Advanced Topics

CHarkn1H




Advanced Topics & Reference Guide

COPYRIGHT 1994-2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity
Incorporated. It may not, in whole or part, be copied, photocopied, reproduced, translated,
or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from SoftVelocity Incorporated.

This publication supports Clarion. It is possible that it may contain technical or
typographical errors. SoftVelocity Incorporated provides this publication “as is,”
without warranty of any kind, either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:

SoftVelocity is a trademark of SoftVelocity Incorporated.

ClarionO is a trademark of SoftVelocity Incorporated.

Btrievel is a registered trademark of Pervasive Software.

Microsoftld, Windows[l, and Visual Basic[l are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (1003)



Contents and Introduction 3

Contents:

Introduction 5
Advanced Topics: 7
Clarion 6 MiIGrationN TIPS, .....a e e ittt e e et e e e e e e e e et e ee e e e e e e e e snnbeseeeaeeeseannbeeeeeas 7
[ I o1 (= 1 4= U1 T o D TP UPUPOP 7
Change of EVALUATE EFror COUES ......uuiiiiiiiiiiiiiiiia ettt e e 7
Embedding code when closing a Process procedure...........occcuuveeieeeiiiiiiieeneee e, 8
General Rules regarding your data and the new Thread Model............cccccccooiniiieennn. 9
Heap Overflow Error when migrating appliCations. ..., 9
ISAM File ACCESS PEIfOrMANCE .......coiiiiiiiiiiiiie ittt 9
Migrating Large Dictionaries and Data Paths ...........ccccovvveei i 10
Migration of hand coded project fil€S ........ccuueiiiiie i 10
POINTER(File) and POSITION(FIIE) .....cccviiriiiiiiieiiee e 11
Remove MDI attribute from dockable toolbar Windows ............cccoooiiiiiiiiiiiecnees 11
TXA CompariSON TECANIQUE ... ..eeiieeiiiiiiiiiee e e e e e e e e e e s er e e e e e s e er e e e e e s e nanneees 11
Use of Error Managers during DLL Initialization ..o 12
(DT i o] g F= T Y O =TS PP PPTPPPRRP 13
The New Thread Model Of CIarion 6 .........ooouiiiiiiiiiiee e 14
Launching a thread - behind the SCENES ...........eviiiiiiiii e 15
Language Utility Reference: 17
Clarion Language ULIHITIES ......cooiiiiiiiiieeeie ettt a e 17
BeginUnique (Set Application to Run in a Single Process) .........cccccevviiiiiieeneenninnnee 18
BLOBTOFILE (Copy Data from BLOB Field t0 Fil€).........coouiiiiiiiiiiiiiiiiiiiceee e 19
BYTETOHEX (convert a BYTE to Hexadecimal).........ccccceeevviiiiiiierce i 20
CreateDirectory (Create a dir€CIOrY) .......cciiiiciiiiieee e e e 21
EndUnique (Close an application's event handle) ..........cccccevieciviierie e 22
FileEXxists (Confirm file @XISTENCE) .....uviiii i 23
FILETOBLOB (Copy data from a file to a BLOB field)...........cccoccvivieeeeiiiiiiiiieeee e 24
FullDrag (Query/Change Window Drag Setting)..........uevvveeeiniiiiiieeeieeeiniiiiieeeeeeeseeans 25
GetFileDate (Get the file date) ......ccuueeiiiiii e 26
GetFileTime (Get the file tIME)......oeeiiiiiiee e 27
GETREG(get WiNndOWS regiStry €NIY) ...t ee s 28
GetTempFileName (Generate a temporary fil€) ..., 29
GetTempPath (Return TMP or TEMP environment path) ..o, 30
GetUserName (Return Network User Name) .........oooouviiiiiiiiiiiiiiiieeeeee e 31
IsTermServer (Verify Terminal Server USAge) .......ccccvvvveiieeeiiiiciiieieee e csinieeee e e 32
LONGTOHEX (convert an unsigned LONG to Hexadecimal) ........ccccccooeevvvieneeeeinnnns 33
PROP:WINAOWSVEISION ...ccueviiiiiie ittt eennne e 34
PUTREG (write value to WINAOWS re€giStry) ......cceceiiiiiiieiiiee e ciiieeee e e e s e cinenee e e e e 35
RemoveDirectory (REMOVE a dir€CIOY) .....uuvviieeiiiiiiiiiieeee e e s st e e e s e e e e e 37
Resizelmage (Resize an image to fit @ Control) ..........c..oeeiiiiiiiiii e 38

SHORTTOHEX (convert an unsigned SHORT to Hexadecimal) .........cccccooviiiiieeennn. 39



Advanced Topics & Reference Guide

ValidateOLE (Validate OLE Control Creation)...........ccoeiiiiiiieiereeeiiiiieeee e 40
WindowEXxists (Validate Window EXIiSTENCE)........cccuuviiiiiiiiiiiiiiieeee e 41
CommONIY USEA EQUALES.......eeeieiieiie ettt et e e e e eas 42
Template Equates (TPLEQU.CLW) ...t 55
Project System Reference 59
Ta oo [0 ox i o] o [T PUPRPPRN 59

Project SYSIEM MACIOS ....cco ittt e e e e e s e e e e e e e anneee 61

Basic Compiling and LiNKINgG...........oooiioiiiii e 66
Conditional Processing and FIOW CONtrol...........ccevvveeiiiiiiiiiieie e 71
Y0110V L=1 (o 1o Y= o = Vo [ 1 1 = LRSS 79
Predefined Compiler FIAgS ......cccvviiiiiie e e e 114

Project SYStem EXAMPIES .....ccoceiiieeiie e et e e e s e e e e e e e e e e e e 115
Module Definition Files ((EXP Fil€S) .......cccuiiiiiiie i a e 127
Special Considerations for One-Piece (Single) Executables...........ccccccceveeevvicinnneen. 135
Version Information ResSource FilesS...........cooii i 137

Multi Language Programming 139
OVEIVIEW ...ttt ettt ettt e e ettt e e sttt e e et bt e e ek b e e e e bbe e e e e snbe e e e e snbaeeeentes 139
Compiler INEEGIrAtION ... a e e e eeeeas 140
RESOIVING DALA TYPES ..eeiiiieiiiiiitiiite e ettt e ettt e e e e e e s abb b e e e e e e e e anbbbeeeaaaeeeaans 142
Prototyping 3GL FUNCtions in Clarion ... 153
Parameter Data TYPES ..o 154

RETUIMN DaAta Ty PO .o 156
PaSSING PAr@meLerS. .....cciiieiiiiiiiiieiie e e e st e e s s s e e e e e e e st e e e e e e e s annrareeeeeeeeen 157
Resolving Calling CONVENLIONS ......coiiiiiiiiiiiieeee s cceee e e e e e e srrrre e e e e e e e aans 159
Resolving Naming CONVENLIONS.........cciiiiiiiiiieee e e s sciiieie e e e e e s ssnrreee e e e e e s ssnenrneeeeeeeeanns 161
Programming CONSIAEIAtIONS .......cceeeeiiiiiiieiiieeeesiiciie e e e e e s s re e e e e e s snreeereeeeeseennes 164

API Calls and Advanced Resources 169
Prototypes and DeCIarationS..........cuueeeiiiiiieiiiere e iiciiieir e e e e s ssne e e e e e s s e e e e e e e e aans 169
Accessing Clarion's Runtime Library from C/C++ or Modula-2 Code ...................... 172
Standard C Functions in Clarion's Runtime Library.........cccccoceveeeviiicciieeeee e 187

Index:



Contents and Introduction

Introduction

Welcome to the Advanced Topics and Reference Guide! This document contains many
diverse topics that are targeted for the more experienced Clarion programmer, although
all users will find some parts informative and useful.

Topics include:

*

*

A reference for commonly used EQUATES found in generated applications
and hand coded examples.

A brief overview of the new Dictionary Class used in all generated
applications (that use a dictionary).

Several topics regarding the new Thread Model of Clarion 6

Migration Tips — An invaluable source when moving applications and projects
from earlier versions to Clarion 6

A reference describing the Clarion Language Utilities, extensions of the
language to help ease your programming tasks

An in depth reference of the Clarion Project System
Multi-langauge programming in Clarion

Using external API calls with your Clarion Code



Advanced Topics & Reference Guide




Advanced Topics

Advanced Topics:

Clarion 6 Migration Tips

This topic is designed as a quick reference for developers and programmers who are
migrating applications to Clarion 6 from prior versions.

The following are changes in C6 that need to be reviewed by all developers:

DLL Initialization

Enforcement of threaded variables in multi-DLL applications is critical in Clarion 6. In
older versions, if your file definitions are set to "open in current thread" in the dictionary
(the THREAD attribute is set in the FILE definition), your file definitions in your DLLsS must
match that definition. To ensure this, examine each application’s global file control
section, and make sure that all of your files are set to 'ALL THREADED' in the Threaded
drop list.

You CANNOT mix thread and non-threaded attributes on files in a multi-dll
application. Although this programming style was permitted in earlier versions of Clarion,
the initialization of preemptive threads will not allow this in Clarion 6.

You can use either setting, thread or non-threaded, as long as it's consistent across all
DLLs and your executable.

Change of EVALUATE Error Codes
The error codes posted by the EVALUATE statement have been modified in Clarion 6:
1010 - formerly 800: Bad expression syntax

1011 - formerly 801: Unknown identifier in the expression
1012 - formerly 802: Mismatched POPBIND



8 Advanced Topics & Reference Guide

Embedding code when closing a Process procedure

The Process procedure used with the ABC templates calls ThisProcess.Close() after
ThisWindow.Kill has fully completed. Consequently, any object created in the scope of
the process window which is called inside ThisProcess.Close() will cause a GPF since
the destructor for that object will already have completed during Thiswindow.Kill.

In Clarion 6, the ViewManager class destructor used with the ProcessClass is now calling
ThisProcess.Close() to make sure that the VIEW is closed. This was not needed in
previous versions of Clarion because local VIEWs were automatically closed when a
procedure exited. With the new threading model, local VIEWs are now not automatically
closed until the thread is destroyed.

There is a distinct chance that any call to a local object inside ThiswWindow.Close() will
cause a GPF when exiting the process procedure, because it has already been disposed
by the time the final ThisProcess.Close() call happens.

Anyone embedding source code in the ThisWindow.Close() method needs to add some
kind of condition surrounding any call to a local object that stops it happening after
ThisWindow.Kill() has occurred.



Advanced Topics

General Rules regarding your data and the new Thread Model
1. Use the THREAD attribute on global Data (file, class, group, queue or simple types).

2. Use the THREAD attribute on module Data (file, class, group, queue or simple
types).

3. Avoid the use of static variables.

4. Don't pass the address of anything within a START command - this was a
common trick used by people to communicate between threads.

If you do any of the above you must make them thread safe. Refer to the Multi Threaded
Programming PDF for detailed information on this process.

Local data (including classes that are normally instantiated locally) is automatically
threaded (unless you put the STATIC attribute on it).

Heap Overflow Error when migrating applications

During the early testing phase of Clarion 6, it was noted that some applications would post a
“Heap Overflow” error when attempting to load applications of prior Clarion versions into the
Clarion 6 IDE.

In nearly all cases, the solution is to first export the application to a text file (TXA), and then
import it as text into the Clarion 6 environment.

ISAM File Access Performance

Some users have reported that if there is any experience of slow file accesses when using ISAM
files, switching off the Defer opening files until accessed in the application’s Global Properties -
File Control will improve the performance.



10 Advanced Topics & Reference Guide

Large WINDOW structures

In each control that is populated in a WINDOW structure in Clarion 6, there is now extra
information for each control that takes about 10 extra bytes per control. This may cause

some large and complex windows to not import properly from prior versions.
You may need to shorten some use variables or remove controls and create/destroy them at
runtime or redesign the window to make it a bit more efficient.

Migrating Large Dictionaries and Data Paths

One of the nice new features of this release is a new system property:
SYSTEM{PROP:DataPath}.

With this, you can set your data file names in the dictionary to have no path in them, and
then set the data path once in the program start up. From there, each file will inherit the
common data path.

With that in mind, dictionaries created in a prior version will continue to work. The only
issue is where file names and structures are stored exclusively in a DLL and referenced
from the EXE. In prior versions, you had to define these objects in the EXE as
EXTERNAL, and did not care if the files in this object were threaded or not. In this
release, any objects that contain threaded data must add the THREAD attribute to the
object definition.

Mixing threaded and non-threaded data in an object is dangerous and likely to cause
problems.

Migration of hand coded project files

All projects compiled in Clarion 6 are 32-bit. Prior to loading older project files (.PR or .PRJ) into
the Clarion 6 environment, load them into your favorite text editor and make sure that the
following pragma entry is set properly:

#system win32

You can also load the project into the project editor. When you press OK to close the project, the
#system pragma will be automatically updated.



Advanced Topics 11

POINTER(File) and POSITION(File)

The behavior of POINTER(File) is different for different file systems. For example, the first record
in a TopSpeed file doesn't have a pointer value of 1.

It may still be safe to use for certain file systems, but for code portability, POSITION(File) is the
way to go.

Remove MDI attribute from dockable toolbar windows

In Clarion 6, the MDI attribute is no longer permitted on any toolbar window that is dockable
(windows with the DOCK and TOOLBOX attributes).

TXA Comparison Technique

If you are having troubles with applications converted to Clarion 6 using DLLs, there is a
possibility that the DLL that was converted contained hidden information (like a third party
library) that was not detected by the conversion process.

To confirm this, try the following:
1. Export the old DLL application to TXA format (Export Text)
2. Export a new Clarion 6 DLL application to TXA format (Export Text)
3. Next, compare the TXA's up through the first procedure (i.e., the program/global

area). This might give you some ideas regarding information converted from an old
application that may not be compatible, or does not exist in Clarion 6.



12 Advanced Topics & Reference Guide

Use of Error Managers during DLL Initialization

A change has also been made in the DLL initialization of ABC-based applications. During
initialization, the DLL uses a LocalErrors Class rather than the Global executable's
GlobalErrors Class.

For example, in a multi DLL application and during initialization of the DLL containing
Global data, if errors need to be posted to the error manager, they will be posted to the
DLL's local error manager (LocalErrors) instead of the application’s global error manager.
The reason for this is that the DLL's error manager is not set to use the application’s error
manager until after initialization of the DLL. During initialization, the DLL uses the
LocalErrors Manager rather than the executable’s GlobalErrors Manager. Inside the DLL
Init procedure, extra code is generated to assign GlobalErrors, and also assign the
passed error manager to the already initialized file managers and relation managers.

Developers who modified the global error manager in their applications using DLLs will
now need to be aware of the new local error managers that are applied.



Advanced Topics 13

Dictionary Class

The new Clarion threading model dictates that the existing File and Relation Managers use
threaded objects (i.e. a new instance on every thread).

One of the effects of this is that the traditional ABC code that initializes both File and Relation
Managers (contained in the DctInit generated procedure) now has to be executed whenever a
new thread is started. Likewise, the Managers’ kill code (traditionally contained in DctKill) must be
called whenever a thread is terminated.

To facilitate this, a small globally defined class called Dictionary will be generated into every
ABC template based application that does not have its global data defined external to the
application. (i.e. the File and Relation managers compiled locally). The Dictionary object contains
only construct and destruct methods but, more important, it is a threaded object.

Example:

Di ctionary CLASS, THREAD
Construct PROCEDURE
Dest r uct PROCEDURE

END

Di ctionary. Construct PROCEDURE
CODE
Detlnit()

Di ctionary. Destruct PROCEDURE
CODE
DetKill ()

This means that the Construct method will be called whenever a new thread comes into existence
and the Destruct method will be called whenever a thread is terminated. The constructor calls
Dctlnit and the destructor calls DctKill. Therefore, Dctlnit is called whenever a thread is started
and DctKill is now called whenever a thread is terminated; thus ensuring that threaded File and
Relation managers are created and destroyed correctly.



14

Advanced Topics & Reference Guide

The New Thread Model of Clarion 6

Clarion 6 introduces a new, and more powerful, thread support in the templates and
runtime library.

The new thread model now uses preemptive threads. Typical Clarion programs won't
require more than a "compile and link" to get the benefits of the new thread model.

Some advantages of the new model are:

It is much easier to access COM objects

You can have threads running independently of other threads.

Programs are more stable.

The new thread model also makes the OLE layer much easier to work with because the
object will run on the Clarion thread whereas currently it is run on its own separate

thread.

For more detailed information, see the Multi-Threaded Programming PDF



Advanced Topics 15

Launching a thread - behind the scenes

With the advent of two new language statements supporting thread management in Clarion 6
(SUSPEND and RESUME), it is important to understand that there are a few things that are
initialized and executed behind the scenes by the runtime library each time a thread is STARTed.

Here is the sequence of actions performed by the launching thread and the runtime library(RTL)
each time a thread is STARTed:

1. Launching Thread executes START(ThreadProc)

2. RTL creates the physical thread in suspended state.

3. RTL resumes the launched thread created in step 2.

4. RTL sets an internal semaphore to a non-signaled state.

5. Launching Thread waits for the semaphore from the RTL.

6. RTL creates instances of threaded variables and calls initialization routines for them.
7. RTL sets the semaphore to signaled state.

8. RTL suspends the launched thread creates in step 2.

9. Launching Thread continues program execution.

The launching thread will continue until it encounters the ACCEPT statement. Upon
execution of the ACCEPT statement:

10. RTL resumes the launched thread.
11. RTL calls the entry point of the ThreadProc.

Therefore, a launched thread will remain suspended until the next call to ACCEPT from
the launching thread. Only initialization and constructors for threaded variables are
executed.

The use of RESUME with the START statement immediately executes Step 10 above
without waiting for the call to ACCEPT. In other words, use of RESUME with START
does not depend on the ACCEPT statement for resuming thread execution. This allows a
new thread to be started from windowless threads.

The same can be said by using the SUSPEND statement immediately after START, e.g.,
SUSPEND immediately stops thread execution and does not wait for the ACCEPT loop.



16

Advanced Topics & Reference Guide




Reference 17

Language Utility Reference:

Clarion Language Utilities

The Clarion Language Utilities refers to a set of prototypes designed to give your existing
applications extra functions and flexibility.

These utilities are included as source in the Clarion \LIBSRC folder. To add the
prototypes described below to your existing applications, you need only include the
CWUTIL.INC file in the Global Map section of your program:

I NCLUDE(' CWJTI L. I NC ), ONCE



18 Advanced Topics & Reference Guide

BeginUnique (Set Application to Run in a Single Process)

BeginUnique( applicationname )

BeginUnique Sets an application to run as a single process

applicationname
A string constant or variable that specifies the full path and name of your
application. Example: ‘CA\INVOICE\INVOICE.EXE’

BeginUnique returns FALSE if the program specified in applicationname is already running
(active). If not running, BeginUnique returns an event number specified by Windows. This event
number can be used by the EndUnique statement to terminate the single process mode.

Return Data Type: LONG

Example:

| F NOT Begi nUni que( GLO Appl i cati onNane)

MESSAGE( CLI P(GLO ApplicationNanme) & * already running.’
ELSE

RUN( GLO: Appl i cat i onNane)
END

See Also: EndUnique



Reference 19

BLOBTOFILE (Copy Data from BLOB Field to File)

BLOBTOFILE( bloblabel, filename )

BLOBTOFILE Copy the contents of a BLOB field to an external file.
bloblabel The fully qualified label of the BLOB field. (Example: Customer.Bloblmage)

filename A string constant or variable that names the output file to copy the BLOB to.

BLOBTOFILE is used to copy the contents of a BLOB to an external file. If the copy fails for any
reason, BLOBTOFILE returns the ERRORCODE posted.

BLOBTOFILE (and FILETOBLOB) are simply binary-to-binary operations.
If you need to save images to a BLOB, and later restore them to an output file, the type of image

should also be saved in the database (JPG, GIF, BMP, etc.). Using BLOBTOFILE to save to a
different extension can produce unpredictable results.

Return Data Type:  SIGNED

Example:

| F BLOBTOFI LE( CUS: | mageBl ob, ' i magenane. jpg')!returns an ERRORCODE if copy fails
MESSAGE(' BLOB di d not copy due to the foll owi ng ERRORCODE: ' & ERRORCODE())
END

See Also: FILETOBLOB

BLOB



20 Advanced Topics & Reference Guide

BYTETOHEX (convert a BYTE to Hexadecimal)

BYTETOHEX( number, flag )

BYTETOHEX Convert a BYTE value to its Hexadecimal equivalent.
number A BYTE variable or constant
flag A BYTE used to designate a lower or upper case HEX symbol (A,B,C,D,E)

BYTETOHEX is used to convert a number to its Hexadecimal equivalent. If the flag variable is
non-zero, any non-numeric Hexadecimal symbols are returned in lowercase. If zero (default), the
non-numeric digits are returned in uppercase.

Return Data Type: STRING

Example:
BYTETCHEX( 255, 0) Ireturns ‘FF
BYTETCOHEX( 255, 1) lreturns ‘ff’
See Also:

SHORTTOHEX

LONGTOHEX



Reference 21

CreateDirectory (Create a directory)

CREATEDIRECTORY( directoryname )

CREATEDIRECTORY Create a new directory
directoryname A string constant or variable that stores the directory name

CREATEDIRECTORY creates a new directory with the name passed in the directoryname
parameter. CREATEDIRECTORY returns zero (0) if successful, and non-zero if not. You can
guery the ERRNO built-in function to trap for the following error codes:

3 — Path not found (One of the higher path components in directoryname)

5 — Access Denied (Directory may already exist)

On some Windows versions, any attempt to create multiple levels of directories

(For example. ‘C:\dir1\dir2\dir3") will fail, but the error code will not be returned correctly.
CREATEDIRECTORY will still post a non-zero value, which you can use to trap and post a
generic "Directory Not Created" error.

Return Data Type: BYTE

Example:
MODULE(" ")
errno(), *SI GNED, NAME(' __errno__") I proptotype built-in error flag
END

| F CREATEDI RECTORY( GLO. NewDi r ect or yNane)
CASE Errno()
OF 3
MESSAGE(‘ Pat h Not Found’)
OF 5
MESSAGE(‘ Access Denied’)
END
END

See Also:

RemoveDirectory



22 Advanced Topics & Reference Guide

EndUnique (Close an application's event handle)

EndUnique( eventnumber )

EndUnique Closes an application’s event number

eventnumber
A numeric constant or variable that uniquely identifies an application event.

EndUnique is used to invalidate the specified application event handle. This is useful where a
function using BeginUnique was no longer valid, and you need to override the single event
process when subsequent applications are started.

Example:
EndUni que( GLO AppEvent Nunber)

See Also:

BeginUnique



Reference 23

FileExists (Confirm file existence)

FILEEXISTS( filename )

FILEEXISTS Confirm the existence of a file
filename A string constant or variable containing the name of the file (and path, if
applicable)

FILEEXISTS confirms the existence of a file. If FILEEXISTS returns TRUE (1), the file exists. If
FILEEXISTS returns FALSE (0), the file specified in the filename parameter does not exist.

Return Data Type: BYTE

Example:

| F NOT FI LEEXI STS(GLO NewFi | €) I''f the file does not exist
DO CreateFile ICall the ROUTINE to create it
END

| F NOT FILEEXI STS(‘ C:\INVO CE\ Config.dat’) !Does the config file exists
InitConfig ICall init procedure
END



24 Advanced Topics & Reference Guide

FILETOBLOB (Copy data from a file to a BLOB field)

FILETOBLOB( filename, bloblabel )

FILETOBLOB Copy the contents of a file to a BLOB field.
filename A string constant or variable that names the input file to copy to a BLOB field.

bloblabel The fully qualified label of the BLOB field. (Example: Customer.Bloblmage)

FILETOBLOB is used to copy the contents of a file to a BLOB field. If the copy was unsuccessful,
FILETOBLOB returns the ERRORCODE posted.

Return Data Type:  SIGNED

Example:

| F FI LETOBLOB( GLO | mageFi | enane, CUS: | mageBl ob) !returns an ERRORCODE if copy fails
MESSAGE( CLI P(GLO | mageFi | enane) & ' was not copied - ERRORCODE: ' &

ERRORCODE( ) )

END

See Also:
BLOBTOFILE
BLOB



Reference

25

FullDrag (Query/Change Window Drag Setting)

FULLDRAG( < setdragflag >)

FULLDRAG Query and/or change the full window drag settings
setdragflag A BYTE variable or constant. TRUE (1) or FALSE (0)

FULLDRAG returns the current window drag setting. If the optional setdragflag is set to TRUE
(2), full window dragging is enabled. If the optional setdragflag is set to FALSE (0), full window
dragging is disabled and only the window frame will appear when dragging a window.

Return Data Type: LONG

Example:
| F NOT FULLDRAQ) '1f full window dragging is OFF
FULLDRAG( 1) I Enable it

END



26 Advanced Topics & Reference Guide

GetFileDate (Get the file date)

GETFILEDATE( filename )

GETFILEDATE Return the date stamp of a file
filename A string constant or variable containing the name of the file (and path, if
applicable)

GETFILEDATE returns the date stamp of the file specified by the filename parameter. The date is
returned as a LONG that is deformatted and returned in an @D?2 picture format. If the file is
invalid or does not exist, GETFILEDATE returns a zero (0).

Return Data Type: LONG

Example:

Fi | edate = GETFI LEDATE(LCC: Fi | enane)



Reference

27

GetFileTime (Get the file time)

GETFILETIME( filename )

GETFILETIME Returns the time stamp of a file
filename A string constant or variable containing the name of the file (and path, if
applicable)

GETFILETIME returns the time stamp of the file specified by the flename parameter. The time is
returned as a LONG that is deformatted and returned in an @T4 picture format. If the file is
invalid or does not exist, GETFILETIME returns a zero (0).

Return Data Type: LONG

Example:

Filetinme = GETFI LETI ME(LCC: Fi | enane)



28 Advanced Topics & Reference Guide

GETREG(get Windows registry entry)

GETREG(LONG root, STRING keyname [, STRING valuename]),STRING

GETREG Gets the value of a specific key and/or value from the system registry.

root The root section of the registry from which to obtain the value. Valid values
for this are defined in equates.clw and are as follows:
REG_CLASSES_ROOT
REG_CURRENT_USER
REG_LOCAL_MACHINE
REG_USERS
REG_PERFORMANCE_DATA
REG_CURRENT_CONFIG
REG_DYN_DATA

keyname The key name of the key whose value is to be queried. This may contain a
path separated by backslash ‘\' characters.

valuename The name of the value to be queried, if omitted, the value associated directly
with the key is returned.

The GETREG function returns the value of named entry in the system
registry as a Clarion string. If the requested entry does not exist, an empty
string is returned.

Return Data Type: STRING

Example:

PROGRAM
MAP.

| NCLUDE( "' EQUATES')
Current Pat h CSTRI NE 100)
Col or Schenme CSTRI NG 100)

CODE

Current Path =|

GETREGQ( REG_LOCAL_MACHI NE, ' SOFTWARE\ Sof t Vel ocity\ d arion6','root')
IReturns root directory of Clarion 6 install

Col or Schene =|

GETREGQ( REG_CURRENT_USER, ' Control Panel\Current',' Col or Schenes')
lget the current user's color schene

See Also: PUTREG, DELETEREG



Reference 29

GetTempFileName (Generate a temporary file)

GETTEMPFILENAME( prefix, <pathname>)

GETTEMPFILENAME Returns the name of a temporary file

prefix A string constant or variable naming the prefix (first three letters) of the
temporary file. If blank, the default prefix used is ‘$$$’

pathname A string constant or variable naming the location of the temporary file. If
omitted, the system TEMP or TMP directory path is used.

GETTEMPFILENAME is used to generate a temporary file. If the pathname specified is invalid,
GETTEMPFILENAME returns an empty string.

Make sure to remove your temporary files that you create after use. The Windows system will not
automatically remove these files.

Return Data Type: STRING

Example:

I Note ## represents a random nunber assigned to the tenporary file name
nessage( GETTEMPFI LENAMVE( ' bob', " d:\hel p')) Icreated 'bob##.tnmp' in D:\help
nmessage( GETTEMPFI LENAVE(' ")) Icreated ' $$$##. tnp' in

I C:\ W NNT\ TEMP (ny TEMP pat h)



30 Advanced Topics & Reference Guide

GetTempPath (Return TMP or TEMP environment path)

GETTEMPPATH()

GETTEMPPATH Returns the name of the path specified by the Windows Environment variables
GETTEMPPATH is used to return the full path designated by the TMP or TEMP Windows
Environment settings. GETTEMPPATH returns the first Environment setting it finds.

Return Data Type: STRING

Example:
GLO TenpPat h = GETTEMPPATH( ) Ireturn environnent path



Reference 31

GetUserName (Return Network User Name)

GETUSERNAME( )

GETUSERNAME Returns the current default user name

GETUSERNAME is used to retrieve the current default user name, or the user name used to
establish a network connection. GETUSERNAME returns a blank string if an error is
encountered.

Return Data Type: STRING

Example:
GLO Logi nNanme = GETUSERNAME() Ireturn a unique |ogin nane



32 Advanced Topics & Reference Guide

IsTermServer (Verify Terminal Server Usage)

ISTERMSERVER( )

ISTERMSERVER Detects Terminal Server usage

It is a good practice for applications to detect whether they are running in a Terminal Services
Client session in order to optimize performance. For example, when an application is running on
a remote session, it should eliminate unnecessary graphic effects. If a user is running the
application directly on the terminal, it is not necessary for the application to optimize its behavior.

ISTERMSERVER is used to detect Terminal Server usage by returning the status of the System
Metrics SM_REMOTESESSION flag. ISTERMSERVER returns TRUE if an application is running
in a Terminal Services Client session, and FALSE if the application is running on the console.

This function is only valid for Windows 2000 or later.
Return Data Type: BYTE

Example:
GLO Renpt eSessi onActi ve = | STERVSERVER() lis a renpte session active?



Reference 33

LONGTOHEX (convert an unsigned LONG to Hexadecimal)

LONGTOHEX( number, flag )

LONGTOHEX Convert a ULONG value to its Hexadecimal equivalent.
number A ULONG variable or constant

flag A BYTE used to designate a lower or upper case HEX symbol (A,B,C,D,E)

LONGTOHEX is used to convert a number to its Hexadecimal equivalent. If the flag variable is
non-zero, any non-numeric Hexadecimal symbols are returned in lowercase. If zero (default), the
non-numeric digits are returned in uppercase.

Return Data Type: STRING

Example:
LONGTCOHEX( 32000000, 0) lreturns 1E84800
LONGTOHEX( 32000000, 1) Ireturns 1e84800
See Also:

BYTETOHEX

SHORTTOHEX



34 Advanced Topics & Reference Guide

PROP:WindowsVersion

Returns the string that describes Windows version running the program.

Read only. Available for SYSTEM only.

Example:

GLO W ndowsVer si on = SYSTEM PROP: W ndowsVer si on}



Reference

35

PUTREG (write value to Windows registry)

PUTREG(LONG root, STRING keyname, STRING valuename [, STRING value])

PUTREG Writes a string value into the system registry.

root The root section of the registry to which to write the value. Valid values for this
are defined in equates.clw and are as follows:

REG_CLASSES_ROOT
REG_CURRENT_USER
REG_LOCAL_MACHINE
REG_USERS
REG_PERFORMANCE_DATA
REG_CURRENT_CONFIG
REG_DYN_DATA

Keyname The key name of the key whose value is to be written. This may contain a path
separated by backslash ‘\' characters.

valuename The name of the value to be written.

Value The value to be written to the registry in the position given. If omitted, an empty
string is written to the registry.

The PUTREG procedure places the value into a valuename that exists in the Windows
registry.



Advanced Topics & Reference Guide

Example:

PROGRAM
MAP.

| NCLUDE( "' EQUATES')
Current Pat h CSTRI NE 100)
Col or Schene CSTRI NG 100)

CODE

CurrentPath = *C:\d ari on6’

PUTREG( REG_LOCAL_MACHI NE, ' SOFTWARE\ Soft Vel ocity\C arion6','root', CurrentPath
ISets the root directory of Clarion 6 install

Col or Schenme = ‘ Wndows Standard’

PUTREG REG_CURRENT_USER, ' Control Panel\Current',' Col or Schemes', Col or Schene)
Iwites the current user's color schene to the registry

See Also: GETREG, DELETEREG



Reference 37

RemoveDirectory (Remove a directory)

REMOVEDIRECTORY/( directoryname )

REMOVEDIRECTORY Remove an existing directory

directoryname A string constant or variable that stores the directory name

REMOVEDIRECTORY removes an existing directory with the name passed in the directoryname
parameter. REMOVEDIRECTORY returns zero (0) if successful, and non-zero if not. You can
guery the ERRNO built-in library function to trap for the following error codes:

3 — Path not found (One of the higher path components in directoryname)

5 — Access Denied (Path may refer to a file, root directory, or current directory)

Return Data Type: BYTE

Example:

MODULE("' ")
errno(), *SI GNED, NAME(' __errno__") I proptotype built-in error flag
END

| F REMOVEDI RECTORY( GLO:. NewDi r ect or yNane)
CASE Errno()
O 3
MESSACE( ‘ Path Not Found’)
OF 5
MESSACGE( ‘ Access Deni ed’)
END
END

See Also:

CreateDirectory



38 Advanced Topics & Reference Guide

Resizelmage (Resize an image to fit a control)

RESIZEIMAGE( Control, XPos, YPos, Width, Height, <Report>)

RESIZEIMAGE Resize a valid graphic file to fit inside a target IMAGE control

Control The Field Equate Label of the target IMAGE control.

Xpos A SHORT constant or variable identifying the height of the target IMAGE
control in dialog units.

Ypos A SHORT constant or variable identifying the height of the target IMAGE
control in dialog units.

Width A SHORT constant or variable identifying the height of the target IMAGE
control in dialog units.

Height A SHORT constant or variable identifying the height of the target IMAGE
control in dialog units.

Report A valid label of a REPORT structure. Indicates that the control to store
the resized image is contained in a REPORT target instead of a
WINDOW

RESIZEIMAGE is used to resize the image to fit the original control size. If an image is larger
than the target control, the image will be reduced to fit the target control’s position parameters. If
an image is smaller than the target control, the image will be expanded to fit the target control’s
position parameters.

Example:

CASE ACCEPTED()
OF ?LookupFil e
Thi sW ndow. Updat e
LOC: Fi | enane = Fil eLookup9. Ask(0)

DI SPLAY
| F LOC:. Fi | enane
?1 magel{ PROP: TEXT} = LCOC: Fil enane I Move filename to image field
Resi zel mage( ?l magel, 114, 132, 90, 64) IResize it
END
OF ?XK

Thi sW ndow. Updat e
| F SELF. Request = Vi ewRecord AND NOT SELF. Bat chProcessi ng THEN
POST( EVENT: C oseW ndow)
END
END



Reference 39

SHORTTOHEX (convert an unsigned SHORT to Hexadecimal)

SHORTTOHEX( number, flag )

SHORTTOHEX Convert a USHORT value to its Hexadecimal equivalent.
number A USHORT variable or constant
flag A BYTE used to designate a lower or upper case HEX symbol (A,B,C,D,E)

SHORTTOHEX is used to convert a number to its Hexadecimal equivalent. If the flag variable is
non-zero, any non-numeric Hexadecimal symbols are returned in lowercase. If zero (default), the
non-numeric digits are returned in uppercase.

Return Data Type: STRING

Example:

SHORTTOHEX( 64000, 0) !returns ‘ FAOO’
SHORTTOHEX( 64000, 1) !returns ‘fa00’

See Also:

BYTETOHEX LONGTOHEX



40 Advanced Topics & Reference Guide

ValidateOLE (Validate OLE Control Creation)

VALIDATEOLE( OLEControl, < OLEFileName> , <OLECreateName>)

VALIDATEOLE Validate that an OLE control has been successfully created
OLEControl A field number or field equate label of the OLE control.
OLEFileName (under construction)

OLECreatename (under construction)

VALIDATEOLE is used to verify that an OLE control has been created successfully.
VALIDATEOLE returns TRUE if the OLE control has been successfully created.

If not successful, VALIDATEOLE can optionally display a message box that describes why the
OLE control could not be created, provided that the OLEFilename parameter is passed, and then
returns FALSE. Otherwise, VALIDATEOLE just returns FALSE if only the OLEControl is
designated.

Return Data Type: BYTE

Example:
LOC: OLEActi ve = VALI DATECLE( ) lis a renpte session active?



Reference 41

WindowExists (Validate Window Existence)

WINDOWEXISTS(windowtitle )

WINDOWEXISTS Verify that a WINDOW structure is active

windowtitle A string constant or variable that specifies the window name (the
window's title).

WINDOWEXISTS is used to retrieve a window handle of the top-level window whose window
name matches the window title.

If WINDOWEXISTS succeeds, the return value is a handle to the window that has the
specified window name.

If it fails, the return value is zero (0).

Return Data Type: BYTE

Example:
GLO | sMenuActive = W NDOWEXI STS(“ Utility Menu') lis the utility wi ndow active?



42

Advanced Topics & Reference Guide

Commonly Used Equates

The following topic displays the common EQUATES used by the Clarion IDE, as listed in the
EQUATES.CLW and TPLEQU.CLW files. For more information regarding the use of

EQUATES, see the Language Reference Manual.

I Event nunbers
I Field-specific events (FIELD()

EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:

EVENT:

Accept ed
NewSel ecti on
Scrol | Up

Scr ol | Down
PageUp
PageDown
Scrol | Top
Scrol | Bottom
Locat e
MouseDown
MouseUp
Mousel n
MouseCut
MouseMove
VBXevent

Al ert Key

Pr eAl ert Key
Dr aggi ng

Dr ag

Dr op

Scrol | Drag
TabChangi ng
Expandi ng
Contracting
Expanded
Contract ed
Rej ect ed

Dr oppi ngDown
Dr oppedDown
Scrol | Track
Col umResi ze
Sel ecting

Sel ect ed

EQUATE (01H)
EQUATE (02H)
EQUATE (03H)
EQUATE (04H)
EQUATE (05H)
EQUATE (06H)
EQUATE (07H)
EQUATE (08H)
EQUATE (09H)
EQUATE (01H)
EQUATE (0aH)
EQUATE (ObH)
EQUATE (OcH)
EQUATE (0dH)
EQUATE (0eH)
EQUATE (Of H)
EQUATE (10H)
EQUATE (11H)
EQUATE (12H)
EQUATE (13H)
EQUATE (14H)
EQUATE (15H)
EQUATE (16H)
EQUATE (17H)
EQUATE (18H)
EQUATE (19H)
EQUATE (1AH)
EQUATE (1BH)
EQUATE (1CH)
EQUATE (1DH)
EQUATE (1EH)
EQUATE (1FH)

EQUATE (101H)

returns field nunmber)



Reference

43

I Fiel d-independent

EVENT: C oseW ndow

EVENT
EVENT
EVENT

EVENT:
EVENT:

EVENT:
EVENT:
EVENT:

EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:

EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:
EVENT:

EVENT:
EVENT:
EVENT:

: O oseDown
: OpenW ndow
: OpenFai | ed
LoseFocus
Gai nFocus

Suspend
Resune
Notify

Ti mer

DDEr equest
DDEadvi se
DDEdat a
DDEconmand
DDEexecut e
DDEpoke
DDEcl| osed

Move

Si ze
Restore
Maxi m ze
| coni ze
Conpl et ed
Moved

Si zed
Rest ored
Maxi m zed
| coni zed
Docked
Undocked

Bui I dFi l e
Bui | dKey
Bui | dDone

events (FIELD()

EQUATE (201H)
EQUATE (202H)
EQUATE (203H)
EQUATE (204H)
EQUATE ( 205H)
EQUATE ( 206H)

EQUATE (208H)
EQUATE ( 209H)
EQUATE ( 20AH)

EQUATE ( 20BH)
EQUATE ( 20CH)
EQUATE ( 20DH)
EQUATE ( 20EH)
EQUATE ( 20FH)
EQUATE ( 20FH)
EQUATE (210H)
EQUATE (211H)

EQUATE ( 220H)
EQUATE (221H)
EQUATE (222H)
EQUATE (223H)
EQUATE (224H)
EQUATE ( 225H)
EQUATE ( 230H)
EQUATE (231H)
EQUATE (232H)
EQUATE ( 233H)
EQUATE (234H)
EQUATE ( 235H)
EQUATE (236H)

EQUATE ( 240H)
EQUATE (241H)
EQUATE (242H)

I User-definable events

EVENT
EVENT

. User
. Last

EQUATE (400H)

EQUATE (OFFFH)

returns 0)

same as DDEexecute



44

Advanced Topics & Reference Guide

I Wndows standard functions

STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:
STD:

W ndowLi st
Ti | eW ndow

CascadeW ndow

Arrangel cons
Hel pl ndex
Hel pOnHel p
Hel pSear ch
Hel p

Cut

Copy

Past e

Cl ear

Undo

Cl ose

Pri nt Set up

Ti | eHori zont al

Til eVerti cal

I CURSOR Equat es

CURSOR: None
CURSOR: Arr ow
CURSOR: | Beam
CURSOR: Wi t
CURSOR: Cr oss
CURSOR: UpAr r ow
CURSOR: Si ze
CURSOR: | con
CURSOR: Si zeNWSE
CURSOR: Si zeNESW
CURSOR: Si zeV\E
CURSOR: Si zeNS
CURSOR: Dr ag\\E
CURSOR: Dr op
CURSOR: NoDr op
CURSOR: Zoom

I'l CON Equat es

| CON: None

| CON: Application
| CON: Hand

| CON: Question

| CON: Excl amat i on
| CON: Ast eri sk

| CON: Pi ck

| CON: Save

| CON: Pri nt

| CON. Past e

| CON: Open

| CON: New

| CON: Hel p

EQUATE (1)
EQUATE (2)
EQUATE (3)
EQUATE (4)
EQUATE (5)
EQUATE ( 6)
EQUATE (7)
EQUATE ( 8)
EQUATE (10)
EQUATE (11)
EQUATE (12)
EQUATE (13)
EQUATE (14)
EQUATE (15)
EQUATE (16)
EQUATE (17)
EQUATE (18)

EQUATE ("
EQUATE ("
EQUATE ('
EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ('
EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ('
EQUATE ("
EQUATE ("
EQUATE ("

EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ('
EQUATE ("
EQUATE ("
EQUATE ("
EQUATE ('
EQUATE ("
EQUATE ("

<OFFH, 01H, 00H, 00H>")
<OFFH, 01H, 01H, 7FH>")
<OFFH, 01H, 02H, 7FH>")
<OFFH, 01H, 03H, 7FH>")
<OFFH, 01H, 04H, 7FH>")
<OFFH, 01H, O5H, 7FH>")
<OFFH, 01H, 81H, 7FH>")
<OFFH, 01H, 82H, 7FH>")
<OFFH, 01H, 83H, 7FH>")
<OFFH, 01H, 84H, 7FH>")
<OFFH, 01H, 85H, 7FH>")
<OFFH, 01H, 86H, 7FH>")
<OFFH, 02H, 01H, 7FH>")
<OFFH, 02H, 02H, 7FH>")
<OFFH, 02H, 03H, 7FH>")
<OFFH, 02H, 04H, 7FH>")

<OFFH, 01H, 00H, 00H>")
<OFFH, 01H, 01H, 7FH>")
<OFFH, 01H, 02H, 7FH>")
<OFFH, 01H, 03H, 7FH>")
<OFFH, 01H, 04H, 7FH>")
<OFFH, 01H, O5H, 7FH>")
<OFFH, 02H, 01H, 7FH>")
<OFFH, 02H, 02H, 7FH>")
<OFFH, 02H, 03H, 7FH>")
<OFFH, 02H, 04H, 7FH>")
<OFFH, 02H, O5H, 7FH>")
<OFFH, 02H, 06H, 7FH>")
<OFFH, 02H, 07H, 7FH>")



Reference

| CON: Cut EQUATE (' <OFFH, 02H, 08H, 7FH>")
| CON: Copy EQUATE (' <OFFH, 02H, 09H, 7FH>")
| CON: Chi | d EQUATE (' <OFFH, 02H, OAH, 7FH>")
| CON: Fr ane EQUATE (' <OFFH, 02H, OBH, 7FH>")
| CON: Ol ari on EQUATE (' <OFFH, 02H, OCH, 7FH>")
| CON: NoPr i nt EQUATE (' <OFFH, 02H, ODH, 7FH>")
| CON: Zoom EQUATE (' <OFFH, 02H, OEH, 7FH>" )
| CON: Next Page EQUATE (' <OFFH, 02H, OFH, 7FH>")
| CON: Pr evPage EQUATE (' <OFFH, 02H, 10H, 7FH>")
| CON: JunpPage EQUATE (' <OFFH, 02H, 11H, 7FH>")
| CON: Thunbnai | EQUATE (' <OFFH, 02H, 12H, 7FH>")
| CON: Ti ck EQUATE (' <OFFH, 02H, 13H, 7FH>")
| CON: Cr 0ss EQUATE (' <OFFH, 02H, 14H, 7FH>")
| CON: Connect EQUATE (' <OFFH, 02H, 15H, 7FH>")
| CON: Print 1 EQUATE (' <OFFH, 02H, 16H, 7FH>")
| CON: El |'i psi s EQUATE (' <OFFH, 02H, 17H, 7FH>")
| CON: VCRt op EQUATE (' <OFFH, 02H, 81H, 7FH>")
| CON: VCRr ewi nd EQUATE (' <OFFH, 02H, 82H, 7FH>")
| CON: VCRback EQUATE (' <OFFH, 02H, 83H, 7FH>")
| CON: VCRpl ay EQUATE (' <OFFH, 02H, 84H, 7FH>")
| CON: VCRf ast f orward EQUATE (' <OFFH, 02H, 85H, 7FH>" )
| CON: VCRbot t om EQUATE (' <OFFH, 02H, 86H, 7FH>")
| CON: VCR! ocat e EQUATE (' <OFFH, 02H, 87H, 7FH>")

| Def aul t Sounds

BEEP: Syst enDef aul t EQUATE ( 0000H)
BEEP: Syst enHand EQUATE (0010H)
BEEP: Syst enfuesti on EQUATE (0020H)
BEEP: Syst enExcl amati on EQUATE ( 0030H)
BEEP: Syst emAst eri sk EQUATE (0040H)

I Range Equat es

REJECT: RangeH gh EQUATE(1) ! Above top range on SPI N
REJECT: RangelLow EQUATE(2) ! bel ow bottomrange ditto
REJECT: Range EQUATE(3) ! Other range error

REJECT: I nval i d EQUATE(4) ! Invalid input

I Col or Equates

COLOR: NONE EQUATE (- 1)

COLOR: SCROLLBAR EQUATE ( 80000000H)
COLOR: BACKGROUND EQUATE ( 80000001H)
COLOR: ACTI VECAPTI ON EQUATE ( 80000002H)
COLOR: | NACTI VECAPTI ON  EQUATE ( 80000003H)
COLOR: MENU EQUATE (80000004H)
COLOR: W NDOW EQUATE ( 80000005H)
COLOR: W NDOAFRANE EQUATE ( 80000006H)
COLOR: MENUTEXT EQUATE ( 80000007H)
COLOR: W NDOWTEXT EQUATE ( 80000008H)

COLOR: CAPTI ONTEXT EQUATE (80000009H)



Advanced Topics & Reference Guide

COLOR: ACTI VEBORDER
COLOR: | NACTI VEBORDER
COLOR: APPWORKSPACE
" Hl GHLI GHT
" Hl GHLI GHTTEXT
- BTNFACE
- BTNSHADOW
- GRAYTEXT
- BTNTEXT
- | NACTI VECAPTI ONTEXT EQUATE (80000013H)
EQUATE (80000014H)

: BTNHI GHLI GHT

: Bl ack
. Mar oon
- G een
- dive
- Navy

: Purpl e

COLOR: Teal

- Gray

: Sil ver
- Red

: Li e

COLOR: Yel | ow

: Bl ue
: Fuschi a

COLOR: Agqua
COLOR Wi te

| Paraneter to CREATE /

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

sstring
string
i mge
regi on
line
box
ellipse
entry
but ton
pr onpt
option
check
group
Iist
conmbo
spin

t ext
custom
menu
item
radi o
menubar

EQUATE ( 8000000AH)
EQUATE ( 8000000BH)
EQUATE ( 8000000CH)
EQUATE ( 8000000DH)
EQUATE ( 8000000EH)
EQUATE ( 8000000FH)
EQUATE (80000010H)
EQUATE (80000011H)
EQUATE (80000012H)

EQUATE ( 0000000H)
EQUATE ( 0000080H)
EQUATE ( 0008000H)
EQUATE ( 0008080H)
EQUATE ( 0800000H)
EQUATE ( 0800080H)
EQUATE ( 0808000H)
EQUATE ( 0808080H)
EQUATE ( 0COCOCOH)
EQUATE ( 00000FFH)
EQUATE ( 000FFOOH)
EQUATE ( 000FFFFH)
EQUATE ( OFFOO00H)
EQUATE ( OFFOOFFH)
EQUATE ( OFFFFOOH)
EQUATE ( OFFFFFFH)

Ret urn val ue from PROP: t ype

EQUATE (1)
EQUATE (2)
EQUATE ( 3)
EQUATE (4)
EQUATE (5)
EQUATE ( 6)
EQUATE (7)
EQUATE ( 8)
EQUATE (9)
EQUATE (10)
EQUATE (11)
EQUATE (12)
EQUATE (13)
EQUATE (14)
EQUATE (15)
EQUATE (16)
EQUATE (17)
EQUATE (18)
EQUATE (19)
EQUATE ( 20)
EQUATE (21)

EQUATE (22) ! return value only



Reference

47

CREATE: appl i cation
CREATE: wi ndow
CREATE: r eport
CREATE: header
CREATE: f oot er
CREATE: br eak
CREATE: form
CREATE: det ai |
CREATE: ol e
CREATE: dr opl i st
CREATE: dr opconbo
CREATE: pr ogr ess

CREATE: sheet
CREATE: t ab
CREATE: panel
CREATE: rt f

CREATE: subl i st
CREATE: t ool bar

FONT: thin
FONT: r equl ar
FONT: bol d
FONT: wei ght
FONT: fi xed
FONT:italic
FONT: under | i ne
FONT: stri keout

FONT: Scr een

FONT: Pri nter

FONT: Bot h

FONT: TrueTypeOnl y
FONT: Fi xedPi t chOnl y

CHARSET: ANSI
CHARSET: DEFAULT
CHARSET: SYMBCL
CHARSET: MAC
CHARSET: SHI FTJI S
CHARSET: HANGEUL
CHARSET: JOHAB
CHARSET: GB2312
CHARSET: CHI NESEBI G5
CHARSET: GREEK
CHARSET: TURKI SH
CHARSET: HEBREW
CHARSET: ARABI C
CHARSET: BALTI C
CHARSET: CYRI LLI C
CHARSET: THAI

EQUATE (24)
EQUATE (25)
EQUATE (26)
EQUATE (27)
EQUATE (28)
EQUATE (29)
EQUATE (30)
EQUATE (31)
EQUATE (32)
EQUATE (33)
EQUATE (34)
EQUATE (35)

EQUATE (37)
EQUATE ( 38)
EQUATE (39)
EQUATE (40)

EQUATE ( CREATE:
EQUATE (128)

EQUATE (100)
EQUATE (400)
EQUATE (700)
EQUATE (07FFH)
EQUATE ( 0800H)
EQUATE (01000H)
EQUATE (02000H)
EQUATE (04000H)

EQUATE( 0)
EQUATE( 1)
EQUATE( 2)
EQUATE( 4)
EQUATE( 8)

EQUATE ( 0)
EQUATE ( 1)
EQUATE ( 2)
EQUATE ( 77)
EQUATE (128)
EQUATE (129)
EQUATE (130)
EQUATE (134)
EQUATE (136)
EQUATE (161)
EQUATE (162)
EQUATE (177)
EQUATE (178)
EQUATE (186)
EQUATE (204)
EQUATE (222)

I return value only
! return value only
I return value only

list + 0100H) ! list part of a DROP or COVBO



48

Advanced Topics & Reference Guide

CHARSET: EASTEURCPE
CHARSET: CEM

PEN: sol i d

PEN: dash

PEN: dot

PEN: dashdot

PEN: dashdot dot
PEN: nul

PEN: i nsi def rame

BRUSH: SOLI D
BRUSH: NULL
BRUSH: HOLLOW
BRUSH: HATCHED
BRUSH: PATTERN
BRUSH: | NDEXED
BRUSH: DI BPATTERN

FALSE
TRUE

EQUATE (238)
EQUATE (255)

EQUATE (0)
EQUATE (1)
EQUATE (2)
EQUATE ( 3)
EQUATE (4)
EQUATE (5)
EQUATE ( 6)

EQUATE (0)
EQUATE (1)
EQUATE ( BRUSH: NULL)
EQUATE (2)
EQUATE (3)
EQUATE ( 4)
EQUATE (5)

EQUATE (0)
EQUATE (1)

LI STZONE
LI STZONE
LI STZONE
LI STZONE
LI STZONE
LI STZONE
LI STZONE

VBXEVENT:
VBXEVENT:
VBXEVENT:
VBXEVENT:
VBXEVENT:
VBXEVENT:
VBXEVENT:
VBXEVENT:
VBXEVENT:
VBXEVENT:

field
(right

. header

: expandbox
‘tree
;icon

: nowher e

dick
Dbl Ci ck
Got Focus
Key Down
KeyPr ess
KeyUp
Lost Focus
MouseDown
MouseMove
MouseUp

EQUATE( 0)
EQUATE( 1)
EQUATE( 2)
EQUATE( 3)
EQUATE( 4)
EQUATE( 5)
EQUATE( 6)

EQUATE (0)
EQUATE (1)
EQUATE (4)
EQUATE (5)
EQUATE ( 6)
EQUATE (7)
EQUATE ( 8)
EQUATE (9)
EQUATE (10)
EQUATE (11)

BUTTON: OK
BUTTON: YES
BUTTON: NO
BUTTON: ABORT
BUTTON: RETRY
BUTTON: | GNORE
BUTTON: CANCEL
BUTTON: HELP

MSGMODE: SYSMODAL
MSGMODE: CANCOPY

EQUATE (01H)
EQUATE (02H)
EQUATE (04H)
EQUATE (08H)
EQUATE (10H)
EQUATE (20H)
EQUATE (40H)
EQUATE (80H)

EQUATE (01H)
EQUATE (02H)



49

Reference
W NDOW OK EQUATE (0)
W NDOW Not Opened EQUATE (1)
W NDOW BadW ndow EQUATE (2)
W NDOW Cl osePendi ng EQUATE ( 3)
W NDOW | nDest r oy EQUATE (4)
TEXT: Fi el d EQUATE (0)
TEXT: Fil e EQUATE (1)
IDDE |ink types
DDE: aut o EQUATE ( 0)
DDE: manual EQUATE (-1)
DDE: r enove EQUATE (-2)
I Types
OM T(' ***', W DTH32_)
S| GNED EQUATE( SHORT)
UNSI GNED EQUATE( USHORT)
_nopos EQUATE( 08000H)
* % %
COVPI LE(' ***' W DTH32_)
S| GNED EQUATE( LONG)
UNSI GNED EQUATE( LONG)
_nopos EQUATE( 080000000H)
* % %
BOOL EQUATE( SI GNED)

I DI RECTORY equates & TYPEs

A d 8.3 fil enane support

ff_: NORVAL EQUATE( 0)
ff _: READONLY EQUATE( 1)
ff_: HI DDEN EQUATE( 2)
ff_: SYSTEM EQUATE( 4)
ff_: DI RECTORY EQUATE( 10H)
ff_: ARCH VE EQUATE( 20H)
ff_:LFN EQUATE( 80H)

ff_: queue QUEUE, PRE(ff_), TYPE

name string(13)
dat e | ong
time | ong
si ze | ong
attrib byte

END

Ifull filename support

FI LE: MaxFi | eName EQUATE( 256)
FI LE: MaxFi | ePat h EQUATE( 260)



50 Advanced Topics & Reference Guide

FILE: Queue  QUEUE, PRE(FI LE), TYPE

Narme STRI N FI LE: MaxFi | eNane)
Shor t Nane STRI NG 13)
Dat e LONG
Ti me LONG
Size LONG
Attrib BYTE
END
Pri nt Previ ewFi | eQueue QUEUE, TYPE
Fi | enane STRI NG FI LE: MaxFi | eNane)
Print Previ ewl mage STRI N FI LE: MaxFi | eNane) , OVER( Fi | enane)
END
ol eQ QUEUE, TYPE
name CSTRI NG 64)
clsid CSTRI NG 64)
progi d CSTRI NG 64)
END

I'FileDi al og equates

FI LE: Save EQUATE( 1)
FI LE: KeepDi r EQUATE( 2)
FI LE: NoErr or EQUATE( 4)
FI LE: Ml ti EQUATE( 8)
FI LE: LongName EQUATE( 10H)
FI LE: Direct ory EQUATE( 20H)

OCX: def aul t EQUATE( 0)

OCX: 16bi t EQUATE( 1)
OCX: 32bi t EQUATE( 2)
OCX: 1632bi t EQUATE( 3)
DOCK: Lef t EQUATE( 1)
DOCK: Top EQUATE( 2)
DOCK: Ri ght EQUATE( 4)
DOCK: Bott om EQUATE( 8)
DOCK: Fl oat EQUATE( 16)
DOCK: Al | EQUATE( 31)

I TopSpeed Fil e Fl ags
TPSREADONLY EQUATE( 1)

I Mat ch Fl ag Val ues

Mat ch: Si npl e EQUATE( 0)
Match: Wld EQUATE( 1)
Mat ch: Regul ar EQUATE( 2)
Mat ch: Soundex EQUATE( 3)

Mat ch: NoCase EQUATE( 10H) I May be added to Sinple, Wld and Regul ar



51

Reference

PAPER: LETTER EQUATE( 1) | Letter 8 1/2 x 11 in

PAPER: LETTERSMALL EQUATE( 2) I Letter Small 8 1/2 x 11 in
PAPER: TABLO D EQUATE( 3) I Tabloid 11 x 17 in

PAPER: LEDGER EQUATE( 4) | Ledger 17 x 11 in

PAPER: LEGAL EQUATE( 5) I Legal 8 1/2 x 14 in

PAPER: STATEMENT EQUATE( 6) I Statenent 5 1/2 x 8 1/2 in
PAPER: EXECUTI VE EQUATE( 7) | Executive 7 1/4 x 10 1/2 in
PAPER: A3 EQUATE( 8) | A3 297 x 420 nm

PAPER: A4 EQUATE( 9) I A4 210 x 297 mm

PAPER: A4SVALL EQUATE( 10) | A4 Small 210 x 297 mm

PAPER: A5 EQUATE( 11) I A5 148 x 210 mm

PAPER: B4 EQUATE( 12) | B4 250 x 354

PAPER: B5 EQUATE( 13) I B5 182 x 257 mm

PAPER FOLI O EQUATE( 14) | Folio 8 1/2 x 13 in

PAPER: QUARTO EQUATE( 15) I Quarto 215 x 275 mm

PAPER 10X14 EQUATE( 16) | 10x14 in

PAPER: 11X17 EQUATE( 17) I 11x17 in

PAPER: NOTE EQUATE( 18) | Note 8 1/2 x 11 in

PAPER: ENV_9 EQUATE( 19) I Envel ope #9 3 7/8 x 8 7/8
PAPER ENV_10 EQUATE( 20) | Envel ope #10 4 1/8 x 9 1/2
PAPER ENV_11 EQUATE( 21) | Envel ope #11 4 1/2 x 10 3/8
PAPER: ENV_12 EQUATE( 22) I Envel ope #12 4 \276 x 11
PAPER ENV_14 EQUATE( 23) | Envel ope #14 5 x 11 1/2
PAPER: CSHEET EQUATE( 24) I C size sheet

PAPER: DSHEET EQUATE( 25) | D size sheet

PAPER: ESHEET EQUATE( 26) I E size sheet

PAPER ENV_DL EQUATE( 27) | Envel ope DL 110 x 220mm
PAPER: ENV_C5 EQUATE( 28) I Envel ope C5 162 x 229 mm
PAPER: ENV_C3 EQUATE( 29) I Envel ope C3 324 x 458 mm
PAPER: ENV_C4 EQUATE( 30) I Envel ope C4 229 x 324 mm
PAPER ENV_C5 EQUATE( 31) | Envel ope C6 114 x 162 mm
PAPER: ENV_C65 EQUATE( 32) I Envel ope C65 114 x 229 mm
PAPER ENV_B4 EQUATE( 33) | Envel ope B4 250 x 353 mm
PAPER: ENV_B5 EQUATE( 34) I Envel ope B5 176 x 250 mm
PAPER ENV_B6 EQUATE( 35) | Envel ope B6 176 x 125 nm
PAPER: ENV_I| TALY EQUATE( 36) I Envel ope 110 x 230 mm

PAPER: ENV_MONARCH EQUATE( 37) I Envel ope Monarch 3.875 x 7.5 in
PAPER: ENV_PERSONAL EQUATE( 38) I 6 3/4 Envelope 3 5/8 x 6 1/2 in
PAPER FANFOLD_US EQUATE( 39) | US Std Fanfold 14 7/8 x 11 in
PAPER FANFOLD STD_GERVMAN EQUATE( 40) I German Std Fanfold 8 1/2 x 12 in
PAPER FANFOLD LGL_GERMAN EQUATE( 41) | German Legal Fanfold 8 1/2 x 13
in

PAPER: LAST EQUATE( 41)

PAPER: USER EQUATE( 256)



52 Advanced Topics & Reference Guide
I File Driver Function equates for use with fil e{ PROP: SupportsQp, Dri ver Op: n}
| TEM ZE( 1), PRE(Dri ver Op)
ADD EQUATE
BOF EQUATE
BUI LDfil e EQUATE
APPEND EQUATE
BUI LDdyn EQUATE
BUI LDkey EQUATE
CLCSE EQUATE
COW T EQUATE
corPY EQUATE
CREATE EQUATE
DELETE EQUATE
DUPLI CATE EQUATE
EMPTY EQUATE
ECF EQUATE
CETfi | ekey EQUATE
GETfileptr EQUATE
GETkeyptr EQUATE
HOLD EQUATE
LOCK EQUATE( 20)
LocouT EQUATE( 22)
NAME EQUATE
NEXT EQUATE
OPEN EQUATE
PACK EQUATE
PO NTERfi | e EQUATE
PO NTERkey EQUATE
FLUSH EQUATE
PUT EQUATE
PREVI OUS EQUATE
RECORDSf i | e EQUATE
RECORDSk ey EQUATE
BUI LDdynfilter EQUATE
STARTTRAN EQUATE
RELEASE EQUATE
REMOVE EQUATE
RENAME EQUATE
ENDTRAN EQUATE
ROLLBACK EQUATE
SETfile EQUATE
SETfi | ekey EQUATE
SETfileptr EQUATE
SETkey EQUATE
SETkeykey EQUATE
SETkeyptr EQUATE
SETkeykeyptr EQUATE
SHARE EQUATE
SKI P EQUATE
UNLOCK EQUATE
ADDI en EQUATE
BYTES EQUATE



Reference

53

GETfileptrlen
PUTfi | eptr
PUTfi |l eptrl en
STREAM
DUPLI| CATEkey
WATCH
APPENDI en
SEND
PCSI TIONfi | e
PCSI TI ONkey
RESETfi | e
RESETkey
NOVEMO
REGETfi | e
REGETkey
NULL
SETNULL
SETNONNULL
SETproperty
CETproperty
GETbl obdat a
PUTbI obdat a
BLOBSI ZE
SETbl obproperty
GETbl obproperty
BUFFER
SETvi ewfi el ds
CLEARfi | e
RESETvi ewfi |l e
BUI LDevent
SETkeypr operty
GETkeypr operty
DOpr operty
DOkeyproperty
Dol obproperty
VI EWSTART
VI EWNSTOP
GETNULLS
SETNULLS
GETSTATE
RESTORESTATE
CALLBACK
FREESTATE
DESTROY

END

EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE( 75)
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE( 88)
EQUATE
EQUATE
EQUATE( 92)
EQUATE
EQUATE( 96)
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE( 102)
EQUATE( 104)



54

Advanced Topics & Reference Guide

| Data Type Equates for

use with fil e{ PROP: SupportsType, DataType: n}

| TEM ZE( 1) , PRE( Dat aType)

BYTE
SHORT
USHORT
DATE
TI ME
LONG
ULONG
SREAL
REAL
DECI MAL
PDECI VAL
BFLOAT4
BFLOATS
STRI NG
CSTRI NG
PSTRI NG
MEMO
BLOB
END

I These equates are to be used as the first

EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE

(13)

(18)

(27)

I GETREG and PUTREG st at enent s

REG_CLASSES_ROOT

REG_CURRENT_USER

REG_LOCAL_MACHI NE
REG_USERS

REG_PERFORMANCE_DATA
REG_CURRENT_CONFI G

REG DYN_DATA

REG_NONE
REG_SZ
REG_EXPAND_SZ

r ef er ences)
REG Bl NARY
REG_DWORD

EQUATE( 80000000h)
EQUATE( 80000001h)
EQUATE( 80000002h)
EQUATE( 80000003h)
EQUATE( 80000004h)
EQUATE( 80000005h)
EQUATE( 80000006h)

REG_DWORD LI TTLE_ENDI AN
REG_DWORD Bl G_ENDI AN

REG LI NK
REG MULTI _SZ
REG_RESOURCE_LI ST

REG_FULL_RESOURCE_DESCRI PTOR EQUATE( 9)
REG_RESOURCE_REQUI REMENTS_LI ST EQUATE( 10)
EQUATE( 11)
REG_QWORD LI TTLE_ENDI AN EQUATE( 11)

REG_QWORD

EQUATE( 0)
EQUATE( 1)
EQUATE( 2)

EQUATE( 3)
EQUATE( 4)
EQUATE( 4)
EQUATE( 5)
EQUATE( 6)
EQUATE( 7)
EQUATE( 8)

No val ue type

parameter to the DELETEREG,

Uni code nul termnated string
Uni code nul term nated string
(with environnent variable

Free form binary

32-bit nunber
32-bit nunber
32-bit nunber
Synbol i ¢ Li nk

(sane as REG_DWORD)

(uni code)

Mul ti pl e Unicode strings

Resource |i st
Resource |i st

64-bit nunber
64-bit nunber

in the resource map
in the hardware description

(sane as REG_QWORD)



Reference

Template Equates (TPLEQU.CLW)

I Tool bar navigation nodes

For mvbde EQUATE( 1)
Br owseMbde EQUATE( 2)
Tr eeMbde EQUATE( 3)

I Tenpl at e War ni ngs

Warn:InvalidFile

War n: I nval i dKey

War n: Rebui | dErr or

War n: Cr eat eError

War n: Cr eat eOpenError
\War n: Pr ocedur eToDo
War n: BadKeyedRec

War n: Qut Of RangeH gh
War n: Qut OfF RangeLow
War n: Qut OF Range

Warn: NotInFile

War n: Restrict Updat e
Warn: RestrictDel ete
Warn: I nsertError
War n: Rl Updat eErr or
War n: Updat eErr or
War n: Rl Del et eError
\War n: Del et eError
War n: | nsert Di sabl ed
War n: Updat eDi sabl ed
War n: Del et eDi sabl ed
War n: NoCr eat e

War n: Conf i r nCancel
War n: Dupl i cat eKey

Var n: Aut ol ncError

War n: Fi | eLoadError
War n: Confi rmCancel Load
Warn: Fi | eZeroLengt h
War n: EndCOF Asci i Queue
War n: Di skError

\War n: ProcessActi onError
War n: St andar dDel et e
War n: SaveOnCancel

War n: Logout Error

War n: Recor dFet chEr r or
Vr n: Vi ewQpenErr or
War n: NewRecor dAdded
War n: Rl For mUpdat eErr or

EQUATE (1)

EQUATE (2)

EQUATE ( 3)

EQUATE (4)

EQUATE (5)

EQUATE ( 6)

EQUATE (7)

EQUATE ( 8)

EQUATE (9)

EQUATE (10)
EQUATE (11)
EQUATE (12)
EQUATE (13)
EQUATE (14)
EQUATE (15)
EQUATE (16)
EQUATE (17)
EQUATE (18)
EQUATE (19)
EQUATE ( 20)
EQUATE (21)
EQUATE (22)
EQUATE (23)
EQUATE (24)
EQUATE (25)
EQUATE ( 26)
EQUATE (27)
EQUATE (28)
EQUATE (29)
EQUATE (30)
EQUATE (31)
EQUATE (32)
EQUATE (33)
EQUATE (34)
EQUATE (35)
EQUATE (36)
EQUATE (37)
EQUATE (38)



56 Advanced Topics & Reference Guide

Scrol | Sort: Al pha EQUATE(' AFANATB BFBNBTC CFCNCT' |
& D DFDNDTE EFENETF FFENFT' |
& G GFGNGTH HFHNHTI 1 FI NI T |
& J JFINJTK KFKNKTL LFLNLT' |
& M MFMNMIN NFNNNTO OFONCOT" |
& P PFPNPTQ ONR RFRNRTS SF' |
& SNSTT TFTNTTU UFUNUTV VF' |
& VNVTW WFWAWTX XFEXNXTY YF' |
& YNYTZ ZN')
Scrol | Sort: Nane EQUATE(" ALBAMEARNBAKBATBENBI ABOBBRA' |
& BROBUACACCARCENCHRCOECONCORCRU |
&' DASDEL DI ADONDURELDEVEFELFI SFLO |
& FREFUTGARG BGOLGOSGREGUTHAMHEM |
&' HOBHOTI NGJ ASJ ONKAGKEAKI RKORKYO |
& LATLEOLI GLOUMACMAQVARMAUMCKMVER' |
& M LMONMORNATNOLOKEPAGPAUPETPI N' |
& PORPUL RAUREYROBROSRUBSAL SCASCH |
&' SCRSHASI GSKI SNASOUSTESTI SUNTAY" |
& Tl RTUCVANVACWASVEEl W EW MAOLYOR' )

Sort Request : Sel ect Sort EQUATE( 1)
Sort Request : Reset EQUATE( 2)
Sort Request : Locat eRecord EQUATE( 3)
Sort Resul t : Changed EQUATE( 1)
SortResul t: OK EQUATE( 2)
Locat eOnPosi tion EQUATE( 1)
Locat eOnVal ue EQUATE( 2)
Locat eOnEdi t EQUATE( 3)
Ref reshOnPosi ti on EQUATE( 1)
Ref reshOnQueue EQUATE( 2)
Ref reshOnTop EQUATE( 3)
Ref reshOnBot t om EQUATE( 4)
Ref r eshOnCur r ent EQUATE( 5)
EVENT: Pr evi ew. Pri nt EQUATE (401H)
EVENT: Pr evi ew. Cancel EQUATE (402H)
EVENT: Pr evi ew. Zoom EQUATE (403H)
EVENT: Pr evi ew. Next Page EQUATE (404H)
EVENT: Pr evi ew. Pr evPage EQUATE (405H)
EVENT: Previ ew. Junp EQUATE (406h)
EVENT: Pr evi ew. ChangeDi spl ay EQUATE (407H)
EVENT: Pr evi ew. Di sabl eNext EQUATE (450h)
EVENT: Pr evi ew. Enabl eNext EQUATE (451h)
EVENT: Previ ew. Di sabl ePrev EQUATE (452h)
EVENT: Pr evi ew. Enabl ePr ev EQUATE (453h)
EVENT: Pr evi ew. Di r ect Zoom EQUATE (454h)
EVENT: Previ ew. Di rect Uhzoom  EQUATE (455h)



Reference

57

Previ ew. Qut Of PagesText
Pr evi ew. Qut O PagesHead

Previ ew. D spl ayText
Previ ew. D spl ayl cons
Previ ew. D spl ayAl |

EQUATE (' There are no nore pages to display')
EQUATE (' End of Report')

EQUATE (1)
EQUATE (2)
EQUATE (3)



58

Advanced Topics & Reference Guide




Project System Reference 59

Project System Reference

Introduction

The Project System is integrated into the Clarion Environment. It is a powerful sequential
language that combines the functionality of a batch processor, a linker and an intelligent
compile-and-link system.

The Project System gives you total control over the compile and link process for the simplest
single .EXE project up to the most complicated multiple .DLL project.

The primary benefits of using the Project System are automation, efficiency, and accuracy.
With a single command, you can remake your entire project, no matter how complicated, and
you can be assured that the correct source and objects are included in the compile and link
processes, plus, the components that don’t need it, don’t get reprocessed. In addition, you can
make different versions of your project (release version, debug version, evaluation/demo
version, etc.) with the flip of a switch.

Here is a simple example of some project system language generated by the Clarion
Application Generator:

#noedi t

#system wi n

#nodel clarion dll

#pragma debug(vi d=>full)

#conpi | e QAKTU_RD. CLW— GENERATED

#conpi | e QNKTU_RU. CLW— GENERATED

#conpi | e QNKTU_SF. CLW— GENERATED

#conpi |l e QNKTUTOR. cl w / def i ne( GENERATED=>0n) — GENERATED
#conpi |l e QAKTUO01. cl w / def i ne( GENERATED=>0n) — GENERATED
#conpi |l e QAKTU002. cl w / def i ne( GENERATED=>0n) — GENERATED
#conpi | e QAKTU003. cl w / def i ne( GENERATED=>0n) — GENERATED
#pragma | i nk( CAYTPSYS8% LI B) — GENERATED

#1ink QAKTUTOR. EXE



60 Advanced Topics & Reference Guide

Language Components

Keywords start with a pound sign (# ). In the example, each keyword begins on a new line for
readability. This is not required.

Comments start with a double hyphen ( --) and are terminated by a Carriage Return or Line

Feed.

Macros are surrounded by percent signs ( % ). You may want to think of macros as
variables—a value is substituted whenever the project system encounters a macro name
surrounded by percent signs ( % ). See Project System Macros.

Keyword Parameters are everything else you see in the example. Parameters and their
syntax are discussed with each keyword.

The Project System recognizes the following keywords:

#abort #expand #ol der
#and #ile #or

#aut oconpi | e #if #pragna
#conpi l e #i gnor e #pr onpt
#decl are_conpi | er #implib #run
#dol i nk #i ncl ude #rundl |
#el se #l i nk #set

#el si f #nmessage #split
#endi f #nodel #system
#error #noedi t #t hen
#exenod #not #t o
#exi sts

Files and Editing

With regard to Clarion, the project system commands are generally stored in either a .PRJ file
or an .APP file. APP files are maintained strictly through Clarion’s development environment,
however, PRJ files are simple ASCII text and may be maintained with the development
environment (See the User’'s Guide; Using the Project System) or with your favorite text editor.

#noedit

The #noedit command can be placed at the top of a project file to prevent menu-editing from
the SoftVelocity environment. It has no effect in the Clarion environment.



Project System Reference

61

Project System Macros

Macros are special strings that indicate a variable substitution is required. You may find it
useful to think of macros as variables.

A sequence of characters enclosed by % characters indicates a macro name. The following
characters are permitted in macro names:

ABCDEFGHIJKLM
NOPQRSTUVWXYZ
abcdefghijklm
nopgrstuvwxyz
0123456789 _

The trailing % may be omitted provided the character following the macro name is not one of
the characters above.

Whenever a % delimited macro name is encountered, it is replaced either by the string
associated with that macro, or by an empty string if there is no associated string. Substitution
strings are associated with a macro by using the #set command.

Two adjacent % characters may be used when a % character is required in the substituted
string. This double % technique can be used to delay macro substitution. For example:

#set echo = '#nessage %Warynac’ --'#message %ymac’ associated with
echo

#set mymac = ‘Hell o’ --‘Hell o’ associated with mymac
%echo --'#message %rymac’ substituted for
%echo

-- and ‘Hell o substituted for %rynac

#set mymac = ‘Worl d’ --‘World associated with mymac
%echo --'#message %rymac’ substituted for
%echo

-- and ‘Wrld substituted for %rynac

If a single % had been specified in the first #set command, the macro %mymac would have
been expanded (to the empty string) before defining the replacement text for the macro
%echo. The double % results in the project system executing:

#nmessage Hell o

#message World

The single % results in the project system executing:
#message ""

#message ""



62 Advanced Topics & Reference Guide

Setting Macro Values

#set
#set macroname = string

The #set command associates a macro name with a string. Any previous setting for the given
macro is lost. The macro name in the #set command should not be delimited by % characters.
The string should be enclosed in single quotes if it contains embedded spaces or project
system keywords.

For example:
#set cwi ndow = TopSpeed
#set linkit = ‘“#link nyfile’

#i f ‘' %wi ndow = TopSpeed #t hen
#pragma | i nk( CS_GRAPH. LI B)
#endi f

% i nki t
#expand <file-name>

The filename is subjected to redirection analysis, and the following macros are defined:

%cpath Is set to the fully expanded filename where the file would be created.
%opath Is set to the fully expanded filename where the file would be opened.

Y%ext Is set to the extension of the filename.

Ytall Is set to the filename, less extension, drive and path.

%cdir Is set to the directory where the file would be created.

%odir Is set to the directory where the file would be opened for read (if the file does

not exist %opath is set the same as %cpath).



Project System Reference

63

For example, suppose the redirection file has the line,
*.def : . ; c:\ts\include

and the file c:\ts\include\io.def exists, and the current directory is d:\test then,
#expand i o. def

is equivalent to,

#set opath = d:\test\io. def

#set cpath = c:\ts\include\io. def
#set ext = . def

#set tail =1io0

#set odir = d:\test\

#set cdir = c:\ts\include\

#split <filename>

The filename is split into its base and extension. The following macros are defined:

%0ext Is set to the extension of the filename.
%namel Is set to the filename, less extension.
For example:

#split d:\nanme. exe

is equivalent to,

#set ext
#set nane = d:\nane

exe



64 Advanced Topics & Reference Guide

Special Project System Macros

A number of macros are used for special purposes by the Project System, and you should
avoid defining macros of the same name inadvertently. Similarly, you should not define macros
using trailing underbars.

The following is a list, in alphabetical order, of all such macros:
%action Set to make, link, compile or run, depending on the mode of invocation.
%cdir Set by the #expand command.

%compile_src In compile mode, this is set to the name of the file to be compiled, with path and
extension where available. Otherwise, it is set to the empty string.

%cpath Set by the #expand command.

%devsys Set by the Clarion environment to win.

%editfile Set to the name of the file being edited in the topmost window. If no window is
open, or in batch mode, it is set to the empty string.

%editwin Set to the window number (0-9) of the topmost window. If no window is open, or
in batch mode, it is set to the empty string.

%errors Count of errors produced by preceding compile or #file adderrors command.

%ext Set by the #split and #expand commands.

%filetype Set by the #system command to its second argument, and examined by the
#link command.

%jpicall Set by the #model command to its second argument, and examined by the
#link command.

%L Set by the #model command to either ' (standalone) L (local) or ! (own). The
#link command uses this to derive the name of any required library files.

%link Set to the current link list.

%link_arg Set to its argument by the #link command.

%main Set to the assumed name of the main source file. In make or link mode when

not using UNNAMED.PR, this is derived from the project filename, with path
and extension removed. Otherwise, it is the supplied source filename complete
with path and extension if specified.

%make Set to on or off by the #compile, #link and #dolink commands, to indicate
whether the target file was up to date.

%manual_export
Set this macro on to indicate that the #link command should not construct a
.LIB file when a DLL is linked. If this macro is not specified, a .LIB file is created
automatically from the corresponding .EXP file if found (see Module Definition
File below), or from the object files in the link list.

%model Set by the #model command to its first argument, and examined by the #link
command.

%name Set by the #split command.



Project System Reference 65

%o0bj Set to the object filename in a #compile command.
%odir Set by the #expand command.
%opath Set by the #expand command.

%pragmastring
Will always expand to the current state of the #pragma settings - this is useful
for debugging.

%prjname Set to the assumed name of the project - this is usually derived from the project
filename, but with the path and extension removed. Where UNNAMED.PR is
being used, it is derived from main source filename without source and
extension.

%remake Used within declare_compiler macros to determine whether source/object
dependencies require a remake.

%remake_jpi Used within declare_compiler macros to determine whether source/object
dependencies require a remake. %remake_jpi should be used for object files
created by SoftVelocity compilers, which contain additional information.

%reply Set by the #prompt command.

%S Set by the #system command to 32 indicating the instruction set being used to
build the project. The #link command uses this to derive the name of any
required library files.

%src Set to the source filename in a #compile command.

%system Set by the #system command to its first argument, and examined by the
#model and #link commands.

Y%itall Set by the #expand command.

%tsc Set to on if a C or C++ source file is compiled.

%tscpp Set to on if a C++ source file is compiled.

%tsm?2 Set to on if a Modula-2 source file is compiled.

%tspas Set to on if a Pascal source file is compiled.

The above macros are examined by the #link command to determine which libraries to
include, and then set to off.

%warnings  Count of warnings produced by preceding compile or #file adderrors
command.



66 Advanced Topics & Reference Guide

Basic Compiling and Linking

Compile and link options are specified in a project file by means of the #system, #model and
#pragma commands.

#system
#system operating_system [ target_type ]

The #system command is used to specify the target operating system and file type. The
macros %system and %filetype are set to the first and second arguments. See Special Project
System Macros below.

The first argument specifies the target operating system, and may be win or win32.

The second argument indicates the target file type, and may be exe, lib, or dll. If omitted, exe is
assumed.

The #system command affects the behavior of subsequent #model and #link commands.
Therefore a #system command must be specified before either of these. If more than one
#system command occurs in a project, each must be followed by a #model command in order
to take effect.

#model
#model memory_model [ linking_convention ]

The #model command is used to specify the memory model to be used for subsequent
compiles and links. This memory model will continue to be used until modified by explicit
#pragmas, or by another #model command.

The #model command sets the macros %model and %jpicall to its first and second parameters
respectively. For example,

#nmodel clarion dll

is equivalent to

#set %rodel = ‘clarion’
#set % picall = “dlI’

The first argument specifies the memory model, which is always ‘clarion’ for Clarion projects.
The second indicates the linking convention, which may be dll, lib, or owndll. If omitted, dll is
assumed.



Project System Reference

67

Setting the second argument to dll indicates that you will be creating an exe or dll that calls the
standard Clarion dlls. Setting the second parameter to lib indicates that you will be creating an
exe, lib or dll that includes all the components of the Standard Clarion libraries (and file drivers)
in the exe, lib or dll. Using owndll indicates that you are linking to a dll that was previously
created with the lib link convention, so the standard Clarion dlls are not linked.

The #system command must be specified before the first #model command.

#pragma
#pragma <#pragma> { , <#pragma> }
The #pragma command modifies the state of the #pragma options which affect the behavior of

the SoftVelocity compilers or linker. The syntax and meaning of all #pragmas are discussed
under the SoftVelocity #pragmas section below.

The special macro %pragmastring expands to the current state of all #pragma options which
are not in their default state - this can be useful for determining exactly which options are being
used for a given compile. For example:

#message ' %pragnastring’



68 Advanced Topics & Reference Guide

Compile and Link Commands

Whenever a file is compiled or linked, the current settings of the compiler or linker options
(#pragma settings) are compared to those used when the file was last compiled or linked, to
determine whether the file is up to date. If a compile or link is necessary, the current settings
are passed on to the compiler or linker.

#compile
#compile<source> [ #to <object>] [/ <#pragma>{, <#pragma>}]
{, <source> [ #to <object>] [/ <#pragma>{, <#pragma>}]}
The #compile command causes each nominated source file to be compiled (if necessary). The

name of the object file may be specified using #to. If this is omitted, the name is derived from
the source filename, with the extension .obj.

Any #pragmas specified in a #compile command apply only to the single source filename that
precedes the / character.

The macro %make is set to on if a compile is necessary, off otherwise. The macros %src and
%o0bj are set to the names of the source and object filenames.

Each object file is added to the link list, i.e. there is an implicit:

#pragma |ink( %bj )

For example:

#conpile fred.c #to fred. obj

#conpi |l e george. cpp /debug(vid=>full)

It is possible to reconfigure the behavior of the Project System when compiling source files of a
given extension using the #declare_compiler command. This may also be used to declare

actions to perform for different file extensions - for example, to support third-party compilers or
preprocessors. See Other Commands below.

#link
#link <target_filename>

The #link command links together (if necessary) all the files in the link list to the nominated
executable or library file. The file type is determined by the extension of the nominated target
file, or, if there is no extension, by the file type specified in the most recent #system command.
If neither are specified, the default is to produce an executable file. The effect of #link is to set
the macro %link_arg to the specified filename.

The Project System maintains a list of those files that are to be used as input to the linker the
next time an executable or library file is created. This list is known as the link list. A filename
may be added to the link list using the #pragma link command.



Project System Reference 69

For example:
#pragma link (nylib.lib)

However, it is seldom necessary to use #pragma link explicitly, as all the SoftVelocity
compilers add the resulting object file to the link list whenever a source file is compiled using
#compile. In addition, when the #link command is encountered, all required standard library
files, and other object files which are imported by those already on the link list are also added
to the list. The link list is cleared after each link.

The #link command differs from the similar #dolink command in that (so far as the Project
System can determine), any additional object files required are automatically added to the link
list before linking. This includes any SoftVelocity library files, and also (with an implicit
#autocompile command) all modules imported with IMPORT clauses in SoftVelocity Modula-2
or with #pragma link statements in SoftVelocity C or SoftVelocity C++ source files. In addition,
#link will determine from the target file type any additional processing that needs to be applied
to the output file.

For certain specialized requirements, the use of #link may be inappropriate—for example, if a
specialized startup file is required, or when building library files, where explicit control of
exactly which files are included may be preferred. In such cases, the #dolink command should
be used.

#dolink <target_filename>

The #dolink command takes the object files which have previously been added to the link list,
and combines them into an executable or library file (depending on the extension of the
nominated target file), if required to keep the target file up to date. No additional files are added
to the link list, so all required files must have been specified previously, by means of #pragma
link, #pragma linkfirst, #compile, and #autocompile. For simple projects, the use of #link is
preferable because the link list is dynamically maintained by the project system, freeing the
developer from this responsibility.

When finished, the #dolink command clears the link list.
See also:
#pragma link_options (link)

#autocompile

The #autocompile command examines the object files which are currently in the link list, to see
which objects they need to be linked with. This would include objects specified using a
#pragma link in a SoftVelocity C or C++ source file, or in the case of module based languages
such as SoftVelocity Modula-2 imported modules.

Each resulting object file, which is not already in the link list, is then compiled (if necessary)
and added to the link list. If there is more than one possible source for a given object file, an
error is reported. This process is repeated until the link list stops changing.

It is not necessary to use #autocompile for simple projects where #link is used rather than
#dolink, as #link performs an implicit #autocompile.



70 Advanced Topics & Reference Guide

#ignore
#ignore <filename>
#ignore #pragmastring

There are two forms of the #ignore command. The first, where a filename is specified, tells the
Project System to ignore the date of the nominated file when deciding whether or not to
compile. This is useful when a ‘safe’ change is made to a widely used header file, to prevent
mass recompile.

The special form #ignore #pragmastring directs the Project System to ignore the #pragma
settings when deciding whether or not to compile a file. This may be useful, for example, when
a new compile-time macro has been defined, but there is no need to recompile everything.

#implib
#implib <libfilename>

The #implib command is used to create (if necessary) a dynamic link library file. There are two
forms of this command, which operate in slightly different ways. If a single filename is
specified, this names an import library file, which is created (if not up-to-date) from the object
files in the link list. The object files are scanned and each public procedure or variable is
exported. For example:

#pragma |ink( fred.obj, joe.obj )
#inplib nylib.lib

In the second form of the #implib command, an import library filename and a module definition
file (.exp—see Module Definition File below) are both specified, and the library file is created (if
not up-to-date) from the symbols named in the definition file. This form of the command is
equivalent to using the tsimplib utility that comes with SoftVelocity C, C++, and Modula-2.

#implib <expfilename> <libfilename>

Using #implib in the second form requires you to create and maintain the list of exports ‘by
hand’, whereas the first form exports all public names automatically. The use of a module
definition file is an advantage if you need to maintain compatibility with previous versions of an
interface, and it also allows you to export only the procedures which need to be exported.

When #implib is used with a module definition file, the link list is cleared.



Project System Reference 71

Conditional Processing and Flow Control

Project file commands may be executed conditionally, using #if, #then, #elsif, #else, and #endif
commands. In addition, processing may be stopped with #error and #abort when certain
conditions occur.

#if
The syntax of the #if command is as follows :

#i f <bool ean- expressi on> #t hen
comrands

#el si f <bool ean- expressi on> #t hen
conmands

#el se
conmands

#endi f

The #elsif part may be omitted, or may be repeated any number of times. The #else part may
be omitted.

The expressions are evaluated in order, until one of them yields true, then the following
command sequence is executed. If none of the expressions yield true, and the #else part is
present, then the commands following #else are executed. All other commands are ignored.

The syntax and semantics of boolean expressions are described under Boolean Expressions
below.

#error
#error <string>

This command terminates the current project. Under the Clarion environment, the Text Editor
is opened at the position of the #error command, and displays the supplied string as the error
message. For example:

#if "O%ane"="" #then
#error "nane not set up"
#endi f



72 Advanced Topics & Reference Guide

#abort
#abort [ on | off ]

This command is used to control whether a failed #compile or #run command will terminate a
project. If abort mode is on, a project will be aborted as soon as a #compile fails, or a #run
command produces a non-zero return-code. If abort mode is off, a project will only be aborted
if an internal command fails, including a #link, #implib or #exemod command.

#abort on will set abort mode to on, while #abort off will turn it off. #abort without one of the
above arguments will abort the current project immediately.

The default abort mode is on when running under the Clarion environment.



Project System Reference 73

User Interface

The following commands allow you to collect information and provide feedback during the
make process.

#message
#message <string>

This command displays the specified string in the make display window. This can be used to
indicate progress through the project file, or to display status messages. For example:

#message "fini shed making %rj nane"

#prompt

#prompt <promptstring> [ <defaultstring> ]
This command prompts you to enter a string, by displaying the <promptstring> and waiting for
a keyboard entry. The string you enter is returned as the value of the macro %reply. If

<defaultstring> is specified, and no keyboard entry is made, the <defaultstring> will be used as
the value returned to %reply. For example:

#pronpt "Conmand line: " %line
#set cline = %Weply

Boolean Expressions

Boolean expressions used in #if and #elsif commands are made up from the following boolean
operators (listed in order of precedence):

#or
#and
#not

#exi sts
#ol der

()

#or
boolean-expression = <factor> { #or <factor>}

A boolean expression containing one or more #or operators yields true if the evaluation of any
of the factors yields true.



74 Advanced Topics & Reference Guide

#and
<factor> = <term> { #and <term>}

A factor containing one or more #and operators yields false if the evaluation of any of the
terms yields false.

#not
<term> = #not <term>

A term proceeded by the #not operator yields true if the evaluation of the term yields false, and
vice versa.

= (comparison)
<term> = string = string

A term containing a comparison operator yields true if the strings are identical, otherwise false.
== may be used instead of =.
The = operator and second string may be omitted, in which case the first string is compared
against the string "on". That is,

DemoSwi t ch =

is equivalent to
DenoSwi t ch

"“on"

The first string may be replaced by an expression of the form namel(name?2), where name?2
names a #pragma of class namel. In this case, the expression is replaced by the current
setting of the specified #pragma, before the comparison is made.

#exists
<term> = #exists <file-name>

A term containing the #exists operator yields true if the file exists (after applying redirection to
the filename), otherwise false.

#older
<term> = <file-name> #older <file-name> {, <file-name>}

A term containing the #older operator yields true if the first file specified is older than at least
one of the other files specified, otherwise false. Redirection is applied to all filenames (See The
Redirection File below). This operator is often useful to determine whether a post/pre-
processing action needs to be performed. For example:

#if nydl|l.1ib #ol der nydll.exp #then



Project System Reference 75

() Parenthesized Boolean expressions

<term> = ( <Boolean-expression>)

A term may consist of a parenthesized Boolean expression, in order to alter or clarify the
binding of other Boolean operators. The term yields true if the enclosed Boolean expression
yields true. Arbitrarily complex Boolean expressions may be formed.

Filenames and Redirection Analysis

Filenames may be fully qualified, e.g. C:\C60\Orders\Order.tps, in which case, redirection
analysis is not done. Alternatively, filenames may not be fully qualified, e.g. ORDERS.TPS, in
which case redirection analysis is applied.

Redirection analysis means the project system compares the filename with the filepatterns in
the current redirection file, until a match is found. Then, the project system searches only those
directory paths associated with matching filepattern to locate the file.

When creating new files, the project system creates the file in the first directory associated with
the matching filepattern.

#file Commands
The following file system commands are available:

#file adderrors
#file append
#ile copy
#file delete
#file nmove
#file redirect
#file touch

#file copy <src-filename> <dst-filename>

This command causes a file to be copied from <src-filename> to <dst-filename>. Both <src-
filename> and <dst-filename> must be filenames without wildcard characters. Redirection is
applied to both filenames.

#file delete <filename>

This command causes the nominated file to be deleted. <filename> must be a filename without
wildcard characters. Redirection is applied to the filename.



76 Advanced Topics & Reference Guide

#file move <src-filename> <dst-filename>

This command moves (renames) a file from <src-filename> to <dst-filename>. Both filenames
must specify files on the same drive. Redirection is applied to both filenames.

#file touch <filename>
This command sets the date and time of <filename> to be the current date and time.
#file append <filename> <string>

This command appends the specified string to <filename>, followed by a CR/LF pair. The file
will be created if it does not exist. This command can be used to build log files, etc.

#file redirect [ <filename> |

This command changes the current redirection file to <filename>. If no filename is specified,
then the command changes the current redirection file to the redirection file that began the
project.

At the end of the project file, the redirection file is restored to the redirection file that began the
project.
#file adderrors <filename>

This command processes the error messages in the nominated file, and adds them to the
errors that will be reported when the project terminates.

Each error message must be in one of the following formats:

(filename Iineno,colno): error string
(filename lineno): error string
filename(lineno): error string

To capture errors from a program with a different error format, a filter program can be used to
translate them. For example:

¢

#run ‘masm%; > % .err’
#file adderrors % .err
#run ‘nmyprog %; | nyfilter > % .err’
#file adderrors % .err

If any errors are detected, and abort mode is on, the project will terminate and the errors will
be reported in the make status window.

The macros %errors and %warnings are set to the number of errors and warnings detected.



Project System Reference 7

Other Commands

#run <commandstring>

This command executes the command specified by <commandstring>. A #run command is
generated whenever you add a file to the Programs to execute folder in the Project Tree
dialog.

For example:

#run "dir > dir.log"
#run "nmyprog"

Filenames within the command string (with the exception of the executable filename itself) are
not automatically subject to redirection - #expand may be used before using #run if this is
required.

#include <file-name>

A copy of the contents of the nominated file is inserted in the input stream. <filename> should
specify a fully qualified filename, or an unqualified filename, in which case redirection analysis
is applied (see The Redirection File above).

The current values of the link list, #pragma settings, and macros are fully available to the
#include statements. In other words, the #include statements are handled as though they
resided within the including .prj file.

#call <file-name>

A copy of the contents of the nominated file is inserted in the input stream. <filename> should
specify a fully qualified filename, or an unqualified filename, in which case redirection analysis
is applied (see The Redirection File above).

The current values of the link list, #pragma settings, and macros are not available to the #call
statements, and the #call statements cannot modify these values in the calling environment. In
other words, #call statements are handled as a process that is completely separate from the
calling process.

#declare_compiler <file_extension> = <executed_macro>

This defines a macro which is invoked when compiling source files with an extension matching
the first parameter. The macros %src and %obj, are set to the names of the source and object
files.

Generally, you will not have to use this command explicitly, as all SoftVelocity compilers are
pre-declared in the Project System. For example the following is to invoke MASM



78 Advanced Topics & Reference Guide

#decl are_conpi l er asnr
‘ #set make=%4% enmake
#i f 9%%4reke #t hen
#edit save %Wsrc
#expand %src
#set _masmsr c=%mopat h
#expand %Weobj
#set _masnobj =%gpat h
#run "masm %% masnsr c, %9 masnobj / MX/ e; >masnt np. $$$"
#file adderrors masnt np. $$$
#file del ete masnt np. $$$
#endi f
#pragma | i nk(%obj)’

#rundll <dll_name> <source_filename> <output_filename>

This command invokes an integrated SoftVelocity compiler/utility. The first string is the DLL
name, the second is the source filename, and the third is the output filename.

You should never have to use this command explicitly, as all SoftVelocity compilers/utilities are
pre-declared in the Project System.
#exemod

#exemod <file-name> <file-name> <file-name>

This command is the equivalent of using the tsexemod utility that comes with SoftVelocity C,
C++, and Modula-2. #exemod is required to make advanced overlay model programs,
Windows programs and DOS DLLs. However, it is not necessary to use this command
explicitly when making Windows programs.

TSEXEMOD is used to modify the header and segment information in a new format executable
file (.EXE or .DLL), using the information in a module definition (.EXP) file. For example:

TSEXEMOD binfile.* expfile.exp mapfile. map



Project System Reference 79

SoftVelocity #pragmas

All SoftVelocity languages, and the Project System, use a common set of compiler options
known as #pragmas. In general, pragmas may appear in the source code or in a project file,
and the effect will be the same.

A pragma can be used in the Project language, C++ code, or Modula-2 code. Some only
work in certain places. A ‘P’ to the right of the pragma indicates it can be used in the
Project language, a ‘C’ indicates it can be used in C++ code and a ‘M’ indicates it can be
used in Modula-2 code.

Modula-2 Pragma Syntax

Pragmas in SoftVelocity Modula-2 occur in a special form of comment which begins with ‘(*#'.
For example:

(*# check( index => off ) *)

Old-type Compiler Directives

In the original version of SoftVelocity Modula-2, compiler directives starting with a $ were used
to specify compiler options. These directives are still accepted in later versions of SoftVelocity
Modula-2, with the following exceptions:

« $B (Ctrl-Break handler). This is no longer supported. Use Lib.EnableBreakCheck
instead.

$D (data segment name). This is supported, but adds the suffix _BSS (for uninitialized
data) or _DATA (for initialized data) to the name instead of the D__ prefix.

« $J (use IRET instead of RET). This is not supported. Instead, you should use the
pragma:
(*# call( interrupt => on ) *)
- However, you may find that you have to make other changes as well as the effect of the
pragma is different from the $J directive:

+ 3K (C calling convention). This is not supported. Instead, you should use the pragma:
(*# call( c_conv =>on ) *)

+ $M (code segment name). This is supported but adds the suffix _TEXT to the name
instead of the C__ prefix.

«  $P (external names for local procedures). This is no longer supported. It is no longer
applicable.



80 Advanced Topics & Reference Guide

«  3$Q (procedure tracing). This is no longer supported. Instead, you should use the
pragma:
(*# debug( proc_trace => on ) ¥*)

« This enables a different method of tracing procedures. Refer to the proc_trace pragma
for further details.

«  $X (80x87 stack spilling). This is no longer supported (and is no longer necessary).
« $Z (NIL pointer checks). This still does NIL pointer checks but no longer clears memory.
. $@ (preserve DS). This is no longer supported.

The support for these directives has been included with later systems so that your old
programs and modules will recompile with minimum changes. However, you should avoid
using the old directives with new programs, and use pragmas instead.

C and C++ Pragma Syntax

Pragmas are an integral part of the C and C++ languages, and are implemented as compiler
directives:

#pragma check( index => off )

Project System Pragma Syntax

Pragmas in the Project System use a similar syntax to the C and C++ languages:
#pragma check(index => off)

Pragmas in the Project System may also be specified in the #compile command, to apply to a
single compilation. For example:

#conpi | e mandel . nod / debug(vi d=>on)

Pragma Classes

A #pragma takes the form #pragma class(name=>value). The #pragma classes are as follows:
Cal | #pragnmas
Check #pragmas
Dat a #pr agnas

Debug #pragmas

Def i ne #pragmas

Expr #pragnas

Li nk and Li nkfirst #pragnas
Li nk_opti on #pragnas

Modul e #pragmas

Nanme #pragnas

Optim ze #pragmas

Opti on #pragnas



Project System Reference

81

Pr oj ect

#pr agnmas

Save and Restore #pragnmas
War n #pragmas

Call #pragmas

#pragmas with the class name call affect all aspects of calling conventions, code segments,
and code pointers. The current settings of the call #pragmas at the point at which a
procedure’s definition is encountered, determines the calling convention that is used to call the
procedure. SoftVelocity compilers detect if an inconsistent calling convention is used when a
procedure is called. The type-safe linker reports an error if the calling conventions attributed to
a given procedure do not match in every object file.

The following call #pragmas are available:

#pragma
#pragma
#pr agma
#pr agma
#pr agma
#pr agma
#pragma
#pragma
#pragma
#pr agma
#pr agma
#pr agma
#pr agma
#pragma
#pragma
#pragma
#pr agma
#pragma

call (c_conv => on | off)

call (ds_entry => identifier)
call (ds_eq_ss => on | off)

call (inline => on | off)

call (inline_max => Nunber)

call (near_call => on | off)
call (o_a _copy => on | off)

call (o_a_size => on | off)

call (opt_var_arg => on | off)
call (reg_param => Regli st)

call (reg_return => ReglLi st)
call (reg_saved => Regli st)

call (result_optional => on | off)
call (same_ds => on | off)

call (seg_nane => identifier)
call (set_jnmp => on | off)

cal |l (standard_conv => on | off)
call (var_arg => on | off)

#pragma call(near_call => on | off)

Specifies whether procedure calls are near or far. When on, the compiler calls procedures with
near calls. The compiler can only use near calls if the calling and called procedures are in the

same segment. The compiler checks that this is the case.

The default value is off. This example forces near calls:

#pr agma

cal | (near_cal | =>o0n)

cpm



82 Advanced Topics & Reference Guide

#pragma call(same_ds => on | off) cpm

Specifies whether to load the data segment (DS) register on entry to a procedure. When on,
DS will not be loaded as part of the procedure prolog. This will only be correct when the DS
setting of the calling procedure matches that of the called procedure. The compiler checks that
this is the case.

This option is off by default. For example:
#pragma cal | (same_ds => on)
This stops DS from being loaded in the procedure prolog.

#pragma call(c_conv => on | off) cpm

When on, this option enables the Microsoft C calling convention. In this convention, the
compiler pushes procedure parameters in right to left order on the stack and the caller pops
these parameters off the stack.

This is not the default, so you should only use this #pragma when interfacing to Microsoft C
code. For example:

#pragma cal | (¢c_conv=>o0n)
You can also use the cdecl keyword in C and C++ to achieve the same effect.

See also the standard_conv #pragma, which has the same effect for C and C++, but is ignored
for Modula-2. The standard_conv #pragma is set off by default.

#pragma call(inline => on | off) cm
If this #pragma is set on before a procedure definition, the compiler makes a copy of the
procedure in the code rather than using a call instruction. The default value is off.

You can use this convention for any procedure, but this #pragma is mainly used together with
the reg_param #pragma for simple machine-code procedures. For example:

#pragma save
#pragma call (inline => on, reg_param => (dx, ax))
static void outp(int port, unsigned char byt)=
{

OxXEE, /* out dx,al */
3
#pragma restore

makes outp an inline procedure, so a call to it appears as a single 80x86 machine instruction:
out dx,al.

#pragma call(seg_name => identifier) cpm



Project System Reference 83

Specifies the code segment name. call(seg_name => nnn) means that the compiler places the
code for the procedure in segment nnn_TEXT. The default value depends on the memory
model. In the small and compact models, the default is null; in the other models it is the name
of the source file. For example, a code segment named _TEXT would be specified as:

#pragma cal | (seg_name => null)

and a code segment named MYCODE_TEXT, would be specified as:
#pragma cal | (seg_name => MYCODE)
The default setting is language dependant, and is not defined by the Project System.

#pragma call(ds_entry => identifier) cpm

This #pragma indicates a segment name which the DS register will point to throughout the
execution of a procedure. If the identifier is null, the compiler names the segment _DATA. If
the identifier is none, the compiler does not assume a fixed DS during procedure execution
and uses DS as a general purpose segment register like ES.

#pragma cal |l (ds_entry => MYDATA)

This example indicates that on entry to the procedure, DS will point to the segment named
MYDATA_DGROUP.

#pragma call(reg_param => RegList) cm

SoftVelocity languages pass procedure parameters in machine registers rather than using the
stack. This generates smaller and faster code. This #pragma allows you to fine-tune individual
procedure calls for maximum speed. Other vendors’ languages use a less efficient calling
convention; you must, therefore, disable this calling convention when interfacing to
precompiled objects written for these compilers (see the Advanced Programmer’s Guide that
comes with SoftVelocity C, C++, and Modula-2, Chapter 5: Multi-language Programming). This
#pragma has no effect on structure parameters, which are always passed on the stack.

The argument for reg_param is a register list, specifying which registers should be used.
Registers for parameters are allocated left to right from the list. The table shows how the
compiler allocates registers dependent on parameter types:

1 byte ax, bx, cx, dx
2 bytes ax, bx, cx, dx, si, di
4 bytes ax, bx, cx, dx, si, di for |ow word.
ax, bx, cx, dx, si, di, es, ds for high word.
fl oating point st0, stl, st2, st3, st4, st5, st6

Note that the es and ds registers will only be used for the high word of a 4-byte parameter
where that parameter is of pointer type. If either the low or high word cannot be allocated, then
the whole parameter is passed on the stack.

When the compiler exhausts the list of registers, it passes the parameter on the stack. If you
specify an empty list, the compiler uses the stack for all parameters.



84 Advanced Topics & Reference Guide

The default setting for the SoftVelocity calling convention is:
#pragma cal | (reg_par an¥>( ax, bx, cx, dx, st0, st6, st5, st4,st3))

The default setting for the stack calling convention is:
#pragma cal | (reg_param => ())

#pragma call(reg_saved => RegL.ist) cm

This #pragma specifies which registers a procedure preserves. The argument RegList is a list
that specifies the set of registers.

The default set for the SoftVelocity calling convention is:
ccal | (reg_saved=>(ax, bx, cx, dx, si, di, ds, stl,st2))

The default set for the stack calling convention is:
#pragma cal | (reg_saved=>(si, di,ds,stl,st2))

#pragma call(o_a_size => on | off) m
When on, this option passes the size of open array parameters on the stack:
(*# call( o_a_size =>on ) *)

This #pragma has no effect for value parameter open arrays, unless the o_a_copy #pragma is
set off.

The default setting is on.

#pragma call(o_a_copy => on | off) m

When on, open array parameters are copied onto the stack as part of the procedure prolog. If
off, only a reference to the array is passed. Note that the open array parameters size must be
passed in order for a copy to be made - see #pragma call(o_a_size). The default setting is on.

#pragma call(ds_eq_ss => on | off) m

It controls whether VAR parameters use 16- or 32-bit pointers. The default setting is on for
small and medium models, otherwise off.



Project System Reference 85

#pragma call(var_arg => on | off) m

When on, it implies that the following procedures take a variable number of arguments. This
effectively disables the "too many arguments" error that the compiler would normally detect.
The consequence however, is that the compiler cannot carry out any type checking on the
arguments.

This #pragma should be used when calling C procedures (such as printf) where the number of
arguments varies:

(*# call (var_arg => on,
reg_paranr>(),
c_conv=>0n ) *)

The default setting is off.

#pragma call(reg_return => RegList) cm

This #pragma is used to specify the registers to be used for return values of integer, pointer
and floating point types. For example:

#pragma cal |l (reg_return => (bx, cx))

The default setting is:
#pragma cal | (reg_return=>(ax, dx, st0))

#pragma call(result_optional => on | off) m

It can be used to call a procedure as a proper procedure without generating a compiler error.
For example:

(*# save *)

(*# nodul e( result_optional => on ) *)
PROCEDURE FuncProc(x: CHAR): CARDI NAL;
(*# restore *)

With this declaration, you can write both of the following:

i := FuncProc(‘a’);
FuncProc(‘a’);

This is only useful when the called procedure has a side effect that is more important than the
result. It is particularly useful when calling SoftVelocity C library procedures.

The default setting is off.



86 Advanced Topics & Reference Guide

#pragma call(set_jmp => on | off) cm

This #pragma should only be used for the library routines which implement non-local jumps.
The effect is to inform the compiler of the non-standard register saving properties of these
routines.

#pragma call(inline_max => Number) cpm

This #pragma controls the largest procedure which is inlined. The default setting is 12, which
corresponds to the minimum code size for most programs. A larger value increases the code
size and may accelerate code execution.

The #pragma takes effect for each call, so a procedure may be called in different ways at
different places.

Procedures are not inlined if the body has not been compiled before the call.

#pragma call(standard_conv => on | off) c

The effect on C and C++ programs is the same as the call(c_conv) #pragma. For Modula-2
there is no effect. The default is off.

#pragma call(opt_var_arg => on | off) cp

This #pragma controls whether optimized entry sequences are generated for procedures with
variable parameter lists. The default is on.

Data #pragmas

#pragmas with the class name data affect data segmentation, data pointers and all aspects of
data layout. The current settings of the data #pragmas at the point of a variable’s declaration
will affect the way in which it is accessed.

The following data #pragmas are available:

#pragmae data(c_far_ext => on | off)

#pragma data(cl ass_hierarchy => on | off )
#pragma dat a(conpatible_class => on | off)
#pragma dat a(const_assign => on | off )

#pragma data(const _i n_code => on | off)

#pragma data(cpp_conpatible_class => on | off )



Project System Reference 87

#pragma data(ext_record => on | off )
#pragmae data(far_ext => on | off )

#pragma data(near_ptr => on | off)

#pragma dat a(packed => on | off )

#pragma dat a(seg_name => identifier)
#pragma dat a(stack_si ze => Nunber)

#pragnma data(threshold => Nunber)

#pragme data(var_enumsize => on | off)
#pragma data(volatile => on | off)

#pragma data(vol atile_variant => on | off )

#pragma data(seg_name => identifier) cpm

The #pragma data(seg_3name=>xxx) specifies that the compiler should place global initialized
data objects in a segment named xxx_DATA, and global uninitialized data objects in a
segment named xxx_BSS. These both have group name xxx and are in the FAR_DATA class.
If the size of a data object is larger than the global data threshold, the compiler places the
object in a separate segment.

The following example makes the names of the default segments: MYDATA_DATA and
MYDATA_BSS. These segments are in group MYDATA and have class FAR_DATA:
#pragma dat a(seg_name => MYDATA)
You can also specify null, to indicate the names _BSS and _DATA. The default value is null in
all models except for extra large and multi-thread. For example:
#pragma dat a(seg_name => null)

#pragma data(far_ext => on | off ) cp
When on, the code generator does not assume that external variables are in the segment
specified by the segment #pragma. The #pragma defaults to on. For example:

#pragma( seg_nane=>MYDATA, far_ext=>o0ff)

makes the name of the default segments MYDATA DATA and MYDATA_BSS in group
MYDATA. The compiler assumes external data objects to be in the same segment.



88 Advanced Topics & Reference Guide

#pragma data(c_far_ext => on | off) pm

When on, the code generator does not assume that external variables are in the segment
specified by the seg_name #pragma. The #pragma defaults to off in all memory models. For
example:

(*# data(seg_nanme => MYDATA, c_far_ext => off ) *)

makes the name of the default segments MYDATA DATA and MYDATA_BSS in group
MYDATA. This #pragma is not particularly useful in Modula-2 except for interfacing to C.

#pragma data(near_ptr => on | off) cm

Specifies whether data pointers are near or far. This #pragma also affects pointers generated
by the & operator and by implicit array to pointer conversions in C and C++. For example:

#pragma dat a(near_ptr => on)

makes data pointers near.

#pragma data(volatile => on | off) m

Variables declared when this #pragma is set to on are considered to be volatile, and will
always be kept in memory, rather than being kept in registers across statements.

The default setting is off. This #pragma is not allowed in a project file, and is not available for C
and C++, where the volatile keyword should be used.

#pragma data(volatile_variant => on | off ) m

The effect is as for #pragma data(volatile), but applies to variables of variant record types only.
The default setting is off.

#pragma data(ext_record => on | off ) pm

Normally SoftVelocity does not allow two fields in different alternatives of a variant record to
have the same name. Using this #pragma:

(*# data( ext_record => on) *)

will allow you to use the same name in different alternatives, if the fields are located at the
same offset in the variant record and they have the same data type.

The default setting is off.



Project System Reference 89

#pragma data(var_enum_size => on | off) pm

Enumeration constants with less than 256 alternative values are normally stored in one byte.
Switching this option off:

(*# data( var_enumsize => off) *)

will force the compiler to store them as two-byte quantities. This is particularly useful for
interfacing to third-party libraries and operating system calls that expect a word value. Without
this #pragma the enumeration would be byte rather than word size.

The default setting is on.

#pragma data(stack_size => Number) cm

Specifies the size of the stack. You must place this #pragma in the file containing the main
procedure (the main module in Modula-2). If the stack size cannot be set to the specified size,
the compiler uses the largest possible size. The default size is 16K bytes. For example:

#pragma dat a(stack_si ze => 0x6000)
mai n()

{

/* statenents */

}
makes the size of the run-time stack 0x6000 bytes (24K).

#pragma data(packed => on | off) pm
This #pragma controls whether record fields are packed at bit level. The default setting is off.

#pragma data(const_in_code => on | off) p

This #pragma controls whether constants are put in to a code or data segment. The default
setting is on.

#pragma data(class_hierarchy =>on | off) pm

This #pragma controls whether information about class hierarchies is included in the class
descriptor (method table). The information is used by the IS operator and TypeGuards with
check on. The default setting is on.

#pragma data(cpp_compatible_class => on | off) pm

This #pragma controls whether the compiler includes extra information in class descriptors to
provide compatibility with C. The default setting is off.



90 Advanced Topics & Reference Guide

#pragma data(compatible_class => on | off) cp

This #pragma controls whether the compiler includes the correct information in class
descriptors to provide compatibility with Modula-2. The default setting is off.

#pragma data(threshold => Number) cpm

This #pragma sets the global data threshold. This determines at what size a data object is
placed in a segment of its own. The default setting is 10000 bytes.

#pragma data(const_assign =>on | off ) pm

This #pragma controls whether it is possible to assign to a structured constant. The default
setting is off.

If const_in_code=>on is specified, assignments to constants will result in protection violations.

Check #pragmas

#pragmas with the class name check control run-time error checking. These can help you to
locate erroneous program logic, but at the expense of slower execution. All these #pragmas
default to off.

When a run-time check detects an error, the default action is to terminate the process and
create the file CWLOG.TXT.

The following check #pragmas are available:
#pragma check(guard => on | off)
#pragma check(index => on | off)
#pragma check(nil _ptr => on | off)
#pragma check(overflow => on | off)
#pragma check(range => on | off)
#pragma check(stack => on | off)

#pragma check(stack => on | off) cpm

When on, the run-time system checks that your program does not run out of stack space. You
can increase the size of the stack using the data(stack_size) #pragma.



Project System Reference 91

#pragma check(nil_ptr => on | off) cpm
When on, the run-time system checks for any dereference of NULL or NIL pointers.

#pragma check(range => on | off) pm

When on, a range check is performed whenever a value is assigned to a variable of subrange
or enumerated type. In addition, compile-time values are checked to ensure that they are in the
range of their type.

#pragma check(overflow => on | off) pm
When on, the run-time system checks that numeric values do not go out of range.

#pragma check(index => on | off) cpm
When on, the run-time system checks for the use of an array index larger than the array size.

#pragma check(guard => on | off) pm
This #pragma controls whether checks are performed on the checked-guard operator.



92 Advanced Topics & Reference Guide

Name #pragmas

#pragmas with the class name control aspects of linkage naming. However, the C programmer
should also be familiar with C nhame mangling and extern declarations.

The following name #pragmas are available:
#pragma name(prefix => (none | nodula | ¢ | 0s2_lib | w ndows))
#pragma nane(prefix => string)
#pragma nanme(upper _case => on | off)

#pragma name(upper_case => on | off) cp

This #pragma is available in C and C++ Only. It specifies whether public names should be
converted to upper case. You would use this when interfacing to Pascal, or to third party C
libraries. The default setting is off.

#pragma name(prefix) cpm

There are two forms of this #pragma:

In Modula-2: name(prefix => (none | modula | ¢ | 0s2_lib | windows))

In C and C++: name(prefix => string)

#pragma name(prefix => (none | modula | ¢ | 0s2_lib | windows)) mp

This #pragma is available under Modula-2 (under C and C++ the syntax is slightly different -
see #pragma name(prefix => string).

The name(prefix) #pragma specifies the prefix and case of the public names that the compiler
uses. The public names are names for non-static procedures and external data objects. By
default, SoftVelocity Modula-2 prefixes all external names with the name of the module
followed by an ‘@’ for data and a ‘$’ for procedures. You will need to use this #pragma to
interface to SoftVelocity C.

The prefix #pragma specifies which prefix scheme to use:

Modula Use the SoftVelocity Modula-2 naming convention of prefixing
all external names with the name of the module and an ‘@’ or a
‘$.

none Puts no prefix on external names.

c Use the C naming convention (adds an underbar, *_’ to all
external names).

0s2_lib Use the OS/2 library standard (prefix all external names with

the module name).
windows Use the Microsoft Windows external naming convention.



Project System Reference 93

#pragma name(prefix => string) cp
This #pragma is available under C and C++ Only. Under Modula-2 the syntax is slightly
different - see #pragma name(prefix => (none | modula | ¢ | 0s2_lib | windows)).

The value is a string specifying the prefix to all public names. An empty string specifies no
prefix. The default prefix is an underbar.

If you wish to interface to SoftVelocity Modula-2, you can use this #pragma to specify the
module prefix with a dollar ($) suffix. For example, to use the WrStr procedure from module
10:

#pragma name(prefix => "1C8")
voi d W Card(unsi gned);

In C, a Pascal or Modula? linkage specification can specify a module name within the linkage
specification, in which case the use of this #pragma is not necessary.

The default setting is language-dependent. The Project System does not set a default value for
this macro.



94 Advanced Topics & Reference Guide

Optimize #pragmas

#pragmas with the class name optimize control optimizations performed by the SoftVelocity
code generator. By default, all optimizations are enabled. Turning off an optimization will result
in poorer code quality, and is unlikely to have a significant impact on compile times.

The following optimize #pragmas are available:

#pragma optimn ze(alias => on | off)

#pragma optimn ze(const => on | off)

#pragma optim ze(cpu => 86 | 286 | 386 | 486)

#pragma optini ze(cse => on | off)

#pragma optim ze(junmp => on | off)

#pragma optini ze(loop => on | off)

#pragma optim ze(peep_hole => on | off)

#pragma optim ze(regass => on | off)

#pragma optin ze(speed => on | off)

#pragma optim ze(stk_frame => on | off)
#pragma optimize(cse => on | off) cpm

When on, the compiler minimizes evaluation of complete expressions by keeping partial results
in a temporary register. The default setting is on.

#pragma optimize(const => on | off) cpm

When on, the compiler will hold frequently used constants in registers to produce faster code.
The default setting is on.

#pragma optimize(speed => on | off) cpm

When on, SoftVelocity tries to make the code run as fast as possible without regard for the
code size. When off, SoftVelocity tries to make the code as small as possible.

A good example of the difference between optimizing for speed and optimizing for space is the
use of a for loop. When optimizing for speed, the compiler might use nop instructions to place
jump labels inside the for loop on even boundaries. The 80x86 architecture makes this much
guicker than odd boundaries, but each nop adds another byte to the code size. This means
that when optimizing for space, the compiler eliminates the extra nop instructions. The default
setting is on.



Project System Reference 95

#pragma optimize(stk_frame => on | off) cpm

When on, the compiler will only make stack frames where required, thus eliminating the need
to set up the BP register. This optimization can only be made when all parameters and local
variables for a procedure can be held in machine registers.

When off, the compiler always sets up the BP register, thus allowing a complete activation
stack listing while debugging. The default setting is on.

#pragma optimize(regass => on | off) cpm

When on, the compiler spends time finding the best allocation of registers for variables. This
results in fast and tight code but slower compile. The default setting is on.

#pragma optimize(peep_hole => on| off) cpm

When on, the compiler performs a variety of machine-code translations, generating smaller
and faster code. The default setting is on.

#pragma optimize(jump => on | off) cpm

When on, the compiler will rearrange loops to eliminate as many jumps as possible, thus
generating faster code. The default setting is on.

#pragma optimize(loop => on | off) cpm

When on, the compiler uses the loop depth when eliminating common sub-expressions and
performing jump optimizations. The result of this optimization is faster, but potentially larger,
code. The default is on.

#pragma optimize(alias => on | off) cpm

When on, this allows the compiler to assume that variables in a procedure will not also be used
indirectly with a pointer in the same procedure. This assumption is not strictly allowed in ANSI
C but is correct for all meaningful programs. The default setting is on.

#pragma optimize(cpu => 86 | 286 | 386 | 486) cpm

This controls the instructions used by the code generator, by declaring the processor to be
used. The default is cpu=>286. This is normally set on the Project System’s Optimize tab.



96 Advanced Topics & Reference Guide

Debuqg #pragmas

#pragmas with the class name debug control the amount of additional information produced by
the code-generator to assist debugging programs.

The following debug #pragmas are available.

#pragma debug(line_num=> on | off)
#pragma debug(proc_trace => on | off)
#pragma debug(public => on | off)
#pragma debug(vid => off | min | full)

#pragma debug(vid => off | min | full) cpm

When full, the compiler places information for the SoftVelocity Visual Interactive Debugger
(VID) into a .DBD file. Use this option when debugging your program with the SoftVelocity
debugger.

This #pragma disables the register usage and stack frame optimizations, allowing full access
to variables within the debugger. All local variables are treated as volatile, to ensure that their
values are not held in registers across statements, thus ensuring that the debugger can access
their values at all times.

When min, the compiler performs the optimizations described above, and does not treat local
variables as volatile. The debugger can still be used, but cannot reference local variables and
some stack frames.

When off, the compiler generates no debugger information, thus speeding compile, generating
the best possible code, and saving disk space. The default setting is off.

#pragma debug(proc_trace => on | off) pm

When this #pragma is on, the compiler generates instructions to call the procedures EnterProc
and ExitProc on, respectively, entering and exiting every procedure. These procedures can
then perform any procedure tracing you may require.

You should ensure that this #pragma is off for the EnterProc and ExitProc procedures
themselves, otherwise infinite recursion will occur and your program will undoubtedly crash.

The two procedures must be visible to the module in which proc_trace is set on. This means
that the module itself must define the procedures ExitProc and EnterProc or the module must
specifically import them using an unqualified import.

The default setting is off.



Project System Reference 97

#pragma debug(line_num => on | off) cpm

This #pragma causes the compiler to generate line number information for debuggers such as
symdeb. This information is stored in object files and printed in the map file. The default setting
is off.

#pragma debug(public => on | off) cpm

This causes private objects to be made public to facilitate the use of debuggers such as
symdeb. It may cause duplicated public warnings at link-time in languages such as C and C++
which do not have a modular structure. These warnings may be safely ignored, although it is
recommended that such procedures should be renamed to avoid possible confusion. The
default setting is off.



98 Advanced Topics & Reference Guide

Module #pragmas

#pragmas with the class name module control options that apply to an entire source file or
module. These #pragmas should be specified at the top of any source files to which they
apply, or in the project file.

The following module #pragmas are available:

#pragma nodul e(i npl erentation => on | off )
#pragma nodul e(init_code => on | off )
#pragnma nodul e(init_prio => Nunber)

#pragma nodul e(smart_link => on | off)

#pragma module(init_code => on | off ) pm

When on, it implies that the module contains initialization code to be run when the program is
loaded and before the main module is executed. Switching the option off is useful for modules
written in other languages, as it will stop the linker warning of undefined symbols:

(*# nmodul e( init_code => off ) *)

If an implementation module sets this #pragma off, then there is a knock-on effect, i.e., all
imported modules must also have init_code set to off.

The default setting is on.

#pragma module(implementation => on | off ) pm

This #pragma specifies whether or not a definition file (.DEF or .ITF) has a corresponding
object file. It should be turned off if the definition file defines interfaces to routines in a different
language, to prevent the Project System from attempting to remake the corresponding object
file. The default is on.

This #pragma can also be used in the implementation part of a module, before any module
source code. In this case it overrides the default naming of the associated object file. Normally
the name of the .OBJ file corresponding to a module is taken from the module name. When
this #pragma is set off, the object filename will be taken from the filename, not the module
name.



Project System Reference 99

#pragma module(smart_link => on | off) cpm

Setting this #pragma to off disables the smart linking feature, to the extent that either all or
none of the objects in each segment from a compile will be included in a link. This may result
in quicker linking, and also may allow other linkers (such as Microsoft) to be used. (There are
many potential problems with trying to use a non-SoftVelocity linker, and it is definitely not
recommended). The default setting is on.

#pragma module(init_prio => Number) cp

This #pragma is available under C only. It defines a priority for the initialization code for static
objects. Normally the initialization order is undefined between files, but this #pragma allows
you to control the initialization order in that files with higher priority are initialized before
modules with lower priority. The number must be a value between 0 and 32. The default value
is 16, and the C library uses values between 25 and 32 (it is therefore not recommended to
use values in this range, otherwise part of the library may not have initialized before user code
is executed).



100

Advanced Topics & Reference Guide

Option #pragmas

#pragmas with the class name option control language-dependent options, such as
SoftVelocity extensions. The following option #pragmas are available:

#pragma
#pragma
#pr agma
#pr agma
#pr agma
#pr agma
#pragma
#pragma

opti
opti
opti
opti
opti
opti
opti
opti

on(ansi => on |
on(bit_opr => on

on(incl_cmt =>
on(l ang_ext =>
on(mn_line =>
on(nest_cnt =>
on(pre_proc =>
on(uns_char =>

of f)
of f)
on | off)
on | off)
on | off)
on | off)
on | off)
on | off)

#pragma option(ansi => on | off)

This #pragma is available under C and C++ Only. If it is set to on, ANSI keywords only are
allowed. The default setting is off.

#pragma option(lang_ext => on | off)

This #pragma is available under C and C++ Only. The following constructs are not valid under
ANSI C, but are included in SoftVelocity C and C++ when this #pragma is not set on:

A type cast yields an Ivalue if the operand is an Ivalue.

cp

cp

Procedures can be initialized with binary machine code.

The relational operators (>,>=,<=,<) allow the operators to be a mixture of integer and
pointer operands.

Bitfields in C can have type char and unsigned char.
Relative pointers.
The default setting is on.



Project System Reference 101

#pragma option(nest_cmt => on | off) cp

This #pragma is available under C and C++ Only. When on, you can nest comments without
causing an error message. For example:

/* This is a test conment
/* This is a nested conment */
*/

When off, nested comments cause an error message. The default is off, allowing the compiler
to trap unterminated comments more easily and make it conform with ANSI C.

#pragma option(uns_char => on | off) cp

This #pragma is available under C and C++ Only. When on, types declared as char lie
between 0 and 255. When off, values declared as char lie between -127 and 128. The default
setting is off.

#pragma option(pre_proc => on | off) cp

This #pragma is available under C and C++ Only. When on, the compiler produces
preprocessor output in a file with the same name but with extension .i. This output file makes it
easy to debug the result of macro expansions. The default setting is off.

#pragma option(incl_cmt => on | off) cp

This #pragma is available under C and C++ Only. When on, comments are preserved in
preprocessor output. The default setting is off.

This #pragma has no effect unless #pragma pre_proc is on.

#pragma option(min_line => on | off) cp

This #pragma is available under C and C++ Only. When on, the preprocessor minimizes the
number of blank lines in output. The default setting is on.

This #pragma has no effect unless #pragma pre_proc is on.

#pragma option(bit_opr => on | off) pm
This #pragma is available under Modula-2 only. It allows bitwise operations on cardinals:
(a ANDDOR b, NOT a ).

The default setting is off.



102 Advanced Topics & Reference Guide

Warn #pragmas

#pragmas with the class hame warn control the generation of compiler warnings. These
#pragmas are only available under C and C++.

The warnings given by SoftVelocity C and C++ help you to check, as far as possible, common
coding mistakes. Since no compiler can determine your intentions, you may get warnings even
if your code is correct. Your code may generate some warnings more than others, so
SoftVelocity allows you to customize which warning checks are performed.

You can set each of the warning options to on, off, or err. When on, SoftVelocity checks the
code for that warning and reports the problem, but the problem does not stop the compile or
linking. When off, SoftVelocity ignores the warning. When err, SoftVelocity checks the code for
the warning, reports the problem, and does not allow linking until you have fixed the problem.

SoftVelocity C and C++ check the code and produce a warning for a good reason. Indeed, to
use your non-ANSI C code, SoftVelocity C uses a minimal set of warning messages by default.
You should, therefore, think twice before turning off any of the default warning messages. We
advise that you keep all the warnings either on or err.

The following warn #pragmas are available:

#pragma warn(wacc => on | off | err)
#pragma warn(wait => on | off | err)
#pragma warn(wall => on | off | err)
#pragma warn(watr => on | off | err)
#pragma warn(wcic => on | off | err)
#pragma warn(wcld => on | off | err)
#pragma warn(welt => on | off | err)
#pragma warn(wcne => on | off | err)
#pragma warn(wcor => on | off | err)
#pragma warn(wcrt => on | off | err)
#pragma warn(wdel => on | off | err)
#pragma warn(wdne => on | off | err)
#pragma warn(wdnu => on | off | err)
#pragma warn(wetb => on | off | err)
#pragma warn(wfnd => on | off | err)
#pragma warn(wftn => on | off | err)
#pragma warn(wnid => on | off | err)
#pragma warn(wnre => on | off | err)
#pragma warn(wnrv => on | off | err)



Project System Reference

103

#pragma warn(wntf => on | off | err)
#pragma warn(wovl => on | off | err)
#pragma warn(wovr => on | off | err)
#pragma warn(wpcv => on | off | err)
#pragma warn(wpic => on | off | err)
#pragma warn(wpin => on | off | err)
#pragma warn(wpnd => on | off | err)
#pragma warn(wpnu => on | off | err)
#pragma warn(wprg => on | off | err)
#pragma warn(wal => on | off | err)
#pragma warn(wfp => on | off | err)
#pragma warn(wsto => on | off | err)
#pragma warn(wxt => on | off | err)
#pragma warn(wubd => on | off | err)
#pragma warn(wnu => on | off | err)
#pragma warn(wall => on | off | err) cp

This #pragma affects the settings of all the warnings. If set to on or err, all warnings will be
enabled.

#pragma warn(wpcv => on | off | err) cp
Pointer conversion. When on or err, the compiler checks for a conversion between two

incompatible pointer types, or between a pointer and an integral type. The default setting is on.

#pragma warn(wdne => on | off | err) cp

Declaration has no effect. When on or err, the compiler checks for a declaration that has no
meaning, for example, long int;. A declaration should contain a variable declarator, a structure
or union tag, or members of an enumeration. The default setting is on.

#pragma warn(wsto => on | off | err) cp

Storage class redeclared. When on or err, the compiler checks that you have not declared
the same variable differently within your program. For example:

i nt X; /* External I|inkage */

static int x; /* Internal |inkage */

The static storage class always takes preference. The default setting is on.



104 Advanced Topics & Reference Guide

#pragma warn(wtxt => on | off | err) cp

Unexpected text in preprocessor command. When on or err, the compiler checks for a new
line character terminating a preprocessor command. The default setting is on.

#pragma warn(wprg => on | off | err) cp

Unknown #pragma. When on or err, the compiler checks for foreign #pragmas or mistakes in
SoftVelocity C #pragmas. If you are only creating code using SoftVelocity C or C++ #pragmas,
you should switch this warning to either on or err. The default setting is on.

#pragma warn(wfnd => on | off | err) cp

Function not declared. When on or err, the compiler checks for functions that have been
called but not declared. If these functions occur, SoftVelocity C assumes that the function is an
extern function returning an int. The default setting is off.

#pragma warn(wpnd => on | off | err) cp

Function prototype not declared. When on or err, the compiler checks whether a function
has a prototype associated with it. Prototypes are important to SoftVelocity, since it can not do
much type checking without them. You should, therefore, declare prototypes for all functions. It
is best to keep this warning on or err. The default setting is off.

#pragma warn(wnre => on | off | err) cp

No expression in return statement. When on or err, the compiler checks for a return value in
a non-void function. You should keep this warning off if you are compiling some old style C
code without prototypes. The default setting is off.

#pragma warn(wnrv => on | off | err) cp

No return value in function. When on or err, the compiler checks for a return statement in a
non-void function. The default setting is off.

#pragma warn(watr => on | off | err) cp

Different const attributes. When on or err, the compiler checks whether a function that
expects a pointer to a variable gets a pointer to a constant. The default setting is on.



Project System Reference 105

#pragma warn(wftn => on | off | err) cp

Far to near pointer conversion. When on or err, the compiler checks for conversion of a 32-
bit far pointer to a 16-bit near pointer. The default setting is on.

#pragma warn(wntf => on | off | err) cp

Near to far pointer conversion. When on or err, the compiler checks for conversion of a 16-
bit near pointer to a 32-bit far pointer. The default setting is on.

#pragma warn(wubd => on | off | err) cp

Possible use of variable before assignment. When on or err, the compiler checks that you
have used a local variable before you have given it a value. SoftVelocity checks this warning
with a simple scan through the function, which can cause gotos and the like to generate false
warnings.

#pragma warn(wpnu => on | off | err) cp

Parameter never used in function. When on or err, the compiler checks for a parameter that
the code never uses, so declaration of dummy parameters generates warnings. The default
setting is off.

#pragma warn(wdnu => on | off | err) cp

Variable declared but never used. When on or err, the compiler checks whether a local
variable has been declared but never used in the function. The default setting is on.

#pragma warn(wcne => on | off | err) cp

Code has no effect. When on or err, the compiler checks statements and the left operand in a
comma expression to see if they have no effect. The default setting is on. For example:

X Y; /* expression has no effect */
f, Xx; /* left operand has no effect */
#pragma warn(wcld => on | off | err) cp

Conversion may lose significant digits. When on or err, the compiler checks for a
conversion from long or unsigned long to int or unsigned int. The default setting is on.



106 Advanced Topics & Reference Guide

#pragma warn(wait => on | off | err) cp

Assignment in test expression. When on or err, the compiler checks for a possible mistyping
of the C equality (==) operator. The equality operator contains two =. For example:

if (x=y) printf("X equals Y'); [/* is a mstake */
The default setting is on.

#pragma warn(wetb => on | off | err) cp

Value of escape sequence is too large. When on or err, the compiler checks that an escape
sequence is in the range 0 to 255. The default setting is on.

#pragma warn(wcor => on | off | err) cp

Value of constant is out of range. When on or err, the compiler checks whether an integer
constant is in the range of an unsigned long, or a floating point constant is in the range of a
long double. The default setting is on.

#pragma warn(wclt => on | off | err) cp

Constant is long. When on or err, the compiler checks for an integral constant that has type
long because of its value but does not have an L suffix. The default setting is off.

#pragma warn(wral => on | off | err) cp

Returns address of local variable. When on or err, checks for a return statement that returns
the address of a local variable. This causes a problem because C reclaims the variable
storage on completion of the function. The pointer, therefore, points at undefined data. The
default setting is on.



Project System Reference

107

#pragma warn(wpin => on | off | err) cp

Default type promotion on parameter. When on or err, the compiler compares the
declaration of a parameter in an old-style function definition with the prototype for incompatible
argument promotions. For example:

int func(char); /* paraneter declared as char */

int func(lntegerByPronotion);
char I ntegerByPronotion;
/* | NCOWPATI BLE */

This is a violation of the ANSI C standard regarding compatible function declarations.The
default setting is on.

#pragma warn(wpic => on | off | err) cp

Parameter list inconsistent with previous call. This warning is issued if a parameter
declaration is incompatible with the corresponding parameter in a previous function
declaration. The default setting is on.

#pragma warn(wnid => on | off | err) cp

Address for local variable not in DGROUP. When on or err, the compiler checks that a local
variable does not have its address taken in small model, when using #pragma
data(ss_in_dgroup => off). The default setting is on.

#pragma warn(wrfp => on | off | err) cp

Function redeclared with fixed parameters. When on or err, the compiler checks for a
prototype with a variable number of arguments, but the corresponding function definition
specifies a fixed number of arguments. This will work in SoftVelocity C, but it is a violation of
the ANSI C rules for compatible function declarations, and therefore, not portable. The default
setting is on.



108 Advanced Topics & Reference Guide

#pragma warn(wvnu => on | off | err) cp

Local variable never used. When on or err, the compiler checks whether you declare a local
variable and assign it a value but never use it. The default setting is on.

#pragma warn(wovr => on | off | err) cp

Overflow in constant expression. This warning is issued when a constant integer expression
overflows. The default setting is on.

#pragma warn(wacc => on | off | err) cp

Default access specifier used for base class. This warning is issued if a base class
specification does not have an access specifier and the default access is used (i.e. public for a
struct and private for a class). The default setting is on.

#pragma warn(wdel => on | off | err) cp

Expression in delete[] is obsolete. This warning is issued if an expression is specified in the
square brackets of a delete expression. The expression is ignored. This is obsolete C usage.
The default setting is on.

#pragma warn(wovl => on | off | err) cp

Keyword ‘overload’ is not required. This warning is issued if the keyword overload is
specified in C. The use of this keyword is obsolete C usage. The default setting is on.

#pragma warn(wcic => on | off | err) cp

Constant in code segment requires initialization. This warning is issued if a constant
placed in the code segment requires run-time initialization, as may be the case for an object
declared const in C, whose initializer is an expression, when the const_in_code #pragma is set
on. This situation will lead to a protection violation in OS/2 and Window 3 protected mode
applications, so const_in_code should be set off if this warning is encountered. The default
setting is on.

#pragma warn(wcrt => on | off | err) cp
Class definition as function return type, missing ‘;’ after ‘}'?

This warning is issued if a class is defined in a function return type specification. Such a
construct is legal, but unusual, and frequently results from omitting a semicolon between a
class definition and the following function declaration. The default setting is on.



Project System Reference 109

Project #pragmas

A #pragma with the class name project is used to pass information from a compile to the
Project System. The value of the #pragma should be a string, which is then stored in the object
file for use by the Project System. Whenever an object file is added to the link list, the text
specified using this #pragma is executed as a Project System command. For example, if a
header file includes the line:

#pragma project ("#set nyflag=on")

then whenever a source file that includes this header file is included in a project, the Project
System macro myflag will be set. This might be used for processing later in the project file.

This #pragma may only appear in source files, not in a project file.

Save/Restore #pragmas

The save #pragma saves the entire #pragma state, so you can later restore it with a restore
#pragma. The save and restore #pragmas work in a stack-like manner, thus allowing you to
nest them. For example:

/*save the #pragma state and enabl e the interruptconvention*/
#pragma save

#pragma cal |l (interrupt => on)

/* interrupt functions are specified here */

#pragnma restore

There is no limit on the number of saves, except the amount of memory available. These
#pragmas may be used in source files or in a project file.

Link #pragmas

#pragma link( <filename> {,<filename>})
#pragma linkfirst( <filename>)

These #pragmas may be specified in a project file, in which case the nominated files are
added immediately to the link list. In addition, the link #pragma may be specified in a C or C++
source file, in which case the nominated files will be added to the link list when an autocompile
command is executed in the Project System, if any files already on the link list had this
#pragma specified. For example:

#pragma link( filel.obj, file2.0obj, file3.lib)
#pragma |inkfirst (initexe.obj)



110 Advanced Topics & Reference Guide

If no extension is given .obj is assumed. Files specified using #pragma link are added to the
end of the link list (unless already present). A file specified using #pragma linkfirst is linked
before the link list. Only one file may be specified for each link using #pragma linkfirst.

Link Option #pragmas

#pragmas with the class name link_option are used to specify linker options. These #pragmas
may only occur in project files.

The following link_option #pragmas are available:

#pragma |ink_option(case => on | off )
#pragma |ink_option(decode => on | off )
#pragma | ink_option(link=> <string>)

#pragma |ink_option(map => on | off)

#pragma |ink_option(overlay => on | off )
#pragma |ink_option(pack => on | off )
#pragma |ink_option(shift => num

#pragma |ink_option(share_const => on | off)
#pragma |ink_option(icon => iconnane)

#pragma link_option(map => on | off) p

Controls whether a map file is generated with information about segment sizes and publics etc.
The default is to create a map file.

#pragma link_option(case => on | off ) p

This #pragma controls whether the linker treats upper/lower case as significant when linking.
The default is case=>o0ff.

#pragma link_option(pack => on | off) p
This #pragma controls whether segments are packed together. The default is pack=>on.

#pragma link_option(decode => on | off ) p

This indicates whether the linker should produce decded names in the MAP file, as well as
their public symbols. The option is set to on if any C source files are included in a project,
otherwise off.



Project System Reference 111

#pragma link_option(shift => num) p

This specifies the segment alignment shift count for new-format executables. The default is 4,
indicating that segments are aligned on 16-byte boundaries.

#pragma link_option(link => <string>) p
This specifies the project system command to execute on #dolink.

#pragma link_option(share_const=> on | off) p

This pragma controls whether the 16-bit linker commons-up identical constants. The default is
on, making the exe file smaller, but C programmers may want to turn it off if they are relying on
constants having different addresses.

#pragma link_option(icon => iconname) p
This pragma specifies the name of the application icon file (icon => Mylcon.ico).

Define #pragmas

A #pragma whose class name is define is used to define a conditional compile symbol for
subsequent compiles. The symbol is available for interrogation by the OMIT and COMPILE
compiler directives. See the Language Reference for more information. This #pragma may
only be used in project files.

A define #pragma takes the form:
#pragma define(i dent =>val ue)

where ident names the symbol and value specifies the value it is given.

For Modula-2, the given identifier is defined as a boolean constant with value TRUE if the
value on was specified, otherwise FALSE. For C and C++, the given identifier is defined as a
macro. If the value on is specified, the macro is defined to the value 1. If the value off is
specified, the macro is not defined. Any other value will cause the identifier to be defined as a
macro expanding to the given value. Only a single C or C++ token may be specified, or the
compiler will report an error. To define a macro where the value is a string literal, use a
command of the form #pragma define (name => "'fred").

#pragma define(maincode => on | off) p

Enables (on—the default) or disables (off) generation of initialization code. Turn maincode off
when compiling generic modules or LIB modules.



112 Advanced Topics & Reference Guide

#pragma define(zero_divide => on | off) p

Specifies divide by zero behavior. When on, division by zero returns zero. When off (the
default), division by zero returns an exception.

#pragma define(logical_round =>on | off) p

Specifies rounding behavior when truncating a REAL to a LONG. When on, the result is
rounded up if the REAL value is "close to" the next larger integer. When off (default), no
rounding occurs.

#pragma define(stack_threshold => size) p

Specifies the size (in bytes) of the threshold at which any data structure larger than the
specified size (default is 16384) is assigned heap memory instead of stack memory.

#pragma define(BCD_Arithmetic => on | off) p

Specifies use of Binary Coded Decimal (BCD) arithmetic when on (default) and forces use of
Floating Point arithmetic when off.

#pragma define(BCD_ULONG => on | off ) p

Specifies use of Binary Coded Decimal (BCD) arithmetic for ULONG variables when on
(default) and forces use of Floating Point when off.

#pragma define(BCD_Large => on | off ) p

Enables or diables use of DECIMAL and PDECIMAL variables greater than fifteen (15) digits.
The default is on (enabled).

#pragma define(big_code =>n) p

Specifies number of procedures per segment. By default (n = 0) all procedures ina single
module go into a single code segment. Setting the value of n for a specific module "breaks up"
the module containing a large number of procedures which "breaks" the 64K code segment
limit.



Project System Reference 113

#pragma define(profile => on | off ) p

Specifies the compiler will invoke a procedure call at the beginning and end of compiling each
procedure. This allows you to implement your own profiler. The prototypes for these
procedures must be:

Ent er Proc( UNSI GNED Li ne, * CSTRI NG Pr oc, * CSTRI NG
File), NAME(‘ Profil e: Ent er Proc)

LeaveProc(), NAVE(* Profil e: LeaveProc)
The EnterProc is called at the beginning of each procedure and LeaveProc at the end.

#pragma define(init_priority =>n) p
Specifies a number (n) that is compatible with the C++module priority schema. Default is 5.



114

Advanced Topics & Reference Guide

Predefined Compiler Flags

Whenever you #compile a program the project system automically defines a number of flags to
ON or OFF, depending on the target system. You may use these predefined flags to control
your make process. Here are the flags that you can use in OMIT and COMPILE statements for
conditional compilation:

_WIDTH32_
_CDD_
_CW_
_CWVER_

_CLW15_
_CLW20_
_CLW21_
_C5_
_C55_
_C60_
_DEBUG_
DLL_MODE
LIB_MODE

On for 32-bit applications(deprecated)
On for Clarion for DOS
On for Clarion, version 1.0

Four digit number. The top two digits are the major version of Clarion. The
lower two digits are the minor version. For the initial release of Clarion 6.0 this
is set to 6000.

On for Clarion, version 1.5

On for Clarion, version 2.0

On for Clarion, version 4

On for Clarion, version 5

On for Clarion, version 5.5 and later

On for Clarion, version 6 and later

On for application debug mode

On when compiled to link to the runtime DLLs
On when building a LIB



Project System Reference 115

Project System Examples

Following is an example of some project system commands that we use here at SoftVelocity to
make our file drivers. This example uses a wide variety of project system statements and
shows how the project system can be used to control the accuracy and completeness of even
the most complicated projects.

These example statements are divided among four files, showing the project system’s ability to
support structured programming, modularity, and reusability. The files are ALLDRV.PR, which
#calls ORACLE.PR (among others), which #includes SQLFILES.PR, which in turn #includes
DRVKIT.PI.

ALLDRV.PR

#system wi n dl
#nmodel clarion

full
full

#set drvdebug
#set kit debug

#set rel ease = off
#set fronclw = on
#set incbuildno = off
#set deno = off

#if "%el ease"="on" #then
#pragma defi ne( _RELEASE=>o0n)
#set incbuildno = on
#set kitdebug = off
#set drvdebug = off

#endi f

#pragnma defi ne( DEMO_VERSI ON=>%enD)

#set donpdel s=
#abort on
#set dowi n32=of f #set dol i b=off
#cal |l %WBprjfile



116 Advanced Topics & Reference Guide

#set dowi n32=of f #set dolib=on
#cal |l %Wprjfile

#set dowi n32=of f #set doli b=off
#abort of f

#set dowi n32=on #set dol i b=off
#call %Bprijfile

#set dowi n32=on #set dolib=on
#cal |l %prjfile

#abort on

¢

#i f #exists btrieve.pr #then #set prjfile=btrieve.pr %lonodels #endif

#i f #exists odbc. pr #t hen #set prjfile=odbc. pr %donodel s #endi f
#i f #exists cla2l. pr #then #set prjfile=cla2l.pr %lonodel s #endi f
#i f #exists tps.pr #t hen #set prjfile=tps.pr %onodel s #endi f
#i f #exists dos. pr #t hen #set prjfil e=dos. pr %onodel s #endi f
#i f #exists ascii.pr #t hen #set prjfile=ascii.pr %lonodel s #endi f

#i f #exists basic.pr #t hen #set prjfil e=basic.pr %lonodel s #endi f
#set donodel s=

#set dowi n32=of f #set dol i b=off
#cal |l %Bprjfile
#set dowi n32=of f #set dolib=on
#call %prijfile
#set dowi n32=of f #set doli b=off

#file redirect ts.red
#i f #exists sql 400. pr #t hen #set prjfile=sqgl 400. pr %onodel s #endi f
#i f #exists oracle.pr #t hen #set prjfile=oracle.pr %onodel s #endi f



Project System Reference

117

ORACLE.PR:
#noedi t

#system wi n dl | --target OS is windows, dll executable
#nmodel cl arion --nmenory nodel is clarion

-- Set default nmacro values. These "switches" will control the nake process
#set drv = ORA

#set trace = of f

#set heapchk = of f

#set drvdebug = full

#set sql debug = full

#set kit debug = of f

--#set release = on

#expand ORACLEI N. CPP --set %path to path where file is created
--%path to path where file is opened
--%xt to CPP
--%ail to ORACLEIN
--%dir to directory where file is created
--%dir to directory where file is opened

#set drvdir = %odir --save the %odir val ue

#set sql _type = O --set %ql _type to O

-- Define a conditional conpile synbol for subsequent conpiles.

-- The synbol is DRVSPEC, and its value is "oracl esp. h"

-- DRVSPEC is available for interrogation by the OMT and COWPI LE
-- statenments—see the Language Reference for nore information.
#pragma defi ne( DRVSPEC=>' "or acl esp. h"")

--Conpile the sql nodules with appropriate |levels of debug code.

#i ncl ude SQLFI LES. PR --Execute statenents from SQLFI LES. PR here.



118 Advanced Topics & Reference Guide

--Al'l macros, pragnmas, and link list are fully
--available to the #included statenents.

#conpi | e ORACLEI N. CPP --conpile the oracle c++ source
#conpi | e ORAI MPOR. CLW / def i ne (mai ncode=>of f)--and the clarion source.
--both are added to the link Iist.

#pragma | i nk( ORAI MPOR. RSC) --add ORAIMPOR RSC to the link Iist.
#pragma |ink (ORA7W N. LI B) --add ORATWN. LIB to the link list.
#pragma |ink (% nkpfx%asc. LI B) --add C60ASC.LIB to the link list.

-- 9% nkpf x% resol ves to C60

-- [Execute the series of statenents assigned to drv_Link at the very
-- end of the DRVKIT.PI file. These statenments are designed to |link
-- and patch the File Driver

%lrv_Li nk

SOLFILES.PR:

-- Rel ease version: Disable all debugging and tracing

#if "% el ease"="on" #then

#set drvdebug = off
#set kitdebug = off
#set sql debug = off
#set trace = of f
#set heapchk = of f

#endi f

-- make sure the sqgl _type switch is explicitly set (no default)

#if 'Uql _type' ="'' #then
#error "sqgl _type must be set”
#endi f

-- Default is conpact code. Set the DRI VER COWPACT synbol based on
-- the value of the %onpact macro
#if "%onpact"="" #then #set conpact=on #endif
#if 'Y%onpact’' = of f' #or ' Ymeapchk' = on' #then
#pragma defi ne( DRI VER_COVPACT=>0f f)
#el se
#pragma defi ne( DRI VER_COVPACT=>0n)



Project System Reference

119

#endi f
#i ncl ude DRVKIT. PI --Execute statenents from DRVKIT. Pl here.
--Al'l macros, pragmaes, and link list are fully
--available to the #included statenents.
#pragma save --Save the current #pragma settings so they

--can be restored later with #pragma restore.

-- Debuggi ng: Debugger info and Run-tine checks

#i f "Usql debug"="" #then #set sql debug=off #endif --default is off

#pragnma debug(vi d=>%ql debug)

#if "9sql debug"="full" #then --for full debuggi ng, enable
#pragma check(i ndex=>on, range=>on, overfl ow=>on) --runtime error checks
#pragma debug(l i ne_nunE>on) --and |ine nunbering

#endi f

#pragma war n(wal | =>on) --enabl e all warning nsgs

#set srcfile = SAFESTR. CPP --set %rcfile to SAFESTR. CPP

#set dstfile = ¥%ql _t ype%SAFE. CPP --set %stfile to OSAFE. CPP

-- Execute the series of statenents assigned to nakesrc in the mddle
-- of the DRVKIT.PI file. These statenents are designed to get the C++
-- constructor entry point to have a different name for each driver

%rakesrc

#set srcfile = SQLOPEN. CPP -- ditto
#set dstfile = %ql _t ype%SQ.OPE. CPP

%rakesrc

#set srcfile = SQLUPDAT. CPP -- ditto
#set dstfile = %ql _t ype¥SQ.UPD. CPP

%rekesr c

#set srcfile = SQLRETRI . CPP -- ditto

#set dstfile = %ql _t ype¥SQ.RET. CPP
%rakesr c



120 Advanced Topics & Reference Guide

#set srcfile = SQLA.OB. CPP -- ditto
#set dstfile = %ql _type¥SQ. GO CPP
Y%rakesrc

#i f Y%systenmrwi n #t hen -- conditionally
#set srcfile = SQ.VI EW CPP -- ditto
#set dstfile = %ql _t ype¥%sQ.VI EW CPP
%rakesr c

#endi f

#pragma restore --restore the #pragma settings saved earlier
#pragma war n(wal | =>on) --enabl e all warni ng nessages

DRVKIT.PI:

#noedi t

-- DRWKIT.PI Driver Kit project include file

-- DrvKit.Pi contains project statements common to all Driver Kit based
-- File Drivers. The follow ng settings nust be set before including

-- drvkit.pi
-- #set drv = A3 or 4 letter driver id (e.g C21)
-- #pragma defi ne( DRVSPEC=' "c21specs. h") -- or appropriate file

-- Any ot her defines that affect the Driver Specification

--  Optional

-- #set trace = on -- Enabl e tracing

-- #set heapchk on -- Enabl e Heap Checker

on -- Merge conmon code

-- #set conmon



Project System Reference 121

-- Rel ease version: Disable all debugging and tracing
#if "% el ease"="on" #then
#set drvdebug = off

#set kitdebug = off
#set trace = of f
#set heapchk = of f

#endi f

-- Wndows: Ensure Carion 4 Wndows conventions are adopted

#pragma war n(wal | =>on) --enabl e all warni ng messages
#pragma define(__ CLARI ON__=>o0n) --set conpiler directive switch
#i f #not Y%ystemrdos #t hen -- dos,

#i f "%lowi n32"=on #t hen

#system wi n32 dl | -- Wi n32, or

#el se

#system wi n dl | --  Winlé

#endi f

#model clarion
#if %iletype=dll #then
#pragma defi ne(_W NDLL=>o0n) --set conpiler directive switch

#endi f

-- Build the appropriate file names for this driver set.

#if "%lolib"="" #then

#set dol i b=of f --default dolib = off
#endi f

#if "%lowi n32"="" #t hen

#set dowi n32=of f --default dowi n32 = off
#endi f

#i f %ol i b=on #t hen --set link (.lib) prefix
#set | nkpfx = CL

#el se

#set | nkpfx = CW

#endi f



122

Advanced Topics & Reference Guide

#if "%fx"="" #then
#set pfx = %drv%
#endi f
#el se

#set dol i b=of f

#i f % odel =extendl | #t hen
#pragnma defi ne( _XTDDLL=>o0n)

#endi f

#set pfx = 9Rdr v%
#if ' YRWMODE% = 'on' #then

#set | nkpf x=drw

#el se

#set | nkpf x=%I! apf x%
#endi f

--set prefix to driver nane

#set S ="" --set suffix to null
#endi f
#set drvnane = % nkpf x%dr vo/&% --Put the nanme together
#message "Making %drvnane% File Driver" --Display status nessage

#i f #not "% nbrowser" #then
#i f #exists %rvname% ver #then
#conpi |l e %dr vname% ver

#endi f
#endi f

--Conditionally...
-- conpile the driver

-- Heap Checker: Conpile and enabl e Heap Checker (No Debuggi ng)
#i f "Wmeapchk"="on" #or "%eapdbg"="on" #then

#set heapchk = on

#pragma def i ne( HEAPCHK=>0n)
#i f "Y%heapdl | "="on" #then
#pragma | i nk( %l apf x%hchk. |ib)

#el se
#pragnma save

# f "9%heapdbg"="on" #then
#pragma debug(vid=>ful|)

--Set conpiler directive swtch.
--1f dll, then
--add heapchk lib to link list.

--Save current pragma settings
--Conditionally...
-- enabl e debug code



Project System Reference 123

#endi f
#conpi | e HEAPCHK. C #t 0 Y%pf Xx%ICHK. OBJ- - Conpi | e heap checker
#conpi |l e STRCHK. C #t o Ypf x¥BCHK. OBJ- -
#conpi | e NEW CPP #t o Ypf XxYNEW OBJ
#pragma restore --Restore saved pragma settings.
#endi f
#endi f

-- Debuggi ng: Debugger info and Run-tine checks

# f "%lrvdebug"="" #then #set drvdebug=full #endif--default is "full"
#pragma debug(vi d=>%lr vdebug)

#if "%lrvdebug"="full" #then

#pragma check(i ndex=>on, range=>on, overfl ow=>0n) --enable runtines
#pragma debug(line_nune>on) --enabl e line nos.
#endi f

-- Common Code: Some Driver Kit code is nmerged when |inking nultiple
-- File Driver Libraries

#if "%onmmon"="on" #then --Conditional ly..

#pragma def i ne( COMMON_CODE=>0n) -- define conpiler switch
#endi f
#if '"%rvdir' = '"' #then

#error "drvdir nust be set to build Iib versions of the drivers"
#endi f

-- To get the C++ constructor entry point to have a different
-- nane for each of the drivers it is necessary to conpile

-- different C++ source nodul es:

#set makesrc =

#i f (#not #exists %Warvdir®88@dstfile) #or (Wdrvdir%8Rastfile #ol der
%Wercfile ) #or (%Wesrcfile #ol der Wadrvdir¥®eldstfile ) #then

#expand Wesrcfile

#run "copy %Weopath %Warvdir®elastfile > NUL "
#endi f
#conpil e Wastfile Waefns



124 Advanced Topics & Reference Guide
-- Driver Kit: Conmpile Driver Kit sources
#pragma save --First, save current pragma
settings
#if #not "o%itdebug"="" #then --Conditionally...

#pragma debug(vi d=>%i t debug) -- set debug I evel
#el se

#pragma debug(vi d=>of f)

#endi f

#set srcfile = DRVL1.C

#set dstfile = %fx%.1.C

prefix

%rakesr c

#i f #not "%ocommon" ="on" #then
#set srcfile = DRVSTATE. C

#set dstfile = Y%f Xx¥STAT. C
%rakesr c

#if #not (%systemrdos) #then
#set srcfile DRWI EW CPP
#set dstfile = %f x%WI EW CPP

Y%rakesr c

#if #not (%iletype=dll) #then
#pragma defi ne( DRV_HAS_ LI BMAI N=>o0n)

#endi f

DRVW C
%of x%Wdol i b% C
"/ define(_LI B_TARGET=>%dol i b%'

#set srcfile
#set dstfile
#set defns

%rakesr c

#set defns

#set srcfile DRWWTI L. C
#set dstfile = %f x%\TI . C
%rakesr c

--Set srcfile nane
--set dstfile nane w correct

--Execute stnts defined above.

--if common code
--make DRVSTATE

--if systemis not DOS
--make DRWI EW

--Conditionally...
-- set conpiler switch

- - make DRVWUJTI L



Project System Reference

125

#i f #not %ol i b% #t hen
#set srcfile = DRVDI AL. CLW
#set dstfile = 9%f x%l AL. CLW

#set defns = '/define(nmai ncode=>off)"

%rakesr c

#set defns v
#pragma | i nk(%f x%i al . rsc)
#endi f
#endi f
#endi f
#if "%race"="on" #then
#pragma save, define( TRACE=>0n)
#set srcfile DRVTRACE. C
#set dstfile = %f x%RAC. C
%rakesr c
#endi f

#set srcfile = DRVPIPE. C
#set dstfile %of x9%P%dol i b% C

#set defns = '/define(_LIB TARGET=>%lol i b%"

%rakesr c

#set defns t

#if "%race"="on" #then
#pragma restore

#endi f

#pragnma restore

--Conditionally
-- make DRVDI AL

--Add DIAL to link list

--Conditionally...
-- save settings...
-- nmake DRVTRACE

--make DRVPI PE

--restore saved pragna settings

-- Build Macro drv_Link to be used later in this process

-- to link and patch the File Driver:

#set drv_Link =

#pragma | i nk_opti on(share_const =>on)

#if #not (%systenmrdos) #then
#if "9%@olib"="on" #then
#dol i nk %@rvname®solib



126 Advanced Topics & Reference Guide

#el se
#inmplib %drvnane®olib %drvname%b exp
#i f define(_CW5) =on #t hen
#pragma |inkfirst(idl | 9%8%w. obj)
#el se
#pragma |inkfirst(icwdll.obj)
#endi f
#pragma | i nk(w n%&%Wh | i b)
#pragma | i nk(cw un%/&%0 | i b)
#pragma | i nk_opti on(decode=>o0f f)
#dol i nk %/r vnane% dl |

#endi f

#i f "%ereke" #and #not "9%ol i b"="on" #then
#exennd %@r vnane%o dl | %@r vhnane%b6 exp %dr vhane%o nap
#endi f
#el se
#if 9%B46iletype=dl|l #then
#imlib %drvnane%®olib %drvnamed%b exp

#endi f
#set tscla = on
#set tscpp = of f

#1 i nk %Q@r vnane%hb

#if "%eake" #and (R4l etype=dl|) #then
#expand %/dr vnane%so dl |
#run "nkdriver %gpath > NUL"

#endi f

#endi f



Project System Reference

127

Module Definition Files (.EXP Files)

A module definition file describes the name, attributes, exports, and other characteristics of a

dynamic-link library for Microsoft Windows. This file is required for Windows.

A module definition file (.EXP) is generated whenever you make a new project, or a
project whose target type, operating system, or run-time library has changed.

Module Definition File Syntax

A module definition file contains one or more statements. Each statement defines an
attribute of the executable file, such as its module name, the attributes of program
segments, and the numbers and names of exported symbols. The statements and the
attributes they define are listed below:

Statement

NAME

LIBRARY
HEAP_COMMIT
HEAP_RESERVE
STACK_COMMIT
STACK_RESERVE
IMAGE_BASE
DEBUG
LINENUMBERS
SECTION_ALIGNMENT
FILE_ALIGNMENT
EXPORTS

Attribute

Names the application

Names the dynamic-link library
Amount of heap committed
Amount of heap reserved
Amount of stack committed
Amount of stack reserved
Module base memory location
Include debug information
Include line number information
Multiples of 4096 only
Multiples of 512 only

Defines exported functions



128 Advanced Topics & Reference Guide

IMAGE_VERSION n[.m] Values of n and m set the image major and
minor version fields in PE optional header
respectively. n and m must be decimal numbers.
Default values for these fields are zero (0).

The following rules govern the use of these statements:

- If you use either a NAME or a LIBRARY statement, it must precede all other statements in
the module definition file.

« You can include source-level comments in the module definition file, by beginning a line
with a semicolon(;). The utilities ignore each such comment line.

« Module definition keywords (such as NAME, LIBRARY, and EXPORTS) must be entered
in uppercase letters.

« The EXPORTS statement must appear last.

Example—Module Definition File

The following example gives module definitions for a dynamic-link library:

LI BRARY MyDLL

Sanpl e export file
EXPORTS

Funcl

Var 1

Func2

Func3

Func4

R/



Project System Reference 129

The NAME Statement

The NAME statement identifies the file as an executable application (rather than a DLL)
and optionally defines the name and application type.

NAME [appname] [apptype]

appname If appname is given, it becomes the name of the application as it is
known by the operating system. If no appname is given, the name of the
executable file, with the extension removed, becomes the name of the
application.

apptype Used to control the program’s behavior under Windows. This information
is kept in the executable-file header. The apptype field may have one of
the following values:

WINDOWAPI
The application uses the API provided by Windows and must be
executed in the Windows environment.

GUI
Same as WINDOWAPI.

CUI
The program uses a character based user interface, like DOS.

If the NAME statement is included in the module-definition file, then the LIBRARY
statement cannot appear.

If neither a NAME statement nor a LIBRARY statement appears in a module-definition
file, NAME is assumed.

The following example assigns the name wdemo to the application being defined:

NAME wdeno W NDOWAPI



130

Advanced Topics & Reference Guide

The LIBRARY Statement

The LIBRARY statement identifies the file as a dynamic-link library. The name of the
library, and the type of library module initialization required, may also be specified.

LIBRARY [libraryname][initialization]

libraryname If libraryname is specified, it becomes the name of the library as it is
known by the operating system. This name can be any valid file name. If
no libraryname is given, the name of the executable file, with the
extension removed, becomes the name of the library.

initialization The initialization field is optional and can have one of the two values
listed below. If neither is given, then the initialization default is
INITINSTANCE.

INITGLOBAL
The library-initialization routine is called only when the library module is
initially loaded into memory.

INITINSTANCE
The library-initialization routine is called each time a new process gains
access to the library.

If the LIBRARY statement is included in a module definition file, then the NAME
statement cannot appear.

The following example assigns the name mydll to the dynamic-link module being defined,
and specifies that library initialization is performed each time a new process gains access
to myDLL:

LI BRARY nyDLL | NI TI NSTANCE

The HEAP COMMIT Statement

Specifies the amount of heap committed. This statement is not generated from the
Clarion environment, but may be specified by manually editing the .EXP file and running
the linker standalone. The syntax for the HEAP_COMMIT statement is as follows:

HEAP_COMMIT number



Project System Reference 131

The STACK COMMIT Statement

Specifies the amount of stack committed. This statement is not generated from the
Clarion environment, but may be specified by manually editing the .EXP file and running
the linker standalone. The syntax for the STACK_COMMIT statement is as follows:

STACK_COMMIT number

The HEAP RESERVE Statement

Specifies the amount of heap reserved. This statement is not generated from the Clarion
environment, but may be specified by manually editing the .EXP file and running the
linker standalone. The syntax for the HEAP_RESERVE statement is as follows:

HEAP_RESERVE number

The STACK RESERVE Statement

Specifies the amount of stack reserved. This statement is not generated from the
Clarion environment, but may be specified by manually editing the .EXP file and running
the linker standalone. The syntax for the STACK_RESERVE statement is as follows:

STACK_RESERVE number

The IMAGE BASE Statement

Specifies the base memory location of the module. This statement is not generated from
the Clarion environment, unless you include the Rebase template. If no IMAGE_BASE is
specified in the EXP the module is assigned the default address (normally 00400000h)
and conflicts are handled automatically by the Windows loader. (Using the Clarion IDE
you can add an image_base line to the EXP file in the global embed named "Before the
Export List".) The syntax for the IMAGE_BASE statement is as follows:

IMAGE_BASE address

where address is a 32-bit address specified in decimal or hex. If hex, then the address is
followed by an "h". The address must be divisable by 64KB (65,536 or 00010000h). It
must be in the range of 00400000h to 70000000h for Windows 9x. Under Windows NT
the address lower limit is 00010000h.



132

Advanced Topics & Reference Guide

For more information search MSDN for "Base Address" or "Rebase".
Example:

IMAGE_BASE 00600000h

Tip
It's best to supply the address in hex since all documentation on the OS

will show a hex address and it's easy to tell you've got a good address because
it always ends with 4 zeros.

The DEBUG Statement

Specifies the SoftVelocity debug information is included. This statement is not
generated from the Clarion environment, but may be specified by manually editing the
.EXP file and running the linker standalone. The syntax for the DEBUG statement is as
follows:

DEBUG

The LINENUMBERS Statement

Specifies that line number information in CodeView format is included. This statement is
not generated from the Clarion environment, but may be specified by manually editing
the .EXP file and running the linker standalone. The syntax for the LINENUMBERS
statement is as follows:

LINENUMBERS

The SECTION ALIGNMENT Statement

Specifies the section alignment must be in multiples of 4096. This statement is not
generated from the Clarion environment, but may be specified by manually editing the
.EXP file and running the linker standalone. The syntax is as follows:

SECTION_ALIGNMENT



Project System Reference 133

The FILE ALIGNMENT Statement

Specifies the file alignment must be in multiples of 512. This statement is not generated
from the Clarion environment, but may be specified by manually editing the .EXP file
and running the linker standalone. The syntax is as follows:

FILE_ALIGNMENT

The EXPORTS Statement

The EXPORTS statement defines the names and attributes of the functions exported to
other modules, and of the functions that run with 1/O privilege. The term "export" refers to
the process of making a function available to other run-time modules. By default,
functions are hidden from other modules at run time.

EXPORTS
exportdefinitions

The EXPORTS keyword marks the beginning of the export definitions. It may be followed
by up to 3072 export definitions, each on a separate line. You should give an export
definition for each dynamic-link routine that you want to make available to other modules.
The syntax for an export definition is as follows:

entryname [pwords] @number | ? [NODATA]
entryname Defines the function name as it is known to other modules.

pwords Specifies the total size of the function’s parameters, as measured in
words (the total number of bytes divided by two). This field is required
only if the function executes with 1/O privilege. When a function with I/O
privilege is called, OS/2 consults the pwords field to determine how many
words to copy from the caller’s stack to the I/O-privileged function’s
stack.

@number | ?  Defines the function’s ordinal position within the module-definition table.
The @ may be followed by the position number of the function, or it may
be followed by a question mark ( ?) if the position is unknown. The
numbers must be in sequence.

NODATAProvided for use by real-mode Windows (optional).



134

Advanced Topics & Reference Guide

The EXPORTS statement is meaningful for functions within dynamic link libraries,
functions which execute with 1/O privilege, and call back functions in Windows programs.

For example:
EXPORTS
Funcl
Func?2
Char Test

SEeLS

The MANIFEST statement

MANIFEST [file name]

This directive instructs the linker to add specified manifest file name to the executable. If
the manifest file name is omitted, the linker adds a default manifest. If both the project file
and the EXP file contain directives to link the manifest file, the one specified in the project
file will be used.

Exporting CLASSes

Exporting CLASS declarations requires a special form of export definition.

You must create two export definitions for the CLASS itself. The first begins with VMT$
followed by the name of the CLASS as the entryname. The second begins with TYPE$
followed by the name of the CLASS as the entryname. These are followed by an export
definition for each method in the CLASS to export whose pwords must begin with the
name of the CLASS as the first parameter.

For example:

EXPORTS
VMI$MYCLASS @
TYPE$SMYCLASS @
FI RSTMETHOD@ 7MYCLASS @
SECONDVETHOD@7MYCLASS @



Project System Reference 135

Special Considerations for One-Piece (Single) Executables

A one-piece executable is defined as a project that has been linked into a single, stand-
alone executable. The Clarion runtime library and all of the application’s procedure calls
and libraries are linked into a single file.

Callback functions are a standard part of Windows programming in most programming
languages. A callback function is a PROCEDURE that you (the programmer) write to
handle specific situations that the operating system deems the programmer may need to
deal with. A callback function is called by the operating system whenever it needs to pass
on these situations. Therefore, a callback function does not appear to be part of the logic
flow, but instead appears to be separate and "magic" without any logical connection to
other procedures in your program.

Callbacks are valid when used in one-piece executables (EXES), but there is a special
case which must be handled in a different manner.

Here is the case:

If the EXE makes some call to the Operating System, the Operating System starts a new
thread inside this call, and then calls to a passed callback function. Using this program
design, the one-piece EXE must be converted to a DLL linked in local mode, and a
starter EXE must be created, using an External link to the DLL entry point that is used to
load and run the one-piece DLL.

The following approach demonstrates how this is done.
1. The one-piece EXE must be converted to a DLL linked in local mode.

2. The Local mode DLL must export the name of the entry point's procedure and the following names
from the RTL:

__checkversion
__sysstart
__sysinit

_exit

Cl a$code
da$init

Wl $C osedown



136

Advanced Topics & Reference Guide

Here is an example of the export file (EntryPoint is the procedure entry into the DLL) :

EXPORTS

Ent r yPoi nt @ @
__checkversion @

__sysstart @
__sysinit @
_exit @
Cl a$code @
Casinit @

Wl $C osedown @

In this example, the entry point procedure name in the Local DLL is: "EntryPoint"

Tip

Use the Inside the Export List Global Embed to add to your export list within the
application.

3. The starter EXE must use External link mode. The source is written so that it just calls the

DLL's entry point procedure.

Example starter EXE code:

VAP
MODULE(" ")
Ent r yPoi nt ()
END
END

CODE
Ent r yPoi nt



Project System Reference

137

Version Information Resource Files

The Clarion Project System supports the inclusion of Version Information, conforming to the
industry standard script format.

A version script file is simply a text file with the extension of .Version. When included into a
Clarion project (application or hand coded), the version file stamps, or writes, a variety of
information into the target executable. This information can be viewed by right-clicking on the
executable file, and selecting Properties from the popup menu. A Version tab should be
available with the designated version information.

More detail regarding the standard format of the version info script can be found at the Microsoft
web site. Point your search engine to “Version Resource”.

Clarion also adds the following exceptions to this standard:

1.

3.
strings.

4,

A LANGUAGE directive can precede the Version script as follows:
LANGUAGE <I anguage code>
VS_VERSI ON_I NFO VERSI ONI NFO

END

If the LANGUAGE directive is present in the version file, the language code for the
resource target executable is set. This allows a developer to have multiple version info
resources for different languages.

In the version information group, numbers must use one of the following formats:
- decimal numbers (0-9)

- hexadecimal numbers in C/C++ format (Example: 0x3f L)

- hexadecimal numbers in Modula-2/Clarion format (Example: 040904E4)

- binary numbers in Modula-2/Clarion format

Strings must be of C/C++ format. The \u and \x escape characters are not supported in

#include directives are not supported, but all standard mnemonics for the version info
related constants are built in to the compiler.



138

Advanced Topics & Reference Guide

Version script example:

LANGUACGE 0x419

1 VERSI ONI NFO

FILEVERSION 1,0,0, 1

PRODUCTVERSI ON 1,

0,0,1

FI LEFLAGSMASK 0x3f L

FI LEFLAGS 0O

FI LECS VOS__W NDOWNG32

FI LETYPE VFT_APP
FI LESUBTYPE 0xOL
BEG N

BLOCK " StringFil el nf 0"

BEG N

BLOCK " 040904E4"

BEG N
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

END

END

" ConmpanyNane", "\0"

"Fil eDescription”, "This just a test\0O"
"FileVersion", "1, 0, 0, 1\0"

"I nternal Name", "Version Info Script Exanple\0"
"Legal Copyright", "Copyright (C 2003\0"

"Legal Tr ademar ks", "\0"

"Original Fil enane", "TEST\OQ"

"Product Name", "Version Info Script conpiler\0"
"Product Version", "1, 0, 0, 1\0"

BLOCK "Var Fi | el nf o"

BEG N

VALUE "Transl ati on", 0x409, 1252
VALUE " Tr qr]sl ation", 0x419, 1251
VALUE "QANO', 0x409, 1111

END
END

Tip

This file is a working example. You can use this as a template for your real world version
script files. Simply copy this example to a text file, name it yourfilename.version, and
include it in the Library, object, and resource files section of the Project Tree.



Multi Language Programming 139

Multi Language Programming

Overview

SoftVelocity has 32-bit C++ and Modula-2 compilers that can integrate into the Clarion
environment. The 32-bit compilers generate object code for the Windows 95/NT/2000/XP
environments. You must be running your development environment under a 32-bit
environment to generate applications for a 32-bit environment.

Clarion also has object code generation capability that rivals that of many C compilers.
You can then enhance that application with any low-level functions you need. These 3rd
Generation Language (3GL) compilers enable the developer to include 3GL code
modules directly into a Clarion project, giving unparalleled functionality and versatility.
This mix of a Rapid Application Development (RAD) 4GL (4th Generation Language)—
Clarion—and traditional 3GL compilers, makes Clarion an exceptional application
development tool.

So why use C, C++, Pascal, or Modula-2 code at all in a Clarion application? Because
there are libraries available (statistical, financial, graphics, communications, and many
more) which could significantly cut the development time of an application that requires
these capabilities. Many of these libraries are written in C, and many powerful C++,
Pascal, and Modula-2, libraries are also available. Clarion allows you to use these
libraries in their "native" form without "re-inventing the wheel."

Throughout this topic, we assume you have a good knowledge of the Clarion
development environment, the Clarion language, and the 3GL in question. The code
examples assume that you use a SoftVelocity compiler (other compiler’s requirements
are also discussed). Since Clarion uses SoftVelocity code generation and linking
technology, it is easiest to link code produced with SoftVelocity Compilers to Clarion
applications. Clarion can link code produced by other third party compilers; however,
some care is required as well as a good understanding of the operation of both
compilers. It is not generally possible to directly link C++ code produced by C++
compilers other than SoftVelocity.



140 Advanced Topics & Reference Guide

Compiler Integration

With the SoftVelocity 3GL compilers installed, the Clarion development environment takes all
the action necessary to call the correct compiler for each source module in the application. You
cannot mix languages in a single source module; however, an application can contain any
number of source modules written in any of the 3GLs or Clarion.

The development environment calls the correct compiler for each module at compile time by
looking at the source file extensions, as follows:

Source File Extension Compiler Called
.CLW Clarion
.CPPor.C C++

.MOD Modula-2

Source files with any other extensions will generate an ‘Unknown compiler for ..." error
message at compile time.

The Development Environment will also ensure that all modules are linked correctly and that
the SoftVelocity SmartLinker is given all the information that it requires.

Integrating 3GL Modules into Clarion Projects

Using the Application Generator:
1. Create an "Include file" containing the function prototypes for the Clarion compiler.

You MUST prototype your functions if you intend to call them from Clarion code (see
Procedure Prototyping in the Language Reference). The include file should contain
prototypes for all 3GL functions called from Clarion code. Each 3GL module should
have its own include file.

The include file is put in the Generated source without modification by step 3 of this
process. The generated Clarion code for your include file appears in the Global Map
something like this:

MODULE( ‘* nodul e nane’)
I NCLUDE( ‘ Your I nc.Inc")
END

The Application Generator generates the MODULE and END statements. Failure to
correctly prototype your functions will almost certainly result in a General Protection
Fault at run time.

2. Use the Text Editor to write your 3GL code.

Be sure to save the code with a file extension that the compiler can recognize (.C,
.CPP, .MOD, or .PAS).



Multi Language Programming 141

3.

Add the module to the application as an External Source Module.

Select Application > Insert Module from the main menu. Then select class External
Source from the Select Module Type dialog. Enter the name of the 3GL module in the
Name field, then enter the name of the include file in the Map Include File field of the
Module Properties dialog

Compile and run the application.

In a hand-coded Clarion application:

1.

Create the function prototypes for the Clarion compiler.

You must prototype the functions you intend to call from Clarion code (see Procedure
Prototyping in the Language Reference). The global MAP structure should contain the
prototypes.

Each 3GL module should have its prototypes in a separate MODULE structure,

something like this:

MODULE( ‘ nodul e nane’)
MyFunc(* CSTRI NG , CSTRI NG, RAW PASCAL, NAME(‘* _MyFunc’)
END

You must include a complete MODULE structure in your Clarion MAP for all your 3GL
modules. Failure to correctly prototype your functions will almost certainly result in a
General Protection Fault at run time.

Use the Text Editor to write your 3GL code, saving the code with a file extension that
the compiler can recognize (.C, .CPP, .MOD, or .PAS).

Add the module to the Project as an External Source File.

Select Project > Edit from the main menu. Highlight External Source Files then press
the Add File... button. Select the 3GL source mofule from the standard file open dialog
that appears.

Compile and run the application.



142 Advanced Topics & Reference Guide

Resolving Data Types

The Clarion language defines the data types BYTE, SHORT, USHORT, LONG, ULONG,
SREAL, REAL, and STRING which map fairly easily to C, C++, Pascal, and Modula-2
equivalents. Clarion also defines DATE and TIME data types, and GROUP structures, which
may be mapped to structures in each language. CSTRING and PSTRING data types are
specifically provided by Clarion to simplify interfacing with external functions using C or Pascal
conventions.

The DECIMAL, PDECIMAL, BFLOAT4, and BFLOATS types are not discussed because it is
very unlikely that these types of variables will ever be used in C, C++, Pascal, or Modula-2
code. If data of any of these types does need to be passed to C, C++, Pascal, or Modula-2
code, simply assign the value to a REAL or SREAL variable and pass that to the function (data
type conversion is automatically handled in Clarion by the assignment statement).

The table below gives a brief cross reference of the parameters types supported by the
Clarion, C++ and Modula-2 compilers; as detailed, some parameters require additional pragma
statements to work correctly. The Clarion SIGNED and UNSIGNED data types are equates
that change type from LONG and ULONG.

darion Ct+ Modul a- 2

BYTE unsi gned char BOCOLEAN

BYTE unsi gned char SHORTCARD

*BYTE unsi gned char * var SHORTCARD
USHORT unsi gned short CARDI NAL

* USHORT unsi gned short * var CARDI NAL
SHORT short | NTEGER

* SHORT short * var | NTEGER

LONG | ong LONG NT

*LONG | ong * var LONG NT
ULONG unsi gned | ong LONGCARD

* ULONG unsi gned |long * var LONGCARD
SREAL f1 oat REAL

* SREAL float * var REAL

REAL doubl e L ONGREAL

* REAL doubl e * var LONGREAL

STRI NG can't pass by val ue can't pass by val ue
*STRI NG unsi gned int, char * CARDI NAL, ARRAY OF CHAR
*STRING(with RAW char[] var ARRAY OF CHAR
*CSTRINGwWith RAW char[] or char * var ARRAY OF CHAR
* PSTRI NG char[] or Char * ARRAY OF CHAR
GROUP struct var record type
*GROUP(wi th RAW struct * var record type
*? void far* Far ADDRESS

UNSI GNED unsi gned int

S| GNED i nt

Clarion STRING variables are normally passed as two parameters: first, a UNSIGNED which
contains the length of the data buffer; second, the address of the data. CSTRINGs and
PSTRINGs are passed the same as STRINGs (as two parameters). The RAW attribute can be
used in the Clarion prototype to pass only the address of the string data to external 3GL
functions (Clarion language procedures do not need, or support, RAW).



Multi Language Programming 143

C and C++ Data Type Equivalents

The following data type equivalents can be used with C or C++ code. These typedefs should
appear in the .H header file referenced by the C or C++ code. The CLA prefix is used to avoid
name clashes with third party libraries.

Typedef unsigned char CLABYTE;

Typedef short CLASHORT;
typedef unsigned short CLAUSHORT,;
typedef 1ong CLALONG,
typedef unsigned | ong CLAULONG,
typedef fl oat CLASREAL;
typedef double CLAREAL,;

Clarion DATE and TIME data types may be passed to C functions as a CLALONG, the
CLADATE and CLATIME unions can then be used to resolve the elements of the date or time
from the CLALONG value.

t ypedef wunion {

CLALONG n;
struct {
CLABYTE ucDay;
CLABYTE uchbnt h;
CLAUSHORT usYear ;
} S;
} CLADATE;
t ypedef wunion {
CLALONG n;
struct {
CLABYTE ucHund;
CLABYTE ucSecond;
CLABYTE ucM nut e;
CLABYTE ucHour ;
} S;

}  CLATIME



144 Advanced Topics & Reference Guide

Because of Clarion’s two-parameter method of passing STRINGSs, the CLASTRING structure
is useful for certain internal uses, but cannot be used to accept parameters from Clarion:

typedef struct {
char *pucString;
CLAUSHORT usLen
} CLASTRI NG
Clarion STRING variables are not NULL terminated, they are padded with spaces up to the
length of the data buffer. The trailing spaces can be removed by using the Clarion CLIP

procedure. The following code declares a STRING of 20 characters, assighs some data into it,
and passes it as a parameter to a C or C++ function.

StringVar STRI NE 20)
CODE
StringVar = "Hello Wrld...'
C Wite_Function(StringVar)
The C or C++ function might be defined as:

extern void C Wite_Functi on(CLAUSHORT usLen, char *bDat a)
{ CLAUSHORT usNdx = 0;

whil e (usNdx < usLen)
#i fdef __cplusplus
cout << bDat a[ usNdx++] ;
#el se
put char (bDat a[ usNdx++] ) ;
#endi f

}

In the above example, usLen would have a value of 20 and bData would be padded with
trailing spaces. This padding would be written to the screen by C_Write_Function(). Many C
routines expect a string to be NULL terminated. To address this issue, Clarion provides the
CSTRING data type. CSTRING variables are automatically NULL terminated when data is
assigned to them. This makes it possible for existing C routines to operate on the data.

A Clarion GROUP may be declared to contain related data. A group is roughly equivalent to a
C or C++ struct. When passed as a parameter to a procedure, GROUPs are normally passed
as three parameters: first, an UNSIGNED is passed which contains the size of the GROUP;
second, the address of the GROUP structure; and third, the address of a buffer containing a
type descriptor for the GROUP. The contents of the type descriptor are not discussed here and
are subject to change in future versions of Clarion. GROUPs may be nested, and other



Multi Language Programming 145

GROUPs may be defined to assume the same structure as a previously declared GROUP.
There are several forms of declaration for Clarion GROUPSs:

Structl GROUP I Structl is defined as a GROUP
ul 1 ULONG I containing two ULONG val ues
ul 2 ULONG

END

This form of definition reserves space for Structl and is equivalent to the C definition:;

struct {
CLAULONG ul 1;
CLAULONG ul 2;
} Struct 1;

In the following example, the declaration of Struct2 declares a GROUP similar to that defined
by Structl, however no space is reserved. In practice there need not be any instances of
Struct2 defined.

Struct 2 GROUP, TYPE I Struct2 is declared as a GROUP
ul 3 ULONG I containing two ULONG val ues
ul 4 ULONG

END

The corresponding C definition is:

typedef struct {
CLAULONG ul 3;
CLAULONG ul 4;
} Struct2

In the following example, the definitions of Struct3 and Struct4 define them to be LIKE(Struct2),
i.e. of the same internal structure. In order to distinguish members of Struct3 and Struct4 from
those of Struct2 the S3 and S4 prefixes must be used. Struct3 and Struct4 define instances of
Struct2 (which is not necessarily defined anywhere). In both cases space is reserved.

Struct3 LI KE( Struct 2)
Struct4 LI KE( Struct 2)



146 Advanced Topics & Reference Guide

The corresponding C definitions are:

typedef Struct2 Struct3;
typedef Struct2 Struct4;

Struct3 S3;
Struct4 S4:

Clarion GROUP declarations may be nested, for example:

Struct5 GROUP, TYPE I Struct5 is defined as a GROUP
Struct6 GROUP ! containing a nested GROUP
ul 5 ULONG
ul 6 ULONG
END
END

The equivalent C declaration is:

typedef struct {
struct {
CLAULONG ul 5;
CLAULONG ul 6;
} Struct 6;
} Struct5;



Multi Language Programming 147

Modula-2 Data Type Equivalents

The following data type equivalents are used with Modula-2 code. These definitions should
appear in the Modula-2 definition module referenced by the Modula-2 code. These should be
used to define parameter and return types of procedures that will be called from Clarion code.

CONST
BYTE =
SHORT =
USHORT ::=
LONG D=
ULONG ::=
SREAL =
REAL D=

BYTE;

| NTEGER (16-bit);
CARDI NAL (16-bit);
LONG NT;

LONGCARD;

REAL;

LONGREAL

Clarion DATE and TIME data types may be passed to Modula-2 procedures as a LONG, the

DATE and TIME RECORD
the LONG value.

s can then be used to resolve the elements of the date or time from

DATE = RECORD
CASE : BOOLEAN COF

| TRUE:
I

ELSE
ucDay
uchMont h
usYear

END

END;

LONG

BYTE;
BYTE;
SHORT;

TI ME = RECCORD
CASE : BOOLEAN OF

| TRUE:
I

ELSE
ucHund
ucSecond
ucM nute
ucHour

END

END,;

LONG

BYTE;
BYTE;
BYTE;
BYTE;



148 Advanced Topics & Reference Guide

Clarion STRINGSs are passed in the same manner as Modula-2 open ARRAY OF CHAR
parameters with the call(o_a_copy=>off) pragma in effect (the length and the address of the
string are passed).

The following example code declares a string of 20 characters, assigns some data into it and
passes it as a parameter to a Modula-2 procedure

MAP
MODULE( " M2_Code' )
M2_Wite Proc(*STRING, NAME('M2_Code$M2_Wite Proc')
END
END
StringVar STRI NE 20)
CODE
StringvVar = "Hello Wrld...'
M2_Wite Proc(StringVar)

The Modula-2 procedure might be defined as:

DEFI NI TI ON MODULE M2_Code;

(*# save, call (o_a _copy=>off) *)

PROCEDURE M2_Wite_ Proc(StringVar: ARRAY OF CHAR);

(*# restore *)

END M2_Code.
Note that Clarion STRINGs are not NULL terminated, they are padded with spaces up to the
length of the data buffer. In the above example, StringVar would be padded with spaces up to
a length of 20 characters. Variables of type CSTRING are automatically NULL terminated

when data is assigned to them. This makes it possible for existing Modula-2 routines to
operate on the data.



Multi Language Programming 149

A Clarion GROUP is roughly equivalent to a Modula-2 RECORD. There are several forms of
declaration for Clarion GROUPs. The following conforms to the Modula-2 declaration of the
DATE type above:

Dat eType GROUP

n LONG
d GROUP, OVER( n)
ucDay BYTE
uchMont h BYTE
usYear SHORT
END
END

The OVER attribute is used to ensure that n and d occupy the same memory, the total size of
the group is the size of the member n. When passed as parameters, GROUPs are normally
passed as three parameters: first, an UNSIGNED is passed which contains the size of the
GROUP; second, the address of the GROUP structure, and third, the address of a buffer
containing a type descriptor for the GROUP. The contents of the type descriptor are not
discussed here and are subject to change in future versions of Clarion. You may use the RAW
attribute in your Clarion prototype for the Modula-2 procedure to instruct the compiler to pass
only the address of the GROUP, otherwise you must define your Modula-2 procedure to take 2
extra parameters:

VAP
MODULE( "' M2_Code' )
M2_Proc1(* GROUP)
M2_Proc2(*GROUP), RAW
END
END

The corresponding Modula-2 definition module would contain:

DEFI NI TI ON MODULE M2_Code;
TYPE
GROUP = RECORD
(* Menbers *)
END;
PROCEDURE M2_Procl(Len: USHORT; VAR Data: GROUP; TypeDesc: ADDRESS);
PROCEDURE M2_Proc2( VAR Data: GROUP);
END M2_Code.



150 Advanced Topics & Reference Guide

Pascal Data Type Equivalents

The following data type equivalents can be used with Pascal code. These should be placed in
the Pascal interface unit referenced by the Pascal code. These should be used to define
parameter and return types of procedures that will be called from Clarion code.

ALl AS
SHORT = | NT16;
USHORT = | NT16;
LONG = | NTEGER;
ULONG = | NTECGER
SREAL = SHORTREAL;

Clarion DATE and TIME data types may be passed to Pascal procedures as a LONG, the
DATE and TIME records can then be used to resolve the elements of the date or time from the
LONG value.

DATE = RECORD
CASE BOOLEAN OF

TRUE:
(n . LONG) ;
FALSE:

(ucDay . BYTE;
uchMonth : BYTE;
usYear : SHORT) ;

END;

TI ME = RECORD
CASE BOOLEAN OF

TRUE:

(n : LONG) ;
FALSE:

(ucHund . BYTE;

ucSecond : BYTE;

ucM nute : BYTE;

ucHour . BYTE);
END;

Because of Clarion’s two parameter method of passing STRINGs, the STRING structure is
useful for certain internal uses, but cannot be used to accept parameters from Clarion:



Multi Language Programming 151

TYPE
STRI NG = RECORD
usLen : USHORT;
pucString : "“"CHAR;
END;

Clarion PSTRINGSs are passed by address in the same manner as Pascal STRING parameters
with the call(s_copy=>off) pragma in effect (the length and the address of the string are

passed).

The following example code declares a string of 20 characters, assigns some data into it, and
passes it as a parameter to a Pascal procedure:

MAP
MODULE( ' Pas_Code' )
Pas Wite_ Proc(*PSTRING, NAME('Pas_Code$Pas Wite Proc')
END
END
StringVar PSTRI NE 20)
CODE
StringVar = "Hello World...'
Pas Wite Proc(StringVar)

The Pascal procedure might be defined as:

| NTERFACE UNI T Pas_Code;

(*# save, call (s_copy=>off) *)

PROCEDURE Pas_Wite_ Proc(StringVar: STRINGH GH ) ;
(*# restore *)

END.



152 Advanced Topics & Reference Guide

A Clarion GROUP is roughly equivalent to a Pascal RECORD. There are several forms of
declaration for Clarion GROUPSs. The following duplicates the Pascal declaration of the DATE
type above:

Dat eType GROUP

n LONG
d GROUP, OVER( n)
ucDay BYTE
uchbnt h BYTE
usYear SHORT
END
END

The OVER attribute is used to ensure that n and d occupy the same memory, the total size of
the group is the size of the member n. When passed as parameters, GROUPs are normally
passed as three parameters: first, a USHORT is passed which contains the size of the
GROUP; second, the address of the GROUP structure; and third, the address of a buffer
containing a type descriptor for the GROUP. The contents of the type descriptor are not
discussed here and are subject to change in future versions of Clarion. You may use the RAW
attribute in your Clarion prototype for the Pascal procedure to instruct the compiler to pass only
the address of the GROUP, otherwise you must define your Pascal procedure to take 2 extra
parameters:

VAP
MODULE( ' Pas_Code" )
Pas_Procl(* GROUP)
Pas_Proc2(*GROUP), RAW
END
END

The corresponding Pascal interface unit might be:

| NTERFACE UNI T Pas_Code;
TYPE
GROUP = RECORD
(* Menmbers *)
END;
PROCEDURE Pas_Procl(Len: USHORT; VAR Data: GROUP; VAR TypeDesc);
PROCEDURE Pas_Proc2(VAR Data: GROUP);
END.



Multi Language Programming 153

Prototyping 3GL Functions in Clarion

The only thing necessary to be able to use any of the C standard library functions in
Clarion code is the addition of the function’s Clarion language prototype to the Clarion
application’s MAP structure. The Clarion prototype tells the compiler and linker what
types of parameters are passed and what return data type (if any) to expect from the C
function. The PROCEDURE Prototypes section in Chapter 2 of Clarion’s Language
Reference discusses the syntax and attributes required to create a prototype of a Clarion
procedure. This same syntax is used to create Clarion prototypes of C functions.

There are four major issues involved in creating a prototype for a C function: calling
convention, nhaming convention, parameter passing, and return data types from functions.

The calling convention for all the SoftVelocity C standard library functions is the same
register-based calling convention used by Clarion. Therefore, there is no need to use the
C or PASCAL attributes in any standard C library function’s Clarion prototype.

The SoftVelocity C compiler's naming convention is the normal C convention. This means
an underscore is automatically prepended to the function name when compiled. The
Clarion NAME attribute is usually used in the prototype to give the linker the correct
reference to a C function without requiring the Clarion code to use the prepended
underscore. For example, the C function "access" is actually named "_access" by the
compiler. Therefore, the NAME('_access’) attribute is required in the prototype (unless
you want to refer to the function in Clarion code as " _access").

Each parameter passed to a C function must appear in its Clarion prototype as the data
type of the passed parameter. Parameters are passed in Clarion either "by value" or "by
address."

When a parameter is passed "by value," a copy of the data is received by the function.
The passed parameter is represented in the prototype as the data type of the parameter.
When passed "by address," the memory address of the data is received by the function.
The parameter is represented in the prototype as the data type of the parameter with a
prepended asterisk (*). This corresponds to passing the C function the pointer to the
data.



154 Advanced Topics & Reference Guide

Parameter Data Types

Parameter data type translation is the "key" to prototyping C functions in Clarion. The
following is a table of C data types and the Clarion data type which should be used in the

prototype:

C Data Type Clarion Data Type

Char BYTE (gets |inker warnings - ignore then)
unsi gned char BYTE

i nt SHORT

unsi gned int USHORT

short SHORT

unsi gned short USHORT

| ong LONG

unsi gned | ong ULONG

fl oat SREAL

doubl e REAL

unsi gned char * *BYTE

int * * SHORT

unsigned int * * USHORT

short * * SHORT

unsi gned short * * USHORT

long * *LONG

unsi gned | ong * * ULONG

float * * SREAL

doubl e * * REAL

char * *CSTRING W RAW attri bute
struct * *CGROUP W RAW attribute

Since the Clarion language does not have a signed BYTE data type, linker warnings
(‘type inconsistency’) will result when you prototype a function which receives a char
parameter. As long as you are aware that the C function is expecting a signed value, and
correctly adjust the BYTE field’s bitmap to pass a value in the range -128 to 127, this
warning may be safely ignored.

The RAW attribute must be used when a C function expects to receive the address of a
CSTRING or GROUP parameter. By default, Clarion STRING, CSTRING, PSTRING, and
GROUP parameters are passed (internally) to other Clarion procedures as both the
address and length of the string. C functions do not usually want or need the length, and
expect to receive only the address of the data. Therefore, the RAW attribute overrides
this default.



Multi Language Programming 155

If the C function returns void, there is no data returned and the function fits the definition
of a Clarion PROCEDURE. If the C function does return data, it is prototyped with the
actual data type returned and the function fits the definition of a Clarion PROCEDURE
that returns a value and may be called as part of a condition, assignment, or parameter

list.



156

Advanced Topics & Reference Guide

Return Data Types

Return data types from C functions are almost the same as passed parameters:

C Return Type

char

unsi gned char
i nt

unsi gned int
short

unsi gned short
| ong

unsi gned | ong
fl oat

doubl e

unsi gned char *
int *

unsigned int *
short *

unsi gned short
I ong *

unsi gned |l ong *
float *

doubl e *

char *

struct *

*

Clarion Return Type

BYTE (gets |inker warnings - ignore then)
BYTE

SHORT

USHORT

SHORT

USHORT

LONG

ULONG

SREAL

REAL

*BYTE

* SHORT

* USHORT

* SHORT

* USHORT

*LONG

* ULONG

* SREAL

* REAL

CSTRI NG (poi nter automatically dereferenced)
ULONG (gets linker warnings - ignore them

As you can see, the Clarion return type for a char * is CSTRING (not *CSTRING as you
might expect). This is because the Clarion compiler automatically dereferences the
pointer to the data when the function returns (as it does with all the pointer return types).

Notice that the Clarion return data type for struct * is ULONG. This will generate a "type
inconsistency" linker warning. This occurs because the Clarion language does not use
pointers, and the ULONG is a four-byte integer which can serve as a replacement for a
pointer return type. The warning is not a problem and can be safely ignored. You would
probably use memcpy() to get at the returned data.



Multi Language Programming 157

Passing Parameters

Clarion offers two distinct methods of passing parameters to functions or procedures:
"passed by value" and "passed by address."

"Passed by value" means that the calling code passes a copy of the data to the called
function or procedure. The called code can then operate on the data without affecting the
caller’s copy of the data. These parameters are specified by the parameter’s data type in
the prototype.

"Passed by address" means that the calling code passes the address of the data to the
called function or procedure. With this method, the called function or procedure can
modify the caller's data. These parameters are specified by prefixing the parameter’s
data type with an asterisk (*) in the prototype:

VAP
MODULE(' My_C_Li b")
Var _Par anet er ( * USHORT) I Paraneter passed by address
Val _Par anet er ( USHORT) I Paraneter passed by val ue
END
END

These declarations represent the Clarion interface to the functions contained in the C
library My _C_Lib. The following example are the equivalent C declarations:

voi d Var _Par anet er (CLAUSHORT *uspVal);

voi d Val _Par anet er (CLAUSHORT usVal ) ;

Clarion parameters "passed by address" are equivalent to pointers to the relevant C type.
Clarion "passed by value" parameters are passed in the same way as C and C++ value
parameters.

The corresponding Modula-2 definition module would be:

DEFI NI TI ON MODULE M2_Code;
| MPORT d a;
PROCEDURE Var _Par anet er (VAR us: d a. USHORT) ;

PROCEDURE Val _Paraneter (us: d a. USHORT) ;
END M2_Code.



158 Advanced Topics & Reference Guide

The corresponding Pascal interface unit would be:

| NTERFACE UNI T Pas_Code;
| MPORT d a;
PROCEDURE Var _Par anet er (VAR us: d a. USHORT) ;

PROCEDURE Val _Paraneter (us: d a. USHORT) ;
END.

You cannot pass a Clarion STRING or GROUP by value. For this reason, you must pass
STRINGs or GROUPSs by address.



Multi Language Programming 159

Resolving Calling Conventions

Clarion uses the SoftVelocity object code generator, so it uses the same efficient register-
based parameter passing mechanism employed by all SoftVelocity languages. If differing
calling conventions are used by code compiled by third-party compilers, the results may
be unpredictable. Typically, the application will fail at run-time.

To use code produced by compilers other than SoftVelocity, you must ensure that either:

1) The other compiler generates code using Clarion’s (SoftVelocity's) parameter
passing method, or,

2) That Clarion generates code using the other compiler's parameter method.

You must also ensure that none of the functions return floating-point data types. There is
no standard of compatibility between compilers regarding this issue. For example,
Microsoft C returns floating-point values in a global variable while Borland C returns them
on the stack (SoftVelocity also returns them on the stack but there is no guarantee of
compatibility). Therefore, any functions from non-SoftVelocity compilers which must
reference floating point values and modify them should receive them "passed by
address" and directly modify the value — do not have the function return the value.

Most other compilers don'’t provide Clarion-compatible parameter passing conventions,
but do provide standard C and Pascal parameter passing mechanisms (passed on the
stack). Clarion has the C and PASCAL procedure prototype attributes to specify stack-
based parameter passing.

Most non-SoftVelocity C and C++ compilers use a calling convention where parameters
are pushed onto the stack from right to left (as read from the parameter list). The Clarion
C attribute specifies this convention. Many C and C++ compilers also offer a Pascal
calling convention where parameters are pushed left to right from the parameter list. Most
other languages on the PC also use this convention. The Clarion PASCAL attribute
generates calls using this convention.

In most cases, the C and PASCAL attributes are used in conjunction with the NAME
attribute. This is because many compilers prepend an underscore to function names
where the C convention is in use, and uppercase function names where the PASCAL
convention is in use (Clarion uppercases procedure names also). For example:

MAP
MODULE(' My_C_Lib')

St dC_Conv( UNSI GNED, ULONG), C, NAME(' _StdC Conv')

St dPascal _Conv( UNSI GNED, ULONG), PASCAL, NAVE(' STDPASCAL_CONV')
END
END



160

Advanced Topics & Reference Guide

When the StdC_Conv procedure is called, the ULONG parameter is pushed on the stack
followed by the UNSIGNED parameter. When StdPascal_Conv is called, the UNSIGNED
parameter is pushed followed by the ULONG parameter. You should be very careful that
calling conventions match, otherwise the program may behave unpredictably. When
interfacing with code produced by SoftVelocity compilers, the C and PASCAL calling
convention attributes are not necessary because Clarion uses the SoftVelocity register-
based calling conventions.

When writing SoftVelocity C functions to be called from a Clarion program, the
CLA_CONV macro (discussed above) should be used to select the correct naming
conventions. The best way of achieving this is to declare any interface functions in a
separate header (.H) file and to apply the conventions to these declarations. C++
functions must be declared using "Pascal” external linkage (also discussed above).
Modula-2 and Pascal naming conventions are best handled by using the NAME attribute
on the prototype.



Multi Language Programming 161

Resolving Naming Conventions

When linking code produced from different programming tools, it is essential to ensure
that the proper naming conventions are used. If differing naming conventions are used,
the linker will not be able to resolve references to a name within code (produced by one
compiler) and its definition (within code produced by another compiler). In this case, no
.EXE will be generated.

Many C compilers (including SoftVelocity) prepend an underscore to the name of each
function or variable name. The Clarion NAME attribute simplifies interfacing with code
produced by these compilers by explicitly telling the Clarion compiler the function or
procedure name to generate for the linker. This allows you to explicitly code the Clarion
prototype to follow the C convention. For example:

VAP
MODULE(' My_C_Li b")
StdStr_Parm( STRING, NAME(' _StdStr_Parni)
END
END

When the Clarion compiler encounters the StdStr_Parm() procedure, it generates the
name _StdStr_Parm in the object code. Although Clarion names are not case sensitive,
the name generated using the NAME attribute will appear exactly as specified.

The following C language macro defines the Clarion naming conventions. This macro can
be used when declaring C functions to interface with Clarion in order to force the C
compiler to generate names following the Clarion haming convention (no prepended
underscore and all upper case).

#define CLA_CONV nanme( prefi x=>"", upper_case=>on)

C++ compilers encode the return and parameter types of a procedure into the name that
appears in the object code in a process known as ‘name mangling’. Therefore, C++
compiled functions which may be called from Clarion can be declared within a ‘extern
"Pascal" {...};" maodifier, which is the equivalent to the C language CLA_CONYV macro
(which does not affect the name mangling employed by the C++ compiler). For example:

extern "Pascal" void Clarion_Callable_Proc(void);

A more flexible form of the above, allowing for compilation by either a C or C++ compiler,

is:

#i fdef __cpl uspl us

extern "Pascal " { /* Force Carion conventions in C++
*/

#el se

#pragma save, CLA CONV /* Force Clarion conventions in C

*/



162

Advanced Topics & Reference Guide

#endi f
void Carion_Call abl e_Proc(void); /* C or C++ declaration */

#i f def cpl uspl us

} /* Restore C++ conventions */
#el se
#pragma restore /* Restore C conventions */
#endi f

This form of declaration usually appears in a header file to be included by any interface
code. It ensures that the correct conventions are used when compiled with a C or C++
compiler and eliminates the need to use the NAME attribute on the Clarion language
prototype of the procedure or function.

Clarion is a case-insensitive language and the compiler converts the names of all
procedures to upper-case. Modula-2 and Pascal, however, are case sensitive and also
prefix the name of all procedure names with the name of the module in the form:
MyModule$MyProcedure. The way to resolve these differences is to use Clarion’'s NAME
attribute to specify the full name of the Modula-2 or Pascal procedure to the Clarion
compiler:

VAP
MODULE( "' M2_Code' )
M2_Procl(*GROUP), RAW NAME(' M2_Code$M2_Proc2')
END
MODULE( ' Pas_Code' )
Pas_Procl(*GROUP), RAW NAME(' Pas_Code$Pas_Proc2')
END
END

The corresponding Modula-2 definition module might be:
DEFI NI TI ON MODULE M2_Code;

TYPE
GROUP = RECORD
(* Menbers *)
END;
PROCEDURE M2_Procl( VAR Data: GROUP)
END M2_Code.

The corresponding Pascal interface unit might be:

| NTERFACE UNI T Pas_Code;
TYPE
GROUP = RECORD
(* Menmbers *)
END;



Multi Language Programming 163

PROCEDURE Pas_Procl1( VAR Data: GROUP);
END.

The naming conventions used by Clarion for data differ from those used for
PROCEDURES, and are more complex. Therefore, the NAME() attribute should be used
to generate a Modula-2 or Pascal-compatible name for any Clarion data that needs to be
accessed between languages. Modula-2 and Pascal data names are case sensitive and
prefixed with the name of the module and a ‘@’ in the form: MyModule@MyProc.

The EXTERNAL and DLL Attributes

The EXTERNAL attribute is used to declare Clarion variables and functions that are
defined in an external library. The DLL attribute declares that an EXTERNAL variable or
functions is defined in a Dynamic Link Library (DLL).

These attributes provide Clarion programs with a means of accessing public data in
external libraries. The compiler will not reserve space for any variables declared as
EXTERNAL. For example:

typedef struct {
unsi gned | ong ul 1;
unsi gned | ong ul 2;
} Struct Type;
#i fdef __cpl uspl us

extern "C' { /* Use C nam ng conventions, which will require use */
#endi f /* of the NAME attribute in the Carion prototype */
Struct Type Stri; /* Define Strl */
Struct Type Str2; /* Define Str2 */

#i fdef __cplusplus

} /* Restore C++ conventions */
#endi f

The following Clarion declarations are all that is necessary to make Strl and Str2

available to Clarion programs.
Struct Type GROUP, TYPE ! Declare a user defined type

ul 1 ULONG
ul 2 ULONG
END
| Declare Strl1 and Str2 which are defined in the C nodul e
Strl LI KE(Struct Type), NAME(' _Str1'), EXTERNAL
Str2 LI KE(Struct Type), NAME(' _Str2'), EXTERNAL

The NAME attribute is used to allow the linker to use the C naming convention when
referencing Strl or Str2.



164 Advanced Topics & Reference Guide

Programming Considerations

Using C++ Class Libraries

There are some limitations that apply to accessing C++ code and data from Clarion. C++
is an object oriented language and includes language features to support classes and
objects, polymorphism, operator and function overloading, and class inheritance. None of
these features are supported in Clarion as they are in C++. This does not prevent you
from taking advantage of these features in a mixed Clarion and C++ application, but it
does dictate the nature of the interface code.

Clarion cannot directly access C++ classes, or objects of a class type. Therefore, Clarion
programs do not have direct access to the data or functions contained within those
classes. To access them, it is necessary to provide a "C-like" interface to the C++
functionality. A C style function can be called from Clarion, which would then be able to
access the C++ classes and objects defined within the code, including their public data
and methods.

The following example code fragment demonstrates how to code a C++ function that
calls a C++ class library. The MakeFileList function may be called directly from Clarion
— the DirList constructors and the ReOrder class member may not. The DirList class
implements a directory list whose entries may be ordered by name, size or date. The
class definition and Clarion callable entry point declarations are as follows (note the use
of the ‘extern "C" linkage specifier to force C naming conventions for the Clarion
callable functions):

[/*** DirList Cass Definition

class DirList: public List {

publi c:
DirList(char *Path, CLAUSHORT Attr, CLAUSHORT Order);
DirList();
voi d ReOrder(int Oder);

3

[/*** Carion Entrypoint Decl arations

extern "C' {

voi d MakeFil eLi st (char *Path, CLAUSHORT Attr, CLAUSHORT Order);
}



Multi Language Programming 165

The following code does nothing more than provide entry points for the Clarion code to
access the functionality of the DIRLIST class library. Since Clarion performs no name-
mangling and cannot access classes or their members, this APl is necessarily fairly

simple.
DirList *FileList = NULL; /1 The directory |ist object
voi d MakeFil eLi st (char *Path, CLAUSHORT Attr, CLAUSHORT Order)
{ if (FileList !'= NULL) /1 If we have a list
{ del ete FilelList; // invoke class destructor
Fil eList = NULL; /!l so we can start again
}

FileList = new DirList(Path, Attr, Oder);
}

The following is the corresponding MAP structure prototype to allow Clarion to call the
MakeFileList interface function:

MAP
MODULE(' Di rLi st ")
MakeFi | eLi st (* CSTRI NG, USHORT, USHORT) , RAW NAME(' _MakeFi | eLi st ")
END
END

One disadvantage of this is that, given a large class library, it appears to involve a lot of
extra work to create a suitable interface. In practice, however, it should only be necessary
to provide a very small interface to begin taking advantage of an existing C++ class
library.

It is not possible to call C++ code compiled using non-SoftVelocity C++ compilers from a
Clarion application. C++ modules usually require special initialization — constructors for
all static objects must be invoked in the correct order. This initialization process must be
performed by the Clarion start-up code. Clarion’s startup code automatically performs the
necessary initialization for any SoftVelocity C++ modules that are present, but it will not
initialize modules compiled with other C++ compilers. Even if the modules did not require
initialization, other C++ compilers use different calling and naming conventions, and
adopt different internal class structures. This makes it impossible to use C++ class
libraries in Clarion applications compiled with a compiler other than SoftVelocity C++.



166

Advanced Topics & Reference Guide

Summary:

The Clarion API provides a number of features to assist developers who need to interface
to code written in other programming languages. With a little care, it is possible to create
Clarion interfaces to some extremely powerful external libraries.

When preparing interfaces to libraries written in other languages you should consider the
following suggestions:

Don'’t write C, C++, Pascal, or Modula-2 functions to return CSTRING variables to
Clarion. Have the other language routine place the CSTRING value in a public variable,
or pass a *CSTRING (by address) parameter to the C routine to receive the value.

Don't call Clarion procedures that return STRING variables from other language
functions. Have the Clarion procedure place the return value in a public variable or pass
a *CSTRING (by address) parameter to the other language procedure.

For simplicity and efficiency, STRING and GROUP parameters should usually be passed
by address with the RAW attribute to ensure only the address is passed.

Test the application in XLARGE memory model first.

C and C++ Considerations

If a C or C++ function takes a pointer parameter, the corresponding parameter in the
Clarion prototype for that function should be declared as "passed by address" by prefixing
the data type with an asterisk (*).

If a C or C++ function takes a pointer to a GROUP, STRING, PSTRING or CSTRING,
you should use the RAW attribute in the Clarion prototype.

If a C or C++ function takes an ASCIIZ string as a parameter, the corresponding
parameter in the Clarion prototype should be *CSTRING.

If a C or C++ function takes a pointer to a structure as a parameter, the corresponding
parameter in the Clarion prototype should be *GROUP.

Use the header (.H) files as a template for developing a Clarion interface to a C or C++
library that eliminates the need to use the NAME attribute on the Clarion prototype to
specify names.

Use the NAME attribute on the Clarion prototype to specify names for C library functions
that do not use the CLA_CONV macro - remember that C names are case sensitive and
start with an underscore ().



Multi Language Programming 167

Modula-2 and Pascal Considerations

* If a Modula-2 or Pascal procedure takes a VAR parameter, the corresponding parameter
in the Clarion prototype for that procedure should be declared as "passed by address" by
prefixing the data type with an asterisk (*).

* If a Modula-2 or Pascal procedure takes a VAR parameter for a GROUP, STRING,
PSTRING or CSTRING, you should use the RAW attribute in the Clarion prototype.
* If a Modula-2 or Pascal procedure takes a VAR record as a parameter, the

corresponding parameter in the Clarion prototype should be *GROUP and the RAW
attribute should be used in the prototype.

Additional C++ Considerations

* Use the "Pascal" external linkage specification for your C++ interface functions. This
eliminates the need to use the Clarion NAME attribute on the prototype.

* Don't call C++ class member functions from your Clarion code.
* Don't try to access C++ objects of class type from your Clarion code.
* Don't try to access C++ code compiled with a C++ compiler other than SoftVelocity.

Additional Modula-2 Considerations

* Use the definition (.DEF) module as a template for developing a Clarion interface to a
Modula-2 library.

* If a Modula-2 procedure takes an ASCIIZ string as a parameter, the corresponding
parameter in the Clarion prototype should be *CSTRING.

* Use the NAME attribute to specify names for Modula-2 library procedures -remember that
Modula-2 names are prefixed with the module name followed by a ‘$’ and are case-
sensitive.

Additional Pascal Considerations

* Use the interface (.ITF) files as a template for developing a Clarion interface to a Pascal
library.
* Use the NAME attribute to specify names for Pascal library procedures -remember that

Pascal names are prefixed with the module name followed by a ‘$’ and are upper-case.



168 Advanced Topics & Reference Guide




API Calls and Advanced Programming 169

API Calls and Advanced Resources

Prototypes and Declarations

Clarion includes files with prototypes, declarations, and headers that you can use to let
Clarion "talk" to Windows, C/C++, Modula-2, and vice versa.

Clarion to C/C++ Standard Library

To call the standard C library functions from Clarion applications, include \CLIB.CLW in
the "Inside the Global Map" embed point.

| NCLUDE(* CLI B. CLW )

This file contains Clarion prototypes for various string handling functions, integer math,
character type functions, and low level file manipulation functions. Refer to your C/C++
Library Reference for more information on individual functions.

Clarion to Windows API

To call Windows API functions from Clarion applications, you must include the functions’
prototypes in your application’s MAP structure, and any standard EQUATES or data
structures that the functions need in your Global data declarations.

Clarion contains the WINAPI.EXE utility program that creates the file you need to include
in your application. This program, by default, creates the WINAPI.CLW file which has two
sections: the "Equates” section containing all EQUATE statements and any data
structures needed by the functions you choose, and the "Prototypes" section containing
the Clarion language prototypes of Windows API functions you choose to use.

Include the Equates section of WINAPIL.CLW in the "After Global INCLUDES" embed
point:

| NCLUDE(* W NAPI . CLW , ’ Equat es’ )



170 Advanced Topics & Reference Guide

Include the Prototypes section of WINAPI.CLW in the "Inside the Global Map" embed
point:

I NCLUDE(* W NAPI . CLW , ’ Pr ot ot ypes’)

Refer to your Windows API reference for more information on the individual API functions
available to you in categories such as:

Creating Windows
Window Support

Message Processing
Memory Management
Bitmaps and Icons

Color Palette Control
Sound

Character Sets and Strings
Communications

Metafiles

Tool Help Library

File Compression
Installation and Version Information
TrueType Fonts
Multimedia

Modula-2 to Clarion

Clarion’s Runtime Library

To call the Clarion runtime library procedures, use the \CWRUN.DEF file. This file
contains Modula-2 declarations for various Clarion Language procedures, as well as the
many standard C library functions that are found in the Clarion Runtime Library. The
available functions are documented in the Clarion’s Runtime Library Functions section of
this article.

Clarion’s File Driver Procedures

To call the Clarion database file driver procedures, use the \CWFILE.DEF file. This file
contains Modula-2 declarations for Clarion’s FILE, RECORD, KEY, INDEX, MEMO, and
BLOB handling procedures, including a complete description of Clarion’s file control
block.



API Calls and Advanced Programming 171

C/C++ to Clarion

Clarion’s Runtime Library

To call the Clarion runtime library procedures, use the \CWRUN.H file. This file contains
C/C++ prototypes for various Clarion Language procedures, as well as many standard C
library functions that are found in the Clarion Runtime Library. The available functions are
documented below in the Clarion’s Runtime Library Functions section.

Clarion’s File Driver Procedures

To call the Clarion database file driver procedures, use the \CWFILE.H file. This file
contains C/C++ prototypes for Clarion’s FILE, RECORD, KEY, INDEX, MEMO, and
BLOB handling procedures, including a complete description of Clarion’s file control
block.



172 Advanced Topics & Reference Guide

Accessing Clarion's Runtime Library from C/C++ or Modula-2 Code

Following is a list of Clarion runtime library procedures, data structures, and variables
that you may use at run time in your C/C++ or Modula-2 code.

Structures and Data Type Definitions

COLORREF
C++: typedef unsigned long COLORREF;
Modula-2: TYPE COLORREF = LONGINT;

Run-Time Variables

The following variables are available for interrogation at run-time:

Cla$DOSerror An unsigned integer containing the last DOS error code.
Cla$FILEERRCODE An integer containing the last Clarion error code.

Cla$FILEERRORMSG A character array of 80 char's containing the last Clarion
error message.

WSL@Applnstance An unsigned short containing the instance ID of the
application.

Clarion Built-in Procedures

The following list of procedures are those internal Clarion procedures that are ‘safe’ to
call at run-time. Unless otherwise stated, assume that these procedures have been given
external C linkage.



API Calls and Advanced Programming 173

Cla$ACOS The Clarion ACOS() procedure. Returns the inverse cosine of the val
parameter.
C++; double Cla$3ACOS(double val)
Modula-2: Cla$ACOS(val :LONGREAL):LONGREAL,;
val: A numeric expression describing an angle in radians.
Cla$ARC The Clarion ARC statement. Places an arc of an ellipse on the current
window or report, bounded by the rectangle defined by the x, y, wd and
ht parameters.
C++: void Cla$ARC(int x, int y, int wd, int ht, int start, int end)
Modula-2:  Cla$ARC(x,y,wd,ht,start,end: INTEGER);
X: An integer specifying the horizontal position of the starting point.
y: An integer specifying the vertical position of the starting point.
wd: An integer specifying then width.
ht: An integer specifying then height.
start:  An integer specifying the start of the arc in 10th’s of a degree.
end:  An integer specifying the end of the arc in 10th’s of a degree.
Cla$ASIN The Clarion ASIN() procedure. Returns the inverse sine of the val
parameter.
C++: double Cla$ASIN(double val)
Modula-2: Cla$ASIN(val LONGREAL): LONGREAL;

val: A numeric expression describing an angle in radians.



174 Advanced Topics & Reference Guide

Cla$ATAN The Clarion ATAN() procedure. Returns the inverse tangent of the val
parameter.
C++: double Cla$ATAN(double val)
Modula-2: Cla$ATAN(val: LONGREAL):LONGREAL;
val: A numeric expression describing an angle in radians.
Cla$BOX The Clarion BOX statement. This procedure draws a box of the color

specified by the COLORREF structure, starting at position x, y of the
width and height specified on the current window or report.

C++: void Cla$BOX(int x, int y, int wd, int ht, COLORREF fillcolor)
Modula-2: Cla$BOX(x, y, wd, ht: INTEGER,; fillcolor: COLORREF);

X: An integer specifying the horizontal start position.

y: An integer specifying the vertical start position.

wd: An integer specifying the width.
ht: An integer specifying the height.
fillcolor: A COLORREF structure.

Cla$BSHIFT  The Clarion BSHIFT() procedure. This procedure returns the result of bit
shifting val by count binary positions. If count is positive, val is shifted
left, if count is negative val is shifted right.

C++:  long Cla$BSHIFT(long val, int count)

Modula-2: Cla$BSHIFT(val: LONGINT; count: INTEGER):
LONGINT;
val: A numeric expression.

count: A numeric expression.



API Calls and Advanced Programming 175

Cla3CHORD The Clarion CHORD statement. Draws a closed sector ellipse on the
current window or report inside the box specified by the x, y, wd and ht
parameters and in the color provided in the COLORREF structure. The
start and end parameters specify which part of the ellipse to draw.

C++: void Cla$CHORD(int x, int y, int wd, int ht, int start, int end,
COLORREF fillcolor)
Modula-2: Cla$CHORD(X, y, wd, ht, start, end: INTEGER; fillcolor:
COLORREF);
X: An integer specifying the horizontal start position.
y: An integer specifying the vertical start position.
wd: An integer specifying the width.
ht: An integer specifying the height.
start:  An integer expressing the string of the chord in 10th’s of a
degree.
end:  Aninteger expressing the end of the chord in 10th’s of a degree.
fillcolor: A COLORREF structure.

Cla$CLOCK  The Clarion CLOCK() procedure. Returns the system time in the form of
a Clarion standard time.

C++: long Cla$CLOCK(void)

Modula-2: Cla$CLOCK(): LONGINT;

Cla$CoS The Clarion COS() procedure. Returns the cosine of the val parameter.
C++: double Cla$COS(double val)

Modula-2: Cla$COS(val: LONGREAL): LONGREAL;

val: A numeric expression describing an angle in radians.



176

Advanced Topics & Reference Guide

Cla$DATE

C++:

Modula-2:

Cla$DAY

C++:

Modula-2:

Cla$ELLIPSE

C++:

Modula-2:

The Clarion DATE() procedure. Returns a Clarion standard date value
form the component day, month and year parameters.

long Cla$DATE(unsigned mn, unsigned dy, unsigned yr)
Cla$DATE(mn, dy, yr: CARDINAL): LONGINT;

mn: A numeric expression for the month in the range 1 to 12.
dy: A numeric expression for the day in the range 1 to 31.
yr A numeric expression for the year in the range 1801 to 2099.

The Clarion DAY() procedure. Returns the day in the range 1 to 31 from
the Clarion standard date parameter.

long Cla$DAY (long dt)
Cla$DAY(dt: LONGINT): LONGINT;

dt: A numeric expression for Clarion standard date.

The Clarion ELLIPSE statement. Draws an ellipse on the current window
or report, of the color specified in the COLORREF structure, inside the
area bounded by the x, y, wd and ht parameters.

void Cla$ELLIPSE(int x, int y, int wd, int ht, COLORREF fillcolor)

Cla$ELLIPSE(x, y, wd, ht: INTEGER,; fillcolor: COLOREF);

X: An integer expression.
y: An integer expression.
wd: An integer expression.
ht: An integer expression.

fillcolor: A COLORREEF structure.



API Calls and Advanced Programming 177

Cla$INT The Clarion INT() procedure. Returns the integer portion of the val
parameter. The value is truncated at the decimal point and no rounding
is performed.

C++: double Cla$INT(double val)
Modula-2: Cla$INT(val: LONGREAL): LONGREAL;

val: A numeric expression.

Cla$LOG10  The Clarion LOG10() procedure. Returns the base 10 logarithm of the
val parameter.

C++: double Cla$LOG10(double val)
Modula-2: Cla$LOG10(val: LONGREAL): LONGREAL;

val: A numeric expression.

Cla$LOGE The Clarion LOGE() procedure. Returns the natural logarithm of the val
parameter.

C++: double Cla$LOGE(double val)
Modula-2: Cla$LOGE(val: LONGREAL): LONGREAL;

val: A numeric expression.

Cla3MONTH  The Clarion MONTH() procedure. Returns the month from a Clarion
standard date in the range 1 to 12.

C++: long Cla$MONTH(long dt)
Modula-2: Cla$MONTH(dt: LONGINT): LONGINT;

dt: A numeric expression containing a Clarion standard date.



178

Advanced Topics & Reference Guide

Cla$MOUSEX The Clarion MOUSEX() procedure. Returns the horizontal position of the
mouse.

C++: int ClaSMOUSEX(void)

Modula-2: Cla$MOUSEX(): INTEGER,;

Cla$MOUSEY The Clarion MOUSEY/() procedure. Returns the horizontal position of the
mouse.

C++: int ClaSMOUSEY (void)

Modula-2:  Cla$MOUSEY(): INTEGER;

Clas$NUMERIC

The Clarion NUMERIC() procedure. Returns 1 (true) if str contains a
valid representation of a number, otherwise returns 0 (false).

C++: unsigned Cla3NUMERIC(char *str, unsigned slen)

Modula-2: Cla$NUMERIC(VAR str: ARRAY OF CHAR; slen:CARDINAL):
CARDINAL;
str: A pointer to a string.

slen:  Length of the str parameter.
Cla$RANDOM

The Clarion RANDOM() procedure. Returns a pseudo-random number
who's value will be between the low and high bound values.

C++: long Cla3RANDOM(long low, long high)
Modula-2: Cla$RANDOM(low, high: LONGINT): LONGINT;
low: A numeric value specifying the lower bound.

high: A numeric value specifying the upper bound.



API Calls and Advanced Programming 179

Cla$ROUND  The Clarion ROUND() procedure. Returns the val parameter rounded to
power of 10 specified by the ord parameter.

C++: double Cla$ROUND(double val, double ord)
Modula-2: Cla$ROUND(val, ord: LONGREAL): LONGREAL,;
val: A numeric expression.

ord: A numeric expression equal to a power of 10 (e.g. .001, .0, 1, 10,
100 etc...).

Cla$SETCLOCK
The Clarion SETCLOCK statement. Sets the system clock to the time
contained in the dt parameter.

C++: void Cla$SETCLOCK(long dt)
Modula-2: Cla$SETCLOCK(dt: LONGINT);

dt: A numeric expression representing a Clarion standard time.

Cla$SETTODAY
The Clarion SETTODAY statement. Sets the DOS system date to that
contained in the dt parameter.

C++: void Cla$SETTODAY (long dt)

Modula-2: Cla&SETTODAY(dt: LONGINT);

dt: A numeric expression containing a Clarion standard date.
Cla$SIN The Clarion SIN() procedure. Returns the sine of the val parameter.
C++: double Cla$SIN(double val)

Modula-2: CLAS$SIN(val: LONGREAL): LONGREAL;

val: A numeric expression describing an angle in radians.



180

Advanced Topics & Reference Guide

Cla$SQRT

C++:

Modula-2:

Cla$TAN
C++:

Modula-2:

Cla$TODAY

C++:

Modula-2:

Cla$YEAR

C++:

Modula-2:

The Clarion SQRT() procedure. Returns the square root of the val
parameter.

double Cla$SQRT(double val)
Cla$SQRT(val:LONGREAL): LONGREAL;

val: A numeric expression.

The Clarion TAN() procedure. Returns the tangent of the val parameter.
double Cla$TAN(double val)
Cla$TAN(val: LONGREAL): LONGREAL;

val: A numeric expression describing an angle in radians.

The Clarion TODAY() procedure. Returns the system date in Clarion
standard date format.

long Cla$TODAY (void)
Cla$TODAY(): LONGINT;

The Clarion YEAR() procedure. Extracts the year from a Clarion
standard date, in the range 1801 to 2099.

long Cla$YEAR(long dt)
Cla$YEAR(dt: LONGINT): LONGINT;

dt: A numeric expression describing a Clarion standard date.



API Calls and Advanced Programming 181

Clarion String Stack Handling Procedures

The following section describes the use Clarion internal run-time string handling
procedures available to 3GL code. Clarion uses a LISP like approach to string handling
whereby, parameters are pushed onto the top of the string stack, with operations being
performed on the topmost entries. Assume, unless otherwise documented, that the
procedures remove (or Pop) items off the stack that they have used.

Please note that some of the following procedures require pointers to null terminated
strings, to be passed as parameters. Modula-2 programmers should use the Modula
library procedure Str.StrToC to convert strings to null terminated equivalents. Also, the
pragma call(o_a_size=>off,0_a_copy=>off) must be issued to prevent the passing of
array size information to the run-time procedures.

Cla$PopCstring Takes the topmost item off the stack and copies it to the string
pointed to by s; len contains the length of the string copied to s.
C++: void Cla$PopCString(char *s, unsigned len)
Modula-2: Cla$PopCstring(s: POINTER TO CHAR; len: CARDINAL);
s: A pointer to a null terminated string
len: The length of string s
Cla$PopPString Takes the topmost item off the stack and copies it to the string

pointed to by s; len contains the length of the string copied to s.
The string is converted to a Pascal style string (i.e. first byte is
string length) during copy.

C++: void Cla$PopPString(char *s, unsigned len)
Modula-2: Cla$PopPString(VAR s: ARRAY OF CHAR; len: CARDINAL);
s: A pointer to a string

len: The length of string s



182

Advanced Topics & Reference Guide

Cla$PopString
C++:

Modula-2:

Cla$PushCString
C++:

Modula-2:

Cla$PushString

C++:

Modula-2:

Cla$StackALL

C++:

Modula-2:

Pops the uppermost stack item and copies it to the string s.
void Cla$PopString(char *s, unsigned len)
Cla$PopString(VAR s: ARRAY OF CHAR; len: CARDINAL);
S: A pointer to a null terminated string

len: The length of string s

Pushes s onto the top of the stack.
void Cla$PushCString(char *s)
Cla$PushCstring(VAR s: ARRAY OF CHAR);

s: A pointer to a null terminated string

Pushes the string s onto the top of the stack. Len specifies the
length of string s.

void Cla$PushString(char *s, unsigned len)
Cla$PushsString(VAR s: ARRAY OF CHAR; len: CARDINAL);
S: A pointer to a string

len: The length of string s

The Clarion ALL() procedure. Pops the top item of the stack and
replaces it by a string containing the original string replicated as
many times as necessary to produce a string of length len.

void Cla$StackALL(unsigned len)
Cla$StackALL(len: CARDINAL);

len: An unsigned integer



API Calls and Advanced Programming 183

Cla$StackCENTER

C++:

Modula-2:

Cla$StackCLIP

C++:

Modula-2:

Cla$StackCompare

C++:

Modula-2:

The Clarion CENTER() procedure. Pops the topmost item of the
stack and replaces it with a string padded with leading spaces so
as to center the text in a string of length len.

void Cla$StackCENTER(unsigned len)

Cla$StackCENTER(len: CARDINALY);

len: An unsigned integer

The Clarion CLIP() procedure. Removes trailing spaces from the
top most item on the stack.

void Cla$StackCLIP(void)

Cla$StackCLIP();

Compares the top item on the stack (s1) with the 2nd item on the
stack (s2) and returns one of the following values:

-1: if s1 <s2
0: if s1 =s2
1: if s1>s2

After the compare instruction, s1 and s2 are removed from the
stack automatically.

int Cla$StackCompare(void)

Cla$StackCompare(): INTEGER,;



184

Advanced Topics & Reference Guide

Cla$StackCompareN

C++:

Modula-2:

Cla$StackConcat

C++:

Modula-2:

Cla$StackINSTRING

C++:

Modula-2:

Cla$StackLEFT

C++:

Modula-2:

Compares the topmost item on the stack to null. Returns true if
the topmost item is null, otherwise returns false.

int Cla$StackCompareN(void)

Cla$StackCompareN(): INTEGER;

Pops the top two items off the stack, concatenates them together
and pushes the resulting string back onto the stack.

void Cla$StackConcat(void)

Cla$StackConcat();

The Clarion INSTRING() procedure. Searches the topmost item
on the stack, for any occurrence of the second item on the stack.
The search starts at character position start and increments the
start position by step until the end of the string is reach. Returns
the iteration count required to find the search string, or O if not
found.

unsigned Cla$StackINSTRING(unsigned step, unsigned start)
Cla$StackINSTRING(step, start: CARDINAL): CARDINAL;
step:  Anunsigned integer, the search increment

start:  An unsigned integer, the start position of the search

The Clarion LEFT() procedure. Replaces the topmost string on
the stack with its left justified equivalent. The replacement sting
will have a length of len.

void Cla$StackLEFT(unsigned len)
Cla$StackLEFT (len: CARDINAL);

len: An unsigned integer



API Calls and Advanced Programming

185

Cla$StackLen

C++:

Modula-2:

Cla$StackLen?2

C++:

Modula-2:

Cla$StackLOWER

C++

Modula-2:

Cla$STACKpop

C++:

Modula-2:

Clag$StackNUMERIC

C++:

Modula-2:

Cla$StackPRESS

C++:

Modula-2:

Returns the length of the topmost item on the stack. Does not
pop the item off the stack.

unsigned Cla$StackLen(void)

Cla$StackLen(): CARDINAL;

Returns the length of the topmost item on the stack. Pops the
item of the stack after getting its length.

unsigned Cla$StackLen2(void)

Cla$StackLen2(): CARDINAL;

The Clarion LOWER() procedure. Replaces the topmost string
on the stack with its lower case equivalent.

void Cla$StackLOWER (void)
Cla$StackLOWER();

Pops the top item off the stack.
void Cla$STACKpop(void)

Cla$STACKpop();

Returns true if the topmost string on stack contains a valid
numeric representation, otherwise returns false.

unsigned Cla$StackNUMERIC(void)

Cla$StackNUMERIC(): CARDINAL;

The Clarion PRESS statement. Pushes every character in the
topmost string of the stack into the Windows keyboard buffer.

void Cla$StackPRESS(void)

Cla$StackPRESS();



186

Advanced Topics & Reference Guide

Cla$StackRIGHT

C++:

Modula-2:

Cla$StackSUB

C++:

Modula-2:

Cla$StackVAL

C++:

Modula-2:

Cla$StackUPPER

C++:

Modula-2:

The Clarion RIGHT() procedure. Replaces the topmost item on
the stack with its right justified equivalent. The replacement
string will have a length of len characters.

void Cla$StackRIGHT (unsigned len)
Cla$StackRIGHT(len: CARDINAL);

len: An unsigned integer

The Clarion SUB() procedure. Replaces the topmost string on
the stack with a sub slice of the string starting at character
position pos and of length len.

void Cla$StackSUB(unsigned pos, unsigned len)
Cla$StackSUB(pos, len: CARDINAL);
pos:  Anunsigned integer; the start position of the sub string

len: An unsigned integer; the length of the sub string

The Clarion VAL() procedure. Returns the ANSI value of the first
character of the topmost string of the stack.

unsigned char Cla$StackVAL(void)

Cla$StackVAL(): BYTE;

Replace the topmost string on the stack with its uppercase
equivalent.

void Cla$StackUPPER(void)

Cla$StackUPPER();



API Calls and Advanced Programming 187

Standard C Functions in Clarion's Runtime Library

The following functions comprise a sub-set of the standard SoftVelocity library that you
can call from your Clarion, C/C++, or Modula-2 code. All of these functions are fully
documented in the SoftVelocity C Library Reference manual (or in any ANSI-standard C
library reference) and so, are not documented here. Unless otherwise indicated, assume
that the functions operate exactly as documented.

The purpose of this list is simply to let you know what C standard library functions are
available and the correct prototypes for each language.

Conversion Functions

Please note that some of the following functions require pointers to null terminated strings
as parameters. Modula-2 programmers should use the Modula library procedure
Str.StrToC to convert strings to null terminated equivalents. Also, the pragma
call(o_a_size=>0ff, 0_a_copy=>0ff) must be issued to prevent the passing of array size
information to the run-time procedures.

atof Convert string to floating point.
C++: double atof(const char *_nptr)

Modula-2:  atof( VAR _nptr: ARRAY OF CHAR): LONGREAL;

Clarion: AToF(*cstring),real,raw,name('_atof")
atoi Convert string to integer.
C++: int atoi(const char *_nptr)

Modula-2: atoi(VAR _nptr: ARRAY OF CHAR): INTEGER,;

Clarion: ATol(*cstring),short,raw,name('_atoi')



188

Advanced Topics & Reference Guide

atol
C++:

Modula-2:

Clarion:

atoul
C++:

Modula-2:

Clarion:

Integer Math

abs
C++:

Modula-2:

Clarion:

labs

C++:

Modula-2:

Clarion:

Convert string to long.
long atol(const char *_nptr)

atol( VAR _nptr: ARRAY OF CHAR): LONGINT;

AToL (*cstring),long,raw,name(’_atol")

Convert string to unsigned long.
unsigned long atoul(const char *_nptr)

atoul(VAR _nptr: ARRAY OF CHAR): LONGCARD;

AToUL(*cstring),ulong,raw,name(’_atoul’)

Integer absolute value.
int abs(int _num)

abs(_num: INTEGER): INTEGER;

API_Abs(short),short,name('_abs") IRenamed to avoid conflict with Builtins.C

Long integer absolute value.
long labs(long _j)
labs(_i: LONGINT): LONGINT;

LAbs(long),long,name(’_labs")



API Calls and Advanced Programming

189

Char Type Functions

The following functions have only been tested when implemented as functions. We do
not advise defining _CT_MTF to implement the functions as macros.

toupper

C++:

Modula-2:

Clarion:

Tolower

C++:

Modula-2:

Clarion:

isascii

C++:

Modula-2:

Clarion:

iscntrl

C++:

Modula-2:

Clarion:

Test and convert if lowercase.
int toupper(int c)
toupper(c: INTEGER):INTEGER,;

ToUpper(short),short,name('_toupper’)

Test and convert if uppercase.
int tolower(int c)
tolower(c: INTEGER): INTEGER;

ToLower(short),short,name('_tolower")

ASCII test function.
int isascii(int c)
isascii(c: INTEGER): INTEGER;

IsAscii(short),short,name('_isascii')

Control character test function.
int iscntrl(int c)
iscntri(c: INTEGER): INTEGER;

IsCntrl(short),short,name('_iscntrl’)



190 Advanced Topics & Reference Guide

isdigit Numerics test function.
C++: int isdigit(int c)

Modula-2: isdigit(c: INTEGER): INTEGER;

Clarion: IsDigit(short),short,name(’_isdigit’)
Isprint Printable including space test function.
C++: int isprint(int c)

Modula-2: isprint(c: INTEGER): INTEGER,;

Clarion: IsPrint(short),short,name(’_isprint’)
Ispunct Punctuation character test function.
C++: int ispunc(int c)

Modula-2: ispunc(c: INTEGER): INTEGER;

Clarion: IsPunct(short),short,name(’_ispunct’)
isspace Whitespace test function.
C++: int isspace(int c)

Modula-2: isspace(c: INTEGER): INTEGER;

Clarion: IsSpace(short),short,name(’_isspace’)
Isxdigit Hex digit test function.
C++: int isxdigit(int c)

Modula-2: isxdigit(c: INTEGER): INTEGER,;

Clarion: IsXDigit(short),short,name('_isxdigit’)



API Calls and Advanced Programming

191

Utility Functions

rand
C++:

Modula-2:
Clarion:

randomize
C++:
Modula-2:

Clarion:

srand
C++:
Modula-2:

Clarion:

Return pseudorandom integer.
int rand(void)

rand(): INTEGER,;
Rand(),short,name('_rand")

Set pseudorandom seed with system time.
void randomize(void)
randomize()

Randomize(),name(’_randomize’)

Set pseudorandom seed with specified number.

void srand(unsigned _seed)
srand(_seed: CARDINAL);

SRand(ushort),name('_srand')



192 Advanced Topics & Reference Guide

String Functions

strcat Concatenate two strings.

C++: char *strcat(char *_dest, const char *_source)
Modula-2: Not available

Clarion: StrCat(*cstring,*cstring),cstring,raw,name('_strcat')
strcmp Compare two strings.

C++: int strcmp(const char *_s1, const char *_s2)
Modula-2: Not available

Clarion: StrCmp(*cstring,*cstring),short,raw,name(’_strcmp’)
chrcmp Compare two characters

C++: int chrcmp(char _c1, char _c2)

Modula-2: chremp(_cl, c2: CHAR): INTEGER;

Clarion: ChrCmp(byte,byte),short,name(’_chrcmp")

strequ

C++: int strequ(const char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrEqu(*cstring,*cstring),short,raw,name('_strequ’)
strcpy Copy one string to another, return destination address.
C++: char *strcpy(char *_dest, const char *_source)
Modula-2: Not available

Clarion: StrCpy(*cstring, *cstring), cstring, raw,| name(’_strcpy’)



API Calls and Advanced Programming

193

strlen Return string length.
C++: unsigned strlen(const char *_s)

Modula-2: strlen(VAR _s: ARRAY OF CHAR): CARDINAL;

Clarion: StrLen(*cstring),ushort,raw,name(’_strlen")

strchr Find character in string.

C++: char *strchr(const char *_s, int _c)

Modula-2: Not available

Clarion: StrChr(*cstring,short),cstring,raw,name('_strchr’)
strcspn Finds one of a set of characters in string.

C++: unsigned strcspn(const char *_s1, const char *_s2)
Modula-2: Not available

Clarion: StrCSpn(*cstring, *cstring), ushort, raw,| name('_strcspn’)
strspn Find first character with no match in given character set.
C++: unsigned strspn(const char *_s1, const char *_s2)
Modula-2: Not available

Clarion: StrSpn(*cstring,*cstring),ushort,raw,name('_strspn’)
strstr Find first occurrence of substring in a string.

C++: char *strstr(const char *_s1, const char *_s2)

Modula-2: Not available

Clarion: StrStr(*cstring,*cstring),cstring,raw,name(’_strstr')



194

Advanced Topics & Reference Guide

strtok

C++:

Modula-2:

Clarion:

strpbrk

C++:

Modula-2:

Clarion:

strrchr

C++:

Modula-2:

Clarion:

striwr

C++:

Modula-2:

Clarion:

strupr

C++:

Modula-2:

Clarion:

Find next token in string.
char *strtok(char *_s1, const char *_s2)
Not available

StrTok(*cstring,*cstring),cstring,raw,name(’_strtok’)

Find first occurrence of character.
char *strpbrk(const char *_s1, const char *_s2)
Not available

StrPBrk(*cstring, *cstring), cstring, raw,| name(’_strpbrk’)

Find last occurrence of character.
char *strrchr(const char *_s, int _c)
Not available

StrRChr(*cstring,short),cstring,raw,name(’_strrchr’)

Convert to lower case.
char *strlwr(char *_s)
Not available

StrLwr(*cstring),cstring,raw,name(’_strlwr")

Convert to upper case.
char *strupr(char *_s)
Not available

StrUpr(*cstring),cstring,raw,name(’_strupr’)



API Calls and Advanced Programming 195

strdup

C++:

Modula-2:

Clarion:

strrev

C++:

Modula-2:

Clarion:

strncat

C++:

Modula-2:

Clarion:

strncmp

C++:

Modula-2:

Clarion:

strncpy

C++:

Modula-2:

Clarion:

Duplicate string.
char *strdup(const char *_s)
Not available

StrDup(*cstring),cstring,raw,name(’_strdup')

Reverse string.
char *strrev(char *_s)
Not available

StrRev(*cstring),cstring,raw,name('_strrev')

Concatenate n characters.
char *strncat(char *_dest, const char *_source, unsigned _n)
Not available

StrNCat(*cstring, *cstring, ushort), cstring, raw,| name('_strncat’)

Compare n characters.
int strncmp(const char *_s1, const char *_s2, unsigned _n)
Not available

StrNCmp(*cstring, *cstring, ushort), short, raw,| name('_strncmp’)

Copy n characters.
char * strncpy(char *_dest, const char *_source, unsigned _n)
Not available

StrNCpy(*cstring, *cstring, ushort), cstring, raw,| name('_strncpy’)



196

Advanced Topics & Reference Guide

strnicmp

C++:

Modula-2:

Clarion:

Compare n characters regardless of case.
int stricmp(const char *_s1, const char *_s2, unsigned _n)
Not available

StrNICmp(*cstring, *cstring, ushort), short, raw,| name('_strnicmp")



API Calls and Advanced Programming 197

Low-Level File Manipulation

chmod Set file's access mode.

C++: int _chmod(const char *path, int mode)

Modula-2: _chmod(VAR path: ARRAY OF CHAR; mode: INTEGER): INTEGER,;
Clarion: ChMod(*cstring,short),short,raw,name(’_chmod’)

remove Deletes the file specified by the path parameter.

C++: int _remove(const char *_path)

Modula-2: _remove(VAR _path: ARRAY OF CHAR): INTEGER,;

Clarion: API_Remove(*cstring),short,raw,name(’_remove')

IRenamed to avoid conflict with Builtins.Clw

rename Changes the name of the file or directory specified by the oldname parameter.
C++: int _rename(const char *_oldname, const char *_newname)

Modula-2: _rename(VAR _oldname, VAR _newname: ARRAY OF CHAR): INTEGER;
Clarion: API_Rename(*cstring, *cstring), short, raw,| name('_rename’)

IRenamed to avoid conflict with Builtins.Clw



198

Advanced Topics & Reference Guide

fnmerge

C++:

Modula-2:

Clarion:

fnsplit

C++:

Modula-2:

Clarion:

mkdir

C++:

Modula-2:

Clarion:

rmdir

C++:

Modula-2:

Clarion:

Builds a complete path name from its component parts -- drive, directory,
filename, and extension.

void _fnmerge(char *_path, const char *_drive, const char *_dir, const
char *_name, const char *_ext)

_fnmerge(VAR _path, VAR _drive, VAR _dir, VAR _name, VAR _ext:
ARRAY OF CHAR);

FnMerge(*cstring, *cstring, *cstring, *cstring,| *cstring), raw,
name('_fnmerge')

This function breaks a complete path name into its component parts --
drive, directory, filename, and extension.

int _fnsplit(const char *_path, char *_drive, char *_dir, char *_name, char *_ext)

_fnsplit(VAR_path,VAR _drive,VAR _dir,VAR _name,VAR _ext:ARRAY
OF CHAR):INTEGER;

FnSplit(*cstring, *cstring, *cstring, *cstring,| *cstring), short, raw, name('_fnsplit")

Creates a new directory with the name passed in the path parameter.
int _mkdir(const char *_path)
_mkdir(VAR _path: ARRAY OF CHAR): INTEGER,;

MKDir(*cstring),short,raw,name(’_mkdir")

removes the directory specified in the path parameter.
int _rmdir(const char *_path)
_rmdir(VAR _path: ARRAY OF CHAR):INTEGER;

RmDir(*cstring),short,raw,name(’_rmdir’)



API Calls and Advanced Programming 199

chdir Change directory.
C++: int _chdir(const char *_path)
Modula-2: _chdir(VAR _path: ARRAY OF CHAR): INTEGER,;

Clarion: ChDir(*cstring),short,raw,name('_chdir")



200 Advanced Topics & Reference Guide




Index

201

Index:

#pragma... 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113

CCB0_ i 114
_CWVER_ ..ot 114
Basic Compiling and Linking ..................... 66
BeginUnique .........ceeveeiieiiiiiiiieceee e 18
BLOBTOFILE ....ccoviveeeviiie e 19
BYTETOHEX ......ccciiieiiiiee e 20
Clarion Language Utilities............ccccceeennee 17
Commonly Used Equates..........ccccceeveennn. 42
Compiler Integration .........ccccceeevvvcvvvennnnn. 140
Conditional Processing and Flow Control .71
Create a direCtory .......ccccvveeevvivevienneeeeennnns 21
CreateDireCtory .......ccccvvveeeeeeeiisciieeeeee e 21
Dictionary Class.......ccccceeeeviicvvieeieeee i 13
DLL Initialization ..........cccooevieeeiieniiiiiiieeeenn. 7
ENdUNIQUE ..cooeiiiiieeee e 22
EQUALES.......eeiei e 42
Error Managers. ... 12
FIEEXISTS ..veveiiiiiiiiiieeeee e 23
FILETOBLOB ...ccootiiieiiiiiee e 24
FUIIDIag ..vvveeeee e 25
GetFileDate .......cccoevvvveeeiiiiiee e 26
GetFleTime ... 27

GETREG......iiiiieeee e 28

GetTempFileName ........cccccovvcvvveeeeeeennnnns 29
GetTempPath ..., 30
GetUserName........cccceveeeeiiiiiiiiieceee e 31
INtrodUCtioN ......cocvvviiiiiiee e, 59
ISTEMSEIVEN ... 32
Launching a thread - behind the scenes ...15
LONGTOHEX ....cvvvieiiiiiie e 33
MANIFEST ...oooviiiiiieecieee e 134
Multi Language Programming ................. 139
OVEIVIBW ...eeiiiieeiiiiieiee e 139
Programming Considerations................... 164
Project System Examples...........c.ccuveeeen. 115
Project System Macros.......ccccccoeeevvvveeeennn. 64
PROP

WiINdowsVersion ........ccccccvevveeviiineenee 34
Prototypes and Declarations.................... 169
Prototyping 3GL Functions in Clarion...... 153
PUTREG ......ccoii it 35
Remove a direCtory.........ccccceeeeviiiiiiiieennenn. 37
RemoveDIreCtory .........cccuveeeeeeiiiniiiiieeeenn, 37
RESIZEIMAGE ........cooiiiieviiiiee e 38
Resolving Data TYPesS......cccccceveeeeriiirennnn. 142
SHORTTOHEX ... 39
Threading....ccccvvveeeieecieeee e 14
ValidateOLE.........cccoooveeiiiiiie e 40
WINdOWEXISES ...o.evviiiiiiiiieiiiecc e, 41
WiNdowsVersion .........cccccevvveeeeinieeneininnennn 34



202 Advanced Topics & Reference Guide




	Introduction
	Advanced Topics:
	Clarion 6 Migration Tips
	DLL Initialization
	Change of EVALUATE Error Codes
	Embedding code when closing a Process procedure
	General Rules regarding your data and the new Thread Model
	Heap Overflow Error when migrating applications
	ISAM File Access Performance
	Migrating Large Dictionaries and Data Paths
	Migration of hand coded project files
	POINTER(File) and POSITION(File)
	Remove MDI attribute from dockable toolbar windows
	TXA Comparison Technique
	Use of Error Managers during DLL Initialization

	Dictionary Class
	The New Thread Model of Clarion 6
	Launching a thread - behind the scenes

	Language Utility Reference:
	Clarion Language Utilities
	BeginUnique (Set Application to Run in a Single Process)
	BLOBTOFILE (Copy Data from BLOB Field to File)
	BYTETOHEX (convert a BYTE to Hexadecimal)
	CreateDirectory (Create a directory)
	EndUnique (Close an application's event handle)
	FileExists (Confirm file existence)
	FILETOBLOB (Copy data from a file to a BLOB field)
	FullDrag (Query/Change Window Drag Setting)
	GetFileDate (Get the file date)
	GetFileTime (Get the file time)
	GETREG(get Windows registry entry)
	GetTempFileName (Generate a temporary file)
	GetTempPath (Return TMP or TEMP environment path)
	GetUserName (Return Network User Name)
	IsTermServer (Verify Terminal Server Usage)
	LONGTOHEX (convert an unsigned LONG to Hexadecimal)
	PROP:WindowsVersion
	PUTREG (write value to Windows registry)
	RemoveDirectory (Remove a directory)
	ResizeImage (Resize an image to fit a control)
	SHORTTOHEX (convert an unsigned SHORT to Hexadecimal)
	ValidateOLE (Validate OLE Control Creation)
	WindowExists (Validate Window Existence)

	Commonly Used Equates
	Template Equates (TPLEQU.CLW)


	Project System Reference
	Introduction
	Project System Macros
	Basic Compiling and Linking
	Conditional Processing and Flow Control
	SoftVelocity #pragmas
	Predefined Compiler Flags
	Project System Examples
	Module Definition Files (.EXP Files)
	Special Considerations for One-Piece (Single) Executables
	Version Information Resource Files

	Multi Language Programming
	Overview
	Compiler Integration
	Resolving Data Types
	Prototyping 3GL Functions in Clarion
	Parameter Data Types
	Return Data Types
	Passing Parameters
	Resolving Calling Conventions
	Resolving Naming Conventions
	Programming Considerations

	API Calls and Advanced Resources
	Prototypes and Declarations
	Accessing Clarion's Runtime Library from C/C++ or Modula-2 Code
	Standard C Functions in Clarion's Runtime Library

	Index

