

Language Reference Manual 2

COPYRIGHT 1994-2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity
Incorporated. It may not, in whole or part, be copied, photocopied, reproduced, translated,
or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from SoftVelocity Incorporated.

This publication supports Clarion. It is possible that it may contain technical or
typographical errors. SoftVelocity Incorporated provides this publication “as is,” without
warranty of any kind, either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:

SoftVelocity is a trademark of SoftVelocity Incorporated.
Clarion is a trademark of SoftVelocity Incorporated.
Btrieve is a registered trademark of Pervasive Software.
Microsoft , Windows , and Visual Basic are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (1103)

Contents 3

Contents:
1 - Introduction 23

Introduction--The Language Reference Manual ...23
The Language Reference Manual ..24

Language Reference -- Chapter Organization ...24
Documentation Conventions and Symbols ..26
Reference Item Format ..27
KEYWORD (short description of intended use) ...28

Clarion Conventions..29
Standard Date ..29
Standard Time..30
Clarion Keycodes ...31

2 - Program Source Code Format 33
Statement Format ...33
Declaration and Statement Labels..34

Structure Termination ...35
Field Qualification ...36
Reserved Words...38
Special Characters ...39

Program Format..41
PROGRAM (declare a program) ..41
MEMBER (identify member source file) ...43
MAP (declare PROCEDURE prototypes) ..45
MODULE (specify MEMBER source file) ...47
PROCEDURE (define a procedure) ...48
CODE (begin executable statements)..51
DATA (begin routine local data section)...52
ROUTINE (declare local subroutine)..53
END (terminate a structure) ...55
Statement Execution Sequence ...56
PROCEDURE Calls..57

PROCEDURE Prototypes...58
Prototype Syntax ..58
Prototype Parameter Lists - General Syntax..61
PROCEDURE Return Types..69

Prototype Attributes ..71
C, PASCAL (parameter passing conventions) ...71
DERIVED (prevent function overloading)...72
DLL (set procedure defined externally in .DLL)..73
NAME (set prototype's external name) ..74
PRIVATE (set procedure private to a CLASS or module)....................................75
PROC (set function called as procedure without warnings).................................76
PROTECTED (set procedure private to a CLASS or derived CLASS)77

Language Reference Manual 4

RAW (pass address only)...78
REPLACE (set replacement constructor or destructor)79
TYPE (specify PROCEDURE type definition) ..81
VIRTUAL (set virtual method) ..82

Procedure Overloading ...83
Rules for Procedure Overloading ...84
Name Mangling and C++ Compatibility..86

Compiler Directives...87
ASSERT (set assumption for debugging) ..87
BEGIN (define code structure) ...89
COMPILE (specify source to compile) ...90
INCLUDE (compile code in another file) ..92
EQUATE (assign label) ..93
ITEMIZE (enumeration data structure)...94
OMIT (specify source not to be compiled) ...96
ONCE (prevent duplicate included data)..98
SECTION (specify source code section)..99
SIZE (memory size in bytes) ..100

3 - Variable Declarations 103
Simple Data Types..103

BYTE (one-byte unsigned integer) ...103
SHORT (two-byte signed integer) ..104
USHORT (two-byte unsigned integer)..106
LONG (four-byte signed integer) ..108
ULONG (four-byte unsigned integer) ...110
SIGNED (signed integer)..112
UNSIGNED (unsigned integer) ..113
SREAL (four-byte signed floating point) ...114
REAL (eight-byte signed floating point)..116
BFLOAT4 (four-byte signed floating point)...118
BFLOAT8 (eight-byte signed floating point) ...120
DECIMAL (signed packed decimal) ...122
PDECIMAL (signed packed decimal) ...124
STRING (fixed-length string) ..126
ASTRING (atomic string)..128
CSTRING (fixed-length null terminated string)...130
PSTRING (embedded length-byte string) ..133
Implicit String Arrays and String Slicing ...136
DATE (four-byte date) ..137
TIME (four-byte time)..139

Special Data Types...141
ANY (any simple data type)..141
LIKE (inherited data type)...144
Implicit Variables ..147
Reference Variables ...149

Data Declarations and Memory Allocation..153

Contents 5

Global, Local, Static, and Dynamic ..153
Data Declaration Sections..154
Variable Size Declarations ...155
NEW (allocate heap memory) ..156
DISPOSE (de-allocate heap memory) ...157

Picture Tokens ..159
Numeric and Currency Pictures ...159
Scientific Notation Pictures...162
String Pictures ..163
Date Pictures ..164
Time Pictures..166
Pattern Pictures ..167
Key-in Template Pictures ...168

4 - Entity Declarations 171
Complex Data Structures..171

GROUP (compound data structure) ...171
CLASS (object declaration) ..174
INTERFACE (class behavior definition) ...184

File Structures...186
FILE (declare a data file structure) ...186
INDEX (declare static file access index) ..189
KEY (declare dynamic file access index) ...190
MEMO (declare a text field)..192
BLOB (declare a variable-length field) ...193
RECORD (declare record structure) ..196
Null Data Processing ..197
FILE Structure Properties...198
Environment Files...209

View Structures...212
VIEW (declare a "virtual" file) ...212
PROJECT (set view fields)...216
JOIN (declare a "join" operation)..217

Queue Structures..220
QUEUE (declare a memory QUEUE structure) ...220
Additional QUEUE Considerations...223

5 - Declaration Attributes 231
Variable and Entity Attributes..231

AUTO (uninitialized local variable) ...231
BINARY (memo contains binary data) ...232
BINDABLE (set runtime expression string variables)...233
CREATE (allow data file creation)..234
DIM (set array dimensions) ..235
DLL (set variable defined externally in .DLL) ...237
DRIVER (specify data file type)..239

Language Reference Manual 6

DUP (allow duplicate KEY entries)...240
ENCRYPT (encrypt data file) ...241
EXTERNAL (set defined externally) ...242
FILTER (set view filter expression) ..245
IMPLEMENTS(add methods to a CLASS)...248
INTERFACE (class behavior definition) ...249
INNER (set inner join operation) ..251
LINK (specify CLASS link into project) ...252
MODULE (specify CLASS member source file) ...253
NAME (set external name) ...254
NOCASE (case insensitive KEY or INDEX)...258
OEM (set international string support)..259
OPT (exclude null KEY or INDEX entries) ...260
ORDER (set view sort order expression) ...261
OVER (set shared memory location)..263
OWNER (declare password for data encryption) ...264
PRE (set label prefix)..265
PRIMARY (set relational primary key)..267
PRIVATE (set variable private to a CLASS module)..268
PROTECTED (set variable private to a CLASS or derived CLASS)..................269
RECLAIM (reuse deleted record space) ..270
STATIC (set allocate static memory)..271
THREAD (set thread-specific memory allocation)..272
TYPE (type definition) ..274

6 - Windows 277
Window Structures..277

APPLICATION (declare an MDI frame window) ..277
WINDOW (declare a dialog window)..283
MENUBAR (declare a pulldown menu) ..290
TOOLBAR (declare a tool bar) ...294

Window Overview ...297
Window Controls and Input Focus ...298
Field Equate Labels..299

Graphics Overview..301
Current Target ..301
Graphics Coordinates...302

7 - Reports 303
Report Structures..303

REPORT (declare a report structure)...303
BREAK (declare group break structure)...307
DETAIL (report detail line structure)...308
FOOTER (page or group footer structure) ...310
FORM (page layout structure)..312
HEADER (page or group header structure) ...313

Contents 7

Printer Control Properties...315
Page Overflow..318

8 - Controls 321
Control Declarations ...321

BOX (declare a box control) ...321
BUTTON (declare a pushbutton control)..323
CHECK (declare a checkbox control)...326
COMBO (declare an entry/list control) ...329
ELLIPSE (declare an ellipse control)..334
ENTRY (declare a data entry control) ..336
GROUP (declare a group of controls) ..340
IMAGE (declare a graphic image control) ..343
ITEM (declare a menu item)...345
LINE (declare a line control)...348
LIST (declare a window list control) ...350
MENU (declare a menu box)..355
OLE (declare a window OLE or .OCX container control)357
OPTION (declare a set of RADIO controls) ...361
PANEL (declare a panel control)..364
PROMPT (declare a prompt control)..365
PROGRESS (declare a progress control) ..367
RADIO (declare a radio button control) ..369
REGION (declare a window region control) ...372
SHEET (declare a group of TAB controls) ...374
SPIN (declare a spinning list control) ...377
STRING (declare a string control) ..380
TAB (declare a page of a SHEET control) ...383
TEXT (declare a multi-line text control) ..385

9 - Window and Report Attributes 389
Attribute Property Equates..389
Window and Report Attributes ..391

ABSOLUTE (set fixed-position printing) ...391
ALONE (set to print without page header, footer, or form).................................392
ALRT (set window "hot" keys) ..393
ANGLE (set control display or print angle) ...395
AT (set position and size)...396
AUTO (set USE variable automatic re-display)..399
AUTOSIZE (set OLE object resizing) ...400
AVE (set report total average)..401
BEVEL (set 3-D effect border)..402
BOXED (set controls group border) ...403
CAP, UPR (set case)..404
CENTER (set centered window position) ...405
CENTERED (set centered image)..406

Language Reference Manual 8

CHECK (set on/off ITEM) ...407
CLIP (set OLE object clipping) ...408
CNT (set total count) ..409
COLOR (set color)..410
COLUMN (set list box highlight bar)...412
EXTEND (set document formatting)...413
COMPATIBILITY (set OLE control compatibility)...414
CREATE (create OLE control object)...415
CURSOR (set mouse cursor type) ...416
DEFAULT (set enter key button) ..417
DELAY (set repeat button delay)..418
DISABLE (set control dimmed at open) ...419
DOCK (set dockable toolbox window)..420
DOCKED (set dockable toolbox window docked at open)421
DOCUMENT (create OLE control object from file)...422
DOUBLE, NOFRAME, RESIZE (set window border)...423
DRAGID (set drag-and-drop host signatures)..424
DROP (set list box behavior)..425
DROPID (set drag-and-drop target signatures) ...426
FILL (set fill color) ...427
FIRST, LAST (set MENU or ITEM position) ...428
FLAT (set flat control) ...429
FONT (set default font)...430
FORMAT (set LIST or COMBO layout) ..433
FORMAT() Runtime Properties ..438
FORMAT() Style Properties ...441
FORMAT() Other List Box Properties...443
FORMAT() List Box Mouse Click Properties ..445
FROM (set listbox data source)..448
FULL (set full-screen) ...450
GRAY (set 3-D look background)...451
GRID (set list grid-line display color) ..452
HIDE (set control hidden) ...453
HLP (set on-line help identifier) ..454
HSCROLL, VSCROLL, HVSCROLL (set scroll bars) ..455
ICON (set icon)...456
ICONIZE (set window open as icon) ..458
IMM (set immediate event notification)...459
INS, OVR (set typing mode)...461
JOIN (set joined TAB scroll buttons) ..462
KEY (set execution keycode) ...463
LANDSCAPE (set page orientation)...464
LAYOUT (set window orientation) ..465
LEFT, RIGHT, ABOVE, BELOW (set TAB position) ..466
LEFT, RIGHT, CENTER, DECIMAL (set justification)467
LINEWIDTH (set line thickness)...469
LINK (create OLE control link to object from file) ...470

Contents 9

MARK (set multiple selection mode) ..471
MASK (set pattern editing data entry) ..472
MAX (set maximize control or total maximum)...473
MAXIMIZE (set window open maximized) ...475
MDI (set MDI child window)..476
MIN (set total minimum) ...477
MODAL (set system modal window) ..478
MSG (set status bar message)...479
NOBAR (set no highlight bar)...480
NOCASE (case insensitive report BREAK)..481
NOMERGE (set merging behavior)..482
NOSHEET (set "floating" TABs)...484
OPEN (open OLE control object from file) ...485
PAGE (set page total reset) ...486
PAGEAFTER (set page break after) ..487
PAGEBEFORE (set page break first)...488
PAGENO (set page number print)..489
PALETTE (set number of hardware colors) ...490
PAPER (set report paper size) ...491
PASSWORD (set data non-display)...492
PREVIEW (set report output to metafiles)..493
RANGE (set range limits) ...495
READONLY (set display-only) ...496
REPEAT (set repeat button rate) ...497
REQ (set required entry) ..498
RESET (set total reset) ..499
RESIZE (set variable height TEXT control)..500
RIGHT (set MENU position) ...501
ROUND (set round-cornered BOX)..502
RTF (declare TEXT control as RichEdit) ..503
SCROLL (set scrolling control)...504
SEPARATOR (set separator line ITEM)...505
SINGLE (set TEXT for single line entry)...506
SKIP (set Tab key skip or conditional print control) ...507
SMOOTH (set smooth progress bar increments)...508
SPREAD (set evenly spaced TAB controls)...508
STATUS (set status bar) ..509
STD (set standard behavior) ..511
STEP (set SPIN increment)..512
STRETCH (set OLE object stretching)...513
SUM (set total)..514
SYSTEM (set system menu) ..515
TALLY (set total calculation times)...516
THOUS, MM, POINTS (set report coordinate measure)....................................517
TILED (set tiled image)...518
TIMER (set periodic event)...519
TIP (set "balloon help" text) ..520

Language Reference Manual 10

TOGETHER (set to print on a single page)..521
TOOLBOX (set toolbox window behavior) ...522
TRN (set transparent control)...524
UP, DOWN (set TAB text orientation) ..525
USE (set field equate label or control update variable)......................................526
VALUE (set RADIO or CHECK control USE variable assignment)....................529
VCR (set VCR control) ...530
VERTICAL (set vertical progress bar display)..531
WALLPAPER (set background image)...532
WITHNEXT (set widow elimination) ...533
WITHPRIOR (set orphan elimination) ..534
WIZARD (set "tabless" SHEET control) ...535
ZOOM (set OLE object zooming) ...536

10 - Expressions 537
Overview ...537

Expression Evaluation..537
Operators ..538

Arithmetic Operators...538
The Concatenation Operator..539
Logical Operators ...540

Constants ..541
Numeric Constants ...541
String Constants ...542

Types of Expressions..543
Numeric Expressions..543
String Expressions..544
Logical Expressions..545
Property Expressions ...546

Runtime Expression Evaluation ..549
BIND (declare runtime expression string variable)...550
BINDEXPRESSION(declare runtime expression)..552
EVALUATE (return runtime expression string result)...553
POPBIND (restore runtime expression string name space)555
PUSHBIND (save runtime expression string name space)................................556
UNBIND (free runtime expression string variable) ...557

11 - Assignments 559
Simple Assignment Statements ..559

Operating Assignments ..560
Deep Assignment ...561
Reference Assignments ...563
CLEAR (clear a variable)..565

Data Type Conversion Rules ..566
Base Types...567
BCD Operations and Procedures...569

Contents 11

Type Conversion and Intermediate Results ...570
Simple Assignment Data Type Conversion..571

12 - Execution Control 579
Control Structures ...579

ACCEPT (the event processor)..579
CASE (selective execution structure)...582
EXECUTE (statement execution structure)..584
IF (conditional execution structure) ..586
LOOP (iteration structure) ..588

Execution Control Statements ..591
BREAK (immediately leave loop) ...591
CYCLE (go to top of loop) ..592
DO (call a ROUTINE) ...594
EXIT (leave a ROUTINE) ...595
GOTO (go to a label) ..596
RETURN (return to caller) ..597

13 - Built-in Procedures 599
Procedure Listing by Function ..599
ABS (return absolute value)..608
ACCEPTED (return control just completed) ...609
ACOS (return arccosine)...610
ADD (add an entry) ...611
ADDRESS (return memory address)..615
AGE (return age from base date) ...616
ALERT (set event generation key)..617
ALIAS (set alternate keycode) ..619
ALL (return repeated characters)..620
APPEND (add a new file record) ..621
ARC (draw an arc of an ellipse) ..622
ASK (get one keystroke) ...623
ASIN (return arcsine) ..624
ATAN (return arctangent)..625
BAND (return bitwise AND)...626
BEEP (sound tone on speaker) ..627
BLANK (erase graphics) ...628
BOR (return bitwise OR) ...629
BOX (draw a rectangle) ..630
BSHIFT (return shifted bits) ..631
BUFFER (set record paging) ..632
BUILD (build keys and indexes)..634
BXOR (return bitwise exclusive OR)...637
BYTES (return size in bytes)...638
CALL (call procedure from a DLL) ..640
CALLBACK (register or unregister a FileCallBackInterface)641

Language Reference Manual 12

CENTER (return centered string) ...644
CHAIN (execute another program) ...645
CHANGE (change control field value) ..646
CHANGES (return changed queue) ...647
CHOICE (return relative item position) ...648
CHOOSE (return chosen value) ...649
CHORD (draw a section of an ellipse)..651
CHR (return character from ASCII)...652
CLIP (return string without trailing spaces)...653
CLIPBOARD (return windows clipboard contents) ...654
CLOCK (return system time)...656
CLONE(duplicate existing control)..657
CLOSE (close a data structure) ..659
COLORDIALOG (return chosen color) ...661
COMMAND (return command line)...662
COMMIT (terminate successful transaction) ..663
CONTENTS (return contents of USE variable)...664
CONVERTANSITOOEM (convert ANSI strings to ASCII) ..665
CONVERTOEMTOANSI (convert ASCII strings to ANSI)..666
COPY (copy a file) ..667
COS (return cosine) ..668
CREATE (create an empty data file) ..669
CREATE (return new control created) ..670
DATE (return standard date)...673
DAY (return day of month) ..674
DEFORMAT (return unformatted numbers from string) ...675
DELETE (delete a record)...676
DELETEREG (remove a value or key from Windows registry)679
DESTROY (remove a control or file) ..680
DIRECTORY (get file directory) ..682
DISABLE (dim a control)...685
DISPLAY (write USE variables to screen) ..686
DRAGID (return matching drag-and-drop signature)..687
DROPID (return drag-and-drop string) ...689
DUPLICATE (check for duplicate key entries)..691
ELLIPSE (draw an ellipse) ..692
EMPTY (empty a data file)..693
ENABLE (re-activate dimmed control) ..694
ENDPAGE (force page overflow) ...695
ERASE (clear screen control and USE variables) ..697
ERROR (return error message) ..698
ERRORCODE (return error code number) ...699
ERRORFILE (return error filename) ...700
EVENT (return event number) ..701
EXISTS (return file existence)...702
FIELD (return control with focus) ..703
FILEDIALOG (return chosen file)..704

Contents 13

FILEDIALOGA (extended file dialog) ..707
FILEERROR (return file driver error message)...711
FILEERRORCODE (return file driver error code number)..712
FIRSTFIELD (return first window control)...713
FLUSH (flush buffers) ...714
FOCUS (return control with focus)..715
FONTDIALOG (return chosen font) ..716
FONTDIALOGA (return chosen font and character set)...717
FORMAT (return formatted numbers into a picture) ...718
FORWARDKEY (pass keystrokes to control) ...719
FREE (delete all entries)...720
FREESTATE (free resources) ..721
GET (read a record or entry)...722
GETFONT (get font information)...726
GETINI (return INI file entry) ...727
GETNULLS(get the NULL state of a table)...728
GETPOSITION (get control position)..729
GETREG(get Windows registry entry) ..730
GETSTATE (return current state of data file) ...731
HALT (exit program) ...732
HELP (help window access) ...733
HIDE (blank a control)...734
HOLD (exclusive record access) ..735
IDLE (arm periodic procedure)..737
IMAGE (draw a graphic image)...738
INCOMPLETE (return empty REQ control) ..739
INLIST (return entry in list)..740
INRANGE (check number within range) ...741
INSTANCE (return variable's thread instance address) ...742
INSTRING (return substring position)...744
INT (truncate fraction) ...746
ISALPHA (return alphabetic character) ..747
ISLOWER (return lower case character) ..748
ISSTRING (return field string type or not)...749
ISUPPER (return upper case character) ..750
KEYBOARD (return keystroke waiting) ..751
KEYCHAR (return ASCII code)...752
KEYCODE (return last keycode)...753
KEYSTATE (return keyboard status)..754
LASTFIELD (return last window control) ..755
LEFT (return left justified string)..756
LEN (return length of string)..757
LINE (draw a straight line) ..758
LOCALE (load environment file) ...759
LOCK (exclusive file access) ..760
LOCKTHREAD (re-lock the current execution thread) ...761
LOG10 (return base 10 logarithm)..762

Language Reference Manual 14

LOGE (return natural logarithm) ...763
LOGOUT (begin transaction) ..764
LONGPATH (return long filename)...766
LOWER (return lower case)..767
MATCH (return matching values) ...768
MAXIMUM (return maximum subscript value) ..772
MESSAGE (return message box response) ...773
MONTH (return month of date) ...776
MOUSEX (return mouse horizontal position)..777
MOUSEY (return mouse vertical position)..778
NAME (return file name) ...779
NEXT (read next record in sequence) ..780
NOMEMO (read file record without reading memo) ...782
NOTIFY (send safe information to a receiver thread)...783
NOTIFICATION (receive information from sender thread)784
NULL (return null file field) ..786
NUMERIC (return numeric string)...788
OMITTED (return omitted parameters)...789
OPEN (open a data structure) ..791
PACK (remove deleted records) ...795
PATH (return current directory)...796
PEEK (read memory address) ..797
PENCOLOR (return line draw color)...798
PENSTYLE (return line draw style)...799
PENWIDTH (return line draw thickness) ..800
PIE (draw a pie chart) ...801
POINTER (return last queue entry position) ...803
POKE (write to memory address) ...804
POLYGON (draw a multi-sided figure) ...805
POPUP (return popup menu selection) ..806
POSITION (return record sequence position)...808
POST (post user-defined event) ...811
PRAGMA (control pragma settings from source) ...812
PRESS (put characters in the buffer) ...814
PRESSKEY (put a keystroke in the buffer)...815
PREVIOUS (read previous view record in sequence) ..816
PRINT (print a report structure) ..818
PRINTERDIALOG (return chosen printer)..819
POPERRORS (return error information)...820
PUSHERRORS (write error information) ..822
PUT (re-write record) ..824
PUTINI (set INI file entry)..828
PUTREG (write value to Windows registry)..829
QUOTE (replace string special characters) ..830
RANDOM (return random number)...831
RECORDS (return number of rows in data set)..832
REGISTER (register event handler) ...834

Contents 15

REJECTCODE (return reject code number)...836
REGET (re-get record)..837
RELEASE (release a held record) ..839
REMOVE (erase a file) ...840
RENAME (change file directory name)...841
RESET (reset record sequence position) ...842
RESTORESTATE (restore state of data file)..845
RESUME (resume thread execution) ...846
RIGHT (return right justified string) ...847
ROLLBACK (terminate unsuccessful transaction)..848
ROUND (return rounded number) ..849
ROUNDBOX (draw a box with round corners) ...850
RUN (execute command) ...851
RUNCODE (return program exit code) ...853
SELECT (select next control to process)..854
SELECTED (return control that has received focus) ..856
SEND (send message to file driver) ...857
SET (initiate sequential file processing)..858
SET3DLOOK (set 3D window look)..862
SETCLIPBOARD (set windows clipboard contents)...863
SETCLOCK (set system time) ..864
SETCOMMAND (set command line parameters) ...865
SETCURSOR (set temporary mouse cursor) ...866
SETDROPID (set DROPID return string) ...867
SETFONT (specify font)..868
SETKEYCHAR (specify ASCII code)..869
SETKEYCODE (specify keycode) ..870
SETNONULL (set file field non-null) ...871
SETNULL (set file field null)..873
SETNULLS(set the null state of columns) ..875
SETPATH (change current drive and directory) ...876
SETPENCOLOR (set line draw color) ..877
SETPENSTYLE (set line draw style) ..878
SETPENWIDTH (set line draw thickness) ..879
SETPOSITION (specify new control position) ..880
SETTARGET (set current window or report) ..881
SETTODAY (set system date) ..883
SHORTPATH (return short filename) ...884
SHOW (write to screen) ..885
SHUTDOWN (arm termination procedure) ...886
SIN (return sine)..887
SKIP (bypass records in sequence) ...888
SORT (sort queue entries)..890
SQL (use SQL code)...892
SQLCALLBACK (register or unregister a SQLCallBackInterface)............................893
SQRT (return square root) ..896
START (return new execution thread) ..897

Language Reference Manual 16

STATUS (return file or window/report status) ...899
STOP (suspend program execution) ..901
STREAM (enable operating system buffering) ...902
STRPOS (return matching value position)..903
SUB (return substring of string) ..907
SUSPEND (suspend thread execution)..909
TAN (return tangent) ...910
THREAD (return current execution thread) ..911
THREADLOCKED (returns current execution thread locked state)912
TIE(associate a string value to an ASTRING) ..913
TIED(retrieves a value associated with an ASTRING) ...914
TODAY (return system date) ..915
TYPE (write string to screen) ..916
UNHIDE (show hidden control)...917
UNLOAD (remove a CALLed DLL from memory)...918
UNLOCK (unlock a locked data file) ...919
UNLOCKTHREAD (unlock the current execution thread) ..920
UNQUOTE (remove string special characters)...921
UNREGISTER (unregister event handler) ..922
UNTIE(disassociate a string value from an ASTRING) ..923
UPDATE (write from screen to USE variables) ..924
UPPER (return upper case) ..925
VAL (return ASCII value) ..926
WATCH (automatic concurrency check)...927
WHAT (return field from group)...928
WHERE (return field position in group)...929
WHO (return field name from group) ..930
YEAR (return year of date) ...931
YIELD (allow event processing)..932

Appendix A - DDE, OLE, and .OCX 935
Dynamic Data Exchange ..935

DDE Overview ..935
DDE Events ..936

DDE Procedures ...938
DDEACKNOWLEDGE (send acknowledgement from DDE server)938
DDEAPP (return server application)...940
DDECHANNEL (return DDE channel number) ..941
DDECLIENT (return DDE client channel)...942
DDECLOSE (terminate DDE server link) ...943
DDEEXECUTE (send command to DDE server) ...944
DDEITEM (return server item)..946
DDEPOKE (send unsolicited data to DDE server)...947
DDEQUERY (return registered DDE servers)..949
DDEREAD (get data from DDE server)..950
DDESERVER (return DDE server channel) ...952
DDETOPIC (return server topic) ..953

Contents 17

DDEVALUE (return data value sent to server)...954
DDEWRITE (provide data to DDE client) ...955

Object Linking and Embedding...957
OLE Overview ..957
OLE Container Properties ..959
OLEDIRECTORY (get list of installed OLE/OCX)..968

OLE (.OCX) Custom Controls...970
OLE custom control Overview..970
.OCX Control Properties...971
Callback Functions ...973

Calling OLE Object Methods...978
Method Syntax Overview ...978
Parameter Passing to OLE/OCX Methods...981

OCX Library Procedures...984
OCXREGISTERPROPEDIT (install property edit callback)...............................984
OCXREGISTERPROPCHANGE (install property change callback)..................985
OCXREGISTEREVENTPROC (install event processing callback)....................986
OCXUNREGISTERPROPEDIT (un-install property edit callback)987
OCXUNREGISTERPROPCHANGE (un-install prop change callback)988
OCXUNREGISTEREVENTPROC (un-install event process callback)989
OCXGETPARAMCOUNT (return number of parameters for current event)......990
OCXGETPARAM (return current event parameter string)991
OCXSETPARAM (set current event parameter string)992
OCXLOADIMAGE (return an image object) ...993

Appendix B - Events 995
Events ...995
Field-Independent Events ...996

EVENT:AlertKey...997
EVENT:BuildDone..997
EVENT:BuildFile...997
EVENT:BuildKey ..997
EVENT:CloseDown ..997
EVENT:CloseWindow...997
EVENT:Completed ...997
DDE Events ..998
EVENT:Docked ..998
EVENT:Undocked ..998
EVENT:GainFocus ...999
EVENT:Iconize ...999
EVENT:Iconized ...999
EVENT:LoseFocus ...999
EVENT:Maximize ...999
EVENT:Maximized ...999
EVENT:Move..999
EVENT:Moved..999
EVENT:Notify ...1000

Language Reference Manual 18

EVENT:OpenWindow...1000
EVENT:PreAlertKey ...1000
EVENT:Restore ..1000
EVENT:Restored ..1000
EVENT:Resume ...1000
EVENT:Size..1000
EVENT:Sized..1000
EVENT:Suspend ..1001
EVENT:Timer ...1001

Field-Specific Events ..1002
Field-Specific Events ..1002
EVENT:Accepted..1003
EVENT:AlertKey...1003
EVENT:ColumnResize ...1003
EVENT:Contracted...1003
EVENT:Contracting ..1003
EVENT:Drag...1003
EVENT:Dragging ..1003
EVENT:Drop...1003
EVENT:DroppedDown ...1004
EVENT:DroppingDown...1004
EVENT:Expanded ..1004
EVENT:Expanding..1004
EVENT:Locate..1004
Mouse Events...1005
EVENT:NewSelection ..1006
EVENT:PageDown...1006
EVENT:PageUp..1006
EVENT:PreAlertKey (Field Specific) ..1006
EVENT:Rejected ..1006
EVENT:ScrollBottom ..1006
EVENT:ScrollDown ..1006
EVENT:ScrollDrag..1007
EVENT:ScrollTop ...1007
EVENT:ScrollTrack...1007
EVENT:ScrollUp ...1007
EVENT:Selected...1007
EVENT:TabChanging...1007

Modal Events ..1008
Appendix C - Runtime Properties 1009

PROP:AcceptAll ...1009
PROP:Active...1010
PROP:AlwaysDrop ...1010
PROP:AppInstance ..1011
PROP:AssertHook..1011
PROP:AssertHook2..1012

Contents 19

PROP:AutoPaper ...1013
PROP:BreakVar ...1013
PROP:Buffer...1014
PROP:Checked ..1014
PROP:Child and PROP:ChildIndex..1015
PROP:ChoiceFeq ...1016
PROP:ClientHandle..1016
PROP:ClientWndProc ..1017
PROP:ClipBits ..1018
PROP:ColorDialogHook ...1019
PROP:DDEMode..1019
PROP:DDETimeOut...1020
PROP:DeferMove...1020
PROP:Edit ..1022
PROP:Enabled ...1024
PROP:EventsWaiting ...1026
PROP:ExeVersion ..1026
PROP:FatalErrorHook..1026
PROP:FileDialogHook..1026
PROP:FlushPageNumFunc ...1027
PROP:FlushPreview...1028
PROP:Follows ..1029
PROP:FontDialogHook ..1029
PROP:HaltHook..1030
PROP:Handle ...1030
PROP:HeaderHeight ..1031
PROP:HscrollPos ...1032
PROP:IconList ..1033
PROP:ImageBits ..1035
PROP:ImageBlob ...1036
PROP:InitAStringHook ...1036
PROP:Interface ..1036
PROP:InToolbar ...1036
PROP:Items..1037
PROP:LazyDisplay...1037
PROP:LFNSupport ...1038
PROP:LibHook ...1038
PROP:LibVersion ...1039
PROP:Line and PROP:LineCount..1039
PROP:LineHeight ...1040
PROP:MaxHeight ...1040
PROP:MaxWidth ..1041
PROP:MessageHook ...1041
PROP:MinHeight ..1042
PROP:MinWidth ...1042
PROP:NextField ...1043
PROP:NextPageNo..1044

Language Reference Manual 20

PROP:NextTabStop and PROP:PrevTabStop...1044
PROP:NoHeight and PROP:NoWidth ..1045
PROP:NoTips ...1046
PROP:NumTabs...1047
PROP:Parent..1048
PROP:Pixels...1048
PROP:PrinterDialogHook ...1049
PROP:PrintMode ..1049
PROP:Progress ..1050
PROP:PropVscroll ..1051
PROP:RejectCode..1052
PROP:ScreenText ..1053
PROP:SelStart (or PROP:Selected) and PROP:SelEnd..................................1054
PROP:Size ...1055
PROP:SnapHeight and PROP:SnapWidth ..1056
PROP:StatusFont ...1058
PROP:StopHook...1058
PROP:SystemPropHook ..1058
PROP:TabRows ...1059
PROP:Target ..1060
PROP:TempImage ...1060
PROP:TempImagePath..1060
PROP:TempImageStatus...1060
PROP:TempNameFunc ...1060
PROP:TempPagePath ...1062
PROP:TempPath..1062
PROP:Thread ...1062
PROP:Threading ..1062
PROP:TipDelay and PROP:TipDisplay..1063
PROP:TipsFont ..1063
PROP:Touched ..1064
PROP:Type ..1066
PROP:UpsideDown..1067
PROP:UseAddress...1068
PROP:Visible..1069
PROP:VLBproc and PROP:VLBval..1071
PROP:Vscroll..1074
PROP:VscrollPos ...1075
PROP:Watched ..1077
PROP:WheelScroll ...1077
PROP:WindowsVersion ...1077
PROP:WndProc..1078
PROP:Xorigin and PROP:YOrigin..1080

Runtime VIEW and FILE Properties ...1081
PROP:Completed ...1081
PROP:ConnectString..1081
PROP:CurrentKey ..1082

Contents 21

PROP:DataPath ...1082
PROP:Details ...1083
PROP:DriverLogsoutAlias ..1083
PROP:FetchSize ..1083
PROP:Field...1084
PROP:FieldsFile ...1084
PROP:File...1085
PROP:Files...1085
PROP:GlobalHelp...1086
PROP:Held ...1086
PROP:Log ..1087
PROP:Logout ...1088
PROP:LogoutIsolationLevel ...1089
PROP:MaxStatements ...1089
PROP:Profile ..1089
PROP:ProgressEvents ...1090
PROP:Record...1093
PROP:SQLDriver..1093
PROP:StmtAttr ...1093
PROP:SupportsOp ...1094
PROP:SupportsType..1094
PROP:Text (MEMO Property) ..1094
PROP:Value ...1095

Appendix D - Error Codes 1097
Trappable Run Time Errors..1097
Non-Trappable Run Time Errors ..1103

Compiler Errors ...1106
Specific Errors ..1107
Unknown errors ..1124

Appendix E - Legacy Statements 1127
Legacy Statements ...1127
BOF (return beginning of file)..1128
EOF (return end of file) ...1129
FUNCTION (define a function)..1130
POINTER (return relative record position)..1131
SHARE (open data file for shared access) ...1132

Index: 1133

Language Reference Manual 22

1 - Introduction 23

1 - Introduction
Introduction--The Language Reference Manual
Clarion is an integrated environment for writing data processing applications and management
information systems for microcomputers using the Windows operating environment. Clarion's
programming language is the foundation of this environment. In this manual, the language is
concisely documented in a modular fashion. Although this is not a text book, you should consult
this manual first when you want to know the precise syntax required to implement any
declaration, statement, or function.

Wherever possible, we provide real-world example code for each item.

Language Reference Manual 24

The Language Reference Manual

Language Reference -- Chapter Organization
CHAPTER 1 - Introduction provides an introduction to the Clarion Language Reference. It
provides a brief overview of the contents of each chapter, and a guide to help the reader
understand the documentation conventions used throughout the book.

CHAPTER 2 - Program Source Code Format provides the general layout of a Clarion Windows
program. Punctuation, special characters, reserved words, and a detailed description of the
"building blocks" required to create modular, structured Clarion source code are documented
here.

CHAPTER 3 - Variable Declarations describes all the simple data types used to declare
variables in a Clarion program. In addition, data display formatting masks, called "picture tokens,"
are defined and illustrated.

CHAPTER 4 - Entity Declarations describes all the complex data types used to declare
GROUP, CLASS, FILE, VIEW, and QUEUE structures in a Clarion program.

CHAPTER 5 - Declaration Attributes describes all the attributes which can modify variable and
entity declarations.

CHAPTER 6 - Windows describes the APPLICATION and WINDOW data structures and all their
component structures.

CHAPTER 7 - Reports describes the REPORT data structure and all its component structures.

CHAPTER 8 - Controls describes all the controls that may be placed into APPLICATION,
WINDOW, and REPORT data structures.

CHAPTER 9 - Window and Report Attributes describes all the attributes which can modify
APPLICATION, WINDOW, and REPORT data structures and the controls they contain.

CHAPTER 10 - Expressions defines the syntax required to combine variables, procedures, and
constants into numeric, string, or logical expressions.

CHAPTER 11 - Assignments defines the all the methods to assign the value of an expression to
variables. This chapter also discusses BCD operations and Clarions Automatic Data Type
Conversion.

CHAPTER 12 - Execution Control describes the compound executable statements that control
program flow and operation.

CHAPTER 13 - Built-in Procedures documents all of the built-in Clarion library procedures.

1 - Introduction 25

APPENDIX A - DDE, OLE, and OCX documents the procedures that perform Dynamic Data
Exchange (DDE), Object Linking and Embedding (OLE), and OLE Custom Controls (OCX).

APPENDIX B - Event Equates documents the EQUATE statements for events that help make
Clarion code readable.

APPENDIX C - Runtime Property Assignments documents all the runtime properties.

APPENDIX D - Error Codes documents the runtime and compiler errors.

APPENDIX E - Legacy Statements documents language statements which are maintained only
for backward compatibility with previous versions of Clarion.

Language Reference Manual 26

Documentation Conventions and Symbols
Symbols are used in the syntax diagrams as follows:

 Symbol Meaning

 [] Brackets enclose an optional (not required) attribute or parameter.

 () Parentheses enclose a parameter list.

 | | Vertical lines enclose parameter lists, where one, but only one, of the parameters
is allowed.

Coding example conventions used throughout this manual:
IF NOT SomeDate !IF and NOT are keywords
SomeDate = TODAY() !SomeDate is a data name

END !TODAY and END are keywords

CLARION LANGUAGE KEYWORDS Any word in "All Caps" is a Clarion Language keyword

DataNames Use mixed case with caps for readability

Comments Predominantly lower case

The purpose of these conventions is to make the code examples readable and clear.

1 - Introduction 27

Reference Item Format
Each Clarion programming language element referenced in this manual is printed in UPPER
CASE letters. Components of the language are documented with a syntax diagram, a detailed
description, and source code examples.

Items are documented in logical groupings, dependent upon their hierarchical relationships.
Therefore, the table of contents for this book is not listed in alphabetical order. In general, data
types and structures occur at the beginning of a chapter, followed by their attributes, and
executable statements and functions at the end.

The documentation format used in this book is illustrated in the syntax diagram on the following
page.

Language Reference Manual 28

KEYWORD (short description of intended use)

[label] KEYWORD(| parameter1 | [parameter2]) [ATTRIBUTE1()] [ATTRIBUTE2()]

 | alternate |

 | parameter |

 | list |

KEYWORD A brief statement of what the KEYWORD does.

parameter1 A complete description of parameter1, along with how it relates to parameter2
and the KEYWORD.

alternate parameter list
A complete description of mutually exclusive alternates to parameter1, along with
how they relate to parameter2 and the KEYWORD.

parameter2 A complete description of parameter2, along with how it relates to parameter1
and the KEYWORD. Because it is enclosed in brackets, [], it is optional, and
may be omitted.

ATTRIBUTE1 A sentence describing the relation of ATTRIBUTE1 to the KEYWORD.

ATTRIBUTE2 A sentence describing the relation of ATTRIBUTE2 to the KEYWORD.

A concise description of what the KEYWORD does. In many cases the KEYWORD will be an
attribute of a keyword that was described in the preceding text. Sometimes a KEYWORD has no
parameters and/or attributes.

Events Generated: If the KEYWORD generates events, they are listed here.

Return Data Type: The data type returned if the KEYWORD returns a value.

Errors Posted: If KEYWORD posts errors which may be trapped by the ERROR and
ERRORCODE functions, they are listed here.

Related Procedures: If KEYWORD defines a data structure, the procedures which operate on that
data structure are listed here.

Example:
FieldOne = FieldTwo + FieldThree !This is a source code example
FieldThree = KEYWORD(FieldOne,FieldTwo) !Comments follow the "!" character

See Also: Other pertinent keywords and topics

1 - Introduction 29

Clarion Conventions

Standard Date
A Clarion standard date is the number of days that have elapsed since December 28, 1800. The
range of accessible dates is from January 1, 1801 (standard date 4) to December 31, 9999
(standard date 2,994,626). Date procedures will not return correct values outside the limits of this
range. The standard date calendar also adjusts for each leap year within the range of accessible
dates. Dividing a standard date by modulo 7 gives you the day of the week: zero = Sunday, one =
Monday, etc.

The LONG data type with a date format (@D) display picture is normally used for a standard
date. Data entry into any date format picture with a two-digit year defaults to the century of next
20 or previous 80 years. For example, entering 01/01/01 results in 01/01/2001 if the current year
(per the system clock) is greater than 1980, and 01/01/1901 if the current year is 1980 or earlier.

The DATE data type is a data format used in the Btrieve Record Manager and some other file
systems. A DATE field is internally converted to LONG containing the Clarion standard date
before any mathematical or date procedure operation is performed. Therefore, DATE should be
used for external file compatibility, and LONG is normally used for other dates.

See Also:

Date Pictures

DAY

MONTH

YEAR

TODAY

SETTODAY

DATE

Language Reference Manual 30

Standard Time
A Clarion standard time is the number of hundredths of a second that have elapsed since
midnight, plus one (1). The valid range is from 1 (defined as midnight) to 8,640,000 (defined as
11:59:59.99 PM). A standard time of one is exactly equal to midnight to allow a zero value to be
used to detect no time entered. Although time is expressed to the nearest hundredth of a second,
the system clock is only updated 18.2 times a second (approximately every 5.5 hundredths of a
second).

The LONG data type with a time format (@T) display picture is normally used for a standard time.
The TIME data type is a data format used in the Btrieve Record Manager. A TIME field is
internally converted to LONG containing the Clarion standard time before any mathematical or
time procedure operation is performed. Therefore, TIME should be used for external Btrieve file
compatibility, and LONG should normally be used for other times.

See Also:

Time Pictures

CLOCK

SETCLOCK

1 - Introduction 31

Clarion Keycodes
Windows Keycode Mapping Format

Each key on the keyboard is assigned a keycode. Keycodes are 16-bit values where the low-
order 8 bits (values from 0 to 255) represent the key that was pressed, and the high-order 8 bits
indicate the state of the Shift, Ctrl, and Alt keys. Keycodes are returned by the KEYCODE() and
KEYBOARD() procedures, and use the following format:

| A | C | S | CODE |
Bits: 10 9 8 7 0

CODE - The Key pressed
A - Alt key bit
C - Ctrl key bit
S - Shift key bit

Calculating a keycode's numeric value is generally unnecessary, since most of the possible key
combinations are listed as EQUATE statements in KEYCODES.CLW (INCLUDE this file and use
the equates instead of the numbers for better code readability).

KEYCODES.CLW

Keycode equate labels assign mnemonic labels to Clarion keycodes. The keycode equates file
(KEYCODES.CLW) is a Clarion source file which contains an EQUATE statement for each
keycode. This file is located in the install \LIBSRC directory.

It may be merged into a source PROGRAM by placing the following statement in the global data
section:
INCLUDE('KEYCODES.CLW')

This file contains EQUATE statements for most of the keycodes supported by Windows. These
keycode EQUATEs are used for greater code readability wherever you need to set or compare
keyboard input.

See Also:

KEYCODE KEYBOARD

KEYCHAR KEYSTATE

SETKEYCODE ALERT ALRT

Language Reference Manual 32

2 – Program Source Code Format 33

2 - Program Source Code Format
Statement Format
Clarion is a "statement oriented" language. A statement-oriented language makes use of the fact
that its source code is contained in ASCII text files so every line of code is a separate record in
the file. Therefore, the Carriage Return/Line Feed record delimiter can be used to eliminate
punctuation.

In general, the Clarion statement format is:
label STATEMENT[(parameters)] [,ATTRIBUTE[(parameters)]] ...

Attributes specify the properties of the item and are only used on data declarations. Executable
statements take the form of a standard procedure call, except assignment statements (A = B) and
control structures (such as IF, CASE, and LOOP).

A statement's label must begin in column one (1) of the source code. A statement without a label
must not start in column one. A statement is terminated by the end of the line. A statement too
long to fit on one line can be continued by a vertical bar (|). The semi-colon is an optional
statement separator that allows you to place more than one statement on a line.

Being a statement oriented language eliminates from Clarion much of the punctuation required in
other languages to identify labels and separate statements. Blocks of statements are initiated by
a single compound statement, and are terminated by an END statement (or period).

See Also:

Declaration and Statement Labels

Structure Termination

Field Qualification

Reserved Words

Special Characters

Language Reference Manual 34

Declaration and Statement Labels
The language statements in a source module can be divided into two general categories: data
declarations and executable statements, or simply "data" and "code."

During program execution, data declarations reserve memory storage areas that are manipulated
by executable statements. A label is required for the data to be referenced in executable code. All
variables, data structures, PROCEDUREs, and ROUTINEs are referenced by labels.

A label defines a specific location in a PROGRAM. Any code statement may be identified and
referenced by a label. This allows it to be used as the target of a GOTO statement. Each label on
an executable statement adds ten bytes to the executable code size, even if not referenced.

The label on a PROCEDURE statement is the procedure's name. Using the label of a
PROCEDURE in an executable statement executes the procedure, or in expressions, or
parameter lists of other procedures, assigns the value returned by the procedure.

The rules for valid Clarion labels are:

• A label MUST begin in column one (1) of the source code.

• A label may contain letters (upper or lower case), numerals 0 through 9, the underscore
character (_), and colon (:).

• The first character must be a letter or the underscore character.

• Labels are not case sensitive (i.e. CurRent and CURRENT are the same).

• A label may not be a reserved word.
• A period (.) is valid in a label for procedures defined in a CLASS structure in the form

ClassLabel.MethodLabel

2 – Program Source Code Format 35

Structure Termination
Compound data structures are created when data declarations are nested within other data
declarations. There are many compound data structures within the Clarion language:
APPLICATION, WINDOW, REPORT, FILE, RECORD, GROUP, VIEW, QUEUE, etc. These
compound data structures must be terminated by a period (.) or the keyword END. IF, CASE,
EXECUTE, LOOP, BEGIN, and ACCEPT are all executable control structures. They must also be
terminated with a period or the END statement (a LOOP may optionally terminate with a WHILE
or UNTIL statement).

Language Reference Manual 36

Field Qualification
Variables declared as members of complex data structures (GROUP, QUEUE, FILE, RECORD,
etc.) may have duplicate labels, as long as the duplicates are not contained within the same
structure. To explicitly reference fields with duplicate labels in separate structures, you may use
the PRE attribute on the structures just as it is documented (Prefix:FieldLabel) to provide unique
names for each field. However, the PRE attribute is not required for this purpose and may be
omitted.

Any member of any complex structure can be explicitly referenced by prepending the label of the
structure containing the field to the field label, separated by a period (StructureName.FieldLabel).
You must use this Field Qualification syntax to reference any field in a complex structure that
does not have a PRE attribute. You may use a colon (:) instead of a period
(StructureName:FieldLabel) to reference member variables of any structure except CLASS and
named reference variables (this syntax is only to provide backward compatibility with previous
versions of Clarion for Windows).

If the variable is within nested complex data structures, you must prepend each successive
level's structure label to the variable label to explicitly reference the variable (if the nested
structure has a label). If any nested structure does not have a label, then that part is omitted from
the qualification sequence. This is similar to anonymous unions in C++. This means that, in the
case of a GROUP structure (without a PRE attribute) in which a nested GROUP structure has a
label, the fields in the inner GROUP must be referenced as
OuterGroupLabel.InnerGroupLabel.FieldLabel. If the inner GROUP structure does not have a
label, the individual fields are referenced as OuterGroupLabel.FieldLabel. There is one exception
to this rule: the label of a RECORD structure within a FILE may be omitted so that you can
reference individual fields within the file as FileLabel.FieldLabel instead of
FileLabel.RecordLabel.FieldLabel.

This Field Qualification syntax is also used to reference all members of CLASS structures--both
data members and methods. To call a member method of a CLASS structure, you specify
ClassName.MethodLabel wherever the call to the PROCEDURE is valid.

To reference an element of a GROUP structure with the DIM attribute, you must specify the array
element number in the Field Qualification syntax at the exact level at which the DIM attribute
appears.

2 – Program Source Code Format 37

Example:
MasterFile FILE,DRIVER('TopSpeed')
Record RECORD
AcctNumber LONG !Reference as Masterfile.AcctNumber

END
END

Detail FILE,DRIVER('TopSpeed')
RECORD

AcctNumber LONG !Reference as Detail.AcctNumber
END
END

Memory GROUP,PRE(Mem)
Message STRING(30) !May reference as Mem:Message or Memory.Message

END

SaveQueue QUEUE
Field1 LONG !Reference as SaveQueue.Field1
Field2 STRING !Reference as SaveQueue.Field2

END
OuterGroup GROUP
Field1 LONG !Reference as OuterGroup.Field1
Field2 STRING !Reference as OuterGroup.Field2
InnerGroup GROUP
Field1 LONG !Reference as OuterGroup.InnerGroup.Field1
Field2 STRING !Reference as OuterGroup.InnerGroup.Field2

END
END

OuterGroup GROUP,DIM(5)
Field1 LONG !Reference as OuterGroup[1].Field1
InnerGroup GROUP,DIM(5) !Reference as OuterGroup[1].InnerGroup
Field1 LONG !Reference as OuterGroup[1].InnerGroup[1].Field1

END
END

See Also:

PRE

CLASS

Reference Variables

Language Reference Manual 38

Reserved Words
The following keywords are reserved and may not be used as labels for any purpose:

ACCEPT AND BEGIN BREAK
BY CASE CHOOSE COMPILE
CYCLE DO ELSE ELSIF
END EXECUTE EXIT FUNCTION
GOTO IF INCLUDE LOOP
MEMBER NEW NOT NULL
OF OMIT OR OROF
PARENT PROCEDURE PROGRAM RETURN
ROUTINE SECTION SELF THEN
TIMES TO UNTIL WHILE
XOR

The following keywords may be used as labels of data structures or executable statements. They
may not be the label of any PROCEDURE statement. They may appear as the label of a
parameter in a prototype only if the data type is also listed:

APPLICATION CLASS CODE DATA
DETAIL FILE FOOTER FORM
GROUP HEADER ITEM ITEMIZE
JOIN MAP MENU MENUBAR
MODULE OLECONTROL OPTION QUEUE
RECORD REPORT ROW SHEET
TAB TABLE TOOLBAR VIEW
WINDOW

2 – Program Source Code Format 39

Special Characters
Initiators: ! Exclamation point begins a source code comment.

? Question mark begins a field equate label, label, or when used as a
single character in column one of source code, designates that the
statement that follows only be executed in DEBUG mode.

@ "At" sign begins a picture token.

* Asterisk begins a parameter passed by address in a MAP prototype.

~ A leading tilde on a filename indicates a file linked into the project.

Terminators: ; Semi-colon is an executable statement separator.
CR/LF Carriage-return/Line-feed is an executable statement separator.
. Period terminates a data or code structure (a substitute for END).
| Vertical bar is the source code line continuation character.
Pound sign declares an implicit LONG variable.
$ Dollar sign declares an implicit REAL variable.
" Double quote declares an implicit STRING variable.

Delimiters: () Parentheses enclose a parameter list.
[] Brackets enclose an array subscript list.
' ' Single quotes enclose a string constant.
{ } Curly braces enclose a repeat count in a string constant, or a
 property parameter.
< > Angle brackets enclose an ASCII code in a string constant, or
 indicate a parameter in a MAP prototype which may be omitted.
: Colon separates the start and stop positions of a string "slice."
, Comma separates parameters in a parameter list.

Connecters: . Period is a decimal point used in numeric constants, or connects
 a complex structure label to the label of one of its members.
: Colon connects a prefix to a label.
$ Dollar sign connects the WINDOW or REPORT label to a field
 equate label in a control's property assignment expression.

Language Reference Manual 40

Operators: + Plus sign indicates addition.
- Minus sign indicates subtraction.
* Asterisk indicates multiplication.
/ Slash indicates division.
% Percent sign indicates modulus division.
^ Carat indicates exponentiation.
< Left angle bracket indicates less than.
> Right angle bracket indicates greater than.
= Equal sign indicates assignment or equivalence.
~ Tilde indicates the logical (Boolean) NOT operator.
& Ampersand indicates concatenation.
&= Ampersand equal indicates reference assignment or reference equivalence.
:=: Executes a Deep Assignment statement.

2 – Program Source Code Format 41

Program Format

PROGRAM (declare a program)
 PROGRAM

 MAP

 prototypes

 [MODULE()

 prototypes

 END]

 END

 global data

 CODE

 statements

 [RETURN]

 procedures

PROGRAM The first declaration in a Clarion program source module. Required.

MAP Global procedure declarations. Required.

MODULE Declare member source modules.

prototypes PROCEDURE declarations.

global data Declare Global data which may be referenced by all procedures.

CODE Terminate the data declaration section and begin the executable code section of
the PROGRAM.

statements Executable program instructions.

RETURN Terminate program execution. Return to operating system control.

procedures Source code for the procedures in the PROGRAM module.

The PROGRAM statement is required to be the first declaration in a Clarion program source
module. It may only be preceded by source code comments. The PROGRAM source file name is
used as the object (.OBJ) and executable (.EXE) file name, when compiled. The PROGRAM
statement may have a label, but the label is ignored by the compiler.

A PROGRAM with PROCEDUREs must have a MAP structure. The MAP declares the
PROCEDURE prototypes. Any PROCEDURE contained in a separate source file must be
declared in a MODULE structure within the MAP.

Language Reference Manual 42

Data declared in the PROGRAM module, between the keywords PROGRAM and CODE, is
Global data that may be accessed by any PROCEDURE in the PROGRAM. Its memory allocation
is Static.

Example:
PROGRAM !Sample program declaration
INCLUDE('EQUATES.CLW') !Include standard equates
MAP

CalcTemp PROCEDURE !Procedure Prototype
END

CODE
CalcTemp !Call procedure

CalcTemp PROCEDURE
Fahrenheit REAL(0) !Global data declarations
Centigrade REAL(0)
Window WINDOW('Temperature Conversion'),CENTER,SYSTEM

STRING('Enter Fahrenheit Temperature: '),AT(34,50,101,10)
ENTRY(@N-04),AT(138,49,60,12),USE(Fahrenheit)
STRING('Centigrade Temperature:'),AT(34,71,80,10),LEFT
ENTRY(@N-04),AT(138,70,60,12),USE(Centigrade),SKIP
BUTTON('Another'),AT(34,92,32,16),USE(?Another)
BUTTON('Exit'),AT(138,92,32,16),USE(?Exit)

END
CODE !Begin executable code section
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Fahrenheit
Centigrade = (Fahrenheit - 32) / 1.8
DISPLAY(?Centigrade)

OF ?Another
Fahrenheit = 0
Centigrade = 0
DISPLAY

SELECT(?Fahrenheit)
OF ?Exit
BREAK

END
END
CLOSE(Window)
RETURN

See Also: MAP,MODULE

PROCEDURE

Data Declarations and Memory Allocation

2 – Program Source Code Format 43

MEMBER (identify member source file)
 MEMBER([program])

 [MAP

 prototypes

 END]

[label] local data

 procedures

MEMBER The first statement in a source module that is not a PROGRAM source file.
Required.

program A string constant containing the filename (without extension) of a PROGRAM
source file. If omitted, the module is a "universal member module" that you can
compile in any program by adding it to the project.

MAP Local procedure declarations. Any procedures declared here may be referenced
by the procedures in the MEMBER module.

prototypes PROCEDURE declarations.

local data Declare Local Static data which may be referenced only by the procedures
whose source code is in the MEMBER module.

procedures Source code for the procedures in the MEMBER module.

MEMBER is the first statement in a source module that is not a PROGRAM source file. It may
only be preceded by source code comments. It is required at the beginning of any source file that
contains PROCEDUREs that are used by a PROGRAM. The MEMBER statement identifies the
program to which the source MODULE belongs.

A MEMBER module may have a local MAP structure (which may contain MODULE structures).
The procedures prototyped in this MAP are available for use by the other procedures in the
MEMBER module. The source code for the procedures declared in this MEMBER MAP may
either be contained in the MEMBER source file, or another file (if prototyped in a MODULE
structure within the MAP).

If the program parameter is omitted from the MEMBER statement, you must have a MAP
structure that prototypes the procedures it contains. You also need to INCLUDE any standard
EQUATEs files that are used in your source code.

If the source code for a PROCEDURE prototyped in a MEMBER module's MAP is in a separate
file, the prototype must be in a MODULE structure within the MAP. The source file MEMBER
module containing the PROCEDURE definition must also contain its own MAP which declares the
same prototype (that is, the prototype must appear in at least two MAP structures--the source
module containing it and the source module using it). Any PROCEDURE not declared in the

Language Reference Manual 44

Global (PROGRAM) MAP must be declared in a local MAP(s) in the MEMBER MODULE which
contains its source code.

Data declared in the MEMBER module, after the keyword MEMBER and before the first
PROCEDURE statement, is Member Local data that may only be accessed by PROCEDUREs
within the module (unless passed as a parameter). Its memory allocation is Static.

Example:
!Source1 module contains:

MEMBER('OrderSys') !Module belongs to the OrderSys program

MAP !Declare local procedures
Func1 PROCEDURE(STRING),STRING !Func1 is known only in both module

MODULE('Source2.clw')
HistOrd2 PROCEDURE !HistOrd2 is known only in both modules

END
END

LocalData STRING(10) !Declare data local to MEMBER module

HistOrd PROCEDURE !Declare order history procedure
HistData STRING(10) !Declare data local to PROCEDURE
CODE
LocalData = Func1(HistData)

Func1 PROCEDURE(RecField) !Declare local procedure
CODE
!Executable code statements

!Source2 module contains:
MEMBER('OrderSys') !Module belongs to the OrderSys program

MAP !Declare local procedures
HistOrd2 PROCEDURE !HistOrd2 is known only in both modules

MODULE('Source1.clw')
Func1 PROCEDURE(STRING),STRING !Func1 is known only in both module

END
END

LocalData STRING(10) !Declare data local to MEMBER module

HistOrd2 PROCEDURE !Declare second order history procedure
CODE
LocalData = Func1(LocalData)

See Also:

MAP,MODULE,PROCEDURE,CLASS, Data Declarations and Memory Allocation

2 – Program Source Code Format 45

MAP (declare PROCEDURE prototypes)

 MAP

 prototypes

 [MODULE()

 prototypes

 END]

 END

MAP Contains the prototypes which declare the procedures and external
source modules used in a PROGRAM, MEMBER module, or PROCEDURE.

prototypes Declare PROCEDUREs.

MODULE Declare a member source module that contains the definitions of the prototypes
in the MODULE.

A MAP structure contains the prototypes which declare the PROCEDUREs and external source
modules used in a PROGRAM, MEMBER module, or PROCEDURE which are not members of a
CLASS structure.

A MAP declared in the PROGRAM source module declares prototypes of PROCEDUREs
available for use throughout the program. A MAP in a MEMBER module declares prototypes of
PROCEDUREs that are explicitly available in that MEMBER module. The same prototypes may
be placed in multiple MEMBER modules to make them explicitly available in each. A MAP can
also be included within a PROCEDURE declaration. All prototypes of PROCEDUREs declared in
a local PROCEDURE MAP may only be referenced within the PROCEDURE itself.

A MAP structure is mandatory for any non-trivial Clarion program because the BUILTINS.CLW
file is automatically included in your PROGRAM's MAP structure by the compiler. This file
contains prototypes of most of the procedures in the Clarion internal library that are available as
part of the Clarion language. This file is required because the compiler does not have these
prototypes built into it (making it more efficient). Since the prototypes in the BUILTINS.CLW file
use some constant EQUATEs that are defined in the EQUATES.CLW file, this file is also
automatically included by the compiler in every Clarion program.

Language Reference Manual 46

Example:
!One file contains:
PROGRAM !Sample program in sample.cla
MAP !Begin map declaration

LoadIt PROCEDURE ! LoadIt procedure
END !End of map

!A separate file contains:
MEMBER('Sample') !Declare MEMBER module
MAP !Begin MODULE local map declaration

ComputeIt PROCEDURE ! compute it procedure
END !End of map

ComputeIt Procedure

LOC:Var LONG

MAP ! PROCEDURE local map
Proc1

END

Code
Proc1()
Return

Proc1 Procedure

Code
LOC:Var += 1
Return

See Also:

PROGRAM

MEMBER

MODULE

PROCEDURE

PROCEDURE Prototypes

2 – Program Source Code Format 47

MODULE (specify MEMBER source file)

 MODULE(sourcefile)

 prototype

 END

MODULE Names a MEMBER module or external library file.

sourcefile A string constant which contains the filename (without extension) of the Clarion
language source code file containing the definitions of the PROCEDUREs. If the
sourcefile is an external library, this string may contain any unique identifier.

prototype The prototype of a PROCEDURE whose definition is contained in the sourcefile.

A MODULE structure names a Clarion language MEMBER module or an external library file and
contains the prototypes for the PROCEDUREs contained in the sourcefile. A MODULE structure
can only be declared within a MAP structure and is valid for use in any MAP structure, whether
that MAP is in a PROGRAM module or MEMBER module.

Example:
!The "sample.clw" file contains:
PROGRAM !Sample program in sample.clw
MAP !Begin map declaration
MODULE('Loadit') ! source module loadit.clw

LoadIt PROCEDURE ! LoadIt procedure
END ! end module
MODULE('Compute') ! source module compute.clw

ComputeIt PROCEDURE ! compute it procedure
END ! end module

END !End map

!The "loadit.clw" file contains:
MEMBER('Sample') !Declare MEMBER module
MAP !Begin local map declaration
MODULE('Process') ! source module process.cla

ProcessIt PROCEDURE ! process it procedure
END ! end module

END !End map

See Also:

MEMBER, MAP, PROCEDURE Prototypes

Language Reference Manual 48

PROCEDURE (define a procedure)

label PROCEDURE [(parameter list)]

 local data

 CODE

 statements

 [RETURN([value])]

PROCEDURE Begins a section of source code that can be executed from within a PROGRAM.

label Names the PROCEDURE. For a CLASS method's definition, this may contain the
label of the CLASS prepended to the label of the PROCEDURE.

parameter list A comma delimited list of names (and, optionally, their data types) of the
parameters passed to the PROCEDURE. These names define the local
references within the PROCEDURE to the passed parameters. For a CLASS
method's definition, this may contain the label of the CLASS (named SELF) as an
implicit first parameter (if the class is not prepended to the PROCEDURE's label),
and must always contain both the data type and parameter name.

local data Declare Local data visible only in this procedure.

CODE Terminate the data declaration section and begin the executable code section of
the PROCEDURE.

statements Executable program instructions.

RETURN Terminate procedure execution. Return to the point from which the procedure
was called and return the value to the expression in which the procedure was
used (if the procedure has been prototyped to return a value).

value A numeric or string constant or variable which specifies the result of the
procedure call.

PROCEDURE begins a section of source code that can be executed from within a PROGRAM. It
is called by naming the PROCEDURE label (with its parameter list, if any) as an executable
statement in the code section of a PROGRAM or PROCEDURE.

The parameter list defines the data type of each parameter (optional) followed by the label of the
parameter as used within the PROCEDURE's source code (required). Each parameter is
separated by a comma. The data type of each parameter (including the angle brackets if the
parameter is omittable) is required along with the parameter's label if the procedure is overloaded
(has multiple definitions). The parameter list may be exactly the same as it appears in the
PROCEDURE's prototype, if that prototype contains labels for the parameters.

2 – Program Source Code Format 49

A PROCEDURE may contain one or more ROUTINEs in its executable code statements. A
ROUTINE is a section of executable code local to the PROCEDURE which is called with the DO
statement.

A PROCEDURE terminates and returns to its caller when a RETURN statement executes. An
implicit RETURN occurs at the end of the executable code. The end of executable code for the
PROCEDURE is defined as the end of the source file, or the first encounter of a ROUTINE or
another PROCEDURE.

A RETURN statement is required if the PROCEDURE has been prototyped to return a value. A
PROCEDURE which has been prototyped to return a value can be used as an expression
component, or passed as a parameter to another PROCEDURE. A PROCEDURE which has
been prototyped to return a value may also be called in the same manner as a PROCEDURE
without a RETURN value, if the program logic does not require the RETURN value. In this case, if
the PROCEDURE prototype does not have the PROC attribute, the compiler will generate a
warning which may be safely ignored.

Data declared within a PROCEDURE, between the keywords PROCEDURE and CODE, is
Procedure Local data that can only be accessed by that PROCEDURE (unless passed as a
parameter to another PROCEDURE). This data is allocated memory upon entering the
procedure, and de-allocated when it terminates. If the data is smaller than the stack threshold (5K
is the default) it is placed on the stack, otherwise it is allocated from the heap.

A PROCEDURE must have a prototype declared in a CLASS or the MAP of a PROGRAM or
MEMBER module. If declared in the PROGRAM MAP, it is available to any other procedure in the
program. If declared in a MEMBER MAP, it is available to other procedures in that MEMBER
module.

Example:
PROGRAM !Example program code
MAP

OpenFile PROCEDURE(FILE AnyFile)!Procedure prototype with parameter
ShoTime PROCEDURE !Procedure prototype without parameter
DayString PROCEDURE,STRING !Procedure prototype with a return value
END

FileOne FILE,DRIVER('Clarion') !Declare a file
RECORD !begin record declaration

Name STRING(20)
Number LONG

END ! end record declaration
END !End file declaration

TodayString STRING(9)
CODE

Language Reference Manual 50

TodayString = DayString() !Procedure called with a return value
OpenFile(FileOne) !Call procedure to open file
ShoTime !Call ShoTime procedure
!More executable statements

OpenFile PROCEDURE(FILE AnyFile)!Open any file
CODE !Begin code section
OPEN(AnyFile) !Open the file
IF ERRORCODE() = 2 !If file not found
CREATE(AnyFile) !create it

END
RETURN !Return to caller

ShoTime PROCEDURE !Show time
Time LONG !Local variable
Window WINDOW,CENTER

STRING(@T3),USE(Time),AT(34,70)
BUTTON('Exit'),AT(138,92),USE(?Exit)

END
CODE !Begin executable code section
Time = CLOCK() !Get time from system
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Exit
BREAK

END
END
RETURN !Return to caller

DayString PROCEDURE !Day string procedure
ReturnString STRING(9),AUTO !Uninitialized local stack variable
CODE !Begin executable code section
EXECUTE (TODAY() % 7) + 1 !Find day of week from system date
ReturnString = 'Sunday'
ReturnString = 'Monday'
ReturnString = 'Tuesday'
ReturnString = 'Wednesday'
ReturnString = 'Thursday'
ReturnString = 'Friday'
ReturnString = 'Saturday'

END
RETURN(ReturnString) !Return the resulting string

See Also: PROCEDURE Prototypes, Data Declarations and Memory Allocation, Procedure
Overloading, CLASS, ROUTINE, MAP

2 – Program Source Code Format 51

CODE (begin executable statements)

 CODE

The CODE statement separates the data declaration section from the executable statement
section within a PROGRAM, PROCEDURE, or ROUTINE. The first statement executed in a
PROGRAM, PROCEDURE, or ROUTINE is the statement following CODE.

Example:
PROGRAM

!Global Data declarations go here

CODE
!Executable statements go here

OrdList PROCEDURE !Declare a procedure

!Local Data declarations go here

CODE !This is the beginning of the "code" section
!Executable statements go here

See Also:

PROGRAM

PROCEDURE

Language Reference Manual 52

DATA (begin routine local data section)

 DATA

The DATA statement begins a local data declaration section in a ROUTINE. Any ROUTINE
containing a DATA section must also contain a CODE statement to terminate the data declaration
section. Variables declared in a ROUTINE data section may not have the STATIC or THREAD
attributes.

Example:
SomeProc PROCEDURE
CODE
!Code statements
DO Tally !Call the routine
!More code statements

Tally ROUTINE !Begin routine, end procedure
DATA

CountVar BYTE !Declare local variable
CODE
CountVar += 1 ! increment counter
DO CountItAgain !Call another routine
EXIT !and exit the routine

See Also:

CODE

ROUTINE

2 – Program Source Code Format 53

ROUTINE (declare local subroutine)

label ROUTINE

 [DATA

 local data

 CODE]

 statements

ROUTINE Declares the beginning of a local subroutine.

label The name of the ROUTINE. This may not duplicate the label of any
PROCEDURE.

DATA Begin data declaration statements.

local data Declare Local data visible only in this routine.

CODE Begin executable statements.

statements Executable program instructions.

ROUTINE declares the beginning of a local subroutine. It is local to the PROCEDURE in which it
is written and must be at the end of the CODE section of the PROCEDURE to which it belongs.
All variables visible to the PROCEDURE are available in the ROUTINE. This includes all
Procedure Local, Module Local, and Global data.

A ROUTINE may contain its own local data which is limited in scope to the ROUTINE in which it
is declared. If local data declarations are included in the ROUTINE, they must be preceded by a
DATA statement and followed by a CODE statement. Since the ROUTINE has its own name
scope, the labels of these variables may duplicate variable names used in other ROUTINEs or
even the procedure containing the ROUTINE.

A ROUTINE is called by the DO statement followed by the label of the ROUTINE. Program
control following execution of a ROUTINE is returned to the statement following the calling DO
statement. A ROUTINE is terminated by the end of the source module, or by another ROUTINE
or PROCEDURE. The EXIT statement can also be used to terminate execution of a ROUTINE's
code (similar to RETURN in a PROCEDURE).

A ROUTINE has some efficiency issues that are not obvious:

• DO and EXIT statements are very efficient.

• Accessing procedure-level local data is less efficent than accessing module-level or
global data.

Language Reference Manual 54

• Implicit variables used only within the ROUTINE are less efficient than using local
variables.

• Each RETURN statement within a ROUTINE incurs a 40-byte overhead.

Example:
SomeProc PROCEDURE
CODE
!Code statements
DO Tally !Call the routine
!More code statements

Tally ROUTINE !Begin routine, end procedure
DATA

CountVar BYTE !Declare local variable
CODE
CountVar += 1 ! increment counter
DO CountItAgain !Call another routine
EXIT !and exit the routine

See Also:

PROCEDURE

EXIT

DO

DATA

CODE

2 – Program Source Code Format 55

END (terminate a structure)

 END

END terminates a data declaration structure or a compound executable statement. It is
functionally equivalent to a period (.).

By convention, the END statement is aligned in the same column as the beginning of the
structure it terminates, and the code within the structure is indented for readability. END is usually
used to terminate multi-line structures, while the period is used to terminate single-line
statements. If multiple complex code structures are nested and they all terminate at the same
place, multiple periods on one line are used instead of the END statements on multiple lines.

Example:
Customer FILE,DRIVER('Clarion') !Declare a file

RECORD !begin record declaration
Name STRING(20)
Number LONG

END !end record declaration
END !End file declaration

Archive FILE,DRIVER('Clarion') !Declare a file
RECORD !begin record declaration

Name STRING(20)
Number LONG

END END !end both the record and file declarations

CODE
IF Number <> SavNumber !Begin if structure
DO GetNumber

END !End if structure

IF SomeCondition THEN BREAK END !Terminate with END

CASE Action !Begin case structure
OF 1
DO AddRec
IF Number <> SavNumber !Begin if structure
DO SomeRoutine

END !End if structure
OF 2
DO ChgRec

OF 3
DO DelRec

END !End case structure

Language Reference Manual 56

Statement Execution Sequence
In the CODE section of a Clarion program, statements are normally executed line-by-line, in the
sequence in which they appear in the source module. Control statements and procedure calls are
used to modify this execution sequence.

PROCEDURE calls modify the execution sequence by branching to the called procedure and
executing the code contained in it. Control returns to the executable statement following the
procedure call when a RETURN statement is executed in the called procedure, or there are no
more statements in the called procedure to execute, returning the value (if the PROCEDURE
returns a value).

Control structures--IF, CASE, LOOP, ACCEPT, and EXECUTE--change the execution sequence
by evaluating expressions. The control structure conditionally executes statements contained
within the structure based on the evaluation of the expression(s) in the structure. ACCEPT is also
a loop-type of structure, but does not evaluate any expression.

Branching also occurs with the GOTO, DO, CYCLE, BREAK, EXIT, and RETURN statements.
These statements immediately and unconditionally alter the normal execution sequence.

The START procedure begins a new execution thread, unconditionally branching to that thread at
the next instance of ACCEPT following the START. However, the user may choose to activate
another thread by clicking the mouse on the other thread's active window.

Example:
PROGRAM

MAP
ComputeTime PROCEDURE(*GROUP) !Passing a group parameter
MatchMaster PROCEDURE !Passing no parameters
END

ParmGroup GROUP !Declare a group
FieldOne STRING(10)
FieldTwo LONG

END
CODE !Begin executable code
FieldTwo = CLOCK() !Executes 1st
ComputeTime(ParmGroup) !Executes 2nd, passes control to procedure
MatchMaster !Executes after procedure executes fully

2 – Program Source Code Format 57

PROCEDURE Calls

 procname[(parameters)]

 return = funcname[(parameters)]

procname The name of the PROCEDURE as declared in the procedure's prototype.

parameters An optional parameter list passed to the PROCEDURE. A parameter list may be
one or more variable labels or expressions. The parameters are delimited by
commas and are declared in the prototype.

return The label of a variable to receive the value returned by the PROCEDURE.

funcname The name of a PROCEDURE which returns a value, as declared in the
procedure's prototype.

A PROCEDURE is called by its label (including any parameter list) as a statement in the CODE
section of a PROGRAM or PROCEDURE. The parameter list must match the parameter list
declared in the procedure's prototype. Procedures cannot be called in expressions.

A PROCEDURE which returns a value is called by its label (including any parameter list) as a
component of an expression or parameter list passed to another PROCEDURE. The parameter
list must match the parameter list declared in the procedure's prototype. A PROCEDURE which
returns a value may also be called by its label (including any parameter list), in the same manner
as a PROCEDURE which doesn't return a value, if its return value is not needed. This will
generate a compiler warning that can be safely ignored (unless the PROC attribute is placed on
its prototype).

If the PROCEDURE is a method of a CLASS, the procname must begin with the label of an
object instance of the CLASS followed by a period then the label of the PROCEDURE
(objectname.procname).

Example:
PROGRAM
MAP

ComputeTime PROCEDURE(*GROUP) !Passing a group parameter
MatchMaster PROCEDURE,BYTE,PROC !PROCEDURE returning a value and passing no parameter
END

ParmGroup GROUP !Declare a group
FieldOne STRING(10)
FieldTwo LONG

END
CODE
FieldTwo = CLOCK() !Built-in procedure called as expression
ComputeTime(ParmGroup) !Call the compute time procedure
MatchMaster() !Call the procedure as a procedure

See Also: PROCEDURE

Language Reference Manual 58

PROCEDURE Prototypes

Prototype Syntax

name PROCEDURE [(parameter list)] [,return type] [,calling convention] [,RAW] [,NAME()] [,TYPE]

 [,DLL()] [,PROC] [,PRIVATE] [,VIRTUAL] [,PROTECTED] [,REPLACE] [,DERIVED]

 name[(parameter list)] [,return type] [,calling convention] [,RAW] [,NAME()] [,TYPE] [,DLL()]

 [, PROC] [, PRIVATE]

name The label of a PROCEDURE statement that defines the executable code.

PROCEDURE Required keyword.

parameter list The data types of the parameters. Each parameter's data type may be followed
by a label used to document the parameter (only). Each numeric value parameter
may also include an assignment of the default value (a constant) to pass if the
parameter is omitted.

return type The data type the PROCEDURE will RETURN.

calling convention
Specify the C or PASCAL stack-based parameter calling convention.

RAW Specifies that STRING or GROUP parameters pass only the memory address
(without passing the length of the passed string). It also alters the behaviour of ?
and *? parameters. This attribute is only for 3GL language compatibility and is
not valid on a Clarion language procedure.

NAME Specify an alternate, "external" name for the PROCEDURE.

TYPE Specify the prototype is a type definition for procedures passed as parameters.

DLL Specify the PROCEDURE is in an external .DLL.

PROC Specify the PROCEDURE with a return type may be called as a PROCEDURE
without a return type without generating a compiler warning.

PRIVATE Specify the PROCEDURE may be called only from another PROCEDURE within
the same MODULE (usually used in a CLASS).

VIRTUAL Specify the PROCEDURE is a virtual method of a CLASS structure.

PROTECTED Specify the PROCEDURE may be called only from another PROCEDURE within
the same CLASS or any directly derived CLASS.

2 – Program Source Code Format 59

REPLACE Specify the "Construct" or "Destruct" PROCEDURE in the derived CLASS
completely replaces the constructor or destructor of its parent CLASS.

DERIVED Specify the PROCEDURE is a derived method of a CLASS structure, There must
be a matching prototype in the parent class.

All PROCEDUREs in a PROGRAM must have a prototype declaration in a MAP or CLASS
structure. A prototype declares to the compiler exactly what form to expect to see when the
PROCEDURE is used in executable code.

There are two valid forms of prototype declarations listed in the syntax diagram on the previous
page. The first one, using the PROCEDURE keyword, is valid for use everywhere and is the
preferred form to use. The second form is supported only for backward compatibility with previous
versions of Clarion.

A prototype contains:

• The name of the PROCEDURE.

• The keyword PROCEDURE is optional in a MAP structure, but required in a CLASS
structure.

• An optional parameter list specifying all parameters that will be passed in.

• The data return type, if the prototype is for a PROCEDURE which will return a value.

• The parameter calling convention, if you are linking in objects that require stack-based
parameter passing (such as objects that were not compiled with a Clarion TopSpeed
compiler).

• The RAW, NAME, TYPE, DLL, PROC, PRIVATE, VIRTUAL, PROTECTED, and
DERIVED attributes, as needed.

You can optionally specify the C (right to left) or PASCAL (left to right and compatible with
Windows 32-bit) stack-based parameter calling convention for your PROCEDURE. This provides
compatibility with third-party libraries written in other languages (if they were not compiled with a
TopSpeed compiler). If you do not specify a calling convention, the default is the internal, register-
based parameter passing convention used by all the TopSpeed compilers.

The RAW attribute allows you to pass just the memory address of a *?, STRING, or GROUP
parameter (whether passed by value or by reference) to a non-Clarion language procedure or
function. Normally, STRING or GROUP parameters pass both the address and the length of the
string. The RAW attribute eliminates the length portion. This is provided for compatibility with
external library functions which expect only the address of the string.

The NAME attribute provides the linker an external name for the PROCEDURE. This is also
provided for compatibility with libraries written in other languages. For example: in some C
language compilers, with the C calling convention specified, the compiler adds a leading
underscore to the function name. The NAME attribute allows the linker to resolve the name of the
function correctly.

Language Reference Manual 60

The TYPE attribute indicates the prototype does not reference a specific PROCEDURE. Instead,
it defines a prototype name used in other prototypes to indicate the type of procedure passed to
another PROCEDURE as a parameter.

The DLL attribute specifies that the PROCEDURE prototype on which it is placed is in a .DLL.
The DLL attribute is required for 32-bit applications because .DLLs are relocatable in a 32-bit flat
address space, which requires one extra dereference by the compiler to address the procedure.

The PRIVATE attribute specifies that only another PROCEDURE that is in the same MODULE
may call it. This would most commonly be used on a prototype in a module's MAP structure, but
may also be used in the global MAP.

When the name of a prototype is used in the parameter list of another prototype, it indicates the
procedure being prototyped will receive the label of a PROCEDURE that receives the same
parameter list (and has the same return type, if it returns a value). A prototype with the TYPE
attribute may not also have the NAME attribute.

Example:
MAP
MODULE('Test') !'test.clw' contains these procedures

MyProc1 PROCEDURE(LONG) !LONG value-parameter
MyProc2 PROCEDURE(<*LONG>) !Omittable LONG variable-parameter
MyProc3 PROCEDURE(LONG=23) !Passes 23 if omitted
END
MODULE('Party3.Obj') !A third-party library

Func46 PROCEDURE(*CSTRING),REAL,C,RAW !Pass CSTRING address-only to C function
Func47 PROCEDURE(*CSTRING),*CSTRING,C,RAW !Returns pointer to a CSTRING
Func48 PROCEDURE(REAL),REAL,PASCAL !PASCAL calling convention
Func49 PROCEDURE(SREAL),REAL,C,NAME('_func49') !C convention and external function name
END
MODULE('STDFuncs.DLL') !A standard functions .DLL

Func50 PROCEDURE(SREAL),REAL,PASCAL,DLL
END

END

See Also:

MAP, MEMBER, MODULE, NAME

PROCEDURE, RETURN, Prototype Parameter Lists

Procedure Overloading, CLASS

2 – Program Source Code Format 61

Prototype Parameter Lists - General Syntax
 [CONST] type [label]

 <[CONST] type [label] >

 type [label] = default

CONST An optional qualifier for the parameter which is valid only on a variable-
parameter. This means that the parameter being passed by address may not be
updated in the procedure. It is treated as if it were a constant value.

type The data type of the parameter. This may be a value-parameter, variable-
parameter, array, unspecified data type, entity, procedure-parameter, or a named
GROUP, QUEUE, or CLASS.

label An optional documentary label for the parameter. This label is not required and is
placed in the prototype for documentation purposes only.

< > Angle brackets indicate the parameter is omittable. The OMITTED procedure
detects the omission. All parameter types can be omitted.

= default A default value indicates the numeric parameter is omittable, and if omitted, the
default value is passed. The OMITTED procedure will not detect the omission--a
value is passed. Valid only on simple numeric types.

The parameter list in a PROCEDURE prototype is a comma-delimited list of the data types to
pass to the PROCEDURE. The entire parameter list is enclosed in the parentheses following the
PROCEDURE keyword (or the name). Each parameter's type may be followed by a space then a
valid Clarion label for the parameter (which is ignored by the compiler and only documents the
purpose of the parameter). Each numeric value-parameter (passed by value) may also include an
assignment of a constant value to the type (or the documentary label, if present) that defines the
default value to pass if the parameter is omitted.

Any parameter that may be omitted when the PROCEDURE is called must be included in the
prototype's parameter list and enclosed in angle brackets (< >) unless a default value is defined
for the parameter. The OMITTED procedure allows you to test for unpassed parameters at
runtime (except those parameters which have a default value).

Example:
MAP
MODULE('Test')

MyProc1 PROCEDURE(LONG) !LONG value-parameter
MyProc2 PROCEDURE(<LONG>) !Omittable LONG value-parameter
MyProc3 PROCEDURE(LONG=23) !Passes 23 if omitted
MyProc4 PROCEDURE(LONG Count, REAL Sum) !LONG passing a Count and REAL passing a Sum
MyProc5 PROCEDURE(LONG Count=1,REAL Sum=0)!Count defaults to 1 and Sum to 0

END
END

Language Reference Manual 62

Value-parameters

Value-parameters are "passed by value." A copy of the variable passed in the parameter list of
the "calling" PROCEDURE is used in the "called" PROCEDURE. The "called" PROCEDURE
cannot change the value of the variable passed to it by the "caller." Simple assignment data
conversion rules apply; Value-parameters actually passed are converted to the data type in the
PROCEDURE prototype. Valid value-parameters are:

BYTE SHORT USHORT LONG ULONG SREAL REAL DATE TIME STRING

Example:
MAP
MODULE('Test')

MyProc1 PROCEDURE(LONG) !LONG value-parameter
MyProc2 PROCEDURE(<LONG>) !Omittable LONG value-parameter
MyProc3 PROCEDURE(LONG=23) !Passes 23 if omitted
MyProc4 PROCEDURE(LONG Count, REAL Sum) !LONG passing Count and REAL passing a Sum
MyProc5 PROCEDURE(LONG Count=1, REAL Sum=0)!Count defaults to 1 and Sum to 0

END
MODULE('Party3.Obj')

Func48 PROCEDURE(REAL),REAL,PASCAL !PASCAL calling convention
Func49 PROCEDURE(SREAL),REAL,C,NAME('_func49')!C convention and external function name

END
END

Variable-parameters

Variable-parameters are "passed by address." A variable passed by address has only one
memory address. Changing the value of the variable in the "called" PROCEDURE also changes
its value in the "caller." Variable-parameters are listed by data type with a leading asterisk (*) in
the PROCEDURE prototype in the MAP. Valid variable-parameters are:

*BYTE *SHORT *USHORT *LONG *ULONG *SREAL *REAL *BFLOAT4 *BFLOAT8
*DECIMAL *PDECIMAL *DATE *TIME *STRING *PSTRING *CSTRING *GROUP

Example:
MAP
MODULE('Test')

MyProc2 PROCEDURE(<*LONG>) !Omittable LONG variable-parameter
MyFunc1 PROCEDURE(*SREAL),REAL,C !SREAL variable-parameter, REAL return, C call
MyProc6 PROCEDURE(CONST *CSTRING Value) !Value retains a constant value in procedure

END
MODULE('Party3.Obj')

Func4 PROCEDURE(*CSTRING),REAL,C,RAW !Pass CSTRING address-only to C function
Func47 PROCEDURE(*CSTRING),CSTRING,C,RAW !Returns pointer to a CSTRING

END
END

2 – Program Source Code Format 63

Passing Arrays

To pass an entire array as a parameter, the prototype must declare the array's data type as a
Variable-parameter ("passed by address") with an empty subscript list. If the array has more than
one dimension, commas (as position holders) must indicate the number of dimensions in the
array. The calling statement must pass the entire array to the PROCEDURE, not just one
element.

Example:
MAP

MainProc PROCEDURE
AddCount PROCEDURE(*LONG[,] Total,*LONG[,] Current) !Passing two 2-dimensional arrays
END
CODE
MainProc !Call first procedure

MainProc PROCEDURE
TotalCount LONG,DIM(10,10)
CurrentCnt LONG,DIM(10,10)
CODE
AddCount(TotalCount,CurrentCnt) !Call the procedure passing arrays

AddCount PROCEDURE(*LONG[,] Total,*LONG[,] Current) !Procedure expects two arrays
CODE
LOOP I# = 1 TO MAXIMUM(Total,1) !Loop through first subscript
LOOP J# = 1 TO MAXIMUM(Total,2) !Loop through second subscript
Total[I#,J#] += Current[I#,J#] !incr TotalCount from CurrentCnt

END
END
CLEAR(Current) !Clear CurrentCnt array

Parameters of Unspecified Data Type

You can write general purpose procedures which perform operations on passed parameters
where the exact data type of the parameter may vary from one call to the next by using untyped
value-parameters and untyped variable-parameters. These are polymorphic parameters; they
may become any other simple data type depending upon the data type passed to the procedure.

Untyped value-parameters are represented in the prototype with a question mark (?). When the
procedure executes, the parameter is dynamically typed and acts as a data object of the base
type (LONG, DECIMAL, STRING, or REAL) of the passed variable, or the base type of whatever
it was last assigned. This means that the "assumed" data type of the parameter can change
within the PROCEDURE, allowing it to be treated as any data type.

Language Reference Manual 64

An untyped value-parameter is "passed by value" to the PROCEDURE and its assumed data
type is handled by Clarion's automatic Data Conversion Rules. Data types which may be passed
as untyped value-parameters:

BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4 BFLOAT8 DECIMAL
PDECIMAL DATE TIME STRING PSTRING CSTRING GROUP (treated as a
STRING) Untyped value-parameter (?) Untyped Variable-parameter (*?)

The RAW attribute is valid for use if the untyped value-parameter (?) is being passed to external
library functions written in other languages than Clarion. This converts the data to a LONG then
passes the data as a C/C++ "void *" parameter (which eliminates "type inconsistency" warnings).

Untyped variable-parameters are represented in the PROCEDURE prototype with an asterisk
and a question mark (*?). Within the procedure, the parameter acts as a data object of the type of
the variable passed in at runtime. This means the data type of the parameter is fixed during the
execution of the PROCEDURE.

An untyped variable-parameter is "passed by address" to the PROCEDURE. Therefore, any
changes made to the passed parameter within the PROCEDURE are made directly to the
variable which was passed in. This allows you to write polymorphic procedures.

Within a procedure which receives an untyped variable-parameter, it is not safe to make any
assumptions about the data type coming in. The danger of making assumptions is the possiblity
of assigning an out-of-range value which the variable's actual data type cannot handle. If this
happens, the result may be disastrously different from that expected.

Data types which may be passed as untyped variable-parameters:
BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4 BFLOAT8 DECIMAL
PDECIMAL DATE TIME STRING PSTRING CSTRING
Untyped variable-parameter (*?)

The RAW attribute is valid for use if the untyped variable-parameter (*?) is being passed to
external library functions written in other languages than Clarion. This has the same effect as
passing a C or C++ "void *" parameter.

Arrays may not be passed as either kind of untyped parameter.

Example:
PROGRAM
MAP

Proc1 PROCEDURE(?) !Untyped value-parameter
Proc2 PROCEDURE(*?) !Untyped variable-parameter
Proc3 PROCEDURE(*?) !Untyped variable-parameter (set to crash)
Max PROCEDURE(?,?),? !Procedure returning Untyped value-parameter
END

GlobalVar1 BYTE(3) !BYTE initialized to 3
GlobalVar2 DECIMAL(8,2,3)

2 – Program Source Code Format 65

GlobalVar3 DECIMAL(8,1,3)
MaxInteger LONG
MaxString STRING(255)
MaxFloat REAL
CODE
Proc1(GlobalVar1) !Pass in a BYTE, value is 3
Proc2(GlobalVar2) !Pass it a DECIMAL(8,2), value is 3.00 - it prints 3.33
Proc2(GlobalVar3) !Pass it a DECIMAL(8,1), value is 3.0 - it prints 3.3
Proc3(GlobalVar1) !Pass it a BYTE and watch it crash
MaxInteger = Max(1,5) !Max procedure returns the 5
MaxString = Max('Z','A') !Max procedure returns the 'Z'
MaxFloat = Max(1.3,1.25) !Max procedure returns the 1.3

Proc1 PROCEDURE(? ValueParm)
CODE !ValueParm starts at 3 and is a LONG
ValueParm = ValueParm & ValueParm !Now Contains '33' and is a STRING
ValueParm = ValueParm / 10 !Now Contains 3.3 and is a REAL

Proc2 PROCEDURE(*? VariableParm)
CODE
VariableParm = 10 / 3 !Assign 3.33333333... to passed variable

Proc3 PROCEDURE(*? VariableParm)
CODE
LOOP
IF VariableParm > 250 THEN BREAK. !If passed a BYTE, BREAK will never happen
VariableParm += 10

END

Max PROCEDURE(Val1,Val2) !Find the larger of two passed values
CODE
IF Val1 > Val2 !Check first value against second
RETURN(Val1) ! return first, if largest

ELSE !otherwise
RETURN(Val2) ! return the second

END

See Also:

MAP

MEMBER

MODULE

PROCEDURE

CLASS

Language Reference Manual 66

Entity-parameters

Entity-parameters pass the name of a data structure to the "called" PROCEDURE. Passing the
entity allows the "called" PROCEDURE to use those Clarion commands that require the label of
the structure as a parameter. Entity-parameters are listed by entity type in the PROCEDURE
prototype in the MAP. Entity-parameters are always "passed by address." Valid entity-
parameters are:

FILE VIEW KEY INDEX QUEUE WINDOW REPORT BLOB

A REPORT can be passed as the parameter to a procedure prototyped to receive a WINDOW,
since internally they use the same passing structure.

Example:
MAP
MODULE('Test')

MyFunc2 PROCEDURE(FILE),STRING !FILE entity-parameter, returning a STRING
ProcType PROCEDURE(FILE),TYPE !Procedure-parameter type definition
MyFunc4 PROCEDURE(FILE),STRING,PROC !May be called as a procedure without warnings
MyProc6 PROCEDURE(FILE),PRIVATE !May only be called by other procs in TEST.CLW

END
END

Procedure-parameters

Procedure-parameters pass the name of another PROCEDURE to the "called" PROCEDURE.
Procedure-parameters are listed by the name of a prototype of the same type in the
PROCEDURE prototype in the MAP (which may or may not have the TYPE attribute). When
called in executable code, the "called" PROCEDURE must be passed the name of a
PROCEDURE whose prototype is exactly the same as the procedure named in the "called"
procedure's prototype.

Each parameter in the list may be followed by a valid Clarion label which is completely ignored by
the compiler. This label is used only to document the parameter to make the prototype more
readable, or to duplicate the PROCEDURE definition statement. Each passed parameter's
definition may also include the assignment of a constant value to the data type (or the
documentary label, if present) that defines the default value to pass if the parameter is omitted.

Example:
MAP
MODULE('Test')

ProcType PROCEDURE(FILE),TYPE !Procedure-parameter type definition
MyFunc3 PROCEDURE(ProcType),STRING !ProcType procedure-parameter, returning a STRING,

END !must be passed a procedure that takes a FILE
END !as a parameter

2 – Program Source Code Format 67

Passing Named GROUPs, QUEUEs, and CLASSes

Passing a GROUP as a Variable-Parameter, or a QUEUE as an Entity-Parameter, to a
PROCEDURE does not allow you to reference the component fields within the structure in the
receiving PROCEDURE . You can alternatively pass a "named" GROUP or QUEUE to achieve
this. You may also name a CLASS in the same manner to allow the receiving procedure to
access the public data members and methods of the CLASS.

To reference the component fields within the structure, place the label of a GROUP, QUEUE, or
CLASS structure in the receiving PROCEDURE's prototype parameter list as the data type for the
parameter. This passes the parameter "by address" and allows the receiving procedure to
reference the component fields of the structure (and the public methods of a CLASS pass in this
manner).

The data actually passed as the parameter must always have a similar structure (defined with the
same data types) for its component fields. The GROUP or QUEUE actually passed can be a
"superset" of the named parameter, as long as the first fields in the "superset" group are the
same as the GROUP or QUEUE named in the prototype. The actually passed CLASS object can
also be a derived class of the CLASS named in the prototype. The "extra" fields in the passed
GROUP, QUEUE, or CLASS are not available for use in the receiving procedure.

The GROUP, QUEUE, or CLASS named in the parameter list does not need to have the TYPE
attribute, and does not have to be declared before the procedure's prototype, but it must be
declared before the PROCEDURE that will receive the parameter is called. This is the only
instance in the Clarion language where the compiler allows such a "forward reference."

Use Field Qualification syntax to reference the members of the passed group in the receiving
procedure (LocalName.MemberName). The member fields of the structure are referenced by the
labels given them in the group named as the data type in the prototype--not the labels of the
fields in the structure actually passed in. This allows the receiving procedure to be completely
generic, regardless of what actual data structure is passed to it.

Example:

PROGRAM
MAP

MyProc PROCEDURE
AddQue PROCEDURE(PassGroup PassedGroup, NameQue PassedQue)

END !AddQue receives a GROUP defined like PassGroup and
! a QUEUE defined like NameQue

PassGroup GROUP,TYPE !Type definition -- no memory allocated
F1 STRING(20) ! GROUP with 2 STRING(20) fields
F2 STRING(20)

END

Language Reference Manual 68

NameGroup GROUP !Name group
First STRING(20) !first name
Last STRING(20) !last name
Company STRING(30) !This extra field is not available to the receiving

END !procedure (AddQue) since PassGroup only has two fields

NameQue QUEUE,TYPE !Name Queue, Type definition -- no memory allocate
First STRING(20)
Last STRING(20)

END

CODE
MyProc

MyProc PROCEDURE
LocalQue NameQue !Local Name Queue, declared exactly the same as Na

CODE
NameGroup.First = 'Fred'
NameGroup.Last = 'Flintstone'
AddQue(NameGroup,LocalQue) !Pass NameGroup and LocalQue to AddQue procedure

NameGroup.First = 'Barney'
NameGroup.Last = 'Rubble'
AddQue(NameGroup,LocalQue)

NameGroup.First = 'George'
NameGroup.Last = 'O''Jungle'
AddQue(NameGroup,LocalQue)

LOOP X# = 1 TO RECORDS(LocalQue) !Look at what's in the LocalQue now
GET(LocalQue,X#)
MESSAGE(CLIP(LocalQue.First) & ' ' & LocalQue.Last)

END

AddQue PROCEDURE(PassGroup PassedGroup, NameQue PassedQue)
CODE
PassedQue.First = PassedGroup.F1 !Effectively: LocalQue.First = NameGroup.First
PassedQue.Last = PassedGroup.F2 !Effectively: LocalQue.Last = NameGroup.Last
ADD(PassedQue) !Add an entry into the PassedQue (LocalQue)
ASSERT(NOT ERRORCODE())

See Also:

MAP, MEMBER, MODULE, PROCEDURE, CLASS

2 – Program Source Code Format 69

PROCEDURE Return Types
A PROCEDURE prototyped with a return value must RETURN a value. The data type to return is
listed, separated by a comma, after the optional parameter list.

Value RETURN types:
BYTE SHORT USHORT LONG ULONG SREAL REAL DATE
TIME STRING Untyped value-parameter (?)

An untyped value-parameter return value (?) indicates the data type of the value returned by the
PROCEDURE is not known. This functions in exactly the same manner as an untyped value-
parameter. When the value is returned from the PROCEDURE, standard Clarion Data
Conversion Rules apply, no matter what data type is returned.

Variable RETURN types:
CSTRING *STRING *BYTE *SHORT *USHORT *LONG
*ULONG *SREAL *REAL *DATE *TIME
Untyped variable-parameter (*?)

Variable return types are provided just for prototyping external library functions (written in another
language) which return only the address of data--they are not valid for use on Clarion language
procedures.

Functions which return pointers (the address of some data) should be prototyped with an asterisk
prepended to the return data type (except CSTRING). The compiler automatically handles the
returned pointer at runtime. Functions prototyped this way act just like a variable defined in the
program--when the function is used in Clarion code, the data referenced by the returned pointer is
automatically used. This data can be assigned to other variables, passed as parameters to
procedures, or the ADDRESS function may return the address of the data.

CSTRING is an exception because all the others are fixed length datums, and a CSTRING is not.
So, any C function that returns a pointer to a CSTRING can be prototyped as "char *" at the C
end, but the compiler thunks the procedure and copies the datum onto the stack. Therefore, just
like the other pointer return values, when the function is used in Clarion code the data referenced
by the returned pointer is automatically used (the pointer is dereferenced).

As an example of this, assume that the XYZ() function returns a pointer to a CSTRING,
CStringVar is a CSTRING variable, and LongVar is a LONG variable. The simple Clarion
assignment statement, CStringVar = XYZ(), places the data referenced by the XYZ() function's
returned pointer, in the CStringVar variable. The assignment, LongVar = ADDRESS(XYZ()),
places the memory address of that data in the LongVar variable.

An untyped variable-parameter return value (*?) indicates the data type of the variable returned
by the PROCEDURE is not known. This functions in exactly the same manner as an untyped
variable-parameter.

Language Reference Manual 70

Reference RETURN types:
*FILE *KEY *WINDOW *VIEW
Named CLASS (*ClassName)
Named QUEUE (*QueueName)

A PROCEDURE may return a reference which may either be assigned to a reference variable, or
used in a parameter list wherever the referenced object would be appropriate. A PROCEDURE
that returns *WINDOW may also return the label of an APPLICATION or REPORT structure.
NULL is a valid value to return.

Example:
MAP
MODULE('Party3.Obj') !A third-party library

Func46 PROCEDURE(*CSTRING),REAL,C,RAW
!Pass CSTRING address-only to C function, return REAL

Func47 PROCEDURE(*CSTRING),CSTRING,C,RAW
!Returns pointer to a CSTRING

Func48 PROCEDURE(REAL),REAL,PASCAL
!PASCAL calling convention, return REAL

Func49 PROCEDURE(SREAL),REAL,C,NAME('_func49')
!C convention and external function name, return REAL

END
END

See Also:

MAP

MEMBER

MODULE

NAME

PROCEDURE

RETURN

Reference Variables

2 – Program Source Code Format 71

Prototype Attributes

C, PASCAL (parameter passing conventions)

 C

 PASCAL

The C and PASCAL attributes of a PROCEDURE prototype specifies that parameters are always
passed on the stack. The C convention passes the parameters from right to left as they appear in
the parameter list, while the PASCAL convention passes them from left to right. PASCAL is also
completely compatible with the Windows API calling convention for 32-bit compiled applications--
it is the Windows-standard calling convention (and also disables name mangling).

These calling conventions provide compatibility with third-party libraries written in other languages
(if they were not compiled with a TopSpeed compiler). If you do not specify a calling convention in
the prototype, the default calling convention is the internal, register-based parameter passing
convention used by all the TopSpeed compilers.

Example:
MAP
MODULE('Party3.Obj') !A third-party library

Func46 PROCEDURE(*CSTRING,*REAL),REAL,C,RAW !Pass REAL then CSTRING, address-only
Func49 PROCEDURE(*CSTRING,*REAL),REAL,PASCAL,RAW !Pass CSTRING then REAL, address-only

END
END

See Also:

PROCEDURE Prototypes

Prototype Parameter Lists

Language Reference Manual 72

DERIVED (prevent function overloading)

 DERIVED

The DERIVED attribute of a PROCEDURE prototype specifies that the PROCEDURE on whose
prototype it is placed is a VIRTUAL procedure. It can be used by itself or in addition to the
VIRTUAL attribute on the prototype.

Use DERIVED to force a compile error when non-matching prototypes between a DERIVED
virtual method and its PARENT are found. This prevents function overloading when a VIRTUAL
method is the intention.

Example:

ClassA CLASS
Method1 PROCEDURE(LONG, <LONG>)

END
ClassB CLASS(ClassA)
Method2 PROCEDURE(LONG,<LONG>),DERIVED

END
ClassC CLASS(ClassA)
Method3 PROCEDURE(LONG,<LONG>),VIRTUAL,DERIVED

END
ClassD CLASS(ClassA)
Method4 PROCEDURE(STRING),DERIVED !Will produce compiler error

END

See Also:

CLASS

VIRTUAL

2 – Program Source Code Format 73

DLL (set procedure defined externally in .DLL)

 DLL([flag])

DLL Declares a PROCEDURE defined externally in a .DLL.

flag A numeric constant, equate, or Project system define which specifies the
attribute as active or not. If the flag is zero, the attribute is not active, just as if it
were not present. If the flag is any value other than zero, the attribute is active.
Uniquely, it may be an undefined label, in which case the attribute is active.

The DLL attribute specifies that the PROCEDURE on whose prototype it is placed is defined in a
.DLL. The DLL attribute is required for 32-bit applications because .DLLs are relocatable in a 32-
bit flat address space, which requires one extra dereference by the compiler to address the
procedure.

Example:

MAP
MODULE('STDFuncs.DLL') !A standard functions .DLL

Func50 PROCEDURE(SREAL),REAL,PASCAL,DLL(dll_mode) !
END

END

See Also:

EXTERNAL

Language Reference Manual 74

NAME (set prototype's external name)

 NAME(constant)

NAME Specifies an "external" name for the linker.

constant A string constant containing the external name to assign. This is case sensitive.

The NAME attribute specifies an "external" name for the linker. The NAME attribute may be
placed on a PROCEDURE Prototype. The constant supplies the external name used by the linker
to identify the procedure or function from an external library or to provide a Clarion language
prototype with an external name for external linkage (usually to eliminate the compiler's standard
name mangling), making it easier to construct an export list for a .DLL to be used in other
language projects.

Example:

PROGRAM
MAP
MODULE('External.Obj')

AddCount PROCEDURE(LONG),LONG,C,NAME('_AddCount') !C function named '_AddCount'
END

END

See Also:

PROCEDURE Prototypes

Name Mangling and C++ Compatibility

2 – Program Source Code Format 75

PRIVATE (set procedure private to a CLASS or module)

 PRIVATE

The PRIVATE attribute specifies that the PROCEDURE on whose prototype it is placed may be
called only from another PROCEDURE within the same source MODULE. This encapsulates it
from other modules.

PRIVATE is normally used on method prototypes in CLASS structures, so that the method may
only be called from the other CLASS methods in the module. PRIVATE methods are not inherited
by CLASSes derived from the CLASS containing the PRIVATE method's prototype, although they
can be VIRTUAL if the derived CLASS is contained in the same module.

Example:

MAP
MODULE('STDFuncs.DLL') !A standard functions .DLL

Func49 PROCEDURE(SREAL),REAL,PASCAL,PROC
Proc50 PROCEDURE(SREAL),PRIVATE !Callable only from Func49

END
END

OneClass CLASS,MODULE('OneClass.CLW'),TYPE
BaseProc PROCEDURE(REAL Parm) !Public method
Proc PROCEDURE(REAL Parm),PRIVATE !Declare a private method

END

TwoClass OneClass !Instance of OneClass

CODE
TwoClass.BaseProc(1) !Legal call to BaseProc
TwoClass.Proc(2) !Illegal call to Proc

!In OneClass.CLW:
MEMBER()

OneClass.BaseProc PROCEDURE(REAL Parm)
CODE
SELF.Proc(Parm) !Legal call to Proc

OneClass.Proc PROCEDURE(REAL Parm)
CODE
RETURN(Parm)

See Also: CLASS

Language Reference Manual 76

PROC (set function called as procedure without warnings)

 PROC

The PROC attribute may be placed on a PROCEDURE prototyped with a return value. This
allows you to use it as normal a PROCEDURE call, not only in expressions and assignments, for
those instances in which you do not need the return value. The PROC attribute suppresses the
compiler warnings you would otherwise get from such use.

Example:

MAP
MODULE('STDFuncs.DLL') !A standard functions .DLL

Func50 PROCEDURE(SREAL),REAL,PASCAL,PROC
END

END

See Also:

PROCEDURE

2 – Program Source Code Format 77

PROTECTED (set procedure private to a CLASS or derived CLASS)

 PROTECTED

The PROTECTED attribute specifies that the PROCEDURE on whose prototype it is placed is
visible only to the PROCEDUREs declared within the same CLASS structure (the other methods
of that CLASS) and the methods of any CLASS derived from the CLASS. This encapsulates the
PROCEDURE from being called from any code external to the CLASS within which it is
prototyped or subsequently derived CLASSes.

Example:

OneClass CLASS,MODULE('OneClass.CLW'),TYPE
BaseProc PROCEDURE(REAL Parm) !Public method
Proc PROCEDURE(REAL Parm),PROTECTED !Declare a protected method

END

TwoClass OneClass !Instance of OneClass

ThreeClass CLASS(OneClass),MODULE('ThreeClass.CLW') !Derived from OneClass
ThreeProc PROCEDURE(REAL Parm) !Declare a Public method

END

CODE
TwoClass.BaseProc(1) !Legal call to BaseProc
TwoClass.Proc(2) !Illegal call to Proc

!In OneClass.CLW:
MEMBER()

OneClass.BaseProc PROCEDURE(REAL Parm)
CODE
SELF.Proc(Parm) !Legal call to Proc

OneClass.Proc PROCEDURE(REAL Parm)
CODE
RETURN(Parm)

!In ThreeClass.CLW:
MEMBER()

ThreeClass.NewProc PROCEDURE(REAL Parm)
CODE
SELF.Proc(Parm) !Legal call to Proc

See Also: CLASS

Language Reference Manual 78

RAW (pass address only)

 RAW

The RAW attribute of a PROCEDURE prototype specifies that STRING or GROUP parameters
pass the memory address only. This allows you to pass just the memory address of a *?,
STRING, or GROUP parameter, whether passed by value or by reference, to a non-Clarion
language procedure or function. Normally, STRING or GROUP parameters pass the address and
the length of the string. The RAW attribute eliminates the length portion. For a prototype with a ?
parameter, the parameter is taken as a LONG but passed as a "void *" which just eliminates
linker warnings. This is provided for compatibility with external library functions that expect only
the address of the string.

If a function is prototyped with one of the following return types: ?, *? or *STRING, and the
prototype has the RAW attribute, the return value is treated as a LONG.

Example:
MAP
MODULE('Party3.Obj') !A third-party library

Func46 PROCEDURE(*CSTRING),REAL,C,RAW !Pass CSTRING address-only to C function
END

END

See Also:

PROCEDURE Prototypes

Prototype Parameter Lists

2 – Program Source Code Format 79

REPLACE (set replacement constructor or destructor)

 REPLACE

The REPLACE attribute specifies that the PROCEDURE on whose prototype it is placed
completely replaces the constructor or destructor from its parent class. REPLACE is valid only on
a PROCEDURE labelled either "Construct" or "Destruct" and declared within a CLASS structure
which is derived from a class which also contains a matching "Construct" or "Destruct"
PROCEDURE. If the PROCEDURE label is "Construct" the method is a Constructor--
automatically called when the object is instantiated. An object is instantiated when it comes into
scope or when created with a NEW statement. If the PROCEDURE label is "Destruct" the method
is a Destructor--automatically called when the object is destroyed. An object is destroyed when it
goes out of scope or when destroyed with a DISPOSE statement.

Example:

PROGRAM
SomeQueue QUEUE,TYPE
F1 STRING(10)

END
OneClass CLASS,MODULE('OneClass.CLW'),TYPE
ObjectQueue &SomeQueue !Declare a reference to a named queue
Construct PROCEDURE !Declare a Constructor
Destruct PROCEDURE !Declare a Destructor

END
TwoClass CLASS(OneClass),MODULE('TwoClass.CLW'),TYPE
Construct PROCEDURE,REPLACE !Declare a replacement Constructor

END
MyClass OneClass !Instance of OneClass
YourClass &TwoClass !Reference to TwoClass
CODE !MyClass object comes into scope,

!autocalling OneClass.Construct
YourClass &= NEW(TwoClass) !YourClass object comes into scope,

!autocalling TwoClass.Construct
DISPOSE(YourClass) !YourClass object goes out of scope,

!autocalling OneClass.Destruct
RETURN !MyClass object goes out of scope,

!autocalling OneClass.Destruct
!OneClass.CLW contains:
OneClass.Construct PROCEDURE
CODE
SELF.ObjectQueue = NEW(SomeQueue) !Create the object's queue

OneClass.Destruct PROCEDURE
CODE
FREE(SELF.ObjectQueue) !Free the queue entries
DISPOSE(SELF.ObjectQueue) ! and remove the queue

!TwoClass.CLW contains:
TwoClass.Construct PROCEDURE

Language Reference Manual 80

CODE
SELF.ObjectQueue = NEW(SomeQueue) !Create the object's queue
SELF.ObjectQueue.F1 = 'First Entry'
ADD(SELF.ObjectQueue)

See Also:

NEW, DISPOSE, CLASS

2 – Program Source Code Format 81

TYPE (specify PROCEDURE type definition)

 TYPE

The TYPE attribute specifies a prototype that does not reference an actual PROCEDURE.
Instead, it defines a prototype name to use in other prototypes to indicate the type of procedure
passed to another PROCEDURE as a parameter.

When the name of the TYPEd prototype is used in the parameter list of another prototype, the
procedure being prototyped will receive, as a passed parameter, the label of a PROCEDURE that
has the same type of parameter list (and has the same return type, if it returns a value).

Example:
MAP

ProcType PROCEDURE(FILE),TYPE !Procedure-parameter type definition
MyFunc3 PROCEDURE(ProcType),STRING !ProcType procedure-parameter, returning a STRING,
END ! must be passed the label of a procedure that

!takes a FILE as a required parameter

See Also:

PROCEDURE Prototypes

Prototype Parameter Lists

Language Reference Manual 82

VIRTUAL (set virtual method)

 VIRTUAL

The VIRTUAL attribute specifies that the PROCEDURE on whose prototype it is placed is a
virtual method of the CLASS containing the prototype. This allows methods in a parent CLASS to
access methods in a derived CLASS. The VIRTUAL attribute must be placed on both the
method's parent class prototype and the derived class's prototype.

Example:

OneClass CLASS !Base class
BaseProc PROCEDURE(REAL Parm) !Non-virtual method
Proc PROCEDURE(REAL Parm),VIRTUAL !Declare a virtual method

END

TwoClass CLASS(OneClass) !Derived class of OneClass
Proc PROCEDURE(REAL Parm),VIRTUAL !Declare a virtual method

END

ClassThree OneClass !Another Instance of a OneClass object
ClassFour TwoClass !Another Instance of a TwoClass object

CODE
OneClass.BaseProc(1) !BaseProc calls OneClass.Proc
TwoClass.BaseProc(2) !BaseProc calls TwoClass.Proc
ClassThree.BaseProc(3) !BaseProc calls OneClass.Proc
ClassFour.BaseProc(4) !BaseProc calls TwoClass.Proc

OneClass.BaseProc PROCEDURE(REAL Parm)
CODE
SELF.Proc(Parm) !Calls virtual method, either OneClass.Proc

! TwoClass.Proc, depending on which
! class instance is executing

See Also:

CLASS

2 – Program Source Code Format 83

Procedure Overloading
Procedure Overloading means allowing multiple PROCEDURE definitions to use the same name.
This is one form of polymorphism. In order to allow this each PROCEDURE using a shared name
must receive different parameters so the compiler can decide, based on the parameters passed
which PROCEDURE to call.

The idea here is to allow more than one procedure of the same name, but with different
prototypes, so separate (but usually similar) operations can occur on different data types. From
an efficiency viewpoint, Procedure Overloading is much more efficient than coding a single
procedure with omittable parameters, for those cases where you may or may not receive multiple
parameters.

The Clarion language also allows polymorphic procedures through the use of the ? and *?
parameters, but Procedure Overloading extends this polymorphic ability to also include Entity-
parameters and "named group" parameters.

One example of Procedure Overloading is the Clarion OPEN statement, which initializes an entity
for use in the program. Depending on what type of entity is passed to it (a FILE, a WINDOW, a
VIEW, etc.), it performs related but physically different functions.

See Also:

Rules for Procedure Overloading

Name Mangling and C++ Compatibility

Language Reference Manual 84

Rules for Procedure Overloading
The Clarion language has built-in data type conversion which can make overload resolution
difficult for the compiler. Therefore, there are rules governing how the compiler resolves
functional overloading, which are applied in the following order:

1. Entity-parameters are resolved to FILE, KEY, WINDOW, and QUEUE. If a prototype can
be chosen on the basis of these alone then the compiler does (most of the Clarion built in
procedures fall into this category). Note that KEY and VIEW are implicitly derived from
FILE, just as APPLICATION and REPORT are implicitly derived from WINDOW.

2. All "named group" parameters must match a group of their own structure. Procedure-
parameters are matched by structure. CLASSes must match by name, not simply by
structure.

3. A prototype must match in the number and placement of non-omittable parameters. This
is the third criteria (not the first) so that the compiler can usually guess which prototype
the user was aiming at and give a more meaningful error message.

4. If there are no matching prototypes then allow derivation. At this point a KEY would be
allowed to match a FILE and a group that is derived would match one of its base classes.
If one level of derivation does not work, the compiler continues up the tree. All QUEUEs
now match QUEUE and GROUP etc. CLASSes derive before other parameter types.

5. Variable-parameters (unnamed) must exactly match the actual data type passed. A
*GROUP matches a *STRING. Any variable-parameter matches *?.

6. All Value-parameters are considered to have the same type.

Example:

MAP
Func PROCEDURE(WINDOW) ! 1
Func PROCEDURE(FILE) ! 2
Func PROCEDURE(KEY) ! 3
Func PROCEDURE(FILE,KEY) ! 4
Func PROCEDURE(G1) ! 5
Func PROCEDURE(G0) ! 6
Func PROCEDURE(KEY,G0) ! 7
Func PROCEDURE(FILE,G1) ! 8
Func PROCEDURE(SHORT = 10) ! 9
Func PROCEDURE(LONG) ! 10
Func PROCEDURE() ! Illegal, indistinguishable from 9
Func PROCEDURE(*SHORT) ! 11
Func1 PROCEDURE(*SHORT)
Func1a PROCEDURE(*SHORT)
Func2 PROCEDURE(*LONG)
Func PROCEDURE(Func1) ! 12
Func PROCEDURE(Func1a) ! Illegal, same as 12
Func PROCEDURE(Func2) ! 13
END

2 – Program Source Code Format 85

G0 GROUP
END

G1 GROUP(G0)
END

CODE
Func(A:Window) ! Calls 1 by rule 1
Func(A:File) ! Calls 2 by rule 1
Func(A:Key) ! Calls 3 by rule 1
Func(A:View) ! Calls 2 by rule 4
Func(A:Key,A:Key)! Calls 4 by rule 4 (would call key,key if present)
Func(A:G0) ! Calls 6 by rule 2
Func(A:G1) ! Calls 5 by rule 2
Func(A:Func2) ! Calls 13 by rule 2
Func(A:Key,A:G1) ! Error - Ambiguous. If rule 4 is used then 7 & 8 are both possible
Func(A:Short) ! Error - Ambiguous. Calls 9 or 11
Func(A:Real) ! Calls 9 by rule 6
Func ! Calls 9 by rule 3

See Also:

CLASS

Language Reference Manual 86

Name Mangling and C++ Compatibility
Each overloaded function will have a link-time name composed of the procedure label and a
"mangled" argument list (the NAME attribute can be used to disable name mangling). This is
designed so that some degree of cross-calling between C++ and Clarion is possible. On the C++
side you need:

#pragma name(prefix=>"")

and the name in all caps. On the Clarion side you need a MODULE structure with a null string as
its parameter:

MODULE('')
END

The only procedures that can be cross-called are those whose prototypes only contain data types from
the following list. Clarion Variable-parameters (passed by address) correspond to reference parameters
on the C side unless they are omittable, in which case they correspond to pointer parameters.

Clarion C++
BYTE unsigned char
USHORT unsigned short
SHORT short
LONG long
ULONG unsigned long
SREAL float
REAL double
*CSTRING (with RAW) char&
<*CSTRING> (with RAW) char*
<*GROUP> (with RAW) void*

Note that for C++ compatibility the return type of a PROCEDURE is not mangled into the name. A
corollary effect is that procedures cannot be distinguished by return type.

Example:

//C++ prototypes:
#pragma name(prefix=>"")
void HADD(short,short);
void HADD(long*,unsigned char);
void HADD(short unsigned &);
void HADD(char *,void *);

!Clarion prototypes:
MODULE('')
hADD(short,short)
HaDD(<*long>,byte)
HAdD(*ushort)
HADd(<*CSTRING>,<*GROUP>),RAW

END

See Also: NAME

2 – Program Source Code Format 87

Compiler Directives
Compiler Directives are statements that tell the compiler to take some action at compile time.
These statements are not included in the executable program object code which the compiler
generates. Therefore, there is no run-time overhead associated with their use.

ASSERT (set assumption for debugging)
 ASSERT(expression, [message])

ASSERT Specifies an assumption for debugging purposes.

expression A Boolean expression that should always evaluate as true (any value other than
blank or zero).

message An optional string expression (up to 64K) which displays in the dialog window.

The ASSERT statement specifies an expression to evaluate at the exact point in the program
where the ASSERT is placed. This may be any kind of Boolean expression and should be
formulated such that the expected evaluation result is always true (any value other than blank or
zero). The purpose of ASSERT is to catch erroneous assumptions for the programmer.

If debug is on and the expression is false (blank or zero), an error message displays indicating
the specific line number and source code module where the asserted expression was false. The
user is invited to GPF the program at that point, which allows Clarion's post-mortem debuggers to
activate.

If debug is off, the expression is still evaluated, but no error message is displayed if the result is
false. To activate error messages in release build (debug is off), you can add the following project
define to your application:

 asserts=>on

Language Reference Manual 88

Example:

MyQueue QUEUE
F1 LONG

END
CODE
LOOP X# = 1 TO 10
MyQueue.F1 = X#
ADD(MyQueue)
ASSERT(~ERRORCODE(),’ADD MyQueue Error ‘ & ERROR())
END
LOOP X# = 1 TO 10
GET(MyQueue, X#)
ASSERT(~ERRORCODE()) !This error only happens if the ADD above fails

END

!- Get Single Configuration Record
Access:CONFIG.Open()
SET(CONFIG)
ASSERT(~Access:Config.Next(),’Config record missing’)

2 – Program Source Code Format 89

BEGIN (define code structure)

 BEGIN

 statements

 END

BEGIN Declares a single code statement structure.

statements Executable program instructions.

The BEGIN compiler directive tells the compiler to treat the statements as a single structure. The
BEGIN structure must be terminated by a period or the END statement.

BEGIN is usually used in an EXECUTE control structure to allow several lines of code to be
treated as one.

Example:
EXECUTE Value
Proc1 !Execute if Value = 1
BEGIN !Execute if Value = 2
Value += 1
Proc2

END
Proc3 !Execute if Value = 3

END

See Also:

EXECUTE

Language Reference Manual 90

COMPILE (specify source to compile)

 COMPILE(terminator [,expression])

COMPILE Specifies a block of source code lines to be included in the compilation.

terminator A string constant that marks the last line of a block of source code.

expression An expression allowing conditional execution of the COMPILE. The expression is
either an EQUATE whose value is zero or one, or EQUATE = integer.

The COMPILE directive specifies a block of source code lines to be included in the compilation.
The included block begins with the COMPILE directive and ends with the line that contains the
same string constant as the terminator. The entire terminating line is included in the COMPILE
block.

The optional expression parameter permits conditional COMPILE. The form of the expression is
fixed. It is the label of an EQUATE statement, or a Conditional Switch set in the Project System,
and may be followed by an equal sign (=) and an integer constant.

The code between COMPILE and the terminator is compiled only if the expression is true. If the
expression contains an EQUATE that has not yet been defined, then the referenced EQUATE is
assumed to be zero (0).

Although the expression is not required, COMPILE without an expression parameter is not
necessary because all source code is compiled unless explicitly omitted. COMPILE and OMIT are
opposites.

2 – Program Source Code Format 91

Example:
OMIT('***',_WIDTH32_) !OMIT only if application is 32-bit

SIGNED EQUATE(SHORT)
UNSIGNED EQUATE(USHORT)

COMPILE('***',_WIDTH32_) !COMPILE only if application is 32-bit

SIGNED EQUATE(LONG)
UNSIGNED EQUATE(ULONG)

COMPILE('EndOfFile',OnceOnly = 0) !COMPILE only the first time encountered because the
OnceOnly EQUATE(1) ! OnceOnly EQUATE is defined after the COMPILE that

! references it, so a second pass during the same
! compilation will not re-compile the code

Demo EQUATE(1) !Specify the Demo EQUATE value
CODE
COMPILE('EndDemoChk',Demo = 1) !COMPILE only if Demo equate is turned on
DO DemoCheck !Check for demo limits passed

! EndDemoChk !End of conditional COMPILE code
! EndOfFile

!The following example below shows how OMIT and COMPILE can be nested
COMPILE ('**32bit**',_width32_) !outer COMPILE

COMPILE ('*debug*',_debug_)
DEBUGGER::BUTTONLIST Equate('&Continue|&Halt|&Debug')
!end- COMPILE ('*debug*',_debug_)

OMIT ('*debug*',_debug_)
DEBUGGER::BUTTONLIST Equate('&Continue|&Halt')
!end- OMIT ('*debug*',_debug_)

!end- COMPILE ('**32bit**',_width32_) !end outer COMPILE

OMIT ('**32bit**',_width32_)
DEBUGGER::BUTTONLIST Equate('&Continue|&Halt')

!end- OMIT ('**32bit**',_width32_)

See Also:

OMIT

EQUATE

Language Reference Manual 92

INCLUDE (compile code in another file)

 INCLUDE(filename [,section]) [,ONCE]

INCLUDE Specifies source code to be compiled which exists in a separate file which is not
a MEMBER module.

filename A string constant that contains the DOS file specification for a source file. If the
extension is omitted, .CLW is assumed.

section A string constant which is the string parameter of the SECTION directive marking
the beginning of the source code to be included.

ONCE The ONCE attribute precludes any INCLUDEd data from being compiled more
than once, which can result in compile warnings or errors. Regarding the use of
the section attribute, ONCE is applied on the entire filename, so subsequent
uses of INCLUDE(filename, section) will be ignored.

The INCLUDE directive specifies source code to be compiled which exists in a separate file
which is not a MEMBER module. Starting on the line of the INCLUDE directive, the source file, or
the specified section of that file, is compiled as if it appeared in sequence within the source
module being compiled. You can nest INCLUDEs up to 3 deep, so you can INCLUDE a file that
includes a file that includes a file but that latter file must not include anything.

The compiler uses the Redirection file (CurrentReleaseName.RED) to find the file, searching the
path specified for that type of filename (usually by extension). This makes it unnecessary to
provide a complete path in the filename to be included. A discussion of the Redirection file is in
the User's Guide and the Project System chapter of the Programmer's Guide.

Example:
GenLedger PROCEDURE !Declare procedure
INCLUDE('filedefs.clw') !Include file definitions here
CODE !Begin code section
INCLUDE('Setups','ChkErr') !Include error check from setups.clw

See Also:

SECTION

ONCE

2 – Program Source Code Format 93

EQUATE (assign label)

 | label |

label EQUATE(| [constant] |)

 | picture |

 | type |

EQUATE Assigns a label to another label or constant.

label The label of any statement preceding the EQUATE statement. This is used to
declare an alternate statement label. This may not be the label of a
PROCEDURE or ROUTINE statement.

constant A numeric or string constant. This is used to declare a shorthand label for a
constant value. It also makes a constant easy to locate and change. This may be
omitted only in an ITEMIZE structure. A constant expression may also be used
(like 1+2, or BOR(1111b,0001b)).

picture A picture token. This is used to declare a shorthand label for a picture token.
However, the screen and report formatter in the Clarion Editor will not recognize
the equated label as a valid picture.

type A data type. This is usually used to declare a single method of declaring a
variable as one of several data types, depending upon compiler settings (like a
C++ typedef for a simple data type).

The EQUATE directive assigns a label to another label or constant. It does not use any run-time
memory. The label of an EQUATE directive cannot be the same as its parameter.

Example:

Init EQUATE(SetUpProg) !Set alias label
Off EQUATE(0) !Off means zero
On EQUATE(1) !On means one
PI EQUATE(3.1415927) !The value of PI
EnterMsg EQUATE('Press Ctrl-Enter to SAVE')
SocSecPic EQUATE(@P###-##-####P) !Soc-sec number picture

See Also:

Reserved Words

ITEMIZE

Language Reference Manual 94

ITEMIZE (enumeration data structure)

[label] ITEMIZE([seed]) [,PRE()]

 equates

 END

label An optional label for the ITEMIZE structure.

ITEMIZE An enumeration data structure.

seed An integer constant or constant expression specifying the value of the first
EQUATE in the structure.

PRE Declare a label prefix for variables within the structure.

equates Multiple consecutive EQUATE declarations which specify positive integer values
in the range 0 to 65,535.

An ITEMIZE structure declares an enumerated data structure. If the first equate does not declare
a value and there is no seed value specified, its value is one (1). All following equates following
the first increment by one (1) if no value is specified for the subsequent equate. If a value is
specified on a subsequent equate, all equates following that continue incrementing by one (1)
from the specified value.

Equates within the ITEMIZE structure are referenced by prepending the prefix to the label of the
equate (PRE attribute--PRE:EquateLabel). If the ITEMIZE structure has an empty prefix, then the
equates are referenced by prepending the ITEMIZE label to the label of the equate
(label:EquateLabel). If there is no prefix or label, then the equates are referenced by their own
label without a prefix.

2 – Program Source Code Format 95

Example:

ITEMIZE
False EQUATE(0) !False = 0
True EQUATE !True = 1

END

Color ITEMIZE(0),PRE !Seed value is zero
Red EQUATE !Color:Red = 0
White EQUATE !Color:White = 1
Blue EQUATE !Color:Blue = 2
Pink EQUATE(5) !Color:Pink = 5
Green EQUATE !Color:Green = 6
Last EQUATE

END

Stuff ITEMIZE(Color:Last + 1),PRE(My) !Constant expression as seed
X EQUATE !My:X = Color:Last + 1
Y EQUATE !My:Y = Color:Last + 2
Z EQUATE !My:Z = Color:Last + 3

END

See Also:

EQUATE, PRE

Language Reference Manual 96

OMIT (specify source not to be compiled)

 OMIT(terminator [,expression])

OMIT Specifies a block of source code lines to be omitted from the compilation.

terminator A string constant that marks the last line of a block of source code.

expression An expression allowing conditional execution of the OMIT. The expression is
either an EQUATE whose value is zero or one, or EQUATE = integer.

The OMIT directive specifies a block of source code lines to be omitted from the compilation.
These lines may contain source code comments or a section of code that has been "stubbed out"
for testing purposes. The omitted block begins with the OMIT directive and ends with the line that
contains the same string constant as the terminator. The entire terminating line is included in the
OMIT block.

The optional expression parameter permits conditional OMIT. The form of the expression is fixed.
It is the label of an EQUATE statement, or a Conditional Switch set in the Project System, and
may be followed by an equal sign (=) and an integer constant.

The OMIT directive executes only if the expression is true. Therefore, the code between OMIT
and the terminator is compiled only if the expression is not true. If the expression contains an
EQUATE that has not yet been defined, then the referenced EQUATE is assumed to be zero (0).
COMPILE and OMIT are opposites.

2 – Program Source Code Format 97

Example:
OMIT('**END**') !Unconditional OMIT
!Main Program Loop

END
OMIT('***',_WIDTH32_) !OMIT only if application is 32-bit

SIGNED EQUATE(SHORT)

COMPILE('***',_WIDTH32_) !COMPILE only if application is 32-bit

SIGNED EQUATE(LONG)

OMIT('EndOfFile',OnceOnly) !Compile only the first time encountered because the
OnceOnly EQUATE(1) ! OnceOnly EQUATE is defined after the COMPILE that

! references it, so a second pass during the same
! compilation will not re-compile the code

Demo EQUATE(0) !Specify the Demo EQUATE value
CODE
OMIT('EndDemoChk',Demo = 0) !OMIT only if Demo is turned off
DO DemoCheck !Check for demo limits passed

!EndDemoChk !End of omitted code
! EndOfFile
!The following example below shows how OMIT and COMPILE can be nested
COMPILE ('**32bit**',_width32_) !outer COMPILE

COMPILE ('*debug*',_debug_)
DEBUGGER::BUTTONLIST Equate('&Continue|&Halt|&Debug')
!end- COMPILE ('*debug*',_debug_)

OMIT ('*debug*',_debug_)
DEBUGGER::BUTTONLIST Equate('&Continue|&Halt')
!end- OMIT ('*debug*',_debug_)

!end- COMPILE ('**32bit**',_width32_) !end outer COMPILE

OMIT ('**32bit**',_width32_)
DEBUGGER::BUTTONLIST Equate('&Continue|&Halt')

!end- OMIT ('**32bit**',_width32_)

See Also:

COMPILE

EQUATE

Language Reference Manual 98

ONCE (prevent duplicate included data)
The ONCE attribute precludes any INCLUDEd data from being compiled more than once
resulting in compile warnings or errors.

Example:

 INCLUDE('KEYCODES.CLW'),ONCE

See Also:

INCLUDE

2 – Program Source Code Format 99

SECTION (specify source code section)

 SECTION(string)

SECTION Identifies the beginning of a block of executable source code or data
declarations.

string A string constant which names the SECTION.

The SECTION compiler directive identifies the beginning of a block of executable source code or
data declarations which may be INCLUDEd in source code in another file. The SECTION's string
parameter is used as an optional parameter of the INCLUDE directive to include a specific block
of source code. A SECTION is terminated by the next SECTION or the end of the file.

Example:
SECTION('FirstSection') !Begin section

FieldOne STRING(20)
FieldTwo LONG

SECTION('SecondSection') !End previous section, begin new section

IF Number <> SavNumber
DO GetNumber

END

SECTION('ThirdSection') !End previous section, begin new section

CASE Action
OF 1
DO AddRec

OF 2
DO ChgRec

OF 3
DO DelRec

END !Third section ends at end of file

See Also:

INCLUDE

Language Reference Manual 100

SIZE (memory size in bytes)

 | variable |

 SIZE(| constant |)

 | picture |

SIZE Supplies the amount of memory used for storage.

variable The label of a previously declared variable.

constant A numeric or string constant.

picture A picture token.

SIZE directs the compiler to supply the amount of memory (in bytes) used to store the variable,
constant, or picture.

Example:

SavRec STRING(1),DIM(SIZE(Cus:Record) !Dimension the string to size of record

StringVar STRING(SIZE('SoftVelocity')) !A string long enough for the constant

LOOP I# = 1 TO SIZE(ParseString) !Loop for number of bytes in the string

PicLen = SIZE(@P(###)###-####P) !Save size of the picture

See Also: LEN

3 – Variable Declarations 101

Language Reference Manual 102

3 – Variable Declarations 103

3 - Variable Declarations
Simple Data Types

BYTE (one-byte unsigned integer)

label BYTE(initial value) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

 [,AUTO] [,PRIVATE] [,PROTECTED]

BYTE A one-byte unsigned integer.
Format: magnitude

| |
Bits: 7 0
Range: 0 to 255

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

BYTE declares a one-byte unsigned integer.

Example:

Count1 BYTE !Declare one byte integer
Count2 BYTE,OVER(Count1) !Declare OVER the one byte integer
Count4 BYTE,DIM(5) !Declare as a 5 element array
Count4 BYTE(5) !Declare with initial value

Language Reference Manual 104

SHORT (two-byte signed integer)

label SHORT([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

 [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

SHORT A two-byte signed integer.
Format: ± magnitude

| . | |
Bits: 15 14 0
Range: -32,768 to 32,767

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

SHORT declares a two-byte signed integer, using the Intel 8086 word integer format. The high-
order bit of this configuration is the sign bit (0 = positive, 1 = negative). Negative values are
represented in standard two's complement notation.

3 – Variable Declarations 105

Example:
Count1 SHORT !Declare two-byte signed integer
Count2 SHORT,OVER(Count1) !Declare OVER the two-byte signed integer
Count3 SHORT,DIM(4) !Declare it an array of 4 shorts
Count4 SHORT(5) !Declare with initial value
Count5 SHORT,EXTERNAL !Declare as external
Count6 SHORT,EXTERNAL,DLL !Declare as external in a .DLL
Count7 SHORT,NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('Clarion') !Declare a file
Record RECORD
Count7 SHORT,NAME('Counter') !Declare with external name

END
END

Language Reference Manual 106

USHORT (two-byte unsigned integer)

label USHORT([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

 [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

USHORT A two-byte unsigned integer.
Format: magnitude

||
Bits: 15 0
Range: 0 to 65,535

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

USHORT declares a two-byte unsigned integer in the Intel 8086 word format. There is no sign bit
in this configuration.

3 – Variable Declarations 107

Example:

Count1 USHORT !Declare two-byte unsigned integer
Count2 USHORT,OVER(Count1) !Declare OVER the two-byte unsigned integer
Count3 USHORT,DIM(4) !Declare it an array of 4 unsigned shorts
Count4 USHORT(5) !Declare with initial value
Count5 USHORT,EXTERNAL !Declare as external
Count6 USHORT,EXTERNAL,DLL !Declare as external in a .DLL
Count7 USHORT,NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
Count8 USHORT,NAME('Counter') !Declare with external name

END
END

Language Reference Manual 108

LONG (four-byte signed integer)

label LONG([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

 [,AUTO] [,PRIVATE] [,PROTECTED]

LONG A four-byte signed integer.
Format: ± magnitude

| |................... |
Bits: 31 30 0
Range: -2,147,483,648 to 2,147,483,647

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

LONG declares a four-byte signed integer, using the Intel 8086 long integer format. The high-
order bit is the sign bit (0 = positive, 1 = negative). Negative values are represented in standard
two's complement notation.

3 – Variable Declarations 109

Example:

Count1 LONG !Declare four-byte signed integer
Count2 LONG,OVER(Count1) !Declare OVER the four-byte signed integer
Count3 LONG,DIM(4) !Declare it an array of 4 longs
Count4 LONG(5) !Declare with initial value
Count5 LONG,EXTERNAL !Declare as external
Count6 LONG,EXTERNAL,DLL !Declare as external in a .DLL
Count7 LONG,NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('Clarion') !Declare a file
Record RECORD
Count8 LONG,NAME('Counter') !Declare with external name

END
END

Language Reference Manual 110

ULONG (four-byte unsigned integer)

label ULONG([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

 [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

ULONG A four-byte unsigned integer.
Format: magnitude

|...................|
Bits: 31 0
Range: 0 to 4,294,967,295

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

ULONG declares a four-byte unsigned integer, using the Intel 8086 long integer format. There is
no sign bit in this configuration.

3 – Variable Declarations 111

Example:

Count1 ULONG !Declare four-byte unsigned integer
Count2 ULONG,OVER(Count1) !Declare OVER four-byte unsigned integer
Count3 ULONG,DIM(4) !Declare it an array of 4 unsigned longs
Count4 ULONG(5) !Declare with initial value
Count5 ULONG,EXTERNAL !Declare as external
Count6 ULONG,EXTERNAL,DLL !Declare as external in a .DLL
Count7 ULONG,NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
Count8 ULONG,NAME('Counter') !Declare with external name

END
END

Language Reference Manual 112

SIGNED (signed integer)

label SIGNED([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

 [,AUTO] [,PRIVATE] [,PROTECTED]

SIGNED A signed integer defined as a LONG.

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

SIGNED declares a signed integer which is a LONG.

The SIGNED data type is most useful for prototyping Windows API calls.

Example:

Count1 SIGNED !Declares a LONG

3 – Variable Declarations 113

UNSIGNED (unsigned integer)

label UNSIGNED([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

 [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

UNSIGNED An unsigned integer which is a LONG.

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

UNSIGNED declares an unsigned integer which is a LONG. This is not actually a data type but
an EQUATE defined in EQUATES.CLW.

The UNSIGNED data type is most useful for prototyping Windows API calls which take a LONG
(or ULONG) parameter in their 32-bit version.

Example:

Count1 UNSIGNED !Declares a LONG

Language Reference Manual 114

SREAL (four-byte signed floating point)

label SREAL([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

 [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

SREAL A four-byte floating point number.
Format: ± exponent significand

| | | |
Bits: 31 30 23 0
Range: 0, ± 1.175494e-38 .. ± 3.402823e+38 (6 significant digits)

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

SREAL declares a four-byte floating point signed numeric variable, using the Intel 8087 short real
(single precision) format.

3 – Variable Declarations 115

Example:

Count1 SREAL !Declare four-byte signed floating point
Count2 SREAL,OVER(Count1) !Declare OVER the four-byte

!signed floating point
Count3 SREAL,DIM(4) !Declare it an array of 4 floats
Count4 SREAL(5) !Declare with initial value
Count5 SREAL,EXTERNAL !Declare as external
Count6 SREAL,EXTERNAL,DLL !Declare as external in a .DLL
Count7 SREAL,NAME('SixCount') !Declare with external name

ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
Count8 SREAL,NAME('Counter') !Declare with external name

END
END

Language Reference Manual 116

REAL (eight-byte signed floating point)

label REAL([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

 [,AUTO] [,PRIVATE] [,PROTECTED]

REAL An eight-byte floating point number.
Format: ± exponent significand

| . | | |
Bits:63 62 52 0
Range: 0, ± 2.225073858507201e-308 .. ± 1.79769313496231e+308
(15 significant digits)

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

REAL declares an eight-byte floating point signed numeric variable, using the Intel 8087 long real
(double precision) format.

3 – Variable Declarations 117

Example:

Count1 REAL !Declare eight-byte signed floating point
Count2 REAL,OVER(Count1) !Declare OVER the eight-byte

!signed floating point
Count3 REAL,DIM(4) !Declare it an array of 4 reals
Count4 REAL(5) !Declare with initial value
Count5 REAL,EXTERNAL !Declare as external
Count6 REAL,EXTERNAL,DLL !Declare as external in a .DLL
Count7 REAL,NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('Clarion') !Declare a file
Record RECORD
Count8 REAL,NAME('Counter') !Declare with external name

END
END

Language Reference Manual 118

BFLOAT4 (four-byte signed floating point)

label BFLOAT4([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

 [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

BFLOAT4 A four-byte floating point number.
Format: exponent ± significand

| | . | |
Bits: 31 23 22 0
Range: 0, ± 5.87747e-39 .. ± 1.70141e+38 (6 significant digits)

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

BFLOAT4 declares a four-byte floating point signed numeric variable, using the Microsoft BASIC
(single precision) format. This data type is normally used for compatibility with existing data since
it is internally converted to a REAL before all arithmetic operations.

3 – Variable Declarations 119

Example:

Count1 BFLOAT4 !Declare four-byte signed floating point
Count2 BFLOAT4,OVER(Count1) !Declare OVER the four-byte

! signed floating point
Count3 BFLOAT4,DIM(4) !Declare array of 4 single-precision reals
Count4 BFLOAT4(5) !Declare with initial value
Count5 BFLOAT4,EXTERNAL !Declare as external
Count6 BFLOAT4,EXTERNAL,DLL !Declare as external in a .DLL
Count7 BFLOAT4,NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
Count8 BFLOAT4,NAME('Counter') !Declare with external name

END
END

Language Reference Manual 120

BFLOAT8 (eight-byte signed floating point)

label BFLOAT8([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

 [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

BFLOAT8 An eight-byte floating point number.
Format: exponent ± significand

| | . | |
Bits: 63 55 54 0
Range: 0, ± 5.877471754e-39 .. ± 1.7014118346e+38 (15 significant dig

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

BFLOAT8 declares an eight-byte floating point signed numeric variable, using the Microsoft
BASIC (double precision) format. This data type is normally used for compatibility with existing
data since it is internally converted to a REAL before all arithmetic operations.

3 – Variable Declarations 121

Example:

Count1 BFLOAT8 !Declare eight-byte signed floating point
Count2 BFLOAT8,OVER(Count1) !Declare OVER
Count3 BFLOAT8,DIM(4) !Declare it an array of 4 reals
Count4 BFLOAT8(5) !Declare with initial value
Count5 BFLOAT8,EXTERNAL !Declare as external
Count6 BFLOAT8,EXTERNAL,DLL !Declare as external in a .DLL
Count7 BFLOAT8,NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
Count8 BFLOAT8,NAME('Counter') !Declare with external name

END
END

Language Reference Manual 122

DECIMAL (signed packed decimal)

label DECIMAL(length [,places] [,initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL]

 [,STATIC] [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

DECIMAL A packed decimal floating point number.
Format: ± magnitude

| . | |
Bits: 127 124 0
Range: -9,999,999,999,999,999,999,999,999,999,999 to

+9,999,999,999,999,999,999,999,999,999,999

length A required numeric constant containing the total number of decimal digits (integer
and fractional portion combined) in the variable. The maximum length is 31.

places A numeric constant that fixes the number of decimal digits in the fractional
portion (to the right of the decimal point) of the variable. It must be less than or
equal to the length parameter. If omitted, the variable will be declared as an
integer.

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

3 – Variable Declarations 123

DECIMAL declares a variable length packed decimal signed numeric variable. Each byte of a
DECIMAL holds two decimal digits (4 bits per digit). The left-most byte holds the sign in its high-
order nibble (0 = positive, anything else is negative) and one decimal digit. Therefore, DECIMAL
variables always contain a fixed "odd" number of digits (DECIMAL(10) and DECIMAL(11) both
use 6 bytes).

Example:

Count1 DECIMAL(5,0) !Declare three-byte signed packed decimal
Count2 DECIMAL(5),OVER(Count1) !Declare OVER the three-byte

!signed packed decimal
Count3 DECIMAL(5,0),DIM(4) !Declare it an array of 4 decimals
Count4 DECIMAL(5,0,5) !Declare with initial value
Count5 DECIMAL(5,0),EXTERNAL !Declare as external
Count6 DECIMAL(5,0),EXTERNAL,DLL !Declare as external in a .DLL
Count7 DECIMAL(5,0),NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('TopSpeed') !Declare a file
Record RECORD
Count8 DECIMAL(5,0),NAME('Counter') !Declare with external name

END
END

Language Reference Manual 124

PDECIMAL (signed packed decimal)

label PDECIMAL(length [,places] [,initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL]

 [,STATIC] [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

PDECIMAL A packed decimal floating point number.
Format: magnitude ±

| | . |
Bits: 127 4 0
Range: -9,999,999,999,999,999,999,999,999,999,999 to

+9,999,999,999,999,999,999,999,999,999,999

length A required numeric constant containing the total number of decimal digits (integer
and fractional portion combined) in the variable. The maximum length is 31.

places A numeric constant that fixes the number of decimal digits in the fractional
portion (to the right of the decimal point) of the variable. It must be less than or
equal to the length parameter. If omitted, the variable will be declared as an
integer.

initial value A numeric constant. If omitted, the initial value is zero, unless the AUTO attribute
is present.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

3 – Variable Declarations 125

PDECIMAL declares a variable length packed decimal signed numeric variable in the Btrieve and
IBM/EBCDIC type of format. Each byte of an PDECIMAL holds two decimal digits (4 bits per
digit). The right-most byte holds the sign in its low-order nibble (0Fh or 0Ch = positive, 0Dh =
negative) and one decimal digit. Therefore, PDECIMAL variables always contain a fixed "odd"
number of digits (PDECIMAL(10) and PDECIMAL(11) both use 6 bytes).

Example:

Count1 PDECIMAL(5,0) !Declare three-byte signed packed decimal
Count2 PDECIMAL(5),OVER(Count1) !Declare OVER the three-byte

! signed packed decimal
Count3 PDECIMAL(5,0),DIM(4) !Declare it an array of 4 decimals
Count4 PDECIMAL(5,0,5) !Declare with initial value
Count5 PDECIMAL(5,0),EXTERNAL !Declare as external
Count6 PDECIMAL(5,0),EXTERNAL,DLL !Declare as external in a .DLL
Count7 PDECIMAL(5,0),NAME('SixCount') !Declare with external name
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
Count8 PDECIMAL(5,0),NAME('Counter') !Declare with external name

END
END

Language Reference Manual 126

STRING (fixed-length string)

 | length |

label STRING(|string constant |) [,DIM()][,OVER()] [,NAME()] [,EXTERNAL] [,DLL]
[,STATIC]

 | picture | [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

STRING A character string.
Format: A fixed number of bytes.
Size: 4MB

length A numeric constant that defines the number of bytes in the STRING. String
variables are not initialized unless given a string constant.

string constant The initial value of the STRING. The length of the STRING (in bytes) is set to the
length of the string constant.

picture Used to format the values assigned to the STRING. The length is the number of
bytes needed to contain the formatted STRING.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

3 – Variable Declarations 127

STRING declares a fixed-length character string. The memory assigned to the STRING is
initialized to all blanks unless the AUTO attribute is present.

In addition to its explicit declaration, all STRING variables are also implicitly declared as
STRING(1),DIM(length of string). This allows each character in the STRING to be addressed as
an array element. If the STRING also has a DIM attribute, this implicit array declaration is the last
(optional) dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a STRING using the "string slicing"
technique. This technique performs similar action to the SUB function, but is much more flexible
and efficient (but does no bounds checking). It is more flexible because a "string slice" may be
used on both the destination and source sides of an assignment statement and the SUB function
can only be used as the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a "slice" of the STRING, the beginning and ending character numbers are separated by a
colon (:) and placed in the implicit array dimension position within the square brackets ([]) of the
STRING. The position numbers may be integer constants, variables, or expressions. If variables
are used, there must be at least one blank space between the variable name and the colon
separating the beginning and ending number (to prevent PREfix confusion).

Example:

Name STRING(20) !Declare 20 byte name field
ArrayString STRING(5),DIM(20) !Declare array
Company STRING('SoftVelocity Corporation') !The software company - 20 bytes
Phone STRING(@P(###)###-####P) !Phone number field - 13 bytes
ExampleFile FILE,DRIVER('Clarion') !Declare a file
Record RECORD
NameField STRING(20),NAME('Name') !Declare with external name

END
END

CODE
NameField = 'Tammi' !Assign a value
NameField[5] = 'y' ! change fifth letter
NameField[5:6] = 'ie' ! and change a "slice"

! the fifth and sixth letters
ArrayString[1] = 'First' !Assign value to first element
ArrayString[1,2] = 'u' !Change first element 2nd character
ArrayString[1,2:3] = NameField[5:6] !Assign slice to slice

Language Reference Manual 128

ASTRING (atomic string)

label ASTRING([stringtoken]) [,DIM()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

 [,AUTO] [,PRIVATE] [,PROTECTED]

ASTRING A reference to a character string.

stringtoken The initial string token of the ASTRING.

DIM Dimension the variable as an array.

OVER The ASTRING reference may share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specifies the memory for the ASTRING reference variable is permanently
allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial string token.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

ASTRING (similar to a Win32 ATOM) declares a reference to a variable length string (string
token) with a maximum size of 64k. Although the size of the string token may be up to a
maximum of 64k, it is recommended for use on smaller strings. The storage space for an
ASTRING is allocated dynamically as needed for the lifetime of the procedure in which it is
created. However the allocated storage is never deallocated; it is instead reused for subsequent
use of the same text values.

ASTRINGs are useful when a lot of the same text is being stored and compared. Each time a
new ASTRING is created, an entry is created in a memory table. When an ASTRING is assigned
a value that already exists in the table, the ASTRING simply points to the existing ASTRING. This
saves memory and makes string comparison very fast.

ASTRINGs are not supported by any of the file drivers.

3 – Variable Declarations 129

ASTRINGs may be passed as parameters to procedures by value or by reference. They may
also be passed as an untyped value or untyped variable parameters. An ASTRING can be
returned from a procedure only as a value.

Example prototypes:
PROC1(ASTRING a)
PROC2(*ASTRING a)
PROC3(? a)
PROC4(*? a)
PROC5(),ASTRING

Example:
PROGRAM

MAP
END

FLAG LONG
AS1 ASTRING,OVER(FLAG)
AS2 ASTRING

CODE

AS1 = 'SoftVelocity' ! storage is allocated for the string 'SoftVelocity'
AS2 = 'SoftVelocity' ! storage in not allocated again, instead AS1 and

! AS2 share the same reference value.
AS2 = 'Hello' ! new storage allocated for the new text string

! Hello
AS2 = 'SoftVelocity' ! No new storage is allocated, the reference for

! AS1 now equals AS2 again
IF FLAG = 0
MESSAGE('AS1 is NULL')

ELSE
MESSAGE('AS1 = ' & AS1)

END

Language Reference Manual 130

CSTRING (fixed-length null terminated string)

 | length |

label CSTRING(|string constant |) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL]

 | picture | [,STATIC] [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

CSTRING A character string.
Format: A fixed number of bytes.
Size: Unlimited

length A numeric constant that defines the number of bytes of storage the string will
use. This must include a position for the terminating null character. String
variables are not initialized unless given a string constant.

string constant A string constant containing the initial value of the string. The length of the string
is set to the length of the string constant plus the terminating null character.

picture The picture token used to format the values assigned to the string. The length of
the string is the number of bytes needed to contain the formatted string and the
terminating null character.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

CSTRING declares a character string terminated by a null character (ASCII zero). The memory
assigned to the CSTRING is initialized to a zero length string unless the AUTO attribute is
present.

3 – Variable Declarations 131

CSTRING matches the string data type used in the "C" language and the "ZSTRING" data type of
the Btrieve Record Manager. Storage and memory requirements are fixed-length, however the
terminating null character is placed at the end of the data entered. CSTRING should be used to
achieve compatibility with outside files or procedures.

In addition to its explicit declaration, all CSTRINGs are implicitly declared as a
STRING(1),DIM(length of string). This allows each character in the CSTRING to be addressed as
an array element. If the CSTRING also has a DIM attribute, this implicit array declaration is the
last (optional) dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a CSTRING using the "string slicing"
technique. This technique performs similar action to the SUB function, but is much more flexible
and efficient (but does no bounds checking). It is more flexible because a "string slice" may be
used on both the destination and source sides of an assignment statement and the SUB function
can only be used as the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a "slice" of the CSTRING, the beginning and ending character numbers are separated by
a colon (:) and placed in the implicit array dimension position within the square brackets ([]) of the
CSTRING. The position numbers may be integer constants, variables, or expressions. If variables
are used, there must be at least one blank space between the variable name and the colon
separating the beginning and ending number (to prevent PREfix confusion).

Since a CSTRING must be null-terminated, the programmer must be responsible for ensuring
that an ASCII zero is placed at the end of the data if the field is only accessed through its array
elements or as a "slice" (not as a whole entity). Also, a CSTRING can have "junk" stored after the
null terminator. Because of this they do not work well inside GROUPs.

Language Reference Manual 132

Example:

Name CSTRING(21) !Declare 21 byte field - 20 bytes data
OtherName CSTRING(21),OVER(Name) !Declare field over name field
Contact CSTRING(21),DIM(4) !Array 21 byte fields - 80 bytes data
Company CSTRING('SoftVelocity Corporation') !21 byte string - 20 bytes data
Phone CSTRING(@P(###)###-####P) !Declare 14 bytes - 13 bytes data
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
NameField CSTRING(21),NAME('ZstringField') !Declare with external name

END
END

CODE
Name = 'Tammi' !Assign a value
Name[5] = 'y' ! then change fifth letter
Name[6] = 's' ! then add a letter
Name[7] = '<0>' ! and handle null terminator
Name[5:6] = 'ie' ! and change a "slice"

! -- the fifth and sixth letters
Contact[1] = 'First' !Assign value to first element
Contact[1,2] = 'u' !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to slice

3 – Variable Declarations 133

PSTRING (embedded length-byte string)

 | length |

label PSTRING(|string constant |) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL]
[,STATIC]

 | picture | [,THREAD] [,AUTO] [,PRIVATE] [,PROTECTED]

PSTRING A character string.
Format: A fixed number of bytes.
Size: 2 to 256 bytes.

length A numeric constant that defines the number of bytes in the string. This must
include the length-byte.

string constant A string constant containing the initial value of the string. The length of the string
is set to the length of the string constant plus the length-byte.

picture The picture token used to format the values assigned to the string. The length of
the string is the number of bytes needed to contain the formatted string plus the
first position length byte. String variables are not initialized unless given a string
constant.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

Language Reference Manual 134

PSTRING declares a character string with a leading length byte included in the number of bytes
declared for the string. The memory assigned to the PSTRING is initialized to a zero length string
unless the AUTO attribute is present. PSTRING matches the string data type used by the Pascal
language and the "LSTRING" data type of the Btrieve Record Manager. Storage and memory
requirements are fixed-length, however, the leading length byte will contain the number of
characters actually stored. PSTRING is internally converted to a STRING intermediate value for
string operations during program execution. PSTRING should be used to achieve compatibility
with outside files or procedures.

In addition to its explicit declaration, all PSTRINGs are implicitly declared as a
PSTRING(1),DIM(length of string). This allows each character in the PSTRING to be addressed
as an array element. If the PSTRING also has a DIM attribute, this implicit array declaration is the
last (optional) dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a PSTRING using the "string slicing"
technique. This technique performs similar action to the SUB function, but is much more flexible
and efficient (but does no bounds checking). It is more flexible because a "string slice" may be
used on both the destination and source sides of an assignment statement and the SUB function
can only be used as the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function. To take a "slice" of the PSTRING, the beginning and
ending character numbers are separated by a colon (:) and placed in the implicit array dimension
position within the square brackets ([]) of the PSTRING. The position numbers may be integer
constants, variables, or expressions. If variables are used, there must be at least one blank space
between the variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Since a PSTRING must have a leading length byte, the programmer must be responsible for
ensuring that its value is always correct if the field is only accessed through its array elements or
as a "slice" (not as a whole entity). The PSTRING's length byte is addressed as element zero (0)
of the array (BLOB and PSTRING are the only exceptions in Clarion where an array has a zero
element). Therefore, the valid range of array indexes for a PSTRING(30) would be 0 to 29. Also,
a PSTRING can have 'junk' stored outside the active portion of the string. Because of this they do
not work well inside GROUPs.

3 – Variable Declarations 135

Example:

Name PSTRING(21) !Declare 21 byte field - 20 bytes data
OtherName PSTRING(21),OVER(Name) !Declare field over name field
Contact PSTRING(21),DIM(4) !Array 21 byte fields - 80 bytes data
Company PSTRING('SoftVelocity Corporation') !21 byte string - 20 bytes data
Phone PSTRING(@P(###)###-####P) !Declare 14 bytes - 13 bytes data
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
NameField PSTRING(21),NAME('LstringField') !Declare with external name

END
END

CODE
Name = 'Tammi' !Assign a value
Name[5] = 'y' ! then change fifth letter
Name[6] = 's' ! then add a letter
Name[0] = '<6>' ! and handle length byte
Name[5:6] = 'ie' ! and change a "slice" -- the 5th and 6th letters
Contact[1] = 'First' !Assign value to first element
Contact[1,2] = 'u' !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to slice

Language Reference Manual 136

Implicit String Arrays and String Slicing
In addition to their explicit declaration, all STRING, CSTRING and PSTRING variables have an
implicit array declaration of one character strings, dimensioned by the length of the string. This is
directly equivalent to declaring a second variable as:

StringVar STRING(10)
StringArray STRING(1),DIM(SIZE(StringVar)),OVER(StringVar)

This implicit array declaration allows each character in the string to be directly addressed as an
array element, without the need of the second declaration. The PSTRING's length byte is
addressed as element zero (0) of the array, as is the first byte of a BLOB (the only two cases in
Clarion where an array has a zero element).

If the string also has a DIM attribute, this implicit array declaration is the last (optional) dimension
of the array (to the right of the explicit dimensions). The MAXIMUM procedure does not operate
on the implicit dimension, you should use SIZE instead.

You may also directly address multiple characters within a string using the "string slicing"
technique. This technique performs a similar function to the SUB procedure, but is much more
flexible and efficient (but does no bounds checking). It is more flexible because a "string slice"
may be used as either the destination or source sides of an assignment statement, while the SUB
procedure can only be used as the source. It is more efficient because it takes less memory than
either individual character assignments or the SUB procedure.

To take a "slice" of the string, the beginning and ending character numbers are separated by a
colon (:) and placed in the implicit array dimension position within the square brackets ([]) of the
string. The position numbers may be integer constants, variables, or expressions (internally
computed as LONG base type). If variables are used, there must be at least one blank space
between the variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Example:

Name STRING(15)
CONTACT STRING(15),DIM(4)
CODE
Name = 'Tammi' !Assign a value
Name[5] = 'y' ! then change fifth letter
Name[6] = 's' ! then add a letter
Name[0] = '<6>' ! and handle length byte
Name[5:6] = 'ie' ! and change a "slice" -- the fifth and sixth letters
Contact[1] = 'First' !Assign value to first element
Contact[1,2] = 'u' !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to first element 2nd & 3rd characters

See Also: STRING, CSTRING, PSTRING, BLOB

3 – Variable Declarations 137

DATE (four-byte date)

label DATE [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLLL] [,STATIC] [,THREAD] [,AUTO]

 [,PRIVATE] [,PROTECTED]

DATE A four-byte date.
Format: year mm dd

| | | |
Bits: 31 15 7 0
Range:
year: 1 to 9999
month: 1 to 12
day: 1 to 31

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

DATE declares a four-byte date variable. This format matches the "DATE" field type used by the
Btrieve Record Manager. A DATE used in a numeric expression is converted to the number of
days elapsed since December 28, 1800 (Clarion Standard Date - usually stored as a LONG). The
valid Clarion Standard Date range is January 1, 1801 through December 31, 9999. Using an out-
of-range date produces unpredictable results. DATE fields should be used to achieve
compatibility with outside files or procedures.

Language Reference Manual 138

Example:

DueDate DATE !Declare a date field
OtherDate DATE,OVER(DueDate) !Declare field over date field
ContactDate DATE,DIM(4) !Array of 4 date fields
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
DateRecd DATE,NAME('DateField') !Declare with external name

END
END

See Also:

Standard Date

3 – Variable Declarations 139

TIME (four-byte time)

label TIME [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD] [,AUTO]

 [,PRIVATE] [,PROTECTED]

TIME A four-byte time.
Format: hh mm ss hs

| | | | |
Bits: 31 23 15 7 0
Range:
hours: 0 to 23
minutes: 0 to 59
seconds: 0 to 59
seconds/100: 0 to 99

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

TIME declares a four byte time variable. This format matches the "TIME" field type used by the
Btrieve Record Manager. A TIME used in a numeric expression is converted to the number of
hundredths of a second elapsed since midnight (Clarion Standard Time - usually stored as a
LONG). TIME fields should be used to achieve compatibility with outside files or procedures.

Language Reference Manual 140

Example:

ChkoutTime TIME !Declare checkout time field
OtherTime TIME,OVER(CheckoutTime) !Declare field over time field
ContactTime TIME,DIM(4) !Array of 4 time fields
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
TimeRecd TIME,NAME('TimeField') !Declare with external name

END
END

See Also:

Standard Time

3 – Variable Declarations 141

Special Data Types

ANY (any simple data type)

label ANY [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

 [,PRIVATE] [,PROTECTED]

ANY A variable that may contain any value (numeric or string) or a reference to any
simple data type.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

PRIVATE Specify the variable is not visible outside the module containing the CLASS
methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

ANY declares a variable that may contain any value (numeric or string) or a reference to any
simple data type. This allows an ANY variable to be used as a "generic" data type. An ANY
variable may be declared within a CLASS, GROUP, or QUEUE structure, and may not be
declared within a FILE structure or named in the USE attribute of any control in a window or
report.

When an ANY variable is the destination of a simple assignment statement (destination =
source), it receives the value of the source expression. An ANY variable uses REAL as its base
type for numeric operations, which can mean loss of precision when assigned DECIMAL values
with more that 14 significant digits. When an ANY variable is the destination of a reference
assignment statement (destination &= source), it receives a reference to the source variable. You
cannot pass an ANY variable as a variable-parameter (by address) unless the receiving
procedure is prototyped to receive an untyped variable parameter (*?) and the passed ANY
contains a reference.

When an ANY variable is declared in a QUEUE structure, there are some special considerations
that must be followed. This is due to the internal representation of an ANY and its polymorphic
characteristics.

Language Reference Manual 142

Use of CLEAR() and reference assignments with QUEUE entries.

Once an ANY variable in a QUEUE has been assigned a value, another simple assignment
statement will assign a new value to the ANY. This means the previous value is replaced by the
new value. If the first value has already been added to the QUEUE, then that entry will "point at" a
value that no longer exists.

Once an ANY variable in a QUEUE has been reference assigned a variable (AnyVar &=
SomeVariable), another reference assignment statement will assign a new variable to the ANY.
This means the previous "pointer" is disposed of and replaced by the new "pointer." If the first
reference has already been added to the QUEUE, then that entry will "point at" a "pointer" that no
longer exists.

In both cases, the QUEUE record (or fields of ANY type only) must be CLEAR()ed before setting
new values for the next ADD() or PUT().

In addition, you need to reference assign a NULL to the ANY variable (AnyVar &= NULL),
prior to deleting the QUEUE entry, in order to avoid memory leaks.

As explained above, the ANY variable maintains its own data area where it keeps the value or
"pointer" to the referenced variable. An assignment of a new value to the ANY variable using the
&= operator disposes its previous internal data. The CLEAR(variable) statement sets the memory
location occupied by the ANY variable to NULL, without disposing of its internal data.

3 – Variable Declarations 143

Example:

MyQueue QUEUE
AnyField ANY !Declare a variable to contain any value
Type STRING(1)

END
DueDate DATE !Declare a date field
CODE
MyQueue.AnyField = 'SoftVelocity'!Assign a string value
MyQueue.Type = 'S' !Flag data type
ADD(MyQueue)
CLEAR(MyQueue) !Clear the reference
MyQueue.AnyField &= DueDate !Assign a Reference to a DATE
MyQueue.Type = 'R' !Flag data type
ADD(MyQueue)
MyQueue.AnyField &= NULL !Reference assign NULL to clear
LOOP X# = RECORDS(MyQueue) TO 1 BY -1 !Process the QUEUE
GET(MyQueue,X#)
ASSERT(~ERRORCODE())
CASE MyQueue.Type
OF 'S'
DO StringRoutine

OF 'R'
DO ReferenceRoutine

END
MyQueue.AnyField &= NULL !Reference assign NULL before deleting
DELETE(MyQueue)
ASSERT(~ERRORCODE())

END

See Also:

Simple Assignment Statements

Reference Assignment Statements

Language Reference Manual 144

LIKE (inherited data type)

new declaration LIKE(like declaration) [,DIM()] [,OVER()] [,PRE()] [,NAME()] [,EXTERNAL] [,DLL]

 [,STATIC] [,THREAD] [,BINDABLE]

LIKE Declares a variable whose data type is inherited from another variable.

new declaration The label of the new data element declaration.

like declaration The label of the data element declaration whose definition will be used. This may
be any simple data type, or a reference to any simple data type (except
&STRING), or the label of a GROUP or QUEUE structure.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or structure.

PRE Declare a label prefix for variables within the new declaration structure (if the like
declaration is a complex data structure). This is not required, since you may use
the new declaration in the Field Qualification syntax to directly reference any
member of the new structure.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dynamic expressions.

LIKE tells the compiler to define the new declaration using the same definition as the like
declaration, including all attributes. If the original like declaration changes, so does the new
declaration.

The new declaration may use the DIM and OVER attributes. If the like declaration has a DIM
attribute, the new declaration is already an array. If a further DIM attribute is added to the new
declaration, the array is further dimensioned.

3 – Variable Declarations 145

The PRE and NAME attributes may be used, if appropriate. If the like declaration already has
these attributes, the new declaration will inherit them and compiler errors can occur. To correct
this, specify a PRE or NAME attribute on the new declaration to override the inherited attribute.

If the like declaration names a QUEUE, LIKE does not create a new QUEUE, because the like
declaration is simply treated as a GROUP. The like declaration QUEUE is converted to a new
declaration GROUP. The same is true if the like declaration is a RECORD structure. Similarly, if
the like declaration is a MEMO, the new declaration becomes a STRING of the maximum size of
the MEMO.

You may use LIKE to create a new instance of a CLASS. However, simply declaring the new
instance by naming the CLASS as the data type performs an implicit LIKE. For either type of
instance declaration, the DIM, OVER, PRE, and NAME attributes are invalid; all other attributes
are valid for a CLASS instance declaration.

Example:

Amount REAL !Define a field
QTDAmount LIKE(Amount) !Use same definition
YTDAmount LIKE(QTDAmount) !Use same definition again
MonthlyAmts LIKE(Amount),DIM(12) !Use same definition for array, 12 elements
AmtPrPerson LIKE(MonthlyAmts),DIM(10)

!Use same definition for array of 120 elements (12,10)

Construct GROUP !Define a group
Field1 LIKE(Amount) ! Construct.field1 - real
Field2 STRING(10) ! Construct.field2 - string(10)

END

NewGroup LIKE(Construct) !Define new group, containing
! NewGroup.field1 - real
! NewGroup.field2 - string(10)

MyQue QUEUE !Define a queue
Field1 STRING(10)
Field2 STRING(10)

END

MyGroup LIKE(MyQue) !Define new GROUP, like the QUEUE

AmountFile FILE,DRIVER('Clarion'),PRE(Amt)
Record RECORD
Amount REAL !Define a field
QTDAmount LIKE(Amount) !Use same definition

END
END

Language Reference Manual 146

Animal CLASS
Feed PROCEDURE(short amount),VIRTUAL
Die PROCEDURE
Age LONG
Weight LONG

END
Cat LIKE(Animal) !New instance of an Animal CLASS
Bird Animal !New instance of an Animal CLASS (implicit LIKE)

See Also:

DIM

OVER

PRE

NAME

Field Qualification

3 – Variable Declarations 147

Implicit Variables
Implicit variables are not declared in data declarations. They are created by the compiler when it
first encounters them. Implicit variables are automatically initialized to blank or zero; they do not
have to be explicitly assigned values before use. You may always assume that they contain
blanks or zero before your program's first assignment to them. Implicit variables are generally
used for: array subscripts, true/false switches, intermediate variables in complex calculations,
loop counters, etc.

The Clarion language provides three types of implicit variables:

A label terminated by a # names an implicit LONG.

$ A label terminated by a $ names an implicit REAL.

" A label terminated by a " names an implicit STRING(32).

Any implicit variable used in the global data declaration area (between the keywords PROGRAM
and CODE) is Global data, assigned static memory and visible throughout the program. Any
implicit variable used between the keywords MEMBER and PROCEDURE is Module data,
assigned static memory and visible only to the procedures defined in the module. Any other
implicit variable is Local data, assigned dynamic memory on the program's stack and visible only
in the procedure. Implicits used in ROUTINEs incur more overhead than those not in ROUTINEs,
so should be used sparingly, if at all.

Since the compiler dynamically creates implicit variables as they are encountered, there is a
danger that problems may arise that can be difficult to trace. This is due to the lack of compile-
time error and type checking on implicit variables. For example, if you incorrectly spell the name
of a previously used implicit variable, the compiler will not tell you, but will simply create a new
implicit variable with the new spelling. When your program checks the value in the original implicit
variable, it will be incorrect. Therefore, implicit variables should be used with care and caution,
and only within a limited scope (or not at all).

Language Reference Manual 148

Example:

LOOP Counter# = 1 TO 10 !Implicit LONG loop counter
ArrayField[Counter#] = Counter# * 2 !to initialize an array

END

Address" = CLIP(City) & ', ' & State & ' ' & Zip
!Implicit STRING(32)

MESSAGE(Address")
!Used to display a temporary value

Percent$ = ROUND((Quota / Sales),.1) * 100
!Implicit REAL

MESSAGE(FORMAT(Percent$,@P%<<<.##P))
!Used to display a temporary value

See Also:

Data Declarations and Memory Allocation

3 – Variable Declarations 149

Reference Variables
A reference variable contains a reference to another data declaration (its "target"). You declare a
reference variable by prepending an ampersand (&) to the data type of its target (such as,
&BYTE, &FILE, &LONG, etc.) or by declaring an ANY variable. Depending upon the target's data
type, the reference variable may contain the target's memory address, or a more complex internal
data structure (describing the location and type of target data).

Valid reference variable declarations:
&BYTE &SHORT &USHORT &LONG &ULONG &DATE &TIME
&REAL &SREAL &BFLOAT8 &BFLOAT4 &DECIMAL &PDECIMAL &STRING
&CSTRING &PSTRING &GROUP &QUEUE &FILE &KEY &BLOB
&VIEW &WINDOW ANY

The &STRING, &CSTRING, &PSTRING, &DECIMAL, and &PDECIMAL declarations do not
require length parameters, since all the necessary information about the specific target data item
is contained in the reference itself. This means a &STRING reference variable may contain a
reference to any length STRING variable.

A reference variable declared as &WINDOW can target an APPLICATION, WINDOW, or
REPORT structure. References to these structures are internally treated as the same by the
Clarion runtime library.

An ANY variable can contain a reference to any of the simple data types, and so, is equivalent to
any of the above except &GROUP, &QUEUE, &FILE, &KEY, &BLOB, &VIEW, and &WINDOW.

Reference Assignment

The &= operator executes a reference assignment statement (destination &= source) to assign
the source's reference to the destination reference variable. You may also use a reference
assignment statement in conditional expressions.

The NULL built-in variable is used to "un-reference" a reference variable or to detect an "un-
referenced" reference variable in a conditional expression.

Reference Variable Usage

The label of a reference variable is syntactically correct every place in executable code where its
target is allowed. This means that, any statement that takes the label of a WINDOW as a
parameter can also take the label of an &WINDOW reference variable which has been reference-
assigned a WINDOW structure.

Language Reference Manual 150

When used in a code statement, the reference variable is automatically "dereferenced" to supply
the statement with the value of its target. The only exception is reference assignment statements,
when the reference assigns the reference to the data item it is referencing. For example:

Var1 LONG !Var1 is a LONG
RefVar1 &LONG !RefVar1 is a reference to a LONG
RefVar2 &LONG !RefVar2 is also a reference to a LONG
CODE
RefVar1 &= Var1 !RefVar1 now references Var1
RefVar2 &= RefVar1 !RefVar2 now also references Var1
RefVar1 &= NULL !RefVar1 now references nothing

Reference Variable Declarations

Reference variables may not be declared within FILE or VIEW structures, but they may be
declared within GROUP, QUEUE, and CLASS structures. Issuing CLEAR(StructureName) for a
GROUP, QUEUE, or CLASS structure containing a reference variable is equivalent to reference
assigning NULL to the reference variable.

Global references cross thread boundaries, and so, may be used to reference data items in other
execution threads.

Named QUEUE and CLASS References

In addition to the data types listed above, you may also have references to "named" QUEUEs
(&QueueName) and to named CLASSes (&ClassName). This allows you to use references to
pass "named group" parameters, which allow the receiving procedure access to the component
fields of the named structure.

A reference to a named QUEUE or CLASS may be a "forward reference." That is, the named
QUEUE or CLASS does not have to have been declared previous to the reference variable
declaration which "points at" it. However, the forward reference must be resolved before the
reference variable can be used. In the case where the reference variable is contained within a
CLASS declaration, the forward reference must be resolved before the object is instantiated, else
the reference will be blank and unusable.

3 – Variable Declarations 151

There are several advantages to using forward references. You can have a QUEUE of object
references which each contains a reference to a QUEUE of object references which each
contains a reference to a QUEUE of object references ... For example, you could create a queue
of siblings within a CLASS structure like this:

FamilyQ QUEUE
Sibling &FamilyClass !A forward reference

END

FamilyClass CLASS
Family &FamilyQ !

END

Another advantage is the ability to truly "hide" the targets of PRIVATE references in CLASS
declarations. For example:

!An include file (MyFile.inc) contains:
WidgetManager CLASS,TYPE
WidgetList &WidgetQ,PRIVATE !
DoSomething PROCEDURE

END

!Another file (MyFile.CLW) contains:
MEMBER('MyApp')
INCLUDE('MyFile.INC')

WidgetQ QUEUE,TYPE
Widget STRING(40)
WidgetNumber LONG

END

MyWidget WidgetManager !Actual instantiation must follow
! forward reference resolution

MyWidget.DoSomething PROCEDURE
CODE
SELF.WidgetList &= NEW(WidgetQ) !Valid code
SELF.WidgetList.Widget = 'Widget One'
SELF.WidgetList.WidgetNumber = 1
ADD(SELF.WidgetList)

Language Reference Manual 152

In this example, references to SELF.WidgetList are valid only within the MyFile.CLW file.

Example:

App1 APPLICATION('Hello')
END

App2 APPLICATION('Buenos Dias')
END

AppRef &WINDOW !Reference to an APPLICATION, WINDOW, or REPORT

Animal CLASS
Feed PROCEDURE(SHORT amount),VIRTUAL
Die PROCEDURE
Age LONG
Weight LONG

END

Carnivore CLASS(Animal),TYPE
Feed PROCEDURE(Animal)

END

Cat CLASS(Carnivore)
Feed PROCEDURE(SHORT amount),VIRTUAL
Potty BYTE

END

Bird Animal !Instance of an Animal CLASS
AnimalRef &Animal !Reference to an Animal CLASS

CODE
IF CTL:Language = 'Spanish' !If spanish language user
AppRef &= App2 ! reference spanish application frame

ELSE
AppRef &= App1 ! else reference english application frame

END
OPEN(AppRef) !Open the referenced application frame window

IF SomeCondition
AnimalRef &= Cat !Reference the Cat

ELSE
AnimalRef &= Bird !Reference the Bird

END
AnimalRef.Feed(10) !Feed whatever is referenced

See Also: Reference Assignment Statements, CLASS, GROUP, QUEUE, ANY

3 – Variable Declarations 153

Data Declarations and Memory Allocation

Global, Local, Static, and Dynamic
Data declarations automatically allocate memory to store the data values. Global, Local, Static,
and Dynamic are terms that describe types of memory allocation.

The terms "Global" and "Local" refer to the visibility of data (also known as its "scope"):

• "Global" means the data is visible to all procedures in the program.

• "Local" means the data has limited visibility. This may be limited to one PROCEDURE or
ROUTINE, or limited to a specific set of procedures in a single source module.

The terms "Static" and "Dynamic" refer to the persistence of the data's memory allocation:

• "Static" means the data is allocated memory that is not released until the entire program
is finished executing.

• "Dynamic" means the data is allocated memory at run time. Data declared locally for the
PROCEDURE or ROUTINE is allocated on the stack of the thread called to that
PROCEDURE or ROUTINE. The stack memory allocated for such data is released on
returning to the caller.

• "Dynamic" also means that data is allocated by the program in the heap with the use of

an explicit NEW, or implicitly, by some runtime library statements (assignment to ANY
variables, ADDing to a QUEUE, etc.). Memory blocks allocated in the heap exist until
their explicit releasing: DISPOSE for NEWed variables, FREE or DELETE for QUEUEs,
etc.

Language Reference Manual 154

Data Declaration Sections
There are three areas where data can be declared in a Clarion program:

• In the PROGRAM module, after the keyword PROGRAM and before the CODE
statement. This is the Global data section.

• In a MEMBER module, after the keyword MEMBER and before the first PROCEDURE
statement. This is the Module data section.

• In a PROCEDURE, after the keyword PROCEDURE and before the CODE statement.
This is the Local data section.

• In a ROUTINE, after the keyword DATA and before the CODE statement. This is the
Routine Local data section.

Global data is visible to executable statements and expressions in every PROCEDURE in the
PROGRAM. Global data is always in scope. Global data is allocated Static memory and is
available to every PROCEDURE in the PROGRAM.

Module data is visible only to the set of PROCEDUREs contained in the MEMBER module. It
may be passed as a parameter to PROCEDUREs in other MEMBER modules, if required.
Module data first comes into scope when any PROCEDURE in the MODULE is called. Module
data is also allocated Static memory.

Local data is visible only within the PROCEDURE in which it is declared, or any Local Derived
Methods declared within the PROCEDURE. Local data comes into scope when the
PROCEDURE is called and goes out of scope when a RETURN statement (explicit or implicit)
executes. It may be passed as a parameter to any other PROCEDURE. Local data is allocated
Dynamic memory. The memory is allocated on the program's stack for variables smaller than the
stack threshold (5K default), otherwise they are automatically placed onto the heap. This can be
overridden by using the STATIC attribute, making its value persistent between calls to the
procedure. FILE declarations are always allocated static memory (on the heap), even when
declared in a Local Data section.

Dynamic memory allocation for Local data allows a PROCEDURE to be truly recursive, receiving
a new copy of its local variables each time it is called.

Routine Local data is visible only within the ROUTINE in which it is declared. It may be passed
as a parameter to any PROCEDURE. Routine Local data comes into scope when the ROUTINE
is called and goes out of scope when an EXIT statement (explicit or implicit) executes. Routine
Local data is allocated Dynamic memory. The memory is allocated on the program's stack for
variables smaller than the stack threshold (5K default), otherwise they are automatically placed
onto the heap. A ROUTINE has its own name scope, so the labels used for Routine Local data
may duplicate variable names used in other ROUTINEs or even the procedure containing the
ROUTINE. Variables declared in a ROUTINE may not have the STATIC or THREAD attributes.
See Also: PROGRAM, MEMBER, PROCEDURE, CLASS, PROCEDURE Prototypes, STATIC,
THREAD

3 – Variable Declarations 155

Variable Size Declarations
It is now possible to declare variables of STRING-like and DECIMAL/PDECIMAL types of
variable size to the compiler.

Restrictions are the same as for variable-size arrays (see below): declarations are available in
the procedure or routine local scope only, and all variables used in the expression must be
known at the time of the variable’s creation.

Example:

VarLength LONG
VarString STRING(VarLength)

CODE
VarLength = 200
VarString = `String of up to 200 characters’

Variable-size arrays

Consider the following example:

VariableArray ROUTINE

Element LONG
DynArray CSTRING(100),DIM(Element) !declare a variable length array

CODE
Element = 100 !assign number of elements

There are 3 restrictions when using this technique:

1) The dimensioned variable (Element) must be locally declared in the respective PROCEDURE
or ROUTINE data section and have no STATIC, THREAD or EXTERNAL attributes applied.

2) The dimensioned variable can not be a field component of any compound structure
(GROUP,QUEUE, CLASS, RECORD)

3) All variables used in dimension expressions must be initialized at the moment of array
initialization, i.e., they must be declared with an initial value before the array declaration, or they
must be declared in outer scope and receive a value before the call to the PROCEDURE or
ROUTINE, or they can be a parameter of the PROCEDURE.

Language Reference Manual 156

NEW (allocate heap memory)

 reference &= NEW(datatype)

reference The label of a reference variable that matches the datatype.

NEW Creates a new instance of the datatype on the heap.

datatype The label of a previously declared CLASS or QUEUE structure, or any simple
data type declaration. This may contain a variable as the parameter of the data
type to allow truly dynamic declarations.

The NEW statement creates a new instance of the datatype on the heap. NEW is only valid on
the source side of a reference assignment statement. Memory allocated by NEW is automatically
initialized to blank or zero when allocated, and must be explicitly de-allocated with the DISPOSE
statement (else you'll create a "memory leak").

Example:

StringRef &STRING !A reference to any STRING variable
LongRef &LONG !A reference to any LONG variable

Animal CLASS
Feed PROCEDURE(short amount)
Weight LONG

END
AnimalRef &Animal !A reference to any Animal CLASS

NameQ QUEUE
Name STRING(30)

END
QueRef &NameQ !A reference to any QUEUE with only a STRING(30)

CODE
AnimalRef &= NEW(Animal) !Create new instance of an Animal class

QueRef &= NEW(NameQ) !Create new instance of a NameQ QUEUE

StringRef &= NEW(STRING(50)) !Create new STRING(50) variable

X# = 35 !Assign 35 to a variable and then
StringRef &= NEW(STRING(X#)) ! use that variable to Create a new STRING(35)

LongRef &= NEW(LONG) !Create new LONG variable

See Also:

3 – Variable Declarations 157

DISPOSE

DISPOSE (de-allocate heap memory)

 DISPOSE(reference)

DISPOSE De-allocates heap memory previously allocated by a NEW statement.

reference The label of a reference variable previously used in a reference assignment with
the NEW statement. This reference may be NULL and no ill effects will occur.

The DISPOSE statement de-allocates the heap memory previously allocated by a NEW
statement. If DISPOSE is not called, the memory is not returned to the operating system for re-
use (creating a "memory leak"). However, if you DISPOSE of a reference that is still in use (such
as a QUEUE being displayed in a LIST control) you will quite likely cause a GPF that will be very
difficult to track down.

DISPOSE(SELF) is a legal statement to de-allocate the current object instance. However, if used,
it must be the last statement in the procedure, or any following references to the object will cause
problems.

There is a way to pass a &STRING reference to a procedure in a way that it can be disposed in
that procedure. Although a *STRING cannot be disposed, consider the following code:

MyProc PROCEDURE (*STRING S)
Ref &STRING,AUTO

CODE
Ref &= S
DISPOSE (Ref)

The Parameter/result of *STRING type can be considered as a read only &STRING value: you
can change the string it points to but you can't set it to reference to another string. DISPOSE sets
the reference passed to it as a parameter to NULL and hence *STRING parameters and
results can't be DISPOSEd directly but assigning their reference to a reference variable gives a
solution.

Example:

StringRef &STRING !A reference to any STRING variable

Animal CLASS,TYPE
Feed PROCEDURE(short amount),VIRTUAL
Weight LONG

END
AnimalRef &Animal !A reference to any Animal CLASS

Language Reference Manual 158

NameQ QUEUE
Name STRING(30)

END
QueRef &NameQ !A reference to any QUEUE with only a STRING(30)

CODE
AnimalRef &= NEW(Animal) !Create new instance of an Animal class
DISPOSE(AnimalRef) !De-allocate the Animal

QueRef &= NEW(NameQ) !Create new instance of a NameQ QUEUE
DISPOSE(QueRef) !De-allocate the queue

StringRef &= NEW(STRING(50()) !Create new STRING(50) variable
DISPOSE(StringRef) !De-allocate the STRING(50)

See Also:

NEW

3 – Variable Declarations 159

Picture Tokens
Picture tokens provide a masking format for displaying and editing variables. There are seven
types of picture tokens: numeric and currency, scientific notation, string, date, time, pattern, and
key-in template.

Numeric and Currency Pictures

 @N [currency] [sign] [fill] size [grouping] [places] [sign] [currency] [B]

@N All numeric and currency pictures begin with @N.

currency Either a dollar sign ($) or any string constant enclosed in tildes (~). When it
precedes the sign indicator and there is no fill indicator, the currency symbol
"floats" to the left of the high order digit. If there is a fill indicator, the currency
symbol remains fixed in the left-most position. If the currency indicator follows the
size and grouping, it appears at the end of the number displayed.

sign Specifies the display format for negative numbers. If a hyphen (-) precedes the
fill and size indicators, negative numbers will display with a leading minus sign. If
a hyphen follows the size, places, and currency indicators, negative numbers will
display with a trailing minus sign. If parentheses are placed in both positions,
negative numbers will be displayed enclosed in parentheses. To prevent
ambiguity, a trailing minus sign should always have grouping specified.

fill Specifies leading zeros, spaces, or asterisks (*) in any leading zero positions,
and suppressesdefault grouping. If the fill is omitted, leading zeros are
suppressed.

 0 (zero) Produces leading zeroes
 _ (underscore) Produces leading spaces
 * (asterisk) Produces leading asterisks

size The size is required to specify the total number of significant digits to display,
including the number of digits in the places indicator and any formatting
characters.

Language Reference Manual 160

grouping A grouping symbol, other than a comma (the default), can appear right of the size
indicator to specify a three digit group separator. To prevent ambiguity, a hyphen
grouping indicator should also specify the sign.

 . (period) Produces periods
 - (hyphen) Produces hyphens
 _ (underscore) Produces spaces

places Specifies the decimal separator symbol and the number of decimal digits. The
number of decimal digits must be less than the size. The decimal separator may
be a period (.), grave accent (') (produces periods grouping unless overridden),
or the letter "v" (used only for STRING field storage declarations--not for display).

 . (period) Produces a period
 ' (grave accent) Produces a comma
 v Produces no decimal separator

B Specifies blank display whenever its value is zero.

The numeric and currency pictures format numeric values for screen display or in reports. If the
value is greater than the maximum value the picture can display, a string of pound signs (#) is
displayed.

Example:

Numeric Result Format
@N9 4,550,000 Nine digits, group with commas (default)
@N_9B 4550000 Nine digits, no grouping, leading blanks if zero
@N09 004550000 Nine digits, leading zero
@N*9 ***45,000 Nine digits, asterisk fill, group with commas
@N9_ 4 550 000 Nine digits, group with spaces
@N9. 4.550.000 Nine digits, group with periods

Decimal Result Format
@N9.2 4,550.75 Two decimal places, period decimal separator
@N_9.2B 4550.75 Two decimal places,period decimal separator,no grouping, blank if zero

@N_9'2 4550,75 Two decimal places, comma decimal separator
@N9.'2 4.550,75 Comma decimal separator, group with periods
@N9_'2 4 550,75 Comma decimal separator, group with spaces

Signed Result Format
@N-9.2B -2,347.25 Leading minus sign, blank if zero
@N9.2- 2,347.25- Trailing minus sign
@N(10.2) (2,347.25) Enclosed in parens when negative

Dollar
Currency Result Format
@N$9.2B $2,347.25 Leading dollar sign, blank if zero
@N$10.2- $2,347.25- Leading dollar sign, trailing minus when negative
@N$(11.2) $(2,347.25) Leading dollar sign, in parens when negative

3 – Variable Declarations 161

International
Currency Result Format
@N12_'2~ F~ 1 5430,50 F France
@N~L. ~12' L. 1.430.050 Italy
@N~£~12.2 £1,240.50 United Kingdom
@N~kr~12'2 kr1.430,50 Norway
@N~DM~12'2 DM1.430,50 Germany
@N12_'2~ mk~ 1 430,50 mk Finland
@N12'2~ kr~ 1.430,50 kr Sweden

Storage-Only Pictures:
Variable1 STRING(@N_6v2) !Declare as 6 bytes stored without decimal
CODE
Variable1 = 1234.56 !Assign value, stores '123456' in file
MESSAGE(FORMAT(Variable1,@N_7.2)) !Display with decimal point: '1234.56'

Language Reference Manual 162

Scientific Notation Pictures

 @Emsn[B]

@E All scientific notation pictures begin with @E.

m Determines the total number of characters in the format provided by the picture.

s Specifies the decimal separation character, and the grouping character when the
n value is greater than 3.

 . (period) period and comma
.. (period period) period and period
' (grave accent) comma and period
_.(underscore period) period and space

n Indicates the number of digits that appear to the left of the decimal point.

B Specifies that the format displays as blank when the value is zero.

The scientific notation picture formats very large or very small numbers. The format is a decimal
number raised by a power of ten.

Example:

Picture Value Result
@E9.0 1,967,865 .20e+007
@E12.1 1,967,865 1.9679e+006
@E12.1B 0
@E12.1 -1,967,865 -1.9679e+006
@E12.1 .000000032 3.2000e-008
@E12_.4 1,967,865 1 967.865e+003

3 – Variable Declarations 163

String Pictures

 @Slength

@S All string pictures begin with @S.

length Determines the number of characters in the picture format.

A string picture describes an unformatted string of a specific length.

Example:

Name STRING(@S20) !A 20 character string field

Language Reference Manual 164

Date Pictures

 @Dn [s] [direction [range]] [B]

@D All date pictures begin with @D.

n Determines the date picture format. Date picture formats range from 1 through
18. A leading zero (0) indicates a zero-filled day or month.

s A separation character between the month, day, and year components. If
omitted, the slash (/) appears.

 . (period) Produces periods
 ' (grave accent) Produces commas
 - (hyphen) Produces hyphens
 _ (underscore) Produces spaces

direction A right or left angle bracket (> or <) that specifies the "Intellidate" direction (>
indicates future, < indicates past) for the range parameter. Valid only on ENTRY
date pictures with two-digit years.

range An integer constant in the range of zero (0) to ninety-nine (99) that specifies the
"Intellidate" century for the direction parameter. Valid only on ENTRY date
pictures with two-digit years. If omitted, the default value is 80.

B Specifies that the format displays as blank when the value is zero.

Dates may be stored in numeric variables (usually LONG), a DATE field (for Btrieve
compatibility), or in a STRING declared with a date picture. A date stored in a numeric variable is
called a "Clarion Standard Date." The stored value is the number of days since December 28,
1800. The date picture token converts the value into one of the date formats.

The century for dates in any picture with a two-digit year is resolved using "Intellidate" logic. Date
pictures that do not specify direction and range parameters assume the date falls in the range of
the next 19 or previous 80 years. The direction and range parameters allow you to change this
default. The direction parameter specifies whether the range specifies the future or past value.
The opposite direction then receives the opposite value (100-range) so that any two-digit year
results in the correct century.

For example, the picture @D1>60 specifies using the appropriate century for each year 60 years
in the future and 39 years in the past. If the current year is 1996, when the user enters "5/01/40,"
the date is in the year 2040, and when the user enters "5/01/60," the date is in the year 1960.

For those date pictures which contain month names, the actual names are customizable in an
Environment file (.ENV). See the Internationalization section for more information.

3 – Variable Declarations 165

Example:

Picture Format Result
@D1 mm/dd/yy 10/31/59
@D1>40 mm/dd/yy 10/31/59
@D01 mm/dd/yy 01/01/95
@D2 mm/dd/yyyy 10/31/1959
@D3 mmm dd,yyyy OCT 31,1959
@D4 mmmmmmmmm dd, yyyy October 31, 1959
@D5 dd/mm/yy 31/10/59
@D6 dd/mm/yyyy 31/10/1959
@D7 dd mmm yy 31 OCT 59
@D8 dd mmm yyyy 31 OCT 1959
@D9 yy/mm/dd 59/10/31
@D10 yyyy/mm/dd 1959/10/31
@D11 yymmdd 591031
@D12 yyyymmdd 19591031
@D13 mm/yy 10/59
@D14 mm/yyyy 10/1959
@D15 yy/mm 59/10
@D16 yyyy/mm 1959/10
@D17 Windows Control Panel setting for Short Date
@D18 Windows Control Panel setting for Long Date

Alternate separators
@D1. mm.dd.yy Period separator
@D2- mm-dd-yyyy Dash separator
@D5_ dd mm yy Underscore produces space separator
@D6' dd,mm,yyyy Grave accent produces comma separator

See Also:

Standard Date

FORMAT

DEFORMAT

Environment Files

Language Reference Manual 166

Time Pictures

 @Tn[s][B]

@T All time pictures begin with @T.

n Determines the time picture format. Time picture formats range from 1 through 8.
A leading zero (0) indicates zero-filled hours.

s A separation character. By default, colon (:) characters appear between the
hour, minute, and second components of certain time picture formats. The
following s indicators provide an alternate separation character for these formats.

 . (period) Produces periods
 ' (grave accent) Produces commas
 - (hyphen) Produces hyphens
 _ (underscore) Produces spaces

B Specifies that the format displays as blank when the value is zero.

Times may be stored in a numeric variable (usually a LONG), a TIME field (for Btrieve
compatibility), or in a STRING declared with a time picture. A time stored in a numeric variable is
called a "Standard Time." The stored value is the number of hundredths of a second since
midnight. The picture token converts the value to one of the eight time formats.

For those time pictures which contain string data, the actual strings are customizable in an
Environment file (.ENV). See the Internationalization section for more information.

Example:

Picture Format Result
@T1 hh:mm 17:30
@T2 hhmm 1730
@T3 hh:mmXM 5:30PM
@T03 hh:mmXM 05:30PM
@T4 hh:mm:ss 17:30:00
@T5 hhmmss 173000
@T6 hh:mm:ssXM 5:30:00PM
@T7 Windows Control Panel setting for Short Time
@T8 Windows Control Panel setting for Long Time

Alternate separators
@T1. hh.mm Period separator
@T1- hh-mm Dash separator
@T3_ hh mmXM Underscore produces space separator
@T4' hh,mm,ss Grave accent produces comma separator

See Also: Standard Time, FORMAT, DEFORMAT, Environment Files

3 – Variable Declarations 167

Pattern Pictures

 @P[<][#][x]P[B]

@P All pattern pictures begin with the @P delimiter and end with the P delimiter. The
case of the delimiters must be the same.

< Specifies an integer position that is blank for leading zeroes.

Specifies an integer position.

x Represents optional display characters. These characters appear in the final
result string.

P All pattern pictures must end with P. If a lower case @p delimiter is used, the
ending P delimiter must also be lower case.

B Specifies that the format displays as blank when the value is zero.

Pattern pictures contain optional integer positions and optional edit characters. Any character
other than < or # is considered an edit character which will appear in the formatted picture string.
The @P and P delimiters are case sensitive. Therefore, an upper case "P" can be included as an
edit character if the delimiters are both lower case "p" and vice versa.

Pattern pictures do not recognize decimal points, in order to permit the period to be used as an
edit character. Therefore, the value formatted by a pattern picture should be an integer. If a
floating point value is formatted by a pattern picture, only the integer portion of the number will
appear in the result.

Example:

Picture Value Result
@P###-##-####P 215846377 215-84-6377
@P<#/##/##P 103159 10/31/59
@P(###)###-####P 3057854555 (305)785-4555
@P###/###-####P 7854555 000/785-4555
@p<#:##PMp 530 5:30PM
@P<#' <#"P 506 5' 6"
@P<#lb. <#oz.P 902 9lb. 2oz.
@P4##A-#P 112 411A-2
@PA##.C#P 312.45 A31.C2

Language Reference Manual 168

Key-in Template Pictures

 @K[@][#][<][x][\][?][^][_][|]K[B]

@K All key-in template pictures begin with the @K delimiter and end with the K
delimiter. The case of the delimiters must be the same.

@ Specifies only uppercase and lowercase alphabetic characters.

Specifies an integer 0 through 9.

< Specifies an integer that is blank for high order zeros.

x Represents optional constant display characters (any displayable character).
These characters appear in the final result string.

\ Indicates the following character is a display character. This allows you to include
any of the picture formatting characters (@,#,<,\,?,^,_,|) within the string as a
display character.

? Specifies any character may be placed in this position.

^ Specifies only uppercase alphabetic characters in this position.

_ Underscore specifies only lowercase alphabetic characters in this position.

| Allows the operator to "stop here" if there are no more characters to input. Only
the data entered and any display characters up to that point will be in the string
result.

K All key-in template pictures must end with K. If a lower case @k delimiter is used,
the ending K delimiter must also be lower case.

B Specifies that the format displays as blank when the value is zero.

Key-in pictures may contain integer positions (# <), alphabet character positions (@ ^ _), any
character positions (?), and display characters. Any character other than a formatting indicator is
considered a display character, which appears in the formatted picture string. The @K and K
delimiters are case sensitive. Therefore, an upper case "K" may be included as a display
character if the delimiters are both lower case "k" and vice versa.

Key-in pictures are used specifically with STRING, PSTRING, and CSTRING fields to allow
custom field editing control and validation. Using a key-in picture containing any of the alphabet
indicators (@ ^ _) on a numeric entry field produces unpredictable results.

Using the Insert typing mode for a key-in picture could produce unpredictable results. Therefore,
key-in pictures always receive data entry in Overwrite mode, even if the INS attribute is present.

3 – Variable Declarations 169

Example:

Picture Value Entered Result String
@K###-##-####K 215846377 215-84-6377
@K#####|-####K 33064 33064
@K#####|-####K 330643597 33064-3597
@K<# ^^^ ##K 10AUG59 10 AUG 59
@K(###)@@@-##\@##K 305abc4555 (305)abc-45@55
@K###/?##-####K 7854555 000/785-4555
@k<#:##^Mk 530P 5:30PM
@K<#' <#"K 506 5' 6"
@K4#_#A-#K 1g12 41g1A-2

Language Reference Manual 170

4 – Entity Declarations 171

4 - Entity Declarations
Complex Data Structures

GROUP (compound data structure)

label GROUP([group]) [,PRE()] [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

 [,THREAD] [,BINDABLE] [, TYPE] [,PRIVATE] [,PROTECTED]

 declarations

 END

GROUP A compound data structure.

group The label of a previously declared GROUP or QUEUE structure from which it will
inherit its structure. This may be a GROUP or QUEUE with the TYPE attribute.

PRE Declare a label prefix for variables within the structure. Not valid on a GROUP
within a FILE structure.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or structure.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library.
Not valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dynamic expressions.

TYPE Specify the GROUP is a type definition for GROUPs passed as parameters.

PRIVATE Specify the GROUP and all the component fields of the GROUP are not visible
outside the module containing the CLASS methods. Valid only in a CLASS.

PROTECTED Specify the variable is not visible outside base CLASS and derived CLASS
methods. Valid only in a CLASS.

declarations Multiple consecutive variable declarations.

Language Reference Manual 172

A GROUP structure allows multiple variable declarations to be referenced by a single label. It
may be used to dimension a set of variables, or to assign or compare sets of variables in a single
statement. In large complicated programs, a GROUP structure is helpful for keeping sets of
related data organized. A GROUP must be terminated by a period or the END statement.

The structure of a GROUP declared with the group parameter begins with the same structure as
the named group; the GROUP inherits the fields of the named group. The GROUP may also
contain its own declarations that follow the inherited fields. If the group parameter names a
QUEUE or RECORD structure, only the fields are inherited and not the functionality implied by
the QUEUE or RECORD.

When referenced in a statement or expression, a GROUP is treated as a STRING composed of
all the variables within the structure. A GROUP structure may be nested within another data
structure, such as a RECORD or another GROUP.

Because of their internal storage format, numeric variables (other than DECIMAL) declared in a
group do not collate properly when treated as strings. For this reason, building a KEY on a
GROUP that contains numeric variables may produce an unexpected collating sequence.

A GROUP with the BINDABLE attribute makes all the variables within the GROUP available for
use in a dynamic expression. The contents of each variable's NAME attribute is the logical name
used in the dynamic expression. If no NAME attribute is present, the label of the variable
(including prefix) is used. Space is allocated in the .EXE for the names of all of the variables in
the structure. This creates a larger program that uses more memory than it normally would.
Therefore, the BINDABLE attribute should only be used when a large proportion of the
constituent fields are going to be used.

A GROUP with the TYPE attribute is not allocated any memory; it is only a type definition for
GROUPs that are passed as parameters to PROCEDUREs. This allows the receiving procedure
to directly address component fields in the passed GROUP. The parameter declaration on the
PROCEDURE statement can instantiate a local prefix for the passed GROUP as it names the
passed GROUP for the procedure, however this is not necessary if you use the Field Qualification
syntax instead of prefixes. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used in the type definition)
to directly address component fields of the GROUP passed as the parameter.

The data elements of a GROUP with the DIM attribute (a structured array) are referenced using
standard Field Qualification syntax with each subscript specified at the GROUP level at which it is
dimensioned.

The WHAT and WHERE procedures allow access to the fields by their relative position within the
GROUP structure.

4 – Entity Declarations 173

Example:

PROGRAM
PassGroup GROUP,TYPE !Type-definition for passed GROUP parameters
F1 STRING(20) ! first field
F2 STRING(1) ! middle field
F3 STRING(20) ! last field

END

MAP
MyProc1(PassGroup) !Passes a GROUP defined the same as PassGroup

END

NameGroup GROUP !Name group
First STRING(20) ! first name
Middle STRING(1) ! middle initial
Last STRING(20) ! last name

END !End group declaration

NameGroup2 GROUP(PassGroup) !Group that inherits PassGroup's fields
! resulting in NameGroup2.F1, NameGroup2.F2,
! and NameGroup2.F3

END ! fields declared in this group

DateTimeGrp GROUP,DIM(10) !Date/time array
Date LONG ! Referenced as DateTimeGrp[1].Date
StartStopTime LONG,DIM(2) ! Referenced as DateTimeGrp[1].Time[1]

END !End group declaration

FileNames GROUP,BINDABLE !Bindable group
FileName STRING(8),NAME('FILE') !Dynamic name: FILE
Dot STRING('.') !Dynamic name: Dot
Extension STRING(3),NAME('EXT') !Dynamic name: EXT

END

CODE
MyProc1(NameGroup) !Call proc passing NameGroup as parameter
MyProc1(NameGroup2) !Call proc passing NameGroup2 as parameter

MyProc1 PROCEDURE(PassedGroup) !Proc to receive GROUP parameter
LocalVar STRING(20)
CODE
LocalVar = PassedGroup.F1 !Assign value in the first field to LocalVar

!from passed parameter

See Also:

Field Qualification, WHAT, WHERE

Language Reference Manual 174

CLASS (object declaration)

label CLASS([parentclass]) [,EXTERNAL] [,IMPLEMENTS] [,DLL] [,STATIC] [,THREAD]
[,BINDABLE] [,MODULE()]
 [, LINK()] [, TYPE]

 [data members and methods]

 END

CLASS An object containing data members and methods that operate on the data.

parentclass The label of a previously declared CLASS structure whose data and methods the
new CLASS inherits. This may be a CLASS with the TYPE attribute.

EXTERNAL Specify the object is defined, and its memory is allocated, in an external library.

IMPLEMENTS
Specify an INTERFACE for the CLASS. This adds additional methods to the
implementation of the CLASS.

DLL Specify the object is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

STATIC Specify the data members' memory is permanently allocated.

THREAD Specify memory for the variables is allocated once for each execution thread.
Also implicitly adds the STATIC attribute on Procedure Local data. Not valid with
TYPE.

BINDABLE Specify all variables in the class may be used in dynamic expressions.

MODULE Specify the source code module containing the CLASS's member PROCEDURE
definitions. This serves the same function as the MODULE structure within a
MAP structure. If omitted, the member PROCEDURE definitions must all be in
the same source code module containing the CLASS declaration.

LINK Specify the source code module containing the CLASS's member PROCEDURE
definitions is automatically added to the compiler's link list. This eliminates the
need to specifically add the file to the project.

TYPE Specify the CLASS is only a type definition and not also an object instance of the
CLASS.

data members and methods
Data declarations and PROCEDURE prototypes. The data members may only be
data declarations appropriate to a GROUP structure, and may include references
to the same class (recursive classes). The WHAT and WHERE procedures allow
access to the data members by their relative position within the CLASS structure.

4 – Entity Declarations 175

A CLASS structure declares an object which contains data members (properties) and the
methods (PROCEDUREs) that act on that data. A CLASS structure must be terminated by a
period or the END statement.

Derived CLASSes (Inheritance)

A CLASS declared with the parentclass parameter creates a derived class which inherits all the
data members and methods of the named parentclass. The derived class may also contain its
own data members and methods.

All data members explicitly declared in the derived class create new variables, and cannot be
declared with the same labels as data members in the parentclass.

Any method prototyped in the derived class with the same name as a method in the parentclass
overrides the inherited method if both have the same parameter lists. If the two methods have
different parameter lists, they create polymorphic functions in the derived class that must obey
the rules of Procedure Overloading.

Object Properties (Encapsulation)

Each instance of a CLASS, whether a base class, derived class, or a declared instance of either,
contains its own set of data members (properties) specific to that instance. These may be private
or public. However, there is only one copy of any inherited methods (residing in the CLASS that
declared it) which any instance of that CLASS, or any of its derived classes, calls.

The methods of a CLASS with the TYPE attribute cannot be directly called (as
ClassName.Method)--they must be called only as a member methods of the objects declared as
the type (as Object.Method).

VIRTUAL Methods (Polymorphism)

If there is a method prototyped in the CLASS with the same label as a method in the parentclass
with the VIRTUAL attribute, it must also be prototyped with the VIRTUAL attribute in the derived
class.

The VIRTUAL attribute on both prototypes creates virtual methods that allow the methods in a
parentclass to call the same named VIRTUAL methods in the derived class to perform functions
specific to the derived class that the parentclass does not know about.

VIRTUAL methods in the derived class may directly call the parentclass method of the same
name by prepending PARENT to the method's name. This allows incremental derivation wherein
a derived class method may simply call down to the parentclass method to perform its
functionality, then extend it for the requirements of the derived class.

Language Reference Manual 176

Scoping Issues

The scope of an object is dependent upon where it is declared. Generally, a declared object
comes into scope at the CODE statement following its declaration and goes out of scope at the
end of the related executable code section. A dynamically instantiated object (using NEW) shares
the scope of the executable code section in which it is instantiated.

An Object declared:

• As Global data is in scope throughout the application.

• As Module data is in scope throughout the module.

• As Local data is in scope only in the procedure, except ...

Methods prototyped in a derived CLASS declaration within a procedure's Local data section are
Local Derived Methods and share the declaring procedure's scope for all local data declarations
and routines. The methods must be defined within the same source module as the procedure
within which the CLASS is declared and must immediately follow the procedure within that
source--that is, they must come after any ROUTINEs and before any other procedures that may
be in the same source module. This means the procedure's Local data declarations and
ROUTINEs are all visible and can be referenced within these methods.

For example:
SomeProc PROCEDURE
MyLocalVar LONG
MyDerivedClass CLASS(MyClass) !Derived class with a virtual method
MyProc PROCEDURE,VIRTUAL

END
CODE
!SomeProc main executable code goes here
!SomeProc ROUTINEs goes here

MyRoutine ROUTINE
!Routine code goes here

!MyDerivedClass methods immediately follow:

MyDerivedClass.MyProc PROCEDURE
CODE
MyLocalVar = 10 !MyLocalVar is still in scope, and available for u
DO MyRoutine !MyRoutine is still in scope, and available for us

!Any other procedures in the same module go here, following all
! derivd class methods

4 – Entity Declarations 177

Instantiation

You declare an instance of a CLASS (an object) by simply naming the CLASS as the data type of
the new instance, or by executing the NEW procedure in a reference assignment statement to a
reference variable for that named CLASS. Either way, the new instance inherits all the data
members and methods of the CLASS for which it is an instance. All the attributes of a CLASS
except MODULE and TYPE are valid on an instance declaration.

If there is no TYPE attribute on the CLASS, the CLASS structure itself declares both the CLASS
and an object instance of that CLASS. A CLASS with the TYPE attribute does not create an
object instance of the CLASS.

For example, the following CLASS declaration declares the CLASS as a data type and an object
of that type:

MyClass CLASS !Both a data type declaration and an object instance
MyField LONG
MyProc PROCEDURE

END

while this only declares the CLASS as a data type:
MyClass CLASS,TYPE !Only a data type declaration
MyField LONG
MyProc PROCEDURE

END

It is preferable to directly declare object instances as the CLASS data type rather than as a
reference to the CLASS. This results in smaller quicker code and does not require you to use
NEW and DISPOSE to explicitly create and destroy the object instance. The advantage of using
NEW and DISPOSE is explicit control over the lifetime of the object. For example:

MyClass CLASS,TYPE
MyField LONG
MyProc PROCEDURE

END
OneClass MyClass !Declared object instance, smaller and quicker
TwoClass &MyClass !Object reference, must use New and DISPOSE
CODE
!execute some code here
TwoClass &= NEW(MyClass) !The lifetime of the object starts here
!execute some code here
DISPOSE(TwoClass) ! and extends only to here
!execute some code here

Another advantage of declaring the object is the ability to declare the object with any of the
attributes available for the CLASS declaration itself (except TYPE and MODULE). For instance,
you can declare an object with the THREAD attribute, whether the CLASS is declared with
THREAD or not.

Language Reference Manual 178

The constructors and destructors for threaded classes are called for every thread. Every new
thread gets new instances of CLASSes and variables declared at the global level with the
THREAD attribute. The RTL calls constructors for the threaded classes when the thread is started
and the destructors when the thread is ended. In previous Clarion versions they were called only
when the main thread started and ended.

The lifetime of an object depends on how it is instantiated:

• An object declared in the Global data section or a Module's data section is
instantiated at the CODE statement following the PROGRAM statement and de-
instantiated when the application terminates.

• A reference to an object is instantiated by the NEW statement, and de-
instantiated by the DISPOSE statement.

• An object declared in a procedure's Local data section is instantiated at the
CODE statement following the PROCEDURE statement and de-instantiated
when a RETURN (implicit or explicit) executes to terminate the procedure.

Data (Property) Initialization

The simple data type data members of an object are automatically allocated memory and
initialized to blank or zero (unless the AUTO attribute is specified) when the object comes into
scope. The allocated memory is returned to the operating system when the object goes out of
scope.

The reference variable data members of an object are not allocated memory and are not
initialized when the object comes into scope--you must specifically execute a reference
assignment or a NEW statement. These references variables are not automatically cleared when
the object goes out of scope, so you must DISPOSE of all NEWed properties before the object
goes out of scope.

4 – Entity Declarations 179

Constructors and Destructors

A CLASS method labelled "Construct" is a constructor method which is automatically invoked
when the object comes into scope, immediately after the data members of the object are
allocated and initialized. The "Construct" method may not receive any parameters and may not
be VIRTUAL. You may explicitly call the "Construct" method in addition to its automatic
invocation.

If an object is an instance of a derived CLASS and both the parentclass and the derived CLASS
contain constructors and the derived CLASS's constructor does not have the REPLACE attribute,
then the parentclass constructor is automatically invoked at the beginning of the derived CLASS's
constructor. If the derived CLASS's constructor does have the REPLACE attribute, then only
derived CLASS's constructor is automatically invoked (the derived CLASS's constructor method
can explicitly call PARENT.Construct if it needs to).

A CLASS method labelled "Destruct" is a destructor method which is automatically invoked when
the object leaves scope, immediately before the data members of the object are de-allocated.
The "Destruct" method may not receive any parameters. You may explicitly call the "Destruct"
method in addition to its automatic invocation.

If an object is an instance of a derived CLASS and both the parentclass and the derived CLASS
contain destructors and the derived CLASS's destructor does not have the REPLACE attribute,
then the parentclass destructor is automatically invoked at the end of the derived CLASS's
destructor. If the derived CLASS's destructor does have the REPLACE attribute, then only
derived CLASS's destructor is automatically invoked (the derived CLASS's destructor method can
explicitly call PARENT.Destruct if it needs to).

Public, PRIVATE, and PROTECTED (Encapsulation)

Public data members and methods of a CLASS or derived CLASS are declared without either the
PRIVATE or PROTECTED attributes. Public data members and methods are visible to all the
methods of the declaring CLASS, and derived CLASSes, and any code where the object is in
scope.

Private data members and methods are declaredwith the PRIVATE attribute. Private data
members and methods are visible only to the methods of the CLASS within which they are
declared and any other procedures contained in the same source code module.

Protected data members and methods are declared with the PROTECTED attribute. Protected
data members and methods are visible only to the methods of the CLASS within which they are
declared, and to the methods of any CLASS derived from the CLASS within which they are
declared.

Language Reference Manual 180

Method Definition

The PROCEDURE definition of a method (its executable code, not its prototype) is external to the
CLASS structure. The method's definition must either prepend the label of the CLASS to the label
of the PROCEDURE, or name the CLASS (and label it SELF) as the first (implicit) parameter in
the list of parameters passed in to the PROCEDURE.

Remember that on the PROCEDURE definition statement you are assigning labels for use within
the method to all the passed parameters, and so, since the CLASS's label is the data type of the
implicit first parameter, you must use SELF as the assigned label for the CLASS name
parameter. For example, for the following CLASS declaration:

MyClass CLASS
MyProc PROCEDURE(LONG PassedVar) !The method takes 1 parameter

END

you may define the MyProc PROCEDURE either as:
MyClass.MyProc PROCEDURE(LONG PassedVar) !Prepend the CLASS name to
CODE !the method's label

or as:
MyProc PROCEDURE(MyClass SELF, LONG PassedVar) !The CLASS name is the
CODE

! implicit first parameter's data type, labeled SELF

Referencing an Object's properties and methods in your code

You must reference the data members of a CLASS using Clarion's Field Qualification syntax. To
do this, you prepend the label of the CLASS (if it is an object instance of itself) or the label of an
object instance of the CLASS to the label of the data member.

For example, for the following CLASS declarations:
MyClass CLASS !Without TYPE, this is also an object instance
MyField LONG ! in addition to a class type declaration
MyProc PROCEDURE

END
MyClass2 MyClass !Declare another object instance of MyClass

you must reference the two MyField variables from procedures external to the object as:
MyClass.MyField = 10 !References the MyClass CLASS declaration's object
MyClass2.MyField = 10 !References the MyClass2 declaration's object

You may call the methods of a CLASS either using Field Qualification syntax (by prepending the
label of the CLASS to the label of the method), or by passing the label of the CLASS as the first
(implicit) parameter in the list of parameters passed to the PROCEDURE.

4 – Entity Declarations 181

For example, for the following CLASS declaration:
MyClass CLASS
MyProc PROCEDURE

END

you may call the MyProc PROCEDURE either as:
CODE
MyClass.MyProc

or as:
CODE
MyProc(MyClass)

SELF and PARENT

Within the methods of a CLASS, the data members and methods of the current object's instance
are referenced with SELF prepended to their labels instead of the name of the CLASS. This
allows the methods to generically reference the data members and methods of the currently
executing instance of the CLASS, without regard to whether it is executing the parentclass, a
derived class, or any instance of either. This is also the mechanism that allows a parentclass to
call virtual methods of a derived class.

For example, expanding on the previous example, MyField is referenced within the
MyClass.MyProc method as:

MyClass.MyProc PROCEDURE
CODE
SELF.MyField = 10 !Assign to the current object instance's property

The data members and methods of a parentclass can be directly referenced from within the
methods of a derived class with PARENT prepended to their labels instead of SELF.

For example:
MyDerivedClass.MyProc PROCEDURE
CODE
!execute some code
PARENT.MyProc !Call the base class method
!execute some more code

!

Language Reference Manual 182

Additional Example:

!The ClassPrg.CLW file contains:
PROGRAM
MAP. !MAP required to get BUILTINS.CLW

OneClass CLASS !Base class
NameGroup GROUP !Reference as OneClass.NameGroup
First STRING(20) !reference as OneClass.NameGroup.First
Last STRING(20) !reference as OneClass.NameGroup.Last

END
BaseProc PROCEDURE(REAL Parm) !Declare method prototype
Func PROCEDURE(REAL Parm),STRING,VIRTUAL !Declare virtual method prototype
Proc PROCEDURE(REAL Parm),VIRTUAL !Declare virtual method prototype

END !End CLASS declaration

TwoClass CLASS(OneClass),MODULE('TwoClass.CLW') !Derived from OneClass
Func PROCEDURE(LONG Parm),STRING !replaces OneClass.Func
Proc PROCEDURE(STRING Msg,LONG Parm) !Functionally overloaded

END

ClassThree CLASS(TwoClass),MODULE('Class3.CLW') !Derived from TwoClass
Func PROCEDURE(<STRING Msg>,LONG Parm),STRING,VIRTUAL
Proc PROCEDURE(REAL Parm),VIRTUAL

END

ClassFour ClassThree !Declare an instance of ClassThree
ClassFive ClassThree !Declare an instance of ClassThree

CODE
OneClass.NameGroup = '|OneClass Method' !Assign values to each instance of NameGroup
TwoClass.NameGroup = '|TwoClass Method'
ClassThree.NameGroup = '|ClassThree Method'
ClassFour.NameGroup = '|ClassFour Method'
MESSAGE(OneClass.NameGroup & OneClass.Func(1.0))!Calls OneClass.Func
MESSAGE(TwoClass.NameGroup & TwoClass.Func(2)) !Calls TwoClass.Func

MESSAGE(ClassThree.NameGroup & ClassThree.Func('|Call ClassThree.Func',3.0))
!Calls ClassThree.Func

MESSAGE(ClassFour.NameGroup & ClassFour.Func('|Call ClassFour.Func',4.0))
!Also Calls ClassThree.Func

OneClass.BaseProc(5) !BaseProc Calls OneClass.Proc & Func
BaseProc(TwoClass,6) !BaseProc Also calls OneClass.Proc & Func
TwoClass.Proc('Second Class',7) !Calls TwoClass.Proc (overloaded)
ClassThree.BaseProc(8) !BaseProc Calls ClassThree.Proc & Func
ClassFour.BaseProc(9) !BaseProc Also Calls ClassThree.Proc & Func

4 – Entity Declarations 183

Proc(ClassFour,'Fourth Class',10) !Calls TwoClass.Proc (overloaded)

OneClass.BaseProc PROCEDURE(REAL Parm) !Definition of OneClass.BaseProc
CODE
MESSAGE(Parm & SELF.NameGroup &'|BaseProc executing|calling SELF.Proc Virtual method')
SELF.Proc(Parm) !Calls virtual method
MESSAGE(Parm & SELF.NameGroup&'|BaseProc executing|calling SELF.Func Virtual method')
MESSAGE(SELF.NameGroup & SELF.Func(Parm)) !Calls virtual method

OneClass.Func PROCEDURE(REAL Parm) !Definition of OneClass.Func
CODE
RETURN('|Executing OneClass.Func - ' & Parm)

Proc PROCEDURE(OneClass SELF,REAL Parm) !Definition of OneClass.Proc
CODE
MESSAGE(SELF.NameGroup & ' |Executing OneClass.Proc - ' & Parm)

!The TwoClass.CLW file contains:
MEMBER('ClassPrg')

Func PROCEDURE(TwoClass SELF,LONG Parm) !Definition of TwoClass.Func
CODE
RETURN('|Executing TwoClass.Func - ' & Parm)

TwoClass.Proc PROCEDURE(STRING Msg,LONG Parm) !Definition of TwoClass.Proc
CODE
MESSAGE(Msg & '|Executing TwoClass.Proc - ' & Parm)

!The Class3.CLW file contains:
MEMBER('ClassPrg')

ClassThree.Func PROCEDURE(<STRING Msg>,LONG Parm) !Definition of ClassThree.Func
CODE
SELF.Proc(Msg,Parm) !Call TwoClass.Proc (overloaded)
RETURN(Msg & '|Executing ClassThree.Func - ' & Parm)

ClassThree.Proc PROCEDURE(REAL Parm) !Definition of ClassThree.Proc
CODE
SELF.Proc('Called from ClassThree.Proc',Parm) !Call TwoClass.Proc
MESSAGE(SELF.NameGroup &' |Executing ClassThree.Proc - ' & Parm)

See Also: Field Qualification, MODULE, PROCEDURE Prototypes, Procedure Overloading, WHAT,
WHERE

Language Reference Manual 184

INTERFACE (class behavior definition)

label INTERFACE ([parentinterface]) [, TYPE]

 [methods]

 END

INTERFACE A collection of methods to be used by the class that implements the interface.

parentinterface The label of a previously declared INTERFACE structure whose methods are
inherited by the new INTERFACE. This may be an INTERFACE with the TYPE
attribute.

TYPE Specify the INTERFACE is only a type definition. TYPE is implicit on an
INTERFACE but may be explicitly specified.

methods PROCEDURE prototypes

An INTERFACE is a structure, which contains the methods (PROCEDUREs) that define the
behavior to be implemented by a CLASS. It cannot contain any property declarations. All
methods defined within the INTERFACE are implicitly virtual. A period or the END statement must
terminate an INTERFACE structure.

Derived INTERFACEs (Inheritance)

An INTERFACE declared with the parentinterface parameter creates a derived interface that
inherits all the methods of the named parentinterface. The derived interface may also contain its
own methods.

Any method prototyped in the derived interface with the same name as a method in the
parentinterface overrides the inherited method if both have the same parameter lists. If the two
methods have different parameter lists, they create polymorphic functions in the derived interface
that must follow the rules of Procedure Overloading.

VIRTUAL Methods (Polymorphism)

All methods in an INTERFACE are implicitly virtual, although the virtual attribute may be explicitly
specified for clarity.

VIRTUAL methods in the derived interface may directly call the parentinterface method of the
same name by prepending PARENT to the method's name. This allows incremental derivation
wherein a derived interface method may simply call up to the parentinterface method to perform
its functionality, and then extend it for the requirements of the derived interface.

4 – Entity Declarations 185

Method Definition

The PROCEDURE definition of a method (its executable code, not its prototype) is defined by the
CLASS that is implementing the INTERFACE. All methods for an interface must be defined in the
IMPLEMENTING class.

Referencing INTERFACE methods in your code

You must call the methods of an INTERFACE by using dot notation syntax (by prepending the
label of the CLASS to the label of the INTERFACE to the label of the method).

For example, using the following INTERFACE and CLASS declaration:
MyInterface INTERFACE
MyProc PROCEDURE

END
MyClass CLASS,IMPLEMENTS(MyInterface)

END

You may call the MyProc PROCEDURE as:
CODE
MyClass.MyInterface.MyProc

See Also:

IMPLEMENTS

Language Reference Manual 186

File Structures

FILE (declare a data file structure)

label FILE,DRIVER() [,CREATE] [,RECLAIM] [,OWNER()] [,ENCRYPT] [,NAME()] [,PRE()]

 [,BINDABLE] [,THREAD] [,EXTERNAL] [,DLL] [,OEM]

label [INDEX()]

label [KEY()]

label [MEMO()]

label [BLOB]

[label] RECORD

[label] fields

 END

 END

label A valid Clarion label for the FILE, INDEX, KEY, MEMO, BLOB, RECORD, or field
(PROP:Label).

FILE Declares a data file.

DRIVER Specifies the data file type (PROP:DRIVER). The DRIVER attribute is required
on all FILE structure declarations.

CREATE Allows the file to be created with the CREATE statement during program
execution (PROP:CREATE).

RECLAIM Specifies reuse of deleted record space (PROP:RECLAIM).

OWNER Specifies the password for data encryption (PROP:OWNER).

ENCRYPT Encrypt the data file (PROP:ENCRYPT).

NAME Set DOS filename specification (PROP:NAME).

PRE Declare a label prefix for the structure.

BINDABLE Specify all variables in the RECORD structure may be used in dynamic
expressions.

THREAD Specify memory for the record buffer is separately allocated for each execution
thread, when the file is opened on the thread (PROP:THREAD).

4 – Entity Declarations 187

EXTERNAL Specify the FILE is defined, and the memory for its record buffer is allocated, in
an external library.

DLL Specify the FILE is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

OEM Specify string data is converted from OEM ASCII to ANSI when read from disk
and ANSI to OEM ASCII before writing to disk (PROP:OEM).

INDEX Declare a static file access index which must be built at run time.

KEY Declare a dynamically updated file access index.

MEMO Declare a variable length text field up to 64K in length.

BLOB Declare a variable length memo field which may be greater than 64K in length.

RECORD Declare a record structure for the fields. A RECORD structure is required in all
FILE structure declarations.

fields Data elements in the RECORD structure.

FILE declares a data file structure which is an exact description of a data file residing on disk.
The label of the FILE structure is used in file processing statements and procedures to effect
operations on the disk file. The FILE structure must be terminated by a period or the END
statement.

All attributes of the FILE, KEY, INDEX, MEMO, data declaration statements, and the data types
which a FILE may contain, are dependent upon the support of the file driver. Anything in the FILE
declaration which is not supported by the file system specified in the DRIVER attribute will cause
a file driver error when the FILE is opened. Attribute and/or data type exclusions for a specific file
system are listed in each file driver's documentation.

At run-time, the RECORD structure is assigned memory for a data buffer where records from the
disk file may be processed by executable statements. This record buffer is always allocated static
memory on the heap, even if the FILE is declared in a local data section. A RECORD structure is
required in a FILE structure. Memory for a data buffer for any MEMO fields is allocated only when
the FILE is opened, and de-allocated when the FILE is closed. The memory for BLOB fields is
allocated as needed once the FILE is open.

A FILE with the BINDABLE attribute declares all the variables within the RECORD structure as
available for use in a dynamic expression, without requiring a separate BIND statement for each
(allowing BIND(file) to enable all the fields in the file). The contents of each variable's NAME
attribute is the logical name used in the dynamic expression. If no NAME attribute is present, the
label of the variable (including any prefix) is used. Space is allocated in the .EXE for the names of
all of the variables in the structure. This creates a larger program that uses more memory than it
normally would. Therefore, the BINDABLE attribute should only be used when a large proportion
of the constituent fields are going to be used.

Language Reference Manual 188

A FILE with the THREAD attribute declares a separate record buffer (and file control block) for
each execution thread that OPENs the FILE. If the thread does not OPEN the file, no record
buffer is allocated for the file on that thread. If a NAME attribute is defined for the file and
declared as “STRING, STATIC”, it will need to explicitly declare the THREAD attribute if a
different file name will be opened on each thread (or PROP:Name may be used to specify the file
name).

Any FILE declared in the local scope of a PROCEDURE or ROUTINE is treated as threaded,
regardless of the presence of the THREAD attribute in its declaration.

A FILE with the EXTERNAL attribute is declared and may be referenced in Clarion code, but is
not allocated memory. The memory for the FILE's record buffer is allocated by the external
library. This allows a Clarion program access to FILEs declared as public in external libraries.

Related Procedures:
BUFFER, BUILD, CLOSE, COPY, CREATE, EMPTY, FLUSH, LOCK, NAME,
OPEN, PACK, RECORDS, REMOVE, RENAME, SEND, SHARE, STATUS,
STREAM, UNLOCK, ADD, APPEND, BOF, BYTES, DELETE, DUPLICATE,
EOF, GET, HOLD, NEXT, NOMEMO, POINTER, POSITION, PREVIOUS, PUT,
RELEASE, REGET, RESET, SET, SKIP, WATCH

Example:
Names FILE,DRIVER('Clarion') !Declare a file structure
Rec RECORD !Required record structure
Name STRING(20) !containing one or more data elements

END
END !End file and record declaration

See Also:

KEY

INDEX

MEMO

BLOB

RECORD

4 – Entity Declarations 189

INDEX (declare static file access index)

label INDEX([-/+][field],...,[-/+][field]) [,NAME()] [,NOCASE] [,OPT]

label The label of the INDEX (PROP:Label).

INDEX Declares a static index into the data file.

-/+ The - (minus sign) preceding an index component field specifies descending
order for that component. If omitted, or + (plus sign) the component is sorted in
ascending order.

field The label of a field in the RECORD structure of the FILE in which the INDEX is
declared. The field is an index component. Fields declared with the DIM attribute
(arrays) may not be used as index components.

NAME Specifies the disk file specification for the INDEX (PROP:NAME).

OPT Excludes those records with null values (zero or blank) in all index component
fields (PROP:OPT).

NOCASE Specifies case insensitive sort order (PROP:NOCASE).

INDEX declares a "static key" for a FILE structure. An INDEX is updated only by the BUILD
statement. It is used to access records in a different logical order than the "physical order" of the
file. An INDEX may be used for either sequential file processing or direct random access.

An INDEX always allows duplicate entries. An INDEX may have more than one component field.
The order of the components determines the sort sequence of the index. The first component is
the most general, and the last component is the most specific. Generally, a data file may have up
to 255 indexes (and/or keys) and each index may be up to 255 bytes, but the exact numbers are
file driver dependent.

 An INDEX declared without a field creates a "dynamic index." A dynamic index may use any
field (or fields) in the RECORD as components (except arrays). The component fields of a
dynamic index are defined at run time in the second parameter of the BUILD statement. The
same dynamic index declaration may be built and re-built using different components each time.

Example:
Names FILE,DRIVER('TopSpeed'),PRE(Nam)
NameNdx INDEX(Nam:Name),NOCASE !Declare the name index
NbrNdx INDEX(Nam:Number),OPT !Declare the number index
DynamicNdx INDEX() !Declare a dynamic index
Rec RECORD
Name STRING(20)
Number SHORT

END
END

See Also: SET, GET, KEY, BUILD

Language Reference Manual 190

KEY (declare dynamic file access index)

label KEY([-/+]field,...,[-/+][field]) [,DUP] [,NAME()] [,NOCASE] [,OPT] [,PRIMARY]

label The label of the KEY (PROP:Label).

KEY Declares a dynamically maintained index into the data file.

-/+ The - (minus sign) preceding a key component field specifies descending order
for that component. If omitted, or + (plus sign), the component is sorted in
ascending order.

field The label of a field in the RECORD structure of the FILE in which the KEY is
declared. The field is a key component. A field declared with the DIM attribute
(an array) may not be used as a key component.

NAME Specifies the disk file specification of the KEY (PROP:NAME).

DUP Allows multiple records with duplicate values in their key component fields
(PROP:DUP).

NOCASE Specifies case insensitive sort order (PROP:NOCASE).

OPT Excludes, from the KEY, those records with null (zero or blank) values in all key
component fields (PROP:OPT).

PRIMARY Specifies the KEY is the file's relational primary key (a unique key containing all
records in the file) (PROP:PRIMARY).

A KEY is an index into the data file which is automatically updated whenever records are added,
changed, or deleted. It is used to access records in a different logical order than the "physical
order" of the file. A KEY may be used for either sequential file processing or direct random
access.

A KEY may have more than one component field. The order of the components determines the
sort sequence of the key. The first component is the most general, and the last component is the
most specific. Generally, a data file may have up to 255 keys (and indexes) and each key may be
up to 255 bytes, but the exact numbers are file driver dependent.

4 – Entity Declarations 191

Example:
Names FILE,DRIVER('Clarion'),PRE(Nam)
NameKey KEY(Nam:Name),NOCASE,DUP !Declare the name key
NbrKey KEY(Nam:Number),OPT !Declare the number key
Rec RECORD
Name STRING(20)
Number SHORT

END
END

CODE
Nam:Name = 'Clarion Software' !Initialize key field
GET(Names,Nam:NameKey) !Get the record
SET(Nam:NbrKey) !Set sequential by number

See Also:

SET, GET, INDEX, BUILD, PACK

Language Reference Manual 192

MEMO (declare a text field)

label MEMO(length) [,BINARY] [,NAME()]

label The label of the MEMO (PROP:Label).

MEMO Declares a fixed-length string which is stored variable-length on disk per record.

length A numeric constant that determines the maximum number of characters. The
maximum range is unlimited in 32-bit applications (dependent on the file driver's
MEMO support).

BINARY Declares the MEMO a storage area for binary data (PROP:BINARY).

NAME Specifies the disk filename for the MEMO field (PROP:NAME).

MEMO declares a fixed-length string field which is stored variable-length on disk. The length
parameter defines the maximum size of a memo. A MEMO must be declared before the
RECORD structure. Memory is allocated for a MEMO field's buffer when the file is opened, and is
de-allocated when the file is closed. MEMO fields are usually displayed in TEXT fields in
SCREEN and REPORT structures.

Generally, up to 255 MEMO fields may be declared in a FILE structure. The exact size and
number of MEMO fields, and their manner of storage on disk, is file driver dependent.

Example:
Names FILE,DRIVER('Clarion'),PRE(Nam)
NameKey KEY(Nam:Name)
NbrKey KEY(Nam:Number)
Notes MEMO(4800) !Memo, 4800 bytes
Rec RECORD
Name STRING(20)
Number SHORT

END
END

4 – Entity Declarations 193

BLOB (declare a variable-length field)

label BLOB [,BINARY] [,NAME()]

label The label of the BLOB (PROP:Label).

BLOB Declares a variable-length string stored on disk per record which may be greater
than 64K

BINARY Declares the BLOB a storage area for binary data (PROP:BINARY).

NAME Specifies the disk filename for the BLOB field (PROP:NAME).

BLOB (Binary Large OBject) declares a string field which is completely variable-length and may
be greater than 64K in size. A BLOB must be declared before the RECORD structure. Generally,
up to 255 BLOB fields may be declared in a FILE structure (the exact number and their manner of
storage on disk is file driver dependent).

A BLOB may not be used as a variable--you may not name a BLOB as a control's USE attribute,
or directly assign data to or from the BLOB.You can use PROP:Handle to get the Windows
handle to the BLOB entity and assign one BLOB to another: get the handle of both BLOB entities
and then assign one BLOB's handle to the other BLOB's handle. A BLOB may not be accessed
"as a whole;" you must either use Clarion's string slicing syntax to access the data (unlimited in
32-bit), or PROP:ImageBlob. The individual bytes of data in the BLOB are numbered starting with
zero (0), not one (1).

The SIZE procedure returns the number of bytes contained in the BLOB field for the current
record in memory. You can also get (and set) the size of a BLOB using PROP:Size. You may set
the size of the BLOB before assigning data to a new BLOB using string slicing, but it is not
necessary as the size is automatically set by the string slice operation. You can also use
PROP:ImageBlob to store and retrieve graphic images without first setting PROP:Size. It is a
good idea to first set PROP:Size to zero (0) before assigning data to a BLOB that has not
previously contained data, to eliminate any "junk" leftover from any previously accessed BLOB.
When assigning from one BLOB to another using PROP:Handle, you may need to use
PROP:Size to adjust the size of the destination BLOB to the size of the source BLOB.
PROP:Touched can be used to determine if the contents of the BLOB has changed since it was
retrieved from disk.

Language Reference Manual 194

Example:
ArchiveFile PROCEDURE
Names FILE,DRIVER('TopSpeed')
NaneKey KEY(Name)
Notes BLOB !Can be larger than 64K
Rec RECORD
Name STRING(20)

END
END

ArcNames FILE,DRIVER('TopSpeed')
Notes BLOB
Rec RECORD
Name STRING(20)

END
END

CODE
SET(Names)
LOOP
NEXT(Names)
IF ERRORCODE() THEN BREAK.
ArcNames.Rec = Names.Rec !Assign rec data to Archive
ArcNames.Notes{PROP:Handle} = Names.Notes{PROP:Handle} !Assign BLOB to Archive
IF ERRORCODE() = 80
MESSAGE(‘BLOB size is too large’)
BREAK

END
ArcNames.Notes{PROP:Size} = Names.Notes{PROP:Size} ! and adjust the size
ADD(ArcNames)

END

StoreFileInBlob PROCEDURE !Stores any disk file into a B
DosFileName STRING(260),STATIC
LastRec LONG
SavPtr LONG(1) !Start at 1
FileSize LONG

DosFile FILE,DRIVER('DOS'),PRE(DOS),NAME(DosFileName)
Record RECORD
F1 STRING(2000)

END
END

BlobStorage FILE,DRIVER('TopSpeed'),PRE(STO)
File BLOB,BINARY
Record RECORD

4 – Entity Declarations 195

FileName STRING(64)
END
END

CODE
IF NOT FILEDIALOG('Choose File to Store',DosFileName,,0010b) THEN RETURN.
OPEN(BlobStorage) !Open the BLOB file
STO:FileName = DosFileName ! and store the filename
OPEN(DosFile) !Open the file
FileSize = BYTES(DosFile) !Get size of file
STO:File{PROP:Size} = FileSize ! and set the BLOB to store the file
LastRec = FileSize % SIZE(DOS:Record) !Check for short record at end of file
LOOP INT(FileSize/SIZE(DOS:Record)) TIMES
GET(DosFile,SavPtr) !Get each record
ASSERT(NOT ERRORCODE())
STO:File[SavPtr - 1 : SavPtr + SIZE(DOS:Record) - 2] = DOS:Record

!String slice data into BLOB
SavPtr += SIZE(DOS:Record) !Compute next record pointer

END
IF LastRec !If short record at end of file
GET(DosFile,SavPtr) !Get last record
ASSERT(BYTES(DosFile) = LastRec) ! size read should match computed size
STO:File[SavPtr - 1 : SavPtr + LastRec - 2] = DOS:Record

END
ADD(BlobStorage)
ASSERT(NOT ERRORCODE())
CLOSE(DosFile);CLOSE(BlobStorage)

See Also: PROP:ImageBlob, PROP:Size , Implicit String Arrays and String Slicing, BLOBtoFILE

FILEtoBLOB

Language Reference Manual 196

RECORD (declare record structure)

[label] RECORD [,PRE()] [,NAME()]

 fields

 END

RECORD Declares the beginning of the data structure within the FILE declaration.

fields Multiple variable declarations.

PRE Specify a label prefix for the structure.

NAME Specifies an external name for the RECORD structure.

The RECORD statement declares the beginning of the data structure within the FILE declaration.
A RECORD structure is required in a FILE declaration. Each field is an element of the RECORD
structure. The length of a RECORD structure is the sum of the length of its fields. When the label
of a RECORD structure is used in an assignment statement, expression, or parameter list, it is
treated as a GROUP data type.

At run time, static memory is allocated as a data buffer for the RECORD structure. The fields in
the record buffer are available whether the file is open or closed.

If the fields contain variable declarations with initial values, that initial value is only used to
determine the size of the variable, the record buffer is not initialized to the value. For example, a
STRING('abc') field declaration creates a three-byte string, but it's value is not automatically
initialized to 'abc' unless the program's executable code assigns it that value.

Records from the data file on disk are read into the data buffer with the NEXT, PREVIOUS, GET,
or REGET statements. Data in the fields are processed, then written to the data file as a single
RECORD unit by the ADD, APPEND, PUT, or DELETE statements.

The WHAT and WHERE procedures allow access to the fields by their relative position within the
RECORD structure.

Example:
Names FILE,DRIVER('Clarion') !Declare a file structure
Record RECORD ! begin record declaration
Name STRING(20) ! declare name field
Number SHORT ! declare number field

END
END !End file, end record declaration

See Also: FILE, NEXT, PREVIOUS, GET, REGET, ADD, APPEND, PUT, DELETE, WHAT,
WHERE

4 – Entity Declarations 197

Null Data Processing
The concept of a null "value" in a field of a FILE indicates that the user has never entered data
into the field. Null actually means "value not known" for the field. This is completely different from
a blank or zero value, and makes it possible to detect the difference between a field which has
never had data, and a field which has a (true) blank or zero value.

In expressions, null does not equal blank or zero. Therefore, any expression which compares the
value of a field from a FILE with another value will always evaluate as unknown if the field is null.
This is true even if the value of both elements in the expression are unknown (null) values. For
example, the conditional expression Pre:Field1 = Pre:Field2 will evaluate as true only if both
fields contain known values. If both fields are null, the result of the expression is also unknown.
Known = Known !Evaluates as True or False
Known = Unknown !Evaluates as unknown
Unknown = Unknown !Evaluates as unknown
Unknown <> 10 !Evaluates as unknown
1 + Unknown !Evaluates as unknown

The only four exceptions to this rule are boolean expressions using OR and AND where only one
portion of the entire expression in unknown and the other portion of the expression meets the
expression criteria:
Unknown OR True !Evaluates as True
True OR Unknown !Evaluates as True
Unknown AND False !Evaluates as False
False AND Unknown !Evaluates as False

Support for null "values" in a FILE is entirely dependent upon the file driver. Some file drivers
support the null field concept (SQL drivers, for the most part), while others do not. Consult the
documentation for the specific file driver to determine whether or not your file system's driver
supports nulls.

See Also:

NULL

SETNULL

SETNONULL

Language Reference Manual 198

FILE Structure Properties

Multi-File Properties
PROP:Label PROP:NAME PROP:Type

File Properties
PROP:CREATE PROP:KEY PROP:OWNER
PROP:Driver PROP:Keys PROP:RECLAIM
PROP:ENCRYPT PROP:OEM PROP:THREAD

Key Properties

PROP:Ascending PROP:DUP PROP:OPT
PROP:BINARY PROP:FIELD PROP:Over
PROP:Blobs PROP:Fields PROP:Places
PROP:Components PROP:Memos PROP:PRIMARY
PROP:Dim PROP:NOCASE PROP:Size

The following properties are all elements of a FILE data structure. They describe the attributes,
fields, keys, memos, and blobs that may occur within a FILE structure. All these FILE structure
properties are READ ONLY except: PROP:NAME (which can be used to change the name of a
field in a file), PROP:OWNER, and PROP:DriverString. Assigning values to these properties
overrides any values in the relevant declared attributes

Some properties are specific to the FILE and take the label of the FILE structure as the target,
others are specific to a KEY (or INDEX) and take the label of the KEY (or INDEX) as the target,
and others are specific to a BLOB and take the label of the BLOB as the target. Several
properties are arrays, which take the number of the specific field or key as their element number
to identify which field or key to return.

Each field that appears within the RECORD structure receives a positve number. In the RECORD
structure, field declarations begin with 1 and increment by 1 for each subsequent field, in the
order in which they appear within the RECORD structure. Terminating END statements for
GROUP structures are not numbered, as they are not a field declaration.

MEMO fields are numbered negatively. MEMO declarations begin with -1 and decrement by 1 for
each subsequent MEMO, in the order in which they appear within the FILE structure. BLOB fields
are numbered positively. BLOB declarations begin with 1 and increment by 1 for each
subsequent BLOB, in the order in which they appear within the FILE structure.

4 – Entity Declarations 199

Multi-Use File Structure Properties

PROP:Label
Returns the label of a declaration statement.

When no array element number is specified and the target is the label of a KEY (or
INDEX), PROP:Label returns the label of the KEY (or INDEX).

When a positive array element number is specified and the target is a FILE,
PROP:Label returns the label of the specified field within the RECORD structure.

When a negative array element number is specified and the target is a FILE,
PROP:Label returns the label of the specified MEMO within the FILE structure.

When a positive array element number is specified and the target is a BLOB,
PROP:Label returns the label of the specified BLOB.

PROP:NAME
The NAME attribute of the declaration statement.

When no array element number is specified and the target is the label of a FILE,
PROP:Name returns the contents of the FILE statement's NAME attribute.

When a positive array element number is specified and the target is the label of a
FILE, PROP:Name returns the NAME attribute of the specified field within the
RECORD structure.

When a negative array element number is specified and the target is the label of a
FILE, PROP:Name returns the NAME attribute of the specified MEMO within the
FILE structure.

When no array element number is specified and the target is the label of a KEY (or
INDEX), PROP:Name returns the NAME attribute of the specified KEY (or INDEX).

When a positive array element number is specified and the target is a BLOB,
PROP:Name returns the NAME attribute of the specified BLOB.

Language Reference Manual 200

PROP:Type
The data type of the declaration statement.

When no array element number is specified and the target is the label of a KEY (or
INDEX), PROP:Type returns either "KEY" or "INDEX."

When a positive array element number is specified and the target is the label of a
FILE, PROP:Type returns the data type of the specified field within the RECORD
structure.

FILE Statement Properties

These properties all take the label of a FILE as their target.

PROP:DRIVER
The DRIVER attribute. Returns the file driver of the FILE.

PROP:DriverString

A FILE property that returns the second parameter of the DRIVER() attribute of a file.

PROP:CREATE
The CREATE attribute on the FILE statement. A toggle attribute which contains a null
string ('') if absent, and '1' if present.

PROP:RECLAIM
The RECLAIM attribute on the FILE statement. A toggle attribute which contains a
null string ('') if absent, and '1' if present.

PROP:OWNER
The OWNER attribute on the FILE statement.

PROP:ENCRYPT
The ENCRYPT attribute on the FILE statement. A toggle attribute which contains a
null string ('') if absent, and '1' if present.

PROP:THREAD
The THREAD attribute on the FILE statement. A toggle attribute which contains a null
string ('') if absent, and '1' if present.

4 – Entity Declarations 201

PROP:OEM
The OEM attribute on the FILE statement. A toggle attribute which contains a null
string ('') if absent, and '1' if present.

PROP:Keys
Returns the number of KEY and INDEX declarations in the FILE structure.

PROP:Key
An array that returns a reference to the specified KEY or INDEX in the FILE structure.
This reference can be used as the source side of a reference assignment statement.

Key Properties

These properties all take the label of a KEY (or INDEX) as their target.

PROP:PRIMARY
The PRIMARY attribute on the KEY statement. A toggle attribute which contains a
null string ('') if absent, and '1' if present.

PROP:DUP
The DUP attribute on the KEY statement. A toggle attribute which contains a null
string ('') if absent, and '1' if present.

PROP:NOCASE
The NOCASE attribute on the KEY or INDEX statement. A toggle attribute which
contains a null string ('') if absent, and '1' if present.

PROP:OPT
The OPT attribute on the KEY or INDEX statement. A toggle attribute which contains
a null string ('') if absent, and '1' if present.

PROP:Components
Returns the number of component fields of a KEY or INDEX.

Language Reference Manual 202

PROP:Field
An array that returns the field number (within the RECORD structure) of the specified
component field of a KEY or INDEX. This field number can be used as the array
element number for PROP:Label or PROP:Name.

PROP:Ascending
An array that returns '1' if the specified key component is in ascending order, and a
null string ('') if in descending order.

Field Properties

These properties all take the label of a FILE as their target.

PROP:Memos
Returns the number of MEMO fields in the FILE structure.

PROP:Blobs
Returns the number of BLOB fields in the FILE structure.

PROP:BINARY
The BINARY attribute on the MEMO or BLOB statement in the FILE structure. A
toggle attribute which contains a null string ('') if absent, and '1' if present.

PROP:Fields
Returns the number of fields declared in the RECORD structure.

PROP:Size
An array that returns the declared size of the specified MEMO, STRING, CSTRING,
PSTRING, DECIMAL, or PDECIMAL field.

PROP:Places
An array that returns the number of decimal places declared for the specified
DECIMAL or PDECIMAL field.

4 – Entity Declarations 203

PROP:Dim
An array property of a file that returns the product of the array dimensions specified in the DIM
attribute of the specified field. For example, for a field DIM(3,2) PROP:Dim returns 6.

PROP:Over
An array property of a file that returns the field number of the field referenced in the
OVER attribute on the specified field.

Language Reference Manual 204

Example:
PROGRAM
MAP

PrintFile PROCEDURE(*FILE F)
DumpGroupDetails PROCEDURE(USHORT start, USHORT total)
DumpFieldDetails PROCEDURE(USHORT indent, USHORT FieldNo)
DumpToFile PROCEDURE
SetAttribute PROCEDURE(SIGNED Prop,STRING Value)
StartLine PROCEDURE(USHORT indent,STRING label, STRING type)
Concat PROCEDURE(STRING s)
END

LineSize EQUATE(255)
FileIndent EQUATE(20)

DestName STRING(FILE:MaxFilePath)

DestFile FILE,DRIVER('ASCII'),CREATE,NAME(DestName)
Record RECORD
Line STRING(LineSize)

END
END

Employee FILE,DRIVER('TOPSPEED'),NAME('Employee.tps'),PRE(EMP),BINDABLE,CREATE,THREAD
EmpID_Key KEY(EMP:EmpID),PRIMARY
EmpName_Key KEY(EMP:Lname,EMP:Fname,EMP:MInit),DUP
JobID_Key KEY(EMP:JobID),DUP
PubID_Key KEY(EMP:PubID),DUP
DateKey KEY(-EMP:Hire_date),DUP,NOCASE,OPT
Record RECORD,PRE()
EmpID CSTRING(10)
Fname CSTRING(21)
MInit CSTRING(2)
Lname CSTRING(31)
JobID SHORT
Job_lvl BYTE
PubID CSTRING(5)
Hire_date DATE
PictureFile STRING(65)

END
END

TheFile &FILE
AKey &KEY
Line STRING(LineSize)
Blobs LONG

4 – Entity Declarations 205

CODE
PrintFile(Employee)

PrintFile PROCEDURE(*FILE F)
CODE
IF NOT FILEDIALOG('Choose Output File',DestName,'Text|*.TXT|Source|*.CLW',0100b)
RETURN

END
OPEN(DestFile)
IF ERRORCODE()
CREATE(DestFile)
OPEN(DestFile)

END
ASSERT(ERRORCODE()=0)

TheFile &= F
DO DumpFileDetails
DO DumpKeys
DO DumpMemos
DumpGroupDetails(0, F{PROP:Fields})
StartLine(FileIndent,'','END')
DumpToFile

DumpFileDetails ROUTINE
StartLine(FileIndent,TheFile{PROP:label},'FILE')
Concat(',DRIVER(''' & CLIP(TheFile{PROP:Driver}))
IF TheFile{PROP:DriverString}
Concat(',' & CLIP(TheFile{PROP:DriverString}))

END
Concat(''')')
SetAttribute(TheFile{PROP:Create},'CREATE')
SetAttribute(TheFile{PROP:Reclaim},'RECLAIM')
IF TheFile{PROP:Owner}
Concat(',OWNER(''' & CLIP(TheFile{PROP:Owner}) & ''')')

END
SetAttribute(TheFile{PROP:Encrypt},'ENCRYPT')
Concat(',NAME(''' & CLIP(TheFile{PROP:Name}) & ''')')
SetAttribute(TheFile{PROP:Thread},'THREAD')
SetAttribute(TheFile{PROP:OEM},'OEM')
DumpToFile

Language Reference Manual 206

DumpMemos ROUTINE
LOOP X# = 1 TO TheFile{PROP:Memos}
StartLine(FileIndent+2,TheFile{PROP:label,-X#},'MEMO(')
Concat(CLIP(TheFile{PROP:Size,-X#})&')')
SetAttribute(TheFile{PROP:Binary,-X#},'BINARY')
IF TheFile{PROP:Name,-X#}
Concat(',NAME(' & CLIP(TheFile{PROP:Name,-X#}) & ')')

END
DumpToFile

END

DumpKeys ROUTINE
LOOP X# = 1 TO TheFile{PROP:Keys}
AKey &= TheFile{PROP:Key,X#}
StartLine(FileIndent+2,AKey{PROP:label},AKey{PROP:Type})
Concat('(')
LOOP Y# = 1 TO AKey{PROP:Components}
IF Y# > 1 THEN Concat(',').
IF AKey{PROP:Ascending,Y#}
Concat('+')

ELSE
Concat('-')

END
Concat(TheFile{PROP:Label,akey{PROP:Field,Y#}})

END
Concat(')')
SetAttribute(AKey{PROP:Dup},'DUP')
SetAttribute(AKey{PROP:NoCase},'NOCASE')
SetAttribute(AKey{PROP:Opt},'OPT')
SetAttribute(AKey{PROP:Primary},'PRIMARY')
IF AKey{PROP:Name}
Concat(',NAME(''' & CLIP(AKey{PROP:Name}) & ''')')

END
DumpToFile

END

DumpGroupDetails PROCEDURE(USHORT start, USHORT total)
fld USHORT
fieldsInGroup USHORT
GroupIndent USHORT,STATIC
CODE
IF start = 0 THEN
GroupIndent = FileIndent+2
StartLine(GroupIndent,'RECORD','RECORD')
DumpToFile

END
GroupIndent += 2
LOOP fld = start+1 TO start+total

4 – Entity Declarations 207

DumpFieldDetails(GroupIndent,fld)
IF TheFile{PROP:Type,fld} = 'GROUP'
fieldsInGroup = TheFile{PROP:Fields,fld}
DumpGroupDetails (fld, fieldsInGroup)
fld += fieldsInGroup

END
END
GroupIndent -= 2
StartLine(GroupIndent,'','END')
DumpToFile

DumpFieldDetails PROCEDURE(USHORT indent, USHORT FieldNo)
FldType STRING(20)
CODE
FldType = TheFile{PROP:Type,FieldNo}
StartLine(indent,TheFile{PROP:Label,FieldNo},FldType)
IF INSTRING('STRING',FldType,1,1) OR INSTRING('DECIMAL',FldType,1,1)
Concat('(' & TheFile{PROP:Size,FieldNo})
IF FldType = 'DECIMAL' OR FldType = 'PDECIMAL'
Concat(',' & TheFile{PROP:Places,FieldNo})

END
Concat(')')

END
IF TheFile{PROP:Dim,FieldNo} <> 0
Concat(',DIM(' & CLIP(TheFile{PROP:Dim,FieldNo}) & ')')

END
IF TheFile{PROP:Over,FieldNo} <> 0
Concat(',OVER(' & CLIP(TheFile{PROP:Label,TheFile{PROP:Over,FieldNo}}) & ')')

END
IF TheFile{PROP:Name,FieldNo}
Concat(',NAME(''' & CLIP(TheFile{PROP:Name,FieldNo}) & ''')')

END
DumpToFile

SetAttribute PROCEDURE (Prop,Value)
CODE
IF Prop THEN Line = CLIP(Line) & ',' & CLIP(Value).

Language Reference Manual 208

StartLine PROCEDURE (USHORT indent,STRING label, STRING type)
TypeStart USHORT
CODE
Line = label
IF LEN(CLIP(Line)) < Indent
TypeStart = Indent

ELSE
TypeStart = LEN(CLIP(Line)) + 4

END
Line[TypeStart : LineSize] = type

Concat PROCEDURE (STRING s)
CODE
Line = CLIP(Line) & s

DumpToFile PROCEDURE
CODE
DestFile.Line = Line; ADD(DestFile)
ASSERT(ERRORCODE()=0)

4 – Entity Declarations 209

Environment Files
An environment file contains internationalization settings for an application. On program
initialization, the Clarion run-time library attempts to locate an environment file with the same
name and location as your application's program file (appname.ENV). If an environment file is
not found, the run-time library defaults to standard English/ASCII. You can also use these
settings to specify internationalization issues for the Clarion environment by creating a
CLARION6.ENV file (the Database Manager uses these settings when displaying data files).

 The .ENV file is compatible with the .INI files used by Clarion for DOS (both versions 3 and 3.1) if
the CLACHARSET is set to OEM, because Clarion for DOS .INI files are generally written using
OEM ASCII, not the ANSI character set.

The LOCALE procedure can be used to load environment files at run-time to dynamically change
the international settings. LOCALE can also be used to set individual entries. International
support is dependent on support in the File Driver (generally for the OEM attribute); consult the
File Driver documentation for information on international support in specific drivers.

The following settings can be set in an environment file:

CLASYSTEMCHARSET=WINDOWS
CLASYSTEMCHARSET="charset"

Specifies the value of the system charset. If parameter is not set or it is set to
WINDOWS, the system charset is equivalent to CHARSET:ANSI. Setting this in the
.ENV file is equavalent to setting the property SYSTEM{PROP:CharSet}.

CLACHARSET=WINDOWS
CLACHARSET=OEM

This determines the character set used by the entries in the .ENV file. WINDOWS is
the default if this setting is omitted from the environment file. Use the OEM setting if
you are using a DOS editor to edit the .ENV file, or if it has to be compatible with
Clarion for DOS. Otherwise, specify WINDOWS or omit the entry. This should
always be the first setting in the environment file.

CLACOLSEQ=WINDOWS
CLACOLSEQ="string"

Specifies a specific collating sequence for use at run-time. This collating sequence is
used for building KEY and INDEX files, as well as for sorting QUEUEs and all
string/character comparisons.

If the WINDOWS setting is used, then the default collation sequence is defined by
Windows' Country setting (in the Control Panel). If this entry is omitted from the
environment file, then the default ANSI ordering is used, not the windows default.

Using the WINDOWS setting, the ordering can 'interleave' characters of differing
case (AaBbCc ...), so code such as

Language Reference Manual 210

CASE SomeString[1]
OF 'A' TO 'Z'

includes 'a' TO 'y' as well. Use the ISUPPER and ISLOWER procedures in
preference to this kind of code if WINDOWS (or other non-default) collation
sequences are used.

In addition to the WINDOWS setting, you may specify a string of characters (in
double quotes) to explicitly define the collation sequence to use. Only those
characters that need to have their sort order specified need be included; all other
characters not listed remain in their same relative order. For example, if
CLACOLSEQ="CA" is specified for the standard English sort (ABCD ...) the resulting
sort order is "CBAD." This is a change from the Clarion for DOS versions of this
setting that needed exactly 222 characters, but it is backward compatible.

NOTE: You should always read and write files using the same collation
sequence. Using a different sequence may result in keys becoming out of order and
records becoming inaccessible. Specifying CLACOLSEQ=WINDOWS means that the
collation sequence may change if the user changes the Country in Windows' Control
Panel. If the collation sequence changes, use BUILD to rebuild the keys in your data
files.

CLAAMPM=WINDOWS
CLAAMPM="AMstring","PMstring"

This specifies the text used to indicate AM or PM as a part of a time display field. The
WINDOWS setting specifies use of the AM/PM strings set up in the Windows Control
Panel. The AMstring and PMstring settings are the same as in Clarion for DOS,
except that they take notice of the setting of CLACHARSET.

CLAMONTH="Month1","Month2", ... ,"Month12"
Specifies the text returned by procedures and picture formats involving the month full
name.

CLAMON="AbbrevMonth1","AbbrevMonth2", ... ,"AbbrevMonth12"
Specifies the text returned by procedures and picture formats involving the
abbreviated month name.

CLADIGRAPH="DigraphChar1Char2, ... "
This allows Digraph characters to collate correctly. A Digraph is a single logical
character that is a combination of two characters (Char1 and Char2). The Digraph is
collated as the two characters that combine to create it. They are more common in
non-English languages. For example, with CLADIGRAPH="ÆAe,æae" specified, the
word "Jæger" sorts before "Jager" (since "Jae" comes before "Jag").Multiple
DigraphChar1Char2 combinations may be defined, separated by commas. This
setting takes notice of the CLACHARSET setting.

4 – Entity Declarations 211

CLACASE=WINDOWS
CLACASE="UpperString","LowerString"

Allows you to specify upper and lower case letter pairs.

The WINDOWS setting uses the default upper/lower case pair sets as defined by the
Windows Country setting (in the Control Panel). If this entry is omitted from the
environment file, then the default ANSI ordering is used, not the windows default.

The UpperString and LowerString parameters specify a set of uppercase characters
and each one's lowercase equivalent. The length of the UpperString and LowerString
parameters must be equal. CLACASE takes notice of the setting of CLACHARSET.
ANSI characters less than 127 are not affected.

CLABUTTON="OK","&Yes","&No","&Abort","&Retry","&Ignore",Cancel","&Help"
This defines the text used by the buttons of the MESSAGE procedure. The text is
specified as a list of comma separated strings in the following order: OK, YES, NO,
ABORT, RETRY, IGNORE, CANCEL, HELP. The default is as specified above.

CLAMSGerrornumber="ErrorMessage"
This allows run-time error messages to be overridden with translated strings. The
errornumber is a standard Clarion error code number appended to CLAMSG.
ErrorMessage is the string value used to replace that error number's default
message. For example, CLAMSG2="No File Found" makes "No File Found" the
return value of the ERROR() procedure when ERRORCODE() = 2.

CLALFN=OFF
This disables use of long filenames in the program.

Example:
CLACHARSET=WINDOWS
CLACOLSEQ="AÄÅÆaàáâäåæBbCÇcçDdEÉeèéêëFfGgHhIiìíîïJjKkLlMmNÑnñOÖoòóôöPpQqRrSsßTtUÜuùúûüVvWwXxYyZzÿ"

CLAAMPM="AM","PM"
CLAMONTH="January","February","March","April","May","June","July","August","Sep
,"October","November","December"
CLAMON="Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
CLADIGRAPH="ÆAe,æae"
CLACASE="ÄÅÆÇÉÑÖÜ","äåæçéñòü"
CLABUTTON="OK","&Si","&No","&Abortar","&Volveratratar","&Ignora","Cancelar","&Ayuda"
CLAMSG2="No File Found"

Language Reference Manual 212

View Structures

VIEW (declare a "virtual" file)

label VIEW(primary file) [,FILTER()] [,ORDER()]

 [PROJECT()]

 [JOIN()

 [PROJECT()]

 [JOIN()

 [PROJECT()]

 END]

 END]

 END

VIEW Declares a "virtual" file as a composite of related files.

label The name of the VIEW.

primary file The label of the primary FILE of the VIEW.

FILTER Declares an expression used to filter valid records for the VIEW (PROP:FILTER).

ORDER Declares an expression or list of expressions used to define the sorted order of
records for the VIEW (PROP:ORDER or PROP:SQLOrder).

PROJECT Specifies the fields from the primary file, or the secondary related file specified by
a JOIN structure, that the VIEW will retrieve. If omitted, all fields from the file are
retrieved.

JOIN Declares a secondary related file.

VIEW declares a "virtual" file as a composite of related data files. The data elements declared in
a VIEW do not physically exist in the VIEW, because the VIEW structure is a logical construct.
VIEW is a separate method of addressing data physically residing in multiple, related FILE
structures. At run-time, the VIEW structure is not assigned memory for a data buffer, so the fields
used in the VIEW are placed in their respective FILE structure's record buffer.

A VIEW structure must be explicitly OPENed before use, and all primary and secondary related
files used in the VIEW must have been previously OPENed.

4 – Entity Declarations 213

Either a SET statement on the VIEW's primary file before the OPEN(view), or a SET(view)
statement after the OPEN(view), must be issued to set the VIEW's processing order and starting
point, then NEXT(view) or PREVIOUS(view) allow sequential access to the VIEW.

The VIEW data structure is designed for sequential access, but also allows random access using
the REGET statement. The REGET statement is also available for VIEW, but only to specify the
primary and secondary related file records that should be current in their respective record buffers
after the VIEW is CLOSEd. If no REGET statement is issued immediately before the
CLOSE(view) statement, the primary and secondary related file record buffers are set to no
current record.

The processing sequence of the primary and secondary related files is undefined after the VIEW
is CLOSEd. Therefore, SET or RESET must be used to establish sequential file processing
order, if necessary, after closing the VIEW.

The VIEW data structure is designed to facilitate database access on client-server systems. It
accomplishes two relational operations at once: the relational "Join" and "Project" operations. On
client-server systems, these operations are performed on the file server, and only the result of the
operation is sent to the client. This can dramatically improve performance of network applications.

A relational "Join" retrieves data from multiple files, based upon the relationships defined between
the files. The JOIN structure in a VIEW structure defines the relational "Join" operation. There
may be multiple JOIN structures within a VIEW, and they may be nested within each other to
perform multiple-level "Join" operations. The VIEW structure defaults to a "left outer join," where
all records for the VIEW's primary file are retrieved whether the secondary file named in a JOIN
structure contains any related records or not. The secondary file fields are implicitly CLEARed
(zero or blank) for those primary file records without related secondary records. You can override
the default left outer join by specifying the INNER attribute on the JOIN (creating an "inner join")
so that only those primary file records with related secondary file records are retrieved.

A relational "Project" operation retrieves only specified data elements from the files involved, not
their entire record structure. Only those fields explicitly declared in PROJECT statements in the
VIEW structure are retrieved if there are any PROJECT statements declared. Therefore, the
relational "Project" operation is automatically implemented by the VIEW structure. The contents of
any fields that are not contained in PROJECT statements are undefined.

The FILTER attribute restricts the VIEW to a sub-set of records. The FILTER expression may
include any of the fields explicitly declared in the VIEW structure and restrict the VIEW based
upon the contents of any of the fields. This makes the FILTER operate across all levels of the
"Join" operation.

NOTE:

VIEWs have no THREAD attribute by syntax, but VIEWs declared in the local scope of a
PROCEDURE or ROUTINE are treated as threaded. A VIEW declared in the global or
module scope is treated as threaded if at least one joined FILE is threaded.

Language Reference Manual 214

Related Procedures: BUFFER, CLOSE, FLUSH, OPEN, RECORDS, DELETE, HOLD, NEXT,
POSITION, PREVIOUS, PUT, RELEASE, REGET, RESET, SET, SKIP, WATCH

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

END

Header FILE,DRIVER('Clarion'),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

END
END

Detail FILE,DRIVER('Clarion'),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

END
END

Product FILE,DRIVER('Clarion'),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20)
Price DECIMAL(9,2)

END
END

4 – Entity Declarations 215

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END

END
END

END

See Also:

JOIN

PROJECT

Language Reference Manual 216

PROJECT (set view fields)

 PROJECT(fields)

PROJECT Declares the fields retrieved for the VIEW.

fields A comma delimited list of fields (including prefixes) from the primary file of the
VIEW, or the secondary related file named in the JOIN structure, containing the
PROJECT declaration.

The PROJECT statement declares fields retrieved for a relational "Project" operation. A relational
"Project" operation retrieves only the specified fields from the file, not the entire record structure.

A PROJECT statement may be declared in the VIEW, or within one of its component JOIN
structures. If there is no PROJECT declaration in the VIEW or JOIN structure, all fields in the
relevant file are retrieved.

If a PROJECT statement is present in the VIEW or JOIN structure only the fields explicitly
declared in the PROJECT are guaranteed to be retrieved. The contents of any fields that are not
contained in PROJECT statements are undefined. Depending on the abilites of the particular
database engine you are using, other fields may be retrieved. However, you should not rely on
this as future changes or changes in the database driver may preclude these fields from being
retrieved.

Example:
Detail FILE,DRIVER('Clarion'),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT
Description STRING(20) !Line item comment

END
END

Product FILE,DRIVER('Clarion'),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20) !Product description
Price DECIMAL(9,2)

END
END

ViewOrder VIEW(Detail)
PROJECT(Det:OrderNumber,Det:Item,Det:Description)
JOIN(Pro:ItemKey,Det:Item)
PROJECT(Pro:Description,Pro:Price)

END
END

4 – Entity Declarations 217

JOIN (declare a "join" operation)

 JOIN(| secondary key ,linking fields |) [, INNER]

 | secondary file ,expression |

 [PROJECT()]

 [JOIN()

 [PROJECT()]

 END]

 END

JOIN Declares a secondary file for a relational "Join" operation.

secondary key The label of a KEY which defines the secondary FILE and its access key.

linking fields A comma-delimited list of fields in the related file that contain the values the
secondary key uses to get records.

secondary file The label of the secondary FILE.

expression A string constant containing a single logical expression for joining the files
(PROP:JoinExpression or PROP:SQLJoinExpression). This expression may
include any of the logical and Boolean operators.

INNER Specifies an "inner join" instead of the default "left outer join"--the only records
retrieved from the VIEW's primary file parent are those with at least one related
record in the JOIN's secondary file.

PROJECT Specifies the fields from the secondary related file specified by a JOIN structure
that the VIEW will retrieve. If omitted, all fields from the file are retrieved.

The JOIN structure declares a secondary file for a relational "Join" operation. A relational "Join"
retrieves data from multiple files, based upon the relationships defined between the files. There
may be multiple JOIN structures within a VIEW, and they may be nested within each other to
perform multiple-level "Join" operations.

The secondary key defines the access key for the secondary file. The linking fields name the
fields in the file to which the secondary file is related, that contain the values used to retrieve the
related records. For a JOIN directly within the VIEW, these fields come from the VIEW's primary
file. For a JOIN nested within another JOIN, these fields come from the secondary file of the JOIN
in which it is nested. Non-linking fields in the secondary key are allowed as long as they appear in
the list of the key's component fields after all the linking fields.

Language Reference Manual 218

When data is retrieved, if there are no matching secondary file records for a primary file record,
blank or zero values are supplied in the fields specified in the PROJECT. This type of relational
"Join" operation is known as a "left outer join."

The expression parameter allows you to join files which contain related fields but no keys defined
for the relationship. PROP:JoinExpression and PROP:SQLJoinExpression are array properties
whose the array element number references the ordinal position of the JOIN in the VIEW to
affect. PROP:SQLJoinExpression is an SQL-only version of PROP:JoinExpression. If the first
character of the expression assigned to PROP:JoinExpression or PROP:SQLJoinExpression is a
plus sign (+) the new expression is concatenated to the existing join expression.

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)

END
END

Header FILE,DRIVER('Clarion'),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:AcctNumber,Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Total DECIMAL(11,2) !Total cash paid
Discount DECIMAL(11,2) !Discount amount given
OrderDate LONG

END
END

Detail FILE,DRIVER('Clarion'),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:AcctNumber,Dtl:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Item LONG
Quantity SHORT

END
END

4 – Entity Declarations 219

Product FILE,DRIVER('Clarion'),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20)
Price DECIMAL(9,2)

END
END

ViewOrder1 VIEW(Header) !Declare VIEW structure
PROJECT(Hea:AcctNumber,Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:AcctNumber,Hea:OrderNumber) !Join Detail file
PROJECT(Dtl:ItemDtl:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END

END

ViewOrder2 VIEW(Customer) !Declare VIEW structure
JOIN(Header,'Cus:AcctNumber = Hea:AcctNumber AND ' & |

' (Hea:Discount + Hea:Total) * .1 > Hea:Discount')
PROJECT(Hea:AcctNumber,Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:AcctNumber,Hea:OrderNumber) !Join Detail file
PROJECT(Dtl:ItemDtl:Quantity)
END

END

See Also:

INNER

Language Reference Manual 220

Queue Structures

QUEUE (declare a memory QUEUE structure)

label QUEUE([group]) [,PRE] [,STATIC] [,THREAD] [,TYPE] [,BINDABLE] [,EXTERNAL] [,DLL]

fieldlabel variable [,NAME()]

 END

QUEUE Declares a memory queue structure.

label The name of the QUEUE.

group The label of a previously declared GROUP or QUEUE structure from which it will
inherit its structure. This may be a GROUP or QUEUE with or without the TYPE
attribute.

PRE Declare a fieldlabel prefix for the structure.

STATIC Declares a QUEUE, local to a PROCEDURE, whose buffer is allocated in static
memory.

THREAD Specify memory for the queue is allocated once for each execution thread. This
implies the STATIC attribute on Procedure Local data.

TYPE Specify the QUEUE is just a type definition for other QUEUE declarations.

BINDABLE Specify all variables in the queue may be used in dynamic expressions.

EXTERNAL Specify the QUEUE is defined, and its memory is allocated, in an external library.

DLL Specify the QUEUE is defined in a .DLL. This is required in addition to the
EXTERNAL attribute.

fieldlabel The name of the variables in the queue.

variable Data declaration. The sum of the memory required for all declared variables in
the QUEUE must not be greater than 4MB.

QUEUE declares a memory QUEUE structure. The label of the QUEUE structure is used in
queue processing statements and procedures. When used in assignment statements,
expressions, or parameter lists, a QUEUE is treated like a GROUP data type.

The structure of a QUEUE declared with the group parameter begins with the same structure as
the named group; the QUEUE inherits the fields of the named group. The QUEUE may also
contain its own declarations that follow the inherited fields. If the QUEUE will not contain any
other fields, the name of the group from which it inherits may be used as the data type without the
QUEUE or END keywords.

4 – Entity Declarations 221

A QUEUE may be thought of as a "memory file" internally implemented as a "dynamic array" of
QUEUE entries. When a QUEUE is declared, a data buffer is allocated (just as with a file). Each
entry in the QUEUE is run-length compressed during an ADD or PUT to occupy as little memory
as necessary, and de-compressed during GET. There is an 8 byte per-entry overhead for queues
with uncompressed records, and 12 bytes per entry for queues with compressed records.

The data buffer for a Procedure local QUEUE (declared in the data section of a PROCEDURE) is
allocated on the stack (unless it has the STATIC attribute or is too large). The memory allocated
to the entries in a procedure-local QUEUE without the STATIC attribute is allocated only until you
FREE the QUEUE, or you RETURN from the PROCEDURE--the QUEUE is automatically FREEd
upon RETURN.

For a Global data, Module data, or Local data QUEUE with the STATIC attribute, the data buffer
is allocated static memory and the data in the buffer is persistent between procedure calls. The
memory allocated to the entries in the QUEUE remains allocated until you FREE the QUEUE.

The variables in the QUEUE's data buffer are not automatically initialized to any value, they must
be explicitly assigned values. Do not assume that they contain blanks or zero before your
program's first assignment to them.

As entries are added to the QUEUE, memory for the entry is dynamically allocated then the data
copied from the buffer to the entry and compressed. As entries are deleted from the QUEUE, the
memory used by the deleted entry is freed. The maximum number of entries in a QUEUE is
theoretically 2^26 (67,108,864), but is actually dependant upon available virtual memory. The
actual memory used by each entry in the QUEUE is dependent on the data compression ratio
achieved by the runtime library.

A QUEUE with the BINDABLE attribute makes all the variables within the QUEUE available for
use in a dynamic expression, without requiring a separate BIND statement for each (allowing
BIND(queue) to enable all the fields in the queue). The contents of each variable's NAME
attribute is the logical name used in the dynamic expression. If no NAME attribute is present, the
label of the variable (including prefix) is used. Space is allocated in the .EXE for the names of all
of the variables in the structure. This creates a larger program that uses more memory than it
normally would. Therefore, the BINDABLE attribute should only be used when a large proportion
of the constituent fields are going to be used.

A QUEUE with the TYPE attribute is not allocated any memory; it is only a type definition for
QUEUEs that are passed as parameters to PROCEDUREs. This allows the receiving procedure
to directly address component fields in the passed QUEUE. The parameter declaration on the
PROCEDURE statement instantiates a local prefix for the passed QUEUE as it names the
passed QUEUE for the procedure. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used in the type
declaration) to directly address component fields of the QUEUE actually passed as the
parameter.

Language Reference Manual 222

The WHAT and WHERE procedures allow access to the fields by their relative position within the
QUEUE structure.

Related Procedures:

ADD, CHANGES, DELETE, FREE, GET, POINTER,
POSITION
PUT, RECORDS, SORT

See Also:
PRE
STATIC
NAME
FREE
THREAD
WHAT
WHERE

Example:
NameQue QUEUE,PRE(Nam) !Declare a queue
Name STRING(20)
Zip DECIMAL(5,0),NAME('SortField')

END !End queue structure

NameQue2 QUEUE(NameQue),PRE(Nam2) !Queue that inherits Name and Zip fields
Phone STRING(10) ! and adds a Phone field

END

NameQue3 NameQue2 !Declare a second QUEUE with exactly
! the same structure as NameQue2

4 – Entity Declarations 223

Additional QUEUE Considerations

This topic expands on important issues in understanding how supported processing
statements and optional parameters can affect a QUEUE.

ADD, GET, PUT to a QUEUE by KEY

There are three (3) forms of the QUEUE key parameter: sequence, name and function.
Each one is described as follows:

sequence [±]key1[,[±]key2...]

A list of up to 16 labels of QUEUE fields, separated by commas and with an optional + or
- sign preceding the label. If the key component is specified with -, it is used in
descending order. Reference field types (including ANY) and arrays are not permitted.

name

A string constant, variable or expression. Its value must contain a list of up to 16 NAME
attributes of QUEUE fields with an optional leading + or - sign, separated with commas. If
the key component is specified with -, it is used in descending order. Reference field
types (including ANY) and arrays are not permitted.

When comparing two keys using one of the two forms above, the keys are considered
equal if all key components are equal.

A key is considered greater than another key, if its nth key component is greater than the
second key, and the extra component defined is in ascending order (with all other key
components being equal.)

Finally, a key is considered less than another key if its nth key component is greater than
the second key, and the extra component defined is in descending order (with all other
key components being equal.)

There is also a third form of KEY types regarding QUEUES:

function

The label of the function containing two parameters of a *GROUP or named GROUP
passed by address, and having a SIGNED return value. Both parameters must use the
same parameter type, and cannot be omitted. The RAW, C and PASCAL attributes are
not permitted in the prototype declaration.

Language Reference Manual 224

The first parameter of the FUNCTION is the target parameter, or record that is about to
be acted on. The second parameter is a comparison value, used to determine the
position where the first parameter is to be placed or retrieved.

Using ADD, PUT or GET by FUNCTION will read or write from a positional value
returned by the function.

If the function returns zero (0) the queue record of the first parameter is treated as equal
to the second. In this case, no record is ADDed or PUT, since the values are equal.

If the function returns a negative value, the ADD or PUT of the record passed as a first
parameter is treated as having less value than record passed as second parameter and
is written accordingly.

If the function returns a positive value, the ADD or PUT of the record passed as a first
parameter is treated as having a greater value than record passed as second parameter
and is written accordingly.

4 – Entity Declarations 225

Using Multiple Sort Orders

The following topic describes the internal paradigm regarding QUEUEs with multiple sort
orders.

Prior to Clarion 5, it was possible to use the GET(Queue,Key) form to obtain a POINTER
to the first or last record in a range.

For example:

Q QUEUE
A LONG
B STRING(20)

END

CODE
...
SORT(Q, Q.A, Q.B) !sort the queue in a,b sequence
Q.A = 1 !set to the first record
CLEAR (Q.B) !clear secondary field to make sure
GET (Q, Q.A) !GET to first record
first# = POINTER(Q) !GET fails, but stores the POINTER

!where record would have existed
Q.A = 5 !set to the last record or beyond
CLEAR (Q.B) !again, clear secondary sort field
GET (Q, Q.A) !GET will fail
last# = POINTER(Q)-1 !and returns where new record will be

After this code executes, first# contains a pointer to the first record of the Q.A field in a
range (in this example range is 1 through 4), and last# contains a pointer to the last
record with value of Q.A within this range.

This technique is not possible for queues with multiple sort orders. Even if one set of key
components is a subset of another one, sort orders based on them are handled
separately.

Hence, if the program uses a partial key seed value in the GET(Queue,Key) statement,
the queue logic must build the sort order based on specified key if it does not exist, and
perform the GET operation using this sort order. In other words, the GET never fails.

Sort orders based on "full" and "partial" keys can be different because of queue rules:
ADD adds a new record after all other records with the same key, and PUT updates an
existing record after all other records with the same key. The new POSITION(Queue)
function implements the behavior that an attempted GET on a partial key value used to
have.

Language Reference Manual 226

In Clarion 6, every active QUEUE can have up to 16 sort orders that exist in memory
simultaneously.

For the purpose of this topic, sort orders not defined as the current active sort, but exist in
memory by prior QUEUE actions (described later), are defined as a memory key.

All memory keys share the same queue of records, but each one orders the records
according to the key that it is based on.

At any point in time during the life of the queue, one of the memory keys is the "default".
The default memory key is the one that a SORT has been performed on most recently. If
no SORT has been executed, the default memory key can be either unsorted, or sorted
by the ADD(key) or PUT(key) methods ("sorting as you go")

The unsorted key is often used for non-keyed operations (i.e., POINTER()).

FREE() removes all memory keys.

The memory key based on the last key used in the keyed ADD, GET, PUT, or a SORT
statement is called the active key. It is considered active while this particular statement
is executing. If the active key did not exist before the keyed statement, it is created by
taking the initial sequence of records defined by the default sort order, and is resorted
using the new memory key.

SORT makes the active key the default. For example, if the active key existed before the
SORT, no resorting is performed, because it doesn’t need to.

GET(Queue,Key) retrieves the first record using the active key’s (Key parameter) sort
order that matches current content of the queue buffer. If no records can be found, the
buffer is not changed and value of next call to POINTER() is undefined.

GET(Queue,Pointer) retrieves record with the relative position equal to the Pointer
position in the default memory key.

ADD and PUT work differently for default key and all other memory keys. All memory
keys that are not the default are updated using their key values always, even for non-
keyed operations. Hence, their current sort is always correct.

For the original sort order, the situation is a little more complex. Here, the traditional rules
are in effect:

PUT(Queue):

Writes the record back to the same relative position in the original sort order as the GET
or ADD retrieved it. If the original sort order was modified since the last GET or ADD, it is
marked as unsorted.

4 – Entity Declarations 227

PUT(Queue,Pointer):

If the passed Pointer is equal to relative position in the original sort order of the record
that has been retrieved by GET or ADD, the statement is equivalent to PUT(queue).
Otherwise, the record is removed from its old position in the original sort order and is
added to the one specified by the new pointer value. If the original sort order becomes
broken after that, it is marked as unsorted.

PUT(Queue,Key)

If Key is a key that the original sort order is based on, and the key value is not changed,
PUT updates the record value in original sort order. If the key value is changed, the
record's value is removed from its old position and added to a new one, based on the
new key value. The original sort order always remains unbroken in this case.

If Key is not a key that the original sort order is based on, the original sort order is marked
as unsorted, the record's entry is removed from its old position, and a new one added
immediately before the first record it finds with the key value based on Key.

Because the search algorithm is based on the history of work with this queue and its
memory keys, it is impossible to say where the new position be be. Use the POINTER()
function to return it.

ADD(Queue)

Equivalent to ADD(Queue,RECORDS(Queue)+1)

ADD(Queue,Pointer)

The record in the queue buffer is added to given relative position in the original sort order.
If the original sort order becomes broken after that, it is marked as unsorted.

ADD(Queue,Key)

The record in the queue buffer is added immediately before first record in the original sort
order that has greater key value, or, to the end of the sort order if records with greater
key value are not found. If Key is a key that the original sort order is based on, this is the
correct position and the default sort order remains unbroken. Otherwise, it is marked as
unsorted. Similar to using PUT on another key value, the position of the added record is
unknown if the default sort order is not based on the Key.

Language Reference Manual 228

Example 1:

Q QUEUE
A LONG
B LONG

END

CODE
FREE(Q)
Q.A = 1
Q.B = 5
ADD(Q, Q.A)

There is only one sort order based on the (Q.A) key; it is the active memory key

SORT (Q, Q.A, Q.B)

Now, there are two sort orders that exist, based on a (Q.A) and (Q.A,Q.B) keys. The
latter key is now the active memory key.

The order of records is now:

(Q.A): (1, 5)

(Q.A,Q.B) (1, 5)

If we now execute:

Q.A = 1
Q.B = 1
ADD (Q, Q.A, Q.B)

The order of records is now:

(Q.A): (1, 5) (1, 1)

(Q.A,Q.B): (1, 1) (1, 5)

Executing the statement:

GET(Q, Q.A)

Retrieves the (1, 5) record, because it is the first record matching the key value in the
current queue buffer based on (Q.A).

4 – Entity Declarations 229

Example 2:

Q QUEUE
A LONG
B LONG

END

CODE

FREE(Q)
Q.A = 1
Q.B = 5
ADD (Q)

There is one original sort order; and it is the active key.

SORT (Q, Q.A, Q.B)

Now, there is one sort order here based on the (Q.A,Q.B) key. It is now the new active
key.

The current order of records is:

(Q.A,Q.B) (1, 5)

After executing the following:

Q.A = 1
Q.B = 1
ADD (Q, Q.A, Q.B)

The new order of records becomes:

(Q.A,Q.B) (1, 1) (1, 5)

Executing:

GET (Q, Q.A)

The sort order based on (Q.A) does not exist. Hence, it is created as a new sequence of
records in default order resorted with the (Q.A) key.

The memory keys after this GET:

(Q.A) (1, 1) (1, 5)

(Q.A,Q.B) (1, 1) (1, 5)

The GET retrieves the (1, 1) record because it is the first record with the keyvalue that
matches the current queue buffer based on (Q.A).

Language Reference Manual 230

5 – Declaration Attributes 231

5 - Declaration Attributes
Variable and Entity Attributes

AUTO (uninitialized local variable)

 AUTO

The AUTO attribute allows a variable, declared within a PROCEDURE, to be allocated
uninitialized stack memory. Without the AUTO attribute, a numeric variable is initialized to zero
and a string variable is initialized to all blanks when its memory is assigned at run-time.

The AUTO attribute is used when you do not need to rely on an initial blank or zero value
because you intend to assign some other value to the variable. This saves a small amount of run-
time memory by eliminating the internal code necessary to perform the automatic initialization for
the variable.

Example:
SomeProc PROCEDURE
SaveCustID LONG,AUTO !Non-initialized local variable

See Also:

Data Declarations and Memory Allocation

Language Reference Manual 232

BINARY (memo contains binary data)

 BINARY

The BINARY attribute (PROP:BINARY) of a MEMO or BLOB declaration specifies the MEMO or
BLOB will receive data that is not just ASCII characters. This attribute is normally used to store
graphic images for display in an IMAGE field on screen. OEM conversion is not applied to MEMO
or BLOB fields with the BINARY attribute. Some file drivers (Clarion, Btrieve, xBase) assume that
the data in a BINARY MEMO or BLOB field is zero-padded, while non-BINARY data is space-
padded.

Example:
Names FILE,DRIVER('Clarion'),PRE(Nam)
NbrKey KEY(Nam:Number)
Picture MEMO(48000),BINARY !Binary memo - 48,000 bytes
Rec RECORD
Number SHORT

END
END

See Also:

MEMO

BLOB

IMAGE

OEM

5 – Declaration Attributes 233

BINDABLE (set runtime expression string variables)

 BINDABLE

The BINDABLE attribute declares a GROUP, QUEUE, FILE, or VIEW whose constituent
variables are all available for use in a runtime expression string. The contents of each variable's
NAME attribute is the logical name used in the dynamic expression. If no NAME attribute is
present, the label of the variable (including prefix) is used. Space is allocated in the .EXE for the
names of all of the variables in the structure. This creates a larger program that uses more
memory than it normally would. Therefore, the BINDABLE attribute should only be used when a
large proportion of the constituent fields are going to be used.

The BIND(group) form of the BIND statement must still be used in the executable code before the
individual fields in the QUEUE structure may be used.

Example:
Names QUEUE,BINDABLE !Bindable Record structure
Name STRING(20)
FileName STRING(8),NAME('FName') !Dynamic name: FName
Dot STRING(1) !Dynamic name: Dot
Extension STRING(3),NAME('EXT') !Dynamic name: EXT

END
CODE
BIND(Names)

Names FILE,DRIVER('Clarion'),BINDABLE !Bindable Record structure
Record RECORD
Name STRING(20)
FileName STRING(8),NAME('FName') !Dynamic name: FName
Dot STRING(1) !Dynamic name: Dot
Extension STRING(3),NAME('EXT') !Dynamic name: EXT

END
END

CODE
OPEN(Names)
BIND(Names)

FileNames GROUP,BINDABLE !Bindable group
FileName STRING(8),NAME('FILE') !Dynamic name: FILE
Dot STRING('.') !Dynamic name: Dot
Extension STRING(3),NAME('EXT') !Dynamic name: EXT

END

See Also: BIND, UNBIND, EVALUATE

Language Reference Manual 234

CREATE (allow data file creation)

 CREATE

The CREATE attribute (PROP:CREATE) of a FILE declaration allows a disk file to be created by
the CREATE statement from within the PROGRAM where the FILE is declared. This adds some
overhead, as all the file information must be contained in the excutable program.

Example:
Names FILE,DRIVER('Clarion'),CREATE !Declare a file, allow create
Rec RECORD
Name STRING(20)

END
END

5 – Declaration Attributes 235

DIM (set array dimensions)

 DIM(dimension,...,dimension)

DIM Declares a variable as an array.

dimension A positive numeric constant which specifies the number of elements in this
dimension of the array.

The DIM attribute declares a variable as an array. The variable is repeated the number of times
specified by the dimension parameters. Multi-dimensional arrays may be thought of as nested.
Each dimension in the array has a corresponding subscript. Therefore, referencing a variable in a
three dimensional array requires three subscripts. There is no limit to the number of dimensions;
however, the total size of an array is unlimited. Zero or negative array elements are invalid.

Subscripts identify which element of the array is being referenced. A subscript list contains a
subscript for each dimension of the array. Each subscript is separated by a comma and the entire
list is enclosed in brackets ([]). A subscript may be a numeric constant, expression, or function.
The entire array may be referenced by the label of the array without a subscript list.

A GROUP structure array is a special case. Each level of nesting adds subscripts to the GROUP.
Data declared within the GROUP is referenced using standard Field Qualification syntax with
each subscript specified at the GROUP level at which it is dimensioned.

Language Reference Manual 236

Example:

Scr GROUP !Characters on a DOS text-mode screen
Row GROUP,DIM(25) !Twenty-five rows
Pos GROUP,DIM(80) !Two thousand positions
Attr BYTE !Attribute byte
Char BYTE !Character byte

END !Terminate the group structures
END

END
! In the group above:
! Scr is a 4,000 byte GROUP
! Scr.Row is a 4,000 byte GROUP
! Scr.Row[1] is a 160 byte GROUP
! Scr.Row[1].Pos is a 160 byte GROUP
! Scr.Row[1].Pos[1] is a 2 byte GROUP
! Scr.Row[1].Pos[1].Attr is a single BYTE
! Scr.Row[1].Pos[1].Char is a single BYTE

Month STRING(10),DIM(12) !Dimension the month to 12
CODE
CLEAR(Month) !Assign blanks to the entire array
Month[1] = 'January' !Load the months into the array
Month[2] = 'February'
Month[3] = 'March'

See Also:

MAXIMUM

Prototype Parameter Lists (Passing Arrays)

5 – Declaration Attributes 237

DLL (set variable defined externally in .DLL)

 DLL([flag])

DLL Declares a variable, FILE, QUEUE, GROUP, or CLASS defined externally in a
.DLL.

flag A numeric constant, equate, or Project system define which specifies the
attribute as active or not. If the flag is zero, the attribute is not active, just as if it
were not present. If the flag is any value other than zero, the attribute is active.

The DLL attribute specifies that the declaration (this may any variable declaration, or a FILE,
QUEUE, GROUP, or CLASS structure) on which it is placed is defined in a .DLL. A declaration
with DLL attribute must also have the EXTERNAL attribute. The DLL attribute is required for 32-
bit applications because .DLLs are relocatable in a 32-bit flat address space, which requires one
extra dereference by the compiler to address the variable. The DLL attribute is not valid on
variables declared within FILE, QUEUE, CLASS, or GROUP structures.

The declarations in all libraries (or .EXEs) must be EXACTLY the same (with the appropriate
addition of the EXTERNAL and DLL attributes). If they are not exactly the same, data corruption
could occur. Any incompatibilities between libraries cannot be detected by the compiler or linker,
therefore it is the programmer's responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL on declarations shared by .DLLs and .EXE, only one .DLL
should define the variable, FILE, CLASS, or QUEUE without the EXTERNAL and DLL attributes.
All the other .DLLs (and the .EXE) should declare the variable, FILE, CLASS, or QUEUE with the
EXTERNAL and DLL attributes. This ensures that there is only one memory allocation for the
variable, FILE, CLASS, or QUEUE and all the .DLLs and the .EXE will reference the same
memory when referring to that variable, FILE, or QUEUE.

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same
variables would have one .DLL containing the actual data definition that only contains FILE and
global variable definitions that are shared among all (or most) of the .DLLs and .EXEs. This
makes one central library in which the actual file definitions are maintained. This one central .DLL
is linked into all .EXEs that use those common files. All other .DLLs and/or .EXEs in the system
would declare the common variables with the EXTERNAL and DLL attributes.

There is a pre-defined flag used by the IDE Project System and the Application Generator.

 ABCDllMode Used by the ABC template chain on all CLASS definitions to indicate that
the CLASS is declared in an external .DLL. A project DEFINE is used to
toggle the DLL mode.

Language Reference Manual 238

Example:

TotalCount LONG,EXTERNAL,DLL(dll_mode) !A variable declared in an external .DLL
Cust FILE,PRE(Cus),EXTERNAL(''),DLL(1) !File defined in PROGRAM module of a .DLL
CustKey KEY(Cus:Name)
Record RECORD
Name STRING(20)

END
END

DLLQueue QUEUE,PRE(Que),EXTERNAL,DLL(1) !A queue declared in an external .DLL
TotalCount LONG

END

EditEntryClass CLASS(EditClass),TYPE,MODULE('ABEIP.CLW'),LINK('ABEIP.CLW',|
ABCLinkMode),DLL(_ABCDllMode_)
CreateControl PROCEDURE,VIRTUAL,PROTECTED

END

See Also:

EXTERNAL

5 – Declaration Attributes 239

DRIVER (specify data file type)

 DRIVER(filetype [,driver string])

DRIVER Specifies the file system the file uses.

filetype A string constant containing the name of the file manager (Btrieve, Clarion, etc.).

driver string A string constant or variable containing any additional instructions to the file
driver. All the valid values for this parameter are listed in each file driver's
documentation.

The DRIVER attribute (PROP:DRIVER) specifies which file driver is used to access the data file.
DRIVER is a required attribute of all FILE declarations.

Clarion programs use file drivers for physical file access. A file driver acts as a translator between
a Clarion program and the file system, eliminating different access commands for each file
system. File drivers allow access to files from different file systems without changes in the Clarion
syntax.

The specific implementation method of each Clarion file access command is dependent on the
file driver. Some commands may not be available in a file driver due to limitations in the file
system. Each file driver is documented in the User's Guide. Any unsupported file access
commands, FILE declaration attributes, data types, and/or file system idiosyncracies are listed
there.

If the file is declared without the THREAD attribute, the driver string variable (PROP:DriverString)
used with the DRIVER attribute should also be declared without the THREAD atttibute.

Example:
Names FILE,DRIVER('Clarion') !Begin file declaration
Record RECORD
Name STRING(20)

END
END

Language Reference Manual 240

DUP (allow duplicate KEY entries)

 DUP

The DUP attribute (PROP:DUP) of a KEY declaration allows multiple records with the same key
values to occur in a FILE. If the DUP attribute is omitted, attempting to ADD or PUT records with
duplicate key values will generate the "Creates Duplicate Key" error, and the record will not be
written to the file. During sequential processing using the KEY, records with duplicate key values
are accessed in the physical order their entries appear in the KEY. The GET and SET statements
generally access the first record in a set of duplicates.

The DUP attribute is unnecessary on INDEX declarations because an INDEX always allows
duplicate entries.

Example:
Names FILE,DRIVER('Clarion'),PRE(Nam)
NameKey KEY(Nam:Name),DUP !Declare name key, allow duplicate names
NbrKey KEY(Nam:Number) !Declare number key, no duplicates allowed
Rec RECORD
Name STRING(20)
Number SHORT

END
END

See Also:

KEY

GET

SET

5 – Declaration Attributes 241

ENCRYPT (encrypt data file)

 ENCRYPT

The ENCRYPT attribute (PROP:ENCRYPT) is used in conjunction with the OWNER attribute to
disguise the information in a data file. ENCRYPT is only valid with an OWNER attribute. Even
with a "hex-dump" utility, the data in an encrypted file is extremely difficult to decipher.

Example:
Names FILE,DRIVER('Clarion'),OWNER('Clarion'),ENCRYPT
Record RECORD
Name STRING(20)

END
END

See Also:

OWNER

EXTERNAL

Language Reference Manual 242

EXTERNAL (set defined externally)

 EXTERNAL(member)

EXTERNAL Specifies the variable, FILE, QUEUE, GROUP, or CLASS is defined in an
external library.

member A string constant (valid only on FILE, GROUP, or QUEUE declarations)
containing the filename (without extension) of the MEMBER module containing
the actual FILE definition (the one without an EXTERNAL attribute). If the FILE,
GROUP or QUEUE is defined in a PROGRAM module or in a "universal member
module" (i.e., MEMBER statement for that module has no parameter), an empty
string ('') can be used as a parameter of the EXTERNAL attribute, or the
parameter can be omitted.

The EXTERNAL attribute specifies the variable, FILE, QUEUE, GROUP, or CLASS on which it is
placed is defined in an external library. Therefore, a variable, FILE, QUEUE, GROUP, or CLASS
with the EXTERNAL attribute is declared and may be referenced in the Clarion code, but is not
allocated memory--the memory for the variable, FILE, QUEUE, GROUP, or CLASS is allocated
by the external library. This allows the Clarion program access to any variable, FILE, QUEUE,
GROUP, or CLASS declared as public in external libraries. The EXTERNAL attribute is not valid
on variables declared inside FILE, QUEUE, GROUP, or CLASS structures.

When using EXTERNAL(member) to declare a FILE shared by multiple libraries (.LIBs, or .DLLs
and .EXE), only one library should define the FILE without the EXTERNAL attribute. All the other
libraries (and the .EXE) should declare the FILE with the EXTERNAL attribute. This ensures that
there is only one record buffer allocated for the FILE and all the libraries and the .EXE will
reference the same memory when referring to data elements from that FILE.

The declarations in all libraries (or .EXEs) must be EXACTLY the same (with the appropriate
addition of the EXTERNAL and DLL attributes). For example, the FILE declarations in all libraries
(or .EXEs) that reference common files must contain exactly the same keys, memos, and fields
declared in exactly the same order. If they are not exactly the same, data corruption could occur.
Any incompatibilities between libraries cannot be detected by the compiler or linker, therefore it is
the programmer's responsibility to ensure that consistency is maintained.

Do not place the OWNER, ENCRYPT, or NAME attributes on a FILE which has the EXTERNAL
attribute. These attributes should only be on the FILE structure declared without the EXTERNAL,
because the EXTERNAL declaration is actually a re-declaration of a FILE already declared
elsewhere. Therefore, these attributes are unnecessary.

5 – Declaration Attributes 243

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same
files would have one .DLL containing the actual FILE definition that only contains FILE and global
variable definitions that are shared among all (or most) of the .DLLs and .EXEs. This makes one
central library in which the actual file definitions are maintained. This one central .DLL is linked
into all .EXEs that use those common files. All other .DLLs and/or .EXEs in the system would
declare the common FILEs with the EXTERNAL attribute.

Example:

PROGRAM
MAP
MODULE('LIB.LIB')

AddCount PROCEDURE !External library procedure
END

END

TotalCount LONG,EXTERNAL !A variable declared in an external library
Cust FILE,PRE(Cus),EXTERNAL('') !A File defined in a PROGRAM module
CustKey KEY(Cus:Name) ! whose .LIB is linked into this program
Record RECORD
Name STRING(20)

END
END

Contact FILE,PRE(Con),EXTERNAL('LIB01') !A File defined in a MEMBER module
ContactKey KEY(Con:Name) ! whose .LIB is linked into this program
Record RECORD
Name STRING(20)

END
END

! The LIB.CLW file contains:
PROGRAM
MAP
MODULE('LIB01')

AddCount PROCEDURE !Library procedure
END

END

TotalCount LONG !The TotalCount variable definition
Cust FILE,PRE(Cus) !The Cust File definition where the
CustKey KEY(Cus:Name) ! record buffer is allocated
Record RECORD
Name STRING(20)

END
END

Language Reference Manual 244

CODE
!Executable code ...

! The LIB01.CLW file contains:
MEMBER('LIB')

Contact FILE,PRE(Con) !The Contact File definition where the
ContactKey KEY(Con:Name) ! record buffer is allocated
Record RECORD
Name STRING(20)

END
END

AddCount PROCEDURE
CODE
TotalCount += 1

5 – Declaration Attributes 245

FILTER (set view filter expression)

 FILTER(expression)

FILTER Specifies a filter expression used to evaluate records to include in the VIEW.

expression A string constant containing a logical expression.

The FILTER attribute (PROP:FILTER) specifies a filter expression used to evaluate records to
include in the VIEW.

The expression may reference any field in the VIEW, at all levels of JOIN structures. The entire
expression must evaluate as true for a record to be included in the VIEW. The expression may
contain any valid Clarion language logical expression. The expression is evaluated at runtime
(just like the EVALUATE procedure), therefore you must BIND all variables used in the
expression.

Use of MATCH with PROP:Filter and SQL Databases
The use of PROP:Filter as an SQL filter generator for SQL databases now supports converting
the MATCH(s1, s2, n) function result to an appropriate SQL filter for all values of n, except
Match:Regular. If you use the Match:Regular mode, the filter will be evaluated on the client side
just like all other non-SQL convertible filters.

Other conversion rules:

MATCH(s1,s2,Match:Simple) will be converted to

s1 = s2

for all SQL drivers.

MATCH(s1,s2,Match:Soundex) will be converted to

{fn SOUNDEX(s1)} = {fn SOUNDEX(s2)}

for all ODBC back ends that support the SOUNDEX function.

MATCH(s1,s2,Match:Soundex) will be converted to

SOUNDEX(s1) = SOUNDEX(s2)

for the Oracle Accelerator.

Language Reference Manual 246

MATCH(s1,s2,Match:Simple + Match:NoCase) will be converted to

{fn UPPER(s1)} = {fn UPPER(s2)}

for all ODBC drivers.

MATCH(s1,s2,Match:Simple + Match:NoCase) will be converted to

UPPER(s1) = UPPER(s2)

for the Oracle Accelerator.

MATCH(s1,s2) !Match:Wild mode

Will be converted to

s1 LIKE %
if the s2 parameter is using an asterisk (*), or

s1 LIKE _

if the s2 parameter is using a question mark (?) wild card.

This is valid for all SQL drivers.

Adding the Match:NoCase mode to the Match:Wild mode is converted to
{fn UPPER(s1)} LIKE % or {fn UPPER(s1)} LIKE _
for all ODBC drivers.

Adding the Match:NoCase mode to the Match:Wild mode is converted to
UPPER(s1) LIKE % or UPPER(s1) LIKE _

for the Oracle Accelerator.

Example:

BRW1::View:Browse VIEW(Members)
PROJECT(Mem:MemberCode,Mem:LastName,Mem:FirstName)

END
KeyValue STRING(20)

!Get only orders for customer 9999 since order number 100
ViewOrder VIEW(Customer),FILTER('Cus:AcctNumber = 9999 AND Hea:OrderNumber > 100')

5 – Declaration Attributes 247

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END

END !view

CODE
BIND('KeyValue',KeyValue)
BIND(Mem:Record)
KeyValue = 'Smith'
BRW1::View:Browse{PROP:Filter} = 'Mem:LastName = KeyValue' !Specify filter condition
OPEN(BRW1::View:Browse) !Open the view
SET(BRW1::View:Browse) !and set to the beginning

!of the filtered
CODE !and ordered result set
OPEN((Customer,22h); OPEN((Header,22h); OPEN((Product,22h); OPEN(Detail,22h)
BIND('Cus:AcctNumber',Cus:AcctNumber)
BIND('Hea:OrderNumber',Hea:OrderNumber)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP
NEXT(ViewOrder)
IF ERRORCODE() THEN BREAK.
!Process the valid record

END
UNBIND('Cus:AcctNumber',Cus:AcctNumber)
UNBIND('Hea:AcctNumber',Hea:AcctNumber)
CLOSE(Header); CLOSE(Customer); CLOSE(Product); CLOSE(Detail)

See Also:

BIND

UNBIND

EVALUATE

Language Reference Manual 248

IMPLEMENTS(add methods to a CLASS)

 IMPLEMENTS(interface)

IMPLEMENTS Adds additional methods to a CLASS.

interface A previously defined INTERFACE structure whose methods will be defined by
the CLASS that is implementing the specified interface.

When a class IMPLEMENTS an interface, it inherits all methods that are defined in the
INTERFACE. A class may IMPLEMENT multiple INTERFACEs. The class must define all
methods declared in each INTERFACE that is implemented.

Example:
MyInterface INTERFACE ! Interface structure
MyProc1 PROCEDURE ! Method prototype
MyProc2 PROCEDURE ! Method prototype

END

MyClass CLASS,IMPLEMENTS(MyInterface) ! Class
END

MyClass.MyInterface.MyProc1 !Method declaration
CODE

MyClass.MyInterface.MyProc2 !Method declaration
CODE

See Also:

INTERFACE

5 – Declaration Attributes 249

INTERFACE (class behavior definition)

label INTERFACE ([parentinterface]) [, TYPE]

 [methods]

 END

INTERFACE A collection of methods to be used by the class that implements the interface.

parentinterface The label of a previously declared INTERFACE structure whose methods are
inherited by the new INTERFACE. This may be an INTERFACE with the TYPE
attribute.

TYPE Specify the INTERFACE is only a type definition. TYPE is implicit on an
INTERFACE but may be explicitly specified.

methods PROCEDURE prototypes

An INTERFACE is a structure, which contains the methods (PROCEDUREs) that define the
behavior to be implemented by a CLASS. It cannot contain any property declarations. All
methods defined within the INTERFACE are implicitly virtual. A period or the END statement must
terminate an INTERFACE structure.

Derived INTERFACEs (Inheritance)

An INTERFACE declared with the parentinterface parameter creates a derived interface that
inherits all the methods of the named parentinterface. The derived interface may also contain its
own methods.

Any method prototyped in the derived interface with the same name as a method in the
parentinterface overrides the inherited method if both have the same parameter lists. If the two
methods have different parameter lists, they create polymorphic functions in the derived interface
that must follow the rules of Procedure Overloading.

VIRTUAL Methods (Polymorphism)

All methods in an INTERFACE are implicitly virtual, although the virtual attribute may be explicitly
specified for clarity.

VIRTUAL methods in the derived interface may directly call the parentinterface method of the
same name by prepending PARENT to the method's name. This allows incremental derivation
wherein a derived interface method may simply call up to the parentinterface method to perform
its functionality, and then extend it for the requirements of the derived interface.

Language Reference Manual 250

Method Definition

The PROCEDURE definition of a method (its executable code, not its prototype) is defined by the
CLASS that is implementing the INTERFACE. All methods for an interface must be defined in the
IMPLEMENTING class.

Referencing INTERFACE methods in your code

You must call the methods of an INTERFACE by using dot notation syntax (by prepending the
label of the CLASS to the label of the INTERFACE to the label of the method).

For example, using the following INTERFACE and CLASS declaration:
MyInterface INTERFACE
MyProc PROCEDURE

END
MyClass CLASS,IMPLEMENTS(MyInterface)

END

You may call the MyProc PROCEDURE as:
CODE
MyClass.MyInterface.MyProc

See Also:

IMPLEMENTS

5 – Declaration Attributes 251

INNER (set inner join operation)

 INNER

The INNER attribute (PROP:INNER) specifies the JOIN structure declares an "inner join" instead
of the default "left outer join."

The VIEW structure defaults to a "left outer join," where all records for the VIEW's primary file are
retrieved whether the secondary file named in the JOIN structure contains any related records or
not. Specifying the INNER attribute on the JOIN creates an "inner join" so that only those primary
file records with related secondary file records are retrieved. Inner joins are normally more
efficient than outer joins.

PROP:INNER is an array property of a VIEW indicating the presence or absence of the INNER
attribute on a specific JOIN. Each array element returns one ('1') if the JOIN has the INNER
attribute and blank ('') if it does not. The JOINs are numbered within the VIEW starting with 1 as
they appear within the VIEW structure. (READ ONLY)

Example:
AView VIEW(BaseFile)

JOIN(ParentFile,'BaseFile.parentID = ParentFile.ID') !JOIN 1
JOIN(GrandParent.PrimaryKey, ParentFile.GrandParentID) !JOIN 2
END
END
JOIN(OtherParent.PrimaryKey,BaseFile.OtherParentID),INNER !JOIN 3
END

END

! AView{PROP:Inner,1} returns ''
! AView{PROP:Inner,2} returns ''
! AView{PROP:Inner,3} returns '1'

ViewOrder VIEW(Customer),ORDER('-Hea:OrderDate,Cus:Name')
PROJECT(Cus:AcctNumber,Cus:Name,Cus:Zip)
JOIN(Hea:AcctKey,Cus:AcctNumber),INNER !Inner Join on Header
PROJECT(Hea:OrderNumber,Hea:OrderDate) ! gets only custmers with orders
JOIN(Dtl:OrderKey,Hea:OrderNumber),INNER !Inner join on Detail file
PROJECT(Det:Item,Det:Quantity) ! is natural and more efficient
JOIN(Pro:ItemKey,Dtl:Item),INNER !Inner join on Product file
PROJECT(Pro:Description,Pro:Price) ! is natural and more efficient
END
END
END
END

See Also: JOIN

Language Reference Manual 252

LINK (specify CLASS link into project)

 LINK(linkfile, [flag])

LINK Names a file to add to the link list for the current project.

linkfile A string constant naming an file (without an extension .OBJ is assumed) to link
into the project. Normally, this would be the same as the parameter to the
MODULE attribute, but may explicitly name a .LIB or .OBJ file.

flag A numeric constant, equate, or Project system define which specifies the
attribute as active or not. If the flag is zero or omitted, the attribute is not active,
just as if it were not present. If the flag is any value other than zero, the attribute
is active.

A LINK attribute of a CLASS structure names a linkfile to add to the compiler's link list for the
project. LINK is only valid on a CLASS structure.

Example:
OneClass CLASS,MODULE('OneClass'),LINK('OneClass',1) !Link in OneClass.OBJ
LoadIt PROCEDURE
ComputeIt PROCEDURE

END

See Also:

CLASS

MEMBER

MODULE

5 – Declaration Attributes 253

MODULE (specify CLASS member source file)

 MODULE(sourcefile)

MODULE Names a MEMBER module or external library file.

sourcefile A string constant. If the sourcefile contains Clarion language source code, this
specifies the filename (extension is optional) of the source file that contains the
PROCEDUREs. If the sourcefile is an external library, this string may contain any
unique identifier.

A MODULE attribute of a CLASS structure names a MEMBER module or external library file
which contains the PROCEDURE definitions for the CLASS's member methods. MODULE is only
valid on a CLASS structure.

Example:
OneClass CLASS,MODULE('OneClass') !Method definitions in OneClass.CLW
LoadIt PROCEDURE !LoadIt procedure prototype
ComputeIt PROCEDURE !ComputeIt procedure prototype

END

See Also:

CLASS

MEMBER

LINK

PROCEDURE Prototypes

Language Reference Manual 254

NAME (set external name)

 NAME([name])

NAME Specifies an external name.

name A string constant containing the external name or the label of a static string
variable. This may be declared as Global data, Module data, or Local data with
the STATIC attribute..

The NAME attribute (PROP:NAME) specifies an external name. The NAME attribute is
completely independent of the EXTERNAL attribute--there is no required connection between the
two, although both attributes may be used on the same declaration.

The NAME attribute may be placed on a PROCEDURE Prototype, FILE, KEY, INDEX, MEMO,
any field declared within a FILE, any field declared within a QUEUE structure, or any variable not
declared within a structure. The NAME attribute has different implications depending on where it
is used.

PROCEDURE Prototype Usage

NAME may be specified on a PROCEDURE Prototype. The name supplies the external name
used by the linker to identify the procedure or function from an external library.

Variable Usage

NAME may be used on any variable declared outside of any structure. This provides the linker
with an external name to identify a variable declared in an external library. If the variable also has
the EXTERNAL attribute, it is declared, and its memory is allocated, as a public variable in the
external library. Without the EXTERNAL attribute, it is declared, and its memory is allocated, in
the Clarion program, and it is declared as an external variable in the external library.

FILE Usage

On a FILE statement, NAME specifies the filename of the data file for the file driver. If the name
does not contain a drive and path, the current drive and directory are assumed. If the extension is
omitted, the directory entry assumes the file driver's default value.

Some file drivers require that KEYs, INDEXes, or MEMOs be in separate files. Therefore, a
NAME may also be placed on a KEY, INDEX, or MEMO declaration. A NAME attribute without a
name parameter defaults to the label of the declaration statement on which it is placed (including
any specified prefix).

NAME may be used on any field declared within a RECORD structure (the name parameter must
be a constant, in this case). This provides the file driver with the name of a field as it may be used
in that driver's file system.

5 – Declaration Attributes 255

You can dynamically change the name of a field within a FILE using PROP:NAME as an array.
The array element number references the ordinal position of the field within the FILE.

The NAME attribute is considered a part of the file structure, and care should be taken not to
have threaded variables used by NAME referenced by non-threaded files.

For example:

FileName STRING(255)
TFileName STRING(255),THREAD

File FILE,NAME(TFileName) !Wrong
File FILE,NAME(FileName) !Valid
File FILE,NAME(TFileName),THREAD !Valid
File FILE,NAME(FileName),THREAD !Valid

QUEUE Usage

The NAME attribute on a variable declared in a QUEUE structure specifies an external name for
queue processing. The name provides an alternate method of addressing the variables in the
QUEUE which may be used by the SORT, GET, PUT, and ADD statements.

Example:
PROGRAM
MAP
MODULE('External.Obj')

AddCount PROCEDURE(LONG),LONG,C,NAME('_AddCount') !C function named '_AddCount'
END

END

Cust FILE,PRE(Cus),NAME(CustName) !Filename in CustName variable
CustKey KEY('Name'),NAME('c:\data\cust.idx') !Declare key, cust.idx
Record RECORD
Name STRING(20) !Default NAME to 'Cus:Name'

END
END

SortQue QUEUE
Field1 STRING(10),NAME('FirstField') !QUEUE SORT NAME
Field2 LONG,NAME('SecondField') !QUEUE SORT NAME

END

CurrentCnt LONG,EXTERNAL,NAME('Cur') !Field declared public in
! external library as 'Cur'

TotalCnt LONG,NAME('Tot') !Field declared external
! in external library as 'Tot'

Language Reference Manual 256

CODE
OPEN(Cust)
Cust{PROP:NAME,1} = 'Fred' !Cus:Name field now referenced as 'Fred'

See Also:

PROCEDURE Prototypes, QUEUE, SORT, GET. PUT. ADD. FILE, KEY, INDEX, EXTERNAL

5 – Declaration Attributes 257

Language Reference Manual 258

NOCASE (case insensitive KEY or INDEX)

 NOCASE

The NOCASE attribute (PROP:NOCASE) of a KEY or INDEX declaration makes the sorted
sequence of alphabetic characters insensitive to the ASCII upper/lower case sorting convention.
All alphabetic characters in key fields are converted to upper case as they are written to the KEY.
This case conversion has no affect on the case of the stored data. The NOCASE attribute has no
effect on non-alphabetic characters.

Example:
Names FILE,DRIVER('Clarion'),PRE(Nam)
NameKey KEY(Nam:Name),NOCASE !Declare name key, make case insensitive
NbrKey KEY(Nam:Number) !Declare number key
Rec RECORD
Name STRING(20)
Number SHORT

END
END

See Also:

INDEX

KEY

5 – Declaration Attributes 259

OEM (set international string support)

 OEM

The OEM attribute (PROP:OEM) specifies that the FILE on which it is placed contains non-
English language string data that was stored by a DOS based program or needs to be read by a
DOS based program. These strings are automatically translated from the OEM ASCII character
set data contained in the file to the ANSI character set for display in Windows. All string data in
the record is automatically translated from the ANSI character set to the OEM ASCII character set
before the record is written to disk.

The specific OEM ASCII character set used for the translation comes from the DOS code page
loaded by the country.SYS file. This makes the data file specific to the language used for that
code page, and means the data may not be useable on a computer with a different code page
loaded. This attribute may not be supported by all file systems; consult the specific file driver's
documentation.

Example:

Cust FILE,DRIVER('TopSpeed'),PRE(Cus),OEM !Contains international strings
CustKey KEY(Cus:Name)
Record RECORD
Name STRING(20)

END
END

Screen WINDOW('Window')
ENTRY(@S20),USE(Cus:Name)
BUTTON('&OK'),USE(?Ok),DEFAULT
BUTTON('&Cancel'),USE(?Cancel)

END
CODE
OPEN(Cust) !Open Cust file
SET(Cust); NEXT(Cust) !Get record, ASCII strings are automatically

! translated to ANSI character set
OPEN(Screen) !Open window and display ANSI data
ACCEPT
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
PUT(Cust) !Put record, ANSIstrings are automatically

! translated to the OEM ASCII character set
! per the loaded DOS code page

BREAK
END

END
END
CLOSE(Screen);CLOSE(Cust)

Language Reference Manual 260

OPT (exclude null KEY or INDEX entries)

 OPT

The OPT attribute (PROP:OPT) excludes entries in the KEY or INDEX for records with "null"
values in all fields comprising the KEY or INDEX. For the purpose of this attribute, a "null" value is
defined as zero in a numeric field or all blank spaces (20h) in a string field.

Example:
Names FILE,DRIVER('Clarion'),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key, exclude blanks
NbrKey KEY(Nam:Number),OPT !Declare number key, exclude zeroes
Rec RECORD
Name STRING(20)
Number SHORT

END
END

See Also:

INDEX

KEY

5 – Declaration Attributes 261

ORDER (set view sort order expression)

 ORDER(expression list)

ORDER Specifies an expression list used to sort the records in the VIEW.

expression list A single string constant containing one or more expressions. Each expression in
the list must be separated by a comma from the preceding expression.

The ORDER attribute (PROP:ORDER) specifies an expression list used to sort the records in the
VIEW. The expressions within the expression list evaluate from left to right, with the leftmost
expression defining the most significant sort and the rightmost defining the least significant sort.
Expressions that begin with a unary minus (-) sort in descending order.

The expression may reference any field in the VIEW, at all levels of JOIN structures. The
expressions in the expression list may contain any valid Clarion language expression. The
expression list is evaluated at runtime (just like the EVALUATE procedure), therefore you must
BIND all variables used in the expression.

For non-SQL file systems, the VIEW will use keys to do most of the sorting wherever possible,
sorting only groups of records which have the same key values, keeping one 'bucket' sorted.
Therefore, additional sort fields on top of a key can be quite efficient.

For SQL file systems, PROP:SQLOrder is an SQL-only equivalent to PROP:ORDER. For both of
these properties, if the first character of the expression assigned to them is a plus sign (+) then
that expression is concatenated to the existing order expression. For PROP:SQLOrder, if the first
character of the expression assigned is a minus sign (-) then the existing order expression is
concatenated to that expression. If the first character is not plus (or minus), the new expression
overrides the existing expression.

Example:
!Orders sorted in descending date order, then customer name (by name within each date)
ViewOrder VIEW(Customer),ORDER('-Hea:OrderDate,Cus:Name')

PROJECT(Cus:AcctNumber,Cus:Name,Cus:Zip)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber,Hea:OrderDate)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END
END

CODE
ViewOrder{PROP:ORDER} = '-Hea:OrderDate,Pro:Price-Det:DiscountPrice'

Language Reference Manual 262

!Orders sorted by greatest discount within descending order date

!ABC Implementation example of PROP:SQLORDER
!For browse, after files and window are opened

BRW1::View:Browse{PROP:SQLOrder} = ‘Phone’

!where Phone is a column name in SQL database
!For reports, after files and progress window are opened:

Process:View{PROP:SQLOrder} = ‘au_lname’

!where au_lname is a column name in SQL database

See Also:

BIND

UNBIND

EVALUATE

5 – Declaration Attributes 263

OVER (set shared memory location)

 OVER(overvariable)

OVER Allows one memory address to be referenced two different ways.

overvariable The label of a variable that already occupies the memory to be shared.

The OVER attribute allows one memory address to be referenced two different ways. The
variable declared with the OVER attribute must not be larger than the overvariable it is being
declared OVER (it may be smaller, though).

You may declare a variable OVER an overvariable which is part of the parameter list passed into
a PROCEDURE.

A field within a GROUP structure cannot be declared OVER a variable outside that GROUP
structure.

Example:

SomeProc PROCEDURE(PassedGroup) !Proc receives a GROUP parameter

NewGroup GROUP,OVER(PassedGroup) !Redeclare passed GROUP parameter
Field1 STRING(10) !Compiler warning issued that
Field2 STRING(2) !NewGroup must not be larger

END !than PassedGroup

CustNote FILE,PRE(Csn) !Declare CustNote file
Notes MEMO(2000) !The memo field
Record RECORD
CustID LONG

END
END

CsnMemoRow STRING(10),DIM(200),OVER(Csn:Notes)
!Csn:Notes memo may be addressed
! as a whole or in 10-byte chunks

See Also:

DIM

Language Reference Manual 264

OWNER (declare password for data encryption)

 OWNER(password)

OWNER Specifies a file encryption password.

password A string constant or variable.

The OWNER attribute (PROP:OWNER) specifies the password which is used by the ENCRYPT
attribute to encrypt the data. An "Invalid Data File" error occurs if the password does not match
the password that was actually used to encrypt the file.

An OWNER attribute without an accompanying ENCRYPT attribute is allowed by some file
systems.

If the file is declared without the THREAD attribute, the variable used with the OWNER attribute
should also be declared without the THREAD atttibute.

Example:
Customer FILE,DRIVER('Clarion'),OWNER('abCdeF'),ENCRYPT !Encrypt password "abCdeF"
Record RECORD
Name STRING(20)

END
END

See Also:

ENCRYPT

EXTERNAL

5 – Declaration Attributes 265

PRE (set label prefix)

 PRE([prefix])

PRE Provides a label prefix for complex data structures.

prefix Acceptable characters are alphabet letters, numerals 0 through 9, and the
underscore character. A prefix must start with an alpha character or underscore.
By convention, a prefix is 1-3 characters, although it can be longer.

The PRE attribute provides a label prefix for a FILE, QUEUE, GROUP, REPORT, or ITEMIZE structure. PR
also valid on a LIKE declaration to provide a separate prefix when LIKE is used to declare another copy of
complex data structure.

PRE is used to distinguish between identical variable names that occur in different structures. When a data
element from a complex data structure is referenced in executable statements, assignments, and paramete
the prefix is attached to its label by a colon (Pre:Label).

PRE is essentially a legacy attribute which is being replaced by a more flexible method to distinguish betwe
identical variable names that occur in different structures: Field Qualification syntax. When referenced in
executable statements, assignments, and parameter lists, the label of the structure containing the field is a
to the field label by a period (GroupName.Label).

Example:
MasterFile FILE,DRIVER('Clarion'),PRE(Mst) !Declare master file layout
Record RECORD
AcctNumber LONG !Referenced as Mst:AcctNumber or MasterFile.AcctNumber

END
END

Detail FILE,DRIVER('Clarion'),PRE(Dtl) !Declare detail file layout
Record RECORD
AcctNumber LONG !Referenced as Dtl:AcctNumber or Detail.AcctNumber

END
END

SaveQueue QUEUE,PRE(Sav)
AcctNumber LONG !Referenced as Sav:AcctNumber or SaveQueue.AcctNumber

END

G1 GROUP,PRE(Mem) !Declare some memory variables
Message STRING(30) !with the Mem prefix

END

Language Reference Manual 266

G2 LIKE(G1),PRE(Me2) !Another GROUP LIKE the first containing same
CODE !variables using the "Me2" prefix
IF Dtl:AcctNumber <> Mst:AcctNumber !Is it a new account
Mem:Message = 'New Account' !display message
Me2:Message = 'Variable in LIKE group'

END
IF Detail.AcctNumber <> Masterfile.AcctNumber !Same expression
G1.Message = 'New Account' ! display message
G2.Message = 'Same Variable in LIKE group'

END

See Also: Reserved Words, Field Qualification

5 – Declaration Attributes 267

PRIMARY (set relational primary key)

 PRIMARY

The PRIMARY attribute (PROP:PRIMARY) specifies the KEY is unique, includes all records in
the file, and does not allow "null" values in any of the fields comprising the KEY. This is the
definition of a file's "Primary Key" per the relational database theory as expressed by E. F. Codd.

Example:
Names FILE,DRIVER('TopSpeed'),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key, exclude blanks
NbrKey KEY(Nam:Number),PRIMARY !Declare number key as the primary key
Rec RECORD
Name STRING(20)
Number SHORT

END
END

See Also:

KEY

Language Reference Manual 268

PRIVATE (set variable private to a CLASS module)

 PRIVATE

The PRIVATE attribute specifies that the variable on which it is placed is visible only to the
PROCEDUREs defined within the source module containing the methods of the CLASS structure
(whether members of the CLASS or not). This encapsulates the data from other CLASSes.

PRIVATE is also valid when used with static (threaded or non-threaded) variables outside of a
CLASS structure. If a static variable is declared with the PRIVATE attribute, the compiler
generates it without a public external name. Hence, it can only be used by procedures defined in
the same source module.

Example:

OneClass CLASS,MODULE('OneClass.CLW'),TYPE
PublicVar LONG !Declare a Public variable
PrivateVar LONG,PRIVATE !Declare a Private variable
BaseProc PROCEDURE(REAL Parm)!Declare a Public method

END
TwoClass OneClass !Instance of OneClass
CODE
TwoClass.PublicVar = 1 !Legal assignment
TwoClass.PrivateVar = 1 !Illegal assignment

!OneClass.CLW contains:
MEMBER()
MAP

SomeLocalProc PROCEDURE
END

OneClass.BaseProc PROCEDURE(REAL Parm)
CODE
SELF.PrivateVar = Parm !Legal assignment

SomeLocalProc PROCEDURE
CODE
TwoClass.PrivateVar = 1 !Legal assignment

See Also:

CLASS

5 – Declaration Attributes 269

PROTECTED (set variable private to a CLASS or derived CLASS)

 PROTECTED

The PROTECTED attribute specifies that the variable on which it is placed is visible only to the
PROCEDUREs declared within the same CLASS structure (the methods of that CLASS) and any
CLASS derived from the CLASS in which it is declared. This encapsulates the data from any
code external to the specific CLASS and its dereived CLASSes.

The purpose of the PROTECTED attribute is to provide a level of encapsulation between public
and PRIVATE. All PROTECTED data and methods are available for use within their own CLASS
and derived CLASSes, but not available to any code outside those specific CLASSes.

You could think of these as "semiprivate".

Example:

OneClass CLASS,MODULE('OneClass.CLW'),TYPE
PublicVar LONG !Declare a Public variable
ProtectedVar LONG,PROTECTED !Declare a Protected variable
BaseProc PROCEDURE(REAL Parm) !Declare a Public method

END

TwoClass OneClass !Instance of OneClass
CODE
TwoClass.PublicVar = 1 !Legal assignment
TwoClass.ProtectedVar = 1 !Legal assignment, illegal if PRIVATE

!OneClass.CLW contains:
MEMBER()
MAP

SomeLocalProc PROCEDURE
END

OneClass.BaseProc PROCEDURE(REAL Parm)
CODE
SELF.ProtectedVar = Parm !Legal assignment

SomeLocalProc PROCEDURE
CODE
TwoClass.ProtectedVar = 1 !Legal assignment

See Also:

CLASS

Language Reference Manual 270

RECLAIM (reuse deleted record space)

 RECLAIM

The RECLAIM attribute (PROP:RECLAIM) specifies that the file driver adds new records to the
file in the space previously used by a record that has been deleted, if available. Otherwise, the
record is added at the end of the file. Implementation of RECLAIM is file driver specific and may
not be supported in all file systems.

Example:
Names FILE,DRIVER('Clarion'),RECLAIM !Reuse deleted record space
Record RECORD
Name STRING(20)

END
END

5 – Declaration Attributes 271

STATIC (set allocate static memory)

 STATIC

The STATIC attribute specifies permanent memory allocation to a variable, GROUP, or data
buffer of a QUEUE. If it is used with variables declared within a PROCEDURE or ROUTINE, they
are allocated statically instead of using stack memory. STATIC makes values contained in the
local variable or QUEUE data buffer "persistent" from one call to the procedure to the next. Static
local variables that require initialization are initialized once only during the first call to the
respective procedure or routine. Regarding a QUEUE structure, only the data buffer is allocated
static memory -- QUEUE entries are always allocated memory dynamically on the heap.

Example:

SomeProc PROCEDURE
SaveQueue QUEUE,STATIC !Static QUEUE data buffer
Field1 LONG !Value retained between
Field2 STRING !procedure calls

END

AcctFile STRING(64),STATIC !STATIC needed for use as
!variable in NAME attribute

Transactions FILE,DRIVER('Clarion'),PRE(TRA),NAME(AcctFile)
AccountKey KEY(TRA:Account),OPT,DUP
Record RECORD
Account SHORT !Account code
Date LONG !Transaction Date
Amount DECIMAL(13,2) !Transaction Amount

END
END

See Also:

Data Declarations and Memory Allocation

Language Reference Manual 272

THREAD (set thread-specific memory allocation)

 THREAD

The THREAD attribute declares a variable, FILE, GROUP, QUEUE, or CLASS which is allocated
memory separately for each execution thread in the program. This makes the values dependent
upon which thread is executing.

A threaded variable must be allocated static memory, so Local data with the THREAD attribute is
automatically considered STATIC. This attribute creates runtime "overhead," particularly on
Global or Module data. Therefore, it should be used only when necessary.

Variable and GROUP Usage

The THREAD attribute declares a static variable which is allocated memory separately for each
execution thread in the program. This makes the value contained in the variable dependent upon
which thread is executing. Whenever a new execution thread is begun, a new instance of the
variable, specific to that thread, is created and initialized to blank or zero (unless the AUTO
attribute is also present).

FILE Usage
The THREAD attribute (PROP:THREAD--valid only for a FILE) on a FILE declaration allocates
memory for its record buffer, file control block, and other file structure elements separately for
each execution thread as each thread is started. This makes the values contained in the record
buffer and other file elements dependent upon which thread is executing. Memory for its record
buffer,file control block, and other file elements is deallocated when the thread is closed.

Instances of a threaded FILE are considered independent FILEs. Therefore, a FILE must be
OPENed and CLOSEd for each new instance.

QUEUE Usage

The THREAD attribute on a QUEUE declaration declares a static QUEUE data buffer which is
allocated memory separately for each execution thread in the program. This makes the values
contained in the QUEUE dependent upon which thread is executing. Whenever a new execution
thread is begun, a new instance of the QUEUE, specific to that thread, is created.

5 – Declaration Attributes 273

Example:

PROGRAM
MAP

Thread1 PROCEDURE
Thread2 PROCEDURE

END

Names FILE,DRIVER('Clarion'),PRE(Nam),THREAD !Threaded file
NbrNdx INDEX(Nam:Number),OPT
Rec RECORD
Name STRING(20)
Number SHORT

END
END

GlobalVar LONG,THREAD !Each execution thread gets its own copy OF GlobalVar

CODE
START(Thread1)
START(Thread2)

Thread1 PROCEDURE
LocalVar LONG,THREAD !Local threaded variable (automatically STATIC)

CODE
OPEN(Names) !OPEN creates new record buffer instance
SET(Names) !containing the first record in the file
NEXT(Names)

Thread2 PROCEDURE
SaveQueue QUEUE,THREAD !Static QUEUE data buffer Thread-specific QUEUE
Name STRING(20)
Number SHORT

END
CODE
OPEN(Names) !OPEN creates another new record buffer instance
SET(Names) !containing the last record in the file
PREVIOUS(Names)

See Also:

START, Data Declarations and Memory Allocation, STATIC, AUTO

Language Reference Manual 274

TYPE (type definition)

 TYPE

The TYPE attribute creates a type definition for a GROUP, QUEUE, or CLASS (a "named
structure"). The label of the named structure can then be used as a data type to define other
similar GROUPs, QUEUEs, or CLASSes (or you can use LIKE). TYPE may also be used to
define named structures passed to PROCEDUREs, allowing the receiving procedure to directly
address components of the type definition using Field Qualification syntax.

A GROUP, QUEUE, or CLASS declaration with the TYPE attribute is not allocated any memory.
While the data members of a CLASS with the TYPE attribute are not allocated memory, the
methods prototyped in the CLASS must be defined for use by any subsequent objects declared
as that type. EXTERNAL and DLL are irrelevant.

When a type definition is used to pass a named structure as a parameter to a PROCEDURE, the
receiving procedure may directly address component fields in the passed QUEUE using the Field
Qualification syntax. This is the preferred method of addressing the components of the passed
structure.

There is also a legacy method of addressing the components of the passed structure. The named
structure parameter declaration on the PROCEDURE definition statement (not the prototype) can
instantiate a local prefix for the passed QUEUE as it names the passed QUEUE for the
procedure. For example, PROCEDURE(LOC:PassedQueue) declares the procedure uses the
LOC: prefix (along with the individual field names used in the type definition) to directly address
component fields of the QUEUE passed as the parameter using the same type of syntax that the
PRE attribute specifies. However, using Field Qualification syntax is prefereable--locally
instantiated prefixes are only maintained for backward compatibility.

5 – Declaration Attributes 275

Example:
MAP

MyProc1 PROCEDURE(PassQue) !Passes a QUEUE defined the same as PassGroup
END

PassQue QUEUE,TYPE !Type-definition for passed QUEUE parameters
First STRING(20) !first name
Middle STRING(1) !middle initial
Last STRING(20) !last name

END

NameQue QUEUE(PassQue) !Name queue-- same structure as PassQue
END !End queue declaration

CODE
MyProc1(NameQue) !Call proc passing NameQue as parameter

MyProc1 PROCEDURE(PassedQue)!Proc to receive QUEUE parameter
LocalVar STRING(20)
CODE
LocalVar = PassedQue.First !Assign NameQue.First to LocalVar from parameter

See Also:

Field Qualification, Prototype Parameters Lists, CLASS, GROUP

Language Reference Manual 276

6 – Windows 277

6 - Windows
Window Structures

APPLICATION (declare an MDI frame window)

label APPLICATION('title') [,AT()] [,CENTER] [,SYSTEM] [,MAX] [,ICON()] [,STATUS()] [,HLP()]

 [,CURSOR()] [,TIMER()] [,ALRT()] [,ICONIZE] [,MAXIMIZE] [,MASK] [,FONT()]
 [,MSG()] [,IMM] [,AUTO] [,PALETTE()]

 [,WALLPAPER()] [,| TILED |] [, | HSCROLL |] [, | DOUBLE|]
 | CENTERED | | VSCROLL | | NOFRAME|
 | HVSCROLL | | RESIZE|

 [MENUBAR

 multiple menu and/or item declarations

 END]

 [TOOLBAR

 multiple control field declarations

 END]

 END

APPLICATION Declares a Multiple Document Interface (MDI) frame.

label A valid Clarion label (required).

title Specifies the title text for the application window (PROP:Text).

AT Specifies the initial size and location of the application window (PROP:AT). If
omitted, default values are selected by the runtime library.

CENTER Specifies that the window's initial position is centered in the screen by default
(PROP:CENTER). This attribute takes effect only if at least one parameter of the
AT attribute is omitted.

SYSTEM Specifies the presence of a system menu (PROP:SYSTEM).

MAX Specifies the presence of a maximize control (PROP:MAX).

ICON Specifies the presence of a minimize control, and names a file or standard icon
identifier for the icon displayed when the window is minimized (PROP:ICON).

Language Reference Manual 278

STATUS Specifies the presence of a status bar at the base of the application window
(PROP:STATUS).

HLP Specifies the "Help ID" associated with the APPLICATION window and provides
the default for any child windows (PROP:HLP).

CURSOR Specifies a mouse cursor to be displayed when the mouse is positioned over the
APPLICATION window (PROP:CURSOR). If omitted, the Windows default cursor
is used.

TIMER Specifies periodic timed event generation (PROP:TIMER).

ALRT Specifies "hot" keys active for the APPLICATION (PROP:ALRT).

ICONIZE Specifies the APPLICATION is opened as an icon (PROP:ICONIZE).

MAXIMIZE Specifies the APPLICATION is maximized when opened (PROP:MAXIMIZE).

MASK Specifies pattern input editing mode of all ENTRY controls in the TOOLBAR
(PROP:MASK).

FONT Specifies the default font for all controls in the toolbar (PROP:FONT).

MSG Specifies a string constant containing the default text to display in the status bar
for all controls in the APPLICATION (PROP:MSG).

IMM Specifies the window generates events whenever it is moved or resized
(PROP:IMM).

AUTO Specifies all toolbar controls' USE variables re-display on screen each time
through the ACCEPT loop (PROP:AUTO).

PALETTE Specifies the number of hardware colors used for graphics in the window
(PROP:PALETTE).

WALLPAPER Specifies the background image to display in the window's client area
(PROP:WALLPAPER). The image stretches to fill the entire client area of the
window unless the TILED or CENTERED attribute is also present.

TILED Specifies the WALLPAPER image displays at its default size and is tiled to fill the
entire client area of the window (PROP:TILED).

CENTERED Specifies the WALLPAPER image displays at its default size and is centered in
the entire client area of the window (PROP:CENTERED).

HSCROLL Specifies a horizontal scroll bar is automatically added to the application frame
when any portion of a child window lies horizontally outside the visible area
(PROP:FSCROLL).

VSCROLL Specifies a vertical scroll bar is automatically added to the application frame
when any portion of a child window lies vertically outside the visible area
(PROP:VSCROLL).

HVSCROLL Specifies both vertical and horizontal scroll bars are automatically added to the
application frame when any portion of a child window lies outside the visible area.

6 – Windows 279

DOUBLE Specifies a double-width frame around the window (PROP:DOUBLE).

NOFRAME Specifies a window with no frame (PROP:NOFRAME).

RESIZE Specifies a thick frame around the window which does allow window resizing
(PROP:RESIZE).

MENUBAR Defines the menu structure (optional). The menu specified in an APPLICATION
is the "Global menu."

TOOLBAR Defines a toolbar structure (optional). The toolbar specified in an APPLICATION
is the "Global toolbar."

APPLICATION declares a Multiple Document Interface (MDI) frame window. MDI is a part of the
standard Windows interface, and is used by Windows applications to present several "views" in
different windows. This is a way of organizing and grouping these. The MDI frame window
(APPLICATION structure) acts as a "parent" for all the MDI "child" windows (WINDOW structures
with the MDI attribute). These MDI "child" windows are clipped to the APPLICATION frame and
automatically moved when the frame is moved, and can be totally concealed by minimizing the
parent.

There may be only one APPLICATION window open at any time in a Clarion Windows program,
and it must be opened before any MDI "child" windows may be opened. However, non-MDI
windows may be opened before or after the APPLICATION is opened, and may be on the same
execution thread as the APPLICATION.

An MDI "child" window must not be on the same execution thread as the APPLICATION.
Therefore, any MDI "child" window called directly from the APPLICATION must be in a separate
procedure so the START procedure can be used to begin a new execution thread. Once started,
multiple MDI "child" windows may be called in the new thread.

A "conventional" APPLICATION window would have the ICON, MAX, STATUS, RESIZE, and
SYSTEM attributes. This creates an application frame window with minimize and maximize
buttons, a status bar, a resizable frame, and a system menu. It would also have a MENUBAR
structure containing the global menu items, and may have a TOOLBAR with "shortcuts" to global
menu items. These attributes create a standard Windows look and feel for the application frame.

An APPLICATION window may not contain controls except within its MENUBAR and TOOLBAR
structures, and cannot be used for any output. For output, document windows or dialog boxes are
required (defined using the WINDOW structure).

When the APPLICATION window is first opened, it remains hidden until the first DISPLAY
statement or ACCEPT loop is encountered. This enables any changes to be made to the
appearance before it is displayed. Events for the APPLICATION window are processed by the
first ACCEPT loop encountered after the APPLICATION window is first opened.

Language Reference Manual 280

Events Generated:
EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:CloseWindow The window is closing.

EVENT:CloseDown The application is closing.

EVENT:OpenWindow The window is opening.

EVENT:LoseFocus The window is losing focus to another thread.

EVENT:GainFocus The window is gaining focus from another thread.

EVENT:Suspend The window still has input focus but is giving control to another thread to
process timer events.

EVENT:Resume The window still has input focus and is regaining control from an
EVENT:Suspend.

EVENT:Timer The TIMER attribute has triggered.

EVENT:Move The user is moving the window. CYCLE aborts the move.

EVENT:Moved The user has moved the window.

EVENT:Size The user is resizing the window. CYCLE aborts the resize.

EVENT:Sized The user has resized the window.

EVENT:Restore The user is restoring the window's previous size. CYCLE aborts the
resize.

EVENT:Restored The user has restored the window's previous size.

EVENT:Maximize The user is maximizing the window. CYCLE aborts the resize.

EVENT:Maximized The user has maximized the window.

EVENT:Iconize The user is minimizing the window. CYCLE aborts the resize.

EVENT:Iconized The user has minimized the window.

EVENT:Completed AcceptAll (non-stop) mode has finished processing all the window's
controls.

EVENT:DDErequest A client has requested a data item from this Clarion DDE server
application.

EVENT:DDEadvise A client has requested continuous updates of a data item from this
Clarion DDE server application.

EVENT:DDEexecute A client has executed a DDEEXECUTE statement to this Clarion DDE
server application.

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE server application.

6 – Windows 281

EVENT:DDEdata A DDE server has supplied an updated data item to this Clarion client
application.

EVENT:DDEclosed A DDE server has terminated the DDE link to this Clarion client
application.

Related Procedures:
ACCEPT, ALERT, EVENT, POST, REGISTER, UNREGISTER, YIELD,
ACCEPTED, CHANGE, CHOICE, CLOSE, CONTENTS, CREATE, DESTROY,
DISABLE, DISPLAY, ENABLE, ERASE, FIELD, FIRSTFIELD, FOCUS,
GETFONT, GETPOSITION, HELP, HIDE, INCOMPLETE, LASTFIELD,
MESSAGE, MOUSEX, MOUSEY, OPEN, POPUP, SELECT, SELECTED,
SET3DLOOK, SETCURSOR, SETFONT, SETPOSITION, SETTARGET,
UNHIDE, UPDATE

Example:

!An MDI application frame window with system menu, minimize and maximize
! buttons, a status bar, scroll bars, and a resizable frame, containing the
! main menu and toolbar for the application:

MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS |
,HVSCROLL,RESIZE

MENUBAR
MENU('&File'),USE(?FileMenu)
ITEM('&Open...'),USE(?OpenFile)
ITEM('&Close'),USE(?CloseFile),DISABLE
ITEM('E&xit'),USE(?MainExit)

END
MENU('&Edit'),USE(?EditMenu)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM('&Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM('&Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE

END
MENU('&Window'),STD(STD:WindowList),LAST
ITEM('&Tile'),STD(STD:TileWindow)
ITEM('&Cascade'),STD(STD:CascadeWindow)
ITEM('&Arrange Icons'),STD(STD:ArrangeIcons)

END
MENU('&Help'),USE(?HelpMenu)
ITEM('&Contents'),USE(?HelpContents),STD(STD:HelpIndex)
ITEM('&Search...'),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM('&How to Use Help'),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM('&About MyApp...'),USE(?HelpAbout)

END
END
TOOLBAR
BUTTON('E&xit'),USE(?MainExitButton)
BUTTON('&Open'),USE(?OpenButton),ICON(ICON:Open)

END

Language Reference Manual 282

END
CODE
OPEN(MainWin) !Open APPLICATION
ACCEPT !Display APPLICATION and accept user input
CASE ACCEPTED() !Which control was chosen?
OF ?OpenFile !Open... menu selection
OROF ?OpenButton !Open button on toolbar
START(OpenFileProc) !Start new execution thread

OF ?MainExit !Exit menu selection
OROF ?MainExitButton !Exit button on toolbar
BREAK !Break ACCEPT loop

OF ?HelpAbout !About... menu selection
HelpAboutProc !Call application information procedure

END
END
CLOSE(MainWin) !Close APPLICATION

See Also:

ACCEPT

WINDOW

MDI

MENUBAR

TOOLBAR

6 – Windows 283

WINDOW (declare a dialog window)

label WINDOW('title') [,AT()] [,CENTER] [,SYSTEM] [,MAX] [,ICON()] [,STATUS()] [,HLP()]

 [,CURSOR()] [,MDI] [,MODAL] [,MASK] [,FONT()] [,GRAY][,TIMER()] [,ALRT()]

 [,ICONIZE] [,MAXIMIZE] [,MSG()] [,PALETTE()] [,DROPID()] [,IMM]

 [,AUTO] [,COLOR()] [,TOOLBOX] [,DOCK()] [,DOCKED()]

 [,WALLPAPER()] [,| TILED |] [, | HSCROLL |] [, | DOUBLE|]
 | CENTERED | | VSCROLL | | NOFRAME|
 | HVSCROLL | | RESIZE|

 [MENUBAR

 menus and/or items

 END]

 [TOOLBAR

 controls

 END]

 controls

 END

WINDOW Declares a document window or dialog box.

label A valid Clarion label. A label is required.

title A string constant containing the window's title text (PROP:Text).

AT Specifies the initial size and location of the window (PROP:AT). If omitted, default
values are selected by the runtime library.

CENTER Specifies that the window's initial position is centered on screen relative to its
parent window, by default (PROP:CENTER). This attribute takes effect only if at
least one parameter of the AT attribute is omitted.

SYSTEM Specifies the presence of a system menu (PROP:SYSTEM).

MAX Specifies the presence of a maximize control (PROP:MAX).

ICON Specifies the presence of a minimize control, and names a file or standard icon
identifier for the icon displayed when the window is minimized (PROP:ICON).

STATUS Specifies the presence of a status bar for the window (PROP:STATUS).

Language Reference Manual 284

HLP Specifies the "Help ID" associated with the window (PROP:HLP).

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
window (PROP:CURSOR). This cursor is inherited by the WINDOW's controls
unless overridden on the individual control.

MDI Specifies that the window conforms to normal MDI child-window behavior
(PROP:MDI).

MODAL Specifies the window is "system modal" and must be closed before the user may
do anything else (PROP:MODAL).

MASK Specifies pattern input editing mode of all entry controls in this window
(PROP:MASK).

FONT Specifies the default font for all controls in this window (PROP:FONT).

GRAY Specifies that the window has a gray background for use with 3-D look controls
(PROP:GRAY).

TIMER Specifies periodic timed event generation (PROP:TIMER).

ALRT Specifies "hot" keys active when the window has focus (PROP:ALRT).

ICONIZE Specifies the window is opened as an icon (PROP:ICONIZE).

MAXIMIZE Specifies the window is maximized when opened (PROP:MAXIMIZE).

MSG Specifies a string constant containing the default text to display in the status bar
for all controls in the window (PROP:MSG).

PALETTE Specifies the number of hardware colors used for graphics in the window
(PROP:PALETTE).

DROPID Specifies the window may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

IMM Specifies the window generates events whenever it is moved or resized
(PROP:IMM).

AUTO Specifies all window controls' USE variables re-display on screen each time
through the ACCEPT loop (PROP:AUTO).

COLOR Specifies a background color for the WINDOW and default background and
selected colors for the controls in the WINDOW (PROP:COLOR).

TOOLBOX Specifies the window is "always on top" and its controls never retain focus
(PROP:TOOLBOX).

DOCK Specifies a window with the TOOLBOX attribute is dockable (PROP:DOCK).

DOCKED Specifies a window with the DOCK attribute is opens docked (PROP:DOCKED).

WALLPAPER Specifies the background image to display in the window's client area
(PROP:WALLPAPER). The image stretches to fill the entire client area of the
window unless the TILED or CENTERED attribute is also present.

6 – Windows 285

TILED Specifies the WALLPAPER image displays at its default size and is tiled to fill the
entire client area of the window (PROP:TILED).

CENTERED Specifies the WALLPAPER image displays at its default size and is centered in
the entire client area of the window (PROP:CENTERED).

HSCROLL Specifies a horizontal scroll bar is automatically added to the window when any
scrollable portion of the window lies horizontally outside the visible area
(PROP:HSCROLL).

VSCROLL Specifies a vertical scroll bar is automatically added to the window when any
scrollable portion of the window lies vertically outside the visible area
(PROP:VSCROLL).

HVSCROLL Specifies both vertical and horizontal scroll bars are automatically added to the
window when any scrollable portion of the window lies outside the visible area
(PROP:HVSCROLL).

DOUBLE Specifies a double-width frame around the window (PROP:DOUBLE).

NOFRAME Specifies a window with no frame (PROP:NOFRAME).

RESIZE Specifies a thick frame around the window, which does allow window resizing
(PROP:RESIZE).

MENUBAR Defines a menu structure (optional).

menus and/or items
MENU and/or ITEM declarations that define the menu selections.

TOOLBAR Defines a toolbar structure (optional).

controls Control declarations that define tools available on the TOOLBAR, or the control
fields in the WINDOW.

A WINDOW declares a document window or dialog box which may contain controls, and may be
used to display output to the user. When the WINDOW is first opened, it remains hidden until the
first DISPLAY statement or ACCEPT loop is encountered. This enables any changes to be made
to the appearance before it is displayed. Any previously opened WINDOW on the same execution
thread is disabled. Events for the WINDOW are processed by the first ACCEPT loop encountered
after the WINDOW is first opened.

A WINDOW automatically receives a single-width border frame unless one of the DOUBLE,
NOFRAME, or RESIZE attributes are specified. Screen coordinates are measured in dialog units.
A dialog unit is defined as one-quarter the average character width and one-eighth the average
character height of the font specified in the WINDOW's FONT attribute (or the system font, if no
FONT attribute is specified on the WINDOW).

Language Reference Manual 286

A WINDOW with the MODAL attribute is system modal; it takes exclusive control of the computer.
This means that any other progam running in the background halts its execution until the MODAL
WINDOW is closed. Therefore, the MODAL attribute should be used only when absolutely
necessary. Also, the RESIZE attribute is ignored, and the WINDOW cannot be moved when the
MODAL attribute is present.

A WINDOW without the MDI attribute, when opened in an MDI program on an MDI execution
thread, is application modal. This means that the user must respond before moving to any other
window in the application. The user may, however, move to any other program running in
Windows at the time. Non-MDI windows may be opened either before or after an APPLICATION
is opened, and may be on the same execution thread as the APPLICATION or any MDI child
window (application modal) or their own thread (not application modal).

A WINDOW with the MDI attribute is an MDI "child" window. MDI "child" windows are clipped to
the APPLICATION frame and automatically moved when the frame is moved, and can be totally
concealed by minimizing the parent APPLICATION. MDI "child" windows are modeless; the user
may change to the top window of another execution thread, within the same application or any
other application running in Windows, at any time. An MDI "child" window must not be on the
same execution thread as the APPLICATION. Therefore, any MDI "child" window called directly
from the APPLICATION must be in a separate procedure so the START procedure can be used
to begin a new execution thread. Once started, multiple MDI "child" windows may be called in the
new thread.

The MENUBAR specified in a WINDOW with the MDI attribute is automatically merged into the
"Global menu" (from the APPLICATION) when the WINDOW receives focus unless either the
WINDOW's or APPLICATION's MENUBAR has the NOMERGE attribute. A MENUBAR specified
in a WINDOW without the MDI attribute is never merged into the "Global menu"--it always
appears in the window itself.

The TOOLBAR specified in a WINDOW with the MDI attribute is automatically merged into the
"Global toolbar" (from the APPLICATION) when the WINDOW receives focus, unless either the
WINDOW's or APPLICATION's TOOLBAR has the NOMERGE attribute. The toolbar specified in
a WINDOW without the MDI attribute is never merged into the "Global toolbar"--it always appears
in the window itself.

A WINDOW with the TOOLBOX attribute is automatically "always on top" and its controls do not
retain focus (just as if they all had the SKIP attribute). This creates a window whose controls all
behave in the same manner as controls in the toolbar. Normally, a WINDOW with the TOOLBOX
attribute would be executed in its own thread.

6 – Windows 287

Events Generated:

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:CloseWindow The window is closing.

EVENT:CloseDown The application is closing.

EVENT:OpenWindow The window is opening.

EVENT:LoseFocus The window is losing focus to another thread.

EVENT:GainFocus The window is gaining focus from another thread.

EVENT:Suspend The window still has input focus but is giving control to another thread to
process timer events.

EVENT:Resume The window still has input focus and is regaining control from an
EVENT:Suspend.

EVENT:Docked A TOOLBOX window has been docked.

EVENT:Undocked A TOOLBOX window has been undocked.

EVENT:Timer The TIMER attribute has triggered.

EVENT:Move The user is moving the window. CYCLE aborts the move.

EVENT:Moved The user has moved the window.

EVENT:Size The user is resizing the window. CYCLE aborts the resize.

EVENT:Sized The user has resized the window.

EVENT:Restore The user is restoring the window's previous size. CYCLE aborts the resize.

EVENT:Restored The user has restored the window's previous size.

EVENT:Maximize The user is maximizing the window. CYCLE aborts the resize.

EVENT:Maximized The user has maximized the window.

EVENT:Iconize The user is minimizing the window. CYCLE aborts the resize.

EVENT:Iconized The user has minimized the window.

EVENT:Completed AcceptAll (non-stop) mode has finished processing all the window's
controls.

EVENT:DDErequest A client has requested a data item from this Clarion DDE server
application.

EVENT:DDEadvise A client has requested continuous updates of a data item from this
Clarion DDE server application.

EVENT:DDEexecute A client has executed a DDEEXECUTE statement to this Clarion DDE
server application.

Language Reference Manual 288

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE server application.

EVENT:DDEdata A DDE server has supplied an updated data item to this Clarion client
application.

EVENT:DDEclosed A DDE server has terminated the DDE link to this Clarion client
application.

Related Procedures:
ACCEPT, ALERT, EVENT, POST, REGISTER, UNREGISTER, YIELD,
ACCEPTED, CHANGE, CHOICE, CLOSE, CONTENTS, CREATE, DESTROY,
DISABLE, DISPLAY, ENABLE, ERASE, FIELD, FIRSTFIELD, FOCUS,
GETFONT, GETPOSITION, HELP, HIDE, INCOMPLETE, LASTFIELD,
MESSAGE, MOUSEX, MOUSEY, OPEN, POPUP, SELECT, SELECTED,
SET3DLOOK, SETCURSOR, SETFONT, SETPOSITION, SETTARGET,
UNHIDE, UPDATE

Example:

!MDI child window with system menu, minimize and maximize buttons, status bar,
! scroll bars, a resizable frame, with menu and toolbar which are merged into

the
!application's menubar and toolbar:

MDIChild WINDOW('Child One'),MDI,SYSTEM,MAX,ICON('Icon.ICO'),STATUS,HVSCROLL,RESIZE
MENUBAR
MENU('File'),USE(?FileMenu)
ITEM('Close'),USE(?CloseFile)

END
MENU('Edit'),USE(?EditMenu)
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END
TOOLBAR
BUTTON('Cut'),USE(?CutButton),ICON(ICON:Cut),STD(STD:Cut)
BUTTON('Copy'),USE(?CopyButton),ICON(ICON:Copy),STD(STD:Copy)
BUTTON('Paste'),USE(?PasteButton),ICON(ICON:Paste),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field)
BUTTON('&OK'),USE(?Exit),DEFAULT

END

!Non-MDI, system menu, maximize button, status bar, non-resizable frame,
NonMDI WINDOW('Dialog Window'),SYSTEM,MAX,STATUS

TEXT,HVSCROLL,USE(Pre:Field),MSG('Enter some text here')
BUTTON('&OK'),USE(?Exit),DEFAULT

END

!System-modal window with non-resizable frame, with only a message and Ok button:

6 – Windows 289

ModalWin WINDOW('Modal Window'),MODAL
IMAGE(ICON:Exclamation)
STRING('An ERROR has occurred')
BUTTON('&OK'),USE(?Exit),DEFAULT
END

See Also: ACCEPT, APPLICATION

Language Reference Manual 290

MENUBAR (declare a pulldown menu)

 MENUBAR [,USE()] [, NOMERGE]

 [MENU()

 [ITEM()]

 [MENU()

 [ITEM()]

 END]

 END]

 [ITEM()]

 END

MENUBAR Declares the menu for an APPLICATION or WINDOW.

USE A field equate label to reference the menubar structure in executable
code(PROP:USE).

NOMERGE Specifies menu merging behavior.

MENU A menu item with an associated drop box containing other menu selections.

ITEM A menu item for selection.

The MENUBAR structure declares the pulldown menu selections displayed for an APPLICATION
or WINDOW. MENUBAR must appear in the source code before any TOOLBAR or controls.

On an APPLICATION, the MENUBAR defines the Global menu selections for the program. These
are active and available on all MDI "child" windows (unless the window's own MENUBAR
structure has the NOMERGE attribute). If the NOMERGE attribute is specified on the
APPLICATION's MENUBAR, then the menu is a local menu displayed only when no MDI child
windows are open and there is no global menu.

On an MDI WINDOW, the MENUBAR defines menu selections that are automatically merged
with the Global menu. Both the Global and the window's menu selections are then active while
the MDI "child" window has input focus. Once the window loses focus, its specific menu
selections are removed from the Global menu. If the NOMERGE attribute is specified on an MDI
WINDOW's MENUBAR, the menu overwrites and replaces the Global menu.

On a non-MDI WINDOW, the MENUBAR is never merged with the Global menu. A MENUBAR on
a non-MDI WINDOW always appears in the WINDOW, not on any APPLICATION which may
have been previously opened.

6 – Windows 291

Events generated by local menu items are sent to the WINDOW's ACCEPT loop in the normal
way. Events generated by global menu items are sent to the active event loop of the thread which
opened the APPLICATION (in a normal multi-thread application this means the APPLICATION's
own ACCEPT loop).

Dynamic changes to menu items which reference the currently active window affect only the
currently displayed menu, even if global items are changed. Changes made to the Global menu
items when the APPLICATION is the current window, or which reference the global
APPLICATION window affect the global portions of all menus, whether already open or not.

When a WINDOW's MENUBAR is merged into an APPLICATION's MENUBAR, the global menu
selections appear first, followed by the local menu selections, unless the FIRST or LAST
attributes are specified on individual menu selections.

A two-column drop menu can be achieved by assigning PROP:Max = 1 to the ITEM which should
begin the second column.

Example:

!An MDI application frame window with main menu for the application:
MainWin APPLICATION('My Application')

MENUBAR
MENU('File'),USE(?FileMenu)
ITEM('Open...'),USE(?OpenFile)
ITEM('Close'),USE(?CloseFile),DISABLE
ITEM('E&xit'),USE(?MainExit),LAST

END
MENU('Edit'),USE(?EditMenu)

ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE

END
MENU('Window'),STD(STD:WindowList),LAST

ITEM('Tile'),STD(STD:TileWindow)
ITEM('Cascade'),STD(STD:CascadeWindow)

END
MENU('Help'),USE(?HelpMenu),LAST
ITEM('Contents'),USE(?HelpContents),STD(STD:HelpIndex)
ITEM('Search for Help On...'),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM('How to Use Help'),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM('About MyApp...'),USE(?HelpAbout)

END
END

END

Language Reference Manual 292

!An MDI child window with menu for the window, merged into the
! application's menubar:

MDIChild WINDOW('Child One'),MDI
MENUBAR
MENU('File'),USE(?FileMenu) !Merges into File menu
ITEM('Pick...'),USE(?PickFile) !Added to menu selections

END
MENU('Edit'),USE(?EditMenu) !Merges into Edit menu
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo) !Added to menu

END
END
TEXT,HVSCROLL,USE(Pre:Field)
BUTTON('&OK'),USE(?Exit),DEFAULT

END

!An MDI window with its own menu, overwriting the main menu:
MDIChild2 WINDOW('Dialog Window'),MDI,SYSTEM,MAX,STATUS

MENUBAR,NOMERGE
MENU('File'),USE(?FileMenu)
ITEM('Close'),USE(?CloseFile)

END
MENU('Edit'),USE(?EditMenu)
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END

TEXT,HVSCROLL,USE(Pre:Field),MSG('Enter some text here')
BUTTON('&OK'),USE(?Exit),DEFAULT

END

6 – Windows 293

!A non-MDI window with its own menu:
NonMDI WINDOW('Dialog Window'),SYSTEM,MAX,STATUS

MENUBAR
MENU('File'),USE(?FileMenu)
ITEM('Close'),USE(?CloseFile)

END
MENU('Edit'),USE(?EditMenu)
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END
TEXT,HVSCROLL,USE(Pre:Field),MSG('Enter some text here')
BUTTON('&OK'),USE(?Exit),DEFAULT

END

Language Reference Manual 294

TOOLBAR (declare a tool bar)

 TOOLBAR [,AT()] [,USE()] [,CURSOR()] [,FONT()] [,NOMERGE] [,COLOR]

 [,WALLPAPER()] [,| TILED |]
 | CENTERED |

 controls

 END

TOOLBAR Declares tools for an APPLICATION or WINDOW.

AT Specifies the initial size of the toolbar. If omitted, default values are selected by
the runtime library.

USE A field equate label to reference the toolbar in executable code (PROP:USE).

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
TOOLBAR. If omitted, the WINDOW or APPLICATION structure's CURSOR
attribute is used, else the Windows default cursor is used.

FONT Specifies the default display font for the controls in the TOOLBAR.

NOMERGE Specifies tools merging behavior.

COLOR Specifies a background color for the TOOLBAR and default background and
selected colors for the controls in the TOOLBAR.

WALLPAPER Specifies the background image to display in the toolbar (PROP:WALLPAPER).
The image stretches to fill the entire toolbar unless the TILED or CENTERED
attribute is also present.

TILED Specifies the WALLPAPER image displays at its default size and is tiled to fill the
entire toolbar (PROP:TILED).

CENTERED Specifies the WALLPAPER image displays at its default size and is centered in
the toolbar (PROP:CENTERED).

controls Control field declarations that define the available tools.

The TOOLBAR structure declares the tools displayed for an APPLICATION or WINDOW. On an
APPLICATION, the TOOLBAR defines the Global tools for the program. If the NOMERGE
attribute is specified on the APPLICATION's TOOLBAR, the tools are local and are displayed
only when no MDI child windows are open; there are no global tools. Global tools are active and
available on all MDI "child" windows unless an MDI "child" window's TOOLBAR structure has the
NOMERGE attribute. If so, the "child" window's tools overwrite the Global tools.

On an MDI WINDOW, the TOOLBAR defines tools that are automatically merged with the Global
toolbar. Both the Global and the window's tools are then active while the MDI "child" window has
input focus. Once the window loses focus, its specific tools are removed from the Global toolbar.

6 – Windows 295

If the NOMERGE attribute is specified on an MDI WINDOW's TOOLBAR, the tools overwrite and
replace the Global toolbar. On a non-MDI WINDOW, the TOOLBAR is never merged with the
Global menu. A TOOLBAR on a non-MDI WINDOW always appears in the WINDOW, not on any
APPLICATION which may have been previously opened.

Events generated by local tools are sent to the WINDOW's ACCEPT loop in the normal way.
Events generated by global tools are sent to the active event loop of the thread which opened the
APPLICATION. In a normal multi-thread application, this means the APPLICATION's own
ACCEPT loop.

TOOLBAR controls generate events in the normal manner. However, they do not retain focus,
and cannot be operated from the keyboard unless accelerator keys are provided. As soon as user
interaction with a TOOLBAR control is done, focus returns to the window and local control which
previously had it.

Dynamic changes to tools which reference the currently active window affect only the currently
displayed toolbar, even if global tools are changed. Changes made to the Global toolbar when the
APPLICATION is the current window, or which reference the global APPLICATION's window
affect the global portions of all toolbars, whether already open or not. This means that, when an
MDI child window is active, the APPLICATION frame's TOOLBAR controls displayed on the
APPLICATION frame are actually copies of the frame's controls. This allows each MDI child to
modify its own set of toolbar controls without affecting the controls displayed for other MDI child
windows. The events for these controls are still processed by the APLICATION's ACCEPT loop.
For example, assuming a button declared in the APPLICATION's TOOLBAR has a field number
of 150. The MDI Child window's procedure can modify the appearance of that button by directly
setting the properties of control number 150, which would change its appearance only while the
MDI Child window's procedure is active and has focus.

When a WINDOW's TOOLBAR is merged into an APPLICATION's TOOLBAR, the global tools
appear first, followed by the local tools. The toolbars are merged so that the fields in the
WINDOW's toolbar begin just right of the position specified by the value of the width parameter of
the APPLICATION TOOLBAR's AT attribute. The height of the displayed toolbar is the maximum
height of the "tallest" tool, whether global or local. If any part of a control falls below the bottom,
the height is increased accordingly.

Language Reference Manual 296

Example:

!An MDI application frame window containing the
! main menu and toolbar for the application:

MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS |
,HVSCROLL,RESIZE

MENUBAR
ITEM('E&xit'),USE(?MainExit)
END
TOOLBAR
BUTTON('Exit'),USE(?MainExitButton)
END
END

!An MDI child window with toolbar for the window, merged into the
! application's toolbar:

MDIChild WINDOW('Child One'),MDI
TOOLBAR
BUTTON('Cut'),USE(?CutButton),STD(STD:Cut)
BUTTON('Copy'),USE(?CopyButton),STD(STD:Copy)
BUTTON('Paste'),USE(?PasteButton),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field)
BUTTON('&OK'),USE(?Exit),DEFAULT
END

!An MDI window with its own toolbar, overwriting the main toolbar:
MDIChild2 WINDOW('Dialog Window'),MDI,SYSTEM,MAX,STATUS

TOOLBAR,NOMERGE
BUTTON('Cut'),USE(?CutButton),STD(STD:Cut)
BUTTON('Copy'),USE(?CopyButton),STD(STD:Copy)
BUTTON('Paste'),USE(?PasteButton),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field),MSG('Enter some text here')
BUTTON('&OK'),USE(?Exit),DEFAULT
END

6 – Windows 297

Window Overview
In most Windows programs there are three types of screen windows used: application windows,
document windows, and dialog boxes. An application window is the first window opened in a
Windows program, and it usually contains the main menu as the entry point to the rest of the
program. All other windows in the program are document windows or dialog boxes.

Along with these three screen window types, there are two user interface design conventions that
are used in Windows programs: the Single Document Interface (SDI), and the Multiple Document
Interface (MDI).

An SDI program usually only contains linear logic that allows the user to take only one execution
path (thread) at a time; it does not open separate execution threads which the user may move
between. This is the same type of program logic used in most DOS programs. An SDI program
would not contain a Clarion APPLICATION structure as its application window. The Clarion
WINDOW structure (without an MDI attribute) is used to define an SDI program's application
window, and the subsequent document windows or dialog boxes opened on top of it.

An MDI program allows the user to choose multiple execution paths (threads) and change from
one to another at any time. This is a very common Windows program user interface. It is used by
applications as a way of organizing and grouping windows which present several execution paths
for the user to take.

A Clarion APPLICATION structure defines the MDI application window. The MDI application
window acts as a parent for all the MDI child windows (document windows and dialog boxes), in
that the child windows are clipped to its frame and automatically moved when the application
frame is moved. They can also be concealed en masse by minimizing the parent. There may be
only one APPLICATION open at any time in a Clarion Windows program.

Document windows and dialog boxes are very similar in that they are both defined as Clarion
WINDOW structures. They differ in the conventional context in which they are commonly used
and the conventions regarding appearance and attributes. In many cases, the difference is not
distinguishable and does not matter. The generic term for both document windows and dialog
boxes is "window" and that is the term used throughout this text.

Document windows usually display data. By convention they are movable and resizable. They
usually have a title, a system menu, and maximize button. For example, in the Windows
environment, the "Main" program group window that appears when you DOUBLE-CLICK on the
"Main" icon in the Program Manager's desktop, is a document window.

Dialog boxes usually request information from the user or alert the user to some condition,
usually prior to performing some action requested by the user. They may or may not be movable,
and so, may or may not have a system menu and title. By convention, they are not resizable,
although they can have a maximize button which gives the dialog two alternate sizes. A dialog
box may be system modal (the user must respond before doing anything else in Windows),
application modal (the user must respond before doing anything in the application), or modeless.

Language Reference Manual 298

For example, in the Clarion environment, the window that appears from the File menu's Open
selection is an application modal dialog box that requests the name of the file to open.

See Also:
Window Controls and Input Focus
Field Equate Labels

Window Controls and Input Focus
The objects placed in an APPLICATION or WINDOW structure are "controls." "Control" is a
standard Windows term used to refer to any screen object--command buttons, text entry fields,
radio buttons, list boxes, etc. In most DOS programs, the term "field" is usually used to refer to
these objects. In this document, the terms "control" and "field" are generally interchangeable.

Controls appear only in MENUBARs, TOOLBARs, or WINDOW structures. Controls are available
to the user to select and/or edit the data they contain only when it has "input focus." This occurs
when the user uses the TAB key, the mouse, or an accelerator key combination to highlight the
control.

A WINDOW also has "input focus" when it is the top WINDOW in the currently active execution
thread. Since Clarion for Windows allows multi-threaded programs, the concept of which
WINDOW currently has focus is important. Only the thread whose uppermost WINDOW has
focus is active. The user may edit data in the WINDOW's control fields only when it has focus.

6 – Windows 299

Field Equate Labels
Control Numbering

In WINDOW structures, every control (field) with a USE attribute is assigned a number by the
compiler. By default, these field numbers begin with one (1) and are assigned to controls in the
order they appear in the WINDOW structure code (the window itself is numbered zero). The
actual assigned numbers can be overridden in the second parameter of the control's USE
attribute.

The order of appearance in the WINDOW structure code determines the "natural" selection order
of controls (which may be altered during program execution with the SELECT statement). The
order of appearance in the WINDOW structure code is independent of the control's placement on
the screen. Therefore, there is not necessarily any correlation between a control's position on
screen and the field number assigned by the compiler.

In APPLICATION structures, every menu selection in the MENUBAR, and every control with a
USE attribute placed in the TOOLBAR, is assigned a number by the compiler. By default, these
numbers begin with negative one (-1) and are decremented by one (1) in the order the menu
selections and controls appear in the APPLICATION structure code.

Equates for Control Numbers

There are a number of statements that use these compiler-assigned field numbers as parameters
to indicate which controls are affected by the statement. It would be very tedious to "hard code"
these numbers in order to use these statements. Therefore, Clarion provides a mechanism to
address this problem: Field Equate Labels.

Field Equate Labels always begin with a question mark (?) followed by the label of the variable
named in the control's USE attribute. The leading question mark indicates to the compiler a Field
Equate Label. Field Equate Labels are very similar to normal EQUATE compiler directives. The
compiler substitutes the field number for the Field Equate Label at compile time. This makes it
unnecessary to know field numbers in advance.

Two or more controls with exactly the same USE variable in one WINDOW or APPLICATION
structure would attempt to create the same Field Equate Label for all (each referencing a different
field number). Therefore, when the compiler encounters this condition, all the Field Equate Labels
for that USE variable are discarded. This makes it impossible to reference any of these controls in
executable code, preventing confusion about which control you really want to reference. You can
eliminate this problem by explicitly specifying the Field Equate Label for use by each control in
the third parameter to the controls' USE attribute.

Language Reference Manual 300

Array and Complex Structure Field Equates

Field Equate Labels for USE variables which are array elements always begin with a question
mark (?) followed by the name of the USE variable followed by an underscore and the array
element number. For example, the field equate for USE(ArrayField[1]) would be ?ArrayField_1.
Multi-dimensioned arrays are treated similarly (?ArrayField_1_1, ?ArrayField_1_2, ...). You can
override this default by explicitly specifying the Field Equate Label for use by each control in the
third parameter to the controls' USE attribute.

Field Equate Labels for USE variables which are elements of a complex data structure always
begin with a question mark (?) followed by the name of the USE variable with colons (:)
replacing the periods (.). For example, the field equate for USE(Phones.Rec.Name) would be
?Phones:Rec:Name. This is done because Clarion labels may contain colons, but not periods,
and a field equate is a label.

Using Field Equate Labels

Some controls' have USE attributes that can only be Field Equate Labels (a unique label with a
leading question mark). This simply provides a way of referencing these fields in code or property
assignment statements.

In executable code, there are many statements which use the field equate label to reference the
control to affect (such as the DISPLAY statement). In all these statements, using a question mark
(?) alone, without the USE variable name appended), always indicates performing the action on
the current control that has input focus.

Example:

Window WINDOW('Dialog Window'),SYSTEM,MAX,STATUS
TEXT,HVSCROLL,USE(Pre:Field) !FEQ = ?Pre:Field
ENTRY(@N3),HVSCROLL,USE(Pre:Array[1]) !FEQ = ?Pre:Array_1
ENTRY(@N3),HVSCROLL,USE(File.MyField) !FEQ = ?File:MyField
IMAGE(ICON:Exclamation),USE(?Image) !USE attribute is a Field Equate Label
BUTTON('&OK'),USE(?Ok) !USE attribute is a Field Equate Label

END
CODE
OPEN(Window)
?Ok{PROP:DEFAULT} = TRUE !Field Equates used in property assignments
?Image{PROP:Text} = 'MyImage.GIF'
ACCEPT
DISPLAY(?) !Re-Display control with current input focus

END

6 – Windows 301

Graphics Overview
Clarion supplies a set of "graphics primitives" procedures to allow drawing in windows and
reports: ARC, BLANK, BOX, CHORD, ELLIPSE, IMAGE, LINE, PIE, POLYGON, ROUNDBOX,
SHOW, and TYPE. Controls always appear on top of any graphics drawn to the window. This
means the graphics appear to underlay any controls in the window, so they don't get in the way of
the controls the user needs to access.

Current Target
Graphics are always drawn to the "current target." Unless overridden with SETTARGET, the
"current target" is the last window opened (and not yet closed) on the current execution thread
and is the window with input focus. Drawings in a window are persistent--redraws are handled
automatically by the runtime library.

Graphics in Reports

Graphics can also be drawn to a report. To do this, SETTARGET must first be used to nominate
the REPORT as the "current target." Optionally, SETTARGET can nominate a specific report
band to receive the graphics.

Consistent Graphics

Every window or report has its own current pen width, color, and style. Therefore, to consistently
use the same pen (which does not use the default settings) across multiple windows, the
SETPENWIDTH, SETPENCOLOR, and SETPENSTYLE statements should be issued for each
window.

Language Reference Manual 302

Graphics Coordinates
The graphics coordinate system starts with the x,y coordinates (0,0) at the top left corner of the
window. The coordinates are specified in dialog units (unless overridden by the THOUS, MM, or
POINTS attributes when used on graphics placed in a REPORT). A dialog unit is defined as one-
quarter the average character width and one-eighth the average character height of the font
specified in the window's FONT attribute (or the system font, if no FONT attribute is specified on
the window).

Graphics drawn outside the currently visible portion of the window will appear if the window is
scrolled. The size of the virtual screen over which the window may scroll automatically expands to
include all graphics drawn to the window. Drawing graphics outside the visible portion of the
window automatically causes the scroll bars to appear (if the window has the HSCROLL,
VSCROLL, or HVSCROLL attribute).

7 – Reports 303

7 - Reports
Report Structures

REPORT (declare a report structure)

label REPORT([jobname]), AT() [, FONT()] [, PRE()] [, LANDSCAPE] [, PREVIEW] [, PAPER]

 [,COLOR()] [| THOUS |]

 | MM |

 | POINTS |

 [FORM

 controls

 END]

 [HEADER

 controls

 END]

label DETAIL

 controls

 END

label [BREAK()

 group break structures

 END]

 [FOOTER

 controls

 END]

 END

Language Reference Manual 304

REPORT Declares the beginning of a report data structure.

label The name by which the REPORT structure is addressed in executable code.

jobname Names the print job for the Windows Print Manager (PROP:Text). If omitted, the
REPORT's label is used.

AT Specifies the size and location of the area for printing report detail, relative to the
top left corner of the page (PROP:AT).

FONT Specifies the default font for all controls in this report (PROP:FONT). If omitted,
the printer's default font is used.

PRE Specifies the label prefix for the report or structure.

LANDSCAPE Specifies printing the report in landscape mode (PROP:LANDSCAPE). If omitted,
printing defaults to portrait mode.

PREVIEW Specifies report output to Windows metafiles; one file per report page
(PROP:PREVIEW).

PAPER Specifies the paper size for the report output. If omitted, the default printer's
paper size is used.

COLOR Specifies a background color for the REPORT and default background colors for
the bands in the REPORT (PROP:COLOR).

THOUS Specifies thousandths of an inch as the measurement unit used for all attributes
which use coordinates (PROP:THOUS).

MM Specifies millimeters as the measurement unit used for all attributes which use
coordinates (PROP:MM).

POINTS Specifies points as the measurement unit used for all attributes which use
coordinates (PROP:POINTS). There are 72 points per inch, vertically and
horizontally.

FORM Page layout structure defining pre-printed items on every page.

controls Report output controls.

HEADER Page header structure, printed at the start of each page.

DETAIL Report detail structure.

BREAK A group break structure, defining the variable which causes a group break to
occur when its value changes.

group break structures
Group break HEADER, FOOTER, and DETAIL structures, and/or other nested
BREAK structures.

FOOTER Page footer structure, printed at the end of each page.

7 – Reports 305

The REPORT statement declares the beginning of a report data structure. A REPORT structure
must terminate with a period or END statement. Within the REPORT, the FORM, HEADER,
DETAIL, FOOTER, and BREAK structures are the components that format the output of the
report. A REPORT must be explicitly opened with the OPEN statement.

A REPORT with the PREVIEW attribute sends the report output to Windows metafiles containing
one report page per file. The PREVIEW attribute names a QUEUE to receive the names of the
metafiles. You can then create a window to display the report in an IMAGE control, using the
QUEUE field contents (the file names) to set the IMAGE control's {PROP:Text} property. This
allows the end user to view the report before printing.

The REPORT's AT attribute defines the area of each page devoted to printing DETAIL structures.
This includes any HEADERs and FOOTERs that are contained within a BREAK structure (group
headers and footers).

Only DETAIL structures can (and must) be printed with the PRINT statement. All other report
structures (HEADER, FOOTER, and FORM) automatically print at the appropriate place in the
report.

The FORM structure prints on every page except pages containing DETAIL structures with the
ALONE attribute. Its format is determined once at the beginning of the report. This makes it the
logical place to design a pre-printed form template, which is filled in by the subsequent HEADER,
DETAIL, and FOOTER structures. The page HEADER and FOOTER structures are not within a
BREAK structure. They automatically print whenever a page break occurs.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and
DETAIL structures, and/or other nested BREAK structures. It may also contain multiple DETAIL
structures. The HEADER and FOOTER structures that are within a BREAK structure are the
group header and footer. They are automatically printed when the value in a specified group
break variable changes.

A REPORT data structure never defaults as the current target for runtime property assignment
the way the most recently opened WINDOW or APPLICATION structure does. Therefore, the
REPORT label must be explicitly named as the target, or the SETTARGET statement must be
used to make the REPORT the current target, before using runtime property assignment to a
REPORT control. Since the graphics commands draw graphics only to the current target, the
SETTARGET statement must be used to make the REPORT the current target before using the
graphics procedures on a REPORT.

Language Reference Manual 306

Page-based Printing

Clarion reports use a page-based printing paradigm instead of the line-based paradigm used by
some older report generators. Instead of printing each line as its values are generated, nothing is
sent to the printer until an entire page is ready to print. This means that the "print engine" in the
Clarion runtime library can do a lot of work for you, based on the attributes you specify in the
REPORT structure.

Some of the things that the "print engine" in the Clarion runtime library does for you are:

• Prints "pre-printed" forms on each page, that are then filled in by the data

• Calculates totals (count, sum, average, minimum, maximum)

• Automatically handles page breaks, including page headers and footers

• Automatically handles group breaks, including group headers and footers

• Provides complete widow/orphan control.

This automatic functionality makes the executable code required to print a complex report very
small, making your programming job easier. Since the "print engine" is page-based, the concepts
of headers and footers lose their context indicating both page positioning and print sequence, and
only retain their meaning of print sequence. Headers are printed at the beginning of a print
sequence, and footers are printed at the end--their actual positioning on the page is irrelevant.
For example, you could position the page footer, containing page totals, to print at the top of the
page.

7 – Reports 307

BREAK (declare group break structure)

label BREAK(variable) [,USE()] [,NOCASE]

 group break structures

 END

BREAK Declares a group break structure.

label The name by which the structure is addressed in executable code.

variable The variable whose change in value signals the group break (PROP:BreakVar).

USE A field equate label to reference the BREAK structure in executable code
(PROP:USE).

NOCASE Specifies the check for a changed value in the variable is case insensitive.

group break structures
Group break HEADER, FOOTER, and DETAIL structures, and/or other nested
BREAK structures.

The BREAK structure declares the variable which signals a group break when the value in the
variable changes. A BREAK structure must be terminated with a period or END statement. It may
contain its own HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK
structures. Only one HEADER and FOOTER are allowed in a BREAK structure; it may contain
multiple DETAIL and/or BREAK structures.

The HEADER and FOOTER structures that are declared within a BREAK structure are the group
header and footer. They automatically print surrounding equivalent values in the group break
variable.

Example:
CustRpt REPORT !Declare customer report
Break1 BREAK(SomeVariable)

HEADER !begin group header declaration
!report controls
END !end header declaration

GroupDet DETAIL
!report controls
END !end detail declaration
FOOTER ! begin group footer declaration
!report controls
END !end footer declaration
END !end group break declaration
END !End report declaration

Language Reference Manual 308

DETAIL (report detail line structure)

label DETAIL ,AT() [,FONT()] [,ALONE] [,ABSOLUTE] [,PAGEBEFORE()] [,PAGEAFTER()]

 [,WITHPRIOR()] [,WITHNEXT()] [,USE()] [,COLOR()] [,TOGETHER]

 controls

 END

DETAIL Declares items to be printed as the body of the report.

label The name by which the structure is addressed in executable code.

AT Specifies the offset and minimum width and height of the DETAIL, relative to the
size of the area specified by the REPORT's AT attribute (PROP:AT).

FONT Specifies the default font for all controls in this structure (PROP:FONT). If
omitted, the REPORT's FONT attribute (if present) is used, or else the printer's
default font is used.

ALONE Declares the DETAIL structure must be printed on a page without FORM, (page)
HEADER, or (page) FOOTER structures (PROP:ALONE).

ABSOLUTE Declares the DETAIL prints at a fixed position relative to the page
(PROP:ABSOLUTE).

PAGEBEFORE Declares the DETAIL prints at the start of a new page, after activating normal
page overflow actions (PROP:PAGEBEFORE).

PAGEAFTER Declares the DETAIL prints, and then starts a new page by activating normal
page overflow actions (PROP:PAGEAFTER).

WITHPRIOR Declares the DETAIL prints on the same page as the DETAIL,or group HEADER
or FOOTER that immediately precedes it during printing (PROP:WITHPRIOR).

WITHNEXT Declares the DETAIL prints on the same page as the DETAIL, or group HEADER
or FOOTER that immediately follows it during printing (PROP:WITHNEXT).

USE A field equate label to reference the DETAIL structure in executable code
(PROP:USE).

COLOR Specifies a background color for the DETAIL and the default background color
for the controls in the DETAIL (PROP:COLOR).

TOGETHER Specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is to only print on a single page, rather than being
automatically split if there is not sufficient room for it (PROP:Together).

controls Report output control fields.

7 – Reports 309

The DETAIL structure declares items to be printed as the body of the report. A DETAIL structure
must be terminated with a period or END statement. A REPORT may have multiple DETAIL
structures.

A DETAIL structure is never automatically printed, therefore DETAIL structures are always
explicitly printed by the PRINT statement. This means that a label is required for each DETAIL
you wish to PRINT.

The DETAIL structure may be printed whenever necessary. Since you may have multiple DETAIL
structures, they provide the ability to optionally print alternate print formats. This is determined by
the logic in the executable code which prints the report.

DETAIL structures print within the detail print area specified by the REPORT statement's AT
attribute. The DETAIL structure's AT attribute specifies the relative position, width and height of
the detail to print. If there is horizontal room within the detail print area for multiple DETAIL
structures, they print side-by-side.

Example:
CustRpt REPORT !Declare customer report

HEADER !begin page header declaration
!structure elements
END !end header declaration

CustDetail1 DETAIL !begin detail declaration
!structure elements
END !end detail declaration

CustDetail2 DETAIL !begin detail declaration
!structure elements
END !end detail declaration

END !End report declaration
CODE
OPEN(CustRpt)
SET(SomeFile)
LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

IF SomeCondition
PRINT(CustDetail1)

ELSE
PRINT(CustDetail2)

END
END
CLOSE(CustRpt)

See Also:

PRINT, AT

Language Reference Manual 310

FOOTER (page or group footer structure)

 FOOTER ,AT() [,FONT()] [,ABSOLUTE] [,PAGEBEFORE()] [,PAGEAFTER()]

 [,WITHPRIOR()] [,WITHNEXT()] [,ALONE] [,USE()] [,COLOR()] [,TOGETHER]

 controls

 END

FOOTER Declares a page or group footer structure.

AT Specifies the size and location of the FOOTER (PROP:AT).

FONT Specifies the default font for all controls in this structure (PROP:FONT). If
omitted, the REPORT's FONT attribute (if present) is used, or else the printer's
default font is used.

ABSOLUTE Declares the FOOTER prints at a fixed position relative to the page
(PROP:ABSOLUTE). Valid only on a FOOTER within a BREAK structure.

PAGEBEFORE Declares the FOOTER prints at the start of a new page, after activating normal
page overflow actions (PROP:PAGEBEFORE). Valid only on a FOOTER within a
BREAK structure.

PAGEAFTER Declares the FOOTER prints, and then starts a new page by activating normal
page overflow actions (PROP:PAGEAFTER). Valid only on a FOOTER within a
BREAK structure.

WITHPRIOR Declares the FOOTER prints on the same page as the DETAIL, group HEADER,
or FOOTER that immediately precedes it during printing (PROP:WITHPRIOR).
Valid only on a FOOTER within a BREAK structure.

WITHNEXT Declares the FOOTER prints on the same page as the DETAIL, group HEADER,
or FOOTER that immediately follows it during printing (PROP:WITHNEXT). Valid
only on a FOOTER within a BREAK structure.

ALONE Declares the (group) FOOTER structure must be printed on a page without
FORM, (page) HEADER, or (page) FOOTER structures (PROP:ALONE).

USE A field equate label to reference the FOOTER structure in executable code
(PROP:USE).

COLOR Specifies a background color for the FOOTER and the default background color
for the controls in the FOOTER (PROP:COLOR).

TOGETHER Specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is to only print on a single page, rather than being
automatically split if there is not sufficient room for it (PROP:Together).

7 – Reports 311

controls Report output control fields.

The FOOTER structure declares the output which prints at the end of each page or group. A
FOOTER structure must be terminated with a period or END statement.

A FOOTER structure that is not within a BREAK structure is a page footer. Only one page
FOOTER is allowed in a REPORT. The page FOOTER is automatically printed whenever a page
break occurs, at the page-relative position specified by its AT attribute.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and
DETAIL structures, and/or other nested BREAK structures. It may also contain multiple DETAIL
structures. The HEADER and FOOTER structures that are within a BREAK structure are the
group header and footer. They are automatically printed when the value in a specified group
break variable changes, at the next position available in the detail print area (specified by the
REPORT's AT attribute). Only one FOOTER is allowed in a BREAK structure.

Example:
CustRpt REPORT !Declare customer report

FOOTER !begin page FOOTER declaration
!report controls
END !end FOOTER declaration

Break1 BREAK(SomeVariable)
GroupDet DETAIL

!report controls
END !end detail declaration
FOOTER !begin group footer declaration
!report controls
END !end footer declaration
END !end group break declaration
END !End report declaration

Language Reference Manual 312

FORM (page layout structure)

 FORM ,AT() [,FONT()] [,USE()] [,COLOR()]

 controls

 END

FORM Declares a report structure which prints on each page.

AT Specifies the size and location, relative to the top left corner of the page, of the
FORM (PROP:AT).

FONT Specifies the default font for all controls in this report structure (PROP:FONT). If
omitted, the REPORT's FONT attribute (if present) is used, or else the printer's
default font is used.

USE A field equate label to reference the FORM structure in executable code
(PROP:USE).

COLOR Specifies a background color for the FORM and the default background color for
the controls in the FORM (PROP:COLOR).

controls Report output control fields.

FORM declares a report structure which prints on every page of the report (except pages
containing DETAIL structures with the ALONE attribute). A FORM structure must be terminated
with a period or END statement. Only one FORM is allowed in a REPORT structure. The FORM
structure automatically prints during page overflow.

The printed output of the FORM is determined only once at the beginning of the report. The page
positioning of the FORM does not affect the page positioning of any other report structure. Once
printed, all other structures may "overwrite" the FORM. Therefore, FORM is most aften used to
design pre-printed forms which are filled in by the subsequent HEADER, DETAIL, and FOOTER
structures. It may also be used to generate "watermarks" or page border graphics.

Example:
CustRpt REPORT !Declare customer report

FORM
IMAGE('LOGO.BMP'),AT(0,0,1200,1200),USE(?I1)
STRING(@N3),AT(6000,500,500,500),PAGENO
END

GroupDet DETAIL
!report controls
END
END !End report declaration

7 – Reports 313

HEADER (page or group header structure)

 HEADER ,AT() [,FONT()] [,ABSOLUTE] [,PAGEBEFORE()] [,PAGEAFTER()]

 [,WITHPRIOR()] [,WITHNEXT()] [,ALONE] [,USE()] [,COLOR()] [,TOGETHER]

 controls

 END

HEADER Declares a page or group header structure.

AT Specifies the size and location of the HEADER (PROP:AT).

FONT Specifies the default font for all controls in this structure (PROP:FONT). If
omitted, the REPORT's FONT attribute (if present) is used, or else the printer's
default font is used.

ABSOLUTE Declares the HEADER prints at a fixed position relative to the page
(PROP:ABSOLUTE). Valid only on a HEADER within a BREAK structure.

PAGEBEFORE Declares the HEADER prints at the start of a new page after activating normal
page overflow actions (PROP:PAGEBEFORE). Valid only on a HEADER within a
BREAK structure.

PAGEAFTER Declares the HEADER prints, and then starts a new page by activating normal
page overflow actions (PROP:PAGEAFTER). Valid only on a HEADER within a
BREAK structure.

WITHPRIOR Declares the HEADER prints on the same page as the DETAIL, group HEADER,
or FOOTER that immediately precedes it during printing (PROP:WITHPRIOR).
Valid only on a HEADER within a BREAK structure.

WITHNEXT Declares the HEADER prints on the same page as the DETAIL, group HEADER,
or FOOTER that immediately follows it during printing (PROP:WITHNEXT). Valid
only on a HEADER within a BREAK structure.

ALONE Declares the (group) HEADER structure must be printed on a page without
FORM, (page) HEADER, or (page) FOOTER structures (PROP:ALONE).

USE A field equate label to reference the HEADER structure in executable code
(PROP:USE).

COLOR Specifies a background color for the HEADER and the default background color
for the controls in the HEADER (PROP:COLOR).

TOGETHER Specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is to only print on a single page, rather than being
automatically split if there is not sufficient room for it (PROP:Together).

Language Reference Manual 314

controls Report output control fields.

The HEADER structure declares the output which prints at the beginning of each page or group.
A HEADER structure must be terminated with a period or END statement.

A HEADER structure that is not within a BREAK structure is a page header. Only one page
HEADER is allowed in a REPORT. The page HEADER is automatically printed whenever a page
break occurs, at the page-relative position specified by its AT attribute.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and
DETAIL structures, and/or other nested BREAK structures. It may also contain multiple DETAIL
structures. The HEADER and FOOTER structures that are within a BREAK structure are the
group header and footer. They are automatically printed when the value in a specified group
break variable changes, at the next position available in the detail print area (specified by the
REPORT's AT attribute). Only one HEADER is allowed in a BREAK structure.

Example:
CustRpt REPORT !Declare customer report

HEADER ! begin page header declaration
!report controls
END ! end header declaration

Break1 BREAK(SomeVariable)
HEADER ! begin group header declaration
!report controls
END ! end header declaration

GroupDet DETAIL
!report controls
END ! end detail declaration
END ! end group break declaration
END !End report declaration

7 – Reports 315

Printer Control Properties
These properties control report and printer behavior. All of these properties can be used with
either the PRINTER built-in variable or the label of the report as the target, however they may not
all make sense with both. These properties are contained in the PRNPROP.CLW file, which you
must explicitly INCLUDE in your code in order to use them.

PROPPRINT:DevMode
The entire device mode (devmode) structure as defined in the Windows Software
Development Kit. This provides direct API access to all printer properties. Consult a
Windows API manual before using this.

The devmode structure is different in 32-bit (consult a Windows API manual).
However, the following properties are the most common and useful:
DM_ORIENTATION DM_PAPERSIZE DM_PAPERLENGTH
DM_PAPERWIDTH DM_SCALE DM_COPIES
DM_DEFAULTSOURCE DM_PRINTQUALITY DM_POSITION
DM_DISPLAYORIENTATION DM_DISPLAYFIXEDOUTPUT DM_COLOR
DM_DUPLEX DM_YRESOLUTION DM_TTOPTION
DM_COLLATE DM_FORMNAME DM_LOGPIXELS
DM_BITSPERPEL DM_PELSWIDTH DM_PELSHEIGHT
DM_DISPLAYFLAGS DM_NUP DM_DISPLAYFREQUENCY
DM_ICMMETHOD DM_ICMINTENT DM_MEDIATYPE
DM_DITHERTYPE DM_PANNINGWIDTH DM_PANNINGHEIGHT

PROPPRINT:Collate
Specify the printer should collate the output: 0=off, 1=on (not supported by all printers).

PROPPRINT:Color
Color or monochrome print flag:1=mono, 2=color (not supported by all printers).

PROPPRINT:Context
Returns the handle to the printer's device context after the first PRINT statement for the
report, or an information context before the first PRINT statement. This may not be set for
the built-in Global PRINTER variable and is normally only read (not set).

PROPPRINT:Copies
The number of copies to print (not supported by all printers).

Language Reference Manual 316

PROPPRINT:Device
The name of the Printer as it appears in the Windows Printer Dialog. If multiple printer
names start with the same characters, the first encountered is used (not case sensitive).
May be set for the PRINTER built-in variable only before the report is open.

PROPPRINT:Driver
The printer driver's filename (without the .DLL extension).

PROPPRINT:Duplex
The duplex printing mode (not supported by all printers). Equates(DUPLEX::xxx) for the
standard choices are listed in the PRNPROP.CLW file.

PROPPRINT:Extend
PROPPRINT:Extend can be set to TRUE or FALSE at runtime, and references the
REPORT target. This determines whether or not the runtime library generates extra
information inside the WMF files, which is being used to generate the new report output
formats (XML, HTML, PDF etc.).

Set this property to FALSE (0) if you do not want alternate output formats and prefer
smaller, compact WMF files (this is default behavior).

PROP:Extend is the runtime property that can be used to set the information for the
EXTEND attribute.

PROPPRINT:FontMode
The TrueType font mode. Equates (FONTMODE:xxx) for the modes are listed in the
PRNPROP.CLW file.

PROPPRINT:FromMin
When set for the built-in PRINTER variable, this forces the value into the "From:" page
number in the PRINTERDIALOG. Specify -1 to disable ranges

PROPPRINT:FromPage
The page number on which to start printing. Specify -1 to print from the start.

7 – Reports 317

PROPPRINT:Paper
Standard paper size. Equates (PAPER:xxx) for the standard sizes are listed in the
PRNPROP.CLW file. This defines the dimensions of the .WMF files that are created by
the Clarion runtime library's "print engine."

PROPPRINT:PaperBin
The paper source. Equates (PAPERBIN:xxx) for the standard locations are listed in the
PRNPROP.CLW file.

PROPPRINT:PaperHeight
The paper height in tenths of millimeters (mm/10). There are 25.4 mm per inch. Used
when setting PROPPRINT:Paper to PAPER:Custom (not normally used for laser
printers).

PROPPRINT:PaperWidth
The paper width in tenths of millimeters (mm/10).There are 25.4 mm per inch. Used when
setting PROPPRINT:Paper to PAPER:Custom (not normally used for laser printers).

PROPPRINT:Percent
The scaling factor used to enlarge or reduce the printed output, in percent (not supported
by all printers). This defaults to 100 percent. Set this value to print at the desired
percentage (if your printer and driver support scaling). For example, set to 200 to print at
double size, or 50 to print at half size.

PROPPRINT:Port
Output port name (LPT1, COM1, etc.).

PROPPRINT:PrintToFile
The Print to File flag: 0=off, 1=on.

PROPPRINT:PrintToName
The output filename when printing to a file.

PROPPRINT:Resolution
The print resolution in Dots Per Inch (DPI). Equates (RESOLUTION:xxx)for the standard
resolutions are listed in the PRNPROP.CLW file. Must be issued before the report is
open.

Language Reference Manual 318

PROPPRINT:ToMax
When set for the built-in PRINTER variable, this forces the value into the "To:" page
number in the PRINTERDIALOG. Specify -1 to disable ranges

PROPPRINT:ToPage
The page number on which to end printing. Specify -1 to print to end.

PROPPRINT:Yresolution
Vertical print resolution in Dots Per Inch (DPI). Equates (RESOLUTION:xxx)for the
standard resolutions are listed in the PRNPROP.CLW file.

Example:
SomeReport REPORT

END
CODE
PRINTER{PROPPRINT:Device} = 'Epson' !Pick 1st Epson in the list
PRINTER{PROPPRINT:Port} = 'LPT2:' !Send report to LPT2
PRINTER{PROPPRINT:Percent} = 250 !page printed 2.5 times normal
PRINTER{PROPPRINT:Copies} = 3 !print 3 copies of each page
PRINTER{PROPPRINT:Collate} = False !print 1,1,1,2,2,2,3,3,3,...
PRINTER{PROPPRINT:Collate} = True !print 1,2,3..., 1,2,3...,
PRINTER{PROPPRINT:PrintToFile} = True !print to a file
PRINTER{PROPPRINT:PrintToName} = 'OUTPUT.RPT' !filename to print to

OPEN(SomeReport) !Open report after setting PRINTER prope
SomeReport{PROPPRINT:Paper} = PAPER:User !Custom paper size
SomeReport{PROPPRINT:PAPERHeight} = 6 * 254 !6" form height
SomeReport{PROPPRINT:PAPERWidth} = 3.5 * 254 !3.5" form width

Page Overflow
Page Overflow occurs when the PRINT statement cannot fit a DETAIL structure on a page. This
may be due to a lack of space, or the presence of the PAGEBEFORE or PAGEAFTER attribute
on a DETAIL structure. The following steps occur during page overflow, in this sequence:

1 If the REPORT has a page FOOTER, it prints at the position specified by its AT attribute.

2 The page counter is incremented.

3 If the REPORT has a FORM structure, it prints at the position specified by its AT
attribute.

4 If the REPORT has a page HEADER, it prints at the position specified by its AT attribute.

Related Procedures: CLOSE, OPEN, ENDPAGE, PRINT

7 – Reports 319

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS,FONT('Arial',12),PRE(Rpt)

FORM,AT(1000,1000,6500,9000)
IMAGE('LOGO.BMP'),AT(0,0,1200,1200),USE(?I1)
END
HEADER,AT(1000,1000,6500,1000)
STRING('ABC Company'),AT(3000,500,1500,500),FONT('Arial',18)
END

Break1 BREAK(Pre:Key1)
HEADER,AT(0,0,6500,1000)
STRING('Group Head'),AT(3000,500,1500,500),FONT('Arial',18)
END

Detail DETAIL,AT(0,0,6500,1000)
STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000)
STRING('Group Total:'),AT(5500,500,1500,500)
STRING(@N$11.2),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Break1)
END
END
FOOTER,AT(1000,1000,6500,1000)
STRING('Page Total:'),AT(5500,1500,1500,500)
STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1),SUM,PAGE
END
END !End report declaration

CODE
OPEN(CustReport)
SET(DataFile)
LOOP
NEXT(DataFile)
IF ERRORCODE()
BREAK

END
PRINT(Rpt:Detail)

END
CLOSE(CustReport)

Language Reference Manual 320

8 – Controls 321

8 - Controls
Control Declarations

BOX (declare a box control)

 BOX ,AT() [,USE()] [,DISABLE] [,COLOR()] [,FILL()] [,ROUND] [,FULL] [,SCROLL] [,HIDE]
 [,LINEWIDTH()] [,LAYOUT()] [,EXTEND()]

BOX Places a rectangular box on the window or report.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

USE A field equate label to reference the control in executable code (PROP:USE).

DISABLE Specifies the control appears dimmed when the WINDOW (or APPLICATION) is
first opened (PROP:DISABLE).

COLOR Specifies the color for the border of the control (PROP:COLOR). If omitted, there
is no border.

FILL Specifies the fill color for the control (PROP:FILL). If omitted, the box is not filled
with color.

ROUND Specifies the box corners are rounded (PROP:ROUND). If omitted, the corners
are square.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened. UNHIDE must be used to display it (PROP:HIDE). In a REPORT,
specifies the control does not print unless UNHIDE is used to allow it to print

LINEWIDTH Specifies the width of the BOX's border (PROP:LINEWIDTH).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

The BOX control places a rectangular box on the WINDOW, TOOLBAR, or REPORT at the
position and size specified by its AT attribute. This control cannot receive input focus and does
not generate events.

Language Reference Manual 322

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
!Unfilled, black border:
BOX,AT(0,0,20,20)
!Unfilled, black border, dimmed:
BOX,AT(0,20,20,20),USE(?Box1),DISABLE
!Unfilled, rounded, black border:
BOX,AT(20,20,20,20),ROUND
!Filled, black border:
BOX,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)
!Unfilled, active border color border:
BOX,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)
!Scrolls with screen:
BOX,AT(480,180,20,20),SCROLL
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

!Unfilled, black border
BOX,AT(0,0,20,20),USE(?B1)
!Unfilled, rounded, black border
BOX,AT(20,20,20,20),ROUND
!Filled, black border
BOX,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)
!Unfilled, active border color border
BOX,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)
END

END

See Also:

PANEL

8 – Controls 323

BUTTON (declare a pushbutton control)

 BUTTON(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

 [,STD()] [,FONT()] [,ICON()] [,DEFAULT] [,IMM][,REQ] [,FULL] [,SCROLL] [,ALRT()]

 [,HIDE] [,DROPID()] [,TIP()] [,FLAT] [,REPEAT()] [,DELAY()] [,| LEFT |] [,TRN] [,LAYOUT]

 | RIGHT|

BUTTON Places a command button on the WINDOW or TOOLBAR.

text A string constant containing the text to display on the button face, along with any
ICON specified (PROP:Text). This may contain an ampersand (&) to indicate the
"hot" letter (accelerator key) for the button.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are set by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE A field equate label to reference the control in executable code (PROP:USE).

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is
first opened (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
and presses the button (PROP:KEY).

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG).

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP).

SKIP Specifies the control does not receive input focus and may only be accessed with
the mouse or accelerator key (PROP:SKIP).

STD Specifies an integer constant or equate that identifies a "Windows standard
action" the control executes (PROP:STD).

FONT Specifies the display font for the control (PROP:FONT).

ICON Specifies an image file or standard icon to display on the button face
(PROP:ICON).

DEFAULT Specifies the BUTTON is automatically pressed when the user presses the
ENTER key (PROP:DEFAULT).

Language Reference Manual 324

IMM Specifies the control generates an event when the left mouse button is pressed,
continuing as long as it is depressed (PROP:IMM). If omitted, an event is
generated only when the left mouse button is pressed and released on the
control.

REQ Specifies that when the BUTTON is pressed, the runtime library automatically
checks all ENTRY controls in the same WINDOW with the REQ attribute to
ensure they contain data other than blanks or zeroes (PROP:REQ).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

ALRT Specifies "hot" keys active for the control (PROP:ALRT).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip).

FLAT Specifies the button appears flat except when the mouse cursor passes over the
control (PROP:FLAT). Requires the ICON attribute.

REPEAT Specifies the rate at which EVENT:Accepted generates when the button with the
IMM attribute is held down by the user (PROP:REPEAT). Requires the IMM
attribute.

DELAY Specifies the delay between the first and second generation of EVENT:Accepted
for a button with the IMM attribute (PROP:DELAY). Requires the IMM attribute.

LEFT Specifies that the icon appears to the left of the text (PROP:LEFT).

RIGHT Specifies that the icon appears to the right of the text (PROP:RIGHT).

TRN Specifies that the characters print or display transparently without obliterating the
background over which the control is placed.

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

The BUTTON control places a pushbutton on the WINDOW or TOOLBAR (not valid in a
REPORT) at the position and size specified by its AT attribute.

A BUTTON with the IMM attribute generates EVENT:Accepted as soon as the left mouse button
is pressed on the control and continues to do so until it is released. This allows the BUTTON
control's executable code to execute continuously until the mouse button is released. The rate
and delay before continuous event generation can be set by the REPEAT and DELAY attributes.

8 – Controls 325

A BUTTON without the IMM attribute generates EVENT:Accepted only when the left mouse
button is pressed and then released on the control.

A BUTTON with the REQ attribute is a "required control fields check" button. REQ attributes of
ENTRY or TEXT control fields are not checked until a BUTTON with the REQ attribute is pressed
or the INCOMPLETE procedure is called. Focus is given to the first required control which is
blank or zero.

A BUTTON with an ICON attribute displays the image on the button face in addition to its text
parameter (which appears below the image, by default). The text parameter also serves for
accelerator "hot" key definition.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The control has been pressed by the user.

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
BUTTON('1'),AT(0,0,20,20),USE(?B1)
BUTTON('2'),AT(20,0,20,20),USE(?B2),KEY(F10Key)
BUTTON('3'),AT(40,0,20,20),USE(?B3),MSG('Button 3')
BUTTON('4'),AT(60,0,20,20),USE(?B4),HLP('Button4Help')
BUTTON('5'),AT(80,0,20,20),USE(?B5),STD(STD:Cut)
BUTTON('6'),AT(100,0,20,20),USE(?B6),FONT('Arial',12)
BUTTON('7'),AT(120,0,20,20),USE(?B7),ICON(ICON:Question)
BUTTON('8'),AT(140,0,20,20),USE(?B8),DEFAULT
BUTTON('9'),AT(160,0,20,20),USE(?B9),IMM
BUTTON('10'),AT(180,0,20,20),USE(?B10),CURSOR(CURSOR:Wait)
BUTTON('11'),AT(200,0,20,20),USE(?B11),REQ
BUTTON('12'),AT(220,0,20,20),USE(?B12),ALRT(F10Key)
BUTTON('13'),AT(240,0,20,20),USE(?B13),SCROLL
END

CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?B1
!Perform some action

END
END

See Also: CHECK, OPTION, RADIO

Language Reference Manual 326

CHECK (declare a checkbox control)

 CHECK(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

 [,FONT()] [,ICON()] [,FULL] [,SCROLL] [,ALRT()] [,HIDE] [,DROPID()] [,TIP()]
 [, | LEFT |] [,VALUE()] [,TRN] [,COLOR()] [,FLAT] [,LAYOUT] [,EXTEND()]

 | RIGHT |

CHECK Places a check box on the WINDOW, TOOLBAR, or REPORT.

text A string constant containing the text to display next to the check box
(PROP:Text). This may contain an ampersand (&) to indicate the "hot" letter for
the check box.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used. Not valid in a REPORT.

USE The label of a variable to receive the value of the check box (PROP:USE). Zero
(0) indicates OFF (un-checked) or one (1) indicates ON (checked) unless the
VALUE attribute specifies other values.

DISABLE Specifies the control appears dimmed in the WINDOW or APPLICATION
(PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
and toggles the box (PROP:KEY). Not valid in a REPORT.

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG). Not valid in a REPORT.

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP). Not valid in a REPORT.

SKIP Specifies the control does not receive input focus and may only be accessed with
the mouse or accelerator key (PROP:SKIP). Not valid in a REPORT.

FONT Specifies the display font for the control (PROP:FONT).

ICON Specifies an image file or standard icon to display on the button face of a
"latching" pushbutton (PROP:ICON). Not valid in a REPORT.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

8 – Controls 327

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

ALRT Specifies "hot" keys active for the control (PROP:ALRT).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened, or the control is not printed in the REPORT (PROP:HIDE). UNHIDE
must be used to display or print it.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID). Not valid in a REPORT.

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip). Not valid in a REPORT.

LEFT Specifies that the text appears to the left of the check box (PROP:LEFT).

RIGHT Specifies that the text appears to the right of the check box (PROP:RIGHT). This
is the default position.

VALUE Specifies the true and false values the USE variable receives when the box is
checked by the user (PROP:Value).

TRN Specifies the control transparently displays over the background (PROP:TRN).

COLOR Specifies a background color for the control's text (PROP:COLOR).

FLAT Specifies the button appears flat except when the mouse cursor passes over the
control (PROP:FLAT). Requires the ICON attribute. Not valid in a REPORT.

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

The CHECK control places a check box on the WINDOW, TOOLBAR, or REPORT at the position
and size specified by its AT attribute.

A CHECK in a window with an ICON attribute appears as a "latched" button with the image
displayed on the button face. When the button appears "up" the CHECK is off; when it appears
"down" the CHECK is on.

By default, when the CHECK is off the USE variable receives a value of zero (0); and when the
CHECK is on, the USE variable receives a value of one (1). The VALUE attribute and its runtime
properties (PROP:TrueValue and PROP:FalseValue) can be used to change this default behavior
and automatically set the USE variable to values other than the defaults.

Language Reference Manual 328

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The control has been toggled by the user.

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
CHECK('1'),AT(0,0,20,20),USE(C1)
CHECK('2'),AT(0,20,20,20),USE(C2),VALUE('T','F')
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

CHECK('1'),AT(0,0,20,20),USE(C1)
CHECK('2'),AT(20,80,20,20),USE(C2),LEFT
CHECK('3'),AT(0,100,20,20),USE(C3),FONT('Arial',12)
END

END
CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?C1
IF C1 = 1 THEN DO C1Routine.

OF ?C2
IF C2 = 'T' THEN DO C2Routine.

END
END

See Also:

BUTTON

OPTION

RADIO

8 – Controls 329

COMBO (declare an entry/list control)

COMBO(picture) ,FROM() ,AT() [,CURSOR()] [,USE()] [,LAYOUT()][,DISABLE] [,KEY()] [,MSG()] [,HLP()]

 [,SKIP][,FONT()][,FORMAT()][,DROP][,COLUMN][,VCR][,FULL][,GRID()][,SCROLL]

 [,ALRT()][,HIDE][,READONLY][,REQ][,NOBAR][DROPID()][,TIP()][,TRN][,COLOR()]

 [,| MARK()|] [, | HSCROLL |][, | LEFT |][, | INS|][, | UPR |]
[,MASK] | IMM | | VSCROLL | | RIGHT | | OVR || CAP |
 | HVSCROLL | | CENTER |
 | DECIMAL |

COMBO Places a data entry field with an associated list of data items on the WINDOW or
TOOLBAR.

picture A display picture token that specifies the input format for the data entered into the
control (PROP:Text).

FROM Specifies the origin of the data displayed in the list (PROP:FROM).

AT Specifies the initial size and location of the control (PROP:AT). If omitted, the
runtime library chooses a value.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE A field equate label to reference the control in executable code or the label of the
variable that receives the value selected by the user (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display and entry orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is
first opened (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the control (PROP:KEY).

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG).

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP).

SKIP Specifies the control receives input focus to enter text only with the mouse or
accelerator key and does not retain focus (PROP:SKIP).

FONT Specifies the display font for the control (PROP:FONT).

FORMAT Specifies the display format of the data (PROP:FORMAT).

Language Reference Manual 330

DROP Specifies a drop-down list box and the number of elements the drop-down
portion contains (PROP:DROP).

COLUMN Specifies a field-by-field highlight bar on multi-column list boxes
(PROP:COLUMN).

VCR Specifies a VCR-type control that appears left of any horizontal scroll bar
(PROP:VCR).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

GRID Specifies the color of the grid lines between columns in the list (PROP:GRID).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

ALRT Specifies "hot" keys active for the control (PROP:ALRT).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

READONLY Specifies the control does not allow data entry (PROP:READONLY).

NOBAR Specifies the highlight bar is displayed only when the LIST has focus
(PROP:NOBAR).

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip).

TRN Specifies the control transparently displays over the background (PROP:TRN).

COLOR Specifies background and selected colors for the control (PROP:COLOR).

REQ Specifies the control may not be left blank or zero (PROP:REQ).

MARK Specifies multiple item selection mode (PROP:MARK).

IMM Specifies generation of an event whenever the user presses any key
(PROP:IMM).

HSCROLL Specifies that a horizontal scroll bar is automatically added to the list box when
any portion of the data item lies horizontally outside the visible area
(PROP:HSCROLL).

VSCROLL Specifies that a vertical scroll bar is automatically added to the list box when any
data items lie vertically outside the visible area (PROP:VSCROLL).

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to
the list box when any portion of the data items lies outside the visible area
(PROP:HVSCROLL).

LEFT Specifies that the data is left justified within the control (PROP:LEFT).

RIGHT Specifies that the data is right justified within the control (PROP:RIGHT).

8 – Controls 331

CENTER Specifies that the data is centered within the control (PROP:CENTER).

DECIMAL Specifies that the data is aligned on the decimal point within the control
(PROP:DECIMAL).

INS / OVR Specifies Insert or Overwrite entry mode (PROP:INS and PROP:OVR). This is
valid only on windows with the MASK attribute).

UPR / CAP Specifies all upper case or proper name capitalization (First Letter Of Each Word
Capitalized) data entry (PROP:UPR and PROP:CAP).

MASK Specifies pattern input editing mode of the ENTRY portion of the control
(PROP:MASK).

The COMBO control places a data entry field with an associated list of data items on the
WINDOW or TOOLBAR (not valid in a REPORT) at the position and size specified by its AT
attribute (a combination of an ENTRY and LIST control). The user may type in data or select an
item from the list. The entered data is not automatically validated against the entries in the list.
The data entry portion of the COMBO acts as an "incremental locator" to the list--as the user
types each character, the highlight bar is positioned to the closest matching entry.

A COMBO with the DROP attribute displays only the currently selected data item on screen until
the control has focus and the user presses the down arrow key, or CLICKS ON the the icon to the
right of the displayed data item. When either of these occurs, the selection list appears ("drops
down") to allow the user to select an item.

A COMBO with the IMM attribute generates an EVENT:NewSelection every time the user moves
the highlight bar to another selection, or presses any key (all keys are implicitly ALRTed). This
allows an opportunity for the source code to re-fill the display QUEUE, or get the currently
highlighted record to display other fields from the record. A COMBO with the VCR attribute has
scroll control buttons like a Video Cassette Recorder to the left of the horizontal scroll bar (if there
is one). These buttons allow the user to use the mouse to scroll through the list.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has either selected an entry from the list or entered data
directly into the control, and moved on to another control.

EVENT:Rejected The user has entered an invalid value for the entry picture.

EVENT:NewSelection The current selection in the list has changed (highlight bar has moved up
or down) or the user pressed any key (only with the IMM attribute).

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Language Reference Manual 332

EVENT:ScrollUp The user pressed the up arrow (only with the IMM attribute).

EVENT:ScrollDown The user pressed the down arrow (only with the IMM attribute).

EVENT:PageUp The user pressed PgUp (only with the IMM attribute).

EVENT:PageDown The user pressed PgDn (only with the IMM attribute).

EVENT:ScrollTop The user pressed Ctrl-PgUp (only with the IMM attribute).

EVENT:ScrollBottom The user pressed Ctrl-PgDn (only with the IMM attribute).

EVENT:PreAlertKey The user pressed a printable character (only with the IMM attribute) or
an ALRT attribute hot key.

EVENT:AlertKey The user pressed a printable character (only with the IMM attribute) or
an ALRT attribute hot key.

EVENT:Locate The user pressed the locator VCR button (only with the IMM attribute).

EVENT:ScrollDrag The user moved the scroll bar's "thumb" and its new position is in
PROP:VScrollPos (only with the IMM attribute).

EVENT:ScrollTrack The user is moving the scroll bar's "thumb" and its new position is in
PROP:VScrollPos (only with the IMM attribute).

EVENT:DroppingDown The user pressed the down arrow button (only with the DROP attribute).

EVENT:DroppedDown The list has dropped (only with the DROP attribute).

EVENT:ColumnResize A column in the list has been resized.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
COMBO(@S8),AT(0,0,20,20),USE(C1),FROM(Que)
COMBO(@S8),AT(20,0,20,20),USE(C2),FROM(Que),KEY(F10Key)
COMBO(@S8),AT(40,0,20,20),USE(C3),FROM(Que),MSG('Button 3')
COMBO(@S8),AT(60,0,20,20),USE(C4),FROM(Que),HLP('Check4Help')
COMBO(@S8),AT(80,0,20,20),USE(C5),FROM(Q) |
,FORMAT('5C~List~15L~Box~'),COLUMN
COMBO(@S8),AT(100,0,20,20),USE(C6),FROM(Que),FONT('Arial',12)
COMBO(@S8),AT(120,0,20,20),USE(C7),FROM(Que),DROP(8)
COMBO(@S8),AT(140,0,20,20),USE(C8),FROM(Que),HVSCROLL,VCR
COMBO(@S8),AT(160,0,20,20),USE(C9),FROM(Que),IMM
COMBO(@S8),AT(180,0,20,20),USE(C10),FROM(Que),CURSOR(CURSOR:Wait)
COMBO(@S8),AT(200,0,20,20),USE(C11),FROM(Que),ALRT(F10Key)
COMBO(@S8),AT(220,0,20,20),USE(C12),FROM(Que),LEFT
COMBO(@S8),AT(240,0,20,20),USE(C13),FROM(Que),RIGHT
COMBO(@S8),AT(260,0,20,20),USE(C14),FROM(Que),CENTER
COMBO(@N8.2),AT(280,0,20,20),USE(C15),FROM(Que),DECIMAL
COMBO(@S8),AT(300,0,20,20),USE(C16),FROM('Apples|Peaches|Pumpkin|Pie')
COMBO(@S8),AT(320,0,20,20),USE(C17),FROM('TBA')
END

8 – Controls 333

CODE
OPEN(MDIChild)
?C17{PROP:From} = 'Live|Long|And|Prosper' !Runtime FROM attribute assignment
ACCEPT
CASE ACCEPTED()
OF ?C1
LOOP X# = 1 to RECORDS(Que) !Check for user's entry in Que
GET(Que,X#)
IF C1 = Que THEN BREAK. !Break loop if present

END
IF X# > RECORDS(Que) !Check for BREAK
Que = C1 !and add the entry
ADD(Que)

END
END

END

See Also:

LIST

ENTRY

Language Reference Manual 334

ELLIPSE (declare an ellipse control)

 ELLIPSE ,AT() [,USE()] [,DISABLE] [,COLOR()] [,FILL()] [,FULL] [,SCROLL] [,HIDE] [,LAYOUT()]
 [,LINEWIDTH] [,EXTEND()]

ELLIPSE Places a "circular" figure on the WINDOW, TOOLBAR, or REPORT.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

USE Specifies a field equate label to reference the control in executable code
(PROP:USE).

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is
first opened (PROP:DISABLE).

COLOR Specifies the color for the border of the ellipse (PROP:COLOR). If omitted, the
ellipse has no border.

FILL Specifies the fill color for the control (PROP:FILL). If omitted, the ellipse is not
filled with color.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

LINEWIDTH Specifies the width of the ELLIPSE's border (PROP:LINEWIDTH).

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

The ELLIPSE control places a "circular" figure on the WINDOW, TOOLBAR, or REPORT at the
position and size specified by its AT attribute. The ellipse is drawn inside a "bounding box"
defined by the x, y, width, and height parameters of its AT attribute. The x and y parameters
specify the starting point, and the width and height parameters specify the horizontal and vertical
size of the "bounding box." This control cannot receive input focus and does not generate
events.

8 – Controls 335

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
!Filled, full screen, black border:
ELLIPSE,FILL(COLOR:MENU),FULL
!Unfilled, black border:
ELLIPSE,AT(0,0,20,20)
!Dimmed:
ELLIPSE,AT(0,20,20,20),USE(?Box1),DISABLE
!Unfilled, rounded, black border:
ELLIPSE,AT(20,20,20,20),ROUND
!Filled, black border:
ELLIPSE,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)
!Unfilled, active border color border:
ELLIPSE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)
!Scrolls with screen:
ELLIPSE,AT(480,180,20,20),SCROLL
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

!Unfilled, black border:
ELLIPSE,AT(0,0,20,20)
!Unfilled, black border, dimmed:
ELLIPSE,AT(0,20,20,20),USE(?Ellipse1),DISABLE
!Unfilled, rounded, black border:
ELLIPSE,AT(20,20,20,20),ROUND
!Filled, black border:
ELLIPSE,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)
!Unfilled, active border color border
ELLIPSE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)
END

END

Language Reference Manual 336

ENTRY (declare a data entry control)

ENTRY(picture) ,AT() [,CURSOR()] [,USE()] [,LAYOUT()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP][,FONT()]

 [,IMM][,PASSWORD][,REQ][,FULL][,SCROLL][,ALRT()][,HIDE][,TIP()][,TRN][,READONLY]

 [DROPID()] [, | INS |] [, | CAP |] [, | LEFT |] [,COLOR()] [,MASK]

 | OVR | | UPR | | RIGHT |

 | CENTER |

 | DECIMAL |

ENTRY Places a data entry field on the WINDOW or TOOLBAR.

picture A display picture token that specifies the input format for the data entered into the
control (PROP:Text).

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE The label of the variable that receives the value entered into the control by the
user (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display and entry orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the control (PROP:KEY).

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG).

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP).

SKIP Specifies the control receives input focus to enter text only with the mouse or
accelerator key and does not retain focus (PROP:SKIP).

FONT Specifies the display font for the control (PROP:FONT).

IMM Specifies immediate event generation whenever the user presses any key
(PROP:IMM).

8 – Controls 337

PASSWORD Specifies non-display of the data entered (password mode)
(PROP:PASSWORD).

REQ Specifies the control may not be left blank or zero (PROP:REQ).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

ALRT Specifies "hot" keys active for the control (PROP:ALRT).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip).

TRN Specifies the control transparently displays over the background (PROP:TRN).

READONLY Specifies the control does not allow data entry (PROP:READONLY).

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

INS / OVR Specifies Insert or Overwrite entry mode (PROP:INS and PROP:OVR). This is
valid only on windows with the MASK attribute.

UPR / CAP Specifies all upper case or proper name capitalization (First Letter Of Each Word
Capitalized) data entry (PROP:UPR and PROP:CAP).

LEFT Specifies that the data entered is left justified within the area specified by the AT
attribute (PROP:LEFT).

RIGHT Specifies that the data entered is right justified within the area specified by the
AT attribute (PROP:RIGHT).

CENTER Specifies that the data entered is centered within the area specified by the AT
attribute (PROP:CENTER).

DECIMAL Specifies that the data entered is aligned on the decimal point within the area
specified by the AT attribute (PROP:DECIMAL).

COLOR Specifies background and selected colors for the control (PROP:COLOR).

MASK Specifies pattern input editing mode of the ENTRY control (PROP:MASK).

The ENTRY control places a data entry field on the WINDOW or TOOLBAR (not valid in a
REPORT) at the position and size specified by its AT attribute. Data entered is formatted
according to the picture, and the variable specified in the USE attribute receives the data entered
when the user has completed data entry and moves on to another control. Data entry scrolls
horizontally to allow the user to enter data to the full length of the variable. Therefore, the right
and left arrow keys move within the data in the ENTRY control.

Language Reference Manual 338

Standard Windows behavior (Cut, Copy, and Paste) are automatically available using CTRL+X,
CTRL+C, and CTRL+V while the ENTRY control has focus. Undo is also implemented using
CTRL+Z (before the user leaves the control).

An ENTRY control with the PASSWORD attribute displays asterisks when the user enters data
(and Cut and Copy are disabled). This is useful for password-type variables. An ENTRY control
with the SKIP attribute is used for seldom-used data entry. Display-only data should be declared
with the READONLY attribute.

The LAYOUT attribute is used with ENTRY controls to change the order that text is entered (Left-
to-Right or Right-to-Left). Mixed text should always be avoided and may not display correctly (e.g.
Arabic text mixed with English text).

The MASK attribute specifies pattern input editing mode of the control. This means that, as the
user types in data, each character is automatically validated against the control's picture for
proper input (numbers only in numeric pictures, etc.). This forces the user to enter data in the
format specified by the control's display picture. If omitted, Windows free-input is allowed in the
control. This is Windows' default data entry mode. Free-input means the user's data is formatted
to the control's picture only after entry (on EVENT:Accepted). This allows users to enter data as
they choose and it is automatically formatted to the control's picture after entry. If the user types
in data in a format different from the control's picture, the libraries attempt to determine the format
the user used, and convert the data to the control's display picture. For example, if the user types
"January 1, 1995" into a control with a display picture of @D1, the runtime library formats the
user's input to "1/1/95." This action occurs only after the user completes data entry and moves to
another control. If the runtime library cannot determine what format the user used, it will not
update the USE variable and will simply generate EVENT:Rejected.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed data entry in the control.

EVENT:Rejected The user has entered an invalid value for the entry picture.

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

EVENT:NewSelection The user entered a character (with IMM attribute only).

8 – Controls 339

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
ENTRY(@S8),AT(0,0,20,20),USE(E1)
ENTRY(@S8),AT(20,0,20,20),USE(E2),KEY(F10Key)
ENTRY(@S8),AT(40,0,20,20),USE(E3),MSG('Button 3')
ENTRY(@S8),AT(60,0,20,20),USE(E4),HLP('Entry4Help')
ENTRY(@S8),AT(80,0,20,20),USE(E5),DISABLE
ENTRY(@S8),AT(100,0,20,20),USE(E6),FONT('Arial',12)
ENTRY(@S8),AT(120,0,20,20),USE(E7),REQ,INS,CAP
ENTRY(@S8),AT(140,0,20,20),USE(E8),SCROLL,OVR,UPR
ENTRY(@S8),AT(180,0,20,20),USE(E9),CURSOR(CURSOR:Wait),IMM
ENTRY(@S8),AT(200,0,20,20),USE(E10),ALRT(F10Key)
ENTRY(@N8.2),AT(280,0,20,20),USE(E11),DECIMAL(10)
END

See Also:

TEXT

PROMPT

Language Reference Manual 340

GROUP (declare a group of controls)

GROUP(text) ,AT() [,CURSOR()][,USE()] [,LAYOUT()] [,DISABLE][,KEY()][,MSG()][,HLP()][,FONT()][,TIP()]

 [,BOXED][,FULL][,SCROLL][,HIDE][,ALRT()][,SKIP][,DROPID()][,COLOR()][,BEVEL()]
 controls

END

GROUP Declares a group of controls that may be referenced as one entity.

text A string constant containing the prompt for the group of controls (PROP:Text).
This may contain an ampersand (&) to indicate the "hot" letter for the prompt.
The text is displayed on screen only if the BOXED attribute is also present.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control, or any control within the GROUP (PROP:CURSOR). If omitted, the
window's CURSOR attribute is used, else the Windows default cursor is used.
Not valid in a REPORT.

USE A field equate label to reference the control in executable code (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the GROUP control and the controls in the GROUP appear dimmed
when the WINDOW or APPLICATION is first opened (PROP:DISABLE). Not
valid in a REPORT.

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the first control in the GROUP (PROP:KEY). Not valid in a REPORT.

MSG Specifies a string constant containing the default text to display in the status bar
when any control in the GROUP has focus (PROP:MSG). Not valid in a
REPORT.

HLP Specifies a string constant containing the default help system identifier for any
control in the GROUP (PROP:HLP). Not valid in a REPORT.

FONT Specifies the display font for the control and the default for all the controls in the
GROUP (PROP:FONT).

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip). Not valid in a REPORT.

BOXED Specifies a single-track border around the group of controls with the text at the
top of the border (PROP:BOXED).

8 – Controls 341

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

SCROLL Specifies the GROUP control and the controls in the GROUP scroll with the
window (PROP:SCROLL).

HIDE Specifies the GROUP control and the controls in the GROUP do not appear
when the WINDOW or APPLICATION is first opened (PROP:HIDE). UNHIDE
must be used to display them.

ALRT Specifies "hot" keys active for the controls in the GROUP (PROP:ALRT).

SKIP Specifies the controls in the GROUP do not receive input focus and may only be
accessed with the mouse or accelerator key (PROP:SKIP). Not valid in a
REPORT.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID). Not valid in a REPORT.

COLOR Specifies default background and selected colors for the controls in the GROUP
(PROP:COLOR).

BEVEL Specifies custom 3-D effect borders (PROP:BEVEL). Not valid in a REPORT.

controls Control declarations that may be referenced as the GROUP.

The GROUP control declares a group of controls to reference as one entity. GROUP allows the
user to use the cursor keys instead of the TAB key to move between the controls in the GROUP,
and provides default MSG and HLP attributes for all controls in the GROUP. This control cannot
receive input focus.

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
GROUP('Group 1'),USE(?G1),KEY(F10Key)
ENTRY(@S8),AT(0,0,20,20),USE(?E1)
ENTRY(@S8),AT(20,0,20,20),USE(?E2)
END
GROUP('Group 2'),USE(?G2),MSG('Group 2'),CURSOR(CURSOR:Wait)
ENTRY(@S8),AT(40,0,20,20),USE(?E3)
ENTRY(@S8),AT(60,0,20,20),USE(?E4)
END
GROUP('Group 3'),USE(?G3),AT(80,0,20,20),BOXED
ENTRY(@S8),AT(80,0,20,20),USE(?E5)
ENTRY(@S8),AT(100,0,20,20),USE(?E6)
END
END

Language Reference Manual 342

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

GROUP('Group 1'),USE(!G1),AT(80,0,20,20),BOXED
STRING(@S8),AT(80,0,20,20),USE(E5)
STRING(@S8),AT(100,0,20,20),USE(E6)
END
GROUP('Group 2'),USE(?G2),FONT('Arial',12)
STRING(@S8),AT(120,0,20,20),USE(E7)
STRING(@S8),AT(140,0,20,20),USE(E8)
END
END

END

See Also:

PANEL

8 – Controls 343

IMAGE (declare a graphic image control)

 IMAGE(file) ,AT() [,USE()] [,DISABLE] [,FULL] [,SCROLL] [,HIDE] [,LAYOUT]

[, | TILED |] [, | HSCROLL |] [,EXTEND ()]
 | CENTERED || VSCROLL |
 | HVSCROLL |

IMAGE Places a graphic image on the WINDOW, TOOLBAR, or REPORT.

file A string constant containing the name of the file to display (PROP:Text). The
named file is automatically linked into the .EXE as a resource.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

USE A field equate label to reference the control in executable code (PROP:USE).

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION
opens (PROP:HIDE). UNHIDE must be used to display it.

TILED Specifies the image displays at its default size and is tiled to fill the entire area of
the IMAGE (PROP:TILED).

CENTERED Specifies the image displays at its default size and is centered in the area of the
IMAGE (PROP:CENTERED).

HSCROLL Specifies a horizontal scroll bar is automatically added to the IMAGE control
when the graphic image is wider than the area specified for display
(PROP:HSCROLL). Not valid in a REPORT.

VSCROLL Specifies a vertical scroll bar is automatically added to the IMAGE control when
the graphic image is taller than the area specified for display (PROP:VSCROLL).
Not valid in a REPORT.

HVSCROLL Specifies both vertical and horizontal scroll bars are automatically added to the
IMAGE control when the graphic image is larger than the display area
(PROP:HVSCROLL). Not valid in a REPORT.

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

Language Reference Manual 344

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

The IMAGE control places a graphic image on the WINDOW (or TOOLBAR) at the position
specified by its AT attribute. The image is stretched to fuill the area specified by the AT attribute
unless the TILED or CENTERED attribute is present. The displayed file may be a bitmap (.BMP),
PaintBrush (.PCX), Graphic Interchange Format (.GIF), JPEG (.JPG), or Windows metafile
(.WMF). The file may be an icon (.ICO) in an IMAGE on a WINDOW but not on a REPORT,
because Windows does not support printing icons. The type of file is determined by its extension.

This control cannot receive input focus and does not generate events.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE('PIC.BMP'),AT(0,0,20,20),USE(?I1)
IMAGE('PIC.WMF'),AT(40,0,20,20),USE(?I3),SCROLL
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

IMAGE('PIC.BMP'),AT(0,0,20,20),USE(?I1)
IMAGE('PIC.WMF'),AT(40,0,20,20),USE(?I2)
IMAGE('PIC.JPG'),AT(60,0,20,20),USE(?I3)
END
END

See Also:

PALETTE

8 – Controls 345

ITEM (declare a menu item)

ITEM(text) [,AT()] [,USE()] [,KEY()] [,MSG()] [,HLP()] [,STD()] [,CHECK] [,DISABLE] [,COLOR] [,LEFT()]

 [,SEPARATOR][,ICON()] [,FONT()] [,| FIRST |]
 | LAST |

ITEM Declares a menu choice within a MENUBAR or MENU structure.

text A string constant containing the display text for the menu item (PROP:Text).

AT Specifies the initial size and location of the menu item (PROP:AT). If omitted,
default values are selected by the runtime library.

USE A field equate label to reference the menu item in executable code, or the
variable used with CHECK (PROP:USE).

KEY Specifies an integer constant or keycode equate that immediately executes the
menu item (PROP:KEY).

MSG Specifies a string constant containing the text to display in the status bar when
the menu item is highlighted (PROP:MSG).

HLP Specifies a string constant containing the help system identifier for the menu item
(PROP:HLP).

STD Specifies an integer constant or equate that identifies a "Windows standard
action" the menu item executes (PROP:STD).

CHECK Specifies an on/off ITEM (PROP:CHECK).

DISABLE Specifies the menu item appears dimmed when the WINDOW or APPLICATION
is first opened (PROP:DISABLE).

COLOR Specifies a background color for the control (PROP:COLOR).

LEFT Specifies the offset in dialog units from the left edge of the menu structure.

SEPARATOR Specifies the ITEM displays a solid horizontal line across the menu box at run-
time to delimit groups of menu selections. The USE attribute may be specified
with SEPARATOR.

ICON Specifies an image file or standard icon to display on the menu item
(PROP:ICON).

FONT Specifies the display font for the control (PROP:FONT).

FIRST Specifies the ITEM appears at the top of the menu when menus are merged
(PROP:FIRST).

LAST Specifies the ITEM appears at the bottom of the menu when menus are merged
(PROP:LAST).

Language Reference Manual 346

ITEM declares a menu choice within a MENUBAR or MENU structure. The text string may
contain an ampersand (&) which designates the following character as an accelerator "hot" key
which is automatically underlined. If the ITEM is on the menu bar, pressing the Alt key together
with the accelerator key highlights and executes the ITEM. If the ITEM is in a MENU, pressing the
accelerator key, alone, when the menu is displayed, highlights and executes the ITEM. If there is
no ampersand in the text, the first non-blank character in the text string is the accelerator key for
the ITEM, which will not be underlined. To include an ampersand as part of the text, place two
ampersands together (&&) in the text string and only one will display. The KEY attribute
designates a separate "hot" key for the item. This may be any valid Clarion keycode to
immediately execute the ITEM's action.

A cursor bar highlights individual ITEMs within the MENU structure. Each ITEM is usually
associated with some code to be executed upon selection of that ITEM, unless the STD attribute
is present. The STD atribute specifies a standard Windows action the menu item performs, such
as Tile or Cascade the windows. The SEPARATOR attribute creates an ITEM which serves only
to delimit groups of menus selections so it should not have a text parameter. The USE attribute
may be used with a SEPARATOR. It creates a solid horizontal line across the menu box. An
ITEM that is not within a MENU structure is placed on the menu bar. This creates a menu bar
selection which has no related drop-down menu. The normal convention to indicate this to the
user is to terminate the text displayed for the item with an exclamation point (!). For example, the
text for the ITEM might contain 'Exit!' to alert the user to the executable nature of the menu
choice.

Events Generated:

EVENT:Accepted The control has been pressed by the user.

8 – Controls 347

Example:

MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS,HVSCROLL,RES
MENUBAR
ITEM('E&xit!'),USE(?MainExit),FIRST
MENU('File'),USE(?FileMenu),FIRST
ITEM('Open...'),USE(?OpenFile) ,HLP('OpenFileHelp') ,FIRST
ITEM('Close'),USE(?CloseFile),HLP('CloseFileHelp'),DISABLE
ITEM('Auto Increment'),USE(ToggleVar),CHECK

END
MENU('Edit'),USE(?EditMenu),KEY(CtrlE),HLP('EditMenuHelp')
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo),DISABLE
ITEM,SEPARATOR
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE

END
MENU('Window'),STD(STD:WindowList),MSG('Arrange or Select Window'),LAST
ITEM('Tile'),STD(STD:TileWindow)
ITEM('Cascade'),STD(STD:CascadeWindow)
ITEM('Arrange Icons'),STD(STD:ArrangeIcons)
ITEM,SEPARATOR,USE(?FileSeparator1)

END
MENU('Help'),USE(?HelpMenu),LAST,RIGHT

ITEM('Contents'),USE(?HelpContents),STD(STD:HelpIndex)
ITEM('Search for Help On...'),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM('How to Use Help'),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM('About MyApp...'),USE(?HelpAbout),MSG('Copyright Info'),LAST

END
END !Menubar

END !Application

Language Reference Manual 348

LINE (declare a line control)

LINE ,AT() [,USE()] [,DISABLE] [,COLOR()] [,FULL] [,SCROLL] [,HIDE] [,LINEWIDTH()]
[,LAYOUT()] [,EXTEND()]

LINE Places a straight line on the WINDOW, TOOLBAR, or REPORT.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

USE A field equate label to reference the control in executable code (PROP:USE).

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

COLOR Specifies the color for the line (PROP:COLOR). If omitted, the color is black.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

LINEWIDTH Specifies the thickness of the LINE (PROP:LINEWIDTH).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

8 – Controls 349

The LINE control places a straight line on the WINDOW, TOOLBAR, or REPORT at the position
and size specified by its AT attribute. The x and y parameters of the AT attribute specify the
starting point of the line. The width and height parameters of the AT attribute specify the
horizontal and vertical distance to the end point of the line. If these are both positive numbers, the
line slopes to the right and down from its starting point. If the width is negative, the line slopes left;
if the height is negative, the line slopes left. If either the width or height is zero, the line is
horizontal or vertical. This control cannot receive input focus and does not generate events.

Width Height Result
positive positive right and down from start point
negative positive left and down from start point
positive negative right and up from start point
negative negative left and up from start point
zero positive vertical, down from start point
zero negative vertical, up from start point
positive zero horizontal, right from start point
negative zero horizontal, left from start point

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
LINE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER) !Border color
LINE,AT(480,180,20,20),SCROLL !Scrolls with screen
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LINE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER) !Border color
LINE,AT(480,180,20,20),USE(?L2)
END
END

Language Reference Manual 350

LIST (declare a window list control)

 LIST ,FROM() ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

 [,FONT()] [,FORMAT()] [,DROP] [,COLUMN] [,VCR] [,FULL] [,SCROLL] [,NOBAR]

 [,ALRT()] [,HIDE] [,DRAGID()] [,DROPID()] [,TIP()] [,GRID()] [,TRN] [,COLOR()] [,LAYOUT()]

 [, | MARK() |] [, | HSCROLL |] [, | LEFT |]
 | IMM | | VSCROLL | | RIGHT |
 | HVSCROLL | | CENTER |
 | DECIMAL |

LIST Places a scrolling list of data items on the WINDOW, TOOLBAR, or REPORT.

FROM Specifies the origin of the data displayed in the list (PROP:FROM).

AT Specifies the initial size and location of the control (PROP:AT). If omitted, the
runtime library chooses a value.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used. Not valid in a REPORT.

USE A field equate label to reference the control in executable code, or the label of the
variable that receives the value selected by the user (PROP:USE).

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the control (PROP:KEY). Not valid in a REPORT.

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG). Not valid in a REPORT.

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP). Not valid in a REPORT.

SKIP Specifies the control does not receive input focus and may only be accessed with
the mouse or accelerator key (PROP:SKIP). Not valid in a REPORT.

FONT Specifies the display font for the control (PROP:FONT).

FORMAT Specifies the display format of the data in the list (PROP:FORMAT). This can
include icons, colors, and tree controls.

DROP Specifies a drop-down list box and the number of elements the drop-down
portion contains (PROP:DROP). Not valid in a REPORT.

COLUMN Specifies cell-by-cell highlighting on multi-column lists (PROP:COLUMN). Not
valid in a REPORT.

8 – Controls 351

VCR Specifies a VCR-type control to the left of any horizontal scroll bar (PROP:VCR).
Not valid in a REPORT.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

NOBAR Specifies the highlight bar is displayed only when the LIST has focus
(PROP:NOBAR). Not valid in a REPORT.

ALRT Specifies "hot" keys active for the control (PROP:ALRT). Not valid in a REPORT.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION
opens (PROP:HIDE). UNHIDE must be used to display it.

DRAGID Specifies the control may serve as a drag host for drag-and-drop actions
(PROP:DRAGID). Not valid in a REPORT.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID). Not valid in a REPORT.

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip). Not valid in a REPORT.

GRID Specifies the color of the grid lines between columns in the list (PROP:GRID).

TRN Specifies the control transparently displays over the background (PROP:TRN).

COLOR Specifies background and selected colors for the control (PROP:COLOR).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

MARK Specifies multiple items selection mode (PROP:MARK). Not valid in a REPORT.

IMM Specifies generation of an event whenever the user presses any key
(PROP:IMM). Not valid in a REPORT.

HSCROLL Specifies that a horizontal scroll bar is automatically added to the list box when
any portion of the data item lies horizontally outside the visible area
(PROP:HSCROLL). Not valid in a REPORT.

VSCROLL Specifies that a vertical scroll bar is automatically added to the list box when any
data items lie vertically outside the visible area (PROP:VSCROLL). Not valid in a
REPORT.

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to
the list box when any portion of the data items lies outside the visible area
(PROP:HVSCROLL). Not valid in a REPORT.

LEFT Specifies that the data is left justified within the LIST (PROP:LEFT).

RIGHT Specifies that the data is right justified within the LIST (PROP:RIGHT).

Language Reference Manual 352

CENTER Specifies that the data is centered within the LIST (PROP:CENTER).

DECIMAL Specifies that the data is aligned on the decimal point within the LIST
(PROP:DECIMAL).

The LIST control places a scrolling list of data items on the WINDOW, TOOLBAR, or REPORT at
the position and size specified by its AT attribute. The data items displayed in the LIST come from
a QUEUE or STRING specified by the FROM attribute and are formatted by the parameters
specified in the FORMAT attribute (which can include colors, icons, and tree control parameters).

The CHOICE procedure returns the QUEUE entry number (the value returned by
POINTER(queue)) of the selected item when the EVENT:Accepted event has been generated by
the LIST. The data displayed in the LIST is automatically refreshed every time through the
ACCEPT loop, whether the AUTO attribute is present or not.

A LIST with the DROP attribute displays only the currently selected data item on screen until the
control has focus and the user presses the down arrow key, or CLICKS ON the the icon to the
right of the displayed data item. When either of these occurs, the selection list appears ("drops
down") to allow the user to select an item.

A LIST with the IMM attribute generates an event every time the user moves the highlight bar to
another selection, or presses any key (all keys are implicitly ALRTed). This allows an opportunity
for the source code to re-fill the display QUEUE, or get the currently highlighted record to display
other fields from the record. If VSCROLL is also present, the vertical scroll bar is always
displayed and when the end-user CLICKS on the scroll bar, events are generated but the list
does not move (executable code should perform this action). You can interrogate the
PROP:VscrollPos property to determine the scroll thumb's position from 0 (top) to 255 (bottom).

A LIST with the VCR attribute has scroll control buttons like a Video Cassette Recorder to the left
of the horizontal scroll bar (if there is one). These buttons allow the user to use the mouse to
scroll through the list.

A LIST with the DRAGID attribute can serve as a drag-and-drop host, providing information to be
moved or copied to another control. A LIST with the DROPID attribute can serve as a drag-and-
drop target, receiving information from another control. These attributes work together to specify
drag-and-drop "signatures" that define a valid target for the operation. The DRAGID() and
DROPID() procedures, along with the SETDROPID procedure, are used to perform the data
exchange.

REPORT Usage

LIST is valid only in a DETAIL structure. Its purpose is to allow the report format to duplicate the
screen appearance of the LIST's FORMAT setting. When the first instance of the DETAIL
structure containing the LIST prints, any headers in the FORMAT attribute print along with the
current FROM attribute entry. When the last DETAIL structure containing the LIST prints, the
LIST footers print along with the current FROM attribute entry.

8 – Controls 353

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has selected an entry from the control.

EVENT:NewSelection The current selection in the list has changed (the highlight bar has
moved up or down).

EVENT:ScrollUp The user pressed the up arrow (only with the IMM attribute).

EVENT:ScrollDown The user pressed the down arrow (only with the IMM attribute).

EVENT:PageUp The user pressed PGUP (only with the IMM attribute).

EVENT:PageDown The user pressed PGDN (only with the IMM attribute).

EVENT:ScrollTop The user pressed CTRL+PGUP (only with IMM attribute).

EVENT:ScrollBottom The user pressed CTRL+PGDN (only with IMM attribute).

EVENT:Locate The user pressed the locator VCR button (only with the IMM attribute).

EVENT:ScrollDrag The user moved the scroll bar's "thumb" and its new position is in
PROP:VScrollPos (only with the IMM attribute).

EVENT:ScrollTrack The user is moving the scroll bar's "thumb" and its new position is in
PROP:VScrollPos (only with the IMM attribute).

EVENT:PreAlertKey The user pressed a printable character (only with the IMM attribute) or
an ALRT attribute hot key.

EVENT:AlertKey The user pressed a printable character (only with the IMM attribute) or an
ALRT attribute hot key.

EVENT:Dragging The mouse cursor is over a potential drag target (only with the DRAGID
attribute).

EVENT:Drag The mouse cursor has been released over a drag target (only with the
DRAGID attribute).

EVENT:Drop The mouse cursor has been released over a drag target (only with the
DROPID attribute).

EVENT:DroppingDown The user has requested the droplist drop down (only with the DROP
attribute). CYCLE aborts the dropdown.

EVENT:DroppedDown The user has dropped the droplist (only with the DROP attribute).

EVENT:Expanding The user has clicked on a tree expansion box (only with the T in the
FORMAT attribute string). CYCLE aborts the expansion.

EVENT:Expanded The user has clicked on a tree expansion box (only with the T in the
FORMAT attribute string).

EVENT:Contracting The user has clicked on a tree contraction box (only with the T in the
FORMAT attribute string). CYCLE aborts the contraction.

Language Reference Manual 354

EVENT:Contracted The user has clicked on a tree contraction box (only with the T in the
FORMAT attribute string).

EVENT:ColumnResize A column in the list has been resized.

Example:

Q QUEUE
F1 STRING(1)
F2 STRING(4)

END

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
LIST,AT(0,0,20,20),USE(?L1),FROM(Que),IMM
LIST,AT(20,0,20,20),USE(?L2),FROM(Que),KEY(F10Key)
LIST,AT(40,0,20,20),USE(?L3),FROM(Que),MSG('Button 3')
LIST,AT(60,0,20,20),USE(?L4),FROM(Que),HLP('Check4Help')
LIST,AT(80,0,20,20),USE(?L5),FROM(Q),FORMAT('5C~List~15L~Box~'),COLUMN
LIST,AT(100,0,20,20),USE(?L6),FROM(Que),FONT('Arial',12)
LIST,AT(120,0,20,20),USE(?L7),FROM(Que),DROP(6)
LIST,AT(140,0,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR
LIST,AT(180,0,20,20),USE(?L10),FROM(Que),CURSOR(CURSOR:Wait)
LIST,AT(200,0,20,20),USE(?L11),FROM(Que),ALRT(F10Key)
LIST,AT(220,0,20,20),USE(?L12),FROM(Que),LEFT
LIST,AT(240,0,20,20),USE(?L13),FROM(Que),RIGHT
LIST,AT(260,0,20,20),USE(?L14),FROM(Que),CENTER
LIST,AT(280,0,20,20),USE(?L15),FROM(Que),DECIMAL
LIST,AT(300,0,20,20),USE(?L16),FROM('Apples|Peaches|Pumpkin|Pie')
LIST,AT(320,0,20,20),USE(?L17),FROM('TBA')
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LIST,AT(80,0,20,20),USE(?L1),FROM(Q),FORMAT('5C~List~15L~Box~')
END
END

CODE
OPEN(MDIChild)
?L1{PROP:From} = 'Live|Long|And|Prosper' !Runtime FROM attribute assignment

See Also:

COMBO

DRAGID

DROPID

SETDROPID

8 – Controls 355

MENU (declare a menu box)

 MENU(text) [,USE()] [,KEY()] [,MSG()] [,HLP()] [,STD()] [,RIGHT] [,DISABLE] [,COLOR] [LEFT()]
 [,ICON()] [,FONT()] [, | FIRST |]
 | LAST |
 END

MENU Declares a menu box within a MENUBAR.

text A string constant containing the display text for the menu selection (PROP:Text).

USE A field equate label to reference the menu selection in executable
code(PROP:USE).

KEY Specifies an integer constant or keycode equate that immediately opens the
menu (PROP:KEY).

MSG Specifies a string constant containing the text to display in the status bar when
the menu is pulled down (PROP:MSG).

HLP Specifies a string constant containing the help system identifier for the menu
(PROP:HLP).

STD Specifies an integer constant or equate that identifies a "Windows standard
behavior" for the menu (PROP:STD).

RIGHT Specifies the MENU appears at the far right of the action bar (PROP:RIGHT).

DISABLE Specifies the menu appears dimmed when the WINDOW or APPLICATION is
first opened (PROP:DISABLE).

COLOR Specifies a background color for the control (PROP:COLOR).

LEFT Specifies the offset in dialog units from the left edge of the menu structure.

ICON Specifies an image file or standard icon to display on the menu (PROP:ICON).

FONT Specifies the display font for the control (PROP:FONT).

FIRST Specifies the MENU appears at the left or top of the menu when merged
(PROP:FIRST).

LAST Specifies the MENU appears at the right or bottom of the menu when merged
(PROP:LAST).

MENU declares a drop-down or cascading menu box structure within a MENUBAR structure.
When the MENU is selected, the MENU and/or ITEM statements within the structure are
displayed in a menu box. A menu box usually appears (drops down) immediately below its text on
the menu bar (or above, if there is no room below). When selected with ENTER or RIGHT
ARROW, any subsequent menu drop-box appears (cascades) immediately to the right of the
MENU text in the preceding menu box (or left, if there is no room to the right). LEFT ARROW
backs up to the preceding menu. The KEY attribute designates a separate accelerator key for the
field. This may be any valid Clarion keycode to immediately pull down the MENU.

Language Reference Manual 356

The text string may contain an ampersand (&) which designates the following character as the
accelerator "hot" key which is automatically underlined. If the MENU is on the menu bar, pressing
the Alt key together with the accelerator key highlights and displays the MENU. If the MENU is
within another MENU, pressing the accelerator key, alone, highlights and executes the MENU. If
there is no ampersand in the text, the first non-blank character in the text string is the accelerator
key for the MENU, but it will not be underlined. To include an ampersand as part of the text, place
two ampersands together (&&) in the text string and only one will display.

Example:

!An MDI application frame window with main menu for the application:
MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS,HVSCROLL,RES

MENUBAR
MENU('File'),USE(?FileMenu),FIRST
ITEM('Open...'),USE(?OpenFile)
ITEM('Close'),USE(?CloseFile),DISABLE
ITEM('E&xit'),USE(?MainExit)

END
MENU('Edit'),USE(?EditMenu),KEY(CtrlE),HLP('EditMenuHelp')
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo),DISABLE
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE
ITEM,SEPARATOR,USE(?FileSeprator1)

END
MENU('Window'),STD(STD:WindowList),MSG('Arrange or Select Window'),LAST
ITEM('Tile'),STD(STD:TileWindow)
ITEM('Cascade'),STD(STD:CascadeWindow)
ITEM('Arrange Icons'),STD(STD:ArrangeIcons)

END
MENU('Help'),USE(?HelpMenu),LAST,RIGHT
ITEM('Contents'),USE(?HelpContents),STD(STD:HelpIndex)
ITEM('Search for Help On...'),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM('How to Use Help'),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM('About MyApp...'),USE(?HelpAbout)

END
END

END

8 – Controls 357

OLE (declare a window OLE or .OCX container control)

OLE ,AT() [,CURSOR()] [,USE()] [,LAYOUT][,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP] [,FULL] [,TIP()]
 [,SCROLL] [,ALRT()] [,HIDE] [,FONT()] [,DROPID()] [,COMPATIBILITY()]
 [, | CREATE() |] [, | CLIP |] [,property(value)]
OPEN()		AUTOSIZE
LINK()		STRETCH
DOCUMENT()		ZOOM
 [MENUBAR
 multiple menu and/or item declarations
 END]
 END

OLE Places an OLE (Object Linking and Embedding) or .OCX control on the
WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the control.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE A Field Equate Label or the label of a variable to receive the "value" of the control
(PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is
first opened (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the control (PROP:KEY).

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG).

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP).

SKIP Specifies the control does not receive input focus and may only be accessed with
the mouse or accelerator key (PROP:SKIP).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

ALRT Specifies "hot" keys active for the control (PROP:ALRT).

Language Reference Manual 358

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

FONT Specifies the display font for the control (PROP:FONT).

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

COMPATIBILITY
Specifies a compatibility mode for certain OLE or .OCX objects that require it
(PROP:COMPATIBILITY).

CREATE Specifies the control creates a new OLE object or .OCX (PROP:CREATE).

OPEN Specifies the control opens an object from an OLE Compound Storage file
(PROP:AT). When the object is opened, the saved version of the container
properties are reloaded, so properties do not need to be re-specified.

LINK Specifies the OLE object is a link to an object from a file, for example an Excel
spreadsheet (PROP:LINK).

DOCUMENT Specifies the OLE object is an object from a file, for example an Excel
spreadsheet (PROP:DOCUMENT).

CLIP Specifies the OLE object only displays what fits into the size of the OLE container
control's AT attribute (PROP:CLIP). If the object is larger than the OLE container
control, only the top left corner displays.

AUTOSIZE Specifies the OLE object automatically resizes itself when the OLE container
control's AT attribute parameters change at runtime using PROP:AT,
(PROP:AUTOSIZE).

STRETCH Specifies the OLE object stretches to completely fill the size specified by the OLE
container control's AT attribute (PROP:STRETCH).

ZOOM Specifies the OLE object stretches to fill the size specified by the OLE container
control's AT attribute while maintaining the object's aspect ratio (PROP:ZOOM).

property A string constant containing the name of a custom property setting for the
control.

value A string constant containing the property value number or EQUATE for the
property.

MENUBAR Defines a menu structure for the control. This is exactly the same type of
structure as a MENUBAR in an APPLICATION or WINDOW structure and is
merged into the application's menu.

menus and/or items
MENU and/or ITEM declarations that define the menu selections.

8 – Controls 359

The OLE control places an OLE or .OCX control on the WINDOW or TOOLBAR (not valid in a
REPORT) at the position and size specified by its AT attribute. The property attribute allows you
to specify any additional property settings the OLE or .OCX control may require. These are
properties that need to be set for the OLE or .OCX control to properly function, and are not
standard Clarion properties (such as AT, CURSOR, or USE). The custom control should only
receive values for these properties that are defined for that control. Valid properties and values
for those properties would be defined in the custom control's documentation. You may have
multiple property attributes on a single OLE control.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed using the control.

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

PROGRAM

MAP
INCLUDE('OCX.CLW')

END

W WINDOW('OCX Controls'),AT(,,200,200),RESIZE,STATUS(-1,-1),SYSTEM
MENUBAR
ITEM('E&xit!'),USE(?Exit)
ITEM('&About!'),USE(?About)
ITEM('&Properties!'),USE(?Property)

END
OLE,AT(0,0,0,0),USE(?oc1),HIDE,CREATE('COMCTL.ImagelistCtrl.1').
OLE,AT(0,0,150,20),USE(?oc2),CREATE('TOOLBAR.ToolbarCtrl.1').

END

CODE
OPEN(W)
?oc1{'ListImages.Add(1,xyz,' & ocxloadimage('IRCLOCK.BMP') & ')'}
?oc1{'ListImages.Add(2,abc,' & ocxloadimage('IRCLOCK2.BMP') & ')'}
?oc2{'ImageList'} = ?oc1{PROP:Object}
LOOP X# = 1 TO 3
?oc2{'Buttons.Add(,,,,1)'}; ?oc2{'Buttons.Add(,,,,2)'}

END
ACCEPT
CASE EVENT()
OF EVENT:Accepted

Language Reference Manual 360

CASE FIELD()
OF ?Exit
BREAK

OF ?About
?oc1{'AboutBox'} !Display the OCX control's About Box

OF ?Property
?oc1{PROP:DoVerb} = -7 !Display the OCX control's properties dialog

END
END

END

See Also:

Object Linking and Embedding

OLE (.OCX) Custom Controls

OCX Library Procedures

8 – Controls 361

OPTION (declare a set of RADIO controls)

 OPTION(text) ,AT() [,CURSOR()] [,USE()] [,LAYOUT()][,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,BOXED]
 [,FULL] [,SCROLL] [,HIDE] [,FONT()] [,ALRT()] [,SKIP] [DROPID()] [,TIP()] [,TRN] [,COLOR()]
 [,BEVEL()] [,EXTEND()]

 radios

 END

OPTION Declares a set of RADIO controls.

text A string constant containing the prompt for the set of controls (PROP:Text). This
may contain an ampersand (&) to indicate the "hot" letter for the prompt. The text
is displayed on screen only if the BOXED attribute is also present.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used. Not valid in a REPORT.

USE The label of a variable to receive the choice (PROP:USE). If this is a string
variable, it receives the value of the RADIO string (with any accelerator key
ampersand stripped out) selected by the user. If a numeric variable, it receives
the ordinal position within the OPTION of the RADIO button selected by the user
(the value returned by the CHOICE() procedure).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is
first opened (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the currently selected RADIO in the OPTION control (PROP:KEY). Not valid in a
REPORT.

MSG Specifies a string constant containing the default text to display in the status bar
when any control in the OPTION has focus (PROP:MSG). Not valid in a
REPORT.

HLP Specifies a string constant containing the default help system identifier for any
control in the OPTION (PROP:HLP). Not valid in a REPORT.

BOXED Specifies a single-track border around the RADIO controls with the text at the top
of the border (PROP:BOXED).

Language Reference Manual 362

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

FONT Specifies the display font for the control and the default for all the controls in the
OPTION (PROP:FONT).

ALRT Specifies "hot" keys active for the controls in the OPTION (PROP:ALRT). Not
valid in a REPORT.

SKIP Specifies the controls in the OPTION do not receive input focus and may only be
accessed with the mouse or accelerator key (PROP:SKIP). Not valid in a
REPORT.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID). Not valid in a REPORT.

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip). Not valid in a REPORT.

COLOR Specifies a background color for the control (PROP:COLOR).

BEVEL Specifies custom 3-D effect borders (PROP:BEVEL). Not valid in a REPORT.

TRN Specifies the text or USE variable characters transparently display over the
background (PROP:Trn).

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

radios Multiple RADIO control declarations.

The OPTION control declares a set of RADIO controls which offer the user a list of choices. The
multiple RADIO controls in the OPTION structure define the choices offered to the user. On a
REPORT, the OPTION control prints a group of RADIO controls which display a list of choices.
The selected choice is identified by a filled RADIO button.

Input focus changes between the OPTION's RADIO controls are signalled only to the individual
RADIO controls affected. This means the EVENT:Selected events generated when the user
changes input focus within an OPTION structure are field-specific events for the affected RADIO
controls, not the OPTION structure which contains them. There is no EVENT:Selected generated
for an OPTION structure. However, the RADIO control does not receive EVENT:Accepted, the
OPTION structure receives the EVENT:Accepted when the user has selected a RADIO.

8 – Controls 363

A string variable as the OPTION structure's USE attribute receives the text of the RADIO control
selected by the user, and the CHOICE(?Option) procedure returns the number of the selected
RADIO button. If the contents of the OPTION structure's USE attribute is a numeric variable, it
receives the number of the RADIO button selected by the user (the value returned by the
CHOICE procedure).

No RADIO button selected is a valid option, which occurs only when the OPTION structure's USE
variable does not contain a value related to one of its component RADIO controls. This condition
only lasts until the user has selected one of the RADIOs.

Events Generated:

EVENT:Accepted One of the OPTION's RADIO controls has been selected by the user.

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(0,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(20,0,20,20),USE(?R2)

END
OPTION('Option 2'),USE(OptVar2),MSG('Option 2'),SCROLL
RADIO('Radio 3'),AT(40,0,20,20),USE(?R3)
RADIO('Radio 4'),AT(60,0,20,20),USE(?R4)

END
OPTION('Option 3'),USE(OptVar3),AT(80,0,20,20),BOXED
RADIO('Radio 5'),AT(80,0,20,20),USE(?R5)
RADIO('Radio 6'),AT(100,0,20,20),USE(?R6)

END
OPTION('Option 4'),USE(OptVar4),FONT('Arial',12),CURSOR(CURSOR:Wait)
RADIO('Radio 7'),AT(120,0,20,20),USE(?R7)
RADIO('Radio 8'),AT(140,0,20,20),USE(?R8)

END
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

OPTION('Option'),USE(OptVar),AT(80,0,20,20),BOXED
RADIO('Radio 1'),AT(80,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(100,0,20,20),USE(?R2)
END
END
END

See Also: RADIO, BUTTON, CHECK

Language Reference Manual 364

PANEL (declare a panel control)

 PANEL ,AT() [,USE()] [,LAYOUT()][,DISABLE] [,FULL] [,FILL()] [,SCROLL] [,HIDE] [,BEVEL()]

PANEL Defines an area in the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

USE A field equate label to reference the control in executable code (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control is disabled when the WINDOW or APPLICATION is first
opened (PROP:DISABLE).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

FILL Specifies the fill color for the control (PROP:FILL). If omitted, the panel is not
filled with color.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

BEVEL Specifies custom 3-D effect borders (PROP:BEVEL).

The PANEL control defines an area WINDOW or TOOLBAR (not valid in a REPORT) at the
position and size specified by its AT attribute. Typically, the purpose of a PANEL is to frame the
area with a custom BEVEL. This control cannot receive input focus and does not generate
events.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
PANEL,AT(10,100,20,20),USE(?P1),BEVEL(-2,2)
END

See Also:

BOX

GROUP

8 – Controls 365

PROMPT (declare a prompt control)

PROMPT(text) ,AT() [,CURSOR()] [,USE()] [,LAYOUT()][,DISABLE] [,FONT()] [,FULL] [,SCROLL] [,TRN]
 [,HIDE] [,DROPID()] [, | LEFT |] [,COLOR()]
 | RIGHT |
 | CENTER |

PROMPT Places a prompt for the next active control following it, in the WINDOW or
TOOLBAR.

text A string constant containing the text to display (PROP:Text). This may contain an
ampersand (&) to indicate the "hot" letter for the prompt.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE A field equate label to reference the control in executable code (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is
first opened (PROP:DISABLE).

FONT Specifies the font used to display the text (PROP:FONT).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

TRN Specifies the control transparently displays over the background (PROP:TRN).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

LEFT Specifies that the prompt is left justified (PROP:LEFT).

RIGHT Specifies that the prompt is right justified (PROP:RIGHT).

CENTER Specifies that the prompt is centered (PROP:CENTER).

COLOR Specifies a background color for the control (PROP:COLOR).

The PROMPT control places a prompt for the next active control following the PROMPT in the
WINDOW or TOOLBAR structure (not valid in a REPORT). The prompt text is placed at the
position and size specified by its AT attribute.

Language Reference Manual 366

The text may contain an ampersand (&) to indicate the letter immediately following the
ampersand is the "hot" letter for the prompt. By default, the "hot" letter displays with an
underscore below it to indicate its special purpose. This "hot" letter, when pressed in conjunction
with the ALT key, changes input focus to the next control following the PROMPT in the WINDOW
or TOOLBAR structure, which is capable of receiving focus.

Disabling or hiding the control directly following the PROMPT in the window structure does not
autmatically disable or hide the PROMPT; it must also be explicitly disabled or hidden, otherwise
the PROMPT will then refer to the next currently active control following the disabled control. This
allows you to place one PROMPT control on the window that will apply to any of multiple controls
(if only one will be active at a time). If the next active control is a BUTTON, it is pressed when the
user presses the PROMPT's "hot key."

To include an ampersand as part of the prompt text, place two ampersands together (&&) in the
text string and only one will display.

This control cannot receive input focus.

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
PROMPT('Enter Data:'),AT(10,100,20,20),USE(?P1),CURSOR(CURSOR:Wait)
ENTRY(@S8),AT(100,100,20,20),USE(E1)
PROMPT('Enter More Data:'),AT(10,200,20,20),USE(?P2),CURSOR(CURSOR:Wait)
ENTRY(@S8),AT(100,200,20,20),USE(E2)
ENTRY(@D1),AT(100,200,20,20),USE(E3)
END

CODE
OPEN(MDIChild)
IF SomeCondition
HIDE(?E2) !Prompt will refer to E3

ELSE
HIDE(?E3) !Prompt will refer to E2

END

See Also:

ENTRY

TEXT

8 – Controls 367

PROGRESS (declare a progress control)

PROGRESS, AT() [,CURSOR()] [,USE()] [,LAYOUT()][,DISABLE] [,FULL] [,SCROLL] [,HIDE]
 [,DROPID()][,RANGE()]

PROGRESS Places a control that displays the current progress of a batch process in the
WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE The label of the variable containing the value of the current progress, or a field
equate label to reference the control in executable code (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is
first opened (PROP:DISABLE).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

RANGE Specifies the range of values the progress bar displays (PROP:RANGE). If
omitted, the default range is zero (0) to one hundred (100).

The PROGRESS control declares a control that displays a progress bar in a WINDOW or
TOOLBAR (not valid in a REPORT). This usually displays the current percentage of completion of
a batch process.

If a variable is named as the USE attribute, the progress bar is automatically updated whenever
the value in that variable changes. If the USE attribute is a field equate label, you must directly
update the display by assigning a value (within the range defined by the RANGE attribute) to the
control's PROP:progress property (an undeclared property equate -- see Undeclared Properties).

This control cannot receive input focus.

Language Reference Manual 368

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

BackgroundProcess PROCEDURE !Background processing batch process

ProgressVariable LONG

Win WINDOW('Batch Processing...'),AT(,,400,400),TIMER(1),MDI,CENTER
PROGRESS,AT(100,100,200,20),USE(ProgressVariable),RANGE(0,200)
PROGRESS,AT(100,140,200,20),USE(?ProgressBar),RANGE(0,200)
BUTTON('Cancel'),AT(190,300,20,20),STD(STD:Close)

END

CODE
OPEN(Win)
OPEN(File)
?ProgressVariable{PROP:rangehigh} = RECORDS(File)
?ProgressBar{PROP:rangehigh} = RECORDS(File)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records when timer allows it
ProgressVariable += 3 !Auto-updates 1st progress bar
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE()
BREAK

END
?ProgressBar{PROP:progress} = ?ProgressBar{PROP:progress} + 1

!Manually update 2nd progress bar
!Perform some batch processing code HERE

END
END

END
CLOSE(File)

8 – Controls 369

RADIO (declare a radio button control)

RADIO(text) ,AT() [,CURSOR()] [,USE()] [,LAYOUT()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]
 [,FONT()] [,ICON()] [,FULL] [,SCROLL] [,HIDE] [,ALRT()] [DROPID()] [VALUE()]
 [,TIP()] [,TRN] [,COLOR()] [,FLAT] [, | LEFT |] [,EXTEND()]
 | RIGHT |

RADIO Places a radio button on the WINDOW or TOOLBAR.

text A string constant containing the text to display for the radio button (PROP:Text).
This may contain an ampersand (&) to indicate the "hot" letter for the radio
button.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used. Not valid in a REPORT.

USE A field equate label to reference the control in executable code (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately selects the
radio button (PROP:KEY). Not valid in a REPORT.

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG). Not valid in a REPORT.

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP). Not valid in a REPORT.

SKIP Specifies the control does not receive input focus and may only be accessed with
the mouse or accelerator key (PROP:SKIP). Not valid in a REPORT.

FONT Specifies the display font for the control (PROP:FONT).

ICON Specifies an image file or standard icon to display on the face of a "latching"
button (PROP:ICON). Not valid in a REPORT.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

Language Reference Manual 370

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

ALRT Specifies "hot" keys active for the control (PROP:ALRT). Not valid in a REPORT.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID). Not valid in a REPORT.

VALUE Specifies the value the OPTION structure's USE variable receives when the radio
button is selected by the user (PROP:VALUE).

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip). Not valid in a REPORT.

TRN Specifies the control transparently displays over the background (PROP:TRN).

COLOR Specifies a background color for the control (PROP:COLOR).

FLAT Specifies the button appears flat except when the mouse cursor passes over the
control (PROP:FLAT). Requires the ICON attribute. Not valid in a REPORT.

LEFT Specifies the text appears to the left of the radio button (PROP:LEFT).

RIGHT Specifies the text appears to the right of the radio button (PROP:RIGHT). This is
the default position.

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

The RADIO control places a radio button on the WINDOW, TOOLBAR, or REPORT at the
position and size specified by its AT attribute. A RADIO control may only be placed within an
OPTION control. When selected by the user, the RADIO text (with any accelerator key
ampersand stripped out) is placed in the OPTION's USE variable, unless the VALUE attribute is
used. On a REPORT, the RADIO selected by the user (the value in the OPTION's USE variable)
is displayed as a filled RADIO button.

A RADIO with an ICON attribute appears as a "latched" pushbutton with the image on the button
face. When the button appears "up" the RADIO is off; when it appears "down" the RADIO is on
and the OPTION's USE variable receives the value in the selected RADIO's text parameter
(unless the VALUE attribute is used).

There is an EVENT:Selected is generated for a RADIO control, but the OPTION structure
containing it receives the EVENT:Accepted.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

8 – Controls 371

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
OPTION('Option 1'),USE(OptVar1)
RADIO('Radio 1'),AT(0,0,20,20),USE(?R1),KEY(F10Key)
RADIO('Radio 2'),AT(20,0,20,20),USE(?R2),MSG('Radio 2')

END
OPTION('Option 2'),USE(OptVar2)
RADIO('Radio 3'),AT(40,0,20,20),USE(?R3),FONT('Arial',12)
RADIO('Radio 4'),AT(60,0,20,20),USE(?R4),CURSOR(CURSOR:Wait)

END
OPTION('Option 3'),USE(OptVar3)
RADIO('Radio 5'),AT(80,0,20,20),USE(?R5),HLP('Radio5Help')
RADIO('Radio 6'),AT(100,0,20,20),USE(?R6)

END
OPTION('Option 4'),USE(OptVar4)
RADIO('Radio 7'),AT(120,0,20,20),USE(?R7),ICON('Radio1.ICO')
RADIO('Radio 8'),AT(140,0,20,20),USE(?R8),ICON('Radio2.ICO')

END
OPTION('Option 5'),USE(OptVar5)
RADIO('Radio 9'),AT(100,20,20,20),USE(?R9),LEFT
RADIO('Radio 10'),AT(120,20,20,20),USE(?R10),LEFT

END
OPTION('Option 6'),USE(OptVar6),SCROLL
RADIO('Radio 11'),AT(200,0,20,20),USE(?R11),SCROLL
RADIO('Radio 12'),AT(220,0,20,20),USE(?R12),SCROLL

END
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

OPTION('Option'),USE(OptVar),AT(80,0,20,20),BOXED
RADIO('Radio 1'),AT(80,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(100,0,20,20),USE(?R2)
RADIO('Radio 3'),AT(100,0,20,20),USE(?R2),LEFT

END
END

END

See Also:

OPTION

CHECK

BUTTON

Language Reference Manual 372

REGION (declare a window region control)

 REGION ,AT() [,CURSOR()] [,USE()] [,LAYOUT()] [,DISABLE] [,FILL] [,COLOR()] [,IMM] [,FULL] [,TRN]
 [,SCROLL] [,HIDE] [,DRAGID()] [,DROPID()] [,BEVEL()]

REGION Defines an area in the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE A field equate label to reference the control in executable code (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control is disabled when the WINDOW or APPLICATION is first
opened (PROP:DISABLE).

FILL Specifies the red, green, and blue component values that create the fill color for
the control (PROP:FILL). If omitted, the region is not filled with color.

COLOR Specifies the border color of the control (PROP:COLOR). If omitted, there is no
border.

IMM Specifies control generates an event whenever the mouse is moved in the region
(PROP:IMM).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

DRAGID Specifies the control may serve as a drag host for drag-and-drop actions
(PROP:DRAGID).

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

BEVEL Specifies custom 3-D effect borders (PROP:BEVEL).

TRN Specifies the control transparently displays over the background (PROP:TRN).

8 – Controls 373

The REGION control defines an area on a WINDOW or TOOLBAR (not valid in a REPORT) at
the position and size specified by its AT attribute. Generally, tracking the position of the mouse is
the reason for defining a REGION. The MOUSEX and MOUSEY procedures can be used to
determine the exact position of the mouse when the event occurs. Use of the IMM attribute
causes some excess code and speed overhead at runtime, so it should be used only when
necessary. This control cannot receive input focus.

A REGION with the DRAGID attribute can serve as a drag-and-drop host, providing information to
be moved or copied to another control. A REGION with the DROPID attribute can serve as a
drag-and-drop target, receiving information from another control. These attributes work together
to specify drag-and-drop "signatures" that define a valid target for the operation. The DRAGID()
and DROPID() procedures, along with the SETDROPID procedure, are used to perform the data
exchange. Since a REGION can be defined over any other control, you can write drag-and-drop
code between any two controls. Simply define REGION controls to handle the required drag-and
drop functionality.

Events Generated:

EVENT:Accepted The mouse has been clicked by the user in the region.

EVENT:MouseIn The mouse has entered the region (only with the IMM attribute).

EVENT:MouseOut The mouse has left the region (only with the IMM attribute).

EVENT:MouseMove The mouse has moved within the region (only with the IMM attribute).

EVENT:Dragging The mouse cursor is over a potential drag target (only with the DRAGID
attribute).

EVENT:Drag The mouse cursor has been released over a drag target (only with the
DRAGID attribute).

EVENT:Drop The mouse cursor has been released over a drag target (only with the
DROPID attribute).

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
REGION,AT(10,100,20,20),USE(?R1),BEVEL(-2,2)
REGION,AT(100,100,20,20),USE(?R2),CURSOR(CURSOR:Wait)
REGION,AT(10,200,20,20),USE(?R3),IMM
REGION,AT(100,200,20,20),USE(?R4),COLOR(COLOR:ACTIVEBORDER)
REGION,AT(10,300,20,20),USE(?R5),FILL(COLOR:ACTIVEBORDER)
END

See Also:

PANEL

Language Reference Manual 374

SHEET (declare a group of TAB controls)

SHEET ,AT() [,CURSOR()][,USE()] [,LAYOUT()] [,DISABLE][,KEY()][,FULL][,SCROLL][,HIDE][,FONT()]
 [,DROPID()][,WIZARD][,SPREAD][,HSCROLL][,JOIN][,NOSHEET][,COLOR()]
 [,UP] [,DOWN] [, | LEFT |] [,IMM]
 | RIGHT |
 | ABOVE |
 | BELOW |
tabs
END

SHEET Declares a group of TAB controls.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE The label of a variable to receive the current TAB choice (PROP:USE). If this is a
string variable, it receives the value of the TAB string (with any ampersands
stripped out) selected by the user. If a numeric variable, it receives the number of
the TAB selected by the user (the value returned by the CHOICE() procedure).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the currently selected TAB in the SHEET control (PROP:KEY).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

FONT Specifies the display font for the control and the default for all the controls in the
SHEET (PROP:FONT).

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

WIZARD Specifies the SHEET's TAB controls do not appear (PROP:WIZARD). The user
moves from TAB to TAB under program control.

SPREAD Specifies the TABs are evenly spaced on one line (PROP:SPREAD).

8 – Controls 375

HSCROLL Specifies the TABs display all on one row instead of multiple rows, no matter how
many TABs there are (PROP:HSCROLL). Right and left (or up and down) scroll
buttons appear at either end of the TABs to scroll through the TABs.

JOIN Specifies the TABs display all on one row instead of multiple rows, no matter how
many TABs there are (PROP:JOIN). Right and left (or up and down) scroll
buttons appear together at the right (or bottom) end of the TABs to scroll through
the TABs.

NOSHEET Specifies the TABs display without a visible sheet (PROP:NOSHEET).

COLOR Specifies a background color for the control (PROP:COLOR).

UP Specifies the TAB text is vertical reading upwards (PROP:UP).

DOWN Specifies the TAB text is vertical reading downwards (PROP:DOWN).

LEFT Specifies the TABs appear to the left of the sheet (PROP:LEFT).

RIGHT Specifies the TABs appear to the right of the sheet (PROP:RIGHT).

ABOVE Specifies the TABs appear above the sheet (PROP:ABOVE). This is the default
position.

BELOW Specifies the TABs appear below the sheet (PROP:BELOW).

IMM Specifies EVENT:NewSelection generates whenever the user clicks on a TAB
(PROP:IMM).

tabs Multiple TAB control declarations.

The SHEET control declares a group of TAB controls that offer the user multiple "pages" of
controls for the window (not valid in a REPORT). The TAB controls in the SHEET structure define
the "pages" displayed.

Input focus changes between the SHEET's TAB controls are signalled only to the SHEET control
affected. This means the events generated when the user changes input focus within a SHEET
structure are field-specific events for the affected SHEET structure, not the individual TAB control.

A string variable as the SHEET structure's USE attribute receives the text of the TAB control
selected by the user, and the CHOICE(?Option) procedure returns the number of the selected
TAB control. If the SHEET structure's USE attribute is a numeric variable, it receives the number
of the TAB control selected by the user (the same value returned by the CHOICE procedure).

You can use the SELECT statement to force navigation to a specific tab by specifying the TAB
control's position number within the sheet as the second parameter:
SELECT(?Sheet,TabNumber).

Language Reference Manual 376

Events Generated:

EVENT:TabChanging Focus is about to pass to another tab.

EVENT:NewSelection Focus has passed to another tab, or the user clicked on a TAB in a
SHEET with the IMM attribute.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)
OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(20,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R2)
END
OPTION('Option 2'),USE(OptVar2),MSG('Option 2')
RADIO('Radio 3'),AT(60,0,20,20),USE(?R3)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R4)
END
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)
END
TAB('Tab Two'),USE(?TabTwo)
OPTION('Option 3'),USE(OptVar3)
RADIO('Radio 1'),AT(20,0,20,20),USE(?R5)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R6)
END
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)
END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)
END

See Also:

TAB

8 – Controls 377

SPIN (declare a spinning list control)

SPIN(picture) ,AT() [,CURSOR()] [,USE()] [,LAYOUT()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP] [,FONT()]
 [,FULL][,SCROLL][,ALRT()][,HIDE][,READONLY][,REQ][,IMM][,TIP()][,TRN][DROPID()][,COLOR()]
 [,REPEAT()] [,DELAY()] [,MASK]
 [,| UPR |] [, | LEFT |] [, | INS |] , | RANGE()[,STEP] | [, | HSCROLL|]
 | CAP | | RIGHT | | OVR | | FROM() | | VSCROLL|
 | CENTER | | HVSCROLL|
 | DECIMAL |

SPIN Places a "spinning" list of data items on the WINDOW or TOOLBAR.

picture A display picture token that specifies the format for the data displayed in the
control (PROP:Text).

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used.

USE A field equate label to reference the control in executable code or the label of the
variable that receives the value selected by the user (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the control (PROP:KEY).

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG).

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP).

SKIP Specifies the control receives input focus to enter text only with the mouse or
accelerator key and does not retain focus (PROP:SKIP).

FONT Specifies the display font for the control (PROP:FONT).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL).

SCROLL Specifies the control scrolls with the window (PROP:SCROLL).

ALRT Specifies "hot" keys active for the control (PROP:ALRT).

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

Language Reference Manual 378

READONLY Specifies the control does not allow data entry (PROP:READONLY).

REQ Specifies the control may not be left blank or zero (PROP:REQ).

IMM Specifies immediate event generation whenever the user presses any key
(PROP:IMM).

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip).

TRN Specifies the control transparently displays over the background (PROP:TRN).

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

COLOR Specifies background and selected colors for the control (PROP:COLOR).

REPEAT Specifies the rate at which EVENT:NewSelection generates when the spin
buttons are held down by the user (PROP:REPEAT).

DELAY Specifies the delay between the first and second generation of
EVENT:NewSelection when the spin buttons are held down by the user
(PROP:DELAY).

MASK Specifies pattern input editing mode of the ENTRY portion of the control
(PROP:MASK).

UPR / CAP Specifies all upper case or proper name capitalization (First Letter Of Each Word
Capitalized) entry (PROP:UPR and PROP:CAP).

LEFT Specifies that the data is left justified within the area specified by the AT attribute
(PROP:LEFT).

RIGHT Specifies that the data is right justified within the area specified by the AT
attribute (PROP:RIGHT).

CENTER Specifies that the data is centered within the area specified by the AT attribute
(PROP:CENTER).

DECIMAL Specifies that the data is aligned on the decimal point within the area specified by
the AT attribute (PROP:DECIMAL).

INS / OVR Specifies Insert or Overwrite entry mode (PROP:INS and PROP:OVR). Valid only
on windows with the MASK attribute.

RANGE Specifies the range of values the user may choose (PROP:RANGE).

STEP Specifies the increment/decrement amount of the choices within the specified
RANGE (PROP:STEP). If omitted, the STEP is 1.0.

FROM Specifies the origin of the choices displayed for the user (PROP:FROM).

HSCROLL Specifies the spin buttons are side by side, pointing right and left
(PROP:HSCROLL).

8 – Controls 379

VSCROLL Specifies the spin buttons are one above the other, pointing right and left
(PROP:VSCROLL).

HVSCROLL Specifies the spin buttons are side by side, pointing up and down
(PROP:HVSCROLL).

The SPIN control places a "spinning" list of data items on the WINDOW or TOOLBAR (not valid in
a REPORT) at the position and size specified by its AT attribute. The "spinning" list displays only
the current selection with a pair of buttons to the right to allow the user to "spin" through the
available selections (similar to a slot machine wheel).

If the SPIN control offers the user regularly spaced numeric choices, the RANGE attribute
specifies the valid range of values from which the user may choose. The STEP attribute then
works in conjunction with RANGE to increment/decrement those values by the specified amount.
If the choices are not regular, or are string values, the FROM attribute is used instead of RANGE
and STEP. The FROM attribute provides the SPIN control its list of choices from a memory
QUEUE or a string. Using the FROM attribute, you may provide the user any type of choices in
the SPIN control. The user may select an item from the list or type in the desired value, so this
control also acts as an ENTRY control.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has either selected a value or entered data directly into the
control, and moved on to another control.

EVENT:Rejected The user has entered an invalid value for the entry picture.

EVENT:NewSelection The user has changed the displayed value.

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
SPIN(@S8),AT(0,0,20,20),USE(SpinVar1),FROM(Que)
SPIN(@N3),AT(20,0,20,20),USE(SpinVar2),RANGE(1,999),KEY(F10Key)
SPIN(@N3),AT(40,0,20,20),USE(SpinVar3),RANGE(5,995),STEP(5)
SPIN(@S8),AT(60,0,20,20),USE(SpinVar4),FROM(Que),HLP('Check4Help')
SPIN(@S8),AT(80,0,20,20),USE(SpinVar5),FROM(Que),MSG('Button 3')
SPIN(@S8),AT(100,0,20,20),USE(SpinVar6),FROM(Que),FONT('Arial',12)
SPIN(@S8),AT(120,0,20,20),USE(SpinVar7),FROM(Que),DROP
SPIN(@S8),AT(160,0,20,20),USE(SpinVar8),FROM(Que),IMM
SPIN(@S8),AT(220,0,20,20),USE(SpinVar9),FROM('Mr|Mrs|Ms'),LEFT
END

Language Reference Manual 380

STRING (declare a string control)

STRING(text) ,AT() [,CURSOR()] [,USE()] [,LAYOUT()] [,DISABLE] [,FONT()] [,FULL] [,SCROLL] [,HIDE]
 [,TRN] [,DROPID()] [,COLOR()] [,ANGLE()] [,SKIP]
 [, | LEFT |] [, | PAGENO |] [,EXTEND()]
RIGHT		CNT() [, RESET() / PAGE] [, TALLY()]
CENTER		SUM() [, RESET() / PAGE] [, TALLY()]
DECIMAL		AVE() [, RESET() / PAGE] [, TALLY()]
 | MIN() [, RESET() / PAGE] [, TALLY()] |
 | MAX() [, RESET() / PAGE] [, TALLY()] |

STRING Places the text on the WINDOW, TOOLBAR, or REPORT.

text A string constant containing the text to display, or a display picture token to
format the variable specified in the USE attribute (PROP:Text).

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used. Not valid in a REPORT.

USE A field equate label to reference the control in executable code, or a variable
whose contents are displayed in the format of the picture token declared instead
of string text (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

FONT Specifies the font used to display the text (PROP:FONT).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

TRN Specifies the text or USE variable characters transparently display over the
background (PROP:TRN).

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID). Not valid in a REPORT.

8 – Controls 381

SKIP Specifies not to print the control if the content is blank, and to move all following
controls in the band upward to "fill in" the blank (PROP:SKIP). Valid only in a
REPORT.

LEFT Specifies that the text is left justified within the area specified by the AT attribute
(PROP:LEFT).

RIGHT Specifies that the text is right justified within the area specified by the AT attribute
(PROP:RIGHT).

CENTER Specifies that the text is centered within the area specified by the AT attribute
(PROP:CENTER).

DECIMAL Specifies that the text is aligned on the decimal point within the area specified by
the AT attribute (PROP:DECIMAL).

COLOR Specifies a background color for the control (PROP:COLOR).

ANGLE Specifies displaying or prinitng the control at a specified angle measured
counter-clockwise from the horizontal or the report's orientation (PROP:ANGLE).

PAGENO Specifies the current page number is printed in the format of the picture token
declared instead of string text (PROP:PAGENO). Valid only in a REPORT.

CNT Specifies the number of details printed is printed in the format of the picture token
declared instead of string text (PROP:CNT). Valid only in a REPORT.

SUM Specifies the sum of the USE variable is printed in the format of the picture token
declared instead of string text (PROP:SUM). Valid only in a REPORT.

AVE Specifies the average value of the USE variable is printed in the format of the
picture token declared instead of string text (PROP:AVE). Valid only in a
REPORT.

MIN Specifies the mimimum value of the USE variable is printed in the format of the
picture token declared instead of string text (PROP:MIN). Valid only in a
REPORT.

MAX Specifies the maximum value of the USE variable is printed in the format of the
picture token declared instead of string text (PROP:MAX). Valid only in a
REPORT.

RESET Specifies the CNT, SUM, AVE, MIN, or MAX is reset when the specified group
break occurs (PROP:RESET). Valid only in a REPORT.

PAGE Specifies the CNT, SUM, AVE, MIN, or MAX is reset to zero when the page
break occurs (PROP:PAGE). Valid only in a REPORT.

TALLY Specifies when to calculate the CNT, SUM, AVE, MIN, or MAX (PROP:TALLY).
Valid only in a REPORT.

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

Language Reference Manual 382

The STRING control places the text on the WINDOW, TOOLBAR, or REPORT at the position and
size specified by its AT attribute.

If the text parameter is a picture token instead of a string constant, the contents of the variable
named in the USE attribute are formatted to that display picture, at the position and size specified
by the AT attribute. This makes the STRING with a USE variable a "display-only" control for the
variable. The data displayed in the STRING is automatically refreshed every time through the
ACCEPT loop, whether the AUTO attribute is present or not.

There is a difference between ampersand (&) use in STRING and PROMPT controls. An
ampersand in a STRING displays as part of the text, while an ampersand in a PROMPT defines
the prompt's "hot" letter.

A STRING with the TRN attribute displays or prints characters transparently, without obliterating
the background. This means only the pixels required to create each character are written to
screen. This allows the STRING to be placed directly on top of an IMAGE without destroying the
background picture.

This control cannot receive input focus.

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
STRING('String Constant'),AT(10,0,20,20),USE(?S1)
STRING(@S30),AT(10,20,20,20),USE(StringVar1)
STRING(@S30),AT(10,20,20,20),USE(StringVar2),CURSOR(CURSOR:Wait)
STRING(@S30),AT(10,20,20,20),USE(StringVar3),FONT('Arial',12)
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(Pre:Key1)

HEADER,AT(0,0,6500,1000)
STRING('Group Head'),AT(3000,500,1500,500),FONT('Arial',18)
END

Detail DETAIL,AT(0,0,6500,1000)
STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000)
STRING('Group Total:'),AT(5500,500,1500,500)
STRING(@N$11.2),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Pre:Key1)
END
END
END

8 – Controls 383

TAB (declare a page of a SHEET control)

TAB(text) [,USE()] [,LAYOUT()] [,KEY()] [,MSG()] [,HLP()] [,REQ] [DROPID()] [,TIP()]
 [,COLOR()] [,FONT()]
controls

 END

TAB Declares a group of controls that constitute one of the multiple "pages" of
controls contained within a SHEET structure.

text A string constant containing the text to display on the TAB (PROP:Text).

USE Specifies a field equate label to reference the control in executable code
(PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display orientation
(PROP:LAYOUT)

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the control (PROP:KEY).

MSG Specifies a string constant containing the default text to display in the status bar
when any control in the TAB has focus (PROP:MSG).

HLP Specifies a string constant containing the default help system identifier for any
control in the TAB (PROP:HLP).

REQ Specifies that when another TAB is selected, the runtime library automatically
checks all ENTRY controls in the same TAB structure with the REQ attribute to
ensure they contain data other than blanks or zeroes (PROP:REQ).

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID).

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip).

COLOR Specifies a background color for the control and the default for all controls on the
TAB (PROP:COLOR).

FONT Specifies the font used to display the text on the tab (PROP:FONT). This does
not affect the controls placed in the TAB.

controls Multiple control declarations.

The TAB structure declares a group of controls that constitute one of the multiple "pages" of
controls contained within a SHEET structure (not valid in a REPORT). The multiple TAB controls
in the SHEET structure define the "pages" displayed to the user. The SHEET structure's USE
attribute receives the text of the TAB control selected by the user.

Language Reference Manual 384

Input focus changes between the SHEET's TAB controls are signalled only to the SHEET control
affected. This means the events generated when the user changes input focus within a SHEET
structure are field-specific events for the SHEET control, and the individual TAB controls do not
generate events.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)
OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(20,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R2)
END
OPTION('Option 2'),USE(OptVar2),MSG('Option 2')
RADIO('Radio 3'),AT(60,0,20,20),USE(?R3)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R4)
END
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB('Tab Two'),USE(?TabTwo)
OPTION('Option 3'),USE(OptVar3)
RADIO('Radio 1'),AT(20,0,20,20),USE(?R5)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R6)
END
OPTION('Option 4'),USE(OptVar4)
RADIO('Radio 3'),AT(60,0,20,20),USE(?R7)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R8)
END
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)

END

See Also:

SHEET

8 – Controls 385

TEXT (declare a multi-line text control)
TEXT ,AT() [,CURSOR()][,USE()][,LAYOUT()][,DISABLE][,KEY()][,MSG()][,HLP()][,BOXED][,SKIP] [,FONT()]
 [,REQ] [,FULL] [,SCROLL] [,ALRT()] [,HIDE] [,READONLY] [,DROPID()] [,UPR] [,TRN] [,RTF]
 [,TIP()] [, | HSCROLL |] [, | LEFT |][,COLOR()][,SINGLE][,RESIZE] [,EXTEND()]

 | VSCROLL | | RIGHT |
 | HVSCROLL | | CENTER |

TEXT Places a multi-line data entry field on the WINDOW, TOOLBAR, or REPORT.

AT Specifies the initial size and location of the control (PROP:AT). If omitted, default
values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the
control (PROP:CURSOR). If omitted, the WINDOW's CURSOR attribute is used,
else the Windows default cursor is used. Not valid in a REPORT.

USE The label of the variable that receives the value entered into the control by the
user (PROP:USE).

LAYOUT Specifies the control’s left-to-right or right-to-left display and entry orientation
(PROP:LAYOUT)

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION
opens (PROP:DISABLE).

KEY Specifies an integer constant or keycode equate that immediately gives focus to
the control (PROP:KEY). Not valid in a REPORT.

MSG Specifies a string constant containing the text to display in the status bar when
the control has focus (PROP:MSG). Not valid in a REPORT.

HLP Specifies a string constant containing the help system identifier for the control
(PROP:HLP). Not valid in a REPORT.

BOXED Specifies a single-track border around a TEXT control, with the text at the top of
the border (PROP:BOXED). This attribute only works if the TEXT control is
transparent or the parent window does not have the GRAY attribute applied.

SKIP Specifies the control receives input focus to enter text only with the mouse or
accelerator key and does not retain focus (PROP:SKIP). In a REPORT, SKIP
specifies not to print the control if the content is blank, and to move all following
controls in the band upward to "fill in" the blank.

FONT Specifies the display font for the control (PROP:FONT).

REQ Specifies the control may not be left blank or zero (PROP:REQ). Not valid in a
REPORT.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter (PROP:FULL). Not valid in a
REPORT.

SCROLL Specifies the control scrolls with the window (PROP:SCROLL). Not valid in a
REPORT.

Language Reference Manual 386

ALRT Specifies "hot" keys active for the control (PROP:ALRT). Not valid in a REPORT.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is
first opened (PROP:HIDE). UNHIDE must be used to display it.

READONLY Specifies the control does not allow data entry (PROP:READONLY). Not valid in
a REPORT.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions
(PROP:DROPID). Not valid in a REPORT.

UPR Specifies all upper case entry (PROP:UPR).

TIP Specifies the text that displays as "balloon help" when the mouse cursor pauses
over the control (PROP:ToolTip). Not valid in a REPORT.

HSCROLL Specifies that a horizontal scroll bar is automatically added to the text field when
any portion of the data lies horizontally outside the visible area
(PROP:HSCROLL). Not valid in a REPORT.

VSCROLL Specifies that a vertical scroll bar is automatically added to the text field when
any of the data lies vertically outside the visible area (PROP:VSCROLL). Not
valid in a REPORT.

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to
the text field when any portion of the data lies outside the visible area
(PROP:HVSCROLL). Not valid in a REPORT.

LEFT Specifies that the text is left justified within the area specified by the AT attribute
(PROP:LEFT).

RIGHT Specifies that the text is right justified within the area specified by the AT attribute
(PROP:RIGHT).

CENTER Specifies that the text is centered within the area specified by the AT attribute
(PROP:CENTER).

COLOR Specifies a background color for the control (PROP:COLOR).

SINGLE Specifies the control is only for single line data entry (PROP:SINGLE). This is
specifically to allow use of TEXT controls instead of ENTRY for Hebrew or Arabic
data entry. Not valid in a REPORT.

RESIZE Specifies adjusting the print height for the control according to the actual content
(PROP:RESIZE). Valid only in a REPORT.

TRN Specifies the text or USE variable characters transparently display over the
background (PROP:Trn).

RTF Specifies that the contents of the text field supports Rich Text Format.

EXTEND Specifies special document formatting information. This information contains a
valid string of attributes that are assigned to a designated REPORT control for a
given document type. Valid only in a REPORT.

8 – Controls 387

The TEXT control places a multi-line data entry field on the WINDOW (or TOOLBAR) at the
position and size specified by its AT attribute. The variable specified in the USE attribute receives
the data entered when the user has completed data entry and moves on to another control. The
entered data automatically "word-wraps" to fit in the text box.

The capacity of a TEXT control varies depending on the operating system.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed data entry in the control.

EVENT:PreAlertKey The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
TEXT,AT(0,0,40,40),USE(E1),ALRT(F10Key),CENTER
TEXT,AT(20,0,40,40),USE(E2),KEY(F10Key),HLP('Text4Help')
TEXT,AT(40,0,40,40),USE(E3),SCROLL,OVR,UPR
TEXT,AT(60,0,40,40),USE(E4),CURSOR(CURSOR:Wait),RIGHT
TEXT,AT(80,0,40,40),USE(E5),DISABLE,FONT('Arial',12)
TEXT,AT(100,0,40,40),USE(E6),HVSCROLL,LEFT
TEXT,AT(120,0,40,40),USE(E7),REQ,INS,CAP,MSG('Text Field 7')
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000)

TEXT,AT(0,0,40,40),USE(E1)
TEXT,AT(100,0,40,40),USE(E6),FONT('Arial',12)
TEXT,AT(120,0,40,40),USE(E7),CAP
TEXT,AT(140,0,40,40),USE(E8),UPR
TEXT,AT(160,0,40,40),USE(E9),LEFT
TEXT,AT(180,0,40,40),USE(E10),RIGHT
TEXT,AT(200,0,40,40),USE(E11),CENTER
END
END

See Also: ENTRY, PROP:Line , PROP:LineCount

Language Reference Manual 388

9 – Window and Report Attributes 389

9 - Window and Report Attributes
Attribute Property Equates
Each attribute has a corresponding runtime property listed in its description (PROP:attribute).
Equates for all runtime properties are contained in the PROPERTY.CLW file. This file also
contains equates for the standard values used by some of these properties. Some properties are
"read-only" and their value may not be changed, and others are "write-only" properties whose
value cannot be determined. These restrictions are noted as applicable.

PROP:Text

PROP:Text is the text parameter of an APPLICATION(text), WINDOW(text), or any control(text).
This property represents the parameter to any control or window declaration, and could contain
any value that is valid as the parameter to the specific control's declaration. For example:

Example:
?Image{PROP:Text} = 'My.BMP' !a new bitmap for the referenced IMAGE control
?Prompt{PROP:Text} = 'New Prompt text' !new text in the referenced PROMPT control
?Entry{PROP:Text} = '@N03' !new picture for the referenced ENTRY control

Attribute Property Parameters

Many attributes take no parameter--they are either present or absent. Therefore, their
corresponding runtime properties simply toggle the attribute on or off. Assigning an empty string
('') or zero (0) turns them off. Assigning '1' or 1 turns them on. Typically, the standard equates for
TRUE and FALSE are used for this purpose. Querying any of these properties returns a blank
string when the attribute is not active for the window, report, or control. Examples of these types
of attribute properties are: PROP:ABOVE, PROP:ABSOLUTE, and PROP:ALONE.

Example:
?MyControl{PROP:DISABLE} = TRUE !disables the referenced control

Many attributes take a single parameter whose presence specifies both the presence of the
attribute and its value. Assigning an empty string ('') or zero (0) turns them off. Assigning any
other valid value turns them on. Examples of these types of attribute properties are PROP:TIMER
and PROP:DROP.

Example:
MyWindow{PROP:TIMER} = 100 !set the window's timer to 1 second

Language Reference Manual 390

Arrayed Properties

A number of attribute properties are actually arrays which either contain multiple values (such as
PROP:ALRT, which may contain up to 255 separately alerted keycodes) or which may be
referenced as arrays to directly address their multiple parameters instead of using separately
declared equates for each of the individual parameters (like PROP:AT, whose parameters may
be addressed either as {PROP:AT,n} or as the separately declared equates for each of the
individual parameters: PROP:Xpos, PROP:Ypos, PROP:Width, and PROP:Height).

Example:
CheckField STRING(1)

Screen WINDOW
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name),REQ
CHECK('True or False'),USE(CheckField)
IMAGE('SomePic.BMP'),USE(?Image)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END

CODE
OPEN(Screen)
Screen{PROP:AT,1} = 0 !Position window to top left corner
Screen{PROP:AT,2} = 0
Screen{PROP:GRAY} = 1 !Give window 3D look
Screen{PROP:STATUS,1} = -1 !Create status bar with two sections
Screen{PROP:STATUS,2} = 180
Screen{PROP:STATUS,3} = 0 !Terminate staus bar array
Screen{PROP:StatusText,2} = FORMAT(TODAY(),@D2) !Put date in status bar section 2:
?CtlCode{PROP:ALRT,1} = F10Key !Alert F10 on Ctl:Code entry control
?CtlCode{PROP:Text} = '@N4' !Change entry picture token
?Image{PROP:Text} = 'MyPic.BMP' !Change image control filename
?OkButton{PROP:DEFAULT} = '1' !Put DEFAULT attribute on OK button

?MyButton{PROP:ICON} = 'C:\Windows\MORICONS.DLL[10]'
!Display 11th icon in MORICONS.DLL (zero-based)

?MyButton{PROP:ICON} = 'C:\Windows\MORICONS.DLL[0]'
!Display first icon in MORICONS.DLL (zero-based)

?CheckField{PROP:TrueValue} = 'T' !Checked/unchecked values for CHECK co
?CheckField{PROP:FalseValue} = 'F'
ACCEPT
END

9 – Window and Report Attributes 391

Window and Report Attributes

ABSOLUTE (set fixed-position printing)

 ABSOLUTE

The ABSOLUTE attribute (PROP:ABSOLUTE) ensures that the DETAIL, or group HEADER or
FOOTER structure (contained within a BREAK structure), always prints at a fixed position on the
page. When ABSOLUTE is present, the position specified by the x and y parameters of the
structure's AT attribute is relative to the top left corner of the page. ABSOLUTE has no effect on
following structures printed without the ABSOLUTE attribute.

Example:
CustRpt REPORT,AT(1000,2000,6500,9000),THOUS

HEADER
!structure elements
END

CDetail1 DETAIL,AT(0,0,6500,1000)
!structure elements
END

CDetail2 DETAIL,AT(1000,1000,6500,1000),ABSOLUTE !fixed position detail
!structure elements
END

END

Language Reference Manual 392

ALONE (set to print without page header, footer, or form)

 ALONE

The ALONE attribute (PROP:ALONE) specifies that the DETAIL, or group HEADER or FOOTER
structure (contained within a BREAK structure), is to print on the page without any FORM, or
page HEADER or FOOTER (not within a BREAK structure). The normal use is for report title and
grand total pages.

Example:
CustRpt REPORT
TitlePage DETAIL,ALONE !Title page detail structure

!structure elements
END

CustDetail DETAIL
!structure elements
END
FOOTER
!structure elements
END
END

9 – Window and Report Attributes 393

ALRT (set window "hot" keys)

 ALRT(keycode)

ALRT Specifies a "hot" key active while the APPLICATION, WINDOW, or control on
which it is placed has focus.

keycode A numeric constant keycode or keycode EQUATE.

The ALRT attribute (PROP:ALRT) specifies a "hot" key active while the APPLICATION,
WINDOW, or control on which it is placed has focus.

When the user presses an ALRT "hot" key, two events (field-independent if the ALRT is on an
APPLICATION or WINDOW, field-specific if the ALRT is on a control), EVENT:PreAlertKey and
EVENT:AlertKey, are generated (in that order). If the code does not execute a CYCLE statement
when processing EVENT:PreAlertKey, you "shortstop" the library's default action on the alerted
keypress. If the code does execute a CYCLE statement when processing EVENT:PreAlertKey,
the library performs its default action for the alerted keypress. In either case, EVENT:AlertKey is
generated following EVENT:PreAlertKey. When EVENT:AlertKey is generated, the USE variable
of the control with input focus is not automatically updated (use UPDATE if this is required).

You may have multiple ALRT attributes on one APPLICATION, WINDOW, or control (up to 255).
The ALERT statement and the ALRT attribute of a window or control are completely separate.
This means that clearing ALERT keys has no effect on any keys alerted by ALRT attributes.

PROP:ALRT is an array, containing up to 255 keycodes. The array element number actually used
is internally assigned to the first free array element if the specified element number is larger than
the current number of assigned keycodes. For example, assuming there are no keys alerted at
all, if you specify assigning to element number 255, it is actually assigned to element number 1.
Subsequently assigning another keycode to element number 255 (still free), it is actually assigned
to element number 2. Expicitly assigning a keycode to element number 1, however, overwrites
any other keycode already assigned to element number 1.

Language Reference Manual 394

Example:

WinOne WINDOW,AT(0,0,160,400)
ENTRY,AT(6,40),USE(SomeVar1),ALRT(MouseLeft) !Mouse click alerted for control
ENTRY,AT(60,40),USE(SomeVar2),ALRT(F10Key) !F10 alerted for control

END
CODE
OPEN(WinOne)
ACCEPT
CASE FIELD()
OF ?SomeVar1
CASE EVENT()
OF EVENT:PreAlertKey !Pre-check alert events
CYCLE !Allow standard NouseLeft action to process

OF EVENT:AlertKey !Alert processing
DO ClickRoutine

END
OF ?SomeVar2
CASE EVENT()
OF EVENT:AlertKey !Alert processing
DO F10Routine

END
END

END

9 – Window and Report Attributes 395

ANGLE (set control display or print angle)

 ANGLE(size)

ANGLE Defines the orientation of a STRING control.

size An integer constant or constant expression that specifies the amount of rotation,
in tenths of degrees. If positive, the angle is measured counter-clockwise from
the report's horizontal orientation. Valid values are between 3600 and -3600.

The ANGLE attribute (PROP:ANGLE) specifies displaying or printing the STRING control at a
specified angle measured counter-clockwise from the horizontal of the window or horizontal
orientation of the report (either Portrait or Landscape). This allows you to display or print text at
any angle in addition to the standard horizontal. The FONT for the STRING control must be a
TrueType font.

Example:
WinOne WINDOW,AT(0,0,160,400),FONT('Arial')

!Display Horizontal text
STRING('String Constant'),AT(6,40),USE(?String1)
!Display Vertical text
STRING('String Constant'),AT(6,40),USE(?String2),ANGLE(900)
!Display upside-down text
STRING('String Constant'),AT(6,40),USE(?String3),ANGLE(1800)

END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS,FONT('Arial',10)
Detail DETAIL,AT(0,0,6500,1000)

!Print Horizontal text
STRING('String Constant'),AT(500,500,1500,500)
!Print Vertical text
STRING('String Constant'),AT(500,500,1500,500),ANGLE(900)
!Print upside-down text
STRING('String Constant'),AT(500,500,1500,500),ANGLE(1800)
END
END

Language Reference Manual 396

AT (set position and size)

 AT([x] [,y] [,width] [,height])

AT Defines the position and size of the structure or control on which it is placed.

x An integer constant or constant expression that specifies the horizontal position
of the top left corner (PROP:Xpos, equivalent to {PROP:At,1}). If omitted, the
runtime library provides a default value.

y An integer constant or constant expression that specifies the vertical position of
the top left corner (PROP:Ypos, equivalent to {PROP:At,2}). If omitted, the
runtime library provides a default value.

width An integer constant or constant expression that specifies the width (PROP:Width,
equivalent to {PROP:At,3}). If omitted, the runtime library provides a default
value.

height An integer constant or constant expression that specifies the height
(PROP:Height, equivalent to {PROP:At,4}). If omitted, the runtime library
provides a default value.

The AT attribute (PROP:AT) defines the position and size of the structure or control on which it is
placed. The x,y position is relative and dependent upon the statement on which the AT attribute is
placed.

The values contained in the x, y, width, and height parameters are measured in dialog units for an
APPLICATION or WINDOW. The x, y, width, and height parameters on a REPORT without the
THOUS, MM, or POINTS attribute are also measured in dialog units.

Dialog units are defined as one-quarter the average character width by one-eighth the average
character height. The actual size of a dialog unit is dependent upon the size of the default font for
the window or report. This measurement is based on the font specified in the FONT attribute of
the window or report, or the system default font specified by Windows (if there is no FONT
attribute on the window or report).

Window Usage

The x and y parameters are relative to the top left corner of the video screen when the AT
attribute is on an APPLICATION structure, or a WINDOW without the MDI attribute that is opened
before an APPLICATION structure is opened by the program.

The x and y parameters are relative to the top left corner of the APPLICATION's client area when
the AT attribute is placed on a WINDOW with the MDI attribute, or a WINDOW without the MDI
attribute opened after an APPLICATION structure has been opened.

9 – Window and Report Attributes 397

The width and height parameters specify the size of the "client area" or "workspace" of an
APPLICATION. This is the area below the MENUBAR and above the status bar which defines the
area in which the TOOLBAR is placed and MDI "child" windows are opened. On a WINDOW,
they specify the size of the "workspace" which may contain control fields.

Window Control Usage

The x and y parameters are relative to the top left corner of the APPLICATION or WINDOW's
client area.

REPORT Structure Usage

The AT attribute on a REPORT structure defines the position and size of the area of the page
devoted to printing report detail. This is the area in which all DETAIL structures and any group
HEADER and FOOTER structures contained within BREAK structures will print.

Print Structure Usage

The AT attribute on print structures performs two different functions, depending upon the
structure on which it is placed.

When placed on a FORM, or page HEADER or FOOTER (not within a BREAK structure), the AT
attribute defines the position and size on the page at which the structure prints. The position
specified by the x and y parameters is relative to the top left corner of the page.

When placed on a DETAIL, or group HEADER or FOOTER (contained within a BREAK
structure), the print structure prints according to the following rules (unless the ABSOLUTE
attribute is also present):

• The width and height parameters of the AT attribute specify the minimum print size of the
structure.

• The structure actually prints at the next available position within the detail print area
(specified by the REPORT's AT attribute).

• The position specified by the x and y parameters of the structure's AT attribute is an
offset from the next available print position within the detail print area.

• The first print structure on the page prints at the top left corner of the detail print area (at
the offset specified by its AT attribute).

• Next and subsequent print structures print relative to the ending position of the previous
print structure:

• If there is room to print the next structure beside the previous structure, it
prints there.

• If not, it prints below the previous.

Language Reference Manual 398

REPORT Control Usage

The x and y parameters are relative to the top left corner of the print structure containing the control.

Example:
WinOne WINDOW,AT(0,0,380,200),MDI !top left corner, relative to app frame

END
WinTwo WINDOW,AT(0,0,380,200) !Top left corner, relative to video screen

END
!Measurement in dialog units
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(8,40,80,8) !Approx. 2 characters in, 5 down, 20 wide, 1 high
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS !AT specifies detail print area
Detail DETAIL,AT(0,0,6500,1000) !AT specifies band size and

!relative position offset from
!last printed detail

STRING('String Constant'),AT(500,500,1500,500)
!AT specifies control size and
!offset within the detail band

END
END

CustRpt REPORT,AT(1000,2000,6500,7000),THOUS !1" margins all around
HEADER,AT(1000,1000,6500,1000) !Page relative position
!structure elements !1" band across top of page
END

CustD1 DETAIL,AT(0,0,6500,1000) !Detail relative position
!structure elements !1" band across page
END

CustD2 DETAIL,ABSOLUTE,AT(1000,8000,6500,1000) !Page relative position
!structure elements !1" band near page bottom
END
FOOTER,AT(1000,9000,6500,1000) !Page relative position
!structure elements !1" band across page bottom
END
END

CustRpt1 REPORT,AT(1000,1000,6500,9000),THOUS !1" margins all around for
! detail area on 8.5" x 11"

!report declarations
END

CustRpt2 REPORT,AT(72,72,468,648),POINTS !1" margins all around for
!detail area on 8.5" x 11"

!report declarations
END

See Also: SETPOSITION, GETPOSITION

9 – Window and Report Attributes 399

AUTO (set USE variable automatic re-display)

 AUTO

The AUTO attribute (PROP:AUTO) specifies all window and toolbar controls' USE variables re-
display on screen each time through the ACCEPT loop. This incurs some overhead, but ensures
the data displayed is current, without requiring explicit DISPLAY statements.

Example:

WinOne WINDOW,AT(,,380,200),MDI,CENTER,AUTO !All controls values always display
!controls

END
CODE

!ACCEPT automatically re-displays changed USE variables
ACCEPT
END

Language Reference Manual 400

AUTOSIZE (set OLE object resizing)

 AUTOSIZE

The AUTOSIZE attribute (PROP:AUTOSIZE, write-only) specifies the OLE object automatically
resizes itself when the OLE container control's AT attribute parameters change at runtime using
property syntax to change the values of PROP:AT.

9 – Window and Report Attributes 401

AVE (set report total average)

 AVE([variable])

AVE Calculates the average (arithmetic mean) of the STRING controls' USE variable
is printed.

variable The label of a numeric variable to receive the intermediate values calculated for
the AVE. This allows you to create totals on other totals. The value in the variable
is internally updated by the print engine, so it is only useful for use within the
REPORT structure.

The AVE attribute (PROP:AVE) specifies printing the average (arithmetic mean) of the STRING
controls' USE variable. Unless the TALLY attribute is present, the result is calculated as follows:

• An AVE field in a DETAIL structure is calculated each time the DETAIL structure
containing the control PRINTs.

• An AVE field in a group FOOTER structure is calculated each time any DETAIL structure
in the BREAK structure containing the control PRINTs.

• An AVE field in a page FOOTER structure is calculated each time any DETAIL structure
in any BREAK structure PRINTs.

• An AVE field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The average is reset only if the RESET or PAGE attribute is also specified. The STRING control
using this attribute would usually be placed in a group or page FOOTER.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(LocalVar),USE(?BreakOne)
Break2 BREAK(Pre:Key1),USE(?BreakTwo)
Detail DETAIL,AT(0,0,6500,1000),USE(?DetailOne)

STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Group Average:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(Pre:F1),AVE(LocalVar),RESET(Break2)
END
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Grand Average:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(LocalVar),AVE,TALLY(?BreakTwo)
END
END
END

Language Reference Manual 402

BEVEL (set 3-D effect border)

 BEVEL(outer [,inner] [,style])

BEVEL Specifies a 3-D effect border on a control.

outer An integer constant or constant expression that specifies the width of the outer
edge of the bevel (PROP:BevelOuter, equivalent to {PROP:Bevel,1}). If negative,
the outer edge appears to be lowered; if positive, the outer edge appears to be
raised.

inner An integer constant or constant expression that specifies the width of the inner
edge of the bevel (PROP:BevelInner, equivalent to {PROP:Bevel,2}). If negative,
the inner edge appears to be lowered; if positive, the inner edge appears to be
raised. If omitted, there is no inner edge to the border.

style An integer constant or constant expression that specifies fine control of the bevel,
overriding the signs of the outer and inner parameters (PROP:BevelStyle,
equivalent to {PROP:Bevel,3}).

The BEVEL attribute (PROP:BEVEL) of a PANEL, OPTION, GROUP, or REGION control
specifies a 3-D effect border. The signs of the outer and inner parameters determine whether the
control appears to be raised or lowered. The style parameter allows fine control of the bevel. This
parameter is a bitmap with the bits apportioned for each edge as follows:

Bits: 15 - 12 | 11 - 08 | 07 - 04 | 03 - 00
Edge: left | top | right | bottom

Each of these four-bit nibbles is further divided into two two-bit sections that govern the
appearance of the inner and outer parts of the edge. The low order two bits of each nibble defines
the outer part, while the high order bits define the inner:

Binary: 00b | 01b | 10b | 11b
Result: no edge | raised | lowered | gray

Combining these into nibbles creates the definition of one edge of the bevel:
0110b = raised inner, lowered outer
1001b = lowered inner, raised outer

Example:

Win1 WINDOW,AT(0,0,160,400)
PANEL,AT(25,15,50,50),USE(?Panel1),BEVEL(5,-5) !Raised outer, lowered inner
PANEL,AT(0,0,,),USE(?Panel2),FULL,BEVEL(2,2,1111010110101001b)

!left = all gray
!top = inner raised, outer raised
!right = inner lowered, outer lowered
!bottom = inner lowered, outer raised

REGION,AT(0,80,5,),USE(?ResizeBar),FULL,IMM,BEVEL(2,2,0101000010100000b)
!A vertical resize bar

END

9 – Window and Report Attributes 403

BOXED (set controls group border)

 BOXED

The BOXED attribute (PROP:BOXED) specifies a single-track border around a TEXT control, or a
GROUP or OPTION structure. The text parameter appears in a gap at the top of the border box.
If BOXED is omitted, the text parameter is not printed or displayed on screen.

Language Reference Manual 404

CAP, UPR (set case)

 CAP

 UPR

The CAP and UPR attributes specify the automatic case of text entered into ENTRY or TEXT
controls when the MASK attribute is on the window or of text printed in a TEXT control.

The UPR attribute (PROP:UPR) specifies all upper case.

The CAP attribute (PROP:CAP) specifies "Proper Name Capitalization," where the first letter of
each word is capitalized and all other letters are lower case. The user can override this default
behavior by pressing the SHIFT key to allow an upper case letter in the middle of a name
(allowing for names such as, "McDowell") or SHIFT while CAPS-LOCK is on, forcing a lower case
first letter (allowing for names such as, "von Richtofen").

9 – Window and Report Attributes 405

CENTER (set centered window position)

 CENTER

The CENTER attribute (PROP:CENTER) indicates that the window's default position is centered.
A WINDOW structure with the MDI attribute is centered on the APPLICATION. An APPLICATION
structure is centered on the screen. A non-MDI WINDOW is centered on its parent (the window
currently with focus when the non-MDI WINDOW is opened).

This attribute has no meaning unless at least one parameter of the AT attribute is omitted. This
means that the CENTER attribute provides a default value for any omitted AT parameter.

Example:

WinOne WINDOW,AT(,,380,200),MDI,CENTER !Window centered relative to application frame
END

WinTwo WINDOW,AT(,,380,200),CENTER !Window centered relative to its parent:
END

Language Reference Manual 406

CENTERED (set centered image)

 CENTERED

The CENTERED attribute (PROP:CENTERED) indicates an image displayed at its default size
and centered in its display area:

• On an IMAGE control, the image is centered in the area specified by the AT
attribute.

• On a TOOLBAR with the WALLPAPER attribute, the toolbar's background image
is centered in the toolbar.

• On an APPLICATION or WINDOW with the WALLPAPER attribute, the window's
background image is centered in the client area of the window.

Example:

MDIChild WINDOW('Child One'),MDI,SYSTEM,MAX
MENUBAR
MENU('Edit'),USE(?EditMenu)
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)
END
END
TOOLBAR,USE(?Toolbar),WALLPAPER('MyWall.GIF'),CENTERED
BUTTON('Cut'),USE(?CutButton),ICON(ICON:Cut),STD(STD:Cut),FLAT
BUTTON('Copy'),USE(?CopyButton),ICON(ICON:Copy),STD(STD:Copy),FLAT
BUTTON('Paste'),USE(?PasteButton),ICON(ICON:Paste),STD(STD:Paste),FLAT
END
END

WinOne WINDOW,AT(,,380,200),MDI,WALLPAPER('MyWall.GIF'),CENTERED
END

WinOne WINDOW,AT(,,380,200),MDI
IMAGE('MyWall.GIF'),AT(0,0,380,200),CENTERED

END

See Also:

WALLPAPER

TILED

9 – Window and Report Attributes 407

CHECK (set on/off ITEM)

 CHECK

The CHECK attribute (PROP:CHECK) specifies an ITEM that may be either ON or OFF. When
ON, a check appears to the left of the menu selection and the USE variable receives the value
one (1). When OFF, the check to the left of the menu selection disappears and the USE variable
receives the value zero (0).

Language Reference Manual 408

CLIP (set OLE object clipping)

 CLIP

The CLIP attribute (PROP:CLIP, write-only) specifies the OLE object only displays what fits into
the size of the OLE container control's AT attribute. If the object is larger than the OLE container
control, only the top left corner displays.

9 – Window and Report Attributes 409

CNT (set total count)

 CNT([variable])

CNT Calculates the number of times DETAIL structures have been printed.

variable The label of a numeric variable to receive the intermediate values calculated for
the CNT. This allows you to create totals on other totals. The value in the
variable is internally updated by the print engine, so it is only useful for use within
the REPORT structure.

The CNT attribute (PROP:CNT) specifies an automatic count of the number of times DETAIL
structures have been printed. Unless the TALLY attribute is present, the result is calculated as
follows:

• A CNT field in a DETAIL structure increments each time the DETAIL structure containing
the control PRINTs. This provides a "running" count.

• A CNT field in a group FOOTER structure increments each time any DETAIL structure in
the BREAK structure containing the control PRINTs. This provides a total of the number
of DETAIL structures printed in the group.

• A CNT field in a page FOOTER structure increments each time any DETAIL structure in
any BREAK structure PRINTs. This provides a total of the number of DETAIL structures
printed on the page (or report).

• A CNT field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The CNT is reset only if the RESET or PAGE attribute is also specified.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(LocalVar),USE(?BreakOne)
Break2 BREAK(Pre:Key1),USE(?BreakTwo)
Detail DETAIL,AT(0,0,6500,1000),USE(?DetailOne)

STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Group Count:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(Pre:F1),CNT(LocalVar),RESET(Break2)
END
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Grand Count:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(LocalVar),CNT,TALLY(?BreakTwo)
END
END
END

Language Reference Manual 410

COLOR (set color)

 COLOR(color [, selected fore] [, selected back])

COLOR Specifies display or print color.

color Specifies the background color (PROP:Background or PROP:FillColor,
equivalent to {PROP:Color,1}). Foreground color is specified in the FONT
attribute.

selected fore Specifies the default foreground color for the selected text on a control that can
receive focus (PROP:SelectedColor, equivalent to {PROP:Color,2}). Not valid in
a REPORT.

selected back Specifies the default background color for the selected text on a control that can
receive focus (PROP:SelectedFillColor, equivalent to {PROP:Color,3}). Not valid
in a REPORT.

The COLOR attribute (PROP:COLOR) specifies the default background and selected foreground
and background colors.

The color values in each of the three parameters are constants which contain the red, green, and
blue components to create the color in the three low-order bytes of a LONG value (bytes 0, 1, and
2: Red = 000000FFh, Green = 0000FF00h, and Blue = 00FF0000h), or EQUATEs for a standard
Windows color value (which are all negative values). EQUATEs for Windows' standard colors are
contained in the EQUATES.CLW file. Each of the runtime properties returns COLOR:None if the
associated parameter is absent.

Windows automatically finds the closest match to the specified color value for the hardware on
which the program is run. Windows standard colors may be reconfigured by the user in the
Windows Control Panel. Any control using a Windows standard color is automatically repainted
with the new color when this occurs.

WINDOW and TOOLBAR Usage

On a WINDOW or TOOLBAR, the COLOR attribute specifies the background display color of the
WINDOW or TOOLBAR and the default background and selected foreground and background
colors for all controls in the WINDOW or TOOLBAR without their own COLOR attribute.

Window Control Usage

The COLOR attribute specifies the display color of a LINE control. On a BOX, ELLIPSE, or
REGION control, the color parameter specifies the color used for the control's border. On all other
controls, the color parameter specifies the background control color, overriding the user's
standard Windows color scheme for that control type.

9 – Window and Report Attributes 411

For most of those controls that can receive focus, the selected fore and selected back parameters
specify the foreground and background colors of the selected text or item.

Report Usage

On a REPORT statement, the COLOR attribute specifies the background print color of the
REPORT and the default background color for all DETAIL, HEADER, FOOTER, or FORM in the
REPORT without a COLOR attribute.

The COLOR attribute specifies the background print color of the DETAIL, HEADER, FOOTER, or
FORM on which it is placed, and the default background color for all controls in the DETAIL,
HEADER, FOOTER, or FORM without a COLOR attribute.

The COLOR attribute specifies the print color of a LINE control, specifies the border color of a
BOX or ELLIPSE control, or the background color of any other control.

Example:

WinOne WINDOW,AT(0,0,160,400),COLOR(00FF0000h,0000FF00h,000000FFh)
!Blue background, Green selected foreground, Red selected background
TOOLBAR,COLOR(00FF0000h,0000FF00h,000000FFh)
!Blue background, Green selected foreground, Red selected background
BOX,AT(20,20,20,20),COLOR(COLOR:ACTIVEBORDER) !Windows' active border color
END
BOX,AT(100,100,20,20),COLOR(00FF0000h) !Blue
BOX,AT(140,140,20,20),COLOR(0000FF00h) !Green
BOX,AT(180,180,20,20),COLOR(000000FFh) !Red

END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS,COLOR(00FF0000h) !Blue background
CustDetail DETAIL,AT(0,0,6500,1000)

ELLIPSE,AT(60,60,200,200),COLOR(COLOR:ACTIVEBORDER) !Color EQUATE
BOX,AT(360,60,200,200),COLOR(00FF0000h) !Pure Red
END
END

RptOne REPORT,AT(0,0,160,400),COLOR(00FF0000h) !Blue default background
HEADER,COLOR(0000FF00h) !Green page header background
!structure elements
END

CustD1 DETAIL !uses the default background color
!structure elements
END
FOOTER,COLOR(000000FFh) !Red page footer background
!structure elements
END

END

Language Reference Manual 412

COLUMN (set list box highlight bar)

 COLUMN

The COLUMN attribute (PROP:COLUMN) specifies a field-by-field highlight bar on a LIST or
COMBO control with multiple display columns. PROP:COLUMN returns zero (0) if off, else it
returns the currently highlighted column number.

9 – Window and Report Attributes 413

EXTEND (set document formatting)

 EXTEND([attributelist [,attributelist...]])

EXTEND Specifies the attributes needed for a particular document type.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes as described below:

type A string constant that specifies which output format receives the attribute list

attribute A string constant containing the valid formatting required for the designated
document type.

The EXTEND attribute (PROP:EXTEND) specifies a valid string of attributes that are assigned to
a designated REPORT control for a given document type. Current possible values for type are
HTML, XML, TXT, PDF, or ALL.

The contents of attribute are dependant on the target type. If a vertical bar (|) or parentheses (
")") is needed to appear in the attribute, then the attribute needs to be surrounded by single
quotes (' ').

Each attributelist may designate an optional document type, and associated attributes for that
document type, using the following syntax:

 [type](attribute [|attribute...])

Example:
IF pAttribute = TargetAttr:HIDE AND pReportGeneratorType=RepGen:ALL THEN

SELF.R $ pReportControl{PROP:width}=0
SELF.R $ pReportControl{PROP:height}=0
RETURN

END
lAttribute = SELF.R$pReportControl{PROP:Extend}

Language Reference Manual 414

COMPATIBILITY (set OLE control compatibility)

 COMPATIBILITY(mode)

COMPATIBILITY
Specifies OLE control compatibility setting.

mode An integer constant for the compatibility setting.

The COMPATIBILITY attribute (PROP:COMPATIBILITY, write-only) specifies a compatibility
mode for certain OLE or .OCX objects that require it. The mode should in general be zero (0),
however some OLE objects (like Windows bitmap editor) do not work unless it is set to one (1).

Example:

WinOne WINDOW,AT(0,0,200,200)
OLE,AT(10,10,160,100),USE(?OLEObject),CREATE('Excel.Sheet.5'),COMPATIBILITY(0)
END

END

9 – Window and Report Attributes 415

CREATE (create OLE control object)

 CREATE(server [, object])

CREATE Specifies creating a new object for the OLE control.

server A string constant containing the name of an OLE Server application, as it
appears in the operating system's registry.

object A string constant containing the name of the OLE Compound Storage file and the
object within it to open.

The CREATE attribute (PROP:CREATE, write-only) specifies the OLE control creates a new OLE
or .OCX object. The server value is the object name as it appears in the Operating System's
Registry Settings (in Win95, this information is available in REGEDIT.EXE under
HKEY_CLASSES_ROOT, or in the Microsoft System Information program that comes with
Microsoft Office--MSINFO32.EXE).

When the object parameter is present, CREATE operates just as the OPEN attribute does,
opening the saved object for the OLE control from an OLE Compound Storage file (and ignoring
the server parameter). When the object is opened, the saved version of the container properties
are re-loaded, so properties do not need to be specified on an object opened. The object
parameter syntax must take the form: Filename\!ObjectName.

Example:

WinOne WINDOW,AT(0,0,200,200)
OLE,AT(10,10,160,100),USE(?OLEObject),CREATE('Excel.Sheet.5')
END

END

Language Reference Manual 416

CURSOR (set mouse cursor type)

 CURSOR(file)

CURSOR Specifies a mouse cursor to display.

file A string constant containing the name of a .CUR file, or an EQUATE naming a
Windows-standard mouse cursor. The .CUR file is linked into the .EXE as a
resource.

The CURSOR attribute (PROP:CURSOR) specifies a mouse cursor to be displayed when the
mouse is positioned over the APPLICATION, WINDOW, TOOLBAR, or control. This cursor is
inherited by the controls in the APPLICATION, WINDOW, or TOOLBAR unless overridden.
Windows 3.1 only supports monochrome cursors (326-byte .CUR files).

EQUATE statements for the Windows-standard mouse cursors are contained in the
EQUATES.CLW file. The following list is a representative sample of these (see EQUATES.CLW
for the complete list):

 CURSOR:None No mouse cursor
 CURSOR:Arrow Normal windows arrow cursor
 CURSOR:IBeam Capital "I" like a steel I-beam
 CURSOR:Wait Hourglass
 CURSOR:Cross Large plus sign
 CURSOR:UpArrow Vertical arrow
 CURSOR:Size Four-headed arrow
 CURSOR:Icon Box within a box
 CURSOR:SizeNWSE Double-headed arrow slanting left
 CURSOR:SizeNESW Double-headed arrow slanting right
 CURSOR:SizeWE Double-headed horizontal arrow
 CURSOR:SizeNS Double-headed vertical arrow
 CURSOR:DragWE Double-headed horizontal arrow

Example:

!Window with custom cursor
WinTwo WINDOW,CURSOR('CUSTOM.CUR')

TOOLBAR,CURSOR('CURSOR:Cross') !Toolbar with large plus sign cursor
BUTTON('Cut'),USE(?CutButton),STD(STD:Cut)
BUTTON('Copy'),USE(?CopyButton),STD(STD:Copy)
BUTTON('Paste'),USE(?PasteButton),STD(STD:Paste)
END
REGION,AT(20,20,20,20),CURSOR(CURSOR:IBeam) !Region with I-beam cursor
REGION,AT(100,100,20,20)

END

9 – Window and Report Attributes 417

DEFAULT (set enter key button)

 DEFAULT

The DEFAULT attribute (PROP:DEFAULT) specifies a BUTTON that is automatically pressed
when the user presses the ENTER key. Only one active BUTTON on a window should have this
attribute.

Language Reference Manual 418

DELAY (set repeat button delay)

 DELAY(time)

DELAY Specifies the delay between first and second event generation.

time An integer constant containing the time delay to set, in hundredths of a second.

The DELAY attribute (PROP:DELAY) specifies the delay between first and second event
generation for automatically repeating buttons. For a BUTTON control with the IMM attribute, this
is the time between the first and second EVENT:Accepted. For a SPIN control, this is the time
between the first and second EVENT:NewSelection generated by the spin buttons.

The purpose of the DELAY attribute is to change the delay time from its default value so that
users do not inadvertantly begin repeating the action when that is not their intention. Assigning a
zero to PROP:DELAY resets the default setting, any other value sets the repeat delay for the
control.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

BUTTON('Press Me'),AT(10,10,40,20),USE(?PressMe),IMM,DELAY(100) !1 second
SPIN(@n3),AT(60,10,40,10),USE(SpinVar),RANGE(0,999),DELAY(100) !1 second

END

CODE
OPEN(MDIChild)
?PressMe{PROP:Delay} = 5 0 !Reset delay to 1/2 second
?SpinVar{PROP:Delay} = 5 0 !Reset delay to 1/2 second
?PressMe{PROP:Repeat} = 5 !Set repeat to 5 hundredths of a second
?SpinVar{PROP:Repeat} = 5 !Set repeat to 5 hundredths of a second

See Also:

IMM

REPEAT

9 – Window and Report Attributes 419

DISABLE (set control dimmed at open)

 DISABLE

The DISABLE attribute (PROP:Disable) specifies a control that is disabled when the WINDOW or
APPLICATION is opened. The disabled control may be activated with the ENABLE statement.
PROP:Disable returns a (1) if the control is DISABLEd and a (0) if ENABLEd.

Language Reference Manual 420

DOCK (set dockable toolbox window)

 DOCK(positions)

DOCK Specifies a dockable TOOLBOX.

positions A bitmap specifying the edges available for docking.

The DOCK attribute (PROP:DOCK) specifies a WINDOW with the TOOLBOX attribute which may
be docked to an edge of the application frame. The following EQUATEs for standard positions
values are contained in EQUATES.CLW:

DOCK:Left EQUATE(1)
DOCK:Top EQUATE(2)
DOCK:Right EQUATE(4)
DOCK:Bottom EQUATE(8)
DOCK:Float EQUATE(16)
DOCK:All EQUATE(31)

Example:

Win1 WINDOW('Tools'),TOOLBOX,DOCK(DOCK:Left+DOCK:Right) !Dockable left and right only
BUTTON('Date'),USE(?Button1)
BUTTON('Time'),USE(?Button2)

END

See Also:

DOCKED

TOOLBOX

9 – Window and Report Attributes 421

DOCKED (set dockable toolbox window docked at open)

 DOCKED(position)

DOCKED Specifies a dockable TOOLBOX docked at open.

position A bitmap specifying the edge to which it is docked.

The DOCKED attribute (PROP:DOCKED) specifies a WINDOW with the DOCK attribute is
docked when the window is opened. The following EQUATEs for standard position values are
contained in EQUATES.CLW:

DOCK:Left EQUATE(1)
DOCK:Top EQUATE(2)
DOCK:Right EQUATE(4)
DOCK:Bottom EQUATE(8)
DOCK:Float EQUATE(16)
DOCK:All EQUATE(31)

Example:

Win1 WINDOW('Tools'),TOOLBOX,DOCK(DOCK:All),DOCKED(DOCK:Top) !Dockable anywhere
BUTTON('Date'),USE(?Button1) !Docked at top on open
BUTTON('Time'),USE(?Button2)

END

See Also:

DOCK

TOOLBOX

Language Reference Manual 422

DOCUMENT (create OLE control object from file)

 DOCUMENT(filename)

DOCUMENT Specifies creating an object for the OLE control from a data file specific to an
OLE server application.

filename A string constant containing the name of the file.

The DOCUMENT attribute (PROP:DOCUMENT, write-only) specifies creating an object for the
OLE control from a data file specific to an OLE server application. The filename parameter syntax
must be a fully-qualified pathname, unless the file exists in the same directory as the OLE
Controller application.

Example:

WinOne WINDOW,AT(0,0,200,200)
OLE,AT(10,10,160,100),USE(?OLEObject),DOCUMENT('Book1.XLS') !Excel Spreadsheet
MENUBAR
MENU('&Clarion App')
ITEM('&Deactivate Object'),USE(?DeactOLE)
END
END
END

END

9 – Window and Report Attributes 423

DOUBLE, NOFRAME, RESIZE (set window border)

 DOUBLE

 NOFRAME

 RESIZE

The DOUBLE, NOFRAME, and RESIZE attributes specify a WINDOW or APPLICATION border
frame style other than the default single-width border. The DOUBLE attribute (PROP:DOUBLE)
places a double-width border around the window and the NOFRAME attribute
(PROP:NOFRAME) places no border on the window. A window with these frame types may not
be resized.

The RESIZE attribute (PROP:RESIZE) places a thick border frame around the window. This is
the only type that allows the user to dynamically resize the window. RESIZE is ignored on any
WINDOW with the MODAL attribute.

The RESIZE frame type is normally used on APPLICATION structures and WINDOW structures
used as document windows, not dialog boxes. NOFRAME is usually used on "hidden" windows
used only to activate an ACCEPT loop. DOUBLE is a common dialog box frame type.

Example:

!A Window with a single-width border:
Win1 WINDOW

END

!A resizable Window:
Win2 WINDOW,RESIZE

END

!A Window with a double-width border:
Win3 WINDOW,DOUBLE

END

!A Window without a border:
Win4 WINDOW,NOFRAME

END

Language Reference Manual 424

DRAGID (set drag-and-drop host signatures)

 DRAGID(signature [, signature])

DRAGID Specifies a LIST or REGION control that can serve as a drag-and-drop host.

signature A string constant containing an identifier used to indicate valid drop targets. Any
signature that begins with a tilde (~) indicates that the information can also be
dragged to an external (Clarion) program. A single DRAGID may contain up to 16
signatures.

The DRAGID attribute (PROP:DRAGID, an array) specifies a LIST or REGION control that can
serve as a drag-and-drop host. DRAGID works in conjunction with the DROPID attribute. The
DRAGID signature strings (up to 16) define validation keys to match against the signature
parameters of the target control's DROPID. This provides control over where successful drag-
and-drop operations are allowed.

A drag-and-drop operation occurs when the user drags information from a control with the
DRAGID attribute to a control with the DROPID attribute. For a successful drag-and-drop
operation, both controls must have at least one identical signature string in their respective
DRAGID and DROPID attributes.

Example:

WinOne WINDOW,AT(0,0,160,400)
!Allows drags, but not drops:
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID('FromList1')
!Allows drops from List1, but no drags
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID('FromList1')

END
CODE
OPEN(WinOne)
!Drag and Drop Ids can also be assigned at runtime
?List2{PROP:DropID,1) = 'FromList1'
?List1{PROP:DragID,1) = 'FromList1'
!***
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() !check for success
SETDROPID(Que1) !and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() !get dropped info
ADD(Que2) !and add it to the queue

END
END

See Also: DROPID

9 – Window and Report Attributes 425

DROP (set list box behavior)

 DROP(count [, width])

DROP Specifies the list appears only when the user presses an arrow cursor key or
clicks on the drop icon.

count An integer constant that specifies the number of elements displayed.

width An integer constant that specifies the width of the dropped list, in dialog units
(PROP:DropWidth, equivalent to {PROP:DROP,2}).

The DROP attribute (PROP:DROP) specifies that the selection list appears only when the user
presses an arrow cursor key or clicks on the drop icon to the right of the currently selected value
display. Once it drops into view, the list displays count number of elements. If the DROP attribute
is omitted, the LIST or COMBO control always displays the number of data items specified by the
height parameter of the control's AT attribute in the selection list.

The DROP attribute does not work on a WINDOW with the MODAL attribute and should not be
used.

You can assign the name of another icon to the control's PROP:Icon property to override the
default down-arrow drop icon.

Example:

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L7),FROM(Que1),DROP(6)
COMBO(@S8),AT(120,120,20,20),USE(?C7),FROM(Que2),DROP(8)

END
CODE
OPEN(WinOne)
?C7{PROP:Icon} = 'MyDrop.ICO' !Change the drop icon on the COMBO control

Language Reference Manual 426

DROPID (set drag-and-drop target signatures)

 DROPID(signature [, signature])

DROPID Specifies a control that can serve as a drag-and-drop target.

signature A string constant containing an identifier used to indicate valid drag hosts. A
single DROPID may contain up to 16 signatures. Any signature that begins with a
tilde (~) indicates that the information can also be dropped from an external
(Clarion) program. A DROPID signature of '~FILE' indicates the target accepts a
comma-delimited list of filenames dragged from the Windows File Manager.

The DROPID attribute (PROP:DROPID, an array) specifies a control that can serve as a drag-
and-drop target. DROPID works in conjunction with the DRAGID attribute. The DROPID signature
strings (up to 16) define validation keys to match against the signature parameters of the host
control's DRAGID. This provides control over where successful drag-and-drop operations are
allowed.

A drag-and-drop operation occurs when the user drags information from a control with the
DRAGID attribute to a control with the DROPID attribute. For a successful drag-and-drop
operation, both controls must have at least one identical signature string in their respective
DRAGID and DROPID attributes.

Example:

WinOne WINDOW,AT(0,0,160,400)
!Allows drags, but not drops:
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID('FromList1')
!Allows drops from List1 or the Windows File Manager, but no drags:
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID('FromList1','~FILE')

END
CODE
OPEN(WinOne)
!Drag and Drop Ids can also be assigned at runtime
?List2{PROP:DropID,1) = 'FromList1'
?List1{PROP:DragID,1) = 'FromList1'
!***
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() !check for success
SETDROPID(Que1) !and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() !get dropped info
ADD(Que2) !and add it to the queue

END
END

See Also: DRAGID

9 – Window and Report Attributes 427

FILL (set fill color)

 FILL(rgb)

FILL Specifies the fill color of a BOX or ELLIPSE control.

rgb A LONG or ULONG integer constant containing the red, green, and blue
components that create the color in the three low-order bytes (bytes 0, 1, and 2)
or an EQUATE for a standard Windows color value.

The FILL attribute (PROP:FILL) specifies the display or print fill color of a BOX or ELLIPSE
control. If omitted, the control is not filled with color. PROP:FILL returns COLOR:None if the FILL
attribute is absent.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

ELLIPSE,AT(60,60,200,200),FILL(COLOR:ACTIVEBORDER) !Color EQUATE
BOX,AT(360,60,200,200),FILL(00FF0000h) !Pure Red
END
END

WinOne WINDOW,AT(0,0,160,400)
!Windows' active border color
BOX,AT(20,20,20,20),FILL(COLOR:ACTIVEBORDER)
BOX,AT(100,100,20,20),FILL(00FF0000h) !Blue
BOX,AT(140,140,20,20),FILL(0000FF00h) !Green
BOX,AT(180,180,20,20),FILL(000000FFh) !Red

END

Language Reference Manual 428

FIRST, LAST (set MENU or ITEM position)

 FIRST

 LAST

The FIRST and LAST attributes (PROP:FIRST and PROP:LAST) specify menu selection
positioning within the global pulldown menu, when a WINDOW's MENUBAR is merged into the
global menu. The order of priorities is:

1. Global selections with FIRST attribute

2. Local selections with FIRST attribute

3. Global selections without FIRST or LAST attributes

4. Local selections without FIRST or LAST attributes

5. Global selections with LAST attribute

6. Local selections with LAST attribute

9 – Window and Report Attributes 429

FLAT (set flat control)

 FLAT

The FLAT attribute (PROP:FLAT) specifies the BUTTON, CHECK, or RADIO with an ICON
attribute appears flat until the mouse cursor passes over it. This attribute is typically used on
controls placed in a TOOLBAR.

This feature works best if the ICON attribute names a .GIF file to display, as the image will
automatically be "grayed" when the control is not active (the mouse cursor is not directly over the
control).

The FLAT attribute is also supported in LIST and COMBO controls. Activating FLAT for these
controls results in a "flatter" appearance (removes the recessed appearance).

PROP:FLAT is a read/write property.

Example:

WinOne WINDOW,AT(0,0,160,400)
TOOLBAR
CHECK('1'),AT(0,0,20,20),USE(C1),ICON('Check1.GIF'),FLAT
BUTTON,AT(120,0,20,20),USE(?B7),ICON('Button1.GIF')
OPTION('Option 4'),USE(OptVar4)
RADIO('Radio 7'),AT(120,0,20,20),USE(?R7),ICON('Radio1.GIF'),FLAT
RADIO('Radio 8'),AT(140,0,20,20),USE(?R8),ICON('Radio2.GIF'),FLAT
END
END

END

CODE
OPEN(WinOne)

?B7{PROP:FLAT} = TRUE

Language Reference Manual 430

FONT (set default font)

 FONT([typeface] [,size] [,color] [,style] [,charset])

FONT Specifies the default display font for the TOOLBAR .

typeface A string constant containing the name of the font (PROP:FontName, equivalent
to {PROP:Font,1}). If omitted, the system font is used.

size An integer constant containing the size (in points) of the font (PROP:FontSize,
equivalent to {PROP:Font,2}). If omitted, the system default font size is used.

color A LONG integer constant containing the red, green, and blue values for the color
of the font in the low-order three bytes, or an EQUATE for a standard Windows
color value (PROP:FontColor, equivalent to {PROP:Font,3}). If omitted, black is
used.

style An integer constant or constant expression or EQUATE specifying the strike
weight and style of the font (PROP:FontStyle, equivalent to {PROP:Font,4}). If
omitted, the weight is GDI default.

charset An integer constant or constant expression or EQUATE specifying the character
set for the specified FONT (PROP:FontCharSet) or (PROP:Font,5). This provides
support for international character sets. If omitted, the default charater set for the
FONT is used.

The FONT attribute (PROP:FONT) specifies the default display font for controls. When the
property assignment's target is the SYSTEM built-in variable, PROP:FONT sets the font for the
MESSAGE procedure.

The typeface parameter may name any font registered in the Windows system. For a report, the
printer driver must support the specified typeface (this includes the TrueType fonts for most
printers).

The EQUATES.CLW file contains EQUATE values for standard style values. A style in the range
zero (0) to one thousand (1000) specifies the strike weight of the font. You may add to that values
that indicate italic, underline, or strikeout text. The following EQUATES are in EQUATES.CLW:

 FONT:thin EQUATE (100)
 FONT:regular EQUATE (400)
 FONT:bold EQUATE (700)
 FONT:italic EQUATE (01000H)
 FONT:underline EQUATE (02000H)
 FONT:strikeout EQUATE (04000H)

9 – Window and Report Attributes 431

The charset parameter may name any character set registered in the Windows system. For a
report, the printer driver must support the specified character set. The EQUATES.CLW file
contains EQUATE values for standard character set values. The SYSTEM Property, can be used
to set the Character Set propertiy at the system level.

CHARSET:ANSI EQUATE (0)
CHARSET:DEFAULT EQUATE (1)
CHARSET:SYMBOL EQUATE (2)
CHARSET:MAC EQUATE (77)
CHARSET:SHIFTJIS EQUATE (128)
CHARSET:HANGEUL EQUATE (129)
CHARSET:JOHAB EQUATE (130)
CHARSET:GB2312 EQUATE (134)
CHARSET:CHINESEBIG5 EQUATE (136)
CHARSET:GREEK EQUATE (161)
CHARSET:TURKISH EQUATE (162)
CHARSET:HEBREW EQUATE (177)
CHARSET:ARABIC EQUATE (178)
CHARSET:BALTIC EQUATE (186)
CHARSET:CYRILLIC EQUATE (204)
CHARSET:THAI EQUATE (222)
CHARSET:EASTEUROPE EQUATE (238)
CHARSET:OEM EQUATE (255)

Window Usage

The FONT attribute on a WINDOW or APPLICATION structure specifies the default display font
for all controls in the WINDOW or APPLICATION that do not have a FONT attribute. This is also
the default font for newly created controls on the window, and is the font used by the SHOW and
TYPE statements when writing to the window.

The FONT attribute on a TOOLBAR structure specifies the default display font for all controls in
the TOOLBAR that do not have a FONT attribute.

Setting any of the runtime properties (PROP:property) of the FONT attribute for the WINDOW,
APPLICATION, or TOOLBAR does not affect the existing controls already displayed. Controls
CREATEd after the property has been reset are affected, however.

The FONT attribute on a control declaration overrides any FONT specified on the WINDOW,
APPLICATION, or TOOLBAR.

Language Reference Manual 432

Report Usage

The FONT attribute on a REPORT structure specifies the default print font for all controls in the
REPORT. This font is used when the control does not have its own FONT attribute and the print
structure contianing the control also has no FONT attribute.

The FONT attribute on FORM, DETAIL, HEADER, and FOOTER structures specifies the default
print font for all controls in the structures that do not have a FONT attribute.

The FONT attribute on a control declaration overrides any FONT specified on the REPORT or
print structure.

Example:

LRFont WINDOW('LR FontExample'),AT(,,289,192),|
FONT('Arial',12,COLOR:Maroon,FONT:bold+FONT:italic,CHARSET:ANSI),GRAY

!14 point Arial typeface, Red, normal:
LIST,AT(120,0,20,20),USE(?L7),FROM(Que1),FONT('Arial',14,0FFh)
!14 point Arial typeface, Black, Bold:
LIST,AT(120,120,20,20),USE(?C7),FROM(Que2),FONT('Arial',14,0,700)
!14 point Arial typeface, Black, Bold Italic
LIST,AT(120,240,20,20),USE(?C7),FROM(Que2),FONT('Arial',14,0,700+01000h)

END
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS, |

FONT('Arial',12,,FONT:Bold+FONT:Italic)
!report declarations
END

!A Window using 14 point Times New Roman, Bold and Italic
Win WINDOW,FONT('Times New Roman',14,00H,FONT:italic+FONT:bold)

STRING('This is Times 14 pt Bold Italic'),AT(42,14),USE(?String1)
END

CODE
OPEN(Win)
Win{PROP:FontSize} = 20 !Set default font size for CREATEd controls
CREATE(100,CREATE:string) !Create a control
100{PROP:Text} = 'This is 20 point'
SETPOSITION(100,82,24)
UNHIDE(100)
ACCEPT
END

See Also:

SETFONT, GETFONT, FONTDIALOG, FONTDIALOGA, COLOR, CREATE

9 – Window and Report Attributes 433

FORMAT (set LIST or COMBO layout)

 FORMAT(format string)

FORMAT Specifies the display or print format of the data in the LIST or COMBO control.

format string A string constant specifying the display format.

The FORMAT attribute (PROP:FORMAT) specifies the display format of the data in the LIST or
COMBO control. The format string contains the information for formatting of data.
PROP:FORMAT is updated whenever the user dynamically changes the format of the LIST or
COMBO at runtime.

The format string contains "field-specifiers" which map to the fields of the QUEUE being
displayed. Multiple "field-specifiers" may be grouped together as a "field-group" in square
brackets ([]) to display as a single unit.

Only the fields in the QUEUE for which there are "field-specifiers" are included in the display. This
means that, if there are two fields specified in the format string and three fields in the QUEUE,
only the two specified in the format string are displayed in the LIST or COMBO control.

"Field-specifier" format:

Each column in the LIST is formatted with the following components. The format for a particular
column is returned or set by PROPLIST:Format.

width justification [(indent)] [modifiers]

width
A required integer defining the width of the field (PROPLIST:Width). Specified in
dialog units.

justification
A single capital letter (L , R , C , or D) that specifies Left (PROPLIST:Left), Right
(PROPLIST:Right), Center (PROPLIST:Center), or Decimal (PROPLIST:Decimal)
justification. One is required.

indent
An optional integer, enclosed in parentheses, that specifies the indent from the
justification. This may be negative. With left (L) (PROPLIST:LeftOffset)
justification, indent defines a left margin ; with right (R) (PROPLIST:RightOffset)
or decimal (D) (PROPLIST:DecimalOffset), it defines a right margin; and with
center (C) (PROPLIST:CenterOffset), it defines an offset from the center of the
field (negative = left offset).

Language Reference Manual 434

modifiers:
Optional special characters (listed below) to modify the display format of the field
or group. Multiple modifiers may be used on one field or group.

Modifiers:

* An asterisk (PROPLIST:Color) indicates color information for the field is contained in
four LONG fields that immediately follow the data field in the QUEUE (or FROM
attribute string). The four colors are normal foreground, normal background, selected
foreground, and selected background (in that order). Not valid in a REPORT.

Y A Y (PROPLIST:CellStyle) indicates a pre-defined style for the field (column) is
contained in a LONG field that immediately follows the data field in the QUEUE (or
FROM attribute string). The LONG field contains a number that refers to an entry in
an array of styles associated with the LIST control through the PROPSTYLE: runtime
properties (see below). Not valid in a REPORT.

 The style for an entire column may be set with PROPLIST:ColStyle. Using
PROPLIST:ColStyle, the LONG field is not necessary in the QUEUE but without the
LONG field you cannot assign different styles to individual cells in the column.

I An I (PROPLIST:Icon) indicates an icon displays in the column, at the left edge of the
column (prepended to the data). An icon number is contained in a LONG field
immediately following the data field in the QUEUE (or FROM attribute string). The
LONG field contains a number that refers to an entry in a list of icons associated with
the LIST control through the PROP:IconList runtime property. If an asterisk is also
specified for color, this LONG must follow all the color information. Not valid in a
REPORT.

J A J (PROPLIST:IconTrn) indicates a transparent icon displays in the column. The
same information as I applies to J. Not valid in a REPORT.

T [(suppress)]
A T (PROPLIST:Tree) indicates the LIST is a tree control. The tree level is contained
in a LONG field that immediately follows the data field in the QUEUE (or FROM
attribute string). If * and I are also specified, this LONG must follow all their LONG
fields. The expanded/contracted state of the tree level is determined by the sign of
the tree level LONG field's value (positive value=expanded and negative
value=contracted). Not valid in a REPORT.

 The optional suppress parameter can contain a 1 (PROPLIST:TreeOffset) to indicate
the root is level number one (1) instead of zero (0), allowing -1 to indicate a
contracted root. It can also contain an R (PROPLIST:TreeRoot) to suppress the
connecting lines to the root level, an L (PROPLIST:TreeLines) to suppress the
connecting lines between all levels, a B (PROPLIST:TreeBoxes) to suppress
expansion boxes, and an I (PROPLIST:TreeIndent) to suppress level indentation
(which also implicitly suppresses both lines and boxes).

9 – Window and Report Attributes 435

~header~ [justification [(indent)]]
A header string enclosed in tildes (PROPLIST:Header), followed by optional
justification parameter (L = PROPLIST:HeaderLeft, R = PROPLIST:HeaderRight, C =
PROPLIST:HeaderCenter, or D = PROPLIST:HeaderDecimal,) and/or indent value
in parentheses (PROPLIST:HeaderLeftOffset, PROPLIST:HeaderRightOffset,
PROPLIST:HeaderCenterOffset, or PROPLIST:HeaderDecimalOffset), displays the
header at the top of the list. The header uses the same justification and indent as the
field, if not specifically overridden.

@picture@
The picture (PROPLIST:Picture) formats the field for display. The trailing @ is
required to define the end of the picture, so that display pictures such as @N12~Kr~
can be used in the format string without creating ambiguity.

? A question mark (PROPLIST:Locator) defines the locator field for a COMBO list box
with a selector field. For a drop-down multi-column list box, this is the value displayed
in the current-selection box. Not valid in a REPORT.

#number#
The number enclosed in pound signs (#) (PROPLIST:FieldNo) indicates the QUEUE
field to display. Following fields in the format string without an explicit #number# are
taken in order from the fields following the #number# field. For example, #2# on the
first field in the format string indicates starting with the second field in the QUEUE,
skipping the first. If the number of fields specified in the format string are >= the
number of fields in the QUEUE, the format "wraps around" to the start of the QUEUE.

_ An underscore (PROPLIST:Underline) underlines the field.

/ A slash (PROPLIST:LastOnLine) causes the next field to appear on a new line (only
used on a field within a group).

| A vertical bar (PROPLIST:RightBorder) places a vertical line to the right of the field.

M An M (PROPLIST:Resize) allows the field or group of fields to be dynamically re-
sized at runtime. This allows the user to drag the right vertical bar (if present) or right
edge of the data area. Not valid in a REPORT.

F An F (PROPLIST:Fixed) creates a fixed column in the list that stays on screen when
the user horizontally pages through the fields (by the HSCROLL attribute). Fixed
fields or groups must be at the start of the list. This is ignored if placed on a field
within a group. Not valid in a REPORT.

S(integer)
An S followed by an integer (PROPLIST:Scroll) in parentheses adds a scroll bar to
the group. The integer defines the total number of dialog units to scroll. This allows
large fields to be displayed in a small column width. This is ignored if placed on a
field within a group. Not valid in a REPORT.

Language Reference Manual 436

P
A P modifier adds a tool tip (PROPLIST:Tip) to the group. The column’s tip text by
default is derived from the next queue field that follows the queue field used to hold
the actual column’s data. If the designated queue field is empty, the Q modifier (see
below) designates a string value to use as a default tool tip. Also valid with a VLB
(Virtual List Box). Not valid in a REPORT.

Q (string)
A Q followed by a string (PROPLIST:DefaultTip) designates the default column tip
text to be displayed if the value of the designated P modifier is an empty string. Not
valid in a REPORT.

"Field-group" format:

[multiple field-specifiers] [(size)] [modifiers]

multiple field-specifiers
A list of field-specifiers contained in square brackets
([]) that cause them to be treated as a single display unit.

size An optional integer, enclosed in parentheses, that specifies the width of the
group (PROPLIST:Width). If omitted, the size is calculated from the enclosed
fields.

modifiers
The "field-group" modifiers act on the entire group of fields. These are the same
modifiers listed above for a field (except the *, I, T ,and #number# modifiers
which are not appropriate to groups). Add PROPLIST:Group to the appropriate
field property to affect the group properties.

PROPLIST:GroupNo can be used to return the group number of a target column.

 Example:

?List{PROPLIST:GroupNo,LOC:COL}
returns the group number of the column variable (LOC:COL). A Column not in a group is
considered a group by itself.

?List{PROPLIST:GroupNo + PROPLIST:Group,LOC:COL}

returns the number of columns in the target group, 0 if the group is really a column.

9 – Window and Report Attributes 437

Display QUEUE Field Format

The order of fields that appear in the QUEUE to display in the LIST is important. Since there are
several modifiers which require separate fields in the QUEUE to hold formatting data, the
following is the order in which those fields must appear in the QUEUE:

1. The field containing the data to display (always).

2. The * flag's foreground color field (if the * is present, or PROPLIST:Color is set).

3. The * flag's background color field (if the * is present, or PROPLIST:Color is set).

4. The * flag's selected foreground color field (if the * is present, or PROPLIST:Color
is set).

5. The * flag's selected background color field (if the * is present, or
PROPLIST:Color is set).

6. The I or J flag's icon field (if the I or J is present, or PROPLIST:Icon or
PROPLIST:IconTrn is set).

7. The T flag's tree level field (if the T is present, or PROPLIST:Tree is set).

8. The Y flag's style field (if the Y is present, or PROPLIST:CellStyle is set).

Language Reference Manual 438

FORMAT() Runtime Properties
The properties of the individual fields and groups in a multi-column LIST or COMBO control can
also be set using the property equates for each (the PROPLIST:Item listed above for each
property). These properties eliminate the need to create a complete FORMAT attribute string just
to change a single property of a single field in the LIST.

These are all property arrays that require an explicit array element number following the property
equate (separated by a comma) to specify which column in the LIST or COMBO is affected. All of
them contain blank ('') if missing, and a one (1) if present.

Example:

PROGRAM
MAP

DisplayList PROCEDURE
PrintList PROCEDURE
RandomAlphaData PROCEDURE(*STRING)

END

TreeDemo QUEUE !Data list box FROM queue
FName STRING(20)
ColorNFG LONG(COLOR:White) !Normal Foreground color for FName
ColorNBG LONG(COLOR:Maroon) !Normal Background color for FName
ColorSFG LONG(COLOR:Yellow) !Selected Foreground color for FName
ColorSBG LONG(COLOR:Blue) !Selected Background color for FName
IconField LONG !Icon number for FName
TreeLevel LONG !Tree Level
LName STRING(20)
Init STRING(4)

END
CODE
DisplayList
PrintList

DisplayList PROCEDURE
Win WINDOW('List Boxes'),AT(0,0,366,181),SYSTEM,DOUBLE

LIST,AT(0,34,366,146),FROM(TreeDemo),USE(?Show),HVSCROLL, |
FORMAT('80L*IT~First Name~*80L~Last Name~16C~Initials~')

END
CODE
LOOP X# = 1 TO 20
RandomAlphaData(TreeDemo.FName)
TreeDemo.IconField = ((X#-1) % 4) + 1 !Assign icon number
TreeDemo.TreeLevel = ((X#-1) % 4) + 1 !Assign tree level
RandomAlphaData(TreeDemo.LName)
RandomAlphaData(TreeDemo.Init)
ADD(TreeDemo)

END

9 – Window and Report Attributes 439

OPEN(Win)
?Show{PROP:iconlist,1} = ICON:VCRback !Icon 1 = <
?Show{PROP:iconlist,2} = ICON:VCRrewind !Icon 2 = <<
?Show{PROP:iconlist,3} = ICON:VCRplay !Icon 3 = >
?Show{PROP:iconlist,4} = ICON:VCRfastforward !Icon 4 = >>
ACCEPT
END

RandomAlphaData PROCEDURE(Field) !MAP Prototype is: RandomAlphaData(*STRING)
CODE
CLEAR(Field)
RandomSize# = RANDOM(1,SIZE(Field)) !Random fill size
Field[1] = CHR(RANDOM(65,90)) !Start with a random upper case letter
LOOP Z# = 2 to RandomSize# !Fill each character with
Field[Z#] = CHR(RANDOM(97,122)) !a random lower case letter

END

PrintList PROCEDURE
DemoQ QUEUE
FName STRING(20)
ColorNFG1 LONG
ColorNBG1 LONG
ColorSFG1 LONG(COLOR:Black) !Printed Foreground color for FName
ColorSBG1 LONG(COLOR:White) !Printed Background color for FName
LName STRING(20)
ColorNFG2 LONG
ColorNBG2 LONG
ColorSFG2 LONG(COLOR:Black) !Printed Foreground color for LName
ColorSBG2 LONG(COLOR:White) !Printed Background color for LName
Init STRING(4)
ColorNFG3 LONG
ColorNBG3 LONG
ColorSFG3 LONG(COLOR:Black) !Printed Foreground color for Init
ColorSBG3 LONG(COLOR:White) !Printed Background color for Init
Wage REAL
ColorNFG4 LONG
ColorNBG4 LONG
ColorSFG4 LONG(COLOR:Black) !Printed Foreground color for Wage
ColorSBG4 LONG(COLOR:White) !Printed Background color for Wage

END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,200)

LIST,AT(0,0,6000,200),FORMAT(''),FROM(DemoQ),USE(?Show)
END
END

Language Reference Manual 440

CODE
LOOP X# = 1 TO 20
CLEAR(DemoQ)
RandomAlphaData(DemoQ.FName)
RandomAlphaData(DemoQ.LName)
RandomAlphaData(DemoQ.Init)
DemoQ.Wage = RANDOM(100000,1000000)/100
ADD(DemoQ)

END
OPEN(CustRpt)
SETTARGET(CustRpt)
IF RANDOM(0,1)
?Show{PROP:format} = '2000L*~First Name~2000L*~Last Name~500L*~Intls~1000L*~Wage~|'

ELSE
?Show{PROP:format} = '2000L*~First Name~2000L*~Last Name~500L*~Intls~1000D(400)*~Wage
?Show{PROPLIST:Header,1} = 'First Field' !Change first field's header text
?Show{PROPLIST:Header + PROPLIST:Group,1} = 'First Group'

END !Change first group's header text
LOOP X# = 1 TO RECORDS(DemoQ)
GET(DemoQ,X#)
PRINT(CustDetail)

END
CLOSE(CustRpt)
FREE(DemoQ)

9 – Window and Report Attributes 441

FORMAT() Style Properties
The following properties are used to set up the array of styles available to a column with the Y
modifier or for use with PROPLIST:ColStyle. These define an array of available styles. Assigning
the array element number to the Y modifier's LONG field or to PROPLIST:ColStyle sets the
display style for the individual cell or column.

PROPSTYLE:FontName
An array property that sets or returns the font name for the style number
specified as the array element.

PROPSTYLE:CharSet
An array property that sets or returns the font character set for the style number
specified as the array element.

PROPSTYLE:FontSize
An array property that sets or returns the font size for the style number specified
as the array element.

PROPSTYLE:FontColor
An array property that sets or returns the font color for the style number specified
as the array element.

PROPSTYLE:FontStyle
An array property that sets or returns the font style (strike weight, etc.) for the
style number specifed as the array element.

PROPSTYLE:TextColor
An array property that sets or returns the text color for the style number specified
as the array element (same as fontcolor).

PROPSTYLE:BackColor
An array property that sets or returns the background color for the style number
specifed as the array element.

PROPSTYLE:TextSelected
An array property that sets or returns the selected text color for the style number
specifed as the array element.

PROPSTYLE:BackSelected
An array property that sets or returns the selected background color for the style
number specifed as the array element.

PROPSTYLE:Picture
An array property that sets or returns the display picture associated with the style
number specifed as the array element.

Language Reference Manual 442

Example:

?list{PROPSTYLE:FontName, 1} = 'Arial' !setup positive value style
?list{PROPSTYLE:FontSize, 1} = 11
?list{PROPSTYLE:FontStyle, 1} = FONT:Regular
?list{PROPSTYLE:TextColor, 1} = COLOR:Yellow
?list{PROPSTYLE:BackColor, 1} = COLOR:Black
?list{PROPSTYLE:TextSelected, 1} = COLOR:Yellow
?list{PROPSTYLE:BackSelected, 1} = COLOR:Blue
?list{PROPSTYLE:Picture, 1} = '@n11.2'

?list{PROPSTYLE:FontName, 2} = 'Arial' !setup negative value style
?list{PROPSTYLE:FontSize, 2} = 11
?list{PROPSTYLE:FontStyle, 2} = FONT:Bold
?list{PROPSTYLE:TextColor, 2} = COLOR:Red
?list{PROPSTYLE:BackColor, 2} = COLOR:White
?list{PROPSTYLE:TextSelected, 2} = COLOR:Red
?list{PROPSTYLE:BackSelected, 2} = COLOR:Yellow
?list{PROPSTYLE:Picture, 2} = '@n(13.2)'

?list{PROPLIST:ColStyle,1} = 1 !Column 1 uses the positive style
?list{PROPLIST:ColStyle,2} = 2 !Column 2 uses the negative style

9 – Window and Report Attributes 443

FORMAT() Other List Box Properties
The following properties are not part of the FORMAT attribute string, but may be used to
dynamically affect the appearance of the LIST or COMBO control.

PROPLIST:BackColor
An array property that sets or returns the default background color for the text in
the column number specifed as the array element. This coloring can be
overridden on a per-cell basis by the standard cell coloring mechanism.

PROPLIST:BackSelected
An array property that sets or returns the default selected background color for
the text in the column number specifed as the array element. This coloring can
be overridden on a per-cell basis by the standard cell coloring mechanism.

PROPLIST:TextColor
An array property that sets or returns the default text color for the text in the
column number specifed as the array element. This coloring can be overridden
on a per-cell basis by the standard cell coloring mechanism.

PROPLIST:TextSelected
An array property that sets or returns the default selected text color for the text in
the column number specifed as the array element. This coloring can be
overridden on a per-cell basis by the standard cell coloring mechanism.

PROPLIST:Exists
An array property that returns:
- TRUE or FALSE if called with the column number > 0. If the column number
specified as the array element exists, PROPLIST:Exists returns TRUE (i.e.,
?List{PROPLIST:Exists,1} tests whether column 1 exists in the list). This is useful
for generic list box processing.
- total number of list box columns if called with the column number 0
- total number of columns in the specified group if called for the group
(i.e., - ?List {PROPLIST:Exists + PROPLIST:Group, GroupNumber})

Language Reference Manual 444

Example:
WinView WINDOW('View'),AT(,,340,200),SYSTEM,CENTER

LIST,AT(0,0,300,200),USE(?List),FROM(Que),FORMAT('80L~F1~80L~F2~80L~F3~')
END

CODE
OPEN(WinView)
LOOP X# = 1 TO 255
IF ?List{PROPLIST:Exists,X#} = 1 !If there is a column with this number
?List{PROPLIST:TextColor,X#} = COLOR:Red
?List{PROPLIST:BackColor,X#} = COLOR:White
?List{PROPLIST:TextSelected,X#} = COLOR:Yellow
?List{PROPLIST:TextSelected,X#} = COLOR:Blue

ELSE
BREAK

END
END

9 – Window and Report Attributes 445

FORMAT() List Box Mouse Click Properties
The following runtime properties return the mouse position within the LIST or COMBO control
when pressed or released.They can also be written to, which has no effect except to temporarily
change the value that the property returns when next read (within the same ACCEPT loop
iteration). This may make coding easier in some circumstances.

PROPLIST:MouseDownField
Returns the field number when the mouse is pressed.

PROPLIST:MouseDownRow
Returns the row number when the mouse is pressed.

PROPLIST:MouseDownZone
Returns the zone number when the mouse is pressed.

PROPLIST:MouseMoveField
Returns the field number when the mouse is moved.

PROPLIST:MouseMoveRow
Returns the row number when the mouse is moved.

PROPLIST:MouseMoveZone
Returns the zone number when the mouse is moved.

PROPLIST:MouseUpField
Returns the field number when the mouse is released.

PROPLIST:MouseUpRow
Returns the row number when the mouse is released.

PROPLIST:MouseUpZone
Returns the zone number when the mouse is released.

The three "Row" properties all return zero (0) for header text and negative one (-1) if below the
last displayed item.

Equates for the following Zones are listed on EQUATES.CLW:

 LISTZONE:Field On a field in the LIST
 LISTZONE:Right On the field's right border resize zone
 LISTZONE:Header On a field or group header
 LISTZONE:ExpandBox On an expand box in a Tree
 LISTZONE:Tree On the connecting lines of a Tree
 LISTZONE:Icon On an icon (Tree or not)
 LISTZONE:Nowhere Anywhere else

Language Reference Manual 446

Example:
Que QUEUE
F1 STRING(50)
F2 STRING(50)
F3 STRING(50)

END

WinView WINDOW('View'),AT(,,340,200),SYSTEM,CENTER
LIST,AT(20,0,300,200),USE(?List),FROM(Que),HVSCROLL, |
FORMAT('80L~F1~80L~F2~80L~F3~'),ALRT(MouseLeft)
END

SaveFormat STRING(20)
SaveColumn BYTE
Columns BYTE,DIM(3)

CODE
OPEN(WinView)
Columns[1] = 1
Columns[2] = 2
Columns[3] = 3
DO BuildListQue
ACCEPT
CASE EVENT()
OF EVENT:PreAlertKey
CYCLE !Allow standard LIST clicks to pro

OF EVENT:AlertKey
IF ?List{PROPLIST:MouseDownRow} = 0 !Check for click in header
EXECUTE Columns[?List{PROPLIST:MouseDownField}] !Check which header
SORT(Que,Que.F1)
SORT(Que,Que.F2)
SORT(Que,Que.F3)

END
SaveFormat = ?List{PROPLIST:Format,?List{PROPLIST:MouseDownField}}
?List{PROPLIST:Format,?List{PROPLIST:MouseDownField}} = ?List{PROPLIST:Format,1}
?List{PROPLIST:Format,1} = SaveFormat
SaveColumn = Columns[?List{PROPLIST:MouseDownField}]
Columns[?List{PROPLIST:MouseDownField}] = Columns[1]
Columns[1] = SaveColumn
DISPLAY

END
END

END
FREE(Que)

9 – Window and Report Attributes 447

BuildListQue ROUTINE
LOOP Y# = 1 TO 9
Que.F1 = 'Que.F1 - ' & Y#
Que.F2 = 'Que.F2 - ' & RANDOM(10,99)
Que.F3 = 'Que.F3 - ' & RANDOM(100,999)
ADD(Que)
ASSERT(NOT ERRORCODE())

END

Language Reference Manual 448

FROM (set listbox data source)

 FROM(source)

FROM Specifies the source of the data displayed or printed in a LIST control.

source The label of a QUEUE or field within a QUEUE, or a string constant or variable
(normally a GROUP) containing the data items to display or print in the LIST. If
the QUEUE has been dynamically created with NEW, the corresponding
DISPOSE must come after the window has been closed.

The FROM attribute (PROP:FROM, write-only) specifies the source of the data elements
displayed in a LIST, COMBO, or SPIN control, or printed in a LIST control.

If a string constant is specified as the source, the individual data elements must be delimited by a
vertical bar (|) character. To include a vertical bar as part of one data element, place two adjacent
vertical bars in the string (||), and only one will be displayed. To indicate that an element is empty,
place at least one blank space between the two vertical bars delimiting the elements (| |).

Normally, a valid event will move the selected data element’s contents into the control’s USE
variable. However, an alternate value can also be specified in the FROM attribute by including an
additional vertical bar followed by a pound symbol (#), and followed by the alternate value.

Window Usage

For a SPIN control, the source would usually be a QUEUE field or string. If the source is a
QUEUE with multiple fields, only the first field is displayed in the SPIN.

For LIST and COMBO controls, the data elements are formatted for display according to the
information in the FORMAT attribute. If the label of a QUEUE is specified as the source, all fields
in the QUEUE are displayed as defined by the FORMAT attribute. If the label of one field in a
QUEUE is specified as the source, only that field is displayed.

Report Usage

If the label of a QUEUE is specified as the source, all fields in the QUEUE are printed. If the label
of one field in a QUEUE is specified as the source, only that field is printed. Only the current
QUEUE entry in the queue's data buffer is printed in the LIST. If a string constant or variable is
specified as the source, the entire string (all entries in the vertical bar delimited list of data
elements) is printed in the LIST. The data elements are formatted for printing in the LIST
according to the information in the FORMAT attribute.

9 – Window and Report Attributes 449

Example:
TD QUEUE,AUTO
FName STRING(20)
LName STRING(20)
Init STRING(4)
Wage REAL

END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LIST,AT(0,34,366,146),FORMAT('80L80L16L60L'),FROM(TD),USE(?Show1)
LIST,AT(0,200,100,146),FORMAT('80L'),FROM(Fname),USE(?Show2)
END
END

Que1 QUEUE,PRE(Q1)
F1 LONG
F2 STRING(8)

END

Win1 WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),FORMAT('5C~List~15L~Box~'),COLUMN
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q1:F1)
SPIN(@S4),AT(280,0,20,20),USE(SpinVar2),FROM('Mr.|Mrs.|Ms.|Dr.')
!Assign a numeric value to SpinVar3:
SPIN(@S4),AT(280,0,20,20),USE(SpinVar3),FROM('Mr.|#1|Mrs.|#2|Ms.|#3|Dr.|#4')

END

Language Reference Manual 450

FULL (set full-screen)

 FULL

The FULL attribute (PROP:FULL) specifies the control expands to occupy the entire size of the
WINDOW for any missing AT attribute width or height parameter.

FULL may not be specified for TOOLBAR controls.

9 – Window and Report Attributes 451

GRAY (set 3-D look background)

 GRAY

The GRAY attribute (PROP:GRAY) indicates that the WINDOW has a gray background, suitable
for use with three-dimensional dialog controls. All controls on a WINDOW with the GRAY attribute
are automatically given a three-dimensional appearance. Controls in a TOOLBAR are always
automatically given a three-dimensional appearance, without the GRAY attribute.

This attribute is not valid on an APPLICATION structure.

The three-dimensional look may be disabled by SET3DLOOK.

Example:

!A Window with 3-D controls
Win1 WINDOW,GRAY

END

See Also:

SET3DLOOK

Language Reference Manual 452

GRID (set list grid-line display color)

 GRID(rgb)

GRID Specifies list box grid-line display color.

rgb A LONG or ULONG integer constant, or constant EQUATE, containing the red,
green, and blue components that create the color in the three low-order bytes
(bytes 0, 1, and 2), or an EQUATE for a standard Windows color value.

The GRID attribute (PROPLIST:GRID) specifies the display color of grid-lines in a COMBO, or
LIST control. EQUATEs for Windows' standard colors are contained in the EQUATES.CLW file.
Windows automatically finds the closest match to the specified rgb color value for the hardware
on which the program is run.

Example:

WinOne WINDOW,AT(0,0,400,400)
LIST,AT(0,34,366,146),FROM(TreeDemo),USE(?Show),HVSCROLL,GRID(COLOR:Red)|
FORMAT('80L*IT~First Name~*80L~Last Name~16C~Initials~')

END

9 – Window and Report Attributes 453

HIDE (set control hidden)

 HIDE

The HIDE attribute (PROP:HIDE) specifies the control does not appear when the WINDOW or
APPLICATION is first opened. UNHIDE must be used to display it. In a REPORT, the control
does not print unless the UNHIDE statement is used to allow it to print. PROP:HIDE may be used
with the TARGET built-in variable to hide/unhide the current target window.

Language Reference Manual 454

HLP (set on-line help identifier)

 HLP(helpID)

HLP Specifies the helpID for the APPLICATION, WINDOW, or control.

helpID A string constant specifying the key used to access the Help system. This may
be either a Help keyword or a "context string."

The HLP attribute (PROP:HLP) specifies the helpID for the APPLICATION or WINDOW. Help, if
available, is automatically displayed by Windows whenever the user presses F1.

If the user presses F1 to request help when the APPLICATION window is foremost and no menus
are active, the APPLICATION's helpID is used to locate the Help text. Otherwise, the library
automatically uses the helpID of the active menu of uppermost control or window, searching up
the hierarchy until an object with that helpID is found. The helpID of the APPLICATION is at the
top of the hierarchy.

The helpID may contain a Help keyword or a "context string."

• A Help keyword is a word or phrase displayed in the Help Search dialog. When
the user presses F1, if only one topic in the help file specifies this keyword, the
help file is opened at that topic; if more than one topic specifies the keyword, the
search dialog is opened for the user.

• A "context string" is identified by a leading tilde (~) in the helpID, followed by a
unique identifier (no spaces allowed) associated with exactly one help topic.
When the user presses F1, the help file is opened at the specific topic associated
with that "context string." If the tilde is missing, the helpID is assumed to be a
help keyword.

Example:

!A Window with a help context string:
MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS,HLP('~App')

MENUBAR
MENU('&File'),USE(?FileMenu)
ITEM('&Open...'),USE(?OpenFile),HLP('~OpenFileHelp')
END
END
END

!A Window with a help keyword:
Win2 WINDOW,HLP('Window One Help')

ENTRY(@s30),USE(SomeVariable),HLP('~Entry1Help') !A help context string
ENTRY(@s30),USE(SomeVariable),HLP('Control Two Help') !A help keyword

END

9 – Window and Report Attributes 455

HSCROLL, VSCROLL, HVSCROLL (set scroll bars)

 HSCROLL

 VSCROLL

 HVSCROLL

The HSCROLL, VSCROLL, and HVSCROLL attributes place scroll bars on an APPLICATION or
WINDOW structure, or a COMBO, LIST, IMAGE, or TEXT control. HSCROLL (PROP:HSCROLL)
adds a horizontal scroll bar to the bottom, VSCROLL (PROP:VSCROLL) adds a vertical scroll bar
on the right side, and HVSCROLL (PROP:HVSCROLL) adds both.

The HSCROLL attribute is also available for a SHEET control. This specifies the TABs display all
on one row instead of multiple rows, no matter how many TABs there are. Right and left (or up
and down) scroll buttons appear at both ends of the TABs to allow the user to scroll through all
the TABs. PROP:BrokenTabs may be set to FALSE to turn off the "broken tab" visual effect.

The vertical scroll bar allows a mouse to scroll the display up or down. The horizontal scroll bar
allows a mouse to scroll the control's display left or right. The scroll bars appear whenever any
scrollable portion of the control lies outside the visible area on screen.

When you place VSCROLL on a LIST with the IMM attribute, the vertical scroll bar is always
present, even when the list is not full. When the user clicks on the scroll bar, events are
generated, but the list contents do not move (executable code should perform this task). You can
interrogate the PROP:VscrollPos property to determine the scroll thumb's position in the range 0
(top) to 255 (bottom).

HSCROLL, VSCROLL, and HVSCROLL are also valid on a SPIN control and specify optional
spin button arrangements from the default (one above the other, pointing up and down).
HSCROLL places the spin buttons side by side pointing left and right, VSCROLL places the spin
buttons one above the other pointing left and right, and HVSCROLL places the spin buttons side
by side, pointing up and down.

Example:

!A Window with a horizontal scroll bar:
Win1 WINDOW,HSCROLL,RESIZE

END

!A Window with a vertical scroll bar:
Win2 WINDOW,VSCROLL,RESIZE

END

!A Window with both scroll bars:
Win2 WINDOW,HVSCROLL,RESIZE

END

Language Reference Manual 456

ICON (set icon)

 ICON([file])

ICON Specifies an icon to display for the APPLICATION, WINDOW, or control.

file A string constant containing the name of the image file (.ICO, .GIF, .JPG, .PCX)
or an EQUATE for the Windows standard icon to display. The image file is
automatically linked into the .EXE as a resource.

The ICON attribute (PROP:ICON) specifies an icon to display for the APPLICATION, WINDOW,
or control.

On an APPLICATION or WINDOW, ICON also specifies the presence of a minimize control, and
must name an .ICO file as its file parameter. The minimize control appears in the top right corner
of the window as a downward pointing triangle (in Windows 3.1) or an underscore (Windows 95).
When the user clicks the mouse on it, the window shrinks to an icon without halting its execution.
When an APPLICATION or non-MDI WINDOW is minimized, the icon file is displayed in the
operating system's desktop; when a WINDOW with the MDI attribute is minimized, the icon file is
displayed in the APPLICATION's client area.

On a BUTTON, RADIO, or CHECK control, ICON specifies an image to display as the control.
The image file displays on the button face of the control. For RADIO and CHECK controls, the
ICON attribute creates "latched" pushbuttons, where the control button appears "down" when on
and "up" when off.

EQUATE statements for the Windows-standard icons are contained in the EQUATES.CLW file.
The following list is a representative sample of these (see EQUATES.CLW for the complete list):

 ICON:None No icon
 ICON:Application
 ICON:Question ?
 ICON:Exclamation !
 ICON:Asterisk *
 ICON:VCRtop >>|
 ICON:VCRrewind <<
 ICON:VCRback <
 ICON:VCRplay >
 ICON:VCRfastforward >>
 ICON:VCRbottom |<<
 ICON:VCRlocate ?

If the name of the icon file to assign to PROP:Icon has a number in square brackets appended to
its end (IconFile.DLL[1]), this indicates the file contains multiple icons and the number specifies
which to assign (using zero-based numbering). If the name of the icon file has a tilde (~)
prepended to it (~IconFile.ICO), this indicates the file has been linked into the project as a
resource and is not on disk.

9 – Window and Report Attributes 457

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL,ICON('MyIcon.ICO')
OPTION('Option'),USE(OptVar)
RADIO('Radio 1'),AT(120,0,20,20),USE(?R1),ICON('Radio1.ICO')
RADIO('Radio 2'),AT(140,0,20,20),USE(?R2),ICON('Radio2.GIF')
END
CHECK('&A'),AT(0,120,20,20),USE(?C7),ICON(ICON:Asterisk)
BUTTON('&1'),AT(120,0,20,20),USE(?B7),ICON(ICON:Question)
END

See Also:

ICONIZE

MAX

MAXIMIXE

IMM

Language Reference Manual 458

ICONIZE (set window open as icon)

 ICONIZE

The ICONIZE attribute (PROP:ICONIZE) specifies the APPLICATION or WINDOW is opened
minimized as the icon specified by the ICON attribute. When an APPLICATION or non-MDI
WINDOW is minimized, the icon file is displayed in the operating system's desktop; when a
WINDOW with the MDI attribute is minimized, the icon file is displayed in the APPLICATION.

With the SYSTEM built-in variable as the property assignment target, PROP:ICONIZE returns 1 if
the Windows PIF setting for the application is set to open the application iconized.

Example:

!A Window with a minimize button, opened as the icon:
Win2 WINDOW,ICON('MyIcon.ICO'),ICONIZE

END

See Also:

ICON

IMM

9 – Window and Report Attributes 459

IMM (set immediate event notification)

 IMM

The IMM attribute (PROP:IMM) specifies immediate event generation.

Window Usage

On a WINDOW or APPLICATION the IMM attribute specifies immediate event generation
whenever the user moves or resizes the window. It generates one the following events before the
action is executed:

 EVENT:Move
 EVENT:Size
 EVENT:Restore
 EVENT:Maximize
 EVENT:Iconize

If the code that handles these events executes a CYCLE statement, the action is not performed.
This allows you to prevent the user from moving or resizing the window. Once the action has
been performed, one or more of the following events are generated:

 EVENT:Moved
 EVENT:Sized
 EVENT:Restored
 EVENT:Maximized
 EVENT:Iconized

Multiple post-action events generate because some actions have multiple results. For example, if
the user CLICKS on the maximize button, EVENT:Maximize generates. If there is no CYCLE
statement executed for this event, the action is performed, then EVENT:Maximized,
EVENT:Moved, and EVENT:Sized all generate. This occurs because the window was maximized,
which also moves and resizes it at the same time.

Control Usage

On a REGION control, the IMM attribute generates an event whenever the mouse enters
(EVENT:MouseIn), moves within (EVENT:MouseMove), or leaves (EVENT:MouseOut) the area
specified by the REGION's AT attribute. The exact position of the mouse can be determined by
the MOUSEX and MOUSEY procedures.

On a BUTTON control, the IMM attribute indicates the BUTTON generates EVENT:Accepted
when the left mouse button is pressed down on the control, instead of on its release.
EVENT:Accepted repeatedly generates as along as the user keeps the mouse button pressed.
The DELAY and REPEAT attributes on the BUTTON can change the rate the events generate.

Language Reference Manual 460

The IMM attribute specifies immediate event generation each time the user presses any
keystroke on a LIST or COMBO control, usually requiring the QUEUE to be re-filled. This means
all keys are implicitly ALRTed for the control. When the user presses a character,
EVENT:NewSelection generates.

For an ENTRY or SPIN control, EVENT:NewSelection generates whenever the control's contents
or the cursor position changes. To do something only when the content changes, you must save
the previous contents then compare against the current contents (probably using
PROP:ScreenText).

For a SHEET control, EVENT:NewSelection generates whenever the user clicks on a TAB (even
when that TAB is alreadythe currently selected TAB). This can be useful when there are multiple
SHEET controls on the same window.

Example:

Win2 WINDOW('Some Window'),AT(58,11,174,166),MDI,DOUBLE,MAX,IMM
LIST,AT(109,48,50,50),USE(?List),FROM('Que'),IMM
BUTTON('&Ok'),AT(111,108,,),USE(?Ok)
BUTTON('&Cancel'),AT(111,130,,),USE(?Cancel)

END
CODE
OPEN(Win2)
ACCEPT
CASE EVENT()
OF EVENT:Move !Prevent user from moving window
CYCLE

OF EVENT:Maximized !When Maximized
?List{PROP:Height} = 100 ! resize the list

OF EVENT:Restored !When Restored
?List{PROP:Height} = 50 ! resize the list

END
END

See Also:

RESIZE

MAX

ICON

DELAY

REPEAT

9 – Window and Report Attributes 461

INS, OVR (set typing mode)

 INS

 OVR

The INS and OVR attributes (PROP:INS and PROP:OVR) specify the typing mode for an
ENTRY, SPIN or COMBO control when the MASK attribute is present on the window. INS
specifies insert mode while OVR specifies overwrite mode. These modes are only active on
windows with the MASK attribute.

Language Reference Manual 462

JOIN (set joined TAB scroll buttons)

 JOIN

The JOIN attribute (PROP:JOIN) on a SHEET control specifies the TABs display all on one row
instead of multiple rows, no matter how many TABs there are. Right and left (or up and down)
scroll buttons appear together at the right end (or top) of the TABs to allow the user to scroll
through all the TABs.

9 – Window and Report Attributes 463

KEY (set execution keycode)

 KEY(keycode)

KEY Specifies a "hot" key for the control

keycode A Clarion Keycode or keycode equate label.

The KEY attribute (PROP:KEY) specifies a "hot" key to immediately give focus to the control or
execute the control's associated action.

The following controls receive focus: COMBO, CUSTOM, ENTRY, GROUP, LIST, OPTION,
PROMPT, SPIN, TEXT.

The following controls both receive focus and immediately execute: BUTTON, CHECK,
CUSTOM, RADIO, MENU, ITEM.

Example:

MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS
MENUBAR
MENU('&Edit'),USE(?EditMenu)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM('&Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM('&Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE

END
END
TOOLBAR
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),KEY(F1Key)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),KEY(F2Key)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q),KEY(F3Key)
TEXT,AT(20,0,40,40),USE(E2),KEY(F4Key)
PROMPT('Enter &Data in E2:'),AT(10,200,20,20),USE(?P2),KEY(F5Key)
ENTRY(@S8),AT(100,200,20,20),USE(E2),KEY(F6Key)
BUTTON('&1'),AT(120,0,20,20),USE(?B7),KEY(F7Key)
CHECK('&A'),AT(0,120,20,20),USE(?C7),KEY(F8Key)
OPTION('Option'),USE(OptVar),KEY(F9Key)
RADIO('Radio 1'),AT(120,0,20,20),USE(?R1),KEY(F10Key)
RADIO('Radio 2'),AT(140,0,20,20),USE(?R2),KEY(F11Key)

END
END

END

Language Reference Manual 464

LANDSCAPE (set page orientation)

 LANDSCAPE

The LANDSCAPE attribute (PROP:LANDSCAPE) on a REPORT indicates the report is to print in
landscape mode by default. If the LANDSCAPE attribute is omitted, printing defaults to portrait
mode.

Example:
Report REPORT,PRE('Rpt'),LANDSCAPE !Defaults to landscape mode

!Report structure declarations
END

9 – Window and Report Attributes 465

LAYOUT (set window orientation)

 LAYOUT (style)

style A byte value that designates whether the orientation of window controls and field

sequence is set to Default, Left to Right, or Right to Left.

The LAYOUT attribute (PROP:LAYOUT) on a WINDOW indicates the orientation of window
controls and field sequence. A style of (1) essentially "flips" the window controls’ display as a
mirror image of the layout specified in the Window Formatter. Default field navigation moves from
right to left.

A style of (0) maintains the original layout specified in the Window Formatter. Default field
navigation moves from left to right.

Setting the LAYOUT in the Application Frame will cascade its setting to all child window that have
the default setting active (which is no LAYOUT attribute placed on the window).

Example:

AppFrame APPLICATION('Example Application - BROWSES (ABC Templates)'),|

AT(,,548,344),FONT('MS Sans Serif',8,,),LAYOUT(1), |
CENTER,ICON('LOG1.ICO'),STATUS(-1,80,120,45),SYSTEM,MAX,RESIZE

!Sets all windows in the application to Right-to-Left style

Language Reference Manual 466

LEFT, RIGHT, ABOVE, BELOW (set TAB position)
 LEFT([width])

 RIGHT([width])

 ABOVE([width])

 BELOW([width])

width An integer constant specifying the width of the TAB controls in dialog units. For
the LEFT attribute, this is PROP:LeftOffset (equivalent to {PROP:LEFT,2}). For
RIGHT, this is PROP:RightOffset (equivalent to {PROP:RIGHT,2}). For ABOVE,
this is PROP:AboveSize (equivalent to {PROP:ABOVE,2}). For BELOW, this is
PROP:BelowSize (equivalent to {PROP:BELOW,2}).

The LEFT, RIGHT, ABOVE, and BELOW attributes of a SHEET control specify the position of
the TAB controls. LEFT (PROP:LEFT) specifies the TABs appear to the left of the sheet, RIGHT
(PROP:RIGHT) specifies the TABs appear to the right of the sheet, ABOVE (PROP:ABOVE)
specifies the TABs appear at the top of the sheet (the default position), and BELOW
(PROP:BELOW) specifies the TABs appear at the bottom of the sheet.

The width parameter allows you to set the size of the TAB controls. The text that appears on the
TAB is always horizontal unless you specify the UP or DOWN attribute.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab),BELOW !Place Tabs below sheet
TAB('Tab One'),USE(?TabOne)
OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(20,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R2)
END
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)
END
TAB('Tab Two'),USE(?TabTwo)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)
END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)
END

9 – Window and Report Attributes 467

LEFT, RIGHT, CENTER, DECIMAL (set justification)

 LEFT([offset])

 RIGHT([offset])

 CENTER([offset])

 DECIMAL([offset])

offset An integer constant specifying the amount of offset from the justification point.
This is in dialog units (unless overridden by the THOUS, MM, or POINTS
attribute on a REPORT). For the LEFT attribute, this is PROP:LeftOffset
(equivalent to {PROP:LEFT,2}). For RIGHT, this is PROP:RightOffset (equivalent
to {PROP:RIGHT,2}). For CENTER, this is PROP:CenterOffset (equivalent to
{PROP:CENTER,2}). For DECIMAL, this is PROP:DecimalOffset (equivalent to
{PROP:DECIMAL,2}).

The LEFT, RIGHT, CENTER, and DECIMAL attributes specify the justification of data printed.
LEFT (PROP:LEFT) specifies left justification, RIGHT (PROP:RIGHT) specifies right justification,
CENTER (PROP:CENTER) specifies centered text, and DECIMAL (PROP:DECIMAL) specifies
numeric data aligned on the decimal point.

On the LEFT attribute, offset specifies the amount of indention from the left. On the RIGHT
attribute, offset specifies the amount of indention from the right. The offset parameter on the
CENTER attribute specifies an offset value from the center (negative = left offset). On the
DECIMAL attribute, offset specifies the decimal point's indention from the right.

Window Usage

The following controls allow LEFT or RIGHT only (without an offset parameter): BUTTON,
CHECK, RADIO.

The following controls allow LEFT(offset), RIGHT(offset), CENTER(offset), or DECIMAL(offset):
COMBO, ENTRY, LIST, SPIN, STRING.

The TEXT control allows LEFT(offset), RIGHT(offset), or CENTER(offset).

Language Reference Manual 468

Report Usage

The following controls allow LEFT or RIGHT only (without an offset parameter): CHECK,
GROUP, OPTION, RADIO.

The following controls allow LEFT(offset), RIGHT(offset), CENTER(offset), or DECIMAL(offset):
LIST, STRING.

The TEXT control allows LEFT, RIGHT, and CENTER (without an offset parameter).

Example:
Rpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000)

LIST,AT(0,20,100,146),FORMAT('800L'),FROM(Fname),USE(?Show2),LEFT(100)
END

END

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),RIGHT(4)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),CENTER
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q),DECIMAL(8)
TEXT,AT(20,0,40,40),USE(E2),LEFT(8)
ENTRY(@S8),AT(100,200,20,20),USE(E2),LEFT(4)
CHECK('&A'),AT(0,120,20,20),USE(?C7),LEFT
OPTION('Option'),USE(OptVar)
RADIO('Radio 1'),AT(120,0,20,20),USE(?R1),LEFT
RADIO('Radio 2'),AT(140,0,20,20),USE(?R2),RIGHT
END

END

9 – Window and Report Attributes 469

LINEWIDTH (set line thickness)

 LINEWIDTH(width)

LINEWIDTH Specifies the LINE control and BOX and ELLIPSE border thickness.

width A positive integer constant specifying the thickness in pixels.

The LINEWIDTH attribute (PROP:LINEWIDTH) specifies the thickness of the LINE control and
the BOX and ELLIPSE controls' border.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000),USE(?DetailOne)

LINE,AT(105,78,-49,0),USE(?Line1),LINEWIDTH(3) !3 pixel line
BOX,AT(182,27,50,50),USE(?Box1),LINEWIDTH(3) !Box with 3 pixel border
STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END

END

window WINDOW('Caption'),AT(,,260,100),GRAY
LINE,AT(105,78,-49,0),USE(?Line1),LINEWIDTH(3) !3 pixel line
BOX,AT(182,27,50,50),USE(?Box1),LINEWIDTH(3) !Box with 3 pixel border

END

Language Reference Manual 470

LINK (create OLE control link to object from file)

 LINK(filename)

LINK Specifies creating a link to an object for the OLE control from a data file specific
to an OLE server application.

filename A string constant containing the name of the file.

The LINK attribute (PROP:LINK, write-only) specifies creating a link to an object for the OLE
control from a data file specific to an OLE server application. The filename parameter syntax must
be a fully-qualified pathname, unless the file exists in the same directory as the OLE Controller
application.

Example:

WinOne WINDOW,AT(0,0,200,200)
OLE,AT(10,10,160,100),USE(?OLEObject),LINK('Book1.XLS') !Excel Spreadsheet
MENUBAR
MENU('&Clarion App')
ITEM('&Deactivate Object'),USE(?DeactOLE)

END
END

END
END

9 – Window and Report Attributes 471

MARK (set multiple selection mode)

 MARK(flag)

MARK Enables multiple items selection.

flag The label of a QUEUE field.

The MARK attribute (PROP:MARK, write-only) enables multiple item selections from a LIST or
COMBO control. When an item in the LIST is selected, the appropriate flag field is set to true (1).
Each marked entry is automatically highlighted in the LIST or COMBO. Changing the value of the
flag field also changes the screen display for the related LIST or COMBO entry.

If the MARK attribute is specified on the LIST or COMBO, the IMM attribute may not be.

Example:

Que1 QUEUE
MarkFlag BYTE
F1 LONG
F2 STRING(8)

END

WinOne WINDOW,AT(0,0,160,400),SYSTEM
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1.F1),MARK(Que1.MarkFlag)
COMBO(@S8),AT(120,120,,),USE(?C1),FROM(Que1.F2),MARK(Que1.MarkFlag)

END

CODE
DO LoadQue !Load Que1 with data
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

END
END
LOOP X# = 1 to RECORDS(Que1) !Loop through queue entries
GET(Que1,X#)
IF Que1.MarkFlag !If the user marked the entry
DO ProcessMarked ! then process it

END
END

Language Reference Manual 472

MASK (set pattern editing data entry)

 MASK

The MASK attribute (PROP:MASK) specifies pattern input editing mode for all controls in the
window (when placed on the WINDOW statement). Toggling the value of PROP:MASK for a
window only affects controls created after--it does not affect any existing controls.

Pattern input editing mode means that, as the user types in data, each character is automatically
validated against the control's picture for proper input (numbers only in numeric pictures, etc.).
This forces the user to enter data in the format specified by the control's display picture.

If MASK is omitted, Windows free-input is allowed in the controls. Free-input means the user's
data is formatted to the control's picture only after entry. This allows users to enter data as they
choose and it is automatically formatted to the control's picture after entry. If the user types in
data in a format different from the control's picture, the libraries attempt to determine the format
the user used, and convert the data to the control's display picture. For example, if the user types
"January 1, 1995" into a control with a display picture of @D1, the runtime library formats the
user's input to "1/1/95." This action occurs only after the user completes data entry and moves to
another control. If the runtime library cannot determine what format the user used, it will not
update the USE variable. It then beeps and leaves the user on the same control with the data
they entered, to allow them to try again.

Example:

!A Window with pattern input editing enabled
Win2 WINDOW,MASK

END

!Window with controls with pattern input editing enabled
Win2 WINDOW,MASK

COMBO(@P(###) ###-####P),AT(120,120,20,20),USE(Phone),FROM(Q1:F2)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q)
ENTRY(@D2),AT(100,200,20,20),USE(DateField)

END

9 – Window and Report Attributes 473

MAX (set maximize control or total maximum)

 MAX([variable])

MAX Specifies a maximize control on an APPLICATION or WINDOW, or calculates
the maximum value a REPORT STRING control's USE variable has contained so
far.

variable The label of a numeric variable to receive the intermediate values calculated for
the MAX (valid only in a REPORT). This allows you to create totals on other
totals. The value in the variable is internally updated by the print engine, so it is
only useful for use by other "totaling" controls within the REPORT structure.

The MAX attribute (PROP:MAX) specifies a maximize control on an APPLICATION or WINDOW,
or calculates the maximum value a REPORT STRING control's USE variable has contained so
far.

Window Usage

The maximize control appears in the top right corner of the window as a box containing either an
upward pointing triangle, or an upward pointing triangle above a downward pointing triangle (in
Windows 3.1). When the user clicks the mouse on it, an APPLICATION or non-MDI WINDOW
expands to occupy the full screen, an MDI WINDOW expands to occupy the entire
APPLICATION. Once expanded, the maximize control appears as an upward pointing triangle
above a downward pointing triangle. Click the mouse on it again, and the window returns to its
previous size and the maximize control appears as an upward pointing triangle.

Report Usage

The MAX attribute specifies printing the maximum value the STRING control's USE variable has
contained so far. Unless the TALLY attribute is present, the result is calculated as follows:

• A MAX field in a DETAIL structure is evaluated each time the DETAIL structure
containing the control PRINTs. This provides a "running" maximum value.

• A MAX field in a group FOOTER structure is evaluated each time any DETAIL structure
in the BREAK structure containing the control PRINTs. This provides the maximum value
of the variable in the group.

• A MAX field in a page FOOTER structure is evaluated each time any DETAIL structure in
any BREAK structure PRINTs. This is the maximum value of the variable in the page (or
report to date).

• A MAX field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The MAX value is reset only if the RESET or PAGE attribute is also specified.

Language Reference Manual 474

Example:
!A Window with a maximize button:

Win2 WINDOW,MAX
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(LocalVar),USE(?BreakOne)
Break2 BREAK(Pre:Key1),USE(?BreakTwo)
Detail DETAIL,AT(0,0,6500,1000),USE(?DetailOne)

STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Group Maximum:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(Pre:F1),MAX(LocalVar),RESET(Break2)
END
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Grand Maximum:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(LocalVar),MAX,TALLY(?BreakTwo)
END
END
END

See Also:

ICONIZE

ICON

MAXIMIXE

IMM

TALLY

RESET

PAGE

9 – Window and Report Attributes 475

MAXIMIZE (set window open maximized)

 MAXIMIZE

The MAXIMIZE attribute (PROP:MAXIMIZE) specifies the APPLICATION or WINDOW is opened
maximized.When maximized, an APPLICATION or non-MDI WINDOW expands to occupy the full
screen, and an MDI WINDOW expands to occupy the entire APPLICATION. Once expanded, the
maximize control appears as an upward pointing triangle above a downward pointing triangle (in
Windows 3.1).

With the SYSTEM built-in variable as the property assignment target, PROP:MAXIMIZE returns 1
if the Windows PIF setting for the application is set to open the application maximized.

Example:

!A Window with a maximize button, opened maximized:
Win2 WINDOW,MAX,MAXIMIZE

END

See Also:

MAX

IMM

Language Reference Manual 476

MDI (set MDI child window)

 MDI

The MDI attribute (PROP:MDI, read-only) specifies a WINDOW that acts as a "child" window to
an APPLICATION. MDI windows are clipped to the APPLICATION frame--they display only in the
APPLICATION's client area. MDI windows automatically move when the APPLICATION frame is
moved, and are totally concealed by minimizing the APPLICATION. An MDI WINDOW cannot
open until there is an active APPLICATION.

Modeless Windows

MDI "child" windows are modeless; the user may change to the top window of another execution
thread, within the same application or any other application running in Windows, at any time. An
MDI "child" window must not be on the same execution thread as the APPLICATION. Therefore,
any MDI "child" window called directly from the APPLICATION must be in a separate procedure
so the START procedure can be used to begin a new execution thread. Once started, multiple
MDI "child" windows may be called in the new thread.

Application Modal Windows

A non-MDI WINDOW operates independently of any previously opened APPLICATION. It will,
however, disable an APPLICATION if it or any of its MDI "child" windows are on the same
execution thread as the non-MDI window. This makes a non-MDI window opened in an MDI
thread an "application modal" window which effectively disables the application while the user has
the window open (unless it is opened in its own separate execution thread). It does not, however,
prevent the user from changing to another application running under Windows. An MDI window
may not be opened on the same thread as an already open non-MDI window.

Example:

Win2 WINDOW,MDI !An MDI child Window
END

See Also:

MODAL

THREAD

9 – Window and Report Attributes 477

MIN (set total minimum)

 MIN([variable])

MIN Calculates the minimum value the STRING control's USE variable has contained
so far.

variable The label of a numeric variable to receive the intermediate values calculated for
the MIN. This allows you to create totals on other totals. The value in the variable
is internally updated by the print engine, so it is only useful for use within the
REPORT structure.

The MIN attribute (PROP:MIN) specifies printing the minimum value the STRING control's USE
variable has contained so far. Unless the TALLY attribute is present, the result is calculated as
follows:

• A MIN field in a DETAIL structure is evaluated each time the DETAIL structure containing
the control PRINTs. This provides a "running" minimum value.

• A MIN field in a group FOOTER structure is evaluated each time any DETAIL structure in
the BREAK structure containing the control PRINTs. This provides the minimum value of
the variable in the group.

• A MIN field in a page FOOTER structure is evaluated each time any DETAIL structure in
any BREAK structure PRINTs. This is the minimum value of the variable in the page (or
report to date).

• A MIN field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The MIN value is reset only if the RESET or PAGE attribute is also specified.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(LocalVar),USE(?BreakOne)
Break2 BREAK(Pre:Key1),USE(?BreakTwo)
Detail DETAIL,AT(0,0,6500,1000),USE(?DetailOne)

STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Group Minimum:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(Pre:F1),MIN(LocalVar),RESET(Break2)
END
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Grand Minimum:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(LocalVar),MIN,TALLY(?BreakTwo)
END
END;END

Language Reference Manual 478

MODAL (set system modal window)

 MODAL

MODAL has no effect for 32-bit applications, and has been deprecated in this release. The
Microsoft Win32 API does not support system modal windows.

Application Modal Windows

A WINDOW without the MODAL attribute, may be either "application-modal" or "modeless." An
application-modal window is a non-MDI window opened as the top window of an MDI execution
thread. An application-modal window restricts the user from moving to another execution thread
in the same application, but does not restrict them from changing to another Windows program.

Modeless Windows

A modeless window is an MDI "child" WINDOW (with the MDI attribute) without the MODAL
attribute. From a modeless window, The top window on other execution threads may be selected
by the mouse, keyboard, or menu commands. If so, the other window takes focus and becomes
uppermost on the video display. Any window not on the top of its execution thread may not be
selected to receive focus, even from a modeless window.

Example:

Win2 WINDOW,MODAL !A system-modal Window
END

See Also:

MDI

THREAD

9 – Window and Report Attributes 479

MSG (set status bar message)

 MSG(text)

MSG Specifies text to display in the status bar.

text A string constant containing the message to display in the status bar.

The MSG attribute (PROP:MSG) specifies text to display in the first zone of the status bar.

On a control declaration, MSG specifies the text to display when the control has focus. If the
control has non-persistent focus (has the SKIP attribute, or is placed in a TOOLBAR or a window
with the TOOLBOX attribute) the text displays whenever the mouse cursor is positioned over the
control.

On an APPLICATION or WINDOW structure, MSG specifies text to display in the first zone of the
status bar when the control with focus has no MSG attribute of its own.

Example:

MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS
MENUBAR
MENU('&File'),USE(?FileMenu)
ITEM('&Open...'),USE(?OpenFile),MSG('Open a file')
ITEM('&Close'),USE(?CloseFile),DISABLE,MSG('Close the open file')
ITEM(),SEPARATOR
ITEM('E&xit'),USE(?MainExit),MSG('Exit the program')
END
END
END

WinOne WINDOW,AT(0,0,160,400),MSG('Enter Data') !Default MSG to use
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),MSG('Enter or Select')
TEXT,AT(20,0,40,40),USE(E2) !Default MSG used
ENTRY(@S8),AT(100,200,20,20),USE(E2) !Default MSG used
CHECK('&A'),AT(0,120,20,20),USE(?C7),MSG('On or Off')
OPTION('Option 1'),USE(OptVar),MSG('Pick One or Two')
RADIO('Radio 1'),AT(120,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(140,0,20,20),USE(?R2)
END

END

See Also:

STATUS

Language Reference Manual 480

NOBAR (set no highlight bar)

 NOBAR

The NOBAR attribute (PROP:NOBAR) specifies the currently selected element in the LIST is only
highlighted when the LIST control has focus.

9 – Window and Report Attributes 481

NOCASE (case insensitive report BREAK)

 NOCASE

The NOCASE attribute (PROP:NOCASE) of a BREAK structure in a REPORT declaration makes
the comparison for detecting a changed value (indicating a group break) insensitive to the ASCII
upper/lower case sorting convention. All characters in the break field and the saved comparison
value are converted to upper case before the comparison. This case conversion has no affect on
the case of the stored data. The NOCASE attribute has no effect on non-alphabetic characters.

Example:

Report REPORT
BREAK(BreakVariable),NOCASE !Case insensitive group break
HEADER
STRING(@n4),USE(BreakVariable)
END

Detail DETAIL
STRING(@n4),USE(SomeField)
END
END

END

See Also:

BREAK

Language Reference Manual 482

NOMERGE (set merging behavior)

 NOMERGE

The NOMERGE attribute (PROP:NOMERGE) indicates that the MENUBAR or TOOLBAR on a
WINDOW should not merge with the Global menu or toolbar.

The NOMERGE attribute on an APPLICATION's MENUBAR indicates that the menu is local and
to be displayed only when no MDI "child" windows are open and that there is no Global menu.
The NOMERGE attribute on an APPLICATION's TOOLBAR indicates that the tools are local and
display only when no MDI "child" windows are open--there are no Global tools.

Without the NOMERGE attribute, an MDI WINDOW's menu and toolbar are automatically merged
with the global menu and toolbar, and then displayed in the APPLICATION menu and toolbar.
When NOMERGE is specified, the WINDOW's menu and toolbar overwrite the Global menu and
toolbar. The menu and toolbar displayed when the WINDOW has focus are only the WINDOW's
own menu and toolbar. However, they are still displayed on the APPLICATION.

A MENUBAR or TOOLBAR specified in a non-MDI WINDOW is never merged with the Global
menu or toolbar--they appear in the WINDOW.

Examples:

!An MDI application frame window with local-only menu and toolbar:
MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS

MENUBAR,NOMERGE
ITEM('E&xit'),USE(?MainExit)
END
TOOLBAR,NOMERGE
BUTTON('Exit'),USE(?MainExitButton)
END
END

9 – Window and Report Attributes 483

!MDI window with its own menu and toolbar, overwriting the application's:
MDIChild WINDOW('Dialog Window'),MDI,SYSTEM,MAX,STATUS

MENUBAR,NOMERGE
MENU('Edit'),USE(?EditMenu)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)
END
END
TOOLBAR,NOMERGE
BUTTON('Cut'),USE(?CutButton),STD(STD:Cut)
BUTTON('Copy'),USE(?CopyButton),STD(STD:Copy)
BUTTON('Paste'),USE(?PasteButton),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field),MSG('Enter some text here')
BUTTON('&OK'),USE(?Exit),DEFAULT
END

See Also:

MENUBAR

TOOLBAR

Language Reference Manual 484

NOSHEET (set "floating" TABs)

 NOSHEET

The NOSHEET attribute (PROP:NOSHEET) on a SHEET control specifies the TABs display
without a visible sheet to contain the controls. This creates a "floating tab" effect.

9 – Window and Report Attributes 485

OPEN (open OLE control object from file)

 OPEN(object)

OPEN Specifies opening a saved object for the OLE control from an OLE Compound
Storage file.

object A string constant containing the name of the OLE Compound Storage file and the
object within it to open.

The OPEN attribute (PROP:OPEN, write-only) specifies opening a saved object for the OLE
control from an OLE Compound Storage file. When the object is opened, the saved version of the
container properties are reloaded, so properties do not need to be specified on an object opened.
The object parameter syntax must take the form: Filename\!ObjectName.

Example:

WinOne WINDOW,AT(0,0,200,200)
OLE,AT(10,10,160,100),USE(?OLEObject),OPEN('SavFile.OLE\!MyObject')
MENUBAR
MENU('&Clarion App')
ITEM('&Deactivate Object'),USE(?DeactOLE)
END
END
END

END

Language Reference Manual 486

PAGE (set page total reset)

 PAGE

The PAGE attribute (PROP:PAGE) specifies the CNT, SUM, AVE, MIN, or MAX is reset to zero
(0) when page break occurs.

9 – Window and Report Attributes 487

PAGEAFTER (set page break after)

 PAGEAFTER([newpage])

PAGEAFTER Specifies the structure is printed, then initiates page overflow.

newpage An integer constant or constant expression that specifies the page number to
print on the next page (PROP:PageAfterNum, equivalent to
{PROP:PageAfter,2}). If zero (0) or omitted, forced page overflow does not occur.
If negative one (-1) , the current page number increments during page overflow.

The PAGEAFTER attribute (PROP:PAGEAFTER) specifies that the DETAIL, or group HEADER
or FOOTER structure (contained within a BREAK structure), initiates page overflow after it is
printed. This means that the print structure on which the PAGEAFTER attribute is present is
printed, followed by the page FOOTER, and then the FORM and page HEADER.

The newpage parameter, if present, resets automatic page numbering at the number specified.

Example:
CustRpt REPORT

HEADER
!structure elements
END

Break1 BREAK(SomeVariable)
HEADER
!structure elements
END

CustDetail DETAIL
!structure elements
END
FOOTER,PAGEAFTER(-1) !Group Footer, initiates page overflow
!structure elements
END
END
FOOTER
!structure elements
END
END

Language Reference Manual 488

PAGEBEFORE (set page break first)

 PAGEBEFORE([newpage])

PAGEBEFORE Specifies the structure is printed on a new page, after page overflow.

newpage An integer constant or constant expression that specifies the page number to
print on the new page (PROP:PageBeforeNum, equivalent to
{PROP:PageBefore,2}). If zero (0) or omitted, forced page overflow does not
occur. If negative one (-1) , the current page number increments during page
overflow.

The PAGEBEFORE attribute (PROP:PAGEBEFORE) specifies that the DETAIL, or group
HEADER or FOOTER structure (contained within a BREAK structure), is printed on a new page,
after page overflow. This means that first, the page FOOTER is printed, then the FORM and page
HEADER. The print structure on which the PAGEBEFORE attribute is present is printed only after
these page overflow actions are complete.

The newpage parameter, if present, resets automatic page numbering at the number specified.

Example:
CustRpt REPORT

HEADER
!structure elements
END

Break1 BREAK(SomeVariable)
HEADER,PAGEBEFORE(-1) !Group Header, initiates page overflow
!structure elements
END

CustDetail DETAIL
!structure elements
END
FOOTER
!structure elements
END
END
FOOTER
!structure elements
END

END

9 – Window and Report Attributes 489

PAGENO (set page number print)

 PAGENO

The PAGENO attribute (PROP:PAGENO) specifies the STRING control prints the current page
number.

Language Reference Manual 490

PALETTE (set number of hardware colors)

 PALETTE(colors)

PALETTE Specifies the number of hardware colors displayed in the window.

colors An integer constant specifying the number of hardware colors displayed in the
window.

The PALETTE attribute (PROP:PALETTE) on an APPLICATION or WINDOW structure specifies
how many colors in the hardware palette you want this window to use when it is the foreground
window. This is only applicable in hardware modes where a palette is in use and spare colors (not
reserved by the system) are available - in practice this means 256 color mode. This enforces a
particular set of colors for the graphics. 24-bit color (16.7M) does not use a hardware palette.
Values of PALETTE above 256 are not recommended.

The value returned by PROP:PALETTE is the number of colors actually assigned (not necessarily
the number asked for). Since the system normally reserves 20 in 256-color mode, setting
PROP:PALETTE = 256 then immediately retrieving its value will usually result in a returned value
of 236.

Example:

WinOne WINDOW,AT(0,0,160,400),PALETTE(26) !Display 26-color
IMAGE,AT(120,120,20,20),USE(ImageField)

END

See Also:

IMAGE

9 – Window and Report Attributes 491

PAPER (set report paper size)

 PAPER([type] [,width] [,height])

PAPER Defines the paper size for the report.

type An integer constant or EQUATE that specifies a standard Windows paper size.
EQUATES for these are contained in the PRNPROP.CLW file.

width An integer constant or constant expression that specifies the width of the paper
(PROPPRINT:paperwidth, equivalent to {PROPPRINT:PAPER,2})

height An integer constant or constant expression that specifies the height of the paper
(PROPPRINT:paperheight, equivalent to {PROPPRINT:PAPER,3}).

The PAPER attribute (PROPPRINT:PAPER) on a REPORT structure defines the paper size for
the report. The width and height parameters are only required when PAPER:User is selected as
the type. Not all printers support all paper sizes.

The values contained in the width, and height parameters default to dialog units unless the
THOUS, MM, or POINTS attribute is also present. Dialog units are defined as one-quarter the
average character width by one-eighth the average character height. The size of a dialog unit is
dependent upon the size of the default font for the report. This measurement is based on the font
specified in the FONT attribute of the report, or the printer's default font.

Example:
CustRpt1 REPORT,AT(1000,1000,6500,9000),THOUS,PAPER(PAPER:Custom,8500,7000)

!print on 8.5" x 7" paper
!report declarations
END

CustRpt2 REPORT,AT(72,72,468,648),POINTS,PAPER(PAPER:A4)
!print on A4 size paper
!report declarations
END

Language Reference Manual 492

PASSWORD (set data non-display)

 PASSWORD

The PASSWORD attribute (PROP:PASSWORD) specifies non-display of the data entered in the
ENTRY control. When the user types in data, asterisks are displayed on screen for each
character entered. The Windows standard Cut and Copy features are disabled when the
PASSWORD attribute is active.

9 – Window and Report Attributes 493

PREVIEW (set report output to metafiles)

 PREVIEW(queue)

PREVIEW Specifies report output goes to Windows metafiles containing one report page
per file.

queue The label of a QUEUE or a field in a QUEUE to receive the names of the
metafiles.

The PREVIEW attribute (PROP:PREVIEW. write-only) on a REPORT sends the report output to
Windows metafiles containing one report page per file. The PREVIEW attribute names a queue to
receive the names of the metafiles. The filenames are temporary filenames internally created by
the Clarion library and are complete file specifications (up to 64 characters, including drive and
path). These temporary files are deleted from disk when you CLOSE the REPORT, unless you
use PROP:TempNameFunc to provide your own names for the files.

You can create a window to display the report in an IMAGE control, using the queue containing
the file names to set the IMAGE control's {PROP:text} property. This allows the end user to view
the report before printing. A runtime-only property, {PROP:flushpreview}, when set to ON, flushes
the metafiles to the printer.

Example:
SomeReport PROCEDURE

WMFQue QUEUE !Queue to contain .WMF filenames
PageImage STRING(64)

END

NextEntry BYTE(1) !Queue entry counter variable

Report REPORT,PREVIEW(WMFQue.PageImage) !Report with PREVIEW attribute
DetailOne DETAIL

!Report controls
END

END

ViewReport WINDOW('View Report'),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(''),AT(0,0,320,180),USE(?ImageField)
BUTTON('View Next Page'),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON('Print Report'),AT(80,180,60,20),USE(?PrintReport)
BUTTON('Exit Without Printing'),AT(160,180,60,20),USE(?ExitReport)
END

CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report

Language Reference Manual 494

LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

PRINT(DetailOne)
END
ENDPAGE(Report)
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue.PageImage !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) !Check for end of report
CYCLE

END
GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue.PageImage!Load next report page
DISPLAY !and display it

OF ?PrintReport
Report{PROP:flushpreview} = TRUE !Flush files to printer
BREAK !and exit procedure

OF ?ExitReport
BREAK !Exit procedure

END
END
CLOSE(ViewReport) !Close window
FREE(WMFQue) !Free the queue memory
CLOSE(Report) !Close report (deletes all .WMF files)
RETURN !and return to caller

9 – Window and Report Attributes 495

RANGE (set range limits)

 RANGE(lower,upper)

RANGE Specifies the valid range of data values the user may select in a SPIN control, or
the range of values displayed in a PROGRESS control.

lower A numeric constant that specifies the lower inclusive limit of valid data
(PROP:RangeLow, equivalent to {PROP:Range,1}).

upper A numeric constant that specifies the upper inclusive limit of valid data
(PROP:RangeHigh, equivalent to {PROP:Range,2}).

The RANGE attribute (PROP:RANGE) specifies the valid range of data values the user may
select in a SPIN control. RANGE also defines the range of values that are displayed in a
PROGRESS control.This attribute works in conjunction with the STEP attribute on SPIN controls.
On a SPIN control, the STEP attribute provides the user with the valid choices within the range.

PROP:RangeHigh returns "+Infinity" if no RANGE is set. PROP:RangeLow returns "-Infinity" if no
RANGE is set.

PROP:RangeLow and PROP:RangeHigh are also applicable for LIST and COMBO controls with
vertical scrollbars (Read Only). PROP:RangeLow returns the lower limit of possible
PROP:VScrollPos values, and PROP:RangeHigh returns upper limit. The limits or boundaries
mentioned in the description of PROP:VScrollPos are correct only if number of records in the list
box source is less or equal to number of visible rows (i.e., for page loaded browses).

Example:

WinOne WINDOW,AT(0,0,160,400)
SPIN(@N4.2),AT(280,0,20,20),USE(SpinVar1),RANGE(.05,9.95),STEP(.05)
SPIN(@n3),AT(280,0,20,20),USE(SpinVar2),RANGE(5,995),STEP(5)

END

Language Reference Manual 496

READONLY (set display-only)

 READONLY

The READONLY attribute (PROP:READONLY) specifies a display-only COMBO, ENTRY, SPIN
or TEXT control. The control may receive input focus with the mouse, but may not enter data. If
the user attempts to change the displayed value, a beep warns the user that data entry is not
allowed.

9 – Window and Report Attributes 497

REPEAT (set repeat button rate)

 REPEAT(time)

REPEAT Specifies the rate of event generation.

time An integer constant containing the rate to set, in hundredths of a second.

The REPEAT attribute (PROP:REPEAT) specifies rate of event generation for automatically
repeating buttons. For a BUTTON control with the IMM attribute, this is the generation rate for
EVENT:Accepted. For a SPIN control, this is the generation rate for EVENT:NewSelection
generated by the spin buttons.

Assigning a zero (0) to PROP:REPEAT resets the default setting, any other value sets the repeat
rate for the control.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

BUTTON('Press Me'),AT(10,10,40,20),USE(?PressMe),IMM,REPEAT(100) !1/second
SPIN(@n3),AT(60,10,40,10),USE(SpinVar),RANGE(0,999),REPEAT(100) !1/second
END

CODE
OPEN(MDIChild)
?PressMe{PROP:Delay} = 50 !Set delay to 1/2 second
?SpinVar{PROP:Delay} = 50 !Set delay to 1/2 second
?PressMe{PROP:Repeat} = 5 !Reset repeat to 5 hundredths of a second
?SpinVar{PROP:Repeat} = 5 !Reset repeat to 5 hundredths of a second

See Also:

IMM

DELAY

Language Reference Manual 498

REQ (set required entry)

 REQ

The REQ attribute (PROP:REQ) specifies an ENTRY or TEXT control that may not be left blank
or zero. The REQ attribute on an ENTRY or TEXT control is not checked until a BUTTON with the
REQ attribute is pressed, or the INCOMPLETE() procedure is called.

When a BUTTON with the REQ attribute is pressed, or the INCOMPLETE() procedure is called,
all ENTRY and TEXT controls with the REQ attribute are checked to ensure they contain data.
The first control encountered in this check that does not contain data immediately receives input
focus.

9 – Window and Report Attributes 499

RESET (set total reset)

 RESET(breaklevel)

RESET Resets the CNT, SUM, AVE, MIN, or MAX to zero (0).

breaklevel The label of a BREAK structure.

The RESET attribute (PROP:RESET) specifies the group break at which the CNT, SUM, AVE,
MIN, or MAX is reset to zero (0). PROP:RESET returns zero (0) if not present, else it returns the
breaklevel nesting depth.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(Pre:Key1)

HEADER,AT(0,0,6500,1000)
STRING('Group Head'),AT(3000,500,1500,500),FONT('Arial',18)
END

Detail DETAIL,AT(0,0,6500,1000)
STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000)
STRING('Group Total:'),AT(5500,500,1500,500)
STRING(@N$11.2),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Break1)
END
END
END

Language Reference Manual 500

RESIZE (set variable height TEXT control)

 RESIZE

The RESIZE attribute (PROP:RESIZE) specifies height of the TEXT control varies according to
the amount of data to print in it, up to the maximum height specified by the control's AT attribute.

The height parameter in the AT attribute of the DETAIL, HEADER, or FOOTER strcuture
containing the TEXT control must not be set (let it default) for the RESIZE attribute to have any
effect.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,) !Detail height defaults

STRING(@N$11.2),AT(500,500,500,),USE(Pre:F1)
TEXT,AT(500,1000,500,5000),USE(Pre:Memo1),RESIZE !Print height up to 5"
END
END

9 – Window and Report Attributes 501

RIGHT (set MENU position)

 RIGHT

The RIGHT attribute (PROP:RIGHT) specifies the MENU is placed at the right end of the action
bar.

Language Reference Manual 502

ROUND (set round-cornered BOX)

 ROUND

The ROUND attribute (PROP:ROUND) specifies a BOX control with rounded corners.

9 – Window and Report Attributes 503

RTF (declare TEXT control as RichEdit)

 RTF(savetarget)

RTF Declare a TEXT field with RTF attributes.

savetarget A byte or EQUATE that specifies that the TEXT control will be saved to a Field
(TEXT:FIELD or 0) or File (TEXT:FILE or 1)

The RTF attribute declares a TEXT control as one with Rich Text Control attributes. The
necessary code is generated and used to manipulate the text within the control as Rich Text.

Clarion's implementation of Rich Text allows the rich text field to be saved to a field or a
separate text file. The minimum size of a target field is 256 characters. This is needed in order
to maintain the rich text header information. If the field contains a lot of formatting a larger field
size will be needed.

The components of a rich text control include a Toolbar, Format Bar, and Ruler. These
components of the rich text control are optional. They may be shown or hidden at runtime. They
default to showing at runtime. The bars may not be modified at design time in the window
formatter. When the control is placed on the window, it is a basic TEXT control.

Language Reference Manual 504

SCROLL (set scrolling control)

 SCROLL

The SCROLL attribute (PROP:SCROLL) specifies a control that moves with the window when the
WINDOW scrolls. This allows "virtual" windows larger than the physical video display.

The presence of the SCROLL attribute means that the control stays fixed at a position in the
window relative to the top left corner of the virtual window, whether that position is currently in
view or not. This means that the control appears to move as the window scrolls.

If the SCROLL attribute is omitted, the control stays fixed at a position in the window relative to
the top left corner of the currently visible portion of the window. This means that the control
appears to stay in the same position on screen while the rest of the window scrolls, which is
useful for controls which should stay visible to the user at all times (such as Ok or Cancel
buttons).

Mixing controls with and without the SCROLL attribute on the same WINDOW can result in
multiple controls appearing to occupy the same screen position. This occurs because the controls
with SCROLL move and the controls without SCROLL do not. This condition is temporary and
scrolling the window further will correct the situation. The situation can be avoided entirely by
careful placement of controls in the window. For example, you can place all controls without
SCROLL at the bottom of the window then place all controls with SCROLL above them extending
to the right and left. This would create a window that is designed to scroll horizontally (the
WINDOW should have the HSCROLL attribute and not the VSCROLL or HVSCROLL attributes).

9 – Window and Report Attributes 505

SEPARATOR (set separator line ITEM)

 SEPARATOR

The SEPARATOR attribute specifies an ITEM in a MENU that displays a horizontal line to group
ITEMs within the MENU. The USE attribute may be specified for the ITEM.

Example:
ITEM,SEPARATOR,USE(?FileSeprator1)

Language Reference Manual 506

SINGLE (set TEXT for single line entry)

 SINGLE

The SINGLE attribute (PROP:SINGLE) specifies the control is only for single line data entry. This
is specifically to allow use of TEXT controls instead of ENTRY for data entry in languages that
write from right to left (such as Hebrew or Arabic).

9 – Window and Report Attributes 507

SKIP (set Tab key skip or conditional print control)

 SKIP

The SKIP attribute (PROP:SKIP) on a window control specifies user access to the control is only
with the mouse or an accelerator key, not the TAB key. Data entry controls receive input focus
only during data entry and the control does not retain focus, while non-data entry controls do not
receive or retain input focus (the same behavior demonstrated by controls in a toolbar or toolbox).

When the mouse is over a control with the SKIP attribute, the control's MSG attribute displays in
the status bar.

The SKIP attribute on a report control specifies the STRING or TEXT control prints only if its USE
variable contains data. If the USE variable does not contain data, the STRING or TEXT control
does not print and all controls following in the band "move up" to fill in the space. This is most
useful for label printing to prevent extra blank lines in addresses.

Example:
CustRpt REPORT,AT(1000,1000,6000,9000),THOUS
Detail DETAIL,AT(0,0,2000,1000) !Fixed height detail

STRING(@s35),AT(250,250,500,),USE(Pre:Name)
STRING(@s35),AT(250,250,500,),USE(Pre:Address1)
STRING(@s35),AT(250,250,500,),USE(Pre:Address2),SKIP !don't print if blank
STRING(@s35),AT(250,250,500,),USE(CityStateZip) ! and move this up
END
END

Language Reference Manual 508

SMOOTH (set smooth progress bar increments)

SMOOTH

The SMOOTH attribute (PROP:SMOOTH) activates a smooth incremental display of the progress
control instead of the standard “block” format. Valid only for a PROGRESS control.

SPREAD (set evenly spaced TAB controls)

 SPREAD

The SPREAD attribute (PROP:SPREAD) specifies a SHEET's TAB controls are evenly spaced.

9 – Window and Report Attributes 509

STATUS (set status bar)

 STATUS([widths])

STATUS Specifies the presence of a status bar.

widths A list of integer constants (separated by commas) specifying the size of each
zone in the status bar. If omitted, the status bar has one zone the width of the
window.

The STATUS attribute (PROP:STATUS) specifies the presence of a status bar at the base of the
APPLICATION or WINDOW. The status bar of an MDI WINDOW is always displayed at the
bottom of the APPLICATION. A WINDOW without the MDI attribute displays its status bar at the
base of the WINDOW. If the STATUS attribute is not present on the APPLICATION or WINDOW,
there is no status bar.

The status bar may be divided into multiple zones specified by the widths parameters. The size of
each zone is specified in dialog units. A negative value indicates the zone is expandable, but has
a minimum width indicated by the parameter's absolute value. If no widths parameters are
specified, a single expanding zone with no minimum width is created, which is equivalent to a
STATUS(-1).

PROP:STATUS contains the widths of each status bar section in separate array elements. A zero
(0) value is required in the last element to terminate the array.

The first zone of the status bar is always used to display MSG attributes. The MSG attribute string
is displayed in the status bar as long as its control field still has input focus. A control or menu
item without a MSG attribute causes the status bar to revert to its former state (either blank or
displaying the text previously displayed in the zone).

Text may be placed in, or retrieved from, any zone of the status bar using runtime property
assignment to PROP:StatusText. PROP:StatusText is an array containing the text of each section
of the status bar. A zero (0) value is required in the last element to terminate the array. The text
remains present until replaced.

Language Reference Manual 510

Example:

!An APPLICATION with a one-zone status bar:
MainWin APPLICATION,STATUS

END

!A WINDOW with a two-zone status bar:
Win1 WINDOW,STATUS(160,160)

END

CODE
OPEN(Win1)
Win1{PROP:STATUS,3} = 160 !Add a status bar zone
Win1{PROP:STATUS,4} = 0 !and terminate the array
Win1{PROP:StatusText,3} = 'Hello Zone 3' !Put text in the new zone

See Also:

MSG

9 – Window and Report Attributes 511

STD (set standard behavior)

 STD(behavior)

STD Specifies standard Windows behavior.

behavior An integer constant or EQUATE specifying the identifier of a standard windows
behavior.

The STD attribute (PROP:STD) specifies the control activates some standard Windows action.
This action is automatically executed by the runtime library and does not generate any events
(that is, the control does not receive an EVENT:Accepted).

EQUATE statements for the standard Windows actions are contained in the EQUATES.CLW file.
The following list is a representative sample of these (see EQUATES.CLW for the complete list):

 STD:WindowList List of open MDI windows
 STD:TileWindow Tile Windows
 STD:CascadeWindow Cascade Windows
 STD:ArrangeIcons Arrange Icons
 STD:HelpIndex Help Contents
 STD:HelpSearch Help Search dialog

Example:

MDIChild WINDOW('Child One'),MDI,SYSTEM,MAX
MENUBAR
MENU('Edit'),USE(?EditMenu)
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END
TOOLBAR
BUTTON('Cut'),USE(?CutButton),ICON(ICON:Cut),STD(STD:Cut)
BUTTON('Copy'),USE(?CopyButton),ICON(ICON:Copy),STD(STD:Copy)
BUTTON('Paste'),USE(?PasteButton),ICON(ICON:Paste),STD(STD:Paste)

END
END

Language Reference Manual 512

STEP (set SPIN increment)

 STEP(count)

STEP Specifies a SPIN control RANGE attribute's increment/decrement value.

count A numeric constant specifying the amount to increment or decrement.

The STEP attribute (PROP:STEP) specifies the amount by which a SPIN control's value is
incremented or decremented within its valid RANGE. The default STEP value is 1.0.

Example:

WinOne WINDOW,AT(0,0,160,400)
SPIN(@N4.2),AT(280,0,20,20),USE(SpinVar1),RANGE(.05,9.95),STEP(.05)
SPIN(@N3),AT(280,0,20,20),USE(SpinVar2),RANGE(5,995),STEP(5)
SPIN(@T3),AT(280,0,20,20),USE(SpinVar3),RANGE(1,8640000),STEP(6000)

END

9 – Window and Report Attributes 513

STRETCH (set OLE object stretching)

 STRETCH

The STRETCH attribute (PROP:STRETCH, write-only) specifies the OLE object stretches to
completely fill the size specified by the OLE container control's AT attribute. This attribute does
not preserve the object's aspect ratio.

Language Reference Manual 514

SUM (set total)

 SUM([variable])

SUM Calculates the the sum of the values contained in the STRING control's USE
variable.

variable The label of a numeric variable to receive the intermediate values calculated for
the SUM. This allows you to create totals on other totals. The value in the
variable is internally updated by the print engine, so it is only useful for use within
the REPORT structure.

The SUM attribute (PROP:SUM) specifies printing the sum of the values contained in the
STRING control's USE variable. Unless the TALLY attribute is present, the result is calculated as
follows:
• A SUM field in a DETAIL structure increments each time the DETAIL structure containing

the control PRINTs. This provides a "running" total.

• A SUM field in a group FOOTER structure increments each time any DETAIL structure in
the BREAK structure containing the control PRINTs. This provides the sum of the value
contained in the variable in the group.

• A SUM field in a page FOOTER structure increments each time any DETAIL structure in
any BREAK structure PRINTs. This is the sum of the values contained in the variable in
the page.

• A SUM field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The SUM value is reset only if the RESET or PAGE attribute is also specified.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(LocalVar),USE(?BreakOne)
Break2 BREAK(Pre:Key1),USE(?BreakTwo)
Detail DETAIL,AT(0,0,6500,1000),USE(?DetailOne)

STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Group Total:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(Pre:F1),SUM(LocalVar),RESET(Break2)
END
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Grand Total:'),AT(5500,500)
STRING(@N$11.2),AT(6000,500),USE(LocalVar),SUM,TALLY(?BreakTwo)
END
END
END

9 – Window and Report Attributes 515

SYSTEM (set system menu)

 SYSTEM

The SYSTEM attribute (PROP:SYSTEM) specifies the presence of a Windows system menu
(also called the control menu) on the APPLICATION or WINDOW. This menu contains standard
Windows menu selections, such as: Close, Minimize, Maximize (the window), and Switch To
(another window). The actual selections available on a given window depend upon the attributes
set for that window.

Example:

!An APPLICATION with a system menu:
MainWin APPLICATION,SYSTEM

END

!A WINDOW with a system menu:
Win1 WINDOW,SYSTEM

END

Language Reference Manual 516

TALLY (set total calculation times)

 TALLY(points)

TALLY Specifies when to calculate an AVE, CNT, MAX, MIN, or SUM.

points A comma delimited list of the labels of the DETAIL and/or BREAK structures on
which to calculate the total.

The TALLY attribute (PROP:TALLY) specifies when to calculate an AVE, CNT, MAX, MIN, or
SUM. The appropriate total is calculated each time any of the DETAIL structures named in the
points list prints, or in the case of a BREAK structure, when the group break occurs.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(LocalVar),USE(?BreakOne)
Break2 BREAK(Pre:Key1),USE(?BreakTwo)

HEADER,AT(0,0,6500,1000),USE(?GroupHead)
STRING('Group Head'),AT(3000,500,1500,500),FONT('Arial',18)
END

Detail DETAIL,AT(0,0,6500,1000),USE(?DetailOne)
STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1)
END
END
FOOTER,AT(0,0,6500,1000),USE(?BreakOneGroupFoot)
STRING('Group Total:'),AT(5500,500,1500,500)
STRING(@N$11.2),AT(6000,500,500,500),USE(Pre:F1),CNT,TALLY(Break2)
END
END
END

CODE
OPENCustRpt)
CustRpt$?Pre:F1{PROP:Tally} = ?BreakOne !Change the TALLY to Break1

9 – Window and Report Attributes 517

THOUS, MM, POINTS (set report coordinate measure)

 THOUS

 MM

 POINTS

The THOUS, MM, and POINTS attributes specify the coordinate measures used to position
controls on the REPORT.

THOUS (PROP:THOUS) specifies thousandths of an inch, MM (PROP:MM) specifies millimeters,
and POINTS (PROP:POINTS) specifies points (there are seventy-two points per inch, both
vertically and horizontally).

If all these attributes are omitted, the measurements default to dialog units. Dialog units are
defined as one-quarter the average character width by one-eighth the average character height.
The size of a dialog unit is dependent upon the size of the default font for the report. This
measurement is based on the font specified in the FONT attribute of the REPORT, or the system
default font specified by Windows.

Language Reference Manual 518

TILED (set tiled image)

 TILED

The TILED attribute (PROP:TILED) indicates that the image displayed in the IMAGE control, or
the window or toolbar's background image)specified in the WALLPAPER attribute) displays at its
default size and is tiled to fill the entire window, toolbar, or area specified by the IMAGE's AT
attribute.

Example:

WinOne WINDOW,AT(,,380,200),MDI
IMAGE('MyWall.GIF'),AT(0,0,380,200),TILED

END
MDIChild WINDOW('Child One'),MDI,SYSTEM,MAX

MENUBAR
MENU('Edit'),USE(?EditMenu)
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)
END
END
TOOLBAR,USE(?Toolbar),WALLPAPER('MyWall.GIF'),TILED
BUTTON('Cut'),USE(?CutButton),ICON(ICON:Cut),STD(STD:Cut),FLAT
BUTTON('Copy'),USE(?CopyButton),ICON(ICON:Copy),STD(STD:Copy),FLAT
BUTTON('Paste'),USE(?PasteButton),ICON(ICON:Paste),STD(STD:Paste),FLAT
END
END

WinOne WINDOW,AT(,,380,200),MDI,WALLPAPER('MyWall.GIF'),TILED
END

See Also:

CENTERED

WALLPAPER

9 – Window and Report Attributes 519

TIMER (set periodic event)

 TIMER(period)

TIMER Specifies a periodic event.

period An integer constant or constant expression specifying the interval between timed
events, in hundredths of a second. The maximum period you can specify is 6553
(a Windows limitation, approximately 65 seconds). If zero (0), no timed events
generate.

The TIMER attribute (PROP:TIMER) specifies generation of a periodic field-independent event
(EVENT:Timer) whenever the time period passes. The FOCUS() procedure returns the number of
the control that currently has focus at the time of the event.

If the window that has the TIMER attribute does not have focus when EVENT:Timer occurs, the
window that does have focus first receives EVENT:Suspend before the window with the TIMER
attribute receives EVENT:Timer. After an EVENT:Suspend occurs in the window with focus,
EVENT:Resume is generated before any other events are generated for that window, and the
EVENT:Resume does not generate until there is another event to process in that window (the
window is suspended and timer events continue processing until there is some activity to process
in window with focus).

Example:

RunClock PROCEDURE
ShowTime LONG

!A WINDOW with a timed event occurring every second:
Win1 WINDOW,TIMER(100)

STRING(@T4),USE(ShowTime)
END

CODE
OPEN(Win1)
ShowTime = CLOCK()
ACCEPT
CASE EVENT()
OF EVENT:Timer
ShowTime = CLOCK()
DISPLAY

END
END
CLOSE(Win1)

Language Reference Manual 520

TIP (set "balloon help" text)

 TIP(string)

TIP Specifies the text to display when the mouse cursor pauses over the control.

string A string constant or expression that specifies the text to display and how the text
is formatted (single or
 multi-line TIP).

The TIP attribute (PROP:Tip) on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific limit on the number
of characters, the string (or any single line of a multi-line TIP) should not be longer than can be
displayed on the screen.

Multi-line tip conventions are as follows for both the TIP Attribute, TIP(), or the TIP
Property,{PROP:Tip}=:

All of the following will produce a two line TIP.
'Line1'& CHR(10)&'Line2' !CHR(10) = Line Feed
'Line1<13,10>Line2' !<13,10> = Carriage Return, Line Feed
'Line1<10>Line2' !<10> = Line Feed

Although it is valid on any control that can gain focus for user input, this attribute is most
commonly used on BUTTON controls with the ICON attribute that are placed on the TOOLBAR.
This allows the user to quickly determine the control's purpose without accessing the on-line Help
system.

Automatic TIP attribute display can be disabled for any single control or window by setting the
PROP:NoTips undeclared property to one (1). It can be disabled for an entire application by
setting the PROP:NoTips for the built-in variable SYSTEM to one (1).

The amount of tool tip delay is an operating system setting under the user's control.

Example:
Win WINDOW,AT(0,0,160,400)

TOOLBAR
BUTTON('E&xit'),USE(?MainExitButton),ICON(ICON:hand),TIP('Exit Window')
!Multi-line TIP:
BUTTON('&Open'),USE(?OpenButton),ICON(ICON:Open),TIP('Open'<10>'a File')

END
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)
ENTRY(@S8),AT(100,200,20,20),USE(E2)

END

9 – Window and Report Attributes 521

TOGETHER (set to print on a single page)

TOGETHER

The TOGETHER attribute (PROP:Together) specifies that the DETAIL, or group HEADER or
FOOTER structure (contained within a BREAK structure), is to only print on a single page, rather
than being automatically split if there is not sufficient room for it. The normal use is for structures
with multiple lines that need to be printed together, as in mailing labels.

Example:
CustRpt REPORT
TitlePage DETAIL !Title page detail structure

!structure elements
END

CustDetail DETAIL,TOGETHER !Print all detail elements together
!structure elements
END
FOOTER
!structure elements
END
END

Language Reference Manual 522

TOOLBOX (set toolbox window behavior)

 TOOLBOX

The TOOLBOX attribute (PROP:TOOLBOX) specifies a WINDOW that is "always on top" and
may be docked if the DOCK attribute is also present. Neither the WINDOW nor its controls retain
input focus. This creates control behavior as if all the controls in the WINDOW had the SKIP
attribute.

Normally, a WINDOW with the TOOLBOX attribute executes in its own execution thread to
provide a set of tools to the window with input focus. The MSG attributes of the controls in the
window appear in the status bar when the mouse cursor is positioned over the control.

Example:

PROGRAM
MainWin APPLICATION('My Application')

MENUBAR
MENU('File'),USE(?FileMenu)
ITEM('E&xit'),USE(?MainExit),LAST
END
MENU('Edit'),USE(?EditMenu)
ITEM('Use Tools'),USE(?UseTools)
END
END
END

Pre:Field STRING(400)
UseToolsThread BYTE
ToolsThread BYTE

CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?MainExit
BREAK

OF ?UseTools
UseToolsThread = START(UseTools)

END
END

UseTools PROCEDURE !A procedure that uses a toolbox
MDIChild WINDOW('Use Tools Window'),MDI

TEXT,HVSCROLL,USE(Pre:Field)
BUTTON('&OK'),USE(?Exit),DEFAULT
END

9 – Window and Report Attributes 523

CODE
OPEN(MDIChild) !Open the window
DISPLAY !and display it
ToolsThread = START(Tools) !Pop up the toolbox
ACCEPT
CASE EVENT() !Check for user-defined events
OF 401h !posted by toolbox controls
Pre:Field += ' ' & FORMAT(TODAY(),@D1) !append date to end of field

OF 402h
Pre:Field += ' ' & FORMAT(CLOCK(),@T1) !append time to end of field

END
CASE ACCEPTED()
OF ?Exit
POST(400h,,ToolsThread) !Signal to close tools window
BREAK

END
END
CLOSE(MDIChild)

Tools PROCEDURE !The toolbox procedure
Win1 WINDOW('Tools'),TOOLBOX

BUTTON('Date'),USE(?Button1)
BUTTON('Time'),USE(?Button2)

END
CODE
OPEN(Win1)
ACCEPT
IF EVENT() = 400h THEN BREAK. !Check for close window signal
CASE ACCEPTED()
OF ?Button1
POST(401h,,UseToolsThread) !Post datestamp signal

OF ?Button2
POST(402h,,UseToolsThread) !Post timestamp signal

END
END
CLOSE(Win1)

See Also:

DOCK

Language Reference Manual 524

TRN (set transparent control)

 TRN

The TRN attribute (PROP:TRN) on a control specifies the characters print or display
transparently, without obliterating the background over which the control is placed. Only the dots
or pixels required to create each character are printed or displayed. This allows you to place the
control directly on top of an IMAGE without destroying the background picture.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS

FORM,AT(0,0,6500,9000)
IMAGE('PIC.BMP'),USE(?I1)AT(0,0,6500,9000) !Full page image
!Transparent string on the image:
STRING('String Constant'),AT(10,0,20,20),USE(?S1),TRN
END
END

WinOne WINDOW,AT(0,0,160,400)
IMAGE('PIC.BMP'),USE(?I1),FULL !Full window image
!Transparent string on image
STRING('String Constant'),AT(10,0,20,20),USE(?S1),TRN

END

9 – Window and Report Attributes 525

UP, DOWN (set TAB text orientation)

 UP

 DOWN

The UP and DOWN attributes of a SHEET control specify the orientation of the text on the TAB
controls. UP (PROP:UP) specifies the TAB text appears vertical reading upwards, while DOWN
(PROP:DOWN) specifies the TAB text appears vertical reading downwards. If both UP and
DOWN attributes are present, the TAB text appears inverted (PROP:UpsideDown).

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab),RIGHT,DOWN !Tabs right reading down
TAB('Tab One'),USE(?TabOne)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)
END
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)
END

Language Reference Manual 526

USE (set field equate label or control update variable)

 USE(| label | [,number] [,equate])

 | variable |

USE Specifies a variable or field equate label.

label A field equate label to reference the control or structure in executable code. This
must begin with a question mark (?) and meet all the requirements of a valid
Clarion label.

variable The label of the variable to receive the value the user enters in the control. The
variable's label (with a leading question mark - ?VariableLabel) becomes the field
equate label for the control, unless the equate parameter is used.

number An integer constant that specifies the number the compiler equates to the field
equate label for the control (PROP:Feq, equivalent to {PROP:USE,2}).

equate A field equate label to reference the control in executable code when the named
variable has already been used in the same structure. This provides a
mechanism to provide a unique field equate when the variable would not.

The USE attribute (PROP:USE) specifies a field equate label for the control or structure, or a
variable for the control to update.

USE with a label parameter simply provides a mechanism for executable source code statements
to reference the control or structure. USE with a variable parameter supplies the control with a
variable to update by operator entry (on a window control) or to provide the value to print (on a
report control).

The USE attribute's number parameter allows you to specify the actual field number the compiler
assigns to the control. This number also is used as the new starting point for subsequent field
numbering for controls without a number parameter in their USE attribute. Subsequent controls
without a number parameter in their USE attribute are incremented (or decremented) relative to
the last number assigned.

Two or more controls with exactly the same USE variable in one WINDOW or APPLICATION
structure would create the same Field Equate Label for all, therefore, when the compiler
encounters this condition, all Field Equate Labels for that USE variable are discarded. This
makes it impossible to reference any of these controls in executable code, preventing confusion
about which control you really want to reference. It also allows you to deliberately create this
condition to display the contents of the variable in multiple controls with different display pictures.
You may eliminate this situation by using equate parameters on these controls.

9 – Window and Report Attributes 527

Writing to PROP:USE changes the USE attribute to use the name of the variable assigned.
Reading it returns the contents of the current USE variable. PROP:Feq sets and returns the field
number for the control.

Window Usage

Some controls or structures only allow a field equate label as the USE parameter, not a variable.
These are: PROMPT, IMAGE, LINE, BOX, ELLIPSE, GROUP, RADIO, REGION, MENU,
BUTTON, and TOOLBAR.

USE with a variable parameter supplies the control with a variable to update by operator entry.
This is applicable to an ITEM with the CHECK attribute, ENTRY, OPTION, SPIN, TEXT, LIST,
COMBO, CHECK, and CUSTOM.

PROP:ListFeq is equivalent to {PROP:USE,3} and sets the field equate label for the list portion of
a COMBO control or a LIST control with the DROP attribute.

PROP:ButtonFeq is equivalent to {PROP:USE,4} and sets the field equate label for the drop
button portion of a COMBO control or a LIST control with the DROP attribute.

Report Usage

Some controls and strcutures only allow a field equate label as the USE parameter, not a
variable. These are: IMAGE, LINE, BOX, ELLIPSE, GROUP, RADIO, FORM, BREAK, DETAIL,
HEADER, and FOOTER.

USE with a variable parameter supplies the control with a variable to update by operator entry.
This is applicable to an OPTION, TEXT, LIST, CHECK, or CUSTOM. STRING controls may use
either a field equate label or variable.

All controls and structures in a REPORT are automatically assigned numbers by the compiler. By
default, these numbers start at one (1) and increment by one (1) for each control in the REPORT.
The USE attribute's number parameter allows you to specify the actual field number the compiler
assigns to the control or structure. This number also is used as the new starting point for
subsequent numbering for controls and structures without a number parameter in their USE
attribute. Subsequent controls and structures without a number parameter in their USE attribute
are incremented relative to the last number assigned.

Language Reference Manual 528

Example:

MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS
MENUBAR
MENU('&File'),USE(?FileMenu)
ITEM('&Open...'),USE(?OpenFile)
ITEM('&Close'),USE(?CloseFile),DISABLE
ITEM('E&xit'),USE(?MainExit)
END
END
TOOLBAR,USE(?Toolbar)
BUTTON('Exit'),USE(?MainExitButton)
ENTRY(@S8),AT(100,160,20,20),USE(E2)
ENTRY(@S8),AT(100,200,20,20),USE(E3,100) !Field number 100
ENTRY(@S8),AT(100,240,20,20),USE(E2,,?Number2:E2) !
END
END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000),USE(?Detail) !Line item detail

STRING('Group Total:'),AT(5500,500,1500,500),USE(?Constant)!Field equate label
STRING(@N$11.2),AT(6000,1500,500,500),USE(Pre:F1) !USE variable
END
END

CODE
OPEN(MainWin)
DISABLE(?E2) !Disable first entry control
DISABLE(100) !Disable second entry control
DISABLE(?Number2:E2) !Disable third entry control
PrintRpt(CustRpt,?Detail) !Pass report and detail equate to print proc
ACCEPT
END

PrintRpt PROCEDURE(RptToPrint,DetailNumber)
CODE
OPEN(RptToPrint) !Open passed report
PRINT(RptToPrint,DetailNumber) !Print its detail
CLOSE(RptToPrint) !Close passed report

See Also:

Field Equate Labels

9 – Window and Report Attributes 529

VALUE (set RADIO or CHECK control USE variable assignment)

 VALUE(| string |)
 | truevalue , falsevalue |

VALUE Specifies the value assigned to the OPTION structure's USE variable when the
RADIO control is selected by the user, or the values assigned to the CHECK
control's USE variable when checked and un-checked by the user.

string A string constant containing the value to assign to the OPTION's USE variable.

truevalue A string constant containing the value to assign to the CHECK's USE variable
when the user has checked the box (PROP:TrueValue, equivalent to
{PROP:Value,1}).

falsevalue A string constant containing the value to assign to the CHECK's USE variable
when the user has un-checked the box (PROP:FalseValue, equivalent to
{PROP:Value,2}).

The VALUE attribute (PROP:VALUE) on a RADIO control specifies the value that is automatically
assigned to the OPTION structure's USE variable when the RADIO control is selected by the
user. This attribute overrides the RADIO control's text parameter.

The VALUE attribute on a CHECK control specifies the values that are automatically assigned to
the control's USE variable when the user checks and un-checks the box. This attribute overrides
the default assignment of zero and one.

All automatic type conversion rules apply to the values assigned to the control's USE variable.
Therefore, if the string, truevalue, or falsevalue contains only numeric data and the USE variable
is a numeric data type, it receives the numeric value.

PROP:VALUE may also be used on an ENTRY, SPIN, or COMBO control to interrogate the value
that would be placed into the control's USE variable by UPDATE (or when the control loses
focus) without actually updating the USE variable. This can cause EVENT:Rejected to generate,
if appropriate.
Example:

Win WINDOW,AT(0,0,180,400)
OPTION('Option 1'),USE(OptVar1),MSG('Pick One or Two')
RADIO('Radio 1'),AT(120,0,20,20),USE(?R1),VALUE('10') !OptVar1 gets 10
RADIO('Radio 2'),AT(140,0,20,20),USE(?R2),VALUE('20') !OptVar1 gets 20

END
OPTION('Option 2'),USE(OptVar2),MSG('Pick One or Two')
RADIO('Radio 1'),AT(120,0,20,20),USE(?R1),VALUE('10') !OptVar2 gets '10'
RADIO('Radio 2'),AT(140,0,20,20),USE(?R2),VALUE('20') !OptVar2 gets '20'

END
CHECK('Check 1'),AT(160,0),USE(Check1),VALUE('T','F')

END

Language Reference Manual 530

VCR (set VCR control)

 VCR([field])

VCR Places Video Cassette Recorder (VCR) style buttons on a LIST or COMBO
control.

field A field equate label that specifies the ENTRY control to use as a locator for a
LIST or COMBO (PROP:VcrFeq, equivalent to {PROP:VCR,2}). This ENTRY
control must appear before the LIST or COMBO control in the WINDOW
structure.

The VCR attribute (PROP:VCR) places Video Cassette Recorder (VCR) style buttons on a LIST
or COMBO control. The VCR style buttons affect the scrolling characteristics of the data
displayed in the LIST or COMBO. There are seven buttons displayed as the VCR:

|< Top of list (EVENT:ScrollTop)
<< Page Up (EVENT:PageUp)
< Entry Up (EVENT:ScrollUp)
? Locate (EVENT:Locate)
> Entry Down (EVENT:ScrollDown)
>> Page Down (EVENT:PageDown)
>| Bottom of list (EVENT:ScrollBottom)

The field parameter names the control to get focus when the user presses the ? button. When the
user enters data and then presses TAB on the locator field, the LIST or COMBO scrolls to its
closest matching entry. If no field parameter is named, the ? button still appears but does nothing.
To avoid even displaying the ? button, you may set PROP:VCR to TRUE instead of adding the
VCR attribute to the LIST or COMBO control declaration.

Example:

MDIC WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
LIST,AT(140,0,20,20),USE(?L1),FROM(Q),HVSCROLL
ENTRY(@S8),AT(100,200,20,20),USE(E2) !Locator control for L2
LIST,AT(140,100,20,20),USE(?L2),FROM(Q),HVSCROLL,VCR(?E2)!VCR with Locator active
END

CODE
OPEN(MDIC)
?L1{PROP:VCR} = TRUE !VCR buttons without the ? button
ACCEPT
END

9 – Window and Report Attributes 531

VERTICAL (set vertical progress bar display)

VERTICAL

The VERTICAL (PROP:Vertical)attribute allows the progress control to operate from the bottom
of the control to the top. If your progress control is positioned in a horizontal (left to right) display
format, you should resize the progress control accordingly. Valid only for a PROGRESS control.

Language Reference Manual 532

WALLPAPER (set background image)

 WALLPAPER(image)

WALLPAPER Specifies a background image to display in the toolbar or window's client area.

image A string constant specifying the name of the file to display.

The WALLPAPER attribute (PROP:WALLPAPER) specifies displaying the image as a
background for the toolbar or window's client area. The image is stretched to fill the entire toolbar
or window's client area unless either the TILED or CENTERED attributes are present.

Example:

MDIChild WINDOW('Child One'),MDI,SYSTEM,MAX
MENUBAR
MENU('Edit'),USE(?EditMenu)
ITEM('Undo'),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM('Cu&t'),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM('Copy'),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM('Paste'),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)
END
END
TOOLBAR,USE(?Toolbar),WALLPAPER('MyWall.GIF')
BUTTON('Cut'),USE(?CutButton),ICON(ICON:Cut),STD(STD:Cut),FLAT
BUTTON('Copy'),USE(?CopyButton),ICON(ICON:Copy),STD(STD:Copy),FLAT
BUTTON('Paste'),USE(?PasteButton),ICON(ICON:Paste),STD(STD:Paste),FLAT
END
END

WinOne WINDOW,AT(,,380,200),MDI,WALLPAPER('MyWin.GIF')
END

See Also:

CENTERED

TILED

9 – Window and Report Attributes 533

WITHNEXT (set widow elimination)

 WITHNEXT([siblings])

WITHNEXT Specifies the structure is always printed on the same page as print structures
PRINTed immediately following it.

siblings An integer constant or constant expression that specifies the number of following
print structures to print on the same page. If omitted, the default value is one.

The WITHNEXT attribute (PROP:WITHNEXT) specifies that the DETAIL, or group HEADER or
FOOTER structure (contained within a BREAK structure), is always printed on the same page as
the specified number of print structures PRINTed immediately following it. This ensures that the
structure is never printed on a page by itself, eliminating "widow" print structures. A "widow" print
structure is defined as a group header, or first detail item in a related group of items, printed on
the preceding page, separated from the rest of its related items.

The siblings parameter, if present, sets the number of following print structures that must be
printed on the same page with the structure. To be counted, the following print structures must
come from the same, or nested, BREAK structures. They must be related items. Any print
structures not within the same, or nested, BREAK structures are printed but not counted as part
of the required number of siblings.

Example:
CustRpt REPORT
Break1 BREAK(SomeVariable)

HEADER,WITHNEXT(2) !Always print with 2 siblings
!structure elements
END

CustDetail DETAIL,WITHNEXT() !Always print with 1 sibling
!structure elements
END
FOOTER
!structure elements
END
END
END

Language Reference Manual 534

WITHPRIOR (set orphan elimination)

 WITHPRIOR([siblings])

WITHPRIOR Specifies the structure is always printed on the same page as print structures
PRINTed immediately preceding it.

siblings An integer constant or constant expression that specifies the number of
preceding print structures to print on the same page. If omitted, the default value
is one.

The WITHPRIOR attribute (PROP:WITHPRIOR) specifies that the DETAIL, or group HEADER or
FOOTER structure (contained within a BREAK structure), is always printed on the same page as
the specified number of print structures PRINTed immediately preceding it. This ensures that the
structure is never printed on a page by itself, eliminating "orphan" print structures. An "orphan"
print structure is defined as a group footer, or last detail item in a related group of items, that is
printed on the following page separated from the rest of its related items.

The siblings parameter, if present, sets the number of preceding print structures that must be
printed on the same page with the structure. To be counted, the preceding print structures must
come from the same, or nested, BREAK structures. They must be related items. Any print
structures not within the same, or nested, BREAK structures are printed, but not counted as part
of the required number of siblings.

Example:
CustRpt REPORT
Break1 BREAK(SomeVariable)

HEADER
!structure elements
END

CustDetail DETAIL,WITHPRIOR() !Always print with 1 sibling
!structure elements
END
FOOTER,WITHPRIOR(2) !Always print with 2 siblings
!structure elements
END
END
END

9 – Window and Report Attributes 535

WIZARD (set "tabless" SHEET control)

 WIZARD

The WIZARD attribute (PROP:WIZARD) specifies a SHEET control that does not display its TAB
controls. This allows the program to direct the user through each TAB in a specified sequence
(usually with "Next" and "Previous" buttons.

Language Reference Manual 536

ZOOM (set OLE object zooming)
The ZOOM attribute (PROP:ZOOM, write-only) specifies the OLE object stretches to fill the size
specified by the OLE container control's AT attribute while maintaining the object's aspect ratio.

10 – Expressions 537

10 - Expressions
Overview
An expression is a mathematical, string, or logical formula that produces a value. An expression
may be the source variable of an assignment statement, a parameter of a procedure, a subscript
of an array (a dimensioned variable), or the condition of an IF, CASE, LOOP, or EXECUTE
structure. Expressions may contain constant values, variables, and procedures which return
values, all connected by logical and/or arithmetic or string operators.

Expression Evaluation
Expressions are evaluated in the standard algebraic order of operations. The precedence of
operations is controlled by operator type and placement of parentheses. Each operation produces
an (internal) intermediate value used in subsequent operations. Parentheses may be used to
group operations within expressions. Expressions are evaluated beginning with the inner-most
set of parentheses and working through to the outer-most set.

Precedence levels for expression evaluation, from highest to lowest, and left-to-right within each
level, are:

Level 1 () Parenthetical Grouping
Level 2 - Unary Minus (Negative sign)
Level 3 procedure call Gets the RETURN value
Level 4 ̂ Exponentiation
Level 5 * / % Multiplication, Division, Modulus Division
Level 6 + - Addition, Subtraction
Level 7 & Concatenation
Level 8 = <> Logical Comparisons
Level 9 NOT, AND, OR/XOR Boolean expressions

Expressions may produce numeric values, string values, or logical values (true/false evaluation).
An expression may contain no operators at all; it may be a single variable, constant value, or
procedure call which returns a value.

Language Reference Manual 538

Operators

Arithmetic Operators
An arithmetic operator combines two operands arithmetically to produce an intermediate value.
The operators are:

 + Addition (A + B gives the sum of A and B)
 - Subtraction (A - B gives the difference of A and B)
 * Multiplication (A * B multiples A by B)
 / Division (A / B divides A by B)
 ^ Exponentiation (A ^ B raises A to power of B)
 % Modulus Division (A % B gives the remainder of A divided by B)

10 – Expressions 539

The Concatenation Operator
The ampersand (&) concatenation operator is used to append one string or string variable to
another. The length of the resulting string is the sum of the lengths of the two values being
concatenated. Numeric data types may be concatenated with strings or other numeric variables
or constants. In many cases, the CLIP procedure should be used to remove any trailing spaces
from a string being concatenated to another string.

Example:

CLIP(FirstName) & ' ' & Initial & '. ' & LastName !Concatenate full name
'SoftVelocity Corporation' & ', Inc.' !Concatenate two constants

See Also:

CLIP

Numeric Expressions

Data Conversion Rules

FORMAT

Language Reference Manual 540

Logical Operators
A logical operator compares two operands or expressions and produces a true or false condition.
There are two types of logical operators: conditional and Boolean. Conditional operators compare
two values or expressions. Boolean operators connect string, numeric, or logical expressions
together to determine true-false logic. Operators may be combined to create complex operators.

Conditional Operators = Equal sign
 < Less than
 > Greater than

Boolean Operators NOT Boolean (logical) NOT
 ~ Tilde (logical NOT)
 AND Boolean AND
 OR Boolean OR
 XOR Boolean eXclusive OR

Combined operators <> Not equal
 ~= Not equal
 NOT = Not equal
 <= Less than or equal to
 =< Less than or equal to
 ~> Not greater than
 NOT > Not greater than
 >= Greater than or equal to
 => Greater than or equal to
 ~< Not less than
 NOT < Not less than

During logical evaluation, any non-zero numeric value or non-blank string value indicates a true
condition, and a null (blank) string or zero numeric value indicates a false condition.

Example:

Logical Expression Result
A = B True when A is equal to B
A < B True when A is less than B
A > B True when A is greater than B
A <> B, A ~= B, A NOT = B True when A is not equal to B
A ~< B, A >= B, A NOT < B True when A is not less than B
A ~> B, A <= B, A NOT > B True when A is not greater than B
~ A, NOT A True when A is null or zero
A AND B True when A is true and B is true
A OR B True when A is true, or B is true, or both are true
A XOR B True when A is true or B is true, but not both.

10 – Expressions 541

Constants

Numeric Constants
Numeric constants are fixed numeric values. They may occur in data declarations, in
expressions, and as parameters of procedures or attributes. A numeric constant may be
represented in decimal (base 10--the default), binary (base 2), octal (base 8), hexadecimal (base
16), or scientific notation formats. Formatting characters, such as dollar signs and commas, are
not permitted in numeric constants; only leading plus or minus signs and the decimal point are
allowed.

Decimal (base ten) numeric constants may contain an optional leading minus sign (hyphen
character), an integer, and an optional decimal with a fractional component. Binary (base two)
numeric constants may contain an optional leading minus sign, the digits 0 and 1, and a
terminating B or b character. Octal (base eight) numeric constants contain an optional leading
minus sign, the digits 0 through 7, and a terminating O or o character. Hexadecimal (base
sixteen) numeric constants contain an optional leading minus sign, the digits 0 through 9,
alphabet characters A through F (representing the numbers 10 through 15) and a terminating H
or h character. If the left-most character is a letter A through F, a leading zero must be used.

Example:

-924 !Decimal constants
76.346
+76.346

1011b !Binary constants
-1000110B

3403o !Octal constants
-7041312O

-1FFBh !Hexadecimal constants
0CD1F74FH

Language Reference Manual 542

String Constants
A string constant is a set of characters enclosed in single quotes (apostrophes). The maximum
length of a string constant is 255 characters. Characters that cannot be entered from the
keyboard may be inserted into a string constant by enclosing their ASCII character codes in angle
brackets (<>). ASCII character codes may be represented in decimal, hexadecimal, binary, or
octal numeric constant format.

In a string constant, a left angle bracket (<) initiates a scan for a right angle bracket. Therefore,
to include a left angle bracket in a string constant requires two left angle brackets in succession.
To include an apostrophe as part of the value inside a string constant requires two apostrophes in
succession. Two apostrophes (''), with no characters (or just spaces) between them, represents
a null, or blank, string. Consecutive occurrences of the same character within a string constant
may be represented by repeat count notation. The number of times the character is to be
repeated is placed within curly braces ({ }) immediately following the character to repeat. To
include a left curly brace ({) as part of the value inside a string constant requires two left curly
braces ({{) in succession.

The ampersand (&) is always valid in a string constant. However, depending on the assignment's
destination, it may be interpreted as an underscore for a hot letter (for example, a PROMPT
control's display text). In this case, you double it up (&&) to end up with a single ampersand in the
screen display.

Example:

'string constant' !A string constant
'It''s a girl!' !With embedded apostrophe
'<27,15>' !Using decimal ASCII codes
'A << B' !With embedded left angle, A < B
'*{20}' !Twenty asterisks, repeat-count notation
'' !A null (blank) string

10 – Expressions 543

Types of Expressions

Numeric Expressions
Numeric expressions may be used as parameters of procedures, the condition of IF, CASE,
LOOP, or EXECUTE structures, or as the source portion of an assignment statement where the
destination is a numeric variable. A numeric expression may contain arithmetic operators and the
concatenation operator, but they may not contain logical operators. When used in a numeric
expression, string constants and variables are converted to numeric intermediate values. If the
concatenation operator is used, the intermediate value is converted to numeric after the
concatenation occurs.

Example:

Count + 1 !Add 1 to Count
(1 - N * N) / R !N times N subtracted from 1 then divided by R
305 & 7854555 !Concatenate area code with phone number

See Also:

Data Conversion Rules

Language Reference Manual 544

String Expressions
String expressions may be used as parameters of procedures and attributes, or as the source
portion of an assignment statement when the destination is a string variable. String expressions
may contain a single string or numeric variable, or a complex combination of sub-expressions,
procedures, and operations.

Example:

StringVar STRING(30)
Name STRING(10)
Weight STRING(3)
Phone LONG
CODE

!Concatenate a constant and variable
StringVar = 'Address:' & Cus:Address

!Concatenate constant values
!and FORMAT procedure's return value
StringVar = 'Phone:' & ' 305-' & FORMAT(Phone,@P###-####P)

!Concatenate a constant and variable
StringVar = Weight & 'lbs.'

See Also:

CLIP

The Concatenation Operator

Data Conversion Rules

FORMAT

10 – Expressions 545

Logical Expressions
Logical expressions evaluate true-false conditions in IF, LOOP UNTIL, and LOOP WHILE control
structures. Control is determined by the final result (true or false) of the expression. Logical
expressions are evaluated from left to right. The right operand of an AND, OR, or XOR logical
expression will only be evaluated if it could affect the result. Parentheses should be used to
eliminate ambiguous evaluation and to control evaluation precedence. The level or precedence
for the logical operators is as follows:

 Level 1 Conditional operators
 Level 2 ~, NOT
 Level 3 AND
 Level 4 OR, XOR

Example:

LOOP UNTIL KEYBOARD() !True when user presses any key
!some statements

END

IF A = B THEN RETURN. !RETURN if A is equal to B

LOOP WHILE ~ Done# !Loop while false (Done# = 0)
!some statements

END

IF A >= B OR (C > B AND E = D) THEN RETURN.
!True if a >= b, also true if
!both c > b and e = d.
!The second part of the expression
!(after OR) is evaluated only if the
!first part is not true.

See Also:

IF (conditional execution structure)

LOOP

Language Reference Manual 546

Property Expressions

 [target] [$] [control] { property [,element] }

target The label of an APPLICATION, WINDOW, REPORT, VIEW, or FILE structure,
the label of a BLOB, or one of the built-in variables: TARGET, PRINTER, or
SYSTEM. If omitted, TARGET is assumed.

$ Required delimiter when both target and control are specified. Omit if either
target or control is omitted.

control A field number or field equate label for the control in the target structure
(APPLICATION, WINDOW, or REPORT) to affect. If omitted, the target must be
specified. The control must be omitted if the target is a FILE, BLOB, or the
PRINTER or SYSTEM built-in variables.

property An integer constant, EQUATE, or variable that specifies the property (attribute) to
change. It can also be a string when referencing an OCX or OLE container
property.

element An integer constant or variable that specifies which element to change (for
properties which are arrays).

This property expression syntax allows you access to all the attributes (properties) of
APPLICATION, WINDOW, or REPORT structures, or any control within these structures. To
specify an attribute of an APPLICATION, WINDOW, REPORT, VIEW, or FILE structure (not a
component control), omit the control portion of the property expression. To specify a control in the
current window, omit the target portion of the property expression.

REPORT data structures are never the target by default. Therefore, either SETTARGET must be
used to change the target to the REPORT, or the REPORT structure's label must be explicitly
specified as the target before you can change any property of the structure, or any control it
contains.

Property expressions may be used in Clarion language statements anywhere a string expression
is allowed, or as the destination or source of simple assignment statements. They may not be
used in operating assignment statements (such as +=, *=, etc.). Assigning a new value to a
property is a simple assignment with the property as the destination and the new value as the
source. Determining the current value of a property is a simple assignment where the property is
the source and the variable to recieve its value is the destination. A Property expression may also
be used as an executable statement (without an assignment statement) when the property
expression is a method call for an OLE or OCX control.

All properties are treated as string data at runtime; the compiler automatically performs any
necessary data type conversion. Any property without parameters is binary (toggle). Binary
properties are either "present" or "missing" and return a '1' if present, and '' (null) if missing.
Changing the value of a binary property to '' (null), '0' (zero), or any non-numeric string sets it to
missing. Changing it to any other value sets it to "present."

10 – Expressions 547

Most properties can be both examined (read) and changed (written). However, some properties
are "read-only" and cannot be changed. Assigning a value to a "read-only" property has no effect
at all. Other properties are "write-only" properties that are meaningless if read. Some properties
are arrays that contain multiple values. The syntax for addresssing a particular property array
element uses a comma (not square brackets) as the delimiter between the property and the
element number.

Built-in Variables

There are three built-in variables in the Clarion for Windows runtime library: TARGET, PRINTER,
and SYSTEM. These are only used with the property assignment syntax to identify the target in a
property expression.

TARGET normally references the window that currently has focus. It can also be set to reference
a window in another execution thread or the currently printing REPORT, enabling you to affect
the properties of controls and windows in other execution threads and dynamically change report
control properties while printing. The SETTARGET statement and SYSTEM {PROP:Target}
property changes the TARGET variable's reference.

PRINTER references the Printer Properties (only) to be used by the next REPORT opened (and
any subsequent reports).

SYSTEM specifies global properties used by the entire application. There are a number of
runtime properties that may use the SYSTEM variable to set or query application-wide properties.

Example:

MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS,RESIZE
MENUBAR
MENU('File'),USE(?FileMenu)
ITEM('Open...'),USE(?OpenFile)
ITEM('Close'),USE(?CloseFile),DISABLE
ITEM('E&xit'),USE(?MainExit)
END
MENU('Help'),USE(?HelpMenu)
ITEM('Contents'),USE(?HelpContents),STD(STD:HelpIndex)
ITEM('Search for Help On...'),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM('How to Use Help'),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM('About MyApp...'),USE(?HelpAbout)
END
END
TOOLBAR
BUTTON('Open'),USE(?OpenButton),ICON(ICON:Open)
END
END

Language Reference Manual 548

CODE
OPEN(MainWin)
MainWin{PROP:Text} = 'A New Title' !Change window title
?OpenButton{PROP:ICON} = ICON:Asterisk !Change button icon
?OpenButton{PROP:AT,1} = 5 !Change button x position
?OpenButton{PROP:AT,2} = 5 !Change button y position
IF MainWin$?HelpContents{PROP:STD} <> STD:HelpIndex
MainWin$?HelpContents{PROP:STD} = STD:HelpIndex

END
MainWin{PROP:MAXIMIZE} = 1 !Expand to full screen

ACCEPT
CASE ACCEPTED() !Which control was chosen?
OF ?OpenFile !Open... menu selection
OROF ?OpenButton !Open button on toolbar
START(OpenFileProc) !Start new execution thread

OF ?MainExit !Exit menu selection
OROF ?MainExitButton !Exit button on toolbar
BREAK !Break ACCEPT loop

OF ?HelpAbout !About... menu selection
HelpAboutProc !Call application information procedure

END
END
CLOSE(MainWin) !Close APPLICATION
RETURN

See Also:

SETTARGET

Runtime Properties

10 – Expressions 549

Runtime Expression Evaluation
Clarion has the ability to evaluate expressions dynamically created at runtime, rather than at
development time. This allows a Clarion program to contruct expressions "on the fly." This also
makes it possible to allow an end-user to enter the expression to evaluate.

An expression is a mathematical or logical formula that produces a value; it is not a complete
Clarion language statement. Expressions may only contain constant values, variables, or
procedure calls which return a value, all connected by logical and/or arithmetic operators. An
expression may be used as the source side of an assignment statement, a parameter of a
procedure, a subscript of an array (a dimensioned variable), or the conditions of IF, CASE,
LOOP, or EXECUTE structures.

Any program variable, and most of the internal Clarion procedures, can be used as part of a
runtime expression string. User-defined procedures that fall within certain specific guidelines
(described in the BIND statement documentation) may also be used in runtime expression
strings.

All of the standard Clarion expression syntax is available for use in runtime expression strings.
This includes parenthetical grouping and all the arithmetic, logical, and string operators. Dynamic
expressions are evaluated just as any other Clarion expression and all the standard operator
precedence level rules described in the Expression Evaluation section (see page 3) apply.

It takes three steps to use runtime expression strings:

• The variables that are allowed to be used in the expressions must be explicitly
declared with the BIND statement.

• The expression must be built. This may involve concatenating user choices or
allowing the user to directly type in their own expression.

• The expression is passed to the EVALUATE procedure which returns the result.
If the expression is not a valid Clarion expression, ERRORCODE is set.

Once the expression is evaluated, its result is used just as the result of any hard-coded
expression would be. For example, a runtime expression string could provide a filter expression
to eliminate certain records when viewing or printing a database (the FILTER expression of a
VIEW structure is an implicit runtime expression string).

See Also:

BIND, EVALUATE, POPBIND, PUSHBIND, UNBIND

Language Reference Manual 550

BIND (declare runtime expression string variable)

 BIND(| name,variable |)

 | name,procedure |

 | group |

BIND Identifies variables allowed to be used in dynamic expressions.

name A string constant containing the identifier used in the dynamic expression. This
may be the same as the variable or procedure label.

variable The label of any variable (including fields in FILE, GROUP, or QUEUE
structures) or passed parameter. If it is an array, it must have only one
dimension.

procedure The label of a Clarion language PROCEDURE which returns a STRING, REAL,
or LONG value. If parameters are passed to the procedure, they must be
STRING value-parameters (passed by value, not by address) and may not be
omittable.

group The label of a GROUP, RECORD, or QUEUE structure declared with the
BINDABLE attribute.

The BIND statement declares the logical name used to identify a variable, EQUATE, or user-
defined procedure in runtime expression strings. A variable or user-defined procedure must be
identified with the BIND statement before it can be used in an expression string for either the
EVALUATE procedure or a VIEW structure's FILTER attribute.

 BIND(name,variable)
The specified name is used in the expression in place of the label of the variable.

 BIND(name,procedure)
The specified name is used in the expression in place of the label of the
procedure.

 BIND(group)
Declares all the variables within the GROUP, RECORD, or QUEUE (with the
BINDABLE attribute) available for use in a dynamic expression. The contents of
each variable's NAME attribute is the logical name used in the dynamic
expression. If no NAME attribute is present, the label of the variable (including
prefix) is used.

A GROUP, RECORD, or QUEUE structure declared with the BINDABLE attribute has space
allocated in the .EXE for the names of all of the data elements in the structure. This creates a
larger program that uses more memory than it normally would. Also, the more variables that are
bound at one time, the slower the EVALUATE procedure will work. Therefore, BIND(group)
should only be used when a large proportion of the constituent fields are going to be used.

10 – Expressions 551

Example:

PROGRAM
MAP
AllCapsFunc(STRING),STRING !Clarion procedure

END
Header FILE,DRIVER('Clarion'),PRE(Hea),BINDABLE !Declare header file layout
OrderKey KEY(Hea:OrderNumber)
Record RECORD
OrderNumber LONG
ShipToName STRING(20)

END
END

StringVar STRING(20)
CODE
BIND('ShipName',Hea:ShipToName)
BIND('SomeFunc',AllCapsFunc)
BIND('StringVar',StringVar)
StringVar = 'SMITH'
CASE EVALUATE('StringVar = SomeFunc(ShipName)')
OF ''

IF ERRORCODE()
MESSAGE('Error ' & ERRORCODE() & ' -- ' & ERROR())
ELSE
MESSAGE('Unkown error evaluating expression')

END
OF '0'

DO NonSmithProcess
OF '1'

DO SmithProcess
END

AllCapsFunc PROCEDURE(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also:

UNBIND

BINDEXPRESSION

EVALUATE

PUSHBIND

POPBIND

FILTER

Language Reference Manual 552

BINDEXPRESSION(declare runtime expression)

 BINDEXPRESSION(| name,expression |)

BINDEXPRESSION
Identifies variables allowed to be used in dynamic expressions.

name A string constant containing the identifier used in the dynamic expression.

expression A mathematical formula containing any valid combination of variables, functions,
operators, and constants.

The BINDEXPRESSION statement declares the logical name used to identify an expression
used in runtime expression strings.

The EVALUATE statement must parse an expression every time it is called. If some expression
is evaluated frequently, this can be time consuming.

BINDEXPRESSION parses the expression only once and is saved in a pre-compiled form under
the given name. Later, this expression can be used in EVALUATE as a stand alone, or as a part
of another expression in EVALUATE, or in another BINDEXPRESSION.

Example:

BIND('Var', Var)
BINDEXPRESSION('Power2', 'Var * Var')
...
Var = 10
P2 = EVALUATE ('Power2')
...
BINDEXPRESSION ('Circle', '3.14159 * Power2')
BINDEXPRESSION('color:red',color:red)
MESSAGE('color:red = ' & color:red & '|Eval(color:red)=' &|
evaluate('color:red')) !Shows same number twice

BINDEXPRESSION('Match:Soundex',Match:Soundex)
FILTER('MATCH(Cus:Name,NameWanted,Match:Soundex)')

See Also:

BIND (declare runtime expression string variable)

EVALUATE (return runtime expression string result)

10 – Expressions 553

EVALUATE (return runtime expression string result)

 EVALUATE(expression)

EVALUATE Evaluates runtime expression strings.

expression A string constant or variable containing the expression to evaluate.

The EVALUATE procedure evaluates the expression and returns the result as a STRING value.
If the expression does not meet the rules of a valid Clarion expression, the result is a null string
(''), and ERRORCODE is set. A logical expression returns a string containing either zero ('0') or
one ('1'), while an arithmetic expression returns the actual result of the expression (in a string). To
use less than (<) in the expression, you must double it up (<<) to prevent compiler errors. The
more variables are bound at one time, the slower the EVALUATE procedure works. Therefore,
BIND(group) should only be used when most of the group's fields are needed, and UNBIND
should be used to free all variables and user-defined procedures not currently required for use in
dynamic expressions. PATH(), SHORTPATH() and LONGPATH() can now be used in
expressions evaluated by the EVALUATE statements in runtime application and in the templates.

Field Qualification syntax (dot syntax) cannot be used in the expression. Variables should be
binded using the standard prefix notation.

Return Data Type: STRING

Errors Posted: 1010 – Illegal Expression
1011 – Variable Not Found
1012 – Mismatched POPBIND

Language Reference Manual 554

Example:

MAP
AllCapsFunc PROCEDURE(STRING),STRING !Clarion procedure

END
Header FILE,DRIVER('Clarion'),PRE(Hea),BINDABLE !Declare header file layout
OrderKey KEY(Hea:OrderNumber)
Record RECORD
OrderNumber LONG
ShipToName STRING(20)

END
END

StringVar STRING(20)
CODE
BIND('ShipName',Hea:ShipToName)
BIND('SomeFunc',AllCapsFunc)
BIND('StringVar',StringVar)
StringVar = 'SMITH'
CASE EVALUATE('StringVar = SomeFunc(ShipName)')
OF ''

IF ERRORCODE()
MESSAGE('Error ' & ERRORCODE() & ' -- ' & ERROR())
END

OF '0'
DO NonSmithProcess

OF '1'
DO SmithProcess

END

AllCapsFunc PROCEDURE(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also:

BIND

UNBIND

PUSHBIND

POPBIND

FILTER

10 – Expressions 555

POPBIND (restore runtime expression string name space)

 POPBIND

The POPBIND statement restores the previous BIND statement's name space for variables and
procedures previously bound. This restores the previous scope used by previous BIND
statements.

Example:

SomeProc PROCEDURE

OrderNumber LONG
Item LONG
Quantity SHORT

CODE
BIND('OrderNumber',OrderNumber)
BIND('Item',Item)
BIND('Quantity',Quantity)

AnotherProc !Call another procedure

UNBIND('OrderNumber',OrderNumber)
UNBIND('Item',Item)
UNBIND('Quantity',Quantity)

AnotherProc PROCEDURE

OrderNumber LONG
Item LONG
Quantity SHORT

CODE
PUSHBIND !Create new scope for BIND
BIND('OrderNumber',OrderNumber) !Bind variables with same names in new scope
BIND('Item',Item)
BIND('Quantity',Quantity)

!Do some Processing

UNBIND('OrderNumber')
UNBIND('Item')
UNBIND('Quantity')
POPBIND !Restore previous scope for BIND

See Also: PUSHBIND, EVALUATE

Language Reference Manual 556

PUSHBIND (save runtime expression string name space)

 PUSHBIND([clearflag])

PUSHBIND Creates a new scope for subsequent BIND statements.

clearflag An integer constant or variable containing either zero (0) or one (1). When zero,
the BIND statement's name space is cleared of all variables and procedures
previously bound. When one, all variables and procedures previously bound are
left in place. If omitted, the clearflag is zero.

The PUSHBIND statement creates a new scope for subsequent BIND statements. This scope
terminates with the next POPBIND statement. This creates a new scope for subsequent BIND
statements, allowing you to create new BIND names for variables with the same name without
creating conflicts with the names from a previous scope.

Example:

SomeProc PROCEDURE
OrderNumber LONG
Item LONG
Quantity SHORT
CODE
BIND('OrderNumber',OrderNumber)
BIND('Item',Item)
BIND('Quantity',Quantity)
AnotherProc !Call another procedure
UNBIND('OrderNumber',OrderNumber)
UNBIND('Item',Item)
UNBIND('Quantity',Quantity)

AnotherProc PROCEDURE
OrderNumber LONG
Item LONG
Quantity SHORT
CODE
PUSHBIND !Create new scope for BIND
BIND('OrderNumber',OrderNumber) !Bind variables with same names in new scope
BIND('Item',Item)
BIND('Quantity',Quantity)

!Do some Processing
UNBIND('OrderNumber')
UNBIND('Item')
UNBIND('Quantity')
POPBIND !Restore previous scope for BIND

See Also: POPBIND, EVALUATE

10 – Expressions 557

UNBIND (free runtime expression string variable)

 UNBIND([name])

UNBIND Frees variables from use in runtime expression strings.

name A string constant that specifies the identifier used by the dynamic expression
evaluator. If omitted, all bound variables are unbound.

The UNBIND statement frees logical names previously bound by the BIND statement. The more
variables that are bound at one time, the slower the EVALUATE procedure works. Therefore,
UNBIND should be used to free all variables and user-defined procedures not currently available
for use in runtime expression strings.

Example:

PROGRAM
MAP
AllCapsFunc(STRING),STRING !Clarion procedure

END

Header FILE,DRIVER('Clarion'),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

END
END

Detail FILE,DRIVER('Clarion'),PRE(Dtl),BINDABLE !Bindable RECORD structure
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

END
END

Language Reference Manual 558

CODE
BIND('ShipName',Hea:ShipToName)
BIND(Dtl:Record)
BIND('SomeFunc',AllCapsFunc)
UNBIND('ShipName') !UNBIND the variable
UNBIND('SomeFunc') !UNBIND the Clarion language procedure
UNBIND !UNBIND all bound variables

AllCapsFunc PROCEDURE(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also:

BIND

EVALUATE

PUSHBIND

POPBIND

11 – Assignments 559

11 - Assignments
Simple Assignment Statements
 destination = source

destination The label of a variable or runtime property.

source A numeric or string constant, variable, procedure, expression, or data structure
property.

The = sign assigns the value of source to the destination; it copies the value of the source
expression into the destination variable. If destination and source are different data types, the
value the destination receives from the source is dependent upon the Data Conversion Rules.

Example:

StringVar STRING(10)
LongVar LONG
RealVar REAL
CODE
StringVar = 'JONES' !Variable = string constant
RealVar = 3.14159 !Variable = numeric constant
RealVar = SQRT(1 - Sine * Sine) !Variable = procedure return value
LongVar = B + C + 3 !Variable = numeric expression
StringVar = CLIP(FirstName) & ' ' Initial & '. ' & LastName

!Variable = string expression

StringVar = '10' !Assign numeric data to string then
Longvar = StringVar !Automatic data conversion results

!and Longvar will contain: 10

See Also:

Data Conversion Rules

Property Expressions

Language Reference Manual 560

Operating Assignments

 destination += source

 destination -= source

 destination *= source

 destination /= source

 destination ^= source

 destination %= source

destination Must be the label of a variable. This may not be a runtime property.

source A constant, variable, procedure, or expression.

Operating assignment statements perform their operation on the destination and source, then
assign the result to the destination. Operating assignment statements are more efficient than their
functionally equivalent operations.

Example:

Operating Assignment Functional Equivalent
A += 1 A = A + 1
A -= B A = A - B
A *= -5 A = A * -5
A /= 100 A = A / 100
A ^= I + 1 A = A ^ (I + 1)
A %= 7 A = A % 7

See Also:

Data Conversion Rules

Property Expressions

11 – Assignments 561

Deep Assignment

 destination :=: source

destination The label of a GROUP, RECORD, or QUEUE data structure, or an array.

source The label of a GROUP, RECORD, or QUEUE data structure, or a numeric or
string constant, variable, procedure, or expression.

The :=: sign executes a deep assignment statement which performs multiple individual
component variable assignments from one data structure to another. The assignments are only
performed between the variables within each structure that have exactly matching labels, ignoring
all prefixes. The compiler looks within nested GROUP structures to find matching labels. Any
variable in the destination which does not have a label exactly matching a variable in the source,
is not changed.

Deep assignments are performed just as if each matching variable were individually assigned to
its matching variable. This means that all normal data conversion rules apply to each matching
variable assignment. For example, the label of a nested source GROUP may match a nested
destination GROUP or simple variable. In this case, the nested source GROUP is assigned to the
destination as a STRING, just as normal GROUP assignment is handled.

The name of a source array may match a destination array. In this case, each element of the
source array is assigned to its corresponding element in the destination array. If the source array
has more or fewer elements than the destination array, only the matching elements are assigned
to the destination.

If the destination is an array variable that is not part of a GROUP, RECORD, or QUEUE, and the
source is a constant, variable, or expression, then each element of the destination array is
initialized to the value of the source. This is a much more efficient method of initializing an array
to a specific value than using a LOOP structure and assigning each element in turn.

The destination or source may also name a CLASS structure, which, in this case, will be treated
as a GROUP. However, if you do so, you violate the concept of encapsulation, since deep
assignment is a structure piercing operation. Therefore, it is not recommended.

Language Reference Manual 562

Example:

Group1 GROUP
S SHORT
L LONG

END

Group2 GROUP
L SHORT
S REAL
T LONG

END

ArrayField SHORT,DIM(1000)

CODE
Group2 :=: Group1 !Is equivalent to:

!Group2.S = Group1.S
!Group2.L = Group1.L
!and performs all necessary data conversion

ArrayField :=: 7 !Is equivalent to:
!LOOP I# = 1 to 1000
! ArrayField[I#] = 7
!END

See Also:

GROUP

RECORD

QUEUE

DIM

11 – Assignments 563

Reference Assignments

 destination &= source

destination The label of a reference variable.

source This may be:

• The label of a variable or data structure of the same type as referenced by
the destination.

• The label of another reference variable of the same type as the destination.

• A PROCEDURE which returns the data type the destination will receive.

• An expression (yielding a LONG value, such as the return value of the
ADDRESS procedure) that defines the memory address of a variable of the
same type as referenced by the destination (which must be a reference to
any simple data type except STRING, CSTRING, or PSTRING).

• The NULL built-in variable.

The &= sign executes a reference assignment statement. A reference assignment statement
assigns a reference to the source variable to the destination reference variable. When used in a
conditional expression (such as an IF statement), a reference assignment statement determines
reference equality (are the two reference variables "pointing at" the same thing?).

Depending upon the data type being referenced, the destination reference variable may receive
the source's memory address, or a more complex internal data structure (describing the location
and type of source data).

When the source is the built-in variable NULL, the reference assignment statement may either
clear the destination reference variable, or detect an unreferenced reference variable (when the
reference assignment statement is placed in a conditional expression).

The declarations of the destination reference variable and its source must match exactly (unless
the destination is declared as an ANY variable); reference assignment does not perform
automatic type conversion. For example, a reference assignment statement to a destination
declared as &QUEUE must have a source that is either another &QUEUE reference variable, the
label of a QUEUE structure, or the ADDRESS(MyQueue) procedure. However, if the destination
is a reference to a string (&STRING), the source may also be a data structure that is normally
treated as string data when addressed as a single unit (GROUP, RECORD, QUEUE, MEMO).

Language Reference Manual 564

Example:

Queue1 QUEUE
ShortVar SHORT
LongVar1 LONG
LongVar2 LONG

END

QueueRef &QUEUE !Reference a QUEUE, only
Queue1Ref &Queue1 !Reference to a QUEUE defined exactly as Queue1, only

LongRef &LONG !Reference a LONG, only

LongRef2 &LONG !Reference a LONG, only

CODE
QueueRef &= Queue1 !Assign QUEUE reference
Queue1Ref &= Queue1 !Assign QUEUE reference

IF Queue1Ref &= QueueRef !Are they referencing the same QUEUE?
MESSAGE('Both Pointing at same QUEUE')

END

IF SomeCondition !Evaluate some condition
LongRef &= Queue1.LongVar1 !and reference an appropriate variable

ELSE
LongRef &= Queue1.LongVar2

END
LongRef += 1 !Increment either LongVar1 or LongVar2

!depending upon which variable is referenced

IF LongRef2 &= NULL !Detect unreferenced reference variable and
LongRef2 &= LongRef !create a second reference to the same data

END

LongRef &= ADDRESS(Queue1.LongVar1) !Reference assign the address of
!a simple data type

See Also:

Reference Variables

ANY

NEW

11 – Assignments 565

CLEAR (clear a variable)

 CLEAR(label [,n])

CLEAR Clears the value from a variable.

label The label of a variable (except BLOB types), GROUP, RECORD, QUEUE,
CLASS, or FILE structure. If the variable has a DIM attribute, the entire array is
cleared. A single element of an array cannot be CLEARed.

n A numeric constant; either 1 or -1. If omitted, numeric variables are cleared to
zero, STRING variables are cleared to spaces, and PSTRING and CSTRING
variables are set to zero length.

The CLEAR statement clears the value from the label variable.

The presence of the n parameter indicates a cleared value other than zero or blank. If n is 1, the
label variable is set to the highest possible value for that data type. For the STRING, PSTRING
and CSTRING data types, that is all ASCII 255. If n is -1, the label variable is set to the lowest
possible value for that data type. For the STRING data type, that is all ASCII zeroes (0). For the
PSTRING and CSTRING data types, that is a zero length string.

If the label parameter names a GROUP, RECORD, or QUEUE structure, all variables in the
structure are cleared and all reference variables in the structure are set to NULL. If the label
parameter names a FILE structure and the n parameter is omitted, all variables in the FILE
structure (including any MEMO and/or BLOB fields) are cleared. If the label parameter names a
CLASS structure or an object derived from a CLASS, all variables in the object are cleared and all
reference variables are set to NULL.

Example:

MyQue QUEUE
F1 LONG
F2 STRING(20)
F3 &CSTRING !Reference to a CSTRING
F4 ANY !ANY can be a reference variable to any simple data type

END
CODE
CLEAR(MyQue) !Equivalent to:

! MyQue.F1 = 0
! MyQue.F2 = ''
! MyQue.F3 &= NULL
! MyQue.F4 &= NULL

CLEAR(Count) !Clear a variable
CLEAR(Cus:Record)!Clear the record structure
CLEAR(Customer) !Clear the record structure and any memos and blobs
CLEAR(Amount,1) !Clear variable to highest possible value
CLEAR(Amount,-1) !Clear variable to lowest possible value

See Also: Reference Assignment Statements,GROUP, RECORD, QUEUE, DIM, CLASS, ANY

Language Reference Manual 566

Data Type Conversion Rules
The Clarion language provides automatic conversion between data types. However, some
assignments can produce an unequal source and destination. Assigning an "out of range" value
can produce unpredictable results.

See Also:

Base Types

BCD Operations and Procedures

Type Conversion and Intermediate Results

Simple Assignment Data Type Conversion

11 – Assignments 567

Base Types
To facilitate this automatic data type conversion, Clarion internally uses four Base Types to which
all data items are automatically converted when any operation is performed on the data. These
types are: STRING, LONG, DECIMAL, and REAL.These are all standard Clarion data types.

The STRING Base Type is used as the intermediate type for all string operations. The LONG,
DECIMAL, and REAL Base Types are used in all arithmetic operations. Which numeric type is
used, and when, is determined by the original data types of the operands and the type of
operation being performed on them.

The "normal" Base Type for each data type is:
Base Type LONG:
BYTE
SHORT
USHORT
LONG
DATE
TIME
Integer Constants
Strings declared with @P pictures

Base Type DECIMAL:
ULONG
DECIMAL
PDECIMAL
STRING(@Nx.y)
Decimal Constants

Base Type REAL:
SREAL
REAL
BFLOAT4
BFLOAT8
STRING(@Ex.y)
Scientific Notation Constants
Untyped (? and *?) Parameters

Base Type STRING:
STRING
CSTRING
PSTRING
String Constants

DATE and TIME data types are first converted to Clarion Standard Date and Clarion Standard
Time intermediate values and have a LONG Base Type for all operations.

Language Reference Manual 568

For the most part, Clarion's internal use of these Base Types is transparent to the programmer
and do not require any consideration when planning applications. However, for business
programming with numeric data containing fractional portions (currency, for instance), using data
types that have the DECIMAL Base Type has some significant advantages over REAL Base
Types.

• DECIMAL supports 31 significant digits of accuracy for data storage while REAL only
supports 15.

• DECIMAL automatically rounds to the precision specified by the data declaration, while
REAL can create rounding problems due to the transalation of decimal (base 10)
numbers to binary (base 2) for processing by the CPU's Floating Point Unit (or Floating
Point emulation software).

• On machines without a Floating Point Unit, DECIMAL is substantially faster than REAL.

• DECIMAL operations are closely linked with conventional (decimal) arithmetic.

11 – Assignments 569

BCD Operations and Procedures
Clarion has a Binary Coded Decimal (BCD) library of operations and procedures that execute in a
manner similar to the manner in which decimal arithmetic is performed on paper. These
operations use internal intermediate values with 31 digits accuracy on both sides of the decimal
point.

The big advantage of the BCD operations is that it is very easy to "see" what is happening
because they execute just as you would with pencil and paper. Simply imagine doing the
computation long hand and throwing away numbers that go off the end of the page (rounding to
the right).

Having 31 fixed decimal places either side of the decimal point there are numbers that cannot be
represented in a BCD system which can be represented by a REAL. Therefore, understanding
what is going on is useful.

Generally, the only cases where underflow will affect you is in division operations, usually when
dividing by a multiple of 3. For example:

100000/3 = 33333.3333333333333333333333333333333
(100000/3)-INT(100000/3)*100000 =
33333.3333333333333333333333333300000

BCD computation times are very data sensitive; the time taken is proportional to how long the
computation would take you by hand. Therefore, the longer the numbers involved, the longer the
execution times. However, standard "tricks of the trade" (such as multiplying by a power of ten by
shifting the decimal point) are spotted, making the BCD libraries fast in real world applications.

The following operations may execute as BCD operations:
Addition (+), Subtraction (-), Multiplication (*)

Performed as a BCD operation when neither operand has a REAL Base Type (both are
LONG or DECIMAL) and one has the DECIMAL Base Type. Any digits appearing to the
right of 1^31 disappear (wrap), and any to the left of 1^-30 are rounded up.

Division (/)
Performed as a BCD operation when neither operand has a REAL Base Type (both are
LONG or DECIMAL). Any digits appearing to the right of 1^31 disappear (wrap), and any
to the left of 1^-30 are rounded up.

Exponentiation (^)
Performed as a BCD operation when the first operand is a DECIMAL or LONG Base
Type and the second operand is a LONG Base Type. Any digits appearing to the right of
1^31 disappear (wrap), and any to the left of 1^-30 are rounded.

ABS() Removes the sign from a DECIMAL variable or intermediate value and returns the
DECIMAL value.

INT() Truncates a DECIMAL intermediate value and returns a DECIMAL value.
ROUND()

If the second parameter is a LONG or DECIMAL Base Type, then rounding is performed
as a BCD operation which returns a DECIMAL value. ROUND is very efficient as a BCD
operation and should be used to compare REALs to DECIMALs at decimal width.

Language Reference Manual 570

Type Conversion and Intermediate Results
Internally, a BCD intermediate result may have up to 31 digits of accuracy on both sides of the
decimal point, so any two DECIMALs can be added with complete accuracy. Therefore, storage
from BCD intermediate results to a data type can result in loss of precision. This is handled as
follows :

Decimal(x,y) = BCD
First the BCD value is rounded to y decimal places. If the result overflows x digits
then leading digits are removed (this corresponds to "wrapping around" a
decimal counter).

Integer = BCD Any digits to the right of the decimal point are ignored. The decimal is then
converted to an integer with complete accuracy and then taken modulo 2^32.

String(@Nx.y) = BCD
The BCD value is rounded to y decimal places, the result is fitted into the
pictured string. If overflow occurs, an invalid picture (####) results.

Real = BCD The most significant 15 digits are taken and the decimal point 'floated'
accordingly.

For those operations and procedures that do not support DECIMAL types, the DECIMAL is
converted to REAL first. In cases where more than 15 digits were available in the DECIMAL
value, there is a loss of accuracy.

Note: Unspecified Data Type parameters have an implicit REAL Base Type, therefore
DECIMAL Base Type data passed as an Unspecified Data Type Parameters will
only have 15 digits of precision. DECIMAL Base Types can be passed as
*DECIMAL parameters with no loss of precision.

 When EVALUATEing a expression (or processing a VIEW FILTER) the REAL
Base Type is used.

11 – Assignments 571

Simple Assignment Data Type Conversion
The rules of simple assignment data type conversion from source into destination are as follows:

BYTE =

(SHORT, USHORT, LONG, or ULONG)
The destination receives the low-order 8 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates any decimal portion,
then the destination receives the low-order 8 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no formatting characters. The source is
converted to a LONG, which truncates any decimal portion, then the destination
receives the low-order 8 bits of the LONG.

SHORT =

BYTE The destination receives the value of the source.

(USHORT, LONG, or ULONG)
The destination receives the low-order 16 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates any decimal portion,
then the destination receives the low-order 16 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no formatting characters. The source is
first converted to a LONG, which truncates any decimal portion, then the
destination receives the low-order 16 bits of the LONG.

Language Reference Manual 572

USHORT =

BYTE The destination receives the value of the source.

(SHORT, LONG, or ULONG)
The destination receives the low-order 16 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates any decimal portion,
then the destination receives the low-order 16 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded formatting characters.
The source is first converted to a LONG, which truncates any decimal portion,
then the destination receives the low-order 16 bits of the LONG.

LONG =

(BYTE, SHORT, USHORT, or ULONG)
The destination receives the value and the sign of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the value of the source, including the sign, up to 2 ³¹. If the number is
greater than 2³¹, the destination receives the result of modulo 2³¹. Any decimal portion is
truncated.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded formatting characters.
The source is first converted to a REAL, which is then converted to the LONG.

11 – Assignments 573

DATE =

(BYTE, SHORT, USHORT, or ULONG)
The destination receives the Btrieve format for the Clarion Standard Date for the
value of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG as a Clarion Standard Date, which
truncates any decimal portion, then the destination receives the Btrieve format for
the Clarion Standard Date.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded formatting characters.
The source is first converted to a LONG as a Clarion Standard Date, which
truncates any decimal portion, then the destination receives the Btrieve format for
the Clarion Standard Date.

TIME =

(BYTE, SHORT, USHORT, or ULONG)
The destination receives the Btrieve format for the Clarion Standard Time for the
value of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG as a Clarion Standard Time, which
truncates any decimal portion, then the destination receives the Btrieve format for
the Clarion Standard Time.

(STRING, CSTRING, PSTRING)
The source must be a numeric value with no embedded formatting characters.
The source is first converted to a LONG as a Clarion Standard Time, which
truncates any decimal portion, then the destination receives the Btrieve format for
the Clarion Standard Time.

Language Reference Manual 574

ULONG =

(BYTE, SHORT, or USHORT)
The source is first converted to a LONG, then the destination receives the entire
32 bits of the LONG.

LONG The destination receives the entire 32 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates any decimal portion,
then the destination receives the entire 32 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded formatting characters.
The source is first converted to a LONG, which truncates any decimal portion,
then the destination receives the entire 32 bits of the LONG.

REAL =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the full integer portion and the sign of the source.

(DECIMAL, PDECIMAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer portion, and the decimal portion of the
source.

(STRING, CSTRING, PSTRING)
The source must be a numeric string value with no embedded formatting
characters. The destination receives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

SREAL =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no embedded formatting
characters. The destination receives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

11 – Assignments 575

BFLOAT8 =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no embedded formatting
characters. The destination receives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

BFLOAT4 =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no embedded formatting
characters. The destination receives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

DECIMAL =

(BYTE, SHORT, USHORT, LONG, ULONG, or PDECIMAL)
The destination receives the sign and the value of the source, wrapping or
rounding as appropriate.

(REAL, or SREAL)
The destination receives the sign, integer, and the high order part of the fraction
from the source. The high order fractional portion is rounded in the destination.

(STRING, CSTRING, PSTRING)
The source must be a numeric string value with no embedded formatting
characters. The destination receives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

Language Reference Manual 576

PDECIMAL =

(BYTE, SHORT, USHORT, LONG, ULONG, or DECIMAL)
The destination receives the sign and the value of the source, wrapping or
rounding as appropriate.

(REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and the high order part of the fraction
from the source. The high order fractional portion is rounded in the destination.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no embedded formatting
characters. The destination receives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

STRING =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted number. The value is left
justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional portion of the source
(rounded into the string's picture format). The value is left justified in the
destination.

CSTRING =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted number. The value is left
justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional portion of the source
(rounded into the string's picture format). The value is left justified in the
destination.

11 – Assignments 577

PSTRING =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted number. The value is left
justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional portion of the source
(rounded into the string's picture format). The value is left justified in the
destination.

Language Reference Manual 578

12 – Execution Control 579

12 - Execution Control
Control Structures

ACCEPT (the event processor)

 ACCEPT

 statements

 END

ACCEPT The event handler.

statements Executable code statements.

The ACCEPT loop is the event handler that processes events generated by Windows for the
APPLICATION or WINDOW structures. An ACCEPT loop and a window are bound together, in
that, when the window is opened, the next ACCEPT loop encountered will process all events for
that window.

ACCEPT operates in the same manner as a LOOP--the BREAK and CYCLE statements can be
used within it. The ACCEPT loop cycles for every event that requires program action. ACCEPT
waits until the Clarion runtime library sends it an event that the program should process, then
cycles through to execute its statements. During the time ACCEPT is waiting, the Clarion runtime
library has control, automatically handling common events from Windows that do not need
specific program action (such as screen re-draws).

The current contents of all STRING control USE variables (in the top window of each thread)
automatically display on screen each time the ACCEPT loop cycles to the top. This eliminates the
need to explicitly issue a DISPLAY statement to update the video display for display-only data.
USE variable contents for any other control automatically display on screen for any event
generated for that control, unless PROP:Auto is turned on to automatically display all USE
variables each time through the ACCEPT loop.

Language Reference Manual 580

Within the ACCEPT loop, the program determines what happened by using the following
procedures:

 EVENT() Returns a value indicating what happened. Symbolic constants for events are in
the EQUATES.CLW file.

 FIELD() Returns the field number for the control to which the event refers, if the event is a
field-specific event.

 ACCEPTED() Returns the field number for the control to which the event refers for the
EVENT:Accepted event.

 SELECTED() Returns the field number for the control to which the event refers for the
EVENT:Selected event.

 FOCUS() Returns the field number of the control that has input focus, no matter what event
occurred.

 MOUSEX() Returns the x-coordinate of the mouse cursor.

 MOUSEY() Returns the y-coordinate of the mouse cursor.

Two events cause an implicit BREAK from the ACCEPT loop. These are the events that signal
the close of a window (EVENT:CloseWindow) or close of a program (EVENT:CloseDown). The
program's code need not check for these events as they are handled automatically. However, the
code may check for them and execute some specific action, such as displaying a "You sure?"
window or handling some housekeeping details. A CYCLE statement at that point returns to the
top of the ACCEPT loop without exiting the window or program.

Similarly, there are several other events whose action can also be terminated by a CYCLE
statement: EVENT:Move, EVENT:Size, EVENT:Restore, EVENT:Maximize, and EVENT:Iconize.
A CYCLE statement in response to any of these events stops the normal action and prohibits
generation of the related EVENT:Moved, EVENT:Sized, EVENT:Restored, EVENT:Maximized, or
EVENT:Iconized.

12 – Execution Control 581

Example:
CODE
OPEN(Window)
ACCEPT !Event handler
CASE FIELD()
OF 0 !Handle Field-independent events
CASE EVENT()
OF EVENT:Move

CYCLE !Do not allow user to move the window
OF EVENT:Suspend
CASE FOCUS()
OF ?Field1

!Save some stuff
END

OF EVENT:Resume
!Restore the stuff

END
OF ?Field1 !Handle events for Field1
CASE EVENT()
OF EVENT:Selected

! pre-edit code for field1
OF EVENT:Accepted

! completion code for field1
END

END

See Also:

EVENT

APPLICATION

WINDOW

FIELD

FOCUS

ACCEPTED

SELECTED

CYCLE

BREAK

Language Reference Manual 582

CASE (selective execution structure)

 CASE condition

 OF expression [TO expression]

 statements

 [OROF expression [TO expression]]

 statements

 [ELSE]

 statements

 END

CASE Initiates a selective execution structure.

condition A numeric or string variable or expression.

OF The statements following an OF are executed when the expression following the
OF option is equal to the condition of the CASE. There may be many OF options
in a CASE structure.

expression A numeric or string constant, variable, or expression.

TO TO allows a range of values in an OF or OROF. The statements following the OF
(or OROF) are executed if the value of the condition falls within the inclusive
range specified by the expressions. The expression following OF (or OROF)
must contain the lower limit of the range. The expression following TO must
contain the upper limit of the range.

OROF The statements following an OROF are executed when either the expression
following the OROF or the OF option is equal to the condition of the CASE. There
may be many OROF options associated with one OF option. An OROF may
optionally be put on a separate line. An OROF does not terminate preceding
statements groups, so control "falls into" the OROF statements.

ELSE The statements following ELSE are executed when all preceding OF and OROF
options have been evaluated as not equivalent. ELSE is not required; however,
when used, it must be the last option in the CASE structure.

statements Any valid Clarion executable source code.

12 – Execution Control 583

A CASE structure selectively executes the first set of statements encountered for which there is
equivalence between the condition and expression or range of expressions. CASE structures
may be nested within other executable structures and other executable structures may be nested
within CASE structures. The CASE structure must terminate with an END statement (or period).

For those situations where the program's logic could allow using either a CASE structure or a
complex IF/ELSIF structure, the CASE structure will generally generate more efficient object
code. EXECUTE generates the most efficient object code for those special cases where the
condition evaluates to an integer in the range of 1 to n.

Example:

CASE ACCEPTED() !Evaluate field edit routine
OF ?Name !If field is Name
ERASE(?Address,?Zip) !erase Address through Zip
GET(NameFile,NameKey) !get the record

CASE Action !Evaluate Action
OF 1 !adding record - does not exist
IF NOT ERRORCODE() !should be a file error
ErrMsg = 'ALREADY ON FILE' !otherwise display error message
DISPLAY(?Address,?Zip) !display address through zipcode
SELECT(?Name) !re-enter the name

END
OF 2 OROF 3 !change or delete - record exists
DISPLAY(?Address,?Zip) !display address through zipcode

END !end case action

CASE Name[1] !Get first letter of name
OF 'A' TO 'M' !Process first half of alphabet
OROF 'a' TO 'm'
DO FirstHalf

OF 'N' TO 'Z' OROF 'n' TO 'z' !Process second half of alphabet
DO SecondHalf

END !End case sub(name

OF ?Address !If field is address
DO AddressVal !call validation routine

END !End case accepted()

See Also:

EXECUTE

IF

Language Reference Manual 584

EXECUTE (statement execution structure)
 EXECUTE expression

 statement 1

 statement 2

 [BEGIN

 statements

 END]

 statement n

 [ELSE]

 statement

 END

EXECUTE Initiates a single statement execution structure.

expression A numeric expression or a variable that contains a numeric integer.

statement 1 A single statement that executes only when the expression is equal to 1.

statement 2 A single statement that executes only when the expression is equal to 2.

BEGIN BEGIN marks the beginning of a structure containing a number of lines of code.
The BEGIN structure will be treated as a single statement by the EXECUTE
structure. The BEGIN structure is terminated by a period or the keyword END.

statement n A single statement that executes only when the expression is equal to n.

ELSE The statement following ELSE executes when the expression evaluates to a
value outside the range of 1 to n, where n is defined as the total number of single
statements between the EXECUTE and the ELSE.

statement A single statement that executes only when the expression is outside the valid
range.

An EXECUTE structure selects a single executable statement (or executable code structure)
based on the value of the expression. The EXECUTE structure must terminate with an END
statement (or period).

If the expression equals 1, the first statement (statement 1) executes. If expression equals 2, the
second statement (statement 2) executes, and so on. If the value of the expression is zero, or
greater than the total number of statements (or structures) within the EXECUTE structure, the
statement in the ELSE clause executes. If no ELSE clause is present, program execution
continues with the next statement following the EXECUTE structure.

EXECUTE structures may be nested within other executable structures and other executable
code structures (IF, CASE, LOOP, EXECUTE, and BEGIN) may be nested within an EXECUTE.

12 – Execution Control 585

For those situations where the program's logic could allow using either an EXECUTE, CASE, or
an IF/ELSIF structure, the EXECUTE structure will generate more efficient object code, and is the
preferred method.

Example:

EXECUTE Transact !Evaluate Transact
ADD(Customer) !Execute if Transact = 1
PUT(Customer) !Execute if Transact = 2
DELETE(Customer) !Execute if Transact = 3

END !End execute

EXECUTE CHOICE() !Evaluate CHOICE() procedure
OrderPart !Execute if CHOICE() = 1
BEGIN !Execute if CHOICE() = 2
SavVendor" = Vendor
UpdVendor
IF Vendor <> SavVendor"
Mem:Message = 'VENDOR NAME CHANGED'

END
END
CASE VendorType !Execute if CHOICE() = 3
OF 1
UpdPartNo1

OF 2
UpdPartNo2

END
RETURN !Execute if CHOICE() = 4

END !End execute

EXECUTE SomeValue
DO OneRoutine
DO TwoRoutine

ELSE
MESSAGE('SomeValue did not contain a 1 or 2')
END

See Also:

BEGIN

CASE

IF

Language Reference Manual 586

IF (conditional execution structure)

 IF logical expression [THEN]

 statements

 [ELSIF logical expression [THEN]

 statements]

 [ELSE

 statements]

 END

IF Initiates a conditional statement execution structure.

logical expression
A variable, procedure, or expression which evaluates a condition. Control is
determined by the result (true or false) of the expression. Zero (or blank)
evaluates as false, anything else is true.

THEN The statements following THEN execute when the preceding logical expression
is true. If used, THEN must only appear on the same line as IF or ELSIF.

statements An executable statement, or a sequence of executable statements.

ELSIF The logical expression following an ELSIF is evaluated only when all preceding
IF or ELSIF conditions were evaluated as false.

ELSE The statements following ELSE execute only when all preceding IF and ELSIF
options evaluate as false. ELSE is not required, however, when used, it must be
the last option in the IF structure.

An IF structure controls program execution based on the outcome of one or more logical
expressions. IF structures may have any number of ELSIF statement groups. IF structures may
be "nested" within other executable structures. Other executable structures may be nested within
an IF structure. Each IF structure must terminate with an END statement (or period).

12 – Execution Control 587

Example:

IF Cus:TransCount = 1 !If new customer
AcctSetup !call account setup procedure

ELSIF Cus:TransCount > 10 AND Cus:TransCount < 100 !If regular customer
DO RegularAcct !process the account

ELSIF Cus:TransCount > 100 !If special customer
DO SpecialAcct !process the account

ELSE !Otherwise
DO NewAcct !process the account
IF Cus:Credit
CheckCredit

ELSE
CLEAR(Cus:CreditStat)

END
! verify credit status

END
IF ERRORCODE()
ErrHandler(Cus:AcctNumber,Trn:InvoiceNbr) !Handle errors

END

See Also:

EXECUTE

CASE

Language Reference Manual 588

LOOP (iteration structure)
label LOOP [| count TIMES |]

 | i = initial TO limit [BY step] |

 | UNTIL logical expression |

 | WHILE logical expression |

 statements

 | END |

 | UNTIL logical expression |

 | WHILE logical expression |

LOOP Initiates an iterative statement execution structure.

count An integer constant, variable, or expression specifying the number of TIMES
statements in the LOOP execute.

TIMES Executes count number of iterations of the statements.

i The label of a variable which automatically increments (or decrements, if step is
negative) on each iteration.

= initial A numeric constant, variable, or expression specifying the value of the increment
variable (i) on the first pass through the LOOP structure.

TO limit A numeric constant, variable, or expression specifying the terminating value for
the LOOP. When i is greater than limit (or less than, if the step is a negative
value) the LOOP structure control sequence terminates. The i variable contains
the last incremental value greater than (or less than) the limit after the LOOP
terminates.

BY step A numeric constant, variable, or expression specifying the quantity by which the i
variable increments (or decrements, if the value is negative) on each iteration of
the LOOP. If BY step is omitted, i increments by 1.

UNTIL When placed on the LOOP statement, UNTIL evaluates the logical expression
before each iteration. When terminating the LOOP structure, UNTIL evaluates
the logical expression after each iteration. If the logical expression evaluates to
true, the LOOP terminates.

WHILE When placed on the LOOP statement, WHILE evaluates the logical expression
before each iteration. When terminating the LOOP structure, WHILE evaluates
the logical expression after each iteration. If the logical expression evaluates to
false, the LOOP terminates.

12 – Execution Control 589

logical expression
A numeric or string variable, expression, or procedure. A logical expression
evaluates a condition. Control is determined by the result (true or false) of the
expression. A zero numeric or blank string value evaluates as false, anything
else is true.

statements An executable statement, or a sequence of executable statements.

A LOOP structure repetitively executes the statements within its structure. LOOP structures may
be nested within other executable code structures. Other executable code structures may be
nested within a LOOP structure. Each LOOP structure must terminate with an END statement (or
period), an UNTIL, or a WHILE statement.

A LOOP with no condition at the top or bottom iterates continuously until a BREAK or RETURN
statement executes. BREAK discontinues the LOOP and continues program execution with the
statement following the LOOP structure. All statements within a LOOP structure executes unless
a CYCLE statement executes. CYCLE immediately sends program execution back to the top of
the LOOP for the next iteration, without executing any further statements in the LOOP following
the CYCLE.

LOOP UNTIL or LOOP WHILE logical expressions are always evaluated at the top of the LOOP,
before the LOOP statements execute. Therefore, if the logical expression is false on the first
pass, the LOOP statements will not execute even once. To create a LOOP that always executes
its statements at least once, the UNTIL or WHILE clause must terminate the LOOP structure.

Example:

LOOP !Continuous loop
Char = GetChar() !get a character
IF Char <> CarrReturn !if it's not a carriage return
Field = CLIP(Field) & Char !append the character

ELSE !otherwise
BREAK !break out of the loop

END !End if
END !end loop

IF ERRORCODE() !On error
LOOP 3 TIMES !loop three times
BEEP !sound the alarm

END !End loop
END !end if

LOOP I# = 1 TO 365 BY 7 !Loop, increment I# by 7 each time
GET(DailyTotal,I#) !read every 7th record
DO WeeklyJob

END !I# contains 372 when the LOOP terminates

Language Reference Manual 590

LOOP I# = 10 TO 1 BY -1 !Loop, decrementing I# by 1 each time
DO SomeRoutine

END !I# contains zero (0) when the LOOP terminates

SET(MasterFile) !Point to first record
LOOP UNTIL EOF(MasterFile) !Process all the records
NEXT(MasterFile) !read a record
ProcMaster !call the procedure

END

LOOP WHILE KEYBOARD() !Empty the keyboard buffer
ASK !without processing keystrokes

UNTIL KEYCODE() = EscKey !but break the loop for Escape

See Also:

BREAK

CYCLE

12 – Execution Control 591

Execution Control Statements

BREAK (immediately leave loop)
 BREAK [label]

BREAK Tranfers control to the first statement following the terminator of a LOOP or
ACCEPT structure.

label The label on the LOOP or ACCEPT statement from which to break. This must be
the label of a nested loop structure containing the BREAK statement.

The BREAK statement immediately terminates processing in the LOOP or ACCEPT structure
and transfers control to the first statement following the terminating END, WHILE, or UNTIL
statement of the LOOP, or the terminating END statement of the ACCEPT structure.

BREAK may only be used in a LOOP or ACCEPT loop structure. The use of the optional label
argument allows you to cleanly break out of multiple levels of nested loops, eliminating one
common use of GOTO.

Example:

LOOP !Loop
ASK !wait for a keystroke
IF KEYCODE() = EscKey !if Esc key pressed
BREAK !break out of the loop

ELSE !otherwise
BEEP !sound the alarm

END
END

Loop1 LOOP !Loop1 is the label
DO ParentProcess

Loop2 LOOP !Loop2 is the label
DO ChildProcess
IF SomeCondition
BREAK Loop1 !Break out of both nested loops
END

END
END

ACCEPT !ACCEPT loop structure
CASE ACCEPTED()
OF ?Ok
CallSomeProc

OF ?Cancel
BREAK !break out of the loop

END;END

See Also: LOOP, CYCLE, ACCEPT

Language Reference Manual 592

CYCLE (go to top of loop)
 CYCLE [label]

CYCLE Transfers control back to the top of a LOOP or ACCEPT structure.

label The label on the LOOP or ACCEPT statement to which to return. This must be
the label of a nested loop structure containing the CYCLE statement.

The CYCLE statement passes control immediately back to the top of the LOOP or ACCEPT loop.
CYCLE may only be used in a LOOP or ACCEPT loop structure. The use of the optional label
argument allows you to cleanly go back to the top of outer levels of nested loops, eliminating one
common use of GOTO.

In an ACCEPT loop, for certain events, CYCLE terminates an automatic action before it is
performed. This behavior is documented for each event so affected:

 Event:Iconize
 Event:Maximize
 Event:Move
 Event:PreAlertKey
 Event:Restore
 Event:Size
 Event:Contracting
 Event:Expanding
 EVENT:CloseDown
 EVENT:CloseWindow
 EVENT:DDEPoke
 EVENT:DDEExecute

Example:

SET(MasterFile) !Point to first record
LOOP !Process all the records
NEXT(MasterFile) !read a record
IF ERRORCODE() THEN BREAK. !Get out of loop at end of file
DO MatchMaster !check for a match
IF NoMatch !if match not found
CYCLE !jump to top of loop

END
DO TransVal !validate the transaction
PUT(MasterFile) !write the record

END

12 – Execution Control 593

Loop1 LOOP !Loop1 is the label
DO ParentProcess

Loop2 LOOP !Loop2 is the label
DO ChildProcess
IF SomeCondition
CYCLE Loop1 !Cycle back to top of outer loop
END

END
END

See Also:

LOOP

BREAK

ACCEPT

Language Reference Manual 594

DO (call a ROUTINE)

 DO label

DO Executes a ROUTINE.

label The label of a ROUTINE statement.

The DO statement is used to execute a ROUTINE local to a PROGRAM or PROCEDURE. When
a ROUTINE completes execution, program control reverts to the statement following the DO
statement. A ROUTINE may only be called within the CODE section containing the ROUTINE's
source code.

Example:

DO NextRecord !Call the next record routine
DO CalcNetPay !Call the calc net pay routine

See Also:

EXIT

ROUTINE

12 – Execution Control 595

EXIT (leave a ROUTINE)

 EXIT

The EXIT statement immediately leaves a ROUTINE and returns program control to the
statement following the DO statement that called it. This is different from RETURN, which
completely exits the PROCEDURE even when called from within a ROUTINE.

An EXIT statement is not required. A ROUTINE with no EXIT statement terminates automatically
when the entire sequence of statements in the ROUTINE is complete.

Example:

CalcNetPay ROUTINE
IF GrossPay = 0 !If no pay
EXIT ! exit the routine

END
NetPay = GrossPay - FedTax - Fica
QtdNetPay += NetPay
YtdNetPay += NetPay

See Also:

DO

RETURN

Language Reference Manual 596

GOTO (go to a label)

 GOTO target

GOTO Unconditionally transfers program control to another statement.

target The label of another executable statement within the PROGRAM, PROCEDURE,
or ROUTINE.

The GOTO statement unconditionally transfers control from one statement to another. The target
of a GOTO must not be the label of a ROUTINE or PROCEDURE.

The scope of GOTO is limited to the currently executing ROUTINE or PROCEDURE--it may not
target a label outside the ROUTINE or PROCEDURE in which it is used.

Extensive use of GOTO is generally not considered good structured programming practice.
LOOP is usually considered a better alternative.

Example:

ComputeIt PROCEDURE(Level)
CODE
IF Level = 0
GOTO PassCompute !Skip rate calculation if no Level

END
Rate = Level * MarkUp !Compute Rate
RETURN(Rate) !and return it

PassCompute RETURN(999999) !Return bogus number

See Also:

LOOP

12 – Execution Control 597

RETURN (return to caller)

 RETURN([expression])

RETURN Terminates a PROGRAM or PROCEDURE.

expression The expression passes the return value of a PROCEDURE prototyped to return a
value back to the expression in which the PROCEDURE was used. This may be
NULL if the PROCEDURE returns a reference.

The RETURN statement terminates a PROGRAM or PROCEDURE and passes control back to
the caller. When RETURN is executed from the CODE section of a PROGRAM, the program is
terminated, all files and windows are closed, and control is passed to the operating system.

RETURN is required in a PROCEDURE prototyped to return a value and optional in a
PROGRAM or PROCEDURE which does not return a value. If RETURN is not used in a
PROCEDURE or PROGRAM, an implicit RETURN occurs at the end of the executable code. The
end of executable code is defined as the end of the source file, or the beginning of another
PROCEDURE or ROUTINE.

RETURN from a PROCEDURE (whether explicit or implicit) automatically closes any local
APPLICATION, WINDOW, REPORT, or VIEW structure opened in the PROCEDURE. It does
not automatically close any Global or Module Static APPLICATION, WINDOW, REPORT, or
VIEW. It also closes and frees any local QUEUE structure declared without the STATIC attribute.

Example:

IF Done#
RETURN !Quit when done

END

DayOfWeek PROCEDURE(Date) !Procedure to return the day of the week
RetVal STRING(9)
CODE
EXECUTE Date % 7 !Determine what day of week Date is
RetVal = 'Monday'
RetVal = 'Tuesday'
RetVal = 'Wednesday'
RetVal = 'Thursday'
RetVal = 'Friday'
RetVal = 'Saturday'

ELSE
RetVal = 'Sunday'

END
RETURN(RetVal) !and RETURN the correct day string

See Also: PROCEDURE, PROCEDURE Return Types

Language Reference Manual 598

13 – Built-In Procedures 599

13 - Built-in Procedures
Procedure Listing by Function

Logic Control
CHAIN (execute another program)
HALT (exit program)
IDLE (arm periodic procedure)
RUN (execute command)
SHUTDOWN (arm termination procedure)
STOP (suspend program execution)

Event Processing
ACCEPT (the event processor)
ALERT (set event generation key)
EVENT (return event number)
POST (post user-defined event)
REGISTER (register event handler)
UNREGISTER (unregister event handler)
YIELD (allow event processing)

Multi-Threading
START (return new execution thread)
THREAD (return current execution thread)
UNLOCKTHREAD (unlock the current execution thread)
LOCKTHREAD (re-lock the current execution thread)
THREADLOCKED (returns current execution thread locked state)
SUSPEND (suspend thread execution)
RESUME (resume thread execution)

Language Reference Manual 600

Window Processing
ACCEPTED (return control just completed)
CHANGE (change control field value)
CHOICE (return relative item position)
CLONE (duplicate existing control)
CLOSE (close window)
CONTENTS (return contents of USE variable)
CREATE (create new control)
DESTROY (remove a control)
DISABLE (dim a control)
DISPLAY (write USE variables to screen)
ENABLE (re-activate dimmed control)
ERASE (clear screen control and USE variables)
FIELD (return control with focus)
FIRSTFIELD (return first window control)
FOCUS (return control with focus)
GETFONT (get font information)
GETPOSITION (get control position)
HELP (help window access)
HIDE (blank a control)
INCOMPLETE (return empty REQ control)
LASTFIELD (return last window control)
MESSAGE (return message box response)
MOUSEX (return mouse horizontal position)
MOUSEY (return mouse vertical position)
OPEN (open window for processing)
POPUP (return popup menu selection)
SELECT (select next control to process)
SELECTED (return control that has received focus)
SET3DLOOK (set 3D window look)
SETCURSOR (set temporary mouse cursor)
SETFONT (specify font)
SETPOSITION (specify new control position)
SETTARGET (set current window or report)
UNHIDE (show hidden control)
UPDATE (write from screen to USE variables)

13 – Built-In Procedures 601

Keyboard Processing
ALIAS (set alternate keycode)
ASK (get one keystroke)
FORWARDKEY (pass keystrokes to control)
KEYBOARD (return keystroke waiting)
KEYCHAR (return ASCII code)
KEYCODE (return last keycode)
KEYSTATE (return keyboard status)
PRESS (put characters in the buffer)
PRESSKEY (put a keystroke in the buffer)
SETKEYCHAR (specify ASCII code)
SETKEYCODE (specify keycode)

Windows Standard Dialogs
COLORDIALOG (return chosen color)
FILEDIALOG (return chosen file)
FONTDIALOG (return chosen font)
FONTDIALOGA (return chosen font and character set)
PRINTERDIALOG (return chosen printer)

Drag and Drop Processing
CLIPBOARD (return windows clipboard contents)
DRAGID (return matching drag-and-drop signature)
DROPID (return drag-and-drop string)
SETCLIPBOARD (set windows clipboard contents)
SETDROPID (set DROPID return string)

Non-Volatile Storage
GETINI (return INI file entry)
PUTINI (set INI file entry)
GETREG (get Windows registry entry)
PUTREG (write value to Windows registry)
DELETEREG(remove a value or key from Windows registry)

Language Reference Manual 602

Report Processing
CLOSE (close an active report structure)
ENDPAGE (force page overflow)
OPEN (open a report structure for processing)
PRINT (print a report structure)

Graphics Processing
ARC (draw an arc of an ellipse)
BLANK (erase graphics)
BOX (draw a rectangle)
CHORD (draw a section of an ellipse)
ELLIPSE (draw an ellipse)
IMAGE (draw a graphic image)
LINE (draw a straight line)
PENCOLOR (return line draw color)
PENSTYLE (return line draw style)
PENWIDTH (return line draw thickness)
PIE (draw a pie chart)
POLYGON (draw a multi-sided figure)
ROUNDBOX (draw a box with round corners)
SETPENCOLOR (set line draw color)
SETPENSTYLE (set line draw style)
SETPENWIDTH (set line draw thickness)
SHOW (write to screen)
TYPE (write string to screen)

13 – Built-In Procedures 603

File Processing
BUFFER (set FILE record paging)
BUILD (build keys and indexes)
CALLBACK (register or unregister a FileCallBackInterface)
CLOSE (close a data file)
COPY (copy a file)
CREATE (create an empty data file)
EMPTY (empty a data file)
FLUSH (flush buffers)
FREESTATE (free resources)
GETSTATE (return current state of data file)
LOCK (exclusive file access)
NAME (return file name)
OPEN (open a data file)
PACK (remove deleted records)
RECORDS (return number of file or key records)
REMOVE (erase a file)
RENAME (change file directory name)
RESTORESTATE (restore state of data file)
SEND (send message to file driver)
SQLCALLBACK (register or unregister a SQLCallBackInterface)
STATUS (return file status)
STREAM (enable operating system buffering)
UNLOCK (unlock a locked data file)

Record Processing
ADD (add a new file record)
APPEND (add a new file record)
BYTES (return size in bytes)
DELETE (delete a file record)
DUPLICATE (check for duplicate key entries)
GET (read a file record by direct access)
HOLD (exclusive file record access)
NEXT (read next file record in sequence)
NOMEMO (read file record without reading memo)
POSITION (return file record sequence position)
PREVIOUS (read previous file record in sequence)
PUT (write record back to file)
RELEASE (release a held file record)
REGET (reget file record)
RESET (reset file record sequence position)
SET (initiate sequential file processing)
SKIP (bypass file records in sequence)
WATCH (automatic file concurrency check)

Language Reference Manual 604

Transaction Processing
COMMIT (terminate successful transaction)
LOGOUT (begin transaction)
ROLLBACK (terminate unsuccessful transaction)

Null Data Processing
GETNULLS (get the NULL state of a table)
NULL (return null file field)
SETNULL (set file field null)
SETNULLS (set the null state of columns)
SETNONNULL (set file field non-null)

Internationalization Support
CONVERTANSITOOEM (convert ANSI strings to ASCII)
CONVERTOEMTOANSI (convert ASCII strings to ANSI)
ISALPHA (return alphabetic character)
ISLOWER (return lower case character)
ISUPPER (return upper case character)
LOCALE (load environment file)

View Processing
BUFFER (set VIEW record paging)
CALLBACK (register or unregister a FileCallBackInterface)
CLOSE (close a VIEW)
OPEN (open a VIEW)
DELETE (delete a view primary file record)
FLUSH (flush buffers)
HOLD (exclusive view record access)
NEXT (read next view record in sequence)
POSITION (return view record sequence position)
PREVIOUS (read previous view record in sequence)
PUT (write VIEW primary file record back)
RECORDS (return number of rows in data set)
REGET (reget view record)
RELEASE (release a held view record)
RESET (reset view record sequence position)
SET (set view record sequence position)
SKIP (bypass view records in sequence)
SQL (use SQL code)
SQLCALLBACK (register or unregister an SQLCallBackInterface)
WATCH (automatic view concurrency check)

13 – Built-In Procedures 605

Queue Processing
ADD (add an entry)
CHANGES (return changed queue)
DELETE (delete an entry)
FREE (delete all entries)
GET (read an entry)
POINTER (return last entry position)
POSITION (return record sequence position)
PUT (write an entry)
RECORDS (return number of entries)
SORT (sort entries)

Mathematical Procedures
ABS (return absolute value)
INRANGE (check number within range)
INT (truncate fraction)
LOGE (return natural logarithm)
LOG10 (return base 10 logarithm)
RANDOM (return random number)
ROUND (return rounded number)
SQRT (return square root)

Trigonometric Procedures
SIN (return sine)
COS (return cosine)
TAN (return tangent)
ASIN (return arcsine)
ACOS (return arccosine)
ATAN (return arctangent)

Language Reference Manual 606

String Processing

ALL (return repeated characters)
CENTER (return centered string)
CHR (return character from ASCII)
CLIP (return string without trailing spaces)
DEFORMAT (return unformatted numbers from string)
FORMAT (return formatted numbers into a picture)
INLIST (return entry in list)
INSTRING (return substring position)
LEFT (return left justified string)
LEN (return length of string)
LOWER (return lower case)
MATCH (return matching strings)
NUMERIC (return numeric string)
RIGHT (return right justified string)
SUB (return substring of string)
TIE (associate a string value to an ASTRING)
TIED (retrieves a value associated with an ASTRING)
UNTIE (disassociate a string value from an ASTRING)
UPPER (return upper case)
VAL (return ASCII value)

Bit Manipulation
BAND (return bitwise AND)
BOR (return bitwise OR)
BXOR (return bitwise exclusive OR)
BSHIFT (return shifted bits)

Date / Time Processing
TODAY (return system date)
SETTODAY (set system date)
CLOCK (return system time)
SETCLOCK (set system time)
DATE (return standard date)
DAY (return day of month)
MONTH (return month of date)
YEAR (return year of date)
AGE (return age from base date)

13 – Built-In Procedures 607

Field Access
ISSTRING (return field string type or not)
WHAT (return field from group)
WHERE (return field position in group)

Operating System Procedures
COMMAND (return command line)
DIRECTORY (get file directory)
LONGPATH (return long filename)
PATH (return current directory)
RUNCODE (return program exit code)
SETCOMMAND (set command line parameters)
SETPATH (change current drive and directory)
SHORTPATH (return short filename)

Error Reporting
ERROR (return error message)
ERRORCODE (return error code number)
ERRORFILE (return error filename)
FILEERROR (return file driver error message)
FILEERRORCODE (return file driver error code number)
REJECTCODE (return reject code number)

Miscellaneous
ADDRESS (return memory address)
BEEP (sound tone on speaker)
CALL (call procedure from a DLL)
CHOOSE (return chosen value)
MAXIMUM (return maximum subscript value)
OMITTED (return omitted parameters)
PEEK (read memory address)
POKE (write to memory address)
UNLOAD (remove a CALLed DLL from memory)

Language Reference Manual 608

ABS (return absolute value)

 ABS(expression)

ABS Returns absolute value.

expression A constant, variable, or expression.

The ABS procedure returns the absolute value of an expression. The absolute value of a number
is always positive (or zero).

Return Data Type: REAL or DECIMAL

Example:
C = ABS(A - B) !C is absolute value of the difference
IF B < 0
B = ABS(B) !If b is negative make it positive

END

See Also:

BCD Operations and Procedures

13 – Built-In Procedures 609

ACCEPTED (return control just completed)

 ACCEPTED()

The ACCEPTED procedure returns the field number of the control on which an EVENT:Accepted
event occurred. ACCEPTED returns zero (0) for all other events.

Positive field numbers are assigned by the compiler to all WINDOW controls, in the order their
declarations occur in the WINDOW structure. Negative field numbers are assigned to all
APPLICATION controls. In executable code statements, field numbers are usually represented by
field equate labels--the label of the USE variable preceded by a question mark (?FieldName).

Return Data Type: SIGNED

Example:
CASE ACCEPTED() !Process post-edit code
OF ?Cus:Company
!Edit field value

OF ?Cus:CustType
!Edit field value

END

See Also:

ACCEPT

EVENT

Language Reference Manual 610

ACOS (return arccosine)

 ACOS(expression)

ACOS Returns inverse cosine.

expression A numeric constant, variable, or expression for the value of the cosine.

The ACOS procedure returns the inverse cosine. The inverse of a cosine is the angle that
produces the cosine. The return value is the angle in radians. p is a constant which represents
the ratio of the circumference and radius of a circle. There are 2p radians (or 360 degrees) in a
circle.

Return Data Type: REAL

Example:
PI EQUATE(3.1415926535898) !The value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(0.0174532925199) !Number of radians in a degree
CODE
InvCosine = ACOS(CosineAngle) !Get the Arccosine

See Also:

TAN

ATAN

SIN

ASIN

COS

13 – Built-In Procedures 611

ADD (add an entry)

 | file |

 | file ,length |

 ADD(| queue |)

 | queue, [+]key,...,[-]key] |

 | queue, name |

 | queue, function |

 | queue, pointer |

ADD Writes a new record to a FILE or QUEUE.

file The label of a FILE declaration.

length An integer constant, variable, or expression which contains the number of bytes
in the RECORD buffer to write to the file. If omitted or out of range, length
defaults to the length of the RECORD structure.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

+ - The leading plus or minus sign specifies the key is sorted in ascending or
descending sequence. If omitted, ascending sequence is the default.

key The label of a field declared within the QUEUE structure. If the QUEUE has a
PRE attribute, the key must include the prefix.

name A string constant, variable, or expression containing the NAME attribute of
QUEUE fields, separated by commas, and optional leading + or - signs for each
attribute. This parameter is case sensitive.

function The label of the function containing two parameters of a *GROUP or named
GROUP passed by address, and having a SIGNED return value. Both
parameters must use the same parameter type, and cannot be omitted. The
RAW, C and PASCAL attributes are not permitted in the prototype declaration.
See Additional Queue Considerations.

pointer A numeric constant, variable, or numeric expression. The pointer must be in the
range from 1 to the number of entries in the memory queue.

The ADD statement writes a new record to a FILE or QUEUE.

Language Reference Manual 612

FILE Usage

All KEYs associated with the file are also updated during each ADD. If there is no room for the
record on disk, the "Access Denied" error is posted. If an error is posted, no record is added to
the file.

You can use the DUPLICATE procedure to check whether the ADD will return the "Creates
Duplicate Key" error. The DUPLICATE procedure assumes that the contents of the RECORD
structure data buffer are duplicated at the current record pointer location. Therefore, when using
DUPLICATE prior to ADDing a record, the record pointer should be cleared with: GET(file,0).

ADD(file)
Adds a new record to the file by writing the entire contents of the data file's record
buffer to disk.

ADD(file,length)
Adds a new record to the file by writing length number of bytes from the data file's
record buffer to disk. The length must be greater than zero and not greater than
the length of the RECORD. This form of ADD is not supported by all file drivers--
check your file driver documentation.

QUEUE Usage

ADD writes a new entry from the QUEUE structure data buffer to the QUEUE. If there is not
enough memory to ADD a new entry, the "Insufficient Memory" error is posted.

ADD(queue)
Appends a new entry to the end of the QUEUE.

ADD(queue,pointer)
Places a new entry at the relative position specified by the pointer parameter. If
there is an entry already at the relative pointer position, it is "pushed down" to
make room for the new entry. All following pointers are readjusted to account for
the new entry. For example, an entry added at position 10 pushes entry 10 to
position 11, entry 11 to position 12, etc. If pointer is zero or greater than the
number of entries in the QUEUE, the entry is added at the end.

ADD(queue,key)
Inserts a new entry in a sorted memory queue. Multiple key parameters may be
used (up to 16), separated by commas, with optional leading plus or minus signs
to indicate ascending or descending sequence. The entry is inserted immediately
after all other entries with matching key values. Using only this form of ADD will
build the QUEUE in sorted order.

13 – Built-In Procedures 613

ADD(queue,name)
Inserts a new queue entry in a sorted memory queue. The name string must
contain the NAME attributes of the fields, separated by commas, with optional
leading plus or minus signs to indicate ascending or descending sequence. The
entry is inserted immediately after all other entries with matching field values. If
there are no entries, ADD(queue,name) may be used to build the QUEUE in
sorted order.

ADD(queue,function)
Using ADD by FUNCTION will write from a positional value returned by the function.
If the function returns zero (0) the queue record of the first parameter is treated as
equal to the second. In this case, no record is added, since the values are equal. If
the function returns a negative value, the ADD of the record passed as a first
parameter is treated as having less value than record passed as second parameter
and is written accordingly. If the function returns a positive value, the ADD of the
record passed as a first parameter is treated as having a greater value than record
passed as second parameter and is written accordingly.

If the QUEUE contains any reference variables or fields with the ANY data type, you
must first CLEAR the QUEUE entry before assigning new values to the component
fields of the QUEUE. This avoids possible memory leaks, since these data types
automatically allocate memory.

Errors Posted: 05 Access Denied
08 Insufficient Memory
37 File Not Open
40 Creates Duplicate Key
75 Invalid Field Type Descriptor

Language Reference Manual 614

Example:
NameQue QUEUE
Name STRING(20),NAME('FirstField')
Zip DECIMAL(5,0),NAME('SecondField')
AnyField ANY

END
CODE
ADD(Customer) !Add a new customer file record
IF ERRORCODE() THEN STOP(ERROR()). !and check for errors

NameQue.Name = 'Jones' !Assign data
NameQue.Zip = 12345
NameQue.AnyField &= NEW(STRING(10)) !Create a new STRING(10) field in the QUEUE
ADD(NameQue) !Add an entry to the end of the QUEUE
CLEAR(NameQue) !Clear ANY for next entry

NameQue.Name = 'Taylor' !Assign data
NameQue.Zip = 12345
NameQue.AnyField &= NEW(STRING(20)) !Create a new STRING(20) field in the QUEUE
ADD(NameQue,+NameQue.Name,-NameQue.Zip) !Ascending name, descending zip order
CLEAR(NameQue) !Clear ANY for next entry

NameQue.Name = 'Adams' !Assign data
NameQue.Zip = 12345
NameQue.AnyField &= NEW(STRING(30)) !Create a new STRING(30) field in the QUEUE
ADD(NameQue,1) !Add an entry at position 1
CLEAR(NameQue) !Clear ANY for next entry

Que:Name = 'Smith' !Assign data
Que:Zip = 12345
NameQue.AnyField &= NEW(STRING(40)) !Create a new STRING(40) field in the QUEUE
ADD(NameQue,+FirstField,-SecondField) !Ascending name, descending zip order
CLEAR(NameQue) !Clear ANY for next entry

See Also:

SORT

CLEAR

Reference Variables

PUT

GET

DUPLICATE

APPEND

13 – Built-In Procedures 615

ADDRESS (return memory address)

 ADDRESS(| variable |)

ADDRESS Returns memory address of a variable.

variable The label of a data item or PROCEDURE.

The ADDRESS procedure returns the address of the specified data item or PROCEDURE.

The ADDRESS procedure allows you to pass the address of a variable or procedure to external
libraries written in other languages, or to reference assign the address to a reference variable.

Return Data Type: LONG

Example:
MAP
ClarionProc !A Clarion language procedure
MODULE('External.Obj') !An external library
ExternVarProc(LONG) !C procedure receiving variable address
ExternProc(LONG) !C procedure receiving procedure address

END
END

Var1 CSTRING(10) !Define a null-terminated string
CODE
ExternVarProc(ADDRESS(Var1)) !Pass address of Var1 to external procedure
ExternProc(ADDRESS(ClarionProc)) !Pass address of ClarionProc

ClarionProc PROCEDURE !A Clarion language procedure
CODE
RETURN

See Also:

PEEK

POKE

Reference Assignment Statements

Language Reference Manual 616

AGE (return age from base date)

 AGE(birthdate [,base date])

AGE Returns elapsed time.

birthdate A numeric expression for a standard date.

base date A numeric expression for a standard date. If this parameter is omitted, the
operating system date is used for the computation.

The AGE procedure returns a string containing the time elapsed between two dates. The age
return string is in the following format:

1 to 60 days - 'nn DAYS'
61 days to 24 months - 'nn MOS'
2 years to 999 years - 'nnn YRS'

Return Data Type: STRING

Example:
Message = Emp:Name & 'is ' & AGE(Emp:DOB,TODAY()) & ' old today.'

See Also:

Standard Date

DAY

MONTH

YEAR

TODAY

DATE

13 – Built-In Procedures 617

ALERT (set event generation key)
 ALERT([first-keycode] [,last-keycode])

ALERT Specifies keys that generate an event.

first-keycode A numeric keycode or keycode equate label. This may be the lower limit in a
range of keycodes.

last-keycode The upper limit keycode, or keycode equate label, in a range of keycodes.

ALERT specifies a key, or an inclusive range of keys, as event generation keys for the currently
active window. The ALERT statement with no parameters clears all ALERT keys.

Two field-independent events, EVENT:PreAlertKey and EVENT:AlertKey, generate when the
user presses the ALERTed key (in that order). If the code does not execute a CYCLE statement
when processing EVENT:PreAlertKey, you "shortstop" the library's default action on the alerted
keypress. If the code does execute CYCLE when processing EVENT:PreAlertKey, the library
performs its default action for the alerted keypress. In either case, EVENT:AlertKey generates
following EVENT:PreAlertKey.

Any key with a keycode may be used as the parameter of an ALERT statement. ALERT
generates field-independent events, since it is not associated with any particular control. When
EVENT:AlertKey is generated by an ALERT key, the USE variable of the control that currently
has input focus is not automatically updated (use UPDATE if this is required). The ALERT
statement alerts its keys separately from the ALRT attribute of a window or control. This means
that clearing all ALERT keys has no effect on any keys alerted by ALRT attributes.

Language Reference Manual 618

Example:
Screen WINDOW,ALRT(F10Key),ALRT(F9Key) !F10 and F9 alerted

LIST,AT(109,48,50,50),USE(?List),FROM(Que),IMM
BUTTON('&Ok'),AT(111,108,,),USE(?Ok)
BUTTON('&Cancel'),AT(111,130,,),USE(?Cancel)

END
CODE
OPEN(Screen)
ALERT !Turn off all alerted keys
ALERT(F1Key,F12Key) !Alert all function keys
ALERT(279) !Alert the Ctrl-Esc key
ACCEPT
CASE EVENT()
OF EVENT:PreAlertKey !Pre-check alert events
IF KEYCODE() <> F4Key !Dis-Allow F4 key standard library action, and allow
CYCLE !all other F keys to perform their standard functions

END
OF EVENT:AlertKey !Alert processing
CASE KEYCODE()
OF 279 !Check for Ctrl+Esc
BREAK

OF F9Key !Check for F9
F9HotKeyProc !Call hot key procedure

OF F10Key !Check for F10
F10HotKeyProc !Call hot key procedure

END
END

END

13 – Built-In Procedures 619

ALIAS (set alternate keycode)

 ALIAS([keycode,[new keycode]])

ALIAS Changes the keycode generated when the original key is pressed.

keycode A numeric keycode or keycode EQUATE. If both parameters are omitted, all
ALIASed keys are reset to their original values.

new keycode A numeric keycode or keycode EQUATE. If omitted, the keycode is reset to its
original value.

ALIAS changes the keycode to generate the new keycode when the user presses the original
key. ALIAS does not affect keypresses generated by PRESSKEY. The effect of ALIAS is global,
throughout all execution threads, no matter where the ALIAS statement executes. Therefore, to
only change the keycode locally, you must reset ALIASed keys when the window loses focus.

Keycode values 0800h through 0FFFFh are unassigned and may be used as a new keycode.
The practical effect of this is to disable the original key if your program does not test for the new
keycode.

Example:
ALIAS(EnterKey,TabKey) !Allow user to press enter instead of tab
ALIAS(F3Key,F1Key) !Move help to F3
ALIAS !Clear all aliased keys

See Also:

KEYCODE

Language Reference Manual 620

ALL (return repeated characters)

 ALL(string [,length])

ALL Returns repeated characters.

string A string expression containing the character sequence to be repeated.

length The length of the return string. If omitted the length of the return string is 255
characters.

The ALL procedure returns a string containing repetitions of the character sequence string.

Return Data Type: STRING

Example:
Starline = ALL('*',25) !Get 25 asterisks
Dotline = ALL('.') !Get 255 dots

13 – Built-In Procedures 621

APPEND (add a new file record)

 APPEND(file [,length])

APPEND Writes a new record to a FILE.

file The label of a FILE declaration.

length An integer constant, variable, or expression which contains the number of bytes
to write to the file. The length must be greater than zero and not greater than the
length of the RECORD. If omitted or out of range, length defaults to the length of
the RECORD structure.

The APPEND statement writes a new record from the RECORD structure data buffer to the data
file. No KEYs associated with the file are updated during an APPEND. After APPENDing records,
the KEYs must be rebuilt with the BUILD command.

APPEND is usually used in batch processes, to speed the process of adding a large number of
records at one time to the file. For most every file system, it is much faster to add 5000 records to
a file using APPEND (and then issue BUILD atthe end of the process to rebuild all the keys at
once) than it is to use ADD to add the same 5000 records (which automatically updates the keys
with each new record added).

If an error is posted, no record is added to the file. If there is no room for the record on disk, the
"Access Denied" error is posted.

Errors Posted: 05 Access Denied
37 File Not Open

Example:
LOOP !Process an input file
NEXT(InFile) !getting each record in turn
IF ERRORCODE() !break loop on error
BREAK

END
Cus:Record = Inf:Record !Copy the data to Customer file
APPEND(Customer) !and APPEND a customer record
IF ERRORCODE() !check for errors
STOP(ERROR())

END
END
BUILD(Customer) !Re-build Keys

See Also:

BUILD, ADD

Language Reference Manual 622

ARC (draw an arc of an ellipse)
 ARC(x ,y ,width ,height ,startangle ,endangle [,attributelist])

ARC Draws an arc of an ellipse on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

startangle An integer expression that specifies the starting point of the arc, in tenths of
degrees (10 = 1 degree) measured counter-clockwise from three o'clock.

endangle An integer expression that specifies the ending point of the arc, in tenths of
degrees (10 = 1 degree) measured counter-clockwise from three o'clock.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The ARC procedure places an arc of an ellipse on the current target. The ellipse is drawn inside a
"bounding box" defined by the x, y, width, and height parameters. The x and y parameters specify
the starting point, and the width and height parameters specify the horizontal and vertical size of
the "bounding box."

The startangle and endangle parameters specify what sector of the ellipse will be drawn, as an
arc.

The border color is the current pen color set by SETPENCOLOR; the default color is the
Windows system color for window text. The border width is the current width set by
SETPENWIDTH; the default width is one pixel. The border style is the current pen style set by
SETPENSTYLE; the default style is a solid line.
Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
ARC(100,50,100,50,0,900) !Draw 90 degree arc from 3 to 12 o'clock, as

!the top-right quadrant of ellipse

See Also:

Current Target,SETPENCOLOR,SETPENWIDTH,SETPENSTYLE

13 – Built-In Procedures 623

ASK (get one keystroke)

 ASK

ASK reads a single keystroke from the keyboard buffer. Program execution stops to wait for a
keystroke. If there is already a keystroke in the keyboard buffer, ASK gets one keystroke without
waiting. The ASK statement also allows any TIMER attribute events to generate and cycle their
own ACCEPT loop. This means any batch processing code can allow other threads to execute
their TIMER attribute tasks during the batch process.

Example:
ASK !Wait for a keystroke
LOOP WHILE KEYBOARD() !Empty the keyboard buffer
ASK !without processing keystrokes

END

See Also:

KEYCODE

KEYBOARD

Language Reference Manual 624

ASIN (return arcsine)

 ASIN(expression)

ASIN Returns inverse sine.

expression A numeric constant, variable, or expression for the value of the sine.

The ASIN procedure returns the inverse sine. The inverse of a sine is the angle that produces the
sine. The return value is the angle in radians. p is a constant which represents the ratio of the
circumference and radius of a circle. There are 2p radians (or 360 degrees) in a circle.

Return Data Type: REAL

Example:
PI EQUATE(3.1415926535898) !The value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(0.0174532925199) !Number of radians in a degree
CODE
InvSine = ASIN(SineAngle) !Get the Arcsine

See Also:

TAN

ATAN

SIN

COS

ACOS

13 – Built-In Procedures 625

ATAN (return arctangent)

 ATAN(expression)

ATAN Returns inverse tangent.

expression A numeric constant, variable, or expression for the value of the tangent.

The ATAN procedure returns the inverse tangent. The inverse of a tangent is the angle that
produces the tangent. The return value is the angle in radians. p is a constant which represents
the ratio of the circumference and radius of a circle. There are 2p radians (or 360 degrees) in a
circle.

Return Data Type REAL

Example:
PI EQUATE(3.1415926535898) !The value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(0.0174532925199) !Number of radians in a degree
CODE
InvTangent = ATAN(TangentAngle) !Get the Arctangent

See Also:

TAN

SIN

ASIN

COS

ACOS

Language Reference Manual 626

BAND (return bitwise AND)

 BAND(value,mask)

BAND Performs bitwise AND operation.

value A numeric constant, variable, or expression for the bit value to be compared to
the bit mask. The value is converted to a LONG data type prior to the operation,
if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is
converted to a LONG data type prior to the operation, if necessary.

The BAND procedure compares the value to the mask, performing a Boolean AND operation on
each bit. The return value is a LONG integer with a one (1) in the bit positions where the value
and the mask both contain one (1), and zeroes in all other bit positions.

BAND is usually used to determine whether an individual bit, or multiple bits, are on (1) or off (0)
within a variable.

Return Data Type: LONG

Example:
!BAND(0110b,0010b) returns 0010b !0110b = 6, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask

CODE
IF BAND(RateType,Female)| !If female

AND BAND(RateType,Over25) ! and over 25
DO BaseRate !use base premium

ELSIF BAND(RateType,Male) !If male
DO AdjBase !adjust base premium

END

See Also:

BOR

BXOR

BSHIFT

13 – Built-In Procedures 627

BEEP (sound tone on speaker)

 BEEP([sound])

BEEP Generates a sound through the system speaker.

sound A numeric constant, variable, expression, or EQUATE for the Windows sound to
issue.

The BEEP statement generates a sound through the system speaker. These are standard
Windows sounds available through the [sounds] section of the WIN.INI file. Standard EQUATE
values similar to these are listed in the EQUATES.CLW file:

 BEEP:SystemDefault
 BEEP:SystemHand
 BEEP:SystemQuestion
 BEEP:SystemExclamation
 BEEP:SystemAsterisk

Example:
IF ERRORCODE() !If unexpected error
BEEP(BEEP:SystemDefault) !sound a standard beep
STOP(ERROR()) !stop for the error

END

Language Reference Manual 628

BLANK (erase graphics)

 BLANK([x] [,y] [,width] [,height])

BLANK Erases all graphics written to the specified area of the current window or report.

x An integer expression that specifies the horizontal position of the starting point. If
omitted, the default is zero.

y An integer expression that specifies the vertical position of the starting point. If
omitted, the default is zero.

width An integer expression that specifies the width. If omitted, the default is the width
of the window.

height An integer expression that specifies the height. If omitted, the default is the
height of the window.

The BLANK procedure erases all graphics written to the specified area of the current window or
report. Controls are not erased. BLANK with no parameters erases the entire window or report.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
ARC(100,50,100,50,0,900) !Draw arc
BLANK !Then erase it

See Also:

Current Target

13 – Built-In Procedures 629

BOR (return bitwise OR)

 BOR(value,mask)

BOR Performs bitwise OR operation.

value A numeric constant, variable, or expression for the bit value to be compared to
the bit mask. The value is converted to a LONG data type prior to the operation,
if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is
converted to a LONG data type prior to the operation, if necessary.

The BOR procedure compares the value to the mask, performing a Boolean OR operation on
each bit. The return value is a LONG integer with a one (1) in the bit positions where the value, or
the mask, or both, contain a one (1), and zeroes in all other bit positions.

BOR is usually used to unconditionally turn on (set to one), an individual bit, or multiple bits,
within a variable.

Return Data Type: LONG

Example:
!BOR(0110b,0010b) returns 0110b !0110b = 6, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
CODE
RateType = BOR(RateType,Over25) !Turn on over 25 bit
RateType = BOR(RateType,Male) !Set rate to male

See Also:

BAND

BXOR

BSHIFT

Language Reference Manual 630

BOX (draw a rectangle)

 BOX(x ,y ,width ,height [,fill] [,attributelist])

BOX Draws a rectangular box on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes
(bytes 0, 1, and 2) or an EQUATE for a standard Windows color value.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The BOX procedure places a rectangular box on the current window or report. The position and
size of the box are specified by x, y, width, and height parameters.

The x and y parameters specify the starting point, and the width and height parameters specify
the horizontal and vertical size of the box. The box extends to the right and down from its starting
point.

The border color is the current pen color set by SETPENCOLOR; the default color is the
Windows system color for window text. The border width is the current width set by
SETPENWIDTH; the default width is one pixel. The border style is the current pen style set by
SETPENSTYLE; the default style is a solid line.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
BOX(100,50,100,50,00FF0000h) !Red box

See Also:

Current Target

SETPENCOLOR, SETPENWIDTH, SETPENSTYLE

13 – Built-In Procedures 631

BSHIFT (return shifted bits)

 BSHIFT(value,count)

BSHIFT Performs the bit shift operation.

value A numeric constant, variable, or expression. The value is converted to a LONG
data type prior to the operation, if necessary.

count A numeric constant, variable, or expression for the number of bit positions to be
shifted. If count is positive, value is shifted left. If count is negative, value is
shifted right.

The BSHIFT procedure shifts a bit value by a bit count. The bit value may be shifted left (toward
the high order), or right (toward the low order). Zero bits are supplied to fill vacated bit positions
when shifting.

Return Data Type: LONG

Example:
!BSHIFT(0110b,1) returns 1100b
!BSHIFT(0110b,-1) returns 0011b

Varswitch = BSHIFT(20,3) !Multiply by eight
Varswitch = BSHIFT(Varswitch,-2) !Divide by four

See Also:

BAND

BOR

BXOR

Language Reference Manual 632

BUFFER (set record paging)
 BUFFER(entity [, pagesize] [, behind] [, ahead] [, timeout])

BUFFER Specifies FILE or VIEW paging.

entity The label of a FILE or VIEW structure.

pagesize An integer constant or variable which specifies the number of records in a single
"page" of records (PROP:FetchSize). If omitted, the default value is one (1).

behind An integer constant or variable which specifies the number of "pages" of records
to store after they've been read. If omitted, the default value is zero (0).

ahead An integer constant or variable which specifies the number of additional "pages"
of records to read ahead of the currently displayed page. If omitted, the default
value is zero (0).

timeout An integer constant or variable which specifies the number of seconds the
buffered records are considered not to be obsolete in a network environment. If
omitted, the default value is zero (0), which indicates no time limit.

The BUFFER statement specifies automatic record set buffering for the specified entity by the file
driver. If there are multiple file drivers used by the files in a VIEW entity, BUFFER is ignored.

The number of records in a single "page" of records is specified by the pagesize parameter. This
is also the number of records fetched in a single call to the database. The ahead parameter
specifies asynchronous read-ahead buffering of a number of pages, while the behind parameter
saves pages of already read records.

The records in the buffer must be contiguous. Therefore, issuing a SET to an area of the entity
that is not currently in the buffer, or changing the sort order or the FILTER condition of a VIEW,
will clear the buffers. The buffers remain active until the entity is closed, or a FLUSH statement is
issued. The buffers will reflect the results of ADD, PUT, or DELETE statements, however, this
may cause an implicit flush if a PUT changes key components or an ADD adds a record that is
not within the current contiguous set of buffered records.

BUFFER allows the performance of "browse" type procedures to be virtually instantaneous when
displaying pages of records already read, due to use of the ahead and behind parameters.
BUFFER can also optimize performance when the file driver is a Client/Server back-end
database engine (usually SQL-based), since the file driver can then optimize the calls made to
the back-end database for minimum network traffic.

BUFFER is not supported by all file drivers--see the relevant file driver's documentation for further
information.

13 – Built-In Procedures 633

Example:

CODE
OPEN(MyView)
BUFFER(MyView,10,5,2,300) !10 records per page, 5 pages behind and 2 read-ahead,

!with a 5 minute timeout
CODE
OPEN(MyFile)
BUFFER(MyFile,10,5,2,300) !10 records per page, 5 pages behind and 2 read-ahead,

!with a 5 minute timeout

See Also: FLUSH,

Language Reference Manual 634

BUILD (build keys and indexes)
 | file |

 BUILD(|index | [, components [, filter]])

 | key |

BUILD Builds keys and indexes.

file The label of a FILE declaration.

index The label of an INDEX declaration.

key The label of a KEY declaration.

components A string constant or variable containing the list of the component fields on which
to BUILD the dynamic INDEX. The fields must be separated by commas, with
leading plus (+) or minus (-) to indicate ascending or descending sequence (if
supported by the file driver).

filter A string constant, variable, or expression containing a logical expression with
which to filter out unneeded records from the dynamic index. This requires that
you name components for the index. You must BIND all variables used in the
filter expression.

The BUILD statement re-builds keys and indexes in a FILE..

BUILD(file)
Builds all the KEYs declared for the file. The file must be closed, LOCKed, or
opened with access mode set to 12h (ReadWrite/DenyAll) or 22h
(ReadWrite/DenyWrite).

BUILD(key) or BUILD(index)
Builds only the specified KEY or INDEX. The file must be closed, LOCKed, or
opened with access mode set to either 12h (ReadWrite/DenyAll) or 22h
(ReadWrite/DenyWrite).

BUILD(index,components,filter)
Builds a dynamic INDEX. This form does not require exclusive access to the file,
however, the file must be open (with any valid access mode). The dynamic
INDEX is created as a temporary file, exclusive to the user who BUILDs it. The
temporary file is automatically deleted when the file is closed. If a filter is
specified, the resulting INDEX will contain only those records which meet the
filter criteria. The filter must be in a format supported by the file driver.

13 – Built-In Procedures 635

BUILD will generate events to the currently open window if you assign a value (an integer from 1
to 100) to PROP:ProgressEvents for the affected FILE before you issue the BUILD. The larger
the value you assign to PROP:ProgressEvents, the more events are generated and the slower
the BUILD will progress. These events allow you to indicate to the user the progress of the
BUILD. This can keep end-users informed that BUILD is still working while building large files (so
they don't re-boot thinking the machine has locked up).

It is not valid to make any calls to the file being built except to query its properties, call
NAME(file), or CLOSE(file) (which aborts the process and is not recommended). Issuing a
CYCLE statement in response to any of the events generated (except EVENT:BuildDone)
cancels the operation. During the BUILD operation, file{PROP:Completed} returns the percentage
completed of the re-build and you can use file{PROP:CurrentKey} to get a key reference then
either key{PROP:Name} or key{PROP:Label} to return the name of the current key being built.

Errors Posted: 37 File Not Open
40 Creates Duplicate Key
63 Exclusive Access Required
76 Invalid Index String
93 BUILD Cancelled

Events Generated:

EVENT:BuildFile BUILD(file) is rebuilding the data portion of the file.

EVENT:BuildKey BUILD(key) or BUILD(index) is rebuilding the key, or BUILD(file) is
rebuilding the keys in the file.

EVENT:BuildDone The BUILD is complete. If the user cancelled the BUILD, ERRORCODE
93 is set.

Language Reference Manual 636

Example:
Names FILE,DRIVER('TopSpeed'),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key
NbrNdx INDEX(Nam:Number),OPT !Declare number index
DynNdx INDEX() !Declare a dynamic index
Rec RECORD
Name STRING(20),NAME('Nam:Name')
Number SHORT,NAME('Nam:Number')

END
END

CODE
OPEN(Names,12h) !Open file, exclusive read/write
BUILD(Names) !Build all keys on Names file
BUILD(Nam:NbrNdx) !Build the number index

!Build dynamic index ascending number, ascending name:
BUILD(Nam:DynNdx,'+Nam:Number,+Nam:Name')

BIND('Nam:Name',Nam:Name) !BIND the filter variable

!Build dynamic index of names that start with A:
BUILD(Nam:DynNdx,'+Nam:Name','UPPER(Nam:Name[1]) = A')

UNBIND('Nam:Name') !UNBIND the filter variable

See Also:

OPEN

SHARE

BIND

PROP:ProgressEvents

PROP:Completed

13 – Built-In Procedures 637

BXOR (return bitwise exclusive OR)

 BXOR(value,mask)

BXOR Performs bitwise exclusive OR operation.

value A numeric constant, variable, or expression for the bit value to be compared to
the bit mask. The value is converted to a LONG data type prior to the operation,
if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is
converted to a LONG data type prior to the operation, if necessary.

The BXOR procedure compares the value to the mask, performing a Boolean XOR operation on
each bit. The return value is a LONG integer with a one (1) in the bit positions where either the
value or the mask contain a one (1), but not both. Zeroes are returned in all bit positions where
the bits in the value and mask are alike.

BXOR is usually used to toggle on (1) or off (0) an individual bit, or multiple bits, within a variable.

Return Data Type: LONG

Example:
!BXOR(0110b,0010b) returns 0100b !0110b = 6, 0100b = 4, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
Over65 EQUATE(1100b) !Over age 65 mask
CODE
RateType = BXOR(RateType,Over65) !Toggle over 65 bits

See Also:

BAND

BOR

BSHIFT

Language Reference Manual 638

BYTES (return size in bytes)

 BYTES(file)

BYTES Returns number of bytes in FILE, or most recently read.

file The label of a FILE.

The BYTES procedure returns the size of a FILE in bytes or the number of bytes in the last
record successfully accessed. Following an OPEN statement, BYTES returns the size of the file.
After the file has been successfully accessed by GET, REGET, NEXT, PREVIOUS, ADD, or PUT,
the BYTES procedure returns the number of bytes accessed in the RECORD. The BYTES
procedure may be used to return the number of bytes read in a variable length record.

Return Data Type: LONG

Example:
DosFileName STRING(260),STATIC
LastRec LONG
SavPtr LONG(1) !Start at 1
FileSize LONG

DosFile FILE,DRIVER('DOS'),PRE(DOS),NAME(DosFileName)
Record RECORD
F1 STRING(2000)

END
END

BlobStorage FILE,DRIVER('TopSpeed'),PRE(STO)
File BLOB,BINARY
Record RECORD
FileName STRING(64)

END
END

CODE
IF NOT FILEDIALOG('Choose File to Store',DosFileName,,0010b)
RETURN

END
OPEN(BlobStorage) !Open the BLOB file
STO:FileName = DosFileName !and store the filename
OPEN(DosFile) !Open the file
FileSize = BYTES(DosFile) !Get size of file
STO:File{PROP:Size} = FileSize !and set the BLOB to store the file
LastRec = FileSize % SIZE(DOS:Record) !Check for short record at end of file
LOOP INT(FileSize/SIZE(DOS:Record)) TIMES

13 – Built-In Procedures 639

GET(DosFile,SavPtr) !Get each record
ASSERT(NOT ERRORCODE())
!String slice data into BLOB:
STO:File[SavPtr - 1 : SavPtr + SIZE(DOS:Record) - 2] = DOS:Record
SavPtr += SIZE(DOS:Record) !Compute next record pointer

END

IF LastRec !If short record at end of file
GET(DosFile,SavPtr) !Get last record
ASSERT(BYTES(DosFile) = LastRec) ! size read should match computed size
STO:File[SavPtr - 1 : SavPtr + LastRec - 2] = DOS:Record

END
ADD(BlobStorage)
ASSERT(NOT ERRORCODE())
CLOSE(DosFile);CLOSE(BlobStorage)

See Also:

OPEN

Language Reference Manual 640

CALL (call procedure from a DLL)
 CALL(file, procedure [, flags])

CALL Calls a procedure that has not been prototyped in the application's MAP structure
from a Windows standard .DLL.

file A string constant, variable, or expression containing the name (including
extension) of the .DLL to open. This may include a full path.

procedure A string constant, variable, or expression containing the name of the procedure
to call (which may not receive parameters or return a value). This can also be the
ordinal number indicating the procedure's position within the .DLL.

flags An UNSIGNED integer constant, variable, or expression containing bitmap flag
settings.

The CALL procedure calls a procedure from a Windows-standard .DLL. The procedure does not
need to be prototyped in the application's MAP structure. If it is not already loaded by Windows,
the .DLL file is loaded into memory. The .DLL file is automatically unloaded from memory when
the procedure terminates unless the lowest flags bit is set to one (1). A .DLL file left loaded may
be explicitly unloaded with the UNLOAD procedure.

CALL returns zero (0) for a successful procedure call. If unsuccessful, it can return one of the
following mapped error values, or any other valid Windows level error code:

-1 Procedure name cannot be resolved in a specified .DLL
2 File not found
3 Path not found
5 Attempted to load a task, not a .DLL
6 Library requires separate data segments for each task
10 Wrong Windows version
11 Invalid .EXE file (DOS file or error in program header)
12 OS/2 application
13 DOS 4.0 application
14 Unknown .EXE type
15 Attempt to load an .EXE created for an earlier version of Windows.
16 Attempt to load a second instance of an .EXE file containing

multiple,writeable data segments.
17 EMS memory error on the second loading of a .DLL
18 Attempt to load a protected-mode-only application while Windows is running

in Real mode

Return Data Type: SIGNED

Example:
X# = CALL('CUSTOM.DLL','1') !Call first procedure in CUSTOM.DLL
IF X# THEN STOP(X#). !Check for successful execution

See Also: UNLOAD

13 – Built-In Procedures 641

CALLBACK (register or unregister a FileCallBackInterface)

CALLBACK(entity, FileCallBackInterface, [flag])

CALLBACK Register or unregister a FileCallBackInterface.

entity The label of a FILE or VIEW.

FileCallBackInterface

 The label of the interface that implements the FileCallBackInterface. The
methods of the FileCallbackInterface are called automatically before (method
FunctionCalled) and after (method FunctionDone) each file operation.

flag An integer constant, variable, EQUATE, or expression that indicates whether or
not to unregister an interface associated with a FILE or VIEW. A value of one (1
or TRUE) unregisters the interface. If omitted, the interface is registered with the
entity.

The Callback method registers a callback interface with the specified entity. The methods of the
registered interface are called whenever a file operation is done. Multiple interfaces can be
registered with an entity.

To unregister an interface, set the flag to TRUE. Any registered interfaces must be unregistered
before the object that implements the interface is removed.

Language Reference Manual 642

Example:
PROGRAM

MAP
END
INCLUDE ('FILECB.INC'),ONCE

!Data file
People FILE,DRIVER('TOPSPEED'),PRE(PEO),CREATE,BINDABLE,THREAD
KeyId KEY(PEO:Id),NOCASE,OPT
KeyLastName KEY(PEO:LastName),DUP,NOCASE
Record RECORD,PRE()
Id LONG
FirstName STRING(30)
LastName STRING(30)
Gender LONG

END
END

!Log File
LogFile FILE,DRIVER('BASIC','/ALWAYSQUOTE=OFF /COMMA=1,1'),CREATE,NAME('logfile.txt')
Record RECORD
Operation STRING(200)

END
END

!FileCallBack Class
FCB CLASS,IMPLEMENTS(FileCallBackInterface)

END

CODE
CALLBACK(People, FCB.FileCallBackInterface) !Register FCB interface
CREATE(Logfile) !Create log file
OPEN(Logfile) !Open log file
OPEN(People) !Open data file
SET(PEO:KeyId, PEO:KeyID) !Set and
LOOP !loop thru
NEXT(People) !data until
IF ERRORCODE()
BREAK !end of file

END
END

CLOSE(People) !Close data file

!Unregister FCB interface:
CALLBACK(People, FCB.FileCallBackInterface, TRUE)

13 – Built-In Procedures 643

!This method is called prior to each operation of the data file.
!The log file is updated with the file operation that is being executed.

FCB.FileCallBackInterface.FunctionCalled |
PROCEDURE(SIGNED opCode, *Params Parameters, *CSTRING ErrCode, *CSTRING ErrMsg)

p LIKE(Params)
CODE

p = Parameters
CASE opCode
OF DriverOp:ADD

logFile.Operation = 'ADD(f)'
OF DriverOp:APPEND

logFile.Operation = 'APPEND(f)'
OF DriverOp:CLOSE

logFile.Operation = 'CLOSE(f)'
OF DriverOp:COPY

logFile.Operation = 'COPY(f,'''&CLIP(Parameters.Text)&''')'
OF DriverOp:CREATE

logFile.Operation = 'CREATE(f)'
OF DriverOp:DELETE

logFile.Operation = 'DELETE(f)'
OF DriverOp:NEXT

logFile.Operation = 'NEXT(f)'
OF DriverOp:OPEN

logFile.Operation = 'OPEN(f,'&Parameters.openMode&')'
OF DriverOp:PUT

logFile.Operation = 'PUT(f)'
OF DriverOp:SETkeykey

logFile.Operation = 'SET(k,k)'
END
ADD(logFile)
RETURN TRUE

!This method is called after each operation to the data file.
!This simply returns a TRUE according to the rules of the FileCallBackInterface.
FCB.FileCallBackInterface.FunctionDone |

PROCEDURE(SIGNED opCode, Params Parameters, *CSTRING ErrCode, *CSTRING ErrMsg)
CODE

RETURN TRUE

Language Reference Manual 644

CENTER (return centered string)

 CENTER(string [,length])

CENTER Returns centered string.

string A string constant, variable or expression.

length The length of the return string. If omitted, the length of the string parameter is
used.

The CENTER procedure first removes leading and trailing spaces from a string, then pads it with
leading and trailing spaces to center it within the length, and returns a centered string.

Return Data Type: STRING

Example:
!CENTER('ABC',5) returns ' ABC '
!CENTER('ABC ') returns ' ABC '
!CENTER(' ABC') returns ' ABC '

Message = CENTER(Message) !Center the message
Rpt:Title = CENTER(Name,60) !Center the name

See Also:

LEFT

RIGHT

13 – Built-In Procedures 645

CHAIN (execute another program)

 CHAIN(program)

CHAIN Terminates the current program and executes another.

program A string constant or variable containing the name of the program to execute. This
may be any .EXE or .COM program.

CHAIN terminates the current program, closing all files and returning its memory to the operating
system, and executes another program.

Example:

PROGRAM !MainMenu program code
CODE
EXECUTE CHOICE()
CHAIN('Ledger') !Execute LEDGER.EXE
CHAIN('Payroll') !Execute PAYROLL.EXE
RETURN !Return to DOS

END

PROGRAM !Ledger program code
CODE
EXECUTE CHOICE()
CHAIN('MainMenu') !Return to MainMenu program
RETURN !Return to DOS

END

PROGRAM !Payroll program code
CODE
EXECUTE CHOICE()
CHAIN('MainMenu') !Return to MainMenu program
RETURN !Return to DOS

END

See Also:

RUN

Language Reference Manual 646

CHANGE (change control field value)
 CHANGE(control,value)

CHANGE Changes the value displayed in a control in an APPLICATION or WINDOW
structure.

control Field number or field equate label of a window control field.

value A constant or variable containing the control's new value.

The CHANGE statement changes the value displayed in a control in an APPLICATION or
WINDOW structure. CHANGE updates the control's USE variable with the value, and then
displays that new value in the control field.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:Selected
CASE SELECTED()
OF ?Ctl:Code
CHANGE(?Ctl:Code,4) !Change Ctl:Code to 4 and display it

OF ?Ctl:Name
CHANGE(?Ctl:Name,'ABC Company') !Change Ctl:Name to ABC Company and display

END
OF EVENT:Accepted
CASE ACCEPTED()
OF ?OkButton
BREAK

OF ?CanxButton
CLEAR(Ctl:Record)
BREAK

END
END

See Also:

DISPLAY

UPDATE

13 – Built-In Procedures 647

CHANGES (return changed queue)
 CHANGES(queue)

CHANGES Returns a "hash" value for the QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

The CHANGES procedure returns a LONG integer containing a unique "hash" value for the
current QUEUE contents. Saving this value then later comparing the saved value to the current
return value from CHANGES allows you to easily detect that the contents of the QUEUE have
changed (in any way at all).

Return Data Type: LONG

Example:
SaveHash LONG
Que QUEUE
Name STRING(10)

END
CODE
Que.Name = 'Jones'
ADD(Que) !Add the entry
ASSERT(~ERRORCODE())
SaveHash = CHANGES(Que) !Save the "hash" value
Que.Name = 'Jones II'
ADD(Que) !Add another entry
ASSERT(~ERRORCODE())
IF SaveHash <> CHANGES(Que) !This should be a true expression here
MESSAGE('CHANGES procedure worked correctly')

END

See Also:

QUEUE

Language Reference Manual 648

CHOICE (return relative item position)
 CHOICE([control])

CHOICE Returns a user selection number.

control A field equate label of a LIST, COMBO, SHEET, or OPTION control.

The CHOICE procedure returns the sequence number of a selected item in an OPTION structure,
SHEET structure, LIST box, or COMBO control. With no parameter, CHOICE returns the
sequence number of the selected item in the last control (LIST, SHEET, OPTION, or COMBO)
that generated a Field-specific event to cycle the ACCEPT loop. CHOICE(control) returns the
current selection number of any LIST, SHEET, OPTION, or COMBO in the currently active
window.

CHOICE returns the sequence number of the selected RADIO control within an OPTION
structure. The sequence number is determined by relative position within the OPTION. The first
control listed in the OPTION structure's code is relative position 1, the second is 2, etc.

CHOICE returns the memory QUEUE entry number of the selected item when a LIST or COMBO
box is completed.

Return Data Type: SIGNED

Example:
CODE
ACCEPT
EXECUTE CHOICE() !Perform menu option
AddRec !procedure to add record
PutRec !procedure to change record
DelRec !procedure to delete record
RETURN !return to caller

END
END

See Also:

LIST

SHEET

COMBO

OPTION

QUEUE

RADIO

13 – Built-In Procedures 649

CHOOSE (return chosen value)
 CHOOSE(| expression ,value, value [,value...] |)

 | condition [,value, value] |

CHOOSE Returns the chosen value from a list of possible values.

expression An arithmetic expression which determines which value parameter to return. This
expression must resolve to a positive integer.

value A variable, constant, or expression for the procedure to return.

condition A logical expression which determines which of the two value parameters to
return.If no value parameters are present, one (1) is returned when the
expression is true, and zero (0) is returned when the expression is false.

The CHOOSE procedure evaluates the expression or condition and returns the appropriate value
parameter. If the expression resolves to a positive integer, that integer selects the corresponding
value parameter for the CHOOSE procedure to return. If the expression evaluates to an out-of-
range integer, then CHOOSE returns the last value parameter.

When the condition evaluates as true, then CHOOSE returns the first value parameter. When the
condition evaluates to false, then CHOOSE returns the second value parameter. If no value
parameters are present, CHOOSE returns one (1) for true, and zero (0) for false.

The return data type is dependent upon the data types of the value parameters:
All Value Parameters Return Data Type
LONG LONG
DECIMAL or LONG DECIMAL
STRING STRING
DECIMAL, LONG, or STRING DECIMAL
anything else REAL

Return Data Type: LONG, DECIMAL, STRING, or REAL

Language Reference Manual 650

Example:
!CHOOSE(4,'A','B','C','D','E') returns 'D'
!CHOOSE(1 > 2,'A','B') returns 'B'
!CHOOSE(1 > 2) returns zero (0)

!Hide or unhide control, based on the value in SomeField:
?MyControl{PROP:Hide} = CHOOSE(SomeField = 0,TRUE,FALSE)

!VIEW filter to select "overweight" people of both sexes
MyView{PROP:Filter} = 'Weight > CHOOSE(Sex = ''M'',250,200)'

See Also:

INLIST

13 – Built-In Procedures 651

CHORD (draw a section of an ellipse)
 CHORD(x ,y ,width ,height ,startangle ,endangle [,fill] [,attributelist])

CHORD Draws a closed sector of an ellipse on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

startangle An integer expression that specifies the starting point of the chord, in tenths of
degrees (10 = 1 degree) measured counter-clockwise from three o'clock.

endangle An integer expression that specifies the ending point of the chord, in tenths of
degrees (10 = 1 degree) measured counter-clockwise from three o'clock.

fill A LONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes
(bytes 0, 1, and 2) or an EQUATE for a standard Windows color value.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The CHORD procedure places a closed sector of an ellipse on the current window or report. The
ellipse is drawn inside a "bounding box" defined by the x, y, width, and height parameters. The x
and y parameters specify the starting point, and the width and height parameters specify the
horizontal and vertical size of the "bounding box." The startangle and endangle parameters
specify what sector of the ellipse will be drawn, as an arc. The two end points of the arc are also
connected with a straight line.

The border color is the current pen color set by SETPENCOLOR; the default color is the
Windows system color for window text. The border width is the current width set by
SETPENWIDTH; the default width is one pixel. The border style is the current pen style set by
SETPENSTYLE; the default style is a solid line.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
CHORD(100,50,100,50,0,900,00FF0000h) !Red 90 degree crescent

See Also: Current Target, SETPENCOLOR, SETPENWIDTH, SETPENSTYLE

Language Reference Manual 652

CHR (return character from ASCII)

 CHR(code)

CHR Returns the display character.

code A numeric expression containing a numeric ASCII character code.

The CHR procedure returns the ANSI character represented by the ASCII character code
parameter.

Return Data Type: STRING

Example:
Stringvar = CHR(122) !Get lower case z
Stringvar = CHR(65) !Get upper case A

See Also:

VAL

13 – Built-In Procedures 653

CLIP (return string without trailing spaces)

 CLIP(string)

CLIP Removes trailing spaces.

string A string expression.

The CLIP procedure removes trailing spaces from a string. The return string is a substring with no
trailing spaces. CLIP is frequently used with the concatenation operator in string expressions
using STRING data types.

CLIP is not normally needed with CSTRING data types, since these have a terminating character.
CLIP is also not normally needed with PSTRING data types, since these have a length byte.

When used in conjunction with the LEFT procedure, you can remove both leading and trailing
spaces (frequently called ALLTRIM in other languages).

Return Data Type: STRING

Example:
Name = CLIP(Last) & ', ' & CLIP(First) & Init & '.' !Full name in military order

Name = CLIP(First) & CLIP(' ' & Middle) & ' ' & Last !Full name with or with middle

AllTrimVar = CLIP(LEFT(MyVar)) !Trim leading and trailing spaces

See Also:

LEFT

Language Reference Manual 654

CLIPBOARD (return windows clipboard contents)

 CLIPBOARD([format])

CLIPBOARD Returns the current contents of the Windows clipboard.

format An integer constant or variable that defines the format of the clipboard's contents.
If omitted, the default is CF_TEXT .

The CLIPBOARD procedure returns the current contents of the windows clipboard. The format
parameter defaults to CF_TEXT (as defined in the Windows API) but any of the other CF_ values
can be specified (see a Windows API reference book for details). If the data in the clipboard is not
in the specified format, CLIPBOARD returns a null string (''). The following clipboard formats are
predefined in the Windows API:

CF_TEXT 1
CF_BITMAP 2
CF_METAFILEPICT 3
CF_SYLK 4
CF_DIF 5
CF_TIFF 6
CF_OEMTEXT 7
CF_DIB 8
CF_PALETTE 9
CF_PENDATA 10
CF_RIFF 11
CF_WAVE 12

Return Data Type: STRING

13 – Built-In Procedures 655

Example:
Que1 QUEUE

STRING(30)
END

Que2 QUEUE
STRING(30)

END
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID('List1')
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID('List1','~FILE')

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() !check for success
SETCLIPBOARD(Que1) !and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = CLIPBOARD() !get dropped info
ADD(Que2) !and add it to the queue

END
END

See Also:

SETCLIPBOARD

Language Reference Manual 656

CLOCK (return system time)

 CLOCK()

The CLOCK procedure returns the time of day from the operating system time in standard time
(expressed as hundredths of a second since midnight, plus one). Although the time is expressed
to the nearest hundredth of a second, the system clock is only updated 18.2 times a second
(approximately every 5.5 hundredths of a second).

Return Data Type: LONG

Example:
Time = CLOCK() !Save the system time

See Also:

Standard Time

SETCLOCK

13 – Built-In Procedures 657

CLONE(duplicate existing control)

 CLONE(destination control, source control [,parent] [,position] [,window])

CLONE Duplicates an existing control.

destination control
A field number or field equate label for the control to create.

source control A field number or field equate label for the control to duplicate.

parent A field number or field equate label that specifies the OPTION, GROUP, SHEET,
TAB, MENU, HEADER, FOOTER, DETAIL, BREAK, or FORM to contain the new
control. If omitted, the control has no parent.

position An integer constant, expression, or variable that specifies the position within a
MENU to place a new ITEM control. If omitted, the ITEM is added to the end.

window The label of an APPLICATION, WINDOW, or REPORT structure, or a reference
to any of those structures where the control to duplicate exists.

CLONE dynamically duplicates an existing control to the currently active window. It returns the
field equate label of the new control. The destination control inherits all properties of the source
control. The position of the destination control should be modified using SETPOSITION() or
PROP:AT if it will not be positioned on top of the source control.

CLONE may only be used to duplicate controls. It may not be used to duplicate report bands,
menu items, or OLE controls.

Return Data Type: SIGNED

Language Reference Manual 658

Example:
PROGRAM

INCLUDE('EQUATES.CLW')
INCLUDE('KEYCODES.CLW')

MAP
END

WINDOW WINDOW('Clone - example'),AT(,,260,100),GRAY
BUTTON('Ok'),AT(198,30,31,15),USE(?OkButton)
BUTTON('Clone It'),AT(199,54,31,15),USE(?CloneButton)

END

WINDOW2 WINDOW('Window2'),AT(,,260,100),GRAY
BUTTON('Clone Me'),AT(98,30,31,15),USE(?CloneMe)
END

?Cloned EQUATE(100)
CODE
OPEN(WINDOW)
ACCEPT
CASE ACCEPTED()
OF ?CloneButton
OPEN(WINDOW2)
SETTARGET(WINDOW)
CLONE(?Cloned, ?CloneMe,,,WINDOW2)
CLOSE(WINDOW2)
?Cloned{PROP:YPOS} = ?Cloned{PROP:Ypos} + ?Cloned{PROP:Height} +10
?Cloned{PROP:Width} = ?Cloned{PROP:Width} + 20
?Cloned{PROP:Text} = 'Cloned Button'

OF ?OkButton
BREAK

END
END

13 – Built-In Procedures 659

CLOSE (close a data structure)

 CLOSE(entity)

CLOSE Closes a data strcuture.

entity The label of a FILE, VIEW, APPLICATION, WINDOW, or REPORT structure.

CLOSE terminates processing on the active entity. Any memory used by the active entity is
released when it is closed.

FILE Usage

CLOSE(file) closes an active FILE. Generally, this flushes DOS buffers and frees any memory
used by the open file other than the RECORD structure's data buffer. If the file is a member of a
transaction set, error 56 (LOGOUT active) is posted.

VIEW Usage

CLOSE(view) closes an active VIEW. A VIEW declared within a procedure is implicitly closed
upon RETURN from the procedure, if it has not already been explicitly CLOSEd. If the
CLOSE(view) statement is not immediately preceded by a REGET statement, the state of the
primary and secondary related files in the VIEW are undefined. The contents of their record
buffers are undefined and a SET or RESET statement may be required before performing
sequential processing on the file.

APPLICATION and WINDOW Usage

CLOSE(window) closes an active APPLICATION or WINDOW structure. Memory used by the
active window is released when it is closed and the underlying screen is automatically re-drawn.
When a window is closed, if it is not the top-most window on its execution thread, all windows
opened subsequent to the window being closed are automatically closed first. This occurs in the
reverse order from which they were opened. An APPLICATION or WINDOW that is declared local
to (within) a PROCEDURE is automatically closed when the program RETURNs from the
procedure.

REPORT Usage

CLOSE(report) closes an active REPORT structure, which prints the last page FOOTER (unless
the last structure printed has the ALONE attribute) and any required group FOOTER strautures,
and closes the REPORT. If the REPORT has the PREVIEW attribute, all the temporary metafiles
are deleted. RETURN from a procedure in which a REPORT is opened automatically closes the
REPORT.

Language Reference Manual 660

Errors Posted: 56 LOGOUT active

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

END
END

ViewCust VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
END

CODE
OPEN(Customer,22h)
SET(Cus:AcctKey)
OPEN(ViewCust) !Open the customer view
!executable statements

CLOSE(ViewCust) !and close it again

CLOSE(Customer) !Close the customer file
CLOSE(MenuScr) !Close the menu screen
CLOSE(CustEntry) !Close customer data entry screen
CLOSE(CustRpt) !Close the report

See Also:

OPEN

LOGOUT

ACCEPT

13 – Built-In Procedures 661

COLORDIALOG (return chosen color)

 COLORDIALOG([title] ,rgb [, suppress])

COLORDIALOG Displays the Windows standard color choice dialog box to allow the user
to choose a color.

title A string constant or variable containing the title to place on the color choice
dialog. If omitted, a default title is supplied by Windows.

rgb A LONG integer variable to receive the selected color.

suppress An integer constant or variable containing either zero (0) or one (1). If one, the
list of standard colors is suppressed. If omitted or zero (0) the list of standard
colors is displayed.

The COLORDIALOG procedure displays the Windows standard color choice dialog box and
returns the color chosen by the user in the rgb parameter. Any existing value in the rgb parameter
sets the default color choice presented to the user in the color choice dialog. The color chosen by
the user may be either an RGB value (a positive value) or one of the Windows standard element
colors (a negative value).

COLORDIALOG returns zero (0) if the user pressed the Cancel button, or one (1) if the user
pressed the Ok button on the color choice dialog.

Return Data Type: SIGNED

Example:
MDIChild1 WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

ColorNow LONG

CODE
IF NOT COLORDIALOG('Choose Box Color',ColorNow)
ColorNow = 000000FFh !Default to Red if user pressed Cancel

END
OPEN(MDIChild1)
BOX(100,50,100,50,ColorNow) !User-defined color for box

See Also:

COLOR

FONT

Language Reference Manual 662

COMMAND (return command line)

 COMMAND([flag])

COMMAND Returns command line parameters.

flag A string constant or variable containing the parameter for which to search, or the
number of the command line parameter to return. If omitted or an empty string
(''), all command parameters are returned as entered on the command line,
appended to a leading space.

The COMMAND procedure returns the value of the flag parameter from the command line. If the
flag is not found, COMMAND returns an empty string. If the flag is multiply defined, only the first
occurrence encountered is returned.

COMMAND searches the command line for flag=value and returns value. There must be no
blanks between flag, the equal sign, and value. The returned value terminates at the first comma
or blank space. If a blank or comma is desired in a command line parameter, everything to the
right of the equal sign must be enclosed in double quotes (flag="value").

COMMAND will also search the command line for a flag containing a leading slash (/). If found,
COMMAND returns the value of flag without the slash. If the flag only contains a number,
COMMAND returns the parameter at that numbered position on the command line. A flag of '0'
returns the minimum path the operating system used to find the command. This minimum path
always includes the command (without command line parameters) but may not include the path
(if the operating system found it in the current directory). A flag containing '1' returns the first
command line parameter.

Return Data Type: STRING

Example:
IF COMMAND('/N') !Was /N on the command line?
DO SomeProcess

END
IF COMMAND('Option') = '1' !Was Option=1 on the command line?
DO OneProcess

END
CommandString = COMMAND('') !Get all command parameters
CommandItself = COMMAND('0') !Get the command itself
SecondParm = COMMAND('2') !Get second parameter from command line

See Also:

SETCOMMAND

13 – Built-In Procedures 663

COMMIT (terminate successful transaction)

 COMMIT

The COMMIT statement terminates an active transaction. Execution of a COMMIT statement
assumes that the transaction was completely successful and no ROLLBACK is necessary. Once
COMMIT has been executed, ROLLBACK of the transaction is impossible.

COMMIT informs the file driver involved in the transaction that the temporary files containing the
information necessary to restore the database to its previous state may be deleted. The file driver
then performs the actions necessary to its file system to successfully terminate a transaction.

Errors Posted: 48 Unable to Log Transaction
91 No Logout Active

Example:
LOGOUT(1,OrderHeader,OrderDetail) !Begin Transaction
DO ErrHandler !always check for errors
ADD(OrderHeader) !Add Parent record
DO ErrHandler !always check for errors
LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) !Get one from the QUEUE
DO ErrHandler !always check for errors
Det:Record = DetailQue !Assign to record buffer
ADD(OrderDetail) !and add it to the file
DO ErrHandler !always check for errors

END
COMMIT !Terminate successful transaction
ASSERT(~ERRORCODE())

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
Err" = ERROR() !Save the error message
ROLLBACK !Rollback the aborted transaction
ASSERT(~ERRORCODE())
BEEP !Alert the user
MESSAGE('Transaction Error - ' & Err")
RETURN !and get out

See Also:

LOGOUT

ROLLBACK

Language Reference Manual 664

CONTENTS (return contents of USE variable)

 CONTENTS(control)

CONTENTS Returns the value in the USE variable of a control.

control A field number or field equate label.

The CONTENTS procedure returns a string containing the value in the USE variable of an
ENTRY, OPTION RADIO, or TEXT control.

A USE variable may be longer than its associated control field display picture OR may contain
fewer characters than its total capacity. The CONTENTS procedure always returns the full length
of the USE variable.

Return Data Type: STRING

Example:
IF CONTENTS(?LastName)='' AND CONTENTS(?FirstName)='' !If first and last name blank,
MessageField = 'Must Enter a First or Last Name' ! display error message

END

13 – Built-In Procedures 665

CONVERTANSITOOEM (convert ANSI strings to ASCII)

 CONVERTANSITOOEM(string)

CONVERTANSITOOEM
Translates ANSI strings to OEM ASCII.

string The label of the string to convert. This may be a single variable or a any structure
that is treated as a GROUP (RECORD, QUEUE, etc.).

The CONVERTANSITOOEM statement translates either a single string or the strings within a
GROUP from the ANSI (Windows display) character set into the OEM character set (ASCII with
extra characters defined by the active code page).

This procedure is not required on data files if the OEM attribute is set on the file.

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare file without OEM attribute
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

END
END

Win WINDOW,SYSTEM
STRING(@s20),USE(Cus:Name)

END

CODE
OPEN(Customer)
SET(Customer)
NEXT(Customer)
CONVERTOEMTOANSI(Cus:Record) !Convert all strings from ASCII to

ANSI
OPEN(Win)
ACCEPT
!Process window controls

END
CONVERTANSITOOEM(Cus:Record) !Convert back to ASCII from ANSI
PUT(Customer)

See Also: CONVERTOEMTOANSI, OEM

Language Reference Manual 666

CONVERTOEMTOANSI (convert ASCII strings to ANSI)

 CONVERTOEMTOANSI(string)

CONVERTOEMTOANSI
Translates OEM ASCII strings to ANSI.

string The label of the string to convert. This may be a single variable or a any structure
that is treated as a GROUP (RECORD, QUEUE, etc.).

The CONVERTOEMTOANSI statement translates either a single string or the strings within a
GROUP from the the OEM character set (ASCII with extra characters defined by the active code
page) into ANSI (Windows display) character set.

This procedure is not required on data files if the OEM attribute is set on the file.

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare file without OEM attribute
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

END
END

Win WINDOW,SYSTEM
STRING(@s20),USE(Cus:Name)

END

CODE
OPEN(Customer)
SET(Customer)
NEXT(Customer)
CONVERTOEMTOANSI(Cus:Record) !Convert all strings from ASCII to ANSI
OPEN(Win)
ACCEPT
!Process window controls

END
CONVERTANSITOOEM(Cus:Record) !Convert back to ASCII from ANSI
PUT(Customer)

See Also: CONVERTANSITOOEM, OEM

13 – Built-In Procedures 667

COPY (copy a file)

 COPY(file,new file)

COPY Duplicates a file.

file The label of a FILE structure, or a string constant or variable containing the file
specification of the file to copy.

new file A string constant or variable containing a file specification. If the file specification
does not contain a drive and path, the current drive and directory are assumed. If
only the path is specified, the filename and extension of the original file are used
for the new file.

The COPY statement duplicates a FILE and enters the specification for the new file in the
operating system's directory listing. The file to copy must be closed, or the "File Already Open"
error is posted. If the file specification of the new file is identical to the original file, the COPY
statement is ignored.

Since some file drivers use multiple physical disk files for one logical FILE structure, the default
filename and extension assumptions are dependent on the file driver. If any error is posted, the
file is not copied.

Errors Posted: 02 File Not Found
03 Path Not Found
05 Access Denied
52 File Already Open

Example:
TheFile STRING(256),STATIC
SomeFile FILE,DRIVER('DOS'),NAME(TheFile)
Record RECORD
F1 STRING(1)

END
END

CODE
TheFile = 'Names.DAT'
COPY(TheFile,'A:\') !Copy file to floppy
COPY('C:\AUTOEXEC.BAT','A:\AUTOEXEC.BAT') !Copy file to floppy

See Also:

CLOSE

Language Reference Manual 668

COS (return cosine)

 COS(radians)

COS Returns cosine.

radians A numeric constant, variable or expression for the angle in radians. p is a
constant which represents the ratio of the circumference and radius of a circle.
There are 2p radians (or 360 degrees) in a circle.

The COS procedure returns the trigonometric cosine of an angle measured in radians. The
cosine is the ratio of the length of the angle's adjacent side divided by the length of the
hypotenuse.

Return Data Type: REAL

Example:
PI EQUATE(3.1415926535898) !The approx. value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(0.0174532925199) !Number of radians in a degree
CODE
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
CosineAngle = COS(Angle) !Get the cosine of 45 degree angle

See Also:

TAN

ATAN

SIN

ASIN

ACOS

13 – Built-In Procedures 669

CREATE (create an empty data file)

 CREATE(file)

CREATE Creates an empty data file.

file The label of the FILE to be created.

The CREATE statement adds an empty data file to the operating system directory. If the file
already exists, it is deleted and recreated as an empty file. The file must be closed, or the "File
Already Open" error is posted. CREATE does not open the file for access.

Errors Posted: 03 Path Not Found
04 Too Many Open Files
05 Access Denied
52 File Already Open
54 No Create Attribute

Example:
CREATE(Master) !Create a new master file
CREATE(Detail) !Create a new detail file

See Also:

CLOSE

Language Reference Manual 670

CREATE (return new control created)

 CREATE(control , type [, parent] [, position])

CREATE Creates a new control.

control A field number or field equate label for the control to create. The valid range of
field numbers is -4000h to 4000h. If the control equal to 0, the CREATE
procedure returns the next available field number and assigns that to the control
being created.

type An integer constant, expression, EQUATE, or variable that specifies the type of
control to create.

parent A field number or field equate label that specifies the OPTION, GROUP, SHEET,
TAB, MENU, HEADER, FOOTER, DETAIL, BREAK, or FORM to contain the new
control. If omitted, the control has no parent.

position An integer constant, expression, or variable that specifies the position within a
MENU to place a new ITEM control. If omitted, the ITEM is added to the end.

CREATE dynamically creates a new control in the currently active APPLICATION or WINDOW,
returning the value of the control parameter. If the field creation fails, a 0 is returned.

When first created, the new control is initially hidden, so its properties can be set using the
runtime property assignment syntax, SETPOSITION, and SETFONT. It appears on screen only
by issuing an UNHIDE statement for the control.

You can also use CREATE to create report controls. To do this, you must first use SETTARGET
to make the report the currently active TARGET, and you must also specify a parent for the
control.

EQUATE statements for the type parameter are contained in the EQUATES.CLW file. The
following list is a comprehensive sample of these (see EQUATES.CLW for the complete list):

 CREATE:sstring STRING(picture),USE(variable)
 CREATE:string STRING(constant)
 CREATE:image IMAGE()
 CREATE:region REGION()
 CREATE:line LINE()
 CREATE:box BOX()
 CREATE:ellipse ELLIPSE()
 CREATE:entry ENTRY()
 CREATE:button BUTTON()
 CREATE:prompt PROMPT()
 CREATE:option OPTION()
 CREATE:radio RADIO()

13 – Built-In Procedures 671

 CREATE:check CHECK()
 CREATE:group GROUP()
 CREATE:list LIST()
 CREATE:combo COMBO()
 CREATE:spin SPIN()
 CREATE:text TEXT()
 CREATE:custom CUSTOM()
 CREATE:droplist LIST(),DROP()
 CREATE:dropcombo COMBO(),DROP()
 CREATE:menu MENU()
 CREATE:item ITEM()

Return Data Type: SIGNED

Example:
PROGRAM

INCLUDE('keycodes.clw')

MAP
END

TestGroup GROUP,PRE(CTL)
CODE LONG
Name STRING(30)

END

X SHORT
Y SHORT
Width SHORT
Height SHORT

Code4Entry STRING(10)
?Code4Entry EQUATE(100) !Create an arbitrary field equate number for CREATE
to use
FEQ EQUATE(101)
UseVarText1 &STRING

Window WINDOW,VSCROLL,GRAY,MAXIMIZE
ENTRY(@N3),AT(3,32),USE(Ctl:Code)
ENTRY(@S30),AT(98,8),USE(Ctl:Name)
BUTTON('OK'),AT(5,7),USE(?OkButton)
BUTTON('Cancel'),AT(45,7),USE(?CanxButton)

END

Language Reference Manual 672

CODE
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Ctl:Code
IF Ctl:Code = 4
CREATE(?Code4Entry,CREATE:entry) !Create the control
?Code4Entry{PROP:use} = Code4Entry !Set USE variable
?Code4Entry{PROP:text} = '@s10' !Set entry picture
GETPOSITION(?Ctl:Code,X,Y,Width,Height)
?Code4Entry{PROP:Xpos} = X + Width + 40 !Set x position
?Code4Entry{PROP:Ypos} = Y !Set y position
UNHIDE(?Code4Entry) !Display the new control

ELSIF Ctl:Code = 5
CREATE(FEQ, CREATE:text)
UseVarText1 &= NEW(STRING(10000))
FEQ{PROP:use} = UseVarText1
GETPOSITION(?Ctl:Code,X,Y,Width,Height)
FEQ{PROP:Xpos} = X + Width + 40 !Set x position
FEQ{PROP:Ypos} = Y + 5 !Set y position
FEQ{PROP:width} = 300
FEQ{PROP:height} = 100
FEQ{PROP:Vscroll} = TRUE
UNHIDE(FEQ) !Display the new control

END
OF ?OkButton
BREAK

OF ?CanxButton
CLEAR(TestGroup)
BREAK

END
END
CLOSE(Window)

RETURN

See Also:

DESTROY

SETTARGET

13 – Built-In Procedures 673

DATE (return standard date)

 DATE(month,day,year)

DATE Return standard date.

month A positive numeric constant, variable, or expression for the month.

day A positive numeric constant, variable, or expression for the day of the month.

year A numeric constant, variable or expression for the year. The valid range for a
year value is 00 through 99 (using "Intellidate" logic), or 1801 through 2099.

The DATE procedure returns a standard date for a given month, day, and year. The month and
day parameters do allow positive out-of-range values (zero or negative values are invalid). A
month value of 13 is interpreted as January of the next year. A day value of 32 in January is
interpreted as the first of February. Consequently, DATE(12,32,97), DATE(13,1,97), and
DATE(1,1,98) all produce the same result.

The century for a two-digit year parameter is resolved using the default "Intellidate" logic, which
assumes the date falls in the range of the next 20 or previous 80 years from the current operating
system date. For example, assuming the current year is 1998, if the year parameter is "15," the
date returned is in the year 2015, and if the year parameter is "60," the date returned is in 1960.

Return Data Type: LONG

Example:
HireDate = DATE(Hir:Month,Hir:Day,Hir:Year) !Compute hire date
FirstOfMonth = DATE(MONTH(TODAY()),1,YEAR(TODAY())) !Compute First day of month

See Also:

Standard Date

DAY

MONTH

YEAR

TODAY

Language Reference Manual 674

DAY (return day of month)

 DAY(date)

DAY Returns day of month.

date A numeric constant, variable, expression, or the label of a STRING, CSTRING,
or PSTRING variable declared with a date picture token. The date must be a
standard date. A variable declared with a date picture token is automatically
converted to a standard date intermediate value.

The DAY procedure computes the day of the month (1 to 31) for a given standard date.

Return Data Type: LONG

Example:
OutDay = DAY(TODAY()) !Get the day from today's date
DueDay = DAY(TODAY()+2) !Calculate the return day

See Also:

Standard Date

MONTH

YEAR

TODAY

DATE

13 – Built-In Procedures 675

DEFORMAT (return unformatted numbers from string)

 DEFORMAT(string [,picture])

DEFORMAT Removes formatting characters from a numeric string.

string A string expression containing a numeric string.

picture A picture token, or the label of a CSTRING variable containing a picture token. If
omitted, the picture for the string parameter is used. If the string parameter was
not declared with a picture token, the return value will contain only characters
that are valid for a numeric constant.

The DEFORMAT procedure removes formatting characters from a numeric string, returning only
the numbers contained in the string. When used with a date or time picture (except those
containing alphabetic characters), it returns a STRING containing the Clarion Standard Date or
Time.

Return Data Type: STRING

Example:
!DEFORMAT('$1,234.56') returns 1234.56
!DEFORMAT('309-53-9954') returns 309539954
!DEFORMAT('40A1-7',@P##A1-#P) returns 407

!Get phone number for modem to dial:
DialString = 'ATDT1' & DEFORMAT(Phone,@P(###)###-####P) & '<13,10>'

ClarionDate = DEFORMAT(dBaseDate,@D1) !Clarion Standard date from mm/dd/yy string

Data = '45,123' !Assign a formatted number to a string
Number = DEFORMAT(Data) !then remove non-numeric characters

See Also:

FORMAT

Standard Date

Standard Time

Picture Tokens

Language Reference Manual 676

DELETE (delete a record)

 DELETE(entity)

DELETE Removes a record from a FILE, VIEW, or QUEUE structure.

entity The label of a FILE, VIEW, or QUEUE structure.

The DELETE statement removes a record.

FILE Usage

DELETE(file) removes the last record successfully accessed by NEXT, PREVIOUS, GET,
REGET, ADD, or PUT. The key entries for that record are also removed from the KEYs. DELETE
does not clear the record buffer. Therefore, data values from the record just deleted still exist and
are available for use until the record buffer is overwritten. If no record was previously accessed,
or the record is held by another workstation, DELETE posts the "Record Not Available" error and
no record is deleted.

VIEW Usage

DELETE(view) removes the last VIEW primary file record that was successfully accessed by a
NEXTor PREVIOUS statement. The key entries for that record are also removed from the KEYs.
DELETE does not remove records from any secondary JOIN files in the VIEW. If no record was
previously accessed, or the record is held by another workstation, DELETE posts the "Record
Not Available" error and no record is deleted. The specific disk action DELETE performs in the
file is file driver dependent.

DELETE only deletes the primary file record in the VIEW because the VIEW structure performs
both relational Project and Join operations at the same time. Therefore, it is possible to create a
VIEW structure that, if all its component files were updated, would violate the Referential Integrity
rules set for the database. The common solution to this problem in SQL-based database products
is to delete only the Primary file record. Therefore, Clarion has adopted this same industry
standard solution.

QUEUE Usage

DELETE(queue) removes the QUEUE entry at the position of the last successful GET or ADD
and de-allocates its memory. If no previous GET or ADD was executed, the "Entry Not Found"
error is posted. DELETE does not affect the current POINTER procedure return value, however,
once the entry is deleted, the POINTER value for all subsequent entries in the QUEUE
decrement by one (1).

13 – Built-In Procedures 677

If the QUEUE contains any reference variables or fields with the ANY data type, you must
reference assign a NULL to each reference variable and ANY field in the queue structure before
the DELETE statement. This will avoid memory leaks by freeing up the memory used by the ANY
or reference variables before the DELETE statement.

Errors Posted: 05 Access Denied
08 Insufficient Memory
30 Entry Not Found
33 Record Not Available

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

END
END

CustView VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
END

NameQue QUEUE,PRE(Que)
Name STRING(20),NAME('FirstField')
Zip DECIMAL(5,0),NAME('SecondField')

END
CODE
DO BuildQue !Call routine to build the queue
LOOP X# = RECORDS(NameQue) TO 1 BY -1 !Loop backwards thriough queue
GET(NameQue,X#) !geting each entry
ASSERT(NOT ERRORCODE())
IF NameQue.Name[1] = 'J' !Evaluate a condition
DELETE(NameQue) !and delete only specific entries
ASSERT(NOT ERRORCODE())

END
END

OPEN(Customer)
Cus:AcctNumber = 12345 !Initialize key field
SET(Cus:AcctKey,Cus:AcctKey)

Language Reference Manual 678

OPEN(CustView)
NEXT(CustView) !Get that record
IF ERRORCODE()
STOP(ERROR())

END
DELETE(CustView) !Delete the customer record
CLOSE(CustView) !Close the VIEW

Cus:AcctNumber = 12345 !Initialize key field
GET(Customer,Cus:AcctKey) !Get that record
IF ERRORCODE() THEN STOP(ERROR()).
DELETE(Customer) !Delete the customer record

See Also:

HOLD, NEXT, PREVIOUS, PUT, GET, ADD, ANY, CLEAR, Reference Variables

13 – Built-In Procedures 679

DELETEREG (remove a value or key from Windows registry)
DELETEREG(LONG root, STRING keyname [.STRING valuename])

DELETEREG Deletes and named entry from the system registry.

root The root section of the registry from which to delete the value. Valid
values for this are defined in equates.clw and are as follows:

REG_CLASSES_ROOT
REG_CURRENT_USER
REG_LOCAL_MACHINE
REG_USERS
REG_PERFORMANCE_DATA
REG_CURRENT_CONFIG
REG_DYN_DATA

keyname The name of the key to delete, or the key to delete from.

valuename The name of the value to delete. If omitted the whole key is deleted.

Example:
PROGRAM
MAP.

INCLUDE('EQUATES')
CurrentPath CSTRING(100)
ColorScheme CSTRING(100)

CODE
DELETEREG(REG_LOCAL_MACHINE,'SOFTWARE\SoftVelocity\Clarion6','root')
!remove the root directory entry of the Clarion 6 install
DELETEREG(REG_CURRENT_USER,'Control Panel\Current')
!since a specific value is not specified,
!the entire "Current" key will be removed

See Also: GETREG, PUTREG

Language Reference Manual 680

DESTROY (remove a control or file)

DESTROY([first control] [, last control])
 [file]

DESTROY Removes window controls.

first control Field number or field equate label of a control, or the first control in a range of
controls. If omitted, defaults to zero (0).

last control Field number or field equate label of the last control in a range of controls.

file The label of the FILE to be destroyed, or variable containing the filename of the
file to erase.

The DESTROY statement removes a control, or range of controls, from an APPLICATION or
WINDOW structure. When removed, the control's resources are returned to the operating system.

DESTROYing a GROUP, OPTION, MENU, TAB, or SHEET control also destroys all controls
contained within it.

DESTROY(File) is similar to CLOSE(File), but additionally kills any internal information stored by
the runtime or driver libraries. For example, ODBC-based drivers can store the data source
information associated with the table even after it has been closed to speed up its next reopening.
Usually, this internal data uses the address of the FILE structure as a key. Therefore, if the FILE
structure name has been changed to use with another table or process, incorrect information can
be used.

The DESTROY(File) statement solves this problem.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
DESTROY(?Ctl:Code) !Remove a control
DESTROY(?Ctl:Code,?Ctl:Name) !Remove range of controls
DESTROY(2) !Remove the second control

13 – Built-In Procedures 681

!**
!Example of use of DESTROY(File):
!without DESTROY(File):

OPEN(File)
...
!do something here
...
CLOSE(File)
File{PROP:Name} = NewFilename
OPEN(File) !possible problem because the driver can use

!data collected for the previous existence of
!the table

...

!WITH DESTROY(File):

OPEN(File)
...
!do something
...
DESTROY(File)
File{PROP:Name} = NewFileName
OPEN(File) !OK now

See Also:

CREATE

Language Reference Manual 682

DIRECTORY (get file directory)

 DIRECTORY(queue, path, attributes)

DIRECTORY Gets a file directory listing (just like the DIR command in DOS).

queue The label of the QUEUE structure that will receive the directory listing.

path A string constant, variable, or expression that specifies the path and filenames
directory listing to get. This may include the wildcard characters (* and ?).

attributes An integer constant, variable, or expression that specifies the attributes of the
files to place in the queue.

The DIRECTORY procedure returns a directory listing of all files in the path with the specified
attributes into the specified queue.

The queue parameter must name a QUEUE with a structure that begins the same as the
following structure contained in EQUATES.CLW:

ff_:queue QUEUE,PRE(ff_),TYPE
name STRING(13)
date LONG
time LONG
size LONG
attrib BYTE !A bitmap, the same as the attributes EQUATEs

END

or the following structure (for long filename support):
FILE:queue QUEUE,PRE(File),TYPE
name STRING(FILE:MAXFILENAME) !FILE:MAXFILENAME is an EQUATE
shortname STRING(13)
date LONG
time LONG
size LONG
attrib BYTE !A bitmap, the same as the attributes EQUATEs

END

Your QUEUE may contain more fields, but must begin with these fields. It will receive the
returned information about each file in the path that has the attributes you specify. The date and
time fields will contain standard Clarion date and time information (the conversion from the
operating system's storage format to Clarion standard format is automatic).

13 – Built-In Procedures 683

The attributes parameter is a bitmap which specifies what filenames to place in the queue. The
following equates are contained in EQUATES.CLW:

ff_:NORMAL EQUATE(0) !Always active
ff_:READONLY EQUATE(1) !Not for use as attributes parameter
ff_:HIDDEN EQUATE(2)
ff_:SYSTEM EQUATE(4)
ff_:DIRECTORY EQUATE(10H)
ff_:ARCHIVE EQUATE(20H) ! NOT Win95 compatible

The attributes bitmap is an OR filter: if you add the equates, you get files with any of the attributes
you specify. This means that, when you just set the attributes to ff_:NORMAL, you only get files
(no sub-directories) without the hidden, system, or archive bits set. If you add ff_:DIRECTORY to
ff_:NORMAL, you will get files AND sub-directories from the path. Since ff_:NORMAL is an
equate for zero (0), you will always get files.

Short filenames used in applications
Applications should avoid the use of the short filenames returned by DIRECTORY. This includes
never using the DIRECTORY(ff_:Queue...) syntax, which retrieves only short names. Instead, use
the DIRECTORY(FILE:QUEUE...) syntax, and avoid using the ShortName field.

Short file names do not exist under all file systems. The short file name returned in the queue is
sometimes the long file name, truncated to 13 bytes. Under Windows NT/2000/XP systems, the
registry key NtfsDisable8dot3NameCreation allows turning off short file names. Files created
after this key is enabled will not have a short file name generated.

Setting NtfsDisable8dot3NameCreation=1 in the Windows system registry improves performance.
This setting may become more popular and eventually can be the default. Developers using short
file names in applications released to the general public may run into problems in the near future.

Sometimes you can run into a user running your applications on a Novell server without the long
file name NLM loaded, so you can't rely on all file systems supporting long file names. Therefore,
the safest strategy is to name your files with legal 8.3 short names, and as noted above, only use
the long file name queue field returned by DIRECTORY.

Language Reference Manual 684

Example:

DirectoryList PROCEDURE

AllFiles QUEUE(File:queue),PRE(FIL) !Inherit exact declaration of File:queue
END

LP LONG
Recs LONG

CODE
DIRECTORY(AllFiles,'*.*',ff_:DIRECTORY) !Get all files and directories
Recs = RECORDS(AllFiles)
LOOP LP = Recs TO 1 BY -1
GET(AllFiles,LP)
IF BAND(FIL:Attrib,ff_:DIRECTORY) AND FIL:ShortName <> '..' AND FIL:ShortName <> '.'
CYCLE !Let sub-directory entries stay

ELSE
DELETE(AllFiles) !Get rid of all other entries

END
END

See Also:

SHORTPATH

LONGPATH

PATH

13 – Built-In Procedures 685

DISABLE (dim a control)

 DISABLE([first control] [, last control])

DISABLE Dims controls on the window.

first control Field number or field equate label of a control, or the first control in a range of
controls. If omitted, defaults to zero (0).

last control Field number or field equate label of the last control in a range of controls.

The DISABLE statement disables a control or a range of controls on an APPLICATION or
WINDOW structure. When disabled, the control appears dimmed on screen.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
DISABLE(?Ctl:Code) !Disable a control
DISABLE(?Ctl:Code,?Ctl:Name) !Disable range of controls
DISABLE(2) !Disable the second control

See Also:

ENABLE

HIDE

UNHIDE

Language Reference Manual 686

DISPLAY (write USE variables to screen)

 DISPLAY([first control] [,last control])

DISPLAY Writes the contents of USE variables to their associated controls.

first control Field number or field equate label of a control, or the first control in a range of
controls.

last control Field number or field equate label of the last control in a range of controls.

DISPLAY writes the contents of the USE variables to their associated controls on the active
window. DISPLAY with no parameters writes the USE variables for all controls on the screen.
Using first control alone, as the parameter of DISPLAY, writes a specific USE variable to the
screen. Both first control and last control parameters are used to display the USE variables for an
inclusive range of controls on the screen.

The current contents of the USE variables of all controls are automatically displayed on screen
each time the ACCEPT loop cycles if the window has the AUTO attribute present. This eliminates
the need to explicitly issue a DISPLAY statement to update the video display. Of course, if your
application performs some operation that takes a long time and you want to indicate to the user
that something is happening without cycling back to the top of the ACCEPT loop, you should
DISPLAY some variable that you have updated.

Example:
DISPLAY !Display all controls on the screen
DISPLAY(2) !Display control number 2
DISPLAY(3,7) !Display controls 3 through 7
DISPLAY(?MenuControl) !Display the menu control
DISPLAY(?TextBlock,?Ok) !Display range of controls

See Also:

Field Equate Labels

UPDATE

ERASE

CHANGE

AUTO

13 – Built-In Procedures 687

DRAGID (return matching drag-and-drop signature)
 DRAGID([thread] [, control])

DRAGID Returns matching host and target signatures on a successful drag-and-drop
operation.

thread The label of a numeric variable to receive the thread number of the host control.
If the host control is in an external program, thread receives zero (0).

control The label of a numeric variable to receive the field equate label of the host
control.

The DRAGID procedure returns the matching host and target control signatures on a successful
drag-and-drop operation. If the user aborted the operation, DRAGID returns an empty string (''),
otherwise it returns the first signature that matched between the two controls.

Return Data Type: STRING

Language Reference Manual 688

Example:
Que1 QUEUE

STRING(30)
END

Que2 QUEUE(Que1) !Que2 declared same as Que1
END

Que3 QUEUE(Que1) !Que3 declared same as Que1
END

WinOne WINDOW,AT(0,0,360,400)
!Allows drags, but not drops:
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID('List1')
!Allows drops from List1 or List3, but no drags:
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID('List1','List3')
!Allows drags, but not drops:
LIST,AT(120,240,20,20),USE(?List3),FROM(Que3),DRAGID('List3')

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drop !When drop event is successful
CASE DRAGID() !check for which host dropped it
OF 'List1'
Que2 = Que1 !get dropped info from Que1

OF 'List3'
Que2 = Que3 !get dropped info from Que3

END
ADD(Que2) !add either one to the drop queue

END
END

See Also:

DROPID

SETDROPID

13 – Built-In Procedures 689

DROPID (return drag-and-drop string)
 DROPID([thread] [, control])

DROPID Returns matching host and target signatures on a successful drag-and-drop
operation.

thread The label of a numeric variable to receive the thread number of the target control.
If the target control is in an external program, thread receives zero (0).

control The label of a numeric variable to receive the field equate label of the target
control.

The DROPID procedure returns the matching host and target control signatures on a successful
drag-and-drop operation (just as DRAGID does), or the specific string set by the SETDROPID
procedure. The DROPID procedure returns a comma-delimited list of filenames dragged from the
Windows File Manager when '~FILE' is the DROPID attribute.

Return Data Type: STRING

Language Reference Manual 690

Example:
DragDrop PROCEDURE
Que1 QUEUE

STRING(90)
END

Que2 QUEUE
STRING(90)

END

WinOne WINDOW('Test Drag Drop'),AT(10,10,240,320),SYSTEM,MDI
!Drag but no drop:
LIST,AT(12,0,200,80),USE(?List1),FROM(Que1),DRAGID('List1')
!Allows drops from List1 or the Windows File Manager, but no drags:
LIST,AT(12,120,200,80),USE(?List2),FROM(Que2),DROPID('List1','~FILE')

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() !check for success
GET(Que1,CHOICE())
SETDROPID(Que1) !and setup info to pass

END
OF EVENT:Drop !When drop event is successful
IF INSTRING(',',DROPID(),1,1) !Check for multiple files from File Manager
Que2 = | !and only get first
SUB(DROPID(),1,INSTRING(',',DROPID(),1,1)-1)
ADD(Que2) !and add it to the queue

ELSE
Que2 = DROPID() !get dropped info, from List1 or File Manager
ADD(Que2) !and add it to the queue

END
END

END

13 – Built-In Procedures 691

DUPLICATE (check for duplicate key entries)

 DUPLICATE(| key |)

 | file |

DUPLICATE Checks duplicate entries in unique keys.

key The label of a KEY declaration.

file The label of a FILE declaration.

The DUPLICATE procedure returns a non-zero value (true) if writing the current record to the
data file would post the "Creates Duplicate Key" error. With a key parameter, only the specified
KEY is checked. With a file parameter, all KEYs declared without a DUP attribute are checked.
DUPLICATE is most useful to detect potential duplicate key errors before writing to disk.

The DUPLICATE procedure assumes that the contents of the RECORD structure data buffer are
duplicated at the current record pointer location. Therefore, when using DUPLICATE prior to
ADDing a record, the record pointer should be cleared with: GET(file,0).

Return Data Type: LONG

Example:
IF Action = 'ADD' THEN GET(Vendor,0). !If adding, clear the file pointer
IF DUPLICATE(Vendor) !If this vendor already exists
SCR:MESSAGE = 'Vendor Number already assigned' !display message
SELECT(?) !and stay on the field

END

See Also:

GET

ADD

DUP

Language Reference Manual 692

ELLIPSE (draw an ellipse)

 ELLIPSE(x ,y ,width ,height [,fill] [,attributelist])

ELLIPSE Draws an ellipse on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes
(bytes 0, 1, and 2) or an EQUATE for a standard Windows color value.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The ELLIPSE procedure places an ellipse on the current window or report. The ellipse is drawn
inside a "bounding box" defined by the x, y, width, and height parameters. The x and y
parameters specify the starting point, and the width and height parameters specify the horizontal
and vertical size of the "bounding box."

The border color is the current pen color set by SETPENCOLOR; the default color is the
Windows system color for window text. The border width is the current width set by
SETPENWIDTH; the default width is one pixel. The border style is the current pen style set by
SETPENSTYLE; the default style is a solid line.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
ELLIPSE(100,50,100,50,00FF0000h) !Red ellipse

See Also: Current Target, SETPENCOLOR, SETPENWIDTH, SETPENSTYLE

13 – Built-In Procedures 693

EMPTY (empty a data file)

 EMPTY(file)

EMPTY Deletes all records from a FILE.

file The label of a FILE.

EMPTY deletes all records from the specified file. EMPTY requires exclusive access to the file.
Therefore, the file must be opened with access mode set to 12h (Read/Write Deny All) or 22h
(Read/Write Deny Write).

Errors Posted: 63 Exclusive Access Required
 37 File Not Open

Example:
OPEN(Master,18) !Open the master file
EMPTY(Master) !and start a new one

See Also:

OPEN

SHARE

Language Reference Manual 694

ENABLE (re-activate dimmed control)

 ENABLE([first control] [, last control])

ENABLE Reactivates disabled controls.

first control Field number or field equate label of a control, or the first control in a range of
controls. If omitted, defaults to zero (0).

last control Field number or field equate label of the last control in a range of controls.

The ENABLE statement reactivates a control, or range of controls, that were dimmed by the
DISABLE statement, or were declared with the DISABLE attribute. Once reactivated, the control
is again available to the operator for selection.

Example:
CODE
OPEN(Screen)
DISABLE(?Control2) !Control2 is deactivated
IF Ctl:Password = 'Supervisor'
ENABLE(?Control2) !Re-activate Control2

END

See Also:

DISABLE

HIDE

UNHIDE

13 – Built-In Procedures 695

ENDPAGE (force page overflow)

 ENDPAGE(report [, printfooters])

ENDPAGE Forces page overflow.

report The label of a REPORT structure.

printfooters An integer constant or variable. If omitted or zero (0), this prints group footers by
forcing a group BREAK (usually used to terminate a report for preview). If one
(1), group BREAKs are left open and no group footers print (usually used during
a continuing report).

The ENDPAGE statement initiates page overflow and flushes the print engine's print structure
buffer. If the REPORT has the PREVIEW attribute, this has the effect of ensuring that the entire
report is available to view.

Example:
SomeReport PROCEDURE

WMFQue QUEUE !Queue to contain .WMF filenames
STRING(64)

END

NextEntry BYTE(1) !Queue entry counter variable

Report REPORT,PREVIEW(WMFQue) !Report with PREVIEW attribute
DetailOne DETAIL

!Report controls
END
END

ViewReport WINDOW('View Report'),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(''),AT(0,0,320,180),USE(?ImageField)
BUTTON('View Next Page'),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON('Print Report'),AT(80,180,60,20),USE(?PrintReport)
BUTTON('Exit Without Printing'),AT(160,180,60,20),USE(?ExitReport)
END

Language Reference Manual 696

CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report
LOOP
NEXT(SomeFile)
PRINT(DetailOne)

END
ENDPAGE(Report) !Flush the buffer
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) THEN CYCLE. !Check for end of report
GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue !Load next report page
DISPLAY !and display it

OF ?PrintReport
Report{PROP:flushpreview} = ON !Flush files to printer
BREAK !and exit procedure

OF ?ExitReport
BREAK !Exit procedure

. .
CLOSE(ViewReport) !Close window
FREE(WMFQue) !Free the queue memory
CLOSE(Report) !Close report (deleting all .WMF files)
RETURN ! and return to caller

See Also:

Page Overflow

PREVIEW

13 – Built-In Procedures 697

ERASE (clear screen control and USE variables)

 ERASE([first control] [,last control])

ERASE Blanks controls and clears their USE variables.

first control Field number or field equate label of a control, or the first control in a range of
controls. If omitted, defaults to zero (0).

last control Field number or field equate label of the last control in a range of controls.

The ERASE statement erases the data from controls in the window and clears their
corresponding USE variables. ERASE with no parameters erases all controls in the window.
Using first control alone, as the parameter of ERASE, clears a specific USE variable and its
associated control. Both first control and last control parameters are used to clear the USE
variables and associated controls for an inclusive range of controls in the window.

Example:
ERASE(?) !Erase the currently selected control
ERASE !Erase all controls on the screen
ERASE(3,7) !Erase controls 3 through 7
ERASE(?Name,?Zip) !Erase controls from name through zip
ERASE(?City,?City+2) !Erase City and 2 controls following City

See Also:

Field Equate Labels

CHANGE

Language Reference Manual 698

ERROR (return error message)

 ERROR()

The ERROR procedure returns a string containing a description of any error that was posted. If
no error was posted, ERROR returns an empty string. You should interrogate ERROR
immediately after the statement which you suspect may post an error because processing any
other statement which could post an error will clear the internal errorcode.

Return Data Type: STRING

Example:
PUT(NameQueue) !Write the record
IF ERROR() = 'Queue Entry Not Found' !If not found
ADD(NameQueue) !add new entry
IF ERRORCODE() !Check for unexpected error
STOP(ERROR())

END
END

See Also:

ERRORCODE

ERRORFILE

FILEERROR

FILEERRORCODE

POPERRORS

PUSHERRORS

Trappable Run Time Errors

13 – Built-In Procedures 699

ERRORCODE (return error code number)

 ERRORCODE()

The ERRORCODE procedure returns the code number for any error that was posted. If no error
was posted, ERRORCODE returns zero. You should interrogate ERRORCODE immediately after
the statement that you suspect may post an error because processing any other statement that
could post an error will clear the internal error code.

Return Data Type: LONG

Example:
ADD(Location) !Add new entry
IF ERRORCODE() = 8 !If not enough memory
MESSAGE('Out of Memory') !display message

END

See Also:

ERROR

ERRORFILE

FILEERROR

FILEERRORCODE

POPERRORS

PUSHERRORS

Trappable Run Time Errors

Language Reference Manual 700

ERRORFILE (return error filename)

 ERRORFILE()

The ERRORFILE procedure returns the name of the file for which an error was posted. If the file
is open, the full DOS file specification is returned. If the file is not open, the contents of the FILE
statement's NAME attribute is returned. If the file is not open and the file has no NAME attribute,
the label of the FILE statement is returned. If no error was posted, or the posted error did not
involve a file, ERRORFILE returns an empty string.

Return Data Type: STRING

Example:
ADD(Location) !Add new entry
IF ERRORCODE()
MESSAGE('Error with ' & ERRORFILE()) !Display error filename
END

See Also:

ERRORCODE

ERROR

FILEERRORCODE

FILEERROR

POPERRORS

PUSHERRORS

Trappable Run Time Errors

13 – Built-In Procedures 701

EVENT (return event number)
 EVENT()

The EVENT procedure returns a number indicating what caused ACCEPT to alert the program
that something has happened that it may need to handle. There are EQUATEs listed in
EQUATES.CLW for all the events the program may need to handle.

There are two types of events generated by ACCEPT: field-specific and field-independent events.
Field-specific events affect a single control, while field-independent events affect the window or
program. The type of event can be determined by the values returned by the ACCEPTED,
SELECTED, and FIELD procedures. If you need to know which field has input focus on a field-
independent event, use the FOCUS procedure.

For field-specific events:
The FIELD procedure returns the field number of the control on which the event occurred.
The ACCEPTED procedure returns the field number if the event is EVENT:Accepted. The
SELECTED procedure returns the field number if the event is EVENT:Selected.

For field-independent events:
The FIELD, ACCEPTED, and SELECTED procedures all return zero (0).

Return Data Type: SIGNED

Example:
ACCEPT
CASE EVENT()
OF EVENT:Selected
CASE SELECTED()
OF ?Control1
!Pre-edit code here

OF ?Control2
!Pre-edit code here

END
OF EVENT:Accepted
CASE ACCEPTED()
OF ?Control1
!Post-edit code here

OF ?Control2
!Post-edit code here

END
OF EVENT:Suspend

!Save some stuff
OF EVENT:Resume

!Restore the stuff
END

END

See Also: ACCEPT, FIELD, FOCUS, ACCEPTED, SELECTED

Language Reference Manual 702

EXISTS (return file existence)

 EXISTS(file)

EXISTS Returns TRUE if the file is available on disk.

file An expression containing the DOS filename.

The EXISTS procedure returns true (1) if the file is available on disk. If the file is not available,
EXISTS returns false (0).

Return Data Type: LONG

Example:
IF EXISTS(SomeFile)

OPEN(SomeFile)
ELSE

CREATE(SomeFile)
END

13 – Built-In Procedures 703

FIELD (return control with focus)
 FIELD()

The FIELD procedure returns the field number of the control which has focus at the time of any
field-specific event. This includes both the EVENT:Selected and EVENT:Accepted events. FIELD
returns zero (0) for field-independent events.

Positive field numbers are assigned by the compiler to all WINDOW controls, in the order their
declarations occur in the WINDOW structure. Negative field numbers are assigned to all
APPLICATION controls. In executable code statements, field numbers are usually represented by
field equate labels--the label of the USE variable preceded by a question mark (?FieldName).

Return Data Type: SIGNED

Example:
Screen WINDOW

ENTRY(@N4),USE(Control1)
ENTRY(@N4),USE(Control2)
ENTRY(@N4),USE(Control3)
ENTRY(@N4),USE(Control4)

END
CODE
ACCEPT
IF NOT ACCEPTED()
CYCLE

END
CASE FIELD() !Control edit control
OF ?Control1 !Field number 1
IF Control1 = 0 !if no entry
BEEP !sound alarm
SELECT(?) !stay on control

END
OF ?Control2 !Field number 2
IF Control2 > 4 !if status is more than 4
Scr:Message = 'Control must be less than 4'
ERASE(?) !clear control
SELECT(?) !edit the control again

ELSE !value is valid
CLEAR(Scr:Message) !clear message

END
OF ?Control4 !Field number 4
BREAK !exit processing loop

END
END !end case, end loop

See Also: ACCEPT, ACCEPTED, SELECTED, FOCUS, EVENT

Language Reference Manual 704

FILEDIALOG (return chosen file)
 FILEDIALOG([title] ,file [,extensions] [,flag])

FILEDIALOG Displays Windows standard file choice dialogs to allow the user to choose a file.

title A string constant or variable containing the title to place on the dialog. If omitted,
Windows supplies a default.

file The label of the string variable to receive the selected filename(s).

extensions A string constant or variable containing the available file extension selections for
the "List Files of Type" drop list. If omitted, the default is all files (*.*).

flag An integer constant or variable containing a bitmap to indicate the type of file
action to perform.

The FILEDIALOG procedure displays Windows standard file choice dialogs and returns the file
chosen by the user in the file parameter. Any existing value in the file parameter sets the default
file choice presented to the user in the file choice dialog.

FILEDIALOG displays either the standard Open... dialog or the standard Save... dialog. By
default, on the Open... dialog, the user is warned if the file they choose does not exist and the file
is not opened. On the Save... dialog, the user is warned if the file does exist and the file is not
saved.

The extensions parameter string must contain a description followed by the file mask. All
elements in the string must be delimited by the vertical bar (|) character. For example, the
extensions string:

'All Files | *.* | Clarion Source | *.CLW;*.INC;*.EQU;*.INT | Clarion Templates|*.TPL;*.TPW'

defines three selections for the "List Files of Type" drop list. The first extension listed in the
extensions string is the default. Multiple extensions are separated by a semicolon (;) character.

The flag parameter is a bitmap that indicates the type of file action to perform (see
EQUATES.CLW for symbolic constants). For bit number:

0 If zero (0000b), the Open... dialog displays.

1 If one (0001b), the Save... dialog displays.

2 If two (0010b), saves and restores the current directory path.

4 If four (0100b), doesn't report errors if the file does exist on Save... or does not exist on Open..

8 If eight (1000b), returns multiple selections when the user selects multiple files. When using lon
filename dialog, it returns a vertical bar (|) delimited string of filenames (with the full path on the
The string is space-delimited when using short filename dialog. Not valid when used with File:S
File:Directory.

16 If sixteen (10000b), uses long filename dialog in 32-bit programs.

13 – Built-In Procedures 705

32 If thirty-two (100000b), displays a directory select dialog for selecting a directory path.

The following is a comprehensive sample of these (see EQUATES.CLW for the complete list):

FILE:Save EQUATE(1)
FILE:KeepDir EQUATE(2)
FILE:NoError EQUATE(4)
FILE:Multi EQUATE(8)
FILE:LongName EQUATE(10H)
FILE:Directory EQUATE(20H)

FILEDIALOG returns zero (0) if the user pressed the Cancel button, or one (1) if the user pressed
the Ok button on the file choice dialog. If the user changes directories using the file dialog, your
application's current directory also changes (unless you set FILE:KeepDir). This is a feature of
the Windows operating system. If you do not want users to change your application's current
directory but do want them to be able look in other directories, either save the current directory
with the PATH() procedure before calling FILEDIALOG then restore it with the SETPATH()
statement, or set FILE:KeepDir.

Return Data Type: BOOL

Example:
ViewTextFile PROCEDURE
ViewQue QUEUE !LIST control display queue

STRING(255)
END

FileName STRING(64),STATIC !Filename variable

ViewFile FILE,DRIVER('ASCII'),NAME(FileName),PRE(Vew)
Record RECORD

STRING(255)
END
END

MDIChild1 WINDOW('View Text File'),AT(0,0,320,200),MDI,SYSTEM,HVSCROLL
LIST,AT(0,0,320,200),USE(?L1),FROM(ViewQue),HVSCROLL
END

CODE
IF NOT FILEDIALOG|
('Choose File to View',FileName,'Text|*.TXT|Source|*.CLW',FILE:LongName)
RETURN !Return if no file chosen

END
OPEN(ViewFile) !Open the file
IF ERRORCODE() THEN RETURN END!aborting on any error

Language Reference Manual 706

SET(ViewFile) !Start at top of file
LOOP
NEXT(ViewFile) !Reading each line of text
IF ERRORCODE() THEN BREAK END !Break loop at end of file
ViewQue = Vew:Record !Assign text to queue
ADD(ViewQue) !and add a queue entry

END
CLOSE(ViewFile) !Close the file
OPEN(MDIChild1) !and open the window
ACCEPT !Allow the user to read the text and
END !break out of ACCEPT loop only from

!system menu close option
FREE(ViewQue) !Free the queue memory
RETURN !and return to caller

!**

!This example shows using FILEDIALOG for multi-file selection:

SelectFiles PROCEDURE(SelectFileQueue DFQ)

Found CSTRING(10000),AUTO
Path CSTRING(File:MaxFilePath),AUTO
Separator STRING(1),AUTO
Pos UNSIGNED,AUTO
NameStart UNSIGNED,AUTO

CODE
Found=SELF.DefaultFile
IF FILEDIALOG('Pick 1 or more files',Found,|
'All Files | *.* | Clarion Source | *.CLW;*.INC;*.EQU;*.INT|Clarion Templates|*.TPL;*.TPW',|
FILE:KeepDir+FILE:Multi+FILE:LongName)
Separator='|'
Pos=INSTRING(Separator,Found,1,1)
IF Pos !Multi-Selected files

ASSERT(Pos > 1)
Path = CHOOSE(Found[Pos-1] <> '\', Found[1 : Pos-1]&'\', Found[1 : Pos-1])
LOOP
NameStart = Pos+1
Pos = INSTRING(Separator,Found,1,NameStart)
IF ~Pos THEN Pos=LEN(Found)+1.
DFQ.Name = Path&Found[NameStart : Pos-1]
ADD(DFQ)

WHILE Pos<=LEN(Found)
ELSE

DFQ.Name=Found !Single file only selected
ADD(DFQ)

END
END

See Also: SETPATH, SHORTPATH, LONGPATH, DIRECTORY

13 – Built-In Procedures 707

FILEDIALOGA (extended file dialog)

 FILEDIALOGA([title] ,file [,extensions] [,flag] [,index])

FILEDIALOGA Displays Windows standard file choice dialogs to allow the user to choose a file.

title A string constant or variable containing the title to place on the dialog. If omitted,
Windows supplies a default.

file The label of the string variable to receive the selected filename(s).

extensions A string constant or variable containing the available file extension selections for
the "List Files of Type" drop list. If omitted, the default is all files (*.*).

flag An integer constant or variable containing a bitmap to indicate the type of file
action to perform.

index A signed integer variable used to select a different default extension by
specifying the index number.

The FILEDIALOGA procedure displays Windows standard file choice dialogs and returns the file
chosen by the user in the file parameter. Any existing value in the file parameter sets the default
file choice presented to the user in the file choice dialog.

FILEDIALOGA displays either the standard Open... dialog or the standard Save... dialog. By
default, on the Open... dialog, the user is warned if the file they choose does not exist and the file
is not opened. On the Save... dialog, the user is warned if the file does exist and the file is not
saved.

The extensions parameter string must contain a description followed by the file mask. All
elements in the string must be delimited by the vertical bar (|) character. For example, the
extensions string:
'All Files | *.* | Clarion Source | *.CLW;*.INC;*.EQU;*.INT | Clarion Templates|*.TPL;*.TPW'

defines three selections for the "List Files of Type" drop list. The first extension listed in the
extensions string is the default. Multiple extensions are separated by a semicolon (;) character.

Language Reference Manual 708

The flag parameter is a bitmap that indicates the type of file action to perform (see
EQUATES.CLW for symbolic constants). For bit number:

0 If zero (0000b), the Open... dialog displays.

1 If one (0001b), the Save... dialog displays.

2 If two (0010b), saves and restores the current directory path.

4 If four (0100b), doesn't report errors if the file does exist on Save... or does not exist
on Open....

8 If eight (1000b), returns multiple selections when the user selects multiple files. When
using long filename dialog, it returns a vertical bar (|) delimited string of filenames
(with the full path on the first). The string is space-delimited when using short
filename dialog. Not valid when used with File:Save or File:Directory.

16 If sixteen (10000b), uses long filename dialog in 32-bit programs.

32 If thirty-two (100000b), displays a directory select dialog for selecting a directory path.

The following is a comprehensive sample of these (see EQUATES.CLW for the complete list):

FILE:Save EQUATE(1)
FILE:KeepDir EQUATE(2)
FILE:NoError EQUATE(4)
FILE:Multi EQUATE(8)
FILE:LongName EQUATE(10H)
FILE:Directory EQUATE(20H)

Finally, the index parameter is a SIGNED integer used to specify a different default extension
other than the first one in the extensions list. For example:

'All Files | *.* | Clarion Source | *.CLW;*.INC;*.EQU;*.INT | Clarion Templates|*.TPL;*.TPW'

The extensions string consists of pairs: <description>|<mask>, and the index parameter references such p
Therefore, in the example above, an index value of 2 will display the ‘Clarion Source‘ description and assoc
extensions; an index value of 3 will display ‘Clarion Templates’, etc.

If FILEDIALOGA returns a non-zero value (i.e., the dialog is completed with Open or Save button), the ind
parameter is set to the index of the extension pair that was used for file selection.

FILEDIALOGA returns zero (0) if the user pressed the Cancel button, or one (1) if the user
pressed the Ok button on the file choice dialog. If the user changes directories using the file
dialog, your application's current directory also changes (unless you set FILE:KeepDir). This is a
feature of the Windows operating system. If you do not want users to change your application's
current directory but do want them to be able look in other directories, either save the current
directory with the PATH() procedure before calling FILEDIALOGA then restore it with the
SETPATH() statement, or set FILE:KeepDir.

13 – Built-In Procedures 709

Return Data Type: BOOL

Example:
ViewTextFile PROCEDURE
ViewQue QUEUE !LIST control display queue

STRING(255)
END

FileName STRING(64),STATIC !Filename variable

ViewFile FILE,DRIVER('ASCII'),NAME(FileName),PRE(Vew)
Record RECORD

STRING(255)
END
END

MDIChild1 WINDOW('View Text File'),AT(0,0,320,200),MDI,SYSTEM,HVSCROLL
LIST,AT(0,0,320,200),USE(?L1),FROM(ViewQue),HVSCROLL
END

CODE
IF NOT FILEDIALOGA|
('Choose File to View',FileName,'Text|*.TXT|Source|*.CLW',FILE:LongName,2)
RETURN !Return if no file chosen

END
OPEN(ViewFile) !Open the file
IF ERRORCODE() THEN RETURN END!aborting on any error
SET(ViewFile) !Start at top of file
LOOP
NEXT(ViewFile) !Reading each line of text
IF ERRORCODE() THEN BREAK END !Break loop at end of file
ViewQue = Vew:Record !Assign text to queue
ADD(ViewQue) !and add a queue entry

END
CLOSE(ViewFile) !Close the file
OPEN(MDIChild1) !and open the window
ACCEPT !Allow the user to read the text and
END !break out of ACCEPT loop only from

!system menu close option
FREE(ViewQue) !Free the queue memory
RETURN !and return to caller

Language Reference Manual 710

!**

PROGRAM
MAP
END

FN STRING(260)
ExtPickInOut SIGNED,AUTO
ExtFound SIGNED,AUTO

CODE
ExtPickInOut = 2 !default to CSV
IF ~FILEDIALOGA('Pick file to save',fn,'Text|*.TXT|Comma Delimited |
(*.CSV)|*.CSV|Tab Delimited (*.TSV)|*.TSV', FILE:Save+ FILE:LongName, |
ExtPickInOut)

RETURN
END
ExtFound = INLIST(UPPER(SUB(CLIP(FN),-4,4)),'.TXT','.CSV','.TSV')
IF ~ExtFound !No extension so add one based on selected file type
ExtFound=ExtPick
fn=clip(fn) & CHOOSE(ExtPickInOut,'.TXT','.CSV','.TSV','')

END

!This code assumes a 3 byte extension. There are a other possible ways to test
!for an extension.

See Also:

SETPATH

SHORTPATH

LONGPATH

DIRECTORY

13 – Built-In Procedures 711

FILEERROR (return file driver error message)

 FILEERROR()

The FILEERROR procedure returns a string containing the "native" error message from the file
system (file driver) being used to access a data file. Valid only when ERRORCODE() = 90.

Return Data Type: STRING

Example:
PUT(NameFile) !Write the record
IF ERRORCODE() = 90 !Back-end-specific error occurred
MESSAGE(FILEERROR())
RETURN

END

See Also:

ERRORCODE

ERROR

ERRORFILE

FILEERRORCODE

Trappable Run Time Errors

Language Reference Manual 712

FILEERRORCODE (return file driver error code number)

 FILEERRORCODE()

The FILEERRORCODE procedure returns a string containing the code number for the "native"
error message from the file system (file driver) being used to access a data file. Valid only when
ERRORCODE() = 90.

Return Data Type: STRING

Example:
PUT(NameFile) !Write the record
IF ERRORCODE() = 90 !Back-end-specific error occurred
MESSAGE(FILERRORCODE())
RETURN

END

See Also:

FILEERROR

ERRORFILE

ERRORCODE

ERROR

Trappable Run Time Errors

13 – Built-In Procedures 713

FIRSTFIELD (return first window control)

 FIRSTFIELD()

The FIRSTFIELD procedure returns the lowest field number in the currently active window (or
REPORT) as specified by SETTARGET. This does not include any controls in a TOOLBAR or
MENUBAR or any controls created after the window is opened.

Return Data Type: SIGNED

Example:
DISABLE(FIRSTFIELD(),LASTFIELD()) !Dim all control fields

See Also:

LASTFIELD

Language Reference Manual 714

FLUSH (flush buffers)

 FLUSH(file)

FLUSH Terminates a STREAM operation, flushing the operating system buffers to disk,
or flushes the BUFFER statement's buffers.

file The label of a FILE or VIEW.

The FLUSH statement terminates a STREAM operation. It flushes the operating system buffers,
which updates the directory entry for that file. FLUSH will also flush the file driver's buffers
allocated by the BUFFER statement. If both STREAM and BUFFER are active, all buffers are
flushed.

Support for this statement is dependent upon the file system and its specific action is described in
the file driver documentation (if different from that described here).

Example:

STREAM(History) !Use DOS buffering
SET(Current) !Set to top of current file
LOOP
NEXT(Current)
IF ERRORCODE() THEN BREAK END
His:Record = Cur:Record
ADD(History)

END
FLUSH(History) !End streaming, flush buffers
OPEN(MyView)
BUFFER(MyView,10,5,2,300) !10 records per page, 5 pages behind and 2 read-ahead,

!with a 5 minute timeout
!Process records

FLUSH(MyView) !Flush buffers

See Also:

STREAM

BUFFER

13 – Built-In Procedures 715

FOCUS (return control with focus)

 FOCUS()

The FOCUS procedure returns the field number of the control which has input focus at any time
any event occurs. Positive field numbers are assigned by the compiler to all WINDOW controls, in
the order their declarations occur in the WINDOW structure. Negative field numbers are assigned
to all APPLICATION controls. In executable code statements, field numbers are usually
represented by field equate labels--the label of the USE variable preceded by a question mark
(?FieldName).

Return Data Type: SIGNED

Example:
Screen WINDOW

ENTRY(@N4),USE(Control1)
ENTRY(@N4),USE(Control2)
ENTRY(@N4),USE(Control3)

END
CODE
ACCEPT
CASE EVENT()
OF EVENT:LoseFocus
OROF EVENT:CloseWindow
CASE FOCUS() !Control edit control
OF ?Control1 !Field number 1
UPDATE(?Control1)

OF ?Control2 !Field number 2
UPDATE(?Control2)

OF ?Control3 !Field number 3
UPDATE(?Control3)

END
END

END

See Also:

ACCEPTED

SELECTED

FIELD

EVENT

Language Reference Manual 716

FONTDIALOG (return chosen font)
 FONTDIALOG([title] ,typeface [,size] [,color] [,style] [,added])

FONTDIALOG Displays the standard Windows font choice dialog box to allow the user to
choose a font.

title A string constant or variable containing the title to place on the font choice dialog.
If omitted, a default title is supplied by Windows.

typeface A string variable to receive the name of the chosen font.

size An integer variable to receive the size (in points) of the chosen font.

color A LONG integer variable to receive the red, green, and blue values for the color
of the chosen font in the low-order three bytes.

style An integer variable to receive the strike weight and style of the chosen font.

added An integer constant or variable that specifies adding screen or printer fonts, or
both, to the list of available fonts. Zero (0) adds screen fonts, one (1) adds printer
fonts, and two (2) adds both. If omitted, only Windows registered fonts are listed.

The FONTDIALOG procedure displays the Windows standard font choice dialog box to allow the
user to choose a font. When called, any values in the parameters set the default font values
presented to the user in the font choice dialog. They also receive the user's choice when the user
presses the Ok button on the dialog. FONTDIALOG returns zero (0) if the user pressed the
Cancel button, or one (1) if the user pressed the Ok button.

Return Data Type: SHORT

Example:
MDIChild1 WINDOW('View Text File'),AT(0,0,320,200),MDI,SYSTEM,HVSCROLL

!window controls
END

Typeface STRING(31)
FontSize LONG
FontColor LONG
FontStyle LONG
CODE
OPEN(MDIChild1) !open the window
IF FONTDIALOG('Choose Display Font',Typeface,FontSize,FontColor,FontStyle,0)
SETFONT(0,Typeface,FontSize,FontColor,FontStyle) !Set window font

ELSE
SETFONT(0,'Arial',12) !Set default font

END
ACCEPT
!Window handling code

END

13 – Built-In Procedures 717

FONTDIALOGA (return chosen font and character set)
 FONTDIALOGA([title] ,typeface [,size] [,color] [,style] [,charset] [,added])

FONTDIALOGA
Displays the standard Windows font choice dialog box to allow the user to
choose a font and a character set.

title A string constant or variable containing the title to place on the font choice dialog.
If omitted, a default title is supplied by Windows.

typeface A string variable to receive the name of the chosen font.

size An integer variable to receive the size (in points) of the chosen font.

color A LONG integer variable to receive the red, green, and blue values for the color
of the chosen font in the low-order three bytes.

style An integer variable to receive the strike weight and style of the chosen font.

charset A LONG integer variable to receive the character set value.

added An integer constant or variable that specifies adding screen or printer fonts, or
both, to the list of available fonts. Zero (0) adds screen fonts, one (1) adds printer
fonts, and two (2) adds both. If omitted, only Windows registered fonts are listed.

The FONTDIALOGA procedure displays the Windows standard font choice dialog box to allow
the user to choose a font and character set. When called, any values in the parameters set the
default font values presented to the user in the font choice dialog. They also receive the user's
choice when the user presses the Ok button on the dialog. FONTDIALOGA returns zero (0) if the
user pressed the Cancel button, or one (1) if the user pressed the Ok button.

Return Data Type: SHORT

Example:
Typeface STRING(31)
FontSize LONG
FontColor LONG
FontStyle LONG
CharSet LONG
CODE
OPEN(MDIChild1) !open the window
IF FONTDIALOGA('Choose Display Font',Typeface,FontSize,FontColor,FontStyle,CharSet,0)
SETFONT(0,Typeface,FontSize,FontColor,FontStyle,CharSet) !Set window font

ELSE
SETFONT(0,'Arial',12) !Set default font

END
ACCEPT
!Window handling code

END

Language Reference Manual 718

FORMAT (return formatted numbers into a picture)

 FORMAT(value,picture)

FORMAT Returns a formatted numeric string.

value A numeric expression for the value to be formatted.

picture A picture token or the label of a CSTRING variable containing a picture token.

The FORMAT procedure returns a numeric string formatted according to the picture parameter.

Return Data Type: STRING

Example:
!Format the Social Security number:
Rpt:SocSecNbr = FORMAT(Emp:SSN,@P###-##-####P)

!Change phone format from dashes to parenthesis:
Phone = FORMAT(DEFORMAT(Phone,@P###-###-####P),@P(###)###-####P)

!Format a date as a string:
DateString = FORMAT(DateLong,@D1)

See Also:

DEFORMAT

Picture Tokens

13 – Built-In Procedures 719

FORWARDKEY (pass keystrokes to control)

 FORWARDKEY(targetcontrol)

FORWARDKEY Passes a keystroke to another control.

targetcontrol A field number or field equate label for the control to receive the passed
keystroke.

FORWARDKEY passes a keystroke to another control. This imitates the action of the keystroke
as if the target control was the control in focus when the keystroke occurred.

Example:

FORWARDKEY(?LIST) !pass the keystroke to the list box

Language Reference Manual 720

FREE (delete all entries)

 FREE(queue)

FREE Deletes all entries from a QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

FREE deletes all entries from a QUEUE and de-allocates the memory they occupied. It also de-
allocates the memory used by the QUEUE's "overhead." FREE does not clear the QUEUE's data
buffer.

If the QUEUE contains any reference variables or fields with the ANY data type, you must first
CLEAR each QUEUE entry before FREEing the QUEUE. This will avoid memory leaks by freeing
up the memory used by the ANY variables before the FREE statement removes the pointer to the
allocated memory.

Errors Posted: 08 Insufficient Memory

Example:
FREE(Location) !Free the location queue
FREE(NameQue) !Free the name queue

See Also:

ANY

CLEAR

Reference Variables

13 – Built-In Procedures 721

FREESTATE (free resources)

 FREESTATE(file, savedstate)

FREESTATE Releases all resources allocated by GETSTATE

file The label of a FILE declaration.

savedstate A LONG numeric variable which represents the value returned by the
GETSTATE procedure.

FREESTATE releases all resources allocated by GETSTATE.

Example:
MyFunction PROCEDURE(FILE MyFile)

CurState LONG

CODE

! File will be in the same state on exit of this procedure as it was on entry
CurState = GETSTATE(MyFile) !save current state of file
SET(MyFile) !ready to access file
NEXT(MyFile) !read a record
CLEAR(MyFile) !clear record buffer
RESTORESTATE(MyFile, CurState) !restore file to initial state
FREESTATE(MyFile, CurState) !release resources

See Also:

GETSTATE

RESTORESTATE

Language Reference Manual 722

GET (read a record or entry)
 | file , key |

 GET(| file , filepointer [, length] |)

 | key , keypointer |

 | queue , pointer |

 | queue , [+]key,...,[-]key |

 | queue , name |

 | queue , function |

GET Retrieves a specific record from a FILE or entry from a QUEUE.

file The label of a FILE declaration.

key The label of a KEY or INDEX declaration.

filepointer A numeric constant, variable, or expression for the value returned by the
POINTER(file) procedure.

length An integer constant, variable, or expression which contains the number of bytes
to read from the file. The length must be greater than zero and not greater than
the RECORD length. If omitted or out of range, length defaults to the length of
the RECORD structure.

keypointer A numeric constant, variable, or expression for the value returned by the
POINTER(key) procedure.

queue The label of a QUEUE structure.

pointer A numeric constant, variable, or numeric expression. The pointer must be in the
range from 1 to the number of entries in the memory queue.

+ - The leading plus or minus sign specifies the key is sorted in ascending or
descending sequence.

key The label of a field declared within the QUEUE structure. If the QUEUE has a
PRE attribute, the key must include the prefix.

name A string constant, variable, or expression containing the NAME attribute of
QUEUE fields, separated by commas, and optional leading + or - signs for each
attribute. This parameter is case sensitive.

function The label of the function containing two parameters of a *GROUP or named
GROUP passed by address, and having a SIGNED return value. Both
parameters must use the same parameter type, and cannot be omitted. The
RAW, C and PASCAL attributes are not permitted in the prototype declaration.
See Additional Queue Considerations.

13 – Built-In Procedures 723

The GET statement locates a specific record in a FILE or specific entry in a QUEUE and retrieves
it.

FILE Usage

The GET statement locates a specific record in the data file and reads it into the RECORD
structure data buffer. Direct access to the record is achieved by relative record position within the
file, or by matching key values. If the GET is unsuccessful, the previous content of the RECORD
buffer is not affected.

GET(file,key)
Gets the first record from the file (as listed in the key) which contains values
matching the values in the component fields of the key.

GET(file,filepointer [,length])
Gets a record from the file based on the filepointer relative position within the file.
If filepointer is zero, the current record pointer is cleared and no record is
retrieved.

GET(key,keypointer)
Gets a record from the file based on the keypointer relative position within the
key.

The values for filepointer and keypointer are file driver dependent. They could be: record number;
relative byte position within the file; or, some other kind of "seek position" within the file. If the
filepointer or keypointer value is out of range, or there are no matching key values in the data file,
the "Record Not Found" error is posted.

The DUPLICATE procedure assumes that the contents of the RECORD structure data buffer are
duplicated at the current record pointer location. Therefore, when using DUPLICATE prior to
ADDing a record, the record pointer should be cleared with: GET(file,0).

QUEUE Usage

GET reads an entry into the QUEUE structure data buffer for processing. If GET does not find a
match, the "Entry Not Found" error is posted.

GET(queue,pointer)
Retrieves the entry at the relative entry position specified by the pointer value in
the order the QUEUE entries were added, or last SORTed. If pointer is zero, the
value returned by the POINTER procedure is set to zero.

GET(queue,key)
Searches for the first QUEUE entry that matches the value in the key field(s).
Multiple key parameters may be used (up to 16), separated by commas. If the
QUEUE has not been SORTed on the field(s) used as the key parameter(s), the
key indicates an "alternate sort order" which is then cached (making a
subsequent SORT on those same fields very efficient).

Language Reference Manual 724

GET(queue,name)
Searches for a QUEUE entry that matches the value in the name field(s). The
name string must contain the NAME attributes of the fields, separated by
commas, with optional leading plus or minus signs to indicate ascending or
descending sequence. If the QUEUE has not been SORTed on the named
field(s), the name indicates an "alternate sort order" which is then cached
(making a subsequent SORT on those same fields very efficient).

GET(queue,function)
GET by FUNCTION will read from a positional value returned by the function.
See Additional Queue Considerations.

Errors Posted: 08 Insufficient Memory
30 Entry Not Found
35 Record Not Found
37 File Not Open
43 Record Is Already Held
75 Invalid Field Type Descriptor

Example:
NameQue QUEUE,PRE(Que)
Name STRING(20),NAME('FirstField')
Zip DECIMAL(5,0),NAME('SecondField')

END

Customer FILE,DRIVER('Clarion'),PRE(Cus)
NameKey KEY(Cus:Name),OPT
NbrKey KEY(Cus:Number),OPT
Rec RECORD
Name STRING(20)
Number SHORT

END
END

CODE
DO BuildQue !Call routine to build the queue
GET(NameQue,1) !Get the first entry
IF ERRORCODE() THEN STOP(ERROR()) END

Que:Name = 'Jones' !Initialize key field
GET(NameQue,Que:Name) !Get the matching record

IF ERRORCODE()
STOP(ERROR())

END

Que:Name = Fil:Name !Initialize to value in Fil:Name
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()) END

13 – Built-In Procedures 725

Que:Name = 'Smith' !Initialize the key fields
Que:Zip = 12345
GET(NameQue,'FirstField,SecondField') !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()) END

LOOP X# = 1 TO RECORDS(NameQue)
GET(NameQue,X#) !Loop through every entry in the QUEUE
IF ERRORCODE() THEN STOP(ERROR()) END
!Process the entry

END

Cus:Name = 'Clarion' !Initialize key field
GET(Customer,Cus:NameKey) !get record with matching value
IF ERRORCODE() THEN STOP(ERROR()) END

GET(Customer,3) !Get 3rd rec in physical file order
IF ERRORCODE() THEN STOP(ERROR()) END

GET(Cus:NameKey,3) !Get 3rd rec in keyed order
IF ERRORCODE() THEN STOP(ERROR()) END

See Also:

SORT

PUT

POINTER(queue)

POINTER

DUPLICATE

HOLD

WATCH

Language Reference Manual 726

GETFONT (get font information)
 GETFONT(control [, typeface] [, size] [, color] [, style] [,charset])

GETFONT Gets display font information.

control A field number or field equate label for the control from which to get the
information. If control is zero (0), it specifies the WINDOW.

typeface A string variable to receive the name of the font.

size An integer variable to receive the size (in points) of the font.

color A LONG integer variable to receive the red, green, and blue values for the color
of the font in the low-order three bytes. If the value is negative, the color
represents a system color.

style An integer variable to receive the strike weight and style of the font.

charset A LONG integer variable to receive the character set value.

GETFONT gets the display font information for the control. If the control parameter is zero (0),
GETFONT gets the default display font for the window.

Example:
TypeFace STRING(31)
Size BYTE
Color LONG
Style LONG
CharSet LONG

CODE
OPEN(Screen)
GETFONT(0,TypeFace,Size,Color,Style,CharSet) !Get font info for the window

See Also:

SETFONT

13 – Built-In Procedures 727

GETINI (return INI file entry)

 GETINI(section ,entry [,default] [,file])

GETINI Returns the value for an INI file entry.

section A string constant or variable containing the name of the portion of the INI file
which contains the entry.

entry A string constant or variable containing the name of the specific setting for which
to return the value.

default A string constant or variable containing the default value to return if the entry
does not exist (up to 1023 characters). If omitted and the entry does not exist,
GETINI returns an empty string.

file A string constant or variable containing the name of the INI file to search (looks
for the file in the Windows directory unless a full path is specified). If the file does
not exist, GETINI returns an empty string. If omitted, GETINI searches the
WIN.INI file.

The GETINI procedure returns the value of an entry in a Windows-standard INI file (maximum file
size is 64K). A Windows-standard INI file is an ASCII text file with the following format:

[some section name]
entry=value
next entry=another value

For example, WIN.INI contains entries such as:
[intl]
sLanguage=enu
sCountry=United States
iCountry=1

The GETINI procedure searches the specified file for the entry within the section you specify. It
returns everything on the entry's line of text that appears to the right of the equal sign (=).

Return Data Type: STRING

Example:
Value STRING(30)
CODE
Value = GETINI('intl','sLanguage') !Get the language entry

See Also:

PUTINI

Language Reference Manual 728

GETNULLS(get the NULL state of a table)

 GETNULLS(table)

GETNULLS Gets the NULL state of a table.

table The label of a FILE.

The GETNULLS procedure returns a string containing the NULL state of the table. The size of
the return string is file driver dependent. For the AS400 Accelerator, MSSQL Accelerator, ODBC
Accelerator, Oracle Accelerator, Scalable/Pervasive Accelerator, and SQLAnywhere Accelerator
the size of the return string is 4 times the number of columns in the table. This function is valid on
all SQL tables.

Return Data Type: STRING

Example:
StorageString STRING(255)
Rec STRING(2048)

CODE
StorageString = GETNULLS(table) !Get NULL state of table
Rec = table.record !Save record buffer
! Do Table Processing
table.record = Rec !Restore record buffer
SETNULLS(table, StorageString) !Set NULL state of table columns

Errors Posted: 80 Function Not Supported

13 – Built-In Procedures 729

GETPOSITION (get control position)
 GETPOSITION(control [,x] [, y] [, width] [, height])

GETPOSITION Gets the position and size of an APPLICATION, WINDOW, or control.

control A field number or field equate label for the control from which to get the
information. If control is zero (0), it specifies the window.

x An integer variable to receive the horizontal position of the top left corner.

y An integer variable to receive the vertical position of the top left corner.

width An integer variable to receive the width.

height An integer variable to receive the height.

GETPOSITION gets the position and size of an APPLICATION, WINDOW, or control. The
position and size values are dependent upon the presence or absence of the SCROLL attribute
on the control. If SCROLL is present, the values are relative to the virtual window. If SCROLL is
not present, the values are relative to the top left corner of the currently visible portion of the
window. This means the values returned always match those specified in the AT attribute or most
recent SETPOSITION.

The values in the x, y, width, and height parameters are measured in dialog units. Dialog units
are defined as one-quarter the average character width by one-eighth the average character
height. The size of a dialog unit is dependent upon the size of the default font for the window.
This measurement is based on the font specified in the FONT attribute of the window, or the
system default font specified by Windows.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END

X SHORT
Y SHORT
Width SHORT
Height SHORT
CODE
OPEN(Screen)
GETPOSITION(?Ctl:Code,X,Y,Width,Height)

See Also: SETPOSITION

Language Reference Manual 730

GETREG(get Windows registry entry)

 GETREG(LONG root, STRING keyname [, STRING valuename]),STRING

__

GETREG Gets the value of a specific key and/or value from the system registry.

root The root section of the registry from which to obtain the value. Valid values
for this are defined in equates.clw and are as follows:

REG_CLASSES_ROOT
REG_CURRENT_USER
REG_LOCAL_MACHINE
REG_USERS
REG_PERFORMANCE_DATA
REG_CURRENT_CONFIG
REG_DYN_DATA

keyname The key name of the key whose value is to be queried. This may contain a
path separated by backslash ‘\’ characters.

valuename The name of the value to be queried, if omitted, the value associated directly
with the key is returned.

The GETREG function returns the value of named entry in the system
registry as a Clarion string. If the requested entry does not exist, an empty
string is returned.

Return Data Type: STRING

Example:
PROGRAM

MAP.
INCLUDE('EQUATES')

CurrentPath CSTRING(100)
ColorScheme CSTRING(100)

CODE
CurrentPath =|
GETREG(REG_LOCAL_MACHINE,'SOFTWARE\SoftVelocity\Clarion6','root')
!Returns root directory of Clarion 6 install

ColorScheme =|
GETREG(REG_CURRENT_USER,'Control Panel\Current','Color Schemes')
!get the current user's color scheme

See Also: PUTREG, DELETEREG

13 – Built-In Procedures 731

GETSTATE (return current state of data file)

 GETSTATE(file [,saveblob])

GETSTATE Identifies a file's current state including the record buffer, file pointer, file
sequencing order, and the error state of the system.

file The label of a FILE declaration.

saveblob An integer constant or variable containing either zero (0) or one (1). If one, the
state of the BLOB is also returned. If omitted or zero (0) the BLOB state is not
returned.

GETSTATE returns the current state of the data file. This includes the record buffer, MEMOs,
BLOBs, file pointer, file sequencing order, and the current error state of the system. Use
GETSTATE to store the file's state so it can be restored using RESTORESTATE. This set of
functions, (including FREESTATE), allow for easy interruption and resumption of sequential file
processes.

GETSTATE can now save the state of BLOBs if the second parameter is set to TRUE. It defaults
to not saving BLOBs.

Return Data Type: LONG

Example:
MyFunction PROCEDURE(FILE MyFile)

CurState LONG

CODE

!File will be in the same state on exit of this procedure as it was on entry

CurState = GETSTATE(MyFile,1) !save current state of file and BLOB
SET(MyFile) !ready to access file
NEXT(MyFile) !read a record
CLEAR(MyFile) !clear record buffer
RESTORESTATE(MyFile, CurState) !restore file to initial state
FREESTATE(MyFile, CurState) !release resources

See Also:

FREESTATE

RESTORESTATE

Language Reference Manual 732

HALT (exit program)

 HALT([errorlevel] [,message])

HALT Immediately terminates the program.

errorlevel A positive integer constant or variable (range: 0 - 250) which is the exit code to
pass to DOS, setting the DOS ERRORLEVEL. If omitted, the default is zero.

message A string constant or variable which is typed on the screen after program
termination.

The HALT statement immediately returns to the operating system, setting the errorlevel and
optionally displaying a message after the program terminates. All standard runtime library
procedures for application closedown are performed (all open windows and files are closed and
flushed and all allocated memory is returned to the operating system) without executing any
further Clarion code in the application.

Example:

PasswordProc PROCEDURE
Password STRING(10)
Window WINDOW,CENTER

ENTRY(@s10),AT(5,5),USE(Password),HIDE
END

CODE
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Password)
IF Password <> 'Pay$MeMoRe'
HALT(0,'Incorrect Password entered.')

END
END

END

See Also:

STOP

13 – Built-In Procedures 733

HELP (help window access)
 HELP([helpfile] [,window-id])

HELP Opens a help file and activates a help window.

helpfile A string constant or the label of a STRING variable that has the DOS directory
file specification for the help file. If the file specification does not contain a
complete path and filename, the help file is assumed to be in the current
directory. If the file extension is omitted, ".HLP" is assumed. If the helpfile
parameter is omitted, a comma is required to hold its position.

window-id A string constant or the label of a STRING variable that contains the key used to
access the help system. This may be either a help keyword or a "context string."

The HELP statement opens a designated helpfile, and activates the window named by the
window-id. While an ASK or ACCEPT is controlling program execution, the active help window is
displayed when the operator presses F1 (the "Help" key).

If the window-id parameter is omitted, the helpfile is nominated but not opened. If the helpfile
parameter is omitted, the current help file is opened, and the window identified by window-id is
activated. If both parameters are omitted, the current helpfile is opened at the current topic.

The window-ID may contain a Help keyword. This is a keyword that is displayed in the Help
Search dialog. When the user presses F1, if only one topic in the help file specifies this keyword,
the help file is opened at that topic; if more than one topic specifies the keyword, the search
dialog is opened for the user.

A "context string" is identified by a leading tilde (~) in the window-ID, followed by a unique
identifier associated with exactly one help topic. If the tilde is missing, the window-ID is assumed
to be a help keyword. When the user presses F1, the help file is opened at the specific topic
associated with that "context string."

Newly started threads inherit the help file settings from the previous thread that started it.

Example:
HELP('C:\HLPDIR\LEDGER.HLP') !Open the gen ledger help file
HELP(,'~CustUpd') !Activate customer update help window
HELP !Display the help window

See Also:

ASK

ACCEPT

HLP

Language Reference Manual 734

HIDE (blank a control)

 HIDE([first control] [, last control])

HIDE Hides window controls.

first control Field number or field equate label of a control, or the first control in a range of
controls. If omitted, defaults to zero (0).

last control Field number or field equate label of the last control in a range of controls.

The HIDE statement hides a control, or range of controls, on an APPLICATION or WINDOW
structure. When hidden, the control does not appear on screen.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
HIDE(?Ctl:Code) !Hide a control
HIDE(?Ctl:Code,?Ctl:Name) !Hide range of controls
HIDE(2) !Hide the second control

See Also:

UNHIDE

ENABLE

DISABLE

13 – Built-In Procedures 735

HOLD (exclusive record access)

 HOLD(entity [,seconds])

HOLD Arms record locking.

entity The label of a FILE opened for shared access or a VIEW whose component files
are opened for shared access.

seconds A numeric constant or variable which specifies the maximum wait time in
seconds.

The HOLD statement arms record locking for a following GET, REGET, NEXT, or PREVIOUS
statement in a multi-user environment. The GET, REGET, NEXT, or PREVIOUS flags the record
as "held" when it successfully gets the record. Generally, this excludes other users from writing
to, but not reading, the record. The specific action HOLD takes is file driver dependent. When the
entity parameter is the label of a VIEW structure, HOLD operates on the primary file in the VIEW,
only.

HOLD(entity)
Arms HOLD so that the following GET, REGET, NEXT, or PREVIOUS attempts
to hold the record until it is successful. If it is held by another workstation, GET,
REGET, NEXT, or PREVIOUS will wait until the other workstation releases it.

HOLD(entity , seconds)
Arms HOLD for the following GET, REGET, NEXT, or PREVIOUS to post the
"Record Is Already Held" error after unsuccessfully trying to hold the record for
seconds.

A user may only HOLD one record at a time. If a second record is to be accessed in the same
file, the previously held record must be released (see RELEASE).

A common problem to avoid is "deadly embrace." This occurs when two workstations attempt to
hold the same set of records in two different orders and both are using the HOLD(entity) form of
HOLD. One workstation has already held a record that the other is trying to HOLD, and vice
versa. You can avoid this problem by using the HOLD(entity,seconds) form of HOLD, and
trapping for the "Record Is Already Held" error after the GET, REGET, NEXT, or PREVIOUS
statement.

Language Reference Manual 736

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END
END

CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP !Process records Loop
LOOP !Loop to avoid "deadly embrace"
HOLD(ViewOrder,1) !Arm Hold on view, try for 1 second
NEXT(ViewOrder) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
CYCLE ! try again

ELSE
BREAK !Break if not held

END
END

IF ERRORCODE() THEN BREAK END !Check for end of file
!Process the records
RELEASE(ViewOrder) !release held records
END

CLOSE(ViewOrder)

See Also:

RELEASE

NEXT

PREVIOUS

WATCH

GET

REGET

13 – Built-In Procedures 737

IDLE (arm periodic procedure)

 IDLE([procedure] [,separation])

IDLE Arms a procedure that periodically executes.

procedure The label of a PROCEDURE. The procedure may not take any parameters.

separation An integer that specifies the minimum wait time (in seconds) between calls to the
procedure. A separation of 0 specifies continuous calls. If separation is omitted,
the default value is 1 second.

An IDLE procedure is active while ASK or ACCEPT are waiting for user input. Only one IDLE
procedure may be active at a time. Naming a new IDLE procedure overrides the previous one. An
IDLE statement with no parameters disarms the IDLE process.

The IDLE procedure executes on thread one (1)--the same thread as the APPLICATION frame in
an MDI application. Therefore, any WINDOW structure in an IDLE procedure must not have the
MDI attribute. Since opening a non-MDI window in the same thread as the APPLICATION frame
creates an application modal window, it would be more usual for an IDLE procedure not to have a
WINDOW structure at all.

An IDLE procedure is usually prototyped in the PROGRAM's MAP. If prototyped in a MEMBER
MAP, the IDLE statements which activate and de-activate it must be contained in a procedure
within the same MEMBER module.

Example:

IDLE(ShoTime,10) !Call shotime every 10 seconds
IDLE(CheckNet) !Check network activity every 1 second
IDLE !Disarm idle procedure

See Also:

ASK

ACCEPT

PROCEDURE

MAP

MDI

Language Reference Manual 738

IMAGE (draw a graphic image)

 IMAGE(x , y , [width] , [height] , filename [,attributelist])

IMAGE Places a graphic image on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width. This may be a negative number. If
omitted, defaults to the width of the graphic as it is stored.

height An integer expression that specifies the height. This may be a negative number.
If omitted, defaults to the height of the graphic as it is stored.

filename A string constant or variable containing the name of the file to display.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The IMAGE procedure places a graphic image on the current window or report at the position and
size specified by its x, y, width, and height parameters. This may be a bitmap (.BMP), icon (.ICO),
PaintBrush (.PCX), Graphic Interchange Format (.GIF), JPEG (.JPG), or Windows metafile
(.WMF).

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
IMAGE(100,50,100,50,'LOGO.BMP') !Draw graphic image

See Also:

Current Target

SETPENCOLOR

SETPENWIDTH

SETPENSTYLE

13 – Built-In Procedures 739

INCOMPLETE (return empty REQ control)

 INCOMPLETE()

The INCOMPLETE procedure returns the field number of the first control with the REQ attribute
in the currently active window that has been left zero or blank, and gives input focus to that
control. If all REQ controls in the window contain data, INCOMPLETE returns zero (0) and leaves
input focus on the control that already had it.

The INCOMPLETE procedure duplicates the action performed by the REQ attribute on a
BUTTON control.

Return Data Type: SIGNED

Example:
CODE
OPEN(Screen)
ACCEPT
CASE ACCEPTED()
OF ?OkBUtton
IF INCOMPLETE() !Any REQ fields empty?
SELECT(INCOMPLETE()) ! if so, go to it
CYCLE

ELSE
BREAK !If not, go on

END
END

END

See Also:

REQ

BUTTON

Language Reference Manual 740

INLIST (return entry in list)

 INLIST(searchstring,liststring,liststring [,liststring...])

INLIST Returns item in a list.

searchstring A constant, variable, or expression that contains the value for which to search. If
the value is numeric, it is converted to a string before comparisons are made.

liststring The label of a variable or constant value to compare against the searchstring. If
the value is numeric, it is converted to a string before comparisons are made.
There may be up to 25 liststring parameters, and there must be at least two.

The INLIST procedure compares the contents of the searchstring against the values contained in
each liststring parameter. If a matching value is found, the procedure returns the number of the
first liststring parameter containing the matching value (relative to the first liststring parameter). If
the searchstring is not found in any liststring parameter, INLIST returns zero.

Return Data Type: LONG

Example:
!INLIST('D','A','B','C','D','E') returns 4
!INLIST('B','A','B','C','D','E') returns 2

EXECUTE INLIST(Emp:Status,'Fulltime','Parttime','Retired','Consultant')
Scr:Message = 'All Benefits' !Full timer
Scr:Message = 'Holidays Only' !Part timer
Scr:Message = 'Medical/Dental Only' !Retired
Scr:Message = 'No Benefits' !Consultant

END

See Also:

CHOOSE

13 – Built-In Procedures 741

INRANGE (check number within range)

 INRANGE(expression,low,high)

INRANGE Return number in valid range.

expression A numeric constant, variable, or expression.

low A numeric constant, variable, or expression of the lower boundary of the range.

high A numeric constant, variable, or expression of the upper boundary of the range.

The INRANGE procedure compares a numeric expression to an inclusive range of numbers. If
the value of the expression is within the range, the procedure returns the value 1 for "true." If the
expression is greater than the high parameter, or less than the low parameter, the procedure
returns a zero for "false."

Return Data Type: LONG

Example:

IF INRANGE(Date % 7,1,5) !If this is a week day
DO WeekdayRate !use the weekday rate

ELSE !Otherwise
DO WeekendRate !use the weekend rate

END

Language Reference Manual 742

INSTANCE (return variable's thread instance address)

 INSTANCE(variable,threadno)

INSTANCE Returns the address of a variable or entity’s thread instance.
Variable Label of a variable, field, FILE, KEY or QUEUE or reference variable.
threadno A numeric constant, variable, or expression that can be evaluated as a SIGNED

integer.

The INSTANCE procedure evaluates the condition of the variable parameter and its thread
number referenced by the threadno parameter and returns the following results:

If the value of threadno is not zero(0), and the thread referenced by threadno is not started (or an
instance of variable is not allocated for the thread referenced by threadno), INSTANCE returns
zero(0). Otherwise, INSTANCE returns the address of the variable instance allocated for the
active thread referenced by threadno.

If the variable parameter is not a threaded variable or entity, or the threaded variable or entity is
allocated for a thread other than one referenced by the threadno, INSTANCE returns the
ADDRESS (variable).

If the threadno parameter is set to zero(0), INSTANCE returns the address of the variable that is
assigned by the program loader. This is also known as the variables’ thread independent ID.

INSTANCE can be used instead of the ADDRESS() statement when ADDRESS() is not valid or
available (e.g. FILE and QUEUE structures). ADDRESS(QUEUE) is a legal call, but it returns the
address of the queue’s internal buffer. On the other hand, INSTANCE(QUEUE,THREAD())
returns the address of the queue’s internal structure.

13 – Built-In Procedures 743

For example, given the following QUEUE declarations:
SomeQueue QUEUE
...

END
QueueRef &QUEUE

The following assignment is correct:
QueueRef &= INSTANCE (SomeQueue, Somethread)

while the assignment shown below is not correct:
QueueRef &= ADDRESS (SomeQueue)

and sets the QueueRef variable to the wrong value.

INSTANCE is also valuable when you need the thread independent ID of the variable.

Return Data Type: LONG

Example:

addressvar = INSTANCE(SalesFile,THREAD())
!return address of SalesFile entity on active thread

addressvar = INSTANCE(GLO:LoginID, 0)
!get the thread independent ID of a global threaded var

Language Reference Manual 744

INSTRING (return substring position)

 INSTRING(substring,string [,step] [,start])

INSTRING Searches for a substring in a string.

substring A string constant, variable, or expression that contains the string for which to
search. You should CLIP a variable substring so INSTRING will not look for a
match that contains the trailing spaces in the variable.

string A string constant, or the label of the STRING, CSTRING, or PSTRING variable to
be searched.

step A numeric constant, variable, or expression which specifies the step length of the
search. A step of 1 will search for the substring beginning at every character in
the string, a step of 2 starts at every other character, and so on. A negative step
value will search from right to left within the string. If step is omitted, the step
length defaults to the length of the substring.

start A numeric constant, variable, or expression which specifies where to begin the
search of the string. If omitted, the search starts at the first character position.

The INSTRING procedure steps through a string, searching for the occurrence of a substring. If
the substring is found, the procedure returns the step number on which the substring was found.
If the substring is not found in the string, INSTRING returns zero.

INSTRING starts to search for substring from the start position in the string and moves forward
with step until the substring is found, or the unchecked tail of the string is less than length of the
substring. In the latter case, INSTRING returns zero. If the substring is found, the result is equal
to the number of steps from the origin of the string to the found position. If the value of step is not
equal to 1, the result is rounded up to the whole number of steps as follows:

INT ((found position - 1) / step) + 1

Return Data Type: UNSIGNED

Example:
INSTRING('DEF','ABCDEFGHIJ',1,1)) !returns 4
INSTRING('DEF','ABCDEFGHIJ',1,2)) !returns 4
INSTRING('DEF','ABCDEFGHIJ',1,3)) !returns 4
INSTRING('DEF','ABCDEFGHIJ',1,4)) !returns 4
INSTRING('DEF','ABCDEFGHIJ',1,5)) !returns 0

INSTRING('DEF','ABCDEFGHIJ',2,1)) !returns 0
INSTRING('DEF','ABCDEFGHIJ',2,2)) !returns 2
INSTRING('DEF','ABCDEFGHIJ',3,1)) !returns 2

13 – Built-In Procedures 745

!Extract extension from file spec:
Extension = SUB(FileSpec,INSTRING('.',FileSpec) + 1,3)

IF INSTRING(CLIP(Search),Cus:Notes,1,1) !If search variable found
Scr:Message = 'Found' !display message

END

See Also:

SUB, STRING, CSTRING, PSTRING, String Slicing

Language Reference Manual 746

INT (truncate fraction)
 INT(expression)

INT Return integer.

expression A numeric constant, variable, or expression.

The INT procedure returns the integer portion of a numeric expression. No rounding is performed,
and the sign remains unchanged.

Return Data Type: REAL or DECIMAL

Example:
!INT(8.5) returns 8
!INT(-5.9) returns -5

x = INT(y) !Return integer portion of y variable contents

See Also:

BCD Operations and Procedures

ROUND

13 – Built-In Procedures 747

ISALPHA (return alphabetic character)

 ISALPHA(string)

ISALPHA Returns whether the string passed to it contains an alphabetic character.

string The label of the character string to test. If the string contains more than one
character, only the first character is tested.

The ISALPHA procedure returns TRUE if the string passed to it is alphabetic (an upper or lower
case letter) and false otherwise. This is independent of the language and collation sequence. This
procedure requires that CLACASE has been set in the application's environment file or through
the LOCALE statement.

Return Data Type: LONG

Example:
SomeString STRING(1)
CODE
SomeString = 'A' !ISALPHA returns true
IF ISALPHA(SomeString)
X#= MESSAGE('Alpha string')

END
SomeString = '1' !ISALPHA returns false
IF ISALPHA(SomeString)
X#= MESSAGE('Alpha string')

ELSE
X#= MESSAGE('Not Alpha string')

END

See Also:

ISUPPER

ISLOWER

LOCALE

Environment Files

Language Reference Manual 748

ISLOWER (return lower case character)

 ISLOWER(string)

ISLOWER Returns whether the string passed to it contains a lower case alphabetic
character.

string The label of the string to test. If the string contains more than one character, only
the first character is tested.

The ISLOWER procedure returns TRUE if the string passed to it is a lower case letter and false
otherwise. This is independent of the language and collation sequence. This procedure requires
that CLACASE has been set in the application's environment file or through the LOCALE
statement.

Return Data Type: LONG

Example:
SomeString STRING(1)
CODE
SomeString = 'a' !ISLOWER returns true
IF ISLOWER(SomeString)
X#= MESSAGE('Lower case string')

END
SomeString = 'A' !ISLOWER returns false
IF ISLOWER(SomeString)
X#= MESSAGE('Lower case string')

ELSE
X#= MESSAGE('Not lower case string')

END

See Also:

ISUPPER

ISALPHA

LOCALE

Environment Files

13 – Built-In Procedures 749

ISSTRING (return field string type or not)

 ISSTRING(field)

ISSTRING Returns true if the field is a STRING, CSTRING, or PSTRING data type.

field The label of a field.

The ISSTRING statement returns true if the field is a STRING, CSTRING, or PSTRING data type.

Return Data Type: SIGNED

Example:
MyGroup GROUP
F1 LONG !Field number 1
F2 SHORT !Field number 2
F3 STRING(30) !Field number 3
InGroup GROUP !Field number 3
F1 LONG !Field number 4
F2 SHORT !Field number 5
F3 STRING(30) !Field number 6

END
END

Flag LONG
CODE
Flag = ISSTRING(MyGroup.F1) !returns FALSE

Flag = ISSTRING(MyGroup.F3) !returns TRUE

See Also:

WHAT

WHERE

Language Reference Manual 750

ISUPPER (return upper case character)

 ISUPPER(string)

ISUPPER Returns whether the string passed to it contains an upper case alphabetic
character.

string The label of the string to test. If the string contains more than one character, only
the first character is tested.

The ISUPPER procedure returns TRUE if the string passed to it is an upper case letter and false
otherwise. This is independent of the language and collation sequence. This procedure requires
that CLACASE has been set in the application's environment file or through the LOCALE
statement.

Return Data Type: LONG

Example:
SomeString STRING(1)
CODE
SomeString = 'A' !ISUPPER returns true
IF ISUPPER(SomeString)
X#= MESSAGE('Upper case string')

END
SomeString = 'a' !ISUPPER returns false
IF ISUPPER(SomeString)
X#= MESSAGE('Upper case string')

ELSE
X#= MESSAGE('Not upper case string')

END

See Also:

ISLOWER

ISALPHA

LOCALE

Environment Files

13 – Built-In Procedures 751

KEYBOARD (return keystroke waiting)

 KEYBOARD()

The KEYBOARD procedure returns the keycode of the first keystroke in the keyboard buffer. It is
used to determine if there are keystrokes waiting to be processed by an ASK or ACCEPT
statement.

Return Data Type: UNSIGNED

Example:
LOOP UNTIL KEYBOARD() !Wait for any key
ASK
IF KEYCODE() = EscKey THEN BREAK END !On esc key, break the loop

END

See Also:

ASK

ACCEPT

KEYCODE

Keycode Equate Labels

Language Reference Manual 752

KEYCHAR (return ASCII code)

 KEYCHAR()

The KEYCHAR procedure returns the ASCII value of the last key pressed at the time the event
occurred.

Return Data Type: UNSIGNED

Example:
ACCEPT !Wait for an event
CASE KEYCHAR() !Process the last keystroke
OF VAL('A') TO VAL('Z') ! upper case?
DO ProcessUpper

OF VAL('a') TO VAL('z') ! lower case?
DO ProcessLower

END
END

See Also:

SETKEYCHAR

ASK

ACCEPT

SELECT

VAL

CHR

13 – Built-In Procedures 753

KEYCODE (return last keycode)

 KEYCODE()

The KEYCODE procedure returns the keycode of the last key pressed at the time the event
occurred, or the last keycode value set by the SETKEYCODE procedure.

Return Data Type: UNSIGNED

Example:
ACCEPT !Loop on the display
CASE KEYCODE() !Process the keystroke
OF UpKey !up arrow
DO GetRecordUp !get a record

OF DownKey !down arrow
DO GetRecordDn !get a record

END
END

See Also:

ASK

ACCEPT

KEYBOARD

SETKEYCODE

KEYSTATE

Keycode Equate Labels

Language Reference Manual 754

KEYSTATE (return keyboard status)

 KEYSTATE()

The KEYSTATE procedure returns a bitmap containing the status of the SHIFT, CTRL, ALT, any
extended key, CAPS LOCK, NUM LOCK, SCROLL LOCK, and INSERT keys for the last
KEYCODE procedure return value. The bitmap is contained in the high-order byte of the returned
SHORT.

x insert key (8000h)
. x scroll lock (4000h)
. . x num lock (2000h)
. . . x caps lock (1000h)
. . . . x . . . extended (0800h)
. x . . alt (0400h)
. x . ctrl (0200h)
. x shift (0100h)

Return Data Type: UNSIGNED

Example:
ACCEPT !Loop on the display
CASE KEYCODE() !Process the keystroke
OF EnterKey !User pressed Enter
IF BAND(KEYSTATE(),0800h) !Detect enter on numeric keypad
PRESSKEY(TabKey) !press tab for the user

END
END

END

See Also:

KEYCODE

BAND

13 – Built-In Procedures 755

LASTFIELD (return last window control)

 LASTFIELD()

The LASTFIELD procedure returns the highest field number in the currently active window (or
REPORT) as specified by SETTARGET. This does not include any controls in a TOOLBAR or
MENUBAR or any controls created after the window is opened.

Return Data Type: SIGNED

Example:
DISABLE(FIRSTFIELD(),LASTFIELD()) !Dim all control fields

See Also:

FIRSTFIELD

Language Reference Manual 756

LEFT (return left justified string)

 LEFT(string [,length])

LEFT Left justifies a string.

string A string constant, variable, or expression.

length A numeric constant, variable, or expression for the length of the return string. If
omitted, length defaults to the length of the string.

The LEFT procedure returns a left justified string. Leading spaces are removed from the string.

Return Data Type: STRING

Example:
!LEFT(' ABC') returns 'ABC '

CompanyName = LEFT(CompanyName) !Left justify the company name

See Also:

RIGHT

CENTER

13 – Built-In Procedures 757

LEN (return length of string)

 LEN(string)

LEN Returns length of a string.

string A string constant, variable, or expression.

The LEN procedure returns the length of a string. If the string parameter is the label of a STRING
variable, the procedure will return the declared length of the variable. If the string parameter is the
label of a CSTRING or PSTRING variable, the procedure will return the length of the contents of
the variable. Numeric variables are automatically converted to STRING intermediate values.

Return Data Type: UNSIGNED

Example:
IF LEN(CLIP(Title) & ' ' & CLIP(First) & ' ' & CLIP(Last))>30 !If full name won't fit
Rpt:Name = CLIP(Title) & ' ' & SUB(First,1,1) & '. ' & Last !use first initial
ELSE
Rpt:Name = CLIP(Title) & ' ' & CLIP(First) & ' ' & CLIP(Last)!else use full name

END

Rpt:Title = CENTER(Cus:Name,LEN(Rpt:Title)) !Center the name in the title

Language Reference Manual 758

LINE (draw a straight line)
 LINE(x ,y ,width ,height [,attributelist])

LINE Draws a straight line on the current window or report.

x An integer expression specifying the horizontal position of the starting point.

y An integer expression specifying the vertical position of the starting point.

width An integer expression specifying the width. This may be a negative number.

height An integer expression specifying the height. This may be a negative number.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The LINE procedure places a straight line on the current window or report. The starting position,
slope, and length of the line are specified by x, y, width, and height parameters. The x and y
parameters specify the starting point of the line. The width and height parameters specify the
horizontal and vertical distance to the end point of the line. If these are both positive numbers, the
line slopes to the right and down from its starting point. If the width parameter is negative, the line
slopes left; if the height parameter is negative, the line slopes left. If either the width or height
parameter is zero, the line is horizontal or vertical.

Width Height Result
positive positive right and down from start point
negative positive left and down from start point
positive negative right and up from start point
negative negative left and up from start point
zero positive vertical, down from start point
zero negative vertical, up from start point
positive zero horizontal, right from start point
negative zero horizontal, left from start point

The line color is the current pen color set by SETPENCOLOR; the default color is the Windows
system color for window text. The width is the current width set by SETPENWIDTH; the default
width is one pixel. The line's style is the current pen style set by SETPENSTYLE; the default style
is a solid line.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
LINE(100,50,100,50) !Draw line

See Also: Current Target, SETPENCOLOR, SETPENWIDTH, SETPENSTYLE

13 – Built-In Procedures 759

LOCALE (load environment file)

 LOCALE(| file |)
 | setting, value |

LOCALE Allows the user to load a specific environment file (.ENV) at run-time and also to
set individual environment settings.

file A string constant or variable containing the name (including extension) of the
environment file (.ENV) to load, or the keyword WINDOWS. This may be a fully-
qualified DOS pathname.

setting A string constant or variable containing the name of the environment variable to
set. Valid choices are listed under the Environment Files section.

value A string constant or variable containing the environment variable setting.

The LOCALE procedure allows the user to load a specific environment file (.ENV) at run-time and
also to set individual environment settings. This allows an application to load another file to
override the default appname.ENV file, or to specify individual environment file settings when no
environment file exists.

The WINDOWS keyword as the file parameter specifies use of Windows' default values for
CLACOLSEQ, CLACASE and CLAAMPM. When specifying individual settings, the value
parameter does not require double quotes around each individual item in the value string, unlike
the syntax required in an .ENV file.

Errors Posted:
02 File Not Found
05 Access Denied

Example:
LOCALE('MY.ENV') !Load an environment file
LOCALE('WINDOWS') !Set default CLACOLSEQ, CLACASE and CLAAMPM
LOCALE('CLABUTTON','OK,&Si,&No,&Abortar,&Ignora,&Volveratratar,Cancelar,&Ayuda')

!Set CLABUTTON to Spanish
LOCALE('CLACOLSEQ',|
'AÄÅÆaàáâäåæBbCÇcçDdEÉeèéêëFfGgHhIiìíîïJjKkLlMmNÑnñOÖoòóôöPpQqRrSsßTtUÜuùúûüVvWwXxYyZzÿ')

!Set the collating sequence
LOCALE('CLACASE','ÄÅÆÇÉÑÖÜ,äåæçéñòü') !Set upper/lower case pairs
LOCALE('CLAMSG2','No File Found') !Set ERROR() message for ERRORCODE()=2

See Also: Environment Files, OEM

Language Reference Manual 760

LOCK (exclusive file access)
 LOCK(file [,seconds])

LOCK Locks a data file.

file The label of a FILE opened for shared access.

seconds A numeric constant or variable which specifies the maximum wait time in
seconds.

The LOCK statement locks a file against access by other workstations in a multi-user
environment. Generally, this excludes other users from writing to or reading from the file. The file
driver may or may not treat separate execution threads within a single program as another
workstation or not.

LOCK(file)
Attempts to lock the file until it is successful. If it is already locked by another
workstation, LOCK will wait until the other workstation unlocks it.

LOCK(file,seconds)
Posts the "File Is Already Locked" error after unsuccessfully trying to lock the file
for the specified number of seconds.

The most common problem to avoid when locking files is referred to as "deadly embrace." This
condition occurs when two workstations attempt to lock the same set of files in two different
orders and both are using the LOCK(file) form of LOCK. One workstation has already locked a file
that the other is trying to LOCK, and vice versa. This problem may be avoided by using the
LOCK(file,seconds) form of LOCK, and always locking files in the same order.

Errors Posted: 32 File Is Already Locked

Example:
LOOP !Loop to avoid "deadly embrace"
LOCK(Master,1) !Lock the master file, try 1 second
IF ERRORCODE() = 32 !If someone else has it
CYCLE !try again

END
LOCK(Detail,1) !Lock the detail file, try 1 second
IF ERRORCODE() = 32 !If someone else has it
UNLOCK(Master) !unlock the locked file
CYCLE !try again

END
BREAK !Break loop when both files are locked

END

See Also: UNLOCK, HOLD, LOGOUT

13 – Built-In Procedures 761

LOCKTHREAD (re-lock the current execution thread)

 LOCKTHREAD

The LOCKTHREAD statement re-locks the current execution thread that has been unlocked with
the UNLOCKTHREAD statement.

The THREADLOCKED() procedure determines whether the thread has been unlocked or not.

Example:
UNLOCKTHREAD !Unlock the thread
MyLibraryCodeWithMessageLoop !Call the code that has its own message loop
LOCKTHREAD !Re-lock the thread

See Also:

ACCEPT

UNLOCKTHREAD

THREADLOCKED

Language Reference Manual 762

LOG10 (return base 10 logarithm)

 LOG10(expression)

LOG10 Returns base 10 logarithm.

expression A numeric constant, variable, or expression. If the value of the expression is zero
or less, the return value will be zero. The base 10 logarithm is undefined for
values less than or equal to zero.

The LOG10 (pronounced "log ten") procedure returns the base 10 logarithm of a numeric
expression. The base 10 logarithm of a value is the power to which 10 must be raised to equal
that value.

Return Data Type: REAL

Example:
!LOG10(10) returns 1
!LOG10(1) returns 0

LogStore = LOG10(Var) !Store the log 10 of var

See Also:

LOGE

13 – Built-In Procedures 763

LOGE (return natural logarithm)

 LOGE(expression)

LOGE Returns the natural logarithm.

expression A numeric constant, variable, or expression. If the value of the expression is less
than zero, the return value is zero. The natural logarithm is undefined for values
less than zero.

The LOGE (pronounced "log-e") procedure returns the natural logarithm of a numeric expression.
The natural logarithm of a value is the power to which e must be raised to equal that value. The
value of e used internally by the Clarion library for these calculations is 2.71828182846.

Return Data Type: REAL

Example:
!LOGE(2.71828182846) returns 1
!LOGE(1) returns 0

LogVal = LOGE(Val) !Get the natural log of Val

See Also:

LOG10

Language Reference Manual 764

LOGOUT (begin transaction)

 LOGOUT(timeout [, file, ... , file])

LOGOUT Initiates transaction processing.

timeout A numeric constant or variable specifying the number of seconds to attempt to
begin the transaction for a file before aborting the transaction and posting an
error.

file The label of a FILE declaration. There may be multiple file parameters, separated
by commas, in the parameter list (up to 100). If no file is specified, all files in the
transaction must have been previously named using PROP:Logout.

The LOGOUT statement initiates transaction processing for a specified set of files. All files in the
transaction set must have the same file driver and must already be open.

LOGOUT informs the file driver that a transaction is beginning. The file driver then performs the
actions necessary to that file system to initiate transaction processing for the specified set of files.
For example, if the file system requires that the files be locked for transaction processing,
LOGOUT automatically locks the files.

Only one LOGOUT transaction may be active at a time. A second LOGOUT statement without a
prior COMMIT or ROLLBACK generates errorcode 56.

Errors Posted: 32 File Is Already Locked
37 File Not Open
48 Unable to Log Transaction
56 LOGOUT Already Active
80 Function Not Supported

13 – Built-In Procedures 765

Example:
LOGOUT(1,OrderHeader,OrderDetail) !Begin Transaction
DO ErrHandler !always check for errors
ADD(OrderHeader) !Add Parent record
DO ErrHandler !always check for errors
LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) !Get one from the QUEUE
DO ErrHandler !always check for errors
Det:Record = DetailQue !Assign to record buffer
ADD(OrderDetail) !and add it to the file
DO ErrHandler !always check for errors

END
COMMIT !Terminate successful transaction
ASSERT(~ERRORCODE())

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
Err" = ERROR() !Save the error message
ROLLBACK !Rollback the aborted transaction
ASSERT(~ERRORCODE())
BEEP !Alert the user
MESSAGE('Transaction Error - ' & Err")
RETURN !and get out

Language Reference Manual 766

LONGPATH (return long filename)
 LONGPATH([shortfilename])

LONGPATH Returns the fully-qualified long filename for a given short filename.

shortfilename A string constant, variable, or expression that specifies the DOS standard
filename to convert. This may include the complete path. If omitted, LONGPATH
returns the current drive and directory in long name form.

The LONGPATH procedure returns the long filename for a given short filename. The file named
in the shortfilename parameter must already exist on disk. LONGPATH can now be used in
expressions evaluated by the EVALUATE statements in runtime applications and in the
templates.

Return Data Type: STRING

Example:
MyLongFile STRING(260)
CODE
MyLongFile = LONGPATH('c:\progra~1\mytext~1.txt')
!returns: c:\program files\my text file.txt

See Also:

SHORTPATH

PATH

DIRECTORY

13 – Built-In Procedures 767

LOWER (return lower case)

 LOWER(string)

LOWER Converts a string to all lower case.

string A string constant, variable, or expression for the string to be converted.

The LOWER procedure returns a string with all letters converted to lower case.

Return Data Type: STRING

Example:
!LOWER('ABC') returns 'abc'

Name = SUB(Name,1,1) & LOWER(SUB(Name,2,19))
!Make the rest of the name lower case

See Also:

UPPER

ISUPPER

ISLOWER

Language Reference Manual 768

MATCH (return matching values)

 MATCH(first, second [, mode])

MATCH Returns true or false based on a comparison of the first two parameters passed.

first A string containing data to compare against the second parameter. String
constants should be enclosed in single quotes.

second A string containing data to compare against the first parameter. String constants
should be enclosed in single quotes.

mode An integer constant or equate which specifies the method of comparison. If
omitted, a wild card comparison is the default.

The MATCH procedure returns true or false as to whether the first and second parameters match
according to the comparison mode specified. The following mode value EQUATEs are listed in
EQUATES.CLW:

Match:Simple
A straight-forward equivalence comparison (first = second), which is most useful
when combined with Match:NoCase

Match:Wild (default)
A wild card match with the second parameter containing the pattern that can
contain asterisk (*) to match 0 or more of any character, and question mark (?) to
match any single character.

Match:Regular
A regular expression match where the second parameter contains the regular
expression. Repeated usage with the same regular expression value is optimized
(to avoid recompiling the expresison).

Match:Soundex
A standard soundex comparison of the two strings, returning true if they have the
same soundex value.

Match:NoCase
Add to the mode for a case insensitive match (except Soundex).

13 – Built-In Procedures 769

Regular Expression Operators

Regular expressions are used to describe patterns in text. The following characters are regular
expression operators (or metacharacters) used to increase the power and versatility of regular
expressions.

^ Caret matches the beginning of the string or the beginning of a line within the
string. For example:

^@chapter

 matches the "@chapter" at the beginning of a string.

$ Dollar sign is similar to the caret, but it matches only at the end of a string or the
end of a line within the string. For example:

p$

 matches a record that ends with a p.

. Period matches any single character except a new line. For example:
.P

 matches any single character followed by a P in a string. Using concatenation we
can make regular expressions like 'U.A', which matches any three-character
sequence that begins with 'U' and ends with 'A'.

[...] This is called a character set. It matches any one of the characters that are
enclosed in the square brackets. For example:

[MVX]

 matches any one of the characters M, V, or X in a string. Ranges of characters
are indicated by using a hyphen between the beginning and ending characters,
and enclosing the whole thing in brackets. For example:

[0-9]

 matches any digit. To match '-', write it as '---', which is a range containing only '-'.
You may also give '-' as the first or last character in the set. To match '^', put it
anywhere except as the first character of a set. To match a ']', make it the first
character in the set. For example:

[]d^]

 matches either ']', 'd' or '^'.

[^ ...]
This is a complemented character set. The first character after the [must be a ^.
It matches any characters except those in the square brackets (or newline). For
example:

[^0-9]

 matches any character that is not a digit.

| Vertical bar is the alternation operator and it is used to specify alternatives. For
example:

Language Reference Manual 770

^P|[0-9]

 matches any string that matches either ^P or [0-9]. This means it matches any
string that contains a digit or starts with P. The alternation applies to the largest
possible regexps on either side.

 No spaces are allowed between strings and the alternation operator.

{...}
Brackets are used for grouping in regular expressions as in arithmetic. They can
be used to concatenate regular expressions containing the alternation operator, |.

* Asterisk means that the preceding regular expression is to be repeated as many
times as possible to find a match. For example:

ph*

 applies the * symbol to the preceding h and looks for matches to one p followed
by any number of h's. This will also match just p if no h's are present. The *
repeats the smallest possible preceding expression (use parentheses if you wish
to repeat a larger expression). It finds as many repetitions as possible. For
example:

(c[ad][ad]*r x)

 matches a string of the form (car x), (cdr x), (cadr x), and so on.

+ Plus sign is similar to *, but the preceding expression must be matched at least
once. This means that:

wh+y

 would match "why" and "whhy" but not "wy," whereas wh*y would match all three
of these strings. This is a simpler way of writing the last * example:

(c[ad]+r x)

? Question mark is similar to *, but the preceding expression can be matched once
or not at all. For example:

fe?d

 will match fed and fd, but nothing else.

\ Backslash is used to suppress the special meaning of a character when
matching. For example:

\$

 matches the character $.

13 – Built-In Procedures 771

In regular expressions, the *, +, and ? operators have the highest precedence, followed by
concatenation, and finally by |.

There is now extended support for the MATCH function when used with the FILTER attribute of
any VIEW structure that accesses SQL and ODBC back ends. For more detailed information, see
the Use of MATCH with PROP:Filter and SQL Databases help topic.

Return Data Type: LONG

Example:
A STRING('Richard')
B STRING('RICHARD')
C STRING('R*')
D STRING('[A-D]')
ListHave1 STRING('IN,OH,KY,TN,PA')
ListHave2 STRING('WI,MN,IA,SD,ND')
StatesWanted STRING('NJ|NY|PA|DE')
RV BTYE !Return Value

CODE
RV = MATCH(A,B,Match:Simple+Match:NoCase) !Returns true - case insensitive match
RV = MATCH(A,B,Match:Soundex) !Returns true - same soundex values
RV = MATCH(A,C) !Returns true - wildcard match

RV=MATCH('Fireworks on the fourth', '{{4|four}th', Match:Regular+Match:NoCase)
!returns True
RV=MATCH('July 4th fireworks', '{{4|four}th',Match:Regular+Match:NoCase)

!returns True

IF MATCH(EmployeeName,'^Th?om{{as|my}?{{ }+', Match:Regular+Match:NoCase)
Message('Welcome Tom Thom Thomas or Tommy')

END

!Regular expression for testing an email address as valid.
!1. The name portion can contain the characters: A-Z 0-9 -._
!2. Then must have an @
!3. Then repeating groups containing: A-Z 0-9 -._
!4. A period and 2, 3, 4 letters

RV = MATCH(UPPER(CLIP(eMailAddr)),|
'^[-A-Z0-9._]+@{{[-A-Z0-9._]+.}+[A-Z][A-Z][A-Z]?[A-Z]?$', Match:Regular)

See Also: STRPOS

Language Reference Manual 772

MAXIMUM (return maximum subscript value)

 MAXIMUM(variable,subscript)

MAXIMUM Returns maximum subscript value.

variable The label of a variable declared with a DIM attribute.

subscript A numeric constant for the subscript number. The subscript identifies which array
dimension is passed to the procedure.

The MAXIMUM procedure returns the maximum subscript value for an explicitly dimensioned
variable. MAXIMUM does not operate on the implicit array dimension of STRING, CSTRING, or
PSTRING variables. This is usually used to determine the size of an array passed as a parameter
to a procedure or procedure.

Return Data Type: LONG

Example:
Array BYTE,DIM(10,12) !Define a two-dimensional array

!For the above Array: MAXIMUM(Array,1) returns 10
! MAXIMUM(Array,2) returns 12

CODE
LOOP X# = 1 TO MAXIMUM(Array,1) !Loop until end of 1st dimension
LOOP Y# = 1 TO MAXIMUM(Array,2) !Loop until end of 2nd dimension
Array[X#,Y#] = 27 !Initialize each element to default

END
END

See Also:

DIM

Prototype Parameter Lists (Passing Arrays)

13 – Built-In Procedures 773

MESSAGE (return message box response)

 MESSAGE(text [,caption] [,icon] [,buttons] [,default] [,style])

MESSAGE Displays a message dialog box and returns the button the user pressed.

text A string constant or variable containing the text to display in the message box. A
vertical bar (|) in the text indicates a line break for multi-line messages. Including
'<9>' in the text inserts a tab for text alignment.

caption The dialog box title. If omitted, the dialog has no title.

icon A string constant or variable naming the .ICO file to display, or an EQUATE for
one of Windows' standard icons (these EQUATEs are listed in EQUATES.CLW).
If omitted, no icon is displayed on the dialog box.

buttons Either an integer expression which indicates which Windows standard buttons
(may indicate multiple buttons) to place on the dialog box, or a string expression
containing a vertical bar (|) delimited list of the text for up to 8 buttons. If omitted,
the dialog displays an Ok button.

default An integer constant, variable, EQUATE, or expression which indicates the default
button on the dialog box. If omitted, the first button is the default.

style The style parameter is a bitmap integer constant, variable, EQUATE, or
expression that specifies the type of modal behavior, and whether or not the text
of the message can be copied to the Windows Clipboard.

The actual values for the style parameter are:
Dec Bin Type

Modal Type:
0 0b Application Modal
1 1b System Modal

Copy Text:
0 00b message text is displayed as a static text without copy capability
2 10b message text is displayed as a read only multi-line edit control with the

possibility to select all or any part of the text and copy it to the
clipboard

The MESSAGE procedure displays a Windows-standard message box, typically requiring only a
Yes or No response, or no specific response at all. You can specify the font for MESSAGE by
setting SYSTEM{PROP:FONT}.

Language Reference Manual 774

The EQUATES.CLW file contains symbolic constants for the icon, buttons, and default
parameters. The following list is all the EQUATEs available for use in the buttons and default
parameters for use when the buttons parameter is not a string:

BUTTON:OK
BUTTON:YES
BUTTON:NO
BUTTON:ABORT
BUTTON:RETRY
BUTTON:IGNORE
BUTTON:CANCEL
BUTTON:HELP

When buttons is a string, the default must be an integer in the range of 1 to the number of buttons
defined in the buttons text (a maximum of 8).

The MESSAGE procedure returns the number of the button the user presses to exit the dialog
box. The button number returned is the constant value that each of these EQUATEs represents
(when the buttons parameter is an integer), and an integer in the range of 1 to the number of
buttons defined in the buttons text (up to 8) when buttons contains string text.

The following list shows the most common EQUATEs used in the icon parameter (there are more
listed in EQUATES.CLW):

ICON:None
ICON:Application
ICON:Hand
ICON:Question
ICON:Exclamation
ICON:Asterisk
ICON:Pick
ICON:Clarion

The style parameter determines whether the message window is Application Modal or System
Modal, and whether or not the message text can be copied to the Windows Clipboard. An
Application Modal window must be closed before the user is allowed to do anything else in the
application, but does not prevent the user from switching to another Windows application. A
System Modal window must be closed before the user is allowed to do anything else in Windows.

The following list shows the EQUATEs used in the style parameter:

MSGMODE:SYSMODAL
MSGMODE:CANCOPY

Return Data Type: UNSIGNED

13 – Built-In Procedures 775

Example:
!A ? icon with Yes and No buttons, the default button is No:
CASE MESSAGE('Quit?','Editor',ICON:Question,BUTTON:Yes+BUTTON:No,BUTTON:No,1)
OF BUTTON:No !the window is System Modal,no copy
ability
CYCLE

OF BUTTON:Yes
MESSAGE('Goodbye|So Long|Sayonara') !A 3-line message with only an Ok button.
RETURN

END

!Yes, No, and Maybe buttons, default is Maybe, Application Modal, with copy ability
CASE MESSAGE('Quit?','Editor',ICON:Question,'&Yes|&No|&Maybe',3,2)
OF 1 !Yes button
RETURN

OF 2 !No button
CYCLE

OF 3 !Maybe button
MESSAGE('You have a 50-50 change of staying or going')
IF CLOCK() % 2 !Is the current time an odd or even hundredth of a s
RETURN

ELSE
CYCLE

END
END

Language Reference Manual 776

MONTH (return month of date)

 MONTH(date)

MONTH Returns month in year.

date A numeric constant, variable, expression, or the label of a STRING, CSTRING,
or PSTRING variable declared with a date picture token. The date must be a
standard date. A variable declared with a date picture token is automatically
converted to a standard date intermediate value.

The MONTH procedure returns the month of the year (1 to 12) for a given standard date.

Return Data Type: LONG

Example:
PayMonth = MONTH(DueDate) !Get the month from the date

See Also:

Standard Date

DAY

YEAR

TODAY

DATE

13 – Built-In Procedures 777

MOUSEX (return mouse horizontal position)

 MOUSEX()

The MOUSEX procedure returns a numeric value corresponding to the current horizontal position
of the mouse cursor at the time of the event. The position is relative to the origin of that window.

The default return value is in dialog units, unless modified by the PROP:Pixels property. If the
PROP:Pixels property is set to TRUE (1), the return value of MOUSEX is expressed in pixels.

Return Data Type: SIGNED

Example:
SaveMouseX = MOUSEX() !Save mouse position

See Also:

MOUSEY

Language Reference Manual 778

MOUSEY (return mouse vertical position)

 MOUSEY()

The MOUSEY procedure returns a numeric value corresponding to the current vertical position of
the mouse cursor at the time of the event. The position is relative to the origin of that window.

The default return value is in dialog units, unless modified by the PROP:Pixels property. If the
PROP:Pixels property is set to TRUE (1), the return value of MOUSEY is expressed in pixels.

Return Data Type: SIGNED

Example:
SaveMouseY = MOUSEY() !Save mouse position

See Also:

MOUSEX

13 – Built-In Procedures 779

NAME (return file name)

 NAME(label)

NAME Returns name of a file.

label The label of a FILE declaration.

The NAME procedure returns a string containing the operating system device name for the
structure identified by the label. For FILE structures, if the file is OPEN, the complete DOS file
specification (drive, path, name, and extension) is returned. If the FILE is closed, the contents of
the NAME attribute on the FILE are returned. If there is no NAME attribute, the FILE label is
returned.

Return Data Type: STRING

Example:
OpenFile = NAME(Customer) !Save the name of the open file

Language Reference Manual 780

NEXT (read next record in sequence)
 NEXT(entity)

NEXT Reads the next record in sequence from a FILE or VIEW.

entity The label of a FILE or VIEW declaration.

NEXT reads the next record in sequence from a FILE or VIEW. The SET (or RESET) statement
determines the sequence in which records are read. The first NEXT following a SET reads the
record at the position specified by the SET statement. Subsequent NEXT statements read
subsequent records in that sequence. The sequence is not affected by any GET, REGET, ADD,
PUT, or DELETE. Executing NEXT without a preceding SET, or attempting to read past the end
of file posts the "Record Not Available" error.

FILE Usage

NEXT reads the next record in sequence from the data FILE and places it in the RECORD
structure data buffer.

VIEW Usage

NEXT reads the next record(s) in sequence from a VIEW and places the appropriate fields in the
VIEW structure component files' data buffer(s). If the VIEW contains JOIN structures, NEXT
retrieves the appropriate next set of related records.

Either the last SET statement issued on the VIEW's primary file before the OPEN(view)
statement, or the SET(view) statement issued after the OPEN(view) determines the sequence in
which records are read.

Errors Posted: 33 Record Not Available
37 File Not Open
43 Record Is Already Held

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
END
END
END

13 – Built-In Procedures 781

CODE
OPEN(Customer,22h)
SET(Cus:NameKey) !Beginning of file in keyed sequence
LOOP !Read all records through end of file
NEXT(Customer) !read a record sequentially
IF ERRORCODE() THEN BREAK. !break on end of file
DO PostTrans !call transaction posting routine

END

OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP !Read all records through end of primary file
NEXT(ViewOrder) !read a record sequentially
IF ERRORCODE() THEN BREAK. !break on end of file
DO PostTrans !call transaction posting routine

END !End loop

See Also:

SET

RESET

PREVIOUS

EOF

HOLD

WATCH

Language Reference Manual 782

NOMEMO (read file record without reading memo)

 NOMEMO(file)

NOMEMO Arms "memoless" record retrieval.

file The label of a FILE.

The NOMEMO statement arms "memoless" record retrieval for the next GET, REGET, NEXT, or
PREVIOUS statement encountered. The following GET, REGET, NEXT, or PREVIOUS gets the
record but does not get any associated MEMO or BLOB field(s) for the record. Generally, this
speeds up access to the record when the contents of the MEMO or BLOB field(s) are not needed
by the procedure.

Example:
SET(Master)
LOOP
NOMEMO(Master) !Arm "memoless" access
NEXT(Master) !Get record without memo
IF ERRORCODE() THEN BREAK.
Queue = Mst:Record !Fill memory queue
ADD(Queue)
IF ERRORCODE() THEN STOP(ERROR()).

END
DISPLAY(?ListBox) !Display the queue

See Also:

GET

NEXT

PREVIOUS

MEMO

13 – Built-In Procedures 783

NOTIFY (send safe information to a receiver thread)
 NOTIFY(notifycode, <thread>, <parameter>)

NOTIFY Sends an event and optional parameter to a receiving thread.

notifycode An unsigned integer value that indicates the notification or request code.

thread A signed integer that identifies the number of the receiver thread; if omitted or
equal to 0, the current thread is the receiver.

parameter An optional LONG value that is used as a parameter of the notification or request

The NOTIFY statement is called on the sender side. It generates the EVENT:Notify event and
places it at the front of the event queue of receiver's thread top window. Generally, the
EVENT:Notify event is a special event that can transfer up to 2 additional parameters (thread and
parameter) to the receiver.

Execution of the sender thread continues immediately. It does not wait for any response from the
receiver.

NOTIFY and NOTIFICATION are a functional replacement for the SETTARGET(,thread)
statement. They can also be used for safe transfer information between threads.

The code between SETTARGET(,thread) and a subsequent SETTARGET is executing in the
context of the specified thread but also as a part of the current thread. Hence, two threads can
execute the code in the same context. Also, related DLLs can associate their thread dependent
data with the Thread ID of the current thread. These aspects make using SETTARGET(,thread)
potentially dangerous in the new threading model.

The purpose of NOTIFY and NOTIFICATION is to provide a way to send a notification with
parameters from one thread to another. The receiver thread can then execute the request in the
correct context.

Example:
DynMenu.Construct PROCEDURE()
CODE
SELF.NofWindows = 0
NOTIFY (NOTIFY:Load, 1, ADDRESS (SELF.IDynMenu)) !Send Notify event to primary thread
RETURN

! ---

DynMenu.Destruct PROCEDURE()
CODE
NOTIFY (NOTIFY:Unload, 1, ADDRESS (SELF.IDynMenu))
RETURN

See Also: NOTIFICATION

Language Reference Manual 784

NOTIFICATION (receive information from sender thread)
 NOTIFICATION(notifycode, <thread>, <parameter>), BYTE

NOTIFICATION Receives information from a sender thread.

notifycode an UNSIGNED variable that receives a notify code value passed by the
sender with a NOTIFY statement.

thread an optional SIGNED variable that receives the number of the sender's
thread parameter.

parameter a LONG variable that receives the parameter passed by the sender with
a NOTIFY statement.

The NOTIFICATION function is used by a receiving thread. It receives the notification code,
thread number, and parameter passed by the sending thread’s NOTIFY statement.

NOTIFICATION returns FALSE (0) if the EVENT() function returns an event other than
EVENT:Notify. If EVENT:Notify is posted, NOTIFICATION returns TRUE. Because calls to
NOTIFY and NOTIFICATION are asynchronous, the sender thread can be closed already when
receiver thread accepts the EVENT:Notify event.

NOTIFY and NOTIFICATION are a functional replacement for the SETTARGET(,thread)
statement. They can also be used for safe transfer information between threads.

The code between SETTARGET(,thread) and a subsequent SETTARGET is executing in the
context of the specified thread but also as a part of the current thread. Hence, two threads can
execute the code in the same context. Also, related DLLs can associate their thread dependent
data with the Thread ID of the current thread. These aspects make using SETTARGET(,thread)
potentially dangerous in the new threading model.

The purpose of NOTIFY and NOTIFICATION is to provide a way to send a notification with
parameters from one thread to another. The receiver thread can then execute the request in the
correct context.

13 – Built-In Procedures 785

Example:
CASE EVENT()

OF EVENT:Accepted
CASE ACCEPTED()
OF ?Start

START (T1)
OF ?Load

CALL ('DLL.DLL', 'EntryPoint', 1)
ELSE

Q.Feq = ACCEPTED()
GET (Q, Q.Feq)
IF ERRORCODE() = 0 AND Q.Op <> 0

DM &= Q.ID + 0
DM.ExecuteMenu (Q.Op)

END
END

OF EVENT:Notify
!NOTIFY has sent a Notify Event. Get Code and Parameter
IF NOTIFICATION (NCode,, NParam)
DM &= NParam + 0 !Assign passed parameter to reference var

CASE Ncode !Test the Notify Code
OF NOTIFY:Load

DM.CreateMenu (Q) !Execute appropriate action
OF NOTIFY:Unload

DO DestroyMenu
UNLOAD ('DLL.DLL') !Execute appropriate action

END
END

END

See Also: NOTIFY

Language Reference Manual 786

NULL (return null file field)
 NULL(field)

NULL Determines null "value" of a field.

field The label (including prefix) of a field in a FILE structure. This may be a GROUP
or RECORD structure.

The NULL procedure returns a non-zero value (true) if the field is null, and zero (false) if the field
contains any known value (including blank or zero). If the field is a GROUP or RECORD
structure, all component fields of the GROUP or RECORD must be null for NULL to return true.
Support for null "values" in a FILE is entirely dependent upon the file driver.

Return Data Type: LONG

13 – Built-In Procedures 787

Example:
Customer FILE,DRIVER('MSSQL'),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
CSZ STRING(35)

END
END

Header FILE,DRIVER('MSSQL'),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCSZ STRING(35)

END
END

CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE() THEN BREAK.

IF NULL(Hea:ShipToName) !Check for null ship-to address
Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record
IF ERRORCODE()
CLEAR(Cus:Record)

END
Hea:ShipToName = Cus:Name ! and assign customer address
Hea:ShipToAddr = Cus:Addr ! as the ship-to address
Hea:ShipToCSZ = Cus:CSZ

END
PUT(Header) !Put Header record back

END

See Also:

SETNULL

SETNONNULL

Language Reference Manual 788

NUMERIC (return numeric string)

 NUMERIC(string)

NUMERIC Validates all numeric string.

string A string constant, variable, or expression.

The NUMERIC procedure returns the value 1 (true) if the string only contains a valid numeric
value. It returns zero (false) if the string contains any non-numeric characters. Valid numeric
characters are the digits 0 through 9, a leading minus sign, and a decimal point. DEFORMAT is
used to return unformatted numbers from a formatted string.

Return Data Type: UNSIGNED

Example:
!NUMERIC('1234.56') returns 1
!NUMERIC('1,234.56') returns 0
!NUMERIC('-1234.56') returns 1
!NUMERIC('1234.56-') returns 0

IF NOT NUMERIC(PartNumber) !If part number is not numeric
DO ChkValidPart !check for valid part number

END !End if

See Also:

DEFORMAT

13 – Built-In Procedures 789

OMITTED (return omitted parameters)
 OMITTED(position)
 (name)

OMITTED Tests for unpassed parameters.

position An integer constant or variable which specifies the ordinal parameter position to
test.

name The name of a procedure parameter.

The OMITTED procedure tests whether a parameter of a PROCEDURE was actually passed.
The return value is one (true) if the parameter in the specified position was omitted. The return
value is zero (false) if the parameter was passed. Any position past the last parameter passed is
considered omitted.

For the purpose of the OMITTED procedure, a parameter may only be omitted if its data type is
enclosed in angle brackets (< >) in the PROCEDURE prototype . Although parameters
prototyped with default values may be omitted from the procedure call, the default value is
actually passed, and the OMITTED procedure therefore returns false (0) for those parameters.

All CLASS methods have an implicit first parameter which is always passed--the CLASS name.
This means that OMITTED(1) will always return false for a CLASS method. Any actual
parameters passed to the method are numbered beginning with two (2). Therefore, to test
whether two actual parameters to a CLASS method are passed means you must test positions
two (2) and three (3).

The name of a procedure parameter can now be used in the call to the OMITTED() function.The
OMITTED function now checks that its parameter is an identifier that matches the name of any
procedure parameter it is called from. Otherwise, it treats a passed value as an expression that
returns a parameter ordinal number. The identifier passed to OMITTED is taken as is, i.e., if the
identifier is an EQUATE that names a label that happens to match the name of some procedure
parameter, the compiler does not use the equated label, but uses the EQUATE as the literal
procedure parameter.

Return Data Type: LONG

Example:
MAP

SomeProc PROCEDURE(STRING,<LONG>,<STRING>) !Procedure prototype
END

MyClass CLASS
MyMethod PROCEDURE(STRING Field1,<LONG Date>,<STRING Field3>) !Method prototype

END
CODE
SomeProc(Field1,,Field3) !For this statement:
!OMITTED(1) returns 0,OMITTED(2) returns 1,OMITTED(3) returns 0,OMITTED(4)returns 1

Language Reference Manual 790

SomeProc PROCEDURE(Field1,Date,Field3)
CODE
IF OMITTED(2) !If date parameter was omitted
Date = TODAY() !substitute the system date

END
MyClass.MyMethod PROCEDURE(STRING Field1,<LONG Date>,<STRING Field3>)
CODE
IF OMITTED(3) !If date parameter was omitted
Date = TODAY() !substitute the system date

END

*******Example of using OMITTED with a Procedure parameter:
PROGRAM

MAP
PP(LONG),LONG,TYPE

END

T CLASS
F PROCEDURE (<LONG>,<QUEUE>,<FILE>,<KEY>,<BLOB>,<T>, |

<WINDOW>,<?>,<PP>),LONG,PROC
END

CODE
T.F()

T.F PROCEDURE (<LONG L>,<QUEUE Q>,<FILE F>,<KEY K>,<BLOB B>,<T TT>, |
<WINDOW W>,<? A>,<PP P>)

Res LONG,AUTO

CODE
Res = 0
Res += OMITTED (SELF)
Res += OMITTED (L)
Res += OMITTED (Q)
Res += OMITTED (F)
Res += OMITTED (K)
Res += OMITTED (B)
Res += OMITTED (TT)
Res += OMITTED (W)
Res += OMITTED (A)
Res += OMITTED (P)
RETURN Res

See Also: Prototype Parameter Lists (Passing Arrays)

13 – Built-In Procedures 791

OPEN (open a data structure)

 OPEN(entity [, access mode / owner])

OPEN Opens a FILE, VIEW, APPLICATION, WINDOW, or REPORT structure for
processing.

entity The label of a FILE, VIEW, APPLICATION, WINDOW, or REPORT structure.

access mode A numeric constant, variable, or expression which determines the level of access
granted to both the user opening the FILE entity, and other users in a multi-user
system. If omitted, the default value is 22h (Read/Write + Deny Write). Valid only
when the entity parameter names a FILE structure.

owner The label of the APPLICATION or WINDOW structure which "owns" the window
entity being opened. Normally, this parameter would be an &WINDOW reference
variable. Valid only when the entity parameter names an APPLICATION or
WINDOW structure.

The OPEN statement opens a FILE, VIEW, APPLICATION, WINDOW, or REPORT structure for
processing.

FILE Usage

The OPEN statement opens a FILE structure for processing and sets the access mode. Support
for various access modes are file driver dependent. All files must be explicitly opened before the
records may be accessed.

The access mode is a bitmap which tells the operating system what access to grant the user
opening the file and what access to deny to others using the file.

The actual values for each access level are:
Dec Hex Access

User Access:
0 0h Read Only
1 1h Write Only
2 2h Read/Write

Other's Access:
0 0h Any Access (FCB compatibility mode)
16 10h Deny All
32 20h Deny Write
48 30h Deny Read
64 40h Deny None

Language Reference Manual 792

VIEW Usage

The OPEN statement opens a VIEW structure for processing. A VIEW must be explicitly opened
before it may be accessed. The files used in the VIEW must already be open.

Before the OPEN(view) statement, you may issue a SET statement to the VIEW structure's
primary file to setup sequential processing for the VIEW. You cannot issue a SET statement to
the primary file while the VIEW is OPEN--you must CLOSE(view), then issue the SET,and then
OPEN(view) again. SET(view) may be issued while the VIEW is open to setup sequential
processing using the ORDER attribute.

Window Usage

OPEN activates an APPLICATION or WINDOW for processing. However, nothing is displayed
until a DISPLAY statement or the ACCEPT loop is encountered. This allows an opportunity to
execute pre-display code to customize the display.

A window with an owner always appears on top of its owner, and is automatically hidden if the
owner is minimized or hidden. If the owner is closed, all owned windows are also automatically
closed. MDI windows are implicitly owned by the frame window. Non-MDI windows do not have
an owner by default.

REPORT Usage

OPEN activates a REPORT structure. You must explicitly OPEN a REPORT before any of the
structures may be printed.

Errors Posted: 02 File Not Found
03 Path Not Found
04 Too Many Open Files
05 Access Denied
32 File Is Already Locked
36 Invalid Data File
38 Invalid Key File
45 Invalid File Name
46 Key Files Must Be Rebuilt
47 Invalid File Declaration
52 File Already Open
57 Invalid Memo File
73 Memo File is Missing
75 Invalid Field Type Descriptor
79 Unsupported Data Type In File
88 Invalid Key Length
90 File System Error
92 Build In Progress

13 – Built-In Procedures 793

Example:
ReadOnly EQUATE(0) !Access mode equates
WriteOnly EQUATE(1)
ReadWrite EQUATE(2)
DenyAll EQUATE(10h)
DenyWrite EQUATE(20h)
DenyRead EQUATE(30h)
DenyNone EQUATE(40h)

Header FILE,DRIVER('Clarion'),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)

END
END

Detail FILE,DRIVER('Clarion'),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

END
END

ViewOrder VIEW(Header),ORDER('+Hea:OrderNumber') !Declare VIEW structure
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
END
END

CODE
OPEN(Names,ReadWrite+DenyNone) !Open fully shared access
OPEN(Header)
OPEN(Detail)
SET(Hea:AcctKey) !Set to primary file
OPEN(ViewOrder) !then Open view
SET(ViewOrder) !or SET(view) after opening

!to use ORDER attribute
OPEN(CustRpt) !Open a report

Language Reference Manual 794

Win1Proc PROCEDURE
Win1 WINDOW,ALRT(F10Key)

END
CODE
OPEN(Win1) !Open the window
GlobalWindowReference &= Win1 !Assign window reference to a

!global &WINDOW
ACCEPT
IF EVENT() = EVENT:AlertKey
START(Win2Proc)

END
END

Win2Proc PROCEDURE
Win2 WINDOW

END
CODE
OPEN(Win2,GlobalWindowReference) !Open Win2, "owned" by Win1
ACCEPT
END

See Also:

SHARE, CLOSE, SET, FILE, VIEW, APPLICATION, WINDOW, REPORT, ACCEPT

DISPLAY, CLOSE

13 – Built-In Procedures 795

PACK (remove deleted records)

 PACK(file)

PACK Removes deleted records from a data file and rebuilds its keys.

file The label of a FILE declaration.

The PACK statement removes deleted records from a data file and rebuilds its keys. The
resulting data files are as compact as possible. PACK requires at least twice the disk space that
the file, keys, and memos occupy to perform the process. New files are created from the old, and
the old files are deleted only after the process is complete. PACK requires exclusive access to
the file. Therefore, the file must be opened with access mode set to 12h (Read/Write Deny All) or
22h (Read/Write Deny Write).

PACK will generate events to the currently open window if you assign a value (an integer from 1
to 100) to PROP:ProgressEvents for the affected FILE before you issue the PACK. The larger the
value you assign to PROP:ProgressEvents, the more events are generated and the slower the
PACK will progress. These events allow you to indicate to the user the progress of the PACK.
This can keep end-users informed that PACK is still working while building large files (so they
don't re-boot thinking the machine has locked up).

It is not valid to make any calls to the file being built except to query its properties, call
NAME(file), or CLOSE(file) (which aborts the process and is not recommended). Issuing a
CYCLE statement in response to any of the events generated (except EVENT:BuildDone)
cancels the operation. During the PACK operation, file{PROP:Completed} returns the percentage
completed of the re-build and you can use file{PROP:CurrentKey} to get a key reference then
either key{PROP:Name} or key{PROP:Label} to return the name of the current key being built.

Errors Posted: 63 Exclusive Access Required

Events Generated:

EVENT:BuildFile PACK(file) is rebuilding the data portion of the file.

EVENT:BuildKey PACK(file) is rebuilding the keys in the file.

EVENT:BuildDone The PACK is complete.

Example:
OPEN(Trans,12h) !Open the file in exclusive mode
PACK(Trans) ! and pack it

See Also: OPEN, SHARE, BUILD. PROP:ProgressEvents, PROP:Completed

Language Reference Manual 796

PATH (return current directory)

 PATH()

PATH returns a string containing the current drive and directory. This is equivalent to the
SHORTPATH procedure.

PATH, can be used in expressions evaluated by the EVALUATE statements in runtime
applications and in the templates.

Return Data Type: STRING

Example:
IF PATH() = 'C:\' !If in the root
MESSAGE('You are in the Root Directory') !display message

END

See Also:

SETPATH

SHORTPATH

LONGPATH

DIRECTORY

13 – Built-In Procedures 797

PEEK (read memory address)

 PEEK(address,destination)

PEEK Reads data from a memory address.

address A numeric constant, variable, or expression (evaluated to a LONG) that specifies
a memory address. This parameter should always use the ADDRESS procedure,
to ensure the correct address is used.

destination The label of a variable to receive the contents of the memory location.

The PEEK statement reads the memory address specified by address and copies the data found
there into the destination variable. PEEK reads as many bytes as are required to fill the
destination variable.

It is easily possible to create a General Protection Fault (GPF) if you PEEK at an incorrect
address, so great care should be taken when using PEEK. There are usually Windows API
procedures that will do whatever you require of PEEK and these should be used in preference to
PEEK.

Example:
MemAddress LONG
Dest1 BYTE
Dest2 SHORT
Dest3 REAL
KeyboardFlag BYTE

CODE
PEEK(ADDRESS(MemAddress),Dest1) !Read 1 byte
PEEK(ADDRESS(MemAddress),Dest2) !Read 2 bytes
PEEK(ADDRESS(MemAddress),Dest3) !Read 8 bytes
PEEK(ADDRESS(0040h,0017h),KeyboardFlag) !Read keyboard status byte

See Also:

POKE

ADDRESS

Language Reference Manual 798

PENCOLOR (return line draw color)

 PENCOLOR()

The PENCOLOR procedure returns the current pen color set by SETPENCOLOR.

Return Data Type: LONG

Example:
Proc1 PROCEDURE
MDIChild1 WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW('Child Two'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

ColorNow LONG
CODE
ColorNow = PENCOLOR() !Get current pen color
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border

See Also:

SETPENCOLOR

13 – Built-In Procedures 799

PENSTYLE (return line draw style)

 PENSTYLE()

The PENSTYLE procedure returns the current line draw style set by SETPENSTYLE.

EQUATE statements for the pen styles are contained in the EQUATES.CLW file. The following
list is a representative sample of these (see EQUATES.CLW for the complete list):

 PEN:solid Solid line
 PEN:dash Dashed line
 PEN:dot Dotted line
 PEN:dashdot Mixed dashes and dots

Return Data Type: SIGNED

Example:
Proc1 PROCEDURE
MDIChild1 WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW('Child Two'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

ColorNow LONG
StyleNow LONG
CODE
ColorNow = PENCOLOR() !Get current pen color
StyleNow = PENSTYLE() !Get current pen style
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(StyleNow) !Set same pen style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border

See Also:

SETPENSTYLE

Language Reference Manual 800

PENWIDTH (return line draw thickness)

 PENWIDTH()

The PENWIDTH procedure returns the current line draw thickness set by SETPENWIDTH. The
return value is in dialog units (unless overridden by the THOUS, MM, or POINTS attributes on a
REPORT).

Return Data Type: SIGNED

Example:
Proc1 PROCEDURE
MDIChild1 WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW('Child Two'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

ColorNow LONG
StyleNow LONG
WidthNow LONG
CODE
ColorNow = PENCOLOR() !Get current pen color
StyleNow = PENSTYLE() !Get current pen style
WidthNow = PENWIDTH() !Get current pen width
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(StyleNow) !Set same pen style
SETPENWIDTH(WidthNow) !Set same pen width
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border

See Also:

SETPENWIDTH

13 – Built-In Procedures 801

PIE (draw a pie chart)
 PIE(x ,y ,width ,height ,slices ,colors [,depth] [,wholevalue] [,startangle] [,attributelist])

PIE Draws a pie chart on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

slices A SIGNED array of values that specify the relative size of each slice of the pie.

colors A LONG array that specifies the fill color for each slice.

depth An integer expression that specifies the depth of the three-dimensional pie chart.
If omitted, the chart is two-dimensional.

wholevalue A numeric constant or variable that specifies the total value required to create a
complete pie chart. If omitted, the sum of the slices array is used.

startangle A numeric constant or variable that specifies the starting point of the first slice of
the pie, measured as a fraction of the wholevalue. If omitted (or zero), the first
slice starts at the twelve o'clock position.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The PIE procedure creates a pie chart on the current window or report. The pie (an ellipse) is
drawn inside a "bounding box" defined by the x, y, width, and height parameters. The x and y
parameters specify the starting point, and the width and height parameters specify the horizontal
and vertical size of the "bounding box."

The slices of the pie are created clockwise from the startangle parameter as a fraction of the
wholevalue. Supplying a wholevalue parameter that is greater than the sum of all the slices array
elements creates a pie chart with a piece missing.

The color of the lines is the current pen color set by SETPENCOLOR; the default color is the
Windows system color for window text. The width of the lines is the current width set by
SETPENWIDTH; the default width is one pixel. The line style is the current pen style set by
SETPENSTYLE; the default style is a solid line.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

Language Reference Manual 802

SliceSize SIGNED,DIM(4)
SliceColor LONG,DIM(4)

CODE
SliceSize[1] = 90
SliceColor[1] = 0 !Black
SliceSize[2] = 90
SliceColor[2] = 00FF0000h !Red
SliceSize[3] = 90
SliceColor[3] = 0000FF00h !Green
SliceSize[4] = 90
SliceColor[4] = 000000FFh !Blue
OPEN(MDIChild)

PIE(100,50,100,50,SliceSize,SliceColor)
!Draw pie chart containing
!four equal slices, starting at 12 o'clock
!drawn counter-clockwise - Black, Red, Green, and Blue

See Also:

Current Target

SETPENCOLOR

SETPENWIDTH

SETPENSTYLE

13 – Built-In Procedures 803

POINTER (return last queue entry position)

 POINTER(queue)

POINTER Returns the entry number of the last entry accessed in a QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

The POINTER procedure returns a LONG integer specifying the entry number of the last QUEUE
entry accessed by ADD, GET, or PUT.

The value of POINTER is only valid if the ADD, GET, or PUT operation is successful.

Return Data Type: LONG

Example:
Que:Name = 'Jones' !Initialize key field in sorted queue
GET(NameQue,Que:Name) !Get the entry, if available
IF ERRORCODE() !Check for errors
ADD(NameQue,POINTER(NameQue)) !and add the sorted entry, if missing

END

See Also:

GET

PUT

ADD

Language Reference Manual 804

POKE (write to memory address)

 POKE(address,source)

POKE Writes data to a memory address.

address A numeric constant, variable, or expression (evaluated to a LONG) which
specifies a memory address. This parameter should always use the ADDRESS
procedure, to ensure the correct protected mode address is used.

source The label of a variable.

The POKE statement writes the contents of the source variable to the memory address at
address. POKE writes as many bytes as are in the source variable.

It is easily possible to create a General Protection Fault (GPF) if you POKE to an incorrect
address, so great care should be taken when using POKE. There are usually Windows API
functions that will do whatever you require of POKE and these should be used in preference to
POKE.

Example:
MAddress LONG
Source1 BYTE
Source2 SHORT
Source3 REAL
KeyboardFlag BYTE

CODE
POKE(ADDRESS(MAddress),Source1) !Write 1 byte to the memory location

POKE(ADDRESS(MAddress),Source2) !Write 2 bytes to the memory location

POKE(ADDRESS(MAddress),Source3) !Write 8 bytes to the memory location

PEEK(ADDRESS(0040h,0017h),KeyboardFlag)!Read keyboard status byte
KeyboardFlag = BOR(KeyboardFlag,40h) !turn on caps lock
POKE(ADDRESS(0040h,0017h),KeyboardFlag)!and put it back

See Also:

PEEK

ADDRESS

13 – Built-In Procedures 805

POLYGON (draw a multi-sided figure)
 POLYGON(array [,fill] [,attributelist])

POLYGON Draws a multi-sided figure on the current window or report.

array An array of SIGNED integers that specify the x and y coordinates of each "corner
point" of the polygon.

fill A LONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes
(bytes 0, 1, and 2) or an EQUATE for a standard Windows color value.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The POLYGON procedure places a multi-sided figure on the current window or report. The
polygon is always closed.

The array parameter contains the x and y coordinates of each "corner point" of the polygon. The
polygon will have as many corner points as the total number of array elements divided by two.
For each corner point in turn, its x coordinate is taken from the odd-numbered array element and
the y coordinate from the immediately following even-numbered element.

The border color is the current pen color set by SETPENCOLOR; the default color is the
Windows system color for window text. The border width is the current width set by
SETPENWIDTH; the default width is one pixel. The line's style is the current pen style set by
SETPENSTYLE; the default style is a solid line.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

Corners SIGNED,DIM(8)
CODE
Corners[1] = 0 !1st x position
Corners[2] = 90 !1st y position
Corners[3] = 90 !2nd x position
Corners[4] = 190 !2nd y position
Corners[5] = 100 !3rd x position
Corners[6] = 200 !3rd y position
Corners[7] = 50 !4th x position
Corners[8] = 60 !4th y position
OPEN(MDIChild)
POLYGON(Corners,000000FFh) !Blue filled four-sided polygon

See Also: Current Target, SETPENCOLOR, SETPENWIDTH, SETPENSTYLE

Language Reference Manual 806

POPUP (return popup menu selection)

 POPUP(selections [, x] [, y])

POPUP Returns an integer indicating the user's choice from the menu.

selections A string constant, variable, or expression containing the text for the menu
choices.

x An integer constant, variable, or expression that specifies the horizontal position
of the top left corner. If omitted, the menu appear at the current cursor position.

y An integer constant, variable, or expression that specifies the vertical position of
the top left corner. If omitted, the menu appear at the current cursor position.

The POPUP procedure returns an integer indicating the user's choice from the popup menu that
appears when the procedure is invoked. If the user CLICKS outside the menu or presses ESC
(indicating no choice), POPUP returns zero.

Within the selections string, each choice in the popup menu must be delimited by a vertical bar (|)
character. The following rules apply:

• A set of vertical bars containing only a hyphen (|-|) defines a separator between
groups of menu choices.

• A menu choice immediately preceded by a tilde (~) is disabled (it appears
dimmed out in the popup menu).

• A menu choice immediately preceded by a plus sign (+) appears with a check
mark to its left in the popup menu.

• A menu choice immediately preceded by a minus sign (-) appears without a
check mark to its left in the popup menu.

• A menu choice immediately followed by a set of choices contained within curly
braces (|SubMenu{{SubChoice 1|SubChoice 2}|) defines a sub-menu within the
popup menu (the two beginning curly braces are required by the compiler to
differentiate your sub-menu from a string repeat count).

• You may use the ASCII tab character (<9>) in your selection string to right-align
text.

• You may specify an icon for the menu item by preceding the menu choice with
square brackets enclosing PROP:Icon and the name of the icon file in parens,
like this:

POPUP('[' & PROP:Icon & '(MyIco.ICO)]MenuChoice')

13 – Built-In Procedures 807

Each menu selection is numbered in ascending sequence according to its position within the
selections string, beginning with one (1). Separators and selections that call a sub-menu are not
included in the numbering sequence (which makes an EXECUTE structure the most efficient
code structure to use with this procedure). When the user CLICKS or presses ENTER on a
choice, the procedure terminates, returning the position number of the selected menu item.

Return Data Type: SIGNED

Example:
PopupString = 'First|+Second|Sub menu{{One|Two}|-|Third|~Disabled|' & |

'[' & PROP:Icon & '(MyIco.ICO)]Last Menu Choice'
ToggleChecked = 1
ACCEPT
CASE EVENT()
OF EVENT:AlertKey
IF KEYCODE() = MouseRight
EXECUTE POPUP(PopupString)
FirstProc !Call proc for selection 1
BEGIN !Code to execute for toggle selection 2
IF ToggleChecked = 1 !Check toggle state
SecondProc(Off) !Call proc to turn off something
PopupString[7] = '-' !Reset string so the check mark does not appear
ToggleChecked = 0 !Set toggle flag

ELSE
SecondProc(On) !Call proc to turn off something
PopupString[7] = '+' !Reset string so the check mark does appear
ToggleChecked = 1 !Set toggle flag

END
END !End Code to execute for toggle selection 2
OneProc !Call proc for selection 3
TwoProc !Call proc for selection 4
ThirdProc !Call proc for selection 5
DisabledProc !Selection 6 is dimmed so it cannot run this proc
IconProc !Selection 7 displays an icon in the menu

END
END

END
END

Language Reference Manual 808

POSITION (return record sequence position)

 POSITION(sequence)

POSITION Identifies a record's unique position in a FILE or VIEW or QUEUE.

sequence The label of a VIEW, FILE, KEY, or INDEX or QUEUE declaration.

POSITION returns a STRING which identifies a record's unique position within the sequence.
POSITION returns the position of the last record accessed in the file or VIEW. The POSITION
procedure is used with RESET to temporarily suspend and resume sequential processing.

FILE usage

The value contained in the returned STRING and the length of that STRING are dependent on
the file driver. As a general rule, for file systems that have record numbers, the size of the
STRING returned by POSITION(file) is 4 bytes. The return string from POSITION(key) is 4 bytes
plus the sum of the sizes of the fields in the key. For file systems that do not have record
numbers, the size of the STRING returned by POSITION(file) is generally the sum of the sizes of
the fields in the Primary Key (the first KEY on the FILE that does not have the DUP or OPT
attribute). The return string from POSITION(key) is the sum of the sizes of the fields in the
Primary Key plus the sum of the sizes of the fields in the key.

VIEW usage

The return string for POSITION(view) contains all the information required by the underlying file
system to reset to the one specific position within the record set currently in the VIEW. It also
contains the file system's POSITION return value for the primary file key and all secondary file
linking keys. This allows POSITION(view) to accurately define a position for all related records in
the VIEW.

QUEUE usage

POSITION(queue) returns a pointer to the first queue record with a matching key value (for
current active sort order). If an exact match is not found, a pointer to the next entry greater to one
given in the current queue buffer is returned. If all entries in the queue have a lower key,
RECORDS(queue)+1 is returned.

Errors Posted: 35 Record Not Found

Return Data Type: LONG for POSITION(QUEUE)
STRING all others

13 – Built-In Procedures 809

Example of (POSITION(VIEW)):
ViewO VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END

END
RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)

END
SavPosition STRING(260)
CODE
OPEN(Customer,22h)
OPEN(Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(ViewOrder) !read a record sequentially
IF ERRORCODE()
DO DisplayQue !Display the queue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue
RecordQue :=: Pro:Record !Move record into queue
ADD(RecordQue) !and add it
ASSERT(~ERRORCODE())
IF RECORDS(RecordQue) = 20 !20 records in queue?
DO DisplayQue !Display the queue

END
END

Language Reference Manual 810

DisplayQue ROUTINE
SavPosition = POSITION(ViewOrder)!Save record position
DO ProcessQue !Display the queue
FREE(RecordQue) !and free it
RESET(ViewOrder,SavPosition) !Reset the record pointer
NEXT(ViewOrder) !and get the record again

Example (POSITION(QUEUE)):
TaxQ QUEUE
LowPay DECIMAL(9,2)
HighPay DECIMAL(9,2)
TaxAmount DECIMAL(9,2)
PlusPercent DECIMAL(5,2)

END

Bracket LONG,AUTO `

CODE
SORT(TaxQ, TaxQ.HighPay) !Set sort order
TaxQ.HighPay = PayCheck.GrossPay !Initialize QUEUE key field
Bracket = POSITION(TaxQ) !Find pay bracket
IF Bracket > RECORDS(TaxQ) !If value exceeds number of records
Bracket = RECORDS(TaxQ) !in QUEUE, set to highest value in QUEUE

END
GET(TaxQ,Bracket) !read QUEUE entry
Paycheck.Tax = TaxAmount+ | !calculation based on QUEUE entry
(Paycheck.Gross-TaxQ.LowPay)*TaxQ.PlusPercent

See Also:

RESET

REGET

13 – Built-In Procedures 811

POST (post user-defined event)
 POST(event [,control] [,thread] [,position])

POST Posts an event.
event An integer constant, variable, expression, or EQUATE containing an event

number. A value in the range 400h to 0FFFh is a User-defined event.
control An integer constant, EQUATE, variable, or expression containing the field

number of the control affected by the event. If omitted, the event is field-
independent.

thread An integer constant, EQUATE, variable, or expression containing the execution
thread number whose ACCEPT loop is to process the event. If omitted, the event
is posted to the current thread.

position An integer constant, EQUATE, variable, or expression containing either zero (0)
or one (1). If one (1), the event message is placed at the front of the event
message queue. If omitted or zero (0), the event message is placed at the end of
the event message queue.

POST posts an event to the currently active ACCEPT loop of the specified thread. This may be a
User-defined event, or any other event. User-defined event numbers can be defined as any
integer between 400h and 0FFFh. Any event posted with a control specified is a field-specific
event, while those without are field-independent events.

POSTing an event causes the ACCEPT loop to fire but does not cause the event to "happen." For
example, POST(EVENT:Selected,?MyControl) executes any code in EVENT:Selected for
?MyControl but does not cause ?MyControl to gain focus.

Example:
Win1 WINDOW('Tools'),AT(156,46,32,28),TOOLBOX

BUTTON('Date'),AT(0,0,,),USE(?Button1)
BUTTON('Time'),AT(0,14,,),USE(?Button2)

END
CODE
OPEN(Win1)
ACCEPT
IF EVENT() = EVENT:User !Detect user-defined event
BREAK

END
CASE ACCEPTED()
OF ?Button1
POST(EVENT:User,,UseToolsThread) !Post field-independent event to other thread

OF ?Button2
POST(EVENT:User) !Post field-independent event to this thread

END
END;CLOSE(Win1)

See Also: ACCEPT, EVENT

Language Reference Manual 812

PRAGMA (control pragma settings from source)
PRAGMA(string)

PRAGMA Send to the project system a statement from your generated source code

string A string constant, variable, or expression, of the format ’project(string)’,
‘compile(string)’, or ‘link(string)’.

PRAGMA('project(string)')
Supports the use of the project system's statements in Clarion source code, and
adds the statement to the project dynamically. The string parameter defines the
proper project syntax.

PRAGMA('compile(string)')
Equivalent to PRAGMA('project(#compile string)')

PRAGMA('link(string)')
Equivalent to PRAGMA('project(#pragma link(string))')

PRAGMA supports the use of the project system’s pragma statement in Clarion source code,
and adds the pragma to the project dynamically. The string parameter defines the proper project
syntax.

Examples:

PROGRAM
MAP
INCLUDE('MYUTIL.INC')
END

PRAGMA('project(#compile MYUTIL.CLW)')
PRAGMA('project(#pragma link(C%V%DOS%X%%L%.LIB))')

F FILE,DRIVER('DOS'),CREATE,NAME('Test.!')
Record RECORD

BYTE,DIM(1000)
END

END

CODE
CREATE (F)

In the above example, the project pragma forces the system to compile MYUTIL.CLW, and
automatically adds the correct DOS driver library to the link list.

13 – Built-In Procedures 813

PROGRAM
MAP
INCLUDE('MYUTIL.INC')

END
PRAGMA('compile(MYUTIL.CLW)')
PRAGMA('link(C%V%DOS%X%%L%.LIB)')

F FILE,DRIVER('DOS'),CREATE,NAME('Test.!')
Record RECORD

BYTE,DIM(1000)
END

END

CODE
CREATE(F)

The above example is identical in function to the first example.

Language Reference Manual 814

PRESS (put characters in the buffer)

 PRESS(string)

PRESS Places characters in the keyboard input buffer.

string A string constant, variable, or expression.

PRESS places characters in the Windows keyboard input buffer. The entire string is placed in the
buffer. Once placed in the keyboard buffer, the string is processed just as if the user had typed in
the data.

Example:
IF LocalRequest = AddRecord !On the way into a memo on adding a record
TempString = FORMAT(TODAY(),@D1) & ' ' & FORMAT(CLOCK(),@T4)
PRESS(TempString) !Pre-load first line of memo with date and time

END

See Also:

PRESSKEY

13 – Built-In Procedures 815

PRESSKEY (put a keystroke in the buffer)

 PRESSKEY(keycode)

PRESSKEY Places one keystroke in the keyboard input buffer.

keycode An integer constant or keycode EQUATE label.

PRESSKEY places one keystroke in the Windows keyboard input buffer. Once placed in the
keyboard buffer, the keycode is processed just as if the user had pressed the key. ALIAS does
not transform a PRESSKEY keycode.

Example:
IF Action = 'Add' !On the way into a memo control on an add record
Cus:MemoControl = FORMAT(TODAY(),@D1) & ' ' & FORMAT(CLOCK(),@T4)

!Pre-load first line of memo with date and time
PRESSKEY(EnterKey) !and position user on second line

END

See Also:

PRESS

Language Reference Manual 816

PREVIOUS (read previous view record in sequence)

 PREVIOUS(entity)

PREVIOUS Reads the previous record in sequence.

entity The label of a FILE or VIEW declaration.

PREVIOUS reads the previous record(s) in sequence from a FILE or VIEW. The SET (or RESET)
statement determines the sequence in which records are read. Executing PREVIOUS without a
preceding SET, or attempting to read past the beginning of a file posts the "Record Not Available"
error.

FILE Usage

PREVIOUS reads the previous record in sequence from a data file and places it in the RECORD
structure data buffer. The first PREVIOUS following a SET reads the record at the position
specified by the SET statement. Subsequent PREVIOUS statements read subsequent records in
reverse sequence. The sequence is not affected by any GET, REGET, ADD, PUT, or DELETE.

VIEW Usage

PREVIOUS reads the previous record(s) in sequence from a VIEW and places the appropriate
fields in the VIEW structure component files' data buffer(s). If the VIEW contains JOIN structures,
PREVIOUS retrieves the appropriate previous set of related records.

Either the SET statement issued on the VIEW's primary file before the OPEN(view) statement, or
the SET(view) statement issued after the OPEN(view) determines the sequence in which records
are read. The first PREVIOUS(view) reads the record at the position specified by the SET
statement. Subsequent PREVIOUS statements read subsequent records in that sequence. The
sequence is not affected by PUT or DELETE statements.

Errors Posted: 33 Record Not Available
37 File Not Open
43 Record Is Already Held

13 – Built-In Procedures 817

Example:
ViewOrder VIEW(Header)

PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END

END
END

CODE
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP !Read all records through beginning of primary file
PREVIOUS(ViewOrder) !read a record sequentially
IF ERRORCODE() THEN BREAK END !break on end of file
DO PostTrans !call transaction posting routine

END !End loop

See Also:

SET

RESET

NEXT

BOF

HOLD

WATCH

REGET

ADD

PUT

DELETE

Language Reference Manual 818

PRINT (print a report structure)

 PRINT(| structure |)

 | report ,number |

PRINT Prints a report DETAIL structure.

structure The label of a DETAIL structure.

report The label of a REPORT structure.

number The number or EQUATE label of a report DETAIL structure to print (only valid
with a report parameter).

The PRINT statement prints a report structure to the Windows default printer or the destination
specified by the user in the Windows Print... dialog. PRINT automatically activates group breaks
and page overflow as needed.

Example:
MEMBER()

MAP
BuildRpt
PrintRpt(REPORT,LONG)

END

BuildRpt PROCEDURE
CustRpt REPORT

HEADER,USE(?PageHeader) !Page header
!structure elements
END

CustDetail DETAIL,USE(?Detail) !Line item detail
!structure elements
END !

END
CODE
PRINT(CustDetail) !Print order detail line
PrintRpt(CustRpt,?PageHeader) !Pass report and equate to print proc

PrintRpt PROCEDURE(RptToPrint,DetailNumber)
CODE
PRINT(RptToPrint,DetailNumber) !Print its structure

See Also: Page Overflow, BREAK, DETAIL

13 – Built-In Procedures 819

PRINTERDIALOG (return chosen printer)

 PRINTERDIALOG([title] [,flag])

PRINTERDIALOG
Displays the Windows standard printer choice dialog box to allow the user to
choose a file.

title A string constant or variable containing the title to place on the file choice dialog.
If omitted, a default title is supplied by Windows.

flag A numeric constant or variable which displays a target Print dialog based on the
flag’s value:
0 = Choose Printer dialog
1 = Print Setup dialog
2 = Page Setup dialog

The PRINTERDIALOG procedure displays the Windows standard printer choice dialog box, Print
Setup dialog, or Page Setup dialog based on the flag value and returns the printer chosen by the
user in the PRINTER "built-in" variable in the internal library. This sets the default printer used for
the next REPORT opened.

PRINTERDIALOG returns zero (0) if the user pressed the Cancel button, or one (1) if the user
pressed the Ok button on the dialog.

Return Data Type: SIGNED

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS,FONT('Arial',12),PRE(Rpt)

!Report structures and controls
END

CODE
IF NOT PRINTERDIALOG('Choose Printer')
RETURN !Abort if user pressed Cancel

END
OPEN(CustRpt)

Language Reference Manual 820

POPERRORS (return error information)

 POPERRORS()

POPERRORS Returns the last error information saved by PUSHERRORS()

The POPERRORS procedure restores the last error information that was saved by
PUSHERRORS. This includes ERRORCODE(), ERROR(), FILEERRORCODE(), FILEERROR(),
ERRORFILE(), the C library errno variable, and the current Windows error code returned by the
GetLastError() API function. To read these errors, you need to use the appropriate support
statements.

POPERRORS is especially useful for programmer’s that use the GetLastError() API function.
POPERRORS restores the Windows error code that had been saved by PUSHERRORS.
GetLastError() will return the same error code after POPERRORS that it would have returned just
prior to PUSHERRORS.

PUSHERRORS and POPERRORS works using the LIFO (last in, first out) stack convention. The
maximum depth of the stack is dependent on available memory.

Because ERRORCODE(), ERROR(), etc. are thread dependent, PUSHERRORS and
POPERRORS statements that are called from different threads are independent of each other,
and allocate a different memory stack for each thread.

Example:
PROGRAM

MAP
InitialErrors()

END

TESTFILE FILE,DRIVER('DOS')
RECORD

f1 BYTE
END
END

CODE
!file processing and initialization here
OPEN(testfile) !forcing an error
PUSHERRORS()
!additional code here
InitialErrors !Call procedure

13 – Built-In Procedures 821

InitialErrors PROCEDURE

ERRORCODEVAR LONG
ERRORVAR CSTRING(255)
FILEERRORCODEVAR LONG
FILEERRORVAR CSTRING(255)
ERRORFILEVAR CSTRING(255)

Window WINDOW('Error Report'),AT(,,362,128),FONT('MS Sans
Serif',8,,FONT:regular,CHARSET:ANSI),SYSTEM, |

GRAY
PROMPT('ERRORCODE:'),AT(9,10),USE(?Prompt1)
STRING(@N_4),AT(97,10,43,10),USE(ERRORCODEVAR)
PROMPT('ERROR:'),AT(9,25),USE(?Prompt2)
STRING(@s40),AT(96,25),USE(ERRORVAR)
PROMPT('FILEERRORCODE:'),AT(9,40),USE(?Prompt3)
STRING(@N_4),AT(95,40),USE(FILEERRORCODEVAR)
PROMPT('FILEERROR:'),AT(9,55),USE(?Prompt4)
STRING(@S40),AT(95,55),USE(FILEERRORVAR)
PROMPT('ERRORFILE:'),AT(9,70),USE(?Prompt5)
STRING(@S40),AT(95,71),USE(ERRORFILEVAR)

END

CODE
POPERRORS()
ERRORCODEVAR = ERRORCODE() !will return 2
ERRORVAR = ERROR() !will return "File Not Found"
FILEERRORCODEVAR = FILEERRORCODE()
FILEERRORVAR = FILEERRORCODE()
ERRORFILEVAR = ERRORFILE() !will return "TESTFILE"
OPEN(WINDOW)
ACCEPT
DISPLAY
END

See Also:

PUSHERRORS

Language Reference Manual 822

PUSHERRORS (write error information)
PUSHERRORS()

PUSHERRORS Writes the last error information to an internal memory stack.

The PUSHERRORS procedure writes the current error states of the current thread's
ERRORCODE(), ERROR(), FILEERRORCODE(), FILEERROR(), ERRORFILE(), the C library
errno variable, and the current Windows error code returned by the GetLastError() API function.

POPERRORS is used to restore the error states originally saved by PUSHERRORS. The main
purpose of these functions is to save errors states and then check them later, after performing
some additional code that can potentially change them.

PUSHERRORS and POPERRORS works using the LIFO (last in, first out) stack convention. The
maximum depth of the stack is dependent on available memory. Because ERRORCODE(),
ERROR(), etc. are thread dependent, PUSHERRORS and POPERRORS statements that are
called from different threads are independent of each other, and allocate a different memory
stack for each thread.

Example:
PROGRAM

MAP
InitialErrors()

END

TESTFILE FILE,DRIVER('DOS')
RECORD

f1 BYTE
END
END

CODE
!file processing and initialization here
OPEN(testfile) !forcing an error
PUSHERRORS()

!additional code here

InitialErrors

13 – Built-In Procedures 823

InitialErrors PROCEDURE

ERRORCODEVAR LONG
ERRORVAR CSTRING(255)
FILEERRORCODEVAR LONG
FILEERRORVAR CSTRING(255)
ERRORFILEVAR CSTRING(255)

Window WINDOW('Error Report'),AT(,,362,128),FONT('MS Sans
Serif',8,,FONT:regular,CHARSET:ANSI),SYSTEM, |

GRAY
PROMPT('ERRORCODE:'),AT(9,10),USE(?Prompt1)
STRING(@N_4),AT(97,10,43,10),USE(ERRORCODEVAR)
PROMPT('ERROR:'),AT(9,25),USE(?Prompt2)
STRING(@s40),AT(96,25),USE(ERRORVAR)
PROMPT('FILEERRORCODE:'),AT(9,40),USE(?Prompt3)
STRING(@N_4),AT(95,40),USE(FILEERRORCODEVAR)
PROMPT('FILEERROR:'),AT(9,55),USE(?Prompt4)
STRING(@S40),AT(95,55),USE(FILEERRORVAR)
PROMPT('ERRORFILE:'),AT(9,70),USE(?Prompt5)
STRING(@S40),AT(95,71),USE(ERRORFILEVAR)

END

CODE
POPERRORS()
ERRORCODEVAR = ERRORCODE() !will return 2
ERRORVAR = ERROR() !will return "File Not Found"
FILEERRORCODEVAR = FILEERRORCODE()
FILEERRORVAR = FILEERRORCODE()
ERRORFILEVAR = ERRORFILE() !will return "TESTFILE"
OPEN(WINDOW)
ACCEPT
DISPLAY
END

See Also:

POPERRORS

Language Reference Manual 824

PUT (re-write record)

 PUT(| file [, filepointer [, length]] |)

 | queue , [[+]key,...,[-]key] |

 | queue , name |

 | queue , function |

 | view |

PUT Writes a record back to a FILE, QUEUE, or VIEW.

file The label of a FILE declaration.

filepointer A numeric constant, variable, or expression for the value returned by the
POINTER(file) procedure.

length An integer constant, variable, or expression containing the number of bytes to
write to the file. This must be greater than zero and not greater than the
RECORD length. If omitted or out of range, the RECORD length is used.

queue The label of a QUEUE structure.

+ - The leading plus or minus sign specifies the key is sorted in ascending or
descending sequence.

key The label of a field declared within the QUEUE structure. If the QUEUE has a
PRE attribute, the key must include the prefix.

name A string constant, variable, or expression containing the NAME attribute of
QUEUE fields, separated by commas, and optional leading + or - signs for each
attribute. This parameter is case sensitive.

function The label of the function containing two parameters of a *GROUP or named
GROUP passed by address, and having a SIGNED return value. Both
parameters must use the same parameter type, and cannot be omitted. The
RAW, C and PASCAL attributes are not permitted in the prototype declaration.
See Additional Queue Considerations.

view The label of a VIEW declaration.

The PUT statement re-writes a previously accessed record in a FILE, QUEUE, or VIEW.

13 – Built-In Procedures 825

FILE Usage

The PUT statement writes the current values in the RECORD structure data buffer to a previously
accessed record in the file.

PUT(file)
Writes back the last record accessed with NEXT, PREVIOUS, GET, or ADD. If
the values in the key variables were changed, the KEYs are updated.

PUT(file,filepointer)
Writes the record to the filepointer location in the file and the KEYs are updated.

PUT(file,filepointer,length)
Writes length bytes to the filepointer location in the file and the KEYs are
updated.

If a record was not accessed with NEXT, PREVIOUS, GET, REGET, ADD, or was deleted, the
"Record Not Available" error is posted. PUT also posts the "Creates Duplicate Key" error. If any
error is posted, the record is not written to the file.

QUEUE Usage

PUT writes the contents of the data buffer back to the QUEUE (after a successful GET or ADD) to
the position returned by the POINTER procedure. If no previous GET or ADD was executed, the
"Entry Not Found" error is posted.

PUT(queue)
Writes the data buffer back to the same relative position within the QUEUE of the
last successful GET or ADD.

PUT(queue,key)
Writes an entry to a sorted memory queue after a successful GET or ADD,
maintaining the sort order if any key fields have changed value. Multiple key
parameters may be used (up to 16), separated by commas, with optional leading
plus or minus signs to indicate ascending or descending sequence. The entry is
inserted immediately after all other entries with matching key values.

PUT(queue,name)
Writes an entry to a sorted memory queue after a successful GET or ADD,
maintaining the sort order if any key fields have changed value. The name string
must contain the NAME attributes of the fields, separated by commas, with
optional leading plus or minus signs to indicate ascending or descending
sequence. The entry is inserted immediately after all other entries with matching
field values.

Language Reference Manual 826

PUT(queue,function)
Using PUT by FUNCTION will write from a positional value returned by the function.
If the function returns zero (0) the queue record of the first parameter is treated as
equal to the second. In this case, no record is written, since the values are equal. If
the function returns a negative value, the PUT of the record passed as a first
parameter is treated as having less value than record passed as second parameter
and is written accordingly. If the function returns a positive value, the PUT of the
record passed as a first parameter is treated as having a greater value than record
passed as second parameter and is written accordingly.

VIEW Usage

The PUT statement writes the current values in the VIEW structure's primary file's data buffer to a
previously accessed primary file record in the view. If the record was held, it is automatically
released. PUT writes to the last record accessed with the REGET, NEXT, or PREVIOUS
statements. If the values in the key variables were changed, then the KEYs are updated.

PUT only writes to the primary file in the VIEW because the VIEW structure performs both
relational Project and Join operations at the same time. Therefore, it is possible to create a VIEW
structure that, if all its component files were updated, would violate the Referential Integrity rules
set for the database. The common solution to this problem in SQL-based database products is to
write only to the Primary file. Therefore, Clarion has adopted this same industry standard solution.

If a record was not accessed with REGET, NEXT, or PREVIOUS statements, or was deleted,
then the "Record Not Available" error is posted. PUT also posts the "Creates Duplicate Key"
error. If any error is posted, then the record is not written to disk.

Errors Posted: 05 Access Denied
08 Insufficient Memory
30 Entry Not Found
33 Record Not Available
40 Creates Duplicate Key
75 Invalid Field Type Descriptor
89 Record Changed By Another Station

Example:
ViewOrder VIEW(Header)

JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
END
END

NameQue QUEUE,PRE(Que)
Name STRING(20),NAME('FirstField')
Zip DECIMAL(5,0),NAME('SecondField')

END

13 – Built-In Procedures 827

CODE
OPEN(Header,22h)
OPEN(Detail,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP !Read all records in reverse order
PREVIOUS(ViewOrder) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break at beginning of file
DO LastInFirstOut !Call last in first out routine
PUT(ViewOrder) !Write transaction record back to the file
IF ERRORCODE() THEN STOP(ERROR()) END

END !End loop

DO BuildQue !Call routine to build the queue
Que:Name = 'Jones' !Initialize key field
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()) END

Que:Zip = 12345 !Change the zip
PUT(NameQue) !Write the changes to the queue
IF ERRORCODE() THEN STOP(ERROR()) END

Que:Name = 'Jones' !Initialize key field
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()) END

Que:Name = 'Smith' !Change key field
PUT(NameQue,Que:Name) !Write changes to the queue
IF ERRORCODE() THEN STOP(ERROR()) END

Que:Name = 'Smith' !Initialize key field
GET(NameQue,'FirstField') !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()) END

Que:Name = 'Jones' !Change key field
PUT(NameQue,'FirstField') !Write changes to the queue
IF ERRORCODE() THEN STOP(ERROR()) END

See Also:

NEXT

PREVIOUS

GET

ADD

WATCH

HOLD

RELEASE

SORT

Language Reference Manual 828

PUTINI (set INI file entry)

 PUTINI(section ,entry [,value] [,file])

PUTINI Sets the value for an INI file entry.

section A string constant or variable containing the name of the portion of the INI file
which contains the entry.

entry A string constant or variable containing the name of the specific entry to set.

value A string constant or variable containing the setting to place in the entry (up to
1023 characters). An empty string ('') leaves the entry empty. If omitted, the entry
is deleted.

file A string constant or variable containing the name of the INI file to search (looks
for the file in the Windows directory unless a full path is specified). If the file
doesn't exist, a new .INI file is created. If omitted, PUTINI places the entry in the
WIN.INI file.

The PUTINI procedure places the value into an entry in a Windows-standard .INI file (maximum
size of the file is 64K). A Windows-standard .INI file is an ASCII text file with the following format:

[some section name]
entry=value
next entry=another value

For example, WIN.INI contains entries such as:
[windows]
spooler=yes
load=nwpopup.exe
[intl]
sLanguage=enu
sCountry=United States
iCountry=1

The PUTINI procedure searches the specified file for the entry within the section you specify. It
replaces the current entry value with the value you specify. If necessary, the section and entry are
created.

Example:
CODE
PUTINI('MyApp','SomeSetting','Initialized') !Place setting in WIN.INI
PUTINI('MyApp','ASetting','2','MYAPP.INI') !Place setting in MYAPP.INI

See Also:

GETINI

13 – Built-In Procedures 829

PUTREG (write value to Windows registry)
PUTREG(LONG root, STRING keyname, STRING valuename [, STRING value])

PUTREG Writes a string value into the system registry.

root The root section of the registry to which to write the value. Valid values for this
are defined in equates.clw and are as follows:

REG_CLASSES_ROOT
REG_CURRENT_USER
REG_LOCAL_MACHINE
REG_USERS
REG_PERFORMANCE_DATA
REG_CURRENT_CONFIG
REG_DYN_DATA

Keyname The key name of the key whose value is to be written. This may contain a path
separated by backslash ‘\’ characters.

valuename The name of the value to be written.

value The value to be written to the registry in the position given. If omitted, an empty
string is written to the registry.

The PUTREG procedure places the value into a valuename that exists in the Windows registry.

Example:

PROGRAM

MAP.

INCLUDE('EQUATES')
CurrentPath CSTRING(100)
ColorScheme CSTRING(100)

CODE
CurrentPath = ‘C:\Clarion6’

PUTREG(REG_LOCAL_MACHINE,'SOFTWARE\SoftVelocity\Clarion6','root',CurrentPath)
!Sets the root directory of Clarion 6 install
ColorScheme = ‘Windows Standard’
PUTREG(REG_CURRENT_USER,'Control Panel\Current','Color

Schemes',ColorScheme)
!writes the current user's color scheme to the registry

See Also: GETREG, DELETEREG

Language Reference Manual 830

QUOTE (replace string special characters)
 QUOTE(string , flag)

QUOTE Expands (or unpacks) string data

string A string constant or variable containing the properties to parse.

flag An unsigned integer that controls the method of unpacking.

The way that QUOTE processes the string is based on the flag parameter.

If the flag parameter is set to 0 (default), the QUOTE procedure returns the string contained in the
symbol with all single quotes ('), un-paired left angle brackets (<), and un-paired left curly braces
({) "doubled up" to prevent compiler errors. Non-printable characters are replaced with <n>
sequences, where n is a character code. 10 or more repeated characters are replaced with a a{n}
sequence, where a is a character and n is the number of times that the character is repeated.

If the flag parameter is set to 1, QUOTE unpacks {} and <> sequences if the next character after
the { or < is a numeric digit and doubles all single quotes (‘).

This allows the user to enter string constants containing apostrophes, and filter expressions
containing less than signs (<) without requiring that they enter two of each.

Return Data Type: STRING

Example:
stringvar1 STRING('<250>')
stringvar2 STRING('<display text>')
stringvar3 STRING(30)

CODE

MESSAGE(QUOTE(stringvar1,0)) !returns accented u
MESSAGE(QUOTE(stringvar1,1)) !returns accented u

MESSAGE(QUOTE(stringvar2,0)) !returns '<<display text>'
MESSAGE(QUOTE(stringvar2,1)) !returns '<display text>'

stringvar3 = 'label{{PROP:text} = value'

MESSAGE(QUOTE(stringvar3,0)) !returns 'label{{PROP:text} = value'
MESSAGE(QUOTE(stringvar3,1)) !returns 'label{PROP:text} = value'

See Also:

UNQUOTE

13 – Built-In Procedures 831

RANDOM (return random number)

 RANDOM(low,high)

RANDOM Returns random integer.

low A numeric constant, variable, or expression for the lower boundary of the range.

high A numeric constant, variable, or expression for the upper boundary of the range.

The RANDOM procedure returns a random integer between the low and high values, inclusively.
The low and high parameters may be any numeric expression, but only their integer portion is
used for the inclusive range.

Return Data Type: LONG

Example:
Num BYTE,DIM(49)
LottoNbr BYTE,DIM(6)
CODE
CLEAR(Num)
CLEAR(LottoNbr)
LOOP X# = 1 TO 6
LottoNbr[X#] = RANDOM(1,49) !Pick numbers for Lotto
IF NOT Num[LottoNbr[X#]]
Num[LottoNbr[X#]] = 1

ELSE
X# -= 1

END
END

Language Reference Manual 832

RECORDS (return number of rows in data set)

 RECORDS(entity)

RECORDS Returns the number of records.

entity The label of a QUEUE, VIEW, FILE, KEY, or INDEX declaration.

The RECORDS procedure returns a LONG integer containing the number of entries in the entity.

FILE Usage

The RECORDS procedure returns the number of records in a FILE, KEY, or INDEX. Since the
OPT attribute of a KEY or INDEX excludes "null" entries, RECORDS may return a smaller
number for the KEY or INDEX than the FILE.

QUEUE Usage

The RECORDS procedure returns a LONG integer containing the number of entries in the
QUEUE.

VIEW Usage

The RECORDS procedure returns a LONG integer containing the number of rows in the VIEW's
return data set, if no KEY fields are used in the VIEW's ORDER attribute.

For non-SQL file systems, if a KEY field is used in the VIEW's ORDER attribute, then RECORDS
returns negative one (-1). RECORDS can only return a valid value in the cases where the VIEW
engine must build its own index of all the records in the return data set. For those non-SQL
VIEWs which do use a KEY field in the ORDER attribute, Clarion's VIEW engine optimizations
make use of that KEY (allowing for faster overall processing), so no index is built and the number
of records in the return data set is therefore not known.

Return Data Type: LONG

Example:
SomeProc PROCEDURE(LocationQueue Location) !receives named QUEUE structure

Customer FILE,DRIVER('Clarion'),PRE(Cus)
AcctKey KEY(Cus:AcctNumber)
NameKey KEY(Cus:Name)
Record RECORD
AcctNumber LONG
Name STRING(20)

13 – Built-In Procedures 833

Addr STRING(20)
CSZ STRING(60)

END
END

Header FILE,DRIVER('Clarion'),PRE(Hea)
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
OrderAmount DECIMAL(11,2)

END
END

ViewOrder VIEW(Customer),ORDER('Cus:Name,-Hea:OrderAmount') !ORDER without KEY fields
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber)
PROJECT(Hea:OrderNumber)
PROJECT(Hea:OrderAmount)

END
END

SaveCount LONG
SaveNameCount LONG
CODE
OPEN(Customer)
OPEN(Header)
SaveCount = RECORDS(Customer) !Save the record count
SaveNameCount = RECORDS(Cus:NameKey) !Number of records with names filled in
OPEN(ViewOrder)
MESSAGE("Records in VIEW = ' & RECORDS(ViewOrder))

Entries# = RECORDS(Location) !Determine number of entries in passed QUEUE
LOOP I# = 1 TO Entries# !Loop through QUEUE
GET(Location,I#) !getting each entry
ASSERT(NOT ERRORCODE())
DO SomeProcess !process the entry

END

See Also:
QUEUE
ADD
KEY
INDEX
OPT

Language Reference Manual 834

REGISTER (register event handler)

 REGISTER(event, handler, object [,window] [,control])

REGISTER Registers an event handling procedure.

event An integer constant, variable, expression, or EQUATE containing an event
number. A value in the range 400h to 0FFFh is a User-defined event.

handler A LONG variable, or expression containing the return value from ADDRESS for
the PROCEDURE to handle the event.

object A LONG integer constant, variable, or expression containing any 32-bit unique
value to identify the specific handler. This is generally the return value of
ADDRESS(SELF) when the handler is a CLASS method.

window The label of the WINDOW or REPORT whose event to handle. If omitted, the
current target WINDOW or REPORT is assumed.

control An integer constant, EQUATE, variable, or expression containing the field
number of the specific control whose event to handle. If omitted, the event is
handled for every control on the window.

REGISTER registers an event handler PROCEDURE called internally by the currently active
ACCEPT loop of the specified window whenever the specified event occurs. This may be a User-
defined event, or any other event. User-defined event numbers can be defined as any integer
between 400h and 0FFFh.

You may REGISTER multiple handlers for the same event if you choose--the handlers are called
by ACCEPT in reverse order of their registration (the last one registered executes first). You may
explicitly call UNREGISTER to remove the registration of any specific handler. The Clarion
runtime library automatically unregisters all registered event handlers upon RETURN from the
PROCEDURE in which they were registered (when the ACCEPT loop terminates its execution),
so explicitly calling UNREGISTER is not required unless your program's logic requires it.

Anytime the event ocurs, the handler procedure is called internally by the currently active
ACCEPT loop to process the event. The value returned by the handler determines whether or not
ACCEPT cycles for any additional event processing.

The handler PROCEDURE must not take any parameters and must return a BYTE containing
one of the following EQUATEd values (these EQUATEs are defined in the ABERROR.INC file):

Level:Benign
Calls any other handlers and the ACCEPT loop, if available.

Level:Notify
Doesn't call other handlers or the ACCEPT loop. This is like executing CYCLE
when processing the event in an ACCEPT loop.

13 – Built-In Procedures 835

Level:Fatal
Doesn't call other handlers or the ACCEPT loop. This is like executing BREAK
when processing the event in an ACCEPT loop.

Example:
WindowResizeClass.Init PROCEDURE
CODE
REGISTER(EVENT:Sized,ADDRESS(SELF.TakeResize),ADDRESS(SELF))
!Other code follows

WindowResizeClass.TakeResize PROCEDURE
ReturnValue BYTE
CODE
ReturnValue = Level:Benign
RETURN(ReturnValue)

See Also:

UNREGISTER

ACCEPT

EVENT

Language Reference Manual 836

REJECTCODE (return reject code number)

 REJECTCODE()

The REJECTCODE procedure returns the code number for the reason any EVENT:Rejected that
was posted. If no EVENT:Rejected was posted, REJECTCODE returns zero. The
EQUATES.CLW file contains equates for the values returned by REJECTCODE:

 REJECT:RangeHigh !Above the top range on a SPIN
 REJECT:RangeLow !Below the bottom range on a SPIN
 REJECT:Range ! Other range error
 REJECT:Invalid ! Invalid input

Return Data Type: SIGNED

Example:
CASE EVENT()
OF EVENT:Rejected
EXECUTE REJECTCODE()
MESSAGE('Input invalid -- out of range -- too high')
MESSAGE('Input invalid -- out of range -- too low')
MESSAGE('Input invalid -- out of range')
MESSAGE('Input invalid')

END
END

13 – Built-In Procedures 837

REGET (re-get record)
 REGET(sequence, string)

REGET Regets a specific record.

sequence The label of a VIEW, FILE, KEY, or INDEX declaration.

string The string returned by the POSITION procedure.

The REGET re-reads a previously accessed record.

FILE Usage

REGET reads the record identified by the string returned by the POSITION procedure. The value
contained in the string returned by the POSITION procedure, and its length, are dependent on the
file driver.

VIEW Usage

REGET reads the VIEW record identified by the string returned by the POSITION(view)
procedure. The value contained in the string returned by the POSITION procedure, and its length,
are file driver dependent. If the VIEW contains JOIN structures, REGET retrieves the appropriate
set of related records.

REGET re-loads all the VIEW component files' record buffers with complete records. It does not
perform the relational "Project" operation. REGET(view) is explicitly designed to reset the record
buffers to the appropriate records immediately prior to a CLOSE(view) statement. However, the
processing sequence of the files must be reset with a SET or RESET statement.

Errors Posted: 35 Record Not Found
37 File Not Open
43 Record Is Already Held

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END
END

Language Reference Manual 838

RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)
SavPosition STRING(260)

END
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)

LOOP !Read all records in file
NEXT(ViewOrder) !read a record sequentially
IF ERRORCODE()
DO DisplayQue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue
RecordQue :=: Pro:Record !Move record into queue
SavPosition = POSITION(ViewOrder)!Save record position
ADD(RecordQue) !and add it
ASSERT(NOT ERRORCODE())

END
ACCEPT
CASE ACCEPTED()
OF ?ListBox
GET(RecordQue,CHOICE())
REGET(ViewOrder,Que:SavPosition)!Reset the record buffers
CLOSE(ViewOrder) !and get the record again
FREE(RecordQue)
UpdateProc !Call Update Procedure
BREAK

END
END

See Also:

POSITION, SET, RESET, WATCH, GET, NEXT, PREVIOUS

13 – Built-In Procedures 839

RELEASE (release a held record)
 RELEASE(entity)

RELEASE Releases the held record(s).

entity The label of a FILE or VIEW declaration.

The RELEASE statement releases a record previously held by the HOLD procedure. It will not
release a record held by another user in a multi-user environment. If the record is not held, or is
held by another user, RELEASE is ignored.

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END
END

CODE
OPEN(Customer,22h)
OPEN(Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP !Process records Loop
LOOP !Loop to avoid "deadly embrace"
HOLD(ViewOrder,1) !Arm Hold on view, try for 1 second
NEXT(ViewOrder) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
CYCLE !and try again

ELSE;BREAK !Break if not held
END

END
IF ERRORCODE() THEN BREAK END !Check for end of file
!Process the records
RELEASE(ViewOrder) !release held records

END

See Also: HOLD, PUT

Language Reference Manual 840

REMOVE (erase a file)

 REMOVE(file)

REMOVE Deletes a FILE.

file The label of the FILE to be removed, or a string constant or variable containing
the filename of the file to erase.

The REMOVE statement erases a file specification from the operating system directory in the
same manner as the DOS "Delete" command. The file must be closed, or the "File Already Open"
error is posted. If any error is posted, the file is not removed.

Since some file drivers use multiple physical disk files for one logical FILE structure, the default
filename and extension assumptions are dependent on the file driver. If any error is posted, the
file is not deleted.

Errors Posted: 02 File Not Found
05 Access Denied
52 File Already Open

Example:
REMOVE(OldFile) !Delete the old file
REMOVE('Changes.dat') !Delete the changes file

See Also:

CLOSE

13 – Built-In Procedures 841

RENAME (change file directory name)

 RENAME(file,new file)

RENAME Renames a FILE.

file The label of a FILE to rename, or a string constant or variable containing a file
specification.

new file A string constant or variable containing a file specification. If the file specification
does not contain a drive and path, the current drive and directory are assumed. If
only the path is specified, the filename and extension of the original file are used
for the new file. Files cannot be renamed to a new drive.

The RENAME statement changes the file specification to the specification for the new file in the
directory. The file to rename must be closed, or the "File Already Open" error is posted. If the file
specification of the new file is identical to the original file, the RENAME statement is ignored. If
any error is posted, the file is not renamed.

Since some file drivers use multiple physical disk files for one logical FILE structure, the default
filename and extension assumptions are dependent on the file driver.

Errors Posted: 02 File Not Found
03 Path Not Found
05 Access Denied
52 File Already Open

Example:
RENAME(Text,'text.bak') !Make it the backup
RENAME(Master,'\newdir') !Move it to another directory
RENAME('C:\AUTOEXEC.BAT','C:\AUTOEXEC.SAV') !Make it the backup

See Also:

CLOSE

Language Reference Manual 842

RESET (reset record sequence position)

 RESET(| view, string |)

 | view, file |

 | sequence, string |

RESET Resets sequential processing to a specific record.

view The label of a VIEW.

string The string returned by the POSITION procedure.

file The label of a component file of the VIEW.

sequence The label of a FILE, KEY, or INDEX declaration.

RESET resets sequential processing to a specific record.

VIEW Usage

RESET restores the VIEW to a previously read position in the return record set.

RESET(view,string)
Resets to the record identified by the string that was returned by the POSITION
procedure. Once RESET has restored the record pointer, either NEXT or
PREVIOUS will read that record.

RESET(view,file)
Resets to the record identified by the current contents of the file's record buffer.
This is used when the order of the VIEW is specified using PROP:Order and is
equivalent to a RESET(view,string).

The value contained in the position string (a value returned by the POSITION procedure) and its
length, are file driver dependent. RESET is usually used in conjunction with POSITION to
temporarily suspend and resume sequential VIEW processing.

FILE Usage

RESET restores the record pointer to the record identified by the string returned by the
POSITION procedure. Once RESET has restored the record pointer, either NEXT or PREVIOUS
will read that record.

The value contained in the string returned by the POSITION procedure, and its length, are
dependent on the file driver. RESET is used in conjunction with POSITION to temporarily
suspend and resume sequential file processing.

13 – Built-In Procedures 843

Errors Posted: 33 Record Not Available
37 File Not Open

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END
END

RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)

END

SavPosition STRING(260)
CODE
OPEN(Customer,22h)
OPEN(Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(ViewOrder) ! read a record sequentially
IF ERRORCODE()
DO DisplayQue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue
RecordQue :=: Pro:Record !Move record into queue
ADD(RecordQue) ! and add it

ASSERT(NOT ERRORCODE())

Language Reference Manual 844

IF RECORDS(RecordQue) = 20 !20 records in queue?
DO DisplayQue !Display the queue

END
END !End loop

DisplayQue ROUTINE
SavPosition = POSITION(ViewOrder) !Save record position
DO ProcessQue !Display the queue
FREE(RecordQue) !and free it
RESET(ViewOrder,SavPosition) !Reset the record pointer
NEXT(ViewOrder) !and get the record again

See Also:

POSITION, SET, NEXT, PREVIOUS, REGET

13 – Built-In Procedures 845

RESTORESTATE (restore state of data file)

 RESTORESTATE(file, savedstate,<restoreflag>)

RESTORESTATE
Restores a file's savedstate state including the record buffer, file pointer, file
sequencing order, and the error state of the system.

file The label of a FILE declaration.

savedstate A LONG numeric variable which represents the value returned by the
GETSTATE procedure.

restoreflag A BYTE value that sets whether or not the file’s record buffer is to be restored.
The default value is FALSE (0), which indicates that the file buffer is not restored.

RESTORESTATE restores a file's state including the file pointer, file sequencing order, and the
current error state of the system. By default, RESTORESTATE does not restore the file’s record
buffer. Setting the restoreflag to TRUE will restore the state of the file’s record buffer.

RESTORESTATE does not change the data stored in a file. If data is added to a file after
GETSTATE and before RESTORESTATE, the new record(s) will remain in the data file after the
RESTORESTATE.

Example:
MyFunction PROCEDURE(FILE MyFile)

CurState LONG

CODE

! File will be in the same state on exit of this procedure as it was on entry
CurState = GETSTATE(MyFile) !save current state of file
SET(MyFile) !ready to access file
NEXT(MyFile) !read a record
CLEAR(MyFile) !clear record buffer
RESTORESTATE(MyFile,CurState,1) !restore file and buffer to initial state
FREESTATE(MyFile, CurState) !release resources

See Also:

FREESTATE

GETSTATE

Language Reference Manual 846

RESUME (resume thread execution)

 RESUME(threadno)

RESUME Resume thread execution.

threadno A numeric constant, variable, or expression that can be evaluated as a SIGNED
integer.

The RESUME procedure restores a thread that has been suspended with the SUSPEND
statement. If the threadno parameter is a number of a thread that was previously suspended by
the call to SUSPEND, its suspending count is decremented. If the suspending count becomes
equal to zero(0), execution of the thread continues from the point where it has been suspended.
Therefore, the number of calls to RESUME must be equal to the number of calls to SUSPEND for
the thread execution to resume.

RESUME can also be used to activate a new thread immediately. Normally, a procedure does
not allocate memory for thread variables until the ACCEPT event handler is executed. RESUME
can be used to activate a new thread directly upon procedure entry.

Example:

RESUME(ThreadNumVariable) !attempt to resume thread execution

RESUME(START(MyThreadProc)) !start a new thread immediately

See Also: SUSPEND

 Launching a thread - a look behind the scenes

13 – Built-In Procedures 847

RIGHT (return right justified string)

 RIGHT(string [,length])

RIGHT Right justifies a string.

string A string constant, variable, or expression.

length A numeric constant, variable, or expression for the length of the return string. If
omitted, the length is set to the length of the string.

The RIGHT procedure returns a right justified string. Trailing spaces are removed, then the string
is right justified and returned with leading spaces.

Return Data Type: STRING

Example:
!RIGHT('ABC ') returns ' ABC'

Message = RIGHT(Message) !Right justify the message

See Also:

LEFT

CENTER

Language Reference Manual 848

ROLLBACK (terminate unsuccessful transaction)

 ROLLBACK

The ROLLBACK statement terminates an active transaction. Execution of a ROLLBACK
statement assumes that the transaction was unsuccessful and the database must be restored to
the state it was in before the transaction began.

ROLLBACK informs the file driver involved in the transaction that the temporary files containing
the information necessary to restore the database to its previous state must be used to restore
the database. The file driver then performs the actions necessary to its file system to roll back the
transaction.

Errors Posted: 65 Unable to ROLLBACK Transaction
91 No Logout Active

Example:
LOGOUT(1,OrderHeader,OrderDetail) !Begin Transaction
DO ErrHandler !always check for errors
ADD(OrderHeader) !Add Parent record
DO ErrHandler !always check for errors
LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) !Get one from the QUEUE
DO ErrHandler !always check for errors
Det:Record = DetailQue !Assign to record buffer
ADD(OrderDetail) !and add it to the file
DO ErrHandler !always check for errors

END
COMMIT !Terminate successful transaction
ASSERT(~ERRORCODE())

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
ROLLBACK !Rollback the aborted transaction
ASSERT(~ERRORCODE())
BEEP !Alert the user
MESSAGE('Transaction Error - ' & ERROR())
RETURN !and get out

See Also:

LOGOUT

COMMIT

13 – Built-In Procedures 849

ROUND (return rounded number)

 ROUND(expression,order)

ROUND Returns rounded value.

expression A numeric constant, variable, or expression.

order A numeric expression with a value equal to a power of ten, such as 1, 10, 100,
0.1, 0.001, etc. If the value is not an even power of ten, the next lowest power is
used; 0.55 will use 0.1 and 155 will use 100.

The ROUND procedure returns the value of an expression rounded to a power of ten. If the order
is a LONG or DECIMAL Base Type, then rounding is performed as a BCD operation. Note that if
you want to round a real number larger than 1³°, you should use ROUND(num,1.0e°), and not
ROUND(num,1). The ROUND procedure is very efficient ("cheap") as a BCD operation and
should be used to compare REALs to DECIMALs at decimal width.

Return Data Type: DECIMAL or REAL

Example:
!ROUND(5163,100) returns 5200
!ROUND(657.50,1) returns 658
!ROUND(51.63594,.01) returns 51.64

Commission = ROUND(Price / Rate,.01) !Round the commission to the nearest cent

See Also:

BCD Operations and Procedures

Language Reference Manual 850

ROUNDBOX (draw a box with round corners)
 ROUNDBOX(x ,y ,width ,height [,fill] [,attributelist])

ROUNDBOX Draws a rectangular box with rounded corners on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes
(bytes 0, 1, and 2) or an EQUATE for a standard Windows color value.

attributelist A string constant, variable, or EQUATE containing an optional type of output
document and its associated attributes. Only valid when the target is a REPORT.
(See EXTEND)

The ROUNDBOX procedure places a rectangular box with rounded corners on the current
window or report. The position and size of the box are specified by x, y, width, and height
parameters.

The x and y parameters specify the starting point, and the width and height parameters specify
the horizontal and vertical size of the box. The box extends to the right and down from its starting
point.

The border color is the current pen color set by SETPENCOLOR; the default color is the
Windows system color for window text. The border width is the current width set by
SETPENWIDTH; the default width is one pixel. The border style is the current pen style set by
SETPENSTYLE; the default style is a solid line.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
ROUNDBOX(100,50,100,50,00FF0000h) !Red round-cornered box

See Also: Current Target, SETPENCOLOR, SETPENWIDTH, SETPENSTYLE

13 – Built-In Procedures 851

RUN (execute command)

 RUN(command [, waitflag])

RUN Executes a command as if it were entered on the DOS command line.

command A string constant or variable containing the command to execute. This may
include a full path and command line parameters.

waitflag An integer constant, variable, or EQUATE indicating whether RUN should launch
the command and wait for its termination, or immediately return after launching. If
omitted or zero (0), control immediately returns to the statement following the
RUN. If one (1), control returns to the statement following the RUN only after the
command has completed its execution.

The RUN statement executes a command to execute a DOS or Windows program. If the
command parameter is a STRING variable, you must first use CLIP to remove trailing spaces (not
necessary if the command is a CSTRING variable). Internally, RUN uses the winexec() Windows
API call to execute the command.

When the command executes, the new program is loaded as the ontop and active program.
Execution control in the launching program returns immediately to the statement following RUN
and the launching program continues executing as a background application if the waitflag is set
to zero (0). The user can return to the launching program by either terminating the launched
program, or switching back to it through the Windows Task List. Execution control in the
launching program returns to the statement following RUN only after the command has
terminated its execution if the waitflag is set to one (1).

If the command does not contain a path to the program, the following search sequence is
followed:

 1. The DOS current directory
 2. The Windows directory
 3. The Windows system directory
 4. Each directory in the DOS PATH
 5. Each directory mapped in a network

The successful execution of the command may be verified with the RUNCODE procedure, which
returns the DOS exit code of the command. If unsuccessful, RUN posts the error to the ERROR
and ERRORCODE procedures.

Errors Posted: RUN may post any possible error

Language Reference Manual 852

Example:

ProgNameC CSTRING(100)
ProgNameS STRING(100)

CODE
RUN('notepad.exe readme.txt') !Run Notepad, automatically loading readme.txt file
RUN(ProgNameC) !Run the command in the ProgNameC CSTRING variable
RUN(CLIP(ProgNameS)) !Run the command in the ProgNameS STRING variable
RUN('command.com /c MyBat.bat',1) !Run the command and wait for it to complete

See Also: RUNCODE, HALT, ERROR, ERRORCODE

13 – Built-In Procedures 853

RUNCODE (return program exit code)

 RUNCODE()

The RUNCODE procedure returns the exit code passed to the operating system from the
command executed by the RUN statement. This is the exit code passed by the HALT statement
in Clarion programs and is the same as the DOS ERRORLEVEL. RUNCODE returns a LONG
integer which may be any value that is returned to DOS as an exit code by the child program.

The child program may only supply a BYTE value as an exit code, therefore negative values are
not possible as exit codes. This fact allows RUNCODE to reserve these values to handle
situations in which an exit code is not available:

0 normal termination
-1 program terminated with Ctrl-C
-2 program terminated with Critical error
-3 TSR exit
-4 program did not run (check ERROR())

Return Data Type: LONG

Example:
RUN('Nextprog.exe') !Run next program
IF RUNCODE() = -4
IF ERROR() = 'Not Enough Memory' !If program didn't run for lack of memory
MESSAGE('Insufficient memory') !display a message
RETURN !and terminate the procedure

ELSE
STOP(ERROR()) !terminate program

.END.

See Also:

RUN

HALT

Language Reference Manual 854

SELECT (select next control to process)

 SELECT([control] [,position] [,endposition])

SELECT Sets the next control to receive input focus.

control A field number or field equate label of the next control to process. If omitted, the
SELECT statement initiates AcceptAll mode.

position Specifies a position within the control to place the cursor. For an ENTRY or
TEXT, SPIN, or COMBO control this is a character position, or a beginning
character position for a marked block. For an OPTION structure, this is the
selection number within the OPTION. For a LIST control, this is the QUEUE entry
number. This parameter can also be specified using property syntax by
PROP:Selected or PROP:SelStart.

endposition Specifies an ending character position within an ENTRY, TEXT, SPIN, or
COMBO control. The character position specified by position and endposition are
marked as a block, available for cut and paste operations. This parameter can
also be specified using property syntax by PROP:SelEnd.

SELECT overrides the normal TAB key sequence control selection order of an APPLICATION or
WINDOW. Its action affects the next ACCEPT statement that executes. The control parameter
determines which control the ACCEPT loop will process next. If control specifies a control which
cannot receive focus because a DISABLE or HIDE statement has been issued, focus goes to the
next control following it in the window's source code that can receive focus. If control specifies a
control on a TAB which does not have focus, the TAB is brought to the front before the control
receives focus.

SELECT with position and endposition parameters specifies a marked block in the control which
is available for cut and paste operations.

SELECT with no parameters initiates AcceptAll mode (also called non-stop mode). This is a field
edit mode in which each control in the window is processed in TAB key sequence by generating
EVENT:Accepted for each. This allows data entry validation code to execute for all controls,
including those that the user has not touched.

AcceptAll mode terminates when any of the following conditions is met:

• A SELECT(?) statement selects the same control for the user to edit. This code usually
indicates the value it contains is invalid and the user must re-enter data.

• The Window{PROP:AcceptAll} property is set to zero (0). This property contains one (1)
when AcceptAll mode is active. Assigning values to this property can also be used to
initiate and terminate AcceptAll mode.

13 – Built-In Procedures 855

• A control with the REQ attribute is blank or zero. AcceptAll mode terminates with the
control highlighted for user entry, without processing any more fields in the TAB key
sequence.

When all controls have been processed, EVENT:Completed is posted to the window.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
LIST,USE(Ctl:Type),From(TypeQue),Drop(5)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END

CODE
OPEN(Screen)
SELECT(?Ctl:Code) !Start with Ctl:Code
ACCEPT
CASE SELECTED()
OF ?Ctl:Type
GET(TypeQue,Ctl:Type) !Find type in List
SELECT(?Ctl:Type,POINTER(TypeQue) !Select list to element

END
CASE ACCEPTED()
OF ?Ctl:Code
IF Ctl:Code > 150 !If data entered is invalid
BEEP !alert the user and
SELECT(?) !make them re-enter the data

END
OF ?Ctl:Name
SELECT(?Ctl:Name,1,5) !Mark first five characters as a block

OF ?OkButton
SELECT !Initiate AcceptAll mode

END
IF EVENT() = EVENT:Completed
BREAK !AcceptAll mode terminated

END
END

See Also:

ACCEPT

Language Reference Manual 856

SELECTED (return control that has received focus)

 SELECTED()

The SELECTED procedure returns the field number of the control receiving input focus when an
EVENT:Selected event occurs. SELECTED returns zero (0) for all other events.

Positive field numbers are assigned by the compiler to all WINDOW controls, in the order their
declarations occur in the WINDOW structure. Negative field numbers are assigned to all
APPLICATION controls. In executable code statements, field numbers are usually represented by
field equate labels--the label of the USE variable preceded by a question mark (?FieldName).

Return Data Type: SIGNED

Example:
CASE SELECTED() !Process pre-edit code
OF ?Cus:Company !Pre-load field value
OF ?Cus:CustType !Pre-load field value
END

See Also:

ACCEPT

SELECT

13 – Built-In Procedures 857

SEND (send message to file driver)

 SEND(file,message)

SEND Sends a message to the file driver.

file The label of a FILE declaration. The FILE's DRIVER attribute identifies the file
driver to receive the message.

message A string constant or variable containing the information to supply to the file driver.

The SEND procedure allows the program to pass any driver-specific information to a file driver
during program execution. Valid messages are dependent upon the file driver in use.
Documentation of all valid SEND messages for a given file driver are listed in the file driver's
documentation.

Return Data Type: STRING

Example:
!Arm recovery process for a Clarion data file
FileCheck = SEND(ClarionFile,'RECOVER=120')

Language Reference Manual 858

SET (initiate sequential file processing)
 | file |

 SET(| file, key |)

 | file, filepointer |

 | key |

 | key, key |

 | key, keypointer |

 | key, key, filepointer |

 | view |

 | view , number |

SET Initializes sequential processing of a FILE or VIEW.

file The label of a FILE declaration. This parameter specifies processing in the
physical order in which records occur in the data file.

key The label of a KEY or INDEX declaration. When used in the first parameter
position, key specifies processing in the sort sequence of the KEY or INDEX.

filepointer A numeric constant, variable, or expression for the value returned by the
POINTER(file) procedure.

keypointer A numeric constant, variable, or expression for the value returned by the
POINTER(key) procedure.

view The label of a VIEW.

number An integer constant, variable or expression that specifies the start position based
on the first number of components of the ORDER attribute. If omitted, all ORDER
attribute components are used.

SET initializes sequential processing for a FILE or VIEW. SET does not get a record, but only
sets up processing order and starting point for the following NEXT or PREVIOUS statements.

FILE Usage

SET initializes sequential processing of a data file. The first parameter determines the order in
which records are processed. The second and third parameters determine the starting point
within the file. If the second and third parameters are omitted, processing begins at the beginning
(or end) of the file.

SET(file)
Specifies physical record order processing and positions to the beginning
(SET...NEXT) or end (SET...PREVIOUS) of the file.

13 – Built-In Procedures 859

SET(file,key)
Specifies physical record order processing and positions to the first record which
contains values matching the values in the component fields of the key. NOTE:
This form is rarely used and is only useful if the file has been physically sorted in
the key order. A common mistake is to use this form when SET(key,key) is the
actual form desired.

SET(file,filepointer)
Specifies physical record order processing and positions to the filepointer record
within the file.

SET(key)
Specifies keyed sequence processing and positions to the beginning
(SET...NEXT) or end (SET...PREVIOUS) of the file in that sequence.

SET(key,key)
Specifies keyed sequence processing and positions to the first or last record
which contains values matching the values in the component fields of the key.
Both key parameters must be the same.

SET(key,keypointer)
Specifies keyed sequence processing and positions to the keypointer record
within the key.

SET(key,key,filepointer)
Specifies keyed sequence processing and positions to a record which contains
values matching the values in the component fields of the key at the exact record
number specified by filepointer. Both key parameters must be the same.

When key is the second parameter, processing begins at the first or last record containing values
matching the values in all the component fields of the specified KEY or INDEX. If an exact match
is found, NEXT will read the first matching record while PREVIOUS will read the last matching
record. If no exact match is found, the record with the next greater value is read by NEXT, the
record with next lesser value is read by PREVIOUS.

The values for filepointer and keypointer are dependent on the file driver. They could be a record
number, the relative byte position within the file, or some other kind of "seek position" within the
file. These parameters are used to begin processing at a specific record within the file.

For all file drivers, an attempt to SET past the end of the file will set the EOF procedure to true,
and an attempt to SET before the beginning of the file will set the BOF procedure to true.

VIEW Usage

SET sets sequential processing for the VIEW to the beginning or end of the set of records
specified by the FILTER attribute, sorted by the ORDER attribute. The optional number
parameter limits the SET to assume that the values in the first specified number of expressions in
the ORDER attribute are fixed. The VIEW must be OPEN before the SET.

Language Reference Manual 860

Example:
ViewOrder VIEW(Customer),FILTER('Hea:OrderTotal >= 500') |

,ORDER('-Hea:OrderDate,Cus:Name')
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber,Hea:OrderTotal,Hea:OrderDate)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END
END

CODE
DO OpenAllFiles

!Physical file order, beginning of file
SET(Customer)

Cus:Name = 'Smith'
!Physical file order, first record where Name = 'Smith'
SET(Customer,Cus:NameKey)

SavePtr = POINTER(Customer)
!Physical file order, physical record number = SavePtr
SET(Customer,SavePtr)

!NameKey order, beginning of file (relative to the key)
SET(Cus:NameKey)

SavePtr = POINTER(Cus:NameKey)
!NameKey order, key-relative record number = SavePtr
SET(Cus:NameKey,SavePtr)

Cus:Name = 'Smith'
!NameKey order, first record where Name = 'Smith'
SET(Cus:NameKey,Cus:NameKey)

Cus:Name = 'Smith'
SavePtr = POINTER(Customer)

!NameKey order, Name = 'Smith' and rec number = SavePtr
SET(Cus:NameKey,Cus:NameKey,SavePtr)

OPEN(ViewOrder)
SET(ViewOrder) !Top of record set in ORDER sequence

13 – Built-In Procedures 861

LOOP !Read all records in file
NEXT(ViewOrder) !read a record sequentially
IF ERRORCODE() THEN BREAK END
!Process the order
END

END
Hea:OrderDate = TODAY()-1 !Assign yesterday's date
SET(ViewOrder,1) !and process just yesterday's orders
LOOP !Read all records in file
NEXT(ViewOrder) !read a record sequentially
IF ERRORCODE() THEN BREAK.
!Process the order
END

END

See Also:

NEXT, PREVIOUS, FILTER, ORDER, OPEN, POINTER(queue), POINTER, GET

RESET, POSITION

Language Reference Manual 862

SET3DLOOK (set 3D window look)
 SET3DLOOK(switch)

SET3DLOOK Toggles three-dimensional look and feel.

switch An integer constant switching the 3D look off (0) and on (1).

The SET3DLOOK procedure sets up the program to display a three-dimensional look and feel.
The default program setting is 3D enabled. On a WINDOW, the GRAY attribute causes the
controls to display with a three-dimensional appearance. Controls in the TOOLBAR are always
displayed with the three-dimensional look, unless disabled by SET3DLOOK. When three-
dimensional look is disabled by SET3DLOOK, the GRAY attribute has no effect.

SET3DLOOK(0) turns off the three-dimensional look and feel. SET3DLOOK(1) turns on the three-
dimensional look and feel. Values other than zero or one are reserved for future use.

Example:
MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS,|

HVSCROLL,RESIZE
MENUBAR
MENU('&File'),USE(?FileMenu)
ITEM('&Open...'),USE(?OpenFile)
ITEM('&Close'),USE(?CloseFile),DISABLE
ITEM('Turn off 3D Look'),USE(?Toggle3D),CHECK
ITEM('E&xit'),USE(?MainExit)

END
END

END
CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?Toggle3D
IF MainWin$?Toggle3D{PROP:text} = 'Turn off 3D Look' !If on
SET3DLOOK(0) !Turn off
MainWin$?Toggle3D{PROP:text} = 'Turn on 3D Look' !and change text

ELSE !Else
SET3DLOOK(1) !Turn on
MainWin$?Toggle3D{PROP:text} = 'Turn off 3D Look' ! and change text

END
OF ?OpenFile
START(OpenFileProc)

OF ?MainExit
BREAK

END
END; CLOSE(MainWin)

13 – Built-In Procedures 863

SETCLIPBOARD (set windows clipboard contents)

 SETCLIPBOARD(string)

SETCLIPBOARD Puts information in the Windows clipboard.

string A string constant or variable containing the information to place in the Windows
clipboard.This should not contain any embedded null characters (ASCII 0). This
is placed in the CF_TEXT format, only.

The SETCLIPBOARD procedure places the contents of the string into the Windows clipboard,
overwriting any previous contents.

Example:
Que1 QUEUE

STRING(30)
END

Que2 QUEUE
STRING(30)

END
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID('List1')
!Allows drags, but not drops

LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID('List1')
!Allows drops from List1, but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() !check for success
SETCLIPBOARD(Que1) !and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = CLIPBOARD() !get dropped info
ADD(Que2) !and add it to the queue

END
END

See Also:

CLIPBOARD

Language Reference Manual 864

SETCLOCK (set system time)

 SETCLOCK(time)

SETCLOCK Sets the DOS system clock.

time A numeric constant, variable, or expression for a standard time (expressed as
hundredths of a second since midnight, plus one).

The SETCLOCK statement sets the operating system time of day.

Example:
SETCLOCK(1) !Set clock to midnight
SETCLOCK(6001) !Set clock to one minute past midnight

See Also:

Standard Time

CLOCK

13 – Built-In Procedures 865

SETCOMMAND (set command line parameters)

 SETCOMMAND(commandline)

SETCOMMAND Internally sets command line parameters.

commandline A string constant, variable, or expression containing the new command
line parameters.

SETCOMMAND allows the program to internally specify command line parameters that may be
read by the COMMAND procedure. SETCOMMAND overwrites any previous command line flag
of the same value. To turn off a leading slash flag, append an equal sign (=) to it in the
commandline.

SETCOMMAND may not be used to set system level switches which must be specified when the
program is loaded. The temporary files directory switch (CLATMP=) may be set with
SETCOMMAND.

Example:
SETCOMMAND(' /N') !Add /N parameter
SETCOMMAND(' /N=') !Turn off /N parameter

See Also:

COMMAND

Language Reference Manual 866

SETCURSOR (set temporary mouse cursor)
 SETCURSOR([cursor])

SETCURSOR Specifies a temporary mouse cursor to display.

cursor An EQUATE naming a Windows-standard mouse cursor, or a string constant
naming a cursor resource linked into the project--the name of a .CUR file with a
leading tilde ('~Mycur.CUR'). If omitted, turns off the temporary cursor.

The SETCURSOR statement specifies a temporary mouse cursor to display until a SETCURSOR
statement without a cursor parameter turns it off. This cursor overrides all CURSOR attributes.
When SETCURSOR without a cursor parameter is encountered, all CURSOR attributes once
again take effect. SETCURSOR is generally used to display the hourglass while your program is
doing some "behind the scenes" work that the user should not break into.

EQUATE statements for the Windows-standard mouse cursors are contained in the
EQUATES.CLW file. The following list is a representative sample of these (see EQUATES.CLW
for the complete list):

 CURSOR:None No mouse cursor
 CURSOR:Arrow Normal windows arrow cursor
 CURSOR:IBeam Capital "I" like a steel I-beam
 CURSOR:Wait Hourglass
 CURSOR:Cross Large plus sign
 CURSOR:UpArrow Vertical arrow
 CURSOR:Size Four-headed arrow
 CURSOR:Icon Box within a box
 CURSOR:SizeNWSE Double-headed arrow slanting left
 CURSOR:SizeNESW Double-headed arrow slanting right
 CURSOR:SizeWE Double-headed horizontal arrow
 CURSOR:SizeNS Double-headed vertical arrow

Example:
MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS,HVSCROLL

MENUBAR
ITEM('Batch Update'),USE(?Batch)
END
END

CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?Batch
SETCURSOR(CURSOR:Wait) !Turn on hourglass mouse cursor
BatchUpdate !and call the batch update procedure
SETCURSOR !then turn off hourglass

END; END !CASE and ACCEPT

13 – Built-In Procedures 867

SETDROPID (set DROPID return string)
 SETDROPID(string)

SETDROPID Sets the DROPID procedure's return value.

string A string constant or variable containing the value the DROPID procedure will
return.

The SETDROPID procedure sets the DROPID procedure's return value. This allows the DROPID
procedure to pass the data in a drag-and-drop operation. When drag-and-drop operations are
performed between separate Clarion applications, this is the mechanism to use to pass the data.

Example:
Que1 QUEUE

STRING(30)
END

Que2 QUEUE
STRING(30)

END

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID('List1')

!Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID('List1')

!Allows drops from List1 or the Windows File Manager,
!but no drags

END

CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() !check for success
SETDROPID(Que1) !and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() !get dropped info, from List1 or File Manager
ADD(Que2) !and add it to the queue

END
END

See Also:

DRAGID

DROPID

Language Reference Manual 868

SETFONT (specify font)
 SETFONT(control , [typeface] , [size] , [color] , [style] ,[charset])

SETFONT Dynamically sets the display font for a control.

control A field number or field equate label for the control to affect. If control is zero (0), it
specifies the WINDOW.

typeface A string constant or variable containing the name of the font. If omitted, the
system font is used.

size An integer constant or variable containing the size (in points) of the font. If
omitted, the system default font size is used.

color A LONG integer constant or variable containing the red, green, and blue values
for the color of the font in the low-order three bytes, or an EQUATE for a
standard Windows color value. If omitted, black is used.

style An integer constant, constant expression, EQUATE, or variable specifying the
strike weight and style of the font. If omitted, the weight is normal.

charset A LONG integer variable specifying the character set value.

SETFONT dynamically specifies the display font for the control, overriding any FONT attribute. If
the control parameter is zero (0), SETFONT specifies the default font for the window. However,
this does not affect existing controls--only controls CREATEd after SETFONT executes are
affected.

SETFONT allows you to specify all parameters of a font change at once, instead of one at a time
as runtime property assignment allows. This has the advantage of implementing all changes at
once, whereas runtime property assignment would change each individually, displaying each
separate change as it occurs.

The typeface may name any font registered in the Windows system. The EQUATES.CLW file
contains EQUATE values for standard style values. A style on the range zero (0) to one thousand
(1000) specifies the strike weight of the font. You may also add values that indicate italic,
underline, or strikeout text. The following EQUATES are in EQUATES.CLW:

 FONT:thin EQUATE (100)
 FONT:regular EQUATE (400)
 FONT:bold EQUATE (700)
 FONT:italic EQUATE (01000H)
 FONT:underline EQUATE (02000H)
 FONT:strikeout EQUATE (04000H)

Example:
SETFONT(1,'Arial',14,,FONT:thin+FONT:Italic) !14 pt. Arial black thin italic

See Also: GETFONT

13 – Built-In Procedures 869

SETKEYCHAR (specify ASCII code)

 SETKEYCHAR(keychar)

SETKEYCHAR Sets the ASCII character returned by the KEYCHAR procedure.

keychar An integer constant, variable, or expression containing the ASCII value of the
character to set.

SETKEYCHAR sets the internal ASCII character returned by the KEYCHAR procedure. The
character is not put into the keyboard buffer.

Example:
SETKEYCHAR(VAL('A')) !Set up the keychar procedure to return 'A'

See Also:

KEYCHAR

Language Reference Manual 870

SETKEYCODE (specify keycode)

 SETKEYCODE(keycode)

SETKEYCODE Sets the keycode returned by the KEYCODE procedure.

keycode An integer constant or keycode EQUATE label.

SETKEYCODE sets the internal keycode returned by the KEYCODE procedure. The keycode is
not put into the keyboard buffer.

Example:
SETKEYCODE(0800h) !Set up the keycode procedure to return 0800h

See Also:

KEYCODE

Keycode Equate Labels

13 – Built-In Procedures 871

SETNONULL (set file field non-null)
 SETNONULL(field)

SETNONULL Assigns non-null value (blank or zero) to a field.

field The label (including prefix) of a field in a FILE structure. This may be a GROUP
or RECORD structure.

The SETNONULL statement assigns a non-null value (blank or zero) to a field in a FILE
structure. If the field is a GROUP or RECORD structure, all component fields are set non-null.
Support for null "values" in a FILE is entirely dependent upon the file driver.

Return Data Type: LONG

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

END
END

Header FILE,DRIVER('Clarion'),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)

END
END

Language Reference Manual 872

CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE()
BREAK

END
Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record
IF ERRORCODE()
CLEAR(Cus:Record)

END
IF NULL(Hea:ShipToName) OR Hea:ShipToName = Cus:Name !Check same ship-to address
Hea:ShipToName = 'Same as Customer Address' !flag the record
SETNONULL(Hea:ShipToAddr) !and blank out ship-to address
SETNONULL(Hea:ShipToCSZ)

END
PUT(Header) !Put Header record back

END

13 – Built-In Procedures 873

SETNULL (set file field null)

 SETNULL(field)

SETNULL Assigns null "value" to a field.

field The label (including prefix) of a field in a FILE structure. This may be a GROUP
or RECORD structure.

The SETNULL statement assigns a null "value" to a field in a FILE structure. If the field is a
GROUP or RECORD structure, all component fields are set to null. Support for null "values" in a
FILE is entirely dependent upon the file driver.

Return Data Type: LONG

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
CSZ STRING(35)

END
END

Header FILE,DRIVER('Clarion'),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCSZ STRING(35)

END
END

Language Reference Manual 874

CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE()
BREAK

END
Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record

IF ERRORCODE()
CLEAR(Cus:Record)

END
IF NOT NULL(Hea:ShipToName) AND Hea:ShipToName = Cus:Name !Check ship-to address
SETNULL(Hea:ShipToName) !and assign null "values"
SETNULL(Hea:ShipToAddr) ! to ship-to address
SETNULL(Hea:ShipToCSZ)

END
PUT(Header) !Put Header record back

END

See Also:

NULL

SETNONNULL

13 – Built-In Procedures 875

SETNULLS(set the null state of columns)
 SETNULLS(table, null-value)

SETNULLS Set NULL state of columns in a table.

table The label of a FILE.

null-value Null "value" to assign to the table.

SETNULLS sets the NULL state of every column in the table based on the contents of the
passed string. The passed string must be obtained from a prior call to GETNULLS. This function
is valid on all SQL table types.

Errors Posted: 75 Invalid Column Type Descriptor – Indicating that the passed string was too small.
80 Function Not Supported

Example:
StorageString STRING(255)
Rec STRING(2048)

CODE
StorageString = GETNULLS(table) !Get NULL state of table
Rec = table.record !Save record buffer
! Do Table Processing
Table.Record = Rec !Restore record buffer
SETNULLS(table, StorageString) !Set NULL state of table columns

See Also:

GETNULLS

NULL

SETNONULL

Language Reference Manual 876

SETPATH (change current drive and directory)
 SETPATH(path)

SETPATH Changes the current drive and directory.

path A string constant or the label of a STRING, CSTRING, or PSTRING variable
containing a new drive and/or directory specification.

SETPATH changes the current drive and directory. If the drive and path entry is invalid, the "Path
Not Found" error is posted, and the current directory is not changed.

If the drive letter and colon are omitted from the path, the current drive is assumed. If only a drive
letter and colon are in the path, SETPATH changes to the current directory of that drive.

Errors Posted: 03 Path Not Found

Example:
SETPATH('C:\LEDGER') !Change to the ledger directory
SETPATH(UserPath) !Change to the user's directory

See Also:

PATH

SHORTPATH

LONGPATH

DIRECTORY

13 – Built-In Procedures 877

SETPENCOLOR (set line draw color)
 SETPENCOLOR([color])

SETPENCOLOR Sets the current pen color.

color A LONG integer constant, constant EQUATE, or variable containing the
red, green, and blue components that create the color in the three low-
order bytes (bytes 0, 1, and 2) or an EQUATE for a standard Windows
color value. If omitted, the Windows system color for window text is set.

The SETPENCOLOR procedure sets the current pen color for use by all graphics procedures.
The default color is the Windows system color for window text.

Every window has its own current pen color. Therefore, to consistently use the same pen (which
does not use the default color setting) across multiple windows, the SETPENCOLOR statement
should be issued for each window.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
ROUNDBOX(100,50,100,50,00FF0000h) !Red round-cornered box with blue border

See Also:

PENCOLOR

Language Reference Manual 878

SETPENSTYLE (set line draw style)
 SETPENSTYLE([style])

SETPENSTYLE Sets the current pen style.

style An integer constant, constant EQUATE, or variable that specifies the
pen's style. If omitted, a solid line is set.

The SETPENSTYLE procedure sets the current line draw style for use by all graphics
procedures. The default is a solid line.

Every window has its own current pen style. Therefore, to consistently use the same pen (which
does not use the default style setting) across multiple windows, the SETPENSTYLE statement
should be issued for each window.

EQUATE statements for the pen styles are contained in the EQUATES.CLW file. The following
list is a representative sample of these (see EQUATES.CLW for the complete list):

 PEN:solid Solid line
 PEN:dash Dashed line
 PEN:dot Dotted line
 PEN:dashdot Mixed dashes and dots

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
ROUNDBOX(100,50,100,50,00FF0000h) !Red round-cornered box with blue dashed border

See Also:

PENSTYLE

13 – Built-In Procedures 879

SETPENWIDTH (set line draw thickness)
 SETPENWIDTH([width])

SETPENWIDTH Sets the current pen width.

width An integer expression that specifies the pen's thickness, measured in
dialog units (unless overridden by the THOUS, MM, or POINTS attribute
on a REPORT). If omitted, the default (one pixel) is set.

The SETPENWIDTH procedure sets the current line draw thickness for use by all graphics
procedures. The default is one pixel, which may be set with a width of zero (0).

Every window has its own current pen width. Therefore, to consistently use the same pen (which
does not use the default width setting) across multiple windows, the SETPENWIDTH statement
should be issued for each window.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border

See Also:

PENWIDTH

Language Reference Manual 880

SETPOSITION (specify new control position)
 SETPOSITION(control [,x] [, y] [, width] [, height])

SETPOSITION Dynamically specifies the position and size of an APPLICATION, WINDOW, or
control.

control A field number or field equate label for the control to affect. If control is zero (0), it
specifies the window.

x An integer constant, expression, or variable that specifies the horizontal position
of the top left corner. If omitted, the x position is not changed.

y An integer constant, expression, or variable that specifies the vertical position of
the top left corner. If omitted, the y position is not changed.

width An integer constant, expression, or variable that specifies the width. If omitted,
the width is not changed.

height An integer constant, expression, or variable that specifies the height. If omitted,
the height is not changed.

SETPOSITION dynamically specifies the position and size of an APPLICATION, WINDOW, or
control. If any parameter is omitted, the value is not changed.

The values contained in the x, y, width, and height parameters are measured in dialog units.
Dialog units are defined as one-quarter the average character width by one-eighth the average
character height. The size of a dialog unit is dependent upon the size of the default font for the
window. This measurement is based on the font specified in the FONT attribute of the window, or
the system default font specified by Windows.

Using SETPOSITION produces a "smoother" control appearance change than using property
expressions to change the AT attribute's parameter values. This is because SETPOSITION
changes all four parameters at once. Property expressions must change one parameter at a time.
Since each individual parameter change would be immediately visible on screen, this would
cause the control to appear to "jump."

Example:
CREATE(?Code4Entry,CREATE:entry,?Ctl:Code) !Create a control
?Code4Entry{PROP:use} = 'Code4Entry' !Set USE variable
?Code4Entry{PROP:text} = '@s10' !Set entry picture
GETPOSITION(?Ctl:Code,X,Y,Width,Height) !Get Ctl:Code position
SETPOSITION(?Code4Entry,X+Width+40,Y) !Set x 40 past Ctl:Code
UNHIDE(?Code4Entry) !Display the new control

See Also:

GETPOSITION

13 – Built-In Procedures 881

SETTARGET (set current window or report)
 SETTARGET([| target |])

 | , thread |

 | target , band |

SETTARGET Sets the current window (or report) for drawing graphics and other window-
interaction statements.

target The label of an APPLICATION, WINDOW, or REPORT structure, or a reference
to any of those structures. The execution thread is always deduced from the
target and any specified thread parmeter is ignored. If omitted, the last window
opened and not yet closed in the specified thread is used.

thread The number of the execution thread whose topmost procedure contains the
window to set as the target. If omitted, the execution thread is deduced from the
target.

band The control number or field equate label of the REPORT band (or IMAGE control
in a window target) to draw graphics primitives to (ARC, CHORD, etc.).

SETTARGET sets the current target for runtime property assignment, and the CREATE,
SETPOSITION, GETPOSITION, SETFONT, GETFONT, DISABLE, HIDE, CONTENTS,
DISPLAY, ERASE, and UPDATE statements. Using these statements with SETTARGET allows
you to manipulate the window display in the topmost window of any execution thread.
SETTARGET also specifies the target structure for drawing with the graphics primitives
procedures (ARC, CHORD, etc.).

SETTARGET sets the "built-in" variable TARGET (also set when a window opens), which may be
used in any statement which requires the label of the current window or report. SETTARGET
does not change procedures, and does not change which ACCEPT loop receives the events
generated by Windows. SETTARGET without any parameters resets to the procedure and
execution thread with the currently active ACCEPT loop.

A REPORT structure is never the default TARGET. Therefore, SETTARGET must be used before
using the graphics primitives procedures to draw graphics on a REPORT. To draw graphics to a
specific band in the REPORT (or onto an IMAGE in a window), you must specify the band as the
second parameter.

SETTARGET
Resets TARGET to the topmost window in the execution thread with the currently
active ACCEPT loop.

SETTARGET(target)
Sets TARGET to the specified window or report. The execution thread is
deduced from the target.

Language Reference Manual 882

SETTARGET(target,thread)
Sets TARGET to the specified window or report. The execution thread is
deduced from the target parameter and any specified thread parmeter is ignored.

SETTARGET(, thread)
Sets TARGET to the topmost window in the specified execution thread.

SETTARGET(target,band)
Sets TARGET to the specified target window or report, and draws graphics
primitives to the specified band (report band or IMAGE control).

Example:
Report REPORT

HEADER,USE(?PageHeader)
END

Detail DETAIL
END
END

CODE
OPEN(Report)
SETTARGET(Report,?PageHeader) !Make the report the current target
TARGET{PROP:Landscape} = 1 !and turn on landscape mode
ARC(100,50,100,50,0,900) !Draw 90 degree arc from 3 to 12 o'clock, as

!the top-right quadrant of ellipse
!to the page HEADER band

SETTARGET !Reset to top window

See Also:

START

THREAD

13 – Built-In Procedures 883

SETTODAY (set system date)
 SETTODAY(date)

SETTODAY Sets the DOS system date.

date A numeric constant, variable, or expression for a standard date.

The SETTODAY statement sets the operating system date.

Example:
SETTODAY(TODAY() + 1) !Set the date ahead one day

See Also:

Standard Date

DAY

MONTH

YEAR

TODAY

DATE

Language Reference Manual 884

SHORTPATH (return short filename)
 SHORTPATH([longfilename])

SHORTPATH Returns the fully-qualified short filename for a given long filename.

longfilename A string constant, variable, or expression that specifies the long filename to
convert. This may include the complete path. If omitted, SHORTPATH returns
the current drive and directory in short name form.

The SHORTPATH procedure returns the DOS standard short filename for a given longfilename.
The file named as the parameter must exist on disk. SHORTPATH can now be used in
expressions evaluated by the EVALUATE statements in runtime applications and in the
templates.

Return Data Type: STRING

Example:
MyFile STRING(64)
CODE
MyFile = SHORTPATH('c:\program files\my text file.txt') !c:\progra~1\mytext~1.txt

See Also:

SETPATH

LONGPATH

PATH

DIRECTORY

13 – Built-In Procedures 885

SHOW (write to screen)
 SHOW(x ,y ,string)

SHOW Writes a string to the current window or report.

x An integer expression that specifies the horizontal position of the starting point, in
dialog units.

y An integer expression that specifies the vertical position of the starting point, in
dialog units.

string A string constant, variable, or expression containing the formatted text to place
on the current window or report.

SHOW writes the string text to the current window or report. The font used is the current font for
the window or report.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
DISPLAY
SHOW(100,100,FORMAT(TODAY(),@D3)) !Display the date
SHOW(20,20,'Press Any Key to Continue') !Display a message

See Also:

Current Target

Language Reference Manual 886

SHUTDOWN (arm termination procedure)
 SHUTDOWN([procedure])

SHUTDOWN Arms a procedure which is called when the program terminates.

procedure The label of a PROCEDURE. If omitted, the SHUTDOWN process is disarmed.

The SHUTDOWN statement arms a procedure which is called when the program terminates. The
shutdown procedure is called by normal program termination or by an abnormal-end/run-time
halt. It may not be able to execute for an abnormal-end/run-time halt, depending upon the state of
the system resources at the time of the crash. It is not called if the computer is rebooted or the
program is terminated due to power failure. The same effect as SHUTDOWN can be more safely
achieved by simply calling a procedure to execute on EVENT:CloseDown for the application
frame.

Example:
SHUTDOWN(CloseSys) !Arm CloseSys as the shutdown procedure

See Also:

HALT

RETURN

13 – Built-In Procedures 887

SIN (return sine)
 SIN(radians)

SIN Returns sine.

radians A numeric constant, variable or expression for the angle expressed in radians.
p is a constant which represents the ratio of the circumference and radius of a
circle. There are 2p radians (or 360 degrees) in a circle.

The SIN procedure returns the trigonometric sine of an angle measured in radians. The sine is
the ratio of the length of the angle's opposite side divided by the length of the hypotenuse.

Return Data Type: REAL

Example:
PI EQUATE(3.1415926535898) !The value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(0.0174532925199) !Number of radians in a degree
CODE
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
SineAngle = SIN(Angle) !Get the sine of 45 degree angle

See Also:

TAN

ATAN

ASIN

COS

ACOS

Language Reference Manual 888

SKIP (bypass records in sequence)
 SKIP(entity, count)

SKIP Bypasses records during sequential processing.

entity The label of a FILE or VIEW declaration.

count A numeric constant or variable. The count specifies the number of records to
bypass. If the value is positive, records are skipped in forward (NEXT) sequence;
if count is negative, records are skipped in reverse (PREVIOUS) sequence.

The SKIP statement is used to bypass records during sequential processing. It bypasses records,
in the sequence specified by the SET statement, by moving the file pointer count records. SKIP is
more efficient than NEXT or PREVIOUS for skipping past records because it does not move
records into the RECORD structure data buffer. If SKIP reads past the end or beginning of file,
the EOF() and BOF() procedures return true. If no SET has been issued, SKIP posts error 33
(Record Not Available).

Errors Posted: 33 Record Not Available
37 File Not Open

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)
END
END
END
END

SavOrderNo LONG
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Process all records
NEXT(ViewOrder) !Get a record
IF ERRORCODE() THEN BREAK END
IF Hea:OrderNumber <> SavOrderNo !Check for first item in order

13 – Built-In Procedures 889

IF Hea:OrderStatus = 'Cancel' !Is it a canceled order?
SKIP(Items,Vew:ItemCount-1) !SKIP rest of the items
CYCLE !and process next order

END !end ifs
END !end ifs
DO ItemProcess !process the item
SavInvNo = Hea:OrderNUmber !save the invoice number

END !End loop

See Also: SET, RESET, NEXT, PREVIOUS

Language Reference Manual 890

SORT (sort queue entries)

 SORT(queue, | [+]key,...,[-]key] |)

 | name |

 | function |

SORT Reorders entries in a QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

+ - The leading plus or minus sign specifies the key will be sorted in ascending or
descending sequence.

key The label of a field declared within the QUEUE structure. If the QUEUE has a
PRE attribute, the key must include the prefix. This may not be a reference
variable.

name A string constant, variable, or expression containing the NAME attribute of
QUEUE fields, separated by commas, and optional leading + or - signs for each
attribute. This parameter is case sensitive and may not contain any reference
variables.

function The label of the function containing two parameters of a *GROUP or named
GROUP passed by address, and having a SIGNED return value. Both
parameters must use the same parameter type, and cannot be omitted. The
RAW, C and PASCAL attributes are not permitted in the prototype declaration.
See Additional Queue Considerations.

SORT reorders the entries in a QUEUE. QUEUE entries with identical key values maintain their
relative position.

SORT(queue,key)
Reorders the QUEUE in the sequence specified by the key. Multiple key
parameters may be used (up to 16), separated by commas, with optional leading
plus or minus signs to indicate ascending or descending sequence.

SORT(queue,name)
Reorders the QUEUE in the sequence specified by the name string. The name
string must contain the NAME attributes of the fields, separated by commas, with
leading plus or minus signs to indicate ascending or descending sequence.

Errors Posted: 08 Insufficient Memory
75 Invalid Field Type Descriptor

13 – Built-In Procedures 891

Example:
Location QUEUE,PRE(Loc)
Name STRING(20),NAME('FirstField')
City STRING(10),NAME('SecondField')
State STRING(2)
Zip DECIMAL(5,0)

END
CODE
SORT(Location,Loc:State,Loc:City,Loc:Zip) !Sort by zip in city in state
SORT(Location,+Loc:State,-Loc:Zip) !Sort descending by zip in state
SORT(Location,'FirstField,-SecondField') !Sort descending by city in name

Language Reference Manual 892

SQL (use SQL code)
 SQL(sql expression)

SQL Specifies a proper SQL expression to be used to affect the records in a VIEW.

sql expression A string expression containing valid SQL code.

SQL specifies a valid SQL statement which is applied to a FILTER, ORDER, JOIN,
PROP:FILTER, PROP:ORDER, or PROP:JOINEXPRESSION surrounding it. Anything specified
in the sql expression is treated as pure SQL code.

Example:
OrdFile FILE,DRIVER('ODBC'),PRE(Ord)
PrimaryKey KEY(Ord:OrdID),PRIMARY
Record RECORD
OrdID LONG
Customer LONG
PurchaseDate DATE
Info CSTRING(61)

END
END

MyView VIEW(AFile), FILTER('Ord:PurchaseDate = TODAY() AND ' & |
'SQL(A.Info LIKE "%Must deliver today%")'), ORDER('SQL(A.Customer)')
END

MyView{PROP:Filter} =
'SQL(A.Customer IN (SELECT CustID FROM Customers WHERE BadCustomer = 0))'

13 – Built-In Procedures 893

SQLCALLBACK (register or unregister a SQLCallBackInterface)

 SQLCALLBACK(entity, SQLCallBackInterface, [flag])

SQLCALLBACK Register or unregister a SQLCallBackInterface.

entity The label of a FILE or VIEW.

SQLCallBackInterface

 The label of the interface that implements the SQLCallBackInterface. The
method of the SQLCallbackInterface (ExecutingCode) is called just before the
SQL statement is passed to the SQL server for execution.

flag An integer constant, variable, EQUATE, or expression that indicates whether or
not to unregister an interface accociated with a FILE or VIEW. A value of one (1
or TRUE) unregisters the interface. If omitted, the interface is registered with the
entity.

The SQLCallback method registers a callback interface with the specified entity. The methods of
the registered interface are called whenever a file operation is done. Multiple interfaces can be
registered with an entity.

To unregister an interface, set the flag to TRUE. Any registered interfaces must be unregistered
before the object that implements the interface is removed.

Implementation: This function is only supported by the SQL drivers.

Example:
PROGRAM

MAP
END
INCLUDE ('FILECB.INC'),ONCE

!Data file
People FILE,DRIVER('TOPSPEED'),PRE(PEO),CREATE,BINDABLE,THREAD
KeyId KEY(PEO:Id),NOCASE,OPT
KeyLastName KEY(PEO:LastName),DUP,NOCASE
Record RECORD,PRE()
Id LONG
FirstName STRING(30)
LastName STRING(30)
Gender LONG

END
END

Language Reference Manual 894

!DataFile
SQLFile FILE,DRIVER('MSSQL'),OWNER('(local),clarion,sa,;'),NAME('sptesttable')
Record RECORD
Id LONG

END
END

!LogFile
LogFile FILE,DRIVER('BASIC','/ALWAYSQUOTE=OFF /COMMA=1,1'),CREATE,NAME('logfile.txt')
Record RECORD
Operation STRING(200)

END
END

!FileCallback implementation
FCB CLASS,IMPLEMENTS(FileCallBackInterface),IMPLEMENTS(SQLCallBackInterface)

END

CODE
CALLBACK(People,FCB.FileCallBackInterface) !Register Interface
SQLCALLBACK(SQLFile,FCB.SQLCallBackInterface) !Register Interface
CREATE(Logfile) !Create log file
OPEN(Logfile) !Open log file
OPEN(People) !Open data file
SET(PEO:KeyId, PEO:KeyID) !Set and
LOOP !loop thru

NEXT(People) !data until
IF ERRORCODE() THEN BREAK END !end of file

END
CLOSE(People) !Close data file

SQLFile{PROP:SQL} = 'CREATE TABLE sptesttable (c INT)' !Create SQL table
OPEN(SQLFile) !Open SQL table
SQLFile.Id=5
ADD(SQLFile) !Update SQL table
SQLFile.Id=7
ADD(SQLFile) !Update SQL table
SQLFile.Id=8
ADD(SQLFile) !Update SQL table
CLOSE(SQLFile) !Close SQL table
CALLBACK(People,FCB.FileCallBackInterface, TRUE) !Unregister Interface
SQLCALLBACK(SQLFile,FCB.SQLCallBackInterface, TRUE) !Unregister Interface

13 – Built-In Procedures 895

!This method is called prior to each operation of the data file.
!The log file is updated
!with the file operation that is being executed.
FCB.FileCallBackInterface.FunctionCalled |

PROCEDURE(SIGNED opCode, *Params Parameters, *CSTRING ErrCode, *CSTRING ErrMsg)
p LIKE(Params)

CODE
p = Parameters
CASE opCode
OF DriverOp:ADD

logFile.Operation = 'ADD(f)'
OF DriverOp:APPEND

logFile.Operation = 'APPEND(f)'
OF DriverOp:CLOSE

logFile.Operation = 'CLOSE(f)'
OF DriverOp:COPY

logFile.Operation = 'COPY(f,'''&CLIP(Parameters.Text)&''')'
OF DriverOp:CREATE

logFile.Operation = 'CREATE(f)'
OF DriverOp:DELETE

logFile.Operation = 'DELETE(f)'
OF DriverOp:NEXT

logFile.Operation = 'NEXT(f)'
OF DriverOp:OPEN

logFile.Operation = 'OPEN(f,'&Parameters.openMode&')'
OF DriverOp:PUT

logFile.Operation = 'PUT(f)'
OF DriverOp:SETkeykey

logFile.Operation = 'SET(k,k)'
END
ADD(logFile)
RETURN TRUE

!This method is called after each operation to the data file. This simply returns a TRU
!according to the rules of the FileCallBackInterface.
FCB.FileCallBackInterface.FunctionDone |

PROCEDURE(SIGNED opCode, Params Parameters, *CSTRING ErrCode, *CSTRING ErrMsg)
CODE

RETURN TRUE

!This method is called just before the SQL statement is passed to the SQL server for
!execution
FCB.SQLCallBackInterface.ExecutingCode |

PROCEDURE(CONST *CSTRING inStr, *BYTE Err, *CSTRING ErrCode, *CSTRING ErrMsg)
CODE

Err = FALSE
RETURN inStrPUT_re_write_record

Language Reference Manual 896

SQRT (return square root)

 SQRT(expression)

SQRT Returns square root.

expression A numeric constant, variable, or expression. If the value of the expression is less
than zero, the return value is zero.

The SQRT procedure returns the square root of the expression. If X represents any positive real
number, the square root of X is a number that, when multiplied by itself, produces a product equal
to X.

Return Data Type: REAL

Example:
Length = SQRT(X^2 + Y^2) !Find the distance from 0,0 to x,y (pythagorean theorem)

13 – Built-In Procedures 897

START (return new execution thread)

 START(procedure [, stack] [, passed value])

START Begins a new execution thread.

procedure The label of the first PROCEDURE to call on the new execution thread. This may
not be an overloaded procedure.

stack An integer constant or variable containing the size of the stack to allocate to the
new execution thread. If omitted, the default stack is 10,000 bytes.

passed value A string constant, variable, or expression containing the value to pass as a
parameter to the procedure. There may be up to three passed values listed.

The START procedure begins a new execution thread, calling the procedure and returning the
number assigned to the new thread. The returned thread number is used by procedures and
procedures whose action may be performed on any execution thread (such as SETTARGET).
The maximum number of simultaneously available execution threads in a single application is 64.

Code execution in the launching thread immediately continues with the next statement following
the START and continues until an ACCEPT statement executes. Once the launching thread
executes ACCEPT, the launched procedure begins executing its code in its new thread, retaining
control until it executes an ACCEPT.

The procedure may be prototyped to receive up to three STRING parameters (passed by value)
which may not be omitted. The values to pass to the procedure are listed as the passed values
parameters to the START statement, and not in a parameter list atached to the procedure within
the START statement. The procedure may not be an overloaded procedure.

The first execution thread in any program is the main program code, which is always numbered
one (1). Therefore, the lowest value START can return is two (2), when the first START
procedure is executed in a program. START may return zero (0), which indicates failure to open
the thread. This can occur by running out of memory, or by starting a thread when the system is
modal.

Return Data Type: SIGNED

Example:
MAP

NewProc1 PROCEDURE
NewProc2 PROCEDURE(STRING)
NewProc3 PROCEDURE(STRING,STRING)
NewProc4 PROCEDURE(STRING,STRING,STRING)
END

Language Reference Manual 898

MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS |
,HVSCROLL,RESIZE
MENUBAR
MENU('&File'),USE(?FileMenu)
ITEM('Selection &1...'),USE(?MenuSelection1)
ITEM('Selection &2...'),USE(?MenuSelection2)
ITEM('Selection &3...'),USE(?MenuSelection3)
ITEM('Selection &4...'),USE(?MenuSelection4)
ITEM('E&xit'),USE(?Exit)
END

END
END

SaveThread1 LONG !Declare thread number save variables
SaveThread2 LONG
SaveThread3 LONG
SaveThread4 LONG
GroupName GROUP
F1 STRING(30)
F2 LONG

END
CODE
OPEN(MainWin) !Open the APPLICATION
ACCEPT
CASE ACCEPTED()
OF ?MenuSelection1
!Start thread with 35K stack
SaveThread1 = START(NewProc1,35000)

OF ?MenuSelection2
!Start thread, passing 1 parm
SaveThread2 = START(NewProc2,35000,GroupName)

OF ?MenuSelection3
!Start thread, passing 2 parms
SaveThread3 = START(NewProc3,35000,'X','21')

OF ?MenuSelection4
!Start a new thread
SaveThread4 = START(NewProc4,35000,'X','21',GroupName)

OF ?Exit
RETURN

END
END

NewProc2 PROCEDURE(MyGroup)
LocalGroup GROUP(GroupName) !Declare local group same as passed group

END
CODE
LocalGroup = MyGroup !Get the passed data

See Also: ACCEPT, THREAD, SETTARGET, POST

13 – Built-In Procedures 899

STATUS (return file or window/report status)
 STATUS(| file |)
 | window |

STATUS Returns the passed file, window or report status.

file The label of a FILE statement.

window The label of a WINDOW, APPLICATION, or REPORT structure, or valid built-in
variables TARGET, PRINTER, or SYSTEM.

The STATUS procedure returns zero (0) if the file is not open, and the file's access mode if it is
open. If the access mode is actually zero (Read Only / Any Access), 40h (Read Only / Deny
None) is returned (see OPEN).

STATUS can also be used to check the state of a WINDOW or REPORT structure. If the passed
WINDOW or REPORT exists and is opened, STATUS returns zero (0). If the passed WINDOW or
REPORT exists but either has not been opened or has been closed, STATUS returns one (1). If
the passed parameter is not a valid WINDOW or REPORT structure, STATUS returns two (2).

To simplify testing of results returned from calls to STATUS(WINDOW), the following declarations
have been added to EQUATES.CLW:

WINDOW:OK EQUATE(0)
WINDOW:NotOpened EQUATE(1)
WINDOW:BadWindow EQUATE(2)

Built-in variables TARGET, PRINTER and SYSTEM can be passed as parameters to calls to
STATUS(WINDOW). The function always returns WINDOW:OK if the actual parameter is
PRINTER or SYSTEM.

Return Data Type: LONG

Language Reference Manual 900

Example:
IF STATUS(DataFile) % 16 = 0 !Opened Read-Only?

RETURN !get out
ELSE !Otherwise

EXECUTE DiskAction !Write record to disk
ADD(DataFile)
PUT(DataFile)
DELETE(DataFile)

END
END

CASE STATUS(PassedLabel) !Check parameter passed
OF WINDOW:OK !if window is good, and opened
CYCLE !continue

OF WINDOW:NotOpened !if window is good, but not opened
OPEN(PassedLabel) !open it

OF WINDOW:BadWindow !bad window?
MESSAGE(‘Invalid Window’,’Note:’) !exit procedure
RETURN

END

See Also: OPEN

13 – Built-In Procedures 901

STOP (suspend program execution)

 STOP([message])

STOP Suspends program execution and displays a message window.

message An optional string expression (up to 64K) which displays in the error window.

STOP suspends program execution and displays a message window. It offers the user the option
of continuing the program or exiting. When exiting, it closes all files and frees the allocated
memory.

Example:

PswdScreen WINDOW
STRING(' Please Enter the Password '),AT(5,5)
ENTRY(@10),AT(20,5),USE(Password),PASSWORD
END

CODE
OPEN(PswdScreen) !Open the password screen
ACCEPT !and get user input
CASE ACCEPTED
OF ?Password)
IF Password <> 'PayMe$moRe' !Correct password?
STOP('Incorrect Password Entered -- Access Denied -- Retry?')
X# += 1
IF X# > 3 !Let them try 3 times
HALT(0,'Incorrect password') !then throw them out

END
END

END
END

See Also:

HALT

Language Reference Manual 902

STREAM (enable operating system buffering)

 STREAM(file)

STREAM Disables automatic FILE flushing.

file The label of a FILE.

Some file systems flush the operating system's buffers on each disk write keeping the file
"logically closed" (for example, the Clarion and TopSpeed file drivers do this by default). The
STREAM statement disables this automatic flushing operation. A STREAM operation is
terminated by closing the file, which automatically flushes the buffers, or by issuing a FLUSH
statement.

STREAM and FLUSH are inherently single-user, batch process type of statements, although you
can use them in networked environments. In some file systems, STREAM and FLUSH are simply
ignored when the file is opened for shared access while in others they execute but it is possible to
create a "deadlock" situation between workstations for multiple file updates. LOGOUT
accomplishes a similar purpose in multi-user environments and is much safer.

Support for this statement is dependent upon the file system and is described in its file driver's
documentation.

Example:
STREAM(History) !Use DOS buffering
SET(Current) !Set to top of current file
LOOP
NEXT(Current)
IF ERRORCODE() THEN BREAK END
His:Record = Cur:Record
ADD(History)

END
FLUSH(History) !End streaming, flush buffers

See Also:

FLUSH

LOGOUT

BUFFER

13 – Built-In Procedures 903

STRPOS (return matching value position)

 STRPOS(first, second [, mode])

STRPOS Returns the starting position of a substring based on all parameters passed.

first A string containing data to compare against the second parameter.
second A string containing a regular expression to match the first parameter.

mode An integer constant or equate which specifies if the comparison method is case
sensitive. If FALSE (0), the method is case sensitive. If TRUE (1), the method is
not case sensitive. The default value is case sensitive.

The STRPOS procedure returns the starting position where the first and second parameters
match according to the comparison mode specified. The following mode value EQUATE, listed in
EQUATES.CLW, is supported by STRPOS:

Match:Regular

A type of search where the string passed as a first parameter contains the regular expression
passed as a second parameter. Repeated usage with the same regular expression value is
optimized (to avoid re-compiling the expression).

Regular Expression Operators

Regular expressions are used to describe patterns in text. The following characters are regular
expression operators (or metacharacters) used to increase the power and versatility of regular
expressions.

^ Caret matches the beginning of the string. For example:

 ^@chapter

 matches the “@chapter” at the beginning of a string.

$ Dollar sign is similar to the caret, but it matches only at the end of a string. For
example:

 p$

 matches a record that ends with a p.

. Period matches any single character except a new line. For example:

 .P

 matches any single character followed by a P in a string. Using concatenation we
can make regular expressions like `U.A', which matches any three-character
sequence that begins with `U' and ends with `A'.

Language Reference Manual 904

[...] This is called a character set. It matches any one of the characters that are
enclosed in the square brackets. For example:

 [MVX]

 matches any one of the characters M, V, or`X in a string. Ranges of characters
are indicated by using a hyphen between the beginning and ending characters,
and enclosing the whole thing in brackets. For example:

 [0-9]

 matches any digit. To match `-', write it as `---', which is a range containing only `-
'. You may also give `-' as the first or last character in the set. To match `^', put it
anywhere except as the first character of a set. To match a `]', make it the first
character in the set. For example:

 []d^]

 matches either `]', `d' or `^'.

[^ ...] This is a complemented character set. The first character after the [must be a ^.
It matches any characters except those in the square brackets (or new line). For
example:

 [^0-9]

 matches any character that is not a digit.

| Vertical bar is the alternation operator and it is used to specify alternatives. For
example:

 ^P|[0-9]

 matches any string that matches either ^P or [0-9]. This means it matches any
string that contains a digit or starts with P. The alternation applies to the largest
possible regular expressions on either side.

{...} Parentheses are used for grouping in regular expressions as in arithmetic. They
can be used to concatenate regular expressions containing the alternation
operator, |.

13 – Built-In Procedures 905

* Asterisk means that the preceding regular expression is to be repeated as many
times as possible to find a match. For example:

 ph*

 applies the * symbol to the preceding h and looks for matches to one p followed
by any number of h's. This will also match just p if no h's are present. The *
repeats the smallest possible preceding expression (use parentheses if you wish
to repeat a larger expression). It finds as many repetitions as possible. For
example:

 (c[ad][ad]*r x)

 matches a string of the form (car x), (cdr x), (cadr x), and so on.

+ Plus sign is similar to *, but the preceding expression must be matched at least
once. This means that:

 wh+y

 would match “why” and “whhy” but not “wy,” whereas wh*y would match all three
of these strings. This is a simpler way of writing the last * example:

 (c[ad]+r x)

? Question mark is similar to *, but the preceding expression can be matched once
or not at all. For example:

 fe?d

 will match fed and fd, but nothing else.

\ Backslash is used to suppress the special meaning of a character when
matching. For example:

 \$

 matches the character $.

In regular expressions, the *, +, and ? operators have the highest precedence, followed by
concatenation, and finally by |.

Return Data Type: LONG

Language Reference Manual 906

Example:

ListHave1 STRING('IN,OH,KY,TN,PA')
ListHave2 STRING('WI,MN,IA,SD,ND')
StatesWanted STRING('NJ|NY|PA|DE')

CODE
X = STRPOS(ListHave1,StatesWanted,True) !X = 13
Y = STRPOS(ListHave2,StatesWanted,True) !Y = 0

X = STRPOS('Fireworks on the fourth', '{{4|Four}th', True) !X = 18
X = STRPOS('Fireworks on the fourth', '{{4|Four}th', False) !X = 0 Case sensitive
X = STRPOS('July 4th fireworks', '{{4|four}th', True) !X = 6

See Also:

MATCH

13 – Built-In Procedures 907

SUB (return substring of string)

 SUB(string,position,length)

SUB Returns a portion of a string.

string A string constant, variable or expression.

position A integer constant, variable, or expression. If positive, it points to a character
position relative to the beginning of the string. If negative, it points to the
character position relative to the end of the string (i.e., a position value of -3
points to a position 3 characters from the end of the string).

length A numeric constant, variable, or expression of number of characters to return.

The SUB procedure parses out a sub-string from a string by returning length characters from the
string, starting at position.

The SUB procedure is similar to the "string slicing" operation on STRING, CSTRING, and
PSTRING variables. SUB is less flexible and efficient than string slicing, but SUB is "safer"
because it ensures that the operation does not overflow the bounds of the string.

"String slicing" is more flexible than SUB because it may be used on both the destination and
source sides of an assignment statement, while the SUB procedure can only be used as the
source. It is more efficient because it takes less memory than individual character assignments or
the SUB procedure (however, no bounds checking occurs).

To take a "slice" of a string, the beginning and ending character numbers are separated by a
colon (:) and placed in the implicit array dimension position within the square brackets ([]) of the
string. The position numbers may be integer constants, variables, or expressions. If variables are
used, there must be at least one blank space between the variable name and the colon
separating the beginning and ending number (to prevent PREfix confusion).

Return Data Type: STRING

Language Reference Manual 908

Example:
!SUB('ABCDEFGHI',1,1) returns 'A'
!SUB('ABCDEFGHI',-1,1) returns 'I'
!SUB('ABCDEFGHI',4,3) returns 'DEF'

!Get the file extension using SUB procedure
Extension = SUB(FileName,INSTRING('.',FileName,1,1)+1,3)

!The same operation using string slicing
Extension = FileName[(INSTRING('.',FileName,1,1)+1) : (INSTRING('.',FileName,1,1)+3)]

See Also:

INSTRING

STRING

CSTRING

PSTRING

String Slicing

13 – Built-In Procedures 909

SUSPEND (suspend thread execution)
 SUSPEND(threadno, quietmode)

SUSPEND Suspend thread execution.

threadno A numeric constant, variable, or expression that can be evaluated as a SIGNED
integer.

quietmode A numeric constant, variable, or expression that can be evaluated as a SIGNED
integer.

The SUSPEND function suspends a thread specified by the threadno parameter. If the threadno
parameter is a number of an active thread, its execution is suspended and a suspending counter
is incremented. Each additional SUSPEND statement issued to the same active thread will
increment the suspending counter by one. Therefore, a thread that has been suspended with a
given number of SUSPEND statements can only resume thread execution when an equal
number of RESUME statements has been executed.

The quietmode parameter controls the built-in messaging support provided by SUSPEND. If the
quietmode parameter is set to TRUE (1), SUSPEND will not display a message if it has detected
that the thread it is about to suspend is not safe. If the quietmode parameter is set to FALSE (0),
a message will be displayed if the impending thread suspension is not safe.

SUSPEND returns TRUE (1) if a thread has been suspended and returns FALSE (0) if the thread
could not be suspended.

Care should be taken with MDI programs using SUSPEND, as improper use can cause program
lockups. All MDI child windows have an MDI client window as a parent, and the MDI client
window can send rather than post messages to its child windows.

For example, calling the inter-thread SendMessage modal function causes the calling thread (the
MDI client window) to suspend activity until the called thread (the MDI Child window) returns from
the call. If the called thread is suspended, we would have a program lockup.

Suspending a thread that is not already active is ignored.

Return Data Type: SIGNED

Example:

IF NOT SUSPEND(ThreadNumVariable)
MESSAGE(‘Thread could not be suspended’)

END

!suspend thread execution number stored in variable

See Also: RESUME

Language Reference Manual 910

TAN (return tangent)

 TAN(radians)

TAN Returns tangent.

radians A numeric constant, variable or expression for the angle in radians. p is a
constant which represents the ratio of the circumference and radius of a circle.
There are 2p radians (or 360 degrees) in a circle.

The TAN procedure returns the trigonometric tangent of an angle measured in radians. The
tangent is the ratio of the angle's opposite side divided by its adjacent side.

Return Data Type: REAL

Example:
PI EQUATE(3.1415926535898) !The value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(0.0174532925199) !Number of radians in a degree
CODE
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
TangentAngle = TAN(Angle) !Get the tangent of 45 degree angle

See Also:

ATAN

SIN

ASIN

COS

ACOS

13 – Built-In Procedures 911

THREAD (return current execution thread)

 THREAD()

The THREAD procedure returns the currently executing thread number. The returned thread
number number can be used by procedures and procedures whose action may be performed on
any execution thread (such as SETTARGET).

The maximum number of simultaneously available execution threads in a single application is 64.
The first execution thread in any program is the main program code, which is always thread
number one (1). Therefore, THREAD always returns a value in the range of one (1) to sixty-four
(64).

Return Data Type: SIGNED

Example:
MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS |

,HVSCROLL,RESIZE
MENUBAR
MENU('&File'),USE(?FileMenu)
ITEM('Selection &1...'),USE(?MenuSelection1)
ITEM('Selection &2...'),USE(?MenuSelection2)
END
END
END

SaveThread LONG !Declare thread number save variable
SaveThread1 LONG !Declare thread number save variable
SaveThread2 LONG !Declare thread number save variable
CODE
SaveThread = THREAD() !Save thread number
OPEN(MainWin) !Open the APPLICATION
ACCEPT !Handle Global events
CASE ACCEPTED()
OF ?MenuSelection1
SaveThread1 = START(NewProc1) !Start a new thread

OF ?MenuSelection2
SaveThread2 = START(NewProc2) !Start a new thread

OF ?Exit
RETURN

END
END

See Also: START

Language Reference Manual 912

THREADLOCKED (returns current execution thread locked state)

 THREADLOCKED()

The THREADLOCKED procedure returns the current execution thread's locked/unlocked state. It
returns zero (0) if the thread is unlocked and one (1) if the thread is locked.

Return Data Type: SIGNED

Example:
X# = THREADLOCKED() !Returns 1
UNLOCKTHREAD !Unlock the thread
X# = THREADLOCKED() !Returns 0
MyLibraryCodeWithMessageLoop !Call the code that has its own message loop
LOCKTHREAD !Re-lock the thread

See Also:

ACCEPT

LOCKTHREAD

UNLOCKTHREAD

13 – Built-In Procedures 913

TIE(associate a string value to an ASTRING)

 TIE([stringtoken] [,index] [,value])

TIE Associates a string value to an ASTRING.

stringtoken A string constant or the label of a previously declared ASTRING token.

index A numeric constant or variable defining the index value of an ASTRING. The
index value may be any LONG value greater than zero.

value A numeric constant or variable. The value may be any LONG value greater than
zero.

The TIE statement associates a value to a particular stringtoken and index. A unique index may
be allocated at runtime by either omitting the index or setting it to zero. If the index is allocated at
runtime, TIE will return the generated index number.

Return Data Type: LONG

Example:
PROGRAM
MAP
END

INCLUDE('EQUATES.CLW')
COLOR EQUATE(1)
SIDES EQUATE(2)

AS1 ASTRING

CODE
AS1 = 'SHAPE' !Declare ASTRING string token
TIE('SHAPE',COLOR,COLOR:RED) !Associate COLOR:RED to COLOR for ASTRING SHAPE
TIE(AS1,SIDES,3) !Associate 3 to SIDES for ASTRING SHAPE
IF TIED('SHAPE',SIDES) = 3 AND | !If the value associated to SIDES = 3
TIED(AS1,COLOR) = COLOR:RED !and the value associated with COLOR=COLOR:RED
MESSAGE('Shape is a red triangle')

END

See Also:

TIED

UNTIE

Language Reference Manual 914

TIED(retrieves a value associated with an ASTRING)

 TIED(stringtoken, index)

TIED Retrieves a string value that was previously associated to an ASTRING token.

stringtoken A string constant or the label of a previously declared ASTRING token.

index A numeric constant or variable defining the index value of an ASTRING. The
index value may be any LONG value greater than zero.

The TIED statement retrieves the value that was previously associated to a particular ASTRING
stringtoken and index. If a value is not TIED then 0 will be returned.

Return Data Type: LONG

Example:
PROGRAM
MAP
END

INCLUDE('EQUATES.CLW')
COLOR EQUATE(1)
SIDES EQUATE(2)

AS1 ASTRING

CODE
AS1 = 'SHAPE'
TIE('SHAPE',COLOR,COLOR:RED)
TIE(AS1,SIDES,3)
IF TIED('SHAPE',SIDES) = 3
AND TIED(AS1,COLOR) = COLOR:RED
MESSAGE('Shape is a red triangle')

END

See Also:

TIE

UNTIE

13 – Built-In Procedures 915

TODAY (return system date)

 TODAY()

The TODAY procedure returns the operating system date as a standard date. The range of
possible dates is from January 1, 1801 (standard date 4) to December 31, 2099 (standard date
109,211).

Return Data Type: LONG

Example:
OrderDate = TODAY() !Set the order date to system date

See Also:

Standard Date

DAY

MONTH

YEAR

SETTODAY

DATE

Language Reference Manual 916

TYPE (write string to screen)

 TYPE(string)

TYPE Writes a string to the current window or report.

string A string constant, variable, or expression.

TYPE writes a string to the current window or report. The string appears on the window or report
at the current cursor position, if there's room, if not, it appears on the next line. The font used is
the current font for the window or report. The SHOW statement may be used to position the
cursor before output from TYPE.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
DISPLAY
TYPE(Cus:Notes) !Type the notes field

13 – Built-In Procedures 917

UNHIDE (show hidden control)

 UNHIDE([first control] [, last control])

UNHIDE Displays previously hidden controls.

first control Field number or field equate label of a control, or the first control in a range of
controls. If omitted, defaults to zero (0).

last control Field number or field equate label of the last control in a range of controls.

The UNHIDE statement reactivates a control or range of controls, that were hidden by the HIDE
statement. Once un-hidden, the control is again visible on screen.

Example:
CODE
OPEN(Screen)
HIDE(?Control2) !Control2 is hidden
IF Ctl:Password = 'Supervisor'
UNHIDE(?Control2) !Unhide Control2

END

See Also:

HIDE

ENABLE

DISABLE

Language Reference Manual 918

UNLOAD (remove a CALLed DLL from memory)

 UNLOAD(file)

UNLOAD Unloads a Windows standard .DLL previously loaded by CALL.

file A string constant, variable, or expression containing the name (including
extension) of the .DLL to unload. This may include a full path.

The UNLOAD procedure unloads a .DLL file left loaded by the CALL procedure.

Example:
Win1 WINDOW

BUTTON('Load DLL'),USE(?DLLButton)
END

CODE
OPEN(Win1)
ACCEPT
CASE EVENT()
OF EVENT:Accepted
IF ACCEPTED() = ?DLLButton
!Call procedure in CUSTOM.DLL and leave DLL resident:
X# = CALL('CUSTOM.DLL','EntryPoint',1)
IF X# THEN STOP(X#) END !Check for successful execution

END
OF EVENT:CloseWindow
UNLOAD('CUSTOM.DLL') !Unload the CUSTOM.DLL

END
END

!Process

See Also:

CALL

13 – Built-In Procedures 919

UNLOCK (unlock a locked data file)

 UNLOCK(file)

UNLOCK Unlocks a previously locked data file.

file The label of a FILE declaration.

The UNLOCK statement unlocks a previously LOCKed data file. It will not unlock a file locked by
another user. If the file is not locked, or is locked by another user, UNLOCK is ignored. UNLOCK
posts no errors.

Example:
LOOP !Loop to avoid "deadly embrace"
LOCK(Master,1) !Lock the master file, try for 1 second
IF ERRORCODE() = 32 !If someone else has it
CYCLE !try again

END
LOCK(Detail,1) !Lock the detail file, try for 1 second
IF ERRORCODE() = 32 !If someone else has it
UNLOCK(Master) !unlock the locked file
CYCLE !try again

END
BREAK !Break loop when both files are locked

END

See Also:

LOCK

Language Reference Manual 920

UNLOCKTHREAD (unlock the current execution thread)

 UNLOCKTHREAD

The UNLOCKTHREAD statement allows a Clarion program to call 3rd-party code or API
procedures that contain their own message loop (like Clarion's ACCEPT loop).

Normally, ACCEPT loops in a Clarion program execute in turn (even in 32-bit programs) so that
problems do not arise due to simultaneous access to data. Thread-switching only occurs at an
ACCEPT statement, and thus only one thread can execute Clarion code at a time. However, if the
currently executing thread calls an external procedure (including API functions) that (for example)
opens a window and processes messages until the window closes, then other threads must be
allowed to execute (co-operatively) to process their own messages. You do this by calling
UNLOCKTHREAD before the external procedure, then LOCKTHREAD after it returns.

Because UNLOCKTHREAD may allow other threads to pre-empt the currently executing thread,
it is important that you make NO calls to the Clarion runtime library between UNLOCKTHREAD
and its corresponding LOCKTHREAD. This means you must not call any Clarion language
procedure. You also must not perform any operations involving a STRING, CSTRING, PSTRING,
DECIMAL, or PDECIMAL data types. The one exception is that you may pass a STRING,
CSTRING, or PSTRING variable as a RAW parameter to an external (non-Clarion) procedure.
Failure to observe this restriction may result in data on another thread becoming
corrupted, or other generally unpredictable misbehavior.

The THREADLOCKED() procedure determines whether the thread has been unlocked or not.

Example:
UNLOCKTHREAD !Unlock the thread
MyLibraryCodeWithMessageLoop !Call the code that has its own message loop
LOCKTHREAD !Re-lock the thread

See Also:

ACCEPT

LOCKTHREAD

THREADLOCKED

13 – Built-In Procedures 921

UNQUOTE (remove string special characters)

 UNQUOTE(value)

UNQUOTE Contracts the value's string data, "singling up" doubled single quotes (''), and all
doubled un-paired left angle brackets (<<) and left curly braces ({{).

value A string constant or variable containing the properties to parse.

The UNQUOTE procedure returns the string contained in the value with all doubled single quotes
(''), doubled un-paired left angle brackets (<<), and un-paired left curly braces ({{) "singled up"
(returned to single instances instead of double instances of each character).

Return Data Type: STRING

Example:
stringvar1 STRING('<250>')
stringvar2 STRING('<<display text>')
stringvar3 STRING(30)

CODE
stringvar3 = 'label{{PROP:text} = value'

MESSAGE(UNQUOTE(stringvar1)) !returns accented u
MESSAGE(UNQUOTE(stringvar2)) !returns '<display text>'
MESSAGE(UNQUOTE(stringvar3)) !returns ' label{PROP:text} = value '

See Also:

QUOTE

Language Reference Manual 922

UNREGISTER (unregister event handler)

 UNREGISTER([event] [, handler] [, object] [,window] [,control])

UNREGISTER Unregisters an event handling procedure.

event An integer constant, variable, expression, or EQUATE containing an event
number. A value in the range 400h to 0FFFh is a User-defined event. If omitted,
all events are unregistered.

handler A LONG variable, or expression containing the return value from ADDRESS for
the PROCEDURE to handle the event. If omitted, all handlers are unregistered.

object A LONG integer constant, variable, or expression containing any 32-bit unique
value to identify the specific handler. This is generally the return value of
ADDRESS(SELF) when the handler is a CLASS method.

window The label of the WINDOW or REPORT whose event to handle. If omitted, the
current target WINDOW or REPORT is assumed.

control An integer constant, EQUATE, variable, or expression containing the field
number of the specific control whose event to handle. If omitted, the event is
handled for every control on the window.

UNREGISTER prevents a previously REGISTERed event handler PROCEDURE from being
called to handle its event.

Example:
WindowResizeClass.Kill PROCEDURE
CODE
UNREGISTER(EVENT:Sized,ADDRESS(SELF.TakeResize),ADDRESS(SELF))
!Other code follows

WindowResizeClass.TakeResize PROCEDURE
ReturnValue BYTE
CODE
ReturnValue = Level:Benign
RETURN(ReturnValue)

See Also:

REGISTER

ACCEPT

EVENT

13 – Built-In Procedures 923

UNTIE(disassociate a string value from an ASTRING)

 UNTIE([stringtoken],[index])

UNTIE Removes a value previously TIED for an ASTRING.

stringtoken The label of a previously declared ASTRING token. If omitted, all previously
declared ASTRINGs are used.

index A numeric constant or variable defining the index value of a previously declared
ASTRING. The index value may be any LONG value greater than zero. If
omitted, all indexes are used.

The UNTIE statement disassociates a string value that was previously associated to a particular
ASTRING stringtoken and index.

Example:
PROGRAM
MAP
END

INCLUDE('EQUATES.CLW')
COLOR EQUATE(1)
SIDES EQUATE(2)

AS1 ASTRING

CODE
AS1 = 'SHAPE' !Declare ASTRING string token
TIE('SHAPE',COLOR,COLOR:RED) !Associate COLOR:RED to COLOR for ASTRING SHAPE
TIE(AS1,SIDES,3) !Associate 3 to SIDES for ASTRING SHAPE
(some code here)
UNTIE(AS1, SIDES)

See Also:

TIE

TIED

Language Reference Manual 924

UPDATE (write from screen to USE variables)

 UPDATE([first control] [,last control])

UPDATE Writes the contents of a control to its USE variable.

first control Field number or field equate label of a control, or the first control in a range of
controls.

last control Field number or field equate label of the last control in a range of controls.

UPDATE writes the contents of a screen control to its USE variable. This takes the value
displayed on screen and places it in the variable specified by the control's USE attribute.

USE variables are updated automatically by ACCEPT as each control is accepted. However,
certain events (such as an ALERTed key press) do not automatically update USE variables. This
is the purpose of the UPDATE statement.

UPDATE
Updates all controls on the screen.

UPDATE(first control)
Updates a specific USE variable from its associated screen control.

UPDATE(first control,last control)
Updates the USE variables of an inclusive range of screen controls.

Example:
UPDATE(?) !Update the currently selected control
UPDATE !Update all controls on the screen
UPDATE(?Address) !Update the address control
UPDATE(3,7) !Update controls 3 through 7
UPDATE(?Name,?Zip) !Update controls from name through zip
UPDATE(?City,?City+2) !Update city and 2 controls following

See Also:

Field Equate Labels

DISPLAY

CHANGE

13 – Built-In Procedures 925

UPPER (return upper case)

 UPPER(string)

UPPER Returns all upper case string.

string A string constant, variable, or expression for the string to be converted.

The UPPER procedure returns a string with all letters converted to upper case.

Return Data Type: STRING

Example:
!UPPER('abc') returns 'ABC'

Name = UPPER(Name) !Make the name upper case

See Also:

LOWER

ISUPPER

ISLOWER

Language Reference Manual 926

VAL (return ASCII value)

 VAL(character)

VAL Returns ASCII code.

character A one-byte string containing an ANSI character.

The VAL procedure returns the ASCII code of a character.

Return Data Type: LONG

Example:
!VAL('A') returns 65
!VAL('z') returns 122

CharVal = VAL(StrChar) !Get the ASCII value of the string character

See Also:

CHR

13 – Built-In Procedures 927

WATCH (automatic concurrency check)

 WATCH(entity)

WATCH Arms automatic optimistic concurrency checking.

entity The label of a FILE or VIEW declaration.

The WATCH statement arms automatic optimistic concurrency checking by the file driver for a
following GET, REGET, NEXT, or PREVIOUS statement in a multi-user environment. The
WATCH terminates when the WATCHed record is PUT back to the entity, or another GET, NEXT,
PREVIOUS, or REGET statement executes on the same entity without first executing another
WATCH statement.

Generally, the file driver retains a copy of the retrieved record on the GET, NEXT, PREVIOUS, or
REGET when it successfully gets the record. When the retrieved record is PUT to the file, the
record on disk is compared to the original record retrieved. Error 89 (Record Changed By Another
Station) is posted by the PUT statement if the record has been changed by another user.

Example:
SET(Itm:InvoiceKey) !Start at beginning of Items file
LOOP !Process all records
WATCH(Items) !Arm concurrency check
NEXT(Items) !Get a record
IF ERRORCODE() THEN BREAK.
DO ItemProcess !process the item
PUT(Items) !and put it back
IF ERRORCODE() = RecordChangedErr !If changed by another station
PREVIOUS(Items) !Setup to re-process the changed record

ELSE
STOP(ERROR()) !Stop on any other error

END
END

See Also:

NEXT

PREVIOUS

GET

REGET

HOLD

Language Reference Manual 928

WHAT (return field from group)

 WHAT(group, number)

WHAT Returns a specified field from a group structure.

group The label of a GROUP, RECORD, CLASS, or QUEUE declaration.

number An integer expression specifying the ordinal position of a field in the group.

The WHAT statement returns the number specified field from a group structure. Generally, this
would be assigned to an ANY variable.

If field with an ordinal position is equal to the passed second parameter, and is defined as an
ANY type or has the DIM attribute, the returned value can be used only in "reference equality"
(&=) operations. Any attempt to access these field types by returned reference will cause a run-
time error.

Return Data Type: ANY

Example:
MyGroup GROUP
F1 LONG(3) !Field number 1
F2 SHORT !Field number 2
F3 STRING(30) !Field number 3
InGroup GROUP !Field number 4
F1 LONG !Field number 5
F2 SHORT(2) !Field number 6
F3 STRING(30),DIM(2) !Field number 7
F4 ANY

END
END

CurrentField ANY

CODE
CurrentField &= WHAT(MyGroup,1) !Returns contents of MyGroup.F1 (3)

CurrentField &= WHAT(MyGroup,6) !Returns contents of MyGroup.Ingroup.F2 (2)

CurrentField &= WHAT(MyGroup,7) !INVALID – posts a runtime error

See Also:

ANY, WHERE, WHO, ISSTRING, GROUP

RECORD, CLASS, QUEUE

13 – Built-In Procedures 929

WHERE (return field position in group)
 WHERE(group, field)

WHERE Returns a field's ordinal position within a GROUP, RECORD, CLASS, or QUEUE
structure.

group The label of a GROUP, RECORD, CLASS, or QUEUE declaration.

field The label of a field in the group declaration.

The WHERE statement returns the ordinal position of a specified field in a group structure.

Return Data Type: SIGNED

Example:
MyGroup GROUP
F1 LONG !Field number 1
F2 SHORT !Field number 2
F3 STRING(30) !Field number 3
InGroup GROUP !Field number 4
F1 LONG !Field number 5
F2 SHORT !Field number 6
F3 STRING(30) !Field number 7

END
END

CurrentField LONG

CODE
CurrentField = WHERE(MyGroup,MyGroup.F1) !WHERE returns 1
CurrentField = WHERE(MyGroup,MyGroup.Ingroup.F2) !WHERE returns 6
CurrentField = WHERE(MyGroup.Ingroup,MyGroup.Ingroup.F2) !WHERE returns 2

See Also:

WHAT

WHO

ISSTRING

GROUP

RECORD

CLASS

QUEUE

Language Reference Manual 930

WHO (return field name from group)
 WHO(group, number)

WHO Returns a string containing the name of a specified field from a group structure.

group The label of a GROUP, RECORD, CLASS, or QUEUE declaration with the
BINDABLE attribute.

number An integer expression specifying the ordinal position of a field in the group.

The WHO statement returns a string containing the name of the number specified field from a
group structure.

Return Data Type: STRING

Example:
MyGroup GROUP
F1 LONG !Field number 1
F2 SHORT !Field number 2
F3 STRING(30) !Field number 3
InGroup GROUP !Field number 4
F1 LONG !Field number 5
F2 SHORT !Field number 6
F3 STRING(30) !Field number 7

END
END

CurrentField STRING(30)
CODE
CurrentField = WHO(MyGroup,1) !Returns "MyGroup.F1"
CurrentField = WHO(MyGroup,6) !Returns "MyGroup.Ingroup.F2"

See Also:

WHAT

WHERE

GROUP

RECORD

CLASS

QUEUE

BINDABLE

13 – Built-In Procedures 931

YEAR (return year of date)

 YEAR(date)

YEAR Returns the year.

date A numeric constant, variable, expression, or the label of a string variable
declared with a date picture, containing a standard date. A variable declared with
a date picture is automatically converted to a standard date intermediate value.

The YEAR procedure returns a four digit number for the year of a standard date (1801 to 9999).

Return Data Type: LONG

Example:
IF YEAR(LastOrd) < YEAR(TODAY()) !If last order date not from this year
DO StartNewYear !start new year to date totals

END

See Also:

Standard Date

DAY

MONTH

TODAY

DATE

Language Reference Manual 932

YIELD (allow event processing)

 YIELD

YIELD temporarily gives control to Windows to allow other concurrently executing Windows
applications to process events they need to handle (except those events that would post
messages back to the program containing the YIELD statement, or events that would change
focus to the other application).

YIELD is used to ensure that long batch processing in a Clarion application does not completely
"lock out" other applications from completing their tasks. This is known as "cooperative multi-
tasking" and ensures that your Windows programs peacefully co-exist with any other Windows
applications.

Within your Clarion application, YIELD only allows control to pass to EVENT:Timer events in
other execution threads. This allows you to code a "background" procedure in its own execution
thread using the TIMER attribute to perform some long batch processing without requiring the
user to wait until the task is complete before continuing with other work in the application. This is
an industry-standard Windows method of doing background processing within an application.

The example code on the next page demonstrates both approaches to performing batch
processing: making the user wait for the process to complete, and processing in the background.
Only the WaitForProcess procedure requires the YIELD statement, because it takes full control of
the program. Background processing using EVENT:Timer does not need a YIELD statement,
since the ACCEPT loop automatically performs cooperative multi-tasking with other Windows
applications.

Example:
StartProcess PROCEDURE
Win WINDOW('Choose a Batch Process'),MDI

BUTTON('Full Control'),USE(?FullControl)
BUTTON('Background'),USE(?Background)
BUTTON('Close'),USE(?Close)

END
CODE
OPEN(Win)
ACCEPT
CASE ACCEPTED()
OF ?FullControl
DISABLE(FIRSTFIELD(),LASTFIELD()) !Disable all buttons
WaitForProcess !and call the batch process procedure
ENABLE(FIRSTFIELD(),LASTFIELD()) !Enable buttons when batch is complete

OF ?Background
START(BackgroundProcess) !Start new execution thread for the process

13 – Built-In Procedures 933

OF ?Close
BREAK

END
END

WaitForProcess PROCEDURE !Full control Batch process
CODE
SETCURSOR(CURSOR:Wait) !Alert user to batch in progress
SET(File) !Set up a batch process
LOOP
NEXT(File)
IF ERRORCODE() THEN BREAK END
!Perform some batch processing code
YIELD !Yield to other applications and EVENT:Timer

END
SETCURSOR !Restore mouse cursor

BackgroundProcess PROCEDURE !Background processing batch process
Win WINDOW('Batch Processing...'),TIMER(1),MDI

BUTTON('Cancel'),STD(STD:Close)
END

CODE
OPEN(Win)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records whenever the timer allows it
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE()
POST(EVENT:CloseWindow)
BREAK

END
!Perform some batch processing code

END
END

END

See Also:

ACCEPT

TIMER

Language Reference Manual 934

Appendix A – DDE, OLE, and .OCX 935

Appendix A - DDE, OLE, and .OCX
Dynamic Data Exchange

DDE Overview
Dynamic Data Exchange (DDE) is a very powerful Windows tool that allows a user to access data
from another separately executing Windows application. This allows the user to work with the
data in its native format (in the originating application), while ensuring that the application in which
the data is used always has the most current values.

DDE is based upon establishing "conversations" (links) between two concurrently executing
Windows applications. One of the applications acts as the DDE server to provide the data, and
the other is the DDE client that receives the data. A single application may be both a DDE client
and server, getting data from other applications and providing data to other applications. Multiple
DDE "conversations" can occur concurrently between any given DDE server and client.

To be a DDE server, a Clarion application must:

• Open at least one window, since all DDE servers must be associated with a window (and
its ACCEPT loop).

• Register with Windows as a DDE server, using the DDESERVER procedure.

• Provide the requested data to the client, using the DDEWRITE statement.

• When DDE is no longer required, terminate the link by using the DDECLOSE statement.
You can also allow it to terminate when the user closes the server application or the
window that started the link.

To be a DDE client, a Clarion application must:

• Open at least one window, since all DDE events must be processed with a window's
ACCEPT loop.

• Open a link to a DDE server as its client, using the DDECLIENT procedure.

• Ask the server for data, using the DDEREAD statement, or ask the server for a service
using the DDEEXECUTE statement.

• When DDE is no longer required, terminate the link by using the DDECLOSE statement.
You can also allow it to terminate automatically when the user closes the client window or
application.

The DDE procedures are prototyped in the DDE.CLW file, which you must INCLUDE in your
program's MAP structure. The DDE process posts DDE-specific field-independent events to the
ACCEPT loop of the window that opened the link between applications as a server or client.

Language Reference Manual 936

DDE Events
The DDE process is governed by several field-independent events specific to DDE. These events
are posted to the ACCEPT loop of the window that opened the link between applications, either
as a server or client.

The following events are posted only to a Clarion server application:

 EVENT:DDErequest
A client has requested a data item.

 EVENT:DDEadvise
A client has requested continuous updates of a data item.

 EVENT:DDEexecute
A client has executed a DDEEXECUTE statement.

 EVENT:DDEpoke
A client has sent unsolicited data

The following events are posted only to a Clarion client application:

 EVENT:DDEdata
A server has supplied an updated data item.

 EVENT:DDEclosed
A server has terminated the DDE link.

When one of these DDE events occur there are several procedures that tell you what posted the
event:

• DDECHANNEL() returns the handle of the DDE server or client.

• DDEITEM() returns the item or command string passed to the server by the DDEREAD
or DDEEXECUTE statements.

• DDEVALUE returns a string containing the data sent to the Clarion DDE server by the
DDEPOKE statement, or the command to execute from a DDEEEXECUTE statement.

• DDEAPP() returns the name of the application.

• DDETOPIC() returns the name of the topic.

When a Clarion program creates a DDE server, external clients can link to this server and request
data. Each data request is accompanied by a string (in some specific format which the server
program knows) indicating the required data item. If the Clarion server already knows the value
for a given item, it supplies it to the client automatically without generating any events. If it
doesn't, an EVENT:DDErequest or EVENT:DDEadvise event is posted to the server window's
ACCEPT loop.

Appendix A – DDE, OLE, and .OCX 937

When a Clarion program creates a DDE client, it can link to external servers which can provide
data. When the server first provides the value for a given item, it supplies it to the client
automatically without generating any events. If the client has established a "hot" link with the
server, an EVENT:DDEdata event is posted to the client window's ACCEPT loop whenever the
server posts a new value for the data item.

Language Reference Manual 938

DDE Procedures

DDEACKNOWLEDGE (send acknowledgement from DDE server)

 DDEACKNOWLEDGE(response)

DDEACKNOWLEDGE
Sends acknowledgement of the current DDEPOKE or DDEEXECUTE statement
sent to the DDE server.

response An integer constant, variable, or expression containing zero (0) or one (1) to
indicate negative or positive acknowledgement.

The DDEACKNOWLEDGE procedure allows a DDE server program to immediately acknowledge
unsolicited data sent from DDEPOKE, or commands sent from DDEEXECUTE. This allows the
client application to immediately continue its processing. Although a CYCLE statement after
EVENT:DDEpoke or EVENT:DDEexecute also signals positive acknowledgement to the client,
DDEACKNOWLEDGE allows you to send negative acknowledgement.

Appendix A – DDE, OLE, and .OCX 939

Example:
!The client application's code contains:

WinOne WINDOW,AT(0,0,160,400)
END

SomeServer LONG
DDEChannel LONG
CODE
OPEN(WinOne)
DDEChannel = DDECLIENT('MyServer','System') !Open a channel to MyServer app
DDEEXECUTE(DDEChannel,'[ShowList]') !Tell it to do something

!The server application's code contains:
WinOne WINDOW,AT(0,0,160,400)

END
DDEChannel LONG
CODE
OPEN(WinOne)
DDEChannel = DDESERVER('MyServer','System') !Open channel
ACCEPT
CASE EVENT()
OF EVENT:DDEExecute
CASE DDEVALUE() !Check the requested action
OF 'ShowList'
DDEACKNOWLEDGE(1) !Send positive acknowledgement
DO ShowList !and take the action

ELSE !If requested action is unknown
DDEACKNOWLEDGE(0) !Send negative acknowledgement

END
END

END

See Also:

DDEPOKE

DDEEXECUTE

Language Reference Manual 940

DDEAPP (return server application)

 DDEAPP()

The DDEAPP procedure returns a string containing the application name in the DDE channel that
has just posted a DDE event. This is usually the same as the first parameter to the DDESERVER
or DDECLIENT procedure when the DDE channel is established.

Return Data Type: STRING

Example:
ClientApp STRING(20)
WinOne WINDOW,AT(0,0,160,400)

STRING(@S20),AT(5,5,90,20),USE(ClientApp)
END

TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)

CODE
OPEN(WinOne)
TimeServer = DDESERVER('SomeApp','Time') !Open as server
DateServer = DDESERVER('SomeApp','Date') !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDECHANNEL()
OF TimeServer
ClientApp = DDEAPP() !Get client's name
DISPLAY !and display on screen
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,'Time',FormatTime)

OF DateServer
ClientApp = DDEAPP() !Get client's name
DISPLAY !and display on screen
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,'Date',FormatDate)

END
END

END

See Also: DDECLIENT, DDESERVER

Appendix A – DDE, OLE, and .OCX 941

DDECHANNEL (return DDE channel number)

 DDECHANNEL()

The DDECHANNEL procedure returns a LONG integer containing the channel number of the
DDE client or server application that has just posted a DDE event. This is the same value
returned by the DDESERVER or DDECLIENT procedure when the DDE channel is established.

Return Data Type: LONG

Example:
WinOne WINDOW,AT(0,0,160,400)

END
TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)
CODE
OPEN(WinOne)
TimeServer = DDESERVER('SomeApp','Time') !Open as server
DateServer = DDESERVER('SomeApp','Date') !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDECHANNEL() !Check which channel
OF TimeServer
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,'Time',FormatTime)

OF DateServer
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,'Date',FormatDate)

END
END

END

See Also:

DDECLIENT

DDESERVER

Language Reference Manual 942

DDECLIENT (return DDE client channel)

 DDECLIENT([application] [, topic])

DDECLIENT Returns a new DDE client channel number.

application A string constant or variable containing the name of the server application to link
to. Usually, this is the name of the application. If omitted, the first DDE server
application available is used.

topic A string constant or variable containing the name of the application-specific topic.
If omitted, the first topic available in the application is used.

The DDECLIENT procedure returns a new DDE client channel number for the application and
topic. If the application is not currently executing, DDECLIENT returns zero (0).

Typically, when opening a DDE channel as the client, the application is the name of the server
application. The topic is a string that the application has either registered with Windows as a valid
topic for the application, or represents some value that tells the application what data to provide.
You can use the DDEQUERY procedure to determine the applications and topics currently
registered with Windows.

Return Data Type: LONG

Example:
DDEReadVal REAL
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDEReadVal)
END

ExcelServer LONG
CODE
OPEN(WinOne)

!Open as client to Excel spreadsheet:
ExcelServer = DDECLIENT('Excel','MySheet.XLS')
IF NOT ExcelServer !If the server is not running
MESSAGE('Please start Excel') !alert the user to start it
RETURN !and try again

END
DDEREAD(ExcelServer,DDE:auto,'R5C5',DDEReadVal)
ACCEPT
CASE EVENT()
OF EVENT:DDEdata !As changed data comes from Excel
PassedData(DDEReadVal) !process the new data

END
END

See Also: DDEQUERY, DDEWRITE, DDESERVER

Appendix A – DDE, OLE, and .OCX 943

DDECLOSE (terminate DDE server link)

 DDECLOSE(channel)

DDECLOSE Closes an open DDE channel.

channel The label of the LONG integer variable containing the channel number--the value
returned by the DDESERVER or DDECLIENT procedure.

The DDECLOSE procedure allows a DDE client program to terminate the specified channel. A
channel is automatically terminated when the window which opened the channel is closed.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out

Example:
WinOne WINDOW,AT(0,0,160,400)

END
SomeServer LONG
CODE
OPEN(WinOne)
SomeServer = DDECLIENT('SomeApp','MyTopic') !Open as client
ACCEPT
END
DDECLOSE(SomeServer)

See Also:

DDECLIENT

DDESERVER

Language Reference Manual 944

DDEEXECUTE (send command to DDE server)

 DDEEXECUTE(channel, command)

DDEEXECUTE Sends a command string to an open DDE client channel.

channel A LONG integer constant or variable containing the client channel--the value
returned by the DDECLIENT procedure.

command A string constant or variable containing the application-specific command for the
server to execute.

The DDEEXECUTE procedure allows a DDE client program to communicate a command to the
server. The command must be in a format the server application can recognize and act on. The
server does not need to be a Clarion program. By convention, the entire command string is
normally contained within square brackets ([]).

A Clarion DDE server can use the DDEVALUE() procedure to determine what command the
client has sent.The CYCLE statement after an EVENT:DDEexecute signals positive
acknowledgement to the client that sent the command. DDEACKNOWLEDGE can send either
positive or negative acknowledgement.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
603 DDEEXECUTE Failed
605 Time Out

Events Generated: EVENT:DDEexecute
 A client has sent a command.

Appendix A – DDE, OLE, and .OCX 945

Example:
!The client application's code contains:

WinOne WINDOW,AT(0,0,160,400)
END

SomeServer LONG
DDEChannel LONG
CODE
OPEN(WinOne)

!Open a channel to Windows Program Manager:
DDEChannel = DDECLIENT('PROGMAN','PROGMAN')

!Create a new program group:
DDEEXECUTE(DDEChannel,'[CreateGroup(Clarion Applications)]')

!Display it:
DDEEXECUTE(DDEChannel,'[ShowGroup(1)]')

!Create new item in the group using second icon in progman.exe
DDEEXECUTE(DDEChannel,'[AddItem(MYAPP.EXE,My Program,PROGMAN.EXE,2)]')

See Also:

DDEACKNOWLEDGE

DDEVALUE

Language Reference Manual 946

DDEITEM (return server item)

 DDEITEM()

The DDEITEM procedure returns a string containing the name of the item for the current DDE
event. This is the item requested by a DDEREAD, or the data item supplied by DDEPOKE.

Return Data Type: STRING

Example:
WinOne WINDOW,AT(0,0,160,400)

END

Server LONG
FormatTime STRING(5)
FormatDate STRING(8)

CODE
OPEN(WinOne)
Server = DDESERVER('SomeApp','Clock') !Open as server for my topic
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDEITEM()
OF 'Time'
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(Server,DDE:manual,'Time',FormatTime)

OF 'Date'
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(Server,DDE:manual,'Date',FormatDate)

END
OF EVENT:DDEadvise
CASE DDEITEM()
OF 'Time'
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(Server,1,'Time',FormatTime)

OF 'Date'
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(Server,60,'Date',FormatDate)

END
END

END

See Also: DDEREAD, DDEEXECUTE, DDEPOKE

Appendix A – DDE, OLE, and .OCX 947

DDEPOKE (send unsolicited data to DDE server)

 DDEPOKE(channel, item, value)

DDEPOKE Sends unsolicited data through an open DDE client channel to a DDE server.

channel A LONG integer constant or variable containing the client channel--the value
returned by the DDECLIENT procedure.

item A string constant or variable containing the application-specific item to receive
the unsolicited data.

value A string constant or variable containing the data to place in the item.

The DDEPOKE procedure allows a DDE client program to communicate unsolicited data to the
server. The item and value parameters must be in a format the server application can recognize
and act on. The server does not need to be a Clarion program.

A Clarion DDE server can use the DDEITEM() and DDEVALUE() procedures to determine what
the client has sent. The CYCLE statement after an EVENT:DDEpoke signals positive
acknowledgement to the client that sent the unsolicited data. DDEACKNOWLEDGE can send
either positive or negative acknowledgement.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
604 DDEPOKE Failed
605 Time Out

Events Generated: EVENT:DDEpoke A client has sent unsolicited data

Language Reference Manual 948

Example:

WinOne WINDOW,AT(0,0,160,400)
END

DDEChannel LONG
CODE
OPEN(WinOne)
DDEChannel = DDECLIENT('Excel','System') !Open channel to Excel
DDEEXECUTE(DDEChannel,'[NEW(1)]') !Create a new spreadsheet
DDEEXECUTE(DDEChannel,'[Save.As("DDE_CHART.XLS")]') !Save it as DDE_CHART.XLS
DDECLOSE(DDEChannel) !Close conversation
DDEChannel = DDECLIENT('Excel','DDE_CHART.XLS') !Open channel to new chart
DDEPOKE(DDEChannel,'R1C2','Widgets') !Send it data
DDEPOKE(DDEChannel,'R1C3','Gadgets')
DDEPOKE(DDEChannel,'R2C1','East')
DDEPOKE(DDEChannel,'R3C1','West')
DDEPOKE(DDEChannel,'R2C2','450')
DDEPOKE(DDEChannel,'R3C2','275')
DDEPOKE(DDEChannel,'R2C3','340')
DDEPOKE(DDEChannel,'R3C3','390')
DDEEXECUTE(DDEChannel,'[SELECT("R1C1:R3C2")]') !Highlight the data
DDEEXECUTE(DDEChannel,'[NEW(2,2)]') !and create a new chart

!Send some more commands here to format the chart and work with it
DDECLOSE(DDEChannel) !Close channel when done

See Also: DDEACKNOWLEDGE, DDEITEM, DDEVALUE

Appendix A – DDE, OLE, and .OCX 949

DDEQUERY (return registered DDE servers)

 DDEQUERY([application] [, topic])

DDEQUERY Returns currently executing DDE servers.

application A string constant or variable containing the name of the application to query. For
most applications, this is the name of the application. If omitted, all registered
applications registered with the specified topic are returned.

topic A string constant or variable containing the name of the application-specific topic
to query. If omitted, all topics for the application are returned.

The DDEQUERY procedure returns a string containing the names of the currently available DDE
server applications and their topics.

If the topic parameter is omitted, all topics for the specified application are returned. If the
application parameter is omitted, all registered applications registered with the specified topic are
returned. If both parameters are omitted, DDEQUERY returns all currently available DDE servers.

The format of the data in the return string is application:topic and it can contain multiple
application and topic pairs delimited by commas (for example,
'Excel:MySheet.XLS,ClarionApp:DataFile.DAT').

Return Data Type: STRING

Example:
!This example code does not handle DDEADVISE

WinOne WINDOW,AT(0,0,160,400)
END

SomeServer LONG
ServerString STRING(200)
CODE
OPEN(WinOne)
LOOP
ServerString = DDEQUERY() !Return all registered servers
IF NOT INSTRING('SomeApp:MyTopic',ServerString,1,1)
MESSAGE('Open SomeApp, Please')

ELSE
BREAK

END
END
SomeServer = DDECLIENT('SomeApp','MyTopic') !Open as client
ACCEPT
END
DDECLOSE(SomeServer)

Language Reference Manual 950

DDEREAD (get data from DDE server)

 DDEREAD(channel, mode, item [, variable])

DDEREAD Gets data from a previously opened DDE client channel.

channel A LONG integer constant or variable containing the client channel--the value
returned by the DDECLIENT procedure.

mode An EQUATE defining the type of data link: DDE:auto, DDE:manual, or
DDE:remove (defined in EQUATES.CLW).

item A string constant or variable containing the application-specific name of the data
item to retrieve.

variable The name of the variable to receive the retrieved data. If omitted and mode is
DDE:remove, all links to the item are canceled.

The DDEREAD procedure allows a DDE client program to read data from the channel into the
variable. The type of update is determined by the mode parameter. The item parameter supplies
some string value to the server application that tells it what specific data item is being requested.
The format and structure of the item string is dependent upon the server application.

If the mode is DDE:auto, the variable is continually updated by the server (a "hot" link). An
EVENT:DDEdata is generated each time the variable is updated by the server.

If the mode is DDE:manual, the variable is updated once and no event is generated. Another
DDEREAD request must be sent to the server to check for any changed value (a "cold" link).

If the mode is DDE:remove, a previous "hot" link to the variable is terminated. If the mode is
DDE:remove and variable is omitted, all previous "hot" links to the item are terminated, no matter
what variables were linked. This means the client must send another DDEREAD request to the
server to check for any changed value.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out

Events Generated: These events are posted to the client application:

 EVENT:DDEdata
A server has supplied an updated data item for a hot link.

 EVENT:DDEclosed
A server has terminated the DDE link.

Appendix A – DDE, OLE, and .OCX 951

Example:
WinOne WINDOW,AT(0,0,160,400)

END

ExcelServer LONG(0)
DDEReadVal REAL

CODE
OPEN(WinOne)
!Open as client to Excel spreadsheet
ExcelServer = DDECLIENT('Excel','MySheet.XLS')
IF NOT ExcelServer !If the server is not running
MESSAGE('Please start Excel') !alert the user to start it
CLOSE(WinOne)
RETURN

END

!Request continual update from server:
DDEREAD(ExcelServer,DDE:auto,'R5C5',DDEReadVal)

ACCEPT
CASE EVENT()
OF EVENT:DDEdata !As changed data comes from Excel
PassedData(DDEReadVal) ! call proc to process the new data

END
END

See Also:

DDEQUERY

DDEWRITE

DDESERVER

Language Reference Manual 952

DDESERVER (return DDE server channel)

 DDESERVER([application] [, topic])

DDESERVER Returns a new DDE server channel number.

application A string constant or variable containing the name of the application. Usually, this
is the name of the application. If omitted, the filename of the application (without
extension) is used.

topic A string constant or variable containing the name of the application-specific topic.
If omitted, the application will respond to any data request.

The DDESERVER procedure returns a new DDE server channel number for the application and
topic. The channel number specifies a topic for which the application will provide data. This allows
a single Clarion application to register as a DDE server for multiple topics.

Return Data Type: LONG

Example:
DDERetVal STRING(20)
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDERetVal)
END

MyServer LONG

CODE
OPEN(WinOne)
MyServer = DDESERVER('MyApp','DataEntered') !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest !As server for data requested once
DDEWRITE(MyServer,DDE:manual,'DataEntered',DDERetVal) !Provide data once

OF EVENT:DDEadvise !As server for constant update request
DDEWRITE(MyServer,15,'DataEntered',DDERetVal)

!Check for change every 15 seconds
!and provide data whenever changed

END
END

See Also:

DDECLIENT

DDEWRITE

Appendix A – DDE, OLE, and .OCX 953

DDETOPIC (return server topic)

 DDETOPIC()

The DDETOPIC procedure returns a string containing the topic name for the DDE channel that
has just posted a DDE event.

Return Data Type: STRING

Example:
WinOne WINDOW,AT(0,0,160,400)

END

TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)

CODE
OPEN(WinOne)
TimeServer = DDESERVER('SomeApp') !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDETOPIC() !Get requested topic
OF 'Time'
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,'Time',FormatTime)

OF 'Date'
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,'Date',FormatDate)

END
END

END

See Also:

DDEREAD

DDECLIENT

DDESERVER

Language Reference Manual 954

DDEVALUE (return data value sent to server)

 DDEVALUE()

The DDEVALUE procedure returns a string containing the data sent to a Clarion DDE server by
the DDEPOKE statement, or the command to execute from a DDEEXECUTE statement.

Return Data Type: STRING

Example:
WinOne WINDOW,AT(0,0,160,400)

END
TimeServer LONG

TimeStamp FILE,DRIVER(ASCII),PRE(Tim)
Record RECORD
FormatTime STRING(5)
FormatDate STRING(8)
Message STRING(50)

END
END

CODE
OPEN(WinOne)
TimeServer = DDESERVER('TimeStamp') !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDEpoke
OPEN(TimeStamp)
Tim:FormatTime = FORMAT(CLOCK(),@T1)
Tim:FormatDate = FORMAT(TODAY(),@D1)
Tim:Message = DDEVALUE() !Get data
ADD(TimeStamp)
CLOSE(TimeStamp)
CYCLE !Ensure acknowledgement

END
END

See Also:

DDEPOKE

DDEEXECUTE

Appendix A – DDE, OLE, and .OCX 955

DDEWRITE (provide data to DDE client)

 DDEWRITE(channel, mode, item [, variable])

DDEWRITE Provide data to an open DDE server channel.

channel A LONG integer constant or variable containing the server channel--the value
returned by the DDESERVER procedure.

mode An integer constant or variable containing the interval (in seconds) to poll for
changes to the variable, or an EQUATE defining the type of data link: DDE:auto,
DDE:manual, or DDE:remove (defined in EQUATES.CLW).

item A string constant or variable containing the application-specific name of the data
item to provide.

variable The name of the variable providing the data. If omitted and mode is DDE:remove,
all links to the item are canceled.

The DDEWRITE procedure allows a DDE server program to provide the variable's data to the
client. The item parameter supplies a string value that identifies the specific data item being
provided. The format and structure of the item string is dependent upon the server application.
The type of update performed is determined by the mode parameter.

If the mode is DDE:auto, the client program receives the current value of the variable and the
internal libraries continue to provide that value whenever the client (or any other client) asks for it
again. If the client requested a "hot" link, any changes to the variable should be tracked by the
Clarion program so it can issue a new DDEWRITE statement to update the client with the new
value.

If the mode is DDE:manual, the variable is updated only once. If the client requested a "hot" link,
any changes to the variable should be tracked by the Clarion program so it can issue a new
DDEWRITE statement to update the client with the new value. PROP:DDETimeOut can be used
to set or get the time out value for the DDE connection (default is five seconds).

If the mode is a positive integer, the internal libraries check the value of the variable whenever the
specified number of seconds has passed. If the value has changed, the client is automatically
updated with the new value by the internal libraries (without the need for any further Clarion
code). This can incur significant overhead, depending upon the data, and so should be used only
when necessary.

If the mode is DDE:remove, any previous "hot" link to the variable is terminated. If the mode is
DDE:remove and variable is omitted, all previous "hot" links to the item are terminated, no matter
what variables were linked. This means the client must send another DDEREAD request to the
server to check for any changed value.

Language Reference Manual 956

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out

Events Generated:
EVENT:DDErequest
A client has requested a data item (a "cold" link).

 EVENT:DDEadvise
A client has requested continuous updates of a data item (a "hot" link).

Example:
DDERetVal STRING(20)
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDERetVal)
END

MyServer LONG
CODE
OPEN(WinOne)
MyServer = DDESERVER('MyApp','DataEntered') !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest !As server for data requested once
DDEWRITE(MyServer,DDE:manual,'DataEntered',DDERetVal) !Provide data once

OF EVENT:DDEadvise !As server for constant update request
DDEWRITE(MyServer,15,'DataEntered',DDERetVal)

!Check for change every 15 seconds
!and provide data whenever changed

END
END

See Also:

DDEQUERY

DDEREAD

DDESERVER

Appendix A – DDE, OLE, and .OCX 957

Object Linking and Embedding

OLE Overview
Object Linking and Embedding (OLE) allows "objects" from one application to be linked or
embedded into a "document" (data structure) of another application. The application that creates
and maintains the object is an OLE Server application, while the application that contains the
object is an OLE Controller application (sometimes referred to as an OLE Client application). OLE
"objects" are data structures appropriate to the OLE Server application (such as a chart from a
spreadsheet, or an image from a paint or drawing application). The object is placed in a
"container window" in the Controller application. In Clarion for Windows, "container windows" are
OLE controls.

Clarion's implementation of OLE allows a Clarion for Windows application to serve as an OLE
Controller application, linking or embedding objects from any OLE Server application. Clarion also
supports OLE Automation, which gives an OLE Controller application dynamic control of the OLE
Server application, using the OLE Server's macro language.

Object Linking

Object Linking generally means the OLE Controller application stores "pointer" information to the
object, whether that object is the entire data structure (like a spreadsheet file) or a component of
the data structure (like a range of cells in a spreadsheet). When an Object is linked into the OLE
Controller application the OLE Controller application contains only the information necessary to
reference the linked data. This can be stored in either a BLOB or an OLE Compound Storage file.

Object Embedding

Object Embedding generally means the OLE Controller application stores the entire object,
independently of the OLE Server application. An Object embedded into the OLE Controller
application does not exist as a separate data file which the OLE Server application may access.
The OLE Controller application completely contains the active object, which can be stored in
either a BLOB or an OLE Compound Storage file.

Maintaining the OLE Object

Any object in the OLE Controller application, whether linked or embedded, is maintained by the
OLE Server application which created it, not the OLE Controller application. This means that
when the user wants to change the object, the OLE Controller application activates the OLE
Server application to make the changes. There are two ways to activate an OLE Server: "in-place
activation" and "open-mode."

Language Reference Manual 958

In-place activation

In-place activation means the user seems to stay in the OLE Controller application, but the OLE
Server's menus and toolbar merge into the OLE Controller 's menus and toolbar and the OLE
Server is the currently executing application. The Object being edited has a "hash-mark" border
to indicate that it is in edit-mode.

If the OLE Server application has one or more toolbars then the toolbars will appear either as
pop-up toolbars or as toolbars attached to one of the edges of the frame, or a combination of
both. This can appear to "push down" the controls on your window, so take care designing your
window.

Open-mode activation

Open-mode activation means the user is switched into the OLE Server application executing in a
separate window. The Object being edited is in the Server application and ready to edit, while the
Object in the OLE Controller application has "hash-marks" completely covering it to indicate a
separate window is editing the object.

Appendix A – DDE, OLE, and .OCX 959

OLE Container Properties

Contents:
Attribute Properties
Undeclared Properties
Example Program
Interface Properties
Clarion OLE/OCX library and object hierarchies

There are a number of properties associated with an OLE container control that deal only with
OLE objects (not .OCX controls).

Attribute Properties

PROP:Create The CREATE attribute (blank if none). (WRITE ONLY)

PROP:Open The OPEN attribute (blank if none). (WRITE ONLY)

PROP:Document
The DOCUMENT attribute (blank if none). (WRITE ONLY)

PROP:Link The LINK attribute (blank if none). (WRITE ONLY)

PROP:Clip The CLIP attribute. A toggle attribute. Assigning a null string ('') or zero turns it
off, and '1' or 1 turns it on. (WRITE ONLY)

PROP:Stretch The STRETCH attribute. A toggle attribute. Assigning a null string ('') or zero
turns it off, and '1' or 1 turns it on. (WRITE ONLY)

PROP:Autosize The AUTOSIZE attribute. A toggle attribute. Assigning a null string ('') or zero
turns it off, and '1' or 1 turns it on. (WRITE ONLY)

PROP:Zoom The ZOOM attribute. A toggle attribute. Assigning a null string ('') or zero turns it
off, and '1' or 1 turns it on. (WRITE ONLY)

PROP:Compatibility
The COMPATIBILITY attribute (blank if none). (WRITE ONLY)

Undeclared Properties

PROP:Blob Convert an object to and from a blob. (READ/WRITE)

PROP:SaveAs Saves the object to an OLE Compound Storage file. (WRITE ONLY)

 The syntax for placing the object in the file is 'filename\!component' For
example:

?controlx{PROP:SaveAs} = 'myfile\!objectx'

Language Reference Manual 960

PROP:DoVerb Executes an OLE doverb command from the following set of commands (WRITE
ONLY):

 DOVERB:Primary (0)
Calls the object's primary action. The object, not the container,
determines this action. If the object supports in-place activation, the
primary verb usually activates the object in-place.

DOVERB:Show (-1)
Tells the object to show itself for editing or viewing. Called to display
newly inserted objects for initial editing and to show link sources. This is
usually an alias for some other object-defined action.

 DOVERB:Open (-2)
Tells the object to open itself for editing in a separate window from its
container (this includes objects that support in-place activation). If the
object does not support in-place activation, this has the same action as
DOVERB:Show.

 DOVERB:Hide (-3)
Tells the object to remove its user interface. This applies only to objects
activated in-place.

 DOVERB:UIActivate (-4)
Activates the object in place, along with its full set of user-interface tools,
including menus, toolbars, and its name in the title bar of the container
window.

 DOVERB:InPlaceActivate (-5)
Activates the object in-place without displaying the tools (menus and
toolbars) that end-users need to change the behavior or appearance of
the object.

 DOVERB:DiscardUndoState (-6)
Tells the object to discard any undo state that it may be maintaining
without deactivating the object.

 DOVERB:Properties (-7)
Invokes the modal system property browser for the object to allow the
user to set its properties.

PROP:Deactivate Deactivates an in-place active OLE object. (READ/WRITE/EXECUTE)

PROP:Update Tells the OLE object to update itself. (READ/WRITE/EXECUTE)

PROP:CanPaste Can you paste the object in the clipboard? (READ ONLY)

PROP:Paste Pastes an object from the clipboard to an OLE container control.
(READ/WRITE/EXECUTE)

PROP:CanPasteLink Can the object in the clipboard be pasted as a link? (READ ONLY)

Appendix A – DDE, OLE, and .OCX 961

PROP:PasteLink Pastes and links an object from the clipboard to an OLE container
control. (READ/WRITE/EXECUTE)

PROP:Copy Copies an object in an OLE container control to the clipboard.
(READ/WRITE/EXECUTE)

PROP:ReportException Report OLE exceptions (for debug). (WRITE ONLY)

PROP:OLE Is there an OCX or OLE object in the container? (READ ONLY)

PROP:Language The number for the language used for OLE Automation or OCX Method.
The number for US English is 0409H, and other language numbers can
be computed from the data in the WINNT.H file in the MS Windows SDK.
(READ/WRITE)

Language Reference Manual 962

Example Program:
PROGRAM
MAP
INCLUDE('OCX.CLW')

SelectOleServer PROCEDURE(OleQ PickQ),STRING
END
INCLUDE 'XL.CLW' !Constants that Excel uses
INCLUDE 'ERRORS.CLW' !Include errorcode constants

SaveLinks FILE,DRIVER('TopSpeed'),PRE(SAV),CREATE
Object BLOB
Record RECORD
LinkType STRING(1) !F = File, B = BLOB
LinkFile STRING(64) !OLE Compound Storage file name and object

END
END

i LONG !Loop counters
j LONG
ResultQ QUEUE !Queue to hold return from OLEDIRECTORY
Name CSTRING(64)
CLSID CSTRING(64)
ProgID CSTRING(64)

END
MainWin WINDOW('OLE Demo'),AT(,,350,200),STATUS(-1,-1),SYSTEM,GRAY,RESIZE,MAX,TIMER(1)

MENUBAR
MENU('&File')
ITEM('e&xit'),USE(?exit)
END
MENU('&Objects')
ITEM('Create Object'),USE(?CreateObject)
ITEM('Paste Object'),USE(?PasteObject)
ITEM('PasteLink Object'),USE(?PasteLinkObject)
ITEM('Save Object to BLOB'),USE(?SaveObjectBlob),DISABLE
ITEM('Save Object to OLE File'),USE(?SaveObjectFile),DISABLE
ITEM('Retrieve Saved Object'),USE(?GetObject),DISABLE
END
MENU('&Activate')
ITEM('&Spreadsheet'),USE(?ActiveExcel)
ITEM('&Any OLE Object'),USE(?ActiveOLE),DISABLE
END

END
OLE,AT(5,10,160,100),COLOR(0808000H),USE(?ExcelObject)
MENUBAR
MENU('&Clarion App')
ITEM('&Deactivate Excel'),USE(?DeactExcel)
END
END

Appendix A – DDE, OLE, and .OCX 963

END
OLE,AT(170,10,160,100),USE(?AnyOLEObject),AUTOSIZE
MENUBAR
MENU('&Clarion App')
ITEM('&Deactivate Object'),USE(?DeactOLE)
END
END
END

END

CODE
OPEN(SaveLinks)
IF ERRORCODE() !Check for error on Open
IF ERRORCODE() = NoFileErr !if the file doesn't exist
CREATE(SaveLinks) !then create it
IF ERRORCODE() THEN HALT(,ERROR()) END
OPEN(SaveLinks) !then open it for use
IF ERRORCODE() THEN HALT(,ERROR()) END

ELSE
HALT(,ERROR())

END
END
OPEN(MainWin)
?ExcelObject{PROP:Create} = 'Excel.Sheet.5' !Create an Excel spreadsheet object
DO BuildSheetData !populate it with some random data
IF RECORDS(SaveLinks) !Check for existing saved record
SET(SaveLinks) !and get it
NEXT(SaveLinks)
POST(EVENT:Accepted,?GetObject) !and display it
DO MenuEnable

ELSE
ADD(SaveLinks) !or add blank record

END
IF ERRORCODE() THEN HALT(,ERROR()) END
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
?ExcelObject{PROP:Deactivate} !Deactivate the OLE Server applications
?AnyOLEObject{PROP:Deactivate}

OF EVENT:Timer
IF CLIPBOARD()
IF ?AnyOLEObject{PROP:CanPaste} !Can Paste object from the clipboard?
IF ?PasteObject{PROP:Disable}
ENABLE(?PasteObject)

END
ELSIF NOT ?PasteObject{PROP:Disable}
DISABLE(?PasteObject)

END

Language Reference Manual 964

IF ?AnyOLEObject{PROP:CanPasteLink} !Can PasteLink object from clipboard?
IF ?PasteLinkObject{PROP:Disable}
ENABLE(?PasteLinkObject)

END
ELSIF NOT ?PasteLinkObject{PROP:Disable}
DISABLE(?PasteLinkObject)

END
END

OF EVENT:Accepted
CASE FIELD()
OF ?Exit
POST(EVENT:CloseWindow)

OF ?CreateObject
OLEDIRECTORY(ResultQ,0) !Get a list of installed OLE Servers
?AnyOLEObject{PROP:Create} = SelectOleServer(ResultQ) !Let the user pick one
?AnyOLEObject{PROP:DoVerb} = 0 !Activate OLE Server in its default mode
DO MenuEnable

OF ?PasteObject
?AnyOLEObject{PROP:Paste} !Paste the object
SETCLIPBOARD('Paste Completed') !Assign non-object text to clipboard
DO MenuEnable

OF ?PasteLinkObject
?AnyOLEObject{PROP:PasteLink} !PasteLink the object
SETCLIPBOARD('PasteLink Completed') !Assign non-object text to clipboard
DO MenuEnable

OF ?SaveObjectBlob !Save object to BLOB
SAV:Object{PROP:Handle} = ?AnyOLEObject{PROP:Blob}
SAV:LinkType = 'B'
PUT(SaveLinks)
IF ERRORCODE() THEN STOP(ERROR()) END

OF ?SaveObjectFile !Save to OLE Compound Storage file
?AnyOLEObject{PROP:SaveAs} = 'TEST1.OLE\!Object'
SAV:LinkFile = 'TEST1.OLE\!Object'
SAV:LinkType = 'F'
PUT(SaveLinks)
IF ERRORCODE() THEN STOP(ERROR()) END

OF ?GetObject
IF SAV:LinkType = 'F' !Saved to OLE Compound Storage file?
?AnyOLEObject{PROP:Open} = SAV:LinkFile

ELSIF SAV:LinkType = 'B' !Saved to BLOB?
?AnyOLEObject{PROP:Blob} = SAV:Object{PROP:Handle}

END
DISPLAY

OF ?ActiveExcel
?ExcelObject{PROP:DoVerb} = 0 !In-place activate Excel

OF ?ActiveOLE
?AnyOLEObject{PROP:DoVerb} = 0 !Activate OLE Server in its default mode

OF ?DeactExcel

Appendix A – DDE, OLE, and .OCX 965

?ExcelObject{PROP:Deactivate} !Return to the Clarion application
OF ?DeactOLE
?AnyOLEObject{PROP:Deactivate} !Return to the Clarion application

END !CASE FIELD()
END !CASE EVENT0()

END !ACCEPT

BuildSheetData ROUTINE !Use OLE Automation to build spreadsheet
?ExcelObject{PROP:ReportException} = TRUE !Excel will report any errors
?ExcelObject{'Application.Calculation'} = xlManual !turn off auto recalc
LOOP i = 1 TO 3 !Fill Sheet with some values
LOOP j = 1 TO 3
?ExcelObject{'Cells(' & i & ',' & j & ').Value'} = Random(100,900)
END
?ExcelObject{'Cells(4,' & i & ').Value'} = 'Sum'
?ExcelObject{'Cells(5,' & i & ').FormulaR1C1'} = '=SUM(R[-4]C:R[-2]C)'
?ExcelObject{'Cells(6,' & i & ').Value'} = 'Average'
?ExcelObject{'Cells(7,' & i & ').FormulaR1C1'} = '=AVERAGE(R[-6]C:R[-4]C)'

END
!turn auto recalc back on
?ExcelObject{'Application.Calculation'} = xlAutomatic
DISPLAY

MenuEnable ROUTINE !Enable menu items
ENABLE(?ActiveOLE)
ENABLE(?SaveObjectBlob,?GetObject)

SelectOleServer PROCEDURE(OleQ PickQ)
window WINDOW('Choose OLE Server'),AT(,,122,159),CENTER,SYSTEM,GRAY

LIST,AT(11,8,100,120),USE(?List),HVSCROLL, |
FORMAT('146L~Name~@s64@135L~CLSID~@s64@20L~ProgID~@s64@'),FROM(PickQ)
BUTTON('Select'),AT(42,134),USE(?Select)

END

CODE
OPEN(window)
SELECT(?List,1)
ACCEPT
CASE ACCEPTED()
OF ?Select
GET(PickQ,CHOICE(?List))
IF ERRORCODE() THEN STOP(ERROR()) END
POST(EVENT:CloseWindow)

END
END
RETURN(PickQ.ProgID)

Language Reference Manual 966

Interface Properties

PROP:Object Gets the Dispatch interface for the object. (READ ONLY)

In VB the toolbar and tree control use the image-list control to show icons in the
tree control and on the buttons on the toolbar. To associate an image control with
a toolbar, use the following code:

?toolbar{'ImageList'} = ?imagelist{prop:object}

PROP:SelectInterface
Selects the interface to use with the object. (WRITE ONLY)

?x{PROP:SelectInterface} = 'x.y'
?x{'z(1)'} = 1
?x{'z(2)'} = 2

has the same meaning as

?x{'x.y.z(1)'} = 1
?x{'x.y.z(2)'} = 2

PROP:AddRef Increments the reference count for an interface. (WRITE ONLY)

PROP:Release Decrements the reference count for an interface. (WRITE ONLY)

Clarion OLE/OCX library and object hierarchies:

At the time of the design and implementation of the Claion OLE library, the lack of access to
secondary objects created by a primary object (example from excel:
ExcelUse{'Application.Charts.Add'}), was not considered a problem as there were other ways of
accessing the object(ExcelUse {'Application.Charts(Chart1).ChartWizard('
&?ex{'Range(A5:C5)'}&','&xl3DPie&',7,1,0,0,2,,,,)'})

At the time there was only one known instance where this was not the case. This is probably still
true today as the OLE standard states that an object implement a collection, must also implement
a method for accessing the objects by indexing.

Due to the special case mentioned above, when an object was created by one control and
passed onto an other object as a parameter, a method which would be more or less transparent
to the user, was implemented.

Calling a method which returns an IDispatchInterface is converted into a special representation (a
'`' followed by a number of digits). This special representation is recognized in a couple of places
in the OLE library.

Appendix A – DDE, OLE, and .OCX 967

The place that you will find most useful is, when the special representation is in the place where
an interface could occur in the property syntax it will replace any previous interface in the access
of the properties or methods of the object. For example:

x=y{'charts.add()')
y{x&'p(7)'}

where y is an ole object and x is a cstring. This is an example of a method returning an interface
and later this interface is used to access a method p with the parameter 7.

In this context a further complication arises form the reference counting used in OLE. Which
means that if the object are used more than once it must have it's reference count increased
before use.

x=y{'charts.add()')
y{PROP:AddRef}=x
y{x&'p(7)'}
y{x&'p(7)'} ;last use of x

Language Reference Manual 968

OLEDIRECTORY (get list of installed OLE/OCX)

 OLEDIRECTORY(list , flag [, bits])

OLEDIRECTORY
Gets a list of all installed OLE servers or OCX controls.

list The label of the QUEUE structure to receive the list.

flag An integer constant or variable that determines whether to get a list of OLE
servers (flag = 0) or OCX controls (flag = 1).

bits An integer constant or variable that determines whether to get a list of 16-bit or
32-bit OCX controls. If one (1), it returns 16-bit OCX controls. If two (2), it returns
32-bit OCX controls. If three (3), it returns both 16-bit and 32-bit OCX controls. If
omitted or zero, 16-bit programs return 16-bit OCX controls and 32-bit programs
return 32-bit OCX controls.

Note: With 16-bit support deprecated in this release, the 32-bit mode should be used exclusively.

OLEDIRECTORY gets a list of all installed OLE servers or OCX controls and places it in the list
QUEUE. The list QUEUE must be declared with the same structure as the OleQ QUEUE
declaration in EQUATES.CLW:

OleQ QUEUE,TYPE
Name CSTRING(64) !Name of the OLE Server application
CLSID CSTRING(64) !Unique identifier for the operating system
ProgID CSTRING(64) !Registry name, such as: Excel.Sheet.5

END

Example:
ResultQ QUEUE(OleQ). !Declare ResultQ the same as OleQ QUEUE in EQUATES.CLW
CODE
OLEDIRECTORY(ResultQ,0) !Get list of installed OLE Servers & put it in ResultQ

!then let the user pick one:
?OleControl{PROP:Create} = SelectOleServer(ResultQ)

!User's OLE Server choice procedure:
SelectOleServer PROCEDURE(OleQ PickQ)
window WINDOW('Choose OLE Server'),AT(,,122,159),CENTER,SYSTEM,GRAY

LIST,AT(11,8,100,120),USE(?List),HVSCROLL, |
FORMAT('146L~Name~@s64@135L~CLSID~@s64@20L~ProgID~@s64@'),FROM(PickQ)
BUTTON('Select'),AT(42,134),USE(?Select)

END
CODE
OPEN(window)
SELECT(?List,1)

Appendix A – DDE, OLE, and .OCX 969

ACCEPT
CASE ACCEPTED()
OF ?Select
GET(PickQ,CHOICE(?List))
IF ERRORCODE() THEN STOP(ERROR()) END
POST(EVENT:CloseWindow)

END
END
RETURN(PickQ.ProgID)

Language Reference Manual 970

OLE (.OCX) Custom Controls

OLE custom control Overview
OLE custom controls commonly have the .OCX file extension. Therefore, they are commonly
referred to as .OCX controls. .OCX controls are similar to .VBX controls in that they are self-
contained and designed to perform a specific task when used in a program. However, .OCX
controls do not have the limitations that .VBX controls have, since .OCX controls are built to
Microsoft's OLE 2 specification, which was designed with cross-language compatibility in mind (to
languages other than just Visual Basic).

Appendix A – DDE, OLE, and .OCX 971

.OCX Control Properties
Name Description

PROP:Create The CREATE attribute (blank if none). (WRITE ONLY)

PROP:DesignMode
Is the .OCX control in the container in design-mode (does it have a size border
around it)? (WRITE ONLY)

PROP:Ctrl Is this an .OCX control? (READ ONLY)

PROP:GrabHandles
Makes the .OCX control show grab handles. (WRITE ONLY)

PROP:OLE Is there an OCX or OLE object in the container? (READ ONLY)

PROP:IsRadio Is this an OCX radio button? (READ ONLY)

PROP:LastEventName
Gets the name of the last event sent to an .OCX control. (READ ONLY)

PROP:SaveAs Saves the object to an OLE Compound Storage file. (WRITE ONLY)

 The syntax for placing the object in the file is 'filename\!component' For
example:

?controlx{PROP:SaveAs} = 'myfile\!objectx'

PROP:ReportException
Report OLE exceptions (for debug). (WRITE ONLY)

PROP:DoVerb Executes an OLE doverb command from the following set of commands (WRITE
ONLY):

 DOVERB:Primary (0)
Calls the object's primary action. The object, not the container,
determines this action. If the object supports in-place activation, the
primary verb usually activates the object in-place.

 DOVERB:Show (-1)
Tells the object to show itself for editing or viewing. Called to display
newly inserted objects for initial editing and to show link sources. This is
usually an alias for some other object-defined action.

 DOVERB:Open (-2)
Tells the object to open itself for editing in a separate window from its
container (this includes objects that support in-place activation). If the
object does not support in-place activation, this has the same action as
DOVERB:Show.

Language Reference Manual 972

 DOVERB:Hide (-3)
Tells the object to remove its user interface. This applies only to objects
activated in-place.

 DOVERB:UIActivate (-4)
Activates the object in-place, along with its full set of user-interface tools,
including menus, toolbars, and its name in the title bar of the container
window.

 DOVERB:InPlaceActivate (-5)
Activates the object in-place without displaying tools (menus and
toolbars) that end-users need to change the behavior or appearance of
the object.

 DOVERB:DiscardUndoState (-6)
Tells the object to discard any undo state that it may be maintaining
without deactivating the object.

 DOVERB:Properties (-7)
Invokes the modal system property browser for the object to allow the
user to set its properties.

PROP:Language The number for the language used for OLE Automation or OCX Method.
The number for US English is 0409H, and other language numbers can
be computed from the data in the WINNT.H file in the MS Windows SDK.
(READ/WRITE)

Appendix A – DDE, OLE, and .OCX 973

Callback Functions
OCX Event Processor
OCX Property Edit Controller
OCX Property Change

Callback functions are a standard part of Windows programming in most programming
languages. A callback function is a PROCEDURE that you (the programmer) write to handle
specific situations that the operating system deems the programmer may need to deal with. A
callback function is called by the operating system whenever it needs to pass on these situations.
Therefore, a callback function does not appear to be part of the logic flow, but instead appears to
be separate and "magic" without any logical connection to other procedures in your program.

The Clarion for Windows language does not force you to write your own callback functions for all
the common tasks that other programming languages require you to, since the Clarion runtime
library and the ACCEPT loop handles most of that for you. However, since .OCX controls are
written in other languages that do require callback functions, you will need to write your own to
deal with the events and other programming issues for the .OCX controls you use in Clarion
programs. Since CLASS methods have an implicit first parameter of the class name, they cannot
be used as callbacks.

There are three callback functions you can write for your .OCX controls: an event processor, a
property edit controller, and a property change handler. You may name these whatever you want,
but they have specific requirements for the parameters that they receive.

OCX Event Processor Callback Function

The prototype for the event processor must be:

OcxEventFuncName PROCEDURE(*SHORT,SIGNED,LONG),LONG

The parameters it receives from the operating system are:

*SHORT A Reference parameter to pass onto the following other OCX library procedures:
OCXGETPARAM, OCXGETPARAMCOUNT, and OCXSETPARAM as their first
parameter.

SIGNED The field number for the control. This is the same number that is represented by
the control's field equate label.

LONG The number of the .OCX event. Equates for some pre-defined event numbers are
contained in the OCXEVENT.CLW file.

The LONG return value indicates to the operating system whether any further processing is
necessary. Returning zero (0) indicates some further processing is necessary (like updating a

Language Reference Manual 974

USE variable or unchecking a radio button), while returning any other value indicates processing
is complete.

Processing the events generated by an .OCX control must occur quickly, since some events have
critical timing. Therefore, there should be no user interaction possible within this procedure (such
as WINDOWs, ASK statements, or MESSAGE procedures). The code should process only what
it needs to, just as quickly as possible (usually, this means eliminating all mouse events).

OCX Property Edit Controller Callback Function

The prototype for the property edit controller must be:

OcxPropEditFuncName PROCEDURE(SIGNED,STRING),LONG

The parameters it receives from the operating system are:

SIGNED The field number for the control. This is the same as the number represented by
the control's field equate label.

STRING The name of the property about to be edited.

The LONG return value indicates to the operating system whether permission to edit the property
has been granted by the callback function. If the procedure returns zero (0), then permission is
denied and the user is not allowed to edit the property. If the procedure returns any value other
than zero (0), then permission is granted and the user is allowed to edit the property.

OCX Property Change Callback Function

The prototype for the property change handler must be:

OcxPropChangeProcName PROCEDURE(SIGNED,STRING)

The parameters it receives from the operating system are:

SIGNED The field number for the control. This is the same as the number represented by
the control's field equate label.

STRING The name of the changed property.

This procedure is called when a property has been changed.

Appendix A – DDE, OLE, and .OCX 975

Example:
! This program uses the Calendar OCX that Microsoft ships with its Access95
! product (specifically, the one in MS Office Professional for Windows 95).
PROGRAM
MAP
INCLUDE('OCX.CLW')

EventFunc PROCEDURE(*SHORT Reference,SIGNED OleControl,LONG CurrentEvent),LONG
PropChange PROCEDURE(SIGNED OleControl,STRING CurrentProp)
PropEdit PROCEDURE(SIGNED OleControl,STRING CurrentProp),LONG
END
INCLUDE('OCXEVENT.CLW') !Constants that OCX events use
INCLUDE('ERRORS.CLW') !Include errorcode constants

GlobalQue QUEUE !Event and change display queue
F1 STRING(255)

END

SaveDate FILE,DRIVER('TopSpeed'),PRE(SAV),CREATE
Record RECORD
DateField STRING(10)

END
END

MainWin WINDOW('OCX Demo'),AT(,,350,200),STATUS(-1,-1),SYSTEM,GRAY,MAX,RESIZE
MENUBAR
MENU('&File')
ITEM('Save Date to File'),USE(?SaveObjectValue)
ITEM('Retrieve Saved Date'),USE(?GetObject)
ITEM('E&xit'),USE(?exit)
END
MENU('&Object')
ITEM('About Box'),USE(?AboutObject)
ITEM('Set Date to TODAY'),USE(?SetObjectValueToday)
ITEM('Set Date to 1st of Month'),USE(?SetObjectValueFirst)
END
ITEM('&Properties!'),USE(?ActiveObj)
END
LIST,AT(237,6,100,100),USE(?List1),HVSCROLL,FROM(GlobalQue)
OLE,AT(5,10,200,150),USE(?OcxObject)
END
END

CODE
OPEN(SaveDate)
IF ERRORCODE() !Check for error on Open
IF ERRORCODE() = NoFileErr !if the file doesn't exist
CREATE(SaveDate) !create it
IF ERRORCODE() THEN HALT(,ERROR()) END

Language Reference Manual 976

OPEN(SaveDate) !then open it for use
IF ERRORCODE() THEN HALT(,ERROR()) END

ELSE
HALT(,ERROR())

END
END
OPEN(MainWin)
?OcxObject{PROP:Create} = 'MSACAL.MSACALCtrl.7' !MS Access 95 Calendar OCX control
IF RECORDS(SaveDate) !Check for existing saved record
SET(SaveDate) !and get it
NEXT(SaveDate)
IF ERRORCODE() THEN STOP(ERROR()).
POST(EVENT:Accepted,?GetObject)

ELSE
ADD(SaveDate) !or add one
IF ERRORCODE() THEN STOP(ERROR()).

END
IF ?OcxObject{PROP:OLE} !Check for an OLE Object
GlobalQue = 'An Object is in the OLE control'
ADD(GlobalQue)
IF ?OcxObject{PROP:Ctrl} !See if Object is an OCX
GlobalQue = 'It is an OCX Object'
ADD(GlobalQue)

END
END
DISPLAY
OCXREGISTEREVENTPROC(?OcxObject,EventFunc) !Register Event processing Callback
OCXREGISTERPROPCHANGE(?OcxObject,PropChange) !Register Property Change Callback
OCXREGISTERPROPEDIT(?OcxObject,PropEdit) !Register Property Edit Callback
?OcxObject{PROP:ReportException} = 1 !Enable the OCX's error reporting
ACCEPT
CASE EVENT()
OF EVENT:Accepted
CASE FIELD()
OF ?Exit
POST(EVENT:CloseWindow)

OF ?AboutObject
?OcxObject{'AboutBox'} !Display control's About Box

OF ?SetObjectValueToday
?OcxObject{'Value'} = FORMAT(TODAY(),@D1) !Set control to TODAY's date

OF ?SetObjectValueFirst
?OcxObject{'Value'} = MONTH(TODAY()) & '/1/' & SUB(YEAR(TODAY()),3,2)

OF ?SaveObjectValue !Save control's value to file
SAV:DateField = ?OcxObject{'Value'}
PUT(SaveDate)
IF ERRORCODE() THEN STOP(ERROR()).

OF ?GetObject !Set control's value from file
?OcxObject{'Value'} = SAV:DateField

Appendix A – DDE, OLE, and .OCX 977

OF ?ActiveObj
?OcxObject{PROP:DoVerb} = 0 !Activate control's property dialog

END
END

END

!Event processing callback function
EventFunc PROCEDURE(*SHORT Reference,SIGNED OleControl,LONG CurrentEvent)
Count LONG
Res CSTRING(200)
Parm CSTRING(30)
CODE
IF CurrentEvent <> OCXEVENT:MouseMove !Eliminate mouse move events
Res = 'Event: ' & OleControl{PROP:LastEventName}
LOOP Count = 1 TO OCXGETPARAMCOUNT(Reference) !Cycle through all parameters
Parm = OCXGETPARAM(Reference,Count) !getting each parameter name
Res = CLIP(Res) & ' - ' & Parm !and concatenate them together

END
GlobalQue = Res !Assign to a global QUEUE
ADD(GlobalQue) !and add the entry
DISPLAY

END
RETURN(True)

!Change property callback
PropChange PROCEDURE(SIGNED OleControl,STRING CurrentProp)
CODE
GlobalQue = 'PropChange: ' & CurrentProp & ' = ' & OleControl{CurrentProp}

!Assign to a global QUEUE
ADD(GlobalQue) !add the entry for display
IF ERRORCODE() THEN STOP(ERROR()).

!Edit property callback
PropEdit PROCEDURE(SIGNED OleControl,STRING CurrentProp)
CODE

!Ask permission to change value:
IF MESSAGE('Allow?','Change',ICON:Question,BUTTON:Yes+BUTTON:No,BUTTON:Yes,1)|

= BUTTON:Yes
RETURN(1) !Allow the change

ELSE
RETURN(0) !Dis-allow the change

END

Language Reference Manual 978

Calling OLE Object Methods
Both OLE Automation to an OLE Server application and OCX/ActiveX objects publish methods
(procedures) that you can call to have the object perform specified actions. Since OCXs are the
OLE successors to VBX controls, most OCX vendors provide their example code using Visual
Basic (VB) syntax. Those that can be used in C++ programs usually also have C++ code
examples.

Translating these examples to the relevant Clarion code usually requires some knowledge of VB
or C++. This section demonstrates the most common types of method calls in VB examples and
how they translate to Clarion.

Method Syntax Overview
To call any OLE/OCX method, you use Clarion's Property Syntax. You specify the control to
which the method or property belongs as the field equate label of the OLE control, then write the
method call in a string constant inside the curly braces ({}).

The example code supplied with most OLE controls uses the VB/C++ "dot property" syntax to
specify the name of the control and the method to call or the property to set. For example, the
following VB code:

ControlName.AboutBox

translates to Clarion as:
?Ole{'AboutBox'}

This code displays the "About" dialog for the ControlName control. You might also see this
example's VB code as:

Form1.ControlName.AboutBox

This form simply specifies the dialog containing the ControlName object. The Clarion translation
for this is still the same.

The OLE/OCX object is always referenced in Clarion code by the field equate label of the Clarion
OLE control, no matter what the name of the control is in VB, because the object's registered
name is specified in the CREATE or OPEN attribute of the OLE control. Therefore, the Clarion
runtime library only needs to know the field equate label to know exactly which object is being
referenced.

Appendix A – DDE, OLE, and .OCX 979

Translating VB's "With" Syntax

Many OLE/OCX code examples use the VB With ... End With structure to associate multiple
property assignments and/or method calls with a single object. In this case, the object is named in
the With statement and all the property assignments and method calls within the structure begin
with the dot separator, then the name of the property to set or method to call. For example, the
following VB code:

With Form1.VtChart1
'displays a 3d chart with 8 columns and 8 rows data
.chartType = VtChChartType3dBar
.columnCount = 8
.rowCount = 8
For column = 1 To 8
For row = 1 To 8
.column = column
.row = row
.Data = row * 10
Next row
Next column
'use the chart as the backdrop of the legend
.ShowLegend = True
End With

 translates to Clarion as:
!displays a 3d chart with 8 columns and 8 rows data
?Ole{'chartType'} = VtChChartType3dBar
?Ole{'columnCount'} = 8
?Ole{'rowCount'} = 8
LOOP column# = 1 TO 8
LOOP row# = 1 TO 8
?Ole{'column'} = column#
?Ole{'row'} = row#
?Ole{'Data'} = row# * 10
END
END
!use the chart as the backdrop of the legend
?Ole{'ShowLegend'} = True

Since Clarion has no direct equivalent to the VB With ... End With structure, you just explicitly
name the OLE control's field equate label on each property assignment or method call. The single
quote (') in VB code indicates a comment.

Language Reference Manual 980

VB allows nesting these With ... End With structures, so you may need to "travel" back to find the
object's name. This example demonstrates nested VB With structures:

With MyObject
.Height = 100 ' Same as MyObject.Height = 100.
.Caption = "Hello World" ' Same as MyObject.Caption = "Hello World".
With .Font
.Color = Red ' Same as MyObject.Font.Color = Red.
.Bold = True ' Same as MyObject.Font.Bold = True.
End With

End With

which translates to Clarion as:
?Ole{'Height'} = 100 ! MyObject.Height = 100
?Ole{'Caption'} = 'Hello World' ! MyObject.Caption = "Hello World"
?Ole{'Font.Color'} = Red ! MyObject.Font.Color = Red
?Ole{'Font.Bold'} = True ! MyObject.Font.Bold = True

Appendix A – DDE, OLE, and .OCX 981

Parameter Passing to OLE/OCX Methods
Just as in Clarion, there are two ways to pass parameters in VB: by value, or by address (by
reference). The VB keywords ByVal and ByRef specify these two methods in VB code. These
terms mean the same thing in VB as in Clarion--passing a parameter by value passes a copy of
the contents of the variable, while passing a parameter by reference (VB's default) passes the
address of the variable itself so the receiving method can modify its contents.

Using Parentheses

VB syntax can either use parentheses surrounding the parameter list or not. If the VB method
does not return a value, or you don't care about the returned value, the parameters are passed in
VB without parentheses, like this:

VtChart1.InsertColumns 6,3

If you do want the returned value, then the parameters are passed in VB within parentheses, like
this:

ReturnValue = VtChart1.InsertColumns (6,3)

In Clarion syntax, parameters are always passed within parentheses. Therefore, these two
examples translate to:

?Ole{'InsertColumns(6,3)'}
ReturnValue = ?Ole{'InsertColumns(6,3)'}

Passing Parameters By Value

Value parameters are passed to OLE/OCX objects as strings (except Boolean parameters). Since
OLE/OCX objects are supposed to cast their input to the correct data types using a VARIANT
mechanism (similar to Clarion's data type conversion), this allows the most compatibility with the
least work. Any string whcih requires a double quote mark (") needs to include two ("").

Value parameters may be passed to OLE/OCX object methods as constants or variables. The
examples above pass parameters as constants. You may not have blank spaces in the constant
unless the parameter is contained in double quotes (for example, "Value with blanks").

There are two ways to pass a Clarion variable to an OLE/OCX method by value: concatenated
into the string constant that calls the method, or by using BIND on the variable name and placing
the name of the variable directly in the string constant that calls the method. For example, to re-
write the above example passing the variable values in a concatenated string:

ColumnNumber = 6
NumberOfColumns = 3
?Ole{'InsertColumns(' & ColumnNumber & ',' & NumberOfColumns & ')'}
!Same as ?Ole{'InsertColumns(6,3)'}

Language Reference Manual 982

The second way to pass variables by value is to BIND them and name them in the string
constant, like this:

BIND('ColumnNumber',ColumnNumber)
BIND('NumberOfColumns',NumberOfColumns)
?Ole{'InsertColumns(ColumnNumber,NumberOfColumns)'}
!Same as ?Ole{'InsertColumns(6,3)'}

This method makes the code more easily readable, but you must first BIND the variables to pass.

Passing Parameters By Address (Reference)

Parameters passed by address may be passed to OLE/OCX object methods only as named
variables in the constant string. Therefore, you must use BIND on the variable name and place
the name of the variable directly in the string constant that calls the method with an ampersand
prepended to the variable name to signal that the variable is being passed by reference. For
example, to re-write the above example to pass the variables by address:

ColumnNumber = 6
NumberOfColumns = 3
BIND('ColumnNumber',ColumnNumber)
BIND('NumberOfColumns',NumberOfColumns)
?Ole{'InsertColumns(&ColumnNumber,&NumberOfColumns)'}

Parameters passed by address are passed to OLE/OCX objects as the data type of the bound
variable (except Boolean parameters). The variables are actually passed as temporary string
variables which the Clarion library automatically dereferences so that any modifications to the
passed variable by the OLE/OCX method are carried back to the original variable passed.

Boolean Parameters

Boolean parameters (1/0 or True/False) are passed either by value or by address. When passing
by value, you may either pass a constant (a 1 or 0, or the words TRUE or FALSE), like this:

?Ole{'ODBCConnect(&DataSource,1,&RetVal)'}
?Ole{'ODBCConnect(&DataSource,TRUE,&RetVal)'}

or pass a variable name (after BINDing it) within a "bool()" call , like this:
BoolParm = 1
BIND('BoolParm',BoolParm)
?Ole{'ODBCConnect(&DataSource,bool(BoolParm),&RetVal)'}

Bool() is a construct that tells the property expression parser to pass it as a Boolean value. Bool()
is only valid within an OLE/OCX method call string.

Appendix A – DDE, OLE, and .OCX 983

To pass by reference, simply prepend an ampersand to the variable name within the bool()
construct, like this:

BIND('BoolParm',BoolParm)
?Ole{'ODBCConnect(&DataSource,bool(&BoolParm),&RetVal)'}

Named Parameters

In VB, there are two ways to pass parameters: positionally, or as "named arguments." Positional
parameters imply that you must either pass a parameter or place a comma place-holder for any
omitted parameters in the method call. Since some methods can receive a large number of
parameters, this can result in a long string of comma place-holders when you simply want to pass
one or two parameters to the method. VB solves this problem by allowing programmers to "name"
the parameters, which allows the programmer calling the method to only pass the few parameters
they choose to without regard to their position or order within the parameter list.

Named parameters are not universally supported in VB, so the OLE/OCX vendor needs to have
written their methods specifically to support them. The OLE/OCX help file should state whether
named parameters are supported, or you can use VB's Object Browser to determine whether
thay are supported and the parameter names to use.

The VB syntax for named parameters uses := to assign the value to the parameter's name. For
example, for the following VB statement:

OpenIt(Name:=, [Exclusive]:=, [ReadOnly]:=, [Connect]:=)

you can call the method in VB using positional parameters, like this:
Db = OpenIt("MyFile",False,False,"ODBC;UID=Fred")

which translates to Clarion (using positional parameters) as:
Db = ?Ole{'OpenIt("MyFile",False,False,"ODBC;UID=Fred")'}

You can call the same method in VB using named parameters, like this (the underscore character
is VB's line continuation character):

Db = OpenIt(Name:="MyFile",Exclusive:=False,ReadOnly:=False, _ Connect:="ODBC;UI

which translates to Clarion as:
Db = ?Ole{'OpenIt(Name="MyFile",Exclusive=False,ReadOnly=False, ' & |
'Connect="ODBC;UID=Fred")'}

or you can pass the parameters in VB in a different order:
Db = OpenIt(Connect:="ODBC;UID=Fred", _
Name:="MyFile", _
ReadOnly:=False, _
Exclusive:=False")

which translates to Clarion as:
Db = ?Ole{'OpenIt(Connect="ODBC;UID=Fred",Name="MyFile",' & |

'Exclusive=False,ReadOnly=False')'}

Language Reference Manual 984

OCX Library Procedures

OCXREGISTERPROPEDIT (install property edit callback)

 OCXREGISTERPROPEDIT(control , procedure)

OCXREGISTERPROPEDIT
Installs a property edit callback function.

control An integer expression containing the field number or field equate label of the
OLE control to affect.

procedure The label of the property edit callback function for the control.

OCXREGISTERPROPEDIT installs a property edit callback procedure for the control. The
callback function procedure controls property edits to the control by allowing or disallowing them.

Example:
OCXREGISTERPROPEDIT(?OleControl,CallbackFunc)

See Also:

Callback Functions

Appendix A – DDE, OLE, and .OCX 985

OCXREGISTERPROPCHANGE (install property change callback)

 OCXREGISTERPROPCHANGE(control , procedure)

OCXREGISTERPROPCHANGE
Installs a property change callback procedure.

control An integer expression containing the field number or field equate label of the
OLE control to affect.

procedure The label of the property change callback procedure for the control.

OCXREGISTERPROPCHANGE installs a property change callback procedure for the control.
The callback procedure is called when a property of the control has been changed.

Example:
OCXREGISTERPROPCHANGE(?OleControl,CallbackProc)

See Also:

Callback Functions

Language Reference Manual 986

OCXREGISTEREVENTPROC (install event processing callback)

 OCXREGISTEREVENTPROC(control , procedure)

OCXREGISTEREVENTPROC
Installs an OCX event callback procedure.

control An integer expression containing the field number or field equate label of the
OLE control to affect.

procedure The label of the event processing callback procedure for the control.

OCXREGISTEREVENTPROC installs an OCX event callback procedure for the control. The
callback procedure is called when any event is posted by the operating system for the control.

Example:
OCXREGISTEREVENTPROC(?OleControl,CallbackProc)

See Also:

Callback Functions

Appendix A – DDE, OLE, and .OCX 987

OCXUNREGISTERPROPEDIT (un-install property edit callback)

 OCXUNREGISTERPROPEDIT(control)

OCXUNREGISTERPROPEDIT
Un-installs a property edit callback procedure.

control An integer expression containing the field number or field equate label of the
OLE control to affect.

OCXUNREGISTERPROPEDIT un-installs a property edit callback procedure for the control.

Example:
OCXUNREGISTERPROPEDIT(?OleControl)

See Also:

Callback Functions

Language Reference Manual 988

OCXUNREGISTERPROPCHANGE (un-install prop change callback)

 OCXUNREGISTERPROPCHANGE(control)

OCXUNREGISTERPROPCHANGE
Un-installs a property change callback procedure.

control An integer expression containing the field number or field equate label of the
OLE control to affect.

OCXUNREGISTERPROPCHANGE un-installs a property change callback procedure for the
control.

Example:
OCXUNREGISTERPROPCHANGE(?OleControl)

See Also:

Callback Functions

Appendix A – DDE, OLE, and .OCX 989

OCXUNREGISTEREVENTPROC (un-install event process callback)

 OCXUNREGISTEREVENTPROC(control)

OCXUNREGISTEREVENTPROC
Un-installs an OCX event callback procedure.

control An integer expression containing the field number or field equate label of the
OLE control to affect.

OCXUNREGISTEREVENTPROC un-installs an OCX event callback procedure for the control.

Example:
OCXUNREGISTEREVENTPROC(?OleControl)

See Also:

Callback Functions

Language Reference Manual 990

OCXGETPARAMCOUNT (return number of parameters for current event)

 OCXGETPARAMCOUNT(reference)

OCXGETPARAMCOUNT
Returns the number of parameters associated with the current OCX event.

reference The label of the first parameter of the event processing callback procedure.

OCXGETPARAMCOUNT returns the number of parameters associated with the current .OCX
event. This procedure is only valid when the .OCX event processing callback function is active.

Return Data Type: USHORT

Example:
OEvent PROCEDURE(Reference,OleControl,CurrentEvent) !Event processing callback proc
Count LONG
Res CSTRING(200)
Parm CSTRING(30)
CODE
IF CurrentEvent <> OCXEVENT:MouseMove !Eliminate mouse move events
Res = 'Control ' & OleControl & ' Event ' & OleControl{PROP:LastEventName} & ':'
LOOP Count = 1 TO OCXGETPARAMCOUNT(Reference) !Cycle through all parameters
Parm = OCXGETPARAM(Reference,Count) !getting each parameter name
Res = CLIP(Res) & ' ' & Parm !and concatenate them together

END
GlobalQue = Res !Assign to a global QUEUE
ADD(GlobalQue) !add the entry for later display

END !of all the OCX events and their
RETURN(True) !parameters

See Also:

Callback Functions

OCXGETPARAM

Appendix A – DDE, OLE, and .OCX 991

OCXGETPARAM (return current event parameter string)

 OCXGETPARAM(reference ,number)

OCXGETPARAM Returns the value of a parameter associated with the current OCX event.

reference The label of the first parameter of the event processing callback
procedure.

number The number of the parameter to retrieve.

OCXGETPARAM returns the value of the number parameter associated with the current .OCX
event. This procedure is only valid when the .OCX event processing callback function is active.

Return Data Type: STRING

Example:
OEvent PROCEDURE(Reference,OleControl,CurrentEvent) !Event processing callback proc
Count LONG
Res CSTRING(200)
Parm CSTRING(30)
CODE
IF CurrentEvent <> OCXEVENT:MouseMove !Eliminate mouse move events
Res = 'Control ' & OleControl & ' Event ' & OleControl{PROP:LastEventName} & ':'
LOOP Count = 1 TO OCXGETPARAMCOUNT(Reference) !Cycle through all parameters
Parm = OCXGETPARAM(Reference,Count) !getting each parameter name
Res = CLIP(Res) & ' ' & Parm !and concatenate them together

END
GlobalQue = Res !Assign to a global QUEUE
ADD(GlobalQue) !add the entry for later display

END !of all the OCX events and their
RETURN(True) !parameters

See Also:

Callback Functions

OCXSETPARAM

OCXGETPARAMCOUNT

Language Reference Manual 992

OCXSETPARAM (set current event parameter string)

 OCXSETPARAM(reference ,number ,value)

OCXSETPARAM Sets the value of a parameter associated with the current OCX event.

reference The label of the first parameter of the event processing callback
procedure.

number The number of the parameter to set.

value A string constant or variable containing the value to set.

OCXSETPARAM sets the value of the number parameter associated with the current event. This
is only allowed on parameters that are passed by address (see the OCX control's documentation
for valid parameters to set). If the modification is not allowed it will be ignored. This procedure is
only valid when the .OCX event processing callback function is active.

Example:
OEvent PROCEDURE(Reference,OleControl,CurrentEvent) !Event processing callback proc
Count LONG
Res CSTRING(200)
Parm CSTRING(30)
CODE
IF CurrentEvent <> OCXEVENT:MouseMove !Eliminate mouse move events
Res = 'Control ' & OleControl & ' Event ' & OleControl{PROP:LastEventName} & ':'
LOOP Count = 1 TO OCXGETPARAMCOUNT(Reference) !Cycle through all parameters
Parm = OCXGETPARAM(Reference,Count) !getting each parameter name
Res = CLIP(Res) & ' ' & Parm !and concatenate them together
OCXSETPARAM(Reference,1,'1') !Change the parameter's value

END
GlobalQue = Res !Assign to a global QUEUE
ADD(GlobalQue) !add the entry for later display

END !of all the OCX events and their
RETURN(True) !parameters

See Also:

Callback Functions

OCXGETPARAM

Appendix A – DDE, OLE, and .OCX 993

OCXLOADIMAGE (return an image object)

 OCXLOADIMAGE(name)

OCXLOADIMAGE
Returns an image object.

name A string expression containing the name of the file or resource to load.

OCXLOADIMAGE returns an image object. This image object can be assigned to any control that
uses an image object (such as a VB imagelist control).

Return Data Type: STRING

Example:
!Add an image to an ImageList control:
?imagelist{'ListImages.Add(,,' & OCXLOADIMAGE('CLOCK.BMP') & ')'}

Language Reference Manual 994

Appendix C – Runtime Properties 995

Appendix B - Events
Events
In Clarion Windows programs, most of the messages from Windows are automatically handled
internally by the ACCEPT event processor. These are the common events handled by the
runtime library (screen re-draws, etc.). Only those events that actually may require program
action are passed on by ACCEPT to your Clarion code. The net effect of this is to make your
programming job easier by removing the low-level "drudgery" code from your program, allowing
you to concentrate on the high-level aspects of programming, instead. Of course, it is also
possible to handle these low-level messages yourself by "sub-classing" the window, but that is a
low-level technique that should only be used if absolutely necessary. Consult Charles Petzold's
book Programming Windows published by Microsoft Press if you need more information on sub-
classing.

There are two types of events passed on to the program by ACCEPT: Field-specific and Field-
independent events. The following lists are the event EQUATEs that are contained in
EQUATES.CLW.

Field-Independent Events

Field-Specific Events

Language Reference Manual 996

Field-Independent Events
A Field-independent event does not relate to any one control but requires some program action
(for example, to close a window, quit the program, or change execution threads). Most of these
events cause the system to become modal for the period during which they are processing, since
they require a response before the program may continue.

EVENT:AlertKey EVENT:BuildDone

EVENT:BuildFile EVENT:BuildKey

EVENT:CloseDown EVENT:CloseWindow

EVENT:Completed DDE Events

EVENT:Docked EVENT:Undocked

EVENT:GainFocus EVENT:Iconize

EVENT:Iconized EVENT:LoseFocus

EVENT:Maximize EVENT:Maximized

EVENT:Move EVENT:Moved

EVENT:OpenWindow EVENT:PreAlertKey

EVENT:Restore EVENT:Restored

EVENT:Resume EVENT:Size

EVENT:Sized EVENT:Suspend

EVENT:Timer

Appendix C – Runtime Properties 997

EVENT:AlertKey
The user pressed an ALRT attribute (or ALERT statement) hot key for an ALRT
attribute on the window. This is the event on which you perform the action the user
has requested by pressing the alert key.

EVENT:BuildDone
The BUILD or PACK statement has completed re-building the keys. This is the event
on which you perform any build cleanup code. If the user cancelled the BUILD,
ERRORCODE 93 is set.

EVENT:BuildFile
The BUILD or PACK statement is re-building the file. This is the event on which you
inform your user of the progress of the build.

EVENT:BuildKey
The BUILD or PACK statement is re-building the key. This is the event on which you
inform your user of the progress of the build.

EVENT:CloseDown
The application is closing. POSTing this event closes the application. This is the
event on which you perform any application cleanup code.

EVENT:CloseWindow
The window is closing. POSTing this event closes the window. This is the event on
which you perform any window cleanup code.

EVENT:Completed
AcceptAll (non-stop) mode has finished processing all the window's controls. This is
the event on which you have executed all data entry validation code for the controls
in the window and can safely write to disk.

Language Reference Manual 998

DDE Events

EVENT:DDEadvise
A client has requested continuous updates of a data item from this Clarion DDE
server application. This is the event on which you execute DDEWRITE to provide the
data to the client every time it changes.

EVENT:DDEclosed
A DDE server has terminated the DDE link to this Clarion client application.

EVENT:DDEdata
A DDE server has supplied an updated data item to this Clarion client application.

EVENT:DDEexecute
A client has sent a command to this Clarion DDE server application (if the client is
another Clarion application, it has executed a DDEEXECUTE statement). This is the
event on which you determine the action the client has requested and perform it, then
execute a CYCLE statement to signal positive acknowledgement to the client that
sent the command.

EVENT:DDEpoke
A client has sent unsolicited data to this Clarion DDE server application. This is the
event on which you determine what the client has sent and where to place it, then
execute a CYCLE statement to signal positive acknowledgement to the client that
sent the data.

EVENT:DDErequest
A client has requested a data item from this Clarion DDE server application. This is
the event on which you execute DDEWRITE to provide the data to the client once.

EVENT:Docked

A dockable toolbox window has been docked or its docked position has been
changed.

EVENT:Undocked
A dockable toolbox window has been undocked.

Appendix C – Runtime Properties 999

EVENT:GainFocus
The window is gaining input focus from another thread. This is the event on which you
restore any data you saved in EVENT:LoseFocus. The system is modal during this event.
EVENT:GainFocus is not generated until EVENT:LoseFocus is processed (if focus was
on another window of the same program).

EVENT:Iconize
The user is minimizing a window with the IMM attribute. If a CYCLE statement is
encountered in the code to process this event, the EVENT:Iconized is not generated
and the action is aborted. This is the event on which you can prevent users from
minimizing a window. The system is modal during this event.

EVENT:Iconized
The user has minimized a window with the IMM attribute. This is the event on which
you readjust anything that is screen-size-dependent.

EVENT:LoseFocus
The window is losing input focus to another thread. This is the event on which you
save any data that could be at risk of being changed by another thread. The system
is modal during this event.

EVENT:Maximize
The user is maximizing a window with the IMM attribute. If a CYCLE statement is
encountered in the code to process this event, EVENT:Maximized is not generated
and the action is aborted. This is the event on which you can prevent users from
maximizing a window. The system is modal during this event.

EVENT:Maximized
The user has maximized a window with the IMM attribute. This is the event on which
you readjust anything that is screen-size-dependent.

EVENT:Move
The user is moving a window with the IMM attribute. If a CYCLE statement is
encountered in the code to process this event, EVENT:Moved is not generated and
the action is aborted. This is the event on which you can prevent users from moving a
window. The system is modal during this event.

EVENT:Moved
The user has moved a window with the IMM attribute. This is the event on which you
readjust anything that is screen-position-dependent.

Language Reference Manual 1000

EVENT:Notify
A NOTIFY statement has been executed. This event is used by the receiver thread to
detect that a NOTIFY has been sent.

EVENT:OpenWindow
The window is opening. This is the event on which you perform any window
initialization code.

EVENT:PreAlertKey
The user pressed an ALRT attribute (or ALERT statement) hot key for an ALRT
attribute on the window. If a CYCLE statement executes in the code to process this
event, the normal library action for the keystroke executes before EVENT:AlertKey
generates. This event allows you to specify whether the normal library action for the
keystroke executes or not, in addition to the code you place in EVENT:AlertKey. The
system is modal during this event.

EVENT:Restore
The user is restoring the previous size of a window with the IMM attribute. If a
CYCLE statement is encountered in the code to process this event, EVENT:Restored
is not generated and the action is aborted. This is the event on which you can
prevent users from restoring a window. The system is modal during this event.

EVENT:Restored
The user has restored the previous size of a window with the IMM attribute. This is
the event on which you readjust anything that is screen-size-dependent.

EVENT:Resume
The window still has input focus and is regaining control from an EVENT:Suspend.
The system is modal during this event.

EVENT:Size
The user is resizing a window with the IMM attribute. If a CYCLE statement is
encountered in the code to process this event, EVENT:Sized is not generated and
the action is aborted. This is the event on which you can prevent users from resizing
a window. The system is modal during this event.

EVENT:Sized
The user has resized a window with the IMM attribute. This is the event on which you
readjust anything that is screen-size-dependent.

Appendix C – Runtime Properties 1001

EVENT:Suspend
The window still has input focus but is giving control to another thread to process
timer events. The system is modal during this event.

EVENT:Timer
The TIMER attribute has triggered. This is the event on which you perform any timed
actions, such as clock display, or background record processing for reports or batch
processes.

Language Reference Manual 1002

Field-Specific Events

Field-Specific Events
A Field-specific event occurs when the user presses a key that may require the program to
perform a specific action related to that control.

EVENT:Accepted EVENT:AlertKey EVENT:ColumnResize

EVENT:Contracted EVENT:Contracting EVENT:Drag

EVENT:Dragging EVENT:Drop EVENT:DroppedDown

EVENT:DroppingDown EVENT:Expanded EVENT:Expanding

EVENT:Locate (Mouse Events) EVENT:NewSelection

EVENT:PageDown EVENT:PageUp EVENT:PreAlertKey

EVENT:Rejected EVENT:ScrollBottom EVENT:ScrollDown

EVENT:ScrollDrag EVENT:ScrollTop EVENT:ScrollTrack

EVENT:ScrollUp EVENT:Selected EVENT:TabChanging

Appendix C – Runtime Properties 1003

EVENT:Accepted
The user has entered data or made a selection then pressed TAB or CLICKED the
mouse to move on to another control. This is the event on which you should perform
any data input validation code.

EVENT:AlertKey
The user pressed an ALRT attribute hot key for an ALRT attribute on the control. This
is the event on which you perform the action the user has requested by pressing the
alert key.

EVENT:ColumnResize
On a LIST control with an M in the FORMAT attribute string, the user has resized a
column.

EVENT:Contracted
On a LIST control with T in the FORMAT attribute string, the user has clicked on a
tree expansion box.

EVENT:Contracting
On a LIST control with T in the FORMAT attribute string, the user has clicked on a
tree contraction box. If a CYCLE statement is encountered in the code to process this
event, the EVENT:Contracted is not generated and the contraction is aborted. The
system is modal during this event.

EVENT:Drag
The user released the mouse button over a valid drop target. This event is posted to
the control from which the user is dragging. This is the event on which you set the
program to pass the dragged data to the drop target.

EVENT:Dragging
The user is dragging the mouse from a control with the DRAGID attribute and the
mouse cursor is over a valid potential drop target. This event is posted to the control
from which the user is dragging. This is the event on which you can change the
mouse cursor to indicate a valid drop target.

EVENT:Drop
The user released the mouse button over a valid drop target. This event is posted to
the drop target control. This is the event on which you receive the dragged data.

Language Reference Manual 1004

EVENT:DroppedDown
On a LIST or COMBO control with the DROP attribute, the list has dropped. This is
the event on which you can hide other controls that the droplist covers to prevent
"screen clutter" from distracting the user.

EVENT:DroppingDown
On a LIST or COMBO control with the DROP attribute, the user pressed the down
arrow button. This is the event on which you get the records when "demand-loading"
the list.

EVENT:Expanded
On a LIST control with T in the FORMAT attribute string, the user has clicked on a
tree expansion box.

EVENT:Expanding
On a LIST control with T in the FORMAT attribute string, the user has clicked on a
tree expansion box. If a CYCLE statement is encountered in the code to process this
event, the EVENT:Expanded is not generated and the expansion is aborted. The
system is modal during this event.

EVENT:Locate
On a LIST control with the VCR attribute, the user pressed the locator (?) VCR
button. This is the event on which you can unhide the locator entry control, if it is kept
hidden.

Appendix C – Runtime Properties 1005

Mouse Events

EVENT:MouseDown
On a REGION with the IMM attribute, a synonym for EVENT:Accepted (for code readability,
only).

EVENT:MouseIn
On a REGION with the IMM attribute, the mouse cursor has entered the region.

EVENT:MouseMove
On a REGION with the IMM attribute, the mouse cursor has moved within the region.

EVENT:MouseOut
On a REGION with the IMM attribute, the mouse cursor has left the region.

EVENT:MouseUp

On a REGION with the IMM attribute, the mouse button has been released.

Language Reference Manual 1006

EVENT:NewSelection
In a LIST, COMBO, SHEET, or SPIN control, this event generates when the current
selection has changed. In an ENTRY control with the IMM attribute, this event
generates whenever the contents of the control changes or the cursor moves. This is
the event on which you perform any "housekeeping" to synchronize other controls
with the currently highlighted record in the list, or determine that the user has entered
all allowable data in the ENTRY.

EVENT:PageDown
On a LIST or COMBO control with the IMM attribute, the user pressed PGDN. This is
the event on which you get the next page of records when "page-loading" the list.

EVENT:PageUp
On a LIST or COMBO control with the IMM attribute, the user pressed PGUP. This is
the event on which you get the previous page of records when "page-loading" the list.

EVENT:PreAlertKey (Field Specific)
The user pressed an ALRT attribute hot key for an ALRT attribute on the control. If a
CYCLE statement is encountered in the code to process this event, the normal library
action for the keystroke executes before EVENT:AlertKey generates. This event
allows you to specify whether the normal library action for the keystroke executes or
not, in addition to the code you place in EVENT:AlertKey. The system is modal during
this event.

EVENT:Rejected
The user has entered an invalid value for the entry picture, or an out-of-range number
on a SPIN control. The REJECTCODE procedure returns the reason the user's input
has been rejected and you can use the PROP:ScreenText property to get the user's
input from the screen. This is the event on which you alert the user to the exact
problem with their input.

EVENT:ScrollBottom
On a LIST or COMBO control with the IMM attribute, the user pressed CTRL+PGDN.
This is the event on which you get the last page of records when "page-loading" the
list.

EVENT:ScrollDown
On a LIST or COMBO control with the IMM attribute, the user has attempted to move
the highlight bar down in the LIST. This is the event on which you get the next record
when "page-loading" the list or just move the highlight bar when getting another
record isn't needed.

Appendix C – Runtime Properties 1007

EVENT:ScrollDrag
On a LIST or COMBO control with the IMM attribute, the user has moved the scroll
bar's "thumb" and has just released the mouse button. This is the event on which you
dynamically scroll the displayed records based on the current value of
PROP:VScrollPos.

EVENT:ScrollTop
On a LIST or COMBO control with the IMM attribute, the user pressed CTRL+PGUP.
This is the event on which you get the first page of records when "page-loading" the
list.

EVENT:ScrollTrack
On a LIST or COMBO control with the IMM attribute, the user is currently moving the
scroll bar's "thumb." This is an event on which you can dynamically scroll the
displayed records based on the current value of PROP:VScrollPos.

EVENT:ScrollUp
On a LIST or COMBO control with the IMM attribute, the user has attempted to move
the highlight bar up in the LIST. This is the event on which you get the previous
record when "page-loading" the list or just move the highlight bar when getting
another record isn't needed.

EVENT:Selected
The control has received input focus. This is the event on which you should perform
any data initialization code.

EVENT:TabChanging
On a SHEET control, focus is about to pass to another tab. This is the event on which
you perform any necessary "housekeeping" code for the tab you're leaving.

Language Reference Manual 1008

Modal Events

The following Events must always be treated as "modal":

EVENT:LoseFocus EVENT:GainFocus EVENT:Dragging
EVENT:Contracting EVENT:Expanding EVENT:PreAlertKey
EVENT:TabChanging EVENT:Move EVENT:Size
EVENT:Restore EVENT:Maximize EVENT:Iconize
EVENT:Sized EVENT:Selected

Also, if a list box has the IMM attribute

EVENT:ScrollUp
EVENT:ScrollDown
EVENT:PageUp
EVENT:PageDown
EVENT:ScrollTop
EVENT:ScrollBottom
EVENT:ScrollTrack
EVENT:ScrollDrag

When we refer to an event as "modal", it means that until the event is completed the runtime
library can't continue its normal work. The main rule for writing code that responds to these
events is that the event must be completed within a "finite" period of time.

This means that the code you write for handling "modal" events should not invoke dialogs, include
inner ACCEPT loops, call Message Boxes, or anything similar that would prevent the ACCEPT
loop from completing the processing of the event. When your program needs to do something like
this upon processing one of these events, a custom event should be posted to the front of the
event queue. For example:

CASE EVENT()
...
OF EVENT:GainFocus

POST(MyGainFocus,,, TRUE) !Post a user defined event to handle GainFocus action
...
OF MyGainFocus

<perform actions for gaining focus>
...
END

Appendix C – Runtime Properties 1009

Appendix C - Runtime Properties
PROP:AcceptAll
Property of a WINDOW which returns one (1) if AcceptAll mode is active and zero (0) if it is not,
and may also be used to toggle AcceptAll (non-stop) mode. SELECT with no parameters usually
initiates AcceptAll mode. This is a field edit mode in which each control in the window is
processed by generating EVENT:Accepted for each. This allows data entry validation code to
execute for all controls, including those that the user has not touched. AcceptAll mode
immediately terminates when any of the following conditions is met:

 SELECT(?)
 Window{PROP:AcceptAll} = 0
 A REQ control is left blank or zero.

The SELECT(?) statement selects the same control for the user to edit. This code usually
indicates the value it contains is invalid and the user must re-enter data. The
Window{PROP:AcceptAll} = 0 statement toggles AcceptAll mode off. Assigning values to this
property can be used to initiate and terminate AcceptAll mode. When a control with the REQ
attribute is left blank or zero, AcceptAll mode terminates with the control highlighted for user
entry, without processing any more fields in the TAB key sequence. EVENT:Completed is posted
to the window when all controls have been successfully processed.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name),REQ
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
ACCEPT
IF EVENT() = EVENT:Completed THEN BREAK. !AcceptAll mode terminated
CASE ACCEPTED()
OF ?Ctl:Code
IF Ctl:Code > 150 !If data entered is invalid
BEEP ! alert the user and
SELECT(?) ! make them re-enter the data

END
OF ?OkButton
Screen{PROP:AcceptAll} = 1 !Initiate AcceptAll mode

END
END !Terminate ACCEPT and CASE ACCEPTED

Language Reference Manual 1010

PROP:Active
WINDOW property which returns 1 if the window is the active window, blank if not. Set to 1 to
make the top window of a thread the active window.

Example:

CODE
OPEN(ThisWindow)
X# = START(AnotherThread) !Start another thread
ACCEPT
CASE EVENT()
OF EVENT:LoseFocus !When this window is losing focus
IF Y# <> X# ! check for the first focus change
ThisWindow{PROP:Active} = 1 ! and return focus to this thread
Y# = X# ! then flag first focus change completed

END
END

END

PROP:AlwaysDrop
When set to zero, the drop portion of a COMBO or LIST control with the DROP attribute only
drops down when the user clicks on the dropdown icon, and when the user presses the down
arrow key the displayed entries rotate without dropping down the list. When set to anything other
than zero, the drop portion drops down either on the down arrow key or click on the dropdown
icon.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

COMBO(@S20),AT(0,0,20,220),USE(MyCombo),FROM(Que),DROP(5)
END

CODE
OPEN(MDIChild)
?MyCombo{PROP:AlwaysDrop} = 0 !Set windows-like drop behavior

Appendix C – Runtime Properties 1011

PROP:AppInstance
Returns the instance handle (HInstance) of the .EXE file for use in low-level API calls which
require it. This is only used with the SYSTEM built-in variable. (READ-ONLY)

Example:

PROGRAM
HInstance LONG
CODE
OPEN(AppFrame)
HInstance = SYSTEM{PROP:AppInstance} !Get .EXE instance handle for later use
ACCEPT
END

PROP:AssertHook
A property of the SYSTEM built-in variable that sets the override procedure for the ASSERT
internal Clarion procedure. Equivalent to {PROP:LibHook,8}. Assign the ADDRESS of the
overriding procedure, and the runtime library will call the overriding procedure instead of the
ASSERTprocedure. Assign zero and the runtime library will once again call its internal procedure.
The overriding procedure's prototype must be exactly the same as the ASSERT procedure
(STRING filename,UNSIGNED LineNumber). (WRITE-ONLY)

See PROP:AssertHook2 for example source.

Language Reference Manual 1012

PROP:AssertHook2
A property of the SYSTEM built-in variable that sets the override procedure for the ASSERT
internal Clarion procedure. Equivalent to {PROP:LibHook,13}. Assign the ADDRESS of the
overriding procedure, and the runtime library will call the overriding procedure instead of the
ASSERTprocedure. Assign zero and the runtime library will once again call its internal procedure.
The overriding procedure's prototype must be exactly the same as the ASSERT procedure
(UNSIGNED LineNumber, STRING filename, STRING message). (WRITE-ONLY)

Example:
PROGRAM

MAP
AssertMy1 PROCEDURE(STRING filename,UNSIGNED LineNumber)
AssertMy2 PROCEDURE(UNSIGNED LineNumber, STRING filename, STRING message)

END

CODE

SYSTEM{prop:asserthook} = ADDRESS(AssertMy1)
SYSTEM{prop:asserthook2} = ADDRESS(AssertMy2)

assert(0)
assert(0,'i am a message')

AssertMy1 PROCEDURE(STRING filename,UNSIGNED LineNumber)
CODE
AssertMy2(LineNumber, FileName,'')

AssertMy2 PROCEDURE(UNSIGNED LineNumber, STRING filename, STRING message)
l long

CODE
SYSTEM{prop:asserthook} = 0 !Stop recursive calls into assert handler
SYSTEM{prop:asserthook2} = 0 !Stop recursive calls into assert handler

IF MESSAGE('Assert 1|filename=' & CLIP(filename) & '|line=' & LineNumber & |
'|Message=' & CLIP(message) & '|Do you want me to GPF?',|
'ASSERT', ICON:Exclamation, BUTTON:Yes + BUTTON No)

l = l / l ! Causes a divide by zero GPF
END

Appendix C – Runtime Properties 1013

PROP:AutoPaper
Sets and returns the state of the automatic best-fit paper selection feature of the report engine.
The default value is feature-enabled. This is only used with the SYSTEM built-in variable.

Example:

PROGRAM
CODE
OPEN(AppFrame)
SYSTEM{PROP:AutoPaper} = '' !Turn off best-fit paper selection
ACCEPT
END

PROP:BreakVar
Sets the variable for a BREAK structure within a REPORT.

Example:

Report
REPORT,AT(1000,2000,6000,7000),PRE(RPT),FONT('Arial',10,,FONT:regular),THOUS
Break1 BREAK(ORD:CustNumber),USE(?Break1)
Break2 BREAK(DTL:OrderNumber),USE(?Break2)

HEADER,AT(,,,2167)
END

detail DETAIL,AT(,,,385)
END
FOOTER,PAGEAFTER(-1)
END

END
FOOTER,PAGEAFTER(-1),AT(,,,1385)
END

END
FOOTER,AT(1000,9000,6000,1000)
END

END

CODE
OPEN(Report)
Report$?Break1{PROP:BreakVar} = ORD:CustName !Change the break variable for

Break1

Language Reference Manual 1014

PROP:Buffer
Property of a window which allows you to select off-display background re-paints. This can
dramatically reduce screen flicker in some situation (such as animated GIF images), but incurs a
potentially large memory overhead.

The default value is zero (0) which draws directly to the screen. This is fastest and incurs no
memory overhead, but may create flicker in some cases.

Assigning one (1) allocates a permanent memory buffer for the window. This is quite fast, but
incurs the most memory overhead.

Assigning two (2) reallocates a memory buffer for the window each time a re-paint is required.
This is slower, but incurs the least memory overhead while still reducing flicker.

Example:
WinView WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

END
CODE
OPEN(WinView)
WinView{PROP:Buffer} = 1 !Permanent redraw buffer for the window

PROP:Checked
Returns the current display state of a CHECK control--checked (1) or un-checked (''). (READ
ONLY)

Example:
WinView WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

CHECK('Check Me'),AT(20,0,20,20),USE(CheckVar)
END

CODE
OPEN(WinView)
IF ?CheckVar{PROP:Checked} = TRUE !Is it checked?
!Do something

END
ACCEPT
END

Appendix C – Runtime Properties 1015

PROP:Child and PROP:ChildIndex
PROP:Child is an array property which returns the control number of a child control in a parent
control structure (such as an TAB, OPTION, or GROUP). (READ ONLY) The element number is
the ordinal position of the control in the parent structure. Returns null string ('') if the element
number is out of range.

PROP:ChildIndex is an array property which returns the ordinal position of all the child controls in
a parent control structure (such as an TAB, OPTION, or GROUP). (READ ONLY) The element
number is the control number of the control in the parent structure. Returns a null string ('') if the
element number is out of range.

Example:
WinView WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(0,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(20,0,20,20),USE(?R2)

END
END

CODE
OPEN(WinView)
LOOP X# = 1 TO 99
Y# = ?OptVar1{PROP:Child,X#} !Get field numbers of controls in OPTION
IF NOT Y# THEN BREAK.
Z# = ?OptVar1{PROP:ChildIndex,Y#} !Get ordinal position of controls in

OPTION
MESSAGE('Radio ' & Z# & ' is field number ' & Y#)

END
ACCEPT
END

Language Reference Manual 1016

PROP:ChoiceFeq
Returns or sets the field number of the currently selected TAB in a SHEET, or RADIO in an
OPTION structure.

Example:
WinView WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(0,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(20,0,20,20),USE(?R2)

END
END

CODE
OPEN(WinView)
?OptVar1{PROP:ChoiceFeq} = ?R1 !Select radio one
ACCEPT
END

PROP:ClientHandle
WINDOW property which returns the client window handle (the area of the window that contains
the controls) for use with low-level Windows API calls that require it. (READ-ONLY)

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

END
MessageText CSTRING('You cannot exit the program from this window ')
MessageCaption CSTRING('No EVENT:CloseDown Allowed ')
TextAddr LONG
CaptionAddr LONG
RetVal SHORT
CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:CloseDown
TextAddr = ADDRESS(MessageText)
CaptionAddr = ADDRESS(MessageCaption)
RetVal = MessageBox(WinView{PROP:ClientHandle},TextAddr,CaptionAddr,MB_OK)

!Windows API call using a window handle
CYCLE !Disallow program closedown from this window

END
END

Appendix C – Runtime Properties 1017

PROP:ClientWndProc
WINDOW property which sets or gets the client window (not including title or status areas)
messaging procedure for use with low-level Windows API calls that require it. Generally used with
sub-classing to track all Windows messages.

Example:
PROGRAM
MAP
Main
SubClassFunc(UNSIGNED hWnd,SIGNED wMsg,UNSIGNED wParam,LONG lParam),LONG,PASCAL
MODULE('win32') !SV Windows 32-bit Library
CallWindowProc(LONG,UNSIGNED,SIGNED,UNSIGNED,LONG),LONG,PASCAL,NAME('CallWindowProcA')

END
ENDSavedProc LONG

PT GROUP,PRE(PT)
X SHORT
Y SHORT

END
CODE
Main

Main PROCEDURE
WinView WINDOW('View'),AT(0,0,320,200),HVSCROLL,MAX,TIMER(1)

STRING('X Pos'),AT(1,1,,),USE(?String1)
STRING(@n3),AT(24,1,,),USE(PT:X)
STRING('Y Pos'),AT(44,1,,),USE(?String2)
STRING(@n3),AT(68,1,,),USE(PT:Y)
BUTTON('Close'),AT(240,180,60,20),USE(?Close)

END
CODE
OPEN(WinView)
SavedProc = WinView{PROP:ClientWndProc} !Save this procedure
WinView{PROP:ClientWndProc} = ADDRESS(SubClassFunc)

!Change to subclass procedure
ACCEPT
CASE ACCEPTED()
OF ?Close
BREAK

END
END

Language Reference Manual 1018

SubClassFunc PROCEDURE(hWnd,wMsg,wParam,lParam) !Sub class procedure
WM_MOUSEMOVE EQUATE(0200H) ! to track mouse movement in
CODE ! client area of window
CASE wMsg
OF WM_MOUSEMOVE
PT:X = MOUSEX()
PT:Y = MOUSEY()

END
RETURN(CallWindowProc(SavedProc,hWnd,wMsg,wParam,lParam))

!Pass control back to
! saved procedure

PROP:ClipBits
Property of an IMAGE control that allows bitmap images to be moved into (but not out of) the
Windows clipboard when set to one (1). Only .BMP, .PCX, or .GIF image types can be stored as
a bitmap (.BMP) image in the Clipboard.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('Save Picture'),AT(80,180,60,20),USE(?SavePic)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)

END

FileName STRING(64) !Filename variable

CODE
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName

OF ?SavePic
?Image{PROP:ClipBits} = 1 !Put image into Clipboard
ENABLE(?LastPic) ! activate Last Picture button

END
END

Appendix C – Runtime Properties 1019

PROP:ColorDialogHook
A property of the SYSTEM built-in variable that sets the override procedure for the
COLORDIALOG internal Clarion procedure. Equivalent to {PROP:LibHook,1}. Assign the
ADDRESS of the overriding procedure, and the runtime library will call the overriding procedure
instead of the COLORDIALOG procedure. Assign zero and the runtime library will once again call
its internal procedure. The overriding procedure's prototype must be exactly the same as the
COLORDIALOG procedure. (WRITE-ONLY)

PROP:DDEMode
A property of the SYSTEM built-in variable that allows you to set normal DDE event behavior (0,
the default) whereby all DDE events are sent to the window that opened the DDE channel, or one
(1), which causes all DDE events to be sent to the top window of the current thread.

Example:
DDERetVal STRING(20)
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDERetVal)
END

MyServer LONG
CODE
OPEN(WinOne)
SYSTEM{PROP:DDEMode} = 1 !Send events to top window of current thread
MyServer = DDESERVER('MyApp','DataEntered') !Open as server
ACCEPT
END

Language Reference Manual 1020

PROP:DDETimeOut
A property of the SYSTEM built-in variable that allows you to set and get the DDE timeout used
for all DDE commands. This value is in hundredths of seconds and the default value is 500.

Example:
DDERetVal STRING(20)
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDERetVal)
END

MyServer LONG
CODE
OPEN(WinOne)
SYSTEM{PROP:DDETimeOut} = 12000 !Set time out to two minutes
MyServer = DDESERVER('MyApp','DataEntered') !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest !Data requested once
DDEWRITE(MyServer,DDE:manual,'DataEntered',DDERetVal)

!Provide data once
END

END

PROP:DeferMove
A property of the SYSTEM built-in variable that defers the resizing and/or movement of controls
until the end of the ACCEPT loop or SYSTEM{PROP:DeferMove} is reset to zero (0). This
disables the immediate effect of all assignments to position and size properties, enabling the
library to perform all moves at once (which eliminates temporarily overlapping controls). The
absolute value of the number assigned to SYSTEM{PROP:DeferMove} defines the number of
deferred moves for which space is pre-allocated (automatically expanded when necessary, but
less efficient and may fail). Assigning a positive number automatically resets PROP:DeferMove to
zero at the next ACCEPT, while a negative number leaves it set until explicitly reset to zero (0).

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)
BUTTON('Close'),AT(80,180,60,20),USE(?Close)
END

FileName STRING(64) !Filename variable
ImageWidth SHORT
ImageHeight SHORT

Appendix C – Runtime Properties 1021

CODE
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName
SYSTEM{PROP:DeferMove} = 4 !Defer move and resize
ImageWidth = ?Image{PROP:Width} !1 move
ImageHeight = ?Image{PROP:Height} !2 moves
IF ImageWidth > 320
?Image{PROP:Width} = 320
?Image{PROP:XPos} = 0

ELSE
?Image{PROP:XPos} = (320 - ImageWidth) / 2 !Center horizontally

END
IF ImageHeight > 180
?Image{PROP:Height} = 180
?Image{PROP:YPos} = 0

ELSE
?Image{PROP:YPos} = (180 - ImageHeight) / 2 !Center vertically

END
OF ?Close
BREAK

END !Moves and resizing happen at end of ACCEPT loop
END

Language Reference Manual 1022

PROP:Edit
LIST control property which specifies the field equate label of the control to perform edit-in-place
for a LIST box column. This is an array whose element number indicates the column number to
edit. When non-zero, the control is unhidden and moved/resized over the current row in the
column indicated to allow the user to input data. Assign zero to re-hide the data entry control.

Example:

Q QUEUE
f1 STRING(15)
f2 STRING(15)

END
Win1 WINDOW('List Edit In Place'),AT(0,1,308,172),SYSTEM

LIST,AT(6,6,120,90),USE(?List),COLUMN,FORMAT('60L@s15@60L@s15@'), |
FROM(Q),ALRT(EnterKey)
END

?EditEntry EQUATE(100)
CODE
OPEN(Win1)
CREATE(?EditEntry,CREATE:Entry)
SELECT(?List,1)
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:AlertKey
IF KEYCODE() = EnterKey
SETKEYCODE(MouseLeft2)
POST(EVENT:Accepted,?List)

END
OF EVENT:NewSelection
IF ?List{PROP:edit,?List{PROP:column}}
GET(Q,CHOICE())

END
OF EVENT:Accepted
IF KEYCODE() = MouseLeft2
GET(Q,CHOICE())
?EditEntry{PROP:text} = ?List{PROPLIST:picture,?List{PROP:column}}
CASE ?List{PROP:column}
OF 1
?EditEntry{PROP:use} = Q.F1

OF 2
?EditEntry{PROP:use} = Q.F2

END
?List{PROP:edit,?List{PROP:column}} = ?EditEntry

END
END

Appendix C – Runtime Properties 1023

OF ?EditEntry
CASE EVENT()
OF EVENT:Selected
?EditEntry{PROP:Touched} = 1

OF EVENT:Accepted
PUT(Q)
?List{PROP:edit,?List{PROP:column}} = 0

END
END

END

Language Reference Manual 1024

PROP:Enabled
Returns an empty string if the control is not enabled either because it itself has been disabled, or
because it is a member of a "parent" control (OPTION, GROUP, MENU, SHEET, or TAB) that
has been disabled. (READ-ONLY)

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB('Tab Two'),USE(?TabTwo)

PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)

END
CODE
OPEN(MDIChild)
ACCEPT
CASE EVENT()
OF EVENT:Completed
BREAK

END
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
SELECT

END
OF ?E3
CASE EVENT()
OF EVENT:Accepted
IF ?E3{PROP:Enabled} AND MDIChild{PROP:AcceptAll}

!Check for visibility during AcceptAll mode
E3 = UPPER(E3) !Convert the data entered to Upper case
DISPLAY(?E3) ! and display the upper cased data

END
END

Appendix C – Runtime Properties 1025

OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END

Language Reference Manual 1026

PROP:EventsWaiting
WINDOW property which returns whether the window has any further events waiting to be
processed. Generally only used by Internet Connect to know when to format an HTML page.
(READ-ONLY)

Example:
IF TARGET{PROP:EventsWaiting} !Check for waiting events
!Do something

END

PROP:ExeVersion
A property of the SYSTEM built-in variable that returns the version number of an EXE created by
Clarion for Windows. This is the version number of Clarion for Windows which compiled the EXE
file, even if the runtime library .DLL is from a newer release (see PROP:LibVersion). This first
appeared in Clarion for Windows release 1501, so PROP:ExeVersion returns blank for releases
prior to 1501. (READ-ONLY)

Example:
MESSAGE('Compiled in CW release ' & SYSTEM{PROP:ExeVersion})

PROP:FatalErrorHook
A property of the SYSTEM built-in variable that sets the override procedure for the internal
Clarion procedure. Equivalent to {PROP:LibHook,9}. Assign the ADDRESS of the overriding
procedure, and the runtime library will call the overriding procedure instead of the internal
procedure. Assign zero and the runtime library will once again call its internal procedure. The
overriding procedure's prototype must be exactly the same as the internal procedure's (STRING
message,UNSIGNED ErrorNumber). (WRITE-ONLY)

PROP:FileDialogHook
A property of the SYSTEM built-in variable that sets the override procedure for the FILEDIALOG
internal Clarion procedure. Equivalent to {PROP:LibHook,2}. Assign the ADDRESS of the
overriding procedure, and the runtime library will call the overriding procedure instead of the
FILEDIALOG procedure. Assign zero and the runtime library will once again call its internal
procedure. The overriding procedure's prototype must be exactly the same as the FILEDIALOG
procedure. (WRITE-ONLY)

Appendix C – Runtime Properties 1027

PROP:FlushPageNumFunc
A property of a REPORT that sets the callback function called during the flushing of previewed
pages. This callback function returns the number of the next page to be flushed. The callback
function must be a PROCEDURE that takes a single LONG parameter and returns a LONG.

To turn this on, the ADDRESS of your callback function must be assigned to
PROP:FlushPageNumFunc. To turn it off, assign zero (0) to it.

When the report engine flushes report pages to a printer as a result of the execution of
Report{PROP:FlushPreview}, the callback function is called to retrieve the number of the next
page to be printed. The parameter passed to the callback function is the number of the last
printed page, or 0 before printing of the first page. If the callback function returns a value out of
the range of pages in the report, the report engine stops printing and removes all records from the
preview queue.

The PROP:FlushPageNumFunc can return the same page number multiple times prior to the
closing of the report. Once the report is closed the report engine removes the created metafiles.

Example:
MAP
PageNum (LONG), LONG

END

CODE
OPEN (Report)
!Report processing code here
Report{PROP:FlushPageNumFunc} = ADDRESS(PageNum)
Report{PROP:FlushPreview} = TRUE
Report{PROP:FlushPageNumFunc} = 0

PageNum PROCEDURE (LONG LastPage)
CODE
IF LastPage = 0
RETURN 1

ELSE
RETURN LastPage + 2 ! Print odd pages only

END

Language Reference Manual 1028

PROP:FlushPreview
Flushes the REPORT structure's PREVIEW attribute metafiles to the printer (0 = off, else on,
always 0 at report open).

Example:

SomeReport PROCEDURE
WMFQue QUEUE !Queue to contain .WMF filenames

STRING(64)
END

NextEntry BYTE(1) !Queue entry counter variable

Report REPORT,PREVIEW(WMFQue) !Report with PREVIEW attribute
DetailOne DETAIL

!Report controls
END

END

ViewReport WINDOW('View Report'),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(),AT(0,0,320,180),USE(?ImageField)
BUTTON('View Next Page'),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON('Print Report'),AT(80,180,60,20),USE(?PrintReport)
BUTTON('Exit Without Printing'),AT(160,180,60,20),USE(?ExitReport)

END

CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report
LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

PRINT(DetailOne)
END
ENDPAGE(Report)
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) THEN CYCLE. !Check for end of report
GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue !Load next report page
DISPLAY ! and display it

OF ?PrintReport
Report{PROP:FlushPreview} = 1 !Flush files to printer

Appendix C – Runtime Properties 1029

BREAK ! and exit procedure
OF ?ExitReport
BREAK !Exit procedure

END
END
RETURN !Return to caller, automatically

! closing the window and report
! freeing the queue and automatically
! deleting all the temporary .WMF files

PROP:Follows
Changes the tab order to specify the position within the parent that the control will occupy. The
control follows the control number you specify in the tab order. This must specify an existing
control within the parent (window, option, group, menu, report, detail, etc.). Setting PROP:Follows
to a REGION control will be ignored, as REGIONs are not in the Windows tab order. (WRITE-
ONLY)

Example:
WinView WINDOW('View Report'),AT(0,0,320,200),MDI,MAX,HVSCROLL

BUTTON('View Next Page'),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON('Print Report'),AT(80,180,60,20),USE(?PrintReport)
BUTTON('Exit Without Printing'),AT(160,180,60,20),USE(?ExitReport)

END
CODE
OPEN(WinView)

!Print Report button normally follows View button
?PrintReport{PROP:Follows} = ?ExitReport

!Now Print Report button follows Exit button in the tab order
ACCEPT
END

PROP:FontDialogHook
A property of the SYSTEM built-in variable that sets the override procedure for the FONTDIALOG
internal Clarion procedure. Equivalent to {PROP:LibHook,3}. Assign the ADDRESS of the
overriding procedure, and the runtime library will call the overriding procedure instead of the
FONTDIALOGA procedure. Assign zero and the runtime library will once again call its internal
procedure. The overriding procedure's prototype must be exactly the same as the
FONTDIALOGA procedure. (WRITE-ONLY)

Language Reference Manual 1030

PROP:HaltHook
A property of the SYSTEM built-in variable that sets the override procedure for the HALT internal
Clarion procedure. Equivalent to {PROP:LibHook,5}. Assign the ADDRESS of the overriding
procedure, and the runtime library will call the overriding procedure instead of the HALT
procedure. Assign zero and the runtime library will once again call its internal procedure. The
overriding procedure's prototype must be exactly the same as the HALT procedure. (WRITE-
ONLY)

PROP:Handle
Returns the window or control handle for use with low-level Windows API calls that require it.
It is also used when assigning the handle of one BLOB to another.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

END
MessageText CSTRING('You cannot exit the program from this window ')
MessageCaption CSTRING('No EVENT:CloseDown Allowed ')
TextAddress LONG
CaptionAddress LONG
RetVal SHORT
CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:CloseDown
TextAddress = ADDRESS(MessageText)
CaptionAddress = ADDRESS(MessageCaption)
RetVal = MessageBox(WinView{PROP:Handle},TextAddress,CaptionAddress,MB_OK)

!Windows API call using a window handle
CYCLE !Disallow program closedown from this window

END
END

Appendix C – Runtime Properties 1031

PROP:HeaderHeight
Returns the height of the header in a LIST or COMBO control. The height is measured in dialog
units (unless PROP:Pixels is active). (READ-ONLY)

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

LIST,AT(0,0,220,220),USE(?L1),FROM(Que),IMM,FORMAT('60L~Header Text~')
END

CODE
OPEN(MDIChild)
X# = ?L1{PROP:HeaderHeight} !Get height of header in dialog units

Language Reference Manual 1032

PROP:HscrollPos
Returns the position of the horizontal scroll bar's "thumb" (from 0 to 255) on a window, IMAGE,
TEXT, LIST or COMBO with the HSCROLL attribute. Setting this causes the control or window's
contents to scroll horizontally.

Example:
Que QUEUE
F1 STRING(50)
F2 STRING(50)
F3 STRING(50)

END
WinView WINDOW('View'),AT(,,340,200),SYSTEM,CENTER

LIST,AT(20,0,300,200),USE(?List),FROM(Que),IMM,HVSCROLL |
FORMAT('80L#1#80L#2#80L#3#')

END
CODE
OPEN(WinView)
DO BuildListQue
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:ScrollDrag
CASE (?List{PROP:HscrollPos} % 200) + 1
OF 1
?List{PROP:Format} = '80L#1#80L#2#80L#3#'

OF 2
?List{PROP:Format} = '80L#2#80L#3#80L#1#'

OF 3
?List{PROP:Format} = '80L#3#80L#1#80L#2#'

END
DISPLAY

. . .
FREE(Que)

BuildListQue ROUTINE
LOOP 15 TIMES
Que.F1 = 'F1F1F1F1'
Que.F2 = 'F2F2F2F2'
Que.F3 = 'F3F3F3F3'
ADD(Que)

END

Appendix C – Runtime Properties 1033

PROP:IconList
An array that sets or returns the icons displayed in a LIST formatted to display icons (usually a
tree control). If the name of the icon file to assign has a number in square brackets appended to
its end, this indicates the file contains multiple icons and the number specifies which to assign
(zero-based). If the name of the icon file has a tilde (~) prepended to it (~IconFile.ICO), this
indicates the file has been linked into the project as a resource and is not on disk.

Example:
PROGRAM
MAP

RandomAlphaData PROCEDURE(*STRING Field)
END

TreeDemo QUEUE,PRE() !Data list box FROM queue
FName STRING(20)
ColorNFG LONG !Normal Foreground color for FName
ColorNBG LONG !Normal Background color for FName
ColorSFG LONG !Selected Foreground color for FName
ColorSBG LONG !Selected Background color for FName
IconField LONG !Icon number for FName
TreeLeve LONG !Tree Level
LName STRING(20)
Init STRING(4)

END

Win WINDOW('List Boxes'),AT(0,0,366,181),SYSTEM,DOUBLE
LIST,AT(0,34,366,146),FROM(TreeDemo),USE(?Show),HVSCROLL, |

FORMAT('80L*IT~First Name~*80L~Last Name~16C~Initials~')
END

CODE
LOOP 20 TIMES
RandomAlphaData(FName)
ColorNFG = COLOR:White !Assign FNAME's colors
ColorNBG = COLOR:Maroon
ColorSFG = COLOR:Yellow
ColorSBG = COLOR:Blue
IconField = ((x#-1) % 4) + 1 !Assign icon number
TreeLevel = ((x#-1) % 4) + 1 !Assign tree level
RandomAlphaData(LName)
RandomAlphaData(Init)
ADD(TD)

END
OPEN(Win)
?Show{PROP:iconlist,1} = ICON:VCRback !Icon 1 = <
?Show{PROP:iconlist,2} = ICON:VCRrewind !Icon 2 = <<
?Show{PROP:iconlist,3} = 'VCRdown.ico' !Icon 3 = > not linked into project
?Show{PROP:iconlist,4} = '~VCRnext.ico' !Icon 4 = >>linked into project
ACCEPT

Language Reference Manual 1034

END

RandomAlphaData PROCEDURE(*STRING Field)
CODE
y# = RANDOM(1,SIZE(Field)) !Random fill size
LOOP x# = 1 to y# !Fill each character with
Field[x#] = CHR(RANDOM(97,122)) ! a random lower case letter

END

Appendix C – Runtime Properties 1035

PROP:ImageBits
Property of an IMAGE control that allows bitmap images displayed in the control to be moved into
and out of memo fields. Any image displayed in the control can be stored. PROP:ImageBlob
performs the same type of function for a BLOB.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('Save Picture'),AT(80,180,60,20),USE(?SavePic)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)
BUTTON('Last Picture'),AT(240,180,60,20),USE(?LastPic)

END

SomeFile FILE,DRIVER('Clarion'),PRE(Fil) !A file with a memo field
MyMemo MEMO(65520),BINARY
Rec RECORD
F1 LONG

. .

FileName STRING(64) !Filename variable

CODE
OPEN(SomeFile)
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName

OF ?SavePic
Fil:MyMemo = ?Image{PROP:ImageBits} !Put image into memo
ADD(SomeFile) ! and save it to the file on disk
ENABLE(?LastPic) ! activate Last Picture button

OF ?LastPic
?Image{PROP:ImageBits} = Fil:MyMemo !Put last saved memo into image

END
END

Language Reference Manual 1036

PROP:ImageBlob
Property of an IMAGE control that allows bitmap images displayed in the control to be moved into
and out of BLOB fields. Any image displayed in the control can be stored. PROP:ImageBits
performs the same type of function for a MEMO. Most images are stored in a bitmap format by
default (except PCX and GIF), unless PROP:PrintMode is set to store the native format.

PROP:InitAStringHook
A property of the SYSTEM built-in variable that allows a procedure to be set up to automatically
initialize the TIE values the first time an ASTRING representing a particular value is assigned.
Equivalent to {PROP:LibHook,14}. Assign the ADDRESS of the InitAString procedure, and the
runtime library will call this procedure when an ASTRING variable is first assigned. Assign zero
and the runtime library will stop calling the InitAString procedure. (WRITE-ONLY)

PROP:Interface

A property of a TEXT control used to get an interface to the RTF control’s host interface.

PROP:InToolbar
A toggle attribute which returns whether the control is in a TOOLBAR structure. (READ-ONLY)

Example:
WinView WINDOW('View'),AT(0,0,,),MDI,MAX,HVSCROLL,SYSTEM,RESIZE

TOOLBAR
BUTTON('Save Picture'),AT(80,180,60,20),USE(?SavePic)
END
LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
IF ?SavePic{PROP:InToolbar} = TRUE
!DO Something

END
ACCEPT
END

Appendix C – Runtime Properties 1037

PROP:Items
Returns or sets the number of entries visible in a LIST or COMBO control.

Example:
Que QUEUE

STRING(30)
END

WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM
LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM

END

CODE
OPEN(WinView)
SET(SomeFile)
LOOP ?List(PROP:Items} TIMES !Fill display queue to limit of displayable

items
NEXT(SomeFile)
Que = Fil:Record
ADD(Que)

END
ACCEPT
END

PROP:LazyDisplay
SYSTEM property which disables (when set to 1) or enables (when set to 0, the default) the
feature where all window re-painting is completely done before processing continues with the
next statement following a DISPLAY. Setting PROP:LazyDisplay = 1 creates seemingly faster
video processing, since the re-paints occur at the end of the ACCEPT loop if there are no other
messages pending. This can improve the performance of some applications, but can also have a
negative impact on appearance.

Example:
WinView APPLICATION('MyApp'),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM

END

CODE
OPEN(WinView)
SYSTEM{PROP:LazyDisplay} = 1 !Disable extra paint message display

! throughout entire application
ACCEPT
END

Language Reference Manual 1038

PROP:LFNSupport

NOTE: This property has been deprecated in this release.

A property of the SYSTEM built-in variable in 16-bit programs that returns one (1) if the operating
system supports long filenames, and an empty string ('') if it does not. 32-bit operating systems all
support long filenames. (READ-ONLY)

Example:
IF SYSTEM{PROP:LFNSupport} = TRUE
MESSAGE('Long Filenames are supported')

ELSE
MESSAGE('Long Filenames are NOT supported')

END

PROP:LibHook
An array property of the SYSTEM built-in variable that sets override procedures for several
internal Clarion procedures. For each of these procedures, you assign the ADDRESS of the
overriding procedure, and the runtime library will call the overriding procedure instead of the
Clarion library procedure. The overriding procedure's prototype must be exactly the same as the
internal Clarion procedure. These properties were implemented to facilitate Internet Connect.
(WRITE-ONLY)

{PROP:Libhook, 1} PROP:ColorDialogHook
{PROP:Libhook, 2} PROP:FileDialogHook
{PROP:Libhook, 3} PROP:FontDialogHook
{PROP:Libhook, 4} PROP:PrinterDialogHook
{PROP:Libhook, 5} PROP:HaltHook
{PROP:Libhook, 6} PROP:MessageHook
{PROP:Libhook, 7} PROP:StopHook
{PROP:Libhook, 8} PROP:AssertHook
{PROP:Libhook, 9} PROP:FatalErrorHook
{PROP:Libhook, 12} PROP:SystemPropHook
{PROP:Libhook, 13} PROP:AssertHook2
{PROP:Libhook, 14} PROP:InitAStringHook
{PROP:Libhook, 15) PROP:UnlockThreadHook
{PROP:Libhook, 16) PROP:LockThreadHook
{PROP:Libhook, 17) PROP:ThreadLockedHook

Appendix C – Runtime Properties 1039

PROP:LibVersion
A property of the SYSTEM built-in variable that returns the version number of the Clarion for
Windows runtime library .DLL currently loaded for the EXE currently executing. This is separate
from the version number of Clarion for Windows which compiled the EXE file (see
PROP:ExeVersion). This first appeared in Clarion for Windows release 1501, so
PROP:ExeVersion returns blank for releases prior to 1501. (READ-ONLY)

Example:
MESSAGE('Runtime DLL from release ' & SYSTEM{PROP:LibVersion})

PROP:Line and PROP:LineCount
PROP:Line is an array whose elements each contain one line of the text in a TEXT control.
(READ ONLY)

PROP:LineCount returns the number of lines of text in a TEXT control. (READ ONLY)

Example:
LineCount SHORT
MemoLine STRING(80)

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail1 DETAIL,AT(0,0,6500,6000)

TEXT,AT(0,0,6500,6000),USE(Fil:MemoField)
END

Detail2 DETAIL,AT(0,0,6500,125)
STRING(@s80),AT(0,0,6500,125),USE(MemoLine)

END
END

CODE
OPEN(File)
SET(File)
OPEN(CustRpt)
LOOP
NEXT(File)
LineCount = CustRpt$?Fil:MemoField{PROP:LineCount}
LOOP X# = 1 TO LineCount
MemoLine = CustRpt$?Fil:MemoField{PROP:Line,X#}
PRINT(Detail2)

END
END

Language Reference Manual 1040

PROP:LineHeight
Sets or returns the height of the rows in a LIST or COMBO control. The height is measured in
dialog units (unless PROP:Pixels is active). For a TEXT control, it returns the character cell height
of the control's font (the distance from the top of one line of text to the top of the next) in whatever
measurement unit is currently in use. READ-ONLY for a TEXT control.

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

LIST,AT(0,0,220,220),USE(?L1),FROM(Que),IMM
END

CODE
OPEN(MDIChild)
?L1{PROP:LineHeight} = 8 !Set height to 8 dialog units

PROP:MaxHeight
PROP:MaxHeight sets or returns the maximum height of a resizable window.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM,RESIZE

LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
WinView{PROPMaxHeight} = 200 !Set boundaries beyond which the user cannot
WinView{PROPMaxWidth} = 320 ! resize the window
WinView{PROPMinHeight} = 90
WinView{PROPMinWidth} = 120
ACCEPT
END

Appendix C – Runtime Properties 1041

PROP:MaxWidth
PROP:MaxWidth sets or returns the maximum width of a resizable window.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM,RESIZE

LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
WinView{PROPMaxHeight} = 200 !Set boundaries beyond which the user cannot
WinView{PROPMaxWidth} = 320 ! resize the window
WinView{PROPMinHeight} = 90
WinView{PROPMinWidth} = 120
ACCEPT
END

PROP:MessageHook
A property of the SYSTEM built-in variable that sets the override procedure for the MESSAGE
internal Clarion procedure. Equivalent to {PROP:LibHook,6}. Assign the ADDRESS of the
overriding procedure, and the runtime library will call the overriding procedure instead of the
MESSAGE procedure. Assign zero and the runtime library will once again call its internal
procedure. The overriding procedure's prototype must be exactly the same as the MESSAGE
procedure. (WRITE-ONLY)

Language Reference Manual 1042

PROP:MinHeight
PROP:MinHeight sets or returns the minimum height of a resizable window.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM,RESIZE

LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
WinView{PROPMaxHeight} = 200 !Set boundaries beyond which the user cannot
WinView{PROPMaxWidth} = 320 ! resize the window
WinView{PROPMinHeight} = 90
WinView{PROPMinWidth} = 120
ACCEPT
END

PROP:MinWidth
PROP:MinWidth sets or returns the minimum width of a resizable window. Also sets the minimum
width of TAB controls in a SHEET.

Example:

WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM,RESIZE|
LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
WinView{PROPMaxHeight} = 200 !Set boundaries beyond which the user cannot
WinView{PROPMaxWidth} = 320 ! resize the window
WinView{PROPMinHeight} = 90
WinView{PROPMinWidth} = 120
ACCEPT
END

Appendix C – Runtime Properties 1043

PROP:NextField
An array property which returns the next control number in sequence of a window or report.
(READ-ONLY) The control number returned is the control following the array element numbered
control. The order in which PROP:NextField returns field numbers is undefined. PROP:NextField
returns zero when the array element number is the last control in its list. This property easily
allows you to loop through all the controls in a window or report, whether those controls have
USE attributes or not.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('Save Picture'),AT(80,180,60,20),USE(?SavePic)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)
BUTTON('Last Picture'),AT(240,180,60,20),USE(?LastPic)

END
ThisField SHORT(0)
CODE
OPEN(WinView)
LOOP

ThisField = WinView{PROP:NextField,ThisField} !Process every control
IF ThisField

ThisField{PROP:FontName} = 'Arial' !Changing the font
ThisField{PROP:FontSize} = 10

ELSE
BREAK !Break when done

. .
ACCEPT
END

Language Reference Manual 1044

PROP:NextPageNo
A property which sets or returns the next page number in a report.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS

HEADER
STRING(@n3),USE(?Page),PAGENO

END
Detail DETAIL,AT(0,0,6500,1000)

STRING,AT(10,10),USE(Fil:Field)
. .

CODE
OPEN(File);SET(File)
OPEN(CustRpt)
LOOP
NEXT(File)
IF Fil:KeyField <> Sav:KeyField !Detect group break
Sav:KeyField = Fil:KeyField !Detect group break
ENDPAGE !Force page break
CustRpt{PROP:NextPageNo} = 1 !Every group starts on page one

END
PRINT(Detail)

END

PROP:NextTabStop and PROP:PrevTabStop

PROP:NextTabStop returns the next control (field equate label) that can have input focus and be
reached by pressing the Tab key.

PROP:PrevTabStop returns the previous control (field equate label) that can have input focus and
be reached by pressing ShiftTab key

Example:

NextControlFEQ = window{PROP:NextTabStop} !get next control to TAB to

PrevControlFEQ = window{PROP:PrevTabStop} !Get next control to shift-tab to

Window{PROP:NextTabStop} = ?List !Set the next control to tab to

Appendix C – Runtime Properties 1045

PROP:NoHeight and PROP:NoWidth
PROP:NoHeight is a toggle attribute which returns whether the window or control was set to
default its height (had an omitted height parameter in its AT attribute). Setting this property to
TRUE is equivalent to resetting the control to its default height as determined by the library (which
you cannot do using PROP:Height).

PROP:NoWidth is a toggle attribute which returns whether the window or control was set to
default its width (had an omitted width parameter in its AT attribute). Setting this property to
TRUE is equivalent to resetting the control to its default width as determined by the library (which
you cannot do using PROP:Width).

Example:
WinView WINDOW('View'),AT(0,0,,),MDI,MAX,HVSCROLL,SYSTEM,RESIZE

LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
IF WinView{PROP:NoHeight} = TRUE
WinView{PROP:Height} = 200 !Set height

END
IF WinView{PROP:NoWidth} = TRUE
WinView{PROP:Width} = 320 !Set width

END
ACCEPT
END

Language Reference Manual 1046

PROP:NoTips
Disables (when set to 1) or re-enables (when set to 0) tooltip display (TIP attribute) for the
SYSTEM, window, or control.

Example:
WinView APPLICATION('MyApp'),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM

END
CODE
OPEN(WinView)
SYSTEM{PROP:NoTips} = 1 !Disable TIP display throughout entire application
ACCEPT
END

Appendix C – Runtime Properties 1047

PROP:NumTabs
PROP:NumTabs returns the number of TABs in a SHEET. (READ-ONLY)

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)
OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(20,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R2)

END
OPTION('Option 2'),USE(OptVar2),MSG('Option 2')
RADIO('Radio 3'),AT(60,0,20,20),USE(?R3)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R4)
END

END
TAB('Tab Two'),USE(?TabTwo)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB('Tab Three'),USE(?TabThree)

OPTION('Option 3'),USE(OptVar3)
RADIO('Radio 1'),AT(20,0,20,20),USE(?R5)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R6)

END
OPTION('Option 4'),USE(OptVar4)
RADIO('Radio 3'),AT(60,0,20,20),USE(?R7)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R8)
END

END
TAB('Tab Four'),USE(?TabFour)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)

END
CODE
OPEN(MDIChild)
MESSAGE('Number of TABs: ' & ?SelectedTab{PROP:NumTabs})
MESSAGE('Number of rows of TABs: ' & ?SelectedTab{PROP:TabRows})
ACCEPT;END

Language Reference Manual 1048

PROP:Parent
Returns the parent control for a control within a structure (such as an OPTION or GROUP control
structure, or a DETAIL, TOOLBAR, or MENUBAR structure). (READ ONLY)

Example:
WinView WINDOW('MyApp'),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM

END
OptionSelected STRING(6)
?OptionControl EQUATE(100) !A field equate number for CREATE to use
?Radio1 EQUATE(101) !A field equate number for CREATE to use
?Radio2 EQUATE(102) !A field equate number for CREATE to use
CODE
OPEN(WinView)
CREATE(?OptionControl,CREATE:option) !Create the OPTION control
?OptionControl{PROP:use} = OptionSelected
?OptionControl{PROP:Text} = 'Pick one'
?OptionControl{PROP:Boxed} = TRUE
SETPOSITION(?OptionControl,10,10)
CREATE(?Radio1,CREATE:radio,?OptionControl) !Create a RADIO control
?Radio1{PROP:Text} = 'First'
SETPOSITION(?Radio1,12,20)
CREATE(?Radio2,CREATE:radio,?Radio1{PROP:Parent}) !Create another with same

parent
?Radio2{PROP:Text} = 'Second'
SETPOSITION(?Radio2,12,30)
UNHIDE(?OptionControl,?Radio2) !Display the new controls
ACCEPT
END

PROP:Pixels
WINDOW property which toggles screen measurement between dialog units (DLUs) and pixels
(not available for reports). After setting this property, all screen positioning (such as
GETPOSITION, SETPOSITION, MOUSEX, MOUSEY, PROP:Xpos, PROP:Ypos, PROP:Width,
and PROP:Height) return and require co-ordinates in pixels rather than DLUs.

Example:
WinView WINDOW('MyApp'),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM

END
CODE
OPEN(WinView)
WinView{PROP:Pixels} = 1 !Change measurement to pixels
ACCEPT

!all screen positioning statements now return pixels
END

Appendix C – Runtime Properties 1049

PROP:PrinterDialogHook
A property of the SYSTEM built-in variable that sets the override procedure for the
PRINTERDIALOG internal Clarion procedure. Equivalent to {PROP:LibHook,4}. Assign the
ADDRESS of the overriding procedure, and the runtime library will call the overriding procedure
instead of the PRINTERDIALOG procedure. Assign zero and the runtime library will once again
call its internal procedure. The overriding procedure's prototype must be exactly the same as the
PRINTERDIALOG procedure. (WRITE-ONLY)

PROP:PrintMode
Bitmap property of an IMAGE control (or SYSTEM) that specifies how PROP:ImageBlob stores
images in the BLOB. Bit 0 indicates whether decoded image information is required, and bit 1
indicates whether undecoded image information is required. When set to 3, both the original data
and decoded DIB data are available, allowing PROP:ImageBlob to store the image in its native
format (such as JPG) in the BLOB.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('Save Picture'),AT(80,180,60,20),USE(?SavePic)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)
BUTTON('Last Picture'),AT(240,180,60,20),USE(?LastPic)

END
SomeFile FILE,DRIVER('TopSpeed'),PRE(Fil) !A file with a memo field
MyBlob BLOB,BINARY
Rec RECORD
F1 LONG

. .
FileName STRING(64) !Filename variable
CODE
OPEN(SomeFile); OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG('File to View',FileName,'Images|*.BMP;*.PCX;*.JPG;*.WMF',0)
RETURN !Return if no file chosen

END
?Image{PROP:PrintMode} = 3 !Setup to store native formats
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG('File to

View',FileName,'Images|*.BMP;*.PCX;*.JPG;*.WMF',0)
BREAK

END
?Image{PROP:Text} = FileName

Language Reference Manual 1050

OF ?SavePic
Fil:MyBlob{PROP:Handle} = ?Image{PROP:ImageBlob} !Put image into BLOB
ADD(SomeFile) ! and save it to the file on disk
ENABLE(?LastPic) ! activate Last Picture button

OF ?LastPic
?Image{PROP:ImageBlob} = Fil:MyBlob{PROP:Handle} !Put last saved BLOB

into image
END

END

PROP:Progress
You can directly update the display of a PROGRESS control by assigning a value (which must be
within the range defined by the RANGE attribute) to the control's PROP:progress property.

Example:

BackgroundProcess PROCEDURE !Background processing batch process

Win WINDOW('Batch Processing...'),AT(,,400,400),TIMER(1),MDI,CENTER
PROGRESS,AT(100,140,200,20),USE(?ProgressBar),RANGE(0,200)
BUTTON('Cancel'),AT(190,300,20,20),STD(STD:Close)

END

CODE
OPEN(Win)
OPEN(File)
?ProgressBar{PROP:rangehigh} = RECORDS(File)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records when timer allows it
ProgressVariable += 3 !Auto-updates 1st progress bar
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
?ProgressBar{PROP:progress} = ?ProgressBar{PROP:progress} + 1

!Manually update progress bar
!Perform some batch processing code
END

END
END

CLOSE(File)

Appendix C – Runtime Properties 1051

PROP:PropVscroll

This property is used to determine how the vertical scroll bar's "thumb." Is displayed.

If set to 1 and the number of records in the list box source (normally a queue) is greater than
number of list box visible rows, the thickness of the "thumb" is dependent on the ratio of number
of visible rows to the total number of records.

If set to 0, or the number of records is not greater than number of rows (i.e., page loaded
browses), the "thumb" has a square shape.

This property is applicable for LIST and COMBO controls and for SYSTEM. New LIST and
COMBO controls inherit the current value of this property from the SYSTEM setting.

Language Reference Manual 1052

PROP:RejectCode
ENTRY, TEXT, COMBO, or SPIN control property which returns the last value REJECTCODE
value set in EVENT:Rejected. PROP:RejectCode is persistent, while the REJECTCODE
procedure only returns a valid value during EVENT:Rejected.

Example:

MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@N8),AT(100,140,32,20),USE(E1)

BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)

END
CODE
OPEN(MDIChild)
ACCEPT
CASE EVENT()
OF EVENT:Completed
BREAK

END
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
SELECT

END
OF ?E1
CASE EVENT()
OF EVENT:Accepted
IF ?E1{PROP:RejectCode} <> 0 !Check for rejected entry
SELECT(?) ! and make the user re-enter
CYCLE ! immediately

END
END

OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END

Appendix C – Runtime Properties 1053

PROP:ScreenText
Returns the text displayed on screen in the specified control.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SPIN(@n3),AT(0,0,320,180),USE(Fil:Field),RANGE(0,255)
END

CODE
OPEN(WinView)
ACCEPT
CASE FIELD()
OF ?Fil:Field
CASE EVENT()
OF EVENT:Rejected
MESSAGE(?Fil:Field{PROP:ScreenText} & ' is not in the range 0-255')
SELECT(?)
CYCLE

END
END

END

Language Reference Manual 1054

PROP:SelStart (or PROP:Selected) and PROP:SelEnd
PROP:SelStart (also named PROP:Selected) sets or retrieves the beginning (inclusive) character
to mark as a block in an ENTRY or TEXT control. It positions the data entry cursor left of the
character, and sets PROP:SelEnd to zero (0) to indicate no block is marked. It also identifies the
currently highlighted entry in a LIST or COMBO control (usually coded as PROP:Selected for this
purpose).

PROP:SelEnd sets or retrieves the ending (inclusive) character to mark as a block in an ENTRY
or TEXT control.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

ENTRY(@S30),AT(0,0,320,180),USE(Fil:Field),ALRT(F10Key)
LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
ACCEPT
CASE ACCEPTED()
OF ?List
GET(Q,?List{PROP:Selected}) !Get highlighted entry from queue

OF ?Fil:Field
SETCLIPBOARD(Fil:Field[?Fil:Field{PROP:SelStart} : ?Fil:Field{PROP:SelEnd}])

!Place highlighted string slice in Windows' clipboard
END

END

Appendix C – Runtime Properties 1055

PROP:Size
Returns or sets the size of a BLOB field. Before assigning data to the BLOB using the string
slicing technique, if the BLOB does not yet contain any data you must set its size using
PROP:Size. Before assigning additional data that will increase the amount of data in the BLOB
(using the string slicing technique), you must reset its size using PROP:Size.

Example:
Names FILE,DRIVER('TopSpeed')
NbrKey KEY(Names:Number)
Notes BLOB !Can be larger than 64K
Rec RECORD
Name STRING(20)
Number SHORT

. .

BlobSize LONG
BlobBuffer1 STRING(65520),STATIC !Maximum size string
BlobBuffer2 STRING(65520),STATIC !Maximum size string

WinView WINDOW('View BLOB Contents'),AT(0,0,320,200),SYSTEM
TEXT,AT(0,0,320,180),USE(BlobBuffer1),VSCROLL
TEXT,AT(0,190,320,180),USE(BlobBuffer2),VSCROLL,HIDE

END
CODE
OPEN(Names)
SET(Names)
NEXT(Names)
OPEN(WinView)
BlobSize = Names.Notes{PROP:Size} !Get size of BLOB contents
IF BlobSize > 65520
BlobBuffer1 = Names.Notes[0 : 65519]
BlobBuffer2 = Names.Notes[65520 : BlobSize - 1]
WinView{PROP:Height} = 400
UNHIDE(?BlobBuffer2)

ELSE
BlobBuffer1 = Names.Notes[0 : BlobSize - 1]

END
ACCEPT
END

Language Reference Manual 1056

PROP:SnapHeight and PROP:SnapWidth
PROP:SnapHeight sets the snap height of any window or dockable toolbox when it is resized.
When a toolbox is repositioned from vertical docking to horizontal docking, it is resized and
adjusted according to the PROP:SnapHeight and PROPSnapWidth values.

PROP:SnapWidth sets the snap width of any window or dockable toolbox when it is resized.
When a toolbox is repositioned from vertical docking to horizontal docking, it is resized and
adjusted according to the PROP:SnapHeight and PROP:SnapWidth values.

See Also: DOCK, DOCKED, TOOLBOX

Example:
PROGRAM
MAP

MAIN
P1(STRING)

END

CODE
MAIN

MAIN PROCEDURE

Window APPLICATION('SnapWidth & SnapHeight'),AT(,,262,243),STATUS,MAX,RESIZE
END

CODE
OPEN(Window)
Window{PROP:StatusText} = 'Drag the toolbar to any edge'
ACCEPT

IF EVENT()=Event:OpenWindow
START(p1,,system{PROP:target})

END
END

P1 PROCEDURE(w)
win &WINDOW
width SIGNED
height SIGNED
window WINDOW,AT(50,50,100,20),SYSTEM,TOOLBOX,GRAY,RESIZE,MDI,IMM

BUTTON,AT(80,2,15,15),USE(?Button4),ICON(ICON:Cut),FLAT
BUTTON,AT(31,2,15,15),USE(?Button2),ICON(ICON:Copy),FLAT
BUTTON,AT(55,2,15,15),USE(?Button3),ICON(ICON:Paste),FLAT

END

Appendix C – Runtime Properties 1057

!**
! Using SnapWidth and SnapHeight, sets up "n" possible sizes for a TOOLBOX.
! In this example, when the toolbox is docked to the left or right, it takes
! on the Tall size when Top or Botton, it takes the Wide size.
!**

CODE
win &= (w)
OPEN(window, win)
Window{PROP:docked} = Dock:Float
Window{PROP:dock} = DOCK:ALL

Window{PROP:snapwidth, 1} = 20 ! Vertical size i.e., when made tall
Window{PROP:snapheight, 1} = 150

Window{PROP:snapwidth, 2} = 100 ! Horizontal size i.e., when made wide
Window{PROP:snapheight, 2} = 20

Window{PROP:snapwidth, 3} = 50 ! square
Window{PROP:snapheight, 3} = 50

ACCEPT
IF EVENT() = EVENT:sized
! handle repositioning of buttons here
IF window{PROP:Width} = 20 ! is it tall?
?Button4{PROP:xpos} = 2
?Button4{PROP:ypos} = 53
?Button2{PROP:xpos} = 2
?Button2{PROP:ypos} = 19
?Button3{PROP:xpos} = 2
?Button3{PROP:ypos} = 36

ELSIF window{PROP:Width} = 100 ! Is it wide?
?Button4{PROP:xpos} = 70
?Button4{PROP:ypos} = 2
?Button2{PROP:xpos} = 50
?Button2{PROP:ypos} = 2
?Button3{PROP:xpos} = 30
?Button3{PROP:ypos} = 2

ELSE !it must be square
?Button4{PROP:xpos} = 27
?Button4{PROP:ypos} = 27
?Button2{PROP:xpos} = 27
?Button2{PROP:ypos} = 10
?Button3{PROP:xpos} = 5
?Button3{PROP:ypos} = 27

END
END

END

Language Reference Manual 1058

PROP:StatusFont
A SYSTEM or WINDOW property that reads and writes the font settings for status bars. This
property is used in conjunction with PROP:FontName, PROP:FontSize, PROP:FontColor, and
PROP:FontStyle. The status bar uses the default character set (a value of the
SYSTEM{PROP:CharSet}).

Example:
! Tahoma is set as a default status bar font
SYSTEM{PROP:FontName + PROP:StatusFont} = 'Tahoma'
! When this window is active, Tahoma 10 is used for status bar
Window{PROP:FontSize + PROP:StatusFont} = 10

PROP:StopHook

A property of the SYSTEM built-in variable that sets the override procedure for the STOP internal
Clarion procedure. Equivalent to {PROP:LibHook,7}. Assign the ADDRESS of the overriding
procedure, and the runtime library will call the overriding procedure instead of the STOP
procedure. Assign zero and the runtime library will once again call its internal procedure. The
overriding procedure's prototype must be exactly the same as the STOP procedure. (WRITE-
ONLY)

PROP:SystemPropHook

A property of the SYSTEM built-in variable that allows you to trap when SYSTEM{property} is
being called. Equivalent to {PROP:LibHook,12}. You need to pass the address of a procedure
which has a prototype of

PROCEDURE(SIGNED Property, BYTE DoingSet, BYTE *Done, STRING Value), STRING

Property is the equated value between the property brackets {}.

DoingSet is set to TRUE (1) if SYSTEM{property} = ‘value’ is being called, or FALSE
(0) if 'value = SYSTEM{property}' is being called.

Done is set to TRUE if you do not want the system to process the property.

Value is set to what the property is being set to. This is only set when DoingSet is TRUE.

The procedure must return a string. This string is only used when DoingSet is FALSE and Done
is set to TRUE. In this case it is what value gets set to in the line
'value = SYSTEM{property}'.

Appendix C – Runtime Properties 1059

PROP:TabRows
PROP:TabRows returns the number of rows of TABs in a SHEET. (READ-ONLY)
Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)
OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(20,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R2)

END
OPTION('Option 2'),USE(OptVar2),MSG('Option 2')
RADIO('Radio 3'),AT(60,0,20,20),USE(?R3)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R4)
END

END
TAB('Tab Two'),USE(?TabTwo)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB('Tab Three'),USE(?TabThree)

OPTION('Option 3'),USE(OptVar3)
RADIO('Radio 1'),AT(20,0,20,20),USE(?R5)
RADIO('Radio 2'),AT(40,0,20,20),USE(?R6)

END
OPTION('Option 4'),USE(OptVar4)
RADIO('Radio 3'),AT(60,0,20,20),USE(?R7)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R8)
END

END
TAB('Tab Four'),USE(?TabFour)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)

END
CODE
OPEN(MDIChild)
MESSAGE('Number of TABs: ' & ?SelectedTab{PROP:NumTabs})
MESSAGE('Number of rows of TABs: ' & ?SelectedTab{PROP:TabRows})
ACCEPT;END

Language Reference Manual 1060

PROP:Target

A property of the SYSTEM built-in variable that is used to manipulate the current target. This
property can be used to read or set the current target. It is equivalent to SETTARGET(target).

PROP:TempImage
Property of an IMAGE control which returns the filename it creates for an image. For internal use
in the Internet Connect templates, only.

PROP:TempImagePath
SYSTEM property which sets or returns the path containing the temporary image files set by
PROP:PrintMode or PROP:TempImage. Equivalent to {PROP:TempPath,2}. For internal use in
the Internet Connect templates only.

PROP:TempImageStatus
Property of an IMAGE control which returns whether or not PROP:TempImage created a new file
or overwrote an existing file. For internal use in the Internet Connect templates, only.

PROP:TempNameFunc
Property of a REPORT which allows you to create your own names for the metafiles generated
for the PREVIEW attribute by writing a callback function to supply the metafile name for each
page of the report. The callback function must be a PROCEDURE which takes a single SIGNED
parameter and returns a STRING.

To turn this on, you must assign the ADDRESS of your callback function to
PROP:TempNameFunc. To turn it off, you must assign zero (0).

The report engine, when it is about to write a page of the report to disk, calls your procedure,
passing it the page number, and uses the return value from your procedure as the name of the
metafile (both on disk and in the PREVIEW attribute's QUEUE). The callback function must
create the file to ensure that the name is available.

When using PROP:TempNameFunc, PROP:FlushPreview writes the metafiles to the printer but
does not automatically delete them (you must clean them up yourself, whenever your program is
finished using them).

Appendix C – Runtime Properties 1061

Example:
MEMBER('MyApp')
MAP

PageNames PROCEDURE(SIGNED),STRING !Callback function prototype
END

MyReport PROCEDURE
MyQueue QUEUE !Preview queue

STRING(64)
END

Report REPORT,PREVIEW(MyQueue) !ReportDeclaration
END

CODE
OPEN(Report)
Report{PROP:TempNameFunc} = ADDRESS(PageNames) !Assign ADDRESS to property so

the
! report engine calls PageNames to
! get the name to use for each page

!Report processing code goes here
Report{PROP:TempNameFunc} = 0 !Assign zero to property to turn off
Report{PROP:FlushPreview} = TRUE !Send the report to the printer

! and the .WMF files are still on disk

PageNames PROCEDURE(PageNumber) !Callback function for page names
NameVar STRING(260),STATIC
PageFile FILE,DRIVER('DOS'),NAME(NameVar),CREATE
Rec RECORD
F1 LONG

. .
CODE
NameVar = PATH() & '\PAGE' & FORMAT(PageNumber,@n04) & '.WMF'
CREATE(PageFile)
RETURN(NameVar)

Language Reference Manual 1062

PROP:TempPagePath
SYSTEM property which sets or returns the path containing the temporary files for the page
images. Equivalent to {PROP:TempPath,1}. For internal use in the Internet Connect templates,
only.

PROP:TempPath
Array SYSTEM property which sets or returns the path containing the temporary files for the page
images or the path containing the temporary image files set by PROP:PrintMode. For internal use
in the Internet Connect templates, only.

PROP:Thread
Returns the thread number of a window. This is not necessarily the currently executing thread, if
you've used SETTARGET to set the TARGET built-in variable. (READ-ONLY)

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM

END
ToolboxThread BYTE
CODE
OPEN(WinView)
ToolboxThread = ToolboxWin{PROP:Thread} !Get window thread number
ACCEPT
END

PROP:Threading
Property of the SYSTEM built-in variable which, when set to zero (0), disables all MDI behavior
and turns the application into an SDI application.

Example:
PROGRAM

!Data declarations
CODE
IF SomeCondition = TRUE
SYSTEM{PROP:Threading} = 0 !Set to SDI behavior

END

Appendix C – Runtime Properties 1063

PROP:TipDelay and PROP:TipDisplay
PROP:TipDelay sets the time delay before tooltip display (TIP attribute) for the SYSTEM (16-bit
only – now obsolete).

PROP:TipDisplay sets the duration of tooltip display (TIP attribute) for the SYSTEM (16-bit only –
now obsolete).

Example:
WinView APPLICATION('MyApp'),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM

END

CODE
OPEN(WinView)
SYSTEM{PROP:TipDelay} = 50 !Delay TIP display for 1/2 second
SYSTEM{PROP:TipDisplay} = 500 !TIP display for 5 seconds
ACCEPT
END

PROP:TipsFont
A property of the SYSTEM built-in variable that reads and writes the font settings for tooltips. This
property is used in conjunction with PROP:FontName, PROP:FontSize, PROP:FontColor, and
PROP:FontStyle. Tooltips use the default character set (a value of the
SYSTEM{PROP:CharSet}).

Example:
SYSTEM {PROP:FontName + PROP:TipsFont} !set/get font's typeface
SYSTEM {PROP:FontSize + PROP:TipsFont} !set/get font's size
SYSTEM {PROP:FontColor + PROP:TipsFont} !set/get font's color
SYSTEM {PROP:FontStyle + PROP:TipsFont} !set/get font's style

Language Reference Manual 1064

PROP:Touched
When non-zero, indicates the data in the ENTRY, TEXT, SPIN, or COMBO control with input
focus has been changed by the user since the last EVENT:Accepted. This is automatically reset
to zero each time the control generates an EVENT:Accepted. Setting this property (in
EVENT:Selected) allows you to ensure that EVENT:Accepted generates to force data validation
code to execute, overriding Windows' standard behavior--simply pressing TAB to navigate to
another control does not automatically generate EVENT:Accepted.

PROP:Touched can also be interrogated to determine if the content of a BLOB has changed
since it was retrieved from disk.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

ENTRY(@S30),AT(0,0,320,180),USE(Fil:Field)
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)
END

SaveCancelPos LONG,DIM(4)
CODE
OPEN(WinView)
SaveCancelPos[1] = ?Cancel{PROP:Xpos} !Save Cancel button area
SaveCancelPos[2] = ?Cancel{PROP:Xpos}+?Cancel{PROP:Width}
SaveCancelPos[3] = ?Cancel{PROP:Ypos}
SaveCancelPos[4] = ?Cancel{PROP:Ypos}+?Cancel{PROP:Height}
ACCEPT
CASE FIELD()
OF ?Fil:Field
CASE EVENT()
OF EVENT:Selected
?Fil:Field{PROP:Touched} = 1 !Force EVENT:Accepted to generate

OF EVENT:Accepted
IF KEYCODE() = MouseLeft AND | !Detect user clicking on Cancel

INRANGE(MOUSEX(),SaveCancelPos[1],SaveCancelPos[2]) AND |
INRANGE(MOUSEY(),SaveCancelPos[3],SaveCancelPos[4])

CYCLE !User clicked on Cancel
ELSE

!Process the data, whether entered by the user or in the field at the start
END

Appendix C – Runtime Properties 1065

OF ?Ok
CASE EVENT()
OF EVENT:Accepted
!Write the data to disk

END
OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
!Do not write the data to disk

END
END

END

Language Reference Manual 1066

PROP:Type
Contains the type of control. Values are the CREATE:xxxx equates (listed in EQUATES.CLW).
(READ-ONLY)

Example:
MyField STRING(1)
?MyField EQUATE(100)

WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL
END

CODE
OPEN(WinView)
IF UserChoice = 'CheckField'
CREATE(?MyField,CREATE:Check)

ELSE
CREATE(?MyField,CREATE:Entry)

END
?MyField{PROP:Use} = MyField
SETPOSITION(?MyField,10,10)
IF ?MyField{PROP:Type} = CREATE:Check !Check control type
?MyField{PROP:TrueValue} = 'T'
?MyField{PROP:FalseValue} = 'F'

END
ACCEPT
END

Appendix C – Runtime Properties 1067

PROP:UpsideDown
This toggles both the UP and DOWN attributes at once to display inverted TAB control text in a
SHEET structure.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SHEET,AT(0,0,320,175),USE(SelectedTab),RIGHT,DOWN !Tabs right reading
down

TAB('Tab One'),USE(?TabOne)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)

END
CODE
OPEN(WinView)
?SelectedTab{PROP:BELOW} = TRUE !Set tabs to display at bottom of sheet
?SelectedTab{PROP:UpsideDown} = TRUE !Invert the text displayed on the tabs
ACCEPT
END

Language Reference Manual 1068

PROP:UseAddress
Returns the address of an ANY typed variable that refers to the USE variable of a control.

Example:
Loc:Any ANY
Window WINDOW('Caption'),AT(,,260,100),GRAY

ENTRY(@s20),AT(57,23,60,10),USE(Loc:Any)
END
CODE
OPEN(Window)
ACCEPT

X# = ?Loc:Any{PROP:UseAddress}
BREAK

END

Appendix C – Runtime Properties 1069

PROP:Visible
Returns an empty string if the control is not visible because either because it has been hidden, or
it is a member of a "parent" control (OPTION, GROUP, MENU, SHEET, or TAB) that is hidden, or
is on a TAB control page that is not currently selected. (READ-ONLY)

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)
PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB('Tab Two'),USE(?TabTwo)

PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)
BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)

END
CODE
OPEN(MDIChild)
ACCEPT
CASE EVENT()
OF EVENT:Completed
BREAK

END
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
SELECT

END
OF ?E3
CASE EVENT()
OF EVENT:Accepted
E3 = UPPER(E3) !Convert the data entered to Upper case
IF ?E3{PROP:Visible} AND MDIChild{PROP:AcceptAll}

!Check for visibility during AcceptAll mode
DISPLAY(?E3) ! and display the upper cased data

END
END

Language Reference Manual 1070

OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END

Appendix C – Runtime Properties 1071

PROP:VLBproc and PROP:VLBval
PROP:VLBProc sets the source procedure for a "Virtual List Box" LIST or COMBO control without
a FROM attribute. This procedure provides the control with the data to display.

The procedure's prototype must take three parameters:
VLBProc PROCEDURE(LONG,LONG,SHORT),STRING

where the first LONG is either SELF (indicating the procedure is a method of a CLASS) or the
value set for PROP:VLBval. The second LONG passes the row number of the virtual list box to
affect. There are three "special" values for this parameter, -1 asks for the number of records to
display in the list, -2 asks for the number of fields in the nominal Queue (data and color/tree/icon
fields) to display in the list, and -3 asks if there are any changes to display. The SHORT
parameter specifies the column number of the virtual list box to affect.

PROP:VLBVal sets the source object for a "Virtual List Box" LIST or COMBO control without a
FROM attribute. This can be any 32-bit unique value to identify the specific list box, but is
generally the return value of ADDRESS(SELF) when the PROP:VLBProc procedure is a CLASS
method.

Example:
PROGRAM
MAP

Main
END

StripedListQ QUEUE,TYPE
S STRING(20)

END

StripedList CLASS,TYPE
Init PROCEDURE(WINDOW w, SIGNED feq, StripedListQ Q)
VLBproc PROCEDURE(LONG row, SHORT column),STRING,PRIVATE

!Required first parameter is implicit in a CLASS method
Q &StripedListQ,PRIVATE
ochanges LONG,PRIVATE

END
CODE
Main

Language Reference Manual 1072

StripedList.Init PROCEDURE(WINDOW w, SIGNED feq, StripedListQ Q)

CODE
SELF.Q &= Q
SELF.ochanges = CHANGES(Q)

w $ feq{PROP:VLBval} = ADDRESS(SELF) !Must assign this first
w $ feq{PROP:VLBproc} = ADDRESS(SELF.VLBproc) ! then this

StripedList.VLBproc PROCEDURE(LONG row, SHORT col) !Required first parameter is implie

nchanges LONG

CODE
CASE row
OF -1 ! How many rows?

RETURN RECORDS(SELF.Q)
OF -2 ! How many columns?

RETURN 5 ! 1 data, four color fields in the "nominal Q"
OF -3 ! Has it changed

nchanges = CHANGES(SELF.Q)
IF nchanges <> SELF.ochanges THEN

SELF.ochanges = nchanges
RETURN 1

ELSE
RETURN 0

END
ELSE

GET(SELF.Q, row)
CASE col
OF 1 !Data field

RETURN WHAT(SELF.Q,1)
OF 3 !Background color field

RETURN CHOOSE(BAND(row,1), COLOR:none, 0c00000H)
ELSE !All other fields

RETURN COLOR:None ! Use default color
END

END

Appendix C – Runtime Properties 1073

Main PROCEDURE
window WINDOW('Caption'),AT(,,153,103),GRAY,SYSTEM

LIST,AT(33,12,80,80),USE(?List1),FORMAT('20L*')
END

Q QUEUE(StripedListQ)
END

SL StripedList
i SIGNED

CODE
LOOP i = 1 TO 20

Q.s = 'Line ' & i
ADD(Q)

END
OPEN(window)
SL.Init(window, ?list1, Q)
ACCEPT
END

Language Reference Manual 1074

PROP:Vscroll

This Read/Write property mimics the VSCROLL attribute. If the value is set to zero (0), the
vertical scrollbar will not be displayed, even if the number of records in the list is more than the
number of visible rows.

When you place VSCROLL on a LIST with the IMM attribute, the vertical scroll bar is always
present, even when the list is not full. When the user clicks on the scroll bar, events are
generated, but the list contents do not move (executable code should perform this task). You can
interrogate the PROP:VscrollPos property to determine the scroll thumb's position in the range 0
(top) to 100 (bottom).

Appendix C – Runtime Properties 1075

PROP:VscrollPos
Returns the position of the vertical scroll bar's "thumb." Valid values are from 0 to 255 on a
window, IMAGE, or TEXT control with the VSCROLL attribute.

Valid values are from 0 to 100 on a LIST, or COMBO control with the VSCROLL attribute (when
the IMM attribute is set on). If the IMM attribute is omitted, the values range from 0 to the number
of items available for display in the LIST or COMBO (as specified by the FROM() attribute) minus
one. If FROM(QUEUE) is specified, then the range is 0 to RECORDS(QUEUE) - 1. If
FROM('list'), then the range is 0 to the number of items in 'list' - 1. For example, if
FROM('Mr.|Mrs.|Ms.|Dr.'), Then the range is 0 to 3, because 4 is the number of items in the list.

The value of PROP:VScrollPos with IMM off specifies the exact number of items in the list or
QUEUE that precede the first item displayed. For example, if row 5 of a QUEUE is the first item
displayed, then the value of PROP:VScrollPos is 4.

Setting this property causes the control or window's contents to be scrolled vertically (unless the
IMM attribute is on the LIST or COMBO, then only the "thumb" moves).

Example:
Que QUEUE

STRING(50)
END

WinView WINDOW('View'),AT(0,0,320,200),MDI,SYSTEM
LIST,AT(0,0,320,200),USE(?List),FROM(Que),IMM,VSCROLL
END

CODE
OPEN(WinView)
Fil:KeyField = 'A' ; DO BuildListQue
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:ScrollDrag
EXECUTE INT(?List{PROP:VscrollPos}/10) + 1
Fil:KeyField = 'A'
Fil:KeyField = 'C'
Fil:KeyField = 'E'
Fil:KeyField = 'G'
Fil:KeyField = 'K'
Fil:KeyField = 'M'
Fil:KeyField = 'P'
Fil:KeyField = 'S'
Fil:KeyField = 'V'
Fil:KeyField = 'Y'

END
DO BuildListQue

END ; END; END

Language Reference Manual 1076

FREE(Que)

BuildListQue ROUTINE
FREE(Queue)
SET(Fil:SomeKey,Fil:SomeKey) !Set to selected key field
LOOP ?List{PROP:Items} TIMES !Process number of recs visible

in list
NEXT(SomeFile) ; IF ERRORCODE() THEN BREAK. !Break at end of file
Que = Fil:KeyField !Assign field to display to

QUEUE
ADD(Que) ! and add it to the QUEUE

END

See Also: X and Y Origin

Appendix C – Runtime Properties 1077

PROP:Watched
Property of a FILE that returns whether the current record is being WATCHed. Returns 1 if the
record is watched and an empty string ('') if not. (READ ONLY)

Example:
FileName STRING(256)
Customer FILE,DRIVER('Clarion')
Record RECORD
Name STRING(20)

. .
CODE
OPEN(Customer)
SET(Customer)
LOOP
WATCH(Customer)
NEXT(Customer)
IF ERRORCODE() THEN BREAK.
IF Customer{PROP:Watched} <> ''
MESSAGE('Record watched')

END
END

PROP:WheelScroll

A read/write property valid for list and combo box controls. Used to adjust the control sensitivity to
mouse wheel scrolling. If property is set to a value less than 1, the property defaults to 1. The
lower the value of the property results in more lines scrolled per wheel "click". Default value is 40
(approximately 3 rows per wheel "click" for standard mouse driver settings).

PROP:WindowsVersion

Returns the string that describes Windows version running the program.

Read only. Available for SYSTEM only.

Example:

GLO:WindowsVersion = SYSTEM{PROP:WindowsVersion}

Language Reference Manual 1078

PROP:WndProc
Sets or gets the window's (not the client area) or a specific control's messaging procedure for use
with low-level Windows API calls that require it. Generally used in sub-classing to track all
Windows messages.

Example:
PROGRAM
MAP

Main PROCEDURE
SubClassFunc1 PROCEDURE(USHORT,SHORT,USHORT,LONG),LONG,PASCAL
SubClassFunc2 PROCEDURE(USHORT,SHORT,USHORT,LONG),LONG,PASCAL

MODULE('Windows') !SoftVelocity Win31
Library
CallWindowProc PROCEDURE(LONG,UNSIGNED,SIGNED,UNSIGNED,LONG),LONG,PASCAL

. . !End MAP and MODULE
SavedProc1 LONG
SavedProc2 LONG
WM_MOUSEMOVE EQUATE(0200H)
PT GROUP
X SHORT
Y SHORT

END
CODE

Main

Main PROCEDURE
WinView WINDOW('View'),AT(0,0,320,200),HVSCROLL,MAX,TIMER(1),STATUS

STRING('X Pos'),AT(1,1,,),USE(?String1)
STRING(@n3),AT(24,1,,),USE(PT:X)
STRING('Y Pos'),AT(44,1,,),USE(?String2)
STRING(@n3),AT(68,1,,),USE(PT:Y)
BUTTON('Close'),AT(240,180,60,20),USE(?Close)
END

CODE
OPEN(WinView)
SavedProc1 = WinView{PROP:WndProc} !Save this procedure
WinView{PROP:WndProc} = ADDRESS(SubClassFunc1) !Name subclass procedure
SavedProc2 = WinView{PROP:ClientWndProc} !Save this procedure
WinView{PROP:ClientWndProc} = ADDRESS(SubClassFunc2) !Name subclass procedure
ACCEPT
CASE ACCEPTED()
OF ?Close
BREAK

END
END

Appendix C – Runtime Properties 1079

SubClassFunc1 PROCEDURE(hWnd,wMsg,wParam,lParam) !Sub class procedure
CODE ! to track mouse movement in IF wMsg =

WM_MOUSEMOVE ! window's status bar (only)
PT.X = MOUSEX() ; PT.Y = MOUSEY() !Assign mouse position

END
RETURN(CallWindowProc(SavedProc1,hWnd,wMsg,wParam,lParam))!Pass control to

SavedProc1

SubClassFunc2 PROCEDURE(hWnd,wMsg,wParam,lParam) !Sub class procedure
CODE ! to track mouse movement in IF wMsg =

WM_MOUSEMOVE ! window's client area
PT.X = MOUSEX() ; PT.Y = MOUSEY() !Assign mouse position

END
RETURN(CallWindowProc(SavedProc2,hWnd,wMsg,wParam,lParam))!Pass control to

SavedProc2

Language Reference Manual 1080

PROP:Xorigin and PROP:YOrigin
Attributes of a SHEET or IMAGE control (which have horizontal and/or vertical scrollbar(s)) that
sets or retrieves how much the SHEET or IMAGE has been scrolled. XORIGIN (PROP:XOrigin)
specifies how much the SHEET or IMAGE has scrolled in the X direction. YORIGIN
(PROP:YOrigin) specifies how much the SHEET or IMAGE has scrolled in the Y direction. As the
example shows below, these properties are also valid on a WINDOW.

The Read-only property PROP:YOrigin also can return the value that CHOICE() would return for
the first visible row of a referenced list box. This property allows to calculate the current position
of the highlighted row, (e.g. CHOICE(?List) - ?List{PROP:YOrigin} + 1)

Example
PROGRAM
MAP
END

S STRING(20)
Window WINDOW('Caption'),AT(,,400,250),FONT('MS Sans Serif',8,,FONT:regular)|

,IMM,VSCROLL, STATUS,SYSTEM,GRAY,CENTER
ENTRY(@S20),AT(10,100),USE(S,,?S1),SCROLL
ENTRY(@S20),AT(10,500),USE(S,,?S2),SCROLL
ENTRY(@S20),AT(10,900),USE(S,,?S3),SCROLL

END

y1 UNSIGNED
y2 UNSIGNED
Wy1 UNSIGNED
Wy2 UNSIGNED
Control SIGNED

CODE
OPEN(Window)
ACCEPT
CASE EVENT()
OF EVENT:Selected
Control = SELECTED()
IF Control

y1 = Control {PROP:yPos}
y2 = y1 + Control {PROP:Height}
Wy1 = 0{PROP:YOrigin} !read Yorigin
Wy2 = Wy1 + 0 {PROP:ClientHeight}
IF y1 < Wy1
0{PROP:YOrigin} = CHOOSE (y1 < 20, 0, y1 - 20)

ELSIF y2 > Wy2
0{PROP:YOrigin} = Wy1 + y2 - Wy2 + 20 !set Yorigin

END
END

END
END
CLOSE(Window)

Appendix C – Runtime Properties 1081

Runtime VIEW and FILE Properties

PROP:Completed
PROP:Completed is a property of a FILE that returns the percentage completed of the re-build
during a BUILD or PACK operation for which PROP:ProgressEvents has been turned on. Returns
zero (0) if the file driver does not know how much of the BUILD or PACK has been done. (READ
ONLY)

PROP:ConnectString
Property of a FILE using the ODBC driver that returns the connection string (normally stored in
the file's OWNER attribute) that would allow a complete connection. If the OWNER attribute
contains only a data source name, a login screen appears to ask for the rest of the required
details before the connection is made. This login window appears every time you log on. With
this property, the developer can enter information in the login screen once, then set the OWNER
attribute to the return value from PROP:ConnectString, eliminating the login.

Example:

OwnerString STRING(20)
Customer FILE,DRIVER('ODBC'),OWNER(OwnerString)
Record RECORD
Name STRING(20)

. .
CODE
OwnerString = 'DataSourceName'
OPEN(Customer)
OwnerString = Customer{PROP:ConnectString} !Get full connect string
MESSAGE(OwnerString) !Display it for future use

Language Reference Manual 1082

PROP:CurrentKey
Property of a FILE that returns a reference to the current KEY or INDEX being used for sequential
processing, or the current key being built during a BUILD or PACK operation (READ ONLY).
Valid only as the source side of a reference assignment statement or in a logical expression
comparing the return result to NULL. Returns NULL if the file is being processed in record order.

Example:
KeyRef &KEY
Customer FILE,DRIVER('Clarion'), PRE(Cus)
NameKey KEY(Cus:Name),DUP
Record RECORD
Name STRING(20)

. .
CODE
OPEN(Customer)
SET(Customer)
KeyRef &= Customer{PROP:CurrentKey) !Returns NULL
IF Customer{PROP:CurrentKey) &= NULL !Compare to NULL
MESSAGE('SET to record order')

END
SET(Cus:NameKey)
KeyRef &= Customer{PROP:CurrentKey) !Returns reference to Cus:NameKey

PROP:DataPath
A read/write SYSTEM property that can be used to set the default directory for data files.

All files with unqualified file names (e.g., those files with no NAME attribute or a NAME with only a
relative path) will be looked for in the directory specified by SYSTEM{PROP:DataPath}.

SYSTEM{PROP:DataPath} defaults to the directory the application starts in. This will save
developers from having to do startup code like the following:

GETINI(datadirectory)
file1name = datadirectory & 'file1'
file2name = datadirectory & 'file2'
file3name = datadirectory & 'file3'

Appendix C – Runtime Properties 1083

PROP:Details
Property of a FILE that toggles turing Record Buffer logging on or off. file{PROP:Details}=1 turns
Record Buffer logging on and file{PROP:Details}=0 turns Record Buffer logging off.

See Also:

PROP:Profile

PROP:Log

PROP:DriverLogsoutAlias
Property of a FILE that returns whether the file driver allows the LOGOUT statement to name
both a file and an alias for the file in the same statement (READ ONLY).

Example:
IF Customer{PROP:DriverLogsoutAlias} = '' !Test for alias allowed in LOGOUT
MESSAGE('Driver does not allow files and their aliases in LOGOUT')

END

PROP:FetchSize
Property of a FILE or VIEW which sets or gets the pagesize parameter for the last BUFFER
statement executed.

Example:
CODE
OPEN(MyFile)
BUFFER(MyFile,10,5,2,300) !10 records per page, 5 pages behind and 2 read-

ahead,
! with a 5 minute timeout

MyFile{PROP:FetchSize} = 1 !Change fetch rate to one record at a time

Language Reference Manual 1084

PROP:Field
Property of a VIEW which returns the field number in a file for the specified field number in a
VIEW. (READ ONLY)

PROP:FieldsFile
Property of a VIEW which returns a reference to the file that contains the specified field number in
a VIEW. (READ ONLY)

Example:
Header FILE,DRIVER('TopSpeed'),PRE(Hea)
OrderKey KEY(Hea:AcctNumber, Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
OrderDate LONG

. .

Detail FILE,DRIVER('TopSpeed'),PRE(Det)
OrderKey KEY(Det:AcctNumber,Det:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ItemNumber LONG

. .

AView VIEW(Header)
PROJECT(Hea:AcctNumber,Hea:OrderNumber,Hea:OrderDate)
JOIN(Det:OrderKey,Hea:AcctNumber,Hea:OrderNumber)

. .

!AView{PROP:Field,1} Returns 1 which represents Hea:AcctNumber
!AView{PROP:Field,2} Returns 2 which represents Hea:OrderNumber
!AView{PROP:Field,3} Returns 3 which represents Hea:OrderDate
!AView{PROP:Field,4} Returns 1 which represents Det:AcctNumber
!AView{PROP:Field,5} Returns 2 which represents Det:OrderNumber
!AView{PROP:Field,6} Returns 3 which represents Det:ItemNumber

!AView{PROP:FieldsFile,2} Returns a reference to the Header File
!AView{PROP:FieldsFile,5} Returns a reference to the Detail File

Appendix C – Runtime Properties 1085

PROP:File
An array property of a VIEW. Each array element returns a reference to the numbered file in the
VIEW. This reference can be used as the source side of a reference assignment statement. The
files are numbered within the VIEW starting with 1 (the primary file in the VIEW) and continuing
for each JOIN, as they appear within the VIEW structure. (READ ONLY)

PROP:File can now also be used to return the key’s file name from a KEY.

Example:
GetFileInfoFromKey PROCEDURE(*KEY key)
KFile &FILE
Record &GROUP
CODE
KFile &= key{PROP:File}
MESSAGE(KFile{PROP:Label, key{PROP:Field, 1}}) !Returns label of first key component

PROP:Files
Property of a VIEW which returns the total number of files in the VIEW. This is equivalent to the
total number of JOIN structures, plus one (the primary file named in the VIEW statement itself).
(READ ONLY)

Example:
AView VIEW(BaseFile) !File 1

JOIN(ParentFile,'BaseFile.parentID = ParentFile.ID') !File 2
JOIN(GrandParent.PrimaryKey, ParentFile.GrandParentID) !File 3
END
END
JOIN(OtherParent.PrimaryKey,BaseFile.OtherParentID) !File 4
END

END ! AView{PROP:Files} returns 4
! AView{PROP:File,1} returns a reference to BaseFile
! AView{PROP:File,2} returns a reference to Parent
! AView{PROP:File,3} returns a reference to GrandParent
! AView{PROP:File,4} returns a reference to OtherParent

FilesQ QUEUE
FileRef &FILE

END
CODE
LOOP X# = 1 TO AView{PROP:Files} !Loop 4 times
FilesQ.FileRef &= AView{PROP:File,X#} !Reference assign each file in the VIEW
ADD(FilesQ) ! and add it to the queue
ASSERT(~ERRORCODE()) !Assume no errors
CLEAR(FilesQ) !Clear the queue for the next assignment

END

Language Reference Manual 1086

PROP:GlobalHelp
SYSTEM property which, when on, specifies disabling automatic .HLP file closing when the
window which opened the .HLP file is closed. This makes the .HLP file stay open until the user
closes it.

Example:
SYSTEM{PROP:GlobalHelp} = TRUE !Disable automatic HLP file close

PROP:Held
Property of a FILE that returns whether the current record is held. Returns 1 if the record is held
and an empty string ('') if not. (READ ONLY)

Example:
FileName STRING(256)
Customer FILE,DRIVER('Clarion')
Record RECORD
Name STRING(20)

. .
CODE
OPEN(Customer)
SET(Customer)
LOOP
HOLD(Customer,1)
NEXT(Customer)
IF ERRORCODE() THEN BREAK.
IF Customer{PROP:Held} <> ''
MESSAGE('Record Held')

END
END

Appendix C – Runtime Properties 1087

PROP:Log
Property of a FILE that writes a string to the current profile output file (assigned to PROP:Profile).
This string is placed on its own line in the file. (WRITE ONLY)

Example:
FileName STRING(256)
Customer FILE,DRIVER('TopSpeed')
Record RECORD
Name STRING(20)

END
END

CODE
Customer{PROP:Profile} = 'CustLog.TXT'

!statement above turns profiling on, output file:CustLog.TXT
OPEN(Customer)
Filename = Customer{PROP:Profile} !Get name of current log file

Customer{PROP:Log} = CLIP(FileName) & ' ' & |
FORMAT(TODAY(),@D2) & ' ' & |
FORMAT(CLOCK(),@T1)

!Write a line of text to the log file

SET(Customer)
LOOP
NEXT(Customer) !All file I/O action is logged out to
IF ERRORCODE() THEN BREAK. ! the CustLog.TXT file

END
Customer{PROP:Profile} = '' !Turn profiling off

Language Reference Manual 1088

PROP:Logout
Property of a FILE that assigns or returns the priority level of the referenced FILE within a
transaction. out may be used to build the list of files in the transaction before issuing the
LOGOUT(seconds) statement to begin the transaction. By using PROP:Logout, you can add
more files to the transaction than the limited number of parameters the LOGOUT statement will
allow. If the LOGOUT statement lists any files at all, all files previously set for the transaction by
PROP:Logout are removed from the transaction and only the files listed in the LOGOUT
statement are logged out.

The priority level indicates the order in which the file is logged out in the transaction, with lower
numbers being logged out before the higher numbers. If two files have the same priority level,
they are logged out in the order in which they were added to the logout list. Assigning a positive
priority level adds the FILE to the transaction, assigning a negative priority level removes the
FILE from the transaction, and assigning zero (0) has no effect. Querying PROP:Logout returns
the priority level assigned to the file, and zero (0) if the file is not a part of the transaction.

Attempting to use PROP:Logout to add a file to the transaction which uses a different file driver
will result in ERRORCODE 48, "Unable to log transaction."

Example:
Customer FILE,DRIVER('TopSpeed')
Record RECORD
CustNumber LONG
Name STRING(20)

. .
Orders FILE,DRIVER('TopSpeed')
Record RECORD
CustNumber LONG
OrderNumber LONG
OrderDate LONG

. .
Items FILE,DRIVER('TopSpeed')
Record RECORD
OrderNumber LONG
ItemNumber LONG

. .
CODE
Customer{PROP:Logout} = 1 !Add Customer file to logout list and set priority to 1
Items{PROP:Logout} = 2 !Add Items file to logout list and set priority to 2
Orders{PROP:Logout} = 1 !Add Orders file to logout list and set priority to 1
X# = Items{PROP:Logout} !Return Items file priority level (X# = 2)
Customer{PROP:Logout} = -1 !Remove Customer file from logout list
LOGOUT(1) !Begin transaction and

! logout files in this order: Orders, Items
COMMIT !Terminate the transaction

Appendix C – Runtime Properties 1089

PROP:LogoutIsolationLevel
Property of a FILE that controls what isolation level is used within a transaction frame. This
property is valid on all SQL based drivers (except Oracle). The default value is 8.

PROP:LogoutIsolationLevel uses the ODBC isolation level standard. This may not be the same
as the isolation levels documented on the target driver’s native back end. For example, with
Sybase's ASA, the documented isolation levels are 0, 1, 2 and 3 and they correspond to

ODBC level Sybase Level

 1 0
 2 1
 4 2
 8 3
 16 N/A

PROP:MaxStatements
Property of a FILE that allows you to find out how many statements can be active before a new
connection to the database is raised. This property can also set the maximum number of
statements before another connection is raised. This property is valid on all SQL file types except
Oracle.

PROP:Profile
Property of a FILE that toggles logging out (profiling) all file I/O calls and errors returned by the
file driver to a specified text file. Assigning a filename to PROP:Profile initiates profiling, while
assigning an empty string ('') turns off profiling. Querying this property returns the name of the
current logfile, and an empty string ('') if profiling is turned off.

Language Reference Manual 1090

PROP:ProgressEvents
PROP:ProgressEvents is a property of a FILE that generates events to the currently open window
during a BUILD or PACK operation (WRITE ONLY). This property is driver-dependent, see the
file driver's documentation for support.

 Assigning a value of zero (0) turns off event generation for the next BUILD or PACK statement
executed, while assigning any other value (valid range--1 to 100) turns on event generation. Out
of range assignments are treated as follows: a negative number is treated as one (1), and any
value greater than one hundred (100) is treated as one hundred (100). The larger the value
assigned, the more events are generated and the slower the BUILD or PACK will progress.

Events generated are: EVENT:BuildFile, EVENT:BuildKey, and EVENT:BuildDone. It is not valid
to make any calls to the FILE being built except to query its properties, call NAME(file), or
CLOSE(file) (which aborts the process and is not recommended). Issuing a CYCLE statement in
response to any of the events generated (except EVENT:BuildDone) cancels the operation.

PROP:CurrentKey may be used to get a reference to the current key being built, then
PROP:Label may be used to retrieve the key's label for display to the user.

PROP:Completed is a property of a FILE that returns the percentage completed of the re-build
during a BUILD or PACK operation for which PROP:ProgressEvents has been turned on. Returns
zero (0) if the file driver does not know how much of the BUILD or PACK has been done. (READ
ONLY)

Example:

PROGRAM
MAP.
INCLUDE('ERRORS.CLW')

Test FILE,DRIVER('TOPSPEED','/FULLBUILD=ON'),CREATE,PRE(TEST)
K1 KEY(Test:Xval)

RECORD
Xval LONG

. .
counter LONG
CurrentKey &KEY
cancelling BYTE(FALSE)
BuildDone BYTE(FALSE)
Completed LONG(1)
CurEvent LONG
window WINDOW('Time Slicing Build Example'),AT(,,127,68),SYSTEM,GRAY

STRING('Building'),AT(9,6),USE(?BuildStr)
STRING(''),AT(39,6),USE(?Name)
PROGRESS,USE(counter),AT(9,25,107,8),RANGE(0,100)
BUTTON('&Cancel'),AT(82,45),USE(?Cancel),DISABLE

END

Appendix C – Runtime Properties 1091

CODE
OPEN(Test)
IF ERRORCODE()

CREATE(Test); OPEN(Test); STREAM(Test)
LOOP 20000 TIMES

Test.Xval = X#; X# += 1; APPEND(Test)
END
FLUSH(Test)

END
OPEN(window)
ACCEPT
CurEvent = EVENT()
CASE CurEvent
OF EVENT:OpenWindow
Test{PROP:ProgressEvents} = 100 !Turn on event generation
BUILD(Test)
ENABLE(?Cancel)

OF EVENT:Accepted
IF ACCEPTED() = ?Cancel
IF BuildDone THEN BREAK.
IF MESSAGE('Cancelling build leaves file unusable. Cancel anyway?'|

,'Warning',ICON:Exclamation,BUTTON:Yes+BUTTON:No,BUTTON:No)|
= BUTTON:Yes

Cancelling = TRUE
?BuildStr{PROP:Text} = 'Please Wait. Cancelling Build'
?Name{PROP:Text} = ''
DISPLAY(?BuildStr,?Name)

END
END
OF EVENT:BuildFile
OROF EVENT:BuildKey !Process BUILD events
IF Cancelling = TRUE; DO Done; CYCLE.
IF CurEvent = EVENT:BuildKey
CurrentKey &= Test{PROP:CurrentKey} !Get current key reference
IF NOT (CurrentKey &= NULL)
?Name{PROP:Text} = CurrentKey{PROP:Label} !Display key name

END
ELSE
?Name{PROP:Text} = NAME(Test)

END
IF Completed<>0;Completed=Test{PROP:Completed}.!Get completion percentage
IF Completed = 0
counter += 10
IF (counter>100) THEN counter = 0.

ELSE
counter = Completed

END
DISPLAY(?Name,?Counter)

Language Reference Manual 1092

OF EVENT:BuildDone
DO Done

END
END
OPEN(Test)
IF ERRORCODE() = BadKeyErr THEN MESSAGE(NAME(Test) & ' BUILD failed').

Done ROUTINE
BuildDone = TRUE
?Cancel{PROP:Text} = '&OK'
CLOSE(Test)

Appendix C – Runtime Properties 1093

PROP:Record
Property of a FILE that returns a group reference to the file's record buffer. (READ ONLY)

Example:
Rec &GROUP
Customer FILE,DRIVER('TopSpeed')
Record RECORD
Name STRING(20)

. .
CODE
Rec &= Customer{PROP:Record}

PROP:SQLDriver
A of a FILE that returns '1' if the file driver accepts SQL, otherwise it returns an empty string ('').
(READ ONLY)

Example:
Customer FILE,DRIVER('Clarion'),PRE(CUS)
Record RECORD
Name STRING(20)

. .
SQLFlag BYTE
CODE
IF Customer{PROP:SQLDriver} THEN SQLFlag = TRUE.

PROP:StmtAttr
Property of a FILE that allows you to read or set the ODBC Statement Attribute. This is equivalent
to calling the ODBC API functions SQLSetStmtOption or SQLGetStmtOption. This property is
valid on all SQL file types except Oracle.

Example:
Customer{PROP:StmtAttr,7} = 3 ! Sets concurrency to row version checking

Language Reference Manual 1094

PROP:SupportsOp
Property of a FILE that returns whether the specified function is supported by the file driver.
Returns 1 if the operation is supported and 0 if it is not. Valid functions supported by this property
are the DriverOp:xxxx found in EQUATES.CLW. (READ ONLY)

PROP:SupportsType
Property of a FILE that returns whether the specified data type is supported by the file driver.
Returns 1 if the data type is supported and 0 if it is not. Valid data types supported by this
property are the DataType:xxxx found in EQUATES.CLW. (READ ONLY)

Example:

Customer FILE,DRIVER('Clarion')
Record RECORD
Id LONG

. .
Supported BYTE

CODE
Supported = Customer{PROP:SupportsType,DriverOp:CREATE} ! Returns 1
Supported = Customer{PROP:SupportsType,DriverOp:NULL} ! Returns 0
Supported = Customer{PROP:SupportsType,DataType:LONG} ! Returns 1
Supported = Customer{PROP:SupportsType,DataType:DATE} ! Returns 0

PROP:Text (MEMO Property)
An array property of a FILE that sets or returns the specified MEMO field's data. MEMO controls
are negatively numbered, therefore the array element number must be a negative value.

Example:
MemoText STRING(2000)
Customer FILE,DRIVER('Clarion'),PRE(CUS)
Notes MEMO(2000)
Record RECORD
Name STRING(20)

. .
CODE
OPEN(Customer)
SET(Customer)
NEXT(Customer)
ASSERT(~ERRORCODE())
Memotext = Customer{PROP:Text,-1}

Appendix C – Runtime Properties 1095

PROP:Value
An array property of a FILE that sets or returns the data contained in a specified MEMO field (use
the WHAT procedure for any other type of field). The array element for PROP:Value is a simple
negative number which indicates the -nth MEMO.

Example:
Text STRING(2000)
Number LONG
Customer FILE,DRIVER('TopSpeed'),PRE(CUS)
Notes MEMO(2000)
Record RECORD
Number LONG,DIM(20)
Name STRING(20)

. .
CODE
OPEN(Customer)
SET(Customer)
NEXT(Customer)
ASSERT(~ERRORCODE())
Text = Customer{PROP:Value,-1} !Get CUS:Notes contents

Language Reference Manual 1096

Appendix D – Error Codes 1097

Appendix D - Error Codes
Trappable Run Time Errors
The following errors can be trapped in code with the ERRORCODE and ERROR procedures.
Each error has a code number (returned by the ERRORCODE procedure) and an associated text
message (returned by the ERROR procedure) indicating what the problem is.

2 File Not Found
The requested file does not exist in the specified directory.

3 Path Not Found
The directory name specified as part of the path does not exist.

4 Too Many Open Files
The total number of file handles available has been used. Check the FILES= setting in
the CONFIG.SYS file, or the user's or network's simultaneous open files setting in a
network environment.

5 Access Denied
The file has already been opened by another user for exclusive access, has been left in a
locked state, or you do not have network rights to open the file. This error can also occur
when no disk space is available.

7 Memory Corrupted
Some unknown memory corruption has occurred.

8 Insufficient Memory
There is not enough unallocated memory left to perform the operation. Closing other
applications may free up enough memory . With Btrieve, this indicates that you do not
have enough real mode memory left to load BTR32.EXE. IN Win95, loading
WBTR32.EXE in WINSTART.BAT can avoid this problem.

15 Invalid Drive
An attempt to read a non-existent disk drive has failed.

Language Reference Manual 1098

30 Entry Not Found
A GET to QUEUE has failed. For GET(Q,key), the matching key value was not found,
and for GET(Q,pointer), the pointer is out of range.

32 File Is Already Locked
An attempt to LOCK a file has failed because another user has already locked it.

33 Record Not Available
Usually an attempt to read past the end or beginning of file with NEXT or PREVIOUS.
May also be posted by PUT or DELETE when no record was read before the attempted
PUT or DELETE.

35 Record Not Found
For a GET(File,key), the matching key field value was not found.

36 Invalid Data File
Some unknown data file corruption has occurred, or the OWNER attribute does not
match the password used to encrypt the file.

37 File Not Open
An attempt to perform some operation that requires the file be already open has failed
because the file is not open.

38 Invalid Key File
Some unknown key file corruption has occurred.

40 Creates Duplicate Key
An attempt to ADD or PUT a record with key field values that duplicate another existing
record in the file has been made to a file with a key that does not allow duplicate entires.

43 Record Is Already Held
An attempt to HOLD a record has failed because another user has already held it.

45 Invalid Filename
The filename does not meet the definition of a valid DOS filename.

Appendix D – Error Codes 1099

46 Key File Must Be Rebuilt
Some unknown key corruption has occurred that requires the BUILD statement to re-
build the key.

47 Invalid Record Declaration
The data file on disk does not match the file's declaration in the .EXE, usually because
you have changed the file's definition in the Data Dictionary and have not yet converted
the existing data file to the new format. See How do I handle an Error 47

48 Unable To Log Transaction
A transaction logout or pre-image file cannot be written to disk. This usually occurs
because no disk space is available, or the user does not have the proper network rights.

52 File Already Open
An attempt to OPEN a file that has already been opened by this user.

54 No Create Attribute
An attempt to execute the CREATE procedure on a file whose declaration does not
inlcude the CREATE attribute.

55 File Must Be Shared
An attempt to open a file for exclusive access that must be shared. (Legacy error, no
longer used)

56 LOGOUT Already Active
An attempt to issue a second LOGOUT statement while a transaction is already in
progress.

57 Invalid Memo File
Some unknown memo file corruption has occurred. For Clarion data files, this could come
from a corrupt .MEM file "signature" or pointers to the memo file in the data file that are
"out of sync" (usually due to copying files from one location to another and copying the
wrong .MEM file).

63 Exclusive Access Required
An attempt to perform a BUILD(file), BUILD(key), EMPTY(file) or PACK(file) was made
when the file had not been opened with exclusive access.

Language Reference Manual 1100

64 Sharing Violation
An attempt to perform some action on a file which requires that the file be opened for
shared access.

65 Unable To ROLLBACK Transaction
An attempt to ROLLBACK a transaction has failed for some unknown reason.

73 Memo File Missing
An attempt to OPEN a file that has been declared with a MEMO field and the file
containing that memo data does not exist.

75 Invalid Field Type Descriptor
Either the type descriptor is corrupt, you have used a name that does not exist in
GET(Q,name), or the file definition is not valid for the file driver. For example, trying to
define a LONG field in an xBase file without a matching MEMO field.

76 Invalid Index String
The index string passed to BUILD(DynIndex,string) was invalid.

77 Unable To Access Index
An attempt to retrieve records using a dynamic index failed because the dynamic index
could not be found.

78 Invalid Number Of Parameters
You did not pass the correct number of parameters to a procedure called in an
EVALUATE statement.

79 Unsupported Data Type In File
The file driver has detected a field in the file declared with a data type that is not
supported by the file system the driver is designed to access.

80 Unsupported File Driver Function
The file driver has detected a file access statement that is not supported. This is
frequently an unsupported form (different parameters) of a statement that is supported.

Appendix D – Error Codes 1101

81 Unknown Error Posted
The file driver has detected some error from the backend file system that it cannot get
further information about.

88 Invalid Key Length
An attempt to CREATE a Clarion file driver KEY or INDEX with more than 245
characters. Other file drivers can also return this error when their file system key length
limits are exceeded.

89 Record Changed By Another Station
The WATCH statement has detected a record on disk that does not match the original
version of the record about to be updated in a network situation.

90 File Driver Error
The file driver has detected some other error reported by the file system. You can use the
FILEERRORCODE and FILEERROR procedures to determine exactly what native error
the file system is reporting.

91 No Logout Active
The COMMIT or ROLLBACK statement has been issued outside of a transaction frame
(no LOGOUT statement has been executed).

92 BUILD in Progress
A BUILD statement has been issued and PROP:ProgressEvents has been set to
generate events. The statement generating this error is not appropriate to execute during
a BUILD process.

93 BUILD Cancelled
The user cancelled the BUILD. This error is set when EVENT:BuildDone is posted.

 94 Record Limit Exceeded
The target file has exceeded the record limit. This value is file driver dependant, and can
be returned during any attempt to modify a file where the record limit is exceeded.

 97 Stream Error
Used during RTF processing.

Language Reference Manual 1102

 100 Trigger Error
This error is set whenever a registered file callback method returns FALSE. See
CALLBACK

800 Illegal Expression
The EVALUATE procedure has detected an error in the syntax of the expression it is
attempting to evaluate.

801 Variable Not Found
The EVALUATE procedure has not found a variable used in the expression it is
attempting to evaluate. You must first BIND all variables used in the expression for them
to be visible to EVALUATE.

Appendix D – Error Codes 1103

Non-Trappable Run Time Errors
The following errors occur at run time and cannot be trapped with the ERRORCODE or ERROR
procedures.

ACCEPT loop requires a window
An ACCEPT loop that has no associated window.

ENDPAGE must only be called for reports
An attempt to execute the ENDPAGE statement when no REPORT is active.

Event posted to a report control
An attempt to POST an event to a control in a REPORT structure.

Metafile record too large in report
A .WMF file is too large to print in the report.

PRINT must only be called for reports
An attempt to PRINT a structure that is not part of a REPORT.

Report is already open
An attempt to OPEN a REPORT that has already been opened and not yet closed.

Too many keystrokes PRESSed
The parameter to the PRESS statement contains too many characters.

Unable to complete operation (system is MODAL)
An attempt to perform an illegal action in a program that has already opened a
MODAL window or is processing a modal event.

Unable to create control (system is MODAL)
An attempt to CREATE a control in a program that has already opened a MODAL
window or is processing a modal event.

Language Reference Manual 1104

Unable to open APPLICATION (APPLICATION already active)
An attempt to OPEN an APPLICATION in a program that has already opened an MDI
application frame window.

Unable to open APPLICATION (system is MODAL)
An attempt to OPEN an APPLICATION in a program that has already opened a
MODAL window or is processing a modal event.

Unable to open APPLICATION
A failed attempt to OPEN an APPLICATION.

Unable to open MDI window (No APPLICATION active)
An attempt to OPEN an MDI WINDOW in a program that has not yet opened an MDI
APPLICATION frame window.

Unable to open MDI window (system is MODAL)
An attempt to OPEN an MDI WINDOW in a program that has already opened a
MODAL window or is processing a modal event.

Unable to open MDI window on APPLICATION's thread
An attempt to OPEN an MDI WINDOW in the same execution thread as the MDI
APPLICATION frame window.

Unable to open MDI WINDOW
A failed attempt to OPEN an MDI WINDOW.

Unable to open WINDOW
A failed attempt to OPEN a WINDOW.

Unable to process ACCEPT (system is MODAL)
An attempt to perform an illegal action in a program that has already opened a
MODAL window or is processing a modal event.

Unexpected error opening printer device
An unexpected error occurred while attempting to open a printer.

Appendix D – Error Codes 1105

Window is already open
An attempt to OPEN a WINDOW that is already open.

Window is not open
An attempt has been made to perform some action that requires a window be
opened first. Usually a property assignment statement.

WSLSTG 755
Indicates that the operating system has failed when asking for more memory. This
probably indicates that you have a screen or report structure too complex to
generate. Also, ensure that you do not have Clarion set run in its own memory space.
The operating system may then limit allocated virtual memory.

Language Reference Manual 1106

Compiler Errors
The compiler generates an error message at exactly the point in the source code where it
determines that something has gone wrong. Therefore, the problem is always either right at that
point, or somewhere in the code preceding that point. For most error messages, the problem
exists right at the point at which it is detected, but some error messages are typically generated
by problems that far precede their detection by the compiler, making some "detective work"
necessary, along with an understanding of what the compiler is trying to tell you in the error
message itself.

Deciphering compiler error messages to determine exactly what syntax error needs to be
corrected can be a bit of an arcane science. The major reason for this is that a single (relatively
minor) error can create a "cascade effect;" a long list of error messages that all have one root
cause. This is typically the case in the situation where there are a very large number of compiler
errors reported in the same source module. To handle this, you should correct just the first error
reported then re-compile to see how many errors are left (quite often, none). If you have just a
couple of errors reported that are widely separated in the source code, it is likely that each is a
discrete error and you should correct them all before re-compiling.

Appendix D – Error Codes 1107

Specific Errors
The following error messages occur when the compiler has detected a specific syntax problem
and is attempting to alert you to exactly what the problem is so that you may correct it.

Some of the following error messages contain a "%V" token. The compiler substitutes an explicit
label indicating what problem is occurring for this token when it generates the error message,
which should help point to the cause of the error.

! introduces a comment
This is a common C programmer's error. If you type IF A != 1 THEN you get this
warning.

Actual value parameter cannot be array
The passed parameter must not be an array.

ADDRESS parameter ambiguous
ADDRESS(MyLabel) where MyLabel is the label of both a procedure and a data item.

All fields must be declared before JOINs
All PROJECT statements for the file must precede any JOIN statements in the VIEW
structure.

Ambiguous label
The field qualification syntax has come up with more that one solution for the label
you have supplied.

For example:

G GROUP
S:T SHORT !Referenced as G:S:T

END
G:S GROUP
T SHORT !Referenced as G:S:T

END
CODE
G:S:T = 7 !Which are you talking about?

Language Reference Manual 1108

Attribute parameter must be QUEUE, QUEUE field or constant string
The parameter must be the label of a previously declared QUEUE structure, a field
within a QUEUE structure, or a string constant.

Attribute requires more parameters
You must pass all required parameters to an attribute that takes parameters.

Attribute string must be constant
The parameter must be a string constant, not the label of a variable.

Attribute variable must be global
The parameter must be a variable declared in the PROGRAM module as global data.

Attribute variable must have string type
The parameter must be a variable declared as a STRING, CSTRING, or PSTRING.

BREAK structure must enclose DETAIL
There must be at least one DETAIL structure within nested BREAK structures (at the
lowest level).

Calling function as procedure
A Warning that a PROCEDURE which returns a value and does not have the PROC
attribute is being called as a PROCEDURE without a return value would be and the
return value will be lost.

Cannot call procedure as function
You cannot call a PROCEDURE which does not return a value as the source of an
assignment statement or as a parameter.

Cannot declare KEY in a VIEW
A KEY declaration is not valid in a VIEW structure.

Cannot EXIT from here
Only a ROUTINE may contain the EXIT statement.

Appendix D – Error Codes 1109

Cannot GOTO into ROUTINE
The target of GOTO must be the label of an executable code statement within the
same procedure or ROUTINE, and may not be the label of a ROUTINE.

Cannot have default parameter here
You may only have a default value on non-omittable integer data type parameters
passed by value.

Cannot have initial values with OVER
A variable declaration with the OVER attribute may not also have an initial value
parameter.

Cannot have statement here
This happens if the compiler thinks you have tried to define a code label inside the
global data section.

Cannot initialize variable reference
A reference variable cannot have an initial value.

Cannot return CSTRING from CLARION function
CSTRING is not a valid return data type for a PROCEDURE written in Clarion (only
for functions written in other languages).

Cannot RETURN value from procedure
Only a PROCEDURE prototyped to return a value may contain the RETURN
statement with a return value parameter.

CLARION function cannot use RAW or NAME
These attributes are not appropriate for a PROCEDURE written in Clarion (only for
functions written in other languages).

DECIMAL has too many places
A DECIMAL or PDECIMAL declaration may only have a maximum of 30 places to the
right of the decimal, and the decimal portion must be less than the total length.

Language Reference Manual 1110

DECIMAL too long
A DECIMAL or PDECIMAL declaration may have a maximum length of 31 digits.

Declaration not valid in FILE structure
This data declaration may not be contained within a FILE structure.

Declaration too big
The compiler has detecteda PSTRING > 255 or MEMO > 64K in 16 bit, etc.

DLL attribute requires EXTERNAL attribute
The DLL attribute further defines the EXTERNAL attribute and is necessary in 32-bit
programs.

Dynamic INDEX must be empty
An attempt to use the 2 parameter form of BUILD on a KEY or INDEX declared with
component fields.

Embedded OVER must name field in same structure
The parameter to the OVER attribute must be the label of a previously declared
variable in the same structure.

ENCRYPT attribute requires OWNER
The ENCRYPT attribute and OWNER attribute function together.

Entity-parameter cannot be an array
You cannot pass an array of entity parameters (FILE, QUEUE, etc.).

Expected: %V
This is one of the most common errors. The compiler was expecting to find
something (one of the items in the list substituted for the %V token) as the next code
to compile, but instead found the code at the point in the source that the error is
generated.

Expression cannot be picture
You have attempted to use an EQUATE label to a picture token in a place where a
picture token is not valid.

Appendix D – Error Codes 1111

Expression cannot have conditional type
An expression is not a numeric value. For example, MyValue = A > B is invalid.

Expression must be constant
Variables are not valid in this expression.

Field equate label not defined: %V
The named field equate label has not been previously declared.

Field not found
Using field qualification syntax to reference a field that is not in the parent item. For
example, referencing MyGroup.SomeField where SomeField is not in the MyGroup
declaration.

Field not found in parent FILE
A JOIN statement must declare all the linking fields between the parent and child
files.

Field requires (more) subscripts
This is referencing an array with multiple dimensions, and you must supply an index
into each dimension.

FILE must have DRIVER attribute
The DRIVER attribute is required to declare the file system for which the data file is
formatted.

FILE must have RECORD structure
It is invalid to declare a FILE which does not contain a RECORD structure.

FILEs must have same DRIVER attribute
All files named in a LOGOUT statement must use the same file system.

Language Reference Manual 1112

Function did not return a result
A warning that the implementation of the PROCEDURE prototyped to return a value
did not return a result.

Function result is not of correct type
The RETURN statement must return a value consistent with the return data type
prototyped in the MAP structure.

Group too big
GROUPs are limited to 64K in 16 bit.

Ignoring EQUATE redefinition: %V
A Warning that the named equate is being ignored. This is really a label-redefined
error except that the definition is not thrown away.

Illegal array assignment
An assignment to an array must reference a single element, not the entire array.

Illegal character
A non-valid lexical token. For example, an ASCII 255 in your source.

Illegal data type: %V
The named data type is inappropriate for the structure in which it is placed.

Illegal key component
A KEY has any type of illegal component.

Illegal nesting of window controls
Window controls other than RADIO have been placed within an OPTION structure, or
controls other than TAB have been placed directly within a SHEET structure.

Illegal parameter for LIKE
An illegal parameter to a LIKE declaration. For example, LIKE(7).

Appendix D – Error Codes 1113

Illegal parameter type for STRING
An illegal parameter to a STRING declaration. For example, STRING(MyVar) where
MyVar is the label of a variable and not an EQUATE.

Illegal reference assignment
A reference variable may only be assigned another reference variable of the same
type, or the label of a variable of the type it references.

Illegal return type or attribute
The prototype contains an invalid data type as the return data type (such as
*CSTRING).

Illegal target for DO
The target of DO must be the label of a ROUTINE.

Illegal target for GOTO
The target of GOTO must be the label of an executable code statement within the
same procedure or ROUTINE, and may not be the label of a ROUTINE.

INCLUDE invalid, expected: %V
The INCLUDE statement's parameter must be a well formed Clarion string. In
particular, type conversion is not valid, so INCLUDE('MyFile'&MyValue) is invalid.

INCLUDE misplaced
INCLUDE has to follow a line-break, or a semi-colon (possibly followed by white
space).

INCLUDE nested too deep
You can only nest INCLUDEs 3 deep. In other words you can INCLUDE a file that
INCLUDEs a file that INCLUDEs a file, but the last file must not INCLUDE anything.

Incompatible assignment types
An attempt to assign between incompatible data types.

Incorrect procedure profile
An attempt to pass a procedure with the wrong prototype as a procedure-parameter.

Language Reference Manual 1114

Indices must be constant
An attempt has been made to have a USE variable that is an array element with
variable indices.

Indistinguishable new prototype: %V
A prototype that the compiler cannot uniquely distinguish from a previous prototype
using the rules for procedure overloading .

Integer expression expected
The expression must evaluate to an integer.

Invalid BREAK statement
A BREAK that attempts to break to a non-LOOP label or is outside a LOOP or
ACCEPT structure.

Invalid CYCLE statement
A CYCLE that attempts to cycle to a non-LOOP label or is outside a LOOP or
ACCEPT structure.

Invalid data declaration attribute
An attribute that is inappropriate on the data declaration.

Invalid data type for value parameter
The data type prototyped in the MAP may not be passed by value and must be
passed by address. For example, to pass a CSTRING parameter to a Clarion
procedure, it may only be prototyped as *CSTRING.

Invalid FILE attribute
An attribute that is inappropriate on a FILE declaration.

Invalid first parameter of ADD
The statement's first parameter is not appropriate.

Invalid first parameter of FREE
The statement's first parameter is not appropriate.

Appendix D – Error Codes 1115

Invalid first parameter of NEXT
The statement's first parameter is not appropriate.

Invalid first parameter of PUT
The statement's first parameter is not appropriate.

Invalid GROUP/QUEUE/RECORD attribute
An attribute that is inappropriate on a GROUP, QUEUE, or RECORD declaration.

Invalid KEY/INDEX attribute
An attribute that is inappropriate on a KEY or INDEX declaration.

Invalid label
A label that contains characters other than letters, numbers, underscore (_), or colon
(:), or does not start with a letter or underscore.

Invalid LOOP variable
An attempt to use an illegal data type (DATE, TIME, STRING, etc.) as a LOOP
variable.

Invalid MEMBER statement
The parameter to the MEMBER statement is not a string constant or does not
reference the PROGRAM module for the current project.

Invalid method invocation syntax
An attempt to use the {} syntax for method invocation on a BLOB or FILE.

Invalid number
A number is required, for example inside the repeat character notation ({}) in a string
constant.

Invalid OMIT expression
The parameter to the OMIT statement is invalid.

Invalid parameters for attribute
You must pass valid parameters to an attribute that takes them.

Language Reference Manual 1116

Invalid picture token
A picture token that contains inappropriate characters.

Invalid printer control token
A PRINT statement containing a printer control token.

Invalid QUEUE/RECORD attribute
An attribute that is inappropriate on a QUEUE or RECORD declaration.

Invalid SIZE parameter
SIZE(Junk+SomeMoreJunk)

Invalid string (misused <...> or {...})
A string constant contains a single beginning bracket (< or {) without a matching
terminating bracket (> or }). These characters must have two together (<< or {{) if
intended to be part of the string.

Invalid structure as first parameter
The statement's first parameter is not appropriate.

Invalid structure within property syntax
A structure that is inappropriate in a property assignment statement.

Invalid USE attribute parameter
The parameter is not appropriate for a USE attribute.

Invalid use of PRIVATE data
Attempt to access a PRIVATE data member outside the CLASS module.

Invalid use of PRIVATE procedure
Attempt to call a PRIVATE method outside the CLASS module.

Invalid variable data parameter type
When passing parameters by address, you must pass the same data type as
prototyped in the MAP structure.

Appendix D – Error Codes 1117

Invalid WINDOW control
A control that is inappropriate in a WINDOW structure.

ISL error: %V
Contact Technical Support and provide all details of the error message.

KEY must have components
You cannot declare a KEY without naming the component fields that establish the
KEY's sort order.

Label duplicated, second used: %V
The named field equate label is used multiple times within the same module and only
the last encountered is used in the list of equate labels that may be used within the
executable code. Correctable with the third parameter to the USE attribute.

Label in prototype not defined: %V
Using a prototype where one of the data types has not yet been defined.

Label not defined: %V
The named label has not been previously declared.

Mis-placed string slice operator
A string slice that is not the last array index. For example, MyStringArray[3:4,5].

Missing procedure definition: %V
The named procedure is not prototyped in a MAP structure.

Missing virtual function
Compiler bug.

Must be dimensioned variable
This must be an array.

Must be field of a FILE or VIEW
Must be a field that is a member of a FILE or VIEW structure. For example
NULL(LocalVariable) with give this error.

Language Reference Manual 1118

Must be FILE or KEY
The parameter to JOIN is not a FILE or KEY label.

Must be reference variable
You can only DISPOSE of a reference variable.

Must be variable
This must be the label of a previously declared variable.

Must have constant string parameter
The parameter must be a string constant, not the label of a variable.

Must RETURN value from function
A PROCEDURE prototyped to return a value must contain the RETURN statement
with a return value parameter.

Must specify DECIMAL size
A DECIMAL or PDECIMAL declaration must declare the maximum number of digits it
stores.

Must specify identifier
An indentifier was required but not supplied.

Must specify print-structure
A PRINT statement may only print a structure in a REPORT.

No matching prototype available
 Attempt to define a procedure for which there is no matching prototype in a MAP or
CLASS.

Not valid inside structure
A data type is inappropriate for the structure in which it is placed.

OMIT cannot be nested
You are in an OMIT (or COMPILE) that is not omitting code and the compiler
encounter another OMIT.

Appendix D – Error Codes 1119

OMIT misplaced
OMIT has to follow a line-break, or a semi-colon (possibly followed by white space).

OMIT not terminated: %V
The referenced OMIT parameter was not found before the end of the source module.

Order is MENUBAR, TOOLBAR, Controls
The MENUBAR structure must come before the TOOLBAR, and the TOOLBAR
structure must come before the controls in a WINDOW or APPLICATION.

OVER must name variable
The parameter to the OVER attribute must be the label of a previously declared
variable.

OVER must not be larger than target variable
The parameter to the OVER attribute must be the label of a previously declared
variable that is greater than or equal to the size of the variable being declared OVER
it.

OVER not allowed with STATIC or THREAD
A variable declaration with the OVER attribute may not also have the STATIC or
THREAD attribute (these must be on the initial declaration).

Parameter cannot be omitted
The procedure call must pass all parameters that have not been prototyped as
omittable parameters.

Parameter kind does not match
When passing parameters by address, you must pass the same data type as
prototyped in the MAP structure.

Parameter must be picture
This must be a display picture token.

Parameter must be procedure label
This must be the label of a procedure.

Language Reference Manual 1120

Parameter must be report DETAIL label
A PRINT statement may only print a DETAIL structure in a REPORT.

Parameters must have labels
 Attempt to define a procedure without using labels on parameters.

Parameter type label ambiguous (CODE or DATA)
You may have a PROCEDURE and data declaration with the same name, but then
you cannot use that name in a procedure prototype.

PROCEDURE cannot have return type
If you declare a prototype without a return data type in the MAP, you must create it as
a PROCEDURE.

Procedure doesn't belong to module: %V
An attempt to define a procedure that has a prototype that says it belongs in another
module.

Procedure in parent CLASS has VIRTUAL mismatch
Virtual methods require the VIRTUAL attribute on the prototypes in both the parent
and derived CLASSes.

Prototype is: %V
Attempt to define a procedure with the wrong prototype.

QUEUE/RECORD not valid in GROUP
A GROUP structure may not contain a QUEUE or RECORD structure.

Redefining system intrinsic: %V
A Warning that the named procedure (part of your source code) has the same name
as a Clarion run time library procedure and that your procedure will be called instead
of the built-in library's.

Routine label duplicated
The label of a ROUTINE statement has been previously used on another statement.

Appendix D – Error Codes 1121

Routine not defined: %V
The named ROUTINE does not exist.

SECTION duplicated: %V
The named SECTION exists twice in the INCLUDE file.

SECTION not found: %V
The named SECTION does not exist in the INCLUDE file.

Statement label duplicated
Two lines of executable source code have the same label.

Statement must have label
The statement (such as a ROUTINE or PROCEDURE statement) must have a label.

String not terminated
A string constant without a terminating single quote (').

Subscript out of range
An attempt to reference an array element beyond the valid number of elements
dimensioned in the data declaration.

Too few indices
This is referencing an array with multiple dimensions, and you must supply an index
into each dimension.

Too few parameters
The procedure call must pass all parameters that have not been prototyped as
omittable parameters.

Too many indices
This is referencing an array and you are supplying too many indexes into the
dimensions.

Too many parameters
The procedure call may not pass more parameters than have been prototyped.

Language Reference Manual 1122

Unable to verify validity of OVER attribute
A Warning that you are declaring a variable OVER a passed parameter and the data
types may not match at run time.

Unknown attribute: %V
The named attribute is not part of the Clarion language.

Unknown function label
The PROCEDURE has not been previously prototyped in a MAP structure.

Unknown identifier
The label has not been previously declared.

Unknown identifier: %V
The named identifier has not been previously declared.

Unknown key component: %V
The named key component does not exist within the FILE structure.

Unknown procedure label
The PROCEDURE has not been previously prototyped in a MAP structure.

UNTIL/WHILE illegal here
 Attempt to use UNTIL or WHILE to terminate a LOOP structure that is already
terminated.

Value-parameter cannot be an array
You cannot pass an array as a value-parameter.

Value requires (more) subscripts
This is referencing an array with multiple dimensions, and you must supply an index
into each dimension.

Variable expected This must be the label of a previously declared variable.

Appendix D – Error Codes 1123

Variable-size must be constant
The variable declaration must contain a constant expresion for its size parameter.

VIRTUAL illegal outside of CLASS structure
You can only use the VIRTUAL attribute on prototypes in a CLASS structure, not in a
MAP.

Wrong number of parameters
The procedure call must pass all parameters that have not been prototyped as
omittable parameters.

Wrong number of subscripts
An attempt to access a multi-dimensioned array without providing an element number
for each dimension.

 For example:
MyShort SHORT,DIM(8,2) !Two-dimensional array
CODE
MyValue = MyShort[7] !Wrong number of subscripts error

Language Reference Manual 1124

Unknown errors
These are errors that should never happen and are only to give the compiler writer a clue as to
what is wrong. Report the problem immediately to SoftVelocity together with the source file that
generated the error.

Inconsistent scanner initialization

Unknown operator

Unknown expression type

Unknown expression kind

Unknown variable context

Unknown parameter kind

Unknown assignment operator

Unknown variable type

Unknown case type

Unknown equate type

Unknown string kind

Unknown picture type

Unknown descriptor type

Unknown initializer type

Unknown designator kind

Unknown structure field

Unknown formal entity

Type descriptor not static

Unknown clear type

Unknown simple formal type

Out of attribute space

Unknown label/routine

Unknown special identifier

Value not static

Unknown static label

Unknown screen structure kind

Corrupt pragma string

Appendix D – Error Codes 1125

Old symbol non-NIL

Not implemented yet

String not CCST

Language Reference Manual 1126

Appendix E – Legacy Statements 1127

Appendix E - Legacy Statements
Legacy Statements
All the statements listed in this Appendix are valid only for compatibility with previous
versions of Clarion. They are all subject to complete removal in future releases of Clarion
and so, should not be used.

BOF (return beginning of file)

EOF (return end of file)

FUNCTION (define a function)

POINTER (return relative record position)

SHARE (open data file for shared access)

Language Reference Manual 1128

BOF (return beginning of file)

 BOF(file)

BOF Flags the beginning of the FILE during sequential processing.

file The label of a FILE declaration.

The BOF procedure returns a non-zero value (true) when the first record in relative file sequence
has been read by PREVIOUS or passed by SKIP. Otherwise, the return value is zero (false).

The BOF procedure is not supported by all file drivers, and can be very inefficient even if
supported (check the driver documentation). Therefore, for efficiency and guaranteed file system
support it is not recommended to use this procedure. Instead, check the ERRORCODE()
procedure after each disk read to detect an attempt to read past the beginning of the file.

The BOF procedure was most often used as an UNTIL condition evaluated at the top of a LOOP,
so BOF returns true after the last record has been read and processed in reverse order (using
PREVIOUS).

Return Data Type: LONG

Example:
!Not recommended, but still supported for backward compatibility:
SET(Trn:DateKey) !End/Beginning of file in keyed sequence
LOOP UNTIL BOF(Trans) !Process file backwards
PREVIOUS(Trans) ! read a record sequentially
IF ERRORCODE() THEN STOP(ERROR()).
DO LastInFirstOut ! call last in first out routine

END

!Recommended as most efficient code for use with all file drivers:
SET(Trn:DateKey) !End/Beginning of file in keyed sequence
LOOP !Process file backwards
PREVIOUS(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK. !Break loop at attempt to read past beginning
DO LastInFirstOut ! call last in first out routine

END

See Also:

ERRORCODE

Appendix E – Legacy Statements 1129

EOF (return end of file)

 EOF(file)

EOF Flags the end of the FILE during sequential processing.

file The label of a FILE declaration.

The EOF procedure returns a non-zero value (true) when the last record in relative file sequence
has been read by NEXT or passed by SKIP. Otherwise, the return value is zero (false).

The EOF procedure is not supported by all file drivers, and can be very inefficient even if
supported (check the driver documentation). Therefore, for efficiency and guaranteed file system
support it is not recommended to use this procedure. Instead, check the ERRORCODE()
procedure after each disk read to detect an attempt to read past the end of the file.

The EOF procedure was most often used as an UNTIL condition at the top of a LOOP, so EOF
returns true after the last record has been read and processed.

Return Data Type: LONG

Example:
!Not recommended, and still available for backward compatibility:
SET(Trn:DateKey) !Beginning of file in keyed sequence
LOOP UNTIL EOF(Trans) !Process all records
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN STOP(ERROR()).
DO LastInFirstOut ! call last in first out routine

END

!Recommended for use with all file drivers:
SET(Trn:DateKey) !Beginning of file in keyed sequence
LOOP !Process all records
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK. !Break loop on attempt to read past end of file
DO LastInFirstOut ! call last in first out routine

END

See Also:

ERRORCODE

Language Reference Manual 1130

FUNCTION (define a function)

label FUNCTION [(parameter list)]

 local data

 CODE

 statements

 RETURN(value)

FUNCTION is a statement which once defined a PROCEDURE prototyped to return a value
(referred to as a function in some other programming languages). The FUNCTION keyword has
been replaced by the PROCEDURE statement and is now a synonym for PROCEDURE in all
cases.

Example:
PROGRAM
MAP

FullName FUNCTION(STRING Last,STRING First,<STRING Init>),STRING
!Function prototype with parameters

DayString FUNCTION,STRING !Function prototype without parameters
END

TodayString STRING(3)
CODE
TodayString = DayString() !Function call without parameters

! the () is required for a function

FullName FUNCTION(STRING Last, STRING First,STRING Init) !Full name function
CODE !Begin executable code section
IF OMITTED(3) OR Init = !If no middle initial
RETURN(CLIP(First) & & Last) ! return full name

ELSE !Otherwise
RETURN(CLIP(First) & & Init & . & Last) ! return full name

END

DayString FUNCTION !Day string function
ReturnString STRING(9),AUTO !Uninitialized local stack variable
CODE !Begin executable code section
RETURN(CHOOSE(TODAY()%7)+1,Sun,Mon,Tue,Wed,Thu,Fri,Sat))

See Also:

PROCEDURE

Appendix E – Legacy Statements 1131

POINTER (return relative record position)

POINTER(| file |)
 | key |

POINTER Returns relative record position.

file The label of a FILE declaration. This specifies physical record order within the
file.

key The label of a KEY or INDEX declaration. This specifies the entry order within the
KEY or INDEX file.

POINTER returns the relative record position within the data file (in file sequence), or the relative
record position within the KEY or INDEX file (in key sequence) of the last record accessed.

The value returned by the POINTER procedure is dependent on the file driver. It may be a record
number, the relative byte position within the file, or some other kind of seek position within the file.

The POINTER procedure is not supported by all file drivers. Therefore it should be used only
when you know the file system supports it and you will not be changing file systems in the future.
The preferred method of record positioning that is designed to work across all file systems is the
POSITION procedure with RESET and REGET.

Return Data Type: LONG

Example:
SavePtr# = POINTER(Customer) !Save file pointer

See Also:

POSITION

Language Reference Manual 1132

SHARE (open data file for shared access)
 SHARE(file [,access mode])

SHARE Opens a FILE structure for processing.

file The label of a FILE declaration.

access mode A numeric constant, variable, or expression which determines the level of access
granted to both the user opening the file, and other users in a multi-user system.
If omitted, the default value is 42h (Read/Write, Deny None).

The SHARE statement opens a FILE structure for processing and sets the access mode. The
SHARE statement is exactly the same as the OPEN statement, with the exception of the default
value of access mode.

The access mode is a bitmap which tells the operating system what access to grant the user
opening the file and what access to deny to others using the file.

The actual values for each access level are:
Dec. Hex. Access

User Access: 0 0h Read Only
1 1h Write Only
2 2h Read/Write

Others Access: 0 0h Any Access (FCB compatibility mode)
16 10h Deny All
32 20h Deny Write
48 30h Deny Read
64 40h Deny None

Errors Posted: The same set of errors that may be posted by OPEN

Example:
ReadOnly EQUATE(0) !Access mode equates
WriteOnly EQUATE(1)
ReadWrite EQUATE(2)
DenyAll EQUATE(10h)
DenyWrite EQUATE(20h)
DenyRead EQUATE(30h)
DenyNone EQUATE(40h)
CODE
SHARE(Master,ReadOnly+DenyWrite) !Open read only mode

See Also: OPEN

Index 1133

Index:
! Comments ...39
.DLL ...243
.ENV ..209, 759
.INI

GETINI ...727
PUTINI ...828

.OCX Control Properties..........................971
:=:...561
? (field equate labels)39, 299
? debug..39
ABCDllMode ..237
ABS..608
ABS (return absolute value)608
ABSOLUTE ...391
ABSOLUTE (set fixed-position printing) ..391
ACCEPT ..579, 580
AcceptAll..1009
AcceptAll mode................................854, 855
Accepted..1003
ACCEPTED ...609
ACCEPTED (return control just completed)

...609
Access Mode791, 793
ACOS...610
ACOS (return arccosine)610
ACTIVE..1010
ADD ...611
ADD (add an entry)..................................611
Addition operator538
ADDRESS ...615
ADDRESS (return memory address)615
AGE ...616
AGE (return age from base date)616
Alarm (BEEP) ..627
AlertKey ...997
Algebraic Order of Operation...................537
ALIAS...619
ALIAS (set alternate keycode).................619
ALL ..620
ALL (return repeated characters)620
allocate heap memory156
Allocation

memory
Dynamic ...153
Static...153

ALLTRIM..653
ALONE...392
ALONE (set to print without page header

footer
or form) ...392

Alphanumeric
CSTRING ...130
PSTRING ...133
STRING..126

AlwaysDrop..1010
AND ...540
ANGLE...395
ANGLE (set control display or print angle)

...395
ANY..141
ANY (any simple data type)141
APPEND ..621
APPEND (add a new file record)621
AppInstance...1011
APPLICATION 277, 278, 279, 280, 281, 282
APPLICATION (declare an MDI frame

window) ..277
Application modal283
Application Modal Windows.............476, 478
Application windows297
ARC ...622
Arithmetic Operator

Addition ..538
Division...538
Exponentiation538
Modulus..538
Multiplication ..538
Subtraction ...538

Arithmetic Operators........................538, 543
Arithmetic overflow159, 566
Array

DIM...235
subscript537, 549

array elements
field equate labels299

ASCII Character Codes542
ASIN...624
ASIN (arcsine) ...624
ASIN (return arcsine)624
ASK..623

Language Reference Manual 1134

ASK (get one keystroke)..........................623
ASSERT ..87
ASSERT (set assumption for debugging) .87
AssertHook ..1011
AssertHook2 ..1012
Assignment Statements

CLEAR ...565
Deep...561
Operating ...560
Reference563, 564
Simple ..559

ASTRING...128, 129
ASTRING (atomic string).........................128
AT ..396
AT (set position and size)396
ATAN ...625
ATAN (arctangent)...................................625
ATAN (return arctangent)625
Attribute Equates389
Attribute Property Equates389
AUTO...231, 399
AUTO (set USE variable automatic re-

display)...399
AUTO (uninitialized local variable)231
automatic constructor174
Automatic Conversion of Data Types......566
automatic destructor174
AutoPaper..1013
AUTOSIZE...400
AUTOSIZE (set OLE object resizing)400
B (blank when zero).................................159
BAND...626
BAND (Bitwise AND)626
BAND (return bitwise AND)626
Base 10 logarithm....................................762
Base Data Types567
Base numbers

Binary ...541
Decimal ..541
Hexadecimal ..541
Octal...541

Base Types......................................567, 568
BCD ...569
BCD Operations and Procedures............569
BEEP ...627
BEEP (sound tone on speaker)...............627
BEGIN..89, 584

BEGIN (define code structure)...................89
BFLOAT4...118
BFLOAT4 (four-byte signed floating point)

...118
BFLOAT8...120
BFLOAT8 (eight-byte signed floating point)

...120
Binary

Numeric constant541
BINARY..232
BINARY (memo contains binary data).....232
Binary Coded Decimal (BCD)..................569
BIND ..550
BIND (declare runtime expression string

variable)..550
BINDABLE ...233
BINDABLE (set runtime expression string

variables)..233
BINDEXPRESSION.................................552
Bit manipulation

BXOR ...637
Bit Manipulation 626, 629, 631
BLANK ...628
BLANK (erase graphics)628
Blank when zero159
BLOB 193, 194, 195
BLOB (declare a variable-length field).....193
BOF..1128
BOF (return beginning of file)1128
Boolean operators540
BOR ...629
BOR (Bitwise OR)....................................629
BOR (return bitwise OR)..........................629
BOX .. 321, 322, 630
BOX (declare a box control)321
BOX (draw a rectangle)630
BOXED ..403
BOXED (set controls group border).........403
BREAK...307, 591
BREAK (declare group break structure) ..307
BREAK (immediately leave loop).............591
BreakVar ..1013
BSHIFT ..631
BSHIFT (Bitwise SHIFT)..........................631
BSHIFT (return shifted bits)631
Btrieve

DATE..137

Index 1135

LSTRING..133
TIME...139
ZSTRING ...130

Buffer ...1014
BUFFER ..632
BUFFER (set record paging)632
BuildDone ..997
BuildKey...997
Built-in variables

PRINTER ...819
TARGET.......................................881, 882

Built-in Variables..............................546, 547
BUTTON..................................323, 324, 325
BUTTON (declare a pushbutton control).323
BXOR (Bitwise eXclusive OR).................637
BXOR (return bitwise exclusive OR)637
BY..588, 589, 590
BYTES...638
BYTES (return size in bytes)638
C

PASCAL (parameter passing conventions) ..71
CALL..640
Callback973, 974, 976, 977
CALLBACK..641
Calling OLE Object Methods978
CAP ...404

UPR (set case).....................................404
CASE...582, 583
CASE (selective execution structure)......582
Case insensitive key................................258
Case insensitive report break..................481
CENTER..................................405, 467, 644
CENTER (return centered string)644
CENTER (set centered window position) 405
CENTERED...406
CENTERED (set centered image)...........406
CHAIN..645
CHAIN (execute another program)..........645
CHANGE ...646
Chapter Organization24
Character String

CSTRING...130
PSTRING ...133
STRING..126

CHECK326, 327, 407
CHECK (declare a checkbox control)......326
CHECK (set on/off ITEM)407

Checked...1014
Child...1015
ChildIndex ..1015
CHOICE...648
ChoiceFEQ ..1016
CHOOSE ...649
CHORD..651
CHR ...652
CHR (return character from ASCII)652
CLAAMPM ...209
CLABUTTON ...209
CLACASE ..211
CLACHARSET........................ 209, 210, 211
CLACOLSEQ...209
CLADIGRAPH ...209
CLAMON..209
CLAMONTH...209
CLAMSG..211
Clarion Keycodes.......................................31
Clarion standard date29
Clarion standard time.................................30
CLASS ...174

LINK ...252
MODULE..253

CLASS (object declaration)174
CLASS Variables

PRIVATE..268
PROTECTED269

CLEAR...565
CLEAR (clear a variable)565
clear the reference

NULL ..563, 564
ClientHandle ..1016
ClientWndProc.......................................1017
CLIP ...408, 653
CLIP (return string without trailing spaces)

...653
CLIP (set OLE object clipping).................408
ClipBits...1018
CLIPBOARD ..654
CLIPBOARD (return windows clipboard

contents)...654
CLOCK...656
CLOCK (return system time)656
CLONE(duplicate existing control)657
CLOSE...659
CLOSE (close a data structure)...............659

Language Reference Manual 1136

CloseWindow...997
CODE ..51
CODE (begin executable statements).......51
collating sequence

KEY..190
Collating sequence

SORT (QUEUE)...................................890
COLORDIALOG661
COLORDIALOG (return chosen color)....661
ColorDialogHook1019
colorized list box fields.............................433
colors in list boxes350
COLUMN ...412
COLUMN (set list box highlight bar)412
ColumnResize1003
COMBO ...331
COMBO (declare an entry/list control)329
COMMAND..662
COMMAND (return command line)662
Command line

COMMAND ..662
SETCOMMAND865

Comments ! symbol...................................39
COMMIT ..663
COMMIT (terminate successful transaction)

...663
Commit boundaries764
Comparison Operators540
COMPATIBILITY414
COMPATIBILITY (set OLE control

compatibility) ..414
COMPILE...90, 91
COMPILE (specify source to compile)90
Compiler Directives87
Compiler Error Messages......................1106
Compiler Errors1106
Completed997, 1081
Concatenation ...543
Concatenation Operator539
Conditional Operators..............................540
ConnectString..1081
Constants

Numeric Constants541
String Constant542

constructor ...179
container windows957
CONTENTS...664

CONTENTS (return contents of USE
variable)..664

Contracted ...1003
Contracting...1003
Control Fields...298
Control menu ...515
Control Numbering...................................299
Control Structures....................................582
Conventions and Symbols26
Conversion

date
DEFORMAT675

Conversion of Data Types566
convert ANSI strings to ASCII..................665
convert ASCII strings to ANSI..................666
CONVERTANSITOOEM..........................665
CONVERTANSITOOEM (convert ANSI

strings to ASCII)665
CONVERTOEMTOANSI..........................666
CONVERTOEMTOANSI (convert ASCII

strings to ANSI)666
Cooperative multi-tasking932
COPY...667
COPY (copy a file)667
Corrupt pragma string............................1124
COS ...668
COS (cosine of angle)668
CREATE 234, 415, 669, 670, 671
CREATE (allow data file creation)234
CREATE (create an empty data file)669
CREATE (create OLE control object)415
CREATE (return new control created).....670
Credit (CR) pictures159
credit pictures ..159
CSTRING...130
CSTRING (fixed-length null terminated

string) ...130
Currency Pictures159
Current Target ...301
CurrentKey...1082
CURSOR ...416
CURSOR (set mouse cursor type)416
CYCLE...592, 593
CYCLE (go to top of loop)........................592
DATA ...52
DATA (begin routine local data section)52
Data Declaration Sections154

Index 1137

Data Type Conversion.............................570
Data Type Conversion Rules...................566
Data Types

ANY..141
BFLOAT4 ...118
BFLOAT8 ...120
CSTRING...130
DATE..137
DECIMAL ...122
GROUP..171
LIKE ...144
PDECIMAL...124
PSTRING ...133
REAL..116
SREAL ...114
STRING..126
TIME...139
UNSIGNED ..113

Date
Standard Date..29

DATE ...137, 673
DATE (four-byte date)137
DATE (return standard date)673
Date conversion

DEFORMAT...675
Date Pictures ...164
DAY ...674
DAY (return day of month).......................674
Day of the week...29
DDE ...935, 998
DDE Events936, 998
DDE Overview ...935
DDEACKNOWLEDGE.............................938
DDEadvise...998
DDEAPP..940
DDEAPP (return server application)........940
DDECHANNEL..941
DDECHANNEL (return DDE channel

number)..941
DDECLIENT ..942
DDECLOSE...943
DDECLOSE (terminate DDE server link) 943
DDEclosed...998
DDEdata ..998
DDEexecute ..998
DDEEXECUTE ..944

DDEEXECUTE (send command to DDE
server) ..944

DDEITEM...946
DDEITEM (return server item).................946
DDEMode ..1019
DDEpoke..998
DDEPOKE ...947
DDEPOKE (send unsolicited data to DDE

server) ..947
DDEQUERY...949
DDEQUERY (return registered DDE

servers) ..949
DDEREAD ...950
DDEREAD (get data from DDE server)...950
DDErequest ...998
DDESERVER ..952
DDESERVER (return DDE server channel)

...952
DDETimeOut..1020
DDETOPIC ..953
DDETOPIC (return server topic)..............953
DDEVALUE..954
DDEVALUE (return data value sent to

server) ..954
DDEWRITE..955
DDEWRITE (provide data to DDE client) 955
de-allocate heap memory157
Debit (DB) pictures159
debit pictures ...159
Debug ? symbol ...39
Decimal

Numeric Constant541
DECIMAL...122, 467
DECIMAL (signed packed decimal).........122
Decimal Arithmetic...................................569
Declaration and Statement Labels34
Deep Assignment561
Deep Assignment Statements561
DEFAULT...417
DEFAULT (set enter key button)417
DeferMove ...1020
DEFORMAT...675
DEFORMAT (return unformatted numbers

from string) ...675
DELAY ...418
DELAY (set repeat button delay)418
DELETE.......................... 676, 677, 678, 840

Language Reference Manual 1138

DELETE (delete a record)676
Delete a file (REMOVE)...........................840
DERIVED (prevent function overloading)..72
Derived CLASSes (Inheritance)175
Destination variable559, 560, 561, 563
DESTROY ...680
DESTROY (remove a control)680
destructor...179
DETAIL ..308
DETAIL (report detail line structure)........308
Details..1083
Dialog boxes..297
dialog units 285, 396, 398, 433, 435, 466,

491, 509
DIM ..235
DIM (set array dimensions)235
DIRECTORY682, 683
DIRECTORY (get file directory)682
DISABLE..419, 685
DISABLE (dim a control)685
DISABLE (set control dimmed at open) ..419
Dispatch interface....................................966
DISPLAY..686
DISPLAY (write USE variables to screen)

...686
DISPOSE...157
DISPOSE (de-allocate heap memory)157
Division operator......................................538
DLL ..237, 238, 242
DLL (set procedure defined externally in

.DLL) ..73
DLL (set variable defined externally in .DLL)

...237
dll_mode ..237
DO ...594
DO (call a ROUTINE)594
DOCK ..420
DOCK (set dockable toolbox window).....420
Docked...998
DOCKED ...421
DOCKED (set dockable toolbox window

docked at open)421
DOCUMENT..422
DOCUMENT (create OLE control object

from file) ...422
Document windows297
Documentation Conventions and Symbols26

Dollar sign ..159, 160
DOUBLE ..423

NOFRAME
RESIZE (set window border)423

Double-precision real.......................116, 120
DOWN..525
Drag ...1003
Dragging ..1003
DRAGID ...687
DRIVER ...239
DRIVER (specify data file type)239
DriverLogsoutAlias.................................1083
Drop ...1003
DROP...425
DROP (set list box behavior)425
DROPID ...689
DroppedDown..1004
DroppingDown1004
DUP ...240
DUP (allow duplicate KEY entries)240
DUPLICATE...691
DUPLICATE (check for duplicate key

entries) ...691
Dynamic Data ..153
Dynamic Data Exchange935
dynamic INDEX189
Dynamic index

BUILD.................................. 634, 635, 636
Edit...1022
ELLIPSE 334, 335, 692
ELLIPSE (declare an ellipse control)334
ELLIPSE (draw an ellipse).......................692
ELSE....................... 582, 584, 585, 586, 587
ELSIF ...586, 587
EMPTY...693
EMPTY (empty a data file).......................693
ENABLE...694
ENABLE (re-activate dimmed control).....694
Enabled..1024
Encapsulation ..174
ENCRYPT..241
ENCRYPT (encrypt data file)...................241
END ...55
END (terminate a structure).......................55
ENDPAGE ...695
ENDPAGE (force page overflow)695
ENTRY.................................... 336, 337, 338

Index 1139

ENTRY (declare a data entry control)336
ENV ...209
ENV file..759
Environment Files....................................209
EOF ...1129
EOF (return end of file)..........................1129
EQUATE..93
EQUATE (assign label)93
ERASE...697
ERASE (clear screen control and USE

variables)..697
ERROR..698
ERROR (return error message)698
Error Codes ...1097
Error Information......................................820
Error messages

Compiler...1106
Run time...................................1097, 1103

Error Messages1106
ERRORCODE ...699
ERRORCODE (return error code number)

...699
ERRORFILE ..700
ERRORFILE (return error filename)........700
ERRORLEVEL732, 853
EVALUATE..553
EVALUATE (return runtime expression

string result) ...553
Evaluations

logical ...540
Event..998

DDEadvise ...998
DDEclosed ...998
DDEdata...998
DDEexecute...998
DDEPoke ...998
DDERequest ..998

EVENT...1005
Accepted ..1003
AlertKey......................................997, 1003
BuildDone ..997
BuildFile ...997
BuildKey...997
CloseDown...997
CloseWindow997
ColumnResize....................................1003
Completed..997

Contracted..1003
Contracting ...1003
Docked ...998
Drag..1003
Dragging...1003
Drop..1003
DroppedDown1004
DroppingDown1004
Expanded ...1004
Expanding ..1004
GainFocus ..999
Iconize ..999
Iconized ..999
Locate...1004
LoseFocus..999
Maximize459, 999
Maximized 459, 460, 999
MouseDown1005
MouseIn..1005
MouseMove..1005
MouseOut...1005
MouseUp..1005
Move...999
Moved...999
NewSelection1006
OpenWindow......................................1000
PageDown..1006
PageUp ..1006
PreAlertKey 1000, 1006
Rejected 836, 1006
Restore...1000
Restored.................................... 460, 1000
Resume..1000
ScrollBottom.......................................1006
ScrollDown ...1006
ScrollDrag...1007
ScrollTop ..1007
ScrollTrack ...1007
ScrollUp..1007
Selected ...1007
Size ..1000
Sized ..1000
Suspend ...1001
TabChanging......................................1007
Timer ..1001
Undocked ...998

EVENT:Notify...1000

Language Reference Manual 1140

Events..995
EventsWaiting..1026
Exclude null key entries...........................260
Exclusive Access.....................................791
EXECUTE..584, 585

BEGIN ..585
EXECUTE (statement execution structure)

...584
ExeVersion ..1026
EXISTS..702
EXISTS (return file existence)702
EXIT...595
EXIT (leave a ROUTINE)595
Expanded...1004
Expanding..1004
Exponentiation operator538
Expression Evaluation537
Expression Strings...................................549
Expressions ...537

Evaluation Precedence537
Logical Expressions545
Numeric Expressions543
Runtime..549
String Expressions544

EXTEND ..413
EXTERNAL......................................242, 243
EXTERNAL (set defined externally)242
FatalErrorHook1026
FetchSize...1083
Field ...1084
FIELD...703
Field Completion Keys

ALERT..617, 618
Field Equate Labels.........................299, 300
Field Qualification36
Field-independent events995, 996
Fields (controls)298
FieldsFile ...1084
Field-specific events995, 1002
File ...1085
FILE ...186, 187, 188
FILE (declare a data file structure)186
file access..791
file directory ...682
file existence..702
FILE Structure Properties198, 199
FILEDIALOG704, 705, 706

FileDialogHook1026
FILEERROR ..711
FILEERROR (return file driver error

message)..711
FILEERRORCODE..................................712
FILEERRORCODE (return file driver error

code number)712
Files ...1085
FILEs with the EXTERNAL attribute........243
FILTER...245
FILTER (set view filter expression)..........245
FIRST...428

LAST (set MENU or ITEM position)428
FIRSTFIELD ..713
FIRSTFIELD (return first window control)713
FLAT ..429
FLAT (set flat buttons)429
Floating Point

Double Precision116, 120
Single Precision114, 118

floating tabs..484
FLUSH ...714
FLUSH (flush buffers)714
FlushPageNumFunc1027
FlushPreview ...1028
FOCUS ..715
FOCUS (return control with focus)715
Follows...1029
FONT ...430
FONT (set default font)430
FONTDIALOG ...716
FONTDIALOGA717
FontDialogHook1029
FOOTER..310
FOOTER (page or group footer structure)

...310
FORM ..312
FORM (page layout structure)312
FORMAT..433, 718
FORMAT (return formatted numbers into a

picture) ...718
FORMAT (set LIST or COMBO layout) ...433
FORMAT() List Box Mouse Click Properties

...445
FORMAT() Other List Box Properties......443
FORMAT() Runtime Properties438
FORMAT() Style Properties.....................441

Index 1141

formatting...159
forward reference150, 151
FORWARDKEY (pass keystrokes to control

...719
FREE ...720
FREE (delete all entries)720
FREESTATE ...721
FREESTATE (free resources)721
FROM ..448
FROM (set listbox data source)...............448
FULL ..450
FULL (set full-screen)450
FUNCTION ..1130
FUNCTION (define a function)1130
GainFocus ...999
GET ...723, 724, 725
GETFONT..726
GETINI...727
GETINI (return INI file entry)....................727
GETNULLS(get the NULL state of a table)

...728
GETREG..730
GETSTATE (return current state of data file)

...731
Global

Local
Static

and Dynamic.................................153
Global data ..154
Global menu290, 291
Global tools......................................294, 295
GlobalHelp ...1086
GOTO ..596
GOTO (go to a label)596
Graphics Coordinates..............................302
Graphics Overview301
GRAY...451
GRAY (set 3-D look background)451
GRID..452
GRID (set list grid-line display color)452
GROUP....................................171, 340, 341
GROUP (compound data structure)171
GROUP (declare a group of controls)340
HALT..732
HALT (exit program)732
HaltHook ..1030
handle ..1016

Handle..1030
HEADER..313
HEADER (page or group header structure)

...313
HeaderHeight...1031
Held..1086
HELP..733
Hexadecimal (numeric constant)541
HIDE ..453, 734
HIDE (blank a control)734
HIDE (set control hidden)453
HLP ..454
HLP (set on-line help identifier)454
HOLD...735, 736
HOLD (exclusive record access)735
HScrollPos ...1032
Iconize..999
Iconized..999
IconList...1033
icons in list boxes.............................350, 433
icons in list fields......................................433
IDLE ...737
IDLE (arm periodic procedure)737
IF 586, 587
IF (conditional execution structure)586
IMAGE 343, 344, 738
IMAGE (declare a graphic image control)343
IMAGE (draw a graphic image)738
ImageBits ...1035
ImageBlob..1036
IMPLEMENTS(add methods to a CLASS)

...248
Implicit String Arrays................................136
Implicit String Arrays and String Slicing...136
Implicit variables

LONG ...147, 148
REAL..147, 148
STRING(32)147, 148

Implicit Variables......................................147
INCLUDE ...92
INCLUDE (compile code in another file)....92
INCOMPLETE ...739
INCOMPLETE (return empty REQ control)

...739
Inconsistent scanner initialization1124
Inheritance ...174

Language Reference Manual 1142

INI
GETINI ...727
PUTINI ...828

InitAStringHook......................................1036
INLIST..740
INLIST (return entry in list)740
inner join ..251
In-place activation....................................958
Input Focus..298
INRANGE ..741
INRANGE (check number within range)..741
INS...461

OVR (set typing mode)461
INSTANCE.......................................742, 743
Instantiation ...177
INSTRING..744
INSTRING (return substring position)744
INTERFACE184, 185
INTERFACE (class behavior definition) .184,

249
Intermediate value537, 538
Internationalization209
InToolbar..1036
Introduction ..23
ISALPHA..747
ISALPHA (return alphabetic character) ...747
ISLOWER ..748
ISLOWER (return lower case character).748
ISSTRING..749
ISSTRING (return field string type or not)749
ISUPPER...750
ISUPPER (return upper case character) .750
ITEM ..345, 346, 347
ITEM (declare a menu item)....................345
ITEMIZE...94, 95
ITEMIZE (enumeration data structure)......94
Items..1037
JOIN.................................217, 218, 219, 462
JOIN (declare a "join" operation)217
JOIN (set joined TAB scroll buttons)462
KEY..190, 463
KEY (declare dynamic file access index) 190
KEY (set execution keycode)463
KEYBOARD...751
KEYBOARD (return keystroke waiting) ...751
Keyboard Functions.................................751
Keyboard Procedures..............................619

KEYCHAR..752
KEYCHAR (return ASCII code)752
KEYCODE ...753
KEYCODE (return last keycode)753
Keycode EQUATE Labels31
Keycodes ...31
KEYCODES.EQU31
Key-in Pictures...168
Key-in Template Pictures.........................168
KEYSTATE ..754
KEYSTATE (return keyboard status).......754
KEYWORD

Syntax Diagram......................................27
KEYWORD (short description of intended

use) ..28
label ...34
LANDSCAPE ...464
LANDSCAPE (set page orientation)........464
LAST ..428
LASTFIELD..755
LASTFIELD (return last window control) .755
LAYOUT...465
LazyDisplay..1037
Leading zeroes ..159
LEFT ..467, 756

RIGHT
CENTER

DECIMAL (set justification)467
LEFT (return left justified string)756
Legacy Statements1127
LEN ..757
LEN (return length of string)757
LFNSupport..1038
LibHook..1038
LibVersion ..1039
LIKE ...144, 145
LIKE (inherited data type)144
Line ..1039
LINE ...758
LINE (declare a line control)348
LINE declaration348
LineCount...1039
LineHeight..1040
LINEWIDTH ...469
LINEWIDTH (set line thickness)469
LINK ...252, 470

Index 1143

LINK (create OLE control link to object from
file) ...470

LINK (specify CLASS link into project)252
LIST350, 351, 352, 353, 354
LIST (declare a window list control)350
Local data ..154
Local Derived Methods............................176
Local menu290, 291
Local tools..295
LOCALE...759
LOCALE (load environment file)..............759
Locate ..1004
LOCK...760
LOCKTHREAD ..761
LOCKTHREAD (re-lock the current

execution thread)761
Log...1087
LOG10 ...762
LOG10 (return base 10 logarithm)762
Logarithm...762, 763
LOGE...763
LOGE (return natural logarithm)..............763
Logical Evaluations..................................540
Logical Expressions.................................545
Logical Operators540
Logout..1088
LOGOUT..764
LOGOUT (begin transaction)...................764
LogoutIsolationLevel..............................1089
LOOP.......................................588, 589, 590
LOOP (iteration structure)588
LoseFocus ...999
LOWER..767
LOWER (return lower case)767
Maintaining INI Files727
MAP...45, 46
MAP (declare PROCEDURE prototypes)..45
MARK ..471
MARK (set multiple selection mode)471
MASK...472

control-level..472
MASK (set pattern editing data entry)472
MATCH....................................768, 770, 771

NoCase ..768
RegExpr ...768
Simple ..768
Soundex ...768

Wild ..768
MATCH (return matching values)768
MAX ...473
MAX (set maximize control or total

maximum)...473
MaxHeight..1040
Maximize..999
MAXIMIZE..475
MAXIMIZE (set window open maximized)

...475
Maximized..999
MAXIMUM..772
MAXIMUM (return maximum subscript

value)..772
MaxStatements......................................1089
MaxWidth...1041
MDI ..476
MDI (set MDI child window)476
MDI application window...........................297
MDI child windows297
MDI frame window279
MDI program..297
MEMBER ...43, 44
MEMO..192

BINARY..232
MEMO (declare a text field)192
Memory allocation

Dynamic ...153
Static ..153

memory QUEUE220
Memory redeclaration (OVER)263
MENU ..355, 356
MENUBAR...................... 290, 291, 292, 293
MENUBAR (declare a pulldown menu) ...290
MESSAGE773, 774
MESSAGE (return message box response)

...773
MessageHook..1041
Method Syntax Overview.........................978
Methods

VIRTUAL 175, 176, 179, 181, 182, 183
methods (PROCEDUREs).......................174
MinHeight...1042
MinWidth ..1042
Mixed data types......................................171
MM

REPORT attribute517

Language Reference Manual 1144

modal286, 289, 478
MODAL (set system modal window)478
Modal Events ...1008
Modal Windows476, 478
Modeless Windows..........................476, 478
MODULE ...47, 253
MODULE (specify CLASS member source

file) ...253
MODULE (specify MEMBER source file) ..47
Module data...154
Modulus operator.....................................538
MONTH..776
MONTH (return month of date)776
Mouse Events ..1005
MouseDown...1005
MouseIn ...1005
MouseMove ...1005
MouseOut ..1005
MouseUp ...1005
MOUSEX ...777
MOUSEY ...778
Move ..999
Moved ..999
MSG...479
MSG (set status bar message)................479
Multiple Document Interface (MDI)..........297
Multiplication operator538
Multi-threading

LOCKTHREAD761
START ...897
THREAD ..911
THREADLOCKED912
UNLOCKTHREAD920

NAME ..779
NAME (return file name)..........................779
NAME (set prototype's external name)......74
Name Mangling and C++ Compatibility.....86
named group ...149
named GROUPs and QUEUEs...............149
Natural logarithm763
NEW ..156
NEW (allocate heap memory)156
NewSelection...1006
NEXT ...780
NextField..1043
NextPageNo ..1044
NextTabStop..1044

NOBAR ..480
NOBAR (set no highlight bar)480
NOCASE..258, 481
NOCASE (case insensitive KEY or INDEX)

...258
NOCASE (case insensitive report BREAK)

...481
NOFRAME...423
NoHeight ..1045
NOMEMO ..782
NOMEMO (read file record without reading

memo) ..782
NOMERGE ..482
NOMERGE (set merging behavior)482
Nonstop mode ...854
Non-Trappable Run Time Errors1103
NOSHEET..484
NOSHEET (set "floating" TABs)484
NOT ...540
Not implemented yet..............................1125
NOTIFICATION784
NOTIFY..783
NoTips..1046
NoWidth ...1045
Null...197
NULL....... 563, 728, 786, 871, 873, 874, 875
Null Data Processing197
Null String ..542
NUMERIC ..788
NUMERIC (return numeric string)788
Numeric and Currency Pictures.......159, 160
Numeric Constants541
Numeric Expressions...............................543
Numeric Pictures159
NumTabs ...1047
Object declaration

CLASS 174, 175, 176, 177, 179, 180, 181,
182

Object Linking and Embedding................957
Object Properties (Encapsulation)175
Octal (numeric constant)..........................541
OCX Callback functions...........................973
OCX Events ...975
OCX Propertys...973
OCXGETPARAM.....................................991
OCXGETPARAM (return current event

parameter string)..................................991

Index 1145

OCXGETPARAMCOUNT........................990
OCXGETPARAMCOUNT (return number of

parameters for current event)990
OCXLOADIMAGE993
OCXLOADIMAGE (return an image object)

...993
OCXREGISTEREVENTPROC................986
OCXREGISTEREVENTPROC (install event

processing callback)986
OCXREGISTERPROPCHANGE.............985
OCXREGISTERPROPCHANGE (install

property change callback)....................985
OCXREGISTERPROPEDIT....................984
OCXREGISTERPROPEDIT (install property

edit callback) ..984
OCXSETPARAM992
OCXSETPARAM (set current event

parameter string)..................................992
OCXUNREGISTEREVENTPROC...........989
OCXUNREGISTEREVENTPROC (un-install

event process callback)989
OCXUNREGISTERPROPCHANGE988
OCXUNREGISTERPROPCHANGE (un-

install prop change callback)................988
OCXUNREGISTERPROPEDIT...............987
OCXUNREGISTERPROPEDIT (un-install

property edit callback)..........................987
OEM...259
OEM (set international string support).....259
OF..582, 583
Old symbol non-NIL...............................1125
OLE................. 357, 358, 359, 360, 957, 958

container windows957
OLE Automation957
OLE Controller application...............957, 958
OLE custom control OverView970
OLE Overview ...957
OLE Server application....................957, 958
OLEDIRECTORY968
OLEDIRECTORY (get list of installed

OLE/OCX)..968
OMIT..96, 97
OMIT (specify source not to be compiled).96
OMITTED...789, 790
ONCE ..98
ONCE (prevent duplicate included data)...98
OPEN.......................485, 791, 792, 793, 794

OPEN (open a data structure)791
OPEN (open OLE control object from file)

...485
Open-mode activation..............................958
OpenWindow ...1000
Operating Assignment Statements..........560
Operating Assignments560
Operator Precedence537
Operators

Conditional Operators540
Logical Operators.................................540

OPT..260
OPT (exclude null KEY or INDEX entries)

...260
OPTION 361, 362, 363
OPTION (declare a set of RADIO controls)

...361
OR..540
OROF...582, 583
Out of attribute space1124
outline control ..433
OVER...263
OVER (set shared memory location)263
Overflow

arithmetic......................................159, 566
Overview..537
OVR ...461
OWNER ...264
OWNER (declare password for data

encryption)..264
PACK ...795
PACK (remove deleted records)..............795
Packed Decimal...................... 123, 124, 125
PAGE...486
PAGE (set page total reset).....................486
Page Overflow ...318
PAGEAFTER ...487
PAGEAFTER (set page break after)487
Page-based printing.................................306
PAGEBEFORE ..488
PAGEBEFORE (set page break first)......488
PageDown ...1006
PAGENO..489
PAGENO (set page number print)489
PageUp..1006
PALETTE...490

Language Reference Manual 1146

PALETTE (set number of hardware colors)
...490

PANEL...364
PAPER...491
PAPER (set report paper size)491
Parameter Passing to OLE/OCX Methods

...981
Parameters ..544

expression used as537, 549
Parent ..1048
PARENT175, 179, 181
PASSWORD..492
PASSWORD (set data non-display)........492
PATH ...796
PATH (return current directory)796
Pattern Pictures167
PDECIMAL ..124
PDECIMAL (signed packed decimal)124
PEEK ...797
PEEK (read memory address).................797
PENCOLOR ..798
PENCOLOR (return line draw color)798
PENSTYLE..799
PENSTYLE (return line draw style)799
PENWIDTH..800
PENWIDTH (return line draw thickness) .800
Picture Tokens...159
Pictures

Date..164, 165
Key-in ...168
Numeric and Currency.................159, 160
Pattern..167
Scientific Notation162
String..163
Time ...166

PIE ...801, 802
Pixels ...1048
POINTER.......................................803, 1131
POINTER (return last queue entry position)

...803
POINTER (return relative record position)

...1131
POINTS

REPORT attribute517
POKE...804
POKE (write to memory address)............804
POLYGON...805

Polymorphism ..174
POPBIND...555
POPBIND (restore runtime expression string

name space) ..555
POPERRORS..820
POPUP ..806
POPUP (return popup menu selection) ...806
POSITION..808, 810
POSITION (return record sequence position)

...808
POST ...811
PRAGMA ...812
PRE..265
PreAlertKey................................. 1000, 1006
PRESS...814
PRESS (put characters in the buffer)814
PRESSKEY..815
PRESSKEY (put a keystroke in the buffer)

...815
PREVIOUS ..816
PREVIOUS (read previous view record in

sequence)...816
PrevTabStop..1044
PRIMARY...267
PRIMARY (set relational primary key).....267
primary key ..267
PRINT ..818
PRINT (print a report structure)818
Print structure

BREAK ...307
DETAIL...308, 309
FOOTER310, 311
FORM...312
HEADER313, 314

PRINTER ...819
built-in variable546

Printer Control Properties315
PRINTERDIALOG819
PRINTERDIALOG (return chosen printer)

...819
PrinterDialogHook..................................1049
PrintMode...1049
PRIVATE..268
PRIVATE (set procedure private to a CLASS

or module) ..75
PRIVATE (set variable private to a CLASS

module) ..268

Index 1147

PROC (set function called as procedure
without warnings)76

PROCEDURE................................48, 49, 50
PROCEDURE (define a procedure)48
Procedure Overloading..............................83
PROCEDURE Return Types.....................69
Profile...1089
PROGRAM ..41, 42
PROGRAM (declare a program)41
Progress ..1050
PROGRESS367, 368
PROJECT..216
PROJECT (set view fields)216
PROMPT ...365, 366
Prop ...413

EXTEND...413
PROP...1010

ABOVE...466
ABSOLUTE..391
AcceptAll ..1009
ACTIVE ..1010
ALONE...392
ALRT ..393
AlwaysDrop..1010
ANGLE...395
AppInstance1011
Ascending ..202
AssertHook ..1011
AssertHook21012
AT...396, 397, 398
AUTO ...399
AutoPaper ..1013
AUTOSIZE400, 959, 963
Background..................................410, 411
BELOW ..466
BEVEL..402
BINARY..202, 232
Blob959, 962, 964
Blobs ..198, 204
BOXED...403
BreakVar ..1013
Buffer..1014
ButtonFeq ..526
CAP..404
CENTER405, 467, 468
CENTERED ...406
CenterOffset...467

CHECK...407
Checked ...1014
Child ...1015
ChildIndex ..1015
ChoiceFeq..1016
ClientHandle.......................................1016
ClientWndProc1017
CLIP ...408, 959
ClipBits ...1018
COLOR...410, 411
ColorDialogHook1019
COLUMN..412
COMPATIBILITY..........................414, 959
Completed..1081
ConnectString1081
Create...200, 204
CREATE...... 234, 415, 959, 962, 963, 971
Ctrl..971
CurrentKey ...1082
CURSOR..416
DDEMode...1019
DDETimeOut......................................1020
Deactivate ..963
DECIMAL ...467
DecimalOffset.......................................467
DEFAULT...417
DeferMove..1020
DELAY..418
DesignMode ...971
Details ..1083
DISABLE ..419
DOCK...420
DOCKED..421
DOCUMENT...422
DOUBLE...423
DoVerb ...960, 971
DRAGID ...424
Driver..200
DRIVER..239
DriverLogsoutAlias1083
DriverString ..200
DROP...425
DROPID ...426
DropWidth ..425
DUP..................................... 201, 204, 240
Edit ...1022
Enabled ..1024

Language Reference Manual 1148

Encrypt ...200
ENCRYPT..241
EventsWaiting1026
ExeVersion...1026
FalseValue ...529
FatalErrorHook...................................1026
Feq ...526
FetchSize632, 1083
Field ...1084
FIELD...................198, 199, 200, 202, 203
Fields....................................198, 201, 202
FieldsFile..1084
File ...1085
FileDialogHook...................................1026
Files..1085
FILL ..427
FILTER...245, 247
FIRST...428
FLAT ..429
FlushPageNumFunc1027
FlushPreview1028
Follows ...1029
FONT430, 431, 432
FontCharSet...430
FontColor ...430
FontDialogHook1029
FontName ..430
FontSize ...430
FontStyle ..430
FORMAT..433
FROM...448
FULL ..450
GlobalHelp ...1086
GrabHandles..971
GRAY...451
HaltHook ..1030
Handle..1030
HeaderHeight1031
Height...396
Held..1086
HIDE...453
HLP ..454
HSCROLL ..455
HscrollPos..1032
HVSCROLL..455
ICON ..456
IconList...1033

ImageBits ...1035
ImageBlob ..1036
IMM ..459, 460
InitAStringHook1036
INNER ..251
INS ...461
Interface ...1036
InToolbar ..1036
IsRadio ...971
Items...1037
JOIN ...462
JoinExpression.....................................217
Key 198, 199, 200, 201, 202, 463
Keys ...198
Label.... 198, 199, 200, 201, 202, 204, 208
LANDSCAPE464
Language961, 972
LAST ..428
LastEventName....................................971
LazyDisplay..1037
LEFT.................................... 466, 467, 468
LeftOffset..467
LFNSupport ..1038
LibHook ..1038
LibVersion ..1039
Line...1039
LineCount ...1039
LineHeight ..1040
LINEWIDTH..469
LINK ...470
ListFeq..526
Log ...1087
Logout ..1088
LogoutIsolationLevel1089
MARK...471
MASK ...472
Max...................................... 292, 293, 473
MaxHeight ..1040
MAXIMIZE..475
MaxStatements1089
MaxWidth ...1041
MDI...476
Memos..198
MessageHook1041
MinHeight ...1042
MinWidth ..1042
MM ...517

Index 1149

MODAL ..478
MSG...479
Name..198, 199
NAME...254, 255
NextField ..1043
NextPageNo.......................................1044
NextTabStop1044
NOBAR ..480
NoCase ..201, 204
NOCASE..258
NOFRAME ...423
NoHeight ..1045
NOMERGE482, 483
NOSHEET..484
NoTips..1046
NoWidth ...1045
NumTabs..1047
Object. 959, 960, 961, 962, 963, 964, 966,

967
OEM...259
OLE.... 959, 960, 961, 962, 963, 964, 965,

966, 967, 971, 972
OPEN...........................485, 959, 960, 963
OPT......................................201, 204, 260
ORDER ..261
Over ...203
OVR ...461
Owner...200
OWNER ...264
PAGE ...486
PAGEAFTER487
PageAfterNum487
PAGEBEFORE488
PageBeforeNum488
PAGENO..489
PALETTE ...490
Parent...1048
PASSWORD ..492
Paste960, 963, 964
PasteLink ...964
Pixels..1048
Places ..202
POINTS..517
PREVIEW.....................................493, 494
PrevTabStop1044
Primary...201, 204
PRIMARY...267

PrinterDialogHook1049
PrintMode...1049
Profile ...1089
Progress ...1050
ProgressEvents..................................1090
RANGE...495
RangeHigh ...495
RangeLow ..495
READONLY..496
Reclaim ..200
RECLAIM ...270
Record..1093
RejectCode...1052
REPEAT...497
ReportException...................................971
REQ..498
RESET ...499
RESIZE ..423, 500
RIGHT ..467, 501
RightOffset ...467
ROUND ..502
SaveAs ...971
ScreenText ...1053
SCROLL...504
Selected ...1054
SelEnd..1054
SelStart...1054
SINGLE ..506
Size ... 202, 1055
SKIP ...507
SnapHeight ..1057
SnapWidth..1056
SPREAD...508
SQLDriver...1093
SQLJoinExpression..............................217
STATUS ...509
StatusFont ..1058
StatusText ..509
STD ..511
STEP..512
StmtAttr ..1093
StopHook..1058
STRETCH513, 959
SupportsOp ..1094
SupportsType.....................................1094
SYSTEM...515
TabRows ..1059

Language Reference Manual 1150

TALLY ..516
Target...1060
TempImage..1060
TempImagePath1060
TempImageStatus..............................1060
TempNameFunc1060
TempPagePath1062
TempPath...1062
Text ..389, 1094
THOUS...517
Thread................................200, 204, 1062
THREAD ..272
Threading...1062
TILED...518
TIMER..519
TIP..520
TipDelay...1063
TipDisplay ..1063
TipsFont ...1063
TOOLBOX..522
Touched ...1064
TRN..524
TrueValue ..529
Type200, 208, 1066
Update..960
UPR..404
USE..526
UseAddress1068
Value ..1095
VCR..530
VcrFeq..530
Visible...1069
VLBproc ...1071
VLBval..1071
VScroll..1051
VscrollPos ..1075
WALLPAPER532
Watched...1077
WheelScroll ..1077
Width..396
WindowsVersion1077
WITHNEXT ..533
WITHPRIOR ..534
WIZARD...535
WndProc ..1078
XOrigin ...1080
Xpos ...396

Ypos ...396
Zoom ..959

PROP:DriverString...................................239
PROP:PropVscroll1051
PROP:SMOOTH......................................508
PROP:Vertical..531
Properties

Object . 174, 175, 176, 177, 178, 179, 180,
181

Property Access Syntax...........................546
Property Equates389
Property Expressions...............................546
PROPLIST ...433

BackColor...443
BackSelected443
CellStyle ...433
Center...433
CenterOffset...433
Color...434, 437
ColStyle ..433
Decimal ..433
DecimalOffset.......................................433
DefaultTip ...433
Exists..443
FieldNo ...433
Fixed...435
Format 433, 434, 435, 437
GRID ..452
Group 434, 435, 436
Header..435
HeaderCenter.......................................433
HeaderCenterOffset433
HeaderDecimal433
HeaderDecimalOffset...........................433
HeaderLeft..433
HeaderLeftOffset..................................433
HeaderRight ...433
HeaderRightOffset433
Icon...434, 437
IconTrn ...433
LastOnLine...433
Left ...433, 434
LeftOffset..433
Locator ...435
MouseDownField445
MouseDownRow445
MouseDownZone445

Index 1151

MouseMoveField..................................445
MouseMoveRow445
MouseMoveZone445
MouseUpField......................................445
MouseUpRow445
MouseUpZone445
Picture ..433
Resize ..433
Right...433, 435
RightBorder ..433
RightOffset ...433
Scroll ..435
TextColor..443
TextSelected ..443
Tip ..436
Tree..434, 437
TreeBoxes..433
TreeIndent..433
TreeLines ...433
TreeOffset ..433
TreeRoot ..433
Underline..433
Width....................................433, 435, 436

PROPPRINT..315
Collate ..315
Color...315
Context...315
Copies ..315, 318
Device ..315
DevMode..315
Driver..317
Duplex ..316
FontMode...315
FromMin...315
FromPage ..315
Paper..317, 491
PaperBin ..315
PaperHeight315, 491
PaperWidth315, 491
Percent...317
Port...317
PrintToFile..315
PrintToName..315
Resolution317, 318
ToMax ..315
ToPage...315
Yresolution ...315

PROPSTYLE ...441
BackColor...441
BackSelected441
CharSet ..441
FontColor..441
FontName...441
FontSize ...441
FontStyle ..441
Picture ..441
TextColor..441
TextSelected ..441

PROTECTED...269
PROTECTED (set procedure private to a

CLASS or derived CLASS)77
PROTECTED (set variable private to a

CLASS or derived CLASS)269
Prototype Syntax58
PSTRING...133
PSTRING (embedded length-byte string)133
PUSHBIND ..556
PUSHBIND (save runtime expression string

name space) ..556
PUSHERRORS822
PUT..825, 826
PUT (re-write record)824
PUTINI ...828
PUTINI (set INI file entry).........................828
PUTREG..829
QUEUE 220, 221, 222

ADD..................................... 612, 613, 614
CHANGES..647
POINTER ...803

QUEUE (declare a memory QUEUE
structure) ..220

QUOTE ..830
RADIO..369, 370
RANDOM...831
RANDOM (return random number)831
RANGE ..495
RANGE (set range limits)495
Range validation741
RangeHigh...495
RangeLow..495
RAW (pass address only)78
READONLY ...496
READONLY (set display-only).................496
REAL..116

Language Reference Manual 1152

REAL (eight-byte signed floating point)...116
RECLAIM...270
RECLAIM (reuse deleted record space) .270
Record ...1093
RECORD ...196
RECORD (declare record structure)196
RECORDS.......................................832, 833
RECORDS (return number of rows in data

set) ...832
Recursive

FUNCTION ..154
PROCEDURE154

Redeclares (OVER).................................263
Reference Assignment Statements.........563
Reference Assignments563
Reference Item Format..............................27
Reference Variables150
REGET ..837
REGION...372, 373
REGISTER ..834
REGISTER (register event handler)834
regular expression match768
RejectCode..1052
REJECTCODE ..836
REJECTCODE (return reject code number)

...836
Rejected...1006
RELEASE ..839
Remainder (Modulus division)538
REMOVE ...840
REMOVE (erase a file)840
RENAME ...841
RENAME (change file directory name) ...841
REPEAT ..497
REPEAT (set repeat button rate)497
Repeat count notation542
Repeated characters620
REPLACE (set replacement constructor or

destructor) ..79
REPORT..................................304, 305, 306
REPORT (declare a report structure)......303
Report totals

MAX ...473
REQ...498
REQ (set required entry)498
Reserved Words..38
RESET.....................................499, 842, 844

RESET (reset record sequence position) 842
RESET (set total reset)............................499
RESIZE................................... 423, 460, 500
RESIZE (set variable height TEXT control)

...500
Restore ..1000
Restored ..1000
RESTORESTATE....................................845
RESUME..846
RETURN..597
RETURN (return to caller)597
return file existence..................................702
Rewrite (PUT) ..824
RIGHT..................... 466, 467, 468, 501, 847
RIGHT (return right justified string)..........847
RIGHT (set MENU position)501
ROLLBACK..848
ROLLBACK (terminate unsuccessful

transaction)...848
ROUND..502, 849
ROUND (return rounded number)849
ROUND (set round-cornered BOX)502
ROUTINE...53, 54

DO..594
EXIT ...595

RTF..503
RTF Support ..503
Rules for Procedure Overloading84
RUN ...851
RUN (execute command)851
Run Time Errors 1097, 1103
RUNCODE...853
RUNCODE (return program exit code)....853
Runtime Expression.................................549
Runtime Expression Evaluation...............549
Runtime Property Assignment

Property Access Syntax546
Property Equates389

Scientific Notation Pictures162
scope ...153
Screen Fields (controls)...........................298
ScreenText...1053
SCROLL...504
SCROLL (set scrolling control)504
ScrollBottom...1006
ScrollDown...1006
ScrollDrag ..1007

Index 1153

ScrollTop..1007
ScrollTrack...1007
ScrollUp ...1007
SECTION...99
SECTION (specify source code section)...99
SELECT...854, 855
SELECT (select next control to process) 854
Selected.......................................1007, 1054
SELECTED..856
SELECTED (return control that has received

focus) ...856
SelEnd ...1054
SELF..180, 181, 183
SelStart ..1054
SEND...857
SEND (send message to file driver)857
SEPARATOR ..505
SEPARATOR (set separator line ITEM)..505
SET..858, 859
SET3DLOOK ...862
SETCLIPBOARD.....................................863
SETCLIPBOARD (set windows clipboard

contents) ..863
SETCLOCK ...864
SETCLOCK (set system time).................864
SETCOMMAND.......................................865
SETCOMMAND (set command line

parameters)..865
SETCURSOR ..866
SETFONT..868
SETKEYCHAR ..869
SETKEYCHAR (specify ASCII code)869
SETKEYCODE ..870
SETKEYCODE (specify keycode)870
SETNULL...873
SETNULL (set file field null)873
SETPATH ..876
SETPENCOLOR877
SETPENSTYLE.......................................878
SETPENWIDTH879
SETPOSITION ..880
SETTARGET546, 547, 881
SHARE ..1132
SHEET.....................................374, 375, 376
Short to Long filename conversion

LONGPATH ...766
SHORTPATH ..884

SHUTDOWN..886
Simple Assignment Data Type Conversion

...571
Simple Assignment Statements...............559
Simple Assignments559
SINGLE..506
SINGLE (set TEXT for single line entry) ..506
Single Document Interface (SDI)297
Single-precision real114, 118
Size ..1055
SIZE ...100
SIZE (memory size in bytes)....................100
Size Window ..1000
Sized ..1000
SKIP.. 507, 888, 889
SKIP (set Tab key skip or conditional print

control) ...507
SMOOTH ...508
SnapHeight ..1056
SnapWidth ...1057
SORT...890
SORT (QUEUE).......................................890
SORT (sort queue entries).......................890
sort order

INDEX ..189
KEY ..190, 191
VIEW ..261

Sound (BEEP) ...627
soundex ...768
Source variable..559
Special Characters39

used in string constants542
Specific Errors1107
SPIN...378, 379
SPIN (declare a spinning list control)377
SPREAD ..508
SPREAD (set evenly spaced TAB controls)

...508
SQLCALLBACK (register or unregister a

SQLCallBackInterface..........................893
SQLDriver ..1093
SQRT...896
SQRT (return square root).......................896
SREAL ...114
SREAL (four-byte signed floating point) ..114
Standard Date..29
Standard Time ...30

Language Reference Manual 1154

START...897, 898
START (return new execution thread).....897
Statement Execution Sequence56
Statement Format......................................33
STATIC..271
STATIC (set allocate static memory).......271
Static Data ...153
STATUS...................................509, 510, 899
STATUS (set status bar)509
StatusFont ...1058
STD..511
STD (set standard behavior)511
STEP ...512
STEP (set SPIN increment).....................512
StmtAttr..1093
STOP...901
STOP (suspend program execution).......901
StopHook ...1058
STREAM..902
STREAM (enable operating system

buffering) ..902
STRETCH..513
STRETCH (set OLE object stretching)....513
STRING126, 380, 381, 382
STRING (declare a string control)380
STRING (fixed-length string)126
String Constants542
String Expressions...................................544
String not CCST1126
String Pictures ...163
String Slicing..136
STRPOS..903
Structure Termination35
SUB ...907, 908
SUB (return substring of string)907
sub-classing...995
Subscript

Array...235, 236
MAXIMUM..772

Subtraction operator538
SupportsOp ...1094
SupportsType ..1094
SUSPEND ...909
Switch To...515
SYSTEM..515

built-in variable.....................................546
SYSTEM (set system menu)515

System Date
TODAY...915

System menu...515
System modal286, 478
System Time

CLOCK...656
SETCLOCK..864

TAB..383, 384
TabChanging ...1007
TabRows..1059
TALLY..516
TALLY (set total calculation times)516
TAN..910
TAN (tangent of angle)910
Target...1060
TARGET

built-in variable546
TempImage..1060
TempImagePath1060
TempImageStatus1060
TempNameFunc1060
TempPagePath......................................1062
TempPath ..1062
Termination

FUNCTION...597
HALT ..732
PROCEDURE597
PROGRAM...597
ROUTINE ...595

Text ..1094
TEXT....................................... 385, 386, 387
The Concatenation Operator539
THEN ...586
THOUS

MM
POINTS (set report coordinate

measure).......................................517
REPORT attribute517

Thread..1062
THREAD 272, 273, 911
THREAD (return current execution thread)

...911
THREAD (set thread-specific memory

allocation) ...272
threading ..846
Threading...1062
THREADLOCKED912

Index 1155

THREADLOCKED (returns current
execution thread locked state).............912

TIE(associate a string value to an
ASTRING)..913

TIED(retrieves a value associated with an
ASTRING ...914

TILED
IMAGE attribute518

TILED (set tiled image)............................518
Time

Standard Time30
TIME ..139
TIME (four-byte time)...............................139
Time Pictures...166
Timer..1001
TIMER..519
TIMER (set periodic event)......................519
TIMES..588, 589
TIP ...520
TIP (set "balloon help" text)520
TipDelay...1063
TipDisplay..1063
TipsFont...1063
TO............................582, 583, 588, 589, 590
TODAY ..915
TODAY (return system date)915
TOGETHER...521
TOOLBAR................................294, 295, 296
TOOLBAR (declare a tool bar)294
TOOLBOX522, 523
TOOLBOX (set toolbox window behavior)

...522
Totals

AVE..401
CNT..409
MAX ...473, 474
MIN...477
SUM ...514

Touched...1064
Transaction Processing

COMMIT...663
LOGOUT..764
ROLLBACK..848

Trappable Run Time Errors1097
Tree control ...434
tree controls in list boxes350
TRN ...524

TRN (set transparent control)524
Truncation

Data Type Conversion Rules566
two-column drop menu291
TYPE..274, 916
TYPE (specify PROCEDURE type definition)
TYPE (type definition)..............................274
TYPE (write string to screen)...................916
Type Conversion..............................566, 570
Type Conversion and Intermediate Results

...570
type definition...274
Type descriptor not static.......................1124
UNBIND ...557, 558
UNBIND (free runtime expression string

variable)..557
UNHIDE ...917
UNHIDE (show hidden control)................917
Unknown assignment operator1124
Unknown case type1124
Unknown clear type1124
Unknown descriptor type1124
Unknown designator kind1124
Unknown equate type1124
Unknown errors1124
Unknown expression kind......................1124
Unknown expression type......................1124
Unknown formal entity1124
Unknown initializer type1124
Unknown label/routine1124
Unknown operator1124
Unknown parameter kind.......................1124
Unknown picture type1124
Unknown screen structure kind1124
Unknown simple formal type..................1124
Unknown special identifier1124
Unknown static label..............................1124
Unknown string kind1124
Unknown structure field1124
Unknown variable context......................1124
Unknown variable type1124
UNLOAD..918
UNLOAD (remove a CALLed DLL from

memory) ...918
UNLOCK..919
UNLOCK (unlock a locked data file)919
UNLOCKTHREAD920

Language Reference Manual 1156

UNLOCKTHREAD (unlock the current
execution thread)920

UNQUOTE...921
UNQUOTE language statement..............921
UNREGISTER ...922
UNREGISTER (unregister event handler)

...922
UNSIGNED..113
UNSIGNED (16/32-bit unsigned integer) 113
UNTIE(disassociate a string value from an

ASTRING)..923
UNTIL588, 589, 590
UP..525
UPDATE ..924
UPDATE (write from screen to USE

variables)..924
UPPER ..925
UPPER (return upper case).....................925
UPR ...404
USE ...526, 527
USE (set field equate label or control update

variable) ...526
UseAddress ...1068
VAL ..926
VAL (return ASCII value)926
valid Clarion label34
Value..1095
VALUE...529
Value not static1124
Variable Size Declarations155
Variables

ANY..141, 142
BFLOAT4 ...119
BFLOAT8 ...121
BYTE..103
CSTRING.....................................130, 131
DATE..137, 138
DECIMAL122, 123
GROUP................................171, 172, 173
Implicit ..147, 148
LONG...108, 109
PDECIMAL...125
PRIVATE..268
PROTECTED.......................................269
PSTRING ...134
REAL..116, 117
SHORT...105

SIGNED..112
SREAL..115
STRING..126, 127
TIME...139, 140
ULONG...111
UNSIGNED ..113
USHORT ..107

Variable-size arrays155
VARIANT ...141
VB to Clarion Syntax................................978
VCR ...530
VCR (set VCR control).............................530
VERTICAL ...531
VIEW....................................... 212, 213, 215
VIEW (declare a "virtual" file)...................212
VIRTUAL (set virtual method)....................82
VIRTUAL Methods...................................175
Visible ..1069
VLBproc 1071, 1072
VLBval..1071
VSCROLL ..455
VscrollPos ..1075
WALLPAPER...532
WALLPAPER (set background image)....532
WATCH..927
WATCH (automatic concurrency check) .927
Watched...1077
WHAT ..928
WHAT (return field from group)928
WheelScroll..1077
WHERE..929
WHILE..................................... 588, 589, 590
wild card match..768
WINDOW 283, 284, 285, 286, 287, 288

MDI child window286, 288
non-MDI window283

WINDOW (declare a dialog window)283
Window Controls and Input Focus...........298
Window Functions609
Window Overview297
Windows Standard Dialog Functions.......661
WindowsVersion1077
WITHNEXT ..533
WITHNEXT (set widow elimination)533
WITHPRIOR ..534
WITHPRIOR (set orphan elimination)534
WIZARD...535

Index 1157

WIZARD (set "tabless" SHEET control) ..535
WndProc..1078
XOR...540
YEAR...931
YEAR (return year of date)931

YIELD...932, 933
YIELD (allow event processing)932
ZOOM ..536
ZOOM (set OLE object zooming)536

Language Reference Manual 1158

	1 - Introduction
	Introduction--The Language Reference Manual
	The Language Reference Manual
	Language Reference -- Chapter Organization
	Documentation Conventions and Symbols
	Reference Item Format
	KEYWORD (short description of intended use)

	Clarion Conventions
	Standard Date
	Standard Time
	Clarion Keycodes

	2 - Program Source Code Format
	Statement Format
	Declaration and Statement Labels
	Structure Termination
	Field Qualification
	Reserved Words
	Special Characters

	Program Format
	PROGRAM (declare a program)
	MEMBER (identify member source file)
	MAP (declare PROCEDURE prototypes)
	MODULE (specify MEMBER source file)
	PROCEDURE (define a procedure)
	CODE (begin executable statements)
	DATA (begin routine local data section)
	ROUTINE (declare local subroutine)
	END (terminate a structure)
	Statement Execution Sequence
	PROCEDURE Calls

	PROCEDURE Prototypes
	Prototype Syntax
	Prototype Parameter Lists - General Syntax
	PROCEDURE Return Types

	Prototype Attributes
	C, PASCAL (parameter passing conventions)
	DERIVED (prevent function overloading)
	DLL (set procedure defined externally in .DLL)
	NAME (set prototype's external name)
	PRIVATE (set procedure private to a CLASS or module)
	PROC (set function called as procedure without warnings)
	PROTECTED (set procedure private to a CLASS or derived CLASS)
	RAW (pass address only)
	REPLACE (set replacement constructor or destructor)
	TYPE (specify PROCEDURE type definition)
	VIRTUAL (set virtual method)

	Procedure Overloading
	Rules for Procedure Overloading
	Name Mangling and C++ Compatibility

	Compiler Directives
	ASSERT (set assumption for debugging)
	BEGIN (define code structure)
	COMPILE (specify source to compile)
	INCLUDE (compile code in another file)
	EQUATE (assign label)
	ITEMIZE (enumeration data structure)
	OMIT (specify source not to be compiled)
	ONCE (prevent duplicate included data)
	SECTION (specify source code section)
	SIZE (memory size in bytes)

	3 - Variable Declarations
	Simple Data Types
	BYTE (one-byte unsigned integer)
	SHORT (two-byte signed integer)
	USHORT (two-byte unsigned integer)
	LONG (four-byte signed integer)
	ULONG (four-byte unsigned integer)
	SIGNED (signed integer)
	UNSIGNED (unsigned integer)
	SREAL (four-byte signed floating point)
	REAL (eight-byte signed floating point)
	BFLOAT4 (four-byte signed floating point)
	BFLOAT8 (eight-byte signed floating point)
	DECIMAL (signed packed decimal)
	PDECIMAL (signed packed decimal)
	STRING (fixed-length string)
	ASTRING (atomic string)
	CSTRING (fixed-length null terminated string)
	PSTRING (embedded length-byte string)
	Implicit String Arrays and String Slicing
	DATE (four-byte date)
	TIME (four-byte time)

	Special Data Types
	ANY (any simple data type)
	LIKE (inherited data type)
	Implicit Variables
	Reference Variables

	Data Declarations and Memory Allocation
	Global, Local, Static, and Dynamic
	Data Declaration Sections
	Variable Size Declarations
	NEW (allocate heap memory)
	DISPOSE (de-allocate heap memory)

	Picture Tokens
	Numeric and Currency Pictures
	Scientific Notation Pictures
	String Pictures
	Date Pictures
	Time Pictures
	Pattern Pictures
	Key-in Template Pictures

	4 - Entity Declarations
	Complex Data Structures
	GROUP (compound data structure)
	CLASS (object declaration)
	INTERFACE (class behavior definition)

	File Structures
	FILE (declare a data file structure)
	INDEX (declare static file access index)
	KEY (declare dynamic file access index)
	MEMO (declare a text field)
	BLOB (declare a variable-length field)
	RECORD (declare record structure)
	Null Data Processing
	FILE Structure Properties
	Environment Files

	View Structures
	VIEW (declare a "virtual" file)
	PROJECT (set view fields)
	JOIN (declare a "join" operation)

	Queue Structures
	QUEUE (declare a memory QUEUE structure)
	Additional QUEUE Considerations

	5 - Declaration Attributes
	Variable and Entity Attributes
	AUTO (uninitialized local variable)
	BINARY (memo contains binary data)
	BINDABLE (set runtime expression string variables)
	CREATE (allow data file creation)
	DIM (set array dimensions)
	DLL (set variable defined externally in .DLL)
	DRIVER (specify data file type)
	DUP (allow duplicate KEY entries)
	ENCRYPT (encrypt data file)
	EXTERNAL (set defined externally)
	FILTER (set view filter expression)
	IMPLEMENTS(add methods to a CLASS)
	INTERFACE (class behavior definition)
	INNER (set inner join operation)
	LINK (specify CLASS link into project)
	MODULE (specify CLASS member source file)
	NAME (set external name)
	NOCASE (case insensitive KEY or INDEX)
	OEM (set international string support)
	OPT (exclude null KEY or INDEX entries)
	ORDER (set view sort order expression)
	OVER (set shared memory location)
	OWNER (declare password for data encryption)
	PRE (set label prefix)
	PRIMARY (set relational primary key)
	PRIVATE (set variable private to a CLASS module)
	PROTECTED (set variable private to a CLASS or derived CLASS)
	RECLAIM (reuse deleted record space)
	STATIC (set allocate static memory)
	THREAD (set thread-specific memory allocation)
	TYPE (type definition)

	6 - Windows
	Window Structures
	APPLICATION (declare an MDI frame window)
	WINDOW (declare a dialog window)
	MENUBAR (declare a pulldown menu)
	TOOLBAR (declare a tool bar)

	Window Overview
	Window Controls and Input Focus
	Field Equate Labels

	Graphics Overview
	Current Target
	Graphics Coordinates

	7 - Reports
	Report Structures
	REPORT (declare a report structure)
	BREAK (declare group break structure)
	DETAIL (report detail line structure)
	FOOTER (page or group footer structure)
	FORM (page layout structure)
	HEADER (page or group header structure)
	Printer Control Properties
	Page Overflow

	8 - Controls
	Control Declarations
	BOX (declare a box control)
	BUTTON (declare a pushbutton control)
	CHECK (declare a checkbox control)
	COMBO (declare an entry/list control)
	ELLIPSE (declare an ellipse control)
	ENTRY (declare a data entry control)
	GROUP (declare a group of controls)
	IMAGE (declare a graphic image control)
	ITEM (declare a menu item)
	LINE (declare a line control)
	LIST (declare a window list control)
	MENU (declare a menu box)
	OLE (declare a window OLE or .OCX container control)
	OPTION (declare a set of RADIO controls)
	PANEL (declare a panel control)
	PROMPT (declare a prompt control)
	PROGRESS (declare a progress control)
	RADIO (declare a radio button control)
	REGION (declare a window region control)
	SHEET (declare a group of TAB controls)
	SPIN (declare a spinning list control)
	STRING (declare a string control)
	TAB (declare a page of a SHEET control)
	TEXT (declare a multi-line text control)

	9 - Window and Report Attributes
	Attribute Property Equates
	PROP:Text
	Attribute Property Parameters
	Arrayed Properties

	Window and Report Attributes
	ABSOLUTE (set fixed-position printing)
	ALONE (set to print without page header, footer, or form)
	ALRT (set window "hot" keys)
	ANGLE (set control display or print angle)
	AT (set position and size)
	AUTO (set USE variable automatic re-display)
	AUTOSIZE (set OLE object resizing)
	AVE (set report total average)
	BEVEL (set 3-D effect border)
	BOXED (set controls group border)
	CAP, UPR (set case)
	CENTER (set centered window position)
	CENTERED (set centered image)
	CHECK (set on/off ITEM)
	CLIP (set OLE object clipping)
	CNT (set total count)
	COLOR (set color)
	COLUMN (set list box highlight bar)
	EXTEND (set document formatting)
	COMPATIBILITY (set OLE control compatibility)
	CREATE (create OLE control object)
	CURSOR (set mouse cursor type)
	DEFAULT (set enter key button)
	DELAY (set repeat button delay)
	DISABLE (set control dimmed at open)
	DOCK (set dockable toolbox window)
	DOCKED (set dockable toolbox window docked at open)
	DOCUMENT (create OLE control object from file)
	DOUBLE, NOFRAME, RESIZE (set window border)
	DRAGID (set drag-and-drop host signatures)
	DROP (set list box behavior)
	DROPID (set drag-and-drop target signatures)
	FILL (set fill color)
	FIRST, LAST (set MENU or ITEM position)
	FLAT (set flat control)
	FONT (set default font)
	FORMAT (set LIST or COMBO layout)
	FORMAT() Runtime Properties
	FORMAT() Style Properties
	FORMAT() Other List Box Properties
	FORMAT() List Box Mouse Click Properties
	FROM (set listbox data source)
	FULL (set full-screen)
	GRAY (set 3-D look background)
	GRID (set list grid-line display color)
	HIDE (set control hidden)
	HLP (set on-line help identifier)
	HSCROLL, VSCROLL, HVSCROLL (set scroll bars)
	ICON (set icon)
	ICONIZE (set window open as icon)
	IMM (set immediate event notification)
	INS, OVR (set typing mode)
	JOIN (set joined TAB scroll buttons)
	KEY (set execution keycode)
	LANDSCAPE (set page orientation)
	LAYOUT (set window orientation)
	LEFT, RIGHT, ABOVE, BELOW (set TAB position)
	LEFT, RIGHT, CENTER, DECIMAL (set justification)
	LINEWIDTH (set line thickness)
	LINK (create OLE control link to object from file)
	MARK (set multiple selection mode)
	MASK (set pattern editing data entry)
	MAX (set maximize control or total maximum)
	MAXIMIZE (set window open maximized)
	MDI (set MDI child window)
	MIN (set total minimum)
	MODAL (set system modal window)
	MSG (set status bar message)
	NOBAR (set no highlight bar)
	NOCASE (case insensitive report BREAK)
	NOMERGE (set merging behavior)
	NOSHEET (set "floating" TABs)
	OPEN (open OLE control object from file)
	PAGE (set page total reset)
	PAGEAFTER (set page break after)
	PAGEBEFORE (set page break first)
	PAGENO (set page number print)
	PALETTE (set number of hardware colors)
	PAPER (set report paper size)
	PASSWORD (set data non-display)
	PREVIEW (set report output to metafiles)
	RANGE (set range limits)
	READONLY (set display-only)
	REPEAT (set repeat button rate)
	REQ (set required entry)
	RESET (set total reset)
	RESIZE (set variable height TEXT control)
	RIGHT (set MENU position)
	ROUND (set round-cornered BOX)
	RTF (declare TEXT control as RichEdit)
	SCROLL (set scrolling control)
	SEPARATOR (set separator line ITEM)
	SINGLE (set TEXT for single line entry)
	SKIP (set Tab key skip or conditional print control)
	SMOOTH (set smooth progress bar increments)
	SPREAD (set evenly spaced TAB controls)
	STATUS (set status bar)
	STD (set standard behavior)
	STEP (set SPIN increment)
	STRETCH (set OLE object stretching)
	SUM (set total)
	SYSTEM (set system menu)
	TALLY (set total calculation times)
	THOUS, MM, POINTS (set report coordinate measure)
	TILED (set tiled image)
	TIMER (set periodic event)
	TIP (set "balloon help" text)
	TOGETHER (set to print on a single page)
	TOOLBOX (set toolbox window behavior)
	TRN (set transparent control)
	UP, DOWN (set TAB text orientation)
	USE (set field equate label or control update variable)
	VALUE (set RADIO or CHECK control USE variable assignment)
	VCR (set VCR control)
	VERTICAL (set vertical progress bar display)
	WALLPAPER (set background image)
	WITHNEXT (set widow elimination)
	WITHPRIOR (set orphan elimination)
	WIZARD (set "tabless" SHEET control)
	ZOOM (set OLE object zooming)

	10 - Expressions
	Overview
	Expression Evaluation

	Operators
	Arithmetic Operators
	The Concatenation Operator
	Logical Operators

	Constants
	Numeric Constants
	String Constants

	Types of Expressions
	Numeric Expressions
	String Expressions
	Logical Expressions
	Property Expressions

	Runtime Expression Evaluation
	BIND (declare runtime expression string variable)
	BINDEXPRESSION(declare runtime expression)
	EVALUATE (return runtime expression string result)
	POPBIND (restore runtime expression string name space)
	PUSHBIND (save runtime expression string name space)
	UNBIND (free runtime expression string variable)

	11 - Assignments
	Simple Assignment Statements
	Operating Assignments
	Deep Assignment
	Reference Assignments
	CLEAR (clear a variable)
	Data Type Conversion Rules
	Base Types
	BCD Operations and Procedures
	Type Conversion and Intermediate Results
	Simple Assignment Data Type Conversion

	12 - Execution Control
	Control Structures
	ACCEPT (the event processor)
	CASE (selective execution structure)
	EXECUTE (statement execution structure)
	IF (conditional execution structure)
	LOOP (iteration structure)

	Execution Control Statements
	BREAK (immediately leave loop)
	CYCLE (go to top of loop)
	DO (call a ROUTINE)
	EXIT (leave a ROUTINE)
	GOTO (go to a label)
	RETURN (return to caller)

	13 - Built-in Procedures
	Procedure Listing by Function
	Internationalization Support

	ABS (return absolute value)
	ACCEPTED (return control just completed)
	ACOS (return arccosine)
	ADD (add an entry)
	ADDRESS (return memory address)
	AGE (return age from base date)
	ALERT (set event generation key)
	ALIAS (set alternate keycode)
	ALL (return repeated characters)
	APPEND (add a new file record)
	ARC (draw an arc of an ellipse)
	ASK (get one keystroke)
	ASIN (return arcsine)
	ATAN (return arctangent)
	BAND (return bitwise AND)
	BEEP (sound tone on speaker)
	BLANK (erase graphics)
	BOR (return bitwise OR)
	BOX (draw a rectangle)
	BSHIFT (return shifted bits)
	BUFFER (set record paging)
	BUILD (build keys and indexes)
	BXOR (return bitwise exclusive OR)
	BYTES (return size in bytes)
	CALL (call procedure from a DLL)
	CALLBACK (register or unregister a FileCallBackInterface)
	CENTER (return centered string)
	CHAIN (execute another program)
	CHANGE (change control field value)
	CHANGES (return changed queue)
	CHOICE (return relative item position)
	CHOOSE (return chosen value)
	CHORD (draw a section of an ellipse)
	CHR (return character from ASCII)
	CLIP (return string without trailing spaces)
	CLIPBOARD (return windows clipboard contents)
	CLOCK (return system time)
	CLONE(duplicate existing control)
	CLOSE (close a data structure)
	COLORDIALOG (return chosen color)
	COMMAND (return command line)
	COMMIT (terminate successful transaction)
	CONTENTS (return contents of USE variable)
	CONVERTANSITOOEM (convert ANSI strings to ASCII)
	CONVERTOEMTOANSI (convert ASCII strings to ANSI)
	COPY (copy a file)
	COS (return cosine)
	CREATE (create an empty data file)
	CREATE (return new control created)
	DATE (return standard date)
	DAY (return day of month)
	DEFORMAT (return unformatted numbers from string)
	DELETE (delete a record)
	DELETEREG (remove a value or key from Windows registry)
	DESTROY (remove a control or file)
	DIRECTORY (get file directory)
	DISABLE (dim a control)
	DISPLAY (write USE variables to screen)
	DRAGID (return matching drag-and-drop signature)
	DROPID (return drag-and-drop string)
	DUPLICATE (check for duplicate key entries)
	ELLIPSE (draw an ellipse)
	EMPTY (empty a data file)
	ENABLE (re-activate dimmed control)
	ENDPAGE (force page overflow)
	ERASE (clear screen control and USE variables)
	ERROR (return error message)
	ERRORCODE (return error code number)
	ERRORFILE (return error filename)
	EVENT (return event number)
	EXISTS (return file existence)
	FIELD (return control with focus)
	FILEDIALOG (return chosen file)
	FILEDIALOGA (extended file dialog)
	FILEERROR (return file driver error message)
	FILEERRORCODE (return file driver error code number)
	FIRSTFIELD (return first window control)
	FLUSH (flush buffers)
	FOCUS (return control with focus)
	FONTDIALOG (return chosen font)
	FONTDIALOGA (return chosen font and character set)
	FORMAT (return formatted numbers into a picture)
	FORWARDKEY (pass keystrokes to control)
	FREE (delete all entries)
	FREESTATE (free resources)
	GET (read a record or entry)
	GETFONT (get font information)
	GETINI (return INI file entry)
	GETNULLS(get the NULL state of a table)
	GETPOSITION (get control position)
	GETREG(get Windows registry entry)
	GETSTATE (return current state of data file)
	HALT (exit program)
	HELP (help window access)
	HIDE (blank a control)
	HOLD (exclusive record access)
	IDLE (arm periodic procedure)
	IMAGE (draw a graphic image)
	INCOMPLETE (return empty REQ control)
	INLIST (return entry in list)
	INRANGE (check number within range)
	INSTANCE (return variable's thread instance address)
	INSTRING (return substring position)
	INT (truncate fraction)
	ISALPHA (return alphabetic character)
	ISLOWER (return lower case character)
	ISSTRING (return field string type or not)
	ISUPPER (return upper case character)
	KEYBOARD (return keystroke waiting)
	KEYCHAR (return ASCII code)
	KEYCODE (return last keycode)
	KEYSTATE (return keyboard status)
	LASTFIELD (return last window control)
	LEFT (return left justified string)
	LEN (return length of string)
	LINE (draw a straight line)
	LOCALE (load environment file)
	LOCK (exclusive file access)
	LOCKTHREAD (re-lock the current execution thread)
	LOG10 (return base 10 logarithm)
	LOGE (return natural logarithm)
	LOGOUT (begin transaction)
	LONGPATH (return long filename)
	LOWER (return lower case)
	MATCH (return matching values)
	MAXIMUM (return maximum subscript value)
	MESSAGE (return message box response)
	MONTH (return month of date)
	MOUSEX (return mouse horizontal position)
	MOUSEY (return mouse vertical position)
	NAME (return file name)
	NEXT (read next record in sequence)
	NOMEMO (read file record without reading memo)
	NOTIFY (send safe information to a receiver thread)
	NOTIFICATION (receive information from sender thread)
	NULL (return null file field)
	NUMERIC (return numeric string)
	OMITTED (return omitted parameters)
	OPEN (open a data structure)
	PACK (remove deleted records)
	PATH (return current directory)
	PEEK (read memory address)
	PENCOLOR (return line draw color)
	PENSTYLE (return line draw style)
	PENWIDTH (return line draw thickness)
	PIE (draw a pie chart)
	POINTER (return last queue entry position)
	POKE (write to memory address)
	POLYGON (draw a multi-sided figure)
	POPUP (return popup menu selection)
	POSITION (return record sequence position)
	POST (post user-defined event)
	PRAGMA (control pragma settings from source)
	PRESS (put characters in the buffer)
	PRESSKEY (put a keystroke in the buffer)
	PREVIOUS (read previous view record in sequence)
	PRINT (print a report structure)
	PRINTERDIALOG (return chosen printer)
	POPERRORS (return error information)
	PUSHERRORS (write error information)
	PUT (re-write record)
	PUTINI (set INI file entry)
	PUTREG (write value to Windows registry)
	QUOTE (replace string special characters)
	RANDOM (return random number)
	RECORDS (return number of rows in data set)
	REGISTER (register event handler)
	REJECTCODE (return reject code number)
	REGET (re-get record)
	RELEASE (release a held record)
	REMOVE (erase a file)
	RENAME (change file directory name)
	RESET (reset record sequence position)
	RESTORESTATE (restore state of data file)
	RESUME (resume thread execution)
	RIGHT (return right justified string)
	ROLLBACK (terminate unsuccessful transaction)
	ROUND (return rounded number)
	ROUNDBOX (draw a box with round corners)
	RUN (execute command)
	RUNCODE (return program exit code)
	SELECT (select next control to process)
	SELECTED (return control that has received focus)
	SEND (send message to file driver)
	SET (initiate sequential file processing)
	SET3DLOOK (set 3D window look)
	SETCLIPBOARD (set windows clipboard contents)
	SETCLOCK (set system time)
	SETCOMMAND (set command line parameters)
	SETCURSOR (set temporary mouse cursor)
	SETDROPID (set DROPID return string)
	SETFONT (specify font)
	SETKEYCHAR (specify ASCII code)
	SETKEYCODE (specify keycode)
	SETNONULL (set file field non-null)
	SETNULL (set file field null)
	SETNULLS(set the null state of columns)
	SETPATH (change current drive and directory)
	SETPENCOLOR (set line draw color)
	SETPENSTYLE (set line draw style)
	SETPENWIDTH (set line draw thickness)
	SETPOSITION (specify new control position)
	SETTARGET (set current window or report)
	SETTODAY (set system date)
	SHORTPATH (return short filename)
	SHOW (write to screen)
	SHUTDOWN (arm termination procedure)
	SIN (return sine)
	SKIP (bypass records in sequence)
	SORT (sort queue entries)
	SQL (use SQL code)
	SQLCALLBACK (register or unregister a SQLCallBackInterface)
	SQRT (return square root)
	START (return new execution thread)
	STATUS (return file or window/report status)
	STOP (suspend program execution)
	STREAM (enable operating system buffering)
	STRPOS (return matching value position)
	SUB (return substring of string)
	SUSPEND (suspend thread execution)
	TAN (return tangent)
	THREAD (return current execution thread)
	THREADLOCKED (returns current execution thread locked state)
	TIE(associate a string value to an ASTRING)
	TIED(retrieves a value associated with an ASTRING)
	TODAY (return system date)
	TYPE (write string to screen)
	UNHIDE (show hidden control)
	UNLOAD (remove a CALLed DLL from memory)
	UNLOCK (unlock a locked data file)
	UNLOCKTHREAD (unlock the current execution thread)
	UNQUOTE (remove string special characters)
	UNREGISTER (unregister event handler)
	UNTIE(disassociate a string value from an ASTRING)
	UPDATE (write from screen to USE variables)
	UPPER (return upper case)
	VAL (return ASCII value)
	WATCH (automatic concurrency check)
	WHAT (return field from group)
	WHERE (return field position in group)
	WHO (return field name from group)
	YEAR (return year of date)
	YIELD (allow event processing)

	Appendix A - DDE, OLE, and .OCX
	Dynamic Data Exchange
	DDE Overview
	DDE Events

	DDE Procedures
	DDEACKNOWLEDGE (send acknowledgement from DDE server)
	DDEAPP (return server application)
	DDECHANNEL (return DDE channel number)
	DDECLIENT (return DDE client channel)
	DDECLOSE (terminate DDE server link)
	DDEEXECUTE (send command to DDE server)
	DDEITEM (return server item)
	DDEPOKE (send unsolicited data to DDE server)
	DDEQUERY (return registered DDE servers)
	DDEREAD (get data from DDE server)
	DDESERVER (return DDE server channel)
	DDETOPIC (return server topic)
	DDEVALUE (return data value sent to server)
	DDEWRITE (provide data to DDE client)

	Object Linking and Embedding
	OLE Overview
	OLE Container Properties
	OLEDIRECTORY (get list of installed OLE/OCX)

	OLE (.OCX) Custom Controls
	OLE custom control Overview
	.OCX Control Properties
	Callback Functions

	Calling OLE Object Methods
	Method Syntax Overview
	Parameter Passing to OLE/OCX Methods

	OCX Library Procedures
	OCXREGISTERPROPEDIT (install property edit callback)
	OCXREGISTERPROPCHANGE (install property change callback)
	OCXREGISTEREVENTPROC (install event processing callback)
	OCXUNREGISTERPROPEDIT (un-install property edit callback)
	OCXUNREGISTERPROPCHANGE (un-install prop change callback)
	OCXUNREGISTEREVENTPROC (un-install event process callback)
	OCXGETPARAMCOUNT (return number of parameters for current event)
	OCXGETPARAM (return current event parameter string)
	OCXSETPARAM (set current event parameter string)
	OCXLOADIMAGE (return an image object)

	Appendix B - Events
	Events
	Field-Independent Events
	EVENT:AlertKey
	EVENT:BuildDone
	EVENT:BuildFile
	EVENT:BuildKey
	EVENT:CloseDown
	EVENT:CloseWindow
	EVENT:Completed
	DDE Events
	EVENT:Docked
	EVENT:Undocked
	EVENT:GainFocus
	EVENT:Iconize
	EVENT:Iconized
	EVENT:LoseFocus
	EVENT:Maximize
	EVENT:Maximized
	EVENT:Move
	EVENT:Moved
	EVENT:Notify
	EVENT:OpenWindow
	EVENT:PreAlertKey
	EVENT:Restore
	EVENT:Restored
	EVENT:Resume
	EVENT:Size
	EVENT:Sized
	EVENT:Suspend
	EVENT:Timer

	Field-Specific Events
	EVENT:Accepted
	EVENT:AlertKey
	EVENT:ColumnResize
	EVENT:Contracted
	EVENT:Contracting
	EVENT:Drag
	EVENT:Dragging
	EVENT:Drop
	EVENT:DroppedDown
	EVENT:DroppingDown
	EVENT:Expanded
	EVENT:Expanding
	EVENT:Locate
	Mouse Events
	EVENT:NewSelection
	EVENT:PageDown
	EVENT:PageUp
	EVENT:PreAlertKey (Field Specific)
	EVENT:Rejected
	EVENT:ScrollBottom
	EVENT:ScrollDown
	EVENT:ScrollDrag
	EVENT:ScrollTop
	EVENT:ScrollTrack
	EVENT:ScrollUp
	EVENT:Selected
	EVENT:TabChanging

	Modal Events

	Appendix C - Runtime Properties
	PROP:AcceptAll
	PROP:Active
	PROP:AlwaysDrop
	PROP:AppInstance
	PROP:AssertHook
	PROP:AssertHook2
	PROP:AutoPaper
	PROP:BreakVar
	PROP:Buffer
	PROP:Checked
	PROP:Child and PROP:ChildIndex
	PROP:ChoiceFeq
	PROP:ClientHandle
	PROP:ClientWndProc
	PROP:ClipBits
	PROP:ColorDialogHook
	PROP:DDEMode
	PROP:DDETimeOut
	PROP:DeferMove
	PROP:Edit
	PROP:Enabled
	PROP:EventsWaiting
	PROP:ExeVersion
	PROP:FatalErrorHook
	PROP:FileDialogHook
	PROP:FlushPageNumFunc
	PROP:FlushPreview
	PROP:Follows
	PROP:FontDialogHook
	PROP:HaltHook
	PROP:Handle
	PROP:HeaderHeight
	PROP:HscrollPos
	PROP:IconList
	PROP:ImageBits
	PROP:ImageBlob
	PROP:InitAStringHook
	PROP:Interface
	PROP:InToolbar
	PROP:Items
	PROP:LazyDisplay
	PROP:LFNSupport
	PROP:LibHook
	PROP:LibVersion
	PROP:Line and PROP:LineCount
	PROP:LineHeight
	PROP:MaxHeight
	PROP:MaxWidth
	PROP:MessageHook
	PROP:MinHeight
	PROP:MinWidth
	PROP:NextField
	PROP:NextPageNo
	PROP:NextTabStop and PROP:PrevTabStop
	PROP:NoHeight and PROP:NoWidth
	PROP:NoTips
	PROP:NumTabs
	PROP:Parent
	PROP:Pixels
	PROP:PrinterDialogHook
	PROP:PrintMode
	PROP:Progress
	PROP:PropVscroll
	PROP:RejectCode
	PROP:ScreenText
	PROP:SelStart (or PROP:Selected) and PROP:SelEnd
	PROP:Size
	PROP:SnapHeight and PROP:SnapWidth
	PROP:StatusFont
	PROP:StopHook
	PROP:SystemPropHook
	PROP:TabRows
	PROP:Target
	PROP:TempImage
	PROP:TempImagePath
	PROP:TempImageStatus
	PROP:TempNameFunc
	PROP:TempPagePath
	PROP:TempPath
	PROP:Thread
	PROP:Threading
	PROP:TipDelay and PROP:TipDisplay
	PROP:TipsFont
	PROP:Touched
	PROP:Type
	PROP:UpsideDown
	PROP:UseAddress
	PROP:Visible
	PROP:VLBproc and PROP:VLBval
	PROP:Vscroll
	PROP:VscrollPos
	PROP:Watched
	PROP:WheelScroll
	PROP:WindowsVersion
	PROP:WndProc
	PROP:Xorigin and PROP:YOrigin
	Runtime VIEW and FILE Properties
	PROP:Completed
	PROP:ConnectString
	PROP:CurrentKey
	PROP:DataPath
	PROP:Details
	PROP:DriverLogsoutAlias
	PROP:FetchSize
	PROP:Field
	PROP:FieldsFile
	PROP:File
	PROP:Files
	PROP:GlobalHelp
	PROP:Held
	PROP:Log
	PROP:Logout
	PROP:LogoutIsolationLevel
	PROP:MaxStatements
	PROP:Profile
	PROP:ProgressEvents
	PROP:Record
	PROP:SQLDriver
	PROP:StmtAttr
	PROP:SupportsOp
	PROP:SupportsType
	PROP:Text (MEMO Property)
	PROP:Value

	Appendix D - Error Codes
	Trappable Run Time Errors
	Non-Trappable Run Time Errors
	Compiler Errors
	Specific Errors
	Unknown errors

	Appendix E - Legacy Statements
	Legacy Statements
	BOF (return beginning of file)
	EOF (return end of file)
	FUNCTION (define a function)
	POINTER (return relative record position)
	SHARE (open data file for shared access)

	Index

