Language Reference

Language Reference Manual

COPYRIGHT 1994-2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity
Incorporated. It may not, in whole or part, be copied, photocopied, reproduced, translated,
or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from SoftVelocity Incorporated.

This publication supports Clarion. It is possible that it may contain technical or
typographical errors. SoftVelocity Incorporated provides this publication “as is,” without
warranty of any kind, either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:

SoftVelocity is a trademark of SoftVelocity Incorporated.

ClarionO is a trademark of SoftVelocity Incorporated.

Btrievel is a registered trademark of Pervasive Software.

Microsoftl], Windows[l, and Visual Basic[l are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (1103)

Contents 3

Contents:

1 - Introduction 23
Introduction--The Language Reference Manual............cccccooiiiiiiiiiiiiiniiiiiee e 23
The Language Reference Manualccoooiiiiiiiiiiieiiiie e 24

Language Reference -- Chapter Organizationocccvveeeiiiiiiiiiiiiieeee e, 24
Documentation Conventions and SYmbOIS ..., 26
Reference ItemM FOIMAL ... 27
KEYWORD (short description of intended US€)occuuiieiiiiiiiiiiiiiieceee i, 28
Clarion CONVENTIONS.ociiiiieieie et 29
StANAANA DALEeoiviiiiieieee ettt 29
StANAANA TIME ... 30
(O F= T To] g T Q=) Y o7 Lo =S 31

2 - Program Source Code Format 33
StAEMENT FOIMAL ... e 33
Declaration and Statement LabelS.........coovvoiiiiiiieieceee e 34

SErUCTUrE TerMINALIONceviieiiiiiii e 35
(ST (o W@ TN T 111 o= L o] [PPPP 36
RESEIVEU WOIS ...ttt e e e e e ee e e e e e e e annes 38
SPECIAl ChATACLEISueiiiiiie i a e ea e 39
Program FOIMMAL.......ccoo oo 41
PROGRAM (declare @ pProgram)cc..eeoeeeeeeeeee e aaaiiieeeee e e e e aaiebaeeeeeaeessannnnees 41
MEMBER (identify member source file) ... 43
MAP (declare PROCEDURE Prototypes)ueeeeeeeeiiirivieieeeeeessiiinieeeseessssnsennees 45
MODULE (specify MEMBER source file)ccccccvveeiiiiiciiiieee e a7
PROCEDURE (defin@ @ ProCeAUIE)ccvveeiiiciiiiiiie e s et e e e e e 48
CODE (begin executable StatemeNnts)..........ccccvveeveiiiiiiiiiee e 51
DATA (begin routine local data SECHION)........ccuvveiiieeei i 52
ROUTINE (declare local SUBrouting)...........ccccvuvieeieee i 53
END (terminate @ SrUCIU)oooeeviiieeiee ettt 55
Statement EXECULION SEQUENCEcoiii ittt 56
PROCEDURE CallS......ccccuiiiiiiiiiiieiiiie sttt ettt be e 57
PROCEDURE PrOtOtYPES ... oo 58
PrototyPe SYNTAXcoeiiiiiiiiiiiiiiiiiiiie ettt 58
Prototype Parameter Lists - General SYNtaX.........ccccoviiiiiieiiee i 61
PROCEDURE REIUIN TYPES...iiiiiiiiiiiiieiiieeeteteeet ettt ettt eeeaeteaeaaeeaeaeaeaeaeaeaeaeaeees 69
Prototype ALIDULESveiiiie e a e 71
C, PASCAL (parameter passing CONVENLIONS)ccuuvvrereeeeeiiiiiiinreeeeesssnnnneeeeeeens 71
DERIVED (prevent function overloading)........ccccccveeiiiiiiiieeiee e 72
DLL (set procedure defined externally in .DLL).......cccovviiiiieeeeeeiiiiiieeee e 73
NAME (set prototype's external Name)c.uuveeiiieiiiiiiiiiieee e 74
PRIVATE (set procedure private to a CLASS or module).........cooiuviieieieeniiinineen. 75
PROC (set function called as procedure without warnings)...........cccccceeeeeieivnneen. 76

PROTECTED (set procedure private to a CLASS or derived CLASS)................ 77

Language Reference Manual

RAW (Pass addreSS ONIY)eeii oottt a e 78
REPLACE (set replacement constructor or destructor)occccvveeeieeeeniiiivnnnen. 79
TYPE (specify PROCEDURE type definition)ccuveeiiiiiiiiiiiiieiiiieeeeen, 81
VIRTUAL (set virtual method) ... 82
Procedure OVENOATINGccoaiiiiiiiiiiieee et a e 83
Rules for Procedure OVErloadingccueeeeiiiiciiiieeieeeiesiiieieeee e e s essivinee e e e e e s 84
Name Mangling and C++ Compatibility...........cccoceveeeiiiii e, 86
(O70] 101 o 11T D1 (=To1 11V 87
ASSERT (set assumption for debugging)cccveevveviiiieieee e, 87
BEGIN (define COde StIUCLUIE)ueeiiiieiee ettt s e e e 89
COMPILE (specify source to COmPpIle)ueevveeeiiiiiiiiiirie e e essieee e 90
INCLUDE (compile code in another file)ccueeiiiiiiiiiee e 92
EQUATE (aSSIgn label)eeiiii e 93
ITEMIZE (enumeration data StrUCIUIE)...........uueiieiieeiiiiiiiieee e 94
OMIT (specify source not to be compiled) ..o, 96
ONCE (prevent duplicate included data)...........ccooeiuiiiiieiiiiiiiiiiiiieeee e 98
SECTION (specify source code SECHION)........euiiiiriiiiiiiiiiiaae et 99
SIZE (MemOry SIiZ€ iNDYLES) ...uuviiiiiieei e e e 100

3 - Variable Declarations 103
SIMPIE DAL TYPES .. eeiiiieiiiiitetie ettt e e e e e st e e e e e e s e snbb e e e e e aeeeaaaannnees 103
BYTE (one-byte unsigned iNTEGET)uuuriieeeiiiiiiiieee e e e st e e e e e s s e e e e e e 103
SHORT (two-byte Signed INTEQET) ..ovveei i 104
USHORT (two-byte unsigned iINtEQET).....uuueeiiiiiieiiiee e e e e 106
LONG (four-byte Signed iNtEGET)uuueirieeiiiiiiiieee e e e e e e 108
ULONG (four-byte unsigned intEQEN)uuvveeiii it 110
SIGNED (SIgNed INEOET)cci ittt ettt e e e e e e e e sbee e eeaeas 112
UNSIGNED (UNSIgNed iNEOET) ...ceeiiiiiiiieie ettt e e 113
SREAL (four-byte signed floating PoiNt)cooiiiiiiiiieoiniiieeee e 114
REAL (eight-byte signed floating point).........occcuueiieiiiiii e 116
BFLOAT4 (four-byte signed floating Point)...........ccccooiiiiiiieeieeiniiieeeee e 118
BFLOATS (eight-byte signed floating point)cccccooiiiiiieeiiiiiiiiiieeeees 120
DECIMAL (signed packed decimal)cceeeeiiiiiiieiieee i e e 122
PDECIMAL (signed packed decimal)ccooiiuiiiiieeeiiiiiiieece e ceivieeee e e 124
STRING (fixed-length String)eueeeieeiiiiee e 126
ASTRING (AtOMIC SIIING) .everreeeiiiinrriiieeeees s it e e e e e s s ssrerer e e e e e s s s e rreeeeeeennnnneees 128
CSTRING (fixed-length null terminated String)........ccccvvveeeeiiiiiieeeee e, 130
PSTRING (embedded length-byte String)ccccvveeeieeiiiiie e 133
Implicit String Arrays and String SHCINGccoooiiiiiiiii e 136
DATE (fOUr-DYEE dALE)eeeiiiieiiiiiiiiiei et 137
TIME (fOUr-DYLE tIME@)....eeeeieiieiiiieee et e e 139
SPECIAl DALA TYPES .eieieiiiiitte ettt e e e e et e e e e e e s sanb b e e e e e e e e e e nneeees 141
ANY (any Simple data tyPe)... ..o 141
LIKE (inherited data tyPe)uuuuieeeieiiiiiiieeee e e s s sttt e e e e e e s st ee e e e e e s s eeeeaeenans 144
IMPLICIE VArADIESeevieie e e e e e e e e e 147
Reference Variables ... 149

Data Declarations and Memory AllOCALION............cccuviiiieeee e 153

Contents S
Global, Local, Static, and DYNAMICccuuiiiiiiaiiiiiieiie e 153
Data Declaration SECONS.........coii ittt e e 154
Variable Size DeClarationsc..ueeiiiiiiiiiiiiie e 155
NEW (allocate heap MEemOIY)ccuuiiiiiiaaieiieii e 156
DISPOSE (de-allocate heap MemOry)cooouiiiiiiiieeeiiieieeee e e 157

PICTUIE TOKENS ...eeiiiitiii ettt et e e s e e s nnaeee s 159
Numeric and CUrrenCy PICIUIESuuviieeiiiiiiiiiiiiee et e e e 159
Scientific NOtatioN PICIUIES.........uiii ittt 162
S 1T o3 (1 =SSR 163
DALE PICIUIES ..eei i iveiee ettt ettt ettt e st e et e e e s b e e e snbee e e e snneeeas 164
THME PICIUMES ... teie ettt ettt e et e e s nb e e e s naneee s 166
Pattern PICIUMES ...ceoiiiiiieee et e e e e e e 167
Key-in TEMPIAE PICIUIESeiiiiieiiiiiiiiie ettt a e 168

4 - Entity Declarations 171

CoMPIEX DAtA SIFUCTUIESveeiieieie ittt e e e e e e e e e e e e eneeeee 171
GROUP (compound data StIUCLUIE)uueiiieeeeiiiiiieie e et e e eireeee e e 171
CLASS (Object decClaration)cceueaiiiueiiiieeaee et ereeee e e 174
INTERFACE (class behavior definition)c.uuueeiiiiiiiiiiii e 184

FIlE STTUCTUIES ..ottt e et e e e e e e abaeeeaa e as 186
FILE (declare a data file StrUCIUIE)ccoueiiiiiiiiiiiiiiee e 186
INDEX (declare static file acCeSS INAEX) ..vvveeiiiiiviiiiieee i e 189
KEY (declare dynamic file access iNdeX)covcuvreiriieeiiiiiiiiiir e ciiieen e e e e 190
MEMO (declare a text field)........cccoiiieiiiiieee e 192
BLOB (declare a variable-length field)ccccoociiiiiiii e, 193
RECORD (declare record StrUCLUIE)cccvurreieeeeeeiiiiiiieeee e e e e e sesennieeee e e e e e snneees 196
NUII DAt PrOCESSINGueeteiiiiieeaie ittt e e ettt e e e e et e e e e e e e e s anbaeeeeeaeaeeaanns 197
FILE StruCtUre PrOPEITIES ...ceiiiiei ittt eee ettt ettt e e e e e e e e e 198
ENVIFONMENT FIlES ..ottt e e e e e 209

VIBW SEIUCTUIES ...ttt ettt ettt e ettt e e e e e e sttt e e e e e e e e e e sanbbebeeeeeeeeanannbees 212
VIEW (declare a "virtual" fil@)ueeiiiiiiiieee e 212
PROJECT (Set VIEW fIRIAS) ..ceeiieiiiiiiieei e 216
JOIN (declare a "join" OPEration)cccuieccuiieeeeeeeeiisciieee e e e e e ssrrrrrerr e e e e e enneneeees 217

QUEBUE STIUCTUIES ..t et e e e e et s e e e e e e e te b e e e e e e e aetanaeeeeas 220
QUEUE (declare a memory QUEUE StrUCTUIE)cevvveeeviiiiriiiieee e scseniieeeeeeenn 220
Additional QUEUE CoNSIAErationS..........ccevvviiiiiieieiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 223

5 - Declaration Attributes 231

Variable and Entity AfHDULES.........coiiiiieii e 231
AUTO (uninitialized local variable)cccouiiiiieeiiiie e 231
BINARY (memo contains binary data)ccccvveevieiiiiiccieecc e 232
BINDABLE (set runtime expression string variables)...........cccccccoviiiiiinneennnns 233
CREATE (allow data file Creation)..........ccuueeiiiiiiiiiiieieeee e 234
DIM (set array diMmenSIONS)cooiiuuiiiiiiiee ettt e e e e e e 235
DLL (set variable defined externally in .DLL)cccoeeiiiiiiiiiieiiaeiiiiieeee e 237

DRIVER (specify data file type)ccuueieiiiiiiiieeee e 239

Language Reference Manual

DUP (allow duplicate KEY €NtHES)ueeiiiiiiiiiiiieieee et siibieee e e e e 240
ENCRYPT (encrypt data fil€)cooeuiiiiiiiiie e 241
EXTERNAL (set defined externally) ... 242
FILTER (set view filter @XpreSSion)c i 245
IMPLEMENTS(add methods t0 @ CLASS) ..o 248
INTERFACE (class behavior definition)cccvvveeieeeiniiiieeece e 249
INNER (set inner join OPEration)eeeereeeiriiiiiiieeeeeesssiiireeeeee e s e ssnrnnereeeeesennnns 251
LINK (specify CLASS linK iNt0 PrOjECE) ...cvveeeiiiieiiieieee st e e e e e e 252
MODULE (specify CLASS member source fil€)......ccccccoeeeviveeieeeiiiiiciieiee e 253
NAME (S€et eXterNal NAME)ccoviiuiiiiiiie e e e e e s e s e e e e e s s s e e e e e e e snnnnes 254
NOCASE (case insensitive KEY Or INDEX)c..cuuuiieeiiiiiiiiiiireeee e siiiiineeeeeeeenenns 258
OEM (set international String SUPPOIT).......ueeiiiiaiiiiiiiieete e 259
OPT (exclude null KEY of INDEX €NtHES) ...ccviiiiiiiiiiiiiiieae et 260
ORDER (set view sort order eXPreSSION)ooieeeieieeeeeaeeaiieiee e e e eieeeeeeeee s 261
OVER (set shared memory [0Cation).............couiiiiiiiiiiiiiiiee e 263
OWNER (declare password for data encryption)cccccoeeecviiieeiieeiniiiiieeeeenn. 264
PRE (St 1abhel PrefixX)...... e 265
PRIMARY (set relational primary KEY)........cooivcuurireieeeiiiiiiiieeeee e siivieee e e e e 267
PRIVATE (set variable private to a CLASS module).........cccoveveeeiiiiiiiiieeeeeeeins 268
PROTECTED (set variable private to a CLASS or derived CLASS).................. 269
RECLAIM (reuse deleted record SPACE)ccvvveeeeeeeiiiiiiiniieeee e e s s sivnneeeeee e e 270
STATIC (set allocate static MEMOIY).......c..uvviiieeeiiireee e 271
THREAD (set thread-specific memory allocation)............cccccoviiiiiiiiiniininiiiiee 272
TYPE (type definition)coooiiiiiiiie e 274

6 - Windows 277
WINAOW SEUCTUIESeeeeiie ettt ettt e ettt e e e e e e s et e eeeeaa e e e e annnes 277
APPLICATION (declare an MDI frame WINAOW)occcuueiiiiiaanniiiiiiieeeee e 277
WINDOW (declare a dialog WINAOW)ooeuiiiiiiiieiiiiiiieie e 283
MENUBAR (declare a pulldown Menu)occuuuieiieiiiiiiiiiiieee e 290
TOOLBAR (declare @ tool Dar)ceiiioiiiiiiieie e 294
WINAOW OVEIVIBWeeiiiiiiiiiiieeie ettt e e e ettt e e e e e e e e sanbb e e e e e e e e e e nneeees 297
Window Controls and INPUL FOCUSeuvieeiiiiiiiiiiieee e cciiiieee e e e e e sinrenee e e e 298
Field EQUAte LabeIS.........c..vviiiiieee et a e e 299

LT =T o] a1 ToT S @ =T 1= PR 301
(LU= 1=V T 301

LT =T o] g 1ot @FoTo] {o [T T (=1 302

7 - Reports 303
REPOI SITUCIUIES ... 303
REPORT (declare a report StrUCLUIE)covvcevveieieeeeesssiiiieee e e e e s s ssnvnneeeeeee e e e 303
BREAK (declare group break StruCtUIe)...........uueeveeeeeiiiiiiieieeee e eesniieeeeee e e s 307
DETAIL (report detail lin€ StIUCLUIE)coiiiiiiiiiiiiiiee e 308
FOOTER (page or group fOOter StrUCIUIE)eeieieeiiiiiiiiiiieeee e 310
FORM (page 1ayout STTUCLUIE)uueiiiiiiieeiieiieieee et e e e 312

HEADER (page or group header StruCture)ccccceeiiiiiiiiieineeiniiiiieeeee e 313

Contents 7

Printer CONtrol PrOPEITIESciii i ittt e e e e 315
Page OVEITIOWeeiiieii e 318

8 - Controls 321
CoNtrol DECIAratiONSeeiiiiiiie et e e a e e 321
BOX (declare a boxX CONLIOI)oooiieiiiiiiiiee e 321
BUTTON (declare a pushbutton control)..............eeeiiiiiiiiiiiiieeee s 323
CHECK (declare a checkbox control)...........ccccoiiiiiiiiiiiiiiiieeee e 326
COMBO (declare an entry/list CONIOl)cooiiiiiiiiiiiiiieee e 329
ELLIPSE (declare an ellipse CONrol).........cccoiiiiciiiieiiee e e e 334
ENTRY (declare a data entry Control)ccccureieieeeiiiiiiieece e 336
GROUP (declare a group of CONrolS)ceveeeviiiciiiiiiie e scseee e 340
IMAGE (declare a graphic image control)cccueeveeeeiiiiiieeee e 343
ITEM (declare a Menu itEM)cceoiiiiiiiiiieee e e e e e e aees 345
LINE (declare @ lin€ CONLIrOl)ccoiiiiiiieiiiee et e e e e 348
LIST (declare a window [iSt CONTIOI)coiiiiiiiiiiiiiiiee e 350
MENU (declare @ menu DOX)oooiiiiiiiiiiiiiiiieie e 355
OLE (declare a window OLE or .OCX container control)cccccoviiuiieeeenennn. 357
OPTION (declare a set of RADIO CONLIOIS)coviuiiiiiiiieiiieiiiiieeee e 361
PANEL (declare a panel CONrol)..........uueiiiiiiiiiieiie e 364
PROMPT (declare a prompt CONLrOl)coooiiiiiiiiiiiiiiiiiieeeee e 365
PROGRESS (declare a progress CoONtrol)...........ceeveeeviiiciieeeeeee s isiiiieeeeee e e 367
RADIO (declare a radio button CONtrol)ccvvvveeveeiiniiieeee e 369
REGION (declare a window region CONtrol)cccceeeieicuiiiieeieeeissiiieeeee e 372
SHEET (declare a group of TAB CONLrOIS) ...cccceeviiiviiiiiee e 374
SPIN (declare a spinning list CONtrol)cvvveeiiiiciiiic e 377
STRING (declare a string CONtrol)c.uvuiiiiiiiiii e 380
TAB (declare a page of a SHEET coONtrol)cccoiiiiiiiiiiiiiiieeee e 383
TEXT (declare a multi-line text Control)eooiieiiiiiii e 385

9 - Window and Report Attributes 389
Attribute Property EQUALES..........uuiiiiiiaiii ittt e e e e e e 389
Window and Report ARIDULESooo i 391
ABSOLUTE (set fixed-position printing)cccuvveeiieaiiiiiiiiieeeee i 391
ALONE (set to print without page header, footer, or form)............occcoeieinnnnns 392
ALRT (Set WINAOW "NOt" KEYS) ...coiiiiieeiie ettt 393
ANGLE (set control display or print angle)cccoevcvvireieeeisiiiiiee e 395

AT (St POSItIoN AN SIZE) ..eevveeiiiiiieiiiii e 396
AUTO (set USE variable automatic re-display)ccccvvvveeeeeiiiiiienieee e 399
AUTOSIZE (set OLE ObJEC r€SIZING) ..ecceieveeiieeieie e iestieiee e e e e e e e 400
AVE (set report total aVEIAgE)uuveiveeeeiiiiiieeee e e e e et e e e s rr e e e e 401
BEVEL (set 3-D effeCt Border)..........uvveveiieeiii e 402
BOXED (set controls group DOFAer) ... 403
CAP, UPR (SEL CASE) ..eeiiiieiiiiiitiiit ettt ettt e e e e e e e eanbeeeeas 404
CENTER (set centered WindOW POSItION)cooiiiiiiiieieeeie i 405

CENTERED (set centered iMage).........oouuueeiieeaeiiiiiieee et ae s 406

Language Reference Manual

CHECK (S€t 0N/Off ITEM) ...ttt 407
CLIP (set OLE 0ObjeCt ClIPPING) --..vveeeeeeaiiiiiiiieeee ettt eibeaeee e 408
CNT (S tOtal COUNL) ...eeiiiiiiiiiieeeee et a e e 409
(OO0 = 3 (1] foTe] (o] o TR PURP PR 410
COLUMN (set list box highlight bar)...........eooiiiiii e 412
EXTEND (set document formatting).........ceceeiieiiiimeeiees e e e e e 413
COMPATIBILITY (set OLE control compatibility)........cccceeevivciiiieiiee e, 414
CREATE (create OLE control OBJECT).......uuuviiieeieiiiiiieeee e 415
CURSOR (Set MOUSE CUISON tYPE) cceeiieeerieieieeeeesiiteieereeeeeesssnsssnneneeeeessnnsnssnneees 416
DEFAULT (set enter Key BULtON)ceevvieeiiiiiiiiieeee e e 417
DELAY (set repeat button delay).........cccveeeiiiiiiiiiiiiee e 418
DISABLE (set control dimmed at OPEN)coiiiiiiiiieei e 419
DOCK (set dockable to0lbOX WINAOW).........ccoiiuuiiiiiiieeiiiiiiiieee e 420
DOCKED (set dockable toolbox window docked at 0pen).........ccoocuvvveeeeeeennns 421
DOCUMENT (create OLE control object from file).........cccveeeeiiiiiiiis 422
DOUBLE, NOFRAME, RESIZE (set window border)..........cccccoiiiiiiiiiiiniannnn, 423
DRAGID (set drag-and-drop host SIgNatures).........coooiiivieieeiie e 424
DROP (set list BoX BENAVIOI)cov i 425
DROPID (set drag-and-drop target Signatures)cocccvveeeeeeeeeiniiiinnieeeeeesennnns 426
I I 5= 11 oo] (o o SO SR. 427
FIRST, LAST (set MENU or ITEM POSItioN)cuverieeiiiiiiiieeeee e cciiieeeeee e 428
FLAT (set flat CONtrol)uvuieiieeiie e r e e e 429
FONT (set default fONT)..........ooi e 430
FORMAT (set LIST or COMBO 1aYOUL)ccoiiiiiiiiiiiiae et 433
FORMAT() RUNtIME ProPertieScc.uuveiiiiiaiiiiiiieeee ettt e e 438
FORMAT() Style PrOPErtiesScccoiiiiiiiiiiiee ettt a e 441
FORMAT() Other List BOX PrOperties........cccouiiiuuiiiiiiie it 443
FORMAT() List Box Mouse CIlick Properties..........ccccceiiiiiieieiiaeeniiiieeeee e 445
FROM (set listboX data SOUIMCE).......uuuiieieeiiiiiiiieieeeeeesssciieer e e e e e s sssnveer e e e e e e snneees 448
FULL (SEt fUIl-SCIEEN)t e e e e e st e e e e e e e eanns 450
GRAY (set 3-D 100k background).........ccccuvieiiieeeiiiiiiieiecee e 451
GRID (set list grid-line display COIOr)uveiiieeiiiiiieeec e 452
HIDE (set coNtrol NiddeN)coiieiiiiieee e 453
HLP (set on-line help identifier)c.vuvevee i 454
HSCROLL, VSCROLL, HVSCROLL (set scroll bars)ccccceerueeiiieeiieniinens 455
ICON (SBLICON) ..ttt ettt e ettt e e e e e et b bt e e e e e e e s anbbrbeeeaaaeeaanns 456
ICONIZE (set WINAOW OPEN @S ICON) ...veeeiiiiiiiiiiiiieeeaa e e eitiieeee e e e et e e e e e e e aees 458
IMM (set immediate event NOLIfiCAtION)...........oiiiiiiiiii e 459
INS, OVR (Set typing MOUE) ...cceeiiiiiiiiiiiii ettt a e 461
JOIN (set joined TAB SCrOll DULONS) ...cooooiiiiiiiiiiiieeee e 462
KEY (Set eXecution KEYCOUE)ccicuuriiiiieeeeiciiiiieee e e s setee e e e e e e e nrnree e e e e e e nens 463
LANDSCAPE (set page Orientation).........ceeeeiiecerieeeieeeeiiiiiieeeeeessssennneeeeeesennnns 464
LAYOUT (set Window Ori€Ntation)eeeeeieiiuirieeeeeeessiiiiieeeeee e e s s ssnrsnneeeeeesenanns 465
LEFT, RIGHT, ABOVE, BELOW (set TAB POSItiON)cccovevivveriereiieenreenneens 466
LEFT, RIGHT, CENTER, DECIMAL (set justification)ccccocvvvniveriininnnns 467
LINEWIDTH (set [ine thiCKN@SS)uuiiiiiiiiiiiiie e 469

LINK (create OLE control link to object from file) ... 470

Contents

MARK (set multiple selection Mode) ... 471
MASK (set pattern editing data €Ntry) ... 472
MAX (set maximize control or total Maximum)..........coouviiiiiieiieanniiiieeee e 473
MAXIMIZE (set window open maximized) ... 475
MDI (set MDI child WINAOW).........ooiuuiiiiiiieaie e 476
MIN (set total MINIMUM)oviiiiiiee e e e e s e e e e aeeeans 477
MODAL (set system modal WINAOW)ccceeiiiiiiiiiiieeeesiiiiieeee e e e s svineeeeee e e 478
MSG (set status bar MESSAQGE)........cccuureiiiiie e 479
NOBAR (set no highlight Bar) ... 480
NOCASE (case insensitive report BREAK).......cc.uveiivveiiiiiiecee e 481
NOMERGE (set merging behavior) ... 482
NOSHEET (set "floating"” TABS)cccutiiiiiiae ittt e e 484
OPEN (open OLE control object from file) ... 485
PAGE (Set page total FESEL)ceiieiiiiiiiiiie et 486
PAGEAFTER (set page break after) ... 487
PAGEBEFORE (set page break firSt).........cou i 488
PAGENO (set page NUMDETr PHNL)........ueeiiiieeiiiiiee e 489
PALETTE (set number of hardware COIOrs)ccccceevvviiiiiiieeee e 490
PAPER (S€t report PAPEL SIZE)ccuuuueiieeeeeiiiiiieeeeeee e e s e sisieeeeeeeeesssnntnneeeeeeeseannns 491
PASSWORD (set data NON-AISPIaY)cceveeiiiiiiiiiiieiee e e e 492
PREVIEW (set report output to metafiles)........ccccveerveeiiiiciiiiccc e 493
RANGE (S€t range liMitS)ccceeiiiiciiiiiieie et e e s e e e e e e e e e e e e 495
READONLY (Set diSplay-0nly) ...t 496
REPEAT (set repeat BUON rate) ... 497
REQ (Set reqUIrEd ©NTIY)eeiiiie ettt e e e e ebbrae e e e e e e e e aans 498
RESET (St tOtal FESEL) ...veeeiiiiieiiiiiiieee ettt e e 499
RESIZE (set variable height TEXT control)...........ccoiiiiiiiiiiieeeeeeees 500
RIGHT (Set MENU POSILION) ..cocoiiiiiiiiiieeiee ettt e e 501
ROUND (set round-cornered BOX)cccooviiciuiieiieee e iiisiieeeee e e e e s s ssiinneeesee e e e 502
RTF (declare TEXT control as RIChEdIt)cccvvvereeeiiiiiiceee e 503
SCROLL (set scrolling CoONtrol)ccceiicciiieiiiee e 504
SEPARATOR (set separator iN€ ITEM)........ccuveeiiiiiiiieiieee e ceiiieee e e s snineeeeee e 505
SINGLE (set TEXT for single liN€ ntry).......cccveeeiviiiieiieee e 506
SKIP (set Tab key skip or conditional print control)ccccccviveeeiiiiciiieeenenn, 507
SMOOTH (set smooth progress bar iNCrements).........cccccoovvviieeeiiee e 508
SPREAD (set evenly spaced TAB CONIOIS)........ooouiiiiiiiiiiiiiiieceee e 508
STATUS (St StatuS DAI) ..ccoiieeiieieee e 509
STD (set standard DENAVIOL)coiiiiiiiiiiiiie e 511
STEP (Set SPIN INCrEMENL).......ueiiiiiiii et 512
STRETCH (set OLE object StretChing).........ccooooiiiiiiiiiiaeiiiieeeee e 513
5] 1 €= o o) -) SR 514
SYSTEM (St SYSIEIM MENU)uuviiiiiieeeiiiiiiiie e e e e e st e e e e e e s s e e e e e e e snarnaeeeees 515
TALLY (set total calculation tiMeS)........cceiviiiiiiiiiie e 516
THOUS, MM, POINTS (set report coordinate measure)..........cocvvveeveeeesinivnnnnn 517
TILED (S€t tiled iMagE)uuueieeeieiiieiieiie e e s st e e e e e s s e e e e e s re e e e e e e e nnnneees 518
TIMER (S€et periodiC @VENL).......ooueiiiiiiie et a e 519

TIP (set "balloon help™ tEXL) ..o 520

Language Reference Manual

TOGETHER (set to print on a Single Page)........ccceevriiiiiiiiieeeiiieeeee e 521
TOOLBOX (set toolbox window behavior) ..., 522
TRN (set transparent CONLIOI)eeiiiiiiiiiiiie e 524
UP, DOWN (set TAB text 0rientation)cooiiiiieiiaeiiiiiiieeeee e 525
USE (set field equate label or control update variable)...........ccccooiiiiiiiiannnnns 526
VALUE (set RADIO or CHECK control USE variable assignment).................... 529
VCR (SEL VCR CONMIOI) ..vtiiiiieeeiiiiiiiiiiee e e e e s ettt e e e e e e s st e e e e e e s e nnnaeeeeeeeeeannnnnes 530
VERTICAL (set vertical progress bar display)..........cccocvereeeeiiiiciiieniee e 531
WALLPAPER (set background iMage).......ceeuveiuviiireieeeieiiieeeee e e s seinieene e e e 532
WITHNEXT (set widow elimination)ccooiiiiiiieiiee e ee e e e 533
WITHPRIOR (set orphan elimination)ccccuviiiieeeiniiciiieee e criereeee e e e 534
WIZARD (set "tabless” SHEET CONtrol)uuuiiiiiaiiiiiiiieeee e 535
ZOOM (set OLE 0Dbject ZOOMING)eeiiiiiiiiiiiiiiieee e 536

10 - Expressions 537
OVEBIVIBW ...ttt ettt et e e e oottt e e e e e e e o bbbttt e e e e e e e s nnbbbe e e e e e e e s annbeneeeas 537
EXPression EVAIUATIONooiiiiiiiiiiiee ettt a e 537

(O] 01=] =1 0] £ TP PP PP PP P PUUPPPPPPPPPPPPPPPINE 538
ArtMEtIC OPEIAtOrS.ttt e e e e e e e e 538
The Concatenation OPEIAtOr..........uuuiiiieaiiiiiiiieee et e e 539
LOQGICAlI OPEIALOIS ..ccoiiiiiiiiiiiiei ettt ettt e e e e e e e e e s snbn e e eeaaeaeaans 540
(O] 1151 r= g1 £ PRSP STPR 541
NUMETC CONSLANTSvveeirieitei et 541

S 1 To @0 1] 7= L = 542
TYPES Of EXPIrESSIONS....ccciiiiiiieieiee e e e ettt e e e e e s s st e e e e e e e s asat e e e e e e s e arnnteeeeeeeeesannnnnnees 543
NUMETIC EXPrESSIONS. ... ueeveiieieeeeieiiitieeeeeeesssssteaereeeeesssanntareeeraeessssnsnneeeraeeseaanns 543
SHING EXPIrESSIONS. ...ttt e e e e et e e e e e e e snbbeaeeaaeas 544
LOQICAl EXPIrESSIONS. ... iiiitiiiiiee e e e ettt e e e ettt e e e e e e et e e e e e e e e e snnbereeeaaeeaaaanes 545
Property EXPrESSIONSuuuiiiiiiaiei ittt e et e e e e e s e st aaeeeaaeeaaanaes 546
Runtime EXpression EVAlUationoiiiiiiiiiiiiiieccce e 549
BIND (declare runtime expression string variable)...........ccccccciiiiiiiiiiiens 550
BINDEXPRESSION(declare runtime eXpresSion).........occuvveeeeeeenniiiieeeeeeeeseiens 552
EVALUATE (return runtime expression string result)..........cccccccovvvcviieveee i, 553
POPBIND (restore runtime expression string Name SPaCe)cccvvveeeeeeeerrinnns 555
PUSHBIND (save runtime expression string Name SPace)...........ccccvvveeereeernnnns 556
UNBIND (free runtime expression string variable)ccccccceeeiiviiciiieeee e, 557

11 - Assignments 559
Simple ASSIgNMENt StAtEMENTS ..o e e e 559
Operating ASSIGNMENTSccciiiiiiieieee e s s e e e e e s s s e e e e e e s s s e e e e e e e s e annnrrneeees 560
DEEP ASSIONMENT ...eiiiiiiieiiieie e e e e e e et e e e e e e s s e e e e e e s s st e e e eeeesssnnaeaneeeeeeanannes 561
ReferenCe ASSIGNMENLSuuiiiiieeie it ie e e e r e e e e e s s r e e e e e s s ereeeeeeanns 563
CLEAR (clear a variable)............oooiiiiiiiiie e 565
Data Type COoNVErsion RUIEScoiii it 566
S Fe RS Y o[L SO PP PP PP PPPPPPPPPPPPPPPPPPIN 567

BCD Operations and ProCedUIES.........ccuiaaiiiiiiieeiee et 569

Contents

Type Conversion and Intermediate ReSUltSccoooviiiiiiiiiinnns
Simple Assignment Data Type CONVersioN..........occuvveeeieeeeeiiinnen.

12 - Execution Control

CONLIOl STIUCTUIES ..ottt a e
ACCEPT (the eVent ProCESSOI)uuuiiiiiaeaiiiiiiieeee e e e eieieeeea e
CASE (selective execution StrUCtUIe).........ccceerviiiiiieeiieeeee e
EXECUTE (statement execution StruCture)..........ccccceveeuvveeeeeeennnns
IF (conditional execution StrUCLUIE)cccceeiiiiiiiiiiieee e
LOOP (iteration StrUCLUIE)ceceevieierieiieee e e e s st e e e e e e

Execution Control StatemMeNntsccoccvvervierieensie e
BREAK (immediately leave 100p)ccoeeveeeeiiiiiiieiiee e,
CYCLE (g0 t0 top Of I00P) .ocoooeeiieieeee et
DO (call a ROUTINE)cuuviiiiiieee e s icitiieee e e e e s st ee e e e e e sennaeene e e
EXIT (leave @ ROUTINE) ...uvvviiieeieiiiiiiiiee e et a e
GOTO (O t0 @ 1aD) ..eeeeeeieiieee e
RETURN (return to caller) ...

13 - Built-in Procedures

Procedure Listing by FUNCLION ...
ABS (return absolute value) ...
ACCEPTED (return control just completed)ooocuiiiieiiiiiiiiiiieeeeeen,
ACOS (return arCCOSINEG)......uuueieiiieee et e et a e eeaa e
ADD (800 8N BNLIY) ...ttt
ADDRESS (return memory addreSs)ccceeeeviicireeeeeeenisiiineeeeeeesnnenns
AGE (return age from base date)ccccceeeviiiciiiieie e
ALERT (set event generation KeY).......cccvueveeeeiiiiciieeeiee e s ciiiieeeee e e
ALIAS (set alternate KEYCOUE)cccviicuerieeiieee et
ALL (return repeated characters).........cccccccveeiiiiciiiiiee e
APPEND (add a new file record)ccceevreeiiniiiiiieec e
ARC (draw an arc of an ellipSe)cooiiiuiiiiiiiiiiiiie e
ASK (get 0ne KeystroKe)uuveiiiiiiiiiie e
ASIN (FELUIM @rCSING) ..eeieiieiiiiiiiiieie e ettt e e e e
ATAN (return arctangent)...........eeeeeeeeoiiiieeee e
BAND (return bitwise AND).........uuiiiiiiiiiiii e
BEEP (sound tone 0N SPEAKEr)coooiiiiiiiiiiiiiee e
BLANK (erase graphiCs)ccccuueeriieeiiiiiieieece et snen e
BOR (return bitwiS€ OR)covviiiiiiie e e sree e e
BOX (draw a rectangle)cccuveeieeeei i
BSHIFT (return shifted DitS)ccovveiiiiii e
BUFFER (set record Paging) «...ueeeeeeeeeieecrrieereeeeesiisinieeereeeesssnsnnnneneeeees
BUILD (build keys and iNdEXES).........ccoviicuriiiieeeeiiiiiieeeee e e s ssiieneneeee s
BXOR (return bitwise exclusive OR)...........cceiiiiiiiiiiiiieiieee e
BYTES (return Size in DYLeS).......oueiiiiiiiiiiiiee e
CALL (call procedure from @ DLL)eeeiiiiiiiiiiiiiieieeeeeiieeee e

CALLBACK (register or unregister a FileCallBackInterface)

12

Language Reference Manual

CENTER (return centered SIHNQ)eeeee it e e e e 644
CHAIN (execute another Program)ecee oo oieeieeeee et e e e e e e e e e e eeeeeees 645
CHANGE (change control field ValUE)cooiuiiiiiiiiiiiiie e 646
CHANGES (return changed QUEUE)cocieiiiiiiiiiiiie et 647
CHOICE (return relative item POSItION)ooiuuiiiiiieeee et 648
CHOOSE (return choSEN VAIUE)uvuiiiieeiieiiiiiiiie et e e e e s e e e e e e 649
CHORD (draw a section of an ellipSe)ccovvcuuiriiiieee e 651
CHR (return character from ASCII)......uivieeiiiiiieieeee e 652
CLIP (return string without trailing SPaCES).......cc.uueeieeeeiiiiiiiieii e 653
CLIPBOARD (return windows clipboard contents)cccccuveveeeviiiciinieene e 654
CLOCK (return SYStem tiMe).....ccciiiceiiieeiee e e e e ettt ee e e e e s st er e e e e e e st e e e e e e e s nnnnnees 656
CLONE(duplicate exiSting CONION).........ccuiiiiiiiiiiiii e 657
CLOSE (CloSe @ data StIUCLUIE)uuveiiiieeeiiiiiiieee ettt e 659
COLORDIALOG (return chOSEN COION)oueiiiiiiiiee e 661
COMMAND (return command liN@)........ccooiiiiiiiiiiiiiaa e 662
COMMIT (terminate successful transSaction) ..ot 663
CONTENTS (return contents of USE variable)............coooiiiiiiiiiiiiiiiiee 664
CONVERTANSITOOEM (convert ANSI strings t0 ASCI ..vvvvvveeeeviccciieeeee e 665
CONVERTOEMTOANSI (convert ASCII strings t0 ANSI)vvvvvvreeiiiciieeeeeee e 666
(1@ (o10] o) V- T 1) SRRSO 667
(1@ IS (=310 T I oo 13 1 =) I PSR 668
CREATE (create an empty data fil€)ccceoiiiiiiiiiiee e 669
CREATE (return new cOoNtrol Created)ouiiiuiiiiieeeee et 670
DATE (return standard date)..........ccouaeiiiiiiiiiiiie et 673
DAY (return day of MONtN)uuiiiii e 674
DEFORMAT (return unformatted numbers from String)ccccceeeeiiiiiiiiiiinne 675
DELETE (delete @ rCOMM)......uuueiiiiiiieee ittt e e et e e e e e e 676
DELETEREG (remove a value or key from Windows registry)cccccoovvvieeeeeennnnns 679
DESTROY (remove a Control Or fil€)c..uuueeiiieei it 680
DIRECTORY (get file dir€CLOIY) ...uuuerieeeiiiiiiiiieei e e e s s e e e e e e snnrre e e e e e 682
(D ISYAN = I = (o T g =W odo 1 1]) ISR 685
DISPLAY (write USE variables t0 SCrEEN)ccvveeiiiiiiiiiiiee e et e e e ssivaee e e e e 686
DRAGID (return matching drag-and-drop Signature)...........ccccueeeereeeieiivieeeeeeeessnnnns 687
DROPID (return drag-and-drop StriNG)eeeeeeeeeeiiiriieieeeee s seseeieeee e e e e s snnnvnreeeeeee e e 689
DUPLICATE (check for duplicate key entrieS).........cc.uueeerieiiiiiiiiiiieie e 691
ELLIPSE (draw an €llIPSE)couueiiiieiiee ettt a e e 692
EMPTY (empty @ data file)cceeeieiieeii e 693
ENABLE (re-activate dimmed CONtrol) ... 694
ENDPAGE (force page OVEIfIOW)ooiiiiiiiiiiiai et 695
ERASE (clear screen control and USE variables)cccccooiiiiiiiiiiiiiiiiiieeeeeee 697
ERROR (return €rror MESSAUE) ..uuueeeeeeieiirreereeeeeeiiisntneerereessaassssreneesseessmnsnrnseeeseesanns 698
ERRORCODE (return error code NUMDEN)ccciiiiiiiiiieeee e ccciiieie e e e e ssiininee e e e 699
ERRORFILE (return error filleName)ueeeieeiiiiiiiiiee et e e e 700
EVENT (return @Vent NUMDET)ooiii it e e e e e e 701
EXISTS (return file @XISLENCE).....uuiiiiieiicciiieiii e e e e e e e e 702
FIELD (return control With fOCUS)ooiiiiiiiiiie e 703

FILEDIALOG (return ChoSen fil@).......cooii i 704

Contents

FILEDIALOGA (extended file dialog)ccuuueeeiiaiiiiiiiiiiee e 707
FILEERROR (return file driver error MeSSage).......cc.uuveeerieeiiiiiiiiieee e siiiieeee e e e 711
FILEERRORCODE (return file driver error code number)..........ccccceeiiiiiiiiieneeennnns 712
FIRSTFIELD (return first Window CONrOl)coooiiiiiiiiiiiiiiie e 713
FLUSH (fluSh DUFFEIS) e 714
FOCUS (return control With fOCUS).........cuviiiiiieei i 715
FONTDIALOG (return choSen fONt)cceviiiiiiie e 716
FONTDIALOGA (return chosen font and character set).........cccccceveeevviiciiiieeneeeneens 717
FORMAT (return formatted numbers into a PICtUre)coovecvvveeeieeeiniiiiieeee e e 718
FORWARDKEY (pass keystrokes to Control)cccceeeveeeeiiiiciiieiiee e 719
FREE (delete all ENMIIES) ...icciii e s e e e e e e e e e e e e e enns 720
FREESTATE (ffE€ rESOUICES) ...veiiiiiiiiiiiiieiee e e ettt e e e ettt e e e e e e eee e e e e e e e eanes 721
GET (read @ reCOord OF ©NMIY)....cci i iiiiieieee ettt e e e e e e e e e e e s aeeeeees 722
GETFONT (get font information).............cooioiiiiiiii e 726
GETINI (return INIile @Ntry) ..o 727
GETNULLS(get the NULL state of atable)...........eoeviiiiiiiiiiee 728
GETPOSITION (get control POSItION).......couueiiiiiiiiiieieee e 729
GETREG(get Windows regiStry ENtry) ... ccsiieeee e e e e snieee e e e e e 730
GETSTATE (return current state of data file)cccccevv i 731
[VA I (=1 8 o o T | = o) PSR 732
HELP (help WINAOW GCCESS) ...uuuiiiiiiieeiiiiiiiiiie et e e e s sttt er e e e e e s ssnnteeee e e e e e s snnnnneneeeeeeanns 733
HIDE (BIank @ CONIOI)....iiiieiiiiiiiieiee e s s e e e e s e e e e e e e s e e e e e e e e anns 734
HOLD (EXCIUSIVE FECOII BCCESS) .eeiiiiiiiiiiiiiiiiaa e e e ittt ee e e e e e sttt ee e e e e e sanbebreeeaaeeeeaans 735
IDLE (arm periodic ProCEAUIE).......uuia i iiiiiieeta e ettt e e e e e e e 737
IMAGE (draw a graphiC IMaQE)......uuueeeaaeiiiiieieie ettt e e e e e 738
INCOMPLETE (return empty REQ CONLIOl) ...ccoooiiiiiiiiiiiiieeiiiieeee e 739
INLIST (return @ntry in HIS)........eeeeeeeeee et a e 740
INRANGE (check number Within range) ..o 741
INSTANCE (return variable's thread instance address)ccccccveeeeviiiiiienneeeenennns 742
INSTRING (return sUbString POSItION)uuviiieeiiiiiiieire e e 744
INT (£runCate fraCtioN)ccieei i e e e e e e s e e e e e e s s e ereeeeeeanns 746
ISALPHA (return alphabetic character)cccccoveiviiiiiie e 747
ISLOWER (return lower case CharacCter)cooocvvrveeieeei i en e e e 748
ISSTRING (return field string type O NOL).......ccoviiiiiiiiiiee e 749
ISUPPER (return upper Case CharacCter)ooicuuiiiiiiaaiiiiiiieeee et e e 750
KEYBOARD (return keystroke Waiting)cccoooiiiuiieiiiieeeiiiiieee e 751
KEYCHAR (return ASCI COUR)....uuiiiiiaiiiiiiiiieeee ettt a e e e e e e 752
KEYCODE (return 1ast KEYCOUR)......uuiiiiiiiiiiiieie ettt ettt a e 753
KEYSTATE (return keyboard Status)...........eooeiiiiiiiiiiiiiiiee it 754
LASTFIELD (return last windoW CONLIOI)oooiiiiiiiiiiiiieie e 755
LEFT (return left justified StriNg)......cueeeiiiiiieiiee e 756
LEN (return length of StrNQg).......ueeieieoiiiiiiice e e e 757
LINE (draw a Straight liN€)uuveieiiee st e e e e e e et nrre e e e e e 758
LOCALE (Ioad environment fil€)ccuiiicrrieeiiee et e e e 759
LOCK (EXCIUSIVE fil& BCCESS) ...uuurriiiiieeiiiiiiiiiiie e s e s e e s r e e e e s e e e e e e e anns 760
LOCKTHREAD (re-lock the current execution thread)ccceeeeeeeiiiiiiiiiiiinns 761

LOG10 (return base 10 l0garithm) ... 762

14

Language Reference Manual

LOGE (return natural [0garithm) ... 763
LOGOUT (Degin traNSACTHION)cceeiiiiiiiiiiieeeeee ettt ettt e e e e e e e e e e e e 764
LONGPATH (return 1ong fileName)c.ueiiiiiiiiiie e 766
LOWER (return [OWEE CASE)uueeiieieee ittt e e e e ettt eee e e e e e e e aeeeaae e an 767
MATCH (return matching ValUES)oouiiiiiiiieiiee e 768
MAXIMUM (return maximum subscript Value)c.uuveveveeiiiiiiiiiiie e e e 772
MESSAGE (return message bOX r€SPONSE)cceiiiuvrriiireeeeiiiiiieereeeesssieneeeeeeeeennns 773
MONTH (return Mmonth Of dAt)cceviiiiiiiiii e 776
MOUSEX (return mouse horizontal poSition)..........ccuuvevreeiiiiiciiieieee e 777
MOUSEY (return mouse vertical POSItION)cocccurieriieeeisiiiiieeee e es e e e e 778
NAME (return fil@ NAME)ccoi i e e e r e e 779
NEXT (read next record iN SEQUENCE)uuuiieieeaiiiiiiiieeea e e eiiieeee e e e siieieeeea e e 780
NOMEMO (read file record without reading MemO)occcuiiiiiiiiiiiiiiiiiiieeeeeeee 782
NOTIFY (send safe information to a receiver thread)............ccccveieiiiiiiiiiiiiie 783
NOTIFICATION (receive information from sender thread)cccccoiiiiinnns 784
NULL (return null file field)eeee e 786
NUMERIC (return NUMETIC SIHNG) ..ccooiiiiiiieiiiee ettt e e ee e e e e e e 788
OMITTED (return omitted parameters)........cc.uueereeeeeiiiiciiieeee e e e s ssireer e e e sareeee s 789
OPEN (0p€en @ data StrUCIUIE)cevviieiiee e e ettt ee e e e e sttt e e e e e e s st e e e e e e s e snnneeeees 791
PACK (remove deleted reCOIAS) ..uuiiiiiiiiiiiiiiieee e iecieeie e e s e e e snrrrre e e e e e e 795
PATH (return CUrrent dir€CtOIY) .. uuu e e i iciiieeeeee e ettt e e e e e e e e e s e e e e e e e 796
PEEK (read memory addrESS)uuueuieeiiiiiuieieeeeeesiissiieereseeesssnsssnnesesesssnnsnsnssseesseannns 797
PENCOLOR (return lin@ draw COIOI)uueiiiiaaiiiiiiieiee et 798
PENSTYLE (return lin€ draw StYI)........c.uuueiiiiieiiiiiieeee ettt 799
PENWIDTH (return line draw thiCKNESS)ccuciiiiiiiiiiiiiee it 800
PIE (draw @ PIi€ Chart)cooii oottt e e e e e e 801
POINTER (return last queue entry POSItiON)cccuuveiiiiieiiiiiiiiiee e 803
POKE (write t0 MemOry d0rESS) ..ccceeiiiieiiiiiieeeee ittt e ettt ee e e e eibbreee e e e e 804
POLYGON (draw a multi-sided fIguIe)c.uueerreeeiiiiieeee e siree e e 805
POPUP (return popup Menu SEIECLION)uueviieiiiiiiiiieeee e e e 806
POSITION (return record Sequence POSItION).........cccuvriririeeiiiiiieiee e e e e s seerreee e e e e 808
POST (post user-defined @VENL)ccciviiuiiiiiie e 811
PRAGMA (control pragma settings from SOUICE)eveveeiiiiiiiieiiee e ciiiiieee e e e e 812
PRESS (put characters in the bUffer) ... 814
PRESSKEY (put a keystroke in the buffer).........ceee 815
PREVIOUS (read previous view record in SEQUENCE)ocouuvveeeereeeieiiiiieeieaaa e e 816
PRINT (print @ report STIUCLUIE)oooi ittt e e e e e e 818
PRINTERDIALOG (return ChoSen Printer)ooouuuieieeiieeiiiiiiieee e 819
POPERRORS (return error information)............ooueveeeeieie i 820
PUSHERRORS (write error information) ... 822
[I (Y 1 (ST = ToT o) (o) PR 824
[T 7= L L 1T =T oY) P 828
PUTREG (write value to WINAOWS re€QIStIY)ccccuiiiciieiieeee e iiiiiieiee e e e e s seivnveee e e e e 829
QUOTE (replace string special characters)ccccveevviicciiiieiie e 830
RANDOM (return random NUMDEI)........ccuuiiiiiee e ccciieee e e e e et e e e e e e 831
RECORDS (return number of rows in data Set)..........cccccriiiiiiiiiiiiiiiiniiiiieeeeeeeee 832

REGISTER (register event handler)oooiiiiiiii e 834

Contents

REJECTCODE (return reject code NUMDBDE) ..o 836
REGET (F8-get FECOIT) ..o ittt e ettt et e e e e e e e s ebnbeeeaaaeeeaans 837
RELEASE (release a held reCord)couuueiiiiiiiiiiiieieeee e 839
REMOVE (€rase @ fil@) ...cuiuiiiiiiiieieie et 840
RENAME (change file direCtory NAME)ccooiiiiiiiiiiiiieeee e 841
RESET (reset record SEqUENCE POSITION) ...veveeeiiiiiiriieiieeeeessiiieeeeeeeeeessnnirneeeeeeeeeenns 842
RESTORESTATE (restore state of data fil€)...........cccvvveereiiiiii e 845
RESUME (resume thread @XECULION)uuviiereeiiiiiiiiireeee e s eeirreee e e e e e ssneneeee e e e e e enns 846
RIGHT (return right justified String)ccccveriree i 847
ROLLBACK (terminate unsuccessful transaction).........ccccccoeecvvvvereeeiniiciiiieeneeeeeninns 848
ROUND (return rounded NUMDET)cuiiiiiiiec e e e 849
ROUNDBOX (draw a box wWith round COINEIS)uueiiiiiiiiiiiiiiieiee e eiiiieee e e 850
RUN (EXECULE COMMANM) ...ttt ettt e e e e e e beee e e e e e 851
RUNCODE (return program eXit COUR)ccuuaiiiiiiiiiiiiiaa it e e e 853
SELECT (select next cONtrol t0 PrOCESS) ...c.ccviiuuriiiiieiee it e e et 854
SELECTED (return control that has received fOCUS)cueeeiiiiiiiiiiiiiiie 856
SEND (send message to file driVer) ... 857
SET (initiate sequential file ProcessiNg)........ccovvcuvriiiiieei i 858
SET3DLOOK (set 3D WINAOW [00K)ccieeeiiiiiiiieiiee e e e e 862
SETCLIPBOARD (set windows clipboard contents)..........cccccccvvveevieivvieenee s s, 863
SETCLOCK (Set SYSteM tIME) ..evieeiiiiiiiiiieeee e ettt e e e e e s e e e e e s s e e e e e e e s nnnneees 864
SETCOMMAND (set command lin€ Parameters)c.oevcuvrrereeeeeiiiiiieereeeesssnenenens 865
SETCURSOR (Set temporary MOUSE CUISOL)uueeiiaaaaaiiiiiieeeiaaaeaaarnieeeeaaaeesaannenens 866
SETDROPID (set DROPID return String)occueeeeeeeeaenniiiiieeeeee e e 867
SETFONT (SPECITY FONT) ...t 868
SETKEYCHAR (Specify ASCI COUR)uutiiiiiiiiiiiiiiieee et 869
SETKEYCODE (SPeCify KEYCOUR)uueiiiiiiiaiieiiiiiieee ettt 870
SETNONULL (set file field NON-NUIT ... 871
SETNULL (setfile field NUIcooiieeeeee e e 873
SETNULLS(set the null state of COIUMNS)cccvviiiiiiee e 875
SETPATH (change current drive and dir€Ctory)cccccevvvcvveeieeeeeiisciieee e 876
SETPENCOLOR (s€t lin€ draw COIOK)cviveeiiiiiiiiiiiie e 877
SETPENSTYLE (s€et line draw StYl€)cceveeiiiiiiiiiiiee e 878
SETPENWIDTH (set line draw thiCKness)cccuvviieveeiiiiiiiieece e 879
SETPOSITION (specify new control POSItioN)cccoeiiiiiiiiiiiiiee e 880
SETTARGET (set current WindOW OF FEPOI)eeeiieeiiiiiiiiiiieiae et 881
SETTODAY (Set SYStemM date)coiiueiiiiiiiie ettt 883
SHORTPATH (return short fillename) ... 884
SHOW (WIIE 10 SCIEEM)tiiiieiee ettt e e e e ettt e e e ettt e e e e e e st e be e e e e e e e e snnbeneeeas 885
SHUTDOWN (arm termination proCeAUIE)eeieeeaaiiiiiuiiiiieaeeeeiiiiieeee e e e e 886
Y LI] (01 7101 SRRSO 887
SKIP (bypass records in SEQUENCE)uuuuiiieeeiiiiiiiieeeeeeeiesiiieeeeeeeessnsnnneeeeeeeeesennnnnees 888
SORT (SOIt QUEUE ENEHES) ..uvveeieiieesieiitieieeeeeessssstieeeeeeeessssnntrereseeessnsnnsreeeeeaeessnnnsnnens 890
SQL (USE SQL COUER)....ciiiiitieiieee e e ettt te e e e e e e e e e s st e e e e e e e s e e e e e e s e s nnnnnneees 892
SQLCALLBACK (register or unregister a SQLCallBackInterface).........cc.cccceeuvvneeen. 893
SQRT (FEtUIN SQUAIE FOOL)veiiiiiieiiiiitieie e e e e e ettt e e e e et e e e e e e s anbe e e e e e e e e e saeneeees 896

START (return new execution thread)ooouuuiiiiiiarinii e 897

16

Language Reference Manual

STATUS (return file or window/report Status)ceveeriiiiiiiiieiee e 899
STOP (suspend program €XECULION)ceieeeiiiuuiiieeeeeeeiaritieeee e e e e e sinbreee e e e e e sneeeeees 901
STREAM (enable operating system buffering)cccccoiiiiiiiii e 902
STRPOS (return matching value poSItion)............ueeiiiiiiiiiiiiiieiee e 903
SUB (return substring Of SIHNQG)oooeeeiieiiie e 907
SUSPEND (suspend thread €XECULION)cccuuriiieeeeeeiiiiiiieer e e e e e s seenrieee e e e e e e enaneees 909
I N (S (0T T = Vo =] 1 o RS 910
THREAD (return current execution thread)cccceveee i 911
THREADLOCKED (returns current execution thread locked state)cc.vveee... 912
TIE(associate a string value t0 an ASTRING)ouvvviieiiiiciiiieeee e 913
TIED(retrieves a value associated with an ASTRING)cccccevveeviivciiiieeee e, 914
TODAY (return SYStem date)ooiiieiiiieiee et 915
TYPE (Write StriNg t0 SCIEEMN) ...cciiii ittt ettt e et e e e e e e enneeee 916
UNHIDE (Show hidden CONTIOl).........couiiiiiiiiiiiiie e 917
UNLOAD (remove a CALLed DLL from Memory)........c...eeeeieeeiiiiiiieiieeee e e 918
UNLOCK (unlock a locked data file)cooiiuuiiiiiiiiiiiieee e 919
UNLOCKTHREAD (unlock the current execution thread)cccceveeeiiiiiiiiiieeenenn, 920
UNQUOTE (remove string special Characters)..........ccccuuvevieeeiiiiiiniieneeee e essnieeeeens 921
UNREGISTER (unregister event handler)ccccccoovviiiiiiiie e 922
UNTIE(disassociate a string value from an ASTRING)ccccovviiiiiiveeeiviiiiieeeeeeen 923
UPDATE (write from screen to USE variables)ccccovvvveeiiiicciiiee e, 924
UPPER (FEtUIMN UPPET CASE) ..ceeieieiieiieieeeeeeiiitieeeeeeessssntteeeeeaeessssnsssaeeeeeessssnssnseeeeens 925
VAL (return ASCIHE VAIUE) ...ttt 926
WATCH (automatic concurrency Check)........oocuuviiiiiiiiiiiiieee e 927
WHAT (return field from group)........ooeeeiieiiee e 928
WHERE (return field position in group)..........ooouieieeiie i 929
WHO (return field name from group)eeeeeeeo i 930
YEAR (return year Of date)oo i 931
YIELD (@llow €VENt PrOCESSING) ..ceeiiiirurriieeieeeeeiiteteeeeeeessssterer e e e e e s e ssanrrneeeeeeessannnnnens 932
Appendix A - DDE, OLE, and .OCX 935
Dynamic Data EXCRANGEcuuuiiiiiiiaai it 935
DDE OVEIVIEW ...ttt sttt e e nn e e s e e s e nn e e eneees 935
DDE EVENTS ...oiiiiiiieie ittt 936
DDE PrOCEUAUIESveiiiiiie ittt sttt ettt e e nnr e ne e s e 938
DDEACKNOWLEDGE (send acknowledgement from DDE server) 938
DDEAPP (return server appliCation)..........c.ooccuveriereeeiiiiiieieeee e sssiieee e e e e e s 940
DDECHANNEL (return DDE channel NUMDbBEr)coovviiiiieiie e, 941
DDECLIENT (return DDE client channel)..........c..oeeiiiiiiiiiiieeee e 942
DDECLOSE (terminate DDE server lINK)eeooiiiiiiiiieeiiieeeee e 943
DDEEXECUTE (send command to DDE SEIVEr)cooccuuiiieiieeiniiiiiieeeae e 944
DDEITEM (return SErVer itEIM).........ueeiieiee ettt e e e e e e e e 946
DDEPOKE (send unsolicited data to DDE SErVer).........ccccuuveeiieeiniiiiiiieeiaeeeeens 947
DDEQUERY (return registered DDE SEIVEIS)......ccueeeiiiicrieieeeeeeeiesiinieeeeeeesenans 949
DDEREAD (get data from DDE SEIVEI).......ccccuvieiereeeeiiicieieeeee e e essininnneeeee e s e e 950
DDESERVER (return DDE server channel).......ccccccovviiiiieeeee e 952

DDETOPIC (return SErVEr tOPIC) .uuuvvreeerreeeeiiiiiieiereeeeesssistnneeeeeeessssnsnneeeseeesannns 953

Contents 17
DDEVALUE (return data value Sent t0 SEIVEr)......ccccoouiuiieiiiiie e 954
DDEWRITE (provide data to DDE Client)ccoeiiiiiiiiiiiiieeeeeeeiiieeeee e 955

Object Linking and EMBDeddiNgcooiuiiiiieiieeiiieeeee e 957
OLE OVEIVIBW ...ttt ettt e e e e ettt e et e e e e e e bbb e e e e e e e e e annbrnaeeeaens 957
OLE COoNtaiNer PrOPEItIESuuieiieiaiiiiiiiieee e e ettt e et e e e e e e e sibraaeeeeeas 959
OLEDIRECTORY (get list of installed OLE/OCX)uuvvveeiiiiiiiiiiiieeeesiciinieeeenn 968

OLE (LOCX) CuStom CONtrOlS........cccuvviiiiieee e ieitiieie e s e e e e e s e e e e e e e e nanneees 970
OLE cUStOmM CONIOl OVEIVIEWcoiuviiie ittt e 970
LOCX CONLIOl PrOPEITIES...uuveiiiieeiieiiiiiie et e e e e e ettt et e e e e s s see e e e e e e e s snnrraneeeeaeeeanns 971
CallDack FUNCLIONSeoiiiiiiiie ittt s snbeee e anes 973

Calling OLE ObjeCt MEthOUS........cci it e e 978
MethOod SYNAX OVEIVIEWoiiiiiiiiiiiiiiiite ettt e e e et e e e e e e e e sbbeaeeeaeaeeaaaas 978
Parameter Passing to OLE/OCX Methods............cccceiiiiiiiiiiiiiiiiieeeeeeeee 981

OCX LIDrary PrOCEAUIESueeiiiieie ittt e e et e e e e e eeeeees 984
OCXREGISTERPROPEDIT (install property edit callback)cccooeuviieeennn. 984
OCXREGISTERPROPCHANGE (install property change callback).................. 985
OCXREGISTEREVENTPROC (install event processing callback).................... 986
OCXUNREGISTERPROPEDIT (un-install property edit callback) 987
OCXUNREGISTERPROPCHANGE (un-install prop change callback) 988
OCXUNREGISTEREVENTPROC (un-install event process callback).............. 989
OCXGETPARAMCOUNT (return number of parameters for current event)...... 990
OCXGETPARAM (return current event parameter String)ccceeeeevevvvvveeneeeenn. 991
OCXSETPARAM (set current event parameter String)cccveeeeeeeiiiiiiineeenenn. 992
OCXLOADIMAGE (return an image ObjecCt)ooccuuiieiiieeiiiiiieeec e 993

Appendix B - Events 995

BV NS 995

Field-Independent EVENESuiiiiiiiiiiiieieee et e e e 996
EVENTAIGIKEY ...ttt e e e et baae e e e e e e e e aaas 997
EVENT:BUIADONE ..ottt e e e e e e e e e e 997
EVENT:BUIIAFIIEeeii ittt ettt e et e e s nnaaa e e nnnneees 997
EVENT:BUIAKEY ...ceiiiiiiiiiiieiie ettt e e e e e e 997
EVENT:CIOSEDOWNveiiiiiiieiee ettt ettt sttt e st e e 997
EVENT:CIOSEWINUOW.cciiiiiiiiiiiiiie ittt sebee e s sneeas 997
EVENT:COMPIEIEA ...ttt e e e e e e e e e e e e anns 997
DDE EVENTSiiiieiiieee ettt e et e e e s e s e e e e e e s e anbbr e e e e e e e aannne 998
EVENT:DOCKEAooiiiiiiiiiiit e e 998
EVENT:UNAOCKEM ...ttt 998
EVENTIGAINFOCUScoiitiiiiiee ettt ettt e e e et anae e e e e e e e aaes 999
EVENTIICONIZE ..ttt ettt e e ee e e e e e e nanes 999
EVENTICONIZEA ..eeeiiiiiiieeee ettt ettt e e e e e 999
EVENTILOSEFOCUScoiiiiiiiiiiiiitit ittt 999
EVENTIMAXIMIZE ..cooiiiiiiiieiii ettt e e e e e e e e 999
EVENT:MAXIMIZE ...coiviiiiiiiiiie et st 999
EVENT:IIMOVE ...ttt st st e et e e s e 999
EVENT:IMOVE.......ooiiiiiiiiiiiiie ettt e 999

EVENTINOUTY ..oeiieeeeceeee e 1000

Language Reference Manual

EVENT:OPENWINAOWeiiiiiiiiie ettt ettt e et e e e e e ianbeee e e e e e 1000
EVENT:PIEAIBITKEY ...ttt 1000
EVENTIRESIOIE ...ccoiiiiiiiiitie ettt 1000
EVENTIRESIONE ...cciiiiiiiiiiieeeee ettt e e e e e e e e e e e e 1000
EVENTIRESUIME ...ttt ettt ettt e eeeeeeeeeeeeeeeeeeeneennes 1000
EVENT SIZE .ottt et 1000
EVENT SIZEA. ...ttt s 1000
EVENT:SUSPENG ..oeiiieeiiiciie ettt s s e e e e e s s e e e e e e s snnnnaneneeeeeeanns 1001
EVENT TIME oottt ettt e et e et e e e e ereas 1001
Field-SPeCific EVENLSueviii it e e e s r e e e e e e 1002
Field-SpecCific EVENIS ... e e e e e 1002
EVENT IACCEPIEA. . ceiiiiiiiieeit ettt e et e e e e e s e ee e e e e e aans 1003
EVENTAIEITKEY ...ttt e e e e e e e e 1003
EVENT:COIUMNRESIZE ...ttt 1003
EVENT:CONIACIEA ...ttt e e e e e e e e 1003
EVENT:ICONTACHNG «..cei ittt ee ettt ettt e e e e e aeeeaaa e an 1003
A A\ I] = (o PP PP PP PPPPPPPPPPPPPPPPPPIRE 1003
EVENT:DIAQOING «vvrerieeeiiiiiiiiiieie e e s e siieir e e e e e s s s st er e e e e e s ssssanaeeeeaeeessnsnnneeneeeeesanns 1003
R 1 o PSPPI 1003
SV SN I] o] o] o =T | 510 1.1/ o OSSR 1004
EVENT:DrOpPRINGDOWNcutiiiiiie e e ittt e e e e s ses e e e e e s s s er e e e e e s snnnnneneeeeeeeanns 1004
EVENT:EXPANUEAccooiiiiiieeee ettt et e e e e s e st e e e e e e e e nnnes 1004
EVENT EXPANUING..ciiiiiiiiiiiiiiieie ettt ettt e e e e e e e sabebeeeaa e e e e annes 1004
EVENTILOCALEciiiiiiiiiiiiiiieiteeee ettt ettt e e 1004
IMOUSE EVENTScoiiiiiiiiiiiiiiiii ettt ettt e e teeeeeeeeeeeeesesseessssesennenne 1005
EVENTINEWSEIECHION ...ttt e e 1006
EVENT:PAgEDOWNcceiiiiiiiiiiiiiitiieee ettt eeeeeeeeeeeeeeseeeeeeeeeeeseseesssesennenne 1006
EVENT PAGEU ..ottt 1006
EVENT:PreAlertKey (Field SPECIfIC) ..uuvurriieiiiiiciiiiiie e 1006
EVENTIREJECIEA ..eevie ettt e e e e e e e e e st areeee e e e e e enes 1006
EVENT:SCrolIBOIOMeeiiiiiiiiie ittt 1006
EVENT:SCrOIDOWN ...ttt 1006
EVENT:SCIOIDIAQccciiiiiiieiee e e eeriiee e e e e s s s e e e e e s st e e e e s s snnrnneneeeeeseennes 1007
SRV SNl IS Yol (o] I e o SRRSO 1007
EVENT:SCIOITIACK. ...cii ittt e e 1007
EVENT ISCIONUD ..ttt e e e e e e e e e 1007
EVENT:SEIECIEMA. ..ceeiiiiiie et a e 1007
EVENT:TabChanginguueeeiiaiiiiiiiieee et ee e e e 1007
MOAAI BEVENLS ..ottt e et e e e e e e s ane e e e e e e e e aans 1008
Appendix C - Runtime Properties 1009
PROP:IACCEPLAIL ...ttt a e ee e e e e e 1009
PROP:IACLVE ...ttt e et e e e e e e s st be e e e e e e e e aans 1010
PROP:AIWAYSDIOP ..eeeiiiieiiteieeee e e seeiiieee e e e e e s sstsae e e e e e e s sstaraeereaeeessnsnnanereeeessanns 1010
@ Y o] o] [1 7= o o = 1011
PROP:ASSEIMHOOKeveiiiiiiiiie ittt 1011

PROP:ASSEMHOOKZ ...t e e e e e e e e e e e eeees 1012

Contents

PROP:AULOPAPET ...ttt 1013
|2 O o ST (=TT A V2= | T 1013
(R O S0 11 (=] 1014
|24 O] = O s [STe] (T 1014
PROP:Child and PROP:ChildINAEX........ocuuiiiiiieieeeeee e 1015
[O] @ To (7= =T o SRRSO PESR 1016
PROP:CHENTHANAIEo e e e e eeees 1016
PROP:CHENIWINAPTOC ...ttt ee s e e s e e e eaab e e e e e eaeees 1017
[O] @ 1] 0 =] £ PSR 1018
PROP:COlorDialogHOOKcceviieeeiiiiiiiiiiee et e e e e 1019
PROP:DDEMOUE......uu ittt e e e e e e s e e e e e s eeaba e e s eeesenaanes 1019
PROP:DDETIMEOUL ..o iiiiieetieee ettt e e e ettt e e e e e e e es s s e s s e eesabaaseseaesennes 1020
PROP:DEIEIMOVEccceeiiiieee ettt e e e e e e et e e e e e e s eaa e e eaaas 1020
(20 @] = o [TR 1022
|2 O] o = g F=1 o] [To T 1024
PROP:EVENISWAIING ..ottt e e 1026
[O o o (e L=] £ (o] o [1026
PROP:FAtAIEITOrHOOKccevteiii i e e s eeaens 1026
PROP:FIIEDIAlOgHOOKuuiiiiie et e e e e e e e e e 1026
PROP:FIUShPAgENUMFUNCccceiiiiiiiiiiece et e e ee e e e e 1027
PROP:FIUSNPIEVIEW.......cciiieeeii et e e e e s s e e e e e e eaabe e e e eesaeees 1028
|24 @] = =0 | [0 1 1029
PROP:FONtDIAIOGHOOKeeiiiiiiiiiiiiieee et 1029
(2 O] o =111 [T | 1030
|2 O] o o F= 1 g o | 1030
PROP:HeaderHEIGNTeeeiieieieeee e 1031
PROP:HSCIOIPOS ... ettt e et e e e et e s eaeaaaas 1032
[2d @] i (o701 | I 1= S 1033
[O] o [4 F= Vo 1= =1 £ USROS 1035
PROP:IMAGEBIODccceiiieeee et e e e 1036
PROP:INITASIINGHOOK ...t e e enrrnee e e e e 1036
|22 O] 2 1| (] g 1= (o] 1036
(g @] =l 1o o] | F= 1 1036
g SO R 1 (=T ¢ 1 1037
PROP:LAZYDISPIAY ..ottt et eee e e e e 1037
PROP:LENSUPPOIT..cciiiiiiiiiii ittt 1038
(24 @] = 1] o] [0 To LR 1038
|24 O o |0)Y =T £1 o] o I 1039
PROP:Line and PROP:LINECOUNL........ciiiviiiiieee e eerae e 1039
PROP:LINEHEIGNT ..ot 1040
PROP:MAXHEIGNE ...ccce oo e e e e e e e 1040
[@] Y F= D a YL o 11 o 1041
PROP:MESSAGEHOOKeeviiiiiiie e ettt s s e e e e e e e e e e e e e s 1041
[@] V110 o 1= T | o SRR 1042
(2R @ =Y 110 1YL Ao |1 o 1042
(2 O] o N) (1= [1043

PROP:NEXIPAGENODccoeiiiiiiiiiiiiiiiiiiteeetetet ettt 1044

20

Language Reference Manual

PROP:NextTabStop and PROP:PrevTabStop.......cccccviiiiiiiiiiiiiiiiiiiieeee e 1044
PROP:NoHeight and PROP:NOWIdth ... 1045
PROP:INOTIPS ettt ettt e ettt e e e e e st e e e e e e e e e nbanaeeeaaaaeas 1046
PROP:INUMTADSceiieeieee et e e e 1047
PROP:IPAIENT....ciiiiiiiiiiiieieie ettt 1048
PROP:PIXEIS ..ottt ettt et 1048
PROP:PriNterDIialOgHOOKccceeiiiiiiieiee s et ee e e e e 1049
PROP:PINIMOTE ...ttt 1049
PROP:PIOQIESS ...eviieiiieieieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeaeeeeeeeeeeeeeeeeeseseenessnnnnnnnnnes 1050
[@] o 0)Y 4o o]| SRR 1051
PROP:REJECICOUE. ... ceieeeeeee et e e e e s e e e e e e e s s nnanrreeeeaeeeanns 1052
PROP:ISCIEENTEXL ...ttt ettt ettt ettt eeeee et ee et eeaeteaeesesssessessssesnnsennes 1053
PROP:SelStart (or PROP:Selected) and PROP:SelEnd.............occcoiieeieeinnes 1054
PROP ISIZE ..oviiiiiiiiiee ettt st e e e ae e e st ae e e et re e e e tre e e e ennes 1055
PROP:SnapHeight and PROP:SnapWidthccccciiiiiiiiee e 1056
PROP:STAIUSFONToeiiiiiiiiiiiiiiieiie ettt et eeeeeeeeeeeeeeeeesennenees 1058
PROP:SIOPHOOK. ..cceiieiiitee e e e 1058
PROP:SYStEMPIOPHOOKevviiieciiiiiiiieee e e e e 1058
PROP:TADROWSeiiiiiiiiie ittt ettt 1059
e 1=V {01 PP 1060
@ =1 0] 0 . = Ve =PRI 1060
PROP:TempIMagePath.........couiiiiiiiieec e e e 1060
PROP:TEMPIMAGESTIAIUScceiiiiiiiiiiiiiiiieeeeeeeeee ettt e e 1060
PROP:TEMPNAMEFUNCcoeviiiiiiiiiiiiiiiieieet ettt 1060
PROP:TempPagePath ... 1062
PROP:TEMPPANcoiiiii e 1062
PROP:ITRIEAM ...ttt e e e e e e 1062
PROP:TRIEAAING ..eeeiieiiiiiiiiieee ettt a et ee e e e e e 1062
PROP:TipDelay and PROP:TIPDISPIAYccooiiuiiiiieiee i a e 1063
[O] T 0TS o] | PSR 1063
PROP:TOUCNEAoiiiiiiiie et 1064
(@] I8/ 1 1066
PROP:UPSIAEDOWNiitieieeee e ettt e e e e st e e e e e e s st ee e e e e e snnnnnaeeeaeeensnns 1067
PROP:USEATUIESS ...ttt ettt sttt e et e e neee 1068
PROP:VISIBIE ...ttt e 1069
PROP:VLBproc and PROP:VLBVAL...........oooiiiiiiiiiiiieeee e 1071
PROP:IVSCIOIL. ...t e e e e 1074
PROP:VSCIOIPOS ...ttt a e 1075
PROP:IWALCNEAeeeiiiiiiiieee ettt a e 1077
PROP:WHEEISCIOIl ... 1077
PROP:WINAOWSVEISIONcuviiiiiiiiiiie ittt sttt e s anbbe e e s 1077
PROP:IWNAPTOC.ciiiiiiiie ettt ettt et e e e e 1078
PROP:Xorigin and PROP:YOIIQIN.......uuuiiiieeiiiiiiiieee e sssiieeee e e e e s sninneeeee e e e 1080
Runtime VIEW and FILE Propertiesccuuveiieeeiiiiiiieieee s ssiieee e e e e ssinineeee e e e 1081
[@] = @fe] 0] o] 1] 1= o [PPSR 1081
PROP:CONNECESIING. ...ttt ettt e e e e e 1081

PROP:CUITENTKEY ...ttt 1082

Contents 21

PROP:DALAPALNccoiiiiiiiiiie et 1082
PROP:IDELAIISeeeeiiieeiie ettt e e e 1083
PROP:DrVErLOGSOULAIIASceiiieiiiiiiiiiee ettt e e e e e 1083
PROP:IFEICNSIZE .eeeiiiiiieeeee e 1083
PROP:FIEIA. ...t 1084
PROP:FIEIASFIIE ... e 1084
PROP:FIIE. ...ci ittt 1085
PROP:IFIIES ...ttt 1085

[@] o €] (o] o T- 11 = 1= o T PSP SSSRR 1086
PROP:IHEIA ... 1086
PROP:ILOQ .veeiteeeitet ettt 1087
PROP:ILOGOULoeiiiiiiiiiiiiiiietieee ettt ettt eee ettt et teeeeeeeseeeeeeeaeaeaesssesseesessssssssnsnnssnnes 1088
PROP:LOgOULISOIAtIONLEVENccoiiiiiiiiee et 1089
PROP:MaXSTAtEMENTScciiiiiiiiiiiiiiiiiiiieee ettt 1089
PROP:PIOFIE ...ttt 1089
PROP:PIrOgreSSEVENLScciiiiiiiiiiiiiiiiieeeeeeee ettt ettt e e e 1090
PROP:IRECOIeeeiiiieeiie ettt e e e 1093
PROP:SQLDIIVENciitiiiiiieieeeeeeeeeeeeeeeeeeeeeeteeeeaeesssesesesesereeersresssrerrsrrrrerrrrrrrr———... 1093
PROP :ISIMEALLE ...t 1093
@ ST o] o L0 £ €= I PPN 1094
@ ST o] o L0 K= 1 = PP 1094
PROP:Text (MEMO PrOPEILY) ...ccciieueieieeeee e e ieiiieeeeee e e s sssiineeeee e e e s s ennnnaeeeaeeeenanns 1094
PROP:IVAIUE ...ttt e e e e e e e 1095
Appendix D - Error Codes 1097
Trappable RUN TIME EITOIS......coiieviiiiei et e e e e e e e e e e s 1097
Non-Trappable RUN TiMe EITOrSuoiiiiiiiiiiiiiieee et 1103
(070] 101 o 1 [=T o =1 1 (o] £ PR EURP RO 1106
SPECIIC EITOIS .ottt e e e e e areea e s 1107
UNKNOWIN ©ITOFStiiieete e ettt e e e ettt e e e e e e s aaabb et e e e e e s e s annbbbaeeeeaeesesnnbnseeeaeas 1124
Appendix E - Legacy Statements 1127
Legacy STateMENTScooo i 1127
BOF (return beginning Of fil@).........ccuoi e 1128
EOF (return €nd Of fil€)oooi i 1129
FUNCTION (define @ fuNCHION)......cociiiiiiiiiieeiee e 1130
POINTER (return relative record POSItion).........ccooeicireiiieeeisiiieese e ceieee e e 1131
SHARE (open data file for shared acCess)ccccvvveeeiiiiiiiiiieee e 1132

Index: 1133

22

Language Reference Manual

1 - Introduction 23

1 - Introduction

Introduction--The Language Reference Manual

Clarion is an integrated environment for writing data processing applications and management
information systems for microcomputers using the Windows operating environment. Clarion's
programming language is the foundation of this environment. In this manual, the language is
concisely documented in a modular fashion. Although this is not a text book, you should consult
this manual first when you want to know the precise syntax required to implement any
declaration, statement, or function.

Wherever possible, we provide real-world example code for each item.

24 Language Reference Manual

The Language Reference Manual

Language Reference -- Chapter Organization

CHAPTER 1 - Introduction provides an introduction to the Clarion Language Reference. It
provides a brief overview of the contents of each chapter, and a guide to help the reader
understand the documentation conventions used throughout the book.

CHAPTER 2 - Program Source Code Format provides the general layout of a Clarion Windows
program. Punctuation, special characters, reserved words, and a detailed description of the
"building blocks" required to create modular, structured Clarion source code are documented
here.

CHAPTER 3 - Variable Declarations describes all the simple data types used to declare
variables in a Clarion program. In addition, data display formatting masks, called "picture tokens,"
are defined and illustrated.

CHAPTER 4 - Entity Declarations describes all the complex data types used to declare
GROUP, CLASS, FILE, VIEW, and QUEUE structures in a Clarion program.

CHAPTER 5 - Declaration Attributes describes all the attributes which can modify variable and
entity declarations.

CHAPTER 6 - Windows describes the APPLICATION and WINDOW data structures and all their
component structures.

CHAPTER 7 - Reports describes the REPORT data structure and all its component structures.

CHAPTER 8 - Controls describes all the controls that may be placed into APPLICATION,
WINDOW, and REPORT data structures.

CHAPTER 9 - Window and Report Attributes describes all the attributes which can modify
APPLICATION, WINDOW, and REPORT data structures and the controls they contain.

CHAPTER 10 - Expressions defines the syntax required to combine variables, procedures, and
constants into numeric, string, or logical expressions.

CHAPTER 11 - Assignments defines the all the methods to assign the value of an expression to
variables. This chapter also discusses BCD operations and Clarions Automatic Data Type
Conversion.

CHAPTER 12 - Execution Control describes the compound executable statements that control
program flow and operation.

CHAPTER 13 - Built-in Procedures documents all of the built-in Clarion library procedures.

1 - Introduction 25

APPENDIX A - DDE, OLE, and OCX documents the procedures that perform Dynamic Data
Exchange (DDE), Object Linking and Embedding (OLE), and OLE Custom Controls (OCX).

APPENDIX B - Event Equates documents the EQUATE statements for events that help make
Clarion code readable.

APPENDIX C - Runtime Property Assignments documents all the runtime properties.
APPENDIX D - Error Codes documents the runtime and compiler errors.

APPENDIX E - Legacy Statements documents language statements which are maintained only
for backward compatibility with previous versions of Clarion.

26 Language Reference Manual

Documentation Conventions and Symbols

Symbols are used in the syntax diagrams as follows:

Symbol Meaning

[1 Brackets enclose an optional (not required) attribute or parameter.

() Parentheses enclose a parameter list.

N Vertical lines enclose parameter lists, where one, but only one, of the parameters
is allowed.

Coding example conventions used throughout this manual:

I F NOT SoneDat e 'l F and NOT are keywords
SoneDat e = TODAY() I SoneDate is a data nane
END I TODAY and END are keywords

CLARION LANGUAGE KEYWORDS Any word in "All Caps" is a Clarion Language keyword
DataNames Use mixed case with caps for readability
Comments Predominantly lower case

The purpose of these conventions is to make the code examples readable and clear.

1 - Introduction 27

Reference Iltem Format

Each Clarion programming language element referenced in this manual is printed in UPPER
CASE letters. Components of the language are documented with a syntax diagram, a detailed
description, and source code examples.

Items are documented in logical groupings, dependent upon their hierarchical relationships.
Therefore, the table of contents for this book is not listed in alphabetical order. In general, data
types and structures occur at the beginning of a chapter, followed by their attributes, and
executable statements and functions at the end.

The documentation format used in this book is illustrated in the syntax diagram on the following
page.

28 Language Reference Manual

KEYWORD (short description of intended use)

[label] KEYWORD(| parameterl | [parameter2]) [ATTRIBUTEL()] [ATTRIBUTE2()]
| alternate |
| parameter |

llist |

KEYWORD A brief statement of what the KEYWORD does.

parameterl A complete description of parameterl, along with how it relates to parameter2
and the KEYWORD.

alternate parameter list
A complete description of mutually exclusive alternates to parameterl, along with
how they relate to parameter2 and the KEYWORD.

parameter2 A complete description of parameter2, along with how it relates to parameterl
and the KEYWORD. Because it is enclosed in brackets, [], it is optional, and
may be omitted.

ATTRIBUTE1 A sentence describing the relation of ATTRIBUTE1 to the KEYWORD.
ATTRIBUTE2 A sentence describing the relation of ATTRIBUTEZ2 to the KEYWORD.

A concise description of what the KEYWORD does. In many cases the KEYWORD will be an
attribute of a keyword that was described in the preceding text. Sometimes a KEYWORD has no
parameters and/or attributes.

Events Generated: If the KEYWORD generates events, they are listed here.

Return Data Type: The data type returned if the KEYWORD returns a value.

Errors Posted: If KEYWORD posts errors which may be trapped by the ERROR and
ERRORCODE functions, they are listed here.

Related Procedures: If KEYWORD defines a data structure, the procedures which operate on that
data structure are listed here.

Example:
Fi el dOne = FieldTwo + Fiel dThree IThis is a source code exanple
Fi el dThree = KEYWORD(Fi el dOne, Fi el dTwo) I Comments followthe "!'" character

See Also: Other pertinent keywords and topics

1 - Introduction 29

Clarion Conventions

Standard Date

A Clarion standard date is the number of days that have elapsed since December 28, 1800. The
range of accessible dates is from January 1, 1801 (standard date 4) to December 31, 9999
(standard date 2,994,626). Date procedures will not return correct values outside the limits of this
range. The standard date calendar also adjusts for each leap year within the range of accessible
dates. Dividing a standard date by modulo 7 gives you the day of the week: zero = Sunday, one =
Monday, etc.

The LONG data type with a date format (@D) display picture is normally used for a standard
date. Data entry into any date format picture with a two-digit year defaults to the century of next
20 or previous 80 years. For example, entering 01/01/01 results in 01/01/2001 if the current year
(per the system clock) is greater than 1980, and 01/01/1901 if the current year is 1980 or earlier.

The DATE data type is a data format used in the Btrieve Record Manager and some other file
systems. A DATE field is internally converted to LONG containing the Clarion standard date
before any mathematical or date procedure operation is performed. Therefore, DATE should be
used for external file compatibility, and LONG is normally used for other dates.

See Also:

Date Pictures
DAY

MONTH
YEAR
TODAY
SETTODAY
DATE

30 Language Reference Manual

Standard Time

A Clarion standard time is the number of hundredths of a second that have elapsed since
midnight, plus one (1). The valid range is from 1 (defined as midnight) to 8,640,000 (defined as
11:59:59.99 PM). A standard time of one is exactly equal to midnight to allow a zero value to be
used to detect no time entered. Although time is expressed to the nearest hundredth of a second,
the system clock is only updated 18.2 times a second (approximately every 5.5 hundredths of a
second).

The LONG data type with a time format (@T) display picture is normally used for a standard time.
The TIME data type is a data format used in the Btrieve Record Manager. A TIME field is
internally converted to LONG containing the Clarion standard time before any mathematical or
time procedure operation is performed. Therefore, TIME should be used for external Btrieve file
compatibility, and LONG should normally be used for other times.

See Also:
Time Pictures
CLOCK
SETCLOCK

1 - Introduction 31

Clarion Keycodes

Windows Keycode Mapping Format

Each key on the keyboard is assigned a keycode. Keycodes are 16-bit values where the low-
order 8 bits (values from 0 to 255) represent the key that was pressed, and the high-order 8 bits
indicate the state of the Shift, Ctrl, and Alt keys. Keycodes are returned by the KEYCODE() and
KEYBOARD() procedures, and use the following format:

| A| C| S| CODE
8

I I
Bits: 10 9 7 0
CODE - The Key pressed
A - At key bit
C- Crl key bit
S - Shift key bit

Calculating a keycode's numeric value is generally unnecessary, since most of the possible key
combinations are listed as EQUATE statements in KEYCODES.CLW (INCLUDE this file and use
the equates instead of the numbers for better code readability).

KEYCODES.CLW

Keycode equate labels assign mnemonic labels to Clarion keycodes. The keycode equates file
(KEYCODES.CLW) is a Clarion source file which contains an EQUATE statement for each
keycode. This file is located in the install \LIBSRC directory.

It may be merged into a source PROGRAM by placing the following statement in the global data
section:

| NCLUDE(' KEYCODES. CLW)
This file contains EQUATE statements for most of the keycodes supported by Windows. These

keycode EQUATES are used for greater code readability wherever you need to set or compare
keyboard input.

See Also:
KEYCODE KEYBOARD
KEYCHAR KEYSTATE

SETKEYCODE ALERT ALRT

32

Language Reference Manual

2 — Program Source Code Format 33

2 - Program Source Code Format

Statement Format

Clarion is a "statement oriented" language. A statement-oriented language makes use of the fact
that its source code is contained in ASCII text files so every line of code is a separate record in
the file. Therefore, the Carriage Return/Line Feed record delimiter can be used to eliminate
punctuation.

In general, the Clarion statement format is:

| abel ~ STATEMENT[(paraneters)] [, ATTRI BUTE[(paraneters)]]

Attributes specify the properties of the item and are only used on data declarations. Executable
statements take the form of a standard procedure call, except assignment statements (A = B) and
control structures (such as IF, CASE, and LOOP).

A statement's label must begin in column one (1) of the source code. A statement without a label
must not start in column one. A statement is terminated by the end of the line. A statement too
long to fit on one line can be continued by a vertical bar (|). The semi-colon is an optional
statement separator that allows you to place more than one statement on a line.

Being a statement oriented language eliminates from Clarion much of the punctuation required in
other languages to identify labels and separate statements. Blocks of statements are initiated by
a single compound statement, and are terminated by an END statement (or period).

See Also:

Declaration and Statement Labels
Structure Termination

Field Qualification

Reserved Words

Special Characters

34 Language Reference Manual

Declaration and Statement Labels

The language statements in a source module can be divided into two general categories: data
declarations and executable statements, or simply "data" and "code."

During program execution, data declarations reserve memory storage areas that are manipulated
by executable statements. A label is required for the data to be referenced in executable code. All
variables, data structures, PROCEDURESs, and ROUTINES are referenced by labels.

A label defines a specific location in a PROGRAM. Any code statement may be identified and
referenced by a label. This allows it to be used as the target of a GOTO statement. Each label on
an executable statement adds ten bytes to the executable code size, even if not referenced.

The label on a PROCEDURE statement is the procedure's name. Using the label of a
PROCEDURE in an executable statement executes the procedure, or in expressions, or
parameter lists of other procedures, assigns the value returned by the procedure.

The rules for valid Clarion labels are:

. A label MUST begin in column one (1) of the source code.

. A label may contain letters (upper or lower case), numerals 0 through 9, the underscore
character (_), and colon (3).

. The first character must be a letter or the underscore character.

. Labels are not case sensitive (i.e. CurRent and CURRENT are the same).

. A label may not be a reserved word.

. A period (.) is valid in a label for procedures defined in a CLASS structure in the form

ClassLabel.MethodLabel

2 — Program Source Code Format 35

Structure Termination

Compound data structures are created when data declarations are nested within other data
declarations. There are many compound data structures within the Clarion language:
APPLICATION, WINDOW, REPORT, FILE, RECORD, GROUP, VIEW, QUEUE, etc. These
compound data structures must be terminated by a period (.) or the keyword END. IF, CASE,
EXECUTE, LOOP, BEGIN, and ACCEPT are all executable control structures. They must also be
terminated with a period or the END statement (a LOOP may optionally terminate with a WHILE
or UNTIL statement).

36 Language Reference Manual

Field Qualification

Variables declared as members of complex data structures (GROUP, QUEUE, FILE, RECORD,
etc.) may have duplicate labels, as long as the duplicates are not contained within the same
structure. To explicitly reference fields with duplicate labels in separate structures, you may use
the PRE attribute on the structures just as it is documented (Prefix:FieldLabel) to provide unique
names for each field. However, the PRE attribute is not required for this purpose and may be
omitted.

Any member of any complex structure can be explicitly referenced by prepending the label of the
structure containing the field to the field label, separated by a period (StructureName.FieldLabel).
You must use this Field Qualification syntax to reference any field in a complex structure that
does not have a PRE attribute. You may use a colon (:) instead of a period
(StructureName:FieldLabel) to reference member variables of any structure except CLASS and
named reference variables (this syntax is only to provide backward compatibility with previous
versions of Clarion for Windows).

If the variable is within nested complex data structures, you must prepend each successive
level's structure label to the variable label to explicitly reference the variable (if the nested
structure has a label). If any nested structure does not have a label, then that part is omitted from
the qualification sequence. This is similar to anonymous unions in C++. This means that, in the
case of a GROUP structure (without a PRE attribute) in which a nested GROUP structure has a
label, the fields in the inner GROUP must be referenced as
OuterGroupLabel.InnerGroupLabel.FieldLabel. If the inner GROUP structure does not have a
label, the individual fields are referenced as OuterGroupLabel.FieldLabel. There is one exception
to this rule: the label of a RECORD structure within a FILE may be omitted so that you can
reference individual fields within the file as FileLabel.FieldLabel instead of
FileLabel.RecordLabel.FieldLabel.

This Field Qualification syntax is also used to reference all members of CLASS structures--both
data members and methods. To call a member method of a CLASS structure, you specify
ClassName.MethodLabel wherever the call to the PROCEDURE is valid.

To reference an element of a GROUP structure with the DIM attribute, you must specify the array
element number in the Field Qualification syntax at the exact level at which the DIM attribute
appears.

2 — Program Source Code Format

| Ref erence as Masterfil e. Acct Nunber

| Reference as Detail. Acct Nunber

Example:
Mast er Fil e FI LE, DRI VER(' TopSpeed')
Record RECORD
Acct Nurber LONG
END

END
Det ai | FI LE, DRI VER(' TopSpeed')

RECORD
Acct Nunber LONG

END

END

Menory GROUP, PRE(Mem)
Message STRI NE 30)
END

SaveQueue QUEUE

Fi el d1 LONG
Fi el d2 STRI NG
END
Cut er G oup GROUP
Fi el d1 LONG
Fi el d2 STRI NG
I nner G oup GROUP
Fi el d1 LONG
Fi el d2 STRI NG
END
END
Qut er G oup GROUP, DI M 5)
Fi el d1 LONG
I nner G oup GROUP, DI M 5)
Fi el d1 LONG
END
END
See Also:
PRE
CLASS

Reference Variables

I May reference as Mem Message or Menory. Message

| Ref erence
| Ref erence

| Ref erence
| Ref erence

| Ref erence
| Ref erence

| Ref erence
| Ref erence
| Ref erence

as
as

as
as

as
as

as
as
as

SaveQueue. Fi el d1
SaveQueue. Fi el d2

Qut er G oup. Fiel d1
Qut er G oup. Fi el d2

Qut er G oup. | nner G oup. Fi el d1
Qut er G oup. | nner G oup. Fi el d2

QuterGoup[1].Fieldl
Qut er G oup[1] .| nner G oup
Quter G oup[1] .l nnerGoup[l].Fieldl

38 Language Reference Manual

Reserved Words

The following keywords are reserved and may not be used as labels for any purpose:

ACCEPT AND BEGIN BREAK
BY CASE CHOOSE COMPILE
CYCLE DO ELSE ELSIF
END EXECUTE EXIT FUNCTION
GOTO IF INCLUDE LOOP
MEMBER NEW NOT NULL

OF OMIT OR OROF
PARENT PROCEDURE PROGRAM RETURN
ROUTINE SECTION SELF THEN
TIMES TO UNTIL WHILE
XOR

The following keywords may be used as labels of data structures or executable statements. They
may not be the label of any PROCEDURE statement. They may appear as the label of a
parameter in a prototype only if the data type is also listed:

APPLICATION CLASS CODE DATA
DETAIL FILE FOOTER FORM
GROUP HEADER ITEM ITEMIZE
JOIN MAP MENU MENUBAR
MODULE OLECONTROL OPTION QUEUE
RECORD REPORT ROW SHEET
TAB TABLE TOOLBAR VIEW

WINDOW

2 — Program Source Code Format 39

Special Characters

Initiators: ! Exclamation point begins a source code comment.

? Question mark begins a field equate label, label, or when used as a
single character in column one of source code, designates that the
statement that follows only be executed in DEBUG mode.

@ "At" sign begins a picture token.

* Asterisk begins a parameter passed by address in a MAP prototype.

~ A leading tilde on a filename indicates a file linked into the project.

Terminators: ; Semi-colon is an executable statement separator.
CRI/LF Carriage-return/Line-feed is an executable statement separator.

Period terminates a data or code structure (a substitute for END).
Vertical bar is the source code line continuation character.

a

Pound sign declares an implicit LONG variable.
Dollar sign declares an implicit REAL variable.
" Double quote declares an implicit STRING variable.
Delimiters: @) Parentheses enclose a parameter list.
[1 Brackets enclose an array subscript list.

Single quotes enclose a string constant.

{1} Curly braces enclose a repeat count in a string constant, or a
property parameter.

<> Angle brackets enclose an ASCII code in a string constant, or
indicate a parameter in a MAP prototype which may be omitted.

: Colon separates the start and stop positions of a string "slice.”

, Comma separates parameters in a parameter list.

Connecters: . Period is a decimal point used in numeric constants, or connects
a complex structure label to the label of one of its members.
: Colon connects a prefix to a label.
$ Dollar sign connects the WINDOW or REPORT label to a field
equate label in a control's property assignment expression.

40

Language Reference Manual

Operators:

Plus sign indicates addition.

Minus sign indicates subtraction.

Asterisk indicates multiplication.

Slash indicates division.

Percent sign indicates modulus division.

Carat indicates exponentiation.

Left angle bracket indicates less than.

Right angle bracket indicates greater than.

Equal sign indicates assignment or equivalence.
Tilde indicates the logical (Boolean) NOT operator.
Ampersand indicates concatenation.

Ampersand equal indicates reference assignment or reference equivalence.
Executes a Deep Assignment statement.

2 — Program Source Code Format 41

Program Format

PROGRAM (declare a program)
PROGRAM
MAP

prototypes

[MODULE()
prototypes

END |

END

global data
CODE
statements
[RETURN]

procedures

PROGRAM The first declaration in a Clarion program source module. Required.
MAP Global procedure declarations. Required.
MODULE Declare member source modules.

prototypes PROCEDURE declarations.

global data Declare Global data which may be referenced by all procedures.

CODE Terminate the data declaration section and begin the executable code section of
the PROGRAM.

statements Executable program instructions.

RETURN Terminate program execution. Return to operating system control.

procedures Source code for the procedures in the PROGRAM module.

The PROGRAM statement is required to be the first declaration in a Clarion program source
module. It may only be preceded by source code comments. The PROGRAM source file name is
used as the object (.OBJ) and executable (.EXE) file name, when compiled. The PROGRAM
statement may have a label, but the label is ignored by the compiler.

A PROGRAM with PROCEDURESs must have a MAP structure. The MAP declares the
PROCEDURE prototypes. Any PROCEDURE contained in a separate source file must be
declared in a MODULE structure within the MAP.

42 Language Reference Manual

Data declared in the PROGRAM module, between the keywords PROGRAM and CODE, is
Global data that may be accessed by any PROCEDURE in the PROGRAM. Its memory allocation
is Static.

Example:
PROGRAM I Sanmpl e program decl aration
I NCLUDE(' EQUATES. CLW) !Incl ude standard equates
VAP
Cal cTenp PROCEDURE I Procedure Prototype
END
CODE
Cal cTenp I Call procedure
Cal cTenp PROCEDURE
Fahrenheit REAL(0) I d obal data declarations

Centi grade REAL(O)
W ndow W NDOW ' Tenper at ure Conversi on'), CENTER, SYSTEM
STRI NG ' Enter Fahrenheit Tenperature: '), AT(34,50, 101, 10)
ENTRY(@\ 04) , AT(138, 49, 60, 12), USE(Fahr enhei t)
STRI NG ' Centi grade Tenperature:'), AT(34, 71, 80, 10), LEFT
ENTRY(@\ 04) , AT(138, 70, 60, 12), USE(Cent i gr ade) , SKI P
BUTTON(' Anot her'), AT(34, 92, 32, 16) , USE(?Anot her)
BUTTON(' Exit'), AT(138, 92, 32, 16), USE(?EXxi t)
END
CCODE I Begi n execut abl e code section
OPEN(W ndow)
ACCEPT

CASE ACCEPTED()

OF ?Fahrenheit
Centigrade = (Fahrenheit - 32) / 1.8
DI SPLAY(?Cent i gr ade)

OF ?Anot her
Fahr enhei t
Centi grade

DI SPLAY
SELECT(?Fahr enhei t)

OF ?Exit
BREAK

END

END
CLOSE(W ndow)
RETURN

0
0

See Also: MAP,MODULE
PROCEDURE

Data Declarations and Memory Allocation

2 — Program Source Code Format 43

MEMBER (identify member source file)
MEMBER([program])

[MAP
prototypes

END]
[label] local data

procedures
MEMBER The first statement in a source module that is not a PROGRAM source file.

Required.

program A string constant containing the filename (without extension) of a PROGRAM

source file. If omitted, the module is a "universal member module" that you can
compile in any program by adding it to the project.

MAP Local procedure declarations. Any procedures declared here may be referenced
by the procedures in the MEMBER module.

prototypes PROCEDURE declarations.

local data Declare Local Static data which may be referenced only by the procedures
whose source code is in the MEMBER module.

procedures Source code for the procedures in the MEMBER module.

MEMBER is the first statement in a source module that is not a PROGRAM source file. It may
only be preceded by source code comments. It is required at the beginning of any source file that
contains PROCEDUREs that are used by a PROGRAM. The MEMBER statement identifies the
program to which the source MODULE belongs.

A MEMBER module may have a local MAP structure (which may contain MODULE structures).
The procedures prototyped in this MAP are available for use by the other procedures in the
MEMBER module. The source code for the procedures declared in this MEMBER MAP may
either be contained in the MEMBER source file, or another file (if prototyped in a MODULE
structure within the MAP).

If the program parameter is omitted from the MEMBER statement, you must have a MAP
structure that prototypes the procedures it contains. You also need to INCLUDE any standard
EQUATEs files that are used in your source code.

If the source code for a PROCEDURE prototyped in a MEMBER module's MAP is in a separate
file, the prototype must be in a MODULE structure within the MAP. The source file MEMBER
module containing the PROCEDURE definition must also contain its own MAP which declares the
same prototype (that is, the prototype must appear in at least two MAP structures--the source
module containing it and the source module using it). Any PROCEDURE not declared in the

44 Language Reference Manual

Global (PROGRAM) MAP must be declared in a local MAP(s) in the MEMBER MODULE which
contains its source code.

Data declared in the MEMBER module, after the keyword MEMBER and before the first
PROCEDURE statement, is Member Local data that may only be accessed by PROCEDUREs
within the module (unless passed as a parameter). Its memory allocation is Static.

Example:

I Sour cel nodul e cont ai ns:
MEMBER(' Or der Sys') I Modul e bel ongs to the OrderSys program
MAP I Decl are | ocal procedures

Funcl PROCEDURE(STRING), STRING !Funcl is known only in both nodul e
MODULE("' Source2.clw)

Hi st Ord2 PROCEDURE IH stOrd2 is known only in both nodul es
END
END
Local Dat a STRI N& 10) I Decl are data | ocal to MEMBER nodul e
H stOrd PROCEDURE I Decl are order history procedure
Hi st Data STRI NG 10) I Decl are data | ocal to PROCEDURE
CODE

Local Data = Funcl(H st Dat a)
Funcl PROCEDURE(RecFi el d) I Decl are | ocal procedure
CODE
I Execut abl e code statenents

I Sour ce2 nodul e cont ains:

MEMBER(' Or der Sys') I Modul e bel ongs to the OrderSys program
MAP I Decl are | ocal procedures
Hi st Or d2 PROCEDURE IH stOrd2 is known only in both nodul es

MODULE("' Sourcel.clw)
Funcl PROCEDURE(STRING), STRING !Funcl is known only in both nodul e
END

END
Local Dat a STRI N& 10) I Decl are data | ocal to MEMBER nodul e
Hi st Ord2 PROCEDURE I Decl are second order history procedure
CODE

Local Data = Funcl1(Local Dat a)

See Also:

MAP,MODULE,PROCEDURE,CLASS, Data Declarations and Memory Allocation

2 — Program Source Code Format 45

MAP (declare PROCEDURE prototypes)

MAP
prototypes
[MODULE()

prototypes
END]

END

MAP Contains the prototypes which declare the procedures and external
source modules used in a PROGRAM, MEMBER module, or PROCEDURE.

prototypes Declare PROCEDUREs.

MODULE Declare a member source module that contains the definitions of the prototypes
in the MODULE.

A MAP structure contains the prototypes which declare the PROCEDURESs and external source
modules used in a PROGRAM, MEMBER module, or PROCEDURE which are not members of a
CLASS structure.

A MAP declared in the PROGRAM source module declares prototypes of PROCEDURES
available for use throughout the program. A MAP in a MEMBER module declares prototypes of
PROCEDUREs that are explicitly available in that MEMBER module. The same prototypes may
be placed in multiple MEMBER modules to make them explicitly available in each. A MAP can
also be included within a PROCEDURE declaration. All prototypes of PROCEDURESs declared in
a local PROCEDURE MAP may only be referenced within the PROCEDURE itself.

A MAP structure is mandatory for any non-trivial Clarion program because the BUILTINS.CLW
file is automatically included in your PROGRAM's MAP structure by the compiler. This file
contains prototypes of most of the procedures in the Clarion internal library that are available as
part of the Clarion language. This file is required because the compiler does not have these
prototypes built into it (making it more efficient). Since the prototypes in the BUILTINS.CLW file
use some constant EQUATES that are defined in the EQUATES.CLW file, this file is also
automatically included by the compiler in every Clarion program.

46 Language Reference Manual

Example:

IOne file contains:
PROGRAM I Sanmpl e programin sanple.cla
MAP I Begin map decl aration

Loadl t PROCEDURE I Loadlt procedure
END I End of map

I A separate file contains:

MVEMBER(' Sanpl e') I Decl are MEMBER nodul e

MAP I Begin MODULE | ocal nap decl aration
Conputelt PROCEDURE ! conpute it procedure

END I End of map

Conputelt Procedure
LOC: Var LONG
MAP I PROCEDURE | ocal map
Procl
END
Code
Proc1()
Ret urn
Procl Procedure
Code

LOC. Var += 1
Ret urn

See Also:

PROGRAM

MEMBER

MODULE

PROCEDURE
PROCEDURE Prototypes

2 — Program Source Code Format 47

MODULE (specify MEMBER source file)

MODULE(sourcefile)

prototype
END
MODULE Names a MEMBER module or external library file.
sourcefile A string constant which contains the filename (without extension) of the Clarion

language source code file containing the definitions of the PROCEDURES. If the
sourcefile is an external library, this string may contain any unique identifier.

prototype The prototype of a PROCEDURE whose definition is contained in the sourcefile.

A MODULE structure names a Clarion language MEMBER module or an external library file and
contains the prototypes for the PROCEDURESs contained in the sourcefile. A MODULE structure
can only be declared within a MAP structure and is valid for use in any MAP structure, whether
that MAP is in a PROGRAM module or MEMBER module.

Example:
I The "sanple.clw' file contains:
PROGRAM | Sanpl e programin sanple.clw
VAP I Begi n map decl aration
MODULE("' Loadit") ! source nodule loadit.clw

Loadlt PROCEDURE
END
MODULE(" Conput e')

Comput el t PROCEDURE
END

END

! Loadlt procedure

! end nodul e

I source nodul e conpute.clw
| conpute it procedure

! end nodul e

' End map

' The "loadit.clw' file contains:

VEMBER(' Sanpl e') | Decl are MEMBER nodul e
MAP I Begin | ocal map declaration
MODULE(" Process') I source nodul e process.cla
Processlt PROCEDURE I process it procedure
END ! end nodul e
END ' End map
See Also:

MEMBER, MAP, PROCEDURE Prototypes

48

Language Reference Manual

PROCEDURE (define a procedure)

label PROCEDURE [(parameter list)]

local data

CODE

statements

[RETURN([value])]

PROCEDURE Begins a section of source code that can be executed from within a PROGRAM.

label

parameter list

local data
CODE

statements
RETURN

value

Names the PROCEDURE. For a CLASS method's definition, this may contain the
label of the CLASS prepended to the label of the PROCEDURE.

A comma delimited list of names (and, optionally, their data types) of the
parameters passed to the PROCEDURE. These names define the local
references within the PROCEDURE to the passed parameters. For a CLASS
method's definition, this may contain the label of the CLASS (named SELF) as an
implicit first parameter (if the class is not prepended to the PROCEDURE's label),
and must always contain both the data type and parameter name.

Declare Local data visible only in this procedure.

Terminate the data declaration section and begin the executable code section of
the PROCEDURE.

Executable program instructions.

Terminate procedure execution. Return to the point from which the procedure
was called and return the value to the expression in which the procedure was
used (if the procedure has been prototyped to return a value).

A numeric or string constant or variable which specifies the result of the
procedure call.

PROCEDURE begins a section of source code that can be executed from within a PROGRAM. It
is called by naming the PROCEDURE label (with its parameter list, if any) as an executable
statement in the code section of a PROGRAM or PROCEDURE.

The parameter list defines the data type of each parameter (optional) followed by the label of the
parameter as used within the PROCEDURE's source code (required). Each parameter is
separated by a comma. The data type of each parameter (including the angle brackets if the
parameter is omittable) is required along with the parameter's label if the procedure is overloaded
(has multiple definitions). The parameter list may be exactly the same as it appears in the
PROCEDURE's prototype, if that prototype contains labels for the parameters.

2 — Program Source Code Format 49

A PROCEDURE may contain one or more ROUTINES in its executable code statements. A
ROUTINE is a section of executable code local to the PROCEDURE which is called with the DO
statement.

A PROCEDURE terminates and returns to its caller when a RETURN statement executes. An
implicit RETURN occurs at the end of the executable code. The end of executable code for the
PROCEDURE is defined as the end of the source file, or the first encounter of a ROUTINE or
another PROCEDURE.

A RETURN statement is required if the PROCEDURE has been prototyped to return a value. A
PROCEDURE which has been prototyped to return a value can be used as an expression
component, or passed as a parameter to another PROCEDURE. A PROCEDURE which has
been prototyped to return a value may also be called in the same manner as a PROCEDURE
without a RETURN value, if the program logic does not require the RETURN value. In this case, if
the PROCEDURE prototype does not have the PROC attribute, the compiler will generate a
warning which may be safely ignored.

Data declared within a PROCEDURE, between the keywords PROCEDURE and CODE, is
Procedure Local data that can only be accessed by that PROCEDURE (unless passed as a
parameter to another PROCEDURE). This data is allocated memory upon entering the
procedure, and de-allocated when it terminates. If the data is smaller than the stack threshold (5K
is the default) it is placed on the stack, otherwise it is allocated from the heap.

A PROCEDURE must have a prototype declared in a CLASS or the MAP of a PROGRAM or
MEMBER module. If declared in the PROGRAM MAP, it is available to any other procedure in the
program. If declared in a MEMBER MAP, it is available to other procedures in that MEMBER
module.

Example:
PROGRAM ! Exanpl e program code
MAP
OpenFil e PROCEDURE(FI LE AnyFil e)! Procedure prototype with paraneter
ShoTi ne PROCEDURE ! Procedure prototype wi thout paraneter
DaySt ri ng PROCEDURE, STRI NG I Procedure prototype with a return val ue
END
Fil eOne FILE, DRIVER(' C arion') !Declare a file
RECORD I'begin record decl aration
Nanme STRI NG 20)
Number LONG
END ! end record declaration
END 'End file declaration

TodayString STRI NE 9)
CODE

50

Language Reference Manual

TodayString = DayString()
OpenFi l e(Fi | eOne)
ShoTi me

I More executable statenments

I'Procedure called with a return val ue
I'Call procedure to open file
I'Call ShoTi ne procedure

OpenFi | e PROCEDURE(FI LE AnyFile)! Open any file

CODE

OPEN(AnyFi | e)

| F ERRORCODE() = 2
CREATE(AnyFi | e)

END

RETURN

ShoTi mre PROCEDURE
Time LONG
W ndow W NDOW CENTER

I Begi n code section
IOpen the file

I'f file not found
Icreate it

IReturn to caller

| Show tinme
I Local variable

STRI NG(@'3) , USE(Ti ne) , AT(34, 70)
BUTTON(' Exit'), AT(138, 92), USE(?Exi t)

END
CODE
Time = CLOCK()
OPEN(W ndow)
ACCEPT
CASE ACCEPTELD()
OF ?Exit
BREAK
END
END
RETURN

DayStri ng PROCEDURE
ReturnString STRI NG 9), AUTO
CODE
EXECUTE (TODAY() %7) + 1
ReturnString = ' Sunday'

ReturnString = ' Monday'
ReturnString = ' Tuesday'
ReturnString = ' Wdnesday'
ReturnString = ' Thursday’

ReturnString = 'Friday'
ReturnString ' Sat ur day'
END
RETURN(Ret ur nSt ri ng)

I Begi n execut abl e code section
IGet tine fromsystem

I Return to caller

I Day string procedure
IUninitialized | ocal stack variable
I Begi n execut abl e code section
I'Find day of week from system date

IReturn the resulting string

See Also: PROCEDURE Prototypes, Data Declarations and Memory Allocation, Procedure
Overloading, CLASS, ROUTINE, MAP

2 — Program Source Code Format

51

CODE (begin executable statements)

CODE

The CODE statement separates the data declaration section from the executable statement
section within a PROGRAM, PROCEDURE, or ROUTINE. The first statement executed in a

PROGRAM, PROCEDURE, or ROUTINE is the statement following CODE.

Example:
PROGRAM

I d obal Data declarations go here

CODE
| Execut abl e statenents go here

O dLi st PROCEDURE I Decl are a procedure

I'Local Data declarations go here

CODE IThis is the beginning of the "code"

| Execut abl e statenents go here

See Also:
PROGRAM
PROCEDURE

section

52 Language Reference Manual

DATA (beqin routine local data section)

DATA

The DATA statement begins a local data declaration section in a ROUTINE. Any ROUTINE
containing a DATA section must also contain a CODE statement to terminate the data declaration
section. Variables declared in a ROUTINE data section may not have the STATIC or THREAD
attributes.

Example:

SonePr oc PROCEDURE

CODE

| Code statenents

DO Tal ly I'Call the routine
I More code statenents

Tal |y ROUTI NE I Begi n routine, end procedure
DATA
Count Var BYTE I Decl are | ocal variable
CODE
Count Var += 1 ! increnent counter
DO Count It Agai n I'Call another routine
EXIT land exit the routine
See Also:
CODE

ROUTINE

2 — Program Source Code Format 53

ROUTINE (declare local subroutine)

label ROUTINE

[DATA
local data
CODE]
statements
ROUTINE Declares the beginning of a local subroutine.
label The name of the ROUTINE. This may not duplicate the label of any
PROCEDURE.
DATA Begin data declaration statements.
local data Declare Local data visible only in this routine.
CODE Begin executable statements.
statements Executable program instructions.

ROUTINE declares the beginning of a local subroutine. It is local to the PROCEDURE in which it
is written and must be at the end of the CODE section of the PROCEDURE to which it belongs.
All variables visible to the PROCEDURE are available in the ROUTINE. This includes all
Procedure Local, Module Local, and Global data.

A ROUTINE may contain its own local data which is limited in scope to the ROUTINE in which it
is declared. If local data declarations are included in the ROUTINE, they must be preceded by a
DATA statement and followed by a CODE statement. Since the ROUTINE has its own name
scope, the labels of these variables may duplicate variable names used in other ROUTINES or
even the procedure containing the ROUTINE.

A ROUTINE is called by the DO statement followed by the label of the ROUTINE. Program
control following execution of a ROUTINE is returned to the statement following the calling DO
statement. A ROUTINE is terminated by the end of the source module, or by another ROUTINE
or PROCEDURE. The EXIT statement can also be used to terminate execution of a ROUTINE's
code (similar to RETURN in a PROCEDURE).

A ROUTINE has some efficiency issues that are not obvious:

- DO and EXIT statements are very efficient.

« Accessing procedure-level local data is less efficent than accessing module-level or
global data.

54 Language Reference Manual

- Implicit variables used only within the ROUTINE are less efficient than using local
variables.

. Each RETURN statement within a ROUTINE incurs a 40-byte overhead.

Example:

SonmePr oc PROCEDURE

CODE

| Code statenents

DO Tally I'Call the routine
I More code statenents

Tal |y ROUTI NE ! Begi n routine, end procedure
DATA
Count Var BYTE I Decl are | ocal variable
CODE
Count Var += 1 I increnent counter
DO Count It Agai n I'Call another routine
EXIT land exit the routine

See Also:
PROCEDURE
EXIT

DO

DATA
CODE

2 — Program Source Code Format 55

END (terminate a structure)

END

END terminates a data declaration structure or a compound executable statement. It is
functionally equivalent to a period (.).

By convention, the END statement is aligned in the same column as the beginning of the
structure it terminates, and the code within the structure is indented for readability. END is usually
used to terminate multi-line structures, while the period is used to terminate single-line
statements. If multiple complex code structures are nested and they all terminate at the same
place, multiple periods on one line are used instead of the END statements on multiple lines.

Example:
Custoner FILE, DRI VER(' d arion') IDeclare a file
RECORD I begin record declaration
Name STRI N& 20)
Nunber LONG
END lend record declaration
END lEnd file declaration
Archive FILE, DRI VER(' d arion') IDeclare a file
RECORD I begin record decl aration
Nanme STRI NG 20)
Nunber LONG
END END lend both the record and file declarations
CODE
I F Nunber <> SavNunber IBegin if structure
DO Get Nunber
END lEnd if structure

I F SonmeCondition THEN BREAK END ! Term nate with END

CASE Action I Begi n case structure
oF 1

DO AddRec

| F Nunmber <> SavNunber IBegin if structure

DO SoneRouti ne

END lEnd if structure
OoF 2

DO ChgRec
O 3

DO Del Rec
END I End case structure

56 Language Reference Manual

Statement Execution Sequence

In the CODE section of a Clarion program, statements are normally executed line-by-line, in the
sequence in which they appear in the source module. Control statements and procedure calls are
used to modify this execution sequence.

PROCEDURE calls modify the execution sequence by branching to the called procedure and
executing the code contained in it. Control returns to the executable statement following the
procedure call when a RETURN statement is executed in the called procedure, or there are no
more statements in the called procedure to execute, returning the value (if the PROCEDURE
returns a value).

Control structures--IF, CASE, LOOP, ACCEPT, and EXECUTE--change the execution sequence
by evaluating expressions. The control structure conditionally executes statements contained
within the structure based on the evaluation of the expression(s) in the structure. ACCEPT is also
a loop-type of structure, but does not evaluate any expression.

Branching also occurs with the GOTO, DO, CYCLE, BREAK, EXIT, and RETURN statements.
These statements immediately and unconditionally alter the normal execution sequence.

The START procedure begins a new execution thread, unconditionally branching to that thread at
the next instance of ACCEPT following the START. However, the user may choose to activate
another thread by clicking the mouse on the other thread's active window.

Example:
PROGRAM

VAP

Conput eTi e PROCEDURE(* GROUP) ! Passi ng a group paraneter
Mat chMast er PROCEDURE I Passi ng no paraneters
END

Par mGr oup GROUP I Declare a group
Fi el dOne STRI N 10)
Fi el dTwo LONG

END
CODE I Begi n execut abl e code
Fi el dTwo = CLOCK() | Execut es 1st
Conput eTi ne(Par mG& oup) | Executes 2nd, passes control to procedure

Mat chMast er | Executes after procedure executes fully

2 — Program Source Code Format 57

PROCEDURE Calls

procname[(parameters)]

return = funcname[(parameters)]

prochame The name of the PROCEDURE as declared in the procedure's prototype.

parameters An optional parameter list passed to the PROCEDURE. A parameter list may be
one or more variable labels or expressions. The parameters are delimited by
commas and are declared in the prototype.

return The label of a variable to receive the value returned by the PROCEDURE.

funcname The name of a PROCEDURE which returns a value, as declared in the
procedure's prototype.

A PROCEDURE is called by its label (including any parameter list) as a statement in the CODE
section of a PROGRAM or PROCEDURE. The parameter list must match the parameter list
declared in the procedure's prototype. Procedures cannot be called in expressions.

A PROCEDURE which returns a value is called by its label (including any parameter list) as a
component of an expression or parameter list passed to another PROCEDURE. The parameter
list must match the parameter list declared in the procedure's prototype. A PROCEDURE which
returns a value may also be called by its label (including any parameter list), in the same manner
as a PROCEDURE which doesn't return a value, if its return value is not needed. This will
generate a compiler warning that can be safely ignored (unless the PROC attribute is placed on
its prototype).

If the PROCEDURE is a method of a CLASS, the procname must begin with the label of an
object instance of the CLASS followed by a period then the label of the PROCEDURE
(objecthame.procname).

Example:

PROGRAM
MAP

Conput eTi me PROCEDURE(* GROUP) I Passi ng a group paraneter

Mat chMast er PROCEDURE, BYTE, PROC ! PROCEDURE returni ng a val ue and passi ng no paraneter
END

Par mGr oup GROUP I Declare a group

Fi el dOne STRI NG 10)

Fi el dTwo LONG

END
CODE
Fi el dTwo = CLOCK() IBuilt-in procedure called as expression
Conput eTi ne(Par nG oup) I'Call the conpute tine procedure
Mat chMast er () I'Call the procedure as a procedure

See Also. PROCEDURE

58

Language Reference Manual

PROCEDURE Prototypes

Prototype Syntax

name PROCEDURE [(parameter list)] [,return type] [,calling convention] [[RAW] [[NAME()] [, TYPE]

[LDLL()] [[PROC] [,PRIVATE] [VIRTUAL] [PROTECTED] [REPLACE] [,DERIVED]

name[(parameter list)] [,return type] [,calling convention] [[RAW] [,NAME()] [, TYPE] [,DLL()]

[, PROC] [, PRIVATE]

name
PROCEDURE

parameter list

return type

The label of a PROCEDURE statement that defines the executable code.
Required keyword.

The data types of the parameters. Each parameter's data type may be followed
by a label used to document the parameter (only). Each numeric value parameter
may also include an assignment of the default value (a constant) to pass if the
parameter is omitted.

The data type the PROCEDURE will RETURN.

calling convention

RAW

NAME
TYPE
DLL
PROC

PRIVATE

VIRTUAL
PROTECTED

Specify the C or PASCAL stack-based parameter calling convention.

Specifies that STRING or GROUP parameters pass only the memory address
(without passing the length of the passed string). It also alters the behaviour of ?
and *? parameters. This attribute is only for 3GL language compatibility and is
not valid on a Clarion language procedure.

Specify an alternate, "external” name for the PROCEDURE.
Specify the prototype is a type definition for procedures passed as parameters.
Specify the PROCEDURE is in an external .DLL.

Specify the PROCEDURE with a return type may be called as a PROCEDURE
without a return type without generating a compiler warning.

Specify the PROCEDURE may be called only from another PROCEDURE within
the same MODULE (usually used in a CLASS).

Specify the PROCEDURE is a virtual method of a CLASS structure.

Specify the PROCEDURE may be called only from another PROCEDURE within
the same CLASS or any directly derived CLASS.

2 — Program Source Code Format 59

REPLACE Specify the "Construct" or "Destruct” PROCEDURE in the derived CLASS
completely replaces the constructor or destructor of its parent CLASS.

DERIVED Specify the PROCEDURE is a derived method of a CLASS structure, There must
be a matching prototype in the parent class.

All PROCEDUREs in a PROGRAM must have a prototype declaration in a MAP or CLASS
structure. A prototype declares to the compiler exactly what form to expect to see when the
PROCEDURE is used in executable code.

There are two valid forms of prototype declarations listed in the syntax diagram on the previous
page. The first one, using the PROCEDURE keyword, is valid for use everywhere and is the
preferred form to use. The second form is supported only for backward compatibility with previous
versions of Clarion.

A prototype contains:

« The name of the PROCEDURE.

+ The keyword PROCEDURE is optional in a MAP structure, but required in a CLASS
structure.

« An optional parameter list specifying all parameters that will be passed in.
- The data return type, if the prototype is for a PROCEDURE which will return a value.

« The parameter calling convention, if you are linking in objects that require stack-based
parameter passing (such as objects that were not compiled with a Clarion TopSpeed
compiler).

. The RAW, NAME, TYPE, DLL, PROC, PRIVATE, VIRTUAL, PROTECTED, and
DERIVED attributes, as needed.

You can optionally specify the C (right to left) or PASCAL (left to right and compatible with
Windows 32-bit) stack-based parameter calling convention for your PROCEDURE. This provides
compatibility with third-party libraries written in other languages (if they were not compiled with a
TopSpeed compiler). If you do not specify a calling convention, the default is the internal, register-
based parameter passing convention used by all the TopSpeed compilers.

The RAW attribute allows you to pass just the memory address of a *?, STRING, or GROUP
parameter (whether passed by value or by reference) to a non-Clarion language procedure or
function. Normally, STRING or GROUP parameters pass both the address and the length of the
string. The RAW attribute eliminates the length portion. This is provided for compatibility with
external library functions which expect only the address of the string.

The NAME attribute provides the linker an external name for the PROCEDURE. This is also
provided for compatibility with libraries written in other languages. For example: in some C
language compilers, with the C calling convention specified, the compiler adds a leading
underscore to the function name. The NAME attribute allows the linker to resolve the name of the
function correctly.

60 Language Reference Manual

The TYPE attribute indicates the prototype does not reference a specific PROCEDURE. Instead,
it defines a prototype name used in other prototypes to indicate the type of procedure passed to
another PROCEDURE as a parameter.

The DLL attribute specifies that the PROCEDURE prototype on which it is placed is in a .DLL.
The DLL attribute is required for 32-bit applications because .DLLs are relocatable in a 32-bit flat
address space, which requires one extra dereference by the compiler to address the procedure.

The PRIVATE attribute specifies that only another PROCEDURE that is in the same MODULE
may call it. This would most commonly be used on a prototype in a module's MAP structure, but
may also be used in the global MAP.

When the name of a prototype is used in the parameter list of another prototype, it indicates the
procedure being prototyped will receive the label of a PROCEDURE that receives the same
parameter list (and has the same return type, if it returns a value). A prototype with the TYPE
attribute may not also have the NAME attribute.

Example:
VAP

MODULE(" Test ') I"test.clw contains these procedures
MyProcl PROCEDURE(LONG) I LONG val ue- par anet er
MyProc2 PROCEDURE(<* LONG>) 1Omittabl e LONG vari abl e- par anet er
MyProc3 PROCEDURE(LONG=23) I Passes 23 if onmitted

END

MODULE(" Party3. Obj ') I'Athird-party library
Func46 PROCEDURE(* CSTRI NG), REAL, C, RAW I Pass CSTRI NG address-only to C function
Func47 PROCEDURE(* CSTRI NG) , * CSTRI NG, C, RAW I Returns pointer to a CSTRI NG
Func48 PROCEDURE(REAL), REAL, PASCAL I PASCAL cal Iing convention

Func49 PROCEDURE(SREAL), REAL, C, NAME(' _func49') ! C convention and external function nane
END
MODULE(" STDFuncs. DLL') I' A standard functions .DLL

Func50 PROCEDURE(SREAL) , REAL, PASCAL, DLL
END

END

See Also:

MAP, MEMBER, MODULE, NAME

PROCEDURE, RETURN, Prototype Parameter Lists
Procedure Overloading, CLASS

2 — Program Source Code Format 61

Prototype Parameter Lists - General Syntax
[CONST] type [label]
<[CONST] type [label] >
type [label] = default

CONST An optional qualifier for the parameter which is valid only on a variable-
parameter. This means that the parameter being passed by address may not be
updated in the procedure. It is treated as if it were a constant value.

type The data type of the parameter. This may be a value-parameter, variable-
parameter, array, unspecified data type, entity, procedure-parameter, or a named
GROUP, QUEUE, or CLASS.

label An optional documentary label for the parameter. This label is not required and is
placed in the prototype for documentation purposes only.

<> Angle brackets indicate the parameter is omittable. The OMITTED procedure
detects the omission. All parameter types can be omitted.

= default A default value indicates the numeric parameter is omittable, and if omitted, the
default value is passed. The OMITTED procedure will not detect the omission--a
value is passed. Valid only on simple numeric types.

The parameter list in a PROCEDURE prototype is a comma-delimited list of the data types to
pass to the PROCEDURE. The entire parameter list is enclosed in the parentheses following the
PROCEDURE keyword (or the name). Each parameter's type may be followed by a space then a
valid Clarion label for the parameter (which is ignored by the compiler and only documents the
purpose of the parameter). Each numeric value-parameter (passed by value) may also include an
assignment of a constant value to the type (or the documentary label, if present) that defines the
default value to pass if the parameter is omitted.

Any parameter that may be omitted when the PROCEDURE is called must be included in the
prototype's parameter list and enclosed in angle brackets (< >) unless a default value is defined
for the parameter. The OMITTED procedure allows you to test for unpassed parameters at
runtime (except those parameters which have a default value).

Example:
VAP
MODULE(' Test ")
MyProcl PROCEDURE(LONG) I LONG val ue- par anet er
MyProc2 PROCEDURE(<LONG>) IOrittabl e LONG val ue- par anet er
MyProc3 PROCEDURE(LONG=23) I Passes 23 if onmitted

MyProc4 PROCEDURE(LONG Count, REAL Sum I LONG passing a Count and REAL passing a Sum
MyProc5 PROCEDURE(LONG Count =1, REAL Sunx0)! Count defaults to 1 and Sumto O

END

END

62 Language Reference Manual

Value-parameters

Value-parameters are "passed by value." A copy of the variable passed in the parameter list of
the "calling" PROCEDURE is used in the "called" PROCEDURE. The "called" PROCEDURE
cannot change the value of the variable passed to it by the "caller." Simple assignment data
conversion rules apply; Value-parameters actually passed are converted to the data type in the
PROCEDURE prototype. Valid value-parameters are:

BYTE SHORT USHORT LONG ULONG SREAL REAL DATE TIME STRING

Example:
VAP
MODULE("' Test ")
MyProcl PROCEDURE(LONG) I LONG val ue- par anet er
M/Proc2 PROCEDURE(<LONG>) 1Omittabl e LONG val ue- paranet er
MyProc3 PROCEDURE(LONG=23) I Passes 23 if onmitted
MyProc4 PROCEDURE(LONG Count, REAL Sum I LONG passi ng Count and REAL passing a Sum

MyProc5 PROCEDURE(LONG Count =1, REAL Sun¥0)! Count defaults to 1 and Sumto O
END
MODULE("' Party3. Cbj ')
Func48 PROCEDURE(REAL) , REAL, PASCAL I PASCAL cal li ng convention
Func49 PROCEDURE(SREAL), REAL, C, NAME(' _func49')!C convention and external function name
END
END

Variable-parameters

Variable-parameters are "passed by address." A variable passed by address has only one
memory address. Changing the value of the variable in the "called" PROCEDURE also changes
its value in the "caller." Variable-parameters are listed by data type with a leading asterisk (*) in
the PROCEDURE prototype in the MAP. Valid variable-parameters are:

*BYTE *SHORT *USHORT *LONG *ULONG *SREAL *REAL *BFLOAT4 *BFLOATS8
*DECI MAL *PDECI MAL *DATE *TIME *STRING *PSTRING *CSTRING *GROUP

Example:
MAP
MODULE(' Test')
MyProc2 PROCEDURE(<* LONG>) IOmittabl e LONG vari abl e- par anet er
MyFuncl PROCEDURE(* SREAL), REAL, C I SREAL vari abl e-paranmeter, REAL return, C call

MyProc6 PROCEDURE(CONST *CSTRI NG Val ue) !Value retains a constant value in procedure
END
MODULE(' Party3. Obj ")
Func4 PROCEDURE(* CSTRI NG, REAL, C, RAW ! Pass CSTRI NG address-only to C function
Func47 PROCEDURE(* CSTRI NG, CSTRI NG, C, RAW ! Returns pointer to a CSTRI NG
END
END

2 — Program Source Code Format 63

Passing Arrays

To pass an entire array as a parameter, the prototype must declare the array's data type as a
Variable-parameter ("passed by address") with an empty subscript list. If the array has more than
one dimension, commas (as position holders) must indicate the number of dimensions in the
array. The calling statement must pass the entire array to the PROCEDURE, not just one
element.

Example:

MAP
Mai nPr oc PROCEDURE

AddCount PROCEDURE(*LONGE ,] Total,*LONF,] Current) !Passing two 2-di nensional arrays

END

CODE

Mai nPr oc ICall first procedure
Mai nProc PROCEDURE
Tot al Count LONG DI M 10, 10)
CurrentCnt LONG, DI M 10, 10)

CODE

AddCount (Tot al Count, Current Cnt) ICall the procedure passing arrays

AddCount PROCEDURE(*LONGE ,] Total,*LONF,] Current) !Procedure expects two arrays
CODE

LOOP 1# = 1 TO MAXI MUM Total , 1)
LOOP J# = 1 TO MAXI MUM Tot al , 2)

I'Loop through first subscript
I Loop through second subscri pt
lincr Total Count from CurrentCnt

Total [#, J#] += Current[|#, J#]
END

END

CLEAR(Current) IClear CurrentCnt array

Parameters of Unspecified Data Type

You can write general purpose procedures which perform operations on passed parameters

where the exact data type of the parameter may vary from one call to the next by using untyped
value-parameters and untyped variable-parameters. These are polymorphic parameters; they
may become any other simple data type depending upon the data type passed to the procedure.

Untyped value-parameters are represented in the prototype with a question mark (?). When the
procedure executes, the parameter is dynamically typed and acts as a data object of the base
type (LONG, DECIMAL, STRING, or REAL) of the passed variable, or the base type of whatever
it was last assigned. This means that the "assumed" data type of the parameter can change
within the PROCEDURE, allowing it to be treated as any data type.

64 Language Reference Manual

An untyped value-parameter is "passed by value" to the PROCEDURE and its assumed data
type is handled by Clarion's automatic Data Conversion Rules. Data types which may be passed
as untyped value-parameters:

BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4 BFLOAT8 DECI MAL
PDECI MAL DATE TIME STRING PSTRING CSTRING GROUP (treated as a
STRING Untyped val ue-paraneter (?) Untyped Variabl e-parameter (*?)

The RAW attribute is valid for use if the untyped value-parameter (?) is being passed to external
library functions written in other languages than Clarion. This converts the data to a LONG then
passes the data as a C/C++ "void *" parameter (which eliminates "type inconsistency" warnings).

Untyped variable-parameters are represented in the PROCEDURE prototype with an asterisk
and a question mark (*?). Within the procedure, the parameter acts as a data object of the type of
the variable passed in at runtime. This means the data type of the parameter is fixed during the
execution of the PROCEDURE.

An untyped variable-parameter is "passed by address" to the PROCEDURE. Therefore, any
changes made to the passed parameter within the PROCEDURE are made directly to the
variable which was passed in. This allows you to write polymorphic procedures.

Within a procedure which receives an untyped variable-parameter, it is not safe to make any
assumptions about the data type coming in. The danger of making assumptions is the possiblity
of assigning an out-of-range value which the variable's actual data type cannot handle. If this
happens, the result may be disastrously different from that expected.

Data types which may be passed as untyped variable-parameters:

BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4 BFLOAT8 DECI MAL
PDECI MAL DATE TIME STRING PSTRING CSTRI NG
Unt yped vari abl e- paraneter (*?)

The RAW attribute is valid for use if the untyped variable-parameter (*?) is being passed to
external library functions written in other languages than Clarion. This has the same effect as
passing a C or C++ "void *" parameter.

Arrays may not be passed as either kind of untyped parameter.

Example:
PROGRAM
MAP
Procl PROCEDURE(?) I Unt yped val ue- par anet er
Pr oc2 PROCEDURE(* ?) I Unt yped vari abl e- par anet er
Pr oc3 PROCEDURE(* ?) I Untyped vari abl e-paraneter (set to crash)
Max PROCEDURE(?, ?), ? I Procedure returning Untyped val ue- par anet er
END
d obal Var1l BYTE(3) IBYTE initialized to 3

G obal Var2 DECI MAL(8, 2, 3)

2 — Program Source Code Format 65

d obal Var3 DECI MAL(8, 1, 3)
Max| nt eger LONG
MaxSt ri ng STRI NG 255)

MaxFl oat REAL

CODE

Procl(d obal Var 1) IPass in a BYTE, value is 3

Proc2(d obal Var 2) I Pass it a DECIMAL(8,2), value is 3.00 - it prints 3.33
Proc2(d obal Var 3) I Pass it a DECI MAL(8,1), value is 3.0 - it prints 3.3
Proc3(d obal Var 1) IPass it a BYTE and watch it crash

Max| nt eger = Max(1,5) I Max procedure returns the 5

MaxString = Max('Z ,'A") I Max procedure returns the 'Z

MaxFl oat = Max(1. 3, 1.25) I Max procedure returns the 1.3

Procl PROCEDURE(? Val ueParm

CODE I'ValueParmstarts at 3 and is a LONG
Val ueParm = Val ueParm & Val ueParm ! Now Contains '33" and is a STRI NG
Val ueParm = Val ueParm/ 10 I'Now Contains 3.3 and is a REAL

Proc2 PROCEDURE(*? Vari abl eParm

CODE

Vari ableParm= 10 / 3 I Assign 3.33333333... to passed variable
Proc3 PROCEDURE(*? Vari abl eParm

CODE

LOOP

| F Variabl eParm > 250 THEN BREAK. !If passed a BYTE, BREAK wi || never happen
Vari abl eParm += 10
END

Max PROCEDURE(Val 1, Val 2) IFind the larger of two passed val ues
CODE
IF vall > Vval 2 I Check first val ue against second
RETURN(Val 1) I return first, if largest
ELSE I ot herwi se
RETURN(Val 2) I return the second
END

See Also:
MAP
MEMBER
MODULE

PROCEDURE
CLASS

66 Language Reference Manual

Entity-parameters

Entity-parameters pass the name of a data structure to the "called" PROCEDURE. Passing the
entity allows the "called" PROCEDURE to use those Clarion commands that require the label of
the structure as a parameter. Entity-parameters are listed by entity type in the PROCEDURE
prototype in the MAP. Entity-parameters are always "passed by address." Valid entity-
parameters are:

FILE VIEW KEY INDEX QUEUE W NDOW REPORT BLOB

A REPORT can be passed as the parameter to a procedure prototyped to receive a WINDOW,
since internally they use the same passing structure.

Example:
VAP
MODULE(' Test')
MyFunc2 PROCEDURE(FI LE), STRI NG 'FILE entity-paraneter, returning a STRI NG
Pr ocType PROCEDURE(FI LE), TYPE ! Procedur e- paraneter type definition
MyFunc4 PROCEDURE(FI LE), STRI NG PRCC ! May be called as a procedure without warnings
MyProc6 PROCEDURE(FI LE), PRI VATE I'May only be called by other procs in TEST. CLW
END
END

Procedure-parameters

Procedure-parameters pass the name of another PROCEDURE to the "called" PROCEDURE.
Procedure-parameters are listed by the name of a prototype of the same type in the
PROCEDURE prototype in the MAP (which may or may not have the TYPE attribute). When
called in executable code, the "called" PROCEDURE must be passed the name of a
PROCEDURE whose prototype is exactly the same as the procedure named in the "called"
procedure's prototype.

Each parameter in the list may be followed by a valid Clarion label which is completely ignored by
the compiler. This label is used only to document the parameter to make the prototype more
readable, or to duplicate the PROCEDURE definition statement. Each passed parameter's
definition may also include the assignment of a constant value to the data type (or the
documentary label, if present) that defines the default value to pass if the parameter is omitted.

Example:
VAP
MODULE(" Test ")
ProcType PROCEDURE(FI LE), TYPE I Procedur e- paraneter type definition
MyFunc3 PROCEDURE(ProcType), STRING ! ProcType procedure-paraneter, returning a STRI NG
END I nust be passed a procedure that takes a FILE

END las a paraneter

2 — Program Source Code Format 67

Passing Named GROUPs, QUEUEs, and CLASSes

Passing a GROUP as a Variable-Parameter, or a QUEUE as an Entity-Parameter, to a
PROCEDURE does not allow you to reference the component fields within the structure in the
receiving PROCEDURE . You can alternatively pass a "named" GROUP or QUEUE to achieve
this. You may also name a CLASS in the same manner to allow the receiving procedure to
access the public data members and methods of the CLASS.

To reference the component fields within the structure, place the label of a GROUP, QUEUE, or
CLASS structure in the receiving PROCEDURE's prototype parameter list as the data type for the
parameter. This passes the parameter "by address" and allows the receiving procedure to
reference the component fields of the structure (and the public methods of a CLASS pass in this
manner).

The data actually passed as the parameter must always have a similar structure (defined with the
same data types) for its component fields. The GROUP or QUEUE actually passed can be a
"superset” of the named parameter, as long as the first fields in the "superset" group are the
same as the GROUP or QUEUE named in the prototype. The actually passed CLASS object can
also be a derived class of the CLASS named in the prototype. The "extra" fields in the passed
GROUP, QUEUE, or CLASS are not available for use in the receiving procedure.

The GROUP, QUEUE, or CLASS named in the parameter list does not need to have the TYPE
attribute, and does not have to be declared before the procedure's prototype, but it must be
declared before the PROCEDURE that will receive the parameter is called. This is the only
instance in the Clarion language where the compiler allows such a "forward reference.”

Use Field Qualification syntax to reference the members of the passed group in the receiving
procedure (LocalName.MemberName). The member fields of the structure are referenced by the
labels given them in the group named as the data type in the prototype--not the labels of the
fields in the structure actually passed in. This allows the receiving procedure to be completely
generic, regardless of what actual data structure is passed to it.

Example:

PROGRAM
MAP
MyPr oc PROCEDURE
AddQue PROCEDURE(PassG oup PassedG oup, NameQue PassedQue)
END I AddQue receives a GROUP defined |ike PassGoup and
I a QUEUE defined |ike NaneQue

PassGroup GROUP, TYPE !Type definition -- no nmenory all ocated
F1 STRING(20) ! GROUP with 2 STRING20) fields
F2 STRI N& 20)

END

68 Language Reference Manual

NanmeG oup GROUP I Name group
First STRING 20) !first nanme
Last STRI NG 20) !last nane
Conpany STRING(30) !This extra field is not available to the receiving
END I procedure (AddQue) since PassGoup only has two fields
NameQue QUEUE, TYPE I Nane Queue, Type definition -- no nenory allocate
Fi r st STRI N& 20)
Last STRI N& 20)
END
CODE
My/Proc
MyPr oc PROCEDURE
Local Que NanmeQue I Local Nane Queue, declared exactly the sane as Na
CODE
NameG oup. First = ' Fred'
NameG oup. Last = ' Flintstone'
AddQue(NanmeGr oup, Local Que) I Pass NameG oup and Local Que to AddQue procedure
NameG oup. Fi rst = ' Bar ney'
NanmeG oup. Last = ' Rubbl e’

AddQue(NameG oup, Local Que)

NameG oup. First = ' Geor ge'
NameG oup. Last = 'O ' Jungl €'
AddQue(NameGr oup, Local Que)

LOOP X# = 1 TO RECORDS(Local Que) I'Look at what's in the Local Que now
GET(Local Que, X#)
MESSAGE(CLI P(Local Que. First) &' ' & Local Que. Last)

END

AddQue PROCEDURE(PassGroup PassedG oup, NaneQue PassedQue)

CODE

PassedQue. Fi rst = PassedG oup. F1 IEffectively: Local Que.First = NanmeG oup. First
PassedQue. Last = PassedG oup. F2 IEffectively: Local Que.Last = NaneG oup. Last
ADD(PassedQue) I'Add an entry into the PassedQue (Local Que)

ASSERT(NOT ERRORCCDE())

See Also:

MAP, MEMBER, MODULE, PROCEDURE, CLASS

2 — Program Source Code Format 69

PROCEDURE Return Types

A PROCEDURE prototyped with a return value must RETURN a value. The data type to return is
listed, separated by a comma, after the optional parameter list.

Value RETURN types:

BYTE SHORT USHORT LONG ULONG SREAL REAL DATE
TIME STRING Untyped val ue-paraneter (?)

An untyped value-parameter return value (?) indicates the data type of the value returned by the
PROCEDURE is not known. This functions in exactly the same manner as an untyped value-
parameter. When the value is returned from the PROCEDURE, standard Clarion Data
Conversion Rules apply, no matter what data type is returned.

Variable RETURN types:

CSTRING *STRING *BYTE *SHORT * USHORT *LONG
* ULONG *SREAL *REAL *DATE *TIME
Unt yped vari abl e- paraneter (*?)

Variable return types are provided just for prototyping external library functions (written in another
language) which return only the address of data--they are not valid for use on Clarion language
procedures.

Functions which return pointers (the address of some data) should be prototyped with an asterisk
prepended to the return data type (except CSTRING). The compiler automatically handles the
returned pointer at runtime. Functions prototyped this way act just like a variable defined in the
program--when the function is used in Clarion code, the data referenced by the returned pointer is
automatically used. This data can be assigned to other variables, passed as parameters to
procedures, or the ADDRESS function may return the address of the data.

CSTRING is an exception because all the others are fixed length datums, and a CSTRING is not.
So, any C function that returns a pointer to a CSTRING can be prototyped as "char *" at the C
end, but the compiler thunks the procedure and copies the datum onto the stack. Therefore, just
like the other pointer return values, when the function is used in Clarion code the data referenced
by the returned pointer is automatically used (the pointer is dereferenced).

As an example of this, assume that the XYZ() function returns a pointer to a CSTRING,
CsStringVar is a CSTRING variable, and LongVar is a LONG variable. The simple Clarion
assignment statement, CStringVar = XYZ(), places the data referenced by the XYZ() function's
returned pointer, in the CStringVar variable. The assignment, LongVar = ADDRESS(XYZ()),
places the memory address of that data in the LongVar variable.

An untyped variable-parameter return value (*?) indicates the data type of the variable returned
by the PROCEDURE is not known. This functions in exactly the same manner as an untyped
variable-parameter.

70 Language Reference Manual

Reference RETURN types:

*FILE *KEY *WNDOW *VIEW
Nanmed CLASS (*d assNane)
Named QUEUE (* QueueNane)

A PROCEDURE may return a reference which may either be assigned to a reference variable, or
used in a parameter list wherever the referenced object would be appropriate. A PROCEDURE
that returns *\WINDOW may also return the label of an APPLICATION or REPORT structure.
NULL is a valid value to return.

Example:

VAP
MODULE(' Party3.Obj"') A third-party library
Func46 PROCEDURE(* CSTRI NG), REAL, C, RAW
I Pass CSTRI NG address-only to C function, return REAL
Func47 PROCEDURE(* CSTRI NG, CSTRI NG, C, RAW
I Returns pointer to a CSTRI NG
Func48 PROCEDURE(REAL), REAL, PASCAL
I PASCAL cal ling convention, return REAL
Func49 PROCEDURE(SREAL), REAL, C, NAME(' _func49')
I C convention and external function nane, return REAL

END

END
See Also:
MAP
MEMBER
MODULE
NAME
PROCEDURE
RETURN

Reference Variables

2 — Program Source Code Format 71

Prototype Attributes

C, PASCAL (parameter passing conventions)

C

PASCAL

The C and PASCAL attributes of a PROCEDURE prototype specifies that parameters are always
passed on the stack. The C convention passes the parameters from right to left as they appear in
the parameter list, while the PASCAL convention passes them from left to right. PASCAL is also
completely compatible with the Windows API calling convention for 32-bit compiled applications--
it is the Windows-standard calling convention (and also disables name mangling).

These calling conventions provide compatibility with third-party libraries written in other languages
(if they were not compiled with a TopSpeed compiler). If you do not specify a calling convention in
the prototype, the default calling convention is the internal, register-based parameter passing
convention used by all the TopSpeed compilers.

Example:
MAP
MODULE(" Party3. Coj ") IAthird-party library
Func46 PROCEDURE(* CSTRI NG, * REAL) , REAL, C, RAW I Pass REAL then CSTRI NG, address-only

Func49 PROCEDURE(* CSTRI NG, * REAL) , REAL, PASCAL, RAW ! Pass CSTRI NG t hen REAL, address-only
END
END

See Also:
PROCEDURE Prototypes

Prototype Parameter Lists

72 Language Reference Manual

DERIVED (prevent function overloading)

DERIVED

The DERIVED attribute of a PROCEDURE prototype specifies that the PROCEDURE on whose
prototype it is placed is a VIRTUAL procedure. It can be used by itself or in addition to the
VIRTUAL attribute on the prototype.

Use DERIVED to force a compile error when non-matching prototypes between a DERIVED
virtual method and its PARENT are found. This prevents function overloading when a VIRTUAL
method is the intention.

Example:

Cl assA CLASS

Met hodl PROCEDURE(LONG, <LONG>)
END

Cl assB CLASS(C assA)

Met hod2 PROCEDURE(LONG, <LONG>) , DERI VED
END

Cl assC CLASS(d assA)

Met hod3 PROCEDURE(LONG, <LONG>) , VI RTUAL, DERI VED
END

Cl assD CLASS(d assA)

Met hod4 PROCEDURE(STRI NG, DERIVED !WI | produce conpiler error
END

See Also:
CLASS
VIRTUAL

2 — Program Source Code Format 73

DLL (set procedure defined externally in .DLL)

DLL([flag])
DLL Declares a PROCEDURE defined externally in a .DLL.
flag A numeric constant, equate, or Project system define which specifies the

attribute as active or not. If the flag is zero, the attribute is not active, just as if it
were not present. If the flag is any value other than zero, the attribute is active.
Uniquely, it may be an undefined label, in which case the attribute is active.

The DLL attribute specifies that the PROCEDURE on whose prototype it is placed is defined in a
.DLL. The DLL attribute is required for 32-bit applications because .DLLs are relocatable in a 32-
bit flat address space, which requires one extra dereference by the compiler to address the
procedure.

Example:

MAP
MODULE(' STDFuncs. DLL") I'A standard functions .DLL
Func50 PROCEDURE(SREAL) , REAL, PASCAL, DLL(dI | _npde) !
END
END

See Also:

EXTERNAL

74 Language Reference Manual

NAME (set prototype's external name)

NAME(constant)

NAME Specifies an "external" name for the linker.
constant A string constant containing the external name to assign. This is case sensitive.

The NAME attribute specifies an "external" name for the linker. The NAME attribute may be
placed on a PROCEDURE Prototype. The constant supplies the external name used by the linker
to identify the procedure or function from an external library or to provide a Clarion language
prototype with an external name for external linkage (usually to eliminate the compiler's standard
name mangling), making it easier to construct an export list for a .DLL to be used in other
language projects.

Example:

PROGRAM
MAP
MODULE("' Ext ernal . Gbj ')
AddCount PROCEDURE(LONG), LONG, C, NAME(' _AddCount') !C function naned ' _AddCount'
END
END

See Also:
PROCEDURE Prototypes

Name Mangling and C++ Compatibility

2 — Program Source Code Format 75

PRIVATE (set procedure private to a CLASS or module)

PRIVATE

The PRIVATE attribute specifies that the PROCEDURE on whose prototype it is placed may be
called only from another PROCEDURE within the same source MODULE. This encapsulates it
from other modules.

PRIVATE is normally used on method prototypes in CLASS structures, so that the method may
only be called from the other CLASS methods in the module. PRIVATE methods are not inherited
by CLASSes derived from the CLASS containing the PRIVATE method's prototype, although they
can be VIRTUAL if the derived CLASS is contained in the same module.

Example:

VAP
MODULE(' STDFuncs. DLL") I'A standard functions .DLL
Func49 PROCEDURE(SREAL) , REAL, PASCAL, PRCC
Proc50 PROCEDURE(SREAL), PRI VATE ICallable only from Func49
END
END

OneCl ass CLASS, MODULE(' Oned ass. CLW), TYPE

BasePr oc PROCEDURE(REAL Par m) I Publi ¢ net hod
Proc PROCEDURE(REAL Parn), PRI VATE ! Decl are a private nethod
END
TwoC ass Oned ass I'l nstance of Oned ass
CODE
Twod ass. BaseProc(1) I'Legal call to BaseProc
Twod ass. Proc(2) I'lllegal call to Proc

'l n Oned ass. CLW
MVEMBER()

OneCl ass. BaseProc PROCEDURE(REAL Parm
CODE
SELF. Proc(Parm I'Legal call to Proc

Oned ass. Proc PROCEDURE(REAL Par m)

CODE
RETURN(Par m

See Also: CLASS

76 Language Reference Manual

PROC (set function called as procedure without warnings)

PROC

The PROC attribute may be placed on a PROCEDURE prototyped with a return value. This
allows you to use it as normal a PROCEDURE call, not only in expressions and assignments, for
those instances in which you do not need the return value. The PROC attribute suppresses the
compiler warnings you would otherwise get from such use.

Example:

MAP
MODULE("' STDFuncs. DLL") I'A standard functions .DLL
Func50 PROCEDURE(SREAL), REAL, PASCAL, PRCC
END
END

See Also:

PROCEDURE

2 — Program Source Code Format 7

PROTECTED (set procedure private to a CLASS or derived CLASS)

PROTECTED

The PROTECTED attribute specifies that the PROCEDURE on whose prototype it is placed is
visible only to the PROCEDURESs declared within the same CLASS structure (the other methods
of that CLASS) and the methods of any CLASS derived from the CLASS. This encapsulates the
PROCEDURE from being called from any code external to the CLASS within which it is
prototyped or subsequently derived CLASSes.

Example:

OneCl ass CLASS, MODULE(' Oned ass. CLW), TYPE

BasePr oc PROCEDURE(REAL Par m) I Publ i ¢ nmet hod

Proc PROCEDURE(REAL Par n) , PROTECTED ! Declare a protected nethod
END

TwoCl ass Oned ass Il nstance of Oned ass

Thr eed ass CLASS((OneCd ass), MODULE(' Threed ass. CLW) ! Derived from Oned ass

Thr eeProc PROCEDURE(REAL Par m) I Decl are a Public nethod
END
CODE
Twod ass. BaseProc(1) I'Legal call to BaseProc
Twod ass. Proc(2) 'I'llegal call to Proc

I'ln Oned ass. CLW
VEMBER()

OneCl ass. BaseProc PROCEDURE(REAL Parm)
CODE
SELF. Proc(Parm I'Legal call to Proc

Oned ass. Proc PROCEDURE(REAL Par m)
CODE
RETURN(Par m

'I'n Threed ass. CLW
VEMBER()

Thr eeC ass. NewProc PROCEDURE(REAL Par)

CODE
SELF. Proc(Parm ILegal call to Proc

See Also: CLASS

78 Language Reference Manual

RAW (pass address only)

RAW

The RAW attribute of a PROCEDURE prototype specifies that STRING or GROUP parameters
pass the memory address only. This allows you to pass just the memory address of a *?,
STRING, or GROUP parameter, whether passed by value or by reference, to a non-Clarion
language procedure or function. Normally, STRING or GROUP parameters pass the address and
the length of the string. The RAW attribute eliminates the length portion. For a prototype with a ?
parameter, the parameter is taken as a LONG but passed as a "void *" which just eliminates
linker warnings. This is provided for compatibility with external library functions that expect only
the address of the string.

If a function is prototyped with one of the following return types: ?, *? or *STRING, and the
prototype has the RAW attribute, the return value is treated as a LONG.

Example:

VAP
MODULE("' Party3. Obj ") 'Athird-party library

Func46 PROCEDURE(* CSTRI NG, REAL, C, RAW ! Pass CSTRI NG address-only to C function
END

END

See Also:
PROCEDURE Prototypes

Prototype Parameter Lists

2 — Program Source Code Format 79

REPLACE (set replacement constructor or destructor)

REPLACE

The REPLACE attribute specifies that the PROCEDURE on whose prototype it is placed
completely replaces the constructor or destructor from its parent class. REPLACE is valid only on
a PROCEDURE labelled either "Construct” or "Destruct" and declared within a CLASS structure
which is derived from a class which also contains a matching "Construct" or "Destruct”
PROCEDURE. If the PROCEDURE label is "Construct" the method is a Constructor--
automatically called when the object is instantiated. An object is instantiated when it comes into
scope or when created with a NEW statement. If the PROCEDURE label is "Destruct" the method
is a Destructor--automatically called when the object is destroyed. An object is destroyed when it
goes out of scope or when destroyed with a DISPOSE statement.

Example:
PROGRAM
SomeQueue QUEUE, TYPE
F1 STRI N& 10)
END
OneCl ass CLASS, MODULE(' Oned ass. CLW), TYPE
Ohj ect Queue &SormreQueue I Declare a reference to a nanmed queue
Const ruct PROCEDURE I Decl are a Constructor
Dest ruct PROCEDURE I Decl are a Destructor
END
TwoC ass CLASS(Oned ass), MODULE(' Twod ass. CLW), TYPE
Const ruct PROCEDURE, REPLACE ! Decl are a repl acenent Constructor
END
MW d ass Oned ass I'l nstance of Oned ass
Yourd ass &Twod ass I Ref erence to TwoC ass
CODE I My ass object cones into scope,
lautocal I i ng Oned ass. Construct
Your Cl ass &= NEW TwoCl ass) ! Your Cl ass obj ect comes into scope,
lautocal I i ng Twod ass. Construct
DI SPOSE(Your Cl ass) ! Your Cl ass obj ect goes out of scope,
lautocal I i ng OneC ass. Destruct
RETURN I My ass obj ect goes out of scope,

lautocal I i ng Oned ass. Destruct
I Oned ass. CLW cont ai ns:
Oned ass. Construct PROCEDURE
CODE
SELF. Obj ect Queue = NEW SomeQueue) ! Create the object's queue
Oned ass. Destruct PROCEDURE

CODE
FREE(SELF. Obj ect Queue) I Free the queue entries
Dl SPOSE(SELF. Obj ect Queue) I and renove the queue

I Twod ass. CLW cont ai ns:
Twod ass. Construct PROCEDURE

80 Language Reference Manual

CODE
SELF. Obj ect Queue = NEW SomeQueue) !Create the object's queue

SELF. Obj ect Queue. F1 = "First Entry'
ADD(SELF. Ohj ect Queue)

See Also:

NEW, DISPOSE, CLASS

2 — Program Source Code Format 81

TYPE (specify PROCEDURE type definition)

TYPE

The TYPE attribute specifies a prototype that does not reference an actual PROCEDURE.
Instead, it defines a prototype name to use in other prototypes to indicate the type of procedure
passed to another PROCEDURE as a parameter.

When the name of the TYPEd prototype is used in the parameter list of another prototype, the
procedure being prototyped will receive, as a passed parameter, the label of a PROCEDURE that
has the same type of parameter list (and has the same return type, if it returns a value).

Example:

VAP

Pr ocType PROCEDURE(FI LE), TYPE I Procedur e-paraneter type definition

MyFunc3 PROCEDURE(ProcType), STRING ! ProcType procedure-paraneter, returning a STRI NG

END I nmust be passed the | abel of a procedure that
ltakes a FILE as a required paraneter

See Also:

PROCEDURE Prototypes

Prototype Parameter Lists

82 Language Reference Manual

VIRTUAL (set virtual method)

VIRTUAL

The VIRTUAL attribute specifies that the PROCEDURE on whose prototype it is placed is a
virtual method of the CLASS containing the prototype. This allows methods in a parent CLASS to
access methods in a derived CLASS. The VIRTUAL attribute must be placed on both the
method's parent class prototype and the derived class's prototype.

Example:
OneCl ass CLASS I Base cl ass
BasePr oc PROCEDURE(REAL Par m) I Non-virtual nethod
Proc PROCEDURE(REAL Parn), VI RTUAL ! Declare a virtual nethod
END
TwoCl ass CLASS(Oned ass) I Derived class of Oned ass
Proc PROCEDURE(REAL Parn), VI RTUAL ! Decl are a virtual method
END
Cl assThree Oned ass I Anot her | nstance of a OneC ass obj ect
Gl assFour Twod ass I Anot her Instance of a Twod ass obj ect
CODE
Oned ass. BaseProc(1) I BaseProc calls OneCd ass. Proc
Twod ass. BaseProc(2) I BaseProc calls TwoC ass. Proc
Cl assThr ee. BaseProc(3) I BaseProc calls OneCd ass. Proc
Cl assFour . BasePr oc(4) I BaseProc calls TwoC ass. Proc

OneCl ass. BaseProc PROCEDURE(REAL Parm

CODE
SELF. Proc(Parm I'Calls virtual nethod, either OneCd ass. Proc
I TwoCl ass. Proc, dependi ng on which
I class instance is executing
See Also:

CLASS

2 — Program Source Code Format 83

Procedure Overloading

Procedure Overloading means allowing multiple PROCEDURE definitions to use the same name.
This is one form of polymorphism. In order to allow this each PROCEDURE using a shared name
must receive different parameters so the compiler can decide, based on the parameters passed
which PROCEDURE to call.

The idea here is to allow more than one procedure of the same name, but with different
prototypes, so separate (but usually similar) operations can occur on different data types. From
an efficiency viewpoint, Procedure Overloading is much more efficient than coding a single
procedure with omittable parameters, for those cases where you may or may not receive multiple
parameters.

The Clarion language also allows polymorphic procedures through the use of the ? and *?
parameters, but Procedure Overloading extends this polymorphic ability to also include Entity-
parameters and "named group" parameters.

One example of Procedure Overloading is the Clarion OPEN statement, which initializes an entity
for use in the program. Depending on what type of entity is passed to it (a FILE, a WINDOW, a
VIEW, etc.), it performs related but physically different functions.

See Also:

Rules for Procedure Overloading

Name Mangling and C++ Compatibility

84 Language Reference Manual

Rules for Procedure Overloading

The Clarion language has built-in data type conversion which can make overload resolution
difficult for the compiler. Therefore, there are rules governing how the compiler resolves
functional overloading, which are applied in the following order:

1. Entity-parameters are resolved to FILE, KEY, WINDOW, and QUEUE. If a prototype can
be chosen on the basis of these alone then the compiler does (most of the Clarion built in
procedures fall into this category). Note that KEY and VIEW are implicitly derived from
FILE, just as APPLICATION and REPORT are implicitly derived from WINDOW.

2. All "named group" parameters must match a group of their own structure. Procedure-
parameters are matched by structure. CLASSes must match by name, not simply by
structure.

3. A prototype must match in the number and placement of non-omittable parameters. This

is the third criteria (not the first) so that the compiler can usually guess which prototype
the user was aiming at and give a more meaningful error message.

4. If there are no matching prototypes then allow derivation. At this point a KEY would be
allowed to match a FILE and a group that is derived would match one of its base classes.
If one level of derivation does not work, the compiler continues up the tree. All QUEUEs
now match QUEUE and GROUP etc. CLASSes derive before other parameter types.

5. Variable-parameters (unnamed) must exactly match the actual data type passed. A
*GROUP matches a *STRING. Any variable-parameter matches *?.
6. All Value-parameters are considered to have the same type.
Example:
MAP
Func PROCEDURE(W NDOW I 1
Func PROCEDURE(FI LE))
Func PROCEDURE(KEY) | 3
Func PROCEDURE(FI LE, KEY) I 4
Func PROCEDURE(Gl) | 5
Func PROCEDURE(QD) | 6
Func PROCEDURE(KEY, Q0) L7
Func PROCEDURE(FI LE, G1) | 8
Func PROCEDURE(SHORT = 10) ! 9
Func PROCEDURE(LONG) I 10
Func PROCEDURE() I Illegal, indistinguishable from?9
Func PROCEDURE(* SHORT) I 11
Funcl PROCEDURE(* SHORT)
Funcla PROCEDURE(* SHORT)
Func2 PROCEDURE(* LONG)
Func PROCEDURE(Func1l) I 12
Func PROCEDURE(Funcla) I Illegal, sanme as 12
Func PROCEDURE(Func?2) I 13

END

2 — Program Source Code Format 85

& GROUP

END

GL GROUP(QD)

END

CODE

Func(A:
Func(A:
Func(A:
Func(A:
Func(A:
Func(A:
Func(A:
Func(A:
Func(A:
Func(A:
Func(A:
Func

See Also:

CLASS

W ndow) !
File) !
Key) !
Vi ew) !
Key, A: Key) !
Q0) !
Gl) !
Func2) !
Key, A: GL) !
Short) !
Real) !

I

Calls
Calls
Calls
Calls
Calls
Calls
Calls
Calls
Error
Error
Calls
Calls

1 by rule
2 by rule
3 by rule
2 by rule
4 by rule (woul d call key,key if present)
6 by rule
5 by rule
13 by rule 2

- Anmbiguous. If rule 4 is used then 7 & 8 are both possible
- Anmbiguous. Calls 9 or 11

9 by rule 6

9 by rule 3

NNDDNRPRPR

86

Language Reference Manual

Name Mangling and C++ Compatibility

Each overloaded function will have a link-time name composed of the procedure label and a
"mangled" argument list (the NAME attribute can be used to disable name mangling). This is
designed so that some degree of cross-calling between C++ and Clarion is possible. On the C++

side you need:

#pragma name(prefix=>""

")

and the name in all caps. On the Clarion side you need a MODULE structure with a null string as

its parameter:

MODULE(" ")
END

The only procedures that can be cross-called are those whose prototypes only contain data types from
the following list. Clarion Variable-parameters (passed by address) correspond to reference parameters
on the C side unless they are omittable, in which case they correspond to pointer parameters.

Cl arion

BYTE

USHORT

SHORT

LONG

ULONG

SREAL

REAL

*CSTRI NG (wi th RAW
<*CSTRING> (with RAW
<*GROUP> (Wi th RAW

Ct+

unsi gned char
unsi gned short
short

| ong

unsi gned | ong
fl oat

doubl e

char &

char*

voi d*

Note that for C++ compatibility the return type of a PROCEDURE is not mangled into the name. A
corollary effect is that procedures cannot be distinguished by return type.

Example:

/| C++ prototypes:

#pragma nane(prefix=>"")

voi d HADD(short, short);

voi d HADD(| ong*, unsi gned char);
voi d HADD(short unsigned &);
voi d HADD(char *,void *);

I'Clarion prototypes:
MODULE(" ")
hADD(short, short)
HaDD(<*| ong>, byt e)
HAdD(*ushort)
HADd(<* CSTRI NG>, <* GROUP>) , RAW
END

See Also: NAME

2 — Program Source Code Format 87

Compiler Directives

Compiler Directives are statements that tell the compiler to take some action at compile time.
These statements are not included in the executable program object code which the compiler
generates. Therefore, there is no run-time overhead associated with their use.

ASSERT (set assumption for debugging)

ASSERT(expression, [message])
ASSERT Specifies an assumption for debugging purposes.

expression A Boolean expression that should always evaluate as true (any value other than
blank or zero).

message An optional string expression (up to 64K) which displays in the dialog window.

The ASSERT statement specifies an expression to evaluate at the exact point in the program
where the ASSERT is placed. This may be any kind of Boolean expression and should be
formulated such that the expected evaluation result is always true (any value other than blank or
zero). The purpose of ASSERT is to catch erroneous assumptions for the programmer.

If debug is on and the expression is false (blank or zero), an error message displays indicating
the specific line number and source code module where the asserted expression was false. The
user is invited to GPF the program at that point, which allows Clarion's post-mortem debuggers to
activate.

If debug is off, the expression is still evaluated, but no error message is displayed if the result is
false. To activate error messages in release build (debug is off), you can add the following project
define to your application:

asserts=>on

88 Language Reference Manual

Example:
MyQueue QUEUE
F1 LONG
END
CODE

LOOP X# = 1 TO 10
MyQueue. F1 = X#

ADD(My Queue)
ASSERT(~ERRORCODE() , * ADD MyQueue Error * & ERROR())

END

LOOP X# = 1 TO 10

GET(MyQueue, X#)

ASSERT(~ERRORCODE()) IThis error only happens if the ADD above fails
END

kkkkkkhkkk*k

I- Get Single Configuration Record
Access: CONFI G Open()
SET(CONFI G
ASSERT(~Access: Confi g. Next (), Config record mssing')

2 — Program Source Code Format 89

BEGIN (define code structure)

BEGIN

statements

END

BEGIN Declares a single code statement structure.
statements Executable program instructions.

The BEGIN compiler directive tells the compiler to treat the statements as a single structure. The
BEGIN structure must be terminated by a period or the END statement.

BEGIN is usually used in an EXECUTE control structure to allow several lines of code to be
treated as one.

Example:

EXECUTE Val ue
Procil | Execute if Val ue
BEG N I Execute i f Val ue
Value += 1
Proc2
END
Proc3 | Execute if Val ue
END

I
N

1
w

See Also:

EXECUTE

90 Language Reference Manual

COMPILE (specify source to compile)

COMPILE(terminator [,expression])

COMPILE Specifies a block of source code lines to be included in the compilation.
terminator A string constant that marks the last line of a block of source code.
expression An expression allowing conditional execution of the COMPILE. The expression is

either an EQUATE whose value is zero or one, or EQUATE = integer.

The COMPILE directive specifies a block of source code lines to be included in the compilation.
The included block begins with the COMPILE directive and ends with the line that contains the
same string constant as the terminator. The entire terminating line is included in the COMPILE
block.

The optional expression parameter permits conditional COMPILE. The form of the expression is
fixed. It is the label of an EQUATE statement, or a Conditional Switch set in the Project System,
and may be followed by an equal sign (=) and an integer constant.

The code between COMPILE and the terminator is compiled only if the expression is true. If the
expression contains an EQUATE that has not yet been defined, then the referenced EQUATE is
assumed to be zero (0).

Although the expression is not required, COMPILE without an expression parameter is not
necessary because all source code is compiled unless explicitly omitted. COMPILE and OMIT are
opposites.

2 — Program Source Code Format

91

Example:
OM T(' ***', _WDTH32_)
SIGNED EQUATE(SHORT)

UNSI GNED EQUATE(USHORT)
* % %
COWPI LE(' ***' | W DTH32)
SIGNED EQUATE(LONG)
UNSI GNED EQUATE(ULONG)

* k%

COWPI LE(' EndOF Fil e', OnceOnly =
OnceOnl y EQUATE(1)

Denp EQUATE(1)
CODE

COVPI LE(' EndDenpChk' , Dempo = 1)

DO DenpCheck
I EndDenpChk
I EndOFile

IOMT only if application is 32-bit

ICOWILE only if application is 32-bit

I COWPI LE only the first tine encountered because the
I OnceOnly EQUATE is defined after the COWI LE t hat

| references it, so a second pass during the sane

I conpilation will not re-conpile the code

I Speci fy the Denp EQUATE val ue

ICOWILE only if Denmpb equate is turned on
I Check for deno linmts passed
'End of conditional COWILE code

I The foll owi ng exanpl e bel ow shows how OM T and COWPI LE can be nested

COVPI LE (' **32bi t**', width32_)

COWPI LE (' *debug*', _debug)

I outer COWPI LE

DEBUGGER: : BUTTONLI ST Equat e(' &Cont i nue| &Hal t | &Debug')

lend- COWPILE (' *debug*', _debug)

OMT ('*debug*', _debug_)

DEBUGGER: : BUTTONLI ST Equat e(' &Cont i nue| &Hal t ')

lend- OM T (' *debug*', _debug_)

lend- COWPILE ('**32bit**', width32_) !end outer COWPILE

OMT (' **32bit**', width32)

DEBUGGER: : BUTTONLI ST Equat e(' &Conti nue| &Hal t')

lend- OM T (' **32bit**', width32))

See Also:
OMIT
EQUATE

92 Language Reference Manual

INCLUDE (compile code in another file)

INCLUDE(filename [,section]) [,ONCE]

INCLUDE Specifies source code to be compiled which exists in a separate file which is not
a MEMBER module.

filename A string constant that contains the DOS file specification for a source file. If the
extension is omitted, .CLW is assumed.

section A string constant which is the string parameter of the SECTION directive marking
the beginning of the source code to be included.

ONCE The ONCE attribute precludes any INCLUDEd data from being compiled more

than once, which can result in compile warnings or errors. Regarding the use of
the section attribute, ONCE is applied on the entire filename, so subsequent
uses of INCLUDE(filename, section) will be ignored.

The INCLUDE directive specifies source code to be compiled which exists in a separate file
which is not a MEMBER module. Starting on the line of the INCLUDE directive, the source file, or
the specified section of that file, is compiled as if it appeared in sequence within the source
module being compiled. You can nest INCLUDESs up to 3 deep, so you can INCLUDE a file that
includes a file that includes a file but that latter file must not include anything.

The compiler uses the Redirection file (CurrentReleaseName.RED) to find the file, searching the
path specified for that type of filename (usually by extension). This makes it unnecessary to
provide a complete path in the filename to be included. A discussion of the Redirection file is in
the User's Guide and the Project System chapter of the Programmer's Guide.

Example:

GenLedger PROCEDURE I Decl are procedure
I NCLUDE(' fil edefs.clw) I'lnclude file definitions here
CODE I Begi n code section

I NCLUDE(' Setups', ' ChkErr') !Include error check from setups.clw

See Also:
SECTION
ONCE

2 — Program Source Code Format 93

EQUATE (assign label)

| label |
label EQUATE(| [constant] [)
| picture [
| type I
EQUATE Assigns a label to another label or constant.
label The label of any statement preceding the EQUATE statement. This is used to

declare an alternate statement label. This may not be the label of a
PROCEDURE or ROUTINE statement.

constant A numeric or string constant. This is used to declare a shorthand label for a
constant value. It also makes a constant easy to locate and change. This may be
omitted only in an ITEMIZE structure. A constant expression may also be used
(like 1+2, or BOR(1111b,0001b)).

picture A picture token. This is used to declare a shorthand label for a picture token.
However, the screen and report formatter in the Clarion Editor will not recognize
the equated label as a valid picture.

type A data type. This is usually used to declare a single method of declaring a
variable as one of several data types, depending upon compiler settings (like a
C++ typedef for a simple data type).

The EQUATE directive assigns a label to another label or constant. It does not use any run-time
memory. The label of an EQUATE directive cannot be the same as its parameter.

Example:

I nit EQUATE(Set UpPr og) I Set alias |abel
Of EQUATE(0) IOFf means zero
n EQUATE(1) I On neans one

PI EQUATE(3. 1415927) I The val ue of PI

Enter Msg EQUATE(' Press Ctrl-Enter to SAVE')

SocSecPi ¢ EQUATE(@P###- ##- ####P) | Soc-sec nunber picture
See Also:

Reserved Words

ITEMIZE

94 Language Reference Manual

ITEMIZE (enumeration data structure)

llabel] ITEMIZE([seed]) [,PRE()]

equates
END

label An optional label for the ITEMIZE structure.

ITEMIZE An enumeration data structure.

seed An integer constant or constant expression specifying the value of the first
EQUATE in the structure.

PRE Declare a label prefix for variables within the structure.

equates Multiple consecutive EQUATE declarations which specify positive integer values

in the range 0 to 65,535.

An ITEMIZE structure declares an enumerated data structure. If the first equate does not declare
a value and there is no seed value specified, its value is one (1). All following equates following
the first increment by one (1) if no value is specified for the subsequent equate. If a value is
specified on a subsequent equate, all equates following that continue incrementing by one (1)
from the specified value.

Equates within the ITEMIZE structure are referenced by prepending the prefix to the label of the
equate (PRE attribute--PRE:EquatelLabel). If the ITEMIZE structure has an empty prefix, then the
equates are referenced by prepending the ITEMIZE label to the label of the equate
(label:EquateLabel). If there is no prefix or label, then the equates are referenced by their own
label without a prefix.

2 — Program Source Code Format

95

Example:
| TEM ZE
Fal se EQUATE(0) lFalse = 0
True EQUATE 'True = 1
END

Color | TEM ZE(O), PRE ! Seed val ue is zero

Red EQUATE IColor:Red = 0
White EQUATE IColor:Wite =1
Bl ue EQUATE IColor:Blue = 2
Pi nk EQUATE(5) IColor:Pink =5
Green EQUATE IColor:Geen = 6
Last EQUATE

END

Stuff | TEM ZE(Col or: Last + 1), PRE(M) I Const ant expression as seed

X EQUATE I'My: X = Color:Last + 1

Y EQUATE 'My:Y = Color:Last + 2

Z EQUATE I'My:Z = Color: Last + 3
END

See Also:

EQUATE, PRE

96 Language Reference Manual

OMIT (specify source not to be compiled)

OMIT (terminator [,expression])

OMIT Specifies a block of source code lines to be omitted from the compilation.
terminator A string constant that marks the last line of a block of source code.
expression An expression allowing conditional execution of the OMIT. The expression is

either an EQUATE whose value is zero or one, or EQUATE = integer.

The OMIT directive specifies a block of source code lines to be omitted from the compilation.
These lines may contain source code comments or a section of code that has been "stubbed out"
for testing purposes. The omitted block begins with the OMIT directive and ends with the line that
contains the same string constant as the terminator. The entire terminating line is included in the
OMIT block.

The optional expression parameter permits conditional OMIT. The form of the expression is fixed.
Itis the label of an EQUATE statement, or a Conditional Switch set in the Project System, and
may be followed by an equal sign (=) and an integer constant.

The OMIT directive executes only if the expression is true. Therefore, the code between OMIT
and the terminator is compiled only if the expression is not true. If the expression contains an
EQUATE that has not yet been defined, then the referenced EQUATE is assumed to be zero (0).
COMPILE and OMIT are opposites.

2 — Program Source Code Format 97

Example:

OM T(' **END**") I'Unconditional OM T

I Mai n Program Loop

END

OMT("***' | WDTH32) '!OMT only if application is 32-bit

SI GNED EQUATE(SHORT)
* % %
COWPI LE(" ***', W DTH32) I'COWPI LE only if application is 32-bit
SI GNED EQUATE(LONG
* % %
OMT(' EndOFFil e', OnceOnly) IConpile only the first time encountered because the
OnceOnly EQUATE(1) I OnceOnly EQUATE is defined after the COWI LE that
! references it, so a second pass during the sane
! conpilation will not re-conpile the code

Demo EQUATE(0) I Specify the Denmb EQUATE val ue
CODE
OM T(' EndDenoChk' ,Denp = 0) !'OMT only if Denp is turned off
DO DenoCheck I Check for denmo linits passed
! EndDenpChk 'End of onitted code
I EndOFile

I The foll owi ng exanpl e bel ow shows how OM T and COWPI LE can be nested
COWPI LE (' **32bit**', _wi dth32_) !outer COWPILE

COWPI LE (' *debug*', _debug)
DEBUGCER: : BUTTONLI ST Equat e(' &Cont i nue| &Hal t | &Debug')
lend- COWPILE (' *debug*', _debug_)

OMT ('*debug*', _debug_)
DEBUGGER: : BUTTONLI ST Equat e(' &Conti nue| &Hal t"')
lend- OM T (' *debug*', _debug_)

lend- COMPILE ('**32bit**', wi dth32) !end outer COVPILE

OMT ("**32bit**', _width32_)
DEBUGGER: : BUTTONLI ST Equat e(' &Conti nue| &Hal t"')
lend- OMT (' **32bit**', _wi dth32_)

See Also:

COMPILE
EQUATE

98 Language Reference Manual

ONCE (prevent duplicate included data)

The ONCE attribute precludes any INCLUDEd data from being compiled more than once
resulting in compile warnings or errors.

Example:
| NCLUDE(' KEYCCDES. CLW), ONCE

See Also:

INCLUDE

2 — Program Source Code Format 99

SECTION (specify source code section)

SECTION(string)

SECTION Identifies the beginning of a block of executable source code or data
declarations.

string A string constant which names the SECTION.

The SECTION compiler directive identifies the beginning of a block of executable source code or
data declarations which may be INCLUDEd in source code in another file. The SECTION's string
parameter is used as an optional parameter of the INCLUDE directive to include a specific block
of source code. A SECTION is terminated by the next SECTION or the end of the file.

Example:
SECTI ON(' Fi rst Section') I Begi n section

Fi el done STRI NG 20)
Fi el dTwo LONG

SECTI ON(' SecondSection') I End previous section, begin new section

| F Nunber <> SavNunber
DO Get Nunber
END

SECTI ON(' Thi rdSecti on') I End previous section, begin new section

CASE Action
oF 1
DO AddRec
OF 2
DO ChgRec
OF 3
DO Del Rec
END I'Third section ends at end of file

See Also:

INCLUDE

100

Language Reference Manual

SIZE (memory size in bytes)

| variable |
SIZE(| constant)
| picture |
SIZE Supplies the amount of memory used for storage.
variable The label of a previously declared variable.
constant A numeric or string constant.
picture A picture token.

SIZE directs the compiler to supply the amount of memory (in bytes) used to store the variable,

constant, or picture.

Example:
SavRec STRING 1), DI M SI ZE(Cus: Recor d)

StringVar STRI NG Sl ZE(' Soft Vel ocity'))
LOOP I# = 1 TO S| ZE(ParseString)

PicLen = SI ZE(@(###) #iH- ####P)

See Also: LEN

I Di mension the string to size of record
I'A string |l ong enough for the constant
I'Loop for nunmber of bytes in the string

I Save size of the picture

3 — Variable Declarations 101

102 Language Reference Manual

3 — Variable Declarations

103

3 - Variable Declarations

Simple Data Types

BYTE (one-byte unsigned integer)

label BYTE(initial value) [,DIM()] [[OVER()] [NAME()] [EXTERNAL] [,DLL] [STATIC] [THREAD]
[LAUTO] [PRIVATE] [PROTECTED]
BYTE A one-byte unsigned integer.
Format: nagnitude
| oo |
Bits: 7 0
Range: 0 to 255
initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.
EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.
DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.
STATIC Specify the variable's memory is permanently allocated.
THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.
AUTO Specify the variable has no initial value.
PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.
PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.

BYTE declares a one-byte unsigned integer.

Example:
Count 1 BYTE

Count 2 BYTE, OVER(Count 1)
Count 4 BYTE, DI M 5)
Count 4 BYTE(5)

! Decl are one byte integer

! Decl are OVER the one byte integer
!Declare as a 5 elenent array
IDeclare with initial value

104

Language Reference Manual

SHORT (two-byte signed integer)

label SHORT([initial value]) [,DIM()] [OVER()] [[NAME()] [EXTERNAL] [,DLL] [,STATIC]
[,THREAD] [, AUTO] [,PRIVATE] [PROTECTED]
SHORT A two-byte signed integer.
Format: % nmagni t ude
[|
Bits: 15 14 0
Range: -32,768 to 32,767
initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.
EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.
DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.
STATIC Specify the variable's memory is permanently allocated.
THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.
AUTO Specify the variable has no initial value.
PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.
PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.

SHORT declares a two-byte signed integer, using the Intel 8086 word integer format. The high-
order bit of this configuration is the sign bit (0 = positive, 1 = negative). Negative values are
represented in standard two's complement notation.

3 — Variable Declarations 105

Example:

Count 1 SHORT I Decl are two-byte signed integer
Count 2 SHORT, OVER(Count 1) I Decl are OVER the two-byte signed integer
Count 3 SHORT, DI M 4) IDeclare it an array of 4 shorts
Count 4 SHORT(5) IDeclare with initial value
Count 5 SHORT, EXTERNAL | Decl are as external

Count 6 SHORT, EXTERNAL, DLL IDeclare as external in a .DLL
Count 7 SHORT, NAME("' Si xCount ') I Declare with external nane
Exanpl eFile FILE,DRIVER(' Clarion') !Declare a file

Recor d RECORD

Count 7 SHORT, NAME(' Counter') !Declare with external nane

END
END

106

Language Reference Manual

USHORT (two-byte unsigned integer)

label

USHORT

initial value

DIM

OVER
NAME
EXTERNAL

DLL

STATIC
THREAD

AUTO
PRIVATE

PROTECTED

USHORT ([initial value]) [,DIM()] [,OVER()] NAME()] EXTERNAL] [,DLL] [STATIC]

[THREAD] [,AUTO] [PRIVATE] [PROTECTED]

A two-byte unsigned integer.

Format: nmagnitude

| o |
Bits: 15 0
Range: 0 to 65,535

A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

Dimension the variable as an array.
Share a memory location with another variable.
Specify an alternate, "external" name for the field.

Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

Specify the variable's memory is permanently allocated.

Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

Specify the variable has no initial value.

Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

USHORT declares a two-byte unsigned integer in the Intel 8086 word format. There is no sign bit
in this configuration.

3 — Variable Declarations

107

Example:

Count 1 USHORT I Decl are
Count 2 USHORT, OVER(Count 1) ! Decl are
Count 3 USHORT, DI M 4) ! Decl are
Count 4 USHORT(5) ! Decl are
Count 5 USHORT, EXTERNAL I Decl are
Count 6 USHORT, EXTERNAL, DLL | Decl are
Count 7 USHORT, NAME(' Si xCount ") ! Decl are
Exanpl eFil e FILE, DRI VER(' Btrieve') ! Decl are
Record RECORD

Count 8 USHORT, NAME(' Counter') !Declare

END
END

t wo- byt e unsi gned i nteger

OVER t he two- byte unsigned integer
it an array of 4 unsigned shorts
with initial value

as external

as external in a .DLL

with external nane

afile

wi th external nane

108

Language Reference Manual

LONG (four-byte signed integer)

label LONG([initial value]) [,DIM()] [[OVER()] LNAME()] [EXTERNAL] [,DLL] [,STATIC] [THREAD]
[LAUTO] [PRIVATE] [PROTECTED]
LONG A four-byte signed integer.
Format: % nmagni t ude
[P |
Bits: 31 30 0
Range: -2,147,483,648 to 2,147, 483, 647
initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.
EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.
DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.
STATIC Specify the variable's memory is permanently allocated.
THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.
AUTO Specify the variable has no initial value.
PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.
PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.

LONG declares a four-byte signed integer, using the Intel 8086 long integer format. The high-
order bit is the sign bit (0 = positive, 1 = negative). Negative values are represented in standard
two's complement notation.

3 — Variable Declarations 109

Example:

Count1 LONG I Decl are four-byte signed integer
Count 2 LONG, OVER(Count 1) I Decl are OVER the four-byte signed integer
Count 3 LONG, DI M 4) IDeclare it an array of 4 |ongs
Count 4 LONG 5) IDeclare with initial value
Count 5 LONG EXTERNAL I Decl are as external

Count 6 LONG, EXTERNAL, DLL | Decl are as external in a .DLL
Count 7 LONG, NAME(' Si xCount ') I Declare with external nane
Exanpl eFile FILE,DRIVER(' Clarion') !Declare a file

Record RECORD

Count 8 LONG NAVE(' Counter') !Declare with external nanme

END
END

110

Language Reference Manual

ULONG (four-byte unsigned integer)

label ULONG([initial value]) [,[DIM()] [OVER()] [[NAME()] [EXTERNAL] [,DLL] [,STATIC]
[,THREAD] [, AUTO] [,PRIVATE] [PROTECTED]
ULONG A four-byte unsigned integer.
For mat : magni t ude
oo |
Bits: 31 0
Range: O to 4, 294,967, 295
initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.
EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.
DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.
STATIC Specify the variable's memory is permanently allocated.
THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.
AUTO Specify the variable has no initial value.
PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.
PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.

ULONG declares a four-byte unsigned integer, using the Intel 8086 long integer format. There is
no sign bit in this configuration.

3 — Variable Declarations

111

Example:

Count1 ULONG

Count 2 ULONG, OVER(Count 1)

Count 3 ULONG, DI M 4)

Count 4 ULONQE 5)

Count 5 ULONG, EXTERNAL

Count 6 ULONG, EXTERNAL, DLL

Count 7 ULONG, NAME(' Si xCount ')
Exanpl eFil e FILE, DRI VER(' Btrieve')

Record RECORD
Count 8 ULONG, NAME(' Counter')
END

END

four-byte unsigned integer

OVER four-byte unsi gned integer
it an array of 4 unsigned |ongs
with initial value

as external

as external in a .DLL

with external nane

afile

with external nanme

112

Language Reference Manual

SIGNED (signed integer)

label SIGNED(initial value]) [,DIM()] [,OVER()] [NAME()] [EXTERNAL] [,DLL] [STATIC] [, THREAD]
[LAUTO] [PRIVATE] [PROTECTED]

SIGNED A signed integer defined as a LONG.

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.
SIGNED declares a signed integer which is a LONG.

The SIGNED data type is most useful for prototyping Windows API calls.

Example:

Count 1 SI GNED

I Decl ares a LONG

3 — Variable Declarations

113

UNSIGNED (unsigned integer)

label UNSIGNED([initial value]) [,DIM()] [,OVER()] [[NAME()] [EXTERNAL] [,DLL] [STATIC]
[,THREAD] [LAUTO] [,PRIVATE] [PROTECTED]

UNSIGNED An unsigned integer which is a LONG.

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.

UNSIGNED declares an unsigned integer which is a LONG. This is not actually a data type but
an EQUATE defined in EQUATES.CLW.

The UNSIGNED data type is most useful for prototyping Windows API calls which take a LONG
(or ULONG) parameter in their 32-bit version.

Example:

Count 1 UNSI GNED

I Decl ares a LONG

114

Language Reference Manual

SREAL (four-byte signed floating point)

label SREAL([initial value]) [,DIM()] [OVER()] [NAME()] [EXTERNAL] [,DLL] [,STATIC]
[,THREAD] [, AUTO] [,PRIVATE] [PROTECTED]
SREAL A four-byte floating point number.
Format: + exponent significand
T [|
Bits: 31 30 23 0
Range: 0, * 1.175494e-38 .. * 3.402823e+38 (6 significant digits)
initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.
EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.
DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.
STATIC Specify the variable's memory is permanently allocated.
THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.
AUTO Specify the variable has no initial value.
PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.
PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.

SREAL declares a four-byte floating point signed numeric variable, using the Intel 8087 short real
(single precision) format.

3 — Variable Declarations

115

Example:
Count 1 SREAL

Count 2 SREAL, OVER(Count 1)

Count 3 SREAL, DI M 4)
Count 4 SREAL(5)
Count 5 SREAL, EXTERNAL

Count 6 SREAL, EXTERNAL, DLL
Count 7 SREAL, NAME("' Si xCount ')

Exanpl eFil e FILE, DRI VER(' Btrieve')

Record RECORD
Count 8 SREAL, NAME(' Count er')
END

END

! Decl are four-byte signed floating point

| Decl are

OVER t he four-byte

I'signed floating point

! Decl are
! Decl are
I Decl are
! Decl are
I Decl are

! Decl are

I Decl are

it an array of 4 floats
with initial value

as external

as external in a .DLL
with external nane

afile

with external nane

116

Language Reference Manual

REAL (eight-byte signed floating point)

label REAL([initial value]) [,[DIM()] [[OVER()] [NAME()] [EXTERNAL] [,DLL] [STATIC] [, THREAD]
[LAUTO] [PRIVATE] [PROTECTED]
REAL An eight-byte floating point number.
Format: + exponent significand
[ool e | |
Bits: 63 62 52 0
Range: 0, % 2.225073858507201e-308 .. % 1.79769313496231e+308
(15 significant digits)
initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.
EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.
DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.
STATIC Specify the variable's memory is permanently allocated.
THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.
AUTO Specify the variable has no initial value.
PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.
PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.

REAL declares an eight-byte floating point signed numeric variable, using the Intel 8087 long real
(double precision) format.

3 — Variable Declarations

117

Example:

Count 1 REAL
Count 2 REAL, OVER(Count 1)

Count 3 REAL, DI M 4)

Count 4 REAL(5)

Count 5 REAL, EXTERNAL

Count 6 REAL, EXTERNAL, DLL

Count 7 REAL, NAME(' Si xCount ')
Exanpl eFil e FILE, DRI VER(' Cl arion")

Record RECORD
Count 8 REAL, NAVE("' Count er"')
END

END

I Decl are ei ght-byte signed floating point

I Decl are

OVER t he eight-byte

I'signed floating point

I Decl are
I Decl are
I Decl are
I Decl are
I Decl are
I Decl are

I Decl are

it an array of 4 reals
with initial value

as external

as external in a .DLL
w th external nane
afile

w th external nane

118

Language Reference Manual

BFLOAT4 (four-byte signed floating point)

label BFLOATA([initial value]) [,DIM()] [,OVER()] [[NAME()] [EXTERNAL] [,DLL] [,STATIC]

[THREAD] [,AUTO] [PRIVATE] [PROTECTED]

BFLOAT4

initial value

DIM

OVER
NAME
EXTERNAL

DLL

STATIC
THREAD

AUTO
PRIVATE

PROTECTED

A four-byte floating point number.

For mat : exponent + significand
| oo T |
Bits: 31 23 22 0
Range: 0, + 5.87747e-39 .. % 1.70141e+38 (6 significant digits)

A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

Dimension the variable as an array.
Share a memory location with another variable.
Specify an alternate, "external" name for the field.

Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

Specify the variable's memory is permanently allocated.

Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

Specify the variable has no initial value.

Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

BFLOAT4 declares a four-byte floating point signed numeric variable, using the Microsoft BASIC
(single precision) format. This data type is normally used for compatibility with existing data since
it is internally converted to a REAL before all arithmetic operations.

3 — Variable Declarations 119

Example:
Count 1 BFLOAT4 ! Decl are four-byte signed floating point
Count 2 BFLOAT4, OVER(Count 1) I Decl are OVER the four-byte
I signed floating point
Count 3 BFLOAT4, DI M 4) ! Declare array of 4 single-precision reals
Count 4 BFLOAT4(5) IDeclare with initial val ue
Count 5 BFLOAT4, EXTERNAL I Decl are as external
Count 6 BFLQAT4, EXTERNAL, DLL IDeclare as external in a .DLL
Count 7 BFLOAT4, NAME(" Si xCount ') I Declare with external nane
Exanpl eFil e FILE, DRI VER(' Btrieve') IDeclare a file
Recor d RECORD
Count 8 BFLOAT4, NAME(' Counter') !Declare with external nane

END
END

120 Language Reference Manual

BFLOATS (eight-byte signed floating point)

label BFLOATS([initial value]) [,DIM()] [,OVER()] [[NAME()] [EXTERNAL] [,DLL] [,STATIC]

[THREAD] [,AUTO] [PRIVATE] [PROTECTED]

BFLOATS An eight-byte floating point number.
For mat : exponent + significand

Bits: 63 55 54 0
Range: 0, + 5.877471754e-39 .. * 1.7014118346e+38 (15 significant dic

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute

is present.
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS

methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

BFLOATS declares an eight-byte floating point signed numeric variable, using the Microsoft
BASIC (double precision) format. This data type is normally used for compatibility with existing
data since it is internally converted to a REAL before all arithmetic operations.

3 — Variable Declarations 121

Example:

Count 1 BFLOATS8 I Decl are ei ght-byte signed floating point
Count 2 BFLOAT8, OVER(Count 1) ! Decl are OVER

Count 3 BFLOATS, DI M 4) !Declare it an array of 4 reals
Count 4 BFLOAT8(5) IDeclare with initial val ue
Count 5 BFLQATS8, EXTERNAL I Decl are as external

Count 6 BFLOAT8, EXTERNAL, DLL I Declare as external in a .DLL
Count 7 BFLOAT8, NAME(' Si xCount ') I Declare with external nane
Exanpl eFil e FILE, DRI VER(' Btrieve') IDeclare a file

Record RECORD

Count 8 BFLOATS8, NAME(' Counter') !Declare with external nane

END
END

122

Language Reference Manual

DECIMAL (signed packed decimal)

label DECIMAL (length [,places] [,initial value]) [,DIM()] [, OVER()] [[NAME()] EXTERNAL] [,DLL]

[.STATIC] [THREAD] [,AUTO] [PRIVATE] [PROTECTED]

DECIMAL

length

places

initial value

DIM

OVER
NAME
EXTERNAL

DLL

STATIC
THREAD

AUTO
PRIVATE

PROTECTED

A packed decimal floating point number.
Format: + magni t ude

T |
Bits: 127 124 0

Range: -9, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999 to
+9, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999

A required numeric constant containing the total number of decimal digits (integer
and fractional portion combined) in the variable. The maximum length is 31.

A numeric constant that fixes the number of decimal digits in the fractional
portion (to the right of the decimal point) of the variable. It must be less than or
equal to the length parameter. If omitted, the variable will be declared as an
integer.

A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

Dimension the variable as an array.
Share a memory location with another variable.
Specify an alternate, "external" name for the field.

Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

Specify the variable's memory is permanently allocated.

Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

Specify the variable has no initial value.

Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

3 — Variable Declarations 123

DECIMAL declares a variable length packed decimal signed numeric variable. Each byte of a
DECIMAL holds two decimal digits (4 bits per digit). The left-most byte holds the sign in its high-
order nibble (0 = positive, anything else is negative) and one decimal digit. Therefore, DECIMAL
variables always contain a fixed "odd" number of digits (DECIMAL(10) and DECIMAL(11) both
use 6 bytes).

Example:
Count 1 DECI MAL(5, 0) I Decl are three-byte signed packed deci nal
Count 2 DECI MAL(5), OVER(Count 1) I Decl are OVER the three-byte
I si gned packed deci nal
Count 3 DECI MAL(5, 0), Dl M 4) IDeclare it an array of 4 decimals
Count 4 DECI MAL(5, 0, 5) !Declare with initial value
Count 5 DECI MAL(5, 0), EXTERNAL I Decl are as external
Count 6 DECI MAL(5, 0), EXTERNAL, DLL | Decl are as external in a .DLL
Count 7 DECI MAL(5, 0), NAME(" Si xCount ") I Declare with external nane
Exanpl eFil e FI LE, DRI VER(' TopSpeed') IDeclare a file
Record RECORD
Count 8 DECI MAL(5, 0), NAME(' Counter') !Declare with external nane

END
END

124

Language Reference Manual

PDECIMAL (signed packed decimal)

label PDECIMAL (length [,places] [,initial value]) [,DIM()] [[OVER()] [[NAME()] EXTERNAL] [,DLL]

[.STATIC] [THREAD] [,AUTO] [PRIVATE] [PROTECTED]

PDECIMAL

length

places

initial value

DIM

OVER
NAME
EXTERNAL

DLL

STATIC
THREAD

AUTO
PRIVATE

PROTECTED

A packed decimal floating point number.
For mat : magni t ude +

Bits: 127 4 0
Range: -9, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999 to
+9, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999

A required numeric constant containing the total number of decimal digits (integer
and fractional portion combined) in the variable. The maximum length is 31.

A numeric constant that fixes the number of decimal digits in the fractional
portion (to the right of the decimal point) of the variable. It must be less than or
equal to the length parameter. If omitted, the variable will be declared as an
integer.

A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

Dimension the variable as an array.
Share a memory location with another variable.
Specify an alternate, "external" name for the field.

Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

Specify the variable's memory is permanently allocated.

Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

Specify the variable has no initial value.

Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

3 — Variable Declarations 125

PDECIMAL declares a variable length packed decimal signed numeric variable in the Btrieve and
IBM/EBCDIC type of format. Each byte of an PDECIMAL holds two decimal digits (4 bits per
digit). The right-most byte holds the sign in its low-order nibble (OFh or OCh = positive, ODh =
negative) and one decimal digit. Therefore, PDECIMAL variables always contain a fixed "odd"
number of digits (PDECIMAL(10) and PDECIMAL(11) both use 6 bytes).

Example:
Count 1 PDECI MAL(5, 0) ! Decl are three-byte signed packed deci mal
Count 2 PDECI MAL(5) , OVER(Count 1) I Decl are OVER the three-byte
! signed packed deci nmal
Count 3 PDECI MAL(5, 0), DI M 4) IDeclare it an array of 4 decimals
Count 4 PDECI MAL(5, 0, 5) IDeclare with initial value
Count 5 PDECI MAL(5, 0) , EXTERNAL | Decl are as external
Count 6 PDECI MAL(5, 0) , EXTERNAL, DLL I Declare as external in a .DLL
Count 7 PDECI MAL(5, 0), NAME(' Si xCount ') I Declare with external nane
Exanpl eFil e FILE, DRI VER(' Btrieve') !Declare a file
Record RECORD
Count 8 PDECI MAL(5, 0), NAME(' Counter') !Declare with external nane

END
END

126 Language Reference Manual

STRING (fixed-length string)

| length |
label STRING(|string constant |) [,DIM()][,OVER()] [[NAME()] [EXTERNAL] [,DLL]
[.STATIC]
| picture | [,THREAD] [, AUTO] [,PRIVATE] [PROTECTED]
STRING A character string.
Format: A fixed nunber of bytes.
Si ze: 4VB
length A numeric constant that defines the number of bytes in the STRING. String

variables are not initialized unless given a string constant.

string constant The initial value of the STRING. The length of the STRING (in bytes) is set to the
length of the string constant.

picture Used to format the values assigned to the STRING. The length is the number of
bytes needed to contain the formatted STRING.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS

methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

3 — Variable Declarations 127

STRING declares a fixed-length character string. The memory assigned to the STRING is
initialized to all blanks unless the AUTO attribute is present.

In addition to its explicit declaration, all STRING variables are also implicitly declared as
STRING(1),DIM(length of string). This allows each character in the STRING to be addressed as
an array element. If the STRING also has a DIM attribute, this implicit array declaration is the last
(optional) dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a STRING using the "string slicing"
technique. This technique performs similar action to the SUB function, but is much more flexible
and efficient (but does no bounds checking). It is more flexible because a "string slice" may be
used on both the destination and source sides of an assignment statement and the SUB function
can only be used as the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a "slice" of the STRING, the beginning and ending character numbers are separated by a
colon () and placed in the implicit array dimension position within the square brackets ([]) of the
STRING. The position numbers may be integer constants, variables, or expressions. If variables
are used, there must be at least one blank space between the variable name and the colon
separating the beginning and ending number (to prevent PREfix confusion).

Example:
Narme STRI NE 20) I Declare 20 byte name field
ArrayString STRI NG 5), DI M 20) I Decl are array
Conpany STRING(' Soft Vel ocity Corporation') !The software conpany - 20 bytes
Phone STRI NG @°(###) ###- ###HP) I Phone nunber field - 13 bytes
Exanpl eFil e FILE, DRI VER(' Cl arion") IDeclare a file
Record RECORD
NameFi el d STRI NG 20) , NAMVE(' Nang') I Declare with external nane
END
END

CODE

NameField = ' Tanmi ' I Assign a val ue

NanmeFi el d[5] = "Y' ! change fifth letter

NameFi el d[5:6] = "ie' ! and change a "slice"

! the fifth and sixth letters
ArrayString[1] = '"First' I Assign value to first el enent
ArrayString[1,2] ="'u I Change first el enent 2nd character

ArrayString[1, 2:3] = NaneFi el d[5: 6] I Assign slice to slice

128

Language Reference Manual

ASTRING (atomic strinq)

label ASTRING([stringtoken]) [,DIM()] [[NAME()] [EXTERNAL] [,DLL] [STATIC] [THREAD]
[LAUTO] [,PRIVATE] [[PROTECTED]
ASTRING A reference to a character string.

stringtoken
DIM

OVER
NAME
EXTERNAL
DLL

STATIC

THREAD

AUTO
PRIVATE

PROTECTED

The initial string token of the ASTRING.

Dimension the variable as an array.

The ASTRING reference may share a memory location with another variable.
Specify an alternate, "external” name for the field.

Specify the variable is defined, and its memory is allocated, in an external library.

Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

Specifies the memory for the ASTRING reference variable is permanently
allocated.

Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

Specify the variable has no initial string token.

Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

ASTRING (similar to a Win32 ATOM) declares a reference to a variable length string (string
token) with a maximum size of 64k. Although the size of the string token may be up to a
maximum of 64k, it is recommended for use on smaller strings. The storage space for an
ASTRING is allocated dynamically as needed for the lifetime of the procedure in which it is
created. However the allocated storage is never deallocated; it is instead reused for subsequent
use of the same text values.

ASTRINGs are useful when a lot of the same text is being stored and compared. Each time a
new ASTRING is created, an entry is created in a memory table. When an ASTRING is assigned
a value that already exists in the table, the ASTRING simply points to the existing ASTRING. This
saves memory and makes string comparison very fast.

ASTRINGS are not supported by any of the file drivers.

3 — Variable Declarations 129

ASTRINGs may be passed as parameters to procedures by value or by reference. They may
also be passed as an untyped value or untyped variable parameters. An ASTRING can be
returned from a procedure only as a value.

Example prototypes:

PROC1(ASTRI NG a)
PROC2(* ASTRI NG a)
PROC3(? a)
PROCA(*? a)
PROC5() , ASTRI NG

Example:
PROGRAM

MAP
END

FLAG LONG
AS1 ASTRI NG, OVER(FLAG)
AS2 ASTRI NG

CODE
AS1 = ' SoftVelocity' I storage is allocated for the string ' SoftVel ocity'
AS2 = 'SoftVelocity' | storage in not allocated again, instead ASl and
I AS2 share the sane reference val ue.
AS2 = '"Hell o' I new storage allocated for the new text string
I Hello
AS2 = ' SoftVelocity' I No new storage is allocated, the reference for
I AS1 now equal s AS2 again
IF FLAG = 0
MESSAGE(' AS1 is NULL")
ELSE
MESSACE(' AS1 = ' & AS1)

END

130 Language Reference Manual

CSTRING (fixed-length null terminated string)

| length |
label CSTRING(|string constant |) [,DIM()] [,OVER()] [NAME()] [EXTERNAL] [,DLL]
| picture | [[STATIC] [[THREAD] [,AUTO] [,PRIVATE] [PROTECTED]

CSTRING A character string.
Format: A fixed nunber of bytes.
Si ze: Unlimted

length A numeric constant that defines the number of bytes of storage the string will
use. This must include a position for the terminating null character. String
variables are not initialized unless given a string constant.

string constant A string constant containing the initial value of the string. The length of the string
is set to the length of the string constant plus the terminating null character.

picture The picture token used to format the values assigned to the string. The length of
the string is the number of bytes needed to contain the formatted string and the
terminating null character.

DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS

methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

CSTRING declares a character string terminated by a null character (ASCII zero). The memory
assigned to the CSTRING is initialized to a zero length string unless the AUTO attribute is
present.

3 — Variable Declarations 131

CSTRING matches the string data type used in the "C" language and the "ZSTRING" data type of
the Btrieve Record Manager. Storage and memory requirements are fixed-length, however the
terminating null character is placed at the end of the data entered. CSTRING should be used to
achieve compatibility with outside files or procedures.

In addition to its explicit declaration, all CSTRINGs are implicitly declared as a
STRING(1),DIM(length of string). This allows each character in the CSTRING to be addressed as
an array element. If the CSTRING also has a DIM attribute, this implicit array declaration is the
last (optional) dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a CSTRING using the "string slicing"
technique. This technique performs similar action to the SUB function, but is much more flexible
and efficient (but does no bounds checking). It is more flexible because a "string slice" may be
used on both the destination and source sides of an assignment statement and the SUB function
can only be used as the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a "slice" of the CSTRING, the beginning and ending character numbers are separated by
a colon (:) and placed in the implicit array dimension position within the square brackets ([]) of the
CSTRING. The position numbers may be integer constants, variables, or expressions. If variables
are used, there must be at least one blank space between the variable name and the colon
separating the beginning and ending number (to prevent PREfix confusion).

Since a CSTRING must be null-terminated, the programmer must be responsible for ensuring
that an ASCII zero is placed at the end of the data if the field is only accessed through its array
elements or as a "slice" (not as a whole entity). Also, a CSTRING can have "junk" stored after the
null terminator. Because of this they do not work well inside GROUPs.

132 Language Reference Manual

Example:
Narme CSTRI NG 21) ! Declare 21 byte field - 20 bytes data
O her Name CSTRI NG(21) , OVER(Nane) !Declare field over nane field
Cont act CSTRI NG 21) , DI M 4) l'Array 21 byte fields - 80 bytes data
Conpany CSTRI NG ' Soft Vel ocity Corporation') !21 byte string - 20 bytes data
Phone CSTRI NG(@P(###) #i#t#- ####P) I Declare 14 bytes - 13 bytes data
Exanpl eFil e FILE, DRI VER(' Btrieve') IDeclare a file
Recor d RECORD
NameFi el d CSTRI NG 21),, NAME(' ZstringFiel d') !Declare with external name

END

END
CODE
Narme = ' Tami' I Assign a val ue
Nanme[5] ="'y’ I then change fifth letter
Name[6] = 's' I then add a letter
Name[7] = ' <0>' I and handl e null term nator
Nanme[5:6] = "'ie' I and change a "slice"

I -- the fifth and sixth letters

Contact[1] = 'First' I Assign value to first el enent
Contact[1,2] ="uU' I Change first elenment 2nd character

Contact[1,2: 3] = Nang[5: 6] I Assign slice to slice

3 — Variable Declarations 133

PSTRING (embedded length-byte string)

| length |

label PSTRING(|string constant |) [,DIM()] [,OVER()] [NAME()] [EXTERNAL] [,DLL]
[[STATIC]

| picture | [THREAD] [LAUTO] [PRIVATE] [PROTECTED]

PSTRING A character string.
Format: A fixed nunber of bytes.
Si ze: 2 to 256 bytes.

length A numeric constant that defines the number of bytes in the string. This must
include the length-byte.

string constant A string constant containing the initial value of the string. The length of the string
is set to the length of the string constant plus the length-byte.

picture The picture token used to format the values assigned to the string. The length of
the string is the number of bytes needed to contain the formatted string plus the
first position length byte. String variables are not initialized unless given a string

constant.
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS

methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

134 Language Reference Manual

PSTRING declares a character string with a leading length byte included in the number of bytes
declared for the string. The memory assigned to the PSTRING is initialized to a zero length string
unless the AUTO attribute is present. PSTRING matches the string data type used by the Pascal
language and the "LSTRING" data type of the Btrieve Record Manager. Storage and memory
requirements are fixed-length, however, the leading length byte will contain the number of
characters actually stored. PSTRING is internally converted to a STRING intermediate value for
string operations during program execution. PSTRING should be used to achieve compatibility
with outside files or procedures.

In addition to its explicit declaration, all PSTRINGs are implicitly declared as a
PSTRING(1),DIM(length of string). This allows each character in the PSTRING to be addressed
as an array element. If the PSTRING also has a DIM attribute, this implicit array declaration is the
last (optional) dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a PSTRING using the "string slicing"
technique. This technique performs similar action to the SUB function, but is much more flexible
and efficient (but does no bounds checking). It is more flexible because a "string slice” may be
used on both the destination and source sides of an assignment statement and the SUB function
can only be used as the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function. To take a "slice" of the PSTRING, the beginning and
ending character numbers are separated by a colon (:) and placed in the implicit array dimension
position within the square brackets ([]) of the PSTRING. The position numbers may be integer
constants, variables, or expressions. If variables are used, there must be at least one blank space
between the variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Since a PSTRING must have a leading length byte, the programmer must be responsible for
ensuring that its value is always correct if the field is only accessed through its array elements or
as a "slice" (not as a whole entity). The PSTRING's length byte is addressed as element zero (0)
of the array (BLOB and PSTRING are the only exceptions in Clarion where an array has a zero
element). Therefore, the valid range of array indexes for a PSTRING(30) would be 0 to 29. Also,
a PSTRING can have 'junk’ stored outside the active portion of the string. Because of this they do
not work well inside GROUPs.

3 — Variable Declarations 135

Example:
Narme PSTRI NG 21) ! Declare 21 byte field - 20 bytes data
O her Nanme PSTRI NG(21) , OVER(Nane) !Declare field over nane field
Contact PSTRI NG 21), DI M 4) l'Array 21 byte fields - 80 bytes data
Conpany PSTRI NG ' SoftVel ocity Corporation') 121 byte string - 20 bytes data
Phone PSTRI NG(@P(###) #i#t#- ##H##P) I Declare 14 bytes - 13 bytes data
Exanpl eFil e FILE, DRI VER(' Btrieve') IDeclare a file
Recor d RECORD
NameFi el d PSTRI NG 21), NAME(' LstringField') !Declare with external name
END
END
CODE
Narme = ' Tami' I Assign a val ue
Nanme[5] ="'y’ ! then change fifth letter
Name[6] = 's' I then add a letter
Name[0] = ' <6>' I and handl e |l ength byte
Nanme[5:6] = "'ie' ! and change a "slice" -- the 5th and 6th letters
Contact[1] = 'First' I'Assign value to first el enent
Contact[1,2] ="uU' I Change first el enent 2nd character

Contact[1,2:3] = Nanme[5:6] !Assign slice to slice

136 Language Reference Manual

Implicit String Arrays and String Slicing

In addition to their explicit declaration, all STRING, CSTRING and PSTRING variables have an
implicit array declaration of one character strings, dimensioned by the length of the string. This is
directly equivalent to declaring a second variable as:

StringVar STRI NG 10)
StringArray STRING 1), DI M SIZE(StringVar)), OVER(StringVar)

This implicit array declaration allows each character in the string to be directly addressed as an
array element, without the need of the second declaration. The PSTRING's length byte is
addressed as element zero (0) of the array, as is the first byte of a BLOB (the only two cases in
Clarion where an array has a zero element).

If the string also has a DIM attribute, this implicit array declaration is the last (optional) dimension
of the array (to the right of the explicit dimensions). The MAXIMUM procedure does not operate
on the implicit dimension, you should use SIZE instead.

You may also directly address multiple characters within a string using the "string slicing"
technique. This technique performs a similar function to the SUB procedure, but is much more
flexible and efficient (but does no bounds checking). It is more flexible because a "string slice"
may be used as either the destination or source sides of an assignment statement, while the SUB
procedure can only be used as the source. It is more efficient because it takes less memory than
either individual character assignments or the SUB procedure.

To take a "slice" of the string, the beginning and ending character numbers are separated by a
colon () and placed in the implicit array dimension position within the square brackets ([]) of the
string. The position numbers may be integer constants, variables, or expressions (internally
computed as LONG base type). If variables are used, there must be at least one blank space
between the variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Example:

Name STRING(15)
CONTACT STRI NG(15) , DI M 4)

CODE

Narme = ' Tami' I Assign a val ue

Name[5] ="'y’ ! then change fifth letter

Nane[6] = 's' ! then add a letter

Name[0] = ' <6>' I and handl e |l ength byte

Narme[5:6] = "ie' I and change a "slice" -- the fifth and sixth letters
Contact[1] = 'First' I Assign value to first el enent

Contact[1,2] ="u' I Change first el enent 2nd character

Contact[1,2:3] = Nane[5:6] !Assign slice to first element 2nd & 3rd characters
See Also: STRING, CSTRING, PSTRING, BLOB

3 — Variable Declarations 137

DATE (four-byte date)

label DATE [,DIM()] [OVER()] [[NAME()] [[EXTERNAL] [DLLL] [,STATIC] [THREAD] [AUTO]
[,PRIVATE] [PROTECTED]
DATE A four-byte date.
For mat : year nm dd
| oo [I
Bits: 31 15 7 0
Range:
year: 1 to 9999
month: 1 to 12
day: 1to 31
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, "external" name for the field.
EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.
DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.
STATIC Specify the variable's memory is permanently allocated.
THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.
AUTO Specify the variable has no initial value.
PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.
PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

methods. Valid only in a CLASS.

DATE declares a four-byte date variable. This format matches the "DATE" field type used by the
Btrieve Record Manager. A DATE used in a numeric expression is converted to the number of
days elapsed since December 28, 1800 (Clarion Standard Date - usually stored as a LONG). The
valid Clarion Standard Date range is January 1, 1801 through December 31, 9999. Using an out-
of-range date produces unpredictable results. DATE fields should be used to achieve
compatibility with outside files or procedures.

138 Language Reference Manual

Example:
DueDat e DATE IDeclare a date field
O herDat e DATE, OVER(DueDat €) IDeclare field over date field
Cont act Dat e DATE, DI M 4) lArray of 4 date fields
Exanpl eFil e FILE, DRI VER(' Btrieve') IDeclare a file
Recor d RECORD
Dat eRecd DATE, NAVE(' DateField') !Declare with external nane
END
END
See Also:

Standard Date

3 — Variable Declarations 139

TIME (four-byte time)

label TIME [,DIM()] [[OVER()] NAME()] [EXTERNAL] [,DLL] [STATIC] [THREAD] [LAUTO]

[PRIVATE] [PROTECTED]

TIME

DIM

OVER
NAME
EXTERNAL

DLL

STATIC
THREAD

AUTO
PRIVATE

PROTECTED

A four-byte time.

For mat : hh nmm SsS hs
PR I I I |

Bits: 31 23 15 7 0

Range:

hours: 0to 23

m nut es: 0 to 59

seconds: 0 to 59

seconds/ 100: 0 to 99
Dimension the variable as an array.
Share a memory location with another variable.
Specify an alternate, "external" name for the field.

Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

Specify the variable's memory is permanently allocated.

Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

Specify the variable has no initial value.

Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

TIME declares a four byte time variable. This format matches the "TIME" field type used by the
Btrieve Record Manager. A TIME used in a numeric expression is converted to the number of
hundredths of a second elapsed since midnight (Clarion Standard Time - usually stored as a
LONG). TIME fields should be used to achieve compatibility with outside files or procedures.

140 Language Reference Manual

Example:
Chkout Time TIME I Decl are checkout time field
O her Ti ne TI ME, OVER(Checkout Time) !Declare field over tine field
Cont act Ti ne TI ME, DI M 4) l'Array of 4 tine fields
Exanpl eFil e FILE, DRI VER(' Btrieve') !Declare a file
Recor d RECORD
Ti meRecd TI ME, NAME(' Ti meFi el d') !Declare with external nane
END
END
See Also:

Standard Time

3 — Variable Declarations 141

Special Data Types

ANY (any simple data type)

label ANY [,DIM()] [,OVER()] LNAME()] [EXTERNAL] [,DLL] [STATIC] [THREAD]

[LPRIVATE] [,PROTECTED]

ANY A variable that may contain any value (numeric or string) or a reference to any
simple data type.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also

implicitly adds the STATIC attribute on Procedure Local data.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

ANY declares a variable that may contain any value (numeric or string) or a reference to any
simple data type. This allows an ANY variable to be used as a "generic" data type. An ANY
variable may be declared within a CLASS, GROUP, or QUEUE structure, and may not be
declared within a FILE structure or named in the USE attribute of any control in a window or
report.

When an ANY variable is the destination of a simple assignment statement (destination =
source), it receives the value of the source expression. An ANY variable uses REAL as its base
type for numeric operations, which can mean loss of precision when assigned DECIMAL values
with more that 14 significant digits. When an ANY variable is the destination of a reference
assignment statement (destination &= source), it receives a reference to the source variable. You
cannot pass an ANY variable as a variable-parameter (by address) unless the receiving
procedure is prototyped to receive an untyped variable parameter (*?) and the passed ANY
contains a reference.

When an ANY variable is declared in a QUEUE structure, there are some special considerations
that must be followed. This is due to the internal representation of an ANY and its polymorphic
characteristics.

142 Language Reference Manual

Use of CLEAR() and reference assignments with QUEUE entries.

Once an ANY variable in a QUEUE has been assigned a value, another simple assignment
statement will assign a new value to the ANY. This means the previous value is replaced by the
new value. If the first value has already been added to the QUEUE, then that entry will "point at" a
value that no longer exists.

Once an ANY variable in a QUEUE has been reference assigned a variable (AnyVar &=
SomeVariable), another reference assignment statement will assign a new variable to the ANY.
This means the previous "pointer” is disposed of and replaced by the new "pointer." If the first
reference has already been added to the QUEUE, then that entry will "point at" a "pointer" that no
longer exists.

In both cases, the QUEUE record (or fields of ANY type only) must be CLEAR()ed before setting
new values for the next ADD() or PUT().

In addition, you need to reference assign a NULL to the ANY variable (AnyVar &= NULL),
prior to deleting the QUEUE entry, in order to avoid memory leaks.

As explained above, the ANY variable maintains its own data area where it keeps the value or
"pointer” to the referenced variable. An assignment of a new value to the ANY variable using the
&= operator disposes its previous internal data. The CLEAR(variable) statement sets the memory
location occupied by the ANY variable to NULL, without disposing of its internal data.

3 — Variable Declarations 143

Example:
MyQueue QUEUE
AnyField ANY IDeclare a variable to contain any val ue
Type STRI NG 1)
END

DueDat e DATE IDeclare a date field

CODE

MyQueue. AnyField = 'SoftVelocity' ! Assign a string val ue

MyQueue. Type = 'S I Flag data type

ADD(My Queue)

CLEAR(MyQueue) IClear the reference

MyQueue. AnyFi el d &= DueDat e I Assign a Reference to a DATE
MyQueue. Type = 'R I Flag data type

ADD(My Queue)

MyQueue. AnyFi el d & NULL I Ref erence assign NULL to clear

LOOP X# = RECORDS(MyQueue) TO 1 BY -1 !Process the QUEUE
GET(MyQueue, X#)
ASSERT(~ERRORCODE())
CASE MyQueue. Type
o-'S
DO StringRoutine
O 'R
DO Ref erenceRout i ne
END
MyQueue. AnyFi el d & NULL ! Ref erence assign NULL before del eting
DELETE(MyQueue)
ASSERT(~ERRORCODE())
END

See Also:
Simple Assignment Statements

Reference Assignment Statements

144 Language Reference Manual

LIKE (inherited data type)

new declaration LIKE(like declaration) [,DIM()] [[OVER()] [,PRE()] NAME()] EXTERNAL] [,DLL]

[.STATIC] [THREAD] [,BINDABLE]

LIKE Declares a variable whose data type is inherited from another variable.
new declaration The label of the new data element declaration.

like declaration The label of the data element declaration whose definition will be used. This may
be any simple data type, or a reference to any simple data type (except
&STRING), or the label of a GROUP or QUEUE structure.

DIM Dimension the variables into an array.
OVER Share a memory location with another variable or structure.
PRE Declare a label prefix for variables within the new declaration structure (if the like

declaration is a complex data structure). This is not required, since you may use
the new declaration in the Field Qualification syntax to directly reference any
member of the new structure.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dynamic expressions.

LIKE tells the compiler to define the new declaration using the same definition as the like
declaration, including all attributes. If the original like declaration changes, so does the new
declaration.

The new declaration may use the DIM and OVER attributes. If the like declaration has a DIM
attribute, the new declaration is already an array. If a further DIM attribute is added to the new
declaration, the array is further dimensioned.

3 — Variable Declarations 145

The PRE and NAME attributes may be used, if appropriate. If the like declaration already has
these attributes, the new declaration will inherit them and compiler errors can occur. To correct
this, specify a PRE or NAME attribute on the new declaration to override the inherited attribute.

If the like declaration names a QUEUE, LIKE does not create a new QUEUE, because the like
declaration is simply treated as a GROUP. The like declaration QUEUE is converted to a new
declaration GROUP. The same is true if the like declaration is a RECORD structure. Similarly, if
the like declaration is a MEMO, the new declaration becomes a STRING of the maximum size of
the MEMO.

You may use LIKE to create a new instance of a CLASS. However, simply declaring the new
instance by naming the CLASS as the data type performs an implicit LIKE. For either type of
instance declaration, the DIM, OVER, PRE, and NAME attributes are invalid; all other attributes
are valid for a CLASS instance declaration.

Example:

Armount REAL IDefine a field

QrDAnount LI KE(Arrount) I Use sane definition
YTDAnmount LI KE(QTDAnount) I Use sane definition again

Mont hl yAnts LI KE(Anmount), DIM 12) !Use sane definition for array, 12 elenments
Ant Pr Person LI KE(Mont hl yAnt s), DI M 10)
I Use sane definition for array of 120 elenents (12, 10)

Construct GROUP I Define a group

Fi el d1 LI KE(Arount) I Construct.fieldl - real

Fi el d2 STRI NG 10) I Construct.field2 - string(10)
END

NewGr oup LI KE(Construct) ! Def i ne new group, containing

I NewGroup.fieldl - real
I NewGroup.field2 - string(10)

My Que QUEUE | Defi ne a queue
Fi el d1 STRI N 10)
Fi el d2 STRI N 10)

END
MG oup LI KE(MyQue) I Defi ne new GROUP, |ike the QUEUE
Amount Fil e FILE, DRI VER(' C arion'), PRE(Amt)
Record RECORD
Amount REAL IDefine a field
QrDAnount LI KE(Amount) !'Use sane definition

END

END

146 Language Reference Manual

Ani mal CLASS
Feed PROCEDURE(short anount), VI RTUAL
Di e PROCEDURE
Age LONG
Veéi ght LONG
END
Cat LI KE(Ani mal) ! New i nstance of an Ani nal CLASS
Bird Ani mal I'New i nstance of an Animal CLASS (inplicit LIKE)
See Also:
DIM
OVER
PRE
NAME

Field Qualification

3 — Variable Declarations 147

Implicit Variables

Implicit variables are not declared in data declarations. They are created by the compiler when it
first encounters them. Implicit variables are automatically initialized to blank or zero; they do not
have to be explicitly assigned values before use. You may always assume that they contain
blanks or zero before your program's first assignment to them. Implicit variables are generally
used for: array subscripts, true/false switches, intermediate variables in complex calculations,
loop counters, etc.

The Clarion language provides three types of implicit variables:

Alabel terminated by a # names an implicit LONG.
$ Alabel terminated by a $ names an implicit REAL.

A label terminated by a " names an implicit STRING(32).

Any implicit variable used in the global data declaration area (between the keywords PROGRAM
and CODE) is Global data, assigned static memory and visible throughout the program. Any
implicit variable used between the keywords MEMBER and PROCEDURE is Module data,
assigned static memory and visible only to the procedures defined in the module. Any other
implicit variable is Local data, assigned dynamic memory on the program's stack and visible only
in the procedure. Implicits used in ROUTINES incur more overhead than those not in ROUTINEsS,
so should be used sparingly, if at all.

Since the compiler dynamically creates implicit variables as they are encountered, there is a
danger that problems may arise that can be difficult to trace. This is due to the lack of compile-
time error and type checking on implicit variables. For example, if you incorrectly spell the name
of a previously used implicit variable, the compiler will not tell you, but will simply create a new
implicit variable with the new spelling. When your program checks the value in the original implicit
variable, it will be incorrect. Therefore, implicit variables should be used with care and caution,
and only within a limited scope (or not at all).

148 Language Reference Manual

Example:

LOOP Counter# = 1 TO 10 nmplicit LONG | oop counter
ArrayFi el d[Counter#] = Counter# * 2 !to initialize an array
END

Address" = CLIP(City) &', ' & State &' ' & Zp
llnplicit STRI NE32)

MESSAGE(Addr ess™)
IUsed to display a tenporary val ue

Percent$ = ROUND((Quota / Sales),.1l) * 100
Fmplicit REAL

MESSAGE(FORVAT(Per cent $, @%<<<. ##P))
IUsed to display a tenporary val ue

See Also:

Data Declarations and Memory Allocation

3 — Variable Declarations 149

Reference Variables

A reference variable contains a reference to another data declaration (its "target"). You declare a
reference variable by prepending an ampersand (&) to the data type of its target (such as,
&BYTE, &FILE, &LONG, etc.) or by declaring an ANY variable. Depending upon the target's data
type, the reference variable may contain the target's memory address, or a more complex internal
data structure (describing the location and type of target data).

Valid reference variable declarations:

&BYTE &SHORT &USHORT &LONG &ULONG &DATE &TI MVE
&REAL &SREAL &BFLOAT8 &BFLOAT4 &DECI VAL &PDECI MAL &STRI NG
&CSTRI NG &PSTRI NG &GROUP &QUEUE &FI LE &KEY &BLOB

&VI EW &W NDOW ANY

The &STRING, &CSTRING, &PSTRING, &DECIMAL, and &PDECIMAL declarations do not
require length parameters, since all the necessary information about the specific target data item
is contained in the reference itself. This means a &STRING reference variable may contain a
reference to any length STRING variable.

A reference variable declared as &WINDOW can target an APPLICATION, WINDOW, or
REPORT structure. References to these structures are internally treated as the same by the
Clarion runtime library.

An ANY variable can contain a reference to any of the simple data types, and so, is equivalent to
any of the above except &GROUP, &QUEUE, &FILE, &KEY, &BLOB, &VIEW, and &WINDOW.

Reference Assignment

The &= operator executes a reference assignment statement (destination &= source) to assign
the source's reference to the destination reference variable. You may also use a reference
assignment statement in conditional expressions.

The NULL built-in variable is used to "un-reference" a reference variable or to detect an "un-
referenced" reference variable in a conditional expression.

Reference Variable Usage

The label of a reference variable is syntactically correct every place in executable code where its
target is allowed. This means that, any statement that takes the label of a WINDOW as a
parameter can also take the label of an &WINDOW reference variable which has been reference-
assigned a WINDOW structure.

150 Language Reference Manual

When used in a code statement, the reference variable is automatically "dereferenced" to supply
the statement with the value of its target. The only exception is reference assignment statements,
when the reference assigns the reference to the data item it is referencing. For example:

Var 1 LONG IVarl is a LONG

Ref Var 1 &LONG IRefVarl is a reference to a LONG

Ref Var 2 &LONG IRefVar2 is also a reference to a LONG
CODE

RefVarl &= Varl I Ref Var1 now references Varl

Ref Var2 &= RefVar1l ! RefVar2 now al so references Varl

Ref Var1 &= NULL I Ref Var 1 now ref erences nothing

Reference Variable Declarations

Reference variables may not be declared within FILE or VIEW structures, but they may be
declared within GROUP, QUEUE, and CLASS structures. Issuing CLEAR(StructureName) for a
GROUP, QUEUE, or CLASS structure containing a reference variable is equivalent to reference
assigning NULL to the reference variable.

Global references cross thread boundaries, and so, may be used to reference data items in other
execution threads.

Named QUEUE and CLASS References

In addition to the data types listed above, you may also have references to "named" QUEUEs
(&QueueName) and to named CLASSes (&ClassName). This allows you to use references to
pass "named group" parameters, which allow the receiving procedure access to the component
fields of the named structure.

A reference to a named QUEUE or CLASS may be a "forward reference.” That is, the named
QUEUE or CLASS does not have to have been declared previous to the reference variable
declaration which "points at" it. However, the forward reference must be resolved before the
reference variable can be used. In the case where the reference variable is contained within a
CLASS declaration, the forward reference must be resolved before the object is instantiated, else
the reference will be blank and unusable.

3 — Variable Declarations 151

There are several advantages to using forward references. You can have a QUEUE of object
references which each contains a reference to a QUEUE of object references which each
contains a reference to a QUEUE of object references ... For example, you could create a queue
of siblings within a CLASS structure like this:

Fam | yQ QUEUE
Si bl i ng &Fam | yd ass I'A forward reference
END

Fam | yd ass CLASS
Fam |y &Fam | yQ !
END

Another advantage is the ability to truly "hide" the targets of PRIVATE references in CLASS
declarations. For example:

I'An include file (MyFile.inc) contains:
W dget Manager CLASS, TYPE

W dget Li st &W dget Q PRI VATE !
DoSonet hi ng PROCEDURE
END

I Another file (MyFile.CLW contains:

MEMBER(' MyApp’)
| NCLUDE(' MyFi | e. I NC')

W dget Q QUEUE, TYPE
W dget STRI N& 40)
W dget Nunber LONG

END

M/W dget W dget Manager ! Actual instantiation nust follow
I forward reference resolution

MyW dget . DoSonet hi ng PROCEDURE

CODE

SELF. Wdget Li st & NEWWdgetQ !Valid code

SELF. Wdget Li st. Wdget = 'Wdget One'

SELF. W dget Li st. Wdget Nunber = 1

ADD(SELF. W dget Li st)

152 Language Reference Manual

In this example, references to SELF.WidgetList are valid only within the MyFile.CLW file.

Example:

Appl APPLI CATI ON(' Hel | 0")
END

App2 APPLI CATI ON(' Buenos Di as')
END

AppRef &W NDOW ! Reference to an APPLI CATI ON, W NDOW or REPORT

Ani mal CLASS
Feed PROCEDURE(SHORT anount), VI RTUAL
Di e PROCEDURE
Age LONG
Wi ght LONG
END

Carni vore CLASS(Ani mal), TYPE

Feed PROCEDURE(Ani nal)
END
Cat CLASS(Car ni vor e)
Feed PROCEDURE(SHORT anpunt), VI RTUAL
Potty BYTE
END
Bird Ani mal I'l nstance of an Animal CLASS
Ani mal Ref &Ani nal | Ref erence to an Ani mal CLASS
CODE
I F CTL: Language = 'Spanish' !I1f spanish | anguage user
AppRef &= App2 I reference spanish application frane
ELSE
AppRef &= Appl I else reference english application frane
END
OPEN(AppRef) I Open the referenced application frane w ndow
I F SomeCondi tion
Ani mal Ref &= Cat I Ref erence the Cat
ELSE
Ani mal Ref &= Bird | Ref erence the Bird
END
Ani mal Ref . Feed(10) | Feed whatever is referenced

See Also: Reference Assignment Statements, CLASS, GROUP, QUEUE, ANY

3 — Variable Declarations 153

Data Declarations and Memory Allocation

Global, Local, Static, and Dynamic

Data declarations automatically allocate memory to store the data values. Global, Local, Static,
and Dynamic are terms that describe types of memory allocation.

The terms "Global" and "Local" refer to the visibility of data (also known as its "scope"):

. "Global" means the data is visible to all procedures in the program.

. "Local" means the data has limited visibility. This may be limited to one PROCEDURE or
ROUTINE, or limited to a specific set of procedures in a single source module.

The terms "Static" and "Dynamic" refer to the persistence of the data's memory allocation:

. "Static” means the data is allocated memory that is not released until the entire program
is finished executing.
. "Dynamic" means the data is allocated memory at run time. Data declared locally for the

PROCEDURE or ROUTINE is allocated on the stack of the thread called to that
PROCEDURE or ROUTINE. The stack memory allocated for such data is released on
returning to the caller.

. "Dynamic" also means that data is allocated by the program in the heap with the use of
an explicit NEW, or implicitly, by some runtime library statements (assignment to ANY
variables, ADDing to a QUEUE, etc.). Memory blocks allocated in the heap exist until
their explicit releasing: DISPOSE for NEWed variables, FREE or DELETE for QUEUEsS,
etc.

154 Language Reference Manual

Data Declaration Sections

There are three areas where data can be declared in a Clarion program:

. In the PROGRAM module, after the keyword PROGRAM and before the CODE
statement. This is the Global data section.

. In a MEMBER module, after the keyword MEMBER and before the first PROCEDURE
statement. This is the Module data section.

. In a PROCEDURE, after the keyword PROCEDURE and before the CODE statement.
This is the Local data section.

. In a ROUTINE, after the keyword DATA and before the CODE statement. This is the

Routine Local data section.

Global data is visible to executable statements and expressions in every PROCEDURE in the
PROGRAM. Global data is always in scope. Global data is allocated Static memory and is
available to every PROCEDURE in the PROGRAM.

Module data is visible only to the set of PROCEDURES contained in the MEMBER module. It
may be passed as a parameter to PROCEDURESs in other MEMBER modules, if required.
Module data first comes into scope when any PROCEDURE in the MODULE is called. Module
data is also allocated Static memory.

Local data is visible only within the PROCEDURE in which it is declared, or any Local Derived
Methods declared within the PROCEDURE. Local data comes into scope when the
PROCEDURE is called and goes out of scope when a RETURN statement (explicit or implicit)
executes. It may be passed as a parameter to any other PROCEDURE. Local data is allocated
Dynamic memory. The memory is allocated on the program's stack for variables smaller than the
stack threshold (5K default), otherwise they are automatically placed onto the heap. This can be
overridden by using the STATIC attribute, making its value persistent between calls to the
procedure. FILE declarations are always allocated static memory (on the heap), even when
declared in a Local Data section.

Dynamic memory allocation for Local data allows a PROCEDURE to be truly recursive, receiving
a new copy of its local variables each time it is called.

Routine Local data is visible only within the ROUTINE in which it is declared. It may be passed
as a parameter to any PROCEDURE. Routine Local data comes into scope when the ROUTINE
is called and goes out of scope when an EXIT statement (explicit or implicit) executes. Routine
Local data is allocated Dynamic memory. The memory is allocated on the program's stack for
variables smaller than the stack threshold (5K default), otherwise they are automatically placed
onto the heap. A ROUTINE has its own name scope, so the labels used for Routine Local data
may duplicate variable names used in other ROUTINES or even the procedure containing the
ROUTINE. Variables declared in a ROUTINE may not have the STATIC or THREAD attributes.
See Also. PROGRAM, MEMBER, PROCEDURE, CLASS, PROCEDURE Prototypes, STATIC,
THREAD

3 — Variable Declarations 155

Variable Size Declarations

It is now possible to declare variables of STRING-like and DECIMAL/PDECIMAL types of
variable size to the compiler.

Restrictions are the same as for variable-size arrays (see below): declarations are available in
the procedure or routine local scope only, and all variables used in the expression must be
known at the time of the variable’s creation.

Example:

Var Lengt h LONG
Var String STRI N Var Lengt h)

CODE
Var Length = 200
VarString = “String of up to 200 characters’

Variable-size arrays

Consider the following example:

Vari abl eArray ROUTI NE

El enent LONG

DynArr ay CSTRI NG 100), DI M El enent) Ideclare a variable length array
CODE
El enent = 100 l'assi gn nunber of elenents

There are 3 restrictions when using this technique:

1) The dimensioned variable (Element) must be locally declared in the respective PROCEDURE
or ROUTINE data section and have no STATIC, THREAD or EXTERNAL attributes applied.

2) The dimensioned variable can not be a field component of any compound structure
(GROUP,QUEUE, CLASS, RECORD)

3) All variables used in dimension expressions must be initialized at the moment of array
initialization, i.e., they must be declared with an initial value before the array declaration, or they
must be declared in outer scope and receive a value before the call to the PROCEDURE or
ROUTINE, or they can be a parameter of the PROCEDURE.

156 Language Reference Manual

NEW (allocate heap memory)

reference &= NEW(datatype)

reference The label of a reference variable that matches the datatype.
NEW Creates a new instance of the datatype on the heap.
datatype The label of a previously declared CLASS or QUEUE structure, or any simple

data type declaration. This may contain a variable as the parameter of the data
type to allow truly dynamic declarations.

The NEW statement creates a new instance of the datatype on the heap. NEW is only valid on
the source side of a reference assignment statement. Memory allocated by NEW is automatically
initialized to blank or zero when allocated, and must be explicitly de-allocated with the DISPOSE
statement (else you'll create a "memory leak").

Example:

StringRef &STRI NG
LongRef &LONG

Ani mal CLASS

A reference to any STRING vari abl e
A reference to any LONG vari abl e

Feed PROCEDURE(short anount)

Wei ght LONG
END
Ani mal Ref &Ani nmal

NameQ QUEUE
Name STRI NG 30)
END

QueRef &NaneQ

CODE
Ani mal Ref &= NEW Ani mal)

QueRef &= NEW NaneQ)
StringRef & NEW STRI NE 50))

X# = 35
StringRef &= NEW STRI NG X#))

LongRef &= NEW LONG)

See Also:

I'A reference to any Animal CLASS

A reference to any QUEUE with only a STRI NE 30)

I Create new instance of an Aninmal class
I Create new i nstance of a NaneQ QUEUE
I Create new STRI NG 50) variable

I Assign 35 to a variable and then
I use that variable to Create a new STRI NE 35)

I Create new LONG vari abl e

3 — Variable Declarations 157

DISPOSE

DISPOSE (de-allocate heap memory)

DISPOSE(reference)

DISPOSE De-allocates heap memory previously allocated by a NEW statement.

reference The label of a reference variable previously used in a reference assignment with
the NEW statement. This reference may be NULL and no ill effects will occur.

The DISPOSE statement de-allocates the heap memory previously allocated by a NEW
statement. If DISPOSE is not called, the memory is not returned to the operating system for re-
use (creating a "memory leak"). However, if you DISPOSE of a reference that is still in use (such
as a QUEUE being displayed in a LIST control) you will quite likely cause a GPF that will be very
difficult to track down.

DISPOSE(SELF) is a legal statement to de-allocate the current object instance. However, if used,
it must be the last statement in the procedure, or any following references to the object will cause
problems.

There is a way to pass a &STRING reference to a procedure in a way that it can be disposed in
that procedure. Although a *STRING cannot be disposed, consider the following code:

M/Proc PROCEDURE (*STRI NG 9S)
Ref &STRI NG AUTO

CCODE

Ref &= S

DI SPOSE (Ref)

The Parameter/result of *STRING type can be considered as a read only &STRING value: you
can change the string it points to but you can't set it to reference to another string. DISPOSE sets
the reference passed to it as a parameter to NULL and hence *STRING parameters and

results can't be DISPOSEd directly but assigning their reference to a reference variable gives a
solution.

Example:
StringRef &STRI NG A reference to any STRING vari abl e

Ani mal CLASS, TYPE
Feed PROCEDURE(short anount), VI RTUAL
Wei ght LONG
END
Ani mal Ref &Ani nal I'A reference to any Animal CLASS

158 Language Reference Manual

NameQ QUEUE
Name STRI NG 30)
END
QueRef &NaneQ A reference to any QUEUE with only a STRI NG 30)
CODE
Ani mal Ref & NEWAni nmal) ! Create new i nstance of an Aninal class
DI SPOSE(Ani nal Ref) I De-al |l ocate the Aninal
QueRef &= NEW NaneQ) I Create new i nstance of a NaneQ QUEUE
Dl SPOSE(QueRef) I De-al l ocate the queue
StringRef & NEWSTRING(50()) !Create new STRING 50) variable
Dl SPOSE(St ri ngRef) I De-al l ocate the STRI NG 50)
See Also:

NEW

3 — Variable Declarations 159

Picture Tokens

Picture tokens provide a masking format for displaying and editing variables. There are seven
types of picture tokens: numeric and currency, scientific notation, string, date, time, pattern, and

key-in template.

Numeric and Currency Pictures

@N [currency] [sign] [fill] size [grouping] [places] [sign] [currency] [B]

@N

currency

sign

fill

size

All numeric and currency pictures begin with @N.

Either a dollar sign ($) or any string constant enclosed in tildes (~). When it
precedes the sign indicator and there is no fill indicator, the currency symbol
"floats" to the left of the high order digit. If there is a fill indicator, the currency
symbol remains fixed in the left-most position. If the currency indicator follows the
size and grouping, it appears at the end of the number displayed.

Specifies the display format for negative numbers. If a hyphen (-) precedes the
fill and size indicators, negative numbers will display with a leading minus sign. If
a hyphen follows the size, places, and currency indicators, negative numbers will
display with a trailing minus sign. If parentheses are placed in both positions,
negative numbers will be displayed enclosed in parentheses. To prevent
ambiguity, a trailing minus sign should always have grouping specified.

Specifies leading zeros, spaces, or asterisks (*) in any leading zero positions,
and suppressesdefault grouping. If the fill is omitted, leading zeros are
suppressed.

0 (zero) Produces leading zeroes
_ (underscore) Produces leading spaces
* (asterisk) Produces leading asterisks

The size is required to specify the total number of significant digits to display,
including the number of digits in the places indicator and any formatting
characters.

160 Language Reference Manual

grouping A grouping symbol, other than a comma (the default), can appear right of the size
indicator to specify a three digit group separator. To prevent ambiguity, a hyphen
grouping indicator should also specify the sign.

. (period) Produces periods
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

places Specifies the decimal separator symbol and the number of decimal digits. The
number of decimal digits must be less than the size. The decimal separator may
be a period (.), grave accent (') (produces periods grouping unless overridden),
or the letter "v" (used only for STRING field storage declarations--not for display).

. (period) Produces a period
' (grave accent) Produces a comma
v Produces no decimal separator

B Specifies blank display whenever its value is zero.

The numeric and currency pictures format numeric values for screen display or in reports. If the
value is greater than the maximum value the picture can display, a string of pound signs (#) is
displayed.

Example:

Nurmeric Result For mat

@\9 4,550,000 Nine digits, group with conmas (default)

@\ 9B 4550000 Nine digits, no grouping, leading blanks if zero
@09 004550000 Nine digits, |eading zero

@9 ***45 000 N ne digits, asterisk fill, group with commas
@\9 _ 4 550 000 Nine digits, group with spaces

@\9. 4.550.000 Nine digits, group with periods

Deci mal Result For mat

@\9. 2 4, 550. 75 Two deci mal pl aces, period decimal separator
@\ 9.2B 4550.75 Two deci mal pl aces, peri od deci mal separator,no grouping, blank if zero
@\ 9' 2 4550, 75 Two deci mal pl aces, comma deci nal separat or
@9.'?2 4.550, 75 Conma deci mal separator, group with periods

@ _'2 4 550,75 Comma deci mal separator, group wth spaces

Si ghed Resul t For mat

@N-9.2B -2,347.25 Leading minus sign, blank if zero
@\9. 2- 2,347.25- Trailing mnus sign
@N(10.2) (2,347.25) Encl osed in parens when negative

Dol | ar

Currency Resul t For nmat

@N$9. 2B $2, 347. 25 Leadi ng dollar sign, blank if zero

@N$10. 2- $2,347.25- Leading dollar sign, trailing mnus when negative
@N$(11.2) $(2,347.25) Leading dollar sign, in parens when negative

3 — Variable Declarations 161

| nt ernati onal

Currency Resul t For mat

@N12_' 2~ F~ 1 5430,50 F Fr ance

@N-L. ~12' L. 1.430.050 Italy
@N-£~12.2 £1, 240. 50 Uni t ed Ki ngdom

@\~kr~12'2 kr1. 430, 50 Nor way
@\~-DM-12' 2 DML. 430, 50 Cer many
@N12_' 2~ mk~ 1 430,50 nk Fi nl and
@\12' 2~ kr~ 1. 430,50 kr Sweden

Storage-Only Pictures:

Vari abl el STRI NG @_6v?2) I Declare as 6 bytes stored w thout decinal
CODE
Variablel = 1234.56 I Assign value, stores '123456"' in file

MESSAGE(FORMAT(Vari abl el, @N_7.2)) !Display with decimal point: '1234.56'

162 Language Reference Manual

Scientific Notation Pictures

@Emsn[B]
@E All scientific notation pictures begin with @E.
m Determines the total number of characters in the format provided by the picture.
S Specifies the decimal separation character, and the grouping character when the
n value is greater than 3.
. (period) period and comma
.. (period period) period and period
' (grave accent) comma and period
_.(underscore period) period and space
n Indicates the number of digits that appear to the left of the decimal point.
B Specifies that the format displays as blank when the value is zero.

The scientific notation picture formats very large or very small numbers. The format is a decimal
number raised by a power of ten.

Example:

Picture Val ue Resul t
@9.0 1, 967, 865 . 20e+007
@12.1 1, 967, 865 1. 9679e+006
@:12. 1B 0

@12.1 -1, 967, 865 -1.9679e+006
@12.1 . 000000032 3. 2000e- 008

@12_.4 1, 967, 865 1 967. 865e+003

3 — Variable Declarations 163

String Pictures

@Slength
@S All string pictures begin with @S.
length Determines the number of characters in the picture format.

A string picture describes an unformatted string of a specific length.

Example:
Name STRI NG @520) I'A 20 character string field

164 Language Reference Manual

Date Pictures

@Dn [s] [direction [range]] [B]

@D All date pictures begin with @D.

n Determines the date picture format. Date picture formats range from 1 through
18. A leading zero (0) indicates a zero-filled day or month.

s A separation character between the month, day, and year components. If
omitted, the slash (/) appears.

. (period) Produces periods

' (grave accent) Produces commas
- (hyphen) Produces hyphens

_ (underscore) Produces spaces

direction A right or left angle bracket (> or <) that specifies the "Intellidate" direction (>
indicates future, < indicates past) for the range parameter. Valid only on ENTRY
date pictures with two-digit years.

range An integer constant in the range of zero (0) to ninety-nine (99) that specifies the
"Intellidate" century for the direction parameter. Valid only on ENTRY date
pictures with two-digit years. If omitted, the default value is 80.

B Specifies that the format displays as blank when the value is zero.

Dates may be stored in numeric variables (usually LONG), a DATE field (for Btrieve
compatibility), or in a STRING declared with a date picture. A date stored in a numeric variable is
called a "Clarion Standard Date." The stored value is the number of days since December 28,
1800. The date picture token converts the value into one of the date formats.

The century for dates in any picture with a two-digit year is resolved using "Intellidate” logic. Date
pictures that do not specify direction and range parameters assume the date falls in the range of
the next 19 or previous 80 years. The direction and range parameters allow you to change this
default. The direction parameter specifies whether the range specifies the future or past value.
The opposite direction then receives the opposite value (100-range) so that any two-digit year
results in the correct century.

For example, the picture @D1>60 specifies using the appropriate century for each year 60 years
in the future and 39 years in the past. If the current year is 1996, when the user enters "5/01/40,"
the date is in the year 2040, and when the user enters "5/01/60," the date is in the year 1960.

For those date pictures which contain month names, the actual names are customizable in an
Environment file (.ENV). See the Internationalization section for more information.

3 — Variable Declarations

165

Example:

Pi cture Fornat

@1 m dd/ yy
@1>40 mmi dd/ yy
@no1l m dd/ yy
@2 mt dd/ yyyy
@as mm dd, yyyy
@4 nmmmmmmm dd, yyyy
@5 dd/ mm yy
@6 dd/ nm' yyyy
@v dd nmm yy
@8 dd mmm yyyy
@9 yy/ mm dd
@10 yyyy/ mm dd
@11 yymrdd
@12 yyyynud
@13 m yy
@14 m1yyyy
@15 yy/ mm
@16 yyyy/ nm
@17
@18

Al ternate separators
@n1. mm dd. yy
@z- mm dd- yyyy
@s_ dd nmyy
@' dd, nm yyyy
See Also:

Standard Date
FORMAT
DEFORMAT

Environment Files

Resul t

10/ 31/ 59

10/ 31/ 59

01/ 01/ 95

10/ 31/ 1959

OCT 31, 1959

Cct ober 31, 1959

31/ 10/ 59

31/ 10/ 1959

31 OCT 59

31 OCT 1959

59/ 10/ 31

1959/ 10/ 31

591031

19591031

10/ 59

10/ 1959

59/ 10

1959/ 10

W ndows Control Panel setting for Short Date
W ndows Control Panel setting for Long Date

Peri od separator

Dash separat or

Under scor e produces space separ at or
Grave accent produces conma separ at or

166

Language Reference Manual

Time Pictures

@Tn[s][B]

@T

B

All time pictures begin with @T.

Determines the time picture format. Time picture formats range from 1 through 8.
A leading zero (0) indicates zero-filled hours.

A separation character. By default, colon (:) characters appear between the
hour, minute, and second components of certain time picture formats. The
following s indicators provide an alternate separation character for these formats.

. (period) Produces periods

' (grave accent) Produces commas
- (hyphen) Produces hyphens

_ (underscore) Produces spaces

Specifies that the format displays as blank when the value is zero.

Times may be stored in a numeric variable (usually a LONG), a TIME field (for Btrieve
compatibility), or in a STRING declared with a time picture. A time stored in a numeric variable is
called a "Standard Time." The stored value is the number of hundredths of a second since
midnight. The picture token converts the value to one of the eight time formats.

For those time pictures which contain string data, the actual strings are customizable in an
Environment file (.ENV). See the Internationalization section for more information.

Example:
Picture For mat
a1 hh: rm
@z hhnm
@3 hh: XM
@o3 hh: XM
a4 hh: nm ss
abs hhnmss
ae hh: mm ssXM
a7
@8

Alternate separators
ai. hh. mm
@ai- hh- mm
a3_ hh mXM
a4 hh, nm ss

Resul t

17: 30

1730

5: 30PM

05: 30PM

17:30: 00
173000

5: 30: 00PM

W ndows Contr ol
W ndows Contr ol

Panel
Panel

setting for Short Tine
setting for Long Tine

Peri od separat or

Dash separat or

Under score produces space separator
G ave accent produces conma separ at or

See Also: Standard Time, FORMAT, DEFORMAT, Environment Files

3 — Variable Declarations 167

Pattern Pictures

@PI<][#[x]P[B]

@P All pattern pictures begin with the @P delimiter and end with the P delimiter. The
case of the delimiters must be the same.

Specifies an integer position that is blank for leading zeroes.
Specifies an integer position.

X Represents optional display characters. These characters appear in the final
result string.

P All pattern pictures must end with P. If a lower case @p delimiter is used, the
ending P delimiter must also be lower case.

B Specifies that the format displays as blank when the value is zero.

Pattern pictures contain optional integer positions and optional edit characters. Any character
other than < or # is considered an edit character which will appear in the formatted picture string.
The @P and P delimiters are case sensitive. Therefore, an upper case "P" can be included as an

edit character if the delimiters are both lower case "p" and vice versa.

Pattern pictures do not recognize decimal points, in order to permit the period to be used as an
edit character. Therefore, the value formatted by a pattern picture should be an integer. If a
floating point value is formatted by a pattern picture, only the integer portion of the number will
appear in the result.

Example:

Picture Val ue Resul t

OPH#it- #it- #HH#HP 215846377 215- 84- 6377
@P<#| ##] #H#P 103159 10/ 31/ 59

@P(#i#t#) #HH#- ####P 3057854555 (305) 785- 4555
OPHt#] #it#- #HHHP 7854555 000/ 785- 4555
@<#: ##PMp 530 5: 30PM

@<# <#"P 506 5 6"

@<#l b. <#oz.P 902 9l b. 2o0z.
@PAH#H#A- #P 112 411A-2

@PAH#H. CHP 312. 45 A31. C2

168 Language Reference Manual

Key-in Template Pictures

@K[@]F<IXIN?IM ILIIKB]

@K All key-in template pictures begin with the @K delimiter and end with the K
delimiter. The case of the delimiters must be the same.

@ Specifies only uppercase and lowercase alphabetic characters.

Specifies an integer 0 through 9.

Specifies an integer that is blank for high order zeros.

X Represents optional constant display characters (any displayable character).
These characters appear in the final result string.

\ Indicates the following character is a display character. This allows you to include
any of the picture formatting characters (@,#,<,\,?,",_,|) within the string as a
display character.

? Specifies any character may be placed in this position.
A Specifies only uppercase alphabetic characters in this position.
Underscore specifies only lowercase alphabetic characters in this position.

Allows the operator to "stop here" if there are no more characters to input. Only
the data entered and any display characters up to that point will be in the string
result.

K All key-in template pictures must end with K. If a lower case @k delimiter is used,
the ending K delimiter must also be lower case.

B Specifies that the format displays as blank when the value is zero.

Key-in pictures may contain integer positions (# <), alphabet character positions (@ *~ _), any
character positions (?), and display characters. Any character other than a formatting indicator is
considered a display character, which appears in the formatted picture string. The @K and K
delimiters are case sensitive. Therefore, an upper case "K" may be included as a display
character if the delimiters are both lower case "k" and vice versa.

Key-in pictures are used specifically with STRING, PSTRING, and CSTRING fields to allow
custom field editing control and validation. Using a key-in picture containing any of the alphabet
indicators (@ " _) on a numeric entry field produces unpredictable results.

Using the Insert typing mode for a key-in picture could produce unpredictable results. Therefore,
key-in pictures always receive data entry in Overwrite mode, even if the INS attribute is present.

3 — Variable Declarations

169

Result String

Example:

Picture Val ue Entered
@KH#H#- #i- ###HK 215846377
@K##H#H#| - ##H#K 33064

@KHH#HHH| - #HHHK 330643597
@<#t "N ##K 10AUGE9

@X(###) @A ##\ @#K 305abc4555
OXK#H##] ?4#- ##H##K 7854555

@ <#: ## MK 530P

@<#' <#"K 506

@a#_#A- #K 1912

215- 84- 6377
33064

33064- 3597

10 AUG 59
(305) abc- 45@5
000/ 785- 4555
5: 30PM

5 6"

41g1A- 2

170 Language Reference Manual

4 — Entity Declarations 171

4 - Entity Declarations

Complex Data Structures

GROUP (compound data structure)

label GROUP([group]) [PRE()] ,DIM()] [,OVER()] [[NAME()] [EXTERNAL] [,DLL] [STATIC]

[THREAD] [,BINDABLE] [, TYPE] [PRIVATE] [PROTECTED]

declarations

END

GROUP A compound data structure.

group The label of a previously declared GROUP or QUEUE structure from which it will
inherit its structure. This may be a GROUP or QUEUE with the TYPE attribute.

PRE Declare a label prefix for variables within the structure. Not valid on a GROUP
within a FILE structure.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or structure.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dynamic expressions.

TYPE Specify the GROUP is a type definition for GROUPs passed as parameters.

PRIVATE Specify the GROUP and all the component fields of the GROUP are not visible
outside the module containing the CLASS methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS

declarations

methods. Valid only in a CLASS.

Multiple consecutive variable declarations.

172 Language Reference Manual

A GROUP structure allows multiple variable declarations to be referenced by a single label. It
may be used to dimension a set of variables, or to assign or compare sets of variables in a single
statement. In large complicated programs, a GROUP structure is helpful for keeping sets of
related data organized. A GROUP must be terminated by a period or the END statement.

The structure of a GROUP declared with the group parameter begins with the same structure as
the named group; the GROUP inherits the fields of the named group. The GROUP may also
contain its own declarations that follow the inherited fields. If the group parameter names a
QUEUE or RECORD structure, only the fields are inherited and not the functionality implied by
the QUEUE or RECORD.

When referenced in a statement or expression, a GROUP is treated as a STRING composed of
all the variables within the structure. A GROUP structure may be nested within another data
structure, such as a RECORD or another GROUP.

Because of their internal storage format, numeric variables (other than DECIMAL) declared in a
group do not collate properly when treated as strings. For this reason, building a KEY on a
GROUP that contains numeric variables may produce an unexpected collating sequence.

A GROUP with the BINDABLE attribute makes all the variables within the GROUP available for
use in a dynamic expression. The contents of each variable's NAME attribute is the logical name
used in the dynamic expression. If no NAME attribute is present, the label of the variable
(including prefix) is used. Space is allocated in the .EXE for the names of all of the variables in
the structure. This creates a larger program that uses more memory than it normally would.
Therefore, the BINDABLE attribute should only be used when a large proportion of the
constituent fields are going to be used.

A GROUP with the TYPE attribute is not allocated any memory; it is only a type definition for
GROUPs that are passed as parameters to PROCEDUREs. This allows the receiving procedure
to directly address component fields in the passed GROUP. The parameter declaration on the
PROCEDURE statement can instantiate a local prefix for the passed GROUP as it names the
passed GROUP for the procedure, however this is not necessary if you use the Field Qualification
syntax instead of prefixes. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used in the type definition)
to directly address component fields of the GROUP passed as the parameter.

The data elements of a GROUP with the DIM attribute (a structured array) are referenced using
standard Field Qualification syntax with each subscript specified at the GROUP level at which it is
dimensioned.

The WHAT and WHERE procedures allow access to the fields by their relative position within the
GROUP structure.

4 — Entity Declarations

173

Example:
PROGRAM
PassG oup GROUP, TYPE
F1 STRI NG(20)
F2 STRI NG(1)
F3 STRI NG 20)
END
MAP
MyProc1(PassG oup)
END

NanmeG oup GROUP

First STRI NG 20)

M ddl e STRI NG(1)

Last STRI N& 20)
END

NameG oup2 GROUP(PassG oup)

END

Dat eTi meG p GROUP, DI M 10)

Dat e LONG
Start StopTi me LONG, DI M 2)
END

Fi | eNames GROUP, Bl NDABLE
FileName STRING(8), NAME(' FILE')

Dot STRING'.")
Ext ensi on STRI NG 3), NAVE(' EXT')
END
CODE

MyPr oc1(NameG oup)
MyPr oc1(NaneG oup?2)

MyProcl PROCEDURE(PassedG oup)
Local Var STRI NE 20)

CODE

Local Var = PassedG oup. F1

See Also:

Field Qualification, WHAT, WHERE

| Type-definition for passed GROUP paraneters
I first field

I mddle field

I last field

I Passes a CROUP defined the same as PassG oup

I Name group
I first name

I middle initial

I last nane

I End group decl aration

I Goup that inherits PassGoup's fields

I resulting in NameG oup2.F1l, NaneG oup2.F2,
I and NaneG oup2. F3

I fields declared in this group

IDate/tine array

I Referenced as DateTi neGp[1l].Date

| Referenced as DateTi neG p[1]. Tine[1]
I End group decl aration

I Bi ndabl e group

I Dynam ¢ nane: FlLE
I Dynam ¢ nane: Dot

I Dynami ¢ nane: EXT

I'Call proc passing NameG oup as paraneter
I'Call proc passing NameG oup2 as paraneter

I'Proc to receive GROUP paraneter

I Assign value in the first field to Local Var
I from passed paraneter

174

Language Reference Manual

CLASS (object declaration)

label CLASS([parentclass]) [[EXTERNAL] [,IMPLEMENTS] [,DLL] [STATIC] [THREAD]
[LBINDABLE] [[MODULE()]

END

[, LINKO)] [, TYPE]

[data members and methods]

CLASS

parentclass

EXTERNAL
IMPLEMENTS

DLL

STATIC
THREAD

BINDABLE
MODULE

LINK

TYPE

An object containing data members and methods that operate on the data.

The label of a previously declared CLASS structure whose data and methods the
new CLASS inherits. This may be a CLASS with the TYPE attribute.

Specify the object is defined, and its memory is allocated, in an external library.

Specify an INTERFACE for the CLASS. This adds additional methods to the
implementation of the CLASS.

Specify the object is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

Specify the data members' memory is permanently allocated.

Specify memory for the variables is allocated once for each execution thread.
Also implicitly adds the STATIC attribute on Procedure Local data. Not valid with
TYPE.

Specify all variables in the class may be used in dynamic expressions.

Specify the source code module containing the CLASS's member PROCEDURE
definitions. This serves the same function as the MODULE structure within a
MAP structure. If omitted, the member PROCEDURE definitions must all be in
the same source code module containing the CLASS declaration.

Specify the source code module containing the CLASS's member PROCEDURE
definitions is automatically added to the compiler's link list. This eliminates the
need to specifically add the file to the project.

Specify the CLASS is only a type definition and not also an object instance of the
CLASS.

data members and methods

Data declarations and PROCEDURE prototypes. The data members may only be
data declarations appropriate to a GROUP structure, and may include references
to the same class (recursive classes). The WHAT and WHERE procedures allow
access to the data members by their relative position within the CLASS structure.

4 — Entity Declarations 175

A CLASS structure declares an object which contains data members (properties) and the
methods (PROCEDURES) that act on that data. A CLASS structure must be terminated by a
period or the END statement.

Derived CLASSes (Inheritance)

A CLASS declared with the parentclass parameter creates a derived class which inherits all the
data members and methods of the named parentclass. The derived class may also contain its
own data members and methods.

All data members explicitly declared in the derived class create new variables, and cannot be
declared with the same labels as data members in the parentclass.

Any method prototyped in the derived class with the same name as a method in the parentclass
overrides the inherited method if both have the same parameter lists. If the two methods have
different parameter lists, they create polymorphic functions in the derived class that must obey
the rules of Procedure Overloading.

Object Properties (Encapsulation)

Each instance of a CLASS, whether a base class, derived class, or a declared instance of either,
contains its own set of data members (properties) specific to that instance. These may be private
or public. However, there is only one copy of any inherited methods (residing in the CLASS that
declared it) which any instance of that CLASS, or any of its derived classes, calls.

The methods of a CLASS with the TYPE attribute cannot be directly called (as

ClassName.Method)--they must be called only as a member methods of the objects declared as
the type (as Object.Method).

VIRTUAL Methods (Polymorphism)

If there is a method prototyped in the CLASS with the same label as a method in the parentclass
with the VIRTUAL attribute, it must also be prototyped with the VIRTUAL attribute in the derived
class.

The VIRTUAL attribute on both prototypes creates virtual methods that allow the methods in a
parentclass to call the same named VIRTUAL methods in the derived class to perform functions
specific to the derived class that the parentclass does not know about.

VIRTUAL methods in the derived class may directly call the parentclass method of the same
name by prepending PARENT to the method's name. This allows incremental derivation wherein
a derived class method may simply call down to the parentclass method to perform its
functionality, then extend it for the requirements of the derived class.

176 Language Reference Manual

Scoping Issues

The scope of an object is dependent upon where it is declared. Generally, a declared object
comes into scope at the CODE statement following its declaration and goes out of scope at the
end of the related executable code section. A dynamically instantiated object (using NEW) shares
the scope of the executable code section in which it is instantiated.

An Object declared:

* As Global data is in scope throughout the application.
* As Module data is in scope throughout the module.

* As Local data is in scope only in the procedure, except ...

Methods prototyped in a derived CLASS declaration within a procedure's Local data section are
Local Derived Methods and share the declaring procedure's scope for all local data declarations
and routines. The methods must be defined within the same source module as the procedure
within which the CLASS is declared and must immediately follow the procedure within that
source--that is, they must come after any ROUTINESs and before any other procedures that may
be in the same source module. This means the procedure's Local data declarations and
ROUTINEs are all visible and can be referenced within these methods.

For example:

SomePr oc PROCEDURE
MyLocal Var LONG
MyDerivedC ass CLASS(MyCl ass) !Derived class with a virtual nethod
MyPr oc PROCEDURE, VI RTUAL
END

CODE

I SoneProc mai n execut abl e code goes here

I SoneProc ROUTI NEs goes here
MyRout i ne ROUTI NE

I Routi ne code goes here

! MyDerivedd ass net hods inmediately foll ow

MyDeri vedd ass. MyProc PROCEDURE

CODE
MyLocal Var = 10 ! MyLocal Var is still in scope, and avail able for
DO MyRout i ne ' M/Routine is still in scope, and available for w

I Any ot her procedures in the sanme nodul e go here, follow ng all
I derivd class nethods

4 — Entity Declarations 177

Instantiation

You declare an instance of a CLASS (an object) by simply naming the CLASS as the data type of
the new instance, or by executing the NEW procedure in a reference assignment statement to a
reference variable for that named CLASS. Either way, the new instance inherits all the data
members and methods of the CLASS for which it is an instance. All the attributes of a CLASS
except MODULE and TYPE are valid on an instance declaration.

If there is no TYPE attribute on the CLASS, the CLASS structure itself declares both the CLASS
and an object instance of that CLASS. A CLASS with the TYPE attribute does not create an
object instance of the CLASS.

For example, the following CLASS declaration declares the CLASS as a data type and an object
of that type:

M/ Cl ass CLASS !Both a data type declaration and an object instance
MyFi el d LONG
MyPr oc PROCEDURE

END

while this only declares the CLASS as a data type:

MyCl ass CLASS, TYPE !Only a data type declaration
MyFi el d LONG
MyPr oc PROCEDURE

END

It is preferable to directly declare object instances as the CLASS data type rather than as a
reference to the CLASS. This results in smaller quicker code and does not require you to use
NEW and DISPOSE to explicitly create and destroy the object instance. The advantage of using
NEW and DISPOSE is explicit control over the lifetime of the object. For example:

My C ass CLASS, TYPE
MFi el d LONG
MyPr oc PROCEDURE

END
OneCl ass Myd ass I Decl ared object instance, smaller and qui cker
Twod ass &Wd ass I bj ect reference, nust use New and DI SPCSE

CODE

I execute sone code here

TwoC ass & NEW MyC ass) !The lifetine of the object starts here
I execute sone code here

Dl SPOSE(TwoCl ass) I and extends only to here

I execute sone code here

Another advantage of declaring the object is the ability to declare the object with any of the
attributes available for the CLASS declaration itself (except TYPE and MODULE). For instance,
you can declare an object with the THREAD attribute, whether the CLASS is declared with
THREAD or not.

178 Language Reference Manual

The constructors and destructors for threaded classes are called for every thread. Every new
thread gets new instances of CLASSes and variables declared at the global level with the
THREAD attribute. The RTL calls constructors for the threaded classes when the thread is started
and the destructors when the thread is ended. In previous Clarion versions they were called only
when the main thread started and ended.

The lifetime of an object depends on how it is instantiated:

* An object declared in the Global data section or a Module's data section is
instantiated at the CODE statement following the PROGRAM statement and de-
instantiated when the application terminates.

» Areference to an object is instantiated by the NEW statement, and de-
instantiated by the DISPOSE statement.

* An object declared in a procedure's Local data section is instantiated at the
CODE statement following the PROCEDURE statement and de-instantiated
when a RETURN (implicit or explicit) executes to terminate the procedure.

Data (Property) Initialization

The simple data type data members of an object are automatically allocated memory and
initialized to blank or zero (unless the AUTO attribute is specified) when the object comes into
scope. The allocated memory is returned to the operating system when the object goes out of
scope.

The reference variable data members of an object are not allocated memory and are not
initialized when the object comes into scope--you must specifically execute a reference
assignment or a NEW statement. These references variables are not automatically cleared when
the object goes out of scope, so you must DISPOSE of all NEWed properties before the object
goes out of scope.

4 — Entity Declarations 179

Constructors and Destructors

A CLASS method labelled "Construct” is a constructor method which is automatically invoked
when the object comes into scope, immediately after the data members of the object are
allocated and initialized. The "Construct" method may not receive any parameters and may not
be VIRTUAL. You may explicitly call the "Construct" method in addition to its automatic
invocation.

If an object is an instance of a derived CLASS and both the parentclass and the derived CLASS
contain constructors and the derived CLASS's constructor does not have the REPLACE attribute,
then the parentclass constructor is automatically invoked at the beginning of the derived CLASS's
constructor. If the derived CLASS's constructor does have the REPLACE attribute, then only
derived CLASS's constructor is automatically invoked (the derived CLASS's constructor method
can explicitly call PARENT.Construct if it needs to).

A CLASS method labelled "Destruct" is a destructor method which is automatically invoked when
the object leaves scope, immediately before the data members of the object are de-allocated.
The "Destruct" method may not receive any parameters. You may explicitly call the "Destruct"”
method in addition to its automatic invocation.

If an object is an instance of a derived CLASS and both the parentclass and the derived CLASS
contain destructors and the derived CLASS's destructor does not have the REPLACE attribute,
then the parentclass destructor is automatically invoked at the end of the derived CLASS's
destructor. If the derived CLASS's destructor does have the REPLACE attribute, then only
derived CLASS's destructor is automatically invoked (the derived CLASS's destructor method can
explicitly call PARENT.Destruct if it needs to).

Public, PRIVATE, and PROTECTED (Encapsulation)

Public data members and methods of a CLASS or derived CLASS are declared without either the
PRIVATE or PROTECTED attributes. Public data members and methods are visible to all the
methods of the declaring CLASS, and derived CLASSes, and any code where the object is in
scope.

Private data members and methods are declaredwith the PRIVATE attribute. Private data
members and methods are visible only to the methods of the CLASS within which they are
declared and any other procedures contained in the same source code module.

Protected data members and methods are declared with the PROTECTED attribute. Protected
data members and methods are visible only to the methods of the CLASS within which they are
declared, and to the methods of any CLASS derived from the CLASS within which they are
declared.

180 Language Reference Manual

Method Definition

The PROCEDURE definition of a method (its executable code, not its prototype) is external to the
CLASS structure. The method's definition must either prepend the label of the CLASS to the label
of the PROCEDURE, or name the CLASS (and label it SELF) as the first (implicit) parameter in
the list of parameters passed in to the PROCEDURE.

Remember that on the PROCEDURE definition statement you are assigning labels for use within
the method to all the passed parameters, and so, since the CLASS's label is the data type of the
implicit first parameter, you must use SELF as the assigned label for the CLASS name
parameter. For example, for the following CLASS declaration:

MyCd ass CLASS

MyPr oc PROCEDURE(LONG PassedVar) ! The nethod takes 1 paraneter
END
you may define the MyProc PROCEDURE either as:
My Cl ass. MyProc PROCEDURE(LONG PassedVar) ! Prepend the CLASS nane to
CODE I'the et hod' s | abel

or as:

MyProc PROCEDURE(MyCl ass SELF, LONG PassedVar) ! The CLASS nane is the
CODE
I inmplicit first parameter's data type, |abeled SELF

Referencing an Object's properties and methods in your code

You must reference the data members of a CLASS using Clarion's Field Qualification syntax. To
do this, you prepend the label of the CLASS (if it is an object instance of itself) or the label of an
object instance of the CLASS to the label of the data member.

For example, for the following CLASS declarations:

M Cl ass CLASS !Wthout TYPE, this is also an object instance
MFi el d LONG ! in addition to a class type declaration
MyPr oc PROCEDURE
END
M/ d ass2 Myd ass ! Decl are another object instance of Myd ass

you must reference the two MyField variables from procedures external to the object as:

M Cd ass. MyField = 10 | Ref erences the MyC ass CLASS decl aration's object
M/ C ass2. MyField = 10 !References the Myd ass2 decl aration's object

You may call the methods of a CLASS either using Field Qualification syntax (by prepending the
label of the CLASS to the label of the method), or by passing the label of the CLASS as the first
(implicit) parameter in the list of parameters passed to the PROCEDURE.

4 — Entity Declarations 181

For example, for the following CLASS declaration:

M/ Cl ass CLASS
MyPr oc PROCEDURE
END

you may call the MyProc PROCEDURE either as:

CODE
Myd ass. MyProc

or as:

CODE
MyProc(M Q ass)

SELF and PARENT

Within the methods of a CLASS, the data members and methods of the current object's instance
are referenced with SELF prepended to their labels instead of the name of the CLASS. This
allows the methods to generically reference the data members and methods of the currently
executing instance of the CLASS, without regard to whether it is executing the parentclass, a
derived class, or any instance of either. This is also the mechanism that allows a parentclass to
call virtual methods of a derived class.

For example, expanding on the previous example, MyField is referenced within the
MyClass.MyProc method as:

My d ass. MyProc PROCEDURE
CODE
SELF. WField = 10 I Assign to the current object instance's property

The data members and methods of a parentclass can be directly referenced from within the
methods of a derived class with PARENT prepended to their labels instead of SELF.

For example:
MyDeri vedd ass. MyProc PROCEDURE
CODE
I execute sone code
PARENT. MyPr oc ICall the base class nethod

I execute sonme nore code
|

182 Language Reference Manual

Additional Example:
I The ClassPrg. CLWfile contains:

PROGRAM

MAP. I MAP required to get BU LTINS CLW
OneCl ass CLASS ! Base cl ass
NameG oup GROUP I Ref erence as Oned ass. NaneG oup
First STRI NG 20) Ireference as Oned ass. NaneGr oup. Fi rst
Last STRI NE 20) Ireference as Oned ass. NaneG oup. Last

END
BaseProc PROCEDURE(REAL Parm ! Decl are net hod prototype
Func PROCEDURE(REAL Par n), STRI NG, VI RTUAL I Decl are virtual nethod prototype
Proc PROCEDURE(REAL Par), VI RTUAL I Decl are virtual nethod prototype
END ' End CLASS decl aration

TwoCl ass CLASS(Oned ass), MODULE(' TwoCl ass. CLW) ! Derived from OneC ass

Func PROCEDURE(LONG Par n) , STRI NG I'repl aces Oned ass. Func
Proc PROCEDURE(STRI NG Msg, LONG Par m) I Functional ly overl oaded
END

Cl assThree CLASS(Twod ass), MODULE(' Cl ass3.CLW) !Derived from Twod ass

Func PROCEDURE(<STRI NG Msg>, LONG Par nm) , STRI NG, VI RTUAL
Proc PROCEDURE(REAL Par n) , VI RTUAL
END
Cl assFour d assThree ! Decl are an instance of C assThree
Cl assFive d assThree I Decl are an instance of C assThree
CODE
OneC ass. NameGroup = ' | Oned ass Method' ! Assign values to each instance of NameG oup
Twod ass. NameGroup = ' | TwoCl ass Met hod'
Cl assThree. NaneGroup = '| C assThree Met hod'
Cl assFour. NameG oup = ' | d assFour Method'

MESSAGE(Oned ass. NameG oup & Oned ass. Func(1.0))!Calls OneCd ass. Func
MESSAGE(Twod ass. NameG oup & Twod ass. Func(2)) !Calls TwoCd ass. Func

MESSAGE(Cl assThr ee. NaneGroup & O assThree. Func('| Call d assThree. Func', 3.0))
Calls C assThree. Func

MESSAGE(Cl assFour . NameGroup & C assFour. Func(' | Call d assFour. Func', 4.0))
Al so Calls O assThree. Func

Onedl ass. BaseProc(5) I BaseProc Calls Oned ass. Proc & Func
BasePr oc(TwoC ass, 6) I BaseProc Al so calls Oned ass. Proc & Func
Twod ass. Proc(' Second d ass', 7) I'Calls Twod ass. Proc (overl oaded)

Cl assThr ee. BaseProc(8) I BaseProc Calls C assThree.Proc & Func

Cl assFour. BaseProc(9) I BaseProc Also Calls dassThree.Proc & Func

4 — Entity Declarations 183

Proc(d assFour, ' Fourth d ass', 10) I'Calls Twod ass. Proc (overl oaded)
Onedl ass. BaseProc PROCEDURE(REAL Par m) IDefinition of Oned ass. BaseProc
CODE
MESSAGE(Par m & SELF. NaneGr oup & | BaseProc executing|calling SELF.Proc Virtual method')
SELF. Proc(Parm I'Calls virtual nethod

MESSAGE(Par m & SELF. NaneG oup&' | BaseProc executing|calling SELF. Func Virtual nethod')
MESSAGE(SELF. NameGr oup & SELF. Func(Parm) !Calls virtual nethod

Oned ass. Func PROCEDURE(REAL Par) I Definition of Oned ass. Func
CODE
RETURN(' | Executi ng Oned ass. Func - ' & Parm
Proc PROCEDURE(OneCl ass SELF, REAL Par nm IDefinition of Oned ass. Proc
CODE
MESSACE(SELF. NaneGroup & ' | Executing Oned ass.Proc - ' & Parm

I The Twod ass. CLWfile contains:
MEMBER(' Cl assPrg')

Func PROCEDURE(TwoCl ass SELF, LONG Par m) I'Definition of Twod ass. Func
CODE
RETURN(' | Executi ng Twod ass. Func - ' & Parm

TwoCl ass. Proc PROCEDURE(STRI NG Msg, LONG Par m I'Definition of Twod ass. Proc
CODE
MESSAGE(Msg & ' | Executing Twod ass.Proc - ' & Parm

| The C ass3.CLWfile contains:
MEMBER(' Cl assPrg')

Cl assThree. Func PROCEDURE(<STRI NG Msg>, LONG Parm) !Definition of C assThree. Func
CODE

SELF. Proc(Msg, Parm I'Call Twod ass. Proc (overl oaded)
RETURN(Msg & ' | Executing O assThree. Func - ' & Parn

Cl assThree. Proc PROCEDURE(REAL Par m IDefinition of Cl assThree. Proc
CODE
SELF. Proc(' Call ed from d assThree. Proc', Parn I'Call Twod ass. Proc
MESSAGE(SELF. NameGroup & | Executing ClassThree.Proc - ' & Parm

See Also: Field Qualification, MODULE, PROCEDURE Prototypes, Procedure Overloading, WHAT,
WHERE

184 Language Reference Manual

INTERFACE (class behavior definition)

label INTERFACE ([parentinterface]) [, TYPE]
[methods]

END

INTERFACE A collection of methods to be used by the class that implements the interface.

parentinterface The label of a previously declared INTERFACE structure whose methods are
inherited by the new INTERFACE. This may be an INTERFACE with the TYPE

attribute.

TYPE Specify the INTERFACE is only a type definition. TYPE is implicit on an
INTERFACE but may be explicitly specified.

methods PROCEDURE prototypes

An INTERFACE is a structure, which contains the methods (PROCEDURES) that define the
behavior to be implemented by a CLASS. It cannot contain any property declarations. All

methods defined within the INTERFACE are implicitly virtual. A period or the END statement must
terminate an INTERFACE structure.

Derived INTERFACESs (Inheritance)

An INTERFACE declared with the parentinterface parameter creates a derived interface that
inherits all the methods of the named parentinterface. The derived interface may also contain its
own methods.

Any method prototyped in the derived interface with the same name as a method in the
parentinterface overrides the inherited method if both have the same parameter lists. If the two
methods have different parameter lists, they create polymorphic functions in the derived interface
that must follow the rules of Procedure Overloading.

VIRTUAL Methods (Polymorphism)

All methods in an INTERFACE are implicitly virtual, although the virtual attribute may be explicitly
specified for clarity.

VIRTUAL methods in the derived interface may directly call the parentinterface method of the
same name by prepending PARENT to the method's hame. This allows incremental derivation
wherein a derived interface method may simply call up to the parentinterface method to perform
its functionality, and then extend it for the requirements of the derived interface.

4 — Entity Declarations 185

Method Definition

The PROCEDURE definition of a method (its executable code, not its prototype) is defined by the
CLASS that is implementing the INTERFACE. All methods for an interface must be defined in the
IMPLEMENTING class.

Referencing INTERFACE methods in your code

You must call the methods of an INTERFACE by using dot notation syntax (by prepending the
label of the CLASS to the label of the INTERFACE to the label of the method).

For example, using the following INTERFACE and CLASS declaration:
M/l nterface | NTERFACE

MyPr oc PROCEDURE
END

MW d ass CLASS, | MPLEMENTS(Myl nt er f ace)
END

You may call the MyProc PROCEDURE as:

CODE
Myd ass. Myl nterface. MyProc

See Also:

IMPLEMENTS

186 Language Reference Manual

File Structures

FILE (declare a data file structure)

label FILE,DRIVER() [CREATE] [RECLAIM] [[OWNER()] [ENCRYPT] [,NAME()] [PRE()]

[LBINDABLE] [, THREAD] [,LEXTERNAL] [,DLL] [,OEM]

label [INDEX()]

label [KEY()]

label [IMEMO()]

label [BLOB]

[label] RECORD

[label] fields

END
END

label A valid Clarion label for the FILE, INDEX, KEY, MEMO, BLOB, RECORD, or field
(PROP:Label).

FILE Declares a data file.

DRIVER Specifies the data file type (PROP:DRIVER). The DRIVER attribute is required
on all FILE structure declarations.

CREATE Allows the file to be created with the CREATE statement during program
execution (PROP:CREATE).

RECLAIM Specifies reuse of deleted record space (PROP:RECLAIM).

OWNER Specifies the password for data encryption (PROP:OWNER).

ENCRYPT Encrypt the data file (PROP:ENCRYPT).

NAME Set DOS filename specification (PROP:NAME).

PRE Declare a label prefix for the structure.

BINDABLE Specify _aII variables in the RECORD structure may be used in dynamic
expressions.

THREAD Specify memory for the record buffer is separately allocated for each execution

thread, when the file is opened on the thread (PROP:THREAD).

4 — Entity Declarations 187

EXTERNAL Specify the FILE is defined, and the memory for its record buffer is allocated, in
an external library.

DLL Specify the FILE is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

OEM Specify string data is converted from OEM ASCII to ANSI when read from disk
and ANSI to OEM ASCII before writing to disk (PROP:OEM).

INDEX Declare a static file access index which must be built at run time.

KEY Declare a dynamically updated file access index.

MEMO Declare a variable length text field up to 64K in length.

BLOB Declare a variable length memo field which may be greater than 64K in length.

RECORD Declare a record structure for the fields. A RECORD structure is required in all

FILE structure declarations.
fields Data elements in the RECORD structure.

FILE declares a data file structure which is an exact description of a data file residing on disk.
The label of the FILE structure is used in file processing statements and procedures to effect
operations on the disk file. The FILE structure must be terminated by a period or the END
statement.

All attributes of the FILE, KEY, INDEX, MEMO, data declaration statements, and the data types
which a FILE may contain, are dependent upon the support of the file driver. Anything in the FILE
declaration which is not supported by the file system specified in the DRIVER attribute will cause
a file driver error when the FILE is opened. Attribute and/or data type exclusions for a specific file
system are listed in each file driver's documentation.

At run-time, the RECORD structure is assigned memory for a data buffer where records from the
disk file may be processed by executable statements. This record buffer is always allocated static
memory on the heap, even if the FILE is declared in a local data section. A RECORD structure is
required in a FILE structure. Memory for a data buffer for any MEMO fields is allocated only when
the FILE is opened, and de-allocated when the FILE is closed. The memory for BLOB fields is
allocated as needed once the FILE is open.

A FILE with the BINDABLE attribute declares all the variables within the RECORD structure as
available for use in a dynamic expression, without requiring a separate BIND statement for each
(allowing BIND(file) to enable all the fields in the file). The contents of each variable's NAME
attribute is the logical name used in the dynamic expression. If no NAME attribute is present, the
label of the variable (including any prefix) is used. Space is allocated in the .EXE for the names of
all of the variables in the structure. This creates a larger program that uses more memory than it
normally would. Therefore, the BINDABLE attribute should only be used when a large proportion
of the constituent fields are going to be used.

188 Language Reference Manual

A FILE with the THREAD attribute declares a separate record buffer (and file control block) for
each execution thread that OPENSs the FILE. If the thread does not OPEN the file, no record
buffer is allocated for the file on that thread. If a NAME attribute is defined for the file and
declared as “STRING, STATIC", it will need to explicitly declare the THREAD attribute if a
different file name will be opened on each thread (or PROP:Name may be used to specify the file
name).

Any FILE declared in the local scope of a PROCEDURE or ROUTINE is treated as threaded,
regardless of the presence of the THREAD attribute in its declaration.

A FILE with the EXTERNAL attribute is declared and may be referenced in Clarion code, but is
not allocated memory. The memory for the FILE's record buffer is allocated by the external
library. This allows a Clarion program access to FILEs declared as public in external libraries.

Related Procedures:
BUFFER, BUILD, CLOSE, COPY, CREATE, EMPTY, FLUSH, LOCK, NAME,
OPEN, PACK, RECORDS, REMOVE, RENAME, SEND, SHARE, STATUS,
STREAM, UNLOCK, ADD, APPEND, BOF, BYTES, DELETE, DUPLICATE,
EOF, GET, HOLD, NEXT, NOMEMO, POINTER, POSITION, PREVIOUS, PUT,
RELEASE, REGET, RESET, SET, SKIP, WATCH

Example:
Names FILE, DRIVER('Clarion') !Declare a file structure
Rec RECORD ! Required record structure
Narme STRI NE 20) Icontai ning one or nore data el enents
END
END 'End file and record declaration
See Also:
KEY
INDEX
MEMO
BLOB

RECORD

4 — Entity Declarations 189

INDEX (declare static file access index)

label INDEX([-/+][field],....[-/+][field]) [NAME()] [[NOCASE] [,OPT]

label The label of the INDEX (PROP:Label).
INDEX Declares a static index into the data file.
-/+ The - (minus sign) preceding an index component field specifies descending

order for that component. If omitted, or + (plus sign) the component is sorted in
ascending order.

field The label of a field in the RECORD structure of the FILE in which the INDEX is
declared. The field is an index component. Fields declared with the DIM attribute
(arrays) may not be used as index components.

NAME Specifies the disk file specification for the INDEX (PROP:NAME).

OPT Excludes those records with null values (zero or blank) in all index component
fields (PROP:OPT).

NOCASE Specifies case insensitive sort order (PROP:NOCASE).

INDEX declares a "static key" for a FILE structure. An INDEX is updated only by the BUILD
statement. It is used to access records in a different logical order than the "physical order" of the
file. An INDEX may be used for either sequential file processing or direct random access.

An INDEX always allows duplicate entries. An INDEX may have more than one component field.
The order of the components determines the sort sequence of the index. The first component is
the most general, and the last component is the most specific. Generally, a data file may have up
to 255 indexes (and/or keys) and each index may be up to 255 bytes, but the exact numbers are
file driver dependent.

An INDEX declared without a field creates a "dynamic index." A dynamic index may use any
field (or fields) in the RECORD as components (except arrays). The component fields of a
dynamic index are defined at run time in the second parameter of the BUILD statement. The
same dynamic index declaration may be built and re-built using different components each time.

Example:
Nanes FI LE, DRI VER(' TopSpeed'), PRE(Nam
NarmeNdx I NDEX(Nam Nane) , NOCASE I Decl are the nane index
Nor Ndx I NDEX(Nam Number), OPT I Decl are the nunber index
Dynami cNdx | NDEX() I Decl are a dynam c i ndex
Rec RECORD
Nane STRI NG(20)
Nunber SHORT
END
END

See Also: SET, GET, KEY, BUILD

190

Language Reference Manual

KEY (declare dynamic file access index)

label KEY([-/+]field,....[-/+]field]) [DUP] [NAME()] [[NOCASE] [,OPT] [,PRIMARY]

label
KEY

-+

field

NAME

DUP

NOCASE
OPT

PRIMARY

The label of the KEY (PROP:Label).
Declares a dynamically maintained index into the data file.

The - (minus sign) preceding a key component field specifies descending order
for that component. If omitted, or + (plus sign), the component is sorted in
ascending order.

The label of a field in the RECORD structure of the FILE in which the KEY is
declared. The field is a key component. A field declared with the DIM attribute
(an array) may not be used as a key component.

Specifies the disk file specification of the KEY (PROP:NAME).

Allows multiple records with duplicate values in their key component fields
(PROP:DUP).

Specifies case insensitive sort order (PROP:NOCASE).

Excludes, from the KEY, those records with null (zero or blank) values in all key
component fields (PROP:OPT).

Specifies the KEY is the file's relational primary key (a unique key containing all
records in the file) (PROP:PRIMARY).

A KEY is an index into the data file which is automatically updated whenever records are added,
changed, or deleted. It is used to access records in a different logical order than the "physical
order" of the file. A KEY may be used for either sequential file processing or direct random

access.

A KEY may have more than one component field. The order of the components determines the
sort sequence of the key. The first component is the most general, and the last component is the
most specific. Generally, a data file may have up to 255 keys (and indexes) and each key may be
up to 255 bytes, but the exact numbers are file driver dependent.

4 — Entity Declarations

191

Example:

Names FILE, DRI VER(' O arion'), PRE(Nam

NameKey KEY(Nam Nane), NOCASE, DUP

Nobr Key KEY(Nam Nunber), OPT

Rec RECORD
Nane STRI NG 20)
Nunber SHORT
END
END
CODE
Nam Name = 'Clarion Software'

GET(Nanes, Nam NaneKey)
SET(Nam Nbr Key)

See Also:

SET, GET, INDEX, BUILD, PACK

! Decl are the nanme key
I Decl are the nunber key

I'lnitialize key field
1 Get the record
I Set sequential by nunber

192 Language Reference Manual

MEMO (declare a text field)

label MEMO(length) [,BINARY] [, NAME()]

label The label of the MEMO (PROP:Label).
MEMO Declares a fixed-length string which is stored variable-length on disk per record.
length A numeric constant that determines the maximum number of characters. The

maximum range is unlimited in 32-bit applications (dependent on the file driver's
MEMO support).

BINARY Declares the MEMO a storage area for binary data (PROP:BINARY).
NAME Specifies the disk filename for the MEMO field (PROP:NAME).

MEMO declares a fixed-length string field which is stored variable-length on disk. The length
parameter defines the maximum size of a memo. A MEMO must be declared before the
RECORD structure. Memory is allocated for a MEMO field's buffer when the file is opened, and is
de-allocated when the file is closed. MEMO fields are usually displayed in TEXT fields in
SCREEN and REPORT structures.

Generally, up to 255 MEMO fields may be declared in a FILE structure. The exact size and
number of MEMO fields, and their manner of storage on disk, is file driver dependent.

Example:

Nanes FI LE, DRI VER(' d ari on'), PRE(Nam)
NameKey KEY(Nam Nare)
Nor Key KEY(Nam Nurber)

Not es VEMO(4800) I Meno, 4800 bytes
Rec RECORD
Nane STRI NG 20)
Number SHORT
END

END

4 — Entity Declarations 193

BLOB (declare a variable-length field)

label BLOB [,BINARY] [[NAME()]

label The label of the BLOB (PROP:Label).

BLOB Declares a variable-length string stored on disk per record which may be greater
than 64K

BINARY Declares the BLOB a storage area for binary data (PROP:BINARY).

NAME Specifies the disk filename for the BLOB field (PROP:NAME).

BLOB (Binary Large OBject) declares a string field which is completely variable-length and may
be greater than 64K in size. A BLOB must be declared before the RECORD structure. Generally,
up to 255 BLOB fields may be declared in a FILE structure (the exact number and their manner of
storage on disk is file driver dependent).

A BLOB may not be used as a variable--you may not name a BLOB as a control's USE attribute,
or directly assign data to or from the BLOB.You can use PROP:Handle to get the Windows
handle to the BLOB entity and assigh one BLOB to another: get the handle of both BLOB entities
and then assign one BLOB's handle to the other BLOB's handle. A BLOB may not be accessed
"as a whole;" you must either use Clarion's string slicing syntax to access the data (unlimited in
32-bit), or PROP:ImageBlob. The individual bytes of data in the BLOB are numbered starting with
zero (0), not one (1).

The SIZE procedure returns the number of bytes contained in the BLOB field for the current
record in memory. You can also get (and set) the size of a BLOB using PROP:Size. You may set
the size of the BLOB before assigning data to a new BLOB using string slicing, but it is not
necessary as the size is automatically set by the string slice operation. You can also use
PROP:ImageBlob to store and retrieve graphic images without first setting PROP:Size. It is a
good idea to first set PROP:Size to zero (0) before assigning data to a BLOB that has not
previously contained data, to eliminate any "junk” leftover from any previously accessed BLOB.
When assigning from one BLOB to another using PROP:Handle, you may need to use
PROP:Size to adjust the size of the destination BLOB to the size of the source BLOB.
PROP:Touched can be used to determine if the contents of the BLOB has changed since it was
retrieved from disk.

194 Language Reference Manual

Example:

Ar chi veFi | e PROCEDURE
Nanes FI LE, DRI VER(' TopSpeed')
NaneKey KEY(Nane)

Not es BLOB ICan be larger than 64K
Rec RECORD
Name STRI N&(20)

END

END

ArcNanes FI LE, DRI VER(' TopSpeed')
Not es BLOB
Rec RECORD
Nane STRI N 20)
END
END

CODE
SET(Nanes)
LOOP

NEXT(Nanes)

| F ERRORCODE() THEN BREAK.

ArcNanes. Rec = Nanes. Rec I Assign rec data to Archive
Ar cNames. Not es{ PROP: Handl e} = Nanes. Not es{ PROP: Handl e} ! Assign BLOB to Archive

| F ERRORCODE() = 80

MESSAGE(‘ BLOB size is too large')

BREAK
END
Ar cNames. Not es{ PROP: Si ze} = Names. Not es{ PROP: Si ze} ! and adjust the size
ADD(Ar cNanes)
END
St or eFi | el nBl ob PROCEDURE IStores any disk file into a B
DosFi | eName STRI NG 260), STATI C
Last Rec LONG
SavPtr LONG(1) IStart at 1

FileSize LONG

DosFi | e FI LE, DRI VER(' DOS'), PRE(DOS) , NAME(DosFi | eNane)

Record RECORD
F1 STRI NG 2000)
END
END

Bl obSt orage FI LE, DRI VER(' TopSpeed'), PRE(STO)
File BLOB, Bl NARY
Record RECORD

4 — Entity Declarations 195

Fi | eNane STRI N& 64)
END
END
CODE
I F NOT FILEDI ALOE ' Choose File to Store', DosFil eNane, , 0010b) THEN RETURN.
OPEN(Bl obSt or age) ! Open the BLOB file
STO Fi | eNane = DosFi | eNane I and store the fil enane
OPEN(DosFi | e) IOpen the file
Fil eSi ze = BYTES(DosFil e) 1Get size of file
STO Fi | e{ PROP: Si ze} = Fil eSize ! and set the BLOB to store the file

Last Rec = Fil eSi ze % Sl ZE(DCS: Record) ! Check for short record at end of file
LOOP I NT(Fil eSi ze/ SI ZE(DOS: Record)) TI MES
GET(DosFil e, SavPtr) I Get each record
ASSERT(NOT ERRORCODE())
STO File[SavPtr - 1 : SavPtr + S| ZE(DOS: Record) - 2] = DOS: Record
IString slice data into BLOB

SavPtr += S| ZE(DOCS: Recor d) I Conput e next record pointer

END

| F Last Rec I'lf short record at end of file
CGET(DosFil e, SavPtr) 1Get last record

ASSERT(BYTES(DosFi | e) = Last Rec) ! size read should match conputed size
STO File[SavPtr - 1 : SavPtr + LastRec - 2] = DOS: Record

END

ADD(Bl obSt or age)
ASSERT(NOT ERRORCODE())
CLOSE(DosFi | e) ; CLOSE(Bl obSt or age)

See Also: PROP:ImageBlob, PROP:Size , Implicit String Arrays and String Slicing, BLOBtoFILE
FILEtoBLOB

196 Language Reference Manual

RECORD (declare record structure)

llabel] RECORD [,PRE()] [[NAME()]

fields
END
RECORD Declares the beginning of the data structure within the FILE declaration.
fields Multiple variable declarations.
PRE Specify a label prefix for the structure.
NAME Specifies an external name for the RECORD structure.

The RECORD statement declares the beginning of the data structure within the FILE declaration.
A RECORD structure is required in a FILE declaration. Each field is an element of the RECORD
structure. The length of a RECORD structure is the sum of the length of its fields. When the label
of a RECORD structure is used in an assignment statement, expression, or parameter list, it is
treated as a GROUP data type.

At run time, static memory is allocated as a data buffer for the RECORD structure. The fields in
the record buffer are available whether the file is open or closed.

If the fields contain variable declarations with initial values, that initial value is only used to
determine the size of the variable, the record buffer is not initialized to the value. For example, a
STRING('abc') field declaration creates a three-byte string, but it's value is not automatically
initialized to 'abc' unless the program's executable code assigns it that value.

Records from the data file on disk are read into the data buffer with the NEXT, PREVIOUS, GET,
or REGET statements. Data in the fields are processed, then written to the data file as a single
RECORD unit by the ADD, APPEND, PUT, or DELETE statements.

The WHAT and WHERE procedures allow access to the fields by their relative position within the
RECORD structure.

Example:
Nanes FI LE, DRI VER(' d arion') IDeclare a file structure
Record RECORD I begin record declaration
Narme STRI NG 20) ! declare nane field
Number SHORT I declare nunber field
END
END 'End file, end record declaration

See Also: FILE, NEXT, PREVIOUS, GET, REGET, ADD, APPEND, PUT, DELETE, WHAT,
WHERE

4 — Entity Declarations 197

Null Data Processing

The concept of a null "value" in a field of a FILE indicates that the user has never entered data
into the field. Null actually means "value not known" for the field. This is completely different from
a blank or zero value, and makes it possible to detect the difference between a field which has
never had data, and a field which has a (true) blank or zero value.

In expressions, null does not equal blank or zero. Therefore, any expression which compares the
value of a field from a FILE with another value will always evaluate as unknown if the field is null.
This is true even if the value of both elements in the expression are unknown (null) values. For
example, the conditional expression Pre:Fieldl = Pre:Field2 will evaluate as true only if both
fields contain known values. If both fields are null, the result of the expression is also unknown.

Known = Known | Eval uates as True or Fal se
Known = Unknown I Eval uat es as unknown
Unknown = Unknown ! Eval uates as unknown
Unknown <> 10 I Eval uat es as unknown
1 + Unknown I Eval uat es as unknown

The only four exceptions to this rule are boolean expressions using OR and AND where only one
portion of the entire expression in unknown and the other portion of the expression meets the
expression criteria:

Unknown OR True | Eval uates as True
True OR Unknown | Eval uates as True
Unknown AND Fal se ! Eval uates as Fal se
Fal se AND Unknown ! Eval uates as Fal se

Support for null "values" in a FILE is entirely dependent upon the file driver. Some file drivers

support the null field concept (SQL drivers, for the most part), while others do not. Consult the
documentation for the specific file driver to determine whether or not your file system's driver

supports nulls.

See Also:

NULL
SETNULL
SETNONULL

198 Language Reference Manual

FILE Structure Properties

Multi-File Properties
PROP:Label PROP:NAME PROP:Type

File Properties

PROP:CREATE PROP:KEY PROP:OWNER
PROP:Driver PROP:Keys PROP:RECLAIM
PROP:ENCRYPT PROP:OEM PROP:THREAD

Key Properties

PROP:Ascending PROP:DUP PROP:OPT
PROP:BINARY PROP:FIELD PROP:Over
PROP:Blobs PROP:Fields PROP:Places
PROP:Components PROP:Memos PROP:PRIMARY
PROP:Dim PROP:NOCASE PROP:Size

The following properties are all elements of a FILE data structure. They describe the attributes,
fields, keys, memos, and blobs that may occur within a FILE structure. All these FILE structure
properties are READ ONLY except: PROP:NAME (which can be used to change the name of a
field in a file), PROP:OWNER, and PROP:DriverString. Assigning values to these properties
overrides any values in the relevant declared attributes

Some properties are specific to the FILE and take the label of the FILE structure as the target,
others are specific to a KEY (or INDEX) and take the label of the KEY (or INDEX) as the target,
and others are specific to a BLOB and take the label of the BLOB as the target. Several
properties are arrays, which take the number of the specific field or key as their element number
to identify which field or key to return.

Each field that appears within the RECORD structure receives a positve number. In the RECORD
structure, field declarations begin with 1 and increment by 1 for each subsequent field, in the
order in which they appear within the RECORD structure. Terminating END statements for
GROUP structures are not numbered, as they are not a field declaration.

MEMO fields are numbered negatively. MEMO declarations begin with -1 and decrement by 1 for
each subsequent MEMO, in the order in which they appear within the FILE structure. BLOB fields
are numbered positively. BLOB declarations begin with 1 and increment by 1 for each
subsequent BLOB, in the order in which they appear within the FILE structure.

4 — Entity Declarations 199

Multi-Use File Structure Properties

PROP:Label

Returns the label of a declaration statement.

When no array element number is specified and the target is the label of a KEY (or
INDEX), PROP:Label returns the label of the KEY (or INDEX).

When a positive array element number is specified and the target is a FILE,
PROP:Label returns the label of the specified field within the RECORD structure.

When a negative array element number is specified and the target is a FILE,
PROP:Label returns the label of the specified MEMO within the FILE structure.

When a positive array element number is specified and the target is a BLOB,
PROP:Label returns the label of the specified BLOB.

PROP:NAME

The NAME attribute of the declaration statement.

When no array element number is specified and the target is the label of a FILE,
PROP:Name returns the contents of the FILE statement's NAME attribute.

When a positive array element number is specified and the target is the label of a
FILE, PROP:Name returns the NAME attribute of the specified field within the
RECORD structure.

When a negative array element number is specified and the target is the label of a
FILE, PROP:Name returns the NAME attribute of the specified MEMO within the
FILE structure.

When no array element number is specified and the target is the label of a KEY (or
INDEX), PROP:Name returns the NAME attribute of the specified KEY (or INDEX).

When a positive array element number is specified and the target is a BLOB,
PROP:Name returns the NAME attribute of the specified BLOB.

200 Language Reference Manual

PROP:Type

The data type of the declaration statement.

When no array element number is specified and the target is the label of a KEY (or
INDEX), PROP:Type returns either "KEY" or "INDEX."

When a positive array element number is specified and the target is the label of a
FILE, PROP:Type returns the data type of the specified field within the RECORD
structure.

FILE Statement Properties

These properties all take the label of a FILE as their target.

PROP:DRIVER
The DRIVER attribute. Returns the file driver of the FILE.

PROP:DriverString
A FILE property that returns the second parameter of the DRIVER() attribute of a file.

PROP:CREATE

The CREATE attribute on the FILE statement. A toggle attribute which contains a null
string (") if absent, and '1' if present.

PROP:RECLAIM

The RECLAIM attribute on the FILE statement. A toggle attribute which contains a
null string (") if absent, and '1' if present.

PROP:OWNER
The OWNER attribute on the FILE statement.

PROP:ENCRYPT
The ENCRYPT attribute on the FILE statement. A toggle attribute which contains a
null string (") if absent, and '1' if present.

PROP:THREAD

The THREAD attribute on the FILE statement. A toggle attribute which contains a null
string (") if absent, and '1' if present.

4 — Entity Declarations 201

PROP:OEM

The OEM attribute on the FILE statement. A toggle attribute which contains a null
string (") if absent, and '1' if present.

PROP:Keys

Returns the number of KEY and INDEX declarations in the FILE structure.

PROP:Key

An array that returns a reference to the specified KEY or INDEX in the FILE structure.
This reference can be used as the source side of a reference assignment statement.

Key Properties

These properties all take the label of a KEY (or INDEX) as their target.

PROP:PRIMARY

The PRIMARY attribute on the KEY statement. A toggle attribute which contains a
null string (") if absent, and '1' if present.

PROP:DUP

The DUP attribute on the KEY statement. A toggle attribute which contains a null
string (") if absent, and '1' if present.

PROP:NOCASE

The NOCASE attribute on the KEY or INDEX statement. A toggle attribute which
contains a null string (") if absent, and 1" if present.

PROP:OPT

The OPT attribute on the KEY or INDEX statement. A toggle attribute which contains
a null string (") if absent, and '1' if present.

PROP:Components

Returns the number of component fields of a KEY or INDEX.

202 Language Reference Manual

PROP:Field

An array that returns the field number (within the RECORD structure) of the specified
component field of a KEY or INDEX. This field number can be used as the array
element number for PROP:Label or PROP:Name.

PROP:Ascending

An array that returns '1' if the specified key component is in ascending order, and a
null string (") if in descending order.

Field Properties

These properties all take the label of a FILE as their target.

PROP:Memos
Returns the number of MEMO fields in the FILE structure.

PROP:Blobs
Returns the number of BLOB fields in the FILE structure.

PROP:BINARY

The BINARY attribute on the MEMO or BLOB statement in the FILE structure. A
toggle attribute which contains a null string (") if absent, and '1" if present.

PROP:Fields

Returns the number of fields declared in the RECORD structure.

PROP:Size
An array that returns the declared size of the specified MEMO, STRING, CSTRING,

PSTRING, DECIMAL, or PDECIMAL field.
PROP:Places

An array that returns the number of decimal places declared for the specified
DECIMAL or PDECIMAL field.

4 — Entity Declarations 203

PROP:Dim
An array property of a file that returns the product of the array dimensions specified in the DIM
attribute of the specified field. For example, for a field DIM(3,2) PROP:Dim returns 6.
PROP:Over

An array property of a file that returns the field number of the field referenced in the
OVER attribute on the specified field.

204 Language Reference Manual

Example:

PROGRAM

MAP
PrintFile PROCEDURE(*FI LE F)
DunpGr oupDet ai | s PROCEDURE(USHORT start, USHORT total)
DunpFi el dDet ai | s PROCEDURE(USHORT i ndent, USHORT Fi el dNo)

DunpToFi | e PROCEDURE
Set Attribute PROCEDURE(SI GNED Pr op, STRI NG Val ue)
StartlLine PROCEDURE(USHORT i ndent, STRI NG | abel , STRI NG t ype)
Concat PROCEDURE(STRI NG s)
END

Li neSi ze EQUATE(255)
Fil el ndent EQUATE(20)

Dest Nane STRI NG FI LE: MaxFi | ePat h)

DestFile FILE, DRI VER(" ASCI | '), CREATE, NAME(Dest Nane)

Record RECORD
Li ne STRI NG Li neSi ze)
END
END

Enpl oyee FI LE, DRI VER(' TOPSPEED), NAVE(' Enpl oyee. t ps'), PRE(EMP) , Bl NDABLE, CREATE, THREAD

Enpl D_Key KEY(EMP: Enpl D), PRI MARY
EnmpName_Key KEY(EMP: Lnane, EMP: Fnane, EMP: M ni t), DUP
Jobl D_Key KEY(EMP: Jobl D) , DUP
Publ D_Key KEY(EMP: Publ D) , DUP
Dat eKey KEY(- EMP: Hi r e_dat e) , DUP, NOCASE, OPT
Record RECORD, PRE()
Enpl D CSTRI NG(10)
Fnane CSTRI NE(21)
M ni t CSTRI NE(2)
Lnane CSTRI N 31)
Jobl D SHORT
Job_| vl BYTE
Publ D CSTRI NG 5)
Hi re_date DATE
PictureFile STRI NG 65)
END
END

TheFil e &FILE

AKey &KEY

Li ne STRI NG Li neSi ze)
Bl obs LONG

4 — Entity Declarations 205

CODE
PrintFil e(Enpl oyee)

PrintFil e PROCEDURE(*FI LE F)

CODE

I F NOT FILEDI ALOE ' Choose Qutput File', DestNane,' Text|*. TXT| Sour ce| *. CLW, 0100b)
RETURN

END

OPEN(Dest Fi | e)

| F ERRORCODE()
CREATE(Dest Fi | e)
OPEN(Dest Fi | e)

END

ASSERT(ERRORCCDE() =0)

TheFile & F

DO DunpFi | eDetai | s

DO DunpKeys

DO DunpMenos

DunmpGr oupDet ai | s(0, F{PROP: Fi el ds})
StartLine(Filelndent,'',"'END)
DunpToFi |l e

DunpFi | eDet ai | s ROUTI NE
StartLine(Filelndent, TheFil e{ PROP: | abel },"' FILE")
Concat (' ,DRIVER('"'"' & CLIP(TheFil e{PROP: Driver}))
| F TheFil e{PROP: Dri ver Stri ng}
Concat (',' & CLIP(TheFil e{PROP: DriverString}))
END
Concat(''')")
Set Attri but e(TheFi | e{ PROP: Creat e}, ' CREATE')
Set Attri but e(TheFi | e{ PROP: Recl ai n}, ' RECLAI M)
| F TheFi | e{ PROP: Onner}
Concat (', O\NER('"'"' & CLI P(TheFi |l e{PROP: Omer}) & "'"'")")
END
Set Attri but e(TheFi | e{ PROP: Encrypt}, ' ENCRYPT")
Concat (", NAME('"'"' & CLI P(TheFil e{ PROP: Nane}) & ""'"')")
Set Attri but e(TheFi | e{ PROP: Thr ead}, ' THREAD)
Set Attri but e(TheFi | e{ PROP: CEM , ' OEM)
DunpToFi |l e

206 Language Reference Manual

DunpMenos ROUTI NE
LOOP X# = 1 TO TheFi | e{ PROP: Menps}
StartLine(Fil el ndent +2, TheFi | e{ PROP: | abel , - X#},' MEMJ(")
Concat (CLI P(TheFi | e{ PROP: Si ze, - X#}) &')')
Set Attri but e(TheFi | e{ PROP: Bi nary, - X#}, ' Bl NARY")
| F TheFi | e{ PROP: Nane, - X#}
Concat (', NAME(' & CLIP(TheFi | e{ PROP: Nane, - X#}) & ')")
END
DunpToFi |l e
END

DunpKeys ROUTI NE
LOOP X# = 1 TO TheFi | e{ PROP: Keys}
AKey &= TheFi | e{ PROP: Key, X#}
StartLine(Filelndent+2, AKey{ PROP: | abel }, AKey{ PROP: Type})
Concat (' (")
LOOP Y# = 1 TO AKey{ PROP: Conmponent s}
IF Y# > 1 THEN Concat(',").
| F AKey{ PROP: Ascendi ng, Y#}
Concat (' +')
ELSE
Concat ('-")
END
Concat (TheFi | e{ PROP: Label , akey{ PROP: Fi el d, Y#}})
END
Concat (')")
Set Attri but e(AKey{ PROP: Dup}, ' DUP")
Set Attri but e(AKey{ PROP: NoCase}, ' NOCASE')
Set Attri but e(AKey{ PROP: Opt}, "' OPT")
Set Attri but e(AKey{ PROP: Pri mary},"' PRI MARY')
| F AKey{ PROP: Nane}
Concat (', NAME("'"'"' & CLI P(AKey{PROP: Nanme}) & "''"')")
END
DunpToFi |l e
END

DunmpG oupDet ai | s PROCEDURE(USHORT start, USHORT total)
fld USHORT
fieldsl nG oup USHORT
G oupl ndent USHORT, STATI C
CODE
IF start = 0 THEN
G oupl ndent = Fil el ndent +2
St artLi ne(Groupl ndent, ' RECORD , ' RECORD)
DunpToFi |l e
END
G oupl ndent += 2
LOOP fld = start+1 TO start +total

4 — Entity Declarations 207

DunpFi el dDet ai | s(Groupl ndent, f1d)
| F TheFi | e{ PROP: Type, fl d} = ' GROUP
fieldslnGoup = TheFil e{ PROP: Fi el ds, f| d}
DunpGroupDetails (fld, fieldslnGoup)
fld += fieldslnG oup
END
END
G oupl ndent -= 2
StartLine(G ouplndent,'',"' END)
DunpToFi |l e

DunpFi el dDet ai | s PROCEDURE(USHORT i ndent, USHORT Fi el dNo)
Fl dType STRI NG 20)
CODE
FIl dType = TheFi | e{ PROP: Type, Fi el dNo}
StartLine(indent, TheFi | e{ PROP: Label , Fi el dNo}, FI dType)
I F I NSTRI NG ' STRI NG , Fl dType, 1, 1) OR I NSTRI NG(' DECI MAL' , Fl dType, 1, 1)
Concat (' (* & TheFil e{ PROP: Si ze, Fi el dNo})
| F FldType = 'DECI MAL' OR Fl dType = ' PDECI MAL'
Concat (',' & TheFil e{PROP: Pl aces, Fi el dNo})
END
Concat (')")
END
I F TheFil e{PROP: Dim Fi el dNo} <> 0
Concat(',DIM"' & CLIP(TheFil e{PROP:Dim Fiel dNo}) & ')")
END
I F TheFi | e{ PROP: Over, Fi el dNo} <> 0
Concat (', OVER(' & CLI P(TheFi | e{ PROP: Label , TheFi | e{ PROP: Over, Fi el dNo}}) & ')")
END
I F TheFi | e{ PROP: Nan®e, Fi el dNo}
Concat (', NAME(''' & CLI P(TheFi | e{PROP: Nane, FieldNo}) & ''")")
END
DunpToFi |l e

Set Attri but e PROCEDURE (Prop, Val ue)
CODE
IF Prop THEN Line = CLIP(Line) & ',' & CLIP(Value).

208

Language Reference Manual

StartLi ne PROCEDURE (USHORT i ndent, STRI NG | abel ,

TypeStart USHORT

CODE

Li ne = | abel

I F LEN(CLI P(Line)) < Indent
TypeStart = | ndent

ELSE
TypeStart = LEN(CLIP(Line)) + 4
END

Li ne[TypeStart Li neSi ze] = type
Concat PROCEDURE (STRI NG s)
CODE

Line = CLIP(Line) & s

DunpToFi | e PROCEDURE
CCDE
DestFile.Line = Line;
ASSERT(ERRORCCDE() =0)

ADD(Dest Fi | €)

STRI NG type)

4 — Entity Declarations 209

Environment Files

An environment file contains internationalization settings for an application. On program
initialization, the Clarion run-time library attempts to locate an environment file with the same
name and location as your application's program file (appname.ENV). If an environment file is
not found, the run-time library defaults to standard English/ASCII. You can also use these
settings to specify internationalization issues for the Clarion environment by creating a
CLARIONG6.ENYV file (the Database Manager uses these settings when displaying data files).

The .ENV file is compatible with the .INI files used by Clarion for DOS (both versions 3 and 3.1) if
the CLACHARSET is set to OEM, because Clarion for DOS .INI files are generally written using
OEM ASCII, not the ANSI character set.

The LOCALE procedure can be used to load environment files at run-time to dynamically change
the international settings. LOCALE can also be used to set individual entries. International
support is dependent on support in the File Driver (generally for the OEM attribute); consult the
File Driver documentation for information on international support in specific drivers.

The following settings can be set in an environment file:

CLASYSTEMCHARSET=WINDOWS
CLASYSTEMCHARSET="charset"

Specifies the value of the system charset. If parameter is not set or it is set to
WINDOWS, the system charset is equivalent to CHARSET:ANSI. Setting this in the
.ENV file is equavalent to setting the property SYSTEM{PROP:CharSet}.

CLACHARSET=WINDOWS
CLACHARSET=0OEM

This determines the character set used by the entries in the .ENV file. WINDOWS is
the default if this setting is omitted from the environment file. Use the OEM setting if
you are using a DOS editor to edit the .ENV file, or if it has to be compatible with
Clarion for DOS. Otherwise, specify WINDOWS or omit the entry. This should
always be the first setting in the environment file.

CLACOLSEQ=WINDOWS
CLACOLSEQ="string"

Specifies a specific collating sequence for use at run-time. This collating sequence is
used for building KEY and INDEX files, as well as for sorting QUEUESs and all
string/character comparisons.

If the WINDOWS setting is used, then the default collation sequence is defined by
Windows' Country setting (in the Control Panel). If this entry is omitted from the
environment file, then the default ANSI ordering is used, not the windows default.

Using the WINDOWS setting, the ordering can ‘interleave' characters of differing
case (AaBbCc ...), so code such as

210 Language Reference Manual

CASE SonmeString[1]

oF'A TO'Z
includes 'a' TO 'y' as well. Use the ISUPPER and ISLOWER procedures in
preference to this kind of code if WINDOWS (or other non-default) collation
sequences are used.

In addition to the WINDOWS setting, you may specify a string of characters (in
double quotes) to explicitly define the collation sequence to use. Only those
characters that need to have their sort order specified need be included; all other
characters not listed remain in their same relative order. For example, if
CLACOLSEQ="CA" is specified for the standard English sort (ABCD ...) the resulting
sort order is "CBAD." This is a change from the Clarion for DOS versions of this
setting that needed exactly 222 characters, but it is backward compatible.

NOTE: You should always read and write files using the same collation
sequence. Using a different sequence may result in keys becoming out of order and
records becoming inaccessible. Specifying CLACOLSEQ=WINDOWS means that the
collation sequence may change if the user changes the Country in Windows' Control
Panel. If the collation sequence changes, use BUILD to rebuild the keys in your data
files.

CLAAMPM=WINDOWS
CLAAMPM="AMstring","PMstring"

This specifies the text used to indicate AM or PM as a part of a time display field. The
WINDOWS setting specifies use of the AM/PM strings set up in the Windows Control
Panel. The AMstring and PMstring settings are the same as in Clarion for DOS,
except that they take notice of the setting of CLACHARSET.

CLAMONTH="Month1","Month2", ... ,"Month12"
Specifies the text returned by procedures and picture formats involving the month full
name.

CLAMON="AbbrevMonth1"," AbbrevMonth2", ... "AbbrevMonth12"

Specifies the text returned by procedures and picture formats involving the
abbreviated month name.

CLADIGRAPH="DigraphCharlChar2, ... "

This allows Digraph characters to collate correctly. A Digraph is a single logical
character that is a combination of two characters (Charl and Char2). The Digraph is
collated as the two characters that combine to create it. They are more common in
non-English languages. For example, with CLADIGRAPH="/Ae,aeae" specified, the
word "Jaeger" sorts before "Jager" (since "Jae" comes before "Jag").Multiple
DigraphChar1Char2 combinations may be defined, separated by commas. This
setting takes notice of the CLACHARSET setting.

4 — Entity Declarations 211

CLACASE=WINDOWS
CLACASE="UpperString","LowerString"

Allows you to specify upper and lower case letter pairs.

The WINDOWS setting uses the default upper/lower case pair sets as defined by the
Windows Country setting (in the Control Panel). If this entry is omitted from the
environment file, then the default ANSI ordering is used, not the windows default.

The UpperString and LowerString parameters specify a set of uppercase characters
and each one's lowercase equivalent. The length of the UpperString and LowerString
parameters must be equal. CLACASE takes notice of the setting of CLACHARSET.
ANSI characters less than 127 are not affected.

CLABUTTON="OK","&Yes","&No","&Abort","&Retry","&Ignore”,Cancel"," &Help"

This defines the text used by the buttons of the MESSAGE procedure. The text is
specified as a list of comma separated strings in the following order: OK, YES, NO,
ABORT, RETRY, IGNORE, CANCEL, HELP. The default is as specified above.

CLAMSGerrornumber="ErrorMessage"

This allows run-time error messages to be overridden with translated strings. The
errornumber is a standard Clarion error code number appended to CLAMSG.
ErrorMessage is the string value used to replace that error number's default
message. For example, CLAMSG2="No File Found" makes "No File Found" the
return value of the ERROR() procedure when ERRORCODE() = 2.

CLALFN=OFF
This disables use of long filenames in the program.
Example:
CLACHARSET=W NDO\S
CLACOLSEQ=" AAAMRaaa88aBhCCc ¢ DAEEe@éeerf GgHhl i 1111 Jj KkLI MMRnfic000666PpQyRr SsRTt UDuuGaiVv VWXx Yy Zz "
CLAAMPME" AM', " PM'
CLAMONTH="January", " February", "March", " April", " My", "June", "Jul y", " August ", " Se|

, "Cct ober", "Novenber", "Decenber"

CLAMON=" Jan", " Feb", "Mar", " Apr", " May", "Jun","Jul ", " Aug", "Sep", " Cct", "Nov", "Dec"

CLADI GRAPH=" AAe, ame"

CLACASE="AAEENOT" , " 48ax éfion"

CLABUTTON="CK", "&Si ", "&No", "&Abortar", "&Vol veratratar", " & gnora", "Cancel ar", " &Ayuda"
CLAMB&R2="No Fil e Found"

212

Language Reference Manual

View Structures

VIEW (declare a "virtual" file)

label VIEW((primary file) [,FILTER()] [,ORDER()]

[PROJECT()]

[JOIN()
[PROJECT()]
[JOIN()

[PROJECT()]
END]
END]
END

VIEW Declares a "virtual" file as a composite of related files.

label The name of the VIEW.

primary file The label of the primary FILE of the VIEW.

FILTER Declares an expression used to filter valid records for the VIEW (PROP:FILTER).

ORDER Declares an expression or list of expressions used to define the sorted order of
records for the VIEW (PROP:ORDER or PROP:SQLOrder).

PROJECT Specifies the fields from the primary file, or the secondary related file specified by
a JOIN structure, that the VIEW will retrieve. If omitted, all fields from the file are
retrieved.

JOIN Declares a secondary related file.

VIEW declares a "virtual" file as a composite of related data files. The data elements declared in
a VIEW do not physically exist in the VIEW, because the VIEW structure is a logical construct.
VIEW is a separate method of addressing data physically residing in multiple, related FILE
structures. At run-time, the VIEW structure is not assigned memory for a data buffer, so the fields
used in the VIEW are placed in their respective FILE structure's record buffer.

A VIEW structure must be explicitty OPENed before use, and all primary and secondary related
files used in the VIEW must have been previously OPENed.

4 — Entity Declarations 213

Either a SET statement on the VIEW's primary file before the OPEN(view), or a SET (view)
statement after the OPEN(view), must be issued to set the VIEW's processing order and starting
point, then NEXT (view) or PREVIOUS(view) allow sequential access to the VIEW.

The VIEW data structure is designed for sequential access, but also allows random access using
the REGET statement. The REGET statement is also available for VIEW, but only to specify the
primary and secondary related file records that should be current in their respective record buffers
after the VIEW is CLOSEd. If no REGET statement is issued immediately before the
CLOSE(view) statement, the primary and secondary related file record buffers are set to no
current record.

The processing sequence of the primary and secondary related files is undefined after the VIEW
is CLOSEd. Therefore, SET or RESET must be used to establish sequential file processing
order, if necessary, after closing the VIEW.

The VIEW data structure is designed to facilitate database access on client-server systems. It

accomplishes two relational operations at once: the relational "Join" and "Project" operations. On
client-server systems, these operations are performed on the file server, and only the result of the
operation is sent to the client. This can dramatically improve performance of network applications.

A relational "Join" retrieves data from multiple files, based upon the relationships defined between
the files. The JOIN structure in a VIEW structure defines the relational "Join" operation. There
may be multiple JOIN structures within a VIEW, and they may be nested within each other to
perform multiple-level "Join" operations. The VIEW structure defaults to a "left outer join," where
all records for the VIEW's primary file are retrieved whether the secondary file named in a JOIN
structure contains any related records or not. The secondary file fields are implicitly CLEARed
(zero or blank) for those primary file records without related secondary records. You can override
the default left outer join by specifying the INNER attribute on the JOIN (creating an "inner join")
so that only those primary file records with related secondary file records are retrieved.

A relational "Project" operation retrieves only specified data elements from the files involved, not
their entire record structure. Only those fields explicitly declared in PROJECT statements in the
VIEW structure are retrieved if there are any PROJECT statements declared. Therefore, the
relational "Project" operation is automatically implemented by the VIEW structure. The contents of
any fields that are not contained in PROJECT statements are undefined.

The FILTER attribute restricts the VIEW to a sub-set of records. The FILTER expression may
include any of the fields explicitly declared in the VIEW structure and restrict the VIEW based
upon the contents of any of the fields. This makes the FILTER operate across all levels of the
"Join" operation.

NOTE:

VIEWSs have no THREAD attribute by syntax, but VIEWs declared in the local scope of a
PROCEDURE or ROUTINE are treated as threaded. A VIEW declared in the global or
module scope is treated as threaded if at least one joined FILE is threaded.

214 Language Reference Manual

Related Procedures: BUFFER, CLOSE, FLUSH, OPEN, RECORDS, DELETE, HOLD, NEXT,
POSITION, PREVIOUS, PUT, RELEASE, REGET, RESET, SET, SKIP, WATCH

Example:

Custoner FILE DRIVER(' darion'), PRE(Cus) !Declare custoner file |ayout
Acct Key KEY(Cus: Acct Nunber)

Record RECORD

Acct Nunber LONG

O der Number LONG

Nane STRI N& 20)

Addr STRI NG 20)

Gty STRI N& 20)

State STRI NG 20)

Zip STRI N§ 20)
END

Header FI LE, DRI VER(' C arion'), PRE(Hea) !Declare header file |ayout
Acct Key KEY(Hea: Acct Nunber)
O der Key KEY(Hea: Or der Nunber)
Record RECORD

Acct Number LONG

O der Number LONG

Shi pToNane STRI N& 20)

Shi pToAddr STRI N& 20)

Shi pToCity STRI NG 20)

Shi pToState STRI NGE 20)

Shi pToZi p STRI N& 20)

END

END
Det ai | FILE, DRIVER(' Carion'),PRE(Dtl) !Declare detail file |ayout
O derKey KEY(Dtl: O derNumnber)
Recor d RECORD
O der Nunmber LONG
Item LONG
Quantity SHORT

END
END

Pr oduct FI LE, DRI VER(' Cl arion'), PRE(Pro) !Declare product file Iayout
| t enrKey KEY(Pro:ltem

Recor d RECORD

Item LONG

Description STRI NG 20)

Price DECI MAL(9, 2)
END

END

4 — Entity Declarations 215

Vi ewOr der VI EW Cust omrer) I Decl are VIEW structure
PRQIECT(Cus: Acct Nunber, Cus: Nane)
JO N(Hea: Acct Key, Cus: Acct Nunber) 1Join Header file

PRQIECT(Hea: Or der Nunber)
JON(Dtl: O derKey, Hea: Order Nunber) !Join Detail file
PRQIECT(Det: Item Det: Quantity)

JON(Pro:ltenKey,Dtl:Item 1Join Product file
PRQIECT(Pro: Descri ption, Pro: Price)
END
END
END
END

See Also:
JOIN

PROJECT

216 Language Reference Manual

PROJECT (set view fields)

PROJECT(fields)
PROJECT Declares the fields retrieved for the VIEW.

fields A comma delimited list of fields (including prefixes) from the primary file of the
VIEW, or the secondary related file named in the JOIN structure, containing the
PROJECT declaration.

The PROJECT statement declares fields retrieved for a relational "Project” operation. A relational
"Project" operation retrieves only the specified fields from the file, not the entire record structure.

A PROJECT statement may be declared in the VIEW, or within one of its component JOIN
structures. If there is no PROJECT declaration in the VIEW or JOIN structure, all fields in the
relevant file are retrieved.

If a PROJECT statement is present in the VIEW or JOIN structure only the fields explicitly
declared in the PROJECT are guaranteed to be retrieved. The contents of any fields that are not
contained in PROJECT statements are undefined. Depending on the abilites of the particular
database engine you are using, other fields may be retrieved. However, you should not rely on
this as future changes or changes in the database driver may preclude these fields from being
retrieved.

Example:
Det ai | FILE, DRIVER(' d arion'),PRE(Dtl) !Declare detail file |ayout
O der Key KEY(Dt 1 : O der Nunber)
Record RECORD
Or der Number LONG
Item LONG
Quantity SHORT
Description STRING20) !Line item coment
END
END

Product FILE, DRIVER('Clarion'),PRE(Pro) !Declare product file |ayout
I t enKey KEY(Pro:ltem
Record RECORD

[tem LONG
Description STRING 20) !Product description
Price DECI MAL(9, 2)
END
END

Vi ewOrder VIEWDetail)
PRQIECT(Det : Order Nunber, Det: 1tem Det: Descri ption)
JO N(Pro:ltenKey, Det:ltem
PRQIECT(Pro: Description, Pro: Price)
END
END

4 — Entity Declarations 217

JOIN (declare a "join" operation)

JOIN(

END

| secondary key ,linking fields |) [, INNER]
| secondary file ,expression |
[PROJECT()]
[JOIN()

[PROJECT()]

END]

JOIN
secondary key

linking fields

secondary file

expression

INNER

PROJECT

Declares a secondary file for a relational "Join" operation.
The label of a KEY which defines the secondary FILE and its access key.

A comma-delimited list of fields in the related file that contain the values the
secondary key uses to get records.

The label of the secondary FILE.

A string constant containing a single logical expression for joining the files
(PROP:JoinExpression or PROP:SQLJoinExpression). This expression may
include any of the logical and Boolean operators.

Specifies an "inner join" instead of the default "left outer join"--the only records
retrieved from the VIEW's primary file parent are those with at least one related
record in the JOIN's secondary file.

Specifies the fields from the secondary related file specified by a JOIN structure
that the VIEW will retrieve. If omitted, all fields from the file are retrieved.

The JOIN structure declares a secondary file for a relational "Join" operation. A relational "Join"
retrieves data from multiple files, based upon the relationships defined between the files. There
may be multiple JOIN structures within a VIEW, and they may be nested within each other to
perform multiple-level "Join" operations.

The secondary key defines the access key for the secondary file. The linking fields name the
fields in the file to which the secondary file is related, that contain the values used to retrieve the
related records. For a JOIN directly within the VIEW, these fields come from the VIEW's primary
file. For a JOIN nested within another JOIN, these fields come from the secondary file of the JOIN
in which it is nested. Non-linking fields in the secondary key are allowed as long as they appear in
the list of the key's component fields after all the linking fields.

218 Language Reference Manual

When data is retrieved, if there are no matching secondary file records for a primary file record,
blank or zero values are supplied in the fields specified in the PROJECT. This type of relational
"Join" operation is known as a "left outer join."

The expression parameter allows you to join files which contain related fields but no keys defined
for the relationship. PROP:JoinExpression and PROP:SQLJoinExpression are array properties
whose the array element number references the ordinal position of the JOIN in the VIEW to
affect. PROP:SQLJoinExpression is an SQL-only version of PROP:JoinExpression. If the first
character of the expression assigned to PROP:JoinExpression or PROP:SQLJoinExpression is a
plus sign (+) the new expression is concatenated to the existing join expression.

Example:

Custoner FILE DRIVER('darion'), PRE(Cus) !Declare custoner file |ayout
Acct Key KEY(Cus: Acct Nunber)
Record RECORD
Acct Number LONG
O der Nunmber LONG
Nane STRI NG(20)
END
END

Header FI LE, DRI VER(' C arion'), PRE(Hea) !Declare header file |ayout
Acct Key KEY(Hea: Acct Nunber)

O der Key KEY(Hea: Acct Nunber, Hea: Or der Nunber)

Recor d RECORD

Acct Nunber LONG

O der Number LONG

Tot al DECI MAL(11, 2) ! Total cash paid
Di scount DECI MAL(11, 2) I Di scount anobunt given
O der Dat e LONG
END

END
Det ai | FILE, DRIVER(' Carion'),PRE(Dtl) !Declare detail file |ayout
O der Key KEY(Dt 1 : Acct Nunber, Dt : Or der Nunber)
Record RECORD

Acct Nunber LONG
Or der Nunber LONG

Item LONG
Quantity SHORT
END

END

4 — Entity Declarations

219

Pr oduct FI LE, DRI VER(' Cl arion'), PRE(Pro) !Declare product file |ayout
I t enKey KEY(Pro:ltem

Record RECORD
Item LONG
Description STRI NG 20)
Price DECI MAL(9, 2)
END
END
Vi ewOr der 1 VI EW Header) I Declare VIEW structure

PRQIECT(Hea: Acct Nunber, Hea: Or der Number)

JO N(Dt1: O der Key, Hea: Acct Nunber , Hea: Order Nunber) !Join Detail file
PRQIECT(Dt!: ItenDtl: Quantity)

JON(Pro:ltenmKey,Dtl:Item 1Join Product file
PRQIECT(Pro: Description, Pro: Price)
END
END
Vi ewOr der 2 VI EW Cust oner) I Declare VIEW structure

JO N(Header, ' Cus: Acct Nunmber = Hea: Acct Nunber AND ' & |
" (Hea:Discount + Hea:Total) * .1 > Hea:Discount')
PRQIECT(Hea: Acct Nunber, Hea: Or der Nunber)
JO N(Dtl: O derKey, Hea: Acct Nurber , Hea: Order Nunber) !Join Detail file
PRQIECT(Dtl : 1tenDt|: Quantity)
END
END

See Also:

INNER

220

Language Reference Manual

Queue Structures

QUEUE (declare a memory QUEUE structure)

label QUEUE([group]) [,PRE] [[STATIC] [THREAD] [, TYPE] [BINDABLE] [EXTERNAL] [,DLL]

fieldlabel variable [[NAME()]

END

QUEUE Declares a memory queue structure.

label The name of the QUEUE.

group The label of a previously declared GROUP or QUEUE structure from which it will
inherit its structure. This may be a GROUP or QUEUE with or without the TYPE
attribute.

PRE Declare a fieldlabel prefix for the structure.

STATIC Declares a QUEUE, local to a PROCEDURE, whose buffer is allocated in static
memory.

THREAD Specify memory for the queue is allocated once for each execution thread. This
implies the STATIC attribute on Procedure Local data.

TYPE Specify the QUEUE is just a type definition for other QUEUE declarations.

BINDABLE Specify all variables in the queue may be used in dynamic expressions.

EXTERNAL Specify the QUEUE is defined, and its memory is allocated, in an external library.

DLL Specify the QUEUE is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

fieldlabel The name of the variables in the queue.

variable Data declaration. The sum of the memory required for all declared variables in

the QUEUE must not be greater than 4MB.

QUEUE declares a memory QUEUE structure. The label of the QUEUE structure is used in
gueue processing statements and procedures. When used in assignment statements,
expressions, or parameter lists, a QUEUE is treated like a GROUP data type.

The structure of a QUEUE declared with the group parameter begins with the same structure as
the named group; the QUEUE inherits the fields of the hamed group. The QUEUE may also
contain its own declarations that follow the inherited fields. If the QUEUE will not contain any
other fields, the name of the group from which it inherits may be used as the data type without the
QUEUE or END keywords.

4 — Entity Declarations 221

A QUEUE may be thought of as a "memory file" internally implemented as a "dynamic array" of
QUEUE entries. When a QUEUE is declared, a data buffer is allocated (just as with a file). Each
entry in the QUEUE is run-length compressed during an ADD or PUT to occupy as little memory
as necessary, and de-compressed during GET. There is an 8 byte per-entry overhead for queues
with uncompressed records, and 12 bytes per entry for queues with compressed records.

The data buffer for a Procedure local QUEUE (declared in the data section of a PROCEDURE) is
allocated on the stack (unless it has the STATIC attribute or is too large). The memory allocated
to the entries in a procedure-local QUEUE without the STATIC attribute is allocated only until you
FREE the QUEUE, or you RETURN from the PROCEDURE--the QUEUE is automatically FREEd
upon RETURN.

For a Global data, Module data, or Local data QUEUE with the STATIC attribute, the data buffer
is allocated static memory and the data in the buffer is persistent between procedure calls. The
memory allocated to the entries in the QUEUE remains allocated until you FREE the QUEUE.

The variables in the QUEUE's data buffer are not automatically initialized to any value, they must
be explicitly assigned values. Do not assume that they contain blanks or zero before your
program's first assignment to them.

As entries are added to the QUEUE, memory for the entry is dynamically allocated then the data
copied from the buffer to the entry and compressed. As entries are deleted from the QUEUE, the
memory used by the deleted entry is freed. The maximum number of entries in a QUEUE is
theoretically 2726 (67,108,864), but is actually dependant upon available virtual memory. The
actual memory used by each entry in the QUEUE is dependent on the data compression ratio
achieved by the runtime library.

A QUEUE with the BINDABLE attribute makes all the variables within the QUEUE available for
use in a dynamic expression, without requiring a separate BIND statement for each (allowing
BIND(queue) to enable all the fields in the queue). The contents of each variable's NAME
attribute is the logical name used in the dynamic expression. If no NAME attribute is present, the
label of the variable (including prefix) is used. Space is allocated in the .EXE for the names of all
of the variables in the structure. This creates a larger program that uses more memory than it
normally would. Therefore, the BINDABLE attribute should only be used when a large proportion
of the constituent fields are going to be used.

A QUEUE with the TYPE attribute is not allocated any memory; it is only a type definition for
QUEUES that are passed as parameters to PROCEDUREs. This allows the receiving procedure
to directly address component fields in the passed QUEUE. The parameter declaration on the
PROCEDURE statement instantiates a local prefix for the passed QUEUE as it names the
passed QUEUE for the procedure. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field hames used in the type
declaration) to directly address component fields of the QUEUE actually passed as the
parameter.

222 Language Reference Manual

The WHAT and WHERE procedures allow access to the fields by their relative position within the
QUEUE structure.

Related Procedures:

ADD, CHANGES, DELETE, FREE, GET, POINTER,
POSITION
PUT, RECORDS, SORT

See Also:

PRE
STATIC
NAME
FREE
THREAD
WHAT
WHERE

Example:

NameQue QUEUE, PRE(Nam) I Decl are a queue
Name STRI NE(20)
Zip DECI MAL(5, 0), NAME(' SortField')

END I End queue structure

NameQue2 QUEUE(NaneQue), PRE(NanR) ! Queue that inherits Nane and Zip fields

Phone STRI NE 10) I and adds a Phone field
END
NaneQue3 NaneQue2 I Decl are a second QUEUE with exactly

I the sane structure as NameQue2

4 — Entity Declarations 223

Additional QUEUE Considerations

This topic expands on important issues in understanding how supported processing
statements and optional parameters can affect a QUEUE.

ADD, GET, PUT to a QUEUE by KEY

There are three (3) forms of the QUEUE key parameter: sequence, name and function.
Each one is described as follows:

sequence [t]keyl][,[t]key2...]

A list of up to 16 labels of QUEUE fields, separated by commas and with an optional + or
- sign preceding the label. If the key component is specified with -, it is used in
descending order. Reference field types (including ANY) and arrays are not permitted.

name

A string constant, variable or expression. Its value must contain a list of up to 16 NAME
attributes of QUEUE fields with an optional leading + or - sign, separated with commas. If
the key component is specified with -, it is used in descending order. Reference field
types (including ANY) and arrays are not permitted.

When comparing two keys using one of the two forms above, the keys are considered
equal if all key components are equal.

A key is considered greater than another key, if its nth key component is greater than the
second key, and the extra component defined is in ascending order (with all other key
components being equal.)

Finally, a key is considered less than another key if its nth key component is greater than
the second key, and the extra component defined is in descending order (with all other
key components being equal.)

There is also a third form of KEY types regarding QUEUES:
function

The label of the function containing two parameters of a *GROUP or named GROUP
passed by address, and having a SIGNED return value. Both parameters must use the
same parameter type, and cannot be omitted. The RAW, C and PASCAL attributes are
not permitted in the prototype declaration.

224

Language Reference Manual

The first parameter of the FUNCTION is the target parameter, or record that is about to
be acted on. The second parameter is a comparison value, used to determine the
position where the first parameter is to be placed or retrieved.

Using ADD, PUT or GET by FUNCTION will read or write from a positional value
returned by the function.

If the function returns zero (0) the queue record of the first parameter is treated as equal
to the second. In this case, no record is ADDed or PUT, since the values are equal.

If the function returns a negative value, the ADD or PUT of the record passed as a first
parameter is treated as having less value than record passed as second parameter and
is written accordingly.

If the function returns a positive value, the ADD or PUT of the record passed as a first
parameter is treated as having a greater value than record passed as second parameter
and is written accordingly.

4 — Entity Declarations 225

Using Multiple Sort Orders

The following topic describes the internal paradigm regarding QUEUESs with multiple sort
orders.

Prior to Clarion 5, it was possible to use the GET(Queue,Key) form to obtain a POINTER
to the first or last record in a range.

For example:
Q QUEUE
A LONG
B STRI NG 20)
END
CODE
SORT(Q QA QB) Isort the queue in a,b sequence
QA=1 Iset to the first record
CLEAR (Q B) Iclear secondary field to make sure
GET (Q QA 1GET to first record
first# = PO NTER(Q I GET fails, but stores the PO NTER
I'where record woul d have exi sted
QA =5 Iset to the last record or beyond
CLEAR (Q B) lagai n, clear secondary sort field
GET (Q QA PCET will fail

last# = PO NTER(Q -1 land returns where new record will be

After this code executes, first# contains a pointer to the first record of the Q.A field in a
range (in this example range is 1 through 4), and last# contains a pointer to the last
record with value of Q.A within this range.

This technique is not possible for queues with multiple sort orders. Even if one set of key
components is a subset of another one, sort orders based on them are handled
separately.

Hence, if the program uses a partial key seed value in the GET(Queue,Key) statement,
the queue logic must build the sort order based on specified key if it does not exist, and
perform the GET operation using this sort order. In other words, the GET never fails.

Sort orders based on "full* and "partial" keys can be different because of queue rules:
ADD adds a new record after all other records with the same key, and PUT updates an
existing record after all other records with the same key. The new POSITION(Queue)
function implements the behavior that an attempted GET on a partial key value used to
have.

226

Language Reference Manual

In Clarion 6, every active QUEUE can have up to 16 sort orders that exist in memory
simultaneously.

For the purpose of this topic, sort orders not defined as the current active sort, but exist in
memory by prior QUEUE actions (described later), are defined as a memory key.

All memory keys share the same queue of records, but each one orders the records
according to the key that it is based on.

At any point in time during the life of the queue, one of the memory keys is the "default".
The default memory key is the one that a SORT has been performed on most recently. If
no SORT has been executed, the default memory key can be either unsorted, or sorted
by the ADD(key) or PUT(key) methods ("sorting as you go")

The unsorted key is often used for non-keyed operations (i.e., POINTER()).
FREE() removes all memory keys.

The memory key based on the last key used in the keyed ADD, GET, PUT, or a SORT
statement is called the active key. Itis considered active while this particular statement
is executing. If the active key did not exist before the keyed statement, it is created by
taking the initial sequence of records defined by the default sort order, and is resorted
using the new memory key.

SORT makes the active key the default. For example, if the active key existed before the
SORT, no resorting is performed, because it doesn’t need to.

GET(Queue,Key) retrieves the first record using the active key’s (Key parameter) sort
order that matches current content of the queue buffer. If no records can be found, the
buffer is not changed and value of next call to POINTER() is undefined.

GET(Queue,Pointer) retrieves record with the relative position equal to the Pointer
position in the default memory key.

ADD and PUT work differently for default key and all other memory keys. All memory
keys that are not the default are updated using their key values always, even for non-
keyed operations. Hence, their current sort is always correct.

For the original sort order, the situation is a little more complex. Here, the traditional rules
are in effect:

PUT(Queue):

Writes the record back to the same relative position in the original sort order as the GET
or ADD retrieved it. If the original sort order was modified since the last GET or ADD, it is
marked as unsorted.

4 — Entity Declarations 227

PUT(Queue,Pointer):

If the passed Pointer is equal to relative position in the original sort order of the record
that has been retrieved by GET or ADD, the statement is equivalent to PUT(queue).
Otherwise, the record is removed from its old position in the original sort order and is
added to the one specified by the new pointer value. If the original sort order becomes
broken after that, it is marked as unsorted.

PUT(Queue,Key)

If Key is a key that the original sort order is based on, and the key value is not changed,
PUT updates the record value in original sort order. If the key value is changed, the
record's value is removed from its old position and added to a new one, based on the
new key value. The original sort order always remains unbroken in this case.

If Key is not a key that the original sort order is based on, the original sort order is marked
as unsorted, the record's entry is removed from its old position, and a new one added
immediately before the first record it finds with the key value based on Key.

Because the search algorithm is based on the history of work with this queue and its
memory keys, it is impossible to say where the new position be be. Use the POINTER()
function to return it.

ADD(Queue)
Equivalent to ADD(Queue,RECORDS(Queue)+1)
ADD(Queue,Pointer)

The record in the queue buffer is added to given relative position in the original sort order.
If the original sort order becomes broken after that, it is marked as unsorted.

ADD(Queue,Key)

The record in the queue buffer is added immediately before first record in the original sort
order that has greater key value, or, to the end of the sort order if records with greater
key value are not found. If Key is a key that the original sort order is based on, this is the
correct position and the default sort order remains unbroken. Otherwise, it is marked as
unsorted. Similar to using PUT on another key value, the position of the added record is
unknown if the default sort order is not based on the Key.

228

Language Reference Manual

Example 1:

Q QUEUE
A LONG

B LONG
END

CODE
FREE(Q
QA=1
QB =5
AD(Q QA

There is only one sort order based on the (Q.A) key; it is the active memory key

SORT (Q QA QB)

Now, there are two sort orders that exist, based on a (Q.A) and (Q.A,Q.B) keys. The

latter key is now the active memory key.

The order of records is now:

(Q.A): (1,5)

(Q.-A,Q.B) (1, 5)

If we now execute:
QA=1

QB =1
ADD (Q QA QB)

The order of records is now:

(Q.A): (1,5) (1, 1)
(Q.A,Q.B): (1,1)(1,5)
Executing the statement:

GET(Q QA

Retrieves the (1, 5) record, because it is the first record matching the key value in the

current queue buffer based on (Q.A).

4 — Entity Declarations 229

Example 2:

Q QUEUE
A LONG

B LONG
END
CODE

FREE(Q
QA=1
QB =5
ADD (Q

There is one original sort order; and it is the active key.

SORT (Q QA QB)

Now, there is one sort order here based on the (Q.A,Q.B) key. It is now the new active
key.

The current order of records is:

(Q.A,Q.B) (1,5)
After executing the following:

QA=1
QB =1
ADD (Q QA QB)

The new order of records becomes:
(Q.-A.Q.B) 1,1 (1,5

Executing:

GET (Q QA

The sort order based on (Q.A) does not exist. Hence, it is created as a new sequence of
records in default order resorted with the (Q.A) key.

The memory keys after this GET:
(Q.A) (1,115
(Q.A,Q.B) (1,1) (1, 5)

The GET retrieves the (1, 1) record because it is the first record with the keyvalue that
matches the current queue buffer based on (Q.A).

230 Language Reference Manual

5 — Declaration Attributes 231

5 - Declaration Attributes
Variable and Entity Attributes

AUTO (uninitialized local variable)

AUTO

The AUTO attribute allows a variable, declared within a PROCEDURE, to be allocated
uninitialized stack memory. Without the AUTO attribute, a numeric variable is initialized to zero
and a string variable is initialized to all blanks when its memory is assigned at run-time.

The AUTO attribute is used when you do not need to rely on an initial blank or zero value
because you intend to assign some other value to the variable. This saves a small amount of run-
time memory by eliminating the internal code necessary to perform the automatic initialization for
the variable.

Example:

SoneProc PROCEDURE

SaveCust | D LONG AUTO I'Non-initialized | ocal variabl e
See Also:

Data Declarations and Memory Allocation

232 Language Reference Manual

BINARY (memo contains binary data)

BINARY

The BINARY attribute (PROP:BINARY) of a MEMO or BLOB declaration specifies the MEMO or
BLOB will receive data that is not just ASCII characters. This attribute is normally used to store
graphic images for display in an IMAGE field on screen. OEM conversion is not applied to MEMO
or BLOB fields with the BINARY attribute. Some file drivers (Clarion, Btrieve, xBase) assume that
the data in a BINARY MEMO or BLOB field is zero-padded, while non-BINARY data is space-
padded.

Example:

Names FI LE, DRI VER(' d arion'), PRE(Nam)
Nor Key KEY(Nam Nunber)

Picture MEMJ 48000), Bl NARY I Binary nenmo - 48,000 bytes
Rec RECORD
Nunber SHORT
END

END
See Also:
MEMO
BLOB
IMAGE

OEM

5 — Declaration Attributes 233

BINDABLE (set runtime expression string variables)

BINDABLE

The BINDABLE attribute declares a GROUP, QUEUE, FILE, or VIEW whose constituent
variables are all available for use in a runtime expression string. The contents of each variable's
NAME attribute is the logical name used in the dynamic expression. If no NAME attribute is
present, the label of the variable (including prefix) is used. Space is allocated in the .EXE for the
names of all of the variables in the structure. This creates a larger program that uses more
memory than it normally would. Therefore, the BINDABLE attribute should only be used when a
large proportion of the constituent fields are going to be used.

The BIND(group) form of the BIND statement must still be used in the executable code before the
individual fields in the QUEUE structure may be used.

Example:
Nanes QUEUE, Bl NDABLE I Bi ndabl e Record structure
Nane STRI NG 20)
Fil eName STRI NE 8), NAME(' FNane') I Dynam ¢ nane: FNane
Dot STRI NG(1) I Dynam ¢ nane: Dot
Ext ensi on STRI NG 3), NAME(' EXT') I Dynami ¢ nane: EXT

END
CODE
Bl ND(Nanes)

Nanes FI LE, DRI VER(' C arion'), BINDABLE ! Bi ndable Record structure
Record RECORD

Nane STRI NG(20)
Fil eNane STRI NG 8), NAMVE(' FNane') I Dynam ¢ nane: FNane
Dot STRI NG 1) I Dynami ¢ nane: Dot
Ext ensi on STRI NG 3), NAME(' EXT') I Dynami ¢ nane: EXT
END
END

CODE

OPEN(Narres)

Bl ND(Nanes)
Fi | eNanmes GROUP, Bl NDABLE I Bi ndabl e group
Fi | eName STRI N 8) , NAME(' FI LE') I Dynam ¢ nane: FILE
Dot STRING'.") I Dynam ¢ nane: Dot
Ext ensi on STRI NE 3), NAME(' EXT') I Dynami ¢ nane: EXT

END

See Also: BIND, UNBIND, EVALUATE

234 Language Reference Manual

CREATE (allow data file creation)

CREATE

The CREATE attribute (PROP:CREATE) of a FILE declaration allows a disk file to be created by
the CREATE statement from within the PROGRAM where the FILE is declared. This adds some
overhead, as all the file information must be contained in the excutable program.

Example:

Names FI LE, DRI VER(' C arion'), CREATE IDeclare a file, allow create
Rec RECORD
Nare STRI NG 20)
END
END

5 — Declaration Attributes 235

DIM (set array dimensions)

DIM(dimension,...,dimension)

DIM Declares a variable as an array.

dimension A positive numeric constant which specifies the number of elements in this
dimension of the array.

The DIM attribute declares a variable as an array. The variable is repeated the number of times
specified by the dimension parameters. Multi-dimensional arrays may be thought of as nested.
Each dimension in the array has a corresponding subscript. Therefore, referencing a variable in a
three dimensional array requires three subscripts. There is no limit to the number of dimensions;
however, the total size of an array is unlimited. Zero or negative array elements are invalid.

Subscripts identify which element of the array is being referenced. A subscript list contains a
subscript for each dimension of the array. Each subscript is separated by a comma and the entire
list is enclosed in brackets ([]). A subscript may be a numeric constant, expression, or function.
The entire array may be referenced by the label of the array without a subscript list.

A GROUP structure array is a special case. Each level of nesting adds subscripts to the GROUP.
Data declared within the GROUP is referenced using standard Field Qualification syntax with
each subscript specified at the GROUP level at which it is dimensioned.

236 Language Reference Manual

Scr. Rowf 1] . Pos[1] . Attr is a single BYTE
Scr. Rowf 1] . Pos[1] . Char is a single BYTE

Example:
Scr GROUP I Characters on a DOS text-node screen
Row GROUP, DI M 25) !Twenty-five rows
Pos GROUP, DI M'80) ! Two t housand positions
Attr BYTE IAttribute byte
Char BYTE I Character byte
END I Termi nate the group structures
END
END
! In the group above:
! Scr is a 4,000 byte GROUP
[Scr. Row is a 4,000 byte GROUP
! Scr. Rowf 1] is a 160 byte GROUP
! Scr. Row 1] . Pos is a 160 byte GROUP
! Scr. Rowf 1] . Pos[1] is a2 byte GROUP
]
1

Month STRING(10), DI M 12) !Dinension the nonth to 12

CODE

CLEAR(Mont h) I Assign blanks to the entire array
Mont h[1] = 'January' !Load the nonths into the array
Mont h[2] ' February'

Mont h{ 3] ' Mar ch'

See Also:
MAXIMUM

Prototype Parameter Lists (Passing Arrays)

5 — Declaration Attributes 237

DLL (set variable defined externally in .DLL)

DLL([flag])

DLL Declares a variable, FILE, QUEUE, GROUP, or CLASS defined externally in a
.DLL.

flag A numeric constant, equate, or Project system define which specifies the

attribute as active or not. If the flag is zero, the attribute is not active, just as if it
were not present. If the flag is any value other than zero, the attribute is active.

The DLL attribute specifies that the declaration (this may any variable declaration, or a FILE,
QUEUE, GROUP, or CLASS structure) on which it is placed is defined in a .DLL. A declaration
with DLL attribute must also have the EXTERNAL attribute. The DLL attribute is required for 32-
bit applications because .DLLs are relocatable in a 32-bit flat address space, which requires one
extra dereference by the compiler to address the variable. The DLL attribute is not valid on
variables declared within FILE, QUEUE, CLASS, or GROUP structures.

The declarations in all libraries (or .EXES) must be EXACTLY the same (with the appropriate
addition of the EXTERNAL and DLL attributes). If they are not exactly the same, data corruption
could occur. Any incompatibilities between libraries cannot be detected by the compiler or linker,
therefore it is the programmer's responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL on declarations shared by .DLLs and .EXE, only one .DLL
should define the variable, FILE, CLASS, or QUEUE without the EXTERNAL and DLL attributes.
All the other .DLLs (and the .EXE) should declare the variable, FILE, CLASS, or QUEUE with the
EXTERNAL and DLL attributes. This ensures that there is only one memory allocation for the
variable, FILE, CLASS, or QUEUE and all the .DLLs and the .EXE will reference the same
memory when referring to that variable, FILE, or QUEUE.

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same
variables would have one .DLL containing the actual data definition that only contains FILE and
global variable definitions that are shared among all (or most) of the .DLLs and .EXEs. This
makes one central library in which the actual file definitions are maintained. This one central .DLL
is linked into all .EXEs that use those common files. All other .DLLs and/or .EXEs in the system
would declare the common variables with the EXTERNAL and DLL attributes.

There is a pre-defined flag used by the IDE Project System and the Application Generator.
ABCDIIMode Used by the ABC template chain on all CLASS definitions to indicate that

the CLASS is declared in an external .DLL. A project DEFINE is used to
toggle the DLL mode.

238 Language Reference Manual

Example:

Tot al Count LONG EXTERNAL, DLL(dI | _nbde) I'A variable declared in an external .DLL
Cust FI LE, PRE(Cus), EXTERNAL("' '), DLL(1) !File defined in PROGRAM nodul e of a .DLL
Cust Key KEY(Cus: Nane)
Recor d RECORD
Nane STRI N& 20)
END
END

DLLQueue QUEUE, PRE(Que) , EXTERNAL, DLL(1) !A queue declared in an external .DLL
Tot al Count LONG
END

Edi t Ent ryd ass CLASS(Edit O ass), TYPE, MODULE(' ABEI P. CLW), LI NK(' ABEI P. CLW, |
ABCLi nkMbde_), DLL(_ABCDI | Mbde)

Er eat eControl PROCEDURE, VI RTUAL, PROTECTED
END

See Also:

EXTERNAL

5 — Declaration Attributes 239

DRIVER (specify data file type)

DRIVER(filetype [,driver string])

DRIVER Specifies the file system the file uses.
filetype A string constant containing the name of the file manager (Btrieve, Clarion, etc.).

driver string A string constant or variable containing any additional instructions to the file
driver. All the valid values for this parameter are listed in each file driver's
documentation.

The DRIVER attribute (PROP:DRIVER) specifies which file driver is used to access the data file.
DRIVER is a required attribute of all FILE declarations.

Clarion programs use file drivers for physical file access. A file driver acts as a translator between
a Clarion program and the file system, eliminating different access commands for each file
system. File drivers allow access to files from different file systems without changes in the Clarion
syntax.

The specific implementation method of each Clarion file access command is dependent on the
file driver. Some commands may not be available in a file driver due to limitations in the file
system. Each file driver is documented in the User's Guide. Any unsupported file access
commands, FILE declaration attributes, data types, and/or file system idiosyncracies are listed
there.

If the file is declared without the THREAD attribute, the driver string variable (PROP:DriverString)
used with the DRIVER attribute should also be declared without the THREAD atttibute.

Example:

Names FILE, DRI VER(' d arion') IBegin file declaration
Record RECORD

Nane STRI NG 20)

END
END

240 Language Reference Manual

DUP (allow duplicate KEY entries)

DUP

The DUP attribute (PROP:DUP) of a KEY declaration allows multiple records with the same key
values to occur in a FILE. If the DUP attribute is omitted, attempting to ADD or PUT records with
duplicate key values will generate the "Creates Duplicate Key" error, and the record will not be
written to the file. During sequential processing using the KEY, records with duplicate key values
are accessed in the physical order their entries appear in the KEY. The GET and SET statements
generally access the first record in a set of duplicates.

The DUP attribute is unnecessary on INDEX declarations because an INDEX always allows
duplicate entries.

Example:
Nanes FI LE, DRI VER(' d ari on'), PRE(Nam)
NanmeKey KEY(Nam Nane), DUP I Decl are nane key, allow duplicate nanes
Nor Key KEY(Nam Number) I Decl are nunber key, no duplicates all owed
Rec RECORD
Nane STRI NG 20)
Number SHORT
END

END
See Also:
KEY
GET

SET

5 — Declaration Attributes 241

ENCRYPT (encrypt data file)

ENCRYPT

The ENCRYPT attribute (PROP:ENCRYPT) is used in conjunction with the OWNER attribute to
disguise the information in a data file. ENCRYPT is only valid with an OWNER attribute. Even
with a "hex-dump" utility, the data in an encrypted file is extremely difficult to decipher.

Example:

Names FILE DRI VER(' d arion'), OMER(' C arion'), ENCRYPT
Record RECORD
Nane STRI NG 20)
END
END

See Also:
OWNER
EXTERNAL

242 Language Reference Manual

EXTERNAL (set defined externally)

EXTERNAL(member)

EXTERNAL Specifies the variable, FILE, QUEUE, GROUP, or CLASS is defined in an
external library.

member A string constant (valid only on FILE, GROUP, or QUEUE declarations)
containing the filename (without extension) of the MEMBER module containing
the actual FILE definition (the one without an EXTERNAL attribute). If the FILE,
GROUP or QUEUE is defined in a PROGRAM module or in a "universal member
module” (i.e., MEMBER statement for that module has no parameter), an empty
string (") can be used as a parameter of the EXTERNAL attribute, or the
parameter can be omitted.

The EXTERNAL attribute specifies the variable, FILE, QUEUE, GROUP, or CLASS on which itis
placed is defined in an external library. Therefore, a variable, FILE, QUEUE, GROUP, or CLASS
with the EXTERNAL attribute is declared and may be referenced in the Clarion code, but is not
allocated memory--the memory for the variable, FILE, QUEUE, GROUP, or CLASS is allocated
by the external library. This allows the Clarion program access to any variable, FILE, QUEUE,
GROUP, or CLASS declared as public in external libraries. The EXTERNAL attribute is not valid
on variables declared inside FILE, QUEUE, GROUP, or CLASS structures.

When using EXTERNAL(member) to declare a FILE shared by multiple libraries (.LIBs, or .DLLs
and .EXE), only one library should define the FILE without the EXTERNAL attribute. All the other
libraries (and the .EXE) should declare the FILE with the EXTERNAL attribute. This ensures that
there is only one record buffer allocated for the FILE and all the libraries and the .EXE will
reference the same memory when referring to data elements from that FILE.

The declarations in all libraries (or .EXEs) must be EXACTLY the same (with the appropriate
addition of the EXTERNAL and DLL attributes). For example, the FILE declarations in all libraries
(or .EXES) that reference common files must contain exactly the same keys, memos, and fields
declared in exactly the same order. If they are not exactly the same, data corruption could occur.
Any incompatibilities between libraries cannot be detected by the compiler or linker, therefore it is
the programmer's responsibility to ensure that consistency is maintained.

Do not place the OWNER, ENCRYPT, or NAME attributes on a FILE which has the EXTERNAL
attribute. These attributes should only be on the FILE structure declared without the EXTERNAL,
because the EXTERNAL declaration is actually a re-declaration of a FILE already declared
elsewhere. Therefore, these attributes are unnecessary.

5 — Declaration Attributes 243

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same
files would have one .DLL containing the actual FILE definition that only contains FILE and global
variable definitions that are shared among all (or most) of the .DLLs and .EXEs. This makes one
central library in which the actual file definitions are maintained. This one central .DLL is linked
into all .EXEs that use those common files. All other .DLLs and/or .EXEs in the system would
declare the common FILEs with the EXTERNAL attribute.

Example:

PROGRAM
VAP
MODULE("' LI B.LIB")
AddCount PROCEDURE I External library procedure
END
END

Tot al Count LONG, EXTERNAL 'A variable declared in an external library
Cust FI LE, PRE(Cus) , EXTERNAL("' ") 'A File defined in a PROGRAM nodul e
Cust Key KEY(Cus: Nane) ! whose .LIBis linked into this program
Recor d RECORD
Nanme STRI NG 20)
END
END

Cont act FI LE, PRE(Con) , EXTERNAL(' LI BO1') 'A File defined in a MEMBER nodul e

Cont act Key KEY(Con: Nane) I whose .LIBis linked into this program
Record RECORD
Nane STRI N& 20)
END
END

I The LIB.CLWfile contains:

PROGRAM
VAP
MODULE(" LI BO1')
AddCount PROCEDURE I'Li brary procedure
END
END
Tot al Count LONG I The Total Count variable definition
Cust Fl LE, PRE(Cus) I The Cust File definition where the
Cust Key KEY(Cus: Nane) I record buffer is allocated
Record RECORD
Nane STRI NG 20)

END
END

244 Language Reference Manual

CODE
| Execut abl e code ...

| The LIBO1. CLWfile contains:
MEMBER(' LI B')

Cont act FI LE, PRE(Con) ! The Contact File definition where the
Cont act Key KEY(Con: Nane) I record buffer is allocated
Record RECORD
Nane STRI NE 20)
END
END

AddCount PROCEDURE
CCODE
Tot al Count += 1

5 — Declaration Attributes 245

FILTER (set view filter expression)

FILTER(expression)

FILTER Specifies a filter expression used to evaluate records to include in the VIEW.
expression A string constant containing a logical expression.

The FILTER attribute (PROP:FILTER) specifies a filter expression used to evaluate records to
include in the VIEW.

The expression may reference any field in the VIEW, at all levels of JOIN structures. The entire
expression must evaluate as true for a record to be included in the VIEW. The expression may
contain any valid Clarion language logical expression. The expression is evaluated at runtime

(just like the EVALUATE procedure), therefore you must BIND all variables used in the
expression.

Use of MATCH with PROP:Filter and SQL Databases

The use of PROP:Filter as an SQL filter generator for SQL databases now supports converting
the MATCH(s1, s2, n) function result to an appropriate SQL filter for all values of n, except
Match:Regular. If you use the Match:Regular mode, the filter will be evaluated on the client side
just like all other non-SQL convertible filters.

Other conversion rules:

MATCH(s1, s2, Mat ch: Si npl e) will be converted to

sl = s2

for all SQL drivers.

MATCH(s1, s2, Mat ch: Soundex) will be converted to
{fn SOUNDEX(s1)} = {fn SOUNDEX(s2)}

for all ODBC back ends that support the SOUNDEX function.

MATCH(s1, s2, Mat ch: Soundex) will be converted to
SOUNDEX(s1) = SOUNDEX(s2)

for the Oracle Accelerator.

246 Language Reference Manual

MATCH(s1, s2, Mat ch: Si npl e + Mat ch: NoCase) will be converted to

{fn UPPER(s1)} = {fn UPPER(s2)}

for all ODBC drivers.

MATCH(s1, s2, Match: Si npl e + Mat ch: NoCase) will be converted to

UPPER(s1) = UPPER(s2)

for the Oracle Accelerator.

MATCH(s1,s2) ! Match: Wl d node

Will be converted to

sl LIKE %
if the s2 parameter is using an asterisk (*), or

sl LIKE _
if the s2 parameter is using a question mark (?) wild card.

This is valid for all SQL drivers.

Adding the Match:NoCase mode to the Match:Wild mode is converted to
{fn UPPER(s1)} LIKE %or{fn UPPER(s1)} LIKE _
for all ODBC drivers.

Adding the Match:NoCase mode to the Match:Wild mode is converted to
UPPER(s1) LIKE %or UPPER(s1) LIKE _
for the Oracle Accelerator.

Example:

BRW.: : Vi ew. Browse VI EW Menber s)
PRQIECT(Mem Menber Code, Mem Last Nane, Mem Fi r st Nane)
END
KeyVal ue STRI NG 20)

IGet only orders for custoner 9999 since order number 100
Vi ewOr der VI EW Custoner), FI LTER(' Cus: Acct Number = 9999 AND Hea: Or der Nunber > 100')

5 — Declaration Attributes 247

PRQIECT(Cus: Acct Nunber, Cus: Nane)
JO N(Hea: Acct Key, Cus: Acct Number) 1Join Header file
PRQIECT(Hea: Or der Nunber)
JO N(Dtl: O derKey, Hea: Order Nunber) !Join Detail file
PRQJECT(Det: I tem Det: Quantity)

JON(Pro:ltenKey,Dtl:Item 1Join Product file
PRQIECT(Pr o: Descri ption, Pro: Price)
END
END
END
END !vi ew

CODE

Bl ND(' KeyVal ue' , KeyVal ue)

Bl ND(Mem Recor d)

KeyValue = 'Smth'

BRW.: : Vi ew. Browse{PROP: Filter} = 'Mem Last Name = KeyValue' !Specify filter condition

OPEN(BRWL.: : Vi ew. Br owse) I Open the view

SET(BRWL: : Vi ew: Br owse) land set to the begi nning
lof the filtered

CODE land ordered result set

OPEN((Cust omrer, 22h); OPEN((Header, 22h); OPEN((Product, 22h); OPEN(Detail, 22h)
Bl ND(' Cus: Acct Nurber ' , Cus: Acct Nunber)
Bl ND(' Hea: Or der Nunmber ' , Hea: Or der Nunber)
SET(Cus: Acct Key)
OPEN(Vi ewCOr der)
LooP
NEXT(Vi ewCr der)
| F ERRORCCDE() THEN BREAK.
I'Process the valid record
END
UNBI ND(' Cus: Acct Nunber ', Cus: Acct Nunber)
UNBI ND(' Hea: Acct Nunber ', Hea: Acct Nunber)
CLOSE(Header); CLGCSE(Custormer); CLOSE(Product); CLOSE(Detail)

See Also:
BIND
UNBIND
EVALUATE

248 Language Reference Manual

IMPLEMENTS(add methods to a CLASS)

IMPLEMENTS(interface)

IMPLEMENTS Adds additional methods to a CLASS.

interface A previously defined INTERFACE structure whose methods will be defined by
the CLASS that is implementing the specified interface.

When a class IMPLEMENTS an interface, it inherits all methods that are defined in the
INTERFACE. A class may IMPLEMENT multiple INTERFACEs. The class must define all
methods declared in each INTERFACE that is implemented.

Example:
Ml nterface | NTERFACE I Interface structure
MyProcl PROCEDURE I Met hod prototype
MyProc2 PROCEDURE I Met hod prototype
END
MyC ass CLASS, | MPLEMENTS(Myl nt er f ace) I dass
END
My d ass. Myl nterface. MyProcl ! Met hod decl arati on
CODE
My C ass. Myl nterface. MyProc2 ! Met hod decl arati on
CODE
See Also:

INTERFACE

5 — Declaration Attributes 249

INTERFACE (class behavior definition)

label INTERFACE ([parentinterface]) [, TYPE]
[methods]

END

INTERFACE A collection of methods to be used by the class that implements the interface.

parentinterface The label of a previously declared INTERFACE structure whose methods are
inherited by the new INTERFACE. This may be an INTERFACE with the TYPE

attribute.

TYPE Specify the INTERFACE is only a type definition. TYPE is implicit on an
INTERFACE but may be explicitly specified.

methods PROCEDURE prototypes

An INTERFACE is a structure, which contains the methods (PROCEDURES) that define the
behavior to be implemented by a CLASS. It cannot contain any property declarations. All

methods defined within the INTERFACE are implicitly virtual. A period or the END statement must
terminate an INTERFACE structure.

Derived INTERFACEs (Inheritance)

An INTERFACE declared with the parentinterface parameter creates a derived interface that
inherits all the methods of the named parentinterface. The derived interface may also contain its
own methods.

Any method prototyped in the derived interface with the same name as a method in the
parentinterface overrides the inherited method if both have the same parameter lists. If the two
methods have different parameter lists, they create polymorphic functions in the derived interface
that must follow the rules of Procedure Overloading.

VIRTUAL Methods (Polymorphism)

All methods in an INTERFACE are implicitly virtual, although the virtual attribute may be explicitly
specified for clarity.

VIRTUAL methods in the derived interface may directly call the parentinterface method of the
same name by prepending PARENT to the method's name. This allows incremental derivation
wherein a derived interface method may simply call up to the parentinterface method to perform
its functionality, and then extend it for the requirements of the derived interface.

250 Language Reference Manual

Method Definition

The PROCEDURE definition of a method (its executable code, not its prototype) is defined by the
CLASS that is implementing the INTERFACE. All methods for an interface must be defined in the
IMPLEMENTING class.

Referencing INTERFACE methods in your code

You must call the methods of an INTERFACE by using dot notation syntax (by prepending the
label of the CLASS to the label of the INTERFACE to the label of the method).

For example, using the following INTERFACE and CLASS declaration:
M/l nterface | NTERFACE

MyPr oc PROCEDURE
END
MW d ass CLASS, | MPLEMENTS(Myl nt er f ace)
END
You may call the MyProc PROCEDURE as:
CODE

Myd ass. Myl nterface. MyProc

See Also:

IMPLEMENTS

5 — Declaration Attributes 251

INNER (set inner join operation)

INNER

The INNER attribute (PROP:INNER) specifies the JOIN structure declares an "inner join" instead
of the default "left outer join."

The VIEW structure defaults to a "left outer join,” where all records for the VIEW's primary file are
retrieved whether the secondary file named in the JOIN structure contains any related records or
not. Specifying the INNER attribute on the JOIN creates an "inner join" so that only those primary
file records with related secondary file records are retrieved. Inner joins are normally more
efficient than outer joins.

PROP:INNER is an array property of a VIEW indicating the presence or absence of the INNER
attribute on a specific JOIN. Each array element returns one ('1") if the JOIN has the INNER
attribute and blank (") if it does not. The JOINs are numbered within the VIEW starting with 1 as
they appear within the VIEW structure. (READ ONLY)

Example:
AVi ew VI EW BaseFil e)
JO N(ParentFil e, BaseFile.parent|D = ParentFile.I D) I1JON 1
JO N(GandParent . Pri maryKey, ParentFil e. G andParent| D) I1JON 2
END
END
JO N(Q her Par ent . Pri mar yKey, BaseFil e. 0t herParent1 D), I NNER ! JON 3
END
END

I AVi eW{ PROP: | nner, 1} returns "'
I AVi e{ PROP: | nner, 2} returns "'
I AVi eW{ PROP: | nner, 3} returns '1'

Vi ewOr der VI EW Cust omrer), ORDER(' - Hea: Or der Dat e, Cus: Nane')
PRQIECT(Cus: Acct Nunber, Cus: Nane, Cus: Zi p)

JO N(Hea: Acct Key, Cus: Acct Nunber), | NNER I'l nner Join on Header
PRQIECT(Hea: Or der Nunber , Hea: Or der Dat e) I gets only custnmers with orders
JO N(Dtl: O derKey, Hea: Order Nunber), INNER !l nner join on Detail file
PRQJECT(Det: I tem Det: Quantity) I is natural and nore efficient
JON(Pro:ltenKey,Dtl:1tem, | NNER I'lnner join on Product file
PRQIECT(Pro: Description, Pro: Price) I is natural and nore efficient
END
END
END
END

See Also: JOIN

252 Language Reference Manual

LINK (specify CLASS link into project)

LINK(linkfile, [flag])

LINK Names a file to add to the link list for the current project.

linkfile A string constant naming an file (without an extension .OBJ is assumed) to link
into the project. Normally, this would be the same as the parameter to the
MODULE attribute, but may explicitly name a .LIB or .OBJ file.

flag A numeric constant, equate, or Project system define which specifies the
attribute as active or not. If the flag is zero or omitted, the attribute is not active,
just as if it were not present. If the flag is any value other than zero, the attribute
is active.

A LINK attribute of a CLASS structure names a linkfile to add to the compiler's link list for the
project. LINK is only valid on a CLASS structure.

Example:
OneCl ass CLASS, MODULE(' Oned ass'), LI NK(' Oned ass', 1) I'Link in OneC ass. OBJ
Loadl t PROCEDURE
Conmputelt PROCEDURE
END
See Also:
CLASS
MEMBER

MODULE

5 — Declaration Attributes 253

MODULE (specify CLASS member source file)

MODULE(sourcefile)

MODULE Names a MEMBER module or external library file.

sourcefile A string constant. If the sourcefile contains Clarion language source code, this
specifies the filename (extension is optional) of the source file that contains the
PROCEDUREs. If the sourcefile is an external library, this string may contain any
unique identifier.

A MODULE attribute of a CLASS structure names a MEMBER module or external library file
which contains the PROCEDURE definitions for the CLASS's member methods. MODULE is only
valid on a CLASS structure.

Example:
OneCl ass CLASS, MODULE(' Oned ass') I Met hod definitions in Oned ass. CLW
Loadl t PROCEDURE I Loadlt procedure prototype
Comput el t PROCEDURE I Comput el't procedure prototype
END
See Also:
CLASS
MEMBER
LINK

PROCEDURE Prototypes

254 Language Reference Manual

NAME (set external name)

NAME([name])

NAME Specifies an external name.

name A string constant containing the external name or the label of a static string
variable. This may be declared as Global data, Module data, or Local data with
the STATIC attribute..

The NAME attribute (PROP:NAME) specifies an external name. The NAME attribute is
completely independent of the EXTERNAL attribute--there is no required connection between the
two, although both attributes may be used on the same declaration.

The NAME attribute may be placed on a PROCEDURE Prototype, FILE, KEY, INDEX, MEMO,
any field declared within a FILE, any field declared within a QUEUE structure, or any variable not
declared within a structure. The NAME attribute has different implications depending on where it
is used.

PROCEDURE Prototype Usage

NAME may be specified on a PROCEDURE Prototype. The name supplies the external name
used by the linker to identify the procedure or function from an external library.

Variable Usage

NAME may be used on any variable declared outside of any structure. This provides the linker
with an external name to identify a variable declared in an external library. If the variable also has
the EXTERNAL attribute, it is declared, and its memory is allocated, as a public variable in the
external library. Without the EXTERNAL attribute, it is declared, and its memory is allocated, in
the Clarion program, and it is declared as an external variable in the external library.

FILE Usage

On a FILE statement, NAME specifies the filename of the data file for the file driver. If the name
does not contain a drive and path, the current drive and directory are assumed. If the extension is
omitted, the directory entry assumes the file driver's default value.

Some file drivers require that KEYs, INDEXes, or MEMOs be in separate files. Therefore, a
NAME may also be placed on a KEY, INDEX, or MEMO declaration. A NAME attribute without a
name parameter defaults to the label of the declaration statement on which it is placed (including
any specified prefix).

NAME may be used on any field declared within a RECORD structure (the name parameter must
be a constant, in this case). This provides the file driver with the name of a field as it may be used
in that driver's file system.

5 — Declaration Attributes 255

You can dynamically change the name of a field within a FILE using PROP:NAME as an array.
The array element number references the ordinal position of the field within the FILE.

The NAME attribute is considered a part of the file structure, and care should be taken not to
have threaded variables used by NAME referenced by non-threaded files.

For example:

Fi | eName STRI NG(255)
TFi | eName STRI NG 255) , THREAD

Fil e FILE, NAME(TFi | eNane) ' Wong
Fi I e FI LE, NAME(Fi | eNane) I'Valid
Fi | e FI LE, NAME(TFi | eNane) , THREAD I'Valid
Fi Il e FILE, NAME(Fi | eNane) , THREAD I'Valid

QUEUE Usage

The NAME attribute on a variable declared in a QUEUE structure specifies an external name for
gueue processing. The name provides an alternate method of addressing the variables in the
QUEUE which may be used by the SORT, GET, PUT, and ADD statements.

Example:

PROGRAM
VAP
MODULE(" Ext ernal . Gbj ')
AddCount PROCEDURE(LONG), LONG C, NAME(' _AddCount ') IC function nanmed ' _AddCount’
END

END
Cust FI LE, PRE(Cus), NAME(Cust Nane) I'Filenane in CustNanme variable
Cust Key KEY(' Nane'), NAME(' c:\data\cust.idx") I Decl are key, cust.idx
Record RECORD
Narme STRI NG 20) I Default NAME to ' Cus: Nane'
END
END

Sort Que QUEUE

Fieldl STRINE 10), NAME(' FirstField") I QUEUE SORT NAME
Fi el d2 LONG NAME(' SecondFi el d') I QUEUE SORT NAME
END
Current Cnt LONG EXTERNAL, NAME(' Cur') IField declared public in
| external library as 'Cur'
Total Cnt LONG NAME(' Tot') I Field decl ared external

I in external library as 'Tot'

256 Language Reference Manual

CODE
OPEN(Cust)
Cust { PROP: NAME, 1} = ' Fred' I Cus: Nane field now referenced as

"Fred'

See Also:
PROCEDURE Prototypes, QUEUE, SORT, GET. PUT. ADD. FILE, KEY, INDEX, EXTERNAL

5 — Declaration Attributes 257

258 Language Reference Manual

NOCASE (case insensitive KEY or INDEX)

NOCASE

The NOCASE attribute (PROP:NOCASE) of a KEY or INDEX declaration makes the sorted
sequence of alphabetic characters insensitive to the ASCII upper/lower case sorting convention.
All alphabetic characters in key fields are converted to upper case as they are written to the KEY.
This case conversion has no affect on the case of the stored data. The NOCASE attribute has no
effect on non-alphabetic characters.

Example:

Names FI LE, DRI VER(' O arion'), PRE(Nam)
NameKey KEY(Nam Nane), NOCASE ! Decl are nane key, nmke case insensitive

Nor Key KEY(Nam Nurber) I Decl are nunber key
Rec RECORD
Nane STRI N& 20)
Nunber SHORT
END

END
See Also:
INDEX

KEY

5 — Declaration Attributes 259

OEM (set international string support)

OEM

The OEM attribute (PROP:OEM) specifies that the FILE on which it is placed contains non-
English language string data that was stored by a DOS based program or needs to be read by a
DOS based program. These strings are automatically translated from the OEM ASCII character
set data contained in the file to the ANSI character set for display in Windows. All string data in
the record is automatically translated from the ANSI character set to the OEM ASCII character set
before the record is written to disk.

The specific OEM ASCII character set used for the translation comes from the DOS code page
loaded by the country.SYS file. This makes the data file specific to the language used for that
code page, and means the data may not be useable on a computer with a different code page
loaded. This attribute may not be supported by all file systems; consult the specific file driver's
documentation.

Example:

Cust FI LE, DRI VER("' TopSpeed'), PRE(Cus), OEM ! Contai ns international strings
Cust Key KEY(Cus: Nane)
Recor d RECORD
Name STRI NG(20)
END
END
Screen W NDOW' W ndow)
ENTRY(@20) , USE(Cus: Nan®)
BUTTON(' &X'), USE(?Ck) , DEFAULT
BUTTON(' &Cancel '), USE(?Cancel)
END
CODE
OPEN(Cust) I Open Cust file
SET(Cust); NEXT(Cust) !Get record, ASCI| strings are automatically
I translated to ANSI character set
OPEN(Scr een) I Open wi ndow and di splay ANSI data
ACCEPT
CASE FI ELD()
OF ?2Ck
CASE EVENT()
OF EVENT: Accept ed
PUT(Cust) I Put record, ANSIstrings are autonatically
I translated to the OEM ASCI| character set
I per the | oaded DOS code page
BREAK
END
END
END
CLOSE(Scr een) ; CLOSE(Cust)

260 Language Reference Manual

OPT (exclude null KEY or INDEX entries)

OPT

The OPT attribute (PROP:OPT) excludes entries in the KEY or INDEX for records with "null”
values in all fields comprising the KEY or INDEX. For the purpose of this attribute, a "null" value is
defined as zero in a numeric field or all blank spaces (20h) in a string field.

Example:
Nanes FI LE, DRIVER(' C arion'), PRE(Nanm) !Declare a file structure
NameKey KEY(Nam Nane), OPT I Decl are nane key, exclude bl anks
Nor Key KEY(Nam Nunber), OPT I Decl are nunber key, exclude zeroes
Rec RECCORD
Nane STRI NG(20)
Nunber SHORT
END

END
See Also:
INDEX

KEY

5 — Declaration Attributes 261

ORDER (set view sort order expression)

ORDER(expression list)

ORDER Specifies an expression list used to sort the records in the VIEW.

expression list A single string constant containing one or more expressions. Each expression in
the list must be separated by a comma from the preceding expression.

The ORDER attribute (PROP:ORDER) specifies an expression list used to sort the records in the
VIEW. The expressions within the expression list evaluate from left to right, with the leftmost
expression defining the most significant sort and the rightmost defining the least significant sort.
Expressions that begin with a unary minus (-) sort in descending order.

The expression may reference any field in the VIEW, at all levels of JOIN structures. The
expressions in the expression list may contain any valid Clarion language expression. The
expression list is evaluated at runtime (just like the EVALUATE procedure), therefore you must
BIND all variables used in the expression.

For non-SQL file systems, the VIEW will use keys to do most of the sorting wherever possible,
sorting only groups of records which have the same key values, keeping one 'bucket’ sorted.
Therefore, additional sort fields on top of a key can be quite efficient.

For SQL file systems, PROP:SQLOrder is an SQL-only equivalent to PROP:ORDER. For both of
these properties, if the first character of the expression assigned to them is a plus sign (+) then
that expression is concatenated to the existing order expression. For PROP:SQLOrder, if the first
character of the expression assigned is a minus sign (-) then the existing order expression is
concatenated to that expression. If the first character is not plus (or minus), the new expression
overrides the existing expression.

Example:

IOrders sorted in descending date order, then custoner name (by nanme within each date)
Vi ewOr der VI EW Cust oner), ORDER(' - Hea: Or der Dat e, Cus: Nane')
PRQIECT(Cus: Acct Nunber, Cus: Nane, Cus: Zi p)
JA N(Hea: Acct Key, Cus: Acct Nurber) IJoi n Header file
PRQIECT(Hea: Or der Nunber , Hea: Or der Dat e)
JO N(Dt1: O der Key, Hea: Or der Nurrber) 1Join Detail file
PRQIECT(Det: Item Det: Quantity)
JON(Pro:ltenKey,Dtl:Item 1Join Product file
PRQIECT(Pro: Description, Pro: Price)
END
END
END
END
CODE
Vi ewOr der { PROP: ORDER} = ' -Hea: OrderDate, Pro: Price-Det: Di scount Price'

262 Language Reference Manual

I Orders sorted by greatest discount within descending order date

I'ABC | npl ement ati on exanpl e of PROP: SQLORDER
I For browse, after files and w ndow are opened

BRW.: : Vi ew. Br owse{ PROP: SQLOrder} = ‘ Phone’

Iwhere Phone is a colum nane in SQ dat abase
I For reports, after files and progress wi ndow are opened:

Process: Vi eW{ PROP: SQLOrder} = ‘au_l name’

Iwhere au_l nane is a colum nanme in SQ. database

See Also:
BIND
UNBIND
EVALUATE

5 — Declaration Attributes 263

OVER (set shared memory location)

OVER(overvariable)

OVER Allows one memory address to be referenced two different ways.
overvariable The label of a variable that already occupies the memory to be shared.

The OVER attribute allows one memory address to be referenced two different ways. The
variable declared with the OVER attribute must not be larger than the overvariable it is being
declared OVER (it may be smaller, though).

You may declare a variable OVER an overvariable which is part of the parameter list passed into
a PROCEDURE.

A field within a GROUP structure cannot be declared OVER a variable outside that GROUP
structure.

Example:
SoneProc PROCEDURE(PassedGr oup) I Proc receives a GROUP paraneter
NewGr oup GROUP, OVER(PassedGr oup) I Redecl are passed GROUP par anet er
Fi el d1 STRI NG 10) I Conpi | er warning issued that
Fi el d2 STRI NE 2) I NewGr oup rust not be | arger
END I't han PassedG oup
Cust Not e FI LE, PRE(Csn) I Declare CustNote file
Not es MEMO(2000) I The meno field
Record RECORD
Cust1 D LONG
END
END

CsnMenpRow STRI NG 10), DI M 200) , OVER(Csn: Not es)
I Csn: Notes neno nay be addressed
I as a whole or in 10-byte chunks

See Also:

DIM

264 Language Reference Manual

OWNER (declare password for data encryption)

OWNER(password)
OWNER Specifies a file encryption password.
password A string constant or variable.

The OWNER attribute (PROP:OWNER) specifies the password which is used by the ENCRYPT
attribute to encrypt the data. An "Invalid Data File" error occurs if the password does not match
the password that was actually used to encrypt the file.

An OWNER attribute without an accompanying ENCRYPT attribute is allowed by some file
systems.

If the file is declared without the THREAD attribute, the variable used with the OWNER attribute
should also be declared without the THREAD atttibute.

Example:

Custoner FILE, DRI VER(' O arion'), OMER(' abCdeF'), ENCRYPT ! Encrypt password "abCdeF"
Record RECORD

Nane STRI N& 20)
END
END
See Also:
ENCRYPT

EXTERNAL

5 — Declaration Attributes 265

PRE (set label prefix)

PRE([prefix])

PRE Provides a label prefix for complex data structures.

prefix Acceptable characters are alphabet letters, numerals 0 through 9, and the
underscore character. A prefix must start with an alpha character or underscore.
By convention, a prefix is 1-3 characters, although it can be longer.

The PRE attribute provides a label prefix for a FILE, QUEUE, GROUP, REPORT, or ITEMIZE structure. PI
also valid on a LIKE declaration to provide a separate prefix when LIKE is used to declare another copy of
complex data structure.

PRE is used to distinguish between identical variable names that occur in different structures. When a dat¢
element from a complex data structure is referenced in executable statements, assignments, and paramet
the prefix is attached to its label by a colon (Pre:Label).

PRE is essentially a legacy attribute which is being replaced by a more flexible method to distinguish betw:
identical variable names that occur in different structures: Field Qualification syntax. When referenced in
executable statements, assignments, and parameter lists, the label of the structure containing the field is a
to the field label by a period (GroupName.Label).

Example:
MasterFile FILE, DRI VER(' O arion'), PRE(Mst) I Declare nmaster file |ayout
Record RECORD
Acct Nunber LONG !Referenced as Mst: Acct Nunber or MasterFile. Acct Nunber

END

END
Det ai | FI LE, DRIVER(' d arion'), PRE(Dt1) I Declare detail file |ayout
Record RECORD
Acct Nunber LONG !Referenced as Dtl: Acct Nunber or Detail.Acct Nunber
END
END

SaveQueue QUEUE, PRE(Sav)

Acct Number LONG | Ref erenced as Sav: Acct Number or SaveQueue. Acct Nunber
END

Gl GROUP, PRE(Mem) ! Decl are sone nenory vari abl es

Message STRI NG 30) 'with the Mem prefix

END

266 Language Reference Manual

(7] LI KE(GL) , PRE(Me2) I Anot her GROUP LIKE the first containing sane
CODE I'vari abl es using the "Me2" prefix
I'F Dtl:AcctNumber <> Mst: AcctNunber !Is it a new account
Mem Message = ' New Account' I di spl ay nessage
Me2: Message = 'Variable in LIKE group'
END
I F Detail.Acct Nunber <> Masterfile. Acct Nunber I Same expressi on
Gl. Message = ' New Account’ I display nmessage
&. Message = 'Sane Variable in LIKE group'
END

See Also: Reserved Words, Field Qualification

5 — Declaration Attributes 267

PRIMARY (set relational primary key)

PRIMARY

The PRIMARY attribute (PROP:PRIMARY) specifies the KEY is unique, includes all records in
the file, and does not allow "null" values in any of the fields comprising the KEY. This is the
definition of a file's "Primary Key" per the relational database theory as expressed by E. F. Codd.

Example:
Nanes FI LE, DRI VER(' TopSpeed'), PRE(Nam IDeclare a file structure
NamreKey KEY(Nam Nane) , OPT I Decl are nane key, exclude bl anks
Nor Key KEY(Nam Nunber), PRI MARY ! Decl are nunber key as the prinmary key
Rec RECCORD
Nane STRI NG 20)
Nunber SHORT
END

END

See Also:

KEY

268 Language Reference Manual

PRIVATE (set variable private to a CLASS module)

PRIVATE

The PRIVATE attribute specifies that the variable on which it is placed is visible only to the
PROCEDUREs defined within the source module containing the methods of the CLASS structure
(whether members of the CLASS or not). This encapsulates the data from other CLASSes.

PRIVATE is also valid when used with static (threaded or non-threaded) variables outside of a
CLASS structure. If a static variable is declared with the PRIVATE attribute, the compiler
generates it without a public external name. Hence, it can only be used by procedures defined in
the same source module.

Example:
OneCl ass CLASS, MODULE(' Oned ass. CLW), TYPE
Publ i cVar LONG IDeclare a Public variable
PrivateVar LONG PRI VATE I Declare a Private vari abl e
BasePr oc PROCEDURE(REAL Parn)! Decl are a Public nethod
END

TwoCl ass Oned ass Il nstance of Oned ass

CODE

Twod ass. PublicvVar = 1 ! Legal assignment

Twod ass. PrivatevVar = 1 I'lll egal assignment

I Oned ass. CLW cont ai ns:

MVEMBER()

VAP
SonelLocal Proc PROCEDURE

END
OneCl ass. BaseProc PROCEDURE(REAL Parm

CODE

SELF. PrivateVar = Parm ! Legal assi gnment
SoreLocal Proc PROCEDURE

CODE

Twod ass. PrivatevVar = 1 ! Legal assignment
See Also:

CLASS

5 — Declaration Attributes 269

PROTECTED (set variable private to a CLASS or derived CLASS)

PROTECTED

The PROTECTED attribute specifies that the variable on which it is placed is visible only to the
PROCEDUREs declared within the same CLASS structure (the methods of that CLASS) and any
CLASS derived from the CLASS in which it is declared. This encapsulates the data from any
code external to the specific CLASS and its dereived CLASSes.

The purpose of the PROTECTED attribute is to provide a level of encapsulation between public
and PRIVATE. All PROTECTED data and methods are available for use within their own CLASS
and derived CLASSes, but not available to any code outside those specific CLASSes.

You could think of these as "semiprivate".

Example:
OneCl ass CLASS, MODULE(' Oned ass. CLW), TYPE
Publ i cVvar LONG I Declare a Public variable
Pr ot ect edvVar LONG, PROTECTED | Decl are a Protected variable
BasePr oc PROCEDURE(REAL Parn) !Declare a Public nethod

END

TwoCl ass Oned ass I'l nstance of Oned ass

CODE

Twod ass. Publicvar = 1 I Legal assignment

Twod ass. Protectedvar = 1 I Legal assignment, illegal if PRI VATE
I Oned ass. CLW cont ai ns:

VEMBER()

MAP
SoneLocal Proc PROCEDURE

END

OneCl ass. BaseProc PROCEDURE(REAL Parm
CODE
SELF. Prot ect edVar = Parm I Legal assignment

SoneLocal Proc PROCEDURE
CODE
Twod ass. Protectedvar = 1 I Legal assignnent

See Also:

CLASS

270 Language Reference Manual

RECLAIM (reuse deleted record space)

RECLAIM

The RECLAIM attribute (PROP:RECLAIM) specifies that the file driver adds new records to the
file in the space previously used by a record that has been deleted, if available. Otherwise, the
record is added at the end of the file. Implementation of RECLAIM is file driver specific and may
not be supported in all file systems.

Example:

Names FILE, DRI VER(' O arion'), RECLAI M | Reuse del eted record space
Record RECORD
Nane STRI NG 20)
END
END

5 — Declaration Attributes 271

STATIC (set allocate static memory)

STATIC

The STATIC attribute specifies permanent memory allocation to a variable, GROUP, or data
buffer of a QUEUE. If it is used with variables declared within a PROCEDURE or ROUTINE, they
are allocated statically instead of using stack memory. STATIC makes values contained in the
local variable or QUEUE data buffer "persistent” from one call to the procedure to the next. Static
local variables that require initialization are initialized once only during the first call to the
respective procedure or routine. Regarding a QUEUE structure, only the data buffer is allocated
static memory -- QUEUE entries are always allocated memory dynamically on the heap.

Example:
SoneProc PROCEDURE
SaveQueue QUEUE, STATIC IStati ¢ QUEUE data buffer
Fieldl LONG I Val ue retai ned between
Fi el d2 STRI NG I procedure calls

END
AcctFile STRING 64), STATIC I STATI C needed for use as

lvariable in NAVE attribute

Transactions FILE, DRI VER(' d arion'), PRE(TRA), NAVE(Acct Fi | e)
Account Key KEY(TRA: Account), OPT, DUP

Record RECORD
Account SHORT I Account code
Dat e LONG I Transacti on Date
Anount DECI MAL(13, 2) I Transacti on Anount
END
END
See Also:

Data Declarations and Memory Allocation

272 Language Reference Manual

THREAD (set thread-specific memory allocation)

THREAD

The THREAD attribute declares a variable, FILE, GROUP, QUEUE, or CLASS which is allocated
memory separately for each execution thread in the program. This makes the values dependent
upon which thread is executing.

A threaded variable must be allocated static memory, so Local data with the THREAD attribute is
automatically considered STATIC. This attribute creates runtime "overhead," particularly on
Global or Module data. Therefore, it should be used only when necessary.

Variable and GROUP Usage

The THREAD attribute declares a static variable which is allocated memory separately for each
execution thread in the program. This makes the value contained in the variable dependent upon
which thread is executing. Whenever a new execution thread is begun, a new instance of the
variable, specific to that thread, is created and initialized to blank or zero (unless the AUTO
attribute is also present).

FILE Usage

The THREAD attribute (PROP:THREAD--valid only for a FILE) on a FILE declaration allocates
memory for its record buffer, file control block, and other file structure elements separately for
each execution thread as each thread is started. This makes the values contained in the record
buffer and other file elements dependent upon which thread is executing. Memory for its record
buffer,file control block, and other file elements is deallocated when the thread is closed.

Instances of a threaded FILE are considered independent FILEs. Therefore, a FILE must be
OPENed and CLOSEd for each new instance.

QUEUE Usage

The THREAD attribute on a QUEUE declaration declares a static QUEUE data buffer which is
allocated memory separately for each execution thread in the program. This makes the values
contained in the QUEUE dependent upon which thread is executing. Whenever a new execution
thread is begun, a new instance of the QUEUE, specific to that thread, is created.

5 — Declaration Attributes

273

FI LE, DRI VER(' Ol arion'), PRE(Nan) , THREAD

| Threaded file

Example:

PROGRAM

VAP
Threadl PROCEDURE
Thr ead2 PROCEDURE

END
Nanes
Nor Ndx I NDEX(Nam Nurmber), OPT
Rec RECORD
Nane STRI NG 20)
Nunber SHORT

END
END

d obal Var LONG, THREAD

CODE
START(Thr eadl)
START(Thr ead2)

Threadl PROCEDURE
Local Var LONG THREAD
CODE
OPEN(Names)
SET(Nanes)
NEXT(Nanes)

Thr ead2 PROCEDURE
SaveQueue QUEUE, THREAD
Name STRI N& 20)
Nunber SHORT
END

CODE

OPEN(Nanes)

SET(Nanes)

PREVI QUS(Nanes)

See Also:

I Each execution thread gets its own copy OF d obal Var

I'Local threaded variable (automatically STATIC)

| OPEN creates new record buffer instance
Icontaining the first record in the file

I'Stati c QUEUE data buffer Thread-specific QUEUE

I OPEN creates another new record buffer instance
Icontaining the last record in the file

START, Data Declarations and Memory Allocation, STATIC, AUTO

274 Language Reference Manual

TYPE (type definition)

TYPE

The TYPE attribute creates a type definition for a GROUP, QUEUE, or CLASS (a "named
structure™). The label of the named structure can then be used as a data type to define other
similar GROUPs, QUEUESs, or CLASSes (or you can use LIKE). TYPE may also be used to
define named structures passed to PROCEDUREsS, allowing the receiving procedure to directly
address components of the type definition using Field Qualification syntax.

A GROUP, QUEUE, or CLASS declaration with the TYPE attribute is not allocated any memory.
While the data members of a CLASS with the TYPE attribute are not allocated memory, the
methods prototyped in the CLASS must be defined for use by any subsequent objects declared
as that type. EXTERNAL and DLL are irrelevant.

When a type definition is used to pass a named structure as a parameter to a PROCEDURE, the
receiving procedure may directly address component fields in the passed QUEUE using the Field
Qualification syntax. This is the preferred method of addressing the components of the passed
structure.

There is also a legacy method of addressing the components of the passed structure. The named
structure parameter declaration on the PROCEDURE definition statement (not the prototype) can
instantiate a local prefix for the passed QUEUE as it names the passed QUEUE for the
procedure. For example, PROCEDURE(LOC:PassedQueue) declares the procedure uses the
LOC: prefix (along with the individual field names used in the type definition) to directly address
component fields of the QUEUE passed as the parameter using the same type of syntax that the
PRE attribute specifies. However, using Field Qualification syntax is prefereable--locally
instantiated prefixes are only maintained for backward compatibility.

5 — Declaration Attributes 275

Example:
MAP
MyProcl PROCEDURE(PassQue) ! Passes a QUEUE defined the sanme as PassG oup
END
PassQue QUEUE, TYPE I Type-definition for passed QUEUE paraneters
First STRI NG 20) Ifirst nanme
M ddl e STRI NG(1) I'middle initial
Last STRI NE 20) Il ast nanme
END
NameQue QUEUE(PassQue) I Name queue-- sane structure as PassQe
END I End queue decl aration
CODE
MyPr oc1(NaneQue) I'Call proc passing NaneQue as paraneter

MyProcl PROCEDURE(PassedQue)!Proc to receive QUEUE paraneter
Local Var STRI NG 20)
CODE
Local Var = PassedQue. First ! Assign NameQue.First to Local Var from paraneter

See Also:

Field Qualification, Prototype Parameters Lists, CLASS, GROUP

276 Language Reference Manual

6 — Wind

ows 277

6 - Windows

Window Structures

APPLICATION (declare an MDI frame window)

label APPLICATION(title') [[AT()] [[CENTER] [, SYSTEM] [[MAX] [,ICON()] [STATUS()] [HLP()]

[LCURSOR()] [, TIMER()] [[ALRT()] [,ICONIZE] [MAXIMIZE] [MASK] [FONT()]
[LMSG()] [,IMM] [AUTO] [PALETTE()]

[LWALLPAPER()] [,| TILED 1. | HSCROLL [1[. | DOUBLE|]
| CENTERED | | VSCROLL | | NOFRAME]
| HYSCROLL | | RESIZE|
[MENUBAR

multiple menu and/or item declarations
END |
[TOOLBAR

multiple control field declarations

END]

END

APPLICATION Declares a Multiple Document Interface (MDI) frame.

label
title
AT

CENTER

SYSTEM

MAX
ICON

A valid Clarion label (required).
Specifies the title text for the application window (PROP:Text).

Specifies the initial size and location of the application window (PROP:AT). If
omitted, default values are selected by the runtime library.

Specifies that the window's initial position is centered in the screen by default
(PROP:CENTER). This attribute takes effect only if at least one parameter of the
AT attribute is omitted.

Specifies the presence of a system menu (PROP:SYSTEM).
Specifies the presence of a maximize control (PROP:MAX).

Specifies the presence of a minimize control, and names a file or standard icon
identifier for the icon displayed when the window is minimized (PROP:ICON).

278

Language Reference Manual

STATUS

HLP

CURSOR

TIMER

ALRT

ICONIZE

MAXIMIZE
MASK

FONT
MSG

IMM

AUTO

PALETTE

WALLPAPER

TILED

CENTERED

HSCROLL

VSCROLL

HVSCROLL

Specifies the presence of a status bar at the base of the application window
(PROP:STATUS).

Specifies the "Help ID" associated with the APPLICATION window and provides
the default for any child windows (PROP:HLP).

Specifies a mouse cursor to be displayed when the mouse is positioned over the
APPLICATION window (PROP:CURSOR). If omitted, the Windows default cursor
is used.

Specifies periodic timed event generation (PROP:TIMER).

Specifies "hot" keys active for the APPLICATION (PROP:ALRT).

Specifies the APPLICATION is opened as an icon (PROP:ICONIZE).
Specifies the APPLICATION is maximized when opened (PROP:MAXIMIZE).

Specifies pattern input editing mode of all ENTRY controls in the TOOLBAR
(PROP:MASK).

Specifies the default font for all controls in the toolbar (PROP:FONT).

Specifies a string constant containing the default text to display in the status bar
for all controls in the APPLICATION (PROP:MSG).

Specifies the window generates events whenever it is moved or resized
(PROP:IMM).

Specifies all toolbar controls' USE variables re-display on screen each time
through the ACCEPT loop (PROP:AUTO).

Specifies the number of hardware colors used for graphics in the window
(PROP:PALETTE).

Specifies the background image to display in the window's client area
(PROP:WALLPAPER). The image stretches to fill the entire client area of the
window unless the TILED or CENTERED attribute is also present.

Specifies the WALLPAPER image displays at its default size and is tiled to fill the
entire client area of the window (PROP:TILED).

Specifies the WALLPAPER image displays at its default size and is centered in
the entire client area of the window (PROP:CENTERED).

Specifies a horizontal scroll bar is automatically added to the application frame
when any portion of a child window lies horizontally outside the visible area
(PROP:FSCROLL).

Specifies a vertical scroll bar is automatically added to the application frame
when any portion of a child window lies vertically outside the visible area
(PROP:VSCROLL).

Specifies both vertical and horizontal scroll bars are automatically added to the
application frame when any portion of a child window lies outside the visible area.

6 — Windows 279

DOUBLE Specifies a double-width frame around the window (PROP:DOUBLE).
NOFRAME Specifies a window with no frame (PROP:NOFRAME).
RESIZE Specifies a thick frame around the window which does allow window resizing

(PROP:RESIZE).

MENUBAR Defines the menu structure (optional). The menu specified in an APPLICATION
is the "Global menu."

TOOLBAR Defines a toolbar structure (optional). The toolbar specified in an APPLICATION
is the "Global toolbar."

APPLICATION declares a Multiple Document Interface (MDI) frame window. MDI is a part of the
standard Windows interface, and is used by Windows applications to present several "views" in
different windows. This is a way of organizing and grouping these. The MDI frame window
(APPLICATION structure) acts as a "parent" for all the MDI "child" windows (WINDOW structures
with the MDI attribute). These MDI "child" windows are clipped to the APPLICATION frame and
automatically moved when the frame is moved, and can be totally concealed by minimizing the
parent.

There may be only one APPLICATION window open at any time in a Clarion Windows program,
and it must be opened before any MDI "child" windows may be opened. However, non-MDI
windows may be opened before or after the APPLICATION is opened, and may be on the same
execution thread as the APPLICATION.

An MDI “child" window must not be on the same execution thread as the APPLICATION.
Therefore, any MDI "child" window called directly from the APPLICATION must be in a separate
procedure so the START procedure can be used to begin a new execution thread. Once started,
multiple MDI "child" windows may be called in the new thread.

A "conventional" APPLICATION window would have the ICON, MAX, STATUS, RESIZE, and
SYSTEM attributes. This creates an application frame window with minimize and maximize
buttons, a status bar, a resizable frame, and a system menu. It would also have a MENUBAR
structure containing the global menu items, and may have a TOOLBAR with "shortcuts" to global
menu items. These attributes create a standard Windows look and feel for the application frame.

An APPLICATION window may not contain controls except within its MENUBAR and TOOLBAR
structures, and cannot be used for any output. For output, document windows or dialog boxes are
required (defined using the WINDOW structure).

When the APPLICATION window is first opened, it remains hidden until the first DISPLAY
statement or ACCEPT loop is encountered. This enables any changes to be made to the
appearance before it is displayed. Events for the APPLICATION window are processed by the
first ACCEPT loop encountered after the APPLICATION window is first opened.

280

Language Reference Manual

Events Generated:
EVENT:PreAlertKey

EVENT:Alertkey

EVENT:CloseWindow

EVENT:CloseDown
EVENT:OpenWindow
EVENT:LoseFocus
EVENT:GainFocus
EVENT:Suspend

EVENT:Resume

EVENT:Timer
EVENT:Move
EVENT:Moved
EVENT:Size
EVENT:Sized
EVENT:Restore

EVENT:Restored
EVENT:Maximize
EVENT:Maximized
EVENT:Iconize
EVENT:Iconized
EVENT:Completed

EVENT:DDErequest

EVENT:DDEadvise

EVENT:DDEexecute

EVENT:DDEpoke

The user pressed an ALRT attribute hot key.
The user pressed an ALRT attribute hot key.

The window is closing.

The application is closing.

The window is opening.

The window is losing focus to another thread.
The window is gaining focus from another thread.

The window still has input focus but is giving control to another thread to
process timer events.

The window still has input focus and is regaining control from an
EVENT:Suspend.

The TIMER attribute has triggered.

The user is moving the window. CYCLE aborts the move.
The user has moved the window.

The user is resizing the window. CYCLE aborts the resize.
The user has resized the window.

The user is restoring the window's previous size. CYCLE aborts the
resize.

The user has restored the window's previous size.

The user is maximizing the window. CYCLE aborts the resize.
The user has maximized the window.

The user is minimizing the window. CYCLE aborts the resize.
The user has minimized the window.

AcceptAll (non-stop) mode has finished processing all the window's
controls.

A client has requested a data item from this Clarion DDE server
application.

A client has requested continuous updates of a data item from this
Clarion DDE server application.

A client has executed a DDEEXECUTE statement to this Clarion DDE
server application.

A client has sent unsolicited data to this Clarion DDE server application.

6 — Windows 281

EVENT:DDEdata A DDE server has supplied an updated data item to this Clarion client
application.

EVENT:DDEclosed A DDE server has terminated the DDE link to this Clarion client
application.

Related Procedures:
ACCEPT, ALERT, EVENT, POST, REGISTER, UNREGISTER, YIELD,
ACCEPTED, CHANGE, CHOICE, CLOSE, CONTENTS, CREATE, DESTROY,
DISABLE, DISPLAY, ENABLE, ERASE, FIELD, FIRSTFIELD, FOCUS,
GETFONT, GETPOSITION, HELP, HIDE, INCOMPLETE, LASTFIELD,
MESSAGE, MOUSEX, MOUSEY, OPEN, POPUP, SELECT, SELECTED,
SET3DLOOK, SETCURSOR, SETFONT, SETPOSITION, SETTARGET,
UNHIDE, UPDATE

Example:

'An MDI application frame wi ndow with system nenu, ninimze and naxi m ze
! buttons, a status bar, scroll bars, and a resizable frane, containing the
! main nenu and tool bar for the application:
Mai nWn APPLI CATI ON(' My Application'), SYSTEM MAX, | CON(' Myl con. | CO), STATUS |
, HVSCRCOLL, RESI ZE
MENUBAR
MENU(' &Fi | e'), USE(?Fi | eMenu)
| TEM ' & pen. .. "), USE(?OpenFi | e)
| TEM' &0 ose'), USE(?C oseFi | €), DI SABLE
| TEM ' E& i t'), USE(?Mai nEXi t)
END
MENU(' &Edi t '), USE(?Edi t Menu)
| TEM ' Cu&t'), USE(?Cut Text), KEY(Ctrl X), STD(STD: Cut), DI SABLE
| TEM ' &Copy'), USE(?CopyText), KEY(Cirl C), STD(STD: Copy) , DI SABLE
| TEM' &Paste'), USE(?Past eText), KEY(Ctrl V), STD(STD: Past e) , DI SABLE
END
MENU(' &W ndow), STD({ STD: W ndowLi st), LAST
I TEM' &Tile'), STD(STD: Ti | eW ndow)
| TEM ' &Cascade'), STD(STD: CascadeW ndow)
| TEM' &Arrange | cons'), STD(STD: Arr angel cons)
END
MENU(' &Hel p'), USE(?Hel pMenu)
| TEM ' & ont ent s'), USE(?Hel pCont ent s), STD(STD: Hel pl ndex)
| TEM' &Search..."'), USE(?Hel pSear ch), STD(STD: Hel pSear ch)
| TEM ' &How t o Use Hel p'), USE(?Hel pOnHel p), STD(STD: Hel pOnHel p)
| TEM' &About MyApp..."'), USE(?Hel pAbout)
END
END
TOOLBAR
BUTTON(' E&xi t '), USE(?Mai nExi t But t on)
BUTTON(' &pen'), USE(?CpenBut t on), | CON(| CON: Open)
END

282

Language Reference Manual

END
CODE
OPEN(Mai nW n)
ACCEPT
CASE ACCEPTED()
OF ?QpenFile
OROF ?OpenButton
START(OpenFi | eProc)
OF ?Mai nExi t
OROF ?Mai nExi t Button
BREAK
OF ?Hel pAbout
Hel pAbout Pr oc
END
END
CLOSE(Mai nW n)

See Also:
ACCEPT
WINDOW
MDI
MENUBAR

TOOLBAR

I Open APPLI CATI ON

I Di spl ay APPLI CATI ON and accept user input
I' Wi ch control was chosen?

I Open... menu selection

I Open button on tool bar

I Start new execution thread

IExit menu sel ection

IExit button on tool bar

I Break ACCEPT | oop

I About... nenu sel ection

I'Call application information procedure

I G ose APPLI CATI ON

6 — Windows 283

WINDOW (declare a dialog window)

label WINDOWC(title') [AT()] [,CENTER] [SYSTEM] [[MAX] [ICON()] [STATUS()] [HLP()]
[LCURSOR()] [,MDI] [MODAL] [,MASK] [FONT()] [GRAY][, TIMER()] [ALRT()]
[ICONIZE] [, MAXIMIZE] [[MSG()] [,PALETTE()] [,[DROPID()] [,IMM]

[AUTO] [,COLOR()] [, TOOLBOX] [,DOCK()] [, DOCKED()]

[LWALLPAPER()] [| TILED 1L | HSCROLL 1L | DOUBLE|]
| CENTERED | | VSCROLL | | NOFRAME|
| HYSCROLL | | RESIZE|
[MENUBAR
menus and/or items
END]
[TOOLBAR
controls
END]
controls
END

WINDOW Declares a document window or dialog box.

label A valid Clarion label. A label is required.

title A string constant containing the window's title text (PROP:Text).

AT Specifies the initial size and location of the window (PROP:AT). If omitted, default
values are selected by the runtime library.

CENTER Specifies that the window's initial position is centered on screen relative to its
parent window, by default (PROP:CENTER). This attribute takes effect only if at
least one parameter of the AT attribute is omitted.

SYSTEM Specifies the presence of a system menu (PROP:SYSTEM).

MAX Specifies the presence of a maximize control (PROP:MAX).

ICON Specifies the presence of a minimize control, and names a file or standard icon

identifier for the icon displayed when the window is minimized (PROP:ICON).
STATUS Specifies the presence of a status bar for the window (PROP:STATUS).

284

Language Reference Manual

HLP

CURSOR

MDI

MODAL

MASK

FONT
GRAY

TIMER
ALRT
ICONIZE
MAXIMIZE
MSG

PALETTE

DROPID

IMM

AUTO

COLOR

TOOLBOX

DOCK
DOCKED
WALLPAPER

Specifies the "Help ID" associated with the window (PROP:HLP).

Specifies a mouse cursor to display when the mouse is positioned over the
window (PROP:CURSOR). This cursor is inherited by the WINDOW's controls
unless overridden on the individual control.

Specifies that the window conforms to normal MDI child-window behavior
(PROP:MDI).

Specifies the window is "system modal" and must be closed before the user may
do anything else (PROP:MODAL).

Specifies pattern input editing mode of all entry controls in this window
(PROP:MASK).

Specifies the default font for all controls in this window (PROP:FONT).

Specifies that the window has a gray background for use with 3-D look controls
(PROP:GRAY).

Specifies periodic timed event generation (PROP:TIMER).

Specifies "hot" keys active when the window has focus (PROP:ALRT).
Specifies the window is opened as an icon (PROP:ICONIZE).
Specifies the window is maximized when opened (PROP:MAXIMIZE).

Specifies a string constant containing the default text to display in the status bar
for all controls in the window (PROP:MSG).

Specifies the number of hardware colors used for graphics in the window
(PROP:PALETTE).

Specifies the window may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

Specifies the window generates events whenever it is moved or resized
(PROP:IMM).

Specifies all window controls' USE variables re-display on screen each time
through the ACCEPT loop (PROP:AUTO).

Specifies a background color for the WINDOW and default background and
selected colors for the controls in the WINDOW (PROP:COLOR).

Specifies the window is "always on top" and its controls never retain focus
(PROP:TOOLBOX).

Specifies a window with the TOOLBOX attribute is dockable (PROP:DOCK).
Specifies a window with the DOCK attribute is opens docked (PROP:DOCKED).

Specifies the background image to display in the window's client area
(PROP:WALLPAPER). The image stretches to fill the entire client area of the
window unless the TILED or CENTERED attribute is also present.

6 — Windows 285

TILED Specifies the WALLPAPER image displays at its default size and is tiled to fill the
entire client area of the window (PROP:TILED).

CENTERED Specifies the WALLPAPER image displays at its default size and is centered in
the entire client area of the window (PROP:CENTERED).

HSCROLL Specifies a horizontal scroll bar is automatically added to the window when any
scrollable portion of the window lies horizontally outside the visible area
(PROP:HSCROLL).

VSCROLL Specifies a vertical scroll bar is automatically added to the window when any
scrollable portion of the window lies vertically outside the visible area
(PROP:VSCROLL).

HVSCROLL Specifies both vertical and horizontal scroll bars are automatically added to the
window when any scrollable portion of the window lies outside the visible area
(PROP:HVSCROLL).

DOUBLE Specifies a double-width frame around the window (PROP:DOUBLE).
NOFRAME Specifies a window with no frame (PROP:NOFRAME).
RESIZE Specifies a thick frame around the window, which does allow window resizing

(PROP:RESIZE).
MENUBAR Defines a menu structure (optional).

menus and/or items
MENU and/or ITEM declarations that define the menu selections.

TOOLBAR Defines a toolbar structure (optional).

controls Control declarations that define tools available on the TOOLBAR, or the control
fields in the WINDOW.

A WINDOW declares a document window or dialog box which may contain controls, and may be

used to display output to the user. When the WINDOW is first opened, it remains hidden until the

first DISPLAY statement or ACCEPT loop is encountered. This enables any changes to be made

to the appearance before it is displayed. Any previously opened WINDOW on the same execution
thread is disabled. Events for the WINDOW are processed by the first ACCEPT loop encountered
after the WINDOW is first opened.

A WINDOW automatically receives a single-width border frame unless one of the DOUBLE,
NOFRAME, or RESIZE attributes are specified. Screen coordinates are measured in dialog units.
A dialog unit is defined as one-quarter the average character width and one-eighth the average
character height of the font specified in the WINDOW's FONT attribute (or the system font, if no
FONT attribute is specified on the WINDOW).

286 Language Reference Manual

A WINDOW with the MODAL attribute is system modal; it takes exclusive control of the computer.
This means that any other progam running in the background halts its execution until the MODAL
WINDOW is closed. Therefore, the MODAL attribute should be used only when absolutely
necessary. Also, the RESIZE attribute is ignored, and the WINDOW cannot be moved when the
MODAL attribute is present.

A WINDOW without the MDI attribute, when opened in an MDI program on an MDI execution
thread, is application modal. This means that the user must respond before moving to any other
window in the application. The user may, however, move to any other program running in
Windows at the time. Non-MDI windows may be opened either before or after an APPLICATION
is opened, and may be on the same execution thread as the APPLICATION or any MDI child
window (application modal) or their own thread (not application modal).

A WINDOW with the MDI attribute is an MDI "child" window. MDI "child" windows are clipped to
the APPLICATION frame and automatically moved when the frame is moved, and can be totally
concealed by minimizing the parent APPLICATION. MDI "child" windows are modeless; the user
may change to the top window of another execution thread, within the same application or any
other application running in Windows, at any time. An MDI "child" window must not be on the
same execution thread as the APPLICATION. Therefore, any MDI "child" window called directly
from the APPLICATION must be in a separate procedure so the START procedure can be used
to begin a new execution thread. Once started, multiple MDI "child" windows may be called in the
new thread.

The MENUBAR specified in a WINDOW with the MDI attribute is automatically merged into the
"Global menu" (from the APPLICATION) when the WINDOW receives focus unless either the
WINDOW's or APPLICATION's MENUBAR has the NOMERGE attribute. A MENUBAR specified
in a WINDOW without the MDI attribute is never merged into the "Global menu"--it always
appears in the window itself.

The TOOLBAR specified in a WINDOW with the MDI attribute is automatically merged into the
"Global toolbar" (from the APPLICATION) when the WINDOW receives focus, unless either the
WINDOW's or APPLICATION's TOOLBAR has the NOMERGE attribute. The toolbar specified in
a WINDOW without the MDI attribute is never merged into the "Global toolbar"--it always appears
in the window itself.

A WINDOW with the TOOLBOX attribute is automatically "always on top" and its controls do not
retain focus (just as if they all had the SKIP attribute). This creates a window whose controls all
behave in the same manner as controls in the toolbar. Normally, a WINDOW with the TOOLBOX
attribute would be executed in its own thread.

6 — Windows

287

Events Generated:
EVENT:PreAlertKey
EVENT:Alertkey
EVENT:CloseWindow
EVENT:CloseDown
EVENT:OpenWindow
EVENT:LoseFocus
EVENT:GainFocus
EVENT:Suspend

EVENT:Resume

EVENT:Docked
EVENT:Undocked
EVENT:Timer
EVENT:Move
EVENT:Moved
EVENT:Size
EVENT:Sized
EVENT:Restore
EVENT:Restored
EVENT:Maximize
EVENT:Maximized
EVENT:Iconize
EVENT:Iconized
EVENT:Completed

EVENT:DDErequest

EVENT:DDEadvise

EVENT:DDEexecute

The user pressed an ALRT attribute hot key.

The user pressed an ALRT attribute hot key.

The window is closing.

The application is closing.

The window is opening.

The window is losing focus to another thread.
The window is gaining focus from another thread.

The window still has input focus but is giving control to another thread to
process timer events.

The window still has input focus and is regaining control from an
EVENT:Suspend.

A TOOLBOX window has been docked.

A TOOLBOX window has been undocked.

The TIMER attribute has triggered.

The user is moving the window. CYCLE aborts the move.
The user has moved the window.

The user is resizing the window. CYCLE aborts the resize.

The user has resized the window.

The user is restoring the window's previous size. CYCLE aborts the resize.

The user has restored the window's previous size.

The user is maximizing the window. CYCLE aborts the resize.
The user has maximized the window.

The user is minimizing the window. CYCLE aborts the resize.
The user has minimized the window.

AcceptAll (non-stop) mode has finished processing all the window's
controls.

A client has requested a data item from this Clarion DDE server
application.

A client has requested continuous updates of a data item from this
Clarion DDE server application.

A client has executed a DDEEXECUTE statement to this Clarion DDE
server application.

288 Language Reference Manual

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE server application.

EVENT:DDEdata A DDE server has supplied an updated data item to this Clarion client
application.

EVENT:DDEclosed A DDE server has terminated the DDE link to this Clarion client
application.

Related Procedures:
ACCEPT, ALERT, EVENT, POST, REGISTER, UNREGISTER, YIELD,
ACCEPTED, CHANGE, CHOICE, CLOSE, CONTENTS, CREATE, DESTROY,
DISABLE, DISPLAY, ENABLE, ERASE, FIELD, FIRSTFIELD, FOCUS,
GETFONT, GETPOSITION, HELP, HIDE, INCOMPLETE, LASTFIELD,
MESSAGE, MOUSEX, MOUSEY, OPEN, POPUP, SELECT, SELECTED,
SET3DLOOK, SETCURSOR, SETFONT, SETPOSITION, SETTARGET,
UNHIDE, UPDATE

Example:

I'MDI child wi ndow with system nenu, mninize and maxi m ze buttons, status bar,
I scroll bars, a resizable frame, with nenu and tool bar which are nmerged into
t he
lapplication's menubar and tool bar:
MDI Child WNDOW' Child One'), MDI, SYSTEM MAX, | CON(' | con. | CO), STATUS, HVSCROLL, RESI ZE
MENUBAR
MENU(' Fil e'), USE(?Fi | eMenu)
| TEM' C ose'), USE(?Cl oseFi | e)
END
MENU(' Edi t'), USE(?Edi t Menu)
| TEM ' Undo'), USE(?UndoText), KEY(Ctrl Z), STD(STD: Undo)
| TEM ' Cu&t '), USE(?Cut Text), KEY(Ctr| X), STD(STD: Cut)
| TEM ' Copy'), USE(?CopyText), KEY(Ctrl C), STD(STD: Copy)
| TEM ' Paste'), USE(?Past eText), KEY(Ctrl V), STD(STD: Past e)
END
END
TOOLBAR
BUTTON(' Cut'), USE(?Cut Button), | CON(I CON: Cut), STD(STD: Cut)
BUTTON(' Copy'), USE(?CopyButt on), | CON(| CON: Copy), STD(STD: Copy)
BUTTON(' Past e'), USE(?Past eButt on), | CON(| CON: Past e), STD(STD: Past e)
END
TEXT, HVSCROLL, USE(Pr e: Fi el d)
BUTTON(' &K'), USE(?Exi t), DEFAULT
END

I Non-MDI, system nenu, meximze button, status bar, non-resizable frane,
NonMDI W NDOW' Di al og W ndow), SYSTEM MAX, STATUS
TEXT, HVSCROLL, USE(Pre: Fi el d), MSE ' Enter sonme text here')
BUTTON(' &X'), USE(?Exi t), DEFAULT
END

I System nbdal wi ndow with non-resizable frane, with only a message and Ok button:

6 — Windows

289

Modal Wn W NDOW ' Mbdal W ndow), MODAL
| MAGE(| CON: Excl amat i on)
STRI NG ' An ERROR has occurred')
BUTTON(' &K'), USE(?Exi t) , DEFAULT
END

See Also: ACCEPT, APPLICATION

290 Language Reference Manual

MENUBAR (declare a pulldown menu)

MENUBAR [,USE()] [, NOMERGE]

[MENU()

[ITEM()]

[MENU()

[ITEM()]

END]
END]
[ITEM()]

END

MENUBAR Declares the menu for an APPLICATION or WINDOW.

USE A field equate label to reference the menubar structure in executable
code(PROP:USE).

NOMERGE Specifies menu merging behavior.
MENU A menu item with an associated drop box containing other menu selections.
ITEM A menu item for selection.

The MENUBAR structure declares the pulldown menu selections displayed for an APPLICATION
or WINDOW. MENUBAR must appear in the source code before any TOOLBAR or controls.

On an APPLICATION, the MENUBAR defines the Global menu selections for the program. These
are active and available on all MDI "child" windows (unless the window's own MENUBAR
structure has the NOMERGE attribute). If the NOMERGE attribute is specified on the
APPLICATION's MENUBAR, then the menu is a local menu displayed only when no MDI child
windows are open and there is no global menu.

On an MDI WINDOW, the MENUBAR defines menu selections that are automatically merged
with the Global menu. Both the Global and the window's menu selections are then active while
the MDI "child" window has input focus. Once the window loses focus, its specific menu
selections are removed from the Global menu. If the NOMERGE attribute is specified on an MDI
WINDOW's MENUBAR, the menu overwrites and replaces the Global menu.

On a non-MDI WINDOW, the MENUBAR is never merged with the Global menu. A MENUBAR on
a non-MDI WINDOW always appears in the WINDOW, not on any APPLICATION which may
have been previously opened.

6 — Windows 291

Events generated by local menu items are sent to the WINDOW's ACCEPT loop in the normal
way. Events generated by global menu items are sent to the active event loop of the thread which
opened the APPLICATION (in a normal multi-thread application this means the APPLICATION's
own ACCEPT loop).

Dynamic changes to menu items which reference the currently active window affect only the
currently displayed menu, even if global items are changed. Changes made to the Global menu
items when the APPLICATION is the current window, or which reference the global
APPLICATION window affect the global portions of all menus, whether already open or not.

When a WINDOW's MENUBAR is merged into an APPLICATION's MENUBAR, the global menu
selections appear first, followed by the local menu selections, unless the FIRST or LAST
attributes are specified on individual menu selections.

A two-column drop menu can be achieved by assigning PROP:Max = 1 to the ITEM which should
begin the second column.

Example:

1'An MDI application franme window with main nenu for the application:
Mai NnW n APPLI CATI ON(' My Application')
MENUBAR
MENU(' Fi | "), USE(?Fi | eMenu)
| TEM' Open..."), USE(?OpenFil e)
| TEM' C ose'), USE(?Cl oseFi |l e), DI SABLE
| TEM ' E&xi t"'), USE(?Mai nEXi t), LAST
END
MENU(' Edi t "), USE(?Edi t Menu)
| TEM ' Cu&t'), USE(?Cut Text), KEY(Ctrl X), STD(STD: Cut), DI SABLE
| TEM ' Copy'), USE(?CopyText), KEY(Ctrl C), STD(STD: Copy), DI SABLE
| TEM ' Paste'), USE(?Past eText), KEY(Ctrl V), STD(STD: Past e) , DI SABLE
END
MENU(' W ndow), STD(STD: W ndowLi st), LAST
I TEM'Tile'"), STD(STD: Ti | eW ndow)
| TEM' Cascade'), STD(STD: CascadeW ndow)
END
MENU(' Hel p'), USE(?Hel pMenu) , LAST
| TEM' Contents'), USE(?Hel pCont ent s), STD(STD: Hel pl ndex)
| TEM' Search for Help On..."), USE(?Hel pSear ch), STD(STD: Hel pSear ch)
| TEM' How to Use Hel p'), USE(?Hel pOnHel p), STD(STD: Hel pOnHel p)
| TEM ' About MyApp..."'), USE(?Hel pAbout)
END
END
END

292 Language Reference Manual

'An MDI child window with menu for the wi ndow, nerged into the
! application's menubar:
MDI Child WNDOW' Child One'), VDI

MENUBAR
MENU(' Fi |l e'), USE(?Fi | eMenu) IMerges into File nenu
| TEM' Pick..."), USE(?Pi ckFil e) I Added to nenu sel ections
END
MENU("' Edi t'), USE(?Edi t Menu) IMerges into Edit nenu
| TEM' Undo'), USE(?UndoText), KEY(Ctrl Z), STD(STD: Undo) ! Added to nenu
END
END

TEXT, HVSCROLL, USE(Pr e: Fi el d)
BUTTON(' &OK'), USE(?Exi t), DEFAULT
END

'An MDI window with its own nenu, overwiting the main nmenu:
MDI Chi | d2 W NDOW ' Di al og W ndow), MDI , SYSTEM MAX, STATUS
MENUBAR, NOVERGE
MENU(' Fil e'), USE(?Fi | eMenu)
| TEM' d ose'), USE(?Cl oseFi | e)
END
MENU(' Edi t'), USE(?Edi t Menu)
| TEM' Undo'), USE(?UndoText), KEY(Ctrl Z), STD(STD: Undo)
| TEM ' Cu&t '), USE(?Cut Text), KEY(Ctrl X), STD(STD: Cut)
| TEM ' Copy'), USE(?CopyText), KEY(Ctrl C), STD(STD: Copy)
| TEM ' Paste'), USE(?Past eText), KEY(Ctrl V), STD(STD: Past e)
END
END
TEXT, HVYSCROLL, USE(Pre: Fi el d), MSG ' Enter sone text here')
BUTTON(' &X'), USE(?Exi t), DEFAULT
END

6 — Windows

293

I'A non-MDI window with its own nmenu:
NonMDI W NDOW ' Di al og W ndow), SYSTEM MAX, STATUS
MENUBAR
MENU(' Fi | "), USE(?Fi | eMenu)
I TEM' Cl ose'), USE(?Cl oseFil e)
END
MENU(' Edi t "), USE(?Edi t Menu)
| TEM ' Undo'), USE(?UndoText), KEY(Ct r| Z), STD(STD: Undo)
| TEM ' Cué&t'), USE(?Cut Text), KEY(Ctrl X), STD(STD: Cut)
| TEM ' Copy'), USE(?CopyText), KEY(Ctrl| C), STD(STD: Copy)
| TEM ' Paste'), USE(?Past eText), KEY(Ctrl V), STD(STD: Past e)
END
END
TEXT, HVSCROLL, USE(Pre: Fi el d), MS ' Enter some text here')
BUTTON(' &K'), USE(?Exi t), DEFAULT
END

294

Language Reference Manual

TOOLBAR (declare a tool bar)

TOOLBAR [,AT()] [LUSE()] [,CURSOR()] [,FONT()] [NOMERGE] [,COLOR]

[WALLPAPER()] [,| TILED 1

| CENTERED |
controls
END

TOOLBAR Declares tools for an APPLICATION or WINDOW.

AT Specifies the initial size of the toolbar. If omitted, default values are selected by
the runtime library.

USE A field equate label to reference the toolbar in executable code (PROP:USE).

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
TOOLBAR. If omitted, the WINDOW or APPLICATION structure's CURSOR
attribute is used, else the Windows default cursor is used.

FONT Specifies the default display font for the controls in the TOOLBAR.

NOMERGE Specifies tools merging behavior.

COLOR Specifies a background color for the TOOLBAR and default background and
selected colors for the controls in the TOOLBAR.

WALLPAPER Specifies the background image to display in the toolbar (PROP:WALLPAPER).
The image stretches to fill the entire toolbar unless the TILED or CENTERED
attribute is also present.

TILED Specifies the WALLPAPER image displays at its default size and is tiled to fill the
entire toolbar (PROP:TILED).

CENTERED Specifies the WALLPAPER image displays at its default size and is centered in
the toolbar (PROP:CENTERED).

controls Control field declarations that define the available tools.

The TOOLBAR structure declares the tools displayed for an APPLICATION or WINDOW. On an
APPLICATION, the TOOLBAR defines the Global tools for the program. If the NOMERGE
attribute is specified on the APPLICATION's TOOLBAR, the tools are local and are displayed
only when no MDI child windows are open; there are no global tools. Global tools are active and
available on all MDI "child" windows unless an MDI "“child" window's TOOLBAR structure has the
NOMERGE attribute. If so, the "child" window's tools overwrite the Global tools.

On an MDI WINDOW, the TOOLBAR defines tools that are automatically merged with the Global
toolbar. Both the Global and the window's tools are then active while the MDI "child" window has
input focus. Once the window loses focus, its specific tools are removed from the Global toolbar.

6 — Windows 295

If the NOMERGE attribute is specified on an MDI WINDOW's TOOLBAR, the tools overwrite and
replace the Global toolbar. On a non-MDI WINDOW, the TOOLBAR is never merged with the
Global menu. A TOOLBAR on a non-MDI WINDOW always appears in the WINDOW, not on any
APPLICATION which may have been previously opened.

Events generated by local tools are sent to the WINDOW's ACCEPT loop in the normal way.
Events generated by global tools are sent to the active event loop of the thread which opened the
APPLICATION. In a normal multi-thread application, this means the APPLICATION's own
ACCEPT loop.

TOOLBAR controls generate events in the normal manner. However, they do not retain focus,
and cannot be operated from the keyboard unless accelerator keys are provided. As soon as user
interaction with a TOOLBAR control is done, focus returns to the window and local control which
previously had it.

Dynamic changes to tools which reference the currently active window affect only the currently
displayed toolbar, even if global tools are changed. Changes made to the Global toolbar when the
APPLICATION is the current window, or which reference the global APPLICATION's window
affect the global portions of all toolbars, whether already open or not. This means that, when an
MDI child window is active, the APPLICATION frame's TOOLBAR controls displayed on the
APPLICATION frame are actually copies of the frame's controls. This allows each MDI child to
modify its own set of toolbar controls without affecting the controls displayed for other MDI child
windows. The events for these controls are still processed by the APLICATION's ACCEPT loop.
For example, assuming a button declared in the APPLICATION's TOOLBAR has a field number
of 150. The MDI Child window's procedure can modify the appearance of that button by directly
setting the properties of control number 150, which would change its appearance only while the
MDI Child window's procedure is active and has focus.

When a WINDOW's TOOLBAR is merged into an APPLICATION's TOOLBAR, the global tools
appear first, followed by the local tools. The toolbars are merged so that the fields in the
WINDOW's toolbar begin just right of the position specified by the value of the width parameter of
the APPLICATION TOOLBAR's AT attribute. The height of the displayed toolbar is the maximum
height of the "tallest" tool, whether global or local. If any part of a control falls below the bottom,
the height is increased accordingly.

296 Language Reference Manual

Example:

'An MDI application franme wi ndow containing the
! main nenu and tool bar for the application:
Mai nW n APPLI CATI ON(' My Application'), SYSTEM MAX, | CON(' Myl con. | CO), STATUS |
, HVYSCRCLL, RESI ZE
MENUBAR
| TEM ' E&xi t"'), USE(?Mai nEXxi t)
END
TOOLBAR
BUTTON(' Exi t'), USE(?Mai nExi t But t on)
END
END

'An MDI child wi ndow with tool bar for the wi ndow, nerged into the
! application's tool bar:
MDI Child WNDOW' Child One'), MD
TOOLBAR
BUTTON(' Cut'), USE(?Cut But t on), STD(STD: Cut)
BUTTON(' Copy'), USE(?CopyBut t on) , STD(STD: Copy)
BUTTON(' Past e'), USE(?Past eBut t on), STD(STD: Past e)
END
TEXT, HVSCROLL, USE(Pre: Fi el d)
BUTTON(' &K'), USE(?Exi t), DEFAULT
END

I'An MDI wi ndow with its own tool bar, overwiting the main tool bar:
MDI Chi | d2 W NDOW ' Di al og W ndow), MDI , SYSTEM MAX, STATUS
TOOLBAR, NOVERGE
BUTTON(' Cut'), USE(?Cut Butt on), STD(STD: Cut)
BUTTON(' Copy'), USE(?CopyBut t on), STD(STD: Copy)
BUTTON(' Past e'), USE(?Past eBut t on), STD(STD: Past €)
END
TEXT, HVSCROLL, USE(Pre: Fi el d), MS ' Enter some text here')
BUTTON(' &K'), USE(?Exi t), DEFAULT
END

6 — Windows 297

Window Overview

In most Windows programs there are three types of screen windows used: application windows,
document windows, and dialog boxes. An application window is the first window opened in a
Windows program, and it usually contains the main menu as the entry point to the rest of the
program. All other windows in the program are document windows or dialog boxes.

Along with these three screen window types, there are two user interface design conventions that
are used in Windows programs: the Single Document Interface (SDI), and the Multiple Document
Interface (MDI).

An SDI program usually only contains linear logic that allows the user to take only one execution
path (thread) at a time; it does not open separate execution threads which the user may move
between. This is the same type of program logic used in most DOS programs. An SDI program
would not contain a Clarion APPLICATION structure as its application window. The Clarion
WINDOW structure (without an MDI attribute) is used to define an SDI program's application
window, and the subsequent document windows or dialog boxes opened on top of it.

An MDI program allows the user to choose multiple execution paths (threads) and change from
one to another at any time. This is a very common Windows program user interface. It is used by
applications as a way of organizing and grouping windows which present several execution paths
for the user to take.

A Clarion APPLICATION structure defines the MDI application window. The MDI application
window acts as a parent for all the MDI child windows (document windows and dialog boxes), in
that the child windows are clipped to its frame and automatically moved when the application
frame is moved. They can also be concealed en masse by minimizing the parent. There may be
only one APPLICATION open at any time in a Clarion Windows program.

Document windows and dialog boxes are very similar in that they are both defined as Clarion
WINDOW structures. They differ in the conventional context in which they are commonly used
and the conventions regarding appearance and attributes. In many cases, the difference is not
distinguishable and does not matter. The generic term for both document windows and dialog
boxes is "window" and that is the term used throughout this text.

Document windows usually display data. By convention they are movable and resizable. They
usually have a title, a system menu, and maximize button. For example, in the Windows
environment, the "Main" program group window that appears when you DOUBLE-CLICK on the
"Main" icon in the Program Manager's desktop, is a document window.

Dialog boxes usually request information from the user or alert the user to some condition,
usually prior to performing some action requested by the user. They may or may not be movable,
and so, may or may not have a system menu and title. By convention, they are not resizable,
although they can have a maximize button which gives the dialog two alternate sizes. A dialog
box may be system modal (the user must respond before doing anything else in Windows),
application modal (the user must respond before doing anything in the application), or modeless.

298 Language Reference Manual

For example, in the Clarion environment, the window that appears from the File menu's Open
selection is an application modal dialog box that requests the name of the file to open.

See Also:
Window Controls and Input Focus
Field Equate Labels

Window Controls and Input Focus

The objects placed in an APPLICATION or WINDOW structure are "controls." "Control" is a
standard Windows term used to refer to any screen object--command buttons, text entry fields,
radio buttons, list boxes, etc. In most DOS programs, the term "field" is usually used to refer to
these objects. In this document, the terms "control" and "field" are generally interchangeable.

Controls appear only in MENUBARs, TOOLBARS, or WINDOW structures. Controls are available
to the user to select and/or edit the data they contain only when it has "input focus." This occurs
when the user uses the TAB key, the mouse, or an accelerator key combination to highlight the
control.

A WINDOW also has "input focus" when it is the top WINDOW in the currently active execution
thread. Since Clarion for Windows allows multi-threaded programs, the concept of which
WINDOW currently has focus is important. Only the thread whose uppermost WINDOW has
focus is active. The user may edit data in the WINDOW's control fields only when it has focus.

6 — Windows 299

Field Equate Labels

Control Numbering

In WINDOW structures, every control (field) with a USE attribute is assigned a number by the
compiler. By default, these field numbers begin with one (1) and are assigned to controls in the
order they appear in the WINDOW structure code (the window itself is numbered zero). The
actual assigned numbers can be overridden in the second parameter of the control's USE
attribute.

The order of appearance in the WINDOW structure code determines the "natural” selection order
of controls (which may be altered during program execution with the SELECT statement). The
order of appearance in the WINDOW structure code is independent of the control's placement on
the screen. Therefore, there is not necessarily any correlation between a control's position on
screen and the field number assigned by the compiler.

In APPLICATION structures, every menu selection in the MENUBAR, and every control with a
USE attribute placed in the TOOLBAR, is assigned a number by the compiler. By default, these
numbers begin with negative one (-1) and are decremented by one (1) in the order the menu
selections and controls appear in the APPLICATION structure code.

Equates for Control Numbers

There are a number of statements that use these compiler-assigned field numbers as parameters
to indicate which controls are affected by the statement. It would be very tedious to "hard code”
these numbers in order to use these statements. Therefore, Clarion provides a mechanism to
address this problem: Field Equate Labels.

Field Equate Labels always begin with a question mark (?) followed by the label of the variable
named in the control's USE attribute. The leading question mark indicates to the compiler a Field
Equate Label. Field Equate Labels are very similar to normal EQUATE compiler directives. The
compiler substitutes the field number for the Field Equate Label at compile time. This makes it
unnecessary to know field numbers in advance.

Two or more controls with exactly the same USE variable in one WINDOW or APPLICATION
structure would attempt to create the same Field Equate Label for all (each referencing a different
field number). Therefore, when the compiler encounters this condition, all the Field Equate Labels
for that USE variable are discarded. This makes it impossible to reference any of these controls in
executable code, preventing confusion about which control you really want to reference. You can
eliminate this problem by explicitly specifying the Field Equate Label for use by each control in
the third parameter to the controls' USE attribute.

300 Language Reference Manual

Array and Complex Structure Field Equates

Field Equate Labels for USE variables which are array elements always begin with a question
mark (?) followed by the name of the USE variable followed by an underscore and the array
element number. For example, the field equate for USE(ArrayField[1]) would be ?ArrayField_1.
Multi-dimensioned arrays are treated similarly (?ArrayField_1 1, ?ArrayField_1 2, ...). You can
override this default by explicitly specifying the Field Equate Label for use by each control in the
third parameter to the controls' USE attribute.

Field Equate Labels for USE variables which are elements of a complex data structure always
begin with a question mark (?) followed by the name of the USE variable with colons (:)
replacing the periods (.). For example, the field equate for USE(Phones.Rec.Name) would be
?Phones:Rec:Name. This is done because Clarion labels may contain colons, but not periods,
and a field equate is a label.

Using Field Equate Labels

Some controls' have USE attributes that can only be Field Equate Labels (a unique label with a
leading question mark). This simply provides a way of referencing these fields in code or property
assignment statements.

In executable code, there are many statements which use the field equate label to reference the
control to affect (such as the DISPLAY statement). In all these statements, using a question mark
(?) alone, without the USE variable name appended), always indicates performing the action on
the current control that has input focus.

Example:
W ndow W NDOW ' Di al og W ndow), SYSTEM MAX, STATUS
TEXT, HVSCROLL, USE(Pr e: Fi el d) IFEQ = ?Pre: Field
ENTRY(@\3) , HYSCROLL, USE(Pre: Array[1]) !FEQ = ?Pre: Array_1
ENTRY(@N3) , HYSCROLL, USE(Fil e. MyField) 'FEQ = ?File: MyFi el d
| MAGE(| CON: Excl amat i on), USE(?I nage) IUSE attribute is a Field Equate Label
BUTTON(" &K'), USE(?CK) IUSE attribute is a Field Equate Label
END
CODE
OPEN(W ndow)
?0k{ PROP: DEFAULT} = TRUE !'Field Equates used in property assignnments
?1 mage{ PROP: Text} = 'MW/l nmge. d F
ACCEPT
DI SPLAY(?) ! Re-Display control with current input focus

END

6 — Windows 301

Graphics Overview

Clarion supplies a set of "graphics primitives" procedures to allow drawing in windows and
reports: ARC, BLANK, BOX, CHORD, ELLIPSE, IMAGE, LINE, PIE, POLYGON, ROUNDBOX,
SHOW, and TYPE. Controls always appear on top of any graphics drawn to the window. This
means the graphics appear to underlay any controls in the window, so they don't get in the way of
the controls the user needs to access.

Current Target

Graphics are always drawn to the "current target." Unless overridden with SETTARGET, the
"current target" is the last window opened (and not yet closed) on the current execution thread
and is the window with input focus. Drawings in a window are persistent--redraws are handled
automatically by the runtime library.

Graphics in Reports

Graphics can also be drawn to a report. To do this, SETTARGET must first be used to nhominate
the REPORT as the "current target.” Optionally, SETTARGET can nominate a specific report
band to receive the graphics.

Consistent Graphics

Every window or report has its own current pen width, color, and style. Therefore, to consistently
use the same pen (which does not use the default settings) across multiple windows, the
SETPENWIDTH, SETPENCOLOR, and SETPENSTYLE statements should be issued for each
window.

302 Language Reference Manual

Graphics Coordinates

The graphics coordinate system starts with the x,y coordinates (0,0) at the top left corner of the
window. The coordinates are specified in dialog units (unless overridden by the THOUS, MM, or
POINTS attributes when used on graphics placed in a REPORT). A dialog unit is defined as one-
guarter the average character width and one-eighth the average character height of the font
specified in the window's FONT attribute (or the system font, if no FONT attribute is specified on
the window).

Graphics drawn outside the currently visible portion of the window will appear if the window is
scrolled. The size of the virtual screen over which the window may scroll automatically expands to
include all graphics drawn to the window. Drawing graphics outside the visible portion of the
window automatically causes the scroll bars to appear (if the window has the HSCROLL,
VSCROLL, or HYSCROLL attribute).

7 — Reports 303

7 - Reports
Report Structures

REPORT (declare a report structure)

label REPORT([jobname]), AT() [, FONT()] [, PRE()] [, LANDSCAPE] [, PREVIEW] [, PAPER]
[,COLOR()] [| THOUS |]
MM |
| POINTS
[FORM
controls
END |
[HEADER
controls
END |
label DETAIL
controls
END
label [BREAK()
group break structures
END |
[FOOTER
controls
END]

END

304

Language Reference Manual

REPORT
label

jobname

AT

FONT

PRE
LANDSCAPE

PREVIEW
PAPER
COLOR
THOUS
MM
POINTS
FORM
controls
HEADER

DETAIL
BREAK

Declares the beginning of a report data structure.
The name by which the REPORT structure is addressed in executable code.

Names the print job for the Windows Print Manager (PROP:Text). If omitted, the
REPORT's label is used.

Specifies the size and location of the area for printing report detail, relative to the
top left corner of the page (PROP:AT).

Specifies the default font for all controls in this report (PROP:FONT). If omitted,
the printer's default font is used.

Specifies the label prefix for the report or structure.

Specifies printing the report in landscape mode (PROP:LANDSCAPE). If omitted,
printing defaults to portrait mode.

Specifies report output to Windows metafiles; one file per report page
(PROP:PREVIEW).

Specifies the paper size for the report output. If omitted, the default printer's
paper size is used.

Specifies a background color for the REPORT and default background colors for
the bands in the REPORT (PROP:COLOR).

Specifies thousandths of an inch as the measurement unit used for all attributes
which use coordinates (PROP:THOUS).

Specifies millimeters as the measurement unit used for all attributes which use
coordinates (PROP:MM).

Specifies points as the measurement unit used for all attributes which use
coordinates (PROP:POINTS). There are 72 points per inch, vertically and
horizontally.

Page layout structure defining pre-printed items on every page.
Report output controls.

Page header structure, printed at the start of each page.
Report detail structure.

A group break structure, defining the variable which causes a group break to
occur when its value changes.

group break structures

FOOTER

Group break HEADER, FOOTER, and DETAIL structures, and/or other nested
BREAK structures.

Page footer structure, printed at the end of each page.

7 — Reports 305

The REPORT statement declares the beginning of a report data structure. A REPORT structure
must terminate with a period or END statement. Within the REPORT, the FORM, HEADER,
DETAIL, FOOTER, and BREAK structures are the components that format the output of the
report. A REPORT must be explicitly opened with the OPEN statement.

A REPORT with the PREVIEW attribute sends the report output to Windows metafiles containing
one report page per file. The PREVIEW attribute names a QUEUE to receive the names of the
metafiles. You can then create a window to display the report in an IMAGE control, using the
QUEUE field contents (the file names) to set the IMAGE control's {PROP:Text} property. This
allows the end user to view the report before printing.

The REPORT's AT attribute defines the area of each page devoted to printing DETAIL structures.
This includes any HEADERs and FOOTERSs that are contained within a BREAK structure (group
headers and footers).

Only DETAIL structures can (and must) be printed with the PRINT statement. All other report
structures (HEADER, FOOTER, and FORM) automatically print at the appropriate place in the
report.

The FORM structure prints on every page except pages containing DETAIL structures with the
ALONE attribute. Its format is determined once at the beginning of the report. This makes it the
logical place to design a pre-printed form template, which is filled in by the subsequent HEADER,
DETAIL, and FOOTER structures. The page HEADER and FOOTER structures are not within a
BREAK structure. They automatically print whenever a page break occurs.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and
DETAIL structures, and/or other nested BREAK structures. It may also contain multiple DETAIL
structures. The HEADER and FOOTER structures that are within a BREAK structure are the
group header and footer. They are automatically printed when the value in a specified group
break variable changes.

A REPORT data structure never defaults as the current target for runtime property assignment
the way the most recently opened WINDOW or APPLICATION structure does. Therefore, the
REPORT label must be explicitly named as the target, or the SETTARGET statement must be
used to make the REPORT the current target, before using runtime property assignment to a
REPORT control. Since the graphics commands draw graphics only to the current target, the
SETTARGET statement must be used to make the REPORT the current target before using the
graphics procedures on a REPORT.

306 Language Reference Manual

Page-based Printing

Clarion reports use a page-based printing paradigm instead of the line-based paradigm used by
some older report generators. Instead of printing each line as its values are generated, nothing is
sent to the printer until an entire page is ready to print. This means that the "print engine" in the
Clarion runtime library can do a lot of work for you, based on the attributes you specify in the
REPORT structure.

Some of the things that the "print engine" in the Clarion runtime library does for you are:

. Prints "pre-printed" forms on each page, that are then filled in by the data
. Calculates totals (count, sum, average, minimum, maximum)

. Automatically handles page breaks, including page headers and footers
. Automatically handles group breaks, including group headers and footers
. Provides complete widow/orphan control.

This automatic functionality makes the executable code required to print a complex report very
small, making your programming job easier. Since the "print engine" is page-based, the concepts
of headers and footers lose their context indicating both page positioning and print sequence, and
only retain their meaning of print sequence. Headers are printed at the beginning of a print
sequence, and footers are printed at the end--their actual positioning on the page is irrelevant.
For example, you could position the page footer, containing page totals, to print at the top of the

page.

7 — Reports 307

BREAK (declare group break structure)

label BREAK(variable) [LJUSE()] [[NOCASE]

group break structures

END
BREAK Declares a group break structure.
label The name by which the structure is addressed in executable code.
variable The variable whose change in value signals the group break (PROP:BreakVar).
USE A field equate label to reference the BREAK structure in executable code
(PROP:USE).
NOCASE Specifies the check for a changed value in the variable is case insensitive.

group break structures
Group break HEADER, FOOTER, and DETAIL structures, and/or other nested
BREAK structures.

The BREAK structure declares the variable which signals a group break when the value in the
variable changes. A BREAK structure must be terminated with a period or END statement. It may
contain its own HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK
structures. Only one HEADER and FOOTER are allowed in a BREAK structure; it may contain
multiple DETAIL and/or BREAK structures.

The HEADER and FOOTER structures that are declared within a BREAK structure are the group
header and footer. They automatically print surrounding equivalent values in the group break
variable.

Example:
Cust Rpt REPORT ! Decl are custoner report
Br eakl BREAK(SoneVari abl e)
HEADER I begi n group header declaration
Ireport controls
END l'end header decl aration

GroupDet DETAIL
Ireport controls

END lend detail declaration
FOOTER ! begin group footer declaration
Ireport controls
END lend footer declaration
END end group break declaration

END 1'End report declaration

308

Language Reference Manual

DETAIL (report detail line structure)

label DETAIL ,AT() [FONT()] [ALONE] [ABSOLUTE] [PAGEBEFORE()] [PAGEAFTER()]

[WITHPRIOR()] [WITHNEXT()] LUSE()] [COLOR()] [TOGETHER]

controls
END

DETAIL Declares items to be printed as the body of the report.

label The name by which the structure is addressed in executable code.

AT Specifies the offset and minimum width and height of the DETAIL, relative to the
size of the area specified by the REPORT's AT attribute (PROP:AT).

FONT Specifies the default font for all controls in this structure (PROP:FONT). If
omitted, the REPORT's FONT attribute (if present) is used, or else the printer's
default font is used.

ALONE Declares the DETAIL structure must be printed on a page without FORM, (page)
HEADER, or (page) FOOTER structures (PROP:ALONE).

ABSOLUTE Declares the DETAIL prints at a fixed position relative to the page

(PROP:ABSOLUTE).

PAGEBEFORE Declares the DETAIL prints at the start of a new page, after activating normal

PAGEAFTER

WITHPRIOR

WITHNEXT

USE

COLOR

TOGETHER

controls

page overflow actions (PROP:PAGEBEFORE).

Declares the DETAIL prints, and then starts a new page by activating normal
page overflow actions (PROP:PAGEAFTER).

Declares the DETAIL prints on the same page as the DETAIL,or group HEADER
or FOOTER that immediately precedes it during printing (PROP:WITHPRIOR).

Declares the DETAIL prints on the same page as the DETAIL, or group HEADER
or FOOTER that immediately follows it during printing (PROP:WITHNEXT).

A field equate label to reference the DETAIL structure in executable code
(PROP:USE).

Specifies a background color for the DETAIL and the default background color
for the controls in the DETAIL (PROP:COLOR).

Specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is to only print on a single page, rather than being
automatically split if there is not sufficient room for it (PROP:Together).

Report output control fields.

7 — Reports 309

The DETAIL structure declares items to be printed as the body of the report. A DETAIL structure
must be terminated with a period or END statement. A REPORT may have multiple DETAIL
structures.

A DETAIL structure is never automatically printed, therefore DETAIL structures are always
explicitly printed by the PRINT statement. This means that a label is required for each DETAIL
you wish to PRINT.

The DETAIL structure may be printed whenever necessary. Since you may have multiple DETAIL
structures, they provide the ability to optionally print alternate print formats. This is determined by
the logic in the executable code which prints the report.

DETAIL structures print within the detail print area specified by the REPORT statement's AT
attribute. The DETAIL structure's AT attribute specifies the relative position, width and height of
the detail to print. If there is horizontal room within the detail print area for multiple DETAIL
structures, they print side-by-side.

Example:
Cust Rpt REPORT I Decl are custoner report
HEADER I begi n page header decl aration
I'structure el enents
END l'end header declaration
CustDetail1l DETAIL I begin detail declaration
I'structure el enents
END lend detail declaration
CustDetail 2 DETAIL I begin detail declaration
I'structure el enments
END lend detail declaration
END I'End report declaration
CODE

OPEN(Cust Rpt)
SET(SoneFi | e)
LOOP
NEXT(SoneFi | e)
| F ERRORCODE() THEN BREAK.
| F SomeCondi ti on
PRI NT(Cust Det ai | 1)
ELSE
PRI NT(Cust Det ai | 2)
END
END
CLOSE(Cust Rpt)

See Also:

PRINT, AT

310

Language Reference Manual

FOOTER (page or group footer structure)

FOOTER ,AT() [FONT()] [ABSOLUTE] [PAGEBEFORE()] [PAGEAFTER()]

[WITHPRIOR()] [WITHNEXT()] [LALONE] [USE()] [COLOR()] [TOGETHER]

controls
END

FOOTER Declares a page or group footer structure.

AT Specifies the size and location of the FOOTER (PROP:AT).

FONT Specifies the default font for all controls in this structure (PROP:FONT). If
omitted, the REPORT's FONT attribute (if present) is used, or else the printer's
default font is used.

ABSOLUTE Declares the FOOTER prints at a fixed position relative to the page

(PROP:ABSOLUTE). Valid only on a FOOTER within a BREAK structure.

PAGEBEFORE Declares the FOOTER prints at the start of a new page, after activating normal

PAGEAFTER

WITHPRIOR

WITHNEXT

ALONE

USE

COLOR

TOGETHER

page overflow actions (PROP:PAGEBEFORE). Valid only on a FOOTER within a
BREAK structure.

Declares the FOOTER prints, and then starts a new page by activating normal
page overflow actions (PROP:PAGEAFTER). Valid only on a FOOTER within a
BREAK structure.

Declares the FOOTER prints on the same page as the DETAIL, group HEADER,
or FOOTER that immediately precedes it during printing (PROP:WITHPRIOR).
Valid only on a FOOTER within a BREAK structure.

Declares the FOOTER prints on the same page as the DETAIL, group HEADER,
or FOOTER that immediately follows it during printing (PROP:WITHNEXT). Valid
only on a FOOTER within a BREAK structure.

Declares the (group) FOOTER structure must be printed on a page without
FORM, (page) HEADER, or (page) FOOTER structures (PROP:ALONE).

A field equate label to reference the FOOTER structure in executable code
(PROP:USE).

Specifies a background color for the FOOTER and the default background color
for the controls in the FOOTER (PROP:COLOR).

Specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is to only print on a single page, rather than being
automatically split if there is not sufficient room for it (PROP:Together).

7 — Reports 311

controls Report output control fields.

The FOOTER structure declares the output which prints at the end of each page or group. A
FOOTER structure must be terminated with a period or END statement.

A FOOTER structure that is not within a BREAK structure is a page footer. Only one page
FOOTER is allowed in a REPORT. The page FOOTER is automatically printed whenever a page
break occurs, at the page-relative position specified by its AT attribute.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and
DETAIL structures, and/or other nested BREAK structures. It may also contain multiple DETAIL
structures. The HEADER and FOOTER structures that are within a BREAK structure are the
group header and footer. They are automatically printed when the value in a specified group
break variable changes, at the next position available in the detail print area (specified by the
REPORT's AT attribute). Only one FOOTER is allowed in a BREAK structure.

Example:
Cust Rpt REPORT I Decl are custoner report
FOOTER I begi n page FOOTER decl aration
Ireport controls
END 'end FOOTER decl arati on

Br eakl BREAK(SoneVar i abl e)
G oupDet DETAI L
Ireport controls

END lend detail declaration
FOOTER I begin group footer declaration
Ireport controls
END lend footer declaration
END l'end group break declaration

END 1'End report declaration

312 Language Reference Manual

FORM (page layout structure)

FORM ,AT() [,FONT()] [LUSE()] [COLOR()]

controls
END
FORM Declares a report structure which prints on each page.
AT Specifies the size and location, relative to the top left corner of the page, of the
FORM (PROP:AT).
FONT Specifies the default font for all controls in this report structure (PROP:FONT). If

omitted, the REPORT's FONT attribute (if present) is used, or else the printer's
default font is used.

USE A field equate label to reference the FORM structure in executable code
(PROP:USE).

COLOR Specifies a background color for the FORM and the default background color for
the controls in the FORM (PROP:COLOR).

controls Report output control fields.

FORM declares a report structure which prints on every page of the report (except pages
containing DETAIL structures with the ALONE attribute). A FORM structure must be terminated
with a period or END statement. Only one FORM is allowed in a REPORT structure. The FORM
structure automatically prints during page overflow.

The printed output of the FORM is determined only once at the beginning of the report. The page
positioning of the FORM does not affect the page positioning of any other report structure. Once
printed, all other structures may "overwrite" the FORM. Therefore, FORM is most aften used to
design pre-printed forms which are filled in by the subsequent HEADER, DETAIL, and FOOTER
structures. It may also be used to generate "watermarks" or page border graphics.

Example:

Cust Rpt REPORT I Decl are customer report
FORM
| MAGE(' LOGO. BMP), AT(O, 0, 1200, 1200), USE(?I 1)
STRI NG @\3) , AT(6000, 500, 500, 500) , PAGENO
END
G oupDet DETAI L
Ireport controls
END
END I End report declaration

7 — Reports

313

HEADER (page or group header structure)

HEADER ,AT() [FONT()] [ABSOLUTE] [PAGEBEFORE()] [PAGEAFTER()]

[WITHPRIOR()] [WITHNEXT()] [LALONE] [USE()] [COLOR()] [TOGETHER]

controls
END

HEADER Declares a page or group header structure.

AT Specifies the size and location of the HEADER (PROP:AT).

FONT Specifies the default font for all controls in this structure (PROP:FONT). If
omitted, the REPORT's FONT attribute (if present) is used, or else the printer's
default font is used.

ABSOLUTE Declares the HEADER prints at a fixed position relative to the page

(PROP:ABSOLUTE). Valid only on a HEADER within a BREAK structure.

PAGEBEFORE Declares the HEADER prints at the start of a new page after activating normal

PAGEAFTER

WITHPRIOR

WITHNEXT

ALONE

USE

COLOR

TOGETHER

page overflow actions (PROP:PAGEBEFORE). Valid only on a HEADER within a
BREAK structure.

Declares the HEADER prints, and then starts a new page by activating normal
page overflow actions (PROP:PAGEAFTER). Valid only on a HEADER within a
BREAK structure.

Declares the HEADER prints on the same page as the DETAIL, group HEADER,
or FOOTER that immediately precedes it during printing (PROP:WITHPRIOR).
Valid only on a HEADER within a BREAK structure.

Declares the HEADER prints on the same page as the DETAIL, group HEADER,
or FOOTER that immediately follows it during printing (PROP:WITHNEXT). Valid
only on a HEADER within a BREAK structure.

Declares the (group) HEADER structure must be printed on a page without
FORM, (page) HEADER, or (page) FOOTER structures (PROP:ALONE).

A field equate label to reference the HEADER structure in executable code
(PROP:USE).

Specifies a background color for the HEADER and the default background color
for the controls in the HEADER (PROP:COLOR).

Specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is to only print on a single page, rather than being
automatically split if there is not sufficient room for it (PROP:Together).

314 Language Reference Manual

controls Report output control fields.

The HEADER structure declares the output which prints at the beginning of each page or group.
A HEADER structure must be terminated with a period or END statement.

A HEADER structure that is not within a BREAK structure is a page header. Only one page
HEADER is allowed in a REPORT. The page HEADER is automatically printed whenever a page
break occurs, at the page-relative position specified by its AT attribute.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and
DETAIL structures, and/or other nested BREAK structures. It may also contain multiple DETAIL
structures. The HEADER and FOOTER structures that are within a BREAK structure are the
group header and footer. They are automatically printed when the value in a specified group
break variable changes, at the next position available in the detail print area (specified by the
REPORT's AT attribute). Only one HEADER is allowed in a BREAK structure.

Example:
Cust Rpt REPORT I Decl are custoner report
HEADER I begi n page header declaration
Ireport controls
END I end header declaration
Br eakl BREAK(SoneVari abl e)
HEADER I begi n group header decl aration
Ireport controls
END I end header declaration

G oupDet DETAIL
Ireport controls
END I end detail declaration
END I end group break decl aration
END I End report declaration

7 — Reports 315

Printer Control Properties

These properties control report and printer behavior. All of these properties can be used with
either the PRINTER built-in variable or the label of the report as the target, however they may not
all make sense with both. These properties are contained in the PRNPROP.CLW file, which you
must explicitly INCLUDE in your code in order to use them.

PROPPRINT:DevMode

The entire device mode (devmode) structure as defined in the Windows Software
Development Kit. This provides direct API access to all printer properties. Consult a
Windows APl manual before using this.

The devmode structure is different in 32-bit (consult a Windows AP manual).
However, the following properties are the most common and useful:

DM ORI ENTATI ON DM _PAPERS| ZE DM_PAPERLENGTH

DM _PAPERW DTH DM _SCALE DM _COPI ES

DM_DEFAUL TSOURCE DM PRI NTQUALI TY DM _POSI TI ON

DM DI SPLAYORI ENTATI ON DM DI SPLAYFI XEDOUTPUT DM COLOR

DM _DUPLEX DM_YRESOLUTI ON DM TTOPTI ON

DM _COLLATE DM_FORVNANE DM LOGPI XELS

DM Bl TSPERPEL DM _PELSW DTH DM _PELSHEI GHT

DM DI SPLAYFLAGS DM_NUP DM DI SPLAYFREQUENCY
DM | CMVETHOD DM | CM NTENT DM _MEDI ATYPE

DM DI THERTYPE DM_PANNI NGAf DTH DM_PANNI NGHEI GHT

PROPPRINT:Collate
Specify the printer should collate the output: 0=off, 1=on (not supported by all printers).

PROPPRINT:Color

Color or monochrome print flag:1=mono, 2=color (not supported by all printers).

PROPPRINT:Context

Returns the handle to the printer's device context after the first PRINT statement for the
report, or an information context before the first PRINT statement. This may not be set for
the built-in Global PRINTER variable and is normally only read (not set).

PROPPRINT:Copies

The number of copies to print (not supported by all printers).

316 Language Reference Manual

PROPPRINT:Device

The name of the Printer as it appears in the Windows Printer Dialog. If multiple printer
names start with the same characters, the first encountered is used (not case sensitive).
May be set for the PRINTER built-in variable only before the report is open.

PROPPRINT:Driver

The printer driver's filename (without the .DLL extension).

PROPPRINT:Duplex

The duplex printing mode (not supported by all printers). Equates(DUPLEX::xxx) for the
standard choices are listed in the PRNPROP.CLW file.

PROPPRINT:Extend

PROPPRINT:Extend can be set to TRUE or FALSE at runtime, and references the
REPORT target. This determines whether or not the runtime library generates extra
information inside the WMF files, which is being used to generate the new report output
formats (XML, HTML, PDF etc.).

Set this property to FALSE (0) if you do not want alternate output formats and prefer
smaller, compact WMF files (this is default behavior).

PROP:Extend is the runtime property that can be used to set the information for the
EXTEND attribute.

PROPPRINT:FontMode

The TrueType font mode. Equates (FONTMODE:xxx) for the modes are listed in the
PRNPROP.CLW file.

PROPPRINT:FromMin

When set for the built-in PRINTER variable, this forces the value into the "From:" page
number in the PRINTERDIALOG. Specify -1 to disable ranges

PROPPRINT:FromPage
The page number on which to start printing. Specify -1 to print from the start.

7 — Reports 317

PROPPRINT:Paper

Standard paper size. Equates (PAPER:xxx) for the standard sizes are listed in the
PRNPROP.CLW file. This defines the dimensions of the .WMF files that are created by
the Clarion runtime library's "print engine."

PROPPRINT:PaperBin

The paper source. Equates (PAPERBIN:xxx) for the standard locations are listed in the
PRNPROP.CLW file.

PROPPRINT:PaperHeight

The paper height in tenths of millimeters (mm/10). There are 25.4 mm per inch. Used
when setting PROPPRINT:Paper to PAPER:Custom (not normally used for laser
printers).

PROPPRINT:PaperWidth

The paper width in tenths of millimeters (mm/10).There are 25.4 mm per inch. Used when
setting PROPPRINT:Paper to PAPER:Custom (not normally used for laser printers).

PROPPRINT:Percent

The scaling factor used to enlarge or reduce the printed output, in percent (not supported
by all printers). This defaults to 100 percent. Set this value to print at the desired
percentage (if your printer and driver support scaling). For example, set to 200 to print at
double size, or 50 to print at half size.

PROPPRINT:Port
Output port name (LPT1, COM1, etc.).

PROPPRINT:PrintToFile
The Print to File flag: 0=off, 1=on.

PROPPRINT:PrintToName

The output filename when printing to a file.

PROPPRINT:Resolution

The print resolution in Dots Per Inch (DPI). Equates (RESOLUTION:xxx)for the standard
resolutions are listed in the PRNPROP.CLW file. Must be issued before the report is
open.

318 Language Reference Manual

PROPPRINT: ToMax

When set for the built-in PRINTER variable, this forces the value into the "To:" page
number in the PRINTERDIALOG. Specify -1 to disable ranges

PROPPRINT:ToPage

The page number on which to end printing. Specify -1 to print to end.

PROPPRINT:Yresolution

Vertical print resolution in Dots Per Inch (DPI). Equates (RESOLUTION:xxx)for the
standard resolutions are listed in the PRNPROP.CLW file.

Example:

REPORT
END

SonmeRepor t

CODE

PRI NTER{ PROPPRI NT:
PRI NTER{ PROPPRI NT:
PRI NTER{ PROPPRI NT:
PRI NTER{ PROPPRI NT:
PRI NTER{ PROPPRI NT:
PRI NTER{ PROPPRI NT:
PRI NTER{ PROPPRI NT:

Devi ce} = ' Epson’
Port} = 'LPT2:"
Percent} = 250
Copies} = 3

Col l ate} = Fal se
Col l ate} = True
Print ToFile} = True

I'Pick 1st Epson in the I|ist
I Send report to LPT2

I page printed 2.5 tinmes nornal

I'print 3 copies of each page
lprint 1,1,1,2,2,2,3,3,3,...
lprint 1,2,3..., 1,2,3...,
Iprint to a file

Pri nt ToNane} =

PRI NTER{ PROPPRI NT: "QUTPUT. RPT' !filename to print to
OPEN(SoneReport) I Open report after setting PRI NTER prope
SoneRepor t { PROPPRI NT: Paper} = PAPER: User I Cust om paper size

SoneRepor t { PROPPRI NT: PAPERHei ght} = 6 * 254
SoneRepor t { PROPPRI NT: PAPERW dt h} = 3.5 * 254

16" form hei ght
13.5" formwi dth

Page Overflow

Page Overflow occurs when the PRINT statement cannot fit a DETAIL structure on a page. This
may be due to a lack of space, or the presence of the PAGEBEFORE or PAGEAFTER attribute
on a DETAIL structure. The following steps occur during page overflow, in this sequence:

1 If the REPORT has a page FOOTER, it prints at the position specified by its AT attribute.

2 The page counter is incremented.

3 If the REPORT has a FORM structure, it prints at the position specified by its AT
attribute.

4 If the REPORT has a page HEADER, it prints at the position specified by its AT attribute.

Related Procedures: CLOSE, OPEN, ENDPAGE, PRINT

7 — Reports 319

Example:

Cust Rpt REPORT, AT(1000, 1000, 6500, 9000) , THOUS, FONT(" Ari al ', 12), PRE(Rpt)
FORM AT(1000, 1000, 6500, 9000)
| MAGE(' LOGO. BMP'), AT(0, 0, 1200, 1200), USE(?1 1)
END
HEADER, AT(1000, 1000, 6500, 1000)
STRI NG ' ABC Company'), AT(3000, 500, 1500, 500) , FONT("' Ari al ', 18)
END
Br eakl BREAK(Pr e: Key1)
HEADER, AT(0, 0, 6500, 1000)
STRI N ' Group Head'), AT(3000, 500, 1500, 500), FONT(" Ari al ', 18)
END
Det ai | DETAI L, AT(0, 0, 6500, 1000)
STRI NG @\$11. 2) , AT(6000, 1500, 500, 500) , USE(Pr e: F1)
END
FOOTER, AT(0, 0, 6500, 1000)
STRINX ' Group Total : '), AT(5500, 500, 1500, 500)
STRI NG @N$11. 2) , AT(6000, 500, 500, 500) , USE(Pre: F1) , SUM RESET(Br eakl)
END
END
FOOTER, AT(1000, 1000, 6500, 1000)
STRI N ' Page Total : '), AT(5500, 1500, 1500, 500)
STRI NG @N$11. 2) , AT(6000, 1500, 500, 500) , USE(Pre: F1) , SUM PAGE
END
END 1'End report declaration

CODE
OPEN(Cust Report)
SET(Dat aFi | e)
LOOP

NEXT(Dat aFi | e)

| F ERRORCCDE()

BREAK

END

PRI NT(Rpt : Det ai |)
END
CLOSE(Cust Report)

320 Language Reference Manual

8 — Controls

321

8 - Controls

Control Declarations

BOX (declare a box control)

BOX ,AT() [LUSE()] [,DISABLE] [,COLOR()] [,FILL()] [[ROUND] [,FULL] [SCROLL] [HIDE]

[LINEWIDTH()] [LAYOUT()] [[EXTEND()]

BOX
AT

USE
DISABLE

COLOR

FILL

ROUND

FULL

SCROLL

HIDE

LINEWIDTH

LAYOUT

EXTEND

Places a rectangular box on the window or report.

Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

A field equate label to reference the control in executable code (PROP:USE).

Specifies the control appears dimmed when the WINDOW (or APPLICATION) is
first opened (PROP:DISABLE).

Specifies the color for the border of the control (PROP:COLOR). If omitted, there
is no border.

Specifies the fill color for the control (PROP:FILL). If omitted, the box is not filled
with color.

Specifies the box corners are rounded (PROP:ROUND). If omitted, the corners
are square.

Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

Specifies the control does not appear when the WINDOW or APPLICATION is
first opened. UNHIDE must be used to display it (PROP:HIDE). In a REPORT,
specifies the control does not print unless UNHIDE is used to allow it to print

Specifies the width of the BOX's border (PROP:LINEWIDTH).

Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

The BOX control places a rectangular box on the WINDOW, TOOLBAR, or REPORT at the
position and size specified by its AT attribute. This control cannot receive input focus and does
not generate events.

322 Language Reference Manual

Example:

MDI Child WNDOW' Child One'), AT(O, 0, 320, 200), MDI , MAX, H