

Advanced Topics & Reference Guide 2

COPYRIGHT 1994-2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity
Incorporated. It may not, in whole or part, be copied, photocopied, reproduced, translated,
or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from SoftVelocity Incorporated.

This publication supports Clarion. It is possible that it may contain technical or
typographical errors. SoftVelocity Incorporated provides this publication “as is,”
without warranty of any kind, either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:

SoftVelocity is a trademark of SoftVelocity Incorporated.
Clarion is a trademark of SoftVelocity Incorporated.
Btrieve is a registered trademark of Pervasive Software.
Microsoft , Windows , and Visual Basic are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (1003)

Contents and Introduction 3

Contents:
Introduction 5

Advanced Topics: 7
Clarion 6 Migration Tips...7

DLL Initialization..7
Change of EVALUATE Error Codes ...7
Embedding code when closing a Process procedure...8
General Rules regarding your data and the new Thread Model...................................9
Heap Overflow Error when migrating applications..9
ISAM File Access Performance ..9
Migrating Large Dictionaries and Data Paths ...10
Migration of hand coded project files ..10
POINTER(File) and POSITION(File) ..11
Remove MDI attribute from dockable toolbar windows ..11
TXA Comparison Technique...11
Use of Error Managers during DLL Initialization ...12

Dictionary Class...13
The New Thread Model of Clarion 6 ...14
Launching a thread - behind the scenes ...15

Language Utility Reference: 17
Clarion Language Utilities ...17

BeginUnique (Set Application to Run in a Single Process) ..18
BLOBTOFILE (Copy Data from BLOB Field to File)...19
BYTETOHEX (convert a BYTE to Hexadecimal)..20
CreateDirectory (Create a directory)...21
EndUnique (Close an application's event handle) ..22
FileExists (Confirm file existence)...23
FILETOBLOB (Copy data from a file to a BLOB field)..24
FullDrag (Query/Change Window Drag Setting)...25
GetFileDate (Get the file date) ..26
GetFileTime (Get the file time)..27
GETREG(get Windows registry entry) ..28
GetTempFileName (Generate a temporary file) ...29
GetTempPath (Return TMP or TEMP environment path) ..30
GetUserName (Return Network User Name) ...31
IsTermServer (Verify Terminal Server Usage) ...32
LONGTOHEX (convert an unsigned LONG to Hexadecimal)33
PROP:WindowsVersion ..34
PUTREG (write value to Windows registry)..35
RemoveDirectory (Remove a directory) ...37
ResizeImage (Resize an image to fit a control) ..38
SHORTTOHEX (convert an unsigned SHORT to Hexadecimal)39

Advanced Topics & Reference Guide 4

ValidateOLE (Validate OLE Control Creation)..40
WindowExists (Validate Window Existence)...41

Commonly Used Equates..42
Template Equates (TPLEQU.CLW)..55

Project System Reference 59
Introduction ...59
Project System Macros ...61
Basic Compiling and Linking...66
Conditional Processing and Flow Control...71
SoftVelocity #pragmas ..79
Predefined Compiler Flags ...114
Project System Examples ...115
Module Definition Files (.EXP Files) ...127
Special Considerations for One-Piece (Single) Executables....................................135
Version Information Resource Files..137

Multi Language Programming 139
Overview ...139
Compiler Integration..140
Resolving Data Types...142
Prototyping 3GL Functions in Clarion ...153
Parameter Data Types..154
Return Data Types..156
Passing Parameters..157
Resolving Calling Conventions ...159
Resolving Naming Conventions..161
Programming Considerations ...164

API Calls and Advanced Resources 169
Prototypes and Declarations...169
Accessing Clarion's Runtime Library from C/C++ or Modula-2 Code172
Standard C Functions in Clarion's Runtime Library..187

Index: 201

Contents and Introduction 5

Introduction
Welcome to the Advanced Topics and Reference Guide! This document contains many
diverse topics that are targeted for the more experienced Clarion programmer, although
all users will find some parts informative and useful.

Topics include:

 A reference for commonly used EQUATES found in generated applications
and hand coded examples.

 A brief overview of the new Dictionary Class used in all generated
applications (that use a dictionary).

 Several topics regarding the new Thread Model of Clarion 6

 Migration Tips – An invaluable source when moving applications and projects
from earlier versions to Clarion 6

 A reference describing the Clarion Language Utilities, extensions of the
language to help ease your programming tasks

 An in depth reference of the Clarion Project System

 Multi-langauge programming in Clarion

 Using external API calls with your Clarion Code

Advanced Topics & Reference Guide 6

Advanced Topics 7

Advanced Topics:
Clarion 6 Migration Tips

This topic is designed as a quick reference for developers and programmers who are
migrating applications to Clarion 6 from prior versions.

The following are changes in C6 that need to be reviewed by all developers:

DLL Initialization
Enforcement of threaded variables in multi-DLL applications is critical in Clarion 6. In
older versions, if your file definitions are set to "open in current thread" in the dictionary
(the THREAD attribute is set in the FILE definition), your file definitions in your DLLs must
match that definition. To ensure this, examine each application’s global file control
section, and make sure that all of your files are set to 'ALL THREADED' in the Threaded
drop list.

You CANNOT mix thread and non-threaded attributes on files in a multi-dll
application. Although this programming style was permitted in earlier versions of Clarion,
the initialization of preemptive threads will not allow this in Clarion 6.

You can use either setting, thread or non-threaded, as long as it’s consistent across all
DLLs and your executable.

Change of EVALUATE Error Codes

The error codes posted by the EVALUATE statement have been modified in Clarion 6:

1010 - formerly 800: Bad expression syntax
1011 - formerly 801: Unknown identifier in the expression
1012 - formerly 802: Mismatched POPBIND

Advanced Topics & Reference Guide 8

Embedding code when closing a Process procedure
The Process procedure used with the ABC templates calls ThisProcess.Close() after
ThisWindow.Kill has fully completed. Consequently, any object created in the scope of
the process window which is called inside ThisProcess.Close() will cause a GPF since
the destructor for that object will already have completed during ThisWindow.Kill.

In Clarion 6, the ViewManager class destructor used with the ProcessClass is now calling
ThisProcess.Close() to make sure that the VIEW is closed. This was not needed in
previous versions of Clarion because local VIEWs were automatically closed when a
procedure exited. With the new threading model, local VIEWs are now not automatically
closed until the thread is destroyed.

There is a distinct chance that any call to a local object inside ThisWindow.Close() will
cause a GPF when exiting the process procedure, because it has already been disposed
by the time the final ThisProcess.Close() call happens.

Anyone embedding source code in the ThisWindow.Close() method needs to add some
kind of condition surrounding any call to a local object that stops it happening after
ThisWindow.Kill() has occurred.

Advanced Topics 9

General Rules regarding your data and the new Thread Model
1. Use the THREAD attribute on global Data (file, class, group, queue or simple types).

2. Use the THREAD attribute on module Data (file, class, group, queue or simple
types).

3. Avoid the use of static variables.

4. Don't pass the address of anything within a START command - this was a
common trick used by people to communicate between threads.

If you do any of the above you must make them thread safe. Refer to the Multi Threaded
Programming PDF for detailed information on this process.

Local data (including classes that are normally instantiated locally) is automatically
threaded (unless you put the STATIC attribute on it).

Heap Overflow Error when migrating applications

During the early testing phase of Clarion 6, it was noted that some applications would post a
“Heap Overflow” error when attempting to load applications of prior Clarion versions into the
Clarion 6 IDE.

In nearly all cases, the solution is to first export the application to a text file (TXA), and then
import it as text into the Clarion 6 environment.

ISAM File Access Performance
Some users have reported that if there is any experience of slow file accesses when using ISAM
files, switching off the Defer opening files until accessed in the application’s Global Properties -
File Control will improve the performance.

Advanced Topics & Reference Guide 10

Large WINDOW structures

In each control that is populated in a WINDOW structure in Clarion 6, there is now extra
information for each control that takes about 10 extra bytes per control. This may cause
some large and complex windows to not import properly from prior versions.
You may need to shorten some use variables or remove controls and create/destroy them at
runtime or redesign the window to make it a bit more efficient.

Migrating Large Dictionaries and Data Paths
One of the nice new features of this release is a new system property:
SYSTEM{PROP:DataPath}.

With this, you can set your data file names in the dictionary to have no path in them, and
then set the data path once in the program start up. From there, each file will inherit the
common data path.

With that in mind, dictionaries created in a prior version will continue to work. The only
issue is where file names and structures are stored exclusively in a DLL and referenced
from the EXE. In prior versions, you had to define these objects in the EXE as
EXTERNAL, and did not care if the files in this object were threaded or not. In this
release, any objects that contain threaded data must add the THREAD attribute to the
object definition.

Mixing threaded and non-threaded data in an object is dangerous and likely to cause
problems.

Migration of hand coded project files

All projects compiled in Clarion 6 are 32-bit. Prior to loading older project files (.PR or .PRJ) into
the Clarion 6 environment, load them into your favorite text editor and make sure that the
following pragma entry is set properly:

 #system win32

You can also load the project into the project editor. When you press OK to close the project, the
#system pragma will be automatically updated.

Advanced Topics 11

POINTER(File) and POSITION(File)
The behavior of POINTER(File) is different for different file systems. For example, the first record
in a TopSpeed file doesn't have a pointer value of 1.

It may still be safe to use for certain file systems, but for code portability, POSITION(File) is the
way to go.

Remove MDI attribute from dockable toolbar windows

In Clarion 6, the MDI attribute is no longer permitted on any toolbar window that is dockable
(windows with the DOCK and TOOLBOX attributes).

TXA Comparison Technique
If you are having troubles with applications converted to Clarion 6 using DLLs, there is a
possibility that the DLL that was converted contained hidden information (like a third party
library) that was not detected by the conversion process.

To confirm this, try the following:

1. Export the old DLL application to TXA format (Export Text)

2. Export a new Clarion 6 DLL application to TXA format (Export Text)

3. Next, compare the TXA's up through the first procedure (i.e., the program/global
area). This might give you some ideas regarding information converted from an old
application that may not be compatible, or does not exist in Clarion 6.

Advanced Topics & Reference Guide 12

Use of Error Managers during DLL Initialization
A change has also been made in the DLL initialization of ABC-based applications. During
initialization, the DLL uses a LocalErrors Class rather than the Global executable's
GlobalErrors Class.

For example, in a multi DLL application and during initialization of the DLL containing
Global data, if errors need to be posted to the error manager, they will be posted to the
DLL's local error manager (LocalErrors) instead of the application’s global error manager.
The reason for this is that the DLL's error manager is not set to use the application’s error
manager until after initialization of the DLL. During initialization, the DLL uses the
LocalErrors Manager rather than the executable’s GlobalErrors Manager. Inside the DLL
Init procedure, extra code is generated to assign GlobalErrors, and also assign the
passed error manager to the already initialized file managers and relation managers.

Developers who modified the global error manager in their applications using DLLs will
now need to be aware of the new local error managers that are applied.

Advanced Topics 13

Dictionary Class

The new Clarion threading model dictates that the existing File and Relation Managers use
threaded objects (i.e. a new instance on every thread).

One of the effects of this is that the traditional ABC code that initializes both File and Relation
Managers (contained in the DctInit generated procedure) now has to be executed whenever a
new thread is started. Likewise, the Managers’ kill code (traditionally contained in DctKill) must be
called whenever a thread is terminated.

To facilitate this, a small globally defined class called Dictionary will be generated into every
ABC template based application that does not have its global data defined external to the
application. (i.e. the File and Relation managers compiled locally). The Dictionary object contains
only construct and destruct methods but, more important, it is a threaded object.

Example:

Dictionary CLASS,THREAD
Construct PROCEDURE
Destruct PROCEDURE

END

Dictionary.Construct PROCEDURE
CODE
DctInit()

Dictionary.Destruct PROCEDURE
CODE
DctKill()

This means that the Construct method will be called whenever a new thread comes into existence
and the Destruct method will be called whenever a thread is terminated. The constructor calls
DctInit and the destructor calls DctKill. Therefore, DctInit is called whenever a thread is started
and DctKill is now called whenever a thread is terminated; thus ensuring that threaded File and
Relation managers are created and destroyed correctly.

Advanced Topics & Reference Guide 14

 The New Thread Model of Clarion 6
Clarion 6 introduces a new, and more powerful, thread support in the templates and
runtime library.

The new thread model now uses preemptive threads. Typical Clarion programs won’t
require more than a "compile and link" to get the benefits of the new thread model.

Some advantages of the new model are:

• It is much easier to access COM objects

• You can have threads running independently of other threads.

• Programs are more stable.

The new thread model also makes the OLE layer much easier to work with because the
object will run on the Clarion thread whereas currently it is run on its own separate
thread.

For more detailed information, see the Multi-Threaded Programming PDF

Advanced Topics 15

Launching a thread - behind the scenes
With the advent of two new language statements supporting thread management in Clarion 6
(SUSPEND and RESUME), it is important to understand that there are a few things that are
initialized and executed behind the scenes by the runtime library each time a thread is STARTed.

Here is the sequence of actions performed by the launching thread and the runtime library(RTL)
each time a thread is STARTed:

1. Launching Thread executes START(ThreadProc)

2. RTL creates the physical thread in suspended state.

3. RTL resumes the launched thread created in step 2.

4. RTL sets an internal semaphore to a non-signaled state.

5. Launching Thread waits for the semaphore from the RTL.

6. RTL creates instances of threaded variables and calls initialization routines for them.

7. RTL sets the semaphore to signaled state.

8. RTL suspends the launched thread creates in step 2.

9. Launching Thread continues program execution.

The launching thread will continue until it encounters the ACCEPT statement. Upon
execution of the ACCEPT statement:

10. RTL resumes the launched thread.

11. RTL calls the entry point of the ThreadProc.

Therefore, a launched thread will remain suspended until the next call to ACCEPT from
the launching thread. Only initialization and constructors for threaded variables are
executed.

The use of RESUME with the START statement immediately executes Step 10 above
without waiting for the call to ACCEPT. In other words, use of RESUME with START
does not depend on the ACCEPT statement for resuming thread execution. This allows a
new thread to be started from windowless threads.

The same can be said by using the SUSPEND statement immediately after START, e.g.,
SUSPEND immediately stops thread execution and does not wait for the ACCEPT loop.

Advanced Topics & Reference Guide 16

Reference 17

Language Utility Reference:
Clarion Language Utilities

The Clarion Language Utilities refers to a set of prototypes designed to give your existing
applications extra functions and flexibility.

These utilities are included as source in the Clarion \LIBSRC folder. To add the
prototypes described below to your existing applications, you need only include the
CWUTIL.INC file in the Global Map section of your program:

INCLUDE('CWUTIL.INC'),ONCE

Advanced Topics & Reference Guide 18

BeginUnique (Set Application to Run in a Single Process)

BeginUnique(applicationname)

BeginUnique Sets an application to run as a single process

applicationname
A string constant or variable that specifies the full path and name of your
application. Example: ‘C:\INVOICE\INVOICE.EXE’

BeginUnique returns FALSE if the program specified in applicationname is already running
(active). If not running, BeginUnique returns an event number specified by Windows. This event
number can be used by the EndUnique statement to terminate the single process mode.

Return Data Type: LONG

Example:
IF NOT BeginUnique(GLO:ApplicationName)
MESSAGE(CLIP(GLO:ApplicationName) & ‘ already running.’

ELSE
RUN(GLO:ApplicationName)

END

See Also: EndUnique

Reference 19

BLOBTOFILE (Copy Data from BLOB Field to File)

BLOBTOFILE(bloblabel, filename)

BLOBTOFILE Copy the contents of a BLOB field to an external file.

bloblabel The fully qualified label of the BLOB field. (Example: Customer.BlobImage)

filename A string constant or variable that names the output file to copy the BLOB to.

BLOBTOFILE is used to copy the contents of a BLOB to an external file. If the copy fails for any
reason, BLOBTOFILE returns the ERRORCODE posted.

BLOBTOFILE (and FILETOBLOB) are simply binary-to-binary operations.

If you need to save images to a BLOB, and later restore them to an output file, the type of image
should also be saved in the database (JPG, GIF, BMP, etc.). Using BLOBTOFILE to save to a
different extension can produce unpredictable results.

Return Data Type: SIGNED

Example:
IF BLOBTOFILE(CUS:ImageBlob,'imagename.jpg')!returns an ERRORCODE if copy fails

MESSAGE('BLOB did not copy due to the following ERRORCODE: ' & ERRORCODE())
END

See Also: FILETOBLOB

BLOB

Advanced Topics & Reference Guide 20

BYTETOHEX (convert a BYTE to Hexadecimal)

BYTETOHEX(number, flag)

BYTETOHEX Convert a BYTE value to its Hexadecimal equivalent.

number A BYTE variable or constant

flag A BYTE used to designate a lower or upper case HEX symbol (A,B,C,D,E)

BYTETOHEX is used to convert a number to its Hexadecimal equivalent. If the flag variable is
non-zero, any non-numeric Hexadecimal symbols are returned in lowercase. If zero (default), the
non-numeric digits are returned in uppercase.

Return Data Type: STRING

Example:
BYTETOHEX(255,0) !returns ‘FF’
BYTETOHEX(255,1) !returns ‘ff’

See Also:

 SHORTTOHEX

 LONGTOHEX

Reference 21

CreateDirectory (Create a directory)

CREATEDIRECTORY(directoryname)

CREATEDIRECTORY Create a new directory

directoryname A string constant or variable that stores the directory name

CREATEDIRECTORY creates a new directory with the name passed in the directoryname
parameter. CREATEDIRECTORY returns zero (0) if successful, and non-zero if not. You can
query the ERRNO built-in function to trap for the following error codes:

 3 – Path not found (One of the higher path components in directoryname)

 5 – Access Denied (Directory may already exist)

On some Windows versions, any attempt to create multiple levels of directories
(For example. ‘C:\dir1\dir2\dir3’) will fail, but the error code will not be returned correctly.
CREATEDIRECTORY will still post a non-zero value, which you can use to trap and post a
generic "Directory Not Created" error.

Return Data Type: BYTE

Example:
MODULE('')

errno(),*SIGNED,NAME('__errno__') !proptotype built-in error flag
END

IF CREATEDIRECTORY(GLO:NewDirectoryName)
CASE Errno()
OF 3
MESSAGE(‘Path Not Found’)

OF 5
MESSAGE(‘Access Denied’)

END
END

See Also:

 RemoveDirectory

Advanced Topics & Reference Guide 22

EndUnique (Close an application's event handle)

EndUnique(eventnumber)

EndUnique Closes an application’s event number

eventnumber
A numeric constant or variable that uniquely identifies an application event.

EndUnique is used to invalidate the specified application event handle. This is useful where a
function using BeginUnique was no longer valid, and you need to override the single event
process when subsequent applications are started.

Example:
EndUnique(GLO:AppEventNumber)

See Also:

 BeginUnique

Reference 23

FileExists (Confirm file existence)

FILEEXISTS(filename)

FILEEXISTS Confirm the existence of a file

filename A string constant or variable containing the name of the file (and path, if
applicable)

FILEEXISTS confirms the existence of a file. If FILEEXISTS returns TRUE (1), the file exists. If
FILEEXISTS returns FALSE (0), the file specified in the filename parameter does not exist.

Return Data Type: BYTE

Example:
IF NOT FILEEXISTS(GLO:NewFile) !If the file does not exist
DO CreateFile !Call the ROUTINE to create it

END

IF NOT FILEEXISTS(‘C:\INVOICE\Config.dat’) !Does the config file exists
InitConfig !Call init procedure

END

Advanced Topics & Reference Guide 24

FILETOBLOB (Copy data from a file to a BLOB field)
FILETOBLOB(filename, bloblabel)

FILETOBLOB Copy the contents of a file to a BLOB field.

filename A string constant or variable that names the input file to copy to a BLOB field.

bloblabel The fully qualified label of the BLOB field. (Example: Customer.BlobImage)

FILETOBLOB is used to copy the contents of a file to a BLOB field. If the copy was unsuccessful,
FILETOBLOB returns the ERRORCODE posted.

Return Data Type: SIGNED

Example:
IF FILETOBLOB(GLO:ImageFilename, CUS:ImageBlob) !returns an ERRORCODE if copy fails

MESSAGE(CLIP(GLO:ImageFilename) & ' was not copied - ERRORCODE: ' &
ERRORCODE())
END

See Also:

 BLOBTOFILE

BLOB

Reference 25

FullDrag (Query/Change Window Drag Setting)

FULLDRAG(< setdragflag >)

FULLDRAG Query and/or change the full window drag settings

setdragflag A BYTE variable or constant. TRUE (1) or FALSE (0)

FULLDRAG returns the current window drag setting. If the optional setdragflag is set to TRUE
(1), full window dragging is enabled. If the optional setdragflag is set to FALSE (0), full window
dragging is disabled and only the window frame will appear when dragging a window.

Return Data Type: LONG

Example:
IF NOT FULLDRAG() !If full window dragging is OFF

FULLDRAG(1) !Enable it
END

Advanced Topics & Reference Guide 26

GetFileDate (Get the file date)

GETFILEDATE(filename)

GETFILEDATE Return the date stamp of a file

filename A string constant or variable containing the name of the file (and path, if
applicable)

GETFILEDATE returns the date stamp of the file specified by the filename parameter. The date is
returned as a LONG that is deformatted and returned in an @D2 picture format. If the file is
invalid or does not exist, GETFILEDATE returns a zero (0).

Return Data Type: LONG

Example:

Filedate = GETFILEDATE(LOC:Filename)

Reference 27

GetFileTime (Get the file time)

GETFILETIME(filename)

GETFILETIME Returns the time stamp of a file

filename A string constant or variable containing the name of the file (and path, if
applicable)

GETFILETIME returns the time stamp of the file specified by the filename parameter. The time is
returned as a LONG that is deformatted and returned in an @T4 picture format. If the file is
invalid or does not exist, GETFILETIME returns a zero (0).

Return Data Type: LONG

Example:

Filetime = GETFILETIME(LOC:Filename)

Advanced Topics & Reference Guide 28

GETREG(get Windows registry entry)

 GETREG(LONG root, STRING keyname [, STRING valuename]),STRING

__

GETREG Gets the value of a specific key and/or value from the system registry.

root The root section of the registry from which to obtain the value. Valid values
for this are defined in equates.clw and are as follows:
REG_CLASSES_ROOT
REG_CURRENT_USER
REG_LOCAL_MACHINE
REG_USERS
REG_PERFORMANCE_DATA
REG_CURRENT_CONFIG
REG_DYN_DATA

keyname The key name of the key whose value is to be queried. This may contain a
path separated by backslash ‘\’ characters.

valuename The name of the value to be queried, if omitted, the value associated directly
with the key is returned.

The GETREG function returns the value of named entry in the system
registry as a Clarion string. If the requested entry does not exist, an empty
string is returned.

Return Data Type: STRING

Example:
PROGRAM
MAP.

INCLUDE('EQUATES')
CurrentPath CSTRING(100)
ColorScheme CSTRING(100)

CODE
CurrentPath =|
GETREG(REG_LOCAL_MACHINE,'SOFTWARE\SoftVelocity\Clarion6','root')
!Returns root directory of Clarion 6 install
ColorScheme =|
GETREG(REG_CURRENT_USER,'Control Panel\Current','Color Schemes')
!get the current user's color scheme

See Also: PUTREG, DELETEREG

Reference 29

GetTempFileName (Generate a temporary file)

GETTEMPFILENAME(prefix, <pathname>)

GETTEMPFILENAME Returns the name of a temporary file

prefix A string constant or variable naming the prefix (first three letters) of the
temporary file. If blank, the default prefix used is ‘$$$’

pathname A string constant or variable naming the location of the temporary file. If
omitted, the system TEMP or TMP directory path is used.

GETTEMPFILENAME is used to generate a temporary file. If the pathname specified is invalid,
GETTEMPFILENAME returns an empty string.

Make sure to remove your temporary files that you create after use. The Windows system will not
automatically remove these files.

Return Data Type: STRING

Example:
!Note ## represents a random number assigned to the temporary file name

message(GETTEMPFILENAME('bob','d:\help')) !created 'bob##.tmp' in D:\help
message(GETTEMPFILENAME('')) !created '$$$##.tmp' in

!C:\WINNT\TEMP (my TEMP path)

Advanced Topics & Reference Guide 30

GetTempPath (Return TMP or TEMP environment path)

GETTEMPPATH()

GETTEMPPATH Returns the name of the path specified by the Windows Environment variables

GETTEMPPATH is used to return the full path designated by the TMP or TEMP Windows
Environment settings.GETTEMPPATH returns the first Environment setting it finds.

Return Data Type: STRING

Example:
GLO:TempPath = GETTEMPPATH() !return environment path

Reference 31

GetUserName (Return Network User Name)

GETUSERNAME()

GETUSERNAME Returns the current default user name

GETUSERNAME is used to retrieve the current default user name, or the user name used to
establish a network connection. GETUSERNAME returns a blank string if an error is
encountered.

Return Data Type: STRING

Example:
GLO:LoginName = GETUSERNAME() !return a unique login name

Advanced Topics & Reference Guide 32

IsTermServer (Verify Terminal Server Usage)

ISTERMSERVER()

ISTERMSERVER Detects Terminal Server usage

It is a good practice for applications to detect whether they are running in a Terminal Services
Client session in order to optimize performance. For example, when an application is running on
a remote session, it should eliminate unnecessary graphic effects. If a user is running the
application directly on the terminal, it is not necessary for the application to optimize its behavior.

ISTERMSERVER is used to detect Terminal Server usage by returning the status of the System
Metrics SM_REMOTESESSION flag. ISTERMSERVER returns TRUE if an application is running
in a Terminal Services Client session, and FALSE if the application is running on the console.

This function is only valid for Windows 2000 or later.

Return Data Type: BYTE

Example:
GLO:RemoteSessionActive = ISTERMSERVER() !is a remote session active?

Reference 33

LONGTOHEX (convert an unsigned LONG to Hexadecimal)

LONGTOHEX(number, flag)

LONGTOHEX Convert a ULONG value to its Hexadecimal equivalent.

number A ULONG variable or constant

flag A BYTE used to designate a lower or upper case HEX symbol (A,B,C,D,E)

LONGTOHEX is used to convert a number to its Hexadecimal equivalent. If the flag variable is
non-zero, any non-numeric Hexadecimal symbols are returned in lowercase. If zero (default), the
non-numeric digits are returned in uppercase.

Return Data Type: STRING

Example:
LONGTOHEX(32000000,0) !returns 1E84800
LONGTOHEX(32000000,1) !returns 1e84800

See Also:

 BYTETOHEX

 SHORTTOHEX

Advanced Topics & Reference Guide 34

PROP:WindowsVersion
Returns the string that describes Windows version running the program.

Read only. Available for SYSTEM only.

Example:

GLO:WindowsVersion = SYSTEM{PROP:WindowsVersion}

Reference 35

PUTREG (write value to Windows registry)

PUTREG(LONG root, STRING keyname, STRING valuename [, STRING value])

PUTREG Writes a string value into the system registry.

root The root section of the registry to which to write the value. Valid values for this
are defined in equates.clw and are as follows:

REG_CLASSES_ROOT
REG_CURRENT_USER
REG_LOCAL_MACHINE
REG_USERS
REG_PERFORMANCE_DATA
REG_CURRENT_CONFIG
REG_DYN_DATA

Keyname The key name of the key whose value is to be written. This may contain a path
separated by backslash ‘\’ characters.

valuename The name of the value to be written.

Value The value to be written to the registry in the position given. If omitted, an empty
string is written to the registry.

The PUTREG procedure places the value into a valuename that exists in the Windows
registry.

Advanced Topics & Reference Guide 36

Example:

PROGRAM

MAP.

INCLUDE('EQUATES')
CurrentPath CSTRING(100)
ColorScheme CSTRING(100)

CODE
CurrentPath = ‘C:\Clarion6’
PUTREG(REG_LOCAL_MACHINE,'SOFTWARE\SoftVelocity\Clarion6','root',CurrentPath
!Sets the root directory of Clarion 6 install
ColorScheme = ‘Windows Standard’
PUTREG(REG_CURRENT_USER,'Control Panel\Current','Color Schemes',ColorScheme)
!writes the current user's color scheme to the registry

See Also: GETREG, DELETEREG

Reference 37

RemoveDirectory (Remove a directory)

REMOVEDIRECTORY(directoryname)

REMOVEDIRECTORY Remove an existing directory

directoryname A string constant or variable that stores the directory name

REMOVEDIRECTORY removes an existing directory with the name passed in the directoryname
parameter. REMOVEDIRECTORY returns zero (0) if successful, and non-zero if not. You can
query the ERRNO built-in library function to trap for the following error codes:

 3 – Path not found (One of the higher path components in directoryname)

 5 – Access Denied (Path may refer to a file, root directory, or current directory)

Return Data Type: BYTE

Example:

MODULE('')
errno(),*SIGNED,NAME('__errno__') !proptotype built-in error flag

END

IF REMOVEDIRECTORY(GLO:NewDirectoryName)
CASE Errno()
OF 3
MESSAGE(‘Path Not Found’)

OF 5
MESSAGE(‘Access Denied’)

END
END

See Also:

 CreateDirectory

Advanced Topics & Reference Guide 38

ResizeImage (Resize an image to fit a control)
RESIZEIMAGE(Control, XPos, YPos, Width, Height, <Report>)

RESIZEIMAGE Resize a valid graphic file to fit inside a target IMAGE control

Control The Field Equate Label of the target IMAGE control.

Xpos A SHORT constant or variable identifying the height of the target IMAGE
control in dialog units.

Ypos A SHORT constant or variable identifying the height of the target IMAGE
control in dialog units.

Width A SHORT constant or variable identifying the height of the target IMAGE
control in dialog units.

Height A SHORT constant or variable identifying the height of the target IMAGE
control in dialog units.

Report A valid label of a REPORT structure. Indicates that the control to store
the resized image is contained in a REPORT target instead of a
WINDOW

RESIZEIMAGE is used to resize the image to fit the original control size. If an image is larger
than the target control, the image will be reduced to fit the target control’s position parameters. If
an image is smaller than the target control, the image will be expanded to fit the target control’s
position parameters.

Example:
CASE ACCEPTED()
OF ?LookupFile

ThisWindow.Update
LOC:Filename = FileLookup9.Ask(0)
DISPLAY
IF LOC:Filename

?Image1{PROP:TEXT} = LOC:Filename !Move filename to image field
ResizeImage(?Image1,114,132,90,64) !Resize it

END
OF ?OK

ThisWindow.Update
IF SELF.Request = ViewRecord AND NOT SELF.BatchProcessing THEN

POST(EVENT:CloseWindow)
END

END

Reference 39

SHORTTOHEX (convert an unsigned SHORT to Hexadecimal)

SHORTTOHEX(number, flag)

SHORTTOHEX Convert a USHORT value to its Hexadecimal equivalent.

number A USHORT variable or constant

flag A BYTE used to designate a lower or upper case HEX symbol (A,B,C,D,E)

SHORTTOHEX is used to convert a number to its Hexadecimal equivalent. If the flag variable is
non-zero, any non-numeric Hexadecimal symbols are returned in lowercase. If zero (default), the
non-numeric digits are returned in uppercase.

Return Data Type: STRING

Example:
SHORTTOHEX(64000,0) !returns ‘FA00’
SHORTTOHEX(64000,1) !returns ‘fa00’

See Also:

 BYTETOHEX LONGTOHEX

Advanced Topics & Reference Guide 40

ValidateOLE (Validate OLE Control Creation)

VALIDATEOLE(OLEControl, < OLEFileName> , <OLECreateName>)

VALIDATEOLE Validate that an OLE control has been successfully created

OLEControl A field number or field equate label of the OLE control.

OLEFileName (under construction)

OLECreatename (under construction)

VALIDATEOLE is used to verify that an OLE control has been created successfully.

VALIDATEOLE returns TRUE if the OLE control has been successfully created.

If not successful, VALIDATEOLE can optionally display a message box that describes why the
OLE control could not be created, provided that the OLEFilename parameter is passed, and then
returns FALSE. Otherwise, VALIDATEOLE just returns FALSE if only the OLEControl is
designated.

Return Data Type: BYTE

Example:
LOC:OLEActive = VALIDATEOLE() !is a remote session active?

Reference 41

WindowExists (Validate Window Existence)

WINDOWEXISTS(windowtitle)

WINDOWEXISTS Verify that a WINDOW structure is active

windowtitle A string constant or variable that specifies the window name (the
window's title).

WINDOWEXISTS is used to retrieve a window handle of the top-level window whose window
name matches the window title.

If WINDOWEXISTS succeeds, the return value is a handle to the window that has the
specified window name.

If it fails, the return value is zero (0).

Return Data Type: BYTE

Example:
GLO:IsMenuActive = WINDOWEXISTS(‘Utility Menu’) !is the utility window active?

Advanced Topics & Reference Guide 42

Commonly Used Equates

The following topic displays the common EQUATES used by the Clarion IDE, as listed in the
EQUATES.CLW and TPLEQU.CLW files. For more information regarding the use of
EQUATES, see the Language Reference Manual.

! Event numbers
! Field-specific events (FIELD() returns field number)
EVENT:Accepted EQUATE (01H)
EVENT:NewSelection EQUATE (02H)
EVENT:ScrollUp EQUATE (03H)
EVENT:ScrollDown EQUATE (04H)
EVENT:PageUp EQUATE (05H)
EVENT:PageDown EQUATE (06H)
EVENT:ScrollTop EQUATE (07H)
EVENT:ScrollBottom EQUATE (08H)
EVENT:Locate EQUATE (09H)
EVENT:MouseDown EQUATE (01H)
EVENT:MouseUp EQUATE (0aH)
EVENT:MouseIn EQUATE (0bH)
EVENT:MouseOut EQUATE (0cH)
EVENT:MouseMove EQUATE (0dH)
EVENT:VBXevent EQUATE (0eH)
EVENT:AlertKey EQUATE (0fH)
EVENT:PreAlertKey EQUATE (10H)
EVENT:Dragging EQUATE (11H)
EVENT:Drag EQUATE (12H)
EVENT:Drop EQUATE (13H)
EVENT:ScrollDrag EQUATE (14H)
EVENT:TabChanging EQUATE (15H)
EVENT:Expanding EQUATE (16H)
EVENT:Contracting EQUATE (17H)
EVENT:Expanded EQUATE (18H)
EVENT:Contracted EQUATE (19H)
EVENT:Rejected EQUATE (1AH)
EVENT:DroppingDown EQUATE (1BH)
EVENT:DroppedDown EQUATE (1CH)
EVENT:ScrollTrack EQUATE (1DH)
EVENT:ColumnResize EQUATE (1EH)
EVENT:Selecting EQUATE (1FH)

EVENT:Selected EQUATE (101H)

Reference 43

! Field-independent events (FIELD() returns 0)

EVENT:CloseWindow EQUATE (201H)
EVENT:CloseDown EQUATE (202H)
EVENT:OpenWindow EQUATE (203H)
EVENT:OpenFailed EQUATE (204H)
EVENT:LoseFocus EQUATE (205H)
EVENT:GainFocus EQUATE (206H)

EVENT:Suspend EQUATE (208H)
EVENT:Resume EQUATE (209H)
EVENT:Notify EQUATE (20AH)

EVENT:Timer EQUATE (20BH)
EVENT:DDErequest EQUATE (20CH)
EVENT:DDEadvise EQUATE (20DH)
EVENT:DDEdata EQUATE (20EH)
EVENT:DDEcommand EQUATE (20FH) ! same as DDEexecute
EVENT:DDEexecute EQUATE (20FH)
EVENT:DDEpoke EQUATE (210H)
EVENT:DDEclosed EQUATE (211H)

EVENT:Move EQUATE (220H)
EVENT:Size EQUATE (221H)
EVENT:Restore EQUATE (222H)
EVENT:Maximize EQUATE (223H)
EVENT:Iconize EQUATE (224H)
EVENT:Completed EQUATE (225H)
EVENT:Moved EQUATE (230H)
EVENT:Sized EQUATE (231H)
EVENT:Restored EQUATE (232H)
EVENT:Maximized EQUATE (233H)
EVENT:Iconized EQUATE (234H)
EVENT:Docked EQUATE (235H)
EVENT:Undocked EQUATE (236H)

EVENT:BuildFile EQUATE (240H)
EVENT:BuildKey EQUATE (241H)
EVENT:BuildDone EQUATE (242H)

! User-definable events

EVENT:User EQUATE (400H)
EVENT:Last EQUATE (0FFFH)

Advanced Topics & Reference Guide 44

! Windows standard functions
STD:WindowList EQUATE (1)
STD:TileWindow EQUATE (2)
STD:CascadeWindow EQUATE (3)
STD:ArrangeIcons EQUATE (4)
STD:HelpIndex EQUATE (5)
STD:HelpOnHelp EQUATE (6)
STD:HelpSearch EQUATE (7)
STD:Help EQUATE (8)
STD:Cut EQUATE (10)
STD:Copy EQUATE (11)
STD:Paste EQUATE (12)
STD:Clear EQUATE (13)
STD:Undo EQUATE (14)
STD:Close EQUATE (15)
STD:PrintSetup EQUATE (16)
STD:TileHorizontal EQUATE (17)
STD:TileVertical EQUATE (18)

!CURSOR Equates

CURSOR:None EQUATE ('<0FFH,01H,00H,00H>')
CURSOR:Arrow EQUATE ('<0FFH,01H,01H,7FH>')
CURSOR:IBeam EQUATE ('<0FFH,01H,02H,7FH>')
CURSOR:Wait EQUATE ('<0FFH,01H,03H,7FH>')
CURSOR:Cross EQUATE ('<0FFH,01H,04H,7FH>')
CURSOR:UpArrow EQUATE ('<0FFH,01H,05H,7FH>')
CURSOR:Size EQUATE ('<0FFH,01H,81H,7FH>')
CURSOR:Icon EQUATE ('<0FFH,01H,82H,7FH>')
CURSOR:SizeNWSE EQUATE ('<0FFH,01H,83H,7FH>')
CURSOR:SizeNESW EQUATE ('<0FFH,01H,84H,7FH>')
CURSOR:SizeWE EQUATE ('<0FFH,01H,85H,7FH>')
CURSOR:SizeNS EQUATE ('<0FFH,01H,86H,7FH>')
CURSOR:DragWE EQUATE ('<0FFH,02H,01H,7FH>')
CURSOR:Drop EQUATE ('<0FFH,02H,02H,7FH>')
CURSOR:NoDrop EQUATE ('<0FFH,02H,03H,7FH>')
CURSOR:Zoom EQUATE ('<0FFH,02H,04H,7FH>')

!ICON Equates

ICON:None EQUATE ('<0FFH,01H,00H,00H>')
ICON:Application EQUATE ('<0FFH,01H,01H,7FH>')
ICON:Hand EQUATE ('<0FFH,01H,02H,7FH>')
ICON:Question EQUATE ('<0FFH,01H,03H,7FH>')
ICON:Exclamation EQUATE ('<0FFH,01H,04H,7FH>')
ICON:Asterisk EQUATE ('<0FFH,01H,05H,7FH>')
ICON:Pick EQUATE ('<0FFH,02H,01H,7FH>')
ICON:Save EQUATE ('<0FFH,02H,02H,7FH>')
ICON:Print EQUATE ('<0FFH,02H,03H,7FH>')
ICON:Paste EQUATE ('<0FFH,02H,04H,7FH>')
ICON:Open EQUATE ('<0FFH,02H,05H,7FH>')
ICON:New EQUATE ('<0FFH,02H,06H,7FH>')
ICON:Help EQUATE ('<0FFH,02H,07H,7FH>')

Reference 45

ICON:Cut EQUATE ('<0FFH,02H,08H,7FH>')
ICON:Copy EQUATE ('<0FFH,02H,09H,7FH>')
ICON:Child EQUATE ('<0FFH,02H,0AH,7FH>')
ICON:Frame EQUATE ('<0FFH,02H,0BH,7FH>')
ICON:Clarion EQUATE ('<0FFH,02H,0CH,7FH>')
ICON:NoPrint EQUATE ('<0FFH,02H,0DH,7FH>')
ICON:Zoom EQUATE ('<0FFH,02H,0EH,7FH>')
ICON:NextPage EQUATE ('<0FFH,02H,0FH,7FH>')
ICON:PrevPage EQUATE ('<0FFH,02H,10H,7FH>')
ICON:JumpPage EQUATE ('<0FFH,02H,11H,7FH>')
ICON:Thumbnail EQUATE ('<0FFH,02H,12H,7FH>')
ICON:Tick EQUATE ('<0FFH,02H,13H,7FH>')
ICON:Cross EQUATE ('<0FFH,02H,14H,7FH>')
ICON:Connect EQUATE ('<0FFH,02H,15H,7FH>')
ICON:Print1 EQUATE ('<0FFH,02H,16H,7FH>')
ICON:Ellipsis EQUATE ('<0FFH,02H,17H,7FH>')

ICON:VCRtop EQUATE ('<0FFH,02H,81H,7FH>')
ICON:VCRrewind EQUATE ('<0FFH,02H,82H,7FH>')
ICON:VCRback EQUATE ('<0FFH,02H,83H,7FH>')
ICON:VCRplay EQUATE ('<0FFH,02H,84H,7FH>')
ICON:VCRfastforward EQUATE ('<0FFH,02H,85H,7FH>')
ICON:VCRbottom EQUATE ('<0FFH,02H,86H,7FH>')
ICON:VCRlocate EQUATE ('<0FFH,02H,87H,7FH>')

!Default Sounds

BEEP:SystemDefault EQUATE (0000H)
BEEP:SystemHand EQUATE (0010H)
BEEP:SystemQuestion EQUATE (0020H)
BEEP:SystemExclamation EQUATE (0030H)
BEEP:SystemAsterisk EQUATE (0040H)

!Range Equates

REJECT:RangeHigh EQUATE(1) ! Above top range on SPIN
REJECT:RangeLow EQUATE(2) ! below bottom range ditto
REJECT:Range EQUATE(3) ! Other range error
REJECT:Invalid EQUATE(4) ! Invalid input

!Color Equates

COLOR:NONE EQUATE (-1)
COLOR:SCROLLBAR EQUATE (80000000H)
COLOR:BACKGROUND EQUATE (80000001H)
COLOR:ACTIVECAPTION EQUATE (80000002H)
COLOR:INACTIVECAPTION EQUATE (80000003H)
COLOR:MENU EQUATE (80000004H)
COLOR:WINDOW EQUATE (80000005H)
COLOR:WINDOWFRAME EQUATE (80000006H)
COLOR:MENUTEXT EQUATE (80000007H)
COLOR:WINDOWTEXT EQUATE (80000008H)
COLOR:CAPTIONTEXT EQUATE (80000009H)

Advanced Topics & Reference Guide 46

COLOR:ACTIVEBORDER EQUATE (8000000AH)
COLOR:INACTIVEBORDER EQUATE (8000000BH)
COLOR:APPWORKSPACE EQUATE (8000000CH)
COLOR:HIGHLIGHT EQUATE (8000000DH)
COLOR:HIGHLIGHTTEXT EQUATE (8000000EH)
COLOR:BTNFACE EQUATE (8000000FH)
COLOR:BTNSHADOW EQUATE (80000010H)
COLOR:GRAYTEXT EQUATE (80000011H)
COLOR:BTNTEXT EQUATE (80000012H)
COLOR:INACTIVECAPTIONTEXT EQUATE (80000013H)
COLOR:BTNHIGHLIGHT EQUATE (80000014H)

COLOR:Black EQUATE (0000000H)
COLOR:Maroon EQUATE (0000080H)
COLOR:Green EQUATE (0008000H)
COLOR:Olive EQUATE (0008080H)
COLOR:Navy EQUATE (0800000H)
COLOR:Purple EQUATE (0800080H)
COLOR:Teal EQUATE (0808000H)
COLOR:Gray EQUATE (0808080H)
COLOR:Silver EQUATE (0C0C0C0H)
COLOR:Red EQUATE (00000FFH)
COLOR:Lime EQUATE (000FF00H)
COLOR:Yellow EQUATE (000FFFFH)
COLOR:Blue EQUATE (0FF0000H)
COLOR:Fuschia EQUATE (0FF00FFH)
COLOR:Aqua EQUATE (0FFFF00H)
COLOR:White EQUATE (0FFFFFFH)

! Parameter to CREATE / Return value from PROP:type

CREATE:sstring EQUATE (1)
CREATE:string EQUATE (2)
CREATE:image EQUATE (3)
CREATE:region EQUATE (4)
CREATE:line EQUATE (5)
CREATE:box EQUATE (6)
CREATE:ellipse EQUATE (7)
CREATE:entry EQUATE (8)
CREATE:button EQUATE (9)
CREATE:prompt EQUATE (10)
CREATE:option EQUATE (11)
CREATE:check EQUATE (12)
CREATE:group EQUATE (13)
CREATE:list EQUATE (14)
CREATE:combo EQUATE (15)
CREATE:spin EQUATE (16)
CREATE:text EQUATE (17)
CREATE:custom EQUATE (18)
CREATE:menu EQUATE (19)
CREATE:item EQUATE (20)
CREATE:radio EQUATE (21)
CREATE:menubar EQUATE (22) ! return value only

Reference 47

CREATE:application EQUATE (24) ! return value only
CREATE:window EQUATE (25) ! return value only
CREATE:report EQUATE (26) ! return value only
CREATE:header EQUATE (27)
CREATE:footer EQUATE (28)
CREATE:break EQUATE (29)
CREATE:form EQUATE (30)
CREATE:detail EQUATE (31)
CREATE:ole EQUATE (32)
CREATE:droplist EQUATE (33)
CREATE:dropcombo EQUATE (34)
CREATE:progress EQUATE (35)

CREATE:sheet EQUATE (37)
CREATE:tab EQUATE (38)
CREATE:panel EQUATE (39)
CREATE:rtf EQUATE (40)

CREATE:sublist EQUATE (CREATE:list + 0100H) ! list part of a DROP or COMBO

CREATE:toolbar EQUATE (128)

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:weight EQUATE (07FFH)
FONT:fixed EQUATE (0800H)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)

FONT:Screen EQUATE(0)
FONT:Printer EQUATE(1)
FONT:Both EQUATE(2)
FONT:TrueTypeOnly EQUATE(4)
FONT:FixedPitchOnly EQUATE(8)

CHARSET:ANSI EQUATE (0)
CHARSET:DEFAULT EQUATE (1)
CHARSET:SYMBOL EQUATE (2)
CHARSET:MAC EQUATE (77)
CHARSET:SHIFTJIS EQUATE (128)
CHARSET:HANGEUL EQUATE (129)
CHARSET:JOHAB EQUATE (130)
CHARSET:GB2312 EQUATE (134)
CHARSET:CHINESEBIG5 EQUATE (136)
CHARSET:GREEK EQUATE (161)
CHARSET:TURKISH EQUATE (162)
CHARSET:HEBREW EQUATE (177)
CHARSET:ARABIC EQUATE (178)
CHARSET:BALTIC EQUATE (186)
CHARSET:CYRILLIC EQUATE (204)
CHARSET:THAI EQUATE (222)

Advanced Topics & Reference Guide 48

CHARSET:EASTEUROPE EQUATE (238)
CHARSET:OEM EQUATE (255)

PEN:solid EQUATE (0)
PEN:dash EQUATE (1)
PEN:dot EQUATE (2)
PEN:dashdot EQUATE (3)
PEN:dashdotdot EQUATE (4)
PEN:null EQUATE (5)
PEN:insideframe EQUATE (6)

BRUSH:SOLID EQUATE (0)
BRUSH:NULL EQUATE (1)
BRUSH:HOLLOW EQUATE (BRUSH:NULL)
BRUSH:HATCHED EQUATE (2)
BRUSH:PATTERN EQUATE (3)
BRUSH:INDEXED EQUATE (4)
BRUSH:DIBPATTERN EQUATE (5)

FALSE EQUATE (0)
TRUE EQUATE (1)

LISTZONE:field EQUATE(0)
LISTZONE:right EQUATE(1)
LISTZONE:header EQUATE(2)
LISTZONE:expandbox EQUATE(3)
LISTZONE:tree EQUATE(4)
LISTZONE:icon EQUATE(5)
LISTZONE:nowhere EQUATE(6)

VBXEVENT:Click EQUATE (0)
VBXEVENT:DblClick EQUATE (1)
VBXEVENT:GotFocus EQUATE (4)
VBXEVENT:KeyDown EQUATE (5)
VBXEVENT:KeyPress EQUATE (6)
VBXEVENT:KeyUp EQUATE (7)
VBXEVENT:LostFocus EQUATE (8)
VBXEVENT:MouseDown EQUATE (9)
VBXEVENT:MouseMove EQUATE (10)
VBXEVENT:MouseUp EQUATE (11)

BUTTON:OK EQUATE (01H)
BUTTON:YES EQUATE (02H)
BUTTON:NO EQUATE (04H)
BUTTON:ABORT EQUATE (08H)
BUTTON:RETRY EQUATE (10H)
BUTTON:IGNORE EQUATE (20H)
BUTTON:CANCEL EQUATE (40H)
BUTTON:HELP EQUATE (80H)

MSGMODE:SYSMODAL EQUATE (01H)
MSGMODE:CANCOPY EQUATE (02H)

Reference 49

WINDOW:OK EQUATE (0)
WINDOW:NotOpened EQUATE (1)
WINDOW:BadWindow EQUATE (2)
WINDOW:ClosePending EQUATE (3)
WINDOW:InDestroy EQUATE (4)

TEXT:Field EQUATE (0)
TEXT:File EQUATE (1)

!DDE link types

DDE:auto EQUATE (0)
DDE:manual EQUATE (-1)
DDE:remove EQUATE (-2)

! Types
OMIT('***',_WIDTH32_)

SIGNED EQUATE(SHORT)
UNSIGNED EQUATE(USHORT)
_nopos EQUATE(08000H)

COMPILE('***',_WIDTH32_)

SIGNED EQUATE(LONG)
UNSIGNED EQUATE(LONG)
_nopos EQUATE(080000000H)

BOOL EQUATE(SIGNED)

!DIRECTORY equates & TYPEs

!Old 8.3 filename support

ff_:NORMAL EQUATE(0)
ff_:READONLY EQUATE(1)
ff_:HIDDEN EQUATE(2)
ff_:SYSTEM EQUATE(4)
ff_:DIRECTORY EQUATE(10H)
ff_:ARCHIVE EQUATE(20H)
ff_:LFN EQUATE(80H)

ff_:queue QUEUE,PRE(ff_),TYPE
name string(13)
date long
time long
size long
attrib byte

END

!full filename support

FILE:MaxFileName EQUATE(256)
FILE:MaxFilePath EQUATE(260)

Advanced Topics & Reference Guide 50

FILE:Queue QUEUE,PRE(FILE),TYPE
Name STRING(FILE:MaxFileName)
ShortName STRING(13)
Date LONG
Time LONG
Size LONG
Attrib BYTE

END

PrintPreviewFileQueue QUEUE,TYPE
Filename STRING(FILE:MaxFileName)
PrintPreviewImage STRING(FILE:MaxFileName),OVER(Filename)

END

oleQ QUEUE,TYPE
name CSTRING(64)
clsid CSTRING(64)
progid CSTRING(64)

END

!FileDialog equates

FILE:Save EQUATE(1)
FILE:KeepDir EQUATE(2)
FILE:NoError EQUATE(4)
FILE:Multi EQUATE(8)
FILE:LongName EQUATE(10H)
FILE:Directory EQUATE(20H)

OCX:default EQUATE(0)
OCX:16bit EQUATE(1)
OCX:32bit EQUATE(2)
OCX:1632bit EQUATE(3)

DOCK:Left EQUATE(1)
DOCK:Top EQUATE(2)
DOCK:Right EQUATE(4)
DOCK:Bottom EQUATE(8)
DOCK:Float EQUATE(16)

DOCK:All EQUATE(31)

!TopSpeed File Flags

TPSREADONLY EQUATE(1)

!Match Flag Values
Match:Simple EQUATE(0)
Match:Wild EQUATE(1)
Match:Regular EQUATE(2)
Match:Soundex EQUATE(3)
Match:NoCase EQUATE(10H) ! May be added to Simple,Wild and Regular

Reference 51

PAPER:LETTER EQUATE(1) ! Letter 8 1/2 x 11 in
PAPER:LETTERSMALL EQUATE(2) ! Letter Small 8 1/2 x 11 in
PAPER:TABLOID EQUATE(3) ! Tabloid 11 x 17 in
PAPER:LEDGER EQUATE(4) ! Ledger 17 x 11 in
PAPER:LEGAL EQUATE(5) ! Legal 8 1/2 x 14 in
PAPER:STATEMENT EQUATE(6) ! Statement 5 1/2 x 8 1/2 in
PAPER:EXECUTIVE EQUATE(7) ! Executive 7 1/4 x 10 1/2 in
PAPER:A3 EQUATE(8) ! A3 297 x 420 mm
PAPER:A4 EQUATE(9) ! A4 210 x 297 mm
PAPER:A4SMALL EQUATE(10) ! A4 Small 210 x 297 mm
PAPER:A5 EQUATE(11) ! A5 148 x 210 mm
PAPER:B4 EQUATE(12) ! B4 250 x 354
PAPER:B5 EQUATE(13) ! B5 182 x 257 mm
PAPER:FOLIO EQUATE(14) ! Folio 8 1/2 x 13 in
PAPER:QUARTO EQUATE(15) ! Quarto 215 x 275 mm
PAPER:10X14 EQUATE(16) ! 10x14 in
PAPER:11X17 EQUATE(17) ! 11x17 in
PAPER:NOTE EQUATE(18) ! Note 8 1/2 x 11 in
PAPER:ENV_9 EQUATE(19) ! Envelope #9 3 7/8 x 8 7/8
PAPER:ENV_10 EQUATE(20) ! Envelope #10 4 1/8 x 9 1/2
PAPER:ENV_11 EQUATE(21) ! Envelope #11 4 1/2 x 10 3/8
PAPER:ENV_12 EQUATE(22) ! Envelope #12 4 \276 x 11
PAPER:ENV_14 EQUATE(23) ! Envelope #14 5 x 11 1/2
PAPER:CSHEET EQUATE(24) ! C size sheet
PAPER:DSHEET EQUATE(25) ! D size sheet
PAPER:ESHEET EQUATE(26) ! E size sheet
PAPER:ENV_DL EQUATE(27) ! Envelope DL 110 x 220mm
PAPER:ENV_C5 EQUATE(28) ! Envelope C5 162 x 229 mm
PAPER:ENV_C3 EQUATE(29) ! Envelope C3 324 x 458 mm
PAPER:ENV_C4 EQUATE(30) ! Envelope C4 229 x 324 mm
PAPER:ENV_C6 EQUATE(31) ! Envelope C6 114 x 162 mm
PAPER:ENV_C65 EQUATE(32) ! Envelope C65 114 x 229 mm
PAPER:ENV_B4 EQUATE(33) ! Envelope B4 250 x 353 mm
PAPER:ENV_B5 EQUATE(34) ! Envelope B5 176 x 250 mm
PAPER:ENV_B6 EQUATE(35) ! Envelope B6 176 x 125 mm
PAPER:ENV_ITALY EQUATE(36) ! Envelope 110 x 230 mm
PAPER:ENV_MONARCH EQUATE(37) ! Envelope Monarch 3.875 x 7.5 in
PAPER:ENV_PERSONAL EQUATE(38) ! 6 3/4 Envelope 3 5/8 x 6 1/2 in
PAPER:FANFOLD_US EQUATE(39) ! US Std Fanfold 14 7/8 x 11 in
PAPER:FANFOLD_STD_GERMAN EQUATE(40) ! German Std Fanfold 8 1/2 x 12 in
PAPER:FANFOLD_LGL_GERMAN EQUATE(41) ! German Legal Fanfold 8 1/2 x 13
in
PAPER:LAST EQUATE(41)
PAPER:USER EQUATE(256)

Advanced Topics & Reference Guide 52

! File Driver Function equates for use with file{PROP:SupportsOp,DriverOp:n}

ITEMIZE(1),PRE(DriverOp)
ADD EQUATE
BOF EQUATE
BUILDfile EQUATE
APPEND EQUATE
BUILDdyn EQUATE
BUILDkey EQUATE
CLOSE EQUATE
COMMIT EQUATE
COPY EQUATE
CREATE EQUATE
DELETE EQUATE
DUPLICATE EQUATE
EMPTY EQUATE
EOF EQUATE
GETfilekey EQUATE
GETfileptr EQUATE
GETkeyptr EQUATE
HOLD EQUATE
LOCK EQUATE(20)
LOGOUT EQUATE(22)
NAME EQUATE
NEXT EQUATE
OPEN EQUATE
PACK EQUATE
POINTERfile EQUATE
POINTERkey EQUATE
FLUSH EQUATE
PUT EQUATE
PREVIOUS EQUATE
RECORDSfile EQUATE
RECORDSkey EQUATE
BUILDdynfilter EQUATE
STARTTRAN EQUATE
RELEASE EQUATE
REMOVE EQUATE
RENAME EQUATE
ENDTRAN EQUATE
ROLLBACK EQUATE
SETfile EQUATE
SETfilekey EQUATE
SETfileptr EQUATE
SETkey EQUATE
SETkeykey EQUATE
SETkeyptr EQUATE
SETkeykeyptr EQUATE
SHARE EQUATE
SKIP EQUATE
UNLOCK EQUATE
ADDlen EQUATE
BYTES EQUATE

Reference 53

GETfileptrlen EQUATE
PUTfileptr EQUATE
PUTfileptrlen EQUATE
STREAM EQUATE
DUPLICATEkey EQUATE
WATCH EQUATE
APPENDlen EQUATE
SEND EQUATE
POSITIONfile EQUATE
POSITIONkey EQUATE
RESETfile EQUATE
RESETkey EQUATE
NOMEMO EQUATE
REGETfile EQUATE
REGETkey EQUATE
NULL EQUATE
SETNULL EQUATE
SETNONNULL EQUATE
SETproperty EQUATE
GETproperty EQUATE
GETblobdata EQUATE(75)
PUTblobdata EQUATE
BLOBSIZE EQUATE
SETblobproperty EQUATE
GETblobproperty EQUATE
BUFFER EQUATE
SETviewfields EQUATE
CLEARfile EQUATE
RESETviewfile EQUATE
BUILDevent EQUATE
SETkeyproperty EQUATE
GETkeyproperty EQUATE
DOproperty EQUATE(88)
DOkeyproperty EQUATE
DOblobproperty EQUATE
VIEWSTART EQUATE(92)
VIEWSTOP EQUATE
GETNULLS EQUATE(96)
SETNULLS EQUATE
GETSTATE EQUATE
RESTORESTATE EQUATE
CALLBACK EQUATE
FREESTATE EQUATE(102)
DESTROY EQUATE(104)

END

Advanced Topics & Reference Guide 54

! Data Type Equates for use with file{PROP:SupportsType, DataType:n}

ITEMIZE(1),PRE(DataType)
BYTE EQUATE
SHORT EQUATE
USHORT EQUATE
DATE EQUATE
TIME EQUATE
LONG EQUATE
ULONG EQUATE
SREAL EQUATE
REAL EQUATE
DECIMAL EQUATE
PDECIMAL EQUATE
BFLOAT4 EQUATE(13)
BFLOAT8 EQUATE
STRING EQUATE(18)
CSTRING EQUATE
PSTRING EQUATE
MEMO EQUATE
BLOB EQUATE(27)

END

! These equates are to be used as the first parameter to the DELETEREG,
! GETREG and PUTREG statements

REG_CLASSES_ROOT EQUATE(80000000h)
REG_CURRENT_USER EQUATE(80000001h)
REG_LOCAL_MACHINE EQUATE(80000002h)
REG_USERS EQUATE(80000003h)
REG_PERFORMANCE_DATA EQUATE(80000004h)
REG_CURRENT_CONFIG EQUATE(80000005h)
REG_DYN_DATA EQUATE(80000006h)

REG_NONE EQUATE(0) ! No value type
REG_SZ EQUATE(1) ! Unicode nul terminated string
REG_EXPAND_SZ EQUATE(2) ! Unicode nul terminated string

! (with environment variable
references)
REG_BINARY EQUATE(3) ! Free form binary
REG_DWORD EQUATE(4) ! 32-bit number
REG_DWORD_LITTLE_ENDIAN EQUATE(4) ! 32-bit number (same as REG_DWORD)
REG_DWORD_BIG_ENDIAN EQUATE(5) ! 32-bit number
REG_LINK EQUATE(6) ! Symbolic Link (unicode)
REG_MULTI_SZ EQUATE(7) ! Multiple Unicode strings
REG_RESOURCE_LIST EQUATE(8) ! Resource list in the resource map
REG_FULL_RESOURCE_DESCRIPTOR EQUATE(9) ! Resource list in the hardware description
REG_RESOURCE_REQUIREMENTS_LIST EQUATE(10)
REG_QWORD EQUATE(11) ! 64-bit number
REG_QWORD_LITTLE_ENDIAN EQUATE(11) ! 64-bit number (same as REG_QWORD)

Reference 55

Template Equates (TPLEQU.CLW)
!Tool bar navigation modes

FormMode EQUATE(1)
BrowseMode EQUATE(2)
TreeMode EQUATE(3)

! Template Warnings

Warn:InvalidFile EQUATE (1)
Warn:InvalidKey EQUATE (2)
Warn:RebuildError EQUATE (3)
Warn:CreateError EQUATE (4)
Warn:CreateOpenError EQUATE (5)
Warn:ProcedureToDo EQUATE (6)
Warn:BadKeyedRec EQUATE (7)
Warn:OutOfRangeHigh EQUATE (8)
Warn:OutOfRangeLow EQUATE (9)
Warn:OutOfRange EQUATE (10)
Warn:NotInFile EQUATE (11)
Warn:RestrictUpdate EQUATE (12)
Warn:RestrictDelete EQUATE (13)
Warn:InsertError EQUATE (14)
Warn:RIUpdateError EQUATE (15)
Warn:UpdateError EQUATE (16)
Warn:RIDeleteError EQUATE (17)
Warn:DeleteError EQUATE (18)
Warn:InsertDisabled EQUATE (19)
Warn:UpdateDisabled EQUATE (20)
Warn:DeleteDisabled EQUATE (21)
Warn:NoCreate EQUATE (22)
Warn:ConfirmCancel EQUATE (23)
Warn:DuplicateKey EQUATE (24)
Warn:AutoIncError EQUATE (25)
Warn:FileLoadError EQUATE (26)
Warn:ConfirmCancelLoad EQUATE (27)
Warn:FileZeroLength EQUATE (28)
Warn:EndOfAsciiQueue EQUATE (29)
Warn:DiskError EQUATE (30)
Warn:ProcessActionError EQUATE (31)
Warn:StandardDelete EQUATE (32)
Warn:SaveOnCancel EQUATE (33)
Warn:LogoutError EQUATE (34)
Warn:RecordFetchError EQUATE (35)
Warn:ViewOpenError EQUATE (36)
Warn:NewRecordAdded EQUATE (37)
Warn:RIFormUpdateError EQUATE (38)

Advanced Topics & Reference Guide 56

ScrollSort:Alpha EQUATE(' AFANATB BFBNBTC CFCNCT'|
&'D DFDNDTE EFENETF FFFNFT'|
&'G GFGNGTH HFHNHTI IFINIT'|
&'J JFJNJTK KFKNKTL LFLNLT'|
&'M MFMNMTN NFNNNTO OFONOT'|
&'P PFPNPTQ QNR RFRNRTS SF'|
&'SNSTT TFTNTTU UFUNUTV VF'|
&'VNVTW WFWNWTX XFXNXTY YF'|
&'YNYTZ ZN')

ScrollSort:Name EQUATE(' ALBAMEARNBAKBATBENBIABOBBRA'|
&'BROBUACACCARCENCHRCOECONCORCRU'|
&'DASDELDIADONDURELDEVEFELFISFLO'|
&'FREFUTGARGIBGOLGOSGREGUTHAMHEM'|
&'HOBHOTINGJASJONKAGKEAKIRKORKYO'|
&'LATLEOLIGLOUMACMAQMARMAUMCKMER'|
&'MILMONMORNATNOLOKEPAGPAUPETPIN'|
&'PORPULRAUREYROBROSRUBSALSCASCH'|
&'SCRSHASIGSKISNASOUSTESTISUNTAY'|
&'TIRTUCVANWACWASWEIWIEWIMWOLYOR')

SortRequest:SelectSort EQUATE(1)
SortRequest:Reset EQUATE(2)
SortRequest:LocateRecord EQUATE(3)

SortResult:Changed EQUATE(1)
SortResult:OK EQUATE(2)
LocateOnPosition EQUATE(1)
LocateOnValue EQUATE(2)
LocateOnEdit EQUATE(3)

RefreshOnPosition EQUATE(1)
RefreshOnQueue EQUATE(2)
RefreshOnTop EQUATE(3)
RefreshOnBottom EQUATE(4)
RefreshOnCurrent EQUATE(5)
EVENT:Preview:Print EQUATE (401H)
EVENT:Preview:Cancel EQUATE (402H)
EVENT:Preview:Zoom EQUATE (403H)
EVENT:Preview:NextPage EQUATE (404H)
EVENT:Preview:PrevPage EQUATE (405H)
EVENT:Preview:Jump EQUATE (406h)
EVENT:Preview:ChangeDisplay EQUATE (407H)
EVENT:Preview:DisableNext EQUATE (450h)
EVENT:Preview:EnableNext EQUATE (451h)
EVENT:Preview:DisablePrev EQUATE (452h)
EVENT:Preview:EnablePrev EQUATE (453h)
EVENT:Preview:DirectZoom EQUATE (454h)
EVENT:Preview:DirectUnzoom EQUATE (455h)

Reference 57

Preview:OutOfPagesText EQUATE ('There are no more pages to display')
Preview:OutOfPagesHead EQUATE ('End of Report')

Preview:DisplayText EQUATE (1)
Preview:DisplayIcons EQUATE (2)
Preview:DisplayAll EQUATE (3)

Advanced Topics & Reference Guide 58

Project System Reference 59

Project System Reference
Introduction

The Project System is integrated into the Clarion Environment. It is a powerful sequential
language that combines the functionality of a batch processor, a linker and an intelligent
compile-and-link system.
The Project System gives you total control over the compile and link process for the simplest
single .EXE project up to the most complicated multiple .DLL project.
The primary benefits of using the Project System are automation, efficiency, and accuracy.
With a single command, you can remake your entire project, no matter how complicated, and
you can be assured that the correct source and objects are included in the compile and link
processes, plus, the components that don’t need it, don’t get reprocessed. In addition, you can
make different versions of your project (release version, debug version, evaluation/demo
version, etc.) with the flip of a switch.
Here is a simple example of some project system language generated by the Clarion
Application Generator:

#noedit

#system win

#model clarion dll

#pragma debug(vid=>full)

#compile QWKTU_RD.CLW— GENERATED

#compile QWKTU_RU.CLW— GENERATED

#compile QWKTU_SF.CLW— GENERATED

#compile QWKTUTOR.clw /define(GENERATED=>on)— GENERATED

#compile QWKTU001.clw /define(GENERATED=>on)— GENERATED

#compile QWKTU002.clw /define(GENERATED=>on)— GENERATED

#compile QWKTU003.clw /define(GENERATED=>on)— GENERATED

#pragma link(C%L%TPS%S%.LIB)— GENERATED

#link QWKTUTOR.EXE

Advanced Topics & Reference Guide 60

Language Components

Keywords start with a pound sign (#). In the example, each keyword begins on a new line for
readability. This is not required.
Comments start with a double hyphen (--) and are terminated by a Carriage Return or Line
Feed.
Macros are surrounded by percent signs (%). You may want to think of macros as
variables—a value is substituted whenever the project system encounters a macro name
surrounded by percent signs (%). See Project System Macros.
Keyword Parameters are everything else you see in the example. Parameters and their
syntax are discussed with each keyword.

The Project System recognizes the following keywords:

#abort #expand #older

#and #file #or

#autocompile #if #pragma

#compile #ignore #prompt

#declare_compiler #implib #run

#dolink #include #rundll

#else #link #set

#elsif #message #split

#endif #model #system

#error #noedit #then

#exemod #not #to

#exists

Files and Editing
With regard to Clarion, the project system commands are generally stored in either a .PRJ file
or an .APP file. APP files are maintained strictly through Clarion’s development environment,
however, PRJ files are simple ASCII text and may be maintained with the development
environment (See the User’s Guide; Using the Project System) or with your favorite text editor.

#noedit
The #noedit command can be placed at the top of a project file to prevent menu-editing from
the SoftVelocity environment. It has no effect in the Clarion environment.

Project System Reference 61

Project System Macros
Macros are special strings that indicate a variable substitution is required. You may find it
useful to think of macros as variables.
A sequence of characters enclosed by % characters indicates a macro name. The following
characters are permitted in macro names:
 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
 a b c d e f g h i j k l m
 n o p q r s t u v w x y z
 0 1 2 3 4 5 6 7 8 9 _
The trailing % may be omitted provided the character following the macro name is not one of
the characters above.
Whenever a % delimited macro name is encountered, it is replaced either by the string
associated with that macro, or by an empty string if there is no associated string. Substitution
strings are associated with a macro by using the #set command.
Two adjacent % characters may be used when a % character is required in the substituted
string. This double % technique can be used to delay macro substitution. For example:

#set echo = ‘#message %%mymac’ --‘#message %mymac’ associated with
echo

#set mymac = ‘Hello’ --‘Hello’ associated with mymac

%echo --‘#message %mymac’ substituted for
%echo

-- and ‘Hello’ substituted for %mymac

#set mymac = ‘World’ --‘World’ associated with mymac

%echo --‘#message %mymac’ substituted for
%echo

-- and ‘World’ substituted for %mymac

If a single % had been specified in the first #set command, the macro %mymac would have
been expanded (to the empty string) before defining the replacement text for the macro
%echo. The double % results in the project system executing:
#message Hello

#message World

The single % results in the project system executing:
#message ""

#message ""

Advanced Topics & Reference Guide 62

Setting Macro Values

#set
 #set macroname = string
The #set command associates a macro name with a string. Any previous setting for the given
macro is lost. The macro name in the #set command should not be delimited by % characters.
The string should be enclosed in single quotes if it contains embedded spaces or project
system keywords.
For example:

#set cwindow = TopSpeed

#set linkit = ‘#link myfile’

...

#if ‘%cwindow’= TopSpeed #then

#pragma link(CS_GRAPH.LIB)

#endif

%linkit

#expand <file-name>

The filename is subjected to redirection analysis, and the following macros are defined:

%cpath Is set to the fully expanded filename where the file would be created.
%opath Is set to the fully expanded filename where the file would be opened.
%ext Is set to the extension of the filename.
%tail Is set to the filename, less extension, drive and path.
%cdir Is set to the directory where the file would be created.
%odir Is set to the directory where the file would be opened for read (if the file does

not exist %opath is set the same as %cpath).

Project System Reference 63

For example, suppose the redirection file has the line,
*.def : . ; c:\ts\include

and the file c:\ts\include\io.def exists, and the current directory is d:\test then,
#expand io.def

is equivalent to,

#set opath = d:\test\io.def

#set cpath = c:\ts\include\io.def

#set ext = .def

#set tail = io

#set odir = d:\test\

#set cdir = c:\ts\include\

#split <filename>
The filename is split into its base and extension. The following macros are defined:

%ext Is set to the extension of the filename.
%name1 Is set to the filename, less extension.

For example:
#split d:\name.exe

is equivalent to,

#set ext = exe

#set name = d:\name

Advanced Topics & Reference Guide 64

Special Project System Macros
A number of macros are used for special purposes by the Project System, and you should
avoid defining macros of the same name inadvertently. Similarly, you should not define macros
using trailing underbars.
The following is a list, in alphabetical order, of all such macros:
%action Set to make, link, compile or run, depending on the mode of invocation.
%cdir Set by the #expand command.
%compile_src In compile mode, this is set to the name of the file to be compiled, with path and

extension where available. Otherwise, it is set to the empty string.
%cpath Set by the #expand command.
%devsys Set by the Clarion environment to win.
%editfile Set to the name of the file being edited in the topmost window. If no window is

open, or in batch mode, it is set to the empty string.
%editwin Set to the window number (0-9) of the topmost window. If no window is open, or

in batch mode, it is set to the empty string.
%errors Count of errors produced by preceding compile or #file adderrors command.
%ext Set by the #split and #expand commands.
%filetype Set by the #system command to its second argument, and examined by the

#link command.
%jpicall Set by the #model command to its second argument, and examined by the

#link command.
%L Set by the #model command to either ‘’ (standalone) L (local) or ! (own). The

#link command uses this to derive the name of any required library files.
%link Set to the current link list.
%link_arg Set to its argument by the #link command.
%main Set to the assumed name of the main source file. In make or link mode when

not using UNNAMED.PR, this is derived from the project filename, with path
and extension removed. Otherwise, it is the supplied source filename complete
with path and extension if specified.

%make Set to on or off by the #compile, #link and #dolink commands, to indicate
whether the target file was up to date.

%manual_export
Set this macro on to indicate that the #link command should not construct a
.LIB file when a DLL is linked. If this macro is not specified, a .LIB file is created
automatically from the corresponding .EXP file if found (see Module Definition
File below), or from the object files in the link list.

%model Set by the #model command to its first argument, and examined by the #link
command.

%name Set by the #split command.

Project System Reference 65

%obj Set to the object filename in a #compile command.
%odir Set by the #expand command.
%opath Set by the #expand command.
%pragmastring

Will always expand to the current state of the #pragma settings - this is useful
for debugging.

%prjname Set to the assumed name of the project - this is usually derived from the project
filename, but with the path and extension removed. Where UNNAMED.PR is
being used, it is derived from main source filename without source and
extension.

%remake Used within declare_compiler macros to determine whether source/object
dependencies require a remake.

%remake_jpi Used within declare_compiler macros to determine whether source/object
dependencies require a remake. %remake_jpi should be used for object files
created by SoftVelocity compilers, which contain additional information.

%reply Set by the #prompt command.
%S Set by the #system command to 32 indicating the instruction set being used to

build the project. The #link command uses this to derive the name of any
required library files.

%src Set to the source filename in a #compile command.
%system Set by the #system command to its first argument, and examined by the

#model and #link commands.
%tail Set by the #expand command.
%tsc Set to on if a C or C++ source file is compiled.
%tscpp Set to on if a C++ source file is compiled.
%tsm2 Set to on if a Modula-2 source file is compiled.
%tspas Set to on if a Pascal source file is compiled.
The above macros are examined by the #link command to determine which libraries to
include, and then set to off.
%warnings Count of warnings produced by preceding compile or #file adderrors

command.

Advanced Topics & Reference Guide 66

Basic Compiling and Linking

Compile and link options are specified in a project file by means of the #system, #model and
#pragma commands.

#system
 #system operating_system [target_type]
The #system command is used to specify the target operating system and file type. The
macros %system and %filetype are set to the first and second arguments. See Special Project
System Macros below.
The first argument specifies the target operating system, and may be win or win32.
The second argument indicates the target file type, and may be exe, lib, or dll. If omitted, exe is
assumed.

The #system command affects the behavior of subsequent #model and #link commands.
Therefore a #system command must be specified before either of these. If more than one
#system command occurs in a project, each must be followed by a #model command in order
to take effect.

#model
 #model memory_model [linking_convention]
The #model command is used to specify the memory model to be used for subsequent
compiles and links. This memory model will continue to be used until modified by explicit
#pragmas, or by another #model command.
The #model command sets the macros %model and %jpicall to its first and second parameters
respectively. For example,

#model clarion dll

is equivalent to

#set %model = ‘clarion’

#set %jpicall = ‘dll’

The first argument specifies the memory model, which is always ‘clarion’ for Clarion projects.
The second indicates the linking convention, which may be dll, lib, or owndll. If omitted, dll is
assumed.

Project System Reference 67

Setting the second argument to dll indicates that you will be creating an exe or dll that calls the
standard Clarion dlls. Setting the second parameter to lib indicates that you will be creating an
exe, lib or dll that includes all the components of the Standard Clarion libraries (and file drivers)
in the exe, lib or dll. Using owndll indicates that you are linking to a dll that was previously
created with the lib link convention, so the standard Clarion dlls are not linked.
The #system command must be specified before the first #model command.

#pragma
 #pragma <#pragma> { , <#pragma> }
The #pragma command modifies the state of the #pragma options which affect the behavior of
the SoftVelocity compilers or linker. The syntax and meaning of all #pragmas are discussed
under the SoftVelocity #pragmas section below.
The special macro %pragmastring expands to the current state of all #pragma options which
are not in their default state - this can be useful for determining exactly which options are being
used for a given compile. For example:
#message ‘%pragmastring’

Advanced Topics & Reference Guide 68

Compile and Link Commands
Whenever a file is compiled or linked, the current settings of the compiler or linker options
(#pragma settings) are compared to those used when the file was last compiled or linked, to
determine whether the file is up to date. If a compile or link is necessary, the current settings
are passed on to the compiler or linker.

#compile
 #compile<source> [#to <object>] [/ <#pragma> { , <#pragma> }]
 { , <source> [#to <object>] [/ <#pragma> { , <#pragma> }] }
The #compile command causes each nominated source file to be compiled (if necessary). The
name of the object file may be specified using #to. If this is omitted, the name is derived from
the source filename, with the extension .obj.
Any #pragmas specified in a #compile command apply only to the single source filename that
precedes the / character.

The macro %make is set to on if a compile is necessary, off otherwise. The macros %src and
%obj are set to the names of the source and object filenames.
Each object file is added to the link list, i.e. there is an implicit:
#pragma link(%obj)

For example:
#compile fred.c #to fred.obj

#compile george.cpp /debug(vid=>full)
It is possible to reconfigure the behavior of the Project System when compiling source files of a
given extension using the #declare_compiler command. This may also be used to declare
actions to perform for different file extensions - for example, to support third-party compilers or
preprocessors. See Other Commands below.

#link
 #link <target_filename>
The #link command links together (if necessary) all the files in the link list to the nominated
executable or library file. The file type is determined by the extension of the nominated target
file, or, if there is no extension, by the file type specified in the most recent #system command.
If neither are specified, the default is to produce an executable file. The effect of #link is to set
the macro %link_arg to the specified filename.
The Project System maintains a list of those files that are to be used as input to the linker the
next time an executable or library file is created. This list is known as the link list. A filename
may be added to the link list using the #pragma link command.

Project System Reference 69

For example:
#pragma link (mylib.lib)

However, it is seldom necessary to use #pragma link explicitly, as all the SoftVelocity
compilers add the resulting object file to the link list whenever a source file is compiled using
#compile. In addition, when the #link command is encountered, all required standard library
files, and other object files which are imported by those already on the link list are also added
to the list. The link list is cleared after each link.
The #link command differs from the similar #dolink command in that (so far as the Project
System can determine), any additional object files required are automatically added to the link
list before linking. This includes any SoftVelocity library files, and also (with an implicit
#autocompile command) all modules imported with IMPORT clauses in SoftVelocity Modula-2
or with #pragma link statements in SoftVelocity C or SoftVelocity C++ source files. In addition,
#link will determine from the target file type any additional processing that needs to be applied
to the output file.
For certain specialized requirements, the use of #link may be inappropriate—for example, if a
specialized startup file is required, or when building library files, where explicit control of
exactly which files are included may be preferred. In such cases, the #dolink command should
be used.
 #dolink <target_filename>
The #dolink command takes the object files which have previously been added to the link list,
and combines them into an executable or library file (depending on the extension of the
nominated target file), if required to keep the target file up to date. No additional files are added
to the link list, so all required files must have been specified previously, by means of #pragma
link, #pragma linkfirst, #compile, and #autocompile. For simple projects, the use of #link is
preferable because the link list is dynamically maintained by the project system, freeing the
developer from this responsibility.
When finished, the #dolink command clears the link list.
See also:
#pragma link_options (link)

#autocompile
The #autocompile command examines the object files which are currently in the link list, to see
which objects they need to be linked with. This would include objects specified using a
#pragma link in a SoftVelocity C or C++ source file, or in the case of module based languages
such as SoftVelocity Modula-2 imported modules.
Each resulting object file, which is not already in the link list, is then compiled (if necessary)
and added to the link list. If there is more than one possible source for a given object file, an
error is reported. This process is repeated until the link list stops changing.
It is not necessary to use #autocompile for simple projects where #link is used rather than
#dolink, as #link performs an implicit #autocompile.

Advanced Topics & Reference Guide 70

#ignore
 #ignore <filename>
 #ignore #pragmastring
There are two forms of the #ignore command. The first, where a filename is specified, tells the
Project System to ignore the date of the nominated file when deciding whether or not to
compile. This is useful when a ‘safe’ change is made to a widely used header file, to prevent
mass recompile.
The special form #ignore #pragmastring directs the Project System to ignore the #pragma
settings when deciding whether or not to compile a file. This may be useful, for example, when
a new compile-time macro has been defined, but there is no need to recompile everything.

#implib
 #implib <libfilename>
The #implib command is used to create (if necessary) a dynamic link library file. There are two
forms of this command, which operate in slightly different ways. If a single filename is
specified, this names an import library file, which is created (if not up-to-date) from the object
files in the link list. The object files are scanned and each public procedure or variable is
exported. For example:

#pragma link(fred.obj, joe.obj)

#implib mylib.lib

In the second form of the #implib command, an import library filename and a module definition
file (.exp—see Module Definition File below) are both specified, and the library file is created (if
not up-to-date) from the symbols named in the definition file. This form of the command is
equivalent to using the tsimplib utility that comes with SoftVelocity C, C++, and Modula-2.
 #implib <expfilename> <libfilename>
Using #implib in the second form requires you to create and maintain the list of exports ‘by
hand’, whereas the first form exports all public names automatically. The use of a module
definition file is an advantage if you need to maintain compatibility with previous versions of an
interface, and it also allows you to export only the procedures which need to be exported.
When #implib is used with a module definition file, the link list is cleared.

Project System Reference 71

Conditional Processing and Flow Control
Project file commands may be executed conditionally, using #if, #then, #elsif, #else, and #endif
commands. In addition, processing may be stopped with #error and #abort when certain
conditions occur.

#if
The syntax of the #if command is as follows :

#if <boolean-expression> #then

commands

#elsif <boolean-expression> #then

commands

#else

commands

#endif
The #elsif part may be omitted, or may be repeated any number of times. The #else part may
be omitted.
The expressions are evaluated in order, until one of them yields true, then the following
command sequence is executed. If none of the expressions yield true, and the #else part is
present, then the commands following #else are executed. All other commands are ignored.
The syntax and semantics of boolean expressions are described under Boolean Expressions
below.

#error
 #error <string>
This command terminates the current project. Under the Clarion environment, the Text Editor
is opened at the position of the #error command, and displays the supplied string as the error
message. For example:

#if "%name"="" #then

#error "name not set up"

#endif

Advanced Topics & Reference Guide 72

#abort
 #abort [on | off]
This command is used to control whether a failed #compile or #run command will terminate a
project. If abort mode is on, a project will be aborted as soon as a #compile fails, or a #run
command produces a non-zero return-code. If abort mode is off, a project will only be aborted
if an internal command fails, including a #link, #implib or #exemod command.
#abort on will set abort mode to on, while #abort off will turn it off. #abort without one of the
above arguments will abort the current project immediately.
The default abort mode is on when running under the Clarion environment.

Project System Reference 73

User Interface

The following commands allow you to collect information and provide feedback during the
make process.

#message
 #message <string>
This command displays the specified string in the make display window. This can be used to
indicate progress through the project file, or to display status messages. For example:
#message "finished making %prjname"

#prompt
 #prompt <promptstring> [<defaultstring>]
This command prompts you to enter a string, by displaying the <promptstring> and waiting for
a keyboard entry. The string you enter is returned as the value of the macro %reply. If
<defaultstring> is specified, and no keyboard entry is made, the <defaultstring> will be used as
the value returned to %reply. For example:
#prompt "Command line: " %cline

#set cline = %reply

Boolean Expressions
Boolean expressions used in #if and #elsif commands are made up from the following boolean
operators (listed in order of precedence):

#or

#and

#not

=

#exists

#older

()

#or

boolean-expression = <factor> { #or <factor> }
A boolean expression containing one or more #or operators yields true if the evaluation of any
of the factors yields true.

Advanced Topics & Reference Guide 74

#and
<factor> = <term> { #and <term> }

A factor containing one or more #and operators yields false if the evaluation of any of the
terms yields false.

#not

<term> = #not <term>
A term proceeded by the #not operator yields true if the evaluation of the term yields false, and
vice versa.

= (comparison)

<term> = string = string
A term containing a comparison operator yields true if the strings are identical, otherwise false.
== may be used instead of =.
The = operator and second string may be omitted, in which case the first string is compared
against the string "on". That is,

DemoSwitch =

is equivalent to
DemoSwitch = "on"

The first string may be replaced by an expression of the form name1(name2), where name2
names a #pragma of class name1. In this case, the expression is replaced by the current
setting of the specified #pragma, before the comparison is made.

#exists

<term> = #exists <file-name>
A term containing the #exists operator yields true if the file exists (after applying redirection to
the filename), otherwise false.

#older

<term> = <file-name> #older <file-name> { , <file-name> }
A term containing the #older operator yields true if the first file specified is older than at least
one of the other files specified, otherwise false. Redirection is applied to all filenames (See The
Redirection File below). This operator is often useful to determine whether a post/pre-
processing action needs to be performed. For example:

#if mydll.lib #older mydll.exp #then

...

Project System Reference 75

() Parenthesized Boolean expressions

<term> = (<Boolean-expression>)

A term may consist of a parenthesized Boolean expression, in order to alter or clarify the
binding of other Boolean operators. The term yields true if the enclosed Boolean expression
yields true. Arbitrarily complex Boolean expressions may be formed.

Filenames and Redirection Analysis
Filenames may be fully qualified, e.g. C:\C60\Orders\Order.tps, in which case, redirection
analysis is not done. Alternatively, filenames may not be fully qualified, e.g. ORDERS.TPS, in
which case redirection analysis is applied.
Redirection analysis means the project system compares the filename with the filepatterns in
the current redirection file, until a match is found. Then, the project system searches only those
directory paths associated with matching filepattern to locate the file.
When creating new files, the project system creates the file in the first directory associated with
the matching filepattern.

#file Commands
The following file system commands are available:

#file adderrors

#file append

#file copy

#file delete

#file move

#file redirect

#file touch

#file copy <src-filename> <dst-filename>
This command causes a file to be copied from <src-filename> to <dst-filename>. Both <src-
filename> and <dst-filename> must be filenames without wildcard characters. Redirection is
applied to both filenames.

#file delete <filename>
This command causes the nominated file to be deleted. <filename> must be a filename without
wildcard characters. Redirection is applied to the filename.

Advanced Topics & Reference Guide 76

#file move <src-filename> <dst-filename>
This command moves (renames) a file from <src-filename> to <dst-filename>. Both filenames
must specify files on the same drive. Redirection is applied to both filenames.

#file touch <filename>
This command sets the date and time of <filename> to be the current date and time.

#file append <filename> <string>
This command appends the specified string to <filename>, followed by a CR/LF pair. The file
will be created if it does not exist. This command can be used to build log files, etc.

#file redirect [<filename>]
This command changes the current redirection file to <filename>. If no filename is specified,
then the command changes the current redirection file to the redirection file that began the
project.
At the end of the project file, the redirection file is restored to the redirection file that began the
project.

#file adderrors <filename>
This command processes the error messages in the nominated file, and adds them to the
errors that will be reported when the project terminates.
Each error message must be in one of the following formats:

(filename lineno,colno): error string

(filename lineno): error string

filename(lineno): error string
To capture errors from a program with a different error format, a filter program can be used to
translate them. For example:

#run ‘masm %f; > %f.err’

#file adderrors %f.err

#run ‘myprog %f; | myfilter > %f.err’

#file adderrors %f.err

If any errors are detected, and abort mode is on, the project will terminate and the errors will
be reported in the make status window.
The macros %errors and %warnings are set to the number of errors and warnings detected.

Project System Reference 77

Other Commands

#run <commandstring>
This command executes the command specified by <commandstring>. A #run command is
generated whenever you add a file to the Programs to execute folder in the Project Tree
dialog.
For example:

#run "dir > dir.log"

#run "myprog"

Filenames within the command string (with the exception of the executable filename itself) are
not automatically subject to redirection - #expand may be used before using #run if this is
required.

#include <file-name>
A copy of the contents of the nominated file is inserted in the input stream. <filename> should
specify a fully qualified filename, or an unqualified filename, in which case redirection analysis
is applied (see The Redirection File above).
The current values of the link list, #pragma settings, and macros are fully available to the
#include statements. In other words, the #include statements are handled as though they
resided within the including .prj file.

#call <file-name>
A copy of the contents of the nominated file is inserted in the input stream. <filename> should
specify a fully qualified filename, or an unqualified filename, in which case redirection analysis
is applied (see The Redirection File above).
The current values of the link list, #pragma settings, and macros are not available to the #call
statements, and the #call statements cannot modify these values in the calling environment. In
other words, #call statements are handled as a process that is completely separate from the
calling process.

#declare_compiler <file_extension> = <executed_macro>
This defines a macro which is invoked when compiling source files with an extension matching
the first parameter. The macros %src and %obj, are set to the names of the source and object
files.
Generally, you will not have to use this command explicitly, as all SoftVelocity compilers are
pre-declared in the Project System. For example the following is to invoke MASM

Advanced Topics & Reference Guide 78

#declare_compiler asm=

‘#set make=%%remake

#if %%make #then

#edit save %%src

#expand %%src

#set _masmsrc=%%opath

#expand %%obj

#set _masmobj=%%cpath

#run "masm %%_masmsrc,%%_masmobj/MX/e; >masmtmp.$$$"

#file adderrors masmtmp.$$$

#file delete masmtmp.$$$

#endif

#pragma link(%%obj)’

#rundll <dll_name> <source_filename> <output_filename>
This command invokes an integrated SoftVelocity compiler/utility. The first string is the DLL
name, the second is the source filename, and the third is the output filename.
You should never have to use this command explicitly, as all SoftVelocity compilers/utilities are
pre-declared in the Project System.

#exemod
 #exemod <file-name> <file-name> <file-name>
This command is the equivalent of using the tsexemod utility that comes with SoftVelocity C,
C++, and Modula-2. #exemod is required to make advanced overlay model programs,
Windows programs and DOS DLLs. However, it is not necessary to use this command
explicitly when making Windows programs.
TSEXEMOD is used to modify the header and segment information in a new format executable
file (.EXE or .DLL), using the information in a module definition (.EXP) file. For example:

TSEXEMOD binfile.* expfile.exp mapfile.map

Project System Reference 79

SoftVelocity #pragmas

All SoftVelocity languages, and the Project System, use a common set of compiler options
known as #pragmas. In general, pragmas may appear in the source code or in a project file,
and the effect will be the same.

A pragma can be used in the Project language, C++ code, or Modula-2 code. Some only
work in certain places. A ‘P’ to the right of the pragma indicates it can be used in the
Project language, a ‘C’ indicates it can be used in C++ code and a ‘M’ indicates it can be
used in Modula-2 code.

Modula-2 Pragma Syntax
Pragmas in SoftVelocity Modula-2 occur in a special form of comment which begins with ‘(*#’.
For example:

(*# check(index => off) *)

Old-type Compiler Directives
In the original version of SoftVelocity Modula-2, compiler directives starting with a $ were used
to specify compiler options. These directives are still accepted in later versions of SoftVelocity
Modula-2, with the following exceptions:

• $B (Ctrl-Break handler). This is no longer supported. Use Lib.EnableBreakCheck
instead.

• $D (data segment name). This is supported, but adds the suffix _BSS (for uninitialized
data) or _DATA (for initialized data) to the name instead of the D_ prefix.

• $J (use IRET instead of RET). This is not supported. Instead, you should use the
pragma:

(*# call(interrupt => on) *)

• However, you may find that you have to make other changes as well as the effect of the
pragma is different from the $J directive:

• $K (C calling convention). This is not supported. Instead, you should use the pragma:
(*# call(c_conv => on) *)

• $M (code segment name). This is supported but adds the suffix _TEXT to the name
instead of the C_ prefix.

• $P (external names for local procedures). This is no longer supported. It is no longer
applicable.

Advanced Topics & Reference Guide 80

• $Q (procedure tracing). This is no longer supported. Instead, you should use the
pragma:

(*# debug(proc_trace => on) *)

• This enables a different method of tracing procedures. Refer to the proc_trace pragma
for further details.

• $X (80x87 stack spilling). This is no longer supported (and is no longer necessary).
• $Z (NIL pointer checks). This still does NIL pointer checks but no longer clears memory.
• $@ (preserve DS). This is no longer supported.

The support for these directives has been included with later systems so that your old
programs and modules will recompile with minimum changes. However, you should avoid
using the old directives with new programs, and use pragmas instead.

C and C++ Pragma Syntax
Pragmas are an integral part of the C and C++ languages, and are implemented as compiler
directives:

#pragma check(index => off)

Project System Pragma Syntax
Pragmas in the Project System use a similar syntax to the C and C++ languages:

#pragma check(index => off)

Pragmas in the Project System may also be specified in the #compile command, to apply to a
single compilation. For example:

#compile mandel.mod /debug(vid=>on)

Pragma Classes
A #pragma takes the form #pragma class(name=>value). The #pragma classes are as follows:

Call #pragmas

Check #pragmas

Data #pragmas

Debug #pragmas

Define #pragmas

Expr #pragmas

Link and Linkfirst #pragmas

Link_option #pragmas

Module #pragmas

Name #pragmas

Optimize #pragmas

Option #pragmas

Project System Reference 81

Project #pragmas

Save and Restore #pragmas

Warn #pragmas

Call #pragmas
#pragmas with the class name call affect all aspects of calling conventions, code segments,
and code pointers. The current settings of the call #pragmas at the point at which a
procedure’s definition is encountered, determines the calling convention that is used to call the
procedure. SoftVelocity compilers detect if an inconsistent calling convention is used when a
procedure is called. The type-safe linker reports an error if the calling conventions attributed to
a given procedure do not match in every object file.
The following call #pragmas are available:

#pragma call(c_conv => on | off)

#pragma call(ds_entry => identifier)

#pragma call(ds_eq_ss => on | off)

#pragma call(inline => on | off)

#pragma call(inline_max => Number)

#pragma call(near_call => on | off)

#pragma call(o_a_copy => on | off)

#pragma call(o_a_size => on | off)

#pragma call(opt_var_arg => on | off)

#pragma call(reg_param => RegList)

#pragma call(reg_return => RegList)

#pragma call(reg_saved => RegList)

#pragma call(result_optional => on | off)

#pragma call(same_ds => on | off)

#pragma call(seg_name => identifier)

#pragma call(set_jmp => on | off)

#pragma call(standard_conv => on | off)

#pragma call(var_arg => on | off)

#pragma call(near_call => on | off) cpm
Specifies whether procedure calls are near or far. When on, the compiler calls procedures with
near calls. The compiler can only use near calls if the calling and called procedures are in the
same segment. The compiler checks that this is the case.
The default value is off. This example forces near calls:

#pragma call(near_call=>on)

Advanced Topics & Reference Guide 82

#pragma call(same_ds => on | off) cpm
Specifies whether to load the data segment (DS) register on entry to a procedure. When on,
DS will not be loaded as part of the procedure prolog. This will only be correct when the DS
setting of the calling procedure matches that of the called procedure. The compiler checks that
this is the case.
This option is off by default. For example:

#pragma call(same_ds => on)

This stops DS from being loaded in the procedure prolog.

#pragma call(c_conv => on | off) cpm
When on, this option enables the Microsoft C calling convention. In this convention, the
compiler pushes procedure parameters in right to left order on the stack and the caller pops
these parameters off the stack.
This is not the default, so you should only use this #pragma when interfacing to Microsoft C
code. For example:

#pragma call(c_conv=>on)

You can also use the cdecl keyword in C and C++ to achieve the same effect.
See also the standard_conv #pragma, which has the same effect for C and C++, but is ignored
for Modula-2. The standard_conv #pragma is set off by default.

#pragma call(inline => on | off) cm
If this #pragma is set on before a procedure definition, the compiler makes a copy of the
procedure in the code rather than using a call instruction. The default value is off.
You can use this convention for any procedure, but this #pragma is mainly used together with
the reg_param #pragma for simple machine-code procedures. For example:

#pragma save

#pragma call(inline => on, reg_param => (dx,ax))

static void outp(int port, unsigned char byt)=

{

0xEE, /* out dx,al */

};

#pragma restore
makes outp an inline procedure, so a call to it appears as a single 80x86 machine instruction:
out dx,al.

#pragma call(seg_name => identifier) cpm

Project System Reference 83

Specifies the code segment name. call(seg_name => nnn) means that the compiler places the
code for the procedure in segment nnn_TEXT. The default value depends on the memory
model. In the small and compact models, the default is null; in the other models it is the name
of the source file. For example, a code segment named _TEXT would be specified as:

#pragma call(seg_name => null)

and a code segment named MYCODE_TEXT, would be specified as:
#pragma call(seg_name => MYCODE)

The default setting is language dependant, and is not defined by the Project System.

#pragma call(ds_entry => identifier) cpm
This #pragma indicates a segment name which the DS register will point to throughout the
execution of a procedure. If the identifier is null, the compiler names the segment _DATA. If
the identifier is none, the compiler does not assume a fixed DS during procedure execution
and uses DS as a general purpose segment register like ES.

#pragma call(ds_entry => MYDATA)

This example indicates that on entry to the procedure, DS will point to the segment named
MYDATA_DGROUP.

#pragma call(reg_param => RegList) cm
SoftVelocity languages pass procedure parameters in machine registers rather than using the
stack. This generates smaller and faster code. This #pragma allows you to fine-tune individual
procedure calls for maximum speed. Other vendors’ languages use a less efficient calling
convention; you must, therefore, disable this calling convention when interfacing to
precompiled objects written for these compilers (see the Advanced Programmer’s Guide that
comes with SoftVelocity C, C++, and Modula-2, Chapter 5: Multi-language Programming). This
#pragma has no effect on structure parameters, which are always passed on the stack.
The argument for reg_param is a register list, specifying which registers should be used.
Registers for parameters are allocated left to right from the list. The table shows how the
compiler allocates registers dependent on parameter types:
1 byte ax, bx, cx, dx

2 bytes ax, bx, cx, dx, si, di

4 bytes ax, bx, cx, dx, si, di for low word.

ax, bx, cx, dx, si, di, es, ds for high word.

floating point st0, st1, st2, st3, st4, st5, st6

Note that the es and ds registers will only be used for the high word of a 4-byte parameter
where that parameter is of pointer type. If either the low or high word cannot be allocated, then
the whole parameter is passed on the stack.
When the compiler exhausts the list of registers, it passes the parameter on the stack. If you
specify an empty list, the compiler uses the stack for all parameters.

Advanced Topics & Reference Guide 84

The default setting for the SoftVelocity calling convention is:
#pragma call(reg_param=>(ax,bx,cx,dx,st0,st6,st5,st4,st3))

The default setting for the stack calling convention is:
#pragma call(reg_param => ())

#pragma call(reg_saved => RegList) cm
This #pragma specifies which registers a procedure preserves. The argument RegList is a list
that specifies the set of registers.
The default set for the SoftVelocity calling convention is:

ccall(reg_saved=>(ax,bx,cx,dx,si,di,ds,st1,st2))

The default set for the stack calling convention is:
#pragma call(reg_saved=>(si,di,ds,st1,st2))

#pragma call(o_a_size => on | off) m
When on, this option passes the size of open array parameters on the stack:

(*# call(o_a_size => on) *)

This #pragma has no effect for value parameter open arrays, unless the o_a_copy #pragma is
set off.
The default setting is on.

#pragma call(o_a_copy => on | off) m
When on, open array parameters are copied onto the stack as part of the procedure prolog. If
off, only a reference to the array is passed. Note that the open array parameters size must be
passed in order for a copy to be made - see #pragma call(o_a_size). The default setting is on.

#pragma call(ds_eq_ss => on | off) m
It controls whether VAR parameters use 16- or 32-bit pointers. The default setting is on for
small and medium models, otherwise off.

Project System Reference 85

#pragma call(var_arg => on | off) m
When on, it implies that the following procedures take a variable number of arguments. This
effectively disables the "too many arguments" error that the compiler would normally detect.
The consequence however, is that the compiler cannot carry out any type checking on the
arguments.
This #pragma should be used when calling C procedures (such as printf) where the number of
arguments varies:

(*# call(var_arg => on,

reg_param=>(),

c_conv=>on) *)

The default setting is off.

#pragma call(reg_return => RegList) cm
This #pragma is used to specify the registers to be used for return values of integer, pointer
and floating point types. For example:

#pragma call(reg_return => (bx,cx))

The default setting is:
#pragma call(reg_return=>(ax,dx,st0))

#pragma call(result_optional => on | off) m
It can be used to call a procedure as a proper procedure without generating a compiler error.
For example:

(*# save *)

(*# module(result_optional => on) *)

PROCEDURE FuncProc(x: CHAR): CARDINAL;

(*# restore *)

With this declaration, you can write both of the following:

i := FuncProc(‘a’);

FuncProc(‘a’);
This is only useful when the called procedure has a side effect that is more important than the
result. It is particularly useful when calling SoftVelocity C library procedures.
The default setting is off.

Advanced Topics & Reference Guide 86

#pragma call(set_jmp => on | off) cm
This #pragma should only be used for the library routines which implement non-local jumps.
The effect is to inform the compiler of the non-standard register saving properties of these
routines.

#pragma call(inline_max => Number) cpm
This #pragma controls the largest procedure which is inlined. The default setting is 12, which
corresponds to the minimum code size for most programs. A larger value increases the code
size and may accelerate code execution.
The #pragma takes effect for each call, so a procedure may be called in different ways at
different places.

 Procedures are not inlined if the body has not been compiled before the call.

#pragma call(standard_conv => on | off) c
The effect on C and C++ programs is the same as the call(c_conv) #pragma. For Modula-2
there is no effect. The default is off.

#pragma call(opt_var_arg => on | off) cp
This #pragma controls whether optimized entry sequences are generated for procedures with
variable parameter lists. The default is on.

Data #pragmas
#pragmas with the class name data affect data segmentation, data pointers and all aspects of
data layout. The current settings of the data #pragmas at the point of a variable’s declaration
will affect the way in which it is accessed.
The following data #pragmas are available:

#pragma data(c_far_ext => on | off)

#pragma data(class_hierarchy => on | off)

#pragma data(compatible_class => on | off)

#pragma data(const_assign => on | off)

#pragma data(const_in_code => on | off)

#pragma data(cpp_compatible_class => on | off)

Project System Reference 87

#pragma data(ext_record => on | off)

#pragma data(far_ext => on | off)

#pragma data(near_ptr => on | off)

#pragma data(packed => on | off)

#pragma data(seg_name => identifier)

#pragma data(stack_size => Number)

#pragma data(threshold => Number)

#pragma data(var_enum_size => on | off)

#pragma data(volatile => on | off)

#pragma data(volatile_variant => on | off)

#pragma data(seg_name => identifier) cpm
The #pragma data(seg_3name=>xxx) specifies that the compiler should place global initialized
data objects in a segment named xxx_DATA, and global uninitialized data objects in a
segment named xxx_BSS. These both have group name xxx and are in the FAR_DATA class.
If the size of a data object is larger than the global data threshold, the compiler places the
object in a separate segment.
The following example makes the names of the default segments: MYDATA_DATA and
MYDATA_BSS. These segments are in group MYDATA and have class FAR_DATA:

#pragma data(seg_name => MYDATA)

You can also specify null, to indicate the names _BSS and _DATA. The default value is null in
all models except for extra large and multi-thread. For example:

#pragma data(seg_name => null)

#pragma data(far_ext => on | off) cp
When on, the code generator does not assume that external variables are in the segment
specified by the segment #pragma. The #pragma defaults to on. For example:

#pragma(seg_name=>MYDATA, far_ext=>off)

makes the name of the default segments MYDATA_DATA and MYDATA_BSS in group
MYDATA. The compiler assumes external data objects to be in the same segment.

Advanced Topics & Reference Guide 88

#pragma data(c_far_ext => on | off) pm
When on, the code generator does not assume that external variables are in the segment
specified by the seg_name #pragma. The #pragma defaults to off in all memory models. For
example:

(*# data(seg_name => MYDATA, c_far_ext => off) *)

makes the name of the default segments MYDATA_DATA and MYDATA_BSS in group
MYDATA. This #pragma is not particularly useful in Modula-2 except for interfacing to C.

#pragma data(near_ptr => on | off) cm
Specifies whether data pointers are near or far. This #pragma also affects pointers generated
by the & operator and by implicit array to pointer conversions in C and C++. For example:

#pragma data(near_ptr => on)

makes data pointers near.

#pragma data(volatile => on | off) m
Variables declared when this #pragma is set to on are considered to be volatile, and will
always be kept in memory, rather than being kept in registers across statements.
The default setting is off. This #pragma is not allowed in a project file, and is not available for C
and C++, where the volatile keyword should be used.

#pragma data(volatile_variant => on | off) m
The effect is as for #pragma data(volatile), but applies to variables of variant record types only.
The default setting is off.

#pragma data(ext_record => on | off) pm
Normally SoftVelocity does not allow two fields in different alternatives of a variant record to
have the same name. Using this #pragma:

(*# data(ext_record => on) *)

will allow you to use the same name in different alternatives, if the fields are located at the
same offset in the variant record and they have the same data type.
The default setting is off.

Project System Reference 89

#pragma data(var_enum_size => on | off) pm
Enumeration constants with less than 256 alternative values are normally stored in one byte.
Switching this option off:

(*# data(var_enum_size => off) *)

will force the compiler to store them as two-byte quantities. This is particularly useful for
interfacing to third-party libraries and operating system calls that expect a word value. Without
this #pragma the enumeration would be byte rather than word size.
The default setting is on.

#pragma data(stack_size => Number) cm
Specifies the size of the stack. You must place this #pragma in the file containing the main
procedure (the main module in Modula-2). If the stack size cannot be set to the specified size,
the compiler uses the largest possible size. The default size is 16K bytes. For example:

#pragma data(stack_size => 0x6000)

main()

{

/* statements */

}
makes the size of the run-time stack 0x6000 bytes (24K).

#pragma data(packed => on | off) pm
This #pragma controls whether record fields are packed at bit level. The default setting is off.

#pragma data(const_in_code => on | off) p
This #pragma controls whether constants are put in to a code or data segment. The default
setting is on.

#pragma data(class_hierarchy => on | off) pm
This #pragma controls whether information about class hierarchies is included in the class
descriptor (method table). The information is used by the IS operator and TypeGuards with
check on. The default setting is on.

#pragma data(cpp_compatible_class => on | off) pm
This #pragma controls whether the compiler includes extra information in class descriptors to
provide compatibility with C. The default setting is off.

Advanced Topics & Reference Guide 90

#pragma data(compatible_class => on | off) cp
This #pragma controls whether the compiler includes the correct information in class
descriptors to provide compatibility with Modula-2. The default setting is off.

#pragma data(threshold => Number) cpm
This #pragma sets the global data threshold. This determines at what size a data object is
placed in a segment of its own. The default setting is 10000 bytes.

#pragma data(const_assign => on | off) pm
This #pragma controls whether it is possible to assign to a structured constant. The default
setting is off.

If const_in_code=>on is specified, assignments to constants will result in protection violations.

Check #pragmas
#pragmas with the class name check control run-time error checking. These can help you to
locate erroneous program logic, but at the expense of slower execution. All these #pragmas
default to off.
When a run-time check detects an error, the default action is to terminate the process and
create the file CWLOG.TXT.
The following check #pragmas are available:

#pragma check(guard => on | off)

#pragma check(index => on | off)

#pragma check(nil_ptr => on | off)

#pragma check(overflow => on | off)

#pragma check(range => on | off)

#pragma check(stack => on | off)

#pragma check(stack => on | off) cpm
When on, the run-time system checks that your program does not run out of stack space. You
can increase the size of the stack using the data(stack_size) #pragma.

Project System Reference 91

#pragma check(nil_ptr => on | off) cpm
When on, the run-time system checks for any dereference of NULL or NIL pointers.

#pragma check(range => on | off) pm
When on, a range check is performed whenever a value is assigned to a variable of subrange
or enumerated type. In addition, compile-time values are checked to ensure that they are in the
range of their type.

#pragma check(overflow => on | off) pm
When on, the run-time system checks that numeric values do not go out of range.

#pragma check(index => on | off) cpm
When on, the run-time system checks for the use of an array index larger than the array size.

#pragma check(guard => on | off) pm
This #pragma controls whether checks are performed on the checked-guard operator.

Advanced Topics & Reference Guide 92

Name #pragmas
#pragmas with the class name control aspects of linkage naming. However, the C programmer
should also be familiar with C name mangling and extern declarations.
The following name #pragmas are available:

#pragma name(prefix => (none | modula | c | os2_lib | windows))

#pragma name(prefix => string)

#pragma name(upper_case => on | off)

#pragma name(upper_case => on | off) cp
This #pragma is available in C and C++ Only. It specifies whether public names should be
converted to upper case. You would use this when interfacing to Pascal, or to third party C
libraries. The default setting is off.

#pragma name(prefix) cpm
There are two forms of this #pragma:
In Modula-2: name(prefix => (none | modula | c | os2_lib | windows))
In C and C++: name(prefix => string)

#pragma name(prefix => (none | modula | c | os2_lib | windows)) mp
This #pragma is available under Modula-2 (under C and C++ the syntax is slightly different -
see #pragma name(prefix => string).
The name(prefix) #pragma specifies the prefix and case of the public names that the compiler
uses. The public names are names for non-static procedures and external data objects. By
default, SoftVelocity Modula-2 prefixes all external names with the name of the module
followed by an ‘@’ for data and a ‘$’ for procedures. You will need to use this #pragma to
interface to SoftVelocity C.
The prefix #pragma specifies which prefix scheme to use:

Modula Use the SoftVelocity Modula-2 naming convention of prefixing
all external names with the name of the module and an ‘@’ or a
‘$’.

none Puts no prefix on external names.
c Use the C naming convention (adds an underbar, ‘_’ to all

external names).
os2_lib Use the OS/2 library standard (prefix all external names with

the module name).
windows Use the Microsoft Windows external naming convention.

Project System Reference 93

#pragma name(prefix => string) cp
This #pragma is available under C and C++ Only. Under Modula-2 the syntax is slightly
different - see #pragma name(prefix => (none | modula | c | os2_lib | windows)).
The value is a string specifying the prefix to all public names. An empty string specifies no
prefix. The default prefix is an underbar.
If you wish to interface to SoftVelocity Modula-2, you can use this #pragma to specify the
module prefix with a dollar ($) suffix. For example, to use the WrStr procedure from module
IO:

#pragma name(prefix => "IO$")

void WrCard(unsigned);

In C, a Pascal or Modula2 linkage specification can specify a module name within the linkage
specification, in which case the use of this #pragma is not necessary.
The default setting is language-dependent. The Project System does not set a default value for
this macro.

Advanced Topics & Reference Guide 94

Optimize #pragmas
#pragmas with the class name optimize control optimizations performed by the SoftVelocity
code generator. By default, all optimizations are enabled. Turning off an optimization will result
in poorer code quality, and is unlikely to have a significant impact on compile times.
The following optimize #pragmas are available:

#pragma optimize(alias => on | off)

#pragma optimize(const => on | off)

#pragma optimize(cpu => 86 | 286 | 386 | 486)

#pragma optimize(cse => on | off)

#pragma optimize(jump => on | off)

#pragma optimize(loop => on | off)

#pragma optimize(peep_hole => on | off)

#pragma optimize(regass => on | off)

#pragma optimize(speed => on | off)

#pragma optimize(stk_frame => on | off)

#pragma optimize(cse => on | off) cpm
When on, the compiler minimizes evaluation of complete expressions by keeping partial results
in a temporary register. The default setting is on.

#pragma optimize(const => on | off) cpm
When on, the compiler will hold frequently used constants in registers to produce faster code.
The default setting is on.

#pragma optimize(speed => on | off) cpm
When on, SoftVelocity tries to make the code run as fast as possible without regard for the
code size. When off, SoftVelocity tries to make the code as small as possible.
A good example of the difference between optimizing for speed and optimizing for space is the
use of a for loop. When optimizing for speed, the compiler might use nop instructions to place
jump labels inside the for loop on even boundaries. The 80x86 architecture makes this much
quicker than odd boundaries, but each nop adds another byte to the code size. This means
that when optimizing for space, the compiler eliminates the extra nop instructions. The default
setting is on.

Project System Reference 95

#pragma optimize(stk_frame => on | off) cpm
When on, the compiler will only make stack frames where required, thus eliminating the need
to set up the BP register. This optimization can only be made when all parameters and local
variables for a procedure can be held in machine registers.
When off, the compiler always sets up the BP register, thus allowing a complete activation
stack listing while debugging. The default setting is on.

#pragma optimize(regass => on | off) cpm
When on, the compiler spends time finding the best allocation of registers for variables. This
results in fast and tight code but slower compile. The default setting is on.

#pragma optimize(peep_hole => on| off) cpm
When on, the compiler performs a variety of machine-code translations, generating smaller
and faster code. The default setting is on.

#pragma optimize(jump => on | off) cpm
When on, the compiler will rearrange loops to eliminate as many jumps as possible, thus
generating faster code. The default setting is on.

#pragma optimize(loop => on | off) cpm
When on, the compiler uses the loop depth when eliminating common sub-expressions and
performing jump optimizations. The result of this optimization is faster, but potentially larger,
code. The default is on.

#pragma optimize(alias => on | off) cpm
When on, this allows the compiler to assume that variables in a procedure will not also be used
indirectly with a pointer in the same procedure. This assumption is not strictly allowed in ANSI
C but is correct for all meaningful programs. The default setting is on.

#pragma optimize(cpu => 86 | 286 | 386 | 486) cpm
This controls the instructions used by the code generator, by declaring the processor to be
used. The default is cpu=>286. This is normally set on the Project System’s Optimize tab.

Advanced Topics & Reference Guide 96

Debug #pragmas
#pragmas with the class name debug control the amount of additional information produced by
the code-generator to assist debugging programs.
The following debug #pragmas are available.

#pragma debug(line_num => on | off)

#pragma debug(proc_trace => on | off)

#pragma debug(public => on | off)

#pragma debug(vid => off | min | full)

#pragma debug(vid => off | min | full) cpm
When full, the compiler places information for the SoftVelocity Visual Interactive Debugger
(VID) into a .DBD file. Use this option when debugging your program with the SoftVelocity
debugger.

This #pragma disables the register usage and stack frame optimizations, allowing full access
to variables within the debugger. All local variables are treated as volatile, to ensure that their
values are not held in registers across statements, thus ensuring that the debugger can access
their values at all times.
When min, the compiler performs the optimizations described above, and does not treat local
variables as volatile. The debugger can still be used, but cannot reference local variables and
some stack frames.
When off, the compiler generates no debugger information, thus speeding compile, generating
the best possible code, and saving disk space. The default setting is off.

#pragma debug(proc_trace => on | off) pm
When this #pragma is on, the compiler generates instructions to call the procedures EnterProc
and ExitProc on, respectively, entering and exiting every procedure. These procedures can
then perform any procedure tracing you may require.

You should ensure that this #pragma is off for the EnterProc and ExitProc procedures
themselves, otherwise infinite recursion will occur and your program will undoubtedly crash.
The two procedures must be visible to the module in which proc_trace is set on. This means
that the module itself must define the procedures ExitProc and EnterProc or the module must
specifically import them using an unqualified import.
The default setting is off.

Project System Reference 97

#pragma debug(line_num => on | off) cpm
This #pragma causes the compiler to generate line number information for debuggers such as
symdeb. This information is stored in object files and printed in the map file. The default setting
is off.

#pragma debug(public => on | off) cpm
This causes private objects to be made public to facilitate the use of debuggers such as
symdeb. It may cause duplicated public warnings at link-time in languages such as C and C++
which do not have a modular structure. These warnings may be safely ignored, although it is
recommended that such procedures should be renamed to avoid possible confusion. The
default setting is off.

Advanced Topics & Reference Guide 98

Module #pragmas
#pragmas with the class name module control options that apply to an entire source file or
module. These #pragmas should be specified at the top of any source files to which they
apply, or in the project file.
The following module #pragmas are available:

#pragma module(implementation => on | off)

#pragma module(init_code => on | off)

#pragma module(init_prio => Number)

#pragma module(smart_link => on | off)

#pragma module(init_code => on | off) pm
When on, it implies that the module contains initialization code to be run when the program is
loaded and before the main module is executed. Switching the option off is useful for modules
written in other languages, as it will stop the linker warning of undefined symbols:

(*# module(init_code => off) *)

If an implementation module sets this #pragma off, then there is a knock-on effect, i.e., all
imported modules must also have init_code set to off.
The default setting is on.

#pragma module(implementation => on | off) pm
This #pragma specifies whether or not a definition file (.DEF or .ITF) has a corresponding
object file. It should be turned off if the definition file defines interfaces to routines in a different
language, to prevent the Project System from attempting to remake the corresponding object
file. The default is on.
This #pragma can also be used in the implementation part of a module, before any module
source code. In this case it overrides the default naming of the associated object file. Normally
the name of the .OBJ file corresponding to a module is taken from the module name. When
this #pragma is set off, the object filename will be taken from the filename, not the module
name.

Project System Reference 99

#pragma module(smart_link => on | off) cpm
Setting this #pragma to off disables the smart linking feature, to the extent that either all or
none of the objects in each segment from a compile will be included in a link. This may result
in quicker linking, and also may allow other linkers (such as Microsoft) to be used. (There are
many potential problems with trying to use a non-SoftVelocity linker, and it is definitely not
recommended). The default setting is on.

#pragma module(init_prio => Number) cp
This #pragma is available under C only. It defines a priority for the initialization code for static
objects. Normally the initialization order is undefined between files, but this #pragma allows
you to control the initialization order in that files with higher priority are initialized before
modules with lower priority. The number must be a value between 0 and 32. The default value
is 16, and the C library uses values between 25 and 32 (it is therefore not recommended to
use values in this range, otherwise part of the library may not have initialized before user code
is executed).

Advanced Topics & Reference Guide 100

Option #pragmas
#pragmas with the class name option control language-dependent options, such as
SoftVelocity extensions. The following option #pragmas are available:

#pragma option(ansi => on | off)

#pragma option(bit_opr => on | off)

#pragma option(incl_cmt => on | off)

#pragma option(lang_ext => on | off)

#pragma option(min_line => on | off)

#pragma option(nest_cmt => on | off)

#pragma option(pre_proc => on | off)

#pragma option(uns_char => on | off)

#pragma option(ansi => on | off) cp
This #pragma is available under C and C++ Only. If it is set to on, ANSI keywords only are
allowed. The default setting is off.

#pragma option(lang_ext => on | off) cp
This #pragma is available under C and C++ Only. The following constructs are not valid under
ANSI C, but are included in SoftVelocity C and C++ when this #pragma is not set on:
· A type cast yields an lvalue if the operand is an lvalue.
· Procedures can be initialized with binary machine code.
· The relational operators (>,>=,<=,<) allow the operators to be a mixture of integer and

pointer operands.
· Bitfields in C can have type char and unsigned char.
· Relative pointers.
The default setting is on.

Project System Reference 101

#pragma option(nest_cmt => on | off) cp
This #pragma is available under C and C++ Only. When on, you can nest comments without
causing an error message. For example:

/* This is a test comment

/* This is a nested comment */

*/

When off, nested comments cause an error message. The default is off, allowing the compiler
to trap unterminated comments more easily and make it conform with ANSI C.

#pragma option(uns_char => on | off) cp
This #pragma is available under C and C++ Only. When on, types declared as char lie
between 0 and 255. When off, values declared as char lie between -127 and 128. The default
setting is off.

#pragma option(pre_proc => on | off) cp
This #pragma is available under C and C++ Only. When on, the compiler produces
preprocessor output in a file with the same name but with extension .i. This output file makes it
easy to debug the result of macro expansions. The default setting is off.

#pragma option(incl_cmt => on | off) cp
This #pragma is available under C and C++ Only. When on, comments are preserved in
preprocessor output. The default setting is off.
This #pragma has no effect unless #pragma pre_proc is on.

#pragma option(min_line => on | off) cp
This #pragma is available under C and C++ Only. When on, the preprocessor minimizes the
number of blank lines in output. The default setting is on.
This #pragma has no effect unless #pragma pre_proc is on.

#pragma option(bit_opr => on | off) pm
This #pragma is available under Modula-2 only. It allows bitwise operations on cardinals:

(a AND/OR b, NOT a).

The default setting is off.

Advanced Topics & Reference Guide 102

Warn #pragmas
#pragmas with the class name warn control the generation of compiler warnings. These
#pragmas are only available under C and C++.
The warnings given by SoftVelocity C and C++ help you to check, as far as possible, common
coding mistakes. Since no compiler can determine your intentions, you may get warnings even
if your code is correct. Your code may generate some warnings more than others, so
SoftVelocity allows you to customize which warning checks are performed.
You can set each of the warning options to on, off, or err. When on, SoftVelocity checks the
code for that warning and reports the problem, but the problem does not stop the compile or
linking. When off, SoftVelocity ignores the warning. When err, SoftVelocity checks the code for
the warning, reports the problem, and does not allow linking until you have fixed the problem.

SoftVelocity C and C++ check the code and produce a warning for a good reason. Indeed, to
use your non-ANSI C code, SoftVelocity C uses a minimal set of warning messages by default.
You should, therefore, think twice before turning off any of the default warning messages. We
advise that you keep all the warnings either on or err.
The following warn #pragmas are available:

#pragma warn(wacc => on | off | err)

#pragma warn(wait => on | off | err)

#pragma warn(wall => on | off | err)

#pragma warn(watr => on | off | err)

#pragma warn(wcic => on | off | err)

#pragma warn(wcld => on | off | err)

#pragma warn(wclt => on | off | err)

#pragma warn(wcne => on | off | err)

#pragma warn(wcor => on | off | err)

#pragma warn(wcrt => on | off | err)

#pragma warn(wdel => on | off | err)

#pragma warn(wdne => on | off | err)

#pragma warn(wdnu => on | off | err)

#pragma warn(wetb => on | off | err)

#pragma warn(wfnd => on | off | err)

#pragma warn(wftn => on | off | err)

#pragma warn(wnid => on | off | err)

#pragma warn(wnre => on | off | err)

#pragma warn(wnrv => on | off | err)

Project System Reference 103

#pragma warn(wntf => on | off | err)

#pragma warn(wovl => on | off | err)

#pragma warn(wovr => on | off | err)

#pragma warn(wpcv => on | off | err)

#pragma warn(wpic => on | off | err)

#pragma warn(wpin => on | off | err)

#pragma warn(wpnd => on | off | err)

#pragma warn(wpnu => on | off | err)

#pragma warn(wprg => on | off | err)

#pragma warn(wral => on | off | err)

#pragma warn(wrfp => on | off | err)

#pragma warn(wsto => on | off | err)

#pragma warn(wtxt => on | off | err)

#pragma warn(wubd => on | off | err)

#pragma warn(wvnu => on | off | err)

#pragma warn(wall => on | off | err) cp
This #pragma affects the settings of all the warnings. If set to on or err, all warnings will be
enabled.

#pragma warn(wpcv => on | off | err) cp
Pointer conversion. When on or err, the compiler checks for a conversion between two
incompatible pointer types, or between a pointer and an integral type. The default setting is on.

#pragma warn(wdne => on | off | err) cp
Declaration has no effect. When on or err, the compiler checks for a declaration that has no
meaning, for example, long int;. A declaration should contain a variable declarator, a structure
or union tag, or members of an enumeration. The default setting is on.

#pragma warn(wsto => on | off | err) cp
Storage class redeclared. When on or err, the compiler checks that you have not declared
the same variable differently within your program. For example:
int x; /* External linkage */

static int x; /* Internal linkage */

The static storage class always takes preference. The default setting is on.

Advanced Topics & Reference Guide 104

#pragma warn(wtxt => on | off | err) cp
Unexpected text in preprocessor command. When on or err, the compiler checks for a new
line character terminating a preprocessor command. The default setting is on.

#pragma warn(wprg => on | off | err) cp
Unknown #pragma. When on or err, the compiler checks for foreign #pragmas or mistakes in
SoftVelocity C #pragmas. If you are only creating code using SoftVelocity C or C++ #pragmas,
you should switch this warning to either on or err. The default setting is on.

#pragma warn(wfnd => on | off | err) cp
Function not declared. When on or err, the compiler checks for functions that have been
called but not declared. If these functions occur, SoftVelocity C assumes that the function is an
extern function returning an int. The default setting is off.

#pragma warn(wpnd => on | off | err) cp
Function prototype not declared. When on or err, the compiler checks whether a function
has a prototype associated with it. Prototypes are important to SoftVelocity, since it can not do
much type checking without them. You should, therefore, declare prototypes for all functions. It
is best to keep this warning on or err. The default setting is off.

#pragma warn(wnre => on | off | err) cp
No expression in return statement. When on or err, the compiler checks for a return value in
a non-void function. You should keep this warning off if you are compiling some old style C
code without prototypes. The default setting is off.

#pragma warn(wnrv => on | off | err) cp
No return value in function. When on or err, the compiler checks for a return statement in a
non-void function. The default setting is off.

#pragma warn(watr => on | off | err) cp
Different const attributes. When on or err, the compiler checks whether a function that
expects a pointer to a variable gets a pointer to a constant. The default setting is on.

Project System Reference 105

#pragma warn(wftn => on | off | err) cp
Far to near pointer conversion. When on or err, the compiler checks for conversion of a 32-
bit far pointer to a 16-bit near pointer. The default setting is on.

#pragma warn(wntf => on | off | err) cp
Near to far pointer conversion. When on or err, the compiler checks for conversion of a 16-
bit near pointer to a 32-bit far pointer. The default setting is on.

#pragma warn(wubd => on | off | err) cp
Possible use of variable before assignment. When on or err, the compiler checks that you
have used a local variable before you have given it a value. SoftVelocity checks this warning
with a simple scan through the function, which can cause gotos and the like to generate false
warnings.

#pragma warn(wpnu => on | off | err) cp
Parameter never used in function. When on or err, the compiler checks for a parameter that
the code never uses, so declaration of dummy parameters generates warnings. The default
setting is off.

#pragma warn(wdnu => on | off | err) cp
Variable declared but never used. When on or err, the compiler checks whether a local
variable has been declared but never used in the function. The default setting is on.

#pragma warn(wcne => on | off | err) cp
Code has no effect. When on or err, the compiler checks statements and the left operand in a
comma expression to see if they have no effect. The default setting is on. For example:
x y; /* expression has no effect */

f, x; /* left operand has no effect */

#pragma warn(wcld => on | off | err) cp
Conversion may lose significant digits. When on or err, the compiler checks for a
conversion from long or unsigned long to int or unsigned int. The default setting is on.

Advanced Topics & Reference Guide 106

#pragma warn(wait => on | off | err) cp
Assignment in test expression. When on or err, the compiler checks for a possible mistyping
of the C equality (==) operator. The equality operator contains two =. For example:

if (x=y) printf("X equals Y"); /* is a mistake */

The default setting is on.

#pragma warn(wetb => on | off | err) cp
Value of escape sequence is too large. When on or err, the compiler checks that an escape
sequence is in the range 0 to 255. The default setting is on.

#pragma warn(wcor => on | off | err) cp
Value of constant is out of range. When on or err, the compiler checks whether an integer
constant is in the range of an unsigned long, or a floating point constant is in the range of a
long double. The default setting is on.

#pragma warn(wclt => on | off | err) cp
Constant is long. When on or err, the compiler checks for an integral constant that has type
long because of its value but does not have an L suffix. The default setting is off.

#pragma warn(wral => on | off | err) cp
Returns address of local variable. When on or err, checks for a return statement that returns
the address of a local variable. This causes a problem because C reclaims the variable
storage on completion of the function. The pointer, therefore, points at undefined data. The
default setting is on.

Project System Reference 107

#pragma warn(wpin => on | off | err) cp
Default type promotion on parameter. When on or err, the compiler compares the
declaration of a parameter in an old-style function definition with the prototype for incompatible
argument promotions. For example:

int func(char); /* parameter declared as char */

int func(IntegerByPromotion);

char IntegerByPromotion;

/* INCOMPATIBLE */

{

...

}

This is a violation of the ANSI C standard regarding compatible function declarations.The
default setting is on.

#pragma warn(wpic => on | off | err) cp
Parameter list inconsistent with previous call. This warning is issued if a parameter
declaration is incompatible with the corresponding parameter in a previous function
declaration. The default setting is on.

#pragma warn(wnid => on | off | err) cp
Address for local variable not in DGROUP. When on or err, the compiler checks that a local
variable does not have its address taken in small model, when using #pragma
data(ss_in_dgroup => off). The default setting is on.

#pragma warn(wrfp => on | off | err) cp
Function redeclared with fixed parameters. When on or err, the compiler checks for a
prototype with a variable number of arguments, but the corresponding function definition
specifies a fixed number of arguments. This will work in SoftVelocity C, but it is a violation of
the ANSI C rules for compatible function declarations, and therefore, not portable. The default
setting is on.

Advanced Topics & Reference Guide 108

#pragma warn(wvnu => on | off | err) cp
Local variable never used. When on or err, the compiler checks whether you declare a local
variable and assign it a value but never use it. The default setting is on.

#pragma warn(wovr => on | off | err) cp
Overflow in constant expression. This warning is issued when a constant integer expression
overflows. The default setting is on.

#pragma warn(wacc => on | off | err) cp
Default access specifier used for base class. This warning is issued if a base class
specification does not have an access specifier and the default access is used (i.e. public for a
struct and private for a class). The default setting is on.

#pragma warn(wdel => on | off | err) cp
Expression in delete[] is obsolete. This warning is issued if an expression is specified in the
square brackets of a delete expression. The expression is ignored. This is obsolete C usage.
The default setting is on.

#pragma warn(wovl => on | off | err) cp
Keyword ‘overload’ is not required. This warning is issued if the keyword overload is
specified in C. The use of this keyword is obsolete C usage. The default setting is on.

#pragma warn(wcic => on | off | err) cp
Constant in code segment requires initialization. This warning is issued if a constant
placed in the code segment requires run-time initialization, as may be the case for an object
declared const in C, whose initializer is an expression, when the const_in_code #pragma is set
on. This situation will lead to a protection violation in OS/2 and Window 3 protected mode
applications, so const_in_code should be set off if this warning is encountered. The default
setting is on.

#pragma warn(wcrt => on | off | err) cp
Class definition as function return type, missing ‘;’ after ‘}’?
This warning is issued if a class is defined in a function return type specification. Such a
construct is legal, but unusual, and frequently results from omitting a semicolon between a
class definition and the following function declaration. The default setting is on.

Project System Reference 109

Project #pragmas
A #pragma with the class name project is used to pass information from a compile to the
Project System. The value of the #pragma should be a string, which is then stored in the object
file for use by the Project System. Whenever an object file is added to the link list, the text
specified using this #pragma is executed as a Project System command. For example, if a
header file includes the line:

#pragma project("#set myflag=on")

then whenever a source file that includes this header file is included in a project, the Project
System macro myflag will be set. This might be used for processing later in the project file.
This #pragma may only appear in source files, not in a project file.

Save/Restore #pragmas
The save #pragma saves the entire #pragma state, so you can later restore it with a restore
#pragma. The save and restore #pragmas work in a stack-like manner, thus allowing you to
nest them. For example:

/*save the #pragma state and enable the interruptconvention*/

#pragma save

#pragma call(interrupt => on)

/* interrupt functions are specified here */

#pragma restore

There is no limit on the number of saves, except the amount of memory available. These
#pragmas may be used in source files or in a project file.

Link #pragmas

#pragma link(<filename> {,<filename> })
#pragma linkfirst(<filename>)

These #pragmas may be specified in a project file, in which case the nominated files are
added immediately to the link list. In addition, the link #pragma may be specified in a C or C++
source file, in which case the nominated files will be added to the link list when an autocompile
command is executed in the Project System, if any files already on the link list had this
#pragma specified. For example:

#pragma link(file1.obj, file2.obj, file3.lib)

#pragma linkfirst (initexe.obj)

Advanced Topics & Reference Guide 110

If no extension is given .obj is assumed. Files specified using #pragma link are added to the
end of the link list (unless already present). A file specified using #pragma linkfirst is linked
before the link list. Only one file may be specified for each link using #pragma linkfirst.

Link_Option #pragmas
#pragmas with the class name link_option are used to specify linker options. These #pragmas
may only occur in project files.
The following link_option #pragmas are available:

#pragma link_option(case => on | off)

#pragma link_option(decode => on | off)

#pragma link_option(link=> <string>)

#pragma link_option(map => on | off)

#pragma link_option(overlay => on | off)

#pragma link_option(pack => on | off)

#pragma link_option(shift => num)

#pragma link_option(share_const => on | off)

#pragma link_option(icon => iconname)

#pragma link_option(map => on | off) p
Controls whether a map file is generated with information about segment sizes and publics etc.
The default is to create a map file.

#pragma link_option(case => on | off) p
This #pragma controls whether the linker treats upper/lower case as significant when linking.
The default is case=>off.

#pragma link_option(pack => on | off) p
This #pragma controls whether segments are packed together. The default is pack=>on.

#pragma link_option(decode => on | off) p
This indicates whether the linker should produce decded names in the MAP file, as well as
their public symbols. The option is set to on if any C source files are included in a project,
otherwise off.

Project System Reference 111

#pragma link_option(shift => num) p
This specifies the segment alignment shift count for new-format executables. The default is 4,
indicating that segments are aligned on 16-byte boundaries.

#pragma link_option(link => <string>) p
This specifies the project system command to execute on #dolink.

#pragma link_option(share_const=> on | off) p
This pragma controls whether the 16-bit linker commons-up identical constants. The default is
on, making the exe file smaller, but C programmers may want to turn it off if they are relying on
constants having different addresses.

#pragma link_option(icon => iconname) p
This pragma specifies the name of the application icon file (icon => MyIcon.ico).

Define #pragmas
A #pragma whose class name is define is used to define a conditional compile symbol for
subsequent compiles. The symbol is available for interrogation by the OMIT and COMPILE
compiler directives. See the Language Reference for more information. This #pragma may
only be used in project files.
A define #pragma takes the form:

#pragma define(ident=>value)

where ident names the symbol and value specifies the value it is given.

For Modula-2, the given identifier is defined as a boolean constant with value TRUE if the
value on was specified, otherwise FALSE. For C and C++, the given identifier is defined as a
macro. If the value on is specified, the macro is defined to the value 1. If the value off is
specified, the macro is not defined. Any other value will cause the identifier to be defined as a
macro expanding to the given value. Only a single C or C++ token may be specified, or the
compiler will report an error. To define a macro where the value is a string literal, use a
command of the form #pragma define (name => ‘"fred"’).

#pragma define(maincode => on | off) p
Enables (on—the default) or disables (off) generation of initialization code. Turn maincode off
when compiling generic modules or LIB modules.

Advanced Topics & Reference Guide 112

#pragma define(zero_divide => on | off) p
Specifies divide by zero behavior. When on, division by zero returns zero. When off (the
default), division by zero returns an exception.

#pragma define(logical_round => on | off) p
Specifies rounding behavior when truncating a REAL to a LONG. When on, the result is
rounded up if the REAL value is "close to" the next larger integer. When off (default), no
rounding occurs.

#pragma define(stack_threshold => size) p
Specifies the size (in bytes) of the threshold at which any data structure larger than the
specified size (default is 16384) is assigned heap memory instead of stack memory.

#pragma define(BCD_Arithmetic => on | off) p
Specifies use of Binary Coded Decimal (BCD) arithmetic when on (default) and forces use of
Floating Point arithmetic when off.

#pragma define(BCD_ULONG => on | off) p
Specifies use of Binary Coded Decimal (BCD) arithmetic for ULONG variables when on
(default) and forces use of Floating Point when off.

#pragma define(BCD_Large => on | off) p
Enables or diables use of DECIMAL and PDECIMAL variables greater than fifteen (15) digits.
The default is on (enabled).

#pragma define(big_code => n) p
Specifies number of procedures per segment. By default (n = 0) all procedures ina single
module go into a single code segment. Setting the value of n for a specific module "breaks up"
the module containing a large number of procedures which "breaks" the 64K code segment
limit.

Project System Reference 113

#pragma define(profile => on | off) p
Specifies the compiler will invoke a procedure call at the beginning and end of compiling each
procedure. This allows you to implement your own profiler. The prototypes for these
procedures must be:

EnterProc(UNSIGNED Line,*CSTRING Proc,*CSTRING,
File),NAME(‘Profile:EnterProc)

LeaveProc(),NAME(‘Profile:LeaveProc)

The EnterProc is called at the beginning of each procedure and LeaveProc at the end.

#pragma define(init_priority => n) p
Specifies a number (n) that is compatible with the C++module priority schema. Default is 5.

Advanced Topics & Reference Guide 114

Predefined Compiler Flags
Whenever you #compile a program the project system automically defines a number of flags to
ON or OFF, depending on the target system. You may use these predefined flags to control
your make process. Here are the flags that you can use in OMIT and COMPILE statements for
conditional compilation:
WIDTH32 On for 32-bit applications(deprecated)
CDD On for Clarion for DOS
CW On for Clarion, version 1.0
CWVER Four digit number. The top two digits are the major version of Clarion. The

lower two digits are the minor version. For the initial release of Clarion 6.0 this
is set to 6000.

CLW15 On for Clarion, version 1.5
CLW20 On for Clarion, version 2.0
CLW21 On for Clarion, version 4
C5 On for Clarion, version 5
C55 On for Clarion, version 5.5 and later
C60 On for Clarion, version 6 and later
DEBUG On for application debug mode
DLL_MODE On when compiled to link to the runtime DLLs
LIB_MODE On when building a LIB

Project System Reference 115

Project System Examples
Following is an example of some project system commands that we use here at SoftVelocity to
make our file drivers. This example uses a wide variety of project system statements and
shows how the project system can be used to control the accuracy and completeness of even
the most complicated projects.
These example statements are divided among four files, showing the project system’s ability to
support structured programming, modularity, and reusability. The files are ALLDRV.PR, which
#calls ORACLE.PR (among others), which #includes SQLFILES.PR, which in turn #includes
DRVKIT.PI.

ALLDRV.PR
#system win dll

#model clarion

#set drvdebug = full

#set kitdebug = full

#set release = off

#set fromclw = on

#set incbuildno = off

#set demo = off

#if "%release"="on" #then

#pragma define(_RELEASE=>on)

#set incbuildno = on

#set kitdebug = off

#set drvdebug = off

#endif

#pragma define(DEMO_VERSION=>%demo)

#set domodels=

‘

#abort on

#set dowin32=off #set dolib=off

#call %%prjfile

Advanced Topics & Reference Guide 116

#set dowin32=off #set dolib=on

#call %%prjfile

#set dowin32=off #set dolib=off

#abort off

#set dowin32=on #set dolib=off

#call %%prjfile

#set dowin32=on #set dolib=on

#call %%prjfile

#abort on

‘

#if #exists btrieve.pr #then #set prjfile=btrieve.pr %domodels #endif

#if #exists odbc.pr #then #set prjfile=odbc.pr %domodels #endif

#if #exists cla21.pr #then #set prjfile=cla21.pr %domodels #endif

#if #exists tps.pr #then #set prjfile=tps.pr %domodels #endif

#if #exists dos.pr #then #set prjfile=dos.pr %domodels #endif

#if #exists ascii.pr #then #set prjfile=ascii.pr %domodels #endif

#if #exists basic.pr #then #set prjfile=basic.pr %domodels #endif

#set domodels=

‘

#set dowin32=off #set dolib=off

#call %%prjfile

#set dowin32=off #set dolib=on

#call %%prjfile

#set dowin32=off #set dolib=off

‘

#file redirect ts.red

#if #exists sql400.pr #then #set prjfile=sql400.pr %domodels #endif

#if #exists oracle.pr #then #set prjfile=oracle.pr %domodels #endif

Project System Reference 117

ORACLE.PR:
#noedit

-- ORACLE.PR Oracle Driver project file

#system win dll --target OS is windows, dll executable

#model clarion --memory model is clarion

-- Set default macro values. These "switches" will control the make process

#set drv = ORA

#set trace = off

#set heapchk = off

#set drvdebug = full

#set sqldebug = full

#set kitdebug = off

--#set release = on

#expand ORACLEIN.CPP --set %cpath to path where file is created

--%opath to path where file is opened

--%ext to CPP

--%tail to ORACLEIN

--%cdir to directory where file is created

--%odir to directory where file is opened

#set drvdir = %odir --save the %odir value

#set sql_type = O --set %sql_type to O

-- Define a conditional compile symbol for subsequent compiles.

-- The symbol is DRVSPEC, and its value is "oraclesp.h"

-- DRVSPEC is available for interrogation by the OMIT and COMPILE

-- statements—see the Language Reference for more information.

#pragma define(DRVSPEC=>'"oraclesp.h"')

--Compile the sql modules with appropriate levels of debug code.

#include SQLFILES.PR --Execute statements from SQLFILES.PR here.

Advanced Topics & Reference Guide 118

--All macros, pragmas, and link list are fully

--available to the #included statements.

#compile ORACLEIN.CPP --compile the oracle c++ source.

#compile ORAIMPOR.CLW /define (maincode=>off)--and the clarion source.

--both are added to the link list.

#pragma link(ORAIMPOR.RSC) --add ORAIMPOR.RSC to the link list.

#pragma link (ORA7WIN.LIB) --add ORA7WIN.LIB to the link list.

#pragma link (%lnkpfx%asc.LIB) --add C60ASC.LIB to the link list.

--%lnkpfx% resolves to C60,

-- Execute the series of statements assigned to drv_Link at the very

-- end of the DRVKIT.PI file. These statements are designed to link

-- and patch the File Driver.

%drv_Link

SQLFILES.PR:
-- Release version: Disable all debugging and tracing

#if "%release"="on" #then

#set drvdebug = off

#set kitdebug = off

#set sqldebug = off

#set trace = off

#set heapchk = off

#endif

-- make sure the sql_type switch is explicitly set (no default)

#if '%sql_type' = '' #then

#error "sql_type must be set"

#endif

-- Default is compact code. Set the DRIVER_COMPACT symbol based on

-- the value of the %compact macro

#if "%compact"="" #then #set compact=on #endif

#if '%compact'='off' #or '%heapchk'='on' #then

#pragma define(DRIVER_COMPACT=>off)

#else

#pragma define(DRIVER_COMPACT=>on)

Project System Reference 119

#endif

#include DRVKIT.PI --Execute statements from DRVKIT.PI here.

--All macros, pragmas, and link list are fully

--available to the #included statements.

#pragma save --Save the current #pragma settings so they

--can be restored later with #pragma restore.

-- Debugging: Debugger info and Run-time checks

#if "%sqldebug"="" #then #set sqldebug=off #endif --default is off

#pragma debug(vid=>%sqldebug)

#if "%sqldebug"="full" #then --for full debugging, enable

#pragma check(index=>on,range=>on,overflow=>on) --runtime error checks

#pragma debug(line_num=>on) --and line numbering

#endif

#pragma warn(wall=>on) --enable all warning msgs

#set srcfile = SAFESTR.CPP --set %srcfile to SAFESTR.CPP

#set dstfile = %sql_type%SAFE.CPP --set %dstfile to OSAFE.CPP

-- Execute the series of statements assigned to makesrc in the middle

-- of the DRVKIT.PI file. These statements are designed to get the C++

-- constructor entry point to have a different name for each driver.

%makesrc

#set srcfile = SQLOPEN.CPP -- ditto

#set dstfile = %sql_type%SQLOPE.CPP

%makesrc

#set srcfile = SQLUPDAT.CPP -- ditto

#set dstfile = %sql_type%SQLUPD.CPP

%makesrc

#set srcfile = SQLRETRI.CPP -- ditto

#set dstfile = %sql_type%SQLRET.CPP

%makesrc

Advanced Topics & Reference Guide 120

#set srcfile = SQLGLOB.CPP -- ditto

#set dstfile = %sql_type%SQLGLO.CPP

%makesrc

#if %system=win #then -- conditionally

#set srcfile = SQLVIEW.CPP -- ditto

#set dstfile = %sql_type%SQLVIEW.CPP

%makesrc

#endif

#pragma restore --restore the #pragma settings saved earlier

#pragma warn(wall=>on) --enable all warning messages

DRVKIT.PI:

#noedit

-- DRVKIT.PI Driver Kit project include file

-- DrvKit.Pi contains project statements common to all Driver Kit based

-- File Drivers. The following settings must be set before including

-- drvkit.pi:

--

-- #set drv = A 3 or 4 letter driver id (e.g C21)

-- #pragma define(DRVSPEC='"c21specs.h") -- or appropriate file

--

-- Any other defines that affect the Driver Specification

--

-- Optional:

--

-- #set trace = on -- Enable tracing

-- #set heapchk = on -- Enable Heap Checker

-- #set common = on -- Merge common code

Project System Reference 121

--

-- Release version: Disable all debugging and tracing

#if "%release"="on" #then

#set drvdebug = off

#set kitdebug = off

#set trace = off

#set heapchk = off

#endif

-- Windows: Ensure Clarion 4 Windows conventions are adopted

#pragma warn(wall=>on) --enable all warning messages

#pragma define(__CLARION__=>on) --set compiler directive switch

#if #not %system=dos #then -- dos,

#if "%dowin32"=on #then

#system win32 dll -- win32, or

#else

#system win dll -- win16

#endif

#model clarion

#if %filetype=dll #then

#pragma define(_WINDLL=>on) --set compiler directive switch

#endif

-- Build the appropriate file names for this driver set.

#if "%dolib"="" #then

#set dolib=off --default dolib = off

#endif

#if "%dowin32"="" #then

#set dowin32=off --default dowin32 = off

#endif

#if %dolib=on #then --set link (.lib) prefix

#set lnkpfx = CL

#else

#set lnkpfx = CW

#endif

Advanced Topics & Reference Guide 122

#if "%pfx"="" #then

#set pfx = %drv% --set prefix to driver name

#endif

#else

#set dolib=off

#if %model=extendll #then

#pragma define(_XTDDLL=>on)

#endif

#set pfx = %M%%drv%

#if '%RWMODE%' = 'on' #then

#set lnkpfx=drw

#else

#set lnkpfx=%clapfx%

#endif

#set S = "" --set suffix to null

#endif

#set drvname = %lnkpfx%%drv%%S% --Put the name together

#message "Making %drvname% File Driver" --Display status message

#if #not "%inbrowser" #then

#if #exists %drvname%.ver #then --Conditionally...

#compile %drvname%.ver -- compile the driver

#endif

#endif

-- Heap Checker: Compile and enable Heap Checker (No Debugging)

#if "%heapchk"="on" #or "%heapdbg"="on" #then

#set heapchk = on

#pragma define(HEAPCHK=>on) --Set compiler directive switch.

#if "%heapdll"="on" #then --If dll, then

#pragma link(%clapfx%hchk.lib) --add heapchk lib to link list.

#else

#pragma save --Save current pragma settings.

#if "%heapdbg"="on" #then --Conditionally...

#pragma debug(vid=>full) -- enable debug code.

Project System Reference 123

#endif

#compile HEAPCHK.C #to %pfx%HCHK.OBJ--Compile heap checker.

#compile STRCHK.C #to %pfx%SCHK.OBJ--

#compile NEW.CPP #to %pfx%NEW.OBJ

#pragma restore --Restore saved pragma settings.

#endif

#endif

-- Debugging: Debugger info and Run-time checks

#if "%drvdebug"="" #then #set drvdebug=full #endif--default is "full"

#pragma debug(vid=>%drvdebug)

#if "%drvdebug"="full" #then

#pragma check(index=>on,range=>on,overflow=>on) --enable runtimes

#pragma debug(line_num=>on) --enable line nos.

#endif

-- Common Code: Some Driver Kit code is merged when linking multiple

-- File Driver Libraries

#if "%common"="on" #then --Conditionally...

#pragma define(COMMON_CODE=>on) -- define compiler switch

#endif

#if '%drvdir' = '' #then

#error "drvdir must be set to build lib versions of the drivers"

#endif

-- To get the C++ constructor entry point to have a different

-- name for each of the drivers it is necessary to compile

-- different C++ source modules:

#set makesrc = '

#if (#not #exists %%drvdir%%%%dstfile) #or (%%drvdir%%%%dstfile #older
%%srcfile) #or (%%srcfile #older %%drvdir%%%%dstfile) #then

#expand %%srcfile

#run "copy %%opath %%drvdir%%%%dstfile > NUL "

#endif

#compile %%dstfile %%defns

Advanced Topics & Reference Guide 124

'

-- Driver Kit: Compile Driver Kit sources

#pragma save --First, save current pragma
settings

#if #not "%kitdebug"="" #then --Conditionally...

#pragma debug(vid=>%kitdebug) -- set debug level

#else

#pragma debug(vid=>off)

#endif

#set srcfile = DRVL1.C --Set srcfile name

#set dstfile = %pfx%L1.C --set dstfile name w correct
prefix

%makesrc --Execute stmts defined above.

#if #not "%nocommon" ="on" #then --if common code

#set srcfile = DRVSTATE.C --make DRVSTATE

#set dstfile = %pfx%STAT.C

%makesrc

#if #not (%system=dos) #then --if system is not DOS

#set srcfile = DRVVIEW.CPP --make DRVVIEW

#set dstfile = %pfx%VIEW.CPP

%makesrc

#if #not (%filetype=dll) #then --Conditionally...

#pragma define(DRV_HAS_LIBMAIN=>on) -- set compiler switch

#endif

#set srcfile = DRVW.C

#set dstfile = %pfx%W%dolib%.C

#set defns = '/define(_LIB_TARGET=>%dolib%)'

%makesrc

#set defns = ''

#set srcfile = DRVWUTIL.C --make DRVWUTIL

#set dstfile = %pfx%WUTI.C

%makesrc

Project System Reference 125

#if #not %dolib% #then --Conditionally

#set srcfile = DRVDIAL.CLW -- make DRVDIAL

#set dstfile = %pfx%DIAL.CLW

#set defns = '/define(maincode=>off)'

%makesrc

#set defns = ''

#pragma link(%pfx%dial.rsc) --Add DIAL to link list

#endif

#endif

#endif

#if "%trace"="on" #then --Conditionally...

#pragma save, define(TRACE=>on) -- save settings...

#set srcfile = DRVTRACE.C -- make DRVTRACE

#set dstfile = %pfx%TRAC.C

%makesrc

#endif

#set srcfile = DRVPIPE.C --make DRVPIPE

#set dstfile = %pfx%P%dolib%.C

#set defns = '/define(_LIB_TARGET=>%dolib%)'

%makesrc

#set defns = ''

#if "%trace"="on" #then

#pragma restore --restore saved pragma settings

#endif

#pragma restore

-- Build Macro drv_Link to be used later in this process

-- to link and patch the File Driver:

#set drv_Link =

'

#pragma link_option(share_const=>on)

#if #not (%%system=dos) #then

#if "%%dolib"="on" #then

#dolink %%drvname%%.lib

Advanced Topics & Reference Guide 126

#else

#implib %%drvname%%.lib %%drvname%%.exp

#if define(_CW15)=on #then

#pragma linkfirst(idll%%S%%w.obj)

#else

#pragma linkfirst(icwdll.obj)

#endif

#pragma link(win%%S%%.lib)

#pragma link(cwrun%%S%%.lib)

#pragma link_option(decode=>off)

#dolink %%drvname%%.dll

#endif

#if "%%make" #and #not "%%dolib"="on" #then

#exemod %%drvname%%.dll %%drvname%%.exp %%drvname%%.map

#endif

#else

#if %%filetype=dll #then

#implib %%drvname%%.lib %%drvname%%.exp

#endif

#set tscla = on

#set tscpp = off

#link %%drvname%%

#if "%%make" #and (%%filetype=dll) #then

#expand %%drvname%%.dll

#run "mkdriver %%cpath > NUL"

#endif

#endif

'

Project System Reference 127

Module Definition Files (.EXP Files)
A module definition file describes the name, attributes, exports, and other characteristics of a
dynamic-link library for Microsoft Windows. This file is required for Windows.

A module definition file (.EXP) is generated whenever you make a new project, or a
project whose target type, operating system, or run-time library has changed.

Module Definition File Syntax

A module definition file contains one or more statements. Each statement defines an
attribute of the executable file, such as its module name, the attributes of program
segments, and the numbers and names of exported symbols. The statements and the
attributes they define are listed below:

Statement Attribute

NAME Names the application

LIBRARY Names the dynamic-link library

HEAP_COMMIT Amount of heap committed

HEAP_RESERVE Amount of heap reserved

STACK_COMMIT Amount of stack committed

STACK_RESERVE Amount of stack reserved

IMAGE_BASE Module base memory location

DEBUG Include debug information

LINENUMBERS Include line number information

SECTION_ALIGNMENT Multiples of 4096 only

FILE_ALIGNMENT Multiples of 512 only

EXPORTS Defines exported functions

Advanced Topics & Reference Guide 128

IMAGE_VERSION n[.m] Values of n and m set the image major and
minor version fields in PE optional header
respectively. n and m must be decimal numbers.
Default values for these fields are zero (0).

The following rules govern the use of these statements:

• If you use either a NAME or a LIBRARY statement, it must precede all other statements in
the module definition file.

• You can include source-level comments in the module definition file, by beginning a line
with a semicolon(;). The utilities ignore each such comment line.

• Module definition keywords (such as NAME, LIBRARY, and EXPORTS) must be entered
in uppercase letters.

• The EXPORTS statement must appear last.

Example—Module Definition File

The following example gives module definitions for a dynamic-link library:

LIBRARY MyDLL
; Sample export file
EXPORTS

Func1 @1
Var1 @2
Func2 @3
Func3 @4
Func4 @5

Project System Reference 129

The NAME Statement

The NAME statement identifies the file as an executable application (rather than a DLL)
and optionally defines the name and application type.

 NAME [appname] [apptype]

appname If appname is given, it becomes the name of the application as it is
known by the operating system. If no appname is given, the name of the
executable file, with the extension removed, becomes the name of the
application.

apptype Used to control the program’s behavior under Windows. This information
is kept in the executable-file header. The apptype field may have one of
the following values:

WINDOWAPI
The application uses the API provided by Windows and must be
executed in the Windows environment.

GUI
Same as WINDOWAPI.

CUI
The program uses a character based user interface, like DOS.

If the NAME statement is included in the module-definition file, then the LIBRARY
statement cannot appear.

If neither a NAME statement nor a LIBRARY statement appears in a module-definition
file, NAME is assumed.

The following example assigns the name wdemo to the application being defined:

NAME wdemo WINDOWAPI

Advanced Topics & Reference Guide 130

The LIBRARY Statement

The LIBRARY statement identifies the file as a dynamic-link library. The name of the
library, and the type of library module initialization required, may also be specified.

 LIBRARY [libraryname][initialization]

libraryname If libraryname is specified, it becomes the name of the library as it is
known by the operating system. This name can be any valid file name. If
no libraryname is given, the name of the executable file, with the
extension removed, becomes the name of the library.

initialization The initialization field is optional and can have one of the two values
listed below. If neither is given, then the initialization default is
INITINSTANCE.

INITGLOBAL
The library-initialization routine is called only when the library module is
initially loaded into memory.

INITINSTANCE
The library-initialization routine is called each time a new process gains
access to the library.

If the LIBRARY statement is included in a module definition file, then the NAME
statement cannot appear.

The following example assigns the name mydll to the dynamic-link module being defined,
and specifies that library initialization is performed each time a new process gains access
to myDLL:

LIBRARY myDLL INITINSTANCE

The HEAP_COMMIT Statement
Specifies the amount of heap committed. This statement is not generated from the
Clarion environment, but may be specified by manually editing the .EXP file and running
the linker standalone. The syntax for the HEAP_COMMIT statement is as follows:

 HEAP_COMMIT number

Project System Reference 131

The STACK_COMMIT Statement

Specifies the amount of stack committed. This statement is not generated from the
Clarion environment, but may be specified by manually editing the .EXP file and running
the linker standalone. The syntax for the STACK_COMMIT statement is as follows:

 STACK_COMMIT number

The HEAP_RESERVE Statement

Specifies the amount of heap reserved. This statement is not generated from the Clarion
environment, but may be specified by manually editing the .EXP file and running the
linker standalone. The syntax for the HEAP_RESERVE statement is as follows:

 HEAP_RESERVE number

The STACK_RESERVE Statement
Specifies the amount of stack reserved. This statement is not generated from the
Clarion environment, but may be specified by manually editing the .EXP file and running
the linker standalone. The syntax for the STACK_RESERVE statement is as follows:

 STACK_RESERVE number

The IMAGE_BASE Statement

Specifies the base memory location of the module. This statement is not generated from
the Clarion environment, unless you include the Rebase template. If no IMAGE_BASE is
specified in the EXP the module is assigned the default address (normally 00400000h)
and conflicts are handled automatically by the Windows loader. (Using the Clarion IDE
you can add an image_base line to the EXP file in the global embed named "Before the
Export List".) The syntax for the IMAGE_BASE statement is as follows:

IMAGE_BASE address

where address is a 32-bit address specified in decimal or hex. If hex, then the address is
followed by an "h". The address must be divisable by 64KB (65,536 or 00010000h). It
must be in the range of 00400000h to 70000000h for Windows 9x. Under Windows NT
the address lower limit is 00010000h.

Advanced Topics & Reference Guide 132

For more information search MSDN for "Base Address" or "Rebase".

Example:

IMAGE_BASE 00600000h

It's best to supply the address in hex since all documentation on the OS
will show a hex address and it's easy to tell you've got a good address because
it always ends with 4 zeros.

The DEBUG Statement
Specifies the SoftVelocity debug information is included. This statement is not
generated from the Clarion environment, but may be specified by manually editing the
.EXP file and running the linker standalone. The syntax for the DEBUG statement is as
follows:

 DEBUG

The LINENUMBERS Statement
Specifies that line number information in CodeView format is included. This statement is
not generated from the Clarion environment, but may be specified by manually editing
the .EXP file and running the linker standalone. The syntax for the LINENUMBERS
statement is as follows:

 LINENUMBERS

The SECTION_ALIGNMENT Statement

Specifies the section alignment must be in multiples of 4096. This statement is not
generated from the Clarion environment, but may be specified by manually editing the
.EXP file and running the linker standalone. The syntax is as follows:

 SECTION_ALIGNMENT

Project System Reference 133

The FILE _ALIGNMENT Statement
Specifies the file alignment must be in multiples of 512. This statement is not generated
from the Clarion environment, but may be specified by manually editing the .EXP file
and running the linker standalone. The syntax is as follows:

 FILE_ALIGNMENT

The EXPORTS Statement

The EXPORTS statement defines the names and attributes of the functions exported to
other modules, and of the functions that run with I/O privilege. The term "export" refers to
the process of making a function available to other run-time modules. By default,
functions are hidden from other modules at run time.

 EXPORTS
 exportdefinitions

The EXPORTS keyword marks the beginning of the export definitions. It may be followed
by up to 3072 export definitions, each on a separate line. You should give an export
definition for each dynamic-link routine that you want to make available to other modules.
The syntax for an export definition is as follows:

 entryname [pwords] @number | ? [NODATA]

entryname Defines the function name as it is known to other modules.

pwords Specifies the total size of the function’s parameters, as measured in
words (the total number of bytes divided by two). This field is required
only if the function executes with I/O privilege. When a function with I/O
privilege is called, OS/2 consults the pwords field to determine how many
words to copy from the caller’s stack to the I/O-privileged function’s
stack.

@number | ? Defines the function’s ordinal position within the module-definition table.
The @ may be followed by the position number of the function, or it may
be followed by a question mark (?) if the position is unknown. The
numbers must be in sequence.

NODATA Provided for use by real-mode Windows (optional).

Advanced Topics & Reference Guide 134

The EXPORTS statement is meaningful for functions within dynamic link libraries,
functions which execute with I/O privilege, and call back functions in Windows programs.

For example:
EXPORTS

Func1 @?
Func2 @?
CharTest @?

The MANIFEST statement

MANIFEST [file name]

This directive instructs the linker to add specified manifest file name to the executable. If
the manifest file name is omitted, the linker adds a default manifest. If both the project file
and the EXP file contain directives to link the manifest file, the one specified in the project
file will be used.

Exporting CLASSes

Exporting CLASS declarations requires a special form of export definition.

You must create two export definitions for the CLASS itself. The first begins with VMT$
followed by the name of the CLASS as the entryname. The second begins with TYPE$
followed by the name of the CLASS as the entryname. These are followed by an export
definition for each method in the CLASS to export whose pwords must begin with the
name of the CLASS as the first parameter.

For example:

EXPORTS
VMT$MYCLASS @?
TYPE$MYCLASS @?
FIRSTMETHOD@F7MYCLASS @?
SECONDMETHOD@F7MYCLASS @?

Project System Reference 135

Special Considerations for One-Piece (Single) Executables
A one-piece executable is defined as a project that has been linked into a single, stand-
alone executable. The Clarion runtime library and all of the application’s procedure calls
and libraries are linked into a single file.

Callback functions are a standard part of Windows programming in most programming
languages. A callback function is a PROCEDURE that you (the programmer) write to
handle specific situations that the operating system deems the programmer may need to
deal with. A callback function is called by the operating system whenever it needs to pass
on these situations. Therefore, a callback function does not appear to be part of the logic
flow, but instead appears to be separate and "magic" without any logical connection to
other procedures in your program.

Callbacks are valid when used in one-piece executables (EXEs), but there is a special
case which must be handled in a different manner.

Here is the case:
If the EXE makes some call to the Operating System, the Operating System starts a new
thread inside this call, and then calls to a passed callback function. Using this program
design, the one-piece EXE must be converted to a DLL linked in local mode, and a
starter EXE must be created, using an External link to the DLL entry point that is used to
load and run the one-piece DLL.

The following approach demonstrates how this is done.
1. The one-piece EXE must be converted to a DLL linked in local mode.
2. The Local mode DLL must export the name of the entry point's procedure and the following names

from the RTL:

__checkversion
__sysstart
__sysinit
_exit
Cla$code
Cla$init
Wsl$Closedown

Advanced Topics & Reference Guide 136

Here is an example of the export file (EntryPoint is the procedure entry into the DLL) :

EXPORTS
EntryPoint@F @?
__checkversion @?
__sysstart @?
__sysinit @?
_exit @?
Cla$code @?
Cla$init @?
Wsl$Closedown @?

In this example, the entry point procedure name in the Local DLL is: "EntryPoint"

Use the Inside the Export List Global Embed to add to your export list within the
application.

3. The starter EXE must use External link mode. The source is written so that it just calls the
DLL's entry point procedure.

Example starter EXE code:

PROGRAM

MAP
MODULE('')

EntryPoint()
END

END

CODE
EntryPoint

Project System Reference 137

Version Information Resource Files
The Clarion Project System supports the inclusion of Version Information, conforming to the
industry standard script format.

A version script file is simply a text file with the extension of .Version. When included into a
Clarion project (application or hand coded), the version file stamps, or writes, a variety of
information into the target executable. This information can be viewed by right-clicking on the
executable file, and selecting Properties from the popup menu. A Version tab should be
available with the designated version information.

More detail regarding the standard format of the version info script can be found at the Microsoft
web site. Point your search engine to “Version Resource”.

Clarion also adds the following exceptions to this standard:

1. A LANGUAGE directive can precede the Version script as follows:

LANGUAGE <language code>

VS_VERSION_INFO VERSIONINFO
...

END

If the LANGUAGE directive is present in the version file, the language code for the
resource target executable is set. This allows a developer to have multiple version info
resources for different languages.

2. In the version information group, numbers must use one of the following formats:
 - decimal numbers (0-9)
 - hexadecimal numbers in C/C++ format (Example: 0x3fL)
 - hexadecimal numbers in Modula-2/Clarion format (Example: 040904E4)
 - binary numbers in Modula-2/Clarion format

3. Strings must be of C/C++ format. The \u and \x escape characters are not supported in
strings.

4. #include directives are not supported, but all standard mnemonics for the version info

related constants are built in to the compiler.

Advanced Topics & Reference Guide 138

Version script example:

LANGUAGE 0x419

1 VERSIONINFO
FILEVERSION 1,0,0,1
PRODUCTVERSION 1,0,0,1
FILEFLAGSMASK 0x3fL
FILEFLAGS 0
FILEOS VOS__WINDOWS32
FILETYPE VFT_APP
FILESUBTYPE 0x0L

BEGIN
BLOCK "StringFileInfo"
BEGIN

BLOCK "040904E4"
BEGIN

VALUE "CompanyName", "\0"
VALUE "FileDescription", "This just a test\0"
VALUE "FileVersion", "1, 0, 0, 1\0"
VALUE "InternalName", "Version Info Script Example\0"
VALUE "LegalCopyright", "Copyright (C) 2003\0"
VALUE "LegalTrademarks", "\0"
VALUE "OriginalFilename", "TEST\0"
VALUE "ProductName", "Version Info Script compiler\0"
VALUE "ProductVersion", "1, 0, 0, 1\0"

END
END
BLOCK "VarFileInfo"
BEGIN

VALUE "Translation", 0x409, 1252
VALUE "Translation", 0x419, 1251
VALUE "ÒÅÑÒ", 0x409, 1111

END
END

This file is a working example. You can use this as a template for your real world version
script files. Simply copy this example to a text file, name it yourfilename.version, and
include it in the Library, object, and resource files section of the Project Tree.

Multi Language Programming 139

Multi Language Programming

Overview
SoftVelocity has 32-bit C++ and Modula-2 compilers that can integrate into the Clarion
environment. The 32-bit compilers generate object code for the Windows 95/NT/2000/XP
environments. You must be running your development environment under a 32-bit
environment to generate applications for a 32-bit environment.

Clarion also has object code generation capability that rivals that of many C compilers.
You can then enhance that application with any low-level functions you need. These 3rd
Generation Language (3GL) compilers enable the developer to include 3GL code
modules directly into a Clarion project, giving unparalleled functionality and versatility.
This mix of a Rapid Application Development (RAD) 4GL (4th Generation Language)—
Clarion—and traditional 3GL compilers, makes Clarion an exceptional application
development tool.

So why use C, C++, Pascal, or Modula-2 code at all in a Clarion application? Because
there are libraries available (statistical, financial, graphics, communications, and many
more) which could significantly cut the development time of an application that requires
these capabilities. Many of these libraries are written in C, and many powerful C++,
Pascal, and Modula-2, libraries are also available. Clarion allows you to use these
libraries in their "native" form without "re-inventing the wheel."

Throughout this topic, we assume you have a good knowledge of the Clarion
development environment, the Clarion language, and the 3GL in question. The code
examples assume that you use a SoftVelocity compiler (other compiler’s requirements
are also discussed). Since Clarion uses SoftVelocity code generation and linking
technology, it is easiest to link code produced with SoftVelocity Compilers to Clarion
applications. Clarion can link code produced by other third party compilers; however,
some care is required as well as a good understanding of the operation of both
compilers. It is not generally possible to directly link C++ code produced by C++
compilers other than SoftVelocity.

Advanced Topics & Reference Guide 140

Compiler Integration
With the SoftVelocity 3GL compilers installed, the Clarion development environment takes all
the action necessary to call the correct compiler for each source module in the application. You
cannot mix languages in a single source module; however, an application can contain any
number of source modules written in any of the 3GLs or Clarion.
The development environment calls the correct compiler for each module at compile time by
looking at the source file extensions, as follows:
 Source File Extension Compiler Called
 .CLW Clarion
 .CPP or .C C++
 .MOD Modula-2
Source files with any other extensions will generate an ‘Unknown compiler for ...’ error
message at compile time.
The Development Environment will also ensure that all modules are linked correctly and that
the SoftVelocity SmartLinker is given all the information that it requires.

Integrating 3GL Modules into Clarion Projects

Using the Application Generator:
1. Create an "Include file" containing the function prototypes for the Clarion compiler.

You MUST prototype your functions if you intend to call them from Clarion code (see
Procedure Prototyping in the Language Reference). The include file should contain
prototypes for all 3GL functions called from Clarion code. Each 3GL module should
have its own include file.
The include file is put in the Generated source without modification by step 3 of this
process. The generated Clarion code for your include file appears in the Global Map
something like this:

MODULE(‘module name’)

INCLUDE(‘YourInc.Inc’)

END

The Application Generator generates the MODULE and END statements. Failure to
correctly prototype your functions will almost certainly result in a General Protection
Fault at run time.

2. Use the Text Editor to write your 3GL code.
Be sure to save the code with a file extension that the compiler can recognize (.C,
.CPP, .MOD, or .PAS).

Multi Language Programming 141

3. Add the module to the application as an External Source Module.
Select Application > Insert Module from the main menu. Then select class External
Source from the Select Module Type dialog. Enter the name of the 3GL module in the
Name field, then enter the name of the include file in the Map Include File field of the
Module Properties dialog

4. Compile and run the application.

In a hand-coded Clarion application:
1. Create the function prototypes for the Clarion compiler.

You must prototype the functions you intend to call from Clarion code (see Procedure
Prototyping in the Language Reference). The global MAP structure should contain the
prototypes.
Each 3GL module should have its prototypes in a separate MODULE structure,

something like this:

MODULE(‘module name’)

MyFunc(*CSTRING),CSTRING,RAW,PASCAL,NAME(‘_MyFunc’)

END

You must include a complete MODULE structure in your Clarion MAP for all your 3GL
modules. Failure to correctly prototype your functions will almost certainly result in a
General Protection Fault at run time.

2. Use the Text Editor to write your 3GL code, saving the code with a file extension that
the compiler can recognize (.C, .CPP, .MOD, or .PAS).

3. Add the module to the Project as an External Source File.
Select Project > Edit from the main menu. Highlight External Source Files then press
the Add File... button. Select the 3GL source mofule from the standard file open dialog
that appears.

4. Compile and run the application.

Advanced Topics & Reference Guide 142

Resolving Data Types
The Clarion language defines the data types BYTE, SHORT, USHORT, LONG, ULONG,
SREAL, REAL, and STRING which map fairly easily to C, C++, Pascal, and Modula-2
equivalents. Clarion also defines DATE and TIME data types, and GROUP structures, which
may be mapped to structures in each language. CSTRING and PSTRING data types are
specifically provided by Clarion to simplify interfacing with external functions using C or Pascal
conventions.
The DECIMAL, PDECIMAL, BFLOAT4, and BFLOAT8 types are not discussed because it is
very unlikely that these types of variables will ever be used in C, C++, Pascal, or Modula-2
code. If data of any of these types does need to be passed to C, C++, Pascal, or Modula-2
code, simply assign the value to a REAL or SREAL variable and pass that to the function (data
type conversion is automatically handled in Clarion by the assignment statement).
The table below gives a brief cross reference of the parameters types supported by the
Clarion, C++ and Modula-2 compilers; as detailed, some parameters require additional pragma
statements to work correctly. The Clarion SIGNED and UNSIGNED data types are equates
that change type from LONG and ULONG.
Clarion C++ Modula-2
BYTE unsigned char BOOLEAN
BYTE unsigned char SHORTCARD
*BYTE unsigned char * var SHORTCARD
USHORT unsigned short CARDINAL
*USHORT unsigned short * var CARDINAL
SHORT short INTEGER
*SHORT short * var INTEGER
LONG long LONGINT
*LONG long * var LONGINT
ULONG unsigned long LONGCARD
*ULONG unsigned long * var LONGCARD
SREAL float REAL
*SREAL float * var REAL
REAL double LONGREAL
*REAL double * var LONGREAL
STRING can’t pass by value can’t pass by value
*STRING unsigned int, char * CARDINAL, ARRAY OF CHAR
*STRING(with RAW) char[] var ARRAY OF CHAR
*CSTRING(with RAW) char[] or char * var ARRAY OF CHAR
*PSTRING char[] or Char * ARRAY OF CHAR
GROUP struct var record type
*GROUP(with RAW) struct * var record type
? void far FarADDRESS
UNSIGNED unsigned int
SIGNED int

Clarion STRING variables are normally passed as two parameters: first, a UNSIGNED which
contains the length of the data buffer; second, the address of the data. CSTRINGs and
PSTRINGs are passed the same as STRINGs (as two parameters). The RAW attribute can be
used in the Clarion prototype to pass only the address of the string data to external 3GL
functions (Clarion language procedures do not need, or support, RAW).

Multi Language Programming 143

C and C++ Data Type Equivalents
The following data type equivalents can be used with C or C++ code. These typedefs should
appear in the .H header file referenced by the C or C++ code. The CLA prefix is used to avoid
name clashes with third party libraries.

Typedef unsigned char CLABYTE;

Typedef short CLASHORT;

typedef unsigned short CLAUSHORT;

typedef long CLALONG;

typedef unsigned long CLAULONG;

typedef float CLASREAL;

typedef double CLAREAL;

Clarion DATE and TIME data types may be passed to C functions as a CLALONG, the
CLADATE and CLATIME unions can then be used to resolve the elements of the date or time
from the CLALONG value.

typedef union {

CLALONG n;

struct {

CLABYTE ucDay;

CLABYTE ucMonth;

CLAUSHORT usYear;

} s;

} CLADATE;

typedef union {

CLALONG n;

struct {

CLABYTE ucHund;

CLABYTE ucSecond;

CLABYTE ucMinute;

CLABYTE ucHour;

} s;

} CLATIME;

Advanced Topics & Reference Guide 144

Because of Clarion’s two-parameter method of passing STRINGs, the CLASTRING structure
is useful for certain internal uses, but cannot be used to accept parameters from Clarion:

typedef struct {

char *pucString;

CLAUSHORT usLen

} CLASTRING;

Clarion STRING variables are not NULL terminated, they are padded with spaces up to the
length of the data buffer. The trailing spaces can be removed by using the Clarion CLIP
procedure. The following code declares a STRING of 20 characters, assigns some data into it,
and passes it as a parameter to a C or C++ function.

StringVar STRING(20)

CODE

StringVar = 'Hello World...'

C_Write_Function(StringVar)

The C or C++ function might be defined as:

extern void C_Write_Function(CLAUSHORT usLen, char *bData)

{ CLAUSHORT usNdx = 0;

while (usNdx < usLen)

#ifdef __cplusplus

cout << bData[usNdx++];

#else

putchar(bData[usNdx++]);

#endif

}

In the above example, usLen would have a value of 20 and bData would be padded with
trailing spaces. This padding would be written to the screen by C_Write_Function(). Many C
routines expect a string to be NULL terminated. To address this issue, Clarion provides the
CSTRING data type. CSTRING variables are automatically NULL terminated when data is
assigned to them. This makes it possible for existing C routines to operate on the data.
A Clarion GROUP may be declared to contain related data. A group is roughly equivalent to a
C or C++ struct. When passed as a parameter to a procedure, GROUPs are normally passed
as three parameters: first, an UNSIGNED is passed which contains the size of the GROUP;
second, the address of the GROUP structure; and third, the address of a buffer containing a
type descriptor for the GROUP. The contents of the type descriptor are not discussed here and
are subject to change in future versions of Clarion. GROUPs may be nested, and other

Multi Language Programming 145

GROUPs may be defined to assume the same structure as a previously declared GROUP.
There are several forms of declaration for Clarion GROUPs:

Struct1 GROUP ! Struct1 is defined as a GROUP

ul1 ULONG ! containing two ULONG values

ul2 ULONG

END

This form of definition reserves space for Struct1 and is equivalent to the C definition:

struct {

CLAULONG ul1;

CLAULONG ul2;

} Struct1;

In the following example, the declaration of Struct2 declares a GROUP similar to that defined
by Struct1, however no space is reserved. In practice there need not be any instances of
Struct2 defined.

Struct2 GROUP,TYPE ! Struct2 is declared as a GROUP

ul3 ULONG ! containing two ULONG values

ul4 ULONG

END

The corresponding C definition is:

typedef struct {

CLAULONG ul3;

CLAULONG ul4;

} Struct2

In the following example, the definitions of Struct3 and Struct4 define them to be LIKE(Struct2),
i.e. of the same internal structure. In order to distinguish members of Struct3 and Struct4 from
those of Struct2 the S3 and S4 prefixes must be used. Struct3 and Struct4 define instances of
Struct2 (which is not necessarily defined anywhere). In both cases space is reserved.

Struct3 LIKE(Struct2)

Struct4 LIKE(Struct2)

Advanced Topics & Reference Guide 146

The corresponding C definitions are:

typedef Struct2 Struct3;

typedef Struct2 Struct4;

Struct3 S3;

Struct4 S4;

Clarion GROUP declarations may be nested, for example:

Struct5 GROUP,TYPE ! Struct5 is defined as a GROUP

Struct6 GROUP ! containing a nested GROUP

ul5 ULONG

ul6 ULONG

END

END

The equivalent C declaration is:

typedef struct {

struct {

CLAULONG ul5;

CLAULONG ul6;

} Struct6;

} Struct5;

Multi Language Programming 147

Modula-2 Data Type Equivalents
The following data type equivalents are used with Modula-2 code. These definitions should
appear in the Modula-2 definition module referenced by the Modula-2 code. These should be
used to define parameter and return types of procedures that will be called from Clarion code.

CONST

BYTE ::= BYTE;

SHORT ::= INTEGER (16-bit);

USHORT ::= CARDINAL (16-bit);

LONG ::= LONGINT;

ULONG ::= LONGCARD;

SREAL ::= REAL;

REAL ::= LONGREAL;
Clarion DATE and TIME data types may be passed to Modula-2 procedures as a LONG, the
DATE and TIME RECORDs can then be used to resolve the elements of the date or time from
the LONG value.

DATE = RECORD

CASE : BOOLEAN OF

| TRUE:

l : LONG;

ELSE

ucDay : BYTE;

ucMonth : BYTE;

usYear : SHORT;

END

END;

TIME = RECORD

CASE : BOOLEAN OF

| TRUE:

l : LONG;

ELSE

ucHund : BYTE;

ucSecond : BYTE;

ucMinute : BYTE;

ucHour : BYTE;

END

END;

Advanced Topics & Reference Guide 148

Clarion STRINGs are passed in the same manner as Modula-2 open ARRAY OF CHAR
parameters with the call(o_a_copy=>off) pragma in effect (the length and the address of the
string are passed).

The following example code declares a string of 20 characters, assigns some data into it and
passes it as a parameter to a Modula-2 procedure

MAP

MODULE('M2_Code')

M2_Write_Proc(*STRING), NAME('M2_Code$M2_Write_Proc')

END

END

StringVar STRING(20)

CODE

StringVar = 'Hello World...'

M2_Write_Proc(StringVar)

The Modula-2 procedure might be defined as:

DEFINITION MODULE M2_Code;

(*# save, call(o_a_copy=>off) *)

PROCEDURE M2_Write_Proc(StringVar: ARRAY OF CHAR);

(*# restore *)

END M2_Code.

Note that Clarion STRINGs are not NULL terminated, they are padded with spaces up to the
length of the data buffer. In the above example, StringVar would be padded with spaces up to
a length of 20 characters. Variables of type CSTRING are automatically NULL terminated
when data is assigned to them. This makes it possible for existing Modula-2 routines to
operate on the data.

Multi Language Programming 149

A Clarion GROUP is roughly equivalent to a Modula-2 RECORD. There are several forms of
declaration for Clarion GROUPs. The following conforms to the Modula-2 declaration of the
DATE type above:

DateType GROUP

n LONG

d GROUP,OVER(n)

ucDay BYTE

ucMonth BYTE

usYear SHORT

END

END

The OVER attribute is used to ensure that n and d occupy the same memory, the total size of
the group is the size of the member n. When passed as parameters, GROUPs are normally
passed as three parameters: first, an UNSIGNED is passed which contains the size of the
GROUP; second, the address of the GROUP structure, and third, the address of a buffer
containing a type descriptor for the GROUP. The contents of the type descriptor are not
discussed here and are subject to change in future versions of Clarion. You may use the RAW
attribute in your Clarion prototype for the Modula-2 procedure to instruct the compiler to pass
only the address of the GROUP, otherwise you must define your Modula-2 procedure to take 2
extra parameters:

MAP

MODULE('M2_Code')

M2_Proc1(*GROUP)

M2_Proc2(*GROUP), RAW

END

END

The corresponding Modula-2 definition module would contain:

DEFINITION MODULE M2_Code;

TYPE

GROUP = RECORD

(* Members *)

END;

PROCEDURE M2_Proc1(Len: USHORT; VAR Data: GROUP; TypeDesc: ADDRESS);

PROCEDURE M2_Proc2(VAR Data: GROUP);

END M2_Code.

Advanced Topics & Reference Guide 150

Pascal Data Type Equivalents
The following data type equivalents can be used with Pascal code. These should be placed in
the Pascal interface unit referenced by the Pascal code. These should be used to define
parameter and return types of procedures that will be called from Clarion code.

ALIAS

SHORT = INT16;

USHORT = INT16;

LONG = INTEGER;

ULONG = INTEGER;

SREAL = SHORTREAL;
Clarion DATE and TIME data types may be passed to Pascal procedures as a LONG, the
DATE and TIME records can then be used to resolve the elements of the date or time from the
LONG value.

DATE = RECORD

CASE BOOLEAN OF

TRUE:

(n : LONG);

FALSE:

(ucDay : BYTE;

ucMonth : BYTE;

usYear : SHORT);

END;

TIME = RECORD

CASE BOOLEAN OF

TRUE:

(n : LONG);

FALSE:

(ucHund : BYTE;

ucSecond : BYTE;

ucMinute : BYTE;

ucHour : BYTE);

END;

Because of Clarion’s two parameter method of passing STRINGs, the STRING structure is
useful for certain internal uses, but cannot be used to accept parameters from Clarion:

Multi Language Programming 151

TYPE

STRING = RECORD

usLen : USHORT;

pucString : ^CHAR;

END;

Clarion PSTRINGs are passed by address in the same manner as Pascal STRING parameters
with the call(s_copy=>off) pragma in effect (the length and the address of the string are
passed).
The following example code declares a string of 20 characters, assigns some data into it, and
passes it as a parameter to a Pascal procedure:

MAP

MODULE('Pas_Code')

Pas_Write_Proc(*PSTRING), NAME('Pas_Code$Pas_Write_Proc')

END

END

StringVar PSTRING(20)

CODE

StringVar = 'Hello World...'

Pas_Write_Proc(StringVar)

The Pascal procedure might be defined as:

INTERFACE UNIT Pas_Code;

(*# save, call(s_copy=>off) *)

PROCEDURE Pas_Write_Proc(StringVar: STRING[HIGH]);

(*# restore *)

END.

Advanced Topics & Reference Guide 152

A Clarion GROUP is roughly equivalent to a Pascal RECORD. There are several forms of
declaration for Clarion GROUPs. The following duplicates the Pascal declaration of the DATE
type above:

DateType GROUP

n LONG

d GROUP,OVER(n)

ucDay BYTE

ucMonth BYTE

usYear SHORT

END

END

The OVER attribute is used to ensure that n and d occupy the same memory, the total size of
the group is the size of the member n. When passed as parameters, GROUPs are normally
passed as three parameters: first, a USHORT is passed which contains the size of the
GROUP; second, the address of the GROUP structure; and third, the address of a buffer
containing a type descriptor for the GROUP. The contents of the type descriptor are not
discussed here and are subject to change in future versions of Clarion. You may use the RAW
attribute in your Clarion prototype for the Pascal procedure to instruct the compiler to pass only
the address of the GROUP, otherwise you must define your Pascal procedure to take 2 extra
parameters:

MAP

MODULE('Pas_Code')

Pas_Proc1(*GROUP)

Pas_Proc2(*GROUP), RAW

END

END

The corresponding Pascal interface unit might be:

INTERFACE UNIT Pas_Code;

TYPE

GROUP = RECORD

(* Members *)

END;

PROCEDURE Pas_Proc1(Len: USHORT; VAR Data: GROUP; VAR TypeDesc);

PROCEDURE Pas_Proc2(VAR Data: GROUP);

END.

Multi Language Programming 153

Prototyping 3GL Functions in Clarion
The only thing necessary to be able to use any of the C standard library functions in
Clarion code is the addition of the function’s Clarion language prototype to the Clarion
application’s MAP structure. The Clarion prototype tells the compiler and linker what
types of parameters are passed and what return data type (if any) to expect from the C
function. The PROCEDURE Prototypes section in Chapter 2 of Clarion’s Language
Reference discusses the syntax and attributes required to create a prototype of a Clarion
procedure. This same syntax is used to create Clarion prototypes of C functions.

There are four major issues involved in creating a prototype for a C function: calling
convention, naming convention, parameter passing, and return data types from functions.

The calling convention for all the SoftVelocity C standard library functions is the same
register-based calling convention used by Clarion. Therefore, there is no need to use the
C or PASCAL attributes in any standard C library function’s Clarion prototype.

The SoftVelocity C compiler’s naming convention is the normal C convention. This means
an underscore is automatically prepended to the function name when compiled. The
Clarion NAME attribute is usually used in the prototype to give the linker the correct
reference to a C function without requiring the Clarion code to use the prepended
underscore. For example, the C function "access" is actually named "_access" by the
compiler. Therefore, the NAME(‘_access’) attribute is required in the prototype (unless
you want to refer to the function in Clarion code as "_access").

Each parameter passed to a C function must appear in its Clarion prototype as the data
type of the passed parameter. Parameters are passed in Clarion either "by value" or "by
address."

When a parameter is passed "by value," a copy of the data is received by the function.
The passed parameter is represented in the prototype as the data type of the parameter.
When passed "by address," the memory address of the data is received by the function.
The parameter is represented in the prototype as the data type of the parameter with a
prepended asterisk (*). This corresponds to passing the C function the pointer to the
data.

Advanced Topics & Reference Guide 154

Parameter Data Types
Parameter data type translation is the "key" to prototyping C functions in Clarion. The
following is a table of C data types and the Clarion data type which should be used in the
prototype:

C Data Type Clarion Data Type
Char BYTE (gets linker warnings - ignore them)
unsigned char BYTE
int SHORT
unsigned int USHORT
short SHORT
unsigned short USHORT
long LONG
unsigned long ULONG
float SREAL
double REAL
unsigned char * *BYTE
int * *SHORT
unsigned int * *USHORT
short * *SHORT
unsigned short * *USHORT
long * *LONG
unsigned long * *ULONG
float * *SREAL
double * *REAL
char * *CSTRING w/ RAW attribute
struct * *GROUP w/ RAW attribute

Since the Clarion language does not have a signed BYTE data type, linker warnings
(‘type inconsistency’) will result when you prototype a function which receives a char
parameter. As long as you are aware that the C function is expecting a signed value, and
correctly adjust the BYTE field’s bitmap to pass a value in the range -128 to 127, this
warning may be safely ignored.

The RAW attribute must be used when a C function expects to receive the address of a
CSTRING or GROUP parameter. By default, Clarion STRING, CSTRING, PSTRING, and
GROUP parameters are passed (internally) to other Clarion procedures as both the
address and length of the string. C functions do not usually want or need the length, and
expect to receive only the address of the data. Therefore, the RAW attribute overrides
this default.

Multi Language Programming 155

If the C function returns void, there is no data returned and the function fits the definition
of a Clarion PROCEDURE. If the C function does return data, it is prototyped with the
actual data type returned and the function fits the definition of a Clarion PROCEDURE
that returns a value and may be called as part of a condition, assignment, or parameter
list.

Advanced Topics & Reference Guide 156

Return Data Types
Return data types from C functions are almost the same as passed parameters:

C Return Type Clarion Return Type

char BYTE (gets linker warnings - ignore them)
unsigned char BYTE
int SHORT
unsigned int USHORT
short SHORT
unsigned short USHORT
long LONG
unsigned long ULONG
float SREAL
double REAL
unsigned char * *BYTE
int * *SHORT
unsigned int * *USHORT
short * *SHORT
unsigned short * *USHORT
long * *LONG
unsigned long * *ULONG
float * *SREAL
double * *REAL
char * CSTRING (pointer automatically dereferenced)
struct * ULONG (gets linker warnings - ignore them)

As you can see, the Clarion return type for a char * is CSTRING (not *CSTRING as you
might expect). This is because the Clarion compiler automatically dereferences the
pointer to the data when the function returns (as it does with all the pointer return types).

Notice that the Clarion return data type for struct * is ULONG. This will generate a "type
inconsistency" linker warning. This occurs because the Clarion language does not use
pointers, and the ULONG is a four-byte integer which can serve as a replacement for a
pointer return type. The warning is not a problem and can be safely ignored. You would
probably use memcpy() to get at the returned data.

Multi Language Programming 157

Passing Parameters
Clarion offers two distinct methods of passing parameters to functions or procedures:
"passed by value" and "passed by address."

"Passed by value" means that the calling code passes a copy of the data to the called
function or procedure. The called code can then operate on the data without affecting the
caller’s copy of the data. These parameters are specified by the parameter’s data type in
the prototype.

"Passed by address" means that the calling code passes the address of the data to the
called function or procedure. With this method, the called function or procedure can
modify the caller’s data. These parameters are specified by prefixing the parameter’s
data type with an asterisk (*) in the prototype:

MAP
MODULE('My_C_Lib')

Var_Parameter(*USHORT) ! Parameter passed by address
Val_Parameter(USHORT) ! Parameter passed by value

END
END

These declarations represent the Clarion interface to the functions contained in the C
library My_C_Lib. The following example are the equivalent C declarations:

void Var_Parameter(CLAUSHORT *uspVal);

void Val_Parameter(CLAUSHORT usVal);

Clarion parameters "passed by address" are equivalent to pointers to the relevant C type.
Clarion "passed by value" parameters are passed in the same way as C and C++ value
parameters.

The corresponding Modula-2 definition module would be:

DEFINITION MODULE M2_Code;

IMPORT Cla;

PROCEDURE Var_Parameter(VAR us: Cla.USHORT);
PROCEDURE Val_Parameter(us: Cla.USHORT);

END M2_Code.

Advanced Topics & Reference Guide 158

The corresponding Pascal interface unit would be:

INTERFACE UNIT Pas_Code;

IMPORT Cla;

PROCEDURE Var_Parameter(VAR us: Cla.USHORT);
PROCEDURE Val_Parameter(us: Cla.USHORT);

END.

You cannot pass a Clarion STRING or GROUP by value. For this reason, you must pass
STRINGs or GROUPs by address.

Multi Language Programming 159

Resolving Calling Conventions
Clarion uses the SoftVelocity object code generator, so it uses the same efficient register-
based parameter passing mechanism employed by all SoftVelocity languages. If differing
calling conventions are used by code compiled by third-party compilers, the results may
be unpredictable. Typically, the application will fail at run-time.

To use code produced by compilers other than SoftVelocity, you must ensure that either:

1) The other compiler generates code using Clarion’s (SoftVelocity’s) parameter
passing method, or,

2) That Clarion generates code using the other compiler’s parameter method.

You must also ensure that none of the functions return floating-point data types. There is
no standard of compatibility between compilers regarding this issue. For example,
Microsoft C returns floating-point values in a global variable while Borland C returns them
on the stack (SoftVelocity also returns them on the stack but there is no guarantee of
compatibility). Therefore, any functions from non-SoftVelocity compilers which must
reference floating point values and modify them should receive them "passed by
address" and directly modify the value — do not have the function return the value.

Most other compilers don’t provide Clarion-compatible parameter passing conventions,
but do provide standard C and Pascal parameter passing mechanisms (passed on the
stack). Clarion has the C and PASCAL procedure prototype attributes to specify stack-
based parameter passing.

Most non-SoftVelocity C and C++ compilers use a calling convention where parameters
are pushed onto the stack from right to left (as read from the parameter list). The Clarion
C attribute specifies this convention. Many C and C++ compilers also offer a Pascal
calling convention where parameters are pushed left to right from the parameter list. Most
other languages on the PC also use this convention. The Clarion PASCAL attribute
generates calls using this convention.

In most cases, the C and PASCAL attributes are used in conjunction with the NAME
attribute. This is because many compilers prepend an underscore to function names
where the C convention is in use, and uppercase function names where the PASCAL
convention is in use (Clarion uppercases procedure names also). For example:

 MAP

MODULE('My_C_Lib')
StdC_Conv(UNSIGNED, ULONG), C, NAME('_StdC_Conv')
StdPascal_Conv(UNSIGNED, ULONG), PASCAL, NAME('STDPASCAL_CONV')
END
END

Advanced Topics & Reference Guide 160

When the StdC_Conv procedure is called, the ULONG parameter is pushed on the stack
followed by the UNSIGNED parameter. When StdPascal_Conv is called, the UNSIGNED
parameter is pushed followed by the ULONG parameter. You should be very careful that
calling conventions match, otherwise the program may behave unpredictably. When
interfacing with code produced by SoftVelocity compilers, the C and PASCAL calling
convention attributes are not necessary because Clarion uses the SoftVelocity register-
based calling conventions.

When writing SoftVelocity C functions to be called from a Clarion program, the
CLA_CONV macro (discussed above) should be used to select the correct naming
conventions. The best way of achieving this is to declare any interface functions in a
separate header (.H) file and to apply the conventions to these declarations. C++
functions must be declared using "Pascal" external linkage (also discussed above).
Modula-2 and Pascal naming conventions are best handled by using the NAME attribute
on the prototype.

Multi Language Programming 161

Resolving Naming Conventions
When linking code produced from different programming tools, it is essential to ensure
that the proper naming conventions are used. If differing naming conventions are used,
the linker will not be able to resolve references to a name within code (produced by one
compiler) and its definition (within code produced by another compiler). In this case, no
.EXE will be generated.

Many C compilers (including SoftVelocity) prepend an underscore to the name of each
function or variable name. The Clarion NAME attribute simplifies interfacing with code
produced by these compilers by explicitly telling the Clarion compiler the function or
procedure name to generate for the linker. This allows you to explicitly code the Clarion
prototype to follow the C convention. For example:

MAP

MODULE('My_C_Lib')
StdStr_Parm(STRING), NAME('_StdStr_Parm')

END
END

When the Clarion compiler encounters the StdStr_Parm() procedure, it generates the
name _StdStr_Parm in the object code. Although Clarion names are not case sensitive,
the name generated using the NAME attribute will appear exactly as specified.

The following C language macro defines the Clarion naming conventions. This macro can
be used when declaring C functions to interface with Clarion in order to force the C
compiler to generate names following the Clarion naming convention (no prepended
underscore and all upper case).

 #define CLA_CONV name(prefix=>"", upper_case=>on)

C++ compilers encode the return and parameter types of a procedure into the name that
appears in the object code in a process known as ‘name mangling’. Therefore, C++
compiled functions which may be called from Clarion can be declared within a ‘extern
"Pascal" {...};’ modifier, which is the equivalent to the C language CLA_CONV macro
(which does not affect the name mangling employed by the C++ compiler). For example:

extern "Pascal" void Clarion_Callable_Proc(void);

A more flexible form of the above, allowing for compilation by either a C or C++ compiler,
is:

#ifdef __cplusplus
extern "Pascal" { /* Force Clarion conventions in C++

*/
#else
#pragma save, CLA_CONV /* Force Clarion conventions in C

*/

Advanced Topics & Reference Guide 162

#endif

void Clarion_Callable_Proc(void); /* C or C++ declaration */

#ifdef __cplusplus
} /* Restore C++ conventions */
#else
#pragma restore /* Restore C conventions */
#endif

This form of declaration usually appears in a header file to be included by any interface
code. It ensures that the correct conventions are used when compiled with a C or C++
compiler and eliminates the need to use the NAME attribute on the Clarion language
prototype of the procedure or function.

Clarion is a case-insensitive language and the compiler converts the names of all
procedures to upper-case. Modula-2 and Pascal, however, are case sensitive and also
prefix the name of all procedure names with the name of the module in the form:
MyModule$MyProcedure. The way to resolve these differences is to use Clarion’s NAME
attribute to specify the full name of the Modula-2 or Pascal procedure to the Clarion
compiler:

MAP

MODULE('M2_Code')
M2_Proc1(*GROUP), RAW, NAME('M2_Code$M2_Proc2')

END
MODULE('Pas_Code')

Pas_Proc1(*GROUP), RAW, NAME('Pas_Code$Pas_Proc2')
END

END

The corresponding Modula-2 definition module might be:

DEFINITION MODULE M2_Code;

TYPE
GROUP = RECORD

(* Members *)
END;

PROCEDURE M2_Proc1(VAR Data: GROUP);
END M2_Code.

The corresponding Pascal interface unit might be:

INTERFACE UNIT Pas_Code;

TYPE
GROUP = RECORD

(* Members *)
END;

Multi Language Programming 163

PROCEDURE Pas_Proc1(VAR Data: GROUP);
END.

The naming conventions used by Clarion for data differ from those used for
PROCEDURES, and are more complex. Therefore, the NAME() attribute should be used
to generate a Modula-2 or Pascal-compatible name for any Clarion data that needs to be
accessed between languages. Modula-2 and Pascal data names are case sensitive and
prefixed with the name of the module and a ‘@’ in the form: MyModule@MyProc.

The EXTERNAL and DLL Attributes

The EXTERNAL attribute is used to declare Clarion variables and functions that are
defined in an external library. The DLL attribute declares that an EXTERNAL variable or
functions is defined in a Dynamic Link Library (DLL).

These attributes provide Clarion programs with a means of accessing public data in
external libraries. The compiler will not reserve space for any variables declared as
EXTERNAL. For example:

typedef struct {

unsigned long ul1;
unsigned long ul2;

} StructType;
#ifdef __cplusplus
extern "C" { /* Use C naming conventions, which will require use */
#endif /* of the NAME attribute in the Clarion prototype */
StructType Str1; /* Define Str1 */
StructType Str2; /* Define Str2 */
#ifdef __cplusplus
} /* Restore C++ conventions */
#endif

The following Clarion declarations are all that is necessary to make Str1 and Str2
available to Clarion programs.

StructType GROUP,TYPE ! Declare a user defined type
ul1 ULONG
ul2 ULONG

END
! Declare Str1 and Str2 which are defined in the C module
Str1 LIKE(StructType),NAME('_Str1'),EXTERNAL
Str2 LIKE(StructType),NAME('_Str2'),EXTERNAL

The NAME attribute is used to allow the linker to use the C naming convention when
referencing Str1 or Str2.

Advanced Topics & Reference Guide 164

Programming Considerations

Using C++ Class Libraries

There are some limitations that apply to accessing C++ code and data from Clarion. C++
is an object oriented language and includes language features to support classes and
objects, polymorphism, operator and function overloading, and class inheritance. None of
these features are supported in Clarion as they are in C++. This does not prevent you
from taking advantage of these features in a mixed Clarion and C++ application, but it
does dictate the nature of the interface code.

Clarion cannot directly access C++ classes, or objects of a class type. Therefore, Clarion
programs do not have direct access to the data or functions contained within those
classes. To access them, it is necessary to provide a "C-like" interface to the C++
functionality. A C style function can be called from Clarion, which would then be able to
access the C++ classes and objects defined within the code, including their public data
and methods.
The following example code fragment demonstrates how to code a C++ function that
calls a C++ class library. The MakeFileList function may be called directly from Clarion
— the DirList constructors and the ReOrder class member may not. The DirList class
implements a directory list whose entries may be ordered by name, size or date. The
class definition and Clarion callable entry point declarations are as follows (note the use
of the ‘extern "C"’ linkage specifier to force C naming conventions for the Clarion
callable functions):

//*** DirList Class Definition
class DirList: public List {
public:

DirList(char *Path, CLAUSHORT Attr, CLAUSHORT Order);
DirList();
void ReOrder(int Order);

};

//*** Clarion Entrypoint Declarations
extern "C" {
void MakeFileList(char *Path, CLAUSHORT Attr, CLAUSHORT Order);
}

Multi Language Programming 165

The following code does nothing more than provide entry points for the Clarion code to
access the functionality of the DIRLIST class library. Since Clarion performs no name-
mangling and cannot access classes or their members, this API is necessarily fairly
simple.

DirList *FileList = NULL; // The directory list object

void MakeFileList(char *Path, CLAUSHORT Attr, CLAUSHORT Order)
{ if (FileList != NULL) // If we have a list

{ delete FileList; // invoke class destructor
FileList = NULL; // so we can start again

}
FileList = new DirList(Path, Attr, Order);

}

The following is the corresponding MAP structure prototype to allow Clarion to call the
MakeFileList interface function:

MAP
MODULE('DirList')
MakeFileList(*CSTRING,USHORT,USHORT),RAW,NAME('_MakeFileList')
END

END

One disadvantage of this is that, given a large class library, it appears to involve a lot of
extra work to create a suitable interface. In practice, however, it should only be necessary
to provide a very small interface to begin taking advantage of an existing C++ class
library.

It is not possible to call C++ code compiled using non-SoftVelocity C++ compilers from a
Clarion application. C++ modules usually require special initialization — constructors for
all static objects must be invoked in the correct order. This initialization process must be
performed by the Clarion start-up code. Clarion’s startup code automatically performs the
necessary initialization for any SoftVelocity C++ modules that are present, but it will not
initialize modules compiled with other C++ compilers. Even if the modules did not require
initialization, other C++ compilers use different calling and naming conventions, and
adopt different internal class structures. This makes it impossible to use C++ class
libraries in Clarion applications compiled with a compiler other than SoftVelocity C++.

Advanced Topics & Reference Guide 166

Summary:

The Clarion API provides a number of features to assist developers who need to interface
to code written in other programming languages. With a little care, it is possible to create
Clarion interfaces to some extremely powerful external libraries.

When preparing interfaces to libraries written in other languages you should consider the
following suggestions:

* Don’t write C, C++, Pascal, or Modula-2 functions to return CSTRING variables to
Clarion. Have the other language routine place the CSTRING value in a public variable,
or pass a *CSTRING (by address) parameter to the C routine to receive the value.

* Don’t call Clarion procedures that return STRING variables from other language
functions. Have the Clarion procedure place the return value in a public variable or pass
a *CSTRING (by address) parameter to the other language procedure.

* For simplicity and efficiency, STRING and GROUP parameters should usually be passed
by address with the RAW attribute to ensure only the address is passed.

* Test the application in XLARGE memory model first.

C and C++ Considerations

* If a C or C++ function takes a pointer parameter, the corresponding parameter in the
Clarion prototype for that function should be declared as "passed by address" by prefixing
the data type with an asterisk (*).

* If a C or C++ function takes a pointer to a GROUP, STRING, PSTRING or CSTRING,
you should use the RAW attribute in the Clarion prototype.

* If a C or C++ function takes an ASCIIZ string as a parameter, the corresponding
parameter in the Clarion prototype should be *CSTRING.

* If a C or C++ function takes a pointer to a structure as a parameter, the corresponding
parameter in the Clarion prototype should be *GROUP.

* Use the header (.H) files as a template for developing a Clarion interface to a C or C++
library that eliminates the need to use the NAME attribute on the Clarion prototype to
specify names.

* Use the NAME attribute on the Clarion prototype to specify names for C library functions
that do not use the CLA_CONV macro - remember that C names are case sensitive and
start with an underscore (_).

Multi Language Programming 167

Modula-2 and Pascal Considerations

* If a Modula-2 or Pascal procedure takes a VAR parameter, the corresponding parameter
in the Clarion prototype for that procedure should be declared as "passed by address" by
prefixing the data type with an asterisk (*).

* If a Modula-2 or Pascal procedure takes a VAR parameter for a GROUP, STRING,
PSTRING or CSTRING, you should use the RAW attribute in the Clarion prototype.

* If a Modula-2 or Pascal procedure takes a VAR record as a parameter, the
corresponding parameter in the Clarion prototype should be *GROUP and the RAW
attribute should be used in the prototype.

Additional C++ Considerations

* Use the "Pascal" external linkage specification for your C++ interface functions. This
eliminates the need to use the Clarion NAME attribute on the prototype.

* Don’t call C++ class member functions from your Clarion code.

* Don’t try to access C++ objects of class type from your Clarion code.

* Don’t try to access C++ code compiled with a C++ compiler other than SoftVelocity.

Additional Modula-2 Considerations

* Use the definition (.DEF) module as a template for developing a Clarion interface to a
Modula-2 library.

* If a Modula-2 procedure takes an ASCIIZ string as a parameter, the corresponding
parameter in the Clarion prototype should be *CSTRING.

* Use the NAME attribute to specify names for Modula-2 library procedures -remember that
Modula-2 names are prefixed with the module name followed by a ‘$’ and are case-
sensitive.

Additional Pascal Considerations

* Use the interface (.ITF) files as a template for developing a Clarion interface to a Pascal
library.

* Use the NAME attribute to specify names for Pascal library procedures -remember that
Pascal names are prefixed with the module name followed by a ‘$’ and are upper-case.

Advanced Topics & Reference Guide 168

API Calls and Advanced Programming 169

API Calls and Advanced Resources
Prototypes and Declarations

Clarion includes files with prototypes, declarations, and headers that you can use to let
Clarion "talk" to Windows, C/C++, Modula-2, and vice versa.

Clarion to C/C++ Standard Library

To call the standard C library functions from Clarion applications, include \CLIB.CLW in
the "Inside the Global Map" embed point.

INCLUDE(‘CLIB.CLW’)

This file contains Clarion prototypes for various string handling functions, integer math,
character type functions, and low level file manipulation functions. Refer to your C/C++
Library Reference for more information on individual functions.

Clarion to Windows API

To call Windows API functions from Clarion applications, you must include the functions’
prototypes in your application’s MAP structure, and any standard EQUATEs or data
structures that the functions need in your Global data declarations.

Clarion contains the WINAPI.EXE utility program that creates the file you need to include
in your application. This program, by default, creates the WINAPI.CLW file which has two
sections: the "Equates" section containing all EQUATE statements and any data
structures needed by the functions you choose, and the "Prototypes" section containing
the Clarion language prototypes of Windows API functions you choose to use.

Include the Equates section of WINAPI.CLW in the "After Global INCLUDEs" embed
point:

INCLUDE(‘WINAPI.CLW’,’Equates’)

Advanced Topics & Reference Guide 170

Include the Prototypes section of WINAPI.CLW in the "Inside the Global Map" embed
point:

INCLUDE(‘WINAPI.CLW’,’Prototypes’)

Refer to your Windows API reference for more information on the individual API functions
available to you in categories such as:

Creating Windows
Window Support
Message Processing
Memory Management
Bitmaps and Icons
Color Palette Control
Sound
Character Sets and Strings
Communications
Metafiles
Tool Help Library
File Compression
Installation and Version Information
TrueType Fonts
Multimedia

Modula-2 to Clarion

Clarion’s Runtime Library

To call the Clarion runtime library procedures, use the \CWRUN.DEF file. This file
contains Modula-2 declarations for various Clarion Language procedures, as well as the
many standard C library functions that are found in the Clarion Runtime Library. The
available functions are documented in the Clarion’s Runtime Library Functions section of
this article.

Clarion’s File Driver Procedures

To call the Clarion database file driver procedures, use the \CWFILE.DEF file. This file
contains Modula-2 declarations for Clarion’s FILE, RECORD, KEY, INDEX, MEMO, and
BLOB handling procedures, including a complete description of Clarion’s file control
block.

API Calls and Advanced Programming 171

C/C++ to Clarion

Clarion’s Runtime Library

To call the Clarion runtime library procedures, use the \CWRUN.H file. This file contains
C/C++ prototypes for various Clarion Language procedures, as well as many standard C
library functions that are found in the Clarion Runtime Library. The available functions are
documented below in the Clarion’s Runtime Library Functions section.

Clarion’s File Driver Procedures

To call the Clarion database file driver procedures, use the \CWFILE.H file. This file
contains C/C++ prototypes for Clarion’s FILE, RECORD, KEY, INDEX, MEMO, and
BLOB handling procedures, including a complete description of Clarion’s file control
block.

Advanced Topics & Reference Guide 172

Accessing Clarion's Runtime Library from C/C++ or Modula-2 Code
Following is a list of Clarion runtime library procedures, data structures, and variables
that you may use at run time in your C/C++ or Modula-2 code.

Structures and Data Type Definitions

COLORREF
C++: typedef unsigned long COLORREF;
Modula-2: TYPE COLORREF = LONGINT;

Run-Time Variables

The following variables are available for interrogation at run-time:

Cla$DOSerror An unsigned integer containing the last DOS error code.

Cla$FILEERRCODE An integer containing the last Clarion error code.

Cla$FILEERRORMSG A character array of 80 char’s containing the last Clarion
error message.

WSL@AppInstance An unsigned short containing the instance ID of the
application.

Clarion Built-in Procedures

The following list of procedures are those internal Clarion procedures that are ‘safe’ to
call at run-time. Unless otherwise stated, assume that these procedures have been given
external C linkage.

API Calls and Advanced Programming 173

Cla$ACOS The Clarion ACOS() procedure. Returns the inverse cosine of the val
parameter.
C++: double Cla$ACOS(double val)
Modula-2: Cla$ACOS(val :LONGREAL):LONGREAL;

 val: A numeric expression describing an angle in radians.

Cla$ARC The Clarion ARC statement. Places an arc of an ellipse on the current
window or report, bounded by the rectangle defined by the x, y, wd and
ht parameters.

 C++: void Cla$ARC(int x, int y, int wd, int ht, int start, int end)
Modula-2: Cla$ARC(x,y,wd,ht,start,end: INTEGER);

 x: An integer specifying the horizontal position of the starting point.

 y: An integer specifying the vertical position of the starting point.

 wd: An integer specifying then width.

 ht: An integer specifying then height.

 start: An integer specifying the start of the arc in 10th’s of a degree.

 end: An integer specifying the end of the arc in 10th’s of a degree.

Cla$ASIN The Clarion ASIN() procedure. Returns the inverse sine of the val
parameter.

 C++: double Cla$ASIN(double val)

 Modula-2: Cla$ASIN(val LONGREAL): LONGREAL;

 val: A numeric expression describing an angle in radians.

Advanced Topics & Reference Guide 174

Cla$ATAN The Clarion ATAN() procedure. Returns the inverse tangent of the val
parameter.

 C++: double Cla$ATAN(double val)

 Modula-2: Cla$ATAN(val: LONGREAL):LONGREAL;

 val: A numeric expression describing an angle in radians.

Cla$BOX The Clarion BOX statement. This procedure draws a box of the color
specified by the COLORREF structure, starting at position x, y of the
width and height specified on the current window or report.

 C++: void Cla$BOX(int x, int y, int wd, int ht, COLORREF fillcolor)

 Modula-2: Cla$BOX(x, y, wd, ht: INTEGER; fillcolor: COLORREF);

 x: An integer specifying the horizontal start position.

 y: An integer specifying the vertical start position.

 wd: An integer specifying the width.

 ht: An integer specifying the height.

 fillcolor: A COLORREF structure.

Cla$BSHIFT The Clarion BSHIFT() procedure. This procedure returns the result of bit
shifting val by count binary positions. If count is positive, val is shifted
left, if count is negative val is shifted right.

 C++: long Cla$BSHIFT(long val, int count)

Modula-2: Cla$BSHIFT(val: LONGINT; count: INTEGER):
LONGINT;

 val: A numeric expression.

 count: A numeric expression.

API Calls and Advanced Programming 175

Cla$CHORD The Clarion CHORD statement. Draws a closed sector ellipse on the
current window or report inside the box specified by the x, y, wd and ht
parameters and in the color provided in the COLORREF structure. The
start and end parameters specify which part of the ellipse to draw.

C++: void Cla$CHORD(int x, int y, int wd, int ht, int start, int end,
COLORREF fillcolor)

Modula-2: Cla$CHORD(x, y, wd, ht, start, end: INTEGER; fillcolor:
COLORREF);

 x: An integer specifying the horizontal start position.

 y: An integer specifying the vertical start position.

 wd: An integer specifying the width.

 ht: An integer specifying the height.

start: An integer expressing the string of the chord in 10th’s of a
degree.

 end: An integer expressing the end of the chord in 10th’s of a degree.

 fillcolor: A COLORREF structure.

Cla$CLOCK The Clarion CLOCK() procedure. Returns the system time in the form of
a Clarion standard time.

C++: long Cla$CLOCK(void)

Modula-2: Cla$CLOCK(): LONGINT;

Cla$COS The Clarion COS() procedure. Returns the cosine of the val parameter.

C++: double Cla$COS(double val)

Modula-2: Cla$COS(val: LONGREAL): LONGREAL;

 val: A numeric expression describing an angle in radians.

Advanced Topics & Reference Guide 176

Cla$DATE The Clarion DATE() procedure. Returns a Clarion standard date value
form the component day, month and year parameters.

C++: long Cla$DATE(unsigned mn, unsigned dy, unsigned yr)

Modula-2: Cla$DATE(mn, dy, yr: CARDINAL): LONGINT;

 mn: A numeric expression for the month in the range 1 to 12.

 dy: A numeric expression for the day in the range 1 to 31.

 yr A numeric expression for the year in the range 1801 to 2099.

Cla$DAY The Clarion DAY() procedure. Returns the day in the range 1 to 31 from
the Clarion standard date parameter.

C++: long Cla$DAY(long dt)

Modula-2: Cla$DAY(dt: LONGINT): LONGINT;

 dt: A numeric expression for Clarion standard date.

Cla$ELLIPSE The Clarion ELLIPSE statement. Draws an ellipse on the current window
or report, of the color specified in the COLORREF structure, inside the
area bounded by the x, y, wd and ht parameters.

C++: void Cla$ELLIPSE(int x, int y, int wd, int ht, COLORREF fillcolor)

Modula-2: Cla$ELLIPSE(x, y, wd, ht: INTEGER; fillcolor: COLOREF);

 x: An integer expression.

 y: An integer expression.

 wd: An integer expression.

 ht: An integer expression.

 fillcolor: A COLORREF structure.

API Calls and Advanced Programming 177

Cla$INT The Clarion INT() procedure. Returns the integer portion of the val
parameter. The value is truncated at the decimal point and no rounding
is performed.

C++: double Cla$INT(double val)

Modula-2: Cla$INT(val: LONGREAL): LONGREAL;

 val: A numeric expression.

Cla$LOG10 The Clarion LOG10() procedure. Returns the base 10 logarithm of the
val parameter.

C++: double Cla$LOG10(double val)

Modula-2: Cla$LOG10(val: LONGREAL): LONGREAL;

 val: A numeric expression.

Cla$LOGE The Clarion LOGE() procedure. Returns the natural logarithm of the val
parameter.

C++: double Cla$LOGE(double val)

Modula-2: Cla$LOGE(val: LONGREAL): LONGREAL;

 val: A numeric expression.

Cla$MONTH The Clarion MONTH() procedure. Returns the month from a Clarion
standard date in the range 1 to 12.

C++: long Cla$MONTH(long dt)

Modula-2: Cla$MONTH(dt: LONGINT): LONGINT;

dt: A numeric expression containing a Clarion standard date.

Advanced Topics & Reference Guide 178

Cla$MOUSEX The Clarion MOUSEX() procedure. Returns the horizontal position of the
mouse.

C++: int Cla$MOUSEX(void)

Modula-2: Cla$MOUSEX(): INTEGER;

Cla$MOUSEY The Clarion MOUSEY() procedure. Returns the horizontal position of the
mouse.

C++: int Cla$MOUSEY(void)

Modula-2: Cla$MOUSEY(): INTEGER;

Cla$NUMERIC

The Clarion NUMERIC() procedure. Returns 1 (true) if str contains a
valid representation of a number, otherwise returns 0 (false).

C++: unsigned Cla$NUMERIC(char *str, unsigned slen)

Modula-2: Cla$NUMERIC(VAR str: ARRAY OF CHAR; slen:CARDINAL):
CARDINAL;

 str: A pointer to a string.

 slen: Length of the str parameter.

Cla$RANDOM

 The Clarion RANDOM() procedure. Returns a pseudo-random number
who’s value will be between the low and high bound values.

C++: long Cla$RANDOM(long low, long high)

Modula-2: Cla$RANDOM(low, high: LONGINT): LONGINT;

 low: A numeric value specifying the lower bound.

 high: A numeric value specifying the upper bound.

API Calls and Advanced Programming 179

Cla$ROUND The Clarion ROUND() procedure. Returns the val parameter rounded to
power of 10 specified by the ord parameter.

C++: double Cla$ROUND(double val, double ord)

Modula-2: Cla$ROUND(val, ord: LONGREAL): LONGREAL;

 val: A numeric expression.

ord: A numeric expression equal to a power of 10 (e.g. .001, .0, 1, 10,
100 etc...).

Cla$SETCLOCK
The Clarion SETCLOCK statement. Sets the system clock to the time
contained in the dt parameter.

C++: void Cla$SETCLOCK(long dt)

Modula-2: Cla$SETCLOCK(dt: LONGINT);

 dt: A numeric expression representing a Clarion standard time.

Cla$SETTODAY
The Clarion SETTODAY statement. Sets the DOS system date to that
contained in the dt parameter.

C++: void Cla$SETTODAY(long dt)

Modula-2: Cla&SETTODAY(dt: LONGINT);

 dt: A numeric expression containing a Clarion standard date.

Cla$SIN The Clarion SIN() procedure. Returns the sine of the val parameter.

C++: double Cla$SIN(double val)

Modula-2: CLA$SIN(val: LONGREAL): LONGREAL;

 val: A numeric expression describing an angle in radians.

Advanced Topics & Reference Guide 180

Cla$SQRT The Clarion SQRT() procedure. Returns the square root of the val
parameter.

C++: double Cla$SQRT(double val)

Modula-2: Cla$SQRT(val:LONGREAL): LONGREAL;

 val: A numeric expression.

Cla$TAN The Clarion TAN() procedure. Returns the tangent of the val parameter.

C++: double Cla$TAN(double val)

Modula-2: Cla$TAN(val: LONGREAL): LONGREAL;

 val: A numeric expression describing an angle in radians.

Cla$TODAY The Clarion TODAY() procedure. Returns the system date in Clarion
standard date format.

C++: long Cla$TODAY(void)

Modula-2: Cla$TODAY(): LONGINT;

Cla$YEAR The Clarion YEAR() procedure. Extracts the year from a Clarion
standard date, in the range 1801 to 2099.

C++: long Cla$YEAR(long dt)

Modula-2: Cla$YEAR(dt: LONGINT): LONGINT;

 dt: A numeric expression describing a Clarion standard date.

API Calls and Advanced Programming 181

Clarion String Stack Handling Procedures

The following section describes the use Clarion internal run-time string handling
procedures available to 3GL code. Clarion uses a LISP like approach to string handling
whereby, parameters are pushed onto the top of the string stack, with operations being
performed on the topmost entries. Assume, unless otherwise documented, that the
procedures remove (or Pop) items off the stack that they have used.

Please note that some of the following procedures require pointers to null terminated
strings, to be passed as parameters. Modula-2 programmers should use the Modula
library procedure Str.StrToC to convert strings to null terminated equivalents. Also, the
pragma call(o_a_size=>off,o_a_copy=>off) must be issued to prevent the passing of
array size information to the run-time procedures.

Cla$PopCString Takes the topmost item off the stack and copies it to the string
pointed to by s; len contains the length of the string copied to s.

C++: void Cla$PopCString(char *s, unsigned len)

Modula-2: Cla$PopCString(s: POINTER TO CHAR; len: CARDINAL);

 s: A pointer to a null terminated string

 len: The length of string s

Cla$PopPString Takes the topmost item off the stack and copies it to the string
pointed to by s; len contains the length of the string copied to s.
The string is converted to a Pascal style string (i.e. first byte is
string length) during copy.

C++: void Cla$PopPString(char *s, unsigned len)

Modula-2: Cla$PopPString(VAR s: ARRAY OF CHAR; len: CARDINAL);

 s: A pointer to a string

 len: The length of string s

Advanced Topics & Reference Guide 182

Cla$PopString Pops the uppermost stack item and copies it to the string s.

C++: void Cla$PopString(char *s, unsigned len)

Modula-2: Cla$PopString(VAR s: ARRAY OF CHAR; len: CARDINAL);

 s: A pointer to a null terminated string

 len: The length of string s

Cla$PushCString Pushes s onto the top of the stack.

C++: void Cla$PushCString(char *s)

Modula-2: Cla$PushCString(VAR s: ARRAY OF CHAR);

 s: A pointer to a null terminated string

Cla$PushString Pushes the string s onto the top of the stack. Len specifies the
length of string s.

C++: void Cla$PushString(char *s, unsigned len)

Modula-2: Cla$PushString(VAR s: ARRAY OF CHAR; len: CARDINAL);

 s: A pointer to a string

 len: The length of string s

Cla$StackALL The Clarion ALL() procedure. Pops the top item of the stack and
replaces it by a string containing the original string replicated as
many times as necessary to produce a string of length len.

C++: void Cla$StackALL(unsigned len)

Modula-2: Cla$StackALL(len: CARDINAL);

 len: An unsigned integer

API Calls and Advanced Programming 183

Cla$StackCENTER The Clarion CENTER() procedure. Pops the topmost item of the
stack and replaces it with a string padded with leading spaces so
as to center the text in a string of length len.

C++: void Cla$StackCENTER(unsigned len)

Modula-2: Cla$StackCENTER(len: CARDINAL);

len: An unsigned integer

Cla$StackCLIP The Clarion CLIP() procedure. Removes trailing spaces from the
top most item on the stack.

C++: void Cla$StackCLIP(void)

Modula-2: Cla$StackCLIP();

Cla$StackCompare Compares the top item on the stack (s1) with the 2nd item on the
stack (s2) and returns one of the following values:

 -1: if s1 < s2

 0: if s1 = s2

 1: if s1 > s2

After the compare instruction, s1 and s2 are removed from the
stack automatically.

C++: int Cla$StackCompare(void)

Modula-2: Cla$StackCompare(): INTEGER;

Advanced Topics & Reference Guide 184

Cla$StackCompareN Compares the topmost item on the stack to null. Returns true if
the topmost item is null, otherwise returns false.

C++: int Cla$StackCompareN(void)

Modula-2: Cla$StackCompareN(): INTEGER;

Cla$StackConcat Pops the top two items off the stack, concatenates them together
and pushes the resulting string back onto the stack.

C++: void Cla$StackConcat(void)

Modula-2: Cla$StackConcat();

Cla$StackINSTRING The Clarion INSTRING() procedure. Searches the topmost item
on the stack, for any occurrence of the second item on the stack.
The search starts at character position start and increments the
start position by step until the end of the string is reach. Returns
the iteration count required to find the search string, or 0 if not
found.

C++: unsigned Cla$StackINSTRING(unsigned step, unsigned start)

Modula-2: Cla$StackINSTRING(step, start: CARDINAL): CARDINAL;

 step: An unsigned integer, the search increment

 start: An unsigned integer, the start position of the search

Cla$StackLEFT The Clarion LEFT() procedure. Replaces the topmost string on
the stack with its left justified equivalent. The replacement sting
will have a length of len.

C++: void Cla$StackLEFT(unsigned len)

Modula-2: Cla$StackLEFT(len: CARDINAL);

 len: An unsigned integer

API Calls and Advanced Programming 185

Cla$StackLen Returns the length of the topmost item on the stack. Does not
pop the item off the stack.

C++: unsigned Cla$StackLen(void)

Modula-2: Cla$StackLen(): CARDINAL;

Cla$StackLen2 Returns the length of the topmost item on the stack. Pops the
item of the stack after getting its length.

C++: unsigned Cla$StackLen2(void)

Modula-2: Cla$StackLen2(): CARDINAL;

Cla$StackLOWER The Clarion LOWER() procedure. Replaces the topmost string
on the stack with its lower case equivalent.

C++ void Cla$StackLOWER(void)

Modula-2: Cla$StackLOWER();

Cla$STACKpop Pops the top item off the stack.

C++: void Cla$STACKpop(void)

Modula-2: Cla$STACKpop();

Cla$StackNUMERIC Returns true if the topmost string on stack contains a valid
numeric representation, otherwise returns false.

C++: unsigned Cla$StackNUMERIC(void)

Modula-2: Cla$StackNUMERIC(): CARDINAL;

Cla$StackPRESS The Clarion PRESS statement. Pushes every character in the
topmost string of the stack into the Windows keyboard buffer.

C++: void Cla$StackPRESS(void)

Modula-2: Cla$StackPRESS();

Advanced Topics & Reference Guide 186

Cla$StackRIGHT The Clarion RIGHT() procedure. Replaces the topmost item on
the stack with its right justified equivalent. The replacement
string will have a length of len characters.

C++: void Cla$StackRIGHT(unsigned len)

Modula-2: Cla$StackRIGHT(len: CARDINAL);

 len: An unsigned integer

Cla$StackSUB The Clarion SUB() procedure. Replaces the topmost string on
the stack with a sub slice of the string starting at character
position pos and of length len.

C++: void Cla$StackSUB(unsigned pos, unsigned len)

Modula-2: Cla$StackSUB(pos, len: CARDINAL);

 pos: An unsigned integer; the start position of the sub string

 len: An unsigned integer; the length of the sub string

Cla$StackVAL The Clarion VAL() procedure. Returns the ANSI value of the first
character of the topmost string of the stack.

C++: unsigned char Cla$StackVAL(void)

Modula-2: Cla$StackVAL(): BYTE;

Cla$StackUPPER Replace the topmost string on the stack with its uppercase
equivalent.

C++: void Cla$StackUPPER(void)

Modula-2: Cla$StackUPPER();

API Calls and Advanced Programming 187

Standard C Functions in Clarion's Runtime Library
The following functions comprise a sub-set of the standard SoftVelocity library that you
can call from your Clarion, C/C++, or Modula-2 code. All of these functions are fully
documented in the SoftVelocity C Library Reference manual (or in any ANSI-standard C
library reference) and so, are not documented here. Unless otherwise indicated, assume
that the functions operate exactly as documented.

The purpose of this list is simply to let you know what C standard library functions are
available and the correct prototypes for each language.

Conversion Functions

Please note that some of the following functions require pointers to null terminated strings
as parameters. Modula-2 programmers should use the Modula library procedure
Str.StrToC to convert strings to null terminated equivalents. Also, the pragma
call(o_a_size=>off, o_a_copy=>off) must be issued to prevent the passing of array size
information to the run-time procedures.

atof Convert string to floating point.
C++: double atof(const char *_nptr)

Modula-2: atof(VAR _nptr: ARRAY OF CHAR): LONGREAL;

Clarion: AToF(*cstring),real,raw,name('_atof')

atoi Convert string to integer.
C++: int atoi(const char *_nptr)

Modula-2: atoi(VAR _nptr: ARRAY OF CHAR): INTEGER;

Clarion: AToI(*cstring),short,raw,name('_atoi')

Advanced Topics & Reference Guide 188

atol Convert string to long.
C++: long atol(const char *_nptr)

Modula-2: atol(VAR _nptr: ARRAY OF CHAR): LONGINT;

Clarion: AToL(*cstring),long,raw,name('_atol')

atoul Convert string to unsigned long.
C++: unsigned long atoul(const char *_nptr)

Modula-2: atoul(VAR _nptr: ARRAY OF CHAR): LONGCARD;

Clarion: AToUL(*cstring),ulong,raw,name('_atoul')

Integer Math

abs Integer absolute value.
C++: int abs(int _num)

Modula-2: abs(_num: INTEGER): INTEGER;

Clarion: API_Abs(short),short,name('_abs') !Renamed to avoid conflict with Builtins.C

labs Long integer absolute value.

C++: long labs(long _j)

Modula-2: labs(_i: LONGINT): LONGINT;

Clarion: LAbs(long),long,name('_labs')

API Calls and Advanced Programming 189

Char Type Functions

The following functions have only been tested when implemented as functions. We do
not advise defining _CT_MTF to implement the functions as macros.

toupper Test and convert if lowercase.

C++: int toupper(int c)

Modula-2: toupper(c: INTEGER):INTEGER;

Clarion: ToUpper(short),short,name('_toupper')

Tolower Test and convert if uppercase.

C++: int tolower(int c)

Modula-2: tolower(c: INTEGER): INTEGER;

Clarion: ToLower(short),short,name('_tolower')

isascii ASCII test function.

C++: int isascii(int c)

Modula-2: isascii(c: INTEGER): INTEGER;

Clarion: IsAscii(short),short,name('_isascii')

iscntrl Control character test function.

C++: int iscntrl(int c)

Modula-2: iscntrl(c: INTEGER): INTEGER;

Clarion: IsCntrl(short),short,name('_iscntrl')

Advanced Topics & Reference Guide 190

isdigit Numerics test function.

C++: int isdigit(int c)

Modula-2: isdigit(c: INTEGER): INTEGER;

Clarion: IsDigit(short),short,name('_isdigit')

Isprint Printable including space test function.

C++: int isprint(int c)

Modula-2: isprint(c: INTEGER): INTEGER;

Clarion: IsPrint(short),short,name('_isprint')

Ispunct Punctuation character test function.

C++: int ispunc(int c)

Modula-2: ispunc(c: INTEGER): INTEGER;

Clarion: IsPunct(short),short,name('_ispunct')

isspace Whitespace test function.

C++: int isspace(int c)

Modula-2: isspace(c: INTEGER): INTEGER;

Clarion: IsSpace(short),short,name('_isspace')

Isxdigit Hex digit test function.

C++: int isxdigit(int c)

Modula-2: isxdigit(c: INTEGER): INTEGER;

Clarion: IsXDigit(short),short,name('_isxdigit')

API Calls and Advanced Programming 191

Utility Functions

rand Return pseudorandom integer.
C++: int rand(void)

Modula-2: rand(): INTEGER;
Clarion: Rand(),short,name('_rand')

randomize Set pseudorandom seed with system time.

C++: void randomize(void)

Modula-2: randomize()

Clarion: Randomize(),name('_randomize')

srand Set pseudorandom seed with specified number.

C++: void srand(unsigned _seed)

Modula-2: srand(_seed: CARDINAL);

Clarion: SRand(ushort),name('_srand')

Advanced Topics & Reference Guide 192

String Functions

strcat Concatenate two strings.

C++: char *strcat(char *_dest, const char *_source)

Modula-2: Not available

Clarion: StrCat(*cstring,*cstring),cstring,raw,name('_strcat')

strcmp Compare two strings.

C++: int strcmp(const char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrCmp(*cstring,*cstring),short,raw,name('_strcmp')

chrcmp Compare two characters

C++: int chrcmp(char _c1, char _c2)

Modula-2: chrcmp(_c1,_c2: CHAR): INTEGER;

Clarion: ChrCmp(byte,byte),short,name('_chrcmp')

strequ

C++: int strequ(const char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrEqu(*cstring,*cstring),short,raw,name('_strequ')

strcpy Copy one string to another, return destination address.

C++: char *strcpy(char *_dest, const char *_source)

Modula-2: Not available

Clarion: StrCpy(*cstring, *cstring), cstring, raw,| name('_strcpy')

API Calls and Advanced Programming 193

strlen Return string length.

C++: unsigned strlen(const char *_s)

Modula-2: strlen(VAR _s: ARRAY OF CHAR): CARDINAL;

Clarion: StrLen(*cstring),ushort,raw,name('_strlen')

strchr Find character in string.

C++: char *strchr(const char *_s, int _c)

Modula-2: Not available

Clarion: StrChr(*cstring,short),cstring,raw,name('_strchr')

strcspn Finds one of a set of characters in string.

C++: unsigned strcspn(const char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrCSpn(*cstring, *cstring), ushort, raw,| name('_strcspn')

strspn Find first character with no match in given character set.

C++: unsigned strspn(const char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrSpn(*cstring,*cstring),ushort,raw,name('_strspn')

strstr Find first occurrence of substring in a string.

C++: char *strstr(const char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrStr(*cstring,*cstring),cstring,raw,name('_strstr')

Advanced Topics & Reference Guide 194

strtok Find next token in string.

C++: char *strtok(char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrTok(*cstring,*cstring),cstring,raw,name('_strtok')

strpbrk Find first occurrence of character.

C++: char *strpbrk(const char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrPBrk(*cstring, *cstring), cstring, raw,| name('_strpbrk')

strrchr Find last occurrence of character.

C++: char *strrchr(const char *_s, int _c)

Modula-2: Not available

Clarion: StrRChr(*cstring,short),cstring,raw,name('_strrchr')

strlwr Convert to lower case.

C++: char *strlwr(char *_s)

Modula-2: Not available

Clarion: StrLwr(*cstring),cstring,raw,name('_strlwr')

strupr Convert to upper case.

C++: char *strupr(char *_s)

Modula-2: Not available

Clarion: StrUpr(*cstring),cstring,raw,name('_strupr')

API Calls and Advanced Programming 195

strdup Duplicate string.

C++: char *strdup(const char *_s)

Modula-2: Not available

Clarion: StrDup(*cstring),cstring,raw,name('_strdup')

strrev Reverse string.

C++: char *strrev(char *_s)

Modula-2: Not available

Clarion: StrRev(*cstring),cstring,raw,name('_strrev')

strncat Concatenate n characters.

C++: char *strncat(char *_dest, const char *_source, unsigned _n)

Modula-2: Not available

Clarion: StrNCat(*cstring, *cstring, ushort), cstring, raw,| name('_strncat')

strncmp Compare n characters.

C++: int strncmp(const char *_s1, const char *_s2, unsigned _n)

Modula-2: Not available

Clarion: StrNCmp(*cstring, *cstring, ushort), short, raw,| name('_strncmp')

strncpy Copy n characters.

C++: char * strncpy(char *_dest, const char *_source, unsigned _n)

Modula-2: Not available

Clarion: StrNCpy(*cstring, *cstring, ushort), cstring, raw,| name('_strncpy')

Advanced Topics & Reference Guide 196

strnicmp Compare n characters regardless of case.

C++: int stricmp(const char *_s1, const char *_s2, unsigned _n)

Modula-2: Not available

Clarion: StrNICmp(*cstring, *cstring, ushort), short, raw,| name('_strnicmp')

API Calls and Advanced Programming 197

Low-Level File Manipulation

chmod Set file’s access mode.

C++: int _chmod(const char *path, int mode)

Modula-2: _chmod(VAR path: ARRAY OF CHAR; mode: INTEGER): INTEGER;

Clarion: ChMod(*cstring,short),short,raw,name('_chmod')

remove Deletes the file specified by the path parameter.

C++: int _remove(const char *_path)

Modula-2: _remove(VAR _path: ARRAY OF CHAR): INTEGER;

Clarion: API_Remove(*cstring),short,raw,name('_remove')

!Renamed to avoid conflict with Builtins.Clw

rename Changes the name of the file or directory specified by the oldname parameter.

C++: int _rename(const char *_oldname, const char *_newname)

Modula-2: _rename(VAR _oldname, VAR _newname: ARRAY OF CHAR): INTEGER;

Clarion: API_Rename(*cstring, *cstring), short, raw,| name('_rename')

!Renamed to avoid conflict with Builtins.Clw

Advanced Topics & Reference Guide 198

fnmerge Builds a complete path name from its component parts -- drive, directory,
filename, and extension.

 C++: void _fnmerge(char *_path, const char *_drive, const char *_dir, const
char *_name, const char *_ext)

 Modula-2: _fnmerge(VAR _path, VAR _drive, VAR _dir, VAR _name, VAR _ext:
ARRAY OF CHAR);

Clarion: FnMerge(*cstring, *cstring, *cstring, *cstring,| *cstring), raw,
name('_fnmerge')

fnsplit This function breaks a complete path name into its component parts --
drive, directory, filename, and extension.

C++: int _fnsplit(const char *_path, char *_drive, char *_dir, char *_name, char *_ext)

Modula-2: _fnsplit(VAR_path,VAR _drive,VAR _dir,VAR _name,VAR _ext:ARRAY
OF CHAR):INTEGER;

Clarion: FnSplit(*cstring, *cstring, *cstring, *cstring,| *cstring), short, raw, name('_fnsplit')

mkdir Creates a new directory with the name passed in the path parameter.

C++: int _mkdir(const char *_path)

Modula-2: _mkdir(VAR _path: ARRAY OF CHAR): INTEGER;

Clarion: MkDir(*cstring),short,raw,name('_mkdir')

rmdir removes the directory specified in the path parameter.

C++: int _rmdir(const char *_path)

Modula-2: _rmdir(VAR _path: ARRAY OF CHAR):INTEGER;

Clarion: RmDir(*cstring),short,raw,name('_rmdir')

API Calls and Advanced Programming 199

chdir Change directory.

C++: int _chdir(const char *_path)

Modula-2: _chdir(VAR _path: ARRAY OF CHAR): INTEGER;

Clarion: ChDir(*cstring),short,raw,name('_chdir')

Advanced Topics & Reference Guide 200

Index 201

Index:

#pragma... 80, 81, 82, 83, 84, 85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113

C60 ..114
CWVER ...114
Basic Compiling and Linking66
BeginUnique ..18
BLOBTOFILE ..19
BYTETOHEX...20
Clarion Language Utilities..........................17
Commonly Used Equates..........................42
Compiler Integration140
Conditional Processing and Flow Control .71
Create a directory21
CreateDirectory ...21
Dictionary Class...13
DLL Initialization ..7
EndUnique...22
Equates..42
Error Managers..12
FileExists ...23
FILETOBLOB ..24
FullDrag ...25
GetFileDate ...26
GetFileTime ...27
GETREG..28

GetTempFileName29
GetTempPath ..30
GetUserName..31
Introduction ..59
IsTermServer ...32
Launching a thread - behind the scenes ...15
LONGTOHEX ..33
MANIFEST...134
Multi Language Programming139
Overview..139
Programming Considerations164
Project System Examples........................115
Project System Macros..............................64
PROP

WindowsVersion34
Prototypes and Declarations....................169
Prototyping 3GL Functions in Clarion......153
PUTREG..35
Remove a directory....................................37
RemoveDirectory37
RESIZEIMAGE ..38
Resolving Data Types..............................142
SHORTTOHEX..39
Threading...14
ValidateOLE...40
WindowExists ..41
WindowsVersion ..34

Advanced Topics & Reference Guide 202

	Introduction
	Advanced Topics:
	Clarion 6 Migration Tips
	DLL Initialization
	Change of EVALUATE Error Codes
	Embedding code when closing a Process procedure
	General Rules regarding your data and the new Thread Model
	Heap Overflow Error when migrating applications
	ISAM File Access Performance
	Migrating Large Dictionaries and Data Paths
	Migration of hand coded project files
	POINTER(File) and POSITION(File)
	Remove MDI attribute from dockable toolbar windows
	TXA Comparison Technique
	Use of Error Managers during DLL Initialization

	Dictionary Class
	The New Thread Model of Clarion 6
	Launching a thread - behind the scenes

	Language Utility Reference:
	Clarion Language Utilities
	BeginUnique (Set Application to Run in a Single Process)
	BLOBTOFILE (Copy Data from BLOB Field to File)
	BYTETOHEX (convert a BYTE to Hexadecimal)
	CreateDirectory (Create a directory)
	EndUnique (Close an application's event handle)
	FileExists (Confirm file existence)
	FILETOBLOB (Copy data from a file to a BLOB field)
	FullDrag (Query/Change Window Drag Setting)
	GetFileDate (Get the file date)
	GetFileTime (Get the file time)
	GETREG(get Windows registry entry)
	GetTempFileName (Generate a temporary file)
	GetTempPath (Return TMP or TEMP environment path)
	GetUserName (Return Network User Name)
	IsTermServer (Verify Terminal Server Usage)
	LONGTOHEX (convert an unsigned LONG to Hexadecimal)
	PROP:WindowsVersion
	PUTREG (write value to Windows registry)
	RemoveDirectory (Remove a directory)
	ResizeImage (Resize an image to fit a control)
	SHORTTOHEX (convert an unsigned SHORT to Hexadecimal)
	ValidateOLE (Validate OLE Control Creation)
	WindowExists (Validate Window Existence)

	Commonly Used Equates
	Template Equates (TPLEQU.CLW)

	Project System Reference
	Introduction
	Project System Macros
	Basic Compiling and Linking
	Conditional Processing and Flow Control
	SoftVelocity #pragmas
	Predefined Compiler Flags
	Project System Examples
	Module Definition Files (.EXP Files)
	Special Considerations for One-Piece (Single) Executables
	Version Information Resource Files

	Multi Language Programming
	Overview
	Compiler Integration
	Resolving Data Types
	Prototyping 3GL Functions in Clarion
	Parameter Data Types
	Return Data Types
	Passing Parameters
	Resolving Calling Conventions
	Resolving Naming Conventions
	Programming Considerations

	API Calls and Advanced Resources
	Prototypes and Declarations
	Accessing Clarion's Runtime Library from C/C++ or Modula-2 Code
	Standard C Functions in Clarion's Runtime Library

	Index

