calls to a passed callback function. Using this program
design, the one-piece EXE must be converted to a DLL linked in local mode, and a
starter EXE must be created, using an External link to the DLL entry point that is used to
load and run the one-piece DLL.

The following approach demonstrates how this is done.

1. The one-piece EXE must be converted to a DLL linked in local mode.

2. The Local mode DLL must export the name of the entry point's procedure and
the following names from the RTL:

Migrating from Prior Versions 19

__checkversion
__sysstart
__sysinit
_exit
Cla$code
Cla$init
Wsl$Closedown

Here is an example of the export file (EntryPoint is the procedure entry into the DLL)

EXPORTS
EntryPoint@F @?
__checkversion @?
__sysstart @?
__sysinit @?
_exit @?
Cla$code @?
Cla$init @?
Wsl$Closedown @?

In this example, the entry point procedure name in the Local DLL is: "EntryPoint"

Use the Inside the Export List Global Embed to add to your export list within the
application.

3. The starter EXE must use External link mode. The source is written so that it just
calls the DLL's entry point procedure.

Example starter EXE code:

PROGRAM

MAP
MODULE('')

EntryPoint()
END

END

CODE
EntryPoint

Migrating from Prior Versions 20

Considerations when working with OLE objects
There are several potential problems if you CREATE an OLE control in the window for
one thread and attempt to work with it from a different thread. This is because the
Windows Operating System can load additional DLLs into process memory on creation of
an OLE object. This creates several potential problems:

The initialization code for the OLE control can be executed in the context of the current
thread and the initialized data would not be available for the control when it is running in
the thread of its host window.

Extra DLLs can be unloaded from the process memory after closing the thread that
created the OLE control, so the Virtual Memory Tables of interfaces used by the OLE
control will point to deallocated memory. As a result, it's impossible to guarantee correct
operation of OLE controls if they are created in a window other than the current thread.

Example:

WinOne WINDOW,AT(0,0,200,200)
OLE,AT(10,10,160,100),USE(?OLEObject),CREATE('Excel.Sheet.5')
END
END

Migrating from Prior Versions 21

Use of Error Managers during DLL Initialization
A change has also been made in the DLL initialization of ABC-based applications. During
initialization, the DLL uses a LocalErrors Class rather than the Global executable's
GlobalErrors Class.

For example, in a multi DLL application and during initialization of the DLL containing
Global data, if errors need to be posted to the error manager, they will be posted to the
DLL's local error manager (LocalErrors) instead of the application’s global error manager.
The reason for this is that the DLL's error manager is not set to use the application’s error
manager until after initialization of the DLL. During initialization, the DLL uses the
LocalErrors Manager rather than the executable’s GlobalErrors Manager. Inside the DLL
Init procedure, extra code is generated to assign GlobalErrors, and also assign the
passed error manager to the already initialized file managers and relation managers.

Developers who modified the global error manager in their applications using DLLs will
now need to be aware of the new local error managers that are applied.

Migrating from Prior Versions 22

Embedding code when closing a Process procedure
The Process procedure used with the ABC templates calls ThisProcess.Close() after
ThisWindow.Kill has fully completed. Consequently, any object created in the scope of
the process window which is called inside ThisProcess.Close() will cause a GPF since
the destructor for that object will already have completed during ThisWindow.Kill.

In Clarion 6, the ViewManager class destructor used with the ProcessClass is now calling
ThisProcess.Close() to make sure that the VIEW is closed. This was not needed in
previous versions of Clarion because local VIEWs were automatically closed when a
procedure exited. With the new threading model, local VIEWs are now not automatically
closed until the thread is destroyed.

There is a distinct chance that any call to a local object inside ThisWindow.Close() will
cause a GPF when exiting the process procedure, because it has already been disposed
by the time the final ThisProcess.Close() call happens.

Anyone embedding source code in the ThisWindow.Close() method needs to add some
kind of condition surrounding any call to a local object that stops it happening after
ThisWindow.Kill() has occurred.

Migrating from Prior Versions 23

Language / Runtime Library
POINTER(File) and POSITION(File)

The behavior of POINTER(File) is different for different file systems. For example, the
first record in a TopSpeed file doesn't have a pointer value of 1.

It may still be safe to use for certain file systems, but for code portability, POSITION(File)
is the way to go.

ISAM File Access Performance
Some users have reported that if there is any experience of slow file accesses when
using ISAM files, switching off the Defer opening files until accessed in the application’s
Global Properties - File Control will improve the performance.

Change of EVALUATE Error Codes
The error codes posted by the EVALUATE statement have been modified in Clarion 6:

1010 - formerly 800: Bad expression syntax
1011 - formerly 801: Unknown identifier in the expression
1012 - formerly 802: Mismatched POPBIND

LoadImage()
The LoadImage function has been introduced to support icon sizes greater than 32x32.
An algorithm is used to determine the best resource given the size of the control, if the
icon file contains more than a single resource. This may not produce the desired effect.
To ensure that the desired resource is used limiting your icon files to a single image
resource size should be considered.

Deprecated
• WIZATRONS

• VBX support

• All 16bit support

• IN

• OUT

• ERRORCODE

• LENGTH

• PROP:SQLFilter (superceded by SQL())

• EVENT:Suspend

• EVENT:Resume

Migrating from Prior Versions 24

Migrating from Prior Versions 25

Clarion 6 Template Changes from Prior Clarion for
Windows Versions
ABC

The ABC template chain and classes continue to expand in functionality. Please refer to
the feature matrix for some of the highlights.

Clarion
The Clarion template chain is now a supported technology. A number of enhancements
and additions have been introduced, including the use of some ABC classes. Please
refer to the feature matrix.

3rd party template/library considerations
Each existing application that uses a 3rd party library or tool will require one of the two
following in order to successfully migrate to Clarion 6.

• Secure and install the Clarion 6 version of the 3rd party product from the vendor

• Remove the 3rd party product from your application from within the previous Clarion for
Windows version prior to opening the application in Clarion6.

Migrating from Prior Versions 26

Migrating from Prior Versions 27

Enhancing Your Applications with New Clarion 6 Features
Global Application options (in appearance order)
A number of Application options have been added to help you enhance your applications features
and functionality.

• Set the Default program icon

• Enhanced options for persisting application settings to INI or the Registry

• Include a default XP manifest file

• Display a Visual Indicator on window controls to assist users in locating the “current” control

• Set the field navigation option to use ENTER instead of the TAB key

• Enable runtime auto-size for your browse box columns

• Enable runtime list box formatting that can be modified and saved by the end user

• Enable “re-basing” of DLL projects to specific memory addresses

Business Rules Manager
The Business Rules Manager Class and Templates provide a mechanism for you to
define Clarion logic “rules”, which are applied at runtime and can be evaluated. Each rule
is associated with a data column and any event that references the data column will
cause the rule to be evaluated. When a rule is evaluated it can pass or fail. Based upon
your template prompt choices a failure can display an indictor next to the control that
displays the referenced data column. Additionally rules can be defined and located in a
resource DLL and utilized in many applications, thus reducing maintenance. For more
detailed information, refer to the Business Rules topic in the online help and Template
User’s Guide PDF.

Client side triggers
The Client Side Triggers feature is maintained in the Clarion dictionary. This provides
you with a method to consolidate Clarion logic code in a single location which would
normally be placed throughout an Application at embed points. There are “trigger-points”
before and after the file operations for Insert, Update, and Delete. This means that every
time a data row operation occurs you can enforce specific Clarion logic to be evaluated
regardless of when or by which procedure it is called. For more detailed information,
refer to the Dictionary Triggers topic in the online help and IDE Guide PDF.

Migrating from Prior Versions 28

Business Graphing
The Clarion Business Graph Classes and Templates provide a Clarion source solution for
standard business graphing needs. The templates are very detailed in construction and
easy to use with logical prompts. The Graphing solution can display data from a file or
queue and has the ability to be placed on a Report structure. There are a large number
of 2d and 3d graph types available that can be programmer or user selected at runtime.
For more detailed information, refer to the Graphing topic in the online help and Template
User’s Guide PDF.

Data exchange using XML
The XML classes and Templates have been created to utilize the highly regarded Open
Source Centerpoint XML C++ library. The Clarion XML classes are native and the
templates are easy to use code templates providing Import and Export features using
Tag or Attribute based XML data, optionally formatted to ADO.Net or ADO 2.6. We even
support using a runtime Map for Source/Target column matching. Clarion Queues, Files
and Views are the source and target. For more detailed information, refer to the online
help and Clarion XML Support PDF.

Style Management
The definition of list box Styles been simplified and enhanced with a procedure dialog
that allows easy selection of fonts, properties and colors which are saved to be
referenced as a style number in your source. For more detailed information, refer to the
online help and IDE Guide PDF.

Report Output Generators
The Clarion 6 Report Output Generators are comprised of an architecture which performs
parsing of your Clarion Reports and using a “plug-in” generator can be transformed into
another format. Currently generators are available to create PDF, HTML, XML and
TEXT. In order to use the generators a simple Global extension is populated which
results in that Generators options being available for each report procedure. For more
detailed information, refer to the Advanced Report Generation online help and Template
User’s Guide PDF.

Migrating from Prior Versions 29

New and Changed Features Matrix
 Enterprise Professional

Fully pre-emptive Threading Model X X

Thread Synchronization Interfaces for Critical Sections, Semaphores,
Mutexes and ReaderWriter

X X

Easily "rebase" the target memory load area for your DLL's with the
integrated global template support for memory address selection

X X

Application Themes which can be saved and reused to further accelerate
your development

X X

Theme Maintenance Wizard provides an easy to use interface for
creating and changing Themes

X X

Application Wizard with additional options and Theme Support X X

Procedure Wizard with additional options and Theme Support X X

Label Wizard with 70 pre-defined Avery label sizes and layouts X X

XP Manifest File Support X X

Smart Locators throughout which provide efficient navigation in lists and
can be repeated via Ctrl-Enter key combination

X X

Zoom Alt-F2 window provides an expanded scrollable edit area for entries
and prompts

X X

Popup table / variable window now available in more locations X X

The Expression Editor consolidates all Tables, Global, Module and Local
data variables and an extensive list of RTL functions for constructing
expressions in select template prompts.

X X

Create a Project (PRJ) from your Application (APP) automatically X X

Generate source code for a single Module X X

The Dictionary View Toolbox is now available in the Application
Generator

X X

The Formula Editor has been enhanced to provide additional Class
support

X X

Global and procedure support to "swap" the Enter key for the Tab key for
field navigation

X X

Global and procedure support for a Visual Indicator that places a box
around the current control, changes the background color, or adds an
indicator character next to the control. These options can be mixed and
matched, overridden at the procedure level and set for specific control
types. There's even an option to use alternate colors for required fields.

X X

Migrating from Prior Versions 30

Database Drivers

ADO Data Layer Support providing additional database connectivity
options

X X

OleDB Connection Builder available at design time and runtime X X

ODBC driver updated to support multi-table import X

BLOB column support for all native SQL drivers X X

BLOB column size for TopSpeed (TPS) files is 640 MB X X

Oracle Call Interface (OCI) 8.x supported * X

Oracle BLOB column types (4) supported * X

Functions for Reading and Writing to BLOB columns X X

 * Oracle Accelerator available as an option for the Professional version

Language / Runtime Library Enhancements

New Inline PRAGMA statement control of the project system from within
your source code

X X

Support of the LAYOUT attribute for the window and report formatters X X

New FLAT attribute now supported on list controls X X

ICONs of sizes other than 32x32 and 16x16 now supported X X

DESTROY(FILE) now supported X X

Progress bar support for colors, transparency and range(MIN(LONG) to
MAX(LONG)

X X

Vertical and smooth Progress bar options now supported X X

BOXED attribute for TEXT controls supported X X

RTF attribute for TEXT controls supported on windows and reports X X

MESSAGE() dialog text can be copied to the clipboard X X

New Runtime Properties: PROP:Datapath, PROP:NextTabStop,
PROP:PreviousTabStop, PROP:Vscroll, PROP:WheelScroll and
PROP:WindowsVersion

X X

Results of ?, *? and *STRING types from functions prototyped with the
RAW attribute are now treated as untyped references

X X

New QUOTE and UNQUOTE functions added X X

New BINDEXPRESSION(name, expr) added X X

New INSTANCE(variable, threadno) returns the address of a variable or
entity's thread instance

X X

Migrating from Prior Versions 31

New function SUSPEND, suspends a thread's execution X X

New function RESUME, resumes a thread's execution X X

New SQL driver string BINDCOLORDER (Bind column order) added X X

FILEDIALOG can now accept any sized string for the extension list X X

ABC Library Changes

SaveBuffer and RestoreBuffer made virtual to enable users to do BLOB
comparisons in a derived version of EqualBuffer if required.

X X

The ABC INIClass has been enhanced to support using the Windows
registry for storage.

X X

New methods have been added to the ABC Popup Class; DeleteMenu
and GetLastNumberSelection methods.

X X

Add new Dictionary class to make ABC classes safe for a fully preemptive
environment.

X X

Database Dictionary Editor

Reorganized layout maximizes the available on screen information so that
you can more easily access property dialogs

X X

Client side Triggers provide similar functionality to server-side triggers,
i.e. code is executed when a table is accessed for any or all of
(Add,Update,Delete). The code can be called either before the operation
or after, or both. Provides an opportunity for additional validation,
computed field values, etc. that is stored in the Dictionary and then
incorporated into all applications that share that dictionary. Triggers are
valid for both ISAM and SQL tables. When used for SQL tables, client-
side triggers provide independence from any particular backend.

X X

Create a single file conversion program for a single table X X

Create a single file conversion program for select tables X X

Each database driver now has a custom driver string properties dialog
editor providing for "quick and easy" changes

X X

Migrating from Prior Versions 32

Template Additions and Enhancements

The Business Rules Manager class and templates provide an easy to
use method to implement validation logic and apply it throughout your
application. You can define a Rule Globally and it is automatically
implemented to each procedure that contains the data variable
associated with the Rule. You have the option to override and ignore the
Rule at the local Procedure level as well as define additional Rules
Locally specific to a single Procedure. The runtime characteristic of an
implemented Rule is that it can Dis/Enable Un/Hide any number of screen
controls and has a mechanism to notify the User as to its' state.

X X

A comprehensive XML Class has been created with code templates
which support serializing a Clarion Queue into XML, de-serializing an
XML string into a Clarion Queue, mapping headers where possible. Code
templates are also provided to perform the same functions for any File or
View structure defined. The class contains additional features that permit
arbitrary rendering of any XML in a Queue structure.

X

The Listbox Format Manager allows the User to re-order list columns
and save the formats for reuse

X X

VCR Form Navigation permits navigation, inserts, updates and deletes
from a form procedure. Advanced features included are Locator and
multiple insert support.

X X

A comprehensive Business Graph Class and templates have been
created which provide a method to implement standard business graphics
on screen and printed reports. An extensive set of classes, methods,
properties and templates allow detailed control over presentation and
data. Many styles are available to choose from in 2 and 3 dimensional
mode.

X

Advanced QBE Browse list control template adds intuitive drag and drop
query capability to your application. This control will create an ISAM filter
or SQL select statement depending on the data source. End users have
the ability to save their queries and reuse them later. A query may also
be applied to Report or Process procedures.

X X

Report Output Generators are exciting features that allow your printed
reports to be saved as PDF, HTML, TEXT or XML files. You have
complete control over the data that is available for export and how. Each
output format is populated as a Global Extension template and procedure
specific properties are set locally. Specific features include: PDF -
bookmarks, hyperlinks, notes, thumbnails, anchor links and more. HTML
- Hyperlinks and a page navigation bar automatically built. XML - Export
using Tags, Attributes or a combination. *

X

 * Output generators individually available as an option for the Professional version

The ADO Class and template set are designed to use the new ADO
driver layer to construct applications using the Microsoft OleDB/ADO
layer. Browse, Form, Report and Process templates are optimized to
generate and access data from your SQL data store. The Advanced QBE
control is also designed to work with this template set as well as an
Export to XML code template.

X X

A calendar class and template are available date for lookups X X

Migrating from Prior Versions 33

New Browse sort selection options are available. You can use a drop
down control, pop-up "menu button" or the traditional tab to select the sort
order.

X X

Speed up your development and reduce your application size with the
new runtime key / sort selection options for Reports. This feature is
supported in the application and procedure wizards and the choice can be
persisted in your theme as the default choice.

X X

A new control template (with a funny name) BrowseNoRecordsButton
helps to automate the enable/disable logic on a browse control when
there are no records available on the list. This permits conditional
procedure calls when inserting new records.

X X

Browse column resizing supported with a simple right click on the column
boundary

X X

Filtered locator support has been added to the Clarion chain X X

Edit in place EIP has been added to the Clarion chain using the ABC EIP
Class

X X

The ABC EIP templates have been enhanced to make setting the options
easier and nearly code free.

X X

Higher Key component filtering support has been added for the Browse,
Drop, Combo, Report, Process and LookupNonRelatedrecord templates
in the ABC and Clarion chains. This permits filtering at a given level of
multi-component keys.

X X

Enhanced conditional browse totaling X X

Enhanced Print Preview control in the Clarion chain X X

Reports now have a data source option; print from File, Queue or
Memory!

X X

A completely new interface for BIND support is now available for all
templates. Expressions and Procedures are now supported

X X

List box style support has been added for each window in the ABC and
Clarion chains

X X

Styles and Tips tab added to the Drop list and Combo controls in the
Clarion chain

X X

Easy to implement color rows and columns for a Browse box, Drop and
Combo list box controls in the ABC and Clarion chains.

X X

Greenbar coloring effect is supported on Browse, Drop and Combo
controls in the ABC and Clarion chains.

X X

A report definition is now supported on any procedure in the ABC and
Clarion chains

X X

Added a %LocalDataDescription symbol as a comment for %LocalData
definitions

X X

Lookups now support SPIN controls in the ABC and Clarion chains X X

Migrating from Prior Versions 34

Some ABC classes are now directly supported in the Clarion chain X X

New default WINDOW types have been added X X

Parameter passing now supported from the Browse Update Buttons on
the Clarion chain.

X X

Parameter passing from a Lookup field prompt to the lookup procedure in
the ABC and Clarion chains

X X

Added the Additional Field Assignments options for Lookups in the
Clarion chain

X X

"!variableName" format is now supported in the Report, Process, Browse,
Drop and Combo filter entry prompts in the ABC Clarion chains.

X X

Significantly enhanced Sort Order features for the Browse, Process, and
Reports procedures

X X

A new "Assisted" option has been added for building Browse, Report and
Process sort orders in the ABC and Clarion chains.

X X

A List Line Height property has been added X X

A new "Conditional Assisted" option has been added for building Report
and Process sort orders in the ABC and Clarion chains.

X X

A new "Dynamic Sorting" option has been added for runtime Report and
Process sort orders selection in the ABC and Clarion chains.

X X

A new "Dynamic Named" option has been added for enhanced runtime
Report and Process sort order selection in the ABC and Clarion chains.

X X

The feature matrix displays highlights contained in Clarion 6. For a more detailed description of
new features, enhancements and changes refer to the help system and release notes.

	How to Migrate to Clarion 6
	New fully pre-emptive threading model
	General Recommendations
	Launching a thread - behind the scenes

	Moving from Clarion DOS versions
	Tips and Techniques
	Dictionary / Data tables
	Applications

	Projects from prior Clarion for Windows versions
	Dictionaries from prior Clarion for Windows versions
	Migrating Large Dictionaries and Data Paths

	Applications from prior Clarion for Windows versions
	Dictionary Class
	Dockable toolbar window with the MDI attribute
	Global EIP Classes
	Global Pools and GROUPs
	Heap Overflow Error when migrating applications
	INI Files – Migration Tip
	Internet Connect / Web Builder / ClarioNET
	Large WINDOW structures
	PVCS version control
	RTF Control (Rich Text)
	TXA Comparison Techniques
	Use of ABC Classes with Clarion template based applications
	Version specific image references

	Advanced Topics
	DLL Initialization
	Initialization Schema
	Compiler Initialization
	Special Considerations for a one-piece (single) executable
	Considerations when working with OLE objects

	Use of Error Managers during DLL Initialization
	Embedding code when closing a Process procedure
	Language / Runtime Library
	POINTER(File) and POSITION(File)
	ISAM File Access Performance
	Change of EVALUATE Error Codes
	LoadImage()
	Deprecated

	Clarion 6 Template Changes from Prior Clarion for Windows Versions
	ABC
	Clarion
	3rd party template/library considerations

	Enhancing Your Applications with New Clarion 6 Features
	Global Application options (in appearance order)
	Business Rules Manager
	Client side triggers
	Business Graphing
	Data exchange using XML
	Style Management
	Report Output Generators

	New and Changed Features Matrix

