
RT–11 System Macro Library Manual

Order Number AA–PD6LA–TC

August 1991

This manual contains current reference data about system macros used to call routines in
the RT–11 Monitor that performs program requests.

Revision/Update Information: This information was previously published, along with
reference data about the system subroutine library,
as part of the RT–11 Programmer’s Reference Manual,
AA–H378E–TC.

Operating System: RT–11 Version 5.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, August 1991

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of
software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227–7013.

© Digital Equipment Corporation 1991
All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CTS–300, DDCMP, DECnet, DECUS,
DECwriter, DIBOL, MASSBUS, MicroPDP–11, Micro/RSX, PDP, Professional, Q-bus, RSTS, RSX, RT–
11, RTEM–11, UNIBUS, VMS, VT, and the DIGITAL logo.

S1435

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface ix

Chapter 1 Introduction to Advanced RT–11 Programming

1.1 Programmed Requests . 1–1
1.1.1 Operating System Features . 1–2
1.1.1.1 RT–11 Monitors . 1–2
1.1.1.2 System Job Environment . 1–4
1.1.1.3 Multiterminal Operation . 1–4
1.1.1.4 System Communication Areas . 1–4
1.2 Programmed Request Implementation . 1–5
1.2.1 EMT Instructions . 1–5
1.2.2 System Control Path Flow . 1–6
1.3 System Conventions . 1–7
1.3.1 Program Request Format . 1–8
1.3.2 Blank Arguments . 1–11
1.3.3 Addressing Modes . 1–12
1.3.4 Keyword Macro Arguments . 1–13
1.3.5 Channels and Channel Numbers . 1–14
1.3.6 Device Blocks . 1–14
1.3.7 Programmed Request Errors . 1–15
1.3.8 User Service Routine (USR) Requirement . 1–15
1.4 Using Programmed Requests . 1–18
1.4.1 Initialization and Control . 1–18
1.4.2 Examining System Information and Reporting Status . 1–21
1.4.3 Command Interpretation . 1–21
1.4.4 File Operations . 1–22
1.4.5 Input/Output Operations . 1–24
1.4.5.1 Completion Routines . 1–24
1.4.5.2 Multiterminal Requests . 1–26
1.4.6 Foreground/Background Communications . 1–26
1.4.7 Timer Support . 1–27
1.4.8 Program Termination or Suspension . 1–28
1.4.9 Job Communications . 1–29
1.4.10 Mapped and Unmapped Regions . 1–29
1.4.11 Extended Memory Functions . 1–29
1.4.12 Interrupt Service Routines . 1–31
1.4.13 Device Handlers . 1–31
1.4.14 Logical Name Translation Bypass . 1–32

iii

1.4.15 Consistency Checking . 1–33
1.5 Programmed Request Summary . 1–33

Chapter 2 Programmed Request Description and Examples

.ABTIO . 2–3

.ADDR . 2–4

.ASSUME . 2–5

.BR . 2–6

.CALLK . 2–7

.CALLS . 2–9

.CDFN . 2–11

.CHAIN . 2–13

.CHCOPY . 2–16

.CKXX . 2–19

.CLOSE . 2–22

.CLOSZ . 2–24

.CMAP/.CMPDF/.GCMAP . 2–26

.CMKT . 2–32

.CNTXSW . 2–34

.CRAW . 2–36

.CRRG . 2–40

.CSIGEN . 2–41

.CSISPC . 2–47

.CSTAT . 2–51

.CTIMIO . 2–53

.DATE . 2–55

.DEBUG/.DPRINT . 2–57

.DELETE . 2–60

.DEVICE . 2–61

.DRAST . 2–64

.DRBEG . 2–67

.DRBOT . 2–69

.DRDEF . 2–70

.DREND . 2–75

.DREST . 2–77

.DRFIN . 2–83

.DRINS . 2–84

.DRPTR . 2–86

.DRSET . 2–88

.DRSPF . 2–89

.DRTAB . 2–93

.DRUSE . 2–95

.DRVTB . 2–97

.DSTAT . 2–98

iv

.ELAW . 2–100

.ELRG . 2–101

.ENTER . 2–102

.EXIT . 2–106

.FETCH/.RELEAS . 2–108

.FORK . 2–110

.FPROT . 2–112

.GCMAP . 2–114

.GFDAT . 2–115

.GFINF . 2–117

.GFSTA . 2–120

.GMCX . 2–123

.GTIM . 2–124

.GTJB . 2–126

.GTLIN . 2–129

.GVAL/.PVAL . 2–132

.HERR/.SERR . 2–136

.HRESET . 2–141

.INTEN . 2–142

.LOCK/.UNLOCK . 2–144

.LOOKUP . 2–147

.MAP/.UNMAP . 2–153

.MFPS/.MTPS . 2–155

.MRKT . 2–158

.MSDS . 2–161

.MTATCH . 2–162

.MTDTCH . 2–165

.MTGET . 2–167

.MTIN . 2–171

.MTOUT . 2–173

.MTPRNT . 2–175

.MTPS . 2–176

.MTRCTO . 2–177

.MTSET . 2–178

.MTSTAT . 2–180

.MWAIT . 2–181

.PEEK . 2–183

.POKE . 2–185

.PRINT . 2–187

.PROTECT/.UNPROTECT . 2–188

.PURGE . 2–191

.PVAL . 2–192

.QELDF . 2–193

.QSET . 2–194

.RCTRLO . 2–196

v

.RCVD/.RCVDC/.RCVDW . 2–197

.RDBBK . 2–205

.RDBDF . 2–206

.READ/.READC/.READW . 2–207

.RELEAS . 2–218

.RENAME . 2–219

.REOPEN . 2–221

.RSUM . 2–222

.SAVESTATUS . 2–223

.SCCA . 2–226

.SDAT/.SDATC/.SDATW . 2–228

.SDTTM . 2–236

.SERR . 2–238

.SETTOP . 2–239

.SFDAT . 2–242

.SFINF . 2–243

.SFPA . 2–246

.SFSTAT . 2–248
SOB . 2–253
.SPCPS . 2–254
.SPFUN . 2–257
.SPND/.RSUM . 2–261
.SRESET . 2–263
.SYNCH . 2–264
.TIMIO . 2–267
.TLOCK . 2–269
.TRPSET . 2–271
.TTYIN/.TTINR . 2–273
.TTYOUT/.TTOUTR . 2–275
.TWAIT . 2–278
.UNLOCK, .UNMAP, .UNPROTECT . 2–280
.WAIT . 2–281
.WDBBK . 2–282
.WDBDF . 2–283
.WRITE/.WRITC/.WRITW . 2–284

Appendix A Summary of Added and Changed Functionality

Index

vi

Figures

1–1 RT–11 Monitors . 1–3
1–2 System Flow During Programmed Request Execution . 1–7
1–3 EMT 374 Argument . 1–9
1–4 Stack Set by .CSIGEN Programmed Request . 1–10
1–5 EMT 375 Argument Block . 1–10

Tables

1–1 EMT Codes . 1–6
1–2 Programmed Requests Requiring the USR . 1–16
1–3 Values Used with .MRKT/.CMKT, .TIMIO/.CTIMIO . 1–28
1–4 Programmed Requests for RT–11 Environments . 1–33
1–5 Multijob or Mapped Program Requests . 1–40
2–1 Change Mapping Context (I.CMAP) Word Bits . 2–27
2–2 Timer Block Format . 2–53
2–3 Device-Identifier Byte Values . 2–71
2–4 System Service . 2–75
2–5 Special Functions for the TYPE=n Parameter . 2–90
2–6 Soft Error Codes (.SERR) . 2–138
A–1 Summary of Added and Changed Functionality . A–1

vii

Preface

Description of the Manual

This manual provides reference data about system macros used to call routines in
the RT–11 Monitor that perform program requests. These system macros are defined
in system macro library SYSMAC.SML stored on the system volume.

Reference data about the system subroutine library is now contained in a separate
manual, RT–11 System Subroutine Library Manual. See Associated Documents.

Document Structure

Chapter 1 — Introduction to RT–11 Programming
Describes the effective use of programmed requests and subroutines in RT–11
programs; provides examples that demonstrate their flexibility and value in
working programs.

Chapter 2 — Programmed Request Description and Examples
Programmed requests arranged in alphabetical sequence; detailed description
and example of its use in a program; reference to related programmed requests.

Appendix A — Summary of Added and Changed Functionality
Lists program requests implemented in previous major releases of RT–11.
Summarizes changes made to the program requests from version to version.

Intended Audience

This information is intended for use of advanced RT–11 MACRO–11 assembly
language programmers.

Associated Documents

The RT–11 Documentation Set consists of the following associated documents:

Basic Books

• Introduction to RT–11

• Guide to RT–11 Documentation

• PDP–11 Keypad Editor User’s Guide

• PDP–11 Keypad Editor Reference Card

• RT–11 Commands Manual

ix

• RT–11 Quick Reference Manual

• RT–11 Master Index

• RT–11 System Message Manual

• RT–11 System Release Notes

Installation Specific Books

• RT–11 Automatic Installation Guide

• RT–11 Installation Guide

• RT–11 System Generation Guide

Programmer Oriented Books

• RT–11 IND Control Files Manual

• RT–11 System Utilities Manual

• RT–11 System Macro Library Manual

• RT–11 System Subroutine Library Manual

• RT–11 System Internals Manual

• RT–11 Device Handlers Manual

• RT–11 Volume and File Formats Manual

• DBG–11 Symbolic Debugger User’s Guide

x

Conventions

The following conventions are used in this manual:

Convention Meaning

UPPERCASE
characters

In programmed request examples, uppercase characters represent-
ing the MACRO element of the command should be entered exactly
as given.

Lowercase
characters

In programmed request syntax examples, lowercase characters
represent arguments to the MACRO element of the command for
which you provide a value. For example:
.MTDTCH area,unit

Black print In examples, black print indicates output lines or prompting
characters that the system displays.

[] Square brackets in a command string indicates optional parameters,
qualifiers, or values.

RET RET in examples represents the RETURN key.
CTRL/x CTRL/x indicates a control key sequence. While pressing the key

labeled Ctrl, press another key. For example: CTRL/C

xi

Chapter 1

Introduction to Advanced RT–11 Programming

This chapter describes programmed requests and subroutines and recommends how
to use them effectively in your programs. Examples are provided to demonstrate
their flexibility and value in working programs. Programmed requests and system
subroutines, available as part of the RT–11 operating system, aid you in writing
reliable and efficient programs and provide a number of services to application
programs. These requests call routines in the RT–11 monitor that perform these
services. System macros are defined in SYSMAC.SML, a system macro library stored
on the system volume. The library also contains macro routines you use to write
device handlers and interrupt service routines.

Although the SYSMAC.MAC file is not provided on the RT–11 distribution kit,
you will need this file if you want to modify the system macro library. Create
SYSMAC.MAC from the distributed file SYSMAC.SML by running the SPLIT utility.
Type the following CCL command to create the file SYSMAC.MAC on your default
device.

.SPLIT ,SYSMAC.MAC=SYSMAC.SML/B:..SYSM

The variable ..SYSM represents the boundary along which to split SYSMAC.SML.
Refer to the file CUSTOM.TXT on your distribution kit for the value to substitute
for ..SYSM in the command line.

If you are a FORTRAN programmer, you can access the RT–11 monitor services
through calls to routines in system subroutine library SYSLIB.OBJ, stored on the
system volume. A character string manipulation package and two-word integer
support routines are included in this library. SYSLIB subroutines enable you to write
almost all application programs in FORTRAN without having to do any assembly
language coding. For information about the system subroutine library, refer to RT–11
System Subroutine Library Manual.

If you are a C-language programmer, you can access RT–11 monitor services by using
RTSYS.H in conjunction with SYSLIB.OBJ.

1.1 Programmed Requests

When you require a certain monitor service, you issue a programmed request in
your source program. The programmed request in your source program expands
into the appropriate machine language instructions during assembly time. When
the program executes, these instructions request the resident monitor to supply the
service represented by the programmed request.

Introduction to Advanced RT–11 Programming 1–1

Monitor services consist of the following processes:

• Initialization and control of operating system characteristics

• Allocation of system resources and reporting status

• Command interpretation

• File operations

• Input/output operations

• Interjob communications

• Timer support

• Program termination or suspension

• Extended memory functions

The system macro library (SYSMAC.SML) also contains several macros which
are not programmed requests; they are described in Chapter 2 along with the
programmed requests. These macros are provided to aid you in writing:

• Interrupt service routines

• Device handlers

• Memory management control blocks

• Consistency checking routines

1.1.1 Operating System Features

The RT–11 operating system features enhanced monitors, system job support and
multiterminal operation support.

1.1.1.1 RT–11 Monitors

The RT–11 monitors, built from one set of common sources, offer the following variety
of operational configurations. See Figure 1–1.

• Single-job and multijob unmapped monitors

• Single-job and multijob single-mapped monitors

• Single-job and multijob fully mapped monitors

Single-Job Unmapped Monitors
There are three single-job unmapped RT–11 monitors:

• SB replaces the single job (SJ) monitor, and supports most programmed requests.
SB supports program requests that manipulate files, perform input and output,
set timer routines, check system resources and status, and terminate program
operations.

1–2 RT–11 System Macro Library Manual

Figure 1–1: RT–11 Monitors

Unmapped
Monitors

Single
Mapped
U−K, I

Fully
Mapped
U−S−K, I−D

Monitors/Modes
Supported K, I

Single Job SB XB ZB

Multijob (2) FB −− −−

System Job (8) −− XM ZM

Other Single−
Job Monitors

MT (used with MDUPs only)
AI (used for installations)

• MT is used only with MDUPs.

• AI is used only with automatic installation.

Single-job Mapped Monitors
Two single-job mapped RT–11 monitors, XB and ZB, provide programmed requests
and features in addition to those provided by the FB monitor:

• XB is a single-mapped monitor that supports User and Kernel modes.

• ZB is a fully-mapped monitor that supports I and D space for User, Supervisor,
and Kernel modes.

Multijob Unmapped Monitors
FB is the unmapped multijob monitor. Multijob monitors support program requests
in addition to those supported for the single-job monitor. Some programmed requests
are provided for the multijob monitor only. Multijob monitors enable a program to
set timer routines, suspend and resume jobs, and send messages and data between
foreground and background jobs.

Multijob Mapped Monitors
Mapped monitors extend RT–11’s memory support capability beyond the 28K-
word (plus I/O page) restriction imposed by the 16-bit address size. Mapped
monitors program requests extend a program’s effective logical addressing space
(See Table 1–5).

There are two multijob mapped monitors:

• XM is a single-mapped monitor that supports User and Kernel modes.

• ZM is a fully-mapped monitor that supports I and D space for User, Supervisor,
and Kernel modes.

Introduction to Advanced RT–11 Programming 1–3

1.1.1.2 System Job Environment

Programmed requests in the system job environment enable programs to:

• Copy channels from other jobs

• Obtain job status information about jobs

• Send messages and data between jobs

Programmed requests perform most system resource control and interrogation
functions; however, some communication is accomplished by directly accessing two
memory areas:

• System communication area

• Monitor fixed-offset area

Of all the distributed RT–11 monitors, only XM and ZM let you run programs in
the system job environment. This system job support enables you to run up to eight
user programs in single- or fully-mapped memory environment. RT–11 is distributed
with the following programs that can be run as system jobs:

• Error logger (ERRLOG)

• Device queue program (QUEUE)

• Transparent spooler package (SPOOL)

• Communication package (VTCOM)

• Keypad editor (KEX)

• Virtual index (INDEXX)

• Resident monitor (RTMON)

1.1.1.3 Multiterminal Operation

The multiterminal feature of RT–11 enables your program to perform character
input/output on up to 17 terminals. Programmed requests are available to perform
input/output, attach and detach a terminal for your program, set terminal and line
characteristics, and return system status information.

1.1.1.4 System Communication Areas

System Area
The system communication area resides in locations 40 to 578 and contains
parameters that describe and control execution of the current job. This area holds
information such as the Job Status Word, job starting address, User Service Routine
(USR) swapping address, and the resident monitor’s start address. Your program
provides some of this information, but other data provided by the monitor may not
be changed.

Fixed Offset Area
The second memory communication area, the fixed-offset area, is accessed by a
fixed-address offset from the start of the resident monitor. This area contains

1–4 RT–11 System Macro Library Manual

system values that control monitor operation. Your program can examine or modify
these values to determine the condition of the operating environment while a job
is running. Digital recommends this area be accessed, using only .GVAL, .PVAL,
.PEEK, .POKE. The RT–11 System Internals Manual contains details about the
system communication area and the fixed-offset area.

This manual describes programmed requests specifically for RT–11 Version 5. For
information about programmed requests for earlier versions of RT–11 and guidelines
for their conversion, refer to Appendix A.

1.2 Programmed Request Implementation

1.2.1 EMT Instructions

A programmed request is a macro call followed by the necessary number of
arguments. The macro definition corresponding to the macro call of a programmed
request is expanded by the MACRO assembler whenever the programmed request
appears in your program. The expansion arranges the arguments of the programmed
request for the monitor and generates the hardware emulator trap instruction.
However, some macros like .DRxxxx do not generate EMTs. EMT instructions should
never appear in your programs, except through programmed requests.

When an EMT instruction is executed, control passes to the monitor. The low-order
byte of the EMT code provides the monitor with the information that tells it what
monitor service is being requested. The execution of the EMT generates a trap
through vector location 30, which is loaded at boot time with the address of the
EMT processor in the monitor.

Table 1–1 lists codes that may appear in the low-order byte of an EMT instruction
and gives the monitor’s interpretation of these codes.

Introduction to Advanced RT–11 Programming 1–5

Table 1–1: EMT Codes

Low-Order Byte Interpretation

377 Reserved; RT–11 ignores this EMT by returning control to the user
program immediately.

376 Reserved; used internally by the RT–11 monitor. Your programs should
not use this EMT since its use would lead to unpredictable results.

375 Programmed request with several arguments; R0 points to a block of
arguments that supports the user request.

374 Programmed request with one argument; R0 contains a function code
in the high-order byte and a channel code in the low-order byte.

373 Program request to call Kernel routines.

360-372 Reserved; used internally by the RT–11 monitor; your programs should
never use these EMT codes since their use would lead to unpredictable
results.

340-357 Programmed requests with the arguments on the stack and/or in R0.

0-337 RT–11 version 1 programmed requests with arguments both on the
stack and in R0. They are supported only for binary compatibility
with Version 1 programs.

1.2.2 System Control Path Flow

Figure 1–2 shows system flow when a programmed request in an application (or
system utility) program is implemented with an EMT instruction. When your
program is executed, the following occurs:

1. The EMT instruction transfers control to the EMT processor code in the monitor.

2. The user program counter (PC) and processor status word (PS) are pushed onto
the stack, and the contents of location 30 are placed in the program counter.

3. Location 30 points to the EMT processor code in the monitor. Location 32 contains
the PSW for the EMT trap.

4. The monitor loads byte 52 of the system communication area with an error code
if the monitor detects any errors during EMT processing.

5. The EMT processor uses R0 to pass back information to the program. All other
registers are preserved. Unlike other EMTs, .CSIGEN and .CSISPC return
information on the stack, thereby modifying the stack pointer.

6. Request blocks passed to EMTs are accessed, but not modified by the monitors.
Parameters pushed onto the stack by standard macro definitions are popped from
the stack by the monitor through standard EMT processing.

The monitor either processes a programmed request entirely when it is issued or
performs partial processing and queues the request for further processing. For
information about requests that perform I/O operations, see Section 1.4.5. When
a request results in an error prior to its being queued, the completion routine is

1–6 RT–11 System Macro Library Manual

not entered, and the monitor returns to the user program with the carry bit set. If
the request is queued, the completion routine is entered upon completion of further
processing, regardless of the outcome.

Figure 1–2: System Flow During Programmed Request Execution

User Program

Programmed
Request

Vector Area
30

32
PS

RMON
SYSCOM Area

EMT
Error

52

Points to EMT
Processor Code

User Program

Processor
EMT

RTI Instruction

1.3 System Conventions

This section describes system conventions that must be followed to ensure correct
operation of programmed requests.

Introduction to Advanced RT–11 Programming 1–7

1.3.1 Program Request Format

To issue programmed requests from assembly language programs, you must set up
the arguments in correct order and issue the appropriate EMT instruction. Macros
have been created to help you do this. They are contained in the system macro
library named SYSMAC.SML. Their use is recommended for maintaining program
compatibility with future releases of RT–11 and for program readability. Most names
for definitions in SYSMAC.SML, except SOB, start with a period (.) to distinguish
them from symbols and macros you define.

Most arguments provided to a programmed request must be valid assembler
expressions because the arguments are used as source fields in the instructions
(such as a MOV instruction) when macros are expanded at assembly time. Each
programmed request in your program must appear in a .MCALL directive to
make the macro definition available from system macro library, SYSMAC.SML.
Alternatively, you can enable the automatic .MCALL feature of MACRO by using the
.ENABL MCL directive. (However, you cannot use .ENABL MCL to automatically
.MCALL .PRINT.)

Because there are various ways to set up the argument block and specify arguments
to a programmed request, you should read the sections on programmed request
format and on blank arguments to be sure you understand programmed request
operation. Program requests have two acceptable formats:

FORMAT 1
The first format specifies the programmed request, followed by the arguments
required by the request.

Form:

.PRGREQ arg1,arg2,...,argn

where:

.PRGREQ is the name of the programmed request

arg1,arg2...,argn are arguments used with the request.

Programmed requests using this format generate either an EMT 374 instruction or
EMT 340 through 357 instructions.

Programmed requests that use an EMT 374 instruction set up R0 with the channel
number in the even (low-order) byte and the function code in the odd (high-order)
byte, as shown in Figure 1–3.

1–8 RT–11 System Macro Library Manual

Figure 1–3: EMT 374 Argument

15 8 7 0

Channel Number
(if applicable)R0= Function Code

For example, the programmed request .DATE generates an EMT 374. The macro
for this programmed request appears in the system macro library as:

.TITLE EXDATE.MAC

.MACRO .DATE
MOV #10.*^o400,R0
EMT ^o374

.ENDM

The function code, in this case 1010, is placed in the high-order byte of R0. A 0 is
placed in the low-order byte since .DATE does not reference a channel.

Any arguments for EMT 340 through 357 would be placed either on the stack, in
R0, or in R0 and on the stack.

.CSIGEN is an example of a programmed request that generates an EMT 344. A
simplified macro expansion of this programmed request is:

.TITLE EXCSIG.MAC

.MACRO .CSIGEN DEVSPC,DEFEXT,CSTRNG,LINBUF

.IF NB LINBUF
MOV LINBUF,-(SP)

.ENDC
MOV DEVSPC,-(SP)

.IF NB LINBUF
INC @SP

.ENDC
MOV DEFEXT,-(SP)

.IF B CSTRNG
CLR -(SP)

.IFF

.IF IDN CSTRNG,#0
CLR -(SP)

.IFF
MOV CSTRNG,-(SP)

.ENDC

.ENDC
EMT ^o344

.ENDM

When this programmed request is executed, all the specified arguments are placed
on the User stack. The EMT processor then uses these arguments in performing the
function of the programmed request .CSIGEN. See Figure 1–4.

Introduction to Advanced RT–11 Programming 1–9

Figure 1–4: Stack Set by .CSIGEN Programmed Request

High Addresses

LINBUF

Stack Pointer
Low Addresses

DEVSPC

DEFEXT

CSTRNG

FORMAT 2
The second format specifies the programmed request, the address of the argument
block, and the arguments that will be contained in the argument block.

Form:

.PRGREQ area,arg1,arg2,...,argn

where:

.PRGREQ is the name of the programmed request

area is the address of an argument block

arg1,arg2,...,argn are arguments that will be contained in the argument
block.

This format generates an EMT 375 instruction. Programmed requests that call the
monitor, via an EMT 375, use R0 as a pointer to an argument block. See Figure 1–5.

Figure 1–5: EMT 375 Argument Block

RO AREA:
Function Code Channel

Argument 1

.

.

.

Argument 2

Argument n

The programmed request format uses area as a pointer to the argument block
containing the arguments arg1 through argn.

1–10 RT–11 System Macro Library Manual

Form:

.PRGREQ area,arg1,...,argn

Blank fields are permitted; however, if the area argument is empty, the macro
assumes that R0 points to a valid argument block. If any of the fields arg1 to
argn are empty, the corresponding entries in the argument list are left untouched.
For example,

.PRGREQ area,arg1,arg2

points R0 to the argument block at area, fills in the first word (function code and
channel number) and fills in the first and second arguments, while

.PRGREQ area

points R0 to the block and fills in the first word (function code and channel number)
without filling in any other arguments. Arguments left blank are discussed in the
next section.

1.3.2 Blank Arguments

Any programmed request that uses an argument block assumes that any argument
left blank has been previously loaded by your program into the appropriate memory
location (exceptions to this are the .CHCOPY and .GTJB requests). For example,
when the programmed request

.PRGREQ area, arg1, arg2

is assembled, R0 will point to the first word of the argument block. The first word
has the function code in the high-order byte and the channel number in the low-
order byte. arg1 is in the second word of the argument block (that is, pointed to by
the contents of address R0 plus 2), while arg2 is in R0 plus 4.

There are two ways to account for arguments:

• Let the MACRO assembler generate the instructions needed to fill up the
argument block at run time.

• Write these instructions in your program, leaving the arguments in the
programmed request blank for those that you have written in.

Digital recommends that you let SYSMAC.SML macro definitions generate the
instructions, both for program clarity and for reduced chance of programming error.

The next three examples are all equivalent because the arguments have been
accounted for either in the program instructions or in the programmed request.
The second example sets up all the arguments for the programmed request, prior to
executing the programmed request:

.TITLE EXPRGA.MAC

MOV #ARG1,AREA+2
MOV #ARG2,AREA+4
.PRGREQ #AREA

.TITLE EXPRGB.MAC

Introduction to Advanced RT–11 Programming 1–11

MOV #AREA,R0
.PRGREQ ,,#ARG1,#ARG2

.TITLE EXPRGC.MAC

MOV #AREA,R0
MOV #CODE*400!CHANNEL,@R0
MOV #ARG1,2(R0)
MOV #ARG2,4(R0)
.PRGREQ

The next example demonstrates how arguments are specified to the .TWAIT
programmed request:

.TITLE EXWAIT.MAC

.MCALL .PRINT,.TWAIT
START:
WAIT: .TWAIT #AREA,#TIME

.PRINT #MSG
BR WAIT

AREA: .BLKW 2
TIME: .WORD 0,10.*60.
MSG: .ASCIZ /Print this every 10 seconds/
.END START

The .TWAIT programmed request suspends a program and requires two arguments:

• The first argument, area, is replaced by the address of a two-word EMT argument
block.

• The second argument, time, is replaced by two words of time—high-order first,
low-order second, expressed in ticks.

In the example, AREA is specified as an argument with the programmed request that
points to the address of the EMT argument block. The first word of the argument
block has a zero stored in the low-order byte representing the channel number and
a function code of 24 stored in the high-order byte. The second word contains a
pointer to the location (the second argument), which specifies the amount of time
that the program will be suspended. It is defined as two words and, in this example,
represents a 10-second interval. When run, the example program prints its message
every ten seconds.

1.3.3 Addressing Modes

You must make certain that the arguments specified are valid source fields and that
the address accurately represents the value desired. If the value is a constant or
symbolic constant, use the immediate addressing mode (#), but if the value is in a
register, use the register symbol (Rn). If the value is in memory, use the label of the
location whose value is the argument.

A common error is to use n rather than #n for numeric arguments. When a direct
numerical argument is required, the immediate mode causes the correct value to be
put in the argument block; for example,

1–12 RT–11 System Macro Library Manual

.TITLE EXPRGD.MAC

.PRGREQ #AREA,,#4

is correct, while:

.TITLE EXPRGE.MAC

.PRGREQ #AREA,,4

is not correct, because the contents of location 4, instead of the desired value 4, are
placed into the argument block. However, the form in the next example is correct,
because the contents of list is the argument block pointer and the contents of number
is the data value:

.TITLE EXPRGF.MAC

.PRGREQ LIST,,NUMBER

...

.PSECT DATA
LIST: .WORD AREA
NUMBER: .WORD 4

All registers, except R0, are preserved across a programmed request. In certain
cases, R0 contains information passed back by the monitor; however, unless the
description of a request indicates that a specific value is returned in R0, the contents
of R0 are unpredictable upon return from the request. Also, with the exception of
calls to the Command String Interpreter (.CSIGEN/.CSISPC), the position of the
stack pointer is preserved across a programmed request.

Be sure that addressing mode provided to the macro generates the correct value as
a source operand in a MOV instruction. Check the programmed request macro in
the Macro Library (SYSMAC.SML) and manually expand the programmed request
or use the macro assembler (by using the .LIST MEB directive) to be sure of correct
results.

1.3.4 Keyword Macro Arguments

The RT–11 MACRO assembler supports keyword macro arguments. All the
arguments used in programmed request calls can be encoded in their keyword form.
See the PDP–11 MACRO–11 Language Reference Manual for details.

In EMT 375 programmed requests, the high byte of the first word of the area (pointed
to by R0) contains an identifying code for the request. Normally, this byte is set if
the macro invocation of the programmed request specifies the area argument, and
it remains unaffected if the programmed request omits the area argument. If the
macro invocation contains CODE=SET, the high byte of the first word of the area is
always set to the appropriate code, whether or not area is specified.

If CODE=NOSET is in the macro invocation, the high byte of the first word of area
remains unaffected. This is true whether or not area is specified. This enables you to
avoid setting the code when the programmed request is being set up. This might be
done because it is known to be set correctly from an earlier invocation of the request

Introduction to Advanced RT–11 Programming 1–13

using the same area, or because the code was statically set during the assembly
process.

1.3.5 Channels and Channel Numbers

A channel is a data structure that is a logical connection between your program
and a file on a mass storage device or on a serial device such as the line printer or
terminal. The system provides 1610 channels by default. When a file is opened on
a particular device, a channel number is assigned to that file. The channel number
can have an octal value from 0 to 376 (0 to 254 decimal). Your program first opens
a channel through a programmed request by specifying the device and/or file name,
file type, and a channel number to the monitor, then refers to that file or device in
all subsequent I/O operations by the assigned channel number. You can specify a
device (non-file-structured) or a device and file name (file-structured).

Channel 25510 is reserved for system use. Channel 1510 is used by the system’s
overlay handler (if the program is overlaid).

1.3.6 Device Blocks

A device block is a four-word block of Radix–50 information that you set up to specify
a physical or logical device name, file name, and file type for use with a programmed
request. When your program opens a file, this information is passed to the monitor
which uses the information to locate the referenced device and the file name in the
corresponding directory. For example, a device block representing the file FILE.TYP
on device DK might be written as:

.TITLE EDBLK1.MAC

; 123456
.RAD50 /DK / ;device
.RAD50 /FILE / ;name
.RAD50 /TYP/ ;type

The first word contains the device name, the second and third words contain the file
name, and the fourth word contains the file type. Device, file name, and file type
must each be left-justified in the appropriate field. This string could also have been
written as:

.TITLE EDBLK2.MAC

; 123456789ABC
.RAD50 /DK FILE TYP/ ;complete DBLK

Spaces must fill out each field. Also, the colon and period separators must not appear
in the string since they are only used by the Command String Interpreter to delimit
the various fields.

If the first word of a device block is the name of a mass-storage device such as a disk
and the second word of the block is 0, the device block refers to an entire volume of
the mass storage device in a non-file-structured manner.

1–14 RT–11 System Macro Library Manual

1.3.7 Programmed Request Errors

Programmed requests use three methods of reporting errors detected by the monitor:

• Setting the carry bit of the processor status word (PSW)

• Reporting the error code in byte 52 of the system communications area

• Generating a monitor error message

If a programmed request has been executed unsuccessfully, the monitor returns to
your program with the carry bit set. The carry bit is returned clear after the normal
termination of a programmed request. Almost all requests should be followed by a
Branch Carry Set (BCS) or Branch Carry Clear (BCC) instruction to detect a possible
error.

Because some programmed requests have several error codes, byte 52 in the system
communications area is used to receive the error code. Therefore, when the carry bit
is set, check byte 52 to identify the kind of error that occurred in the programmed
request. The meanings of values in the error byte are described individually for each
request. The error byte is always zero when the carry bit is clear. Your program
should reference byte 52 with absolute addressing. Always address location 52 as a
byte, never as a word, because byte 53 has a different use. The following example
shows how byte 52 can be tested for the error code:

.TITLE ERRBYT.MAC

$ERRBY =: 52 ;(.SYCDF) error byte
.PRGREQ #AREA,ARG1,...,ARGN
BCS ERROR
...

ERROR: TSTB @#$ERRBY
...

.END

Error messages generated by the monitor are caused by fatal errors, which cause
your program to terminate immediately. Some fatal errors can be intercepted and
have their values returned in byte 52 (See the .HERR/.SERR programmed requests).

1.3.8 User Service Routine (USR) Requirement

The USR is always resident in mapped monitors; therefore, the following discussion
of programmed request requirements for the USR is applicable only to unmapped
monitors. Programmed requests that require USR to be in memory require a fresh
copy of the USR to be read in because the code to execute them resides in the USR
buffer area. Since the buffer area gets overlaid by data used to perform other system
functions, the USR must be read in from the system device even if there is a copy
of the USR presently in memory. In mapped monitors, USR is always in memory.
The SB monitor will verify the swap address is even and within the job. Table 1–2
lists programmed requests that require the USR and notes any exceptions to the
requirement.

Introduction to Advanced RT–11 Programming 1–15

Table 1–2: Programmed Requests Requiring the USR

.CHAIN4 .FPROT .RELEASE

.CLOSE1 .GFDATE1 .RENAME1

.CLOSZ1 .GFINFO1 .SFDATE1

.CSIGEN .GFSTAT1 .SFINFO1

.CSISPC .GTLIN .SFSTAT1

.DELETE1 .HRESET4 .SRESET4

.DSTATUS .LOCK5 .TLOCK5

.ENTER1 .LOOKUP1

.EXIT4 .PURGE1 � 2

.FETCH .QSET3

1Special directory operations always require the USR. Or, if the channel has been opened with a non-file-structured
open, the USR is not required.
2If the channel has not been opened on a special directory device, the USR is not required.
3Requires a fresh copy of the USR to be read into memory.
4If the job FETCHed a handler which specified a RELEASE=routine in .DRPTR or any handler currently in memory
requested notification of job exit.
5Ensures the USR is in memory.

USR requirements for programmed requests differ among the monitors as shown in
the table. The .CLOSE programmed request on non-file-structured devices, such as
a line printer or terminal, does not require the USR under any monitor.

Because USR is not reentrant, only one job at a time can use the USR. This is
particularly important for concurrent jobs when a magnetic tape device is active.
For example, file operations on tape devices require a sequential search of the tape.
When you issue a USR file operation from a background program to a magtape, USR
locks out the foreground job until the background job is complete. Special function
request SF.USR provided in file structured magtape handlers can be used to perform
asynchronous directory operations on tape.

In multijob environments, jobs can use the .TLOCK request to check USR
availability. If the USR is not available, control returns immediately with the C
bit set, indicating that the .LOCK request (that attempts to gain ownership of USR)
has failed. In this way a job can perform critical tasks before losing control by being
queued up for USR availability.

Any request that requires the USR to be in memory can also require that a portion of
your program be saved temporarily in the system device swap file; that is, a portion
of your job can be "swapped out" and stored in file SWAP.SYS to provide room for
the USR. Then the USR is then read into memory. Although swapping is invisible
in normal operation, you must consider it in your programming. For example, the
argument block being passed to the USR must not be in the area that is swapped
over. You can save time by optimizing your programs so that they require little or
no swapping.

1–16 RT–11 System Macro Library Manual

Consider the following items if a swap operation is necessary:

• Background Job

If a .SETTOP request in a background job specifies an address beyond the point
at which the USR normally resides, a swap is required when the USR is called
(not encountered in mapped monitors because the USR is always resident).

• Value of Location 46

If you assemble an address into word 46 or move a value there while the program
is running, RT–11 uses the contents of that word as an alternate place to swap
the USR. If location 46 is zero, the USR will be at its normal location in high
memory. If the USR does not require swapping, this value is ignored.

A foreground job must always have a value in location 46 unless it is certain that
the USR will never be swapped. If the foreground job does not allow space for
the USR and a swap is required, a fatal error will occur. The SET USR NOSWAP
command makes the USR permanently resident.

If you specify an alternate address in location 46, the SB monitor will verify the
validity of the USR swap address. In previous versions of RT–11 the SJ monitor
did not validate the address.

• Monitor Offset 374

The contents of monitor offset 374 indicates the size of the USR in bytes.

Programs should use this information to dynamically determine the size of the
region needed to swap the USR.

• Protecting Program Areas

Make sure the following areas of your program do not get overlaid when you
swap in the USR:

– Program stack

– Any parameter block for calls to the USR

– EMT instruction that invoked the USR

– I/O buffers

– Device handlers

– Interrupt service routines

– Queue elements

– Defined channels

– Completion routines in use when USR is called

The RT–11 System Internals Manual provides additional information on the USR.

Introduction to Advanced RT–11 Programming 1–17

1.4 Using Programmed Requests

This section describes how to implement programmed requests to access the various
monitor services.

1.4.1 Initialization and Control

Typically, you use several programmed requests to control the operating environment
in which your program is running. These requests can include control of:

• Memory allocation

• I/O access

• Devices

• Error processing

Memory Allocation
When loaded, a program occupies the memory specified by its image created at
link time. A program’s memory requirements are specified to the monitor by the
.SETTOP request. To obtain more memory, execute a .SETTOP request with R0
containing the highest address desired. The monitor:

• Determines whether the address is valid.

• Returns the highest address available.

• Determines whether it is necessary to swap the USR.

Resident handlers or foreground jobs can restrict the amount of memory available
to meet the amount requested for the program. The monitor retains the USR in
memory, if possible, thereby reducing the amount of swapping. When this is not
possible, the monitor will automatically remove the USR from memory and swap
part of the user program to swap file (SWAP.SYS) on the system device whenever the
USR must be reloaded to process a request. The .SETTOP request determines how
much memory is available and controls monitor swapping characteristics. (See the
.SETTOP programmed request in Chapter 2 for special optional features provided in
an extended memory environment. Additional information on the .SETTOP request
is also given in the RT–11 System Internals Manual.)

If a program needs so much memory that the USR must swap, swapping will
automatically occur whenever a USR call is made, but when a program knows
file operations are necessary so it can consolidate and perform these operations
individually, system efficiency can be enhanced as follows:

• Request the USR to be swapped in.

• Have it remain resident while a series of consecutive USR operations is
performed.

• Swap the USR out when the sequence of operations is completed.

Three programmed requests control USR swapping. The request .LOCK causes the
USR to be made resident for a series of file operations:

1–18 RT–11 System Macro Library Manual

• Requiring a portion of your program to be written to the swap blocks prior to
reading in the USR.

• Requiring the USR to be read in, if it finds the USR is overwritten.

The request .UNLOCK swaps your program back in if it was swapped out, and the
USR is overwritten; otherwise, no swapping occurs. The request .TLOCK makes the
USR resident in multijob monitors only if the USR is not currently servicing another
job’s file requests at the time the .TLOCK request is issued. This check prevents
a job from becoming blocked while the USR is processing another job’s request.
When a .TLOCK succeeds, the USR is ready to perform an operation immediately.
In a single-job environment, the .TLOCK request performs exactly like the .LOCK
request.

RT–11 provides 1610 channels as part of the job’s impure area; that is, 16 files can be
allocated at one time. Up to 25510 channels can be allocated with the .CDFN request.
This request sets aside memory inside the job area to provide the storage required
for the status information on the additional channels. Once the .CDFN request has
been executed, as many channels as specified can be active simultaneously. Use
the .CDFN request during the initialization phase of your program. The keyboard
monitor command CLOSE does not work if you define new channels with the .CDFN
programmed request.

The .CNTXSW request lets the job add memory locations to the list of items to be
context-switched. The request itself does not cause a context switch to occur.

Input/Output Access
Each pending I/O, message, or timer request must be placed into one of the monitor
queues. These are then processed by the monitor on a first-in first-out basis, by job
priority, or by time of expiration. In RT–11, all I/O transfers are queued to allow
asynchronous processing of the request. A queue is a list of elements, each element
being seven words long in unmapped monitors, and ten decimal words long when
using mapped monitors. When your program issues a data transfer programmed
request, the information specifying the transfer is stored by the monitor in a queue
element. This information is passed to the device handler, which then processes the
I/O transfer.

Each job, whether background or foreground, initially has only a single queue
element available. Additional queue elements may be set aside with a .QSET
request. The .QSET request declares where in memory the additional queue
elements will go and how many elements there will be. If you do not include a
.QSET request in your program, the monitor uses the queue element set aside in
the job’s impure area. In this case, since only one element is available for each job,
all operations would be synchronous. That is, any request issued when the available
queue element list is empty has to wait for that element to become free. The number
of queue elements necessary equals the number of asynchronous operations pending
at any time.

Introduction to Advanced RT–11 Programming 1–19

Devices
The .DEVICE request turns off any special devices that are being used by the
running program upon program termination. This request lets you specify a set
of device control register addresses and a value to be set in each register on job
exit. When a job is terminated—either normally, by an error condition, or by a
CTRL/C—the specified values are set in the specified locations.

Loading a background job with a GET, R, or RUN command, or loading a foreground
or system job with a FRUN and SRUN command, respectively, alters most locations
in the vector area 0 to 476. Virtual jobs do not load over the vector area. RT–11
automatically prevents alteration of locations used by the system, such as the
clock, the console terminal, and all vectors used by handlers that are loaded. If
a foreground job in a foreground/background environment accesses a device directly
through an in-line interrupt service routine, the foreground job must notify the
monitor that it must have exclusive use of the vectors. Using the .PROTECT
programmed request lets the foreground job gain exclusive use of a vector. The
.PROTECT request can also be used by either the foreground or background job,
prior to setting the contents of a vector, to test whether the vectors are already
controlled by a job. This serves as further protection against jobs interfering with
each other. An .UNPROTECT programmed request relinquishes control of a vector,
making the vector available to both the background and foreground jobs.

Special function requests (See listing in RT–11 Device Handlers Manual) are used
for performing special functions on devices such as magnetic tape. .SPFUN requests
are used for such functions as rewind or space-forward operations.

Error Processing
During the course of program execution, errors can occur that cause the monitor to
stop the program and print a MON-F error message, such as directory I/O errors,
monitor I/O errors on the system device, or I/O requests to nonexistent devices. Some
programs cannot let the monitor abort the job because of these errors. For example,
in the case of RT–11 multi-user DIBOL, a directory I/O error affecting only one of
the users should not cause the whole program to abort. For such applications, a pair
of requests is provided—.HERR and .SERR:

• .HERR request (normal default) indicates that the monitor will handle severe
errors and stop the job.

• .SERR request causes the monitor to return most errors to your program for
appropriate action, setting an error code in byte 52.

In addition to processing I/O errors through .HERR and .SERR requests, you can
also use the .TRPSET or .SFPA requests to handle certain fatal errors. Use these
requests to prevent your program from aborting due to a trap to location 4 or 108
or to the exception traps of the Floating Point Processor (FPP) or Floating Point
Instruction Set (FIS). A .TRPSET request specifies the address of a routine that the
monitor enters when a trap to location 4 or 10 occurs. A .SFPA request specifies
the address of a floating-point exception routine called whenever an exception trap
occurs.

1–20 RT–11 System Macro Library Manual

1.4.2 Examining System Information and Reporting Status

Several programmed requests interrogate the system for specific details about a
device or file that your program may be using:

Request Description

.CSTAT Status information on a file: starting block, length, device location

.DATE Obtains the system date, which then can be printed on a report or
entered as a data record in a file.

.DSTAT Status information on a device: block length, controller-assignment
number

.GTIM Obtains the time-of-day and is used in the same way as .DATE.

.GTJB Obtains job information:

• Foreground or background information

• Memory limits

• Virtual high limit for a job created with the linker /V option
(mapped monitors only)

• Unit number of the job’s console terminal (if you are using the
multiterminal feature)

• Address of the job’s channel area

• Address of the job’s impure area

• Logical job name (if you are using a monitor with the system job
feature)

�
.MTGET
.MTSTAT � Multiterminal status information when using multiterminal feature�
.MFPS
.MTPS � Read the priority bits and set the priority and T-bits in the

processor status word (PS); let a program run without change on
all processors, including those that support 177776 as PS.

.SDTTM Sets the system date and/or time. Changing the date or time has
no effect on any outstanding mark time or timed wait requests.

1.4.3 Command Interpretation

Two of the most useful programmed requests are .CSIGEN and .CSISPC. These
requests call the Command String Interpreter (CSI), which is part of the USR. They
are used to process standard RT–11 command strings:

Form:

*Dev:Output[,size]/Option=Dev:Input/Option

Introduction to Advanced RT–11 Programming 1–21

The monitor prints the asterisk on the terminal. The RT–11 system programs use
the same command string. See the RT–11 System Utilities Manual for more detailed
information.

The .CSIGEN request analyzes the string for correct syntax, automatically loads the
required device handlers into memory, opens the files specified in the command, and
returns to your program with option information. So, with one request, a language
processor such as the FORTRAN compiler is ready to input from the source files and
output the listing and binary files. You can specify options in the command string to
control the operation of the language processor. The .CSIGEN request uses channels
0 through 2 to accommodate three output file specifications and channels 3 through
108 to accommodate six input file specifications.

The .CSISPC request gets you the services of the command processor, but lets you
do your own device file manipulation. When you use .CSISPC, the CSI:

1. Obtains a command string

2. Analyzes it syntactically

3. Places the results in a table

4. Passes the table to your program for appropriate action

The .GTLIN request obtains one line of input at a time instead of one character at
a time. These three requests support the indirect file function and let your program
obtain one line at a time from an indirect file. Therefore, if your program were
started through an indirect file, the line would be taken from the indirect file and not
from the terminal. The .GTLIN request has an optional argument which forces input
to come from the terminal, a useful feature if your program requires information only
available from the terminal.

1.4.4 File Operations

A device handler is the normal RT–11 interface between the monitor and the
peripheral device on which file operations are performed. The console terminal
handlers and the interjob message handlers are part of the resident monitor and
require no attention on your part. All other device handlers are loaded into memory
with either a .FETCH request from the program or a LOAD command from the
keyboard, before any other request can access that device. (See Input/Output
Operations section that describes the use of programmed requests for performing
I/O operations. The RT–11 System Internals Manual describes how to write device
handlers for RT–11.

Once the handler is in memory, a .LOOKUP request can locate existing files and
open them for access. New files are created with an .ENTER request. Space for the
file can be defined and allocated as:

• One-half the size of the largest unused space or all of the second largest space,
whichever is larger (the default)

• A space of a specific size

1–22 RT–11 System Macro Library Manual

• As much space as possible

The parameter you specify as the file size argument of the .ENTER request or as
specified in a .CSIGEN command string affects the way the system allocates space.

When file operations are completed, issuing a .CLOSE request makes the new file
permanent in the directory. Issuing a .CLOSZ request accomplishes the same thing,
but it lets you specify the file length. A .PURGE request can free the channel without
making the file permanent in the directory. Existing permanent files can be renamed
with a .RENAME request or deleted with a .DELETE request.

Two other requests, .SAVESTATUS and .REOPEN, add to the flexibility of file
operations:

• .SAVESTATUS stores the current status of a file that has been opened with
a .LOOKUP request and makes the file temporarily inactive, thus freeing the
channel for use by another file.

• .REOPEN causes the inactive file to be reactivated on the specified channel, and
I/O continues on that channel. (You can open more files than there are channels.)

If you also lock the USR in memory, you can open all the files your program needs,
while maintaining system swapping efficiency, by:

• Locking the USR in memory, and opening the files that are needed.

• Issuing the .SAVESTATUS request.

• Releasing the USR.

• Issuing a .REOPEN request each time a file is needed.

• Locking USR, and using the .CLOSE request to make the files permanent.

Because a .REOPEN request does not require any I/O, all USR swapping and
directory motion can be isolated in the initialization code for an application, thereby
improving program efficiency.

The following requests are useful for obtaining or modifying file information:

• .GFDAT provides file’s creation date for file’s directory entry.

• .GFINF provides word content of directory offset specified from file’s directory
entry.

• .GFSTA provides file status information from the file’s directory entry.

• .SFDAT lets you change the date that appears in a file’s directory entry listing.
You may want to do this for a file that you update in place, for example, or if the
original creation date was in error.

• .SFINF lets you change the contents of the directory entry offset specified in file’s
directory entry.

• .SFSTA lets you change the status information in a file’s directory entry.

Introduction to Advanced RT–11 Programming 1–23

• .FPROT protects a file against deletion or removes protection so that a file can
be deleted by a .DELETE, .ENTER or .RENAME request. The contents of a
protected file are not protected against modification.

1.4.5 Input/Output Operations

You can perform I/O in three different modes that optimize the overlap of CPU and
I/O processing:

• Synchronous I/O

• Asynchronous I/O

• Event-driven I/O

Synchronous I/O
The programmed requests .READW and .WRITW perform synchronous I/O; that
is, the instruction following the request is not executed until the I/O transfer is
completely finished; in this way the program and the I/O process are synchronized.

Asynchronous I/O
The program requests .READ, .WRITE, and .WAIT perform asynchronous I/O; that
is, the .READ or .WRITE request adds the transfer request to the queue for the
device:

• If the device is inactive, the request is placed at the beginning of the queue;
the transfer begins; control returns to the user program before the transfer is
completed.

• If the device is active, the request is queued; control returns to user before
transfer is complete.

The .WAIT programmed request, however, blocks the program until the transfer is
completed, enabling the I/O operation to be completed before any further processing
is done. Asynchronous I/O is most commonly used for double buffering.

Event-Driven I/O
Program requests, such as .READC and .WRITC, perform event-driven I/O; that is,
they initiate a completion routine when the transfer is finished. Event-driven I/O
is practical for conditions where system throughput is important, where jobs are
divided into overlapping processes, or where processing timings are random. The
last condition is the most attractive case for using event-driven I/O because processor
timing may range up to infinity in a process that is never completed.

Because completion routines are essential to event-driven I/O, the next section
presents general guidelines for writing completion routines.

1.4.5.1 Completion Routines

Completion routines are part of your program that execute following the completion
of some external operation, interrupting the normal program flow. On entry to an
I/O completion routine, R0 contains the contents of the Channel Status Word and
R1 contains the channel number for the operation. The carry bit is not significant.

1–24 RT–11 System Macro Library Manual

Completion routines are serialized (within a job’s context, not between jobs) and run
at priority 0. Completion routines do not interrupt one another but are queued; the
next completion routine is not entered until the first is completed.

If the foreground job is running and a foreground I/O transfer completes and wants
a completion routine, that routine is entered immediately if the foreground job is
not already executing a completion routine. If it is executing a completion routine,
that routine continues to termination, at which point other completion routines
are entered in a first-in first-out order. If the background job is running (even
in a completion routine) and a foreground I/O transfer completes with a specified
completion routine, execution of the background job is suspended and the foreground
routine is entered immediately.

Also, it is possible to request a completion routine from an in-line interrupt service
routine through a .SYNCH programmed request. This enables the interrupt service
routine to issue other programmed requests to the monitor.

You must observe the following restrictions when writing completion routines:

• Completion routines should never reside in memory space that is used for the
USR, since the USR can be interrupted when I/O terminates and the completion
routine is entered. If the USR has overlaid the routine, control passes to a
random place in the USR, with a HALT or error trap being the likely result.

• Registers other than R0 and R1 must be saved upon entry to completion routines
and restored upon exiting. Registers cannot transfer data between the mainline
program and the completion routine.

• Under mapped monitors, completion routines must remain mapped while the
request is active and the routine can be called.

• The completion routine must exit with an RETURN instruction because the
routine was called from the monitor with a CALL ADDR, where ADDR is the
user-supplied entry point address. If you exit completion routines with an .EXIT
request, your job will abort.

However, if you generate the special .SPCPS support, you can exit from a
completion routine by using an .SPCPS request to change the main line PC so
it points to .EXIT in the main program. When all completion routines are done,
the .EXIT will be executed.

With the exception of the .SYNCH request, completion routines are normally run in
User mapping in the mapped monitor context.

Frequently, a program’s completion routine needs to change the flow of control of
the mainline code. For example, you may wish to establish a schedule among the
various tasks of an application program after a certain time has elapsed or after an
I/O operation is complete. Such an application needs to redirect the mainline code
to a scheduling subroutine when the application’s timer or read/write completion
routine runs. An .SPCPS programmed request saves the mainline code program
counter and processor status word, and changes the mainline code program counter

Introduction to Advanced RT–11 Programming 1–25

to a new value. If the mainline code is performing a monitor request, that request
finishes before derailing can occur.

Terminal Input/Output
Several programmed requests are available to provide an I/O capability with the
terminal:

• .TTYIN request obtains a character from the console

• .TTYOUT request prints a character at the terminal

Programs can issue .TTINR and .TTOUTR requests, which indicate that a character
is not available or that the output buffer is full. The program can then resume
operation and try again at a later time.

The .PRINT request prints multiple characters and can print multiple lines.

A .RCTRLO request forces the terminal output to be reactivated after a CTRL/O has
been typed to suppress it, so that urgent messages will be printed.

1.4.5.2 Multiterminal Requests

The RT–11 multiterminal feature enables your program to perform input/output
on up to 17 terminals. There are several programmed requests you can use to
perform I/O on these terminals. Before issuing any of these programmed requests
to a terminal, you must issue the .MTATCH request, which reserves the specified
terminal for exclusive use by your program. The terminal cannot then be used by
any other job until you issue the .MTDTCH request to detach the terminal.

Multiterminal requests .MTPRNT and .MTRCT0 have the same functionality as
.PRINT and .RCTRLO, except that .MTPRNT specifies which terminal to print on.
Unlike TTYIN and TTYOUT, the .MTIN request can transfer one or more characters
to the program; .MTOUT can print one or more characters at the terminal.

By setting terminal and line characteristics with the .MTSET request, you provide a
four-word status block that contains the terminal status word, the character of the
terminal requiring fillers and the number of fillers required for this character, the
width of the carriage (80 characters by default), and system terminal status. The
status of a terminal can be obtained by issuing the .MTGET request.

The .MTSTAT program provides information about the entire multiterminal system,
not about an individual terminal in the system.

1.4.6 Foreground/Background Communications

Communication between foreground and background jobs is accomplished through
programmed requests .SDAT and .RCVD. These requests also have three modes
(synchronous, asynchronous, and event-driven) that enable buffer transfer between
the two jobs as if I/O were being done. The sending job treats a .SDAT request as a
write, and the receiving job treats .RCVD as a read. In the case of .RCVD requests,
the receiving buffer must be one word longer than the number of words expected.
When the data transfer is completed, the first word of the buffer contains the number
of words actually sent.

1–26 RT–11 System Macro Library Manual

Jobs receiving messages can be activated when messages are sent through .RCVDC
completion routines, while the sending jobs use .SDATC completion routines. The
.MWAIT request is used for synchronizing message requests. It is similar to the
.WAIT request that is used for normal I/O.

If you want one job to read or write data in a file opened by another active job, use
the .CHCOPY request. For example, when the background job is processing data
that is being collected by the foreground job, the .CHCOPY request enables you to
copy channel information from the foreground job and to use the channel information
to control a read or write request.

The multijob monitors always cause a context switch of critical items such as
machine registers, the job status area, and floating-point processor registers (only
swapped or context switched if the job is using .SFPA), when a different job is
scheduled to run because it has a higher priority, or because the current job is
blocked and a lower priority job is runnable. When the monitor saves a job’s context,
it saves the job-dependent information on the job’s stack so that this information can
be restored when the job is runnable again.

1.4.7 Timer Support

Monitor timer support is provided through the .MRKT request. The SB monitor,
as distributed, does not have timer support, but can be selected during SYSGEN.
Use the .MRKT request to specify the address of a routine that will be entered after
a specified number of clock ticks. Like I/O completion routines, .MRKT routines
are asynchronous and independent of the main program. After the specified time
elapses, the main program is interrupted, the timer completion routine executes,
and control returns to the interrupted program.

Pending .MRKT requests contained within the queue are identified by number.
Pending timer requests can be canceled with a .CMKT request. .MRKT requests
schedule by timer completion routines.

The programmed requests .MRKT/.CMKT and .TIMIO/.CTIMIO require request
identification words as an argument. Certain ranges of values are reserved for
different uses as shown in the following table.

Introduction to Advanced RT–11 Programming 1–27

Table 1–3: Values Used with .MRKT/.CMKT, .TIMIO/.CTIMIO

Range Use

1-176777 For user applications with a .MRKT/.CMKT. Values in this range are
canceled if a .CMKT request is issued with a value of 0.

177000-177377 For use in device handler .TIMIO/.CTIMIO requests.1

177400-177477 Reserved for multiterminal support.

177500-177677 Reserved.

177700 Used by the .TWAIT request.

177701-177766 Reserved.

177767-177777 DECnet.

1To ensure a unique value for each handler, DIGITAL suggests that the value be assigned as 177000+devcod, where
devcod represents the device identifier value used in the .DRDEF macro at the beginning of the handler.

Values in range 177700 to 177777 are automatically canceled whenever a program
terminates or aborts; however, values in the range 177000 to 177677 must be
canceled individually by the routine that issued the .TIMIO request. This would
occur, for example, in handler abort code.

Use the .TWAIT request to suspend a job for a specified time interval. For example,
the .TWAIT request will let a compute-bound job relinquish CPU time to the rest of
the system, so other jobs can be run.

1.4.8 Program Termination or Suspension

Many jobs come to an execution point when there is no further processing necessary
until an external event occurs. In the multijob environment such a job can issue
a .SPND request to suspend the execution of that job. While the foreground job is
suspended, the background job runs. When the desired external event occurs, it
is detected by a previously requested completion routine, which executes a .RSUM
request to resume the job at the point it was suspended.

When a job is ready to terminate or reaches a serious error condition, it can reset
the job environment with the .SRESET and .HRESET requests:

• .SRESET is a soft reset; that is, it reinitializes the monitor data base for the job,
but allows queued I/O to run to completion.

• .HRESET is a hard reset; it stops all I/O for the job by calls to the handlers.
.HRESET performs the same functions as .SRESET and resets queued I/O.

Using the programmed request .EXIT in a background job terminates the program
and returns control to the keyboard monitor:

• If R0 contains a zero upon execution of this request, this causes hard reset that
disables the commands REENTER, CLOSE, and START.

1–28 RT–11 System Macro Library Manual

• If R0 contains a nonzero value upon exit from your program, this causes a soft
reset, and commands REENTER, CLOSE, and START are not disabled.

In a foreground job, an .EXIT programmed request stops the job, and may return
control to the keyboard monitor. You can remove the job from memory by issuing
the UNLOAD command.

You may initiate the execution of another program with a .CHAIN request from a
background job. Files remain open across a .CHAIN request and data is passed in
memory to the chained job, so that it can continue processing. In FORTRAN, channel
information is stored in the job’s impure area, and this information is not preserved
across a .CHAIN request. Therefore, close any channels in the first program, and
reopen them in the program being chained to.

1.4.9 Job Communications

System job support enables communications between any two jobs in the system by
using a special .LOOKUP, .READx, and .WRITx requests. The background job, can
send and receive messages between each other by using the .RCVD, .MWAIT and
.SDAT programmed requests.

1.4.10 Mapped and Unmapped Regions

In multijob environments, communication between jobs is accomplished by the
Message Handler (MQ) which performs like an ordinary RT–11 device handler in
accepting and dispatching I/O requests from the queued I/O system. .READ and
.WRITE requests are able to send messages between any two jobs as if they were
data transfers to files. Both the sending and receiving job must issue a .LOOKUP
request on a channel and use ’MQ’ as the device specification and the logical job
name of the job with which they are communicating as the file specification. In
the case of .READ requests, the receiving buffer must be one word longer than the
number of words expected. When the data transfer is completed, the first word of the
buffer contains the number of words actually sent (identical to the .RCVD requests).
This does not apply to the .WRITE requests; the first word of the sending buffer is
the first word of the message to be sent.

When assigning logical job names to system jobs, programmed requests such as
.LOOKUP, .CHCOPY, and .GTJB must use the job’s current logical job name (See
the RT–11 Commands Manual).

1.4.11 Extended Memory Functions

The RT–11 mapped monitors enable MACRO programs to access extended memory
by mapping their virtual addresses to physical locations in memory. This is done
in conjunction with Memory Management Unit (MMU), a hardware option that
converts a 16-bit virtual address to an 18- or 22-bit physical address.

Using the Virtual Run Utility (VBGEXE) enables your programs to run faster and
with less low-memory space than your programs would otherwise require. These
performance improvements result from running the programs as virtual jobs. If
you are running under a mapped monitor, but there is not enough memory for your
program to execute, try using VBGEXE. For more information, refer to the RT–11

Introduction to Advanced RT–11 Programming 1–29

System Utilities Manual, VBGEXE section. See V, VRUN, and SET RUN VBGEXE
commands in the RT–11 command monitior.

Use programmed requests to access extended memory in a program. When accessing
extended memory, first establish window and region definition blocks, then specify
the amount of physical memory the program requires and describe the virtual
addresses you plan to use. Do this by creating regions and windows, then associate
virtual addresses with physical locations by mapping the windows to the regions.
You can remap a window to another region or part of a region or you can eliminate
a window or a region. Once the initial data structures are set up, manipulate the
mapping of windows to regions that best meet your requirements.

There are five types of extended memory programmed requests:

• General mapping control

• Region requests

• Window requests

• Map requests

• Status requests

Window and region requests have their own data structures. RT–11 macro .WDBBK
creates a window definition block and macro .RDBBK creates a region definition
block. Both macros automatically define offsets and bit names. Two other macros,
.WDBDF and .RDBDF, define only the offsets and bit names.

The programmed request .CRAW is used to create a window. To eliminate a window,
use the .ELAW request. A region is created using the .CRRG request. You return a
region to the free list of memory with the .ELRG request.

You map a window to a region with the .MAP request. If a window is already mapped
to a region, this window is unmapped and the new one is mapped. Use the .UNMAP
request to unmap a window. You obtain the mapping status of a window with the
.GMCX request.

Mapping context information must be saved when virtual and privileged jobs are
swapped out of memory. The .CMAP request defines and saves these mapping
structures in the mapping context area (MCA) until the monitor restores them. The
.GCMAP request obtains the current memory mapping context.

Several programmed requests are restricted when they are in a mapped monitors
environment. These programmed requests and their restrictions are as follows:

1–30 RT–11 System Macro Library Manual

.CDFN All channels must be in the lower 28K of memory (but not in the
PAR1 region, 20000-37776 octal).

.QSET All queue elements must be 1010 words long and in the lower 28K
of memory (but not in the PAR1 region, 20000-37776 octal).

.SETTOP Effective only in the virtual address space that is mapped at the
time the request is issued, unless the job was linked with the /V
option (See the RT–11 System Utilities Manual)

.CNTXSW Not usable in virtual jobs.

Detailed information on programmed requests in an extended memory environment
is given in the RT–11 System Internals Manual.

The UNIBUS Mapping Register Handler (UB) supports UNIBUS mapping registers
on UNIBUS processors. The UB handler provides direct memory access (DMA)
support for 22-bit memory addressing during I/O operations. UMR support is
appropriate for device handlers that perform I/O operations and are capable of
DMA. UMR lets the handler access computer memory beyond the 18-bit 256K-byte
boundary during I/O operations. For more information, refer to the RT–11 Device
Handlers Manual.

1.4.12 Interrupt Service Routines

Some macros in system macro library (SYSMAC.SML) are not programmed requests,
but are used like programmed requests in interrupt service communication to the
monitor.

.INTEN, the first macro call in every interrupt routine, causes the system to use the
system stack for interrupt service and enables the monitor scheduler to make note
of the interrupt. If device service is all the routine does, .INTEN is the only call it
has to make.

You must issue the .SYNCH call whenever you need to issue from the interrupt
service routine, one or more programmed requests, such as .READ or .WRITE. The
.INTEN call switches execution to the system state and, since programmed requests
can only be made in the user state, the .SYNCH call handles the switch back to the
user state. The code following the .SYNCH call executes as a completion routine.
When .SYNCH is finished, the completion routine can execute programmed requests,
initiate I/O, and resume the mainline code. The first word after the .SYNCH call
is the return address on error, while the second word is the return on success. The
RT–11 System Internals Manual contains a detailed description of interrupt service
routines.

1.4.13 Device Handlers

The system macro library (SYSMAC.SML) contains several macros that simplify the
writing of a device handler. Device handler macros are described in Chapter 2. The
RT–11 Device Handlers Manual also explains the use of these macros in writing a
device handler.

Introduction to Advanced RT–11 Programming 1–31

1.4.14 Logical Name Translation Bypass

Some programmed requests let you specify a "logical name translation bypass"
(bypass), a modified form of device lookup. If you specify this form, only physical
names of devices will be searched for. For example, if bypass is specified and a
device DL0 is on the system with the logical name TMP assigned to it, you can
find it by specifying DL0, but not TMP. This modified form is an unsupported
interface and requires hand-coding of the request blocks, only use it under very
limited circumstances.

You can use bypass for nearly all requests that specify a dblock or dev. The following
requests specify a dblock support bypass:

.DELETE .GFINFO .SFINFO

.ENTER .GFSTAT .SFSTAT

.GFDATE .LOOKUP .RENAME

Although .FPROT and .SFDAT do not support bypass, you can simulate their
functionality by issuing .SFSTAT and .SFINFO. The following code fragment
illustrates the coding required for bypass:

; xxxxxx is the request (e.g., LOOKUP)
.LIBRARY "SRC:SYSTEM"
.MCALL ..xxxxxx ;Request name with 2 dots (..LOOKUP)

DOC$UN=1 ;Gen names of undocumented parts
..xxxxxx

...

.xxxxxx args ;Request name with 1 dot (.LOOKUP)

.=.-2 ;Crush EMT instruction for now
BIS #..PHYS,A.DBLK(R0) ;Make dblock addr odd
MOV #RETODD,A.URTN(R0) ;Supply bypass flag
EMT ...xxxxxx ;Issue EMT (Name with 3 dots (...LOOKUP))

...

RETODD =: .+1 ;(Addr of RETURN)+1
RETURN

AREA: .BLKW 5. ;Expanded request block

The following requests that specify a device support bypass are coded in the following
manner:

..PHYS =: 1 ;Bypass flag value

.DSTATUS #Reply!..PHYS,#dev

.FETCH #Addr!..PHYS,#dev

.RELEASE See below

.FETCH #..PHYS,#dev ;use for .RELEASE

Note that .RELEASE is coded as a special form of .FETCH.

1–32 RT–11 System Macro Library Manual

1.4.15 Consistency Checking

The .ASSUME macro tests the validity of the condition you specify. If the test result
is false, MACRO generates an assembly error and displays an appropriate error
message.

The .BR macro notifies you when program instructions that belong together are
separated during assembly.

The .CKxx macro generates CK.Rn register checking macros; that is, when you
specify a register(s) as an argument to .CKxx, CKxx generates checking macro CK.Rn
for that register(s).

1.5 Programmed Request Summary

Many programmed requests operate only in a specific RT–11 environment, such as
under a multijob monitor or when using a special feature such as multiterminal
operation. Table 1–4 lists the programmed requests that can be used in RT–11
environments, including multiterminal operation. Table 1–5 lists the additional
programmed requests that can be used under the multijob monitors and mapped
monitors. The EMT and function code for each request are shown in octal. Although
only the first six characters of the programmed request are significant to the Macro
assembler, the longer forms are shown to provide a better understanding of the
request function. Also, the purpose of each request is briefly described.

Macros used in interrupt service routines and in writing device handlers are listed
since they are a part of the system macro library.

Table 1–4 summarizes the programmed requests that work in all RT–11
environments.

Table 1–4: Programmed Requests for RT–11 Environments

Name EMT Code Purpose

.ABTIO 374 13 Aborts I/O in progress on the specified channel

.ADDR – – Computes a specified address in a position-
independent manner

.ASSUME – – Tests for a specified condition; if test is false,
generates assembly error and prints descriptive
message

.BR – – Warns if code which belongs together is separated
during assembly

.CALLK 373 – Transfers control (and alters mapping) from the
current mode to the specified virtual address in
Kernel mode

.CALLS – – Supports transfer of control to Supervisor
mode; works with SHANDL Supervisor handler
instructions

Introduction to Advanced RT–11 Programming 1–33

Table 1–4 (Cont.): Programmed Requests for RT–11 Environments

Name EMT Code Purpose

.CDFN 375 15 Defines additional channels for I/O

.CHAIN 374 10 Chains to another program (in background job
only)

.CKxx – – Generates CK.Rn register checking macros for one
or more registers.

.CLOSE 374 6 Closes the specified channel

.CLOSZ 375 45 Closes the channel opened by .ENTER; sets file
size.

.CMKT 375 23 Cancels an unexpired mark time request (Timer
support).

.CSIGEN 344 – Calls the Command String Interpreter (CSI) in
general mode

.CSISPC 345 – Calls the Command String Interpreter (CSI) in
the special mode

.CSTAT 375 27 Returns the status of the specified channel

.CTIMIO – – Used within a device handler as a macro call
to cancel a mark time request (device timeout
support)

.DATE 374 12 Moves the current date information into R0

.DEBUG – – Sets up .DPRINT environment.

.DELETE 375 0 Deletes the file from the specified device

.DEVICE 375 14 Enables device interrupts to be disabled upon
program termination

.DPRINT 351 – Inserts run-time messages in programs

.DRAST – – Used with device handlers to create the asyn-
chronous entry points to the handler

.DRBEG – – Used with device handlers to create a header and
additional information in .ASECT locations

.DRBOT – – Used with system device handlers to set up the
primary driver

.DRDEF – – Used with device handlers to set up handler
parameters, call driver macros from the library,
and define useful symbols

.DREND – – Used with device handlers to generate the table
of pointers into the resident monitor

.DREST – – Places device-specific information in block 0 of
device handler

1–34 RT–11 System Macro Library Manual

Table 1–4 (Cont.): Programmed Requests for RT–11 Environments

Name EMT Code Purpose

.DRFIN – – Used with device handlers to generate the code
required to exit to the completion code in the
resident monitor

.DRINS – – Sets up installation code area in block 0 of a device
handler, and defines system and data device
installation entry points

.DRPTR – – Places pointers in block 0 of device handler;
pointers refer to service routines at address in
that handler

.DRSET – – Used with device handlers to create the list of SET
options for a device

.DRSPF – – Defines special function codes supported by
handler

.DRTAB – – Establishes file address of list of Digital-defined
handler data tables

.DRUSE – – Establishes file address of user-defined handler
data tables

.DRVTB – – Used with multivector device handlers to generate
a table that contains the vector location, interrupt
entry point, and processor status word for each
device vector

.DSTAT 342 – Returns the status of a specified device

.ENTER 375 2 Creates a new file for output

.EXIT 350 – Exits the user program and optionally passes a
command to KMON

.FETCH 343 – Loads a device handler into memory

.FORK – – Generates a subroutine call in an interrupt
service routine that permits long but not critical
processing to be postponed until all other
interrupts are dismissed

.FPROT 375 43 Sets or removes a file’s protection

.GFDAT 375 44 Returns in R0 the creation date from a file’s
directory entry

.GFINF 375 44 Returns in R0 the word contents of the directory
entry offset specified in file’s directory entry

.GFSTA 375 44 Returns in R0 the status information from a file’s
directory entry

.GTIM 375 21 Gets the time of day

.GTJB 375 20 Gets parameters of a job

Introduction to Advanced RT–11 Programming 1–35

Table 1–4 (Cont.): Programmed Requests for RT–11 Environments

Name EMT Code Purpose

.GTLIN 345 – Accepts an input line from either an indirect file
or the console terminal

.GVAL 375 34 Returns contents of a monitor fixed offset

.HERR 374 5 Specifies termination of a job on fatal errors

.HRESET 357 – Terminates I/O transfers and does a .SRESET
operation

.INTEN – – Generates a subroutine call to notify the monitor
that an interrupt has occurred, requests system
state, and sets processor priority to the specified
value

.LOCK 346 – Makes the monitor User Service Routine (USR)
permanently resident until an .EXIT or .UNLOCK
is executed; the user program is swapped out, if
necessary

.LOOKUP 375 1 Opens an existing file for input and/or output via
the specified channel; opens a message channel to
a specified job

.MACS – – Selects EMT expansions compatible with most
current version (only if you’ve previously specified
..V1 or ..V2)

.MFPS – – Reads the priority bits in the processor status
word, but does not read the condition codes

.MRKT 375 22 Marks time; sets an asynchronous routine to be
entered after specified interval

.MTATCH 375 37 Attaches a terminal for exclusive use by the
requesting job

.MTDTCH 375 37 Detaches a terminal from one job and frees it for
use by other jobs

.MTGET 375 37 Returns the status of a specified terminal to the
user

.MTIN 375 37 Operates as a .TTYIN request for a multiterminal
configuration

.MTOUT 375 37 Operates as a .TTYOUT request for a multitermi-
nal configuration

.MTPRNT 375 37 Operates as a .PRINT request for a multiterminal
configuration

.MTPS – – Sets the priority bits, condition codes, and T-bit in
the processor status word

1–36 RT–11 System Macro Library Manual

Table 1–4 (Cont.): Programmed Requests for RT–11 Environments

Name EMT Code Purpose

.MTRCTO 375 37 Operates as a .RCTRLO request for a multitermi-
nal configuration

.MTSET 375 37 Modifies terminal status in a multiterminal
configuration

.MTSTAT 375 37 Provides multiterminal system status.

.PEEK 375 34 Examines memory locations

.POKE 375 34 Changes memory locations

.PRINT 351 – Outputs an ASCII string terminated by a zero
byte or a 2008 byte

.PROTECT 375 31 Requests that specified vectors in the area from 0
to 4768 be given exclusively to the current job

.PURGE 374 3 Clears out a channel for reuse

.PVAL 375 34 Replaces contents of a monitor fixed offset

.QELDF Used with device handlers to define offsets in the
I/O queue element

.QSET 353 – Increases the size of the monitor I/O queue

.RCTRLO 355 – Enables output to the terminal; overrides any
previous CTRL/O�

.READ

.READC

.READW � 375 10 Transfers data on the specified channel to a
memory buffer and returns control to the user
program:

• For .READ, when the transfer request is
entered in the I/O queue; no special action is
taken upon completion of I/O

• For .READC, when the transfer request is
entered in the I/O queue; upon completion of
the read, control transfers asynchronously to
the completion routine specified in the
.READC request

• For .READW, when the transfer is complete

.RELEASE 343 – Removes a device handler from memory

.RENAME 375 4 Changes the name of the indicated file to a new
name; an invalid operation for magtape

.REOPEN 375 6 Restores the parameters stored via a .SAVESTA-
TUS request and reopens the channel for I/O

.RSUM 374 2 Causes the mainline code of the job to be resumed
after it was suspended by a .SPND request

Introduction to Advanced RT–11 Programming 1–37

Table 1–4 (Cont.): Programmed Requests for RT–11 Environments

Name EMT Code Purpose

.SAVESTATUS 375 5 Saves the status parameters of an open file in user
memory and frees the channel for use

.SCCA 375 35 Enables intercept of CTRL/C commands

.SDTTM 375 40 Sets the system date and/or time

.SERR 374 4 Inhibits most fatal errors from aborting the
current job

.SETTOP 354 – Specifies the highest memory location to be used
by the user program

.SFDAT 375 42 Changes a file creation date in a directory entry

.SFINF 375 44 Returns in R0 the word contents of the directory
entry offset specified in file’s directory entry

.SFPA 375 30 Sets user interrupt for floating-point processor
exceptions

.SFSTA 375 44 Returns in R0 the status information from a file’s
directory entry

SOB – – Simulates the SOB instruction

.SPCPS 375 41 Used in a completion routine to change the flow
of control of the mainline code (special feature)

.SPFUN 375 32 Performs special functions on magtape, cassette,
diskette, and some disk devices

.SPND 374 1 Causes the running job to be suspended

.SRESET 352 – Resets all channels and releases the device
handlers from memory

.SYNCH – – Generates a subroutine call that enables your
program to perform programmed requests from
within an interrupt service routine

.TIMIO – – Generates a subroutine call in a handler to
schedule a mark time request (timeout support)

.TLOCK 374 7 Indicates if the USR is currently used by another
job and performs exactly as a .LOCK request

.TRPSET 375 3 Sets a user intercept for traps to monitor to
vectors 4 and 108

.TTINR/.TTYIN 340 – Reads one character from the keyboard buffer

.TTYOUT/.TTOUTR 341 – Transfers one character to the terminal input
buffer

.TWAIT 375 24 Suspends the running job for a specified amount
of time

1–38 RT–11 System Macro Library Manual

Table 1–4 (Cont.): Programmed Requests for RT–11 Environments

Name EMT Code Purpose

.UNLOCK 347 – Releases the USR after execution of a .LOCK and
swaps in the user program, if required

.UNPROTECT 375 31 Cancels the .PROTECT vector protection request

..V1.. – – Provides compatibility with Version 1 format

..V2.. – – Provides compatibility with Version 2 format

.WAIT 374 0 Waits for completion of all I/O on a specified
channel�

.WRITC

.WRITE

.WRITW � 375 11 Transfers data on the specified channel to a device
and returns control to the user program:

• For .WRITC, when the transfer request is
entered in the I/O queue; upon completion of
the read, control transfers asynchronously to
the completion routine specified in the
.WRITC request

• For .WRITE, when the transfer request is
entered in the I/O queue; no special action is
taken upon completion of I/O

• For .WRITW, when the transfer is complete

Introduction to Advanced RT–11 Programming 1–39

Table 1–5 lists program requests that can be used only in a multijob and mapped
environment.

Table 1–5: Multijob or Mapped Program Requests

Name EMT Code Purpose

.CHCOPY3 375 13 Enables one job to access another job’s channel

.CMAP2 375 46 Controls separate I/D space, Supervisor mapping

.CNTXSW3 375 33 Requests that the indicated memory locations be part
of the context switch process

.CRAW 1 375 36 Creates a window in virtual memory

.CRRG 1 375 36 Creates a region in extended memory

.ELAW 1 375 36 Eliminates an address window in virtual memory

.ELRG 1 375 36 Eliminates an allocated region in extended memory

.GCMAP2 375 46 Returns CMAP status

.GMCX 1 375 36 Returns mapping status of a specified window

.MAP 1 375 36 Maps a virtual address window to extended memory

.MSDS2 375 46 Controls lockstep of User data space and Supervisor
data space

.MWAIT3 374 11 Waits for messages to be processed�
.RCVD3

.RCVDC3

.RCVDW3 � 375 26 Receives data—enables a job to read messages or data
sent by FG or BG job. The three modes correspond to
the .READ, .READC, and .READW requests

.RDBBK 1 – – Reserves space in a program for a region definition
block and sets up the region size and region status
word

.RDBDF 1 – – Defines the offsets and bit names associated with a
region definition block�

.SDAT

.SDATC

.SDATW � 375 25 Sends messages or data to the FG or BG job. The
three modes correspond to the WRITE, .WRITC, and
.WRITW requests

.UNMAP 1 375 36 Unmaps a virtual address memory window

.WDBBK 1 – – Reserves space in a program for a window definition
block and sets up the associated data

.WDBDF 1 – – Defines the offsets and bit names associated with a
window definition block

1Single-mapped
2Fully-mapped
3Multijob

1–40 RT–11 System Macro Library Manual

Chapter 2

Programmed Request Description and Examples

This chapter presents the programmed requests alphabetically, describing each one
in detail and providing an example of its use in a program. Also described are macros
and subroutines that are used to implement device handlers and interrupt service
routines. The following parameters are commonly used as arguments in the various
calls:

addr An address, the meaning of which depends on the request being used.

area Pointer to the EMT argument block for those requests that require a
block.

blk Block number specifying the relative block in a file or device where
an I/O transfer is to begin.

buf Buffer address specifying a memory location into which or from which
an I/O transfer will be performed. This address has to be word-
aligned; that is, located at an even address.

cblk Address of the five-word block where channel status information is
stored.

chan Channel number in the range 0-3768.

chrcnt Character count in the range 1-25510.

code Flag used to indicate whether the code is to be set in an EMT 375
programmed request.

crtn Entry point of a completion routine.

dblk Four-word Radix–50 descriptor block that specifies the physical
device, file name, and file type to be operated upon.

dnam One-word RAD–50 device name; can be first of four-word dblk

func Numerical code indicating the function to be performed.

jobblk Pointer to a three-word ASCII system job name.

jobdev Pointer to a four-word system job descriptor where the first word is
a Radix–50 device name and the next three words contain an ASCII
system-job name (For keyword argument use, refer to this as a dblk).

num Number, whose value depends on the request.

seqnum File number.

Programmed Request Description and Examples 2–1

For magtape operation, this argument describes a file sequence
number. The values that the argument can have are described under
the applicable programmed requests.

unit Logical unit number of a particular terminal in a multiterminal
system.

wcnt Word count specifying the number of words to be transferred to or
from the buffer during an I/O operation.

Many programmed requests require support only available if you have selected them
during the SYSGEN process. Therefore, at SYSGEN, you should anticipate the
special support you will need in addition to those normally provided in a distributed
monitor.

2–2 RT–11 System Macro Library Manual

.ABTIO
EMT 374, Code 13
The .ABTIO programmed request allows a job to abort all outstanding I/O operations
on a channel without terminating the program.

When .ABTIO is issued, the handler for the device opened on the specified channel
is entered at its abort entry point. After the handler abort code is executed, control
returns to the user program.

NOTE
.ABTIO does not necessarily abort I/O for certain
devices. It will not abort another program’s I/O.

Macro Call:

.ABTIO chan

where:

chan is the channel number on which to abort I/O

Request Format:

R0 = 13 chan

Errors:

None

Example:
.TITLE EABTIO.MAC

;This is an example of the .ABTIO request. The .ABTIO request
;is useful for terminating .READC/.WRITC or .READ/.WRITE I/O on
;a particular channel without issuing a .EXIT or .HRESET, which
;would terminate the program or stop I/O on all channels.

.MCALL .ABTIO .ENTER .EXIT

.MCALL .READ .SCCA .WAIT

START: .SCCA #AREA,#CTCWRD ;Inhibit ^C
.ENTER #AREA,#1,#FILNAM ;Open chan 1 as input file

IOLOOP: .WAIT #1 ;Wait for last I/O
.READ #AREA,#1,#BUF,#256.,#0 ;Read a block
... ;Process
TST CTCWRD ;^C^C done?
BPL IOLOOP ;No
.ABTIO #1 ;Abort all I/O on the channel
...
.EXIT

AREA: .BLKW 5. ;Request block area
FILNAM: .RAD50 "BINEABTIOSAV" ;File to read
CTCWRD: .BLKW 1 ;Terminal status word
BUF: .BLKW 256. ;Buffer area

.END START

Programmed Request Description and Examples 2–3

.ADDR
Macro Expansion
The .ADDR macro computes the specified address in a position-independent manner.
The address computed is a run-time location stored in a register or on the stack.

Macro Call:

.ADDR addr,reg,push

where:

addr is the label of the address to compute, expressed as an immediate
value with a number sign (#) before the label.

reg is the register in which to store the computed address, expressed as
a register reference Rn or @Rn.
To store the address on the stack, use @SP or -(SP). A @SP stores
the address in the stack’s current top, while -(SP) pushes the address
onto a new location which becomes the top of the stack. The following
register references are valid:

R0 @R0

R1 @R1 @SP

R2 @R2 -(SP)

R3 @R3

R4 @R4

R5 @R5

push determines what to do with the original contents of the register.
If you omit push, the computed address overwrites the register
contents. If you use ADD for the push argument, the computed
address is added to the original contents of the register. If you use
PUSH for the push argument, the register’s previous contents are
pushed onto the stack before the computed address is stored in the
register.
If you use -(SP) for the argument reg, you may omit the push
argument, since PUSH is automatically used.

The following sample lines from a program show all three uses of the .ADDR macro:
.TITLE EXADDR.MAC

.ADDR #ABC,R0 ;Load address of ABC in R0

.ADDR #ABC,R1,ADD ;Add address of ABC into R1

.ADDR #ABC,R2,PUSH ;Push contents of R2 onto stack
;then load address of ABC into R2

2–4 RT–11 System Macro Library Manual

.ASSUME
Macro Expansion
The .ASSUME macro tests the validity for a condition you specify. If the test is false,
MACRO generates an assembly error and prints a descriptive message. At assembly
time, both .ASSUME and .BR check assertions that you make; they do no checking
at run time.

Macro Call:

.ASSUME a rel c [message = <text>]

where:

a is an expression.

rel is the relationship between a and c you want to test. There can be six
values for rel: eq, ne, gt, et, ge, and le.

c is an expression.

text is the message you want MACRO to print if the condition you specified
in the relationship between a and c is false. To specify your own error
message, start the message with a semicolon (;), or start with a valid
assembly expression followed by a semicolon (;) and the message. If
you omit the message argument, the error message a rel c is not true
displays; the expressions you used appear in the message in place of
a and c.

In the following example, if the location counter (.) is less than 1000, MACRO
generates an assembly error and prints the message 1000 - .; location too high.
.TITLE EXASSU.MAC

.ASSUME . LT 1000 Message=^/1000-.;location too high/

Programmed Request Description and Examples 2–5

.BR
Macro Expansion
The .BR macro warns you during assembly time if code that belongs together is
separated. When you invoke the .BR macro, you specify an address as an argument.
.BR checks that the next address equals the address you specified in the .BR macro.
If it does not, MACRO prints the error message: ERROR; ?SYSMAC-E-Not at
location addr. The location you specified in the .BR macro appears in place of addr
in the message. If you specify a symbol as an argument and the symbol is not defined
in the current assembly, you will get an error message: ERROR; ?SYSMAC-E-addr
is not defined. At assembly time, both .ASSUME and .BR check assertions that you
make; they do no checking at run time.

Macro Call:

.BR addr

where

addr is the address you want to test.

In the following example, MACRO tests the location that follows the .BR macro.
Since the address does not match the address ABC, MACRO prints an error message.

.TITLE EXBR1.MAC

.BR ABC ;Test next addr for ABC
.PAGE
FOO:

TST R0
ABC:

In the next example, no error occurs:
.TITLE EXBR2.MAC

.BR DEF ;test next addr for DEF
.PAGE
DEF:

In the next example, because UNDEF is not defined, an error is reported:

.TITLE EXBR3.MAC

.BR UNDEF ;undefined label

2–6 RT–11 System Macro Library Manual

.CALLK
EMT 373
The .CALLK request transfers control (and alters mapping) from the current mode
to the specified virtual address in Kernel mode. The .CALLK request is especially
useful when a program is running in User mode and needs to execute a monitor
routine that can be called only from Kernel mode. Although .CALLK is supported
under all monitors, it has meaning only under the mapped monitors, as these support
multiple address spaces.

Macro Call:

.CALLK [dest][,pic]

where:

dest is a virtual address in Kernel mode; the address of the entry point to
the routine. If dest is not specified, .CALLK assumes the address is
on the stack

pic is an optional parameter that should be non-blank if the program
that invokes .CALLK is written in position-independent (PIC) code.
Device handlers, for example, are written in PIC code and therefore
a .CALLK request in a device handler must specify this parameter.
If pic is specified, the virtual address specified for the dest parameter
must be specified in the form #address, or an assembly error is
generated

The following monitor routines can be called from User mode by using .CALLK:

$BLKMV, FINDGR, $JBLOC, $MPMEM, $P1EXT, $USRPH, XALLOC, XDEALC.

The environment upon entry into Kernel mapping is as follows:

• Registers 0-5 are preserved across the change to Kernel mode.

• The condition code bits, trace trap bit, and previous mode bit in the PS are not
preserved.

• The contents of the User and Kernel stacks during the mode change are not
defined.

• The User mapped system communications area (SYSCOM) is not mapped to
Kernel.

If a routine called in Kernel mode causes the SYSCOM area to change, that change
must be processed before the return to User mapping. For example, if a routine
places a value in $ERRBY, code must process that value before the routine returns.

The routine called in Kernel mode must, once it executes, return using the standard
RETURN (RTS PC) instruction. After execution of the RETURN instruction, the
environment upon return to User mapping is:

• Registers 0-5 are preserved across the change to User mode.

Programmed Request Description and Examples 2–7

.CALLK

• The condition codes in the PS are preserved.

• The trace trap bit and previous mode bit in the PS are not preserved.

• The stack pointer (SP) and stack contents are the same as before the call to
.CALLK, except that the destination address has been popped off the stack.

If .CALLK is invoked by a program running in Kernel mode, .CALLK performs as
if it was invoked from within User mode. When the routine called after invoking
.CALLK returns, the environment upon return to Kernel mode is the same as the
return environment documented for User mode.

Errors:
None reported by .CALLK; however, the called routine may report errors.

WARNING
Calling unsupported addresses in Kernel mode may
crash the system.

Example:

The following program fragment illustrates using .CALLK. The program is running
in virtual User mapping and the code illustrates transferring control to Kernel
mapping to use the monitor routine $BLKMV to perform a block move operation:

.TITLE ECALLK.MAC

.GVAL #AREA,#P1$EXT ;Get RMON’s P1$EXT offset
MOV R0,-(SP) ;save it
ADD #$BLMPT,@SP ;Point to the block move routine
MOV INPAR,R1 ;Input PAR value
MOV INOFST,R2 ;Input PAR address (normalized)
MOV OUPAR,R3 ;Output PAR value
MOV OUOFST,R4 ;Output PAR address (normalized)
MOV #WCOUNT,R5 ;Count of words to be moved
.CALLK ;Call the address on stack

;.CALLK will pop the address from stack

2–8 RT–11 System Macro Library Manual

.CALLS
The .CALLS request supports transferring control to Supervisor mode. It is designed
to work with the SHANDL Supervisor handler code.

Macro Call:

.CALLS dest,return

where:

dest Supervisor virtual address (#xxxxxx) to which you are transferring
control.

return Character string designating condition code values that should be
preserved for return transition from Supervisor mode to User mode.
Default value is NZVC, meaning return all condition codes.
If no condition codes need to be returned, specify RETURN=<>.
If only carry needs to be returned, specify RETURN=C. Any
combination of condition codes may be specified.

Notes
The .CALLS macro generates the following:

.TITLE ECALS1

MOV #ccodes*2,-(SP)
CSM dest

The ccodes*2 value is a mask based on the condition codes specified to the second
argument.

.CALLS is used as a transfer vector, not as an inline call. For example, to transfer
control to a supervisor routine called FRANK, use the following:

.TITLE ECALS2

...
HEY: CALL FRANKS ;Call FRANK in supervisor mode

...

FRANKS: .CALLS #FRANK,RETURN=^// ;Transfer to FRANK in supy,
;return no condition codes

Programmed Request Description and Examples 2–9

.CALLS

Note that control is passed to the instruction following HEY when FRANK returns,
not to the instruction following FRANK2.

.CALLS also has a special form, .CALLS #0, by which you can transfer control
to Supervisor mode and perform an RTI instruction (with Supervisor mode as the
"previous" mode). For example:

.TITLE ECALS3

MOV #NewPS,-(SP) ;New PS to use in Supy
MOV #NewPC,-(SP) ;New PC ...
.CALLS #0 ;Go to Supervisor mode

2–10 RT–11 System Macro Library Manual

.CDFN
EMT 375, Code 15
The .CDFN request redefines the number of I/O channels. Each job, whether
foreground or background, is initially provided with 1610 I/O channels numbered
0-15 (0-17 octal). .CDFN allows the number to be expanded to as many as 25510
channels (0-254 decimal, or 0-376 octal). Channel 377 is reserved for use by the
monitor.

The space for the new channels must be allocated by the User program. Each I/O
channel requires five words of memory. Therefore, you must allocate 5*n words of
memory, where n is the number of channels to be defined.

If the program is run under VBGEXE, the space for the new channels is allocated
from memory controlled by VBGEXE and the address passed by the user program
is not used.

It is recommended that you use the .CDFN request at the beginning of a program
before any I/O operations have been initiated. If more than one .CDFN request
is used, the channel areas must either start at the same location or not overlap
at all. The two requests .SRESET and .HRESET cause the channels to revert to
the original 16 channels defined at program initiation. Hence, you must reissue any
.CDFNs after using .SRESET or .HRESET. The keyboard monitor command CLOSE
does not work if your program defines new channels with the .CDFN request.

The .CDFN request defines new channels so that the space for the previously defined
channels cannot be used. Thus, a CDFN for 2410 channels (while 16 original channels
are defined) creates 24 new I/O channels; the space for the original 16 is unused,
but the contents of the old channel set are copied to the new channel set.

If a program is overlaid, the overlay handler uses channel 178 and this channel
should not be modified. (Other channels can be defined and used as usual.)

In a mapped monitor environment, the area supplied for additional channels
specified by the .CDFN request must lie in the lower 28K words of memory. In
addition, it must not be in the virtual address space mapped by Kernel PAR1,
specifically the area from 20000 to 377768. If you supply an invalid area, the system
generates an error message.

Macro Call:

.CDFN area,addr,num

where:

area is the address of a three-word EMT argument block

addr is the address where the I/O channels begin

num is the number of I/O channels to be created

Programmed Request Description and Examples 2–11

.CDFN

Request Format:

R0 area: 15 0

addr

num

Errors:

Code Explanation
0 An attempt was made to define fewer than or the same number of

channels that already exist. In an mapped environment, an attempt
to violate the PAR1 restriction sets the carry bit and returns error
code 0 in byte 52.

Example:
.TITLE EXCDFN.MAC

;+
; .CDFN - This is an example in the use of the .CDFN request. The
; example defines 32 new channels to reside in the body of the
; program.
;-

.MCALL .CDFN,.PRINT,.EXIT

$USRRB =: 53 ;(.SYCDF) user error byte
SUCCS$ =: 001 ;(.UEBDF) success "error" bit
FATAL$ =: 010 ;(.UEBDF) fatal error bit

C.SIZ =: 12 ;(.CHNDF) size of a channel in bytes

START: .CDFN #AREA,#CHANL,#32. ;Use .CDFN to define 32. new channels
BCC 1$;Branch if successful
.PRINT #BADCD ;Print failure message on console
BISB #FATAL$,@#$USRRB ;Indicate error
.EXIT ;Exit program

1$: .PRINT #GOODCD ;Print success message
BISB #SUCCS$,@#$USRRB ;Indicate success
.EXIT ;Then exit

AREA: .BLKW 3 ;EMT Argument Block
CHANL: .BLKW C.SIZ/2*32. ;Space for new channels

BADCD: .ASCIZ /?ECDFN-F-.CDFN Failed/ ;Failure message
GOODCD: .ASCIZ /!ECDFN-I-.CDFN Successful/ ;Success message

.END START

2–12 RT–11 System Macro Library Manual

.CHAIN
EMT 374, Code 10
The .CHAIN request lets a background program pass control directly to another
background program without operator intervention. Since this process can be
repeated, a long "chain" of programs can be strung together.

The chain area consists of locations 500-777 of the running job’s virtual address
space, which may or may not be at the low memory locations 500-777. For that
reason, you should not use .PEEK or .POKE requests when referencing the chain
area. Instead, use standard PDP–11 instructions, such as MOV, that access memory
directly.

Macro Call:

.CHAIN

Request Format:

R0 = 10 0

Notes

• Make no assumptions about which areas of memory remain intact across
a .CHAIN. In general, only the resident monitor and locations 500-777 are
preserved across a .CHAIN. In many programs stack begins at 1000 and expands
downward. The .CHAIN operation does not protect from stack expansion;
therefore, some locations between 500-777 may be corrupted by the stack.

• I/O channels are left open across a .CHAIN for use by the new program. However,
new I/O channels opened with a .CDFN request are not available in this way.
Since the monitor reverts to the original 16 channels during a .CHAIN, programs
that leave files open across a .CHAIN should not use .CDFN. Furthermore,
nonresident device handlers are released during a .CHAIN request and must
be fetched again by the new program. Note that FORTRAN logical units do not
stay open across a .CHAIN.

• An executing program determines whether it was chained to or RUN from the
keyboard by examining bit 8 of the Job Status Word. The monitor sets this bit
if the program was invoked with .CHAIN request. If the program was invoked
with R or RUN command, this bit remains cleared. If bit 8 is set, the information
in locations 500-777 is preserved from the program that issued the .CHAIN and
is available for the currently executing program to use.

An example of a calling and a called program is MACRO and CREF. MACRO
places information in the chain area, locations 500-777, then chains to CREF.
CREF tests bit 8 of the JSW. If it is clear, it means that CREF was invoked with
the R or RUN command and the chain area does not contain useful information.

Programmed Request Description and Examples 2–13

.CHAIN

CREF aborts itself immediately. If bit 8 is set, it means that CREF was invoked
with .CHAIN and the chain area contains information placed there by MACRO.
In this case, CREF executes properly.

Errors:

.CHAIN is implemented by simulating the monitor RUN command and can
produce any errors that RUN can produce. If an error occurs, .CHAIN is
abandoned and the keyboard monitor is entered.
When using .CHAIN, be careful with initial stack placement. The linker normally
defaults the initial stack to 10008; if caution is not observed, the stack can destroy
chain data before it can be used.

Example:
.TITLE ECHAIN.MAC

;+
; .CHAIN - This example demonstrates the use of the .CHAIN
; program request. It chains to program ’CTEST.SAV’ and passes it
; a command line typed in at the console terminal. As an exercise
; write the program ’CTEST’ - in it, check to see if it was chained
; to, and if so, echo the data passed to it, otherwise print the
; message "Was not chained to".
;-

.MCALL .CHAIN,.GTLIN

NOCRLF =: 200 ;String terminator for no CRLF

CH.PGM =: 500 ;(.CHADF) Program DBLK in chain area

START: MOV #CH.PGM,R1 ;R1 => Chain area
MOV #CHPTR,R2 ;R2 => RAD50 Program Filespec
.REPT 4 ;Move the Program Filespec
MOV (R2)+,(R1)+ ;into the Chain area...
.ENDR ;
.GTLIN R1,#PROMT ;Now get a "command" line
.CHAIN ;Chain to the next program.

CHPTR: .RAD50 "BIN" ;RAD50 File spec...
.RAD50 "ECTEST"
.RAD50 "SAV"

PROMT: .ASCII "Enter data to be passed to ECTEST > "
.BYTE NOCRLF ;treat as prompt (no CRLF)
.END START

2–14 RT–11 System Macro Library Manual

.CHAIN

;
;* IN CASE YOU DON’T HAVE TIME HERE’S AN EXAMPLE *
;* ’ECTEST.MAC’ PROGRAM...
;

.TITLE ECTEST.MAC

.MCALL .PRINT,.EXIT

$JSW =: 44 ;(.SYCDF) Location of JSW
CHAIN$ =: 400 ;(.JSWDF) CHAIN bit in JSW

CH.ARG =: 510 ;(.CHADF) CHAIN argument

START: BIT #CHAIN$,@#$JSW ;Were we chained to?
BEQ 1$;Branch if not
.PRINT #CHAIND ;Say we were...
MOV #CH.ARG,R0 ;Get addr of start of data
.PRINT ;Print it out
.EXIT ;Exit program

1$: .PRINT #NOCHN ;Say we weren’t chained to
.EXIT ;Then exit

CHAIND: .ASCIZ /!ECTEST-I-was chained to - and here’s the data passed.../
NOCHN: .ASCIZ /!ECTEST-I-was not chained to/

.END START

Programmed Request Description and Examples 2–15

.CHCOPY
Multijob
EMT 375, Code 13
The .CHCOPY request opens a channel for input, logically connecting it to a file
that is currently open by another job. This request can be used by a foreground,
background, or system job and must be issued before the first .READ or .WRITE
request on that channel.

.CHCOPY is valid only on files on disk. However, no errors are detected by the
system if another device is used. (To close a channel following use of .CHCOPY, use
either the .CLOSE or .PURGE request.)

Macro Call:

.CHCOPY area,chan,ochan [,jobblk]

where:

area is the address of a three-word EMT argument block

chan is the channel the current job will use to read the data

ochan is the channel number of the other job’s channel to be copied

jobblk is a pointer to a three-word ASCII logical job name that represents
a system job

Request Format:

R0 area: 13 chan

ochan

jobblk

Notes

• If the other job’s channel was opened with .ENTER in order to create a file, the
copier’s channel indicates a file that extends to the highest block that the creator
of the file had written at the time the .CHCOPY was executed.

• A channel open on a non-file-structured device should not be copied, because I/O
from separate jobs will most likely become confused.

• A program can write to a file (that is being created by the other job) on a copied
channel just as it could if it were the creator. When the copier’s channel is closed,
however, no directory update takes place.

2–16 RT–11 System Macro Library Manual

.CHCOPY

• Foreground and background jobs optionally may leave the jobblk argument blank
or set it to zero. This causes the job name to default to F if the background job
issued the request, or to B if the foreground job issued the request.

Errors:

Code Explanation
0 Other job does not exist, does not have enough channels defined, or

does not have the specified channel ochan open.

1 Channel chan already open.

Example:

.TITLE ECHCOF;2
;+
; This is the Foreground program ...
;-

.MCALL .ENTER,.PRINT,.SDATW,.EXIT,.RCVDW,.CLOSE,.WRITW
.MACRO ...
.ENDM

STARTF: MOV #AREA,R5 ;R5 => EMT argument block
.ENTER R5,#0,#FILE,#5 ;Create a 5 block file
.WRITW R5,#0,#RECRD,#256.,#4 ;Write a record BG is interested in
BCS ENTERR ;Branch on error
.SDATW R5,#BUFR,#2 ;Send message with info to BG
... ;Do some other processing
.RCVDW R5,#BUFR,#1 ;When it’s time to exit, make sure
.CLOSE #0 ;BG is done with the file
.PRINT #FEXIT ;Tell user we’re exiting
.EXIT ;Exit the program

ENTERR: .PRINT #ERMSG ;Print error message
.EXIT ;then exit

FILE: .RAD50 /DK ECHCOF/ ;File spec for .ENTER
.RAD50 /TMP/

AREA: .BLKW 5 ;EMT argument block
BUFR: .WORD 0 ;Channel #

.WORD 4 ;Block #
RECRD: .BLKW 256. ;File record
ERMSG: .ASCIZ /?ECHCOF-F-Enter Error/ ;Error message text
FEXIT: .ASCIZ /!ECHCOF-I-FG Job exiting/ ;Exit message

.END STARTF

Programmed Request Description and Examples 2–17

.CHCOPY

.TITLE ECHCOB.MAC
;+
; This is the Background program ...
;-

.MCALL .CHCOPY,.RCVDW,.READW,.EXIT,.PRINT,.SDATW
.MACRO ...
.ENDM

$USRRB =: 53 ;(.SYCDF) user error byte
SUCCS$ =: 001 ;(.UEBDF) success "error" bit
FATAL$ =: 010 ;(.UEBDF) fatal error bit

STARTB: MOV #AREA,R5 ;R5 => EMT arg block
.RCVDW R5,#MSG,#2 ;Wait for message from FG
BCS 1$;Branch if no FG
.CHCOPY R5,#0,MSG+2 ;Channel # is 1st word of message
BCS 2$;Branch if FG channel not open
.READW R5,#0,#BUFF,#256.,MSG+4 ;Read block which is 2nd word of msg
BCS 3$;Branch if read error
... ;Continue processing...
.SDATW R5,#MSG,#1 ;Tell FG we’re thru with file
.PRINT #BEXIT ;Tell user we’re thru
BISB #SUCCS$,$USRRB ;Indicate success
.EXIT ;then exit program

1$: MOV #NOJOB,R0 ;R0 => No FG error msg
BR 4$;Branch to print msg

2$: MOV #NOCH,R0 ;R0 => FG ch not open msg
BR 4$;Branch...

3$: MOV #RDERR,R0 ;R0 => Read err msg
4$: .PRINT ;Print proper error msg

BISB #FATAL$,$USRRB ;Indicate failure
.EXIT ;then exit.

AREA: .BLKW 5 ;EMT argument blk
MSG: .BLKW 3 ;Message buffer
BUFF: .BLKW 256. ;File buffer
BEXIT: .ASCIZ /!ECHCOB-I-Channel-Record copy successful/
NOJOB: .ASCIZ /?ECHCOB-F-No FG Job/ ;Error messages...
NOCH: .ASCIZ /?ECHCOB-F-FG channel not open/
RDERR: .ASCIZ /?ECHCOB-F-Read Error/

.END STARTB

2–18 RT–11 System Macro Library Manual

.CKXX
The .CKXX macro generates CK.Rn register checking macros. When you specify a
register as an argument to .CKXX, .CKXX creates the CK.Rn checking macro for
that register. When you specify more than one register for .CKXX, .CKXX creates a
CK.Rn checking macro for each register. Similarly, more than one CK.Rn checking
macro can be created for a register.

Using CK.Rn macro simplifies the checking of assumptions about registers that are
used in autoincrement and autodecrement mode instructions. You can also assign
symbols to CK.Rn that can be used to store register contents during autoincrement
and autodecrement operations. Those symbols can later be used to verify the position
of the stored values.

Macro Call:

.CKXX <reg[,alph][,reg[,alph]...]>

where:

reg is the register or registers you want .CKXX to define as check
registers.

Calling .CKXX generates a CK.Rn check macro for each register you include in the
reg argument. For example,

Macro Calls:

.CKXX <R0> Generates the check macro CK.R0.

.CKXX <R0,R1> Generates the check macros CK.R0 and CK.R1. To
generate more than one check macro for a single register
(for example, R1), append a different letter to the register
number for each check macro you want to create. For
example,

.CKXX <R1A,R1B> Generates the check macros CK.R1A and CK.R1B.

The check macro CK.Rn, generated by .CKXX, has the following form:

Form:

CK.Rn[alph] [label][,change][,result]

where:

n is the register number that .CKXX assigned to this check macro

alph is an alphabetic character that .CKXX assigned to this check macro

Programmed Request Description and Examples 2–19

.CKXX

label is the value or label you assume equates to the check register.
If the value or label does not equate to the check register, a P error
is returned at assembly time. See the PDP–11 MACRO–11 Language
Reference Manual, Appendix D, for a description of the P assembly
error

change indicates the check macro increment or decrement.
The change value must be preceded by a plus sign (+) to indicate
increment or a minus sign (-) to indicate decrement. When the change
is an increment, any assumption is checked first and the check macro
is then incremented. When the change is a decrement, the check
macro is first decremented and then any assumption is checked.

result is a new location assigned to the check macro.
Use the result argument to assign a symbol to the check macro. When
you want to verify later that the check macro equates to that symbol,
specify that symbol in the label argument

The check macro for a register must track exactly the operations done on that
register; that is, the register’s check macro must be explicitly incremented or
decremented when the register is incremented or decremented. For example,

• Assigning an initial value to the check macro

• Transferring a value from one check macro to another

• Checking the current value of a register pointer and tracking for autoincrement

• Tracking for auto-decrement and then checking the current value of a register
pointer (decrement performed first)

• Tracking for auto-increment and auto-decrement without checking for values

2–20 RT–11 System Macro Library Manual

.CKXX

For example, assume the following data block:

.TITLE ECKXX.MAC

DBLK: .BLKW 4
F.DEV =: 0 ;(.DBKDF) device name in DBLK
F.NAME =: 2 ;(.DBKDF) file name in DBLK
F.TYPE =: 6 ;(.DBKDF) file type in DBLK

.MCALL .CKXX ; Call .CKXX
.CKXX R3 ; Create CK.R3
.CKXX R4 ; Create CK.R4
...

MOV #DBLK,R3 ; point to data block DBLK
CK.R3=F.DEV ; assign initial value to check macro

MOV R3,R4 ; copy the pointer
CK.R4=CK.R3 ; copy the check macro to new one
CK.R3 F.DEV,+2 ; check R3 equates to DEV

; and increment
MOV (R3)+,R0 ; load device name into R0

CK.R3 F.NAME,+2 ; check R3 equates to NAME
; and increment

MOV (R3)+,NAME+0 ; get first part of file name
CK.R3 ,+2 ; increment but no check (no label)

MOV (R3)+,NAME+2 ; get last part of file name
CK.R3 F.TYPE ; check R3 equates to TYPE

; but no increment
MOV @R3,R2 ; filespec extension into R2

CK.R3 F.NAME+2,-2 ; decrement and check R3 equates
; to NAME+2

TST -(R3) ; test last 3 chars of filespec
CK.R3 F.DEV,-2-2 ; are they blank (0 in RAD50)?

CMP -(R3),-(R3) ; skip back to device
...

Programmed Request Description and Examples 2–21

.CLOSE
EMT 374, Code 6
The .CLOSE request terminates activity on the specified channel and frees it for use
in another operation.

Macro Call:

.CLOSE chan

where:

chan is a channel number in the range 0 to 3768

Request Format:

R0 = 6 chan

Under certain conditions, a handler for the associated device and USR must be
available when issuing a .CLOSE for files opened with either .ENTER or .LOOKUP:

• .CLOSE requires a handler and USR, if it is:

– A special directory device (magtape).

– An RT–11 standard directory device, and the file was opened with an
.ENTER.

• All other RT–11 operations do not require either handler or USR.

USR is always in memory when a mapped monitor is selected. The handler for an
associated device must be in memory if a a channel was established by the .ENTER.
A .CLOSE is required on any channel opened with .ENTER if the associated file is
to become permanent.

When issuing a .CLOSE, files opened with .LOOKUP do not require any directory
operations and the USR does not have to be in memory. However, USR is required if,
while the channel is open, a request was issued that required directory operations.
The USR is always required for special structured devices such as magtape.

NOTE
Do not close channel 178 if your program is overlaid,
because overlays are read on that channel.

A .CLOSE performed on a file opened with .ENTER causes the device directory to be
updated to make that file permanent. The first permanent file in the directory with
the same name, if one exists, is deleted, provided that it is not protected. When a file
that is opened with an .ENTER request is closed, its permanent length reflects the
highest block written since it was entered. For example, if the highest block written
is block number 0, the file is given a length of 1; if the file was never written, it
is given a length of 0. If this length is less than the size of the area allocated at
.ENTER time, the unused blocks are reclaimed as an empty area on the device.

2–22 RT–11 System Macro Library Manual

.CLOSE

For information about closing a file with a size other than with the default just
described, see the .CLOSZ program request.

In magtape operations, the .CLOSE request causes the handler to write an ANSI
EOF1 label in software mode (using MM.SYS, MT.SYS, MU.SYS or MS.SYS) and to
close the channel in hardware mode (using MMHD.SYS, MUHD.SYS, MTHD.SYS
or MSHD.SYS).

Errors:

Code Explanation
3 A protected file with the same name already exists on the device.

The .CLOSE is performed anyway, resulting in two files with the
same name on the device.

If the device handler for the operation is not in memory, and the .CLOSE request
requires updating of the device directory, a fatal monitor error is generated.

Example:

Refer to the example for the .READW, which shows typical uses for .CLOSE.

Programmed Request Description and Examples 2–23

.CLOSZ
EMT 375, Code 45
The .CLOSZ programmed request terminates activity on a channel that was opened
by a .ENTER, frees it for use in another operation, and sets the file size. The device
handler for the associated channel must be loaded in memory if the file was opened
with a .ENTER request or if the .DRDEF macro used to build the handler was
marked SPECL$. The .CLOSZ request has no effect on file size when a file was
opened by a .LOOKUP request.

Macro Call:

.CLOSZ area,chan,size

where:

area is the address of a 2-word EMT argument block

chan is a channel number in the range of 0 to 376(octal). If the channel is
not open, the request is ignored.

size is the specified size of the file at closing. Valid values for size are
determined by whether the handler is RT–11 directory structured or
special directory structured:

• If the handler is RT–11 directory structured, size must be less
than or equal to the allocated file size; the file can only remain
unchanged or become smaller.

• If the handler is special directory structured, size can be any
value. RT–11 imposes no limits on size. The handler may
independently impose rules on the closed file size. Magtape
handlers treat a .CLOSZ request as a .CLOSE request.

Request Format:

R0 area: 45 chan

size

Errors:

If channel was opened to an RT–11 directory device,

Code Explanation
1 Size argument is greater than allocated size; file closed at size

indicated by highest block written (equivalent to .CLOSE)

2 Channel not opened with .ENTER; channel purged

2–24 RT–11 System Macro Library Manual

.CLOSZ

3 A protected file with the same name already exists on the device.
File is closed with size as indicated by size argument. (If error 1 and
error 3 conditions exist at same time, error 1 takes precedence)

Errors:

If channel was opened on a special directory device,

Code Explanation
1 Meaning controlled by handler

2 Channel not opened by .ENTER; channel purged

3 Meaning controlled by handler

Example:

.TITLE ECLOSZ.MAC

.MCALL .ENTER .WRITW .CLOSZ .EXIT

.MACRO ...

.ENDM ...

START::
;+
; Use a new output file, which has had extra space allocated
; for it as a temp work area, then truncate the file to its
; desired size.
;-

...

.ENTER #AREA,#0,#FILE,#SIZE+10. ;create file w/extra space
BCS ERROR
...
.WRITW #AREA,#0,#BUF,#400,#SIZE+10.-1 ;use temp space
BCS ERROR
...
.CLOSZ #AREA,#0,#SIZE ;close file at final
... ; size

ERROR:
...
.EXIT

AREA: .BLKW 5.
FILE: .RAD50 "DK TEST TMP"
BUF: .BLKW 400

SIZE =: 20.

.END START

Programmed Request Description and Examples 2–25

.CMAP/.CMPDF/.GCMAP
EMT 375, Code 46, Subcode 1
.GCMAP
Issue the .GCMAP request to return the CMAP status. The value is returned in R0.
This value is not implemented in unmapped monitors.

Macro Call:

.GCMAP area,CODE=strg

where:

area is the address of a two-word EMT request block area

CODE=strg specifies strg as either "SET" (default), "NOSET", "SP" or
"STACK"

In Supervisor mode when you want to establish your own data space, distinct from
User data space, you may not own any data space memory. Therefore, you can’t use
use standard request code. .CMAP, .GCMAP and .MSDS introduce a concept that
allows you to specify CODE = "SP" or "STACK". In this way, you use "STACK" to:

• Build a request block on the stack

• Issue the request

• Clear the stack of the request

Errors:
None.

.CMAP
The .CMAP request sets the "CMAP" status and returns the old value in R0. This
request is not implemented in unmapped monitors.

Macro Call:

.CMAP area,value,CODE=strg

where:

value is the setting desired

CODE=strg Specify strg as either "SET" (default), "NOSET", "SP" or
"STACK"

In Supervisor mode when you want to establish your own data space, distinct from
User data space, you may not own any data space memory. Therefore, you can’t use
use standard request code. .CMAP, .GCMAP and .MSDS introduce a concept so that
you can specify CODE = "SP" or "STACK". In this way, you use to "STACK" to:

• Build a request block on the stack

• Issue the request

2–26 RT–11 System Macro Library Manual

.CMAP/.CMPDF/.GCMAP

• Clear the stack of the request

.CMPDF
Definition macro .CMPDF defines the bit pattern for .CMAP, .GCMAP, and .MSDS
requests and for a field in the impure area.

The .CMAP programmed request writes the I.CMAP word that controls a job’s
mapping context. The system uses the job’s mapping context to determine which
RCBs, PARs and WCBs are supported for User, Supervisor and Kernel processor
modes. This information is used when context switching those structures in and out
of the processor’s memory management unit.

The word is divided into 1 flag and 4 fields. The flag (CM.DUS) indicates if individual
PARs are to be separately mapped. The fields each track a particular aspect of a job’s
mapping context. Refer to Table 2–1. The following bits are defined; any undefined
bits are reserved by Digital.

Table 2–1: Change Mapping Context (I.CMAP) Word Bits

Bit Mask Symbol Meaning

000377 CM.PAR PAR selection byte.
CM.DUS determines if this field is active. If CM.DUS is set, the
field is active and the bit mask in CM.PAR indicates which PARs
are to be separately mapped.

000001 CM.PR0 Separate PAR0.

000002 CM.PR1 Separate PAR1.

000004 CM.PR2 Separate PAR2.

000010 CM.PR3 Separate PAR3.

000020 CM.PR4 Separate PAR4.

000040 CM.PR5 Separate PAR5.

000100 CM.PR6 Separate PAR6.

000200 CM.PR7 Separate PAR7.

001400 CM.S Supervisor mode I & D Separation Field.
High bit indicates if this field is active. If active, low bit indicates
the action to be taken.

001000 CM.SXX Change current Supervisor mode support

001000 CM.SII Non-separate Supervisor I & D space.

001400 CM.SID Separate Supervisor I & D space.

002000 Reserved.

004000 CM.DUS Separate data space by PAR.

Programmed Request Description and Examples 2–27

.CMAP/.CMPDF/.GCMAP

Table 2–1 (Cont.): Change Mapping Context (I.CMAP) Word Bits

Bit Mask Symbol Meaning

030000 CM.SUP Supervisor mode support (context switching) field.
High bit indicates if this field is active. If active, low bit indicates
the action to be taken.

020000 CM.XXS Change current Supervisor mode support:

020000 CM.NOS No Supervisor mode context switching.

030000 CM.JAS Supervisor mode context switching.

140000 CM.U User mode I & D separation field.
High bit indicates if this field is active. If active, low bit indicates
the action to be taken.

100000 CM.UXX Change User mode I & D separation

100000 CM.UII Non-separate User I & D space.

140000 CM.UID Separate User I & D space.

Example:

.TITLE ECMAP
;+
; This program demonstrates uses of the .CMAP request
;-

.MCALL .CMAP .PRINT .EXIT .CRRG .CRAW

.MCALL .CMPDF .RDBBK .WDBBK

.CMPDF

.PSECT CODE,I

.PSECT DATA,D

.PSECT CODE
.ENABL LSB
START::

.PRINT #IEQD ;Start out with I=D
CALL A20000 ;Call the subr in PAR1
.CMAP #AREA,#CM.UID ;Separate U I-D spaces
.CRRG #AREA,#RDB ;Create region
BCS CRRERR ;failure
MOV RDB+R.GID,WDB+W.NRID ;move region ID to window block
.CRAW #AREA,#WDB ;create a window into it
BCS CRAERR ;failure
.PRINT #INED ;I not equal to D now
CALL A20000 ;Call the subr again
MOV #RETURN,A20000 ;Modify D (not I space)
.PRINT #THIRD ;Tell to expect message
CALL A20000 ;Call the subr again
.EXIT

CRRERR: .PRINT #CRRMSG ;CRRG failed
.EXIT

2–28 RT–11 System Macro Library Manual

.CMAP/.CMPDF/.GCMAP

CRAERR: .PRINT #CRAMSG ;CRAW failed
.EXIT

.=START+20000-1000 ;move to PAR1

A20000:
.PRINT #HLOPR1 ;Hello from PAR1
RETURN

.=START+40000-1000 ;move to PAR2

.PSECT DATA

AREA: .BLKW 10.

RDB: .RDBBK 1

WDB: .WDBBK 1,1,0,0,0,WS.MAP!WS.D!WS.U

IEQD: .ASCIZ "!ECMAP-I-Running with I=D"
INED: .ASCIZ "!ECMAP-I-Running with I.ne.D"
THIRD: .ASCIZ "!ECMAP-I-We’ve crushed PAR1 D space"
CRRMSG: .ASCIZ "?ECMAP-I-.CRRG failed"
CRAMSG: .ASCIZ "?ECMAP-I-.CRAW failed"
HLOPR1: .ASCIZ "!ECMAP-I-Hello from PAR1"

.END START

.TITLE EGCMAP
;+
; This program demonstrates the use of .GCMAP to display
; the current mapping status of a program.
;-

.MCALL .GCMAP .PRINT .EXIT .CMPDF

.MCALL .GVAL .DEBUG .DPRINT

.CMPDF

.LIBRARY "SRC:SYSTEM"
.MCALL .FIXDF .CF3DF
.FIXDF
.CF3DF

.MACRO ...

.ENDM ...

.PSECT CODE,I

.PSECT DATA,D

.ENABL LSB
; set SWITCH=OFF to suppress debugging messages

.DEBUG SWITCH=ON,VALUE=YES,ID=YES

.PSECT CODE,I
.ENABL LSB
DEBUG::

BPT
START:

... ;setup mapping as desired
CALL SHOMAP ;display the current mapping
... ;whatever
.EXIT

Programmed Request Description and Examples 2–29

.CMAP/.CMPDF/.GCMAP

SHOMAP:
.GVAL #AREA,#$CNFG3 ;Get 3rd config word
MOV R0,R1 ;save contents
BIC #^cCF3.SI&^cCF3.HI,R1 ;clear all but mapping bits
BIT #CF3.SI,R1 ;is there software support for full mapping?
BNE 10$;yes
.PRINT #NOSOFT ;no

10$:
BIT #CF3.HI,R1 ;is there hardware support for full mapping?
BNE 20$;yes
.PRINT #NOHARD ;no

20$:
CMP #CF3.SI!CF3.HI,R1 ;Is there support for both?
BNE 90$;no, then GCMAP is useless
.GCMAP #AREA ;Get mapping information
MOV R0,R1 ;save contents
.DPRINT <GCMAP returns >,R1,OCT
BIT #CM.UID&^cCM.UII,R1 ;Separate U I-D?
BEQ 30$;no
.PRINT #SEPUID ;separated User I-D spaces

30$:
BIT #CM.JAS&^cCM.NOS,R1 ;Context switch Supy spaces
BEQ 40$;no
.PRINT #SWPSPY ;context switching Supy

40$:
BIT #CM.SID&^cCM.SII,R1 ;Separate S I-D?
BEQ 50$;no
.PRINT #SEPSID ;separated Supy I-D spaces

50$:
TSTB R1 ;any separated D pars?
BEQ 90$;no, done
MOVB #’0,R2 ;par number in ascii
MOV #CM.PAR0,R3 ;par bit mask
MOV #BUFFER,R4 ;output buffer

60$:
MOVB #’ ,@R4 ;assume locked
BIT R3,R1 ;unlocked?
BEQ 70$;no
MOVB R2,@R4 ;yes, punch in number

70$:
ASLB R3 ;next par mask bit
BEQ 80$;done
INC R2 ;next number
INC R4 ;next buffer slot
BR 60$

80$:
.PRINT #SEPPAR ;list separated pars

90$: RETURN

.PSECT DATA,D

AREA: .BLKW 10.

2–30 RT–11 System Macro Library Manual

.CMAP/.CMPDF/.GCMAP

NOSOFT: .ASCIZ "?EGCMAP-F-Monitor does not support full mapping"
NOHARD: .ASCIZ "?EGCMAP-F-Processor does not support full mapping"
SEPUID: .ASCIZ "!EGCMAP-I-Separated User I and D spaces"
SWPSPY: .ASCIZ "!EGCMAP-I-Supy enabled"
SEPSID: .ASCIZ "!EGCMAP-I-Separated Supy I and D spaces"
SEPPAR: .ASCII "!EGCMAP-I-Following User / Supy D pars unlocked:"
BUFFER: .BLKB 8.

.ASCIZ ""

.END START

Programmed Request Description and Examples 2–31

.CMKT
EMT 375, Code 23
The .CMKT request causes one or more outstanding mark time requests to be
canceled (See the .MRKT programmed request). The .CMKT request is a SYSGEN
option in the single-job monitor. Timer support is a selectable during the system
generation process.

Macro Call:

.CMKT area,id[,time]

where:

area is the address of a three-word EMT argument block

id is a number that identifies the mark time request to be canceled. If
more than one mark time request has the same id, the request with
the earliest expiration time is canceled. If id = 0, all non-system
mark time requests (those in the range 1 to 176777) for the issuing
job are canceled

time is the address of a two-word area in which the monitor returns the
amount of time (clock ticks) remaining in the canceled request. The
first word contains the high-order time, the second contains the low-
order. If an address of 0 is specified, no value is returned. If id = 0,
the time parameter is ignored and need not be indicated

Request Format:

R0 area: 23 0

id

time

Notes
Canceling a mark time request frees the associated queue element.

A mark time request can be converted into a timed wait by issuing a .CMKT followed
by a .TWAIT, and by specifying the same time area.

If the mark time request to be canceled has already expired and is waiting in the
job’s completion queue, .CMKT returns an error code of 0. It does not remove the
expired request from the completion queue. The completion routine will eventually
be run.

2–32 RT–11 System Macro Library Manual

.CMKT

Because the time argument is address-checked by KMON, the macro definition
always clears it to zero if it is not specified.

Errors:

Code Explanation
0 The id was not zero and a mark time request with the specified

identification number could not be found (implying that the request was
never issued or that it has already expired).

Example:
Refer to the example for the .MRKT request.

Programmed Request Description and Examples 2–33

.CNTXSW
Multijob
EMT 375, Code 33
A context switch is an operation performed when a transition is made from running
one job to running another. The .CNTXSW request is used to specify locations to be
included in a list of locations saved and stored when a context switch occurs. Refer
to the RT–11 System Internals Manual for further details.

The system always saves the parameters it needs uniquely to identify and execute
a job. These parameters include all registers and the following locations:

34,36 Vector for TRAP instruction
40-52 System Communication Area

If an .SFPA request has been executed with a non-zero address, all floating-point
registers and the floating-point status are also saved.

It is possible that both jobs want to share the use of a particular location not
included in normal context switch operations. For example, if a program uses
the IOT instruction to perform an internal user function (such as printing error
messages), the program must set up the vector at 20 and 22 to point to an internal
IOT trap handling routine. If both foreground and background wish to use IOT, the
IOT vector must always point to the proper location for the job that is executing.
Including locations 20 and 22 in the .CNTXSW list for both jobs before loading these
locations accomplishes this. This procedure is not necessary for jobs running under
the XM monitor. In the XM monitor, both IOT and BPT vectors are automatically
context switched.

If .CNTXSW is issued more than once, only the latest list is used; the previous
address list is discarded. Thus, all addresses to be switched must be included in one
list. If the address addr is 0, no extra locations are switched. The list cannot be in
an area into which the USR swaps, nor can it be modified while a job is running.

In the XM monitor, the .CNTXSW request is ignored for virtual jobs, since they do
not share memory with other jobs. For virtual jobs, the IOT, BPT, and TRAP vectors
are simulated by the monitor. The virtual job sets up the vector in its own virtual
space by any of the usual methods (such as a direct move or an .ASECT). When the
monitor receives a synchronous trap from a virtual job that was caused by an IOT,
BPT, or TRAP instruction, it checks for a valid trap vector and dispatches the trap to
the user program in user mapping mode. An invalid trap vector address will abort
the job with the following fatal error message:
?MON-F-Inv SST (invalid synchronous system trap)

Macro Call:

.CNTXSW area,addr

where:

area is the address of a two-word EMT argument block

2–34 RT–11 System Macro Library Manual

.CNTXSW

addr is a pointer to a list of addresses terminated by a zero word. The
addresses in the list must be even and be one of the following:

• in the range 2-476

• in the user job area

• in the I/O page (addresses 160000-177776)

Request Format:

R0 area: 33 0

addr

Errors:

Code Explanation
0 One or more of the conditions specified by addr was violated.

Example:
.TITLE ECNTXS.MAC

;+
; .CNTXSW - This is an example in the use of the .CNTXSW request.
; In this example, a .CNTXSW request is used to specify that location 250
; and 252 (MMU vector) and certain Memory management registers be context
; switched. This allows both jobs to use some MMU facilities simultaneously
; yet independently under a non-mapped monitor.
;-

.MCALL .CNTXSW,.PRINT,.EXIT

$USRRB =: 53 ;(.SYCDF) user error byte
SUCCS$ =: 001 ;(.UEBDF) success "error" bit
FATAL$ =: 010 ;(.UEBDF) fatal error bit

START: .CNTXSW #AREA,#SWLIST ;Issue the .CNTXSW request
BCC 1$;Branch if successful
.PRINT #ADDERR ;Address error (should not occur)
BISB #FATAL$,@#$USRRB ;indicate error
.EXIT ;Exit the program

1$: .PRINT #CNTOK ;Acknowledge success with a message
BISB #SUCCS$,@#$USRRB ;indicate no error
.EXIT ;then exit the program

SWLIST: .WORD 250 ;Addresses to include in context switch
.WORD 252 ;MMU vector
.WORD 172220 ;SIPDR0
.WORD 172240 ;SIPAR0
.WORD 177572 ;MMR0
.WORD 0 ;List terminator !!!

AREA: .BLKW 2 ;EMT argument block

ADDERR: .ASCIZ /?ECNTXS-F-.CNTXSW Addressing Error/
CNTOK: .ASCIZ /!ECNTXS-I-.CNTXSW Successful/

.END START

Programmed Request Description and Examples 2–35

.CRAW
Mapped
EMT 375, Code 36, Subcode 2
The .CRAW request, only available under mapped monitors, defines a virtual address
window and optionally maps it into a physical memory region. Mapping occurs if
you set the WS.MAP bit in the last word of the window definition block before you
issue .CRAW. Since the window must start on a 4K word boundary, the program only
has to specify which page address register to use and the window size in 32-word
increments. If the new window overlaps previously defined windows, those windows
are eliminated before the new window is created (except the static window reserved
for a virtual program’s base segment).

Macro Call:

.CRAW area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the window definition block. The .WDBBK macros
generate static definitions pointed to by addr. See the RT–11 System
Internals Manual for more information on mapping

The window status word (W.NSTS) of the window definition block
may have one or more of the following bits set on return from the
request:

• WS.CRW set if address window was successfully created

• WS.UNM set if one or more windows were unmapped to create
and map this window

• WS.ELW set if one or more windows were eliminated

See program requests .WDBBK, .CRRG.

Request Format:

R0 area: 36 2

addr

Errors:

Code Explanation
0 Window alignment error: the new window overlaps the static window for

a virtual job. The window is too large or W.NAPR is greater than 7.

2–36 RT–11 System Macro Library Manual

.CRAW

1 An attempt was made to define more than seven windows in your program.
Eliminate a window (.ELAW) or redefine your virtual address space into
fewer windows.

If the WS.MAP bit were set in the window definition block status word, the following
errors can also occur:

Code Explanation
2 An invalid region identifier was specified.

4 The combination of the offset into the region and the size of the
window to be mapped into the region is invalid.

17 Inactive mode or space specified.

Example:
.TITLE XMCOPY;2

;+
; This is an example in the use of the RT-11 Extended Memory requests.
; The program is a file copy with verify utility that uses extended
; memory to implement 4k transfer buffers. The example utilizes most of
; the Extended Memory requests and demonstrates other programming
; techniques useful in utilizing the requests.
;-

.NLIST BEX

.MCALL .UNMAP,.ELRG,.ELAW,.CRRG,.CRAW,.MAP,.PRINT,.EXIT,.CLOSE

.MCALL .RDBBK,.WDBBK,.TTYOUT,.WDBDF,.RDBDF,.CSIGEN,.READW,.WRITW

.WDBDF ;Create Window Def Blk Symbols

.RDBDF ; " Region " " "

$JSW =: 44 ;(.SYCDF) JSW location
VIRT$ =: 2000 ;(.JSWDF) Virtual Job bit in JSW
$ERRBYT =: 52 ;(.SYCDF) Error byte location
$USRRB =: 53 ;(.SYCDF) User error byte
SUCCS$ =: 001 ;(.UEBDF) Successful completion
FATAL$ =: 010 ;(.UEBDF) Error completion
APR =: 2 ;PAR/PDR for 1st window
APR1 =: 4 ; " " 2nd "
CORSIZ =: 4096. ;Size of buffer in words
PAGSIZ =: CORSIZ/256. ;Page size in blocks

.ASECT ;Assemble in the Virt Job Bit

. = $JSW

.WORD VIRT$;Make this a "virtual" job

.PSECT ;Start code now

.ENABL LSB

START:: MOV SP,R5 ;Save SP, .CSIGEN changes it
.CSIGEN #ENDCRE,#DEFLT,#0 ;Get filespecs, handlers, open files
MOV R5,SP ;*C* Restore it (preserve carry)
BCS START ;Branch if error
INCB ERRNO ;ERR = 1x
.CRRG #CAREA,#RDB ;Create a region
BCC 10$;Branch if successful
JMP ERROR ;Report error (JMP due to range!)

10$: MOV RDB,WRNID ;Move region id to Window Def Blk
INCB ERRNO ;ERR = 2x
.CRAW #CAREA,#WDB ;Create window...
BCC 20$;Branch if no error

Programmed Request Description and Examples 2–37

.CRAW

JMP ERROR ;Report error...
20$: INCB ERRNO ;ERR = 3x

.MAP #CAREA,#WDB ;Explicitly map window...
BCC 30$;Branch if no error
JMP ERROR ;Report error

30$: CLR R1 ;R1 = RT11 Block # for I/O
MOV #CORSIZ,R2 ;R2 = # of words to read
INCB ERRNO ;ERR = 4x

READ: .READW #RAREA,#3,BUF,R2,R1 ;Try to read 4k worth of blocks
BCC WRITE ;Branch if no error
TSTB @#$ERRBYT ;EOF?
BEQ PASS2 ;Branch if yes
JMP ERROR ;Must be hard error, report it

WRITE: MOV R0,R2 ;R2 = size of buffer just read
.WRITW #RAREA,#0,BUF,R2,R1 ;Write out the buffer
BCC ADDIT ;Branch if no error
INCB ERRNO ;ERR = 5x
JMP ERROR ;Report error

ADDIT: ADD #PAGSIZ,R1 ;Adjust block #
BR READ ;Then go get another buffer

PASS2: INCB ERRNO ;ERR = 6x
.CRRG #CAREA,#RDB1 ;Create a region
BCC 40$;Branch if no error
JMP ERROR ;Report error

40$: MOV RDB1,WRNID1 ;Get region id to window def blk

;* EXAMPLE USING THE .CRAW REQUEST DOING *
;* IMPLIED .MAP REQUEST. *

INCB ERRNO ;ERR = 7x
.CRAW #CAREA,#WDB1 ;Create window using implied .MAP
BCC VERIFY ;Branch if no error
JMP ERROR ;Report error

VERIFY::INCB ERRNO ;ERR = 8x
CLR R1 ;R1 = RT11 block # again

GETBLK: MOV #CORSIZ,R2 ;R2 = 4k buffer size
.READW #RAREA,#3,BUF1,R2,R1 ;Try to get 4K worth of input file
BCC 50$;Branch if no error
TSTB @#$ERRBYT ;EOF?
BEQ ENDIT ;Branch if yes
JMP ERROR ;Report hard error

50$: MOV R0,R2 ;R2 = size of buffer read
.READW #RAREA,#0,BUF,R2,R1 ;Try to get same size from output file
BCC 60$;Branch if no error
INCB ERRNO ;ERR = 9x
JMP ERROR ;Report error

60$: MOV BUF,R4 ;Get output buffer address
MOV BUF1,R3 ;Get input buffer address

70$: CMP (R4)+,(R3)+ ;Verify that data is the same
BNE ERRDAT ;It’s not, report error
DEC R2 ;Are we finished?
BNE 70$;Branch if we aren’t
ADD #PAGSIZ,R1 ;Adjust block # for page size
BR GETBLK ;Go get another buffer pair

ENDIT: .PRINT #ENDPRG ;Announce we’re finished
BISB #SUCCS$,@#$USRRB ;Indicate no error

XCLOS: .CLOSE #0 ;Close output file
.UNMAP #CAREA,#WDB ;Explicitly unmap 1st window
.ELAW #CAREA,#WDB ;Explicitly eliminate 1st window
.ELRG #CAREA,#RDB ;Eliminate 1st region
.ELRG #CAREA,#RDB1 ;Unmap,eliminate 2nd window & region
.EXIT ;Exit program

2–38 RT–11 System Macro Library Manual

.CRAW

ERROR: MOVB #’0,ERRNO2 ;Setup first digit
MOVB @#$ERRBYT,R0 ;Get error byte code
CMPB R0,#10 ;If larger than 10(8)
BLT 80$;NOT
INCB ERRNO2 ;make 0 into 1
SUB #10,R0 ; and reduce 2nd "digit" by 10

80$: ADD #’0,R0 ;of error code...
MOVB R0,ERRNO3 ;Put it in error message
.PRINT #ERR ;Print it...
BR ECLOS ;Go close output file

ERRDAT: .PRINT #ERRBUF ;Report verify failed...
ECLOS:

BISB #FATAL$,@#$USRRB ;Indicate error
BR XCLOS ;Go close output file

RDB: .RDBBK CORSIZ/32. ;.RDDBK defines Region Def Blk
WDB: .WDBBK APR,CORSIZ/32. ;.WDDBK defines Window Def Blk
RDB1: .RDBBK CORSIZ/32. ;Define 2nd region same way
WDB1: .WDBBK APR1,CORSIZ/32.,0,0,CORSIZ/32.,WS.MAP ; and 2nd Window

;(but with mapping status set!)

BUF =: WDB+W.NBAS ;Virtual addr of 1st buffer
BUF1 =: WDB1+W.NBAS ; " " " 2nd "
WRNID =: WDB+W.NRID ;Region ID addr of 1st region
WRNID1 =: WDB1+W.NRID ; " " " " 2nd "

CAREA: .BLKW 2 ;EMT argument blocks
RAREA: .BLKW 6
DEFLT: .WORD 0,0,0,0 ;No default extensions
ENDPRG: .ASCIZ /!XMCOPY-I-End of XM Example Program/
ERR: .ASCII /?XMCOPY-F-Request or I-O Error # /
ERRNO: .ASCII /0/

.ASCII /, CODE=/
ERRNO2: .ASCII /0/
ERRNO3: .ASCIZ /0/

ERRBUF: .ASCIZ /?XMCOPY-F-Data Verification Error/
ENDCRE =. ;For CSIGEN

.END START

Programmed Request Description and Examples 2–39

.CRRG
Mapped
EMT 375, Code 36, Subcode 0
The .CRRG request directs the monitor to allocate a dynamic region in physical
memory for use by the current requesting program.

Macro Call:

.CRRG area[,addr]

where:

area is the address of a two-word EMT argument block

addr is the address of the region definition block for the region to be created
or attached by RT–11. The .RDBBK macro can be used to initialize
the region definition block. For more information on mapping, see
the RT–11 System Internals Manual.

Request Format:

R0 area: 36 0

addr

Errors:

Code Explanation
6 No region control blocks are available. You eliminate a region to

obtain a region control block (.ELRG), or you can redefine your
physical address space into fewer regions.

7 A region of the requested size cannot be created because not enough
memory is available. The size of the largest available region is
returned in R0.

10 An invalid region size was specified. A value of 0, or a value greater
than the available amount of contiguous extended memory, is invalid.

12 Global region not found.

13 Too many global regions in use (none free).

15 Global region is privately owned.

16 Global region already exists at a different base address.

Example:

Refer to example for the .CRAW request.

2–40 RT–11 System Macro Library Manual

.CSIGEN
EMT 344
The .CSIGEN request calls the Command String Interpreter (CSI) in general mode
to process a standard RT–11 command string. In general mode, file .LOOKUP and
.ENTER requests as well as handler .FETCH requests are performed.

NOTE
This request returns information on the stack.

When .CSIGEN accepts the command string:

dev:output-filespec[size]=dev:input-filespec/options

the following operations occur:

1. The handlers for devices specified in the command line are fetched.

2. .LOOKUP and/or .ENTER requests on the files are performed.

3. The option information is placed on the stack. See the end of this section for a
description of the way option information is passed. Note that this call always
puts at least one word of information on the stack.

.CSIGEN purges channels 0 through 108 before processing the command string. If
errors occur during processing, it purges them again.

.CSIGEN loads all necessary handlers and opens the files as specified. The area
specified for the device handlers must be large enough to hold all the necessary
handlers simultaneously. If the device handlers exceed the area available, your
program can be destroyed. (The system, however, is protected.)

The three possible output files are assigned to channels 0, 1, and 2, and the six
possible input files are assigned to channels 3 through 108. A null specification
causes the associated channel to remain inactive. For example, the string:

*,NL:=F1,F2

causes:

• Channel 0 to be inactive since the first specification is null.

• Channel 1 to be associated with the null handler device

• Channel 2 to be inactive.

• Channels 3 and 4 to be associated with two files on DK:

• Channels 5 through 10 to be inactive.

Your program can determine whether a channel is inactive by issuing a .WAIT
request on the associated channel, which returns an error if the channel is not
open.

Programmed Request Description and Examples 2–41

.CSIGEN

Macro Call:

.CSIGEN devspc,defext[,cstrng][,linbuf]

where:

devspc is the address of the memory area where the device handlers (if any)
are to be loaded

defext is the address of a four-word block that contains the Radix–50 default
file types. These file types are used when a file is specified without
an explicit file type.

cstrng is the address of the ASCIZ command string or a 0 if input is to come
from the console terminal. (In a multijob environment, if the input is
from the console terminal, an .UNLOCK of the USR is automatically
performed while the string is being read, even if the USR is locked at
the time.) If the string is in memory, it must not contain a RETURN
(octal 15 and 12), and must terminate with a zero byte. If the cstrng
field is blank, input is automatically taken from the console terminal.
This string, whether in memory or entered at the console, must obey
all the rules for a standard RT–11 command string.

linbuf is the storage address of the original command string. This is a user-
supplied area, 81 decimal bytes in length. The command string is
terminated with a zero byte. If this argument is omitted, the input
command string is not copied to user memory.

On return, R0 points to the first available location above the handlers, the stack
contains the option information, and all the specified files have been opened.

The four-word block pointed to by defext is arranged as:

Word 1 Default file type for all input channels (3-10)

Words 2,3,4 Default file types for output channels 0, 1, and 2, respectively

If there is no default for a particular channel, the associated word must contain 0. All
file types are expressed in Radix–50. For example, the following default extension
block sets up default file types for a macro assembler:

.TITLE ECSIG1.MAC
DEFEXT:

.RAD50 "MAC" ;Input files default type

.RAD50 "OBJ" ;First output file default type

.RAD50 "LST" ;Second output file default type

.WORD 0 ;Third output file default type (none)

In the command string:

*DU0:ALPHA,DU1:BETA=DU2:INPUT

the default file type for input is MAC; for output, OBJ and LST. The following cases
are valid:

*DU0:OUTPUT=

2–42 RT–11 System Macro Library Manual

.CSIGEN

*DU2:INPUT

In other words, the equal sign is required after all output files but is not necessary
if only input files are specified.

An optional argument linbuf is available in the .CSIGEN format that provides an
area to receive the original input string. The input string, returned as an ASCIZ
string, can be printed through a .PRINT request.

The .CSIGEN request automatically takes its input line from an indirect command
file if console terminal input is specified (cstrng = #0) and the program issuing the
.CSIGEN is invoked through an indirect command file.

Errors:

If CSI errors occur and input was from the console terminal, an error message
describing the fault is printed on the terminal and the CSI retries the command.
If the input was from a string, the carry bit is set and byte 52 contains the error
code. In either case, the options and option-count are purged from the stack.
These errors are:

Code Explanation
0 Invalid command (such as bad separators, invalid file names, and

commands that are too long).

1 A device specified is not found in the system tables.

2 A protected file of the same name already exists. A new file was not
opened.

3 Device full.

4 An input file was not found in a .LOOKUP.

Example:

.TITLE ECSIGE;2
;+
; .CSIGEN - This is an example in the use of the .CSIGEN request.
; The example is a single file copy program. The file specs are
; input from the console terminal, and the input & output files opened
; via the general mode of the CSI. The file is copied using synchronous
; I/O, and the output file is made permanent via the .CLOSE request.
;-

.MCALL .CSIGEN,.READW,.EXIT,.WRITW,.CLOSE,.SRESET

.MCALL .PRINT

$ERRBYT =: 52 ;(.SYCDF) Error Byte
$USRRB =: 53 ;(.SYCDF) User Error Byte
FATAL$ =: 010 ;(.UEBDF) error indication

Programmed Request Description and Examples 2–43

.CSIGEN

START: MOV SP,R5 ;Save SP since .CSIGEN changes it
.CSIGEN #DSPACE,#DEXT ;Get string from terminal
MOV R5,SP ;Restore SP
MOV R0,BUFF ;R0 has first free location
CLR INBLK ;Input block #
MOV #LIST,R5 ;EMT Argument list

READ: .READW R5,#3,BUFF,#256.,INBLK ;Read a block on Channel 3
BCC 2$;Branch if no errors
TSTB @#$ERRBYT ;EOF error ?
BEQ EOF ;Yes...
MOV #INERR,R0 ;R0 => Read Error Message

1$: .PRINT ;Print the message
BISB #FATAL$,@#$USRRB ;Indicate error
CLR R0 ;Clear R0 for hard exit
.EXIT ;Exit the program

2$: .WRITW R5,#0,BUFF,#256.,INBLK ;Write the block just read
BCC NOERR ;Branch if no error
MOV #WTERR,R0 ;R0 => Write error message
BR 1$;Branch to output the message

NOERR: INC INBLK ;Otherwise, increment block #
BR READ ;and loop to read next block

EOF: .CLOSE #0 ;End-of-File...CLose output channel
.CLOSE #3 ;And input channel
.EXIT ;Exit the program

DEXT: .WORD 0,0,0,0 ;No default extensions
BUFF: .WORD 0 ;I/O Buffer start
INBLK: .WORD 0 ;Relative block to read/write
LIST: .BLKW 5 ;EMT argument list

INERR: .ASCIZ /?ECSIGE-F-Input error/
WTERR: .ASCIZ /?ECSIGE-F-Output error/

.EVEN
DSPACE: ;area for handlers

.END START

Passing Option Information
Both .CSIGEN and .CSISPC parse options and their associated values in reverse
order from that specified on the command line. That is, the last option and associated
value (if present) placed last on the stack will be the first option retrieved.

In both general and special modes of the CSI, options and their associated values
are returned on the stack. A CSI option is introduced by slash (/) followed by any
character. The CSI does not restrict the option to display characters, although you
should use printing characters to avoid confusion. The option can be followed by a
value, which is indicated by a : separator. The : separator is followed by an octal
number, a decimal number, or by one-to-three alphanumeric characters, the first of
which must be alphabetic. Decimal values are indicated by terminating the number
with a decimal point (/N:14.). If no decimal point is present, the number is assumed
to be octal. Options can be associated with files; for example, the following command
string has two A options:

*DK:FOO/A,DU4:FILE.OBJ/A:100

2–44 RT–11 System Macro Library Manual

.CSIGEN

The first is associated with the input file DK:FOO. The second is associated with the
input file DU4:FILE.OBJ and has a value of 1008. The format of the stack output
of the CSI for options is as follows:

Word Value Meaning
1 N Number of options found in command string.

If N=0, no options were found.

2 Option character and
file number

Even byte = seven-bit ASCII option character

Bits 8-14 = number (0-10) of the file with which
the option is associated

Bit 15 = 1 if the option had a value

= 0 if the option had no value

3 Option value or next
option

If bit 15 of word 2 is set, word 3 contains the
option value.
If bit 15 is not set, word 3 contains the next
option character and file number, if any.

For example, if the input line to the CSI is

*FILE/B:20.,FIL2/E=DU3:INPUT/X:SY:20

on return, the stack is:

.TITLE ECSIG2.MAC

;Stack Pointer ->
4 ;Three options appeared (X option has two

; values and is treated as two options)

101530 ;Last option = X; with file 3; has a value

20 ;Value of option X = 20(octal)

101530 ;Next option = X; with file 3; has a value

075250 ;Value of option X = RAD50 for SY

505 ;Next option = E; with file 1; no value

100102 ;Next option = B; with file 0; has a value

24 ;Value of option B = 20(decimal)

Programmed Request Description and Examples 2–45

.CSIGEN

Keyboard error messages that can occur when input is from the console keyboard
include:

Message Meaning
?CSI-F-Invalid command Syntax error.

?CSI-F-File not found Input file was not found.

?CSI-F-Device full Output file does not fit.

?CSI-F-Invalid device Device specified does not exist.

?CSI-F-Protected file Specified output file already exists and is
protected.

Notes

• In many cases, your program does not need to process options in CSI calls.
However, because you could inadvertently enter options at the console you should
save the value of the stack pointer before the call to the CSI, and restore it after
the call, so that no extraneous values are left on the stack. Note that even a
command string with no options causes a zero word to be pushed onto the stack.
This word indicates the number of options to follow.

• Under a multijob monitor, calls to the CSI that require console terminal input
always do an implicit .UNLOCK of the USR while the string is being gathered.
This should be kept in mind when using .LOCK calls.

2–46 RT–11 System Macro Library Manual

.CSISPC
EMT 345
The .CSISPC request calls the Command String Interpreter to parse the command
string and return file descriptors and options to the program. The CSI does not
perform any .CLOSE, .ENTER, .LOOKUP, or handler .FETCH requests.

Options and their associated values are returned on the stack. The optional
argument linbuf can provide your program with the original command string.

.CSISPC automatically takes its input line from an indirect command file if console
terminal input is specified cstrng = #0 and the program issuing the .CSISPC is
invoked through an indirect command file.

Note that in a multijob environment, calling the CSI performs a temporary and
implicit .UNLOCK while the command line is being read.

Macro Call:

.CSISPC outspc,defext[,cstrng][,linbuf]

where:

outspc is the address of the 39-word block to contain the file descriptors
produced by .CSISPC. This area can overlay the space allocated to
cstrng, if desired

defext is the address of a four-word block that contains the Radix–50 default
file types. These file types are used when a file is specified without
a file type

cstrng is the address of the ASCIZ input string or a #0 if input is to come
from the console terminal. If the string is in memory, it must not
contain a RETURN (octal 15 and 12), and must terminate with a
zero byte. If cstrng is blank, input is automatically taken from the
console terminal or indirect file, if one is active

linbuf is the storage address of the original command string. This is a user-
specified area, 81 bytes in length. The command string is terminated
with a zero byte instead of RETURN (octal 15 and 12)

Notes

• The file description consists of 39 words, comprising nine file descriptor blocks
(five words for each of three possible output files; four words for each of six
possible input files), which correspond to the nine possible files (three output, six
input). If any of the nine possible file names are not specified, the corresponding
descriptor block is filled with zeroes.

• The five-word blocks hold four words of Radix–50 representing dev:file.type,
and one word representing the size specification given in the string. (A size
specification is a decimal number enclosed in square brackets ([]) that follows
the output file descriptor.) For example:

Programmed Request Description and Examples 2–47

.CSISPC

*DU3:LIST.MAC[15]=TT:

Using special mode, the CSI returns in the first five-word slot:

.TITLE ECSIP1.MAC

16151 ;RAD50 "DU3"
46173 ;RAD50 "LIS"
76400 ;RAD50 "T "
50553 ;RAD50 "MAC"

17 ;WORD 15. (DECIMAL)

In the fourth slot (starting at an offset of 36 bytes [octal] into outspc), the CSI
returns:

.TITLE ECSIP2.MAC

100040 ;RAD50 "TT "
0 ;no file name
0 ; "
0 ;no file type

Since this is an input file, only four words are returned.

As an extended example, assume the following string was input for the CSI in general
mode:

*FILE[8],LP:,SY:FILE2[20]=LD:,DU1:IN1/B,DU2:IN2.MLB/M:7

Assume also that the default file type block is:

.TITLE ECSIP3.MAC

DEFEXT:
.RAD50 "MAC" ;Input file type
.RAD50 "OP1" ;First output file type
.RAD50 "OP2" ;Second output file type
.RAD50 "OP3" ;Third output file type

This default extension block sets up default file types for a macro assembler, where:

• The first word is the default input file type.

• The second word is the first output file type.

• The third word is the second output file type.

• The fourth word is the third output file type.

The results of the above CSI call are as follows:

• An eight-block file named FILE.OP1 is entered on channel 0 on device DK:;
channel 1 is open for output to the device LP:; a 20-block file named FILE2.OP3
is entered on the system device on channel 2.

• Channel 3 is open for input from device LD:; channel 4 is open for input from
a file IN1.MAC on device DU1:; channel 5 is open for input from IN2.MLB on
device DU2:.

• The stack contains options and values as follows:

2–48 RT–11 System Macro Library Manual

.CSISPC

.TITLE ECSIP4.MAC

;Stack Pointer ->
2 ;Two options found in string

102515 ;Second option = M; with file 5; has a value
7 ;Value is 7(octal)

2102 ;First option = B; with file 4; has no value

If the CSI were called in special mode, the stack would be the same as for the general
mode call, and the descriptor table would contain:

.TITLE ECSIP5.MAC

OUTSPC: 15270 ;RAD50 "DK "
23364 ;RAD50 "FIL"
17500 ;RAD50 "E "
60137 ;RAD50 "OP1"

10 ;WORD 8. (decimal)
46600 ;RAD50 "LP "

0 ;No name or size specified
0
0
0

75250 ;RAD50 "SY "
23364 ;RAD50 "FIL"
22100 ;RAD50 "E2 "
60141 ;RAD50 "OP3"

24 ;WORD 20. (decimal)
45640 ;RAD50 "LD "

0 ;No name specified
0
0

16147 ;RAD50 "DU1"
35217 ;RAD50 "IN1"

0 ;RAD50 " "
50553 ;RAD50 "MAC"
16150 ;RAD50 "DU2"
35220 ;RAD50 "IN2"

0 ;RAD50 " "
51560 ;RAD50 "MLB"

0 ;12 words of zeros
...

0

If you want to use default extensions, but you need to base the default on an option
(for instance a .MAC without an option or a .MLB, if /M present), you can use the
following trick: Define the default extension as .word -1 which is an invalid RAD–
50 value. Then, if the user specifies an extension, it appears as valid RAD50 in
OUTSPC. However, if no extension is specified, -1 appears in OUTSPC and the
program can, after consulting the options, substitute the required one.

Errors:

Code Explanation
0 Invalid command line.

1 Invalid device.

These are the same errors as .CSIGEN returns, except that invalid device
specifications are checked only for output file specifications with null file names.

Programmed Request Description and Examples 2–49

.CSISPC

Example:

.TITLE ECSISP;1
;+
; .CSISPC - This is an example in the use of the .CSISPC request.
; The example uses the "special" mode of CSI to get an input
; specification from the console terminal, then uses the .DSTATUS
; request to determine if the input device’s handler is loaded;
; if not, a .FETCH request is issued to load the handler into
; memory. Finally a .DELETE request is issued to delete the specified
; file.
;-
;+
; To use enter a single file name at the * prompt
;-

.MCALL .DSTATUS,.PRINT,.EXIT,.FETCH,.CSISPC,.DELETE

DS.ADR =: 4 ;(.DSTDF) address word in DSTAT return

$USRRB =: 53 ;(.SYCDF) user error byte
SUCCS$ =: 001 ;(.UEBDF) success
ERROR$ =: 004 ;(.UEBDF) error
FATAL$ =: 010 ;(.UEBDF) fatal

CS.IN1 =: 36 ;(.CSIDF) offset to first input dblk

START: MOV SP, R5 ;Save current stack pointer
.CSISPC #OUTSP,#DEFEXT ;Use .CSISPC to get output spec
MOV R5, SP ;Restore SP to clear any CSI options
.DSTAT #STAT,#INSPEC ;Check on the input device

;(CSISPC catches illegal devices!)
TST STAT+DS.ADR ;See if the device is resident
BNE 2$;Branch if already loaded
.FETCH #HANLOD,#INSPEC ;It’s not loaded...bring it into memory
BCC 2$;Branch if successful
.PRINT #FEFAIL ;FETCH failed...print error message
BISB #FATAL$,@#$USRRB ;indicate a fatal error
.EXIT ;then exit program

2$: .DELETE #AREA,#0,#INSPEC ;Now delete the file
BCC 3$;Branch if successful
.PRINT #NOFIL ;Print error message
BISB #ERROR$,@#$USRRB ;indicate an error
BR START ;Then try again

3$: .PRINT #FILDEL ;Acknowledge successful deletion
BISB #SUCCS$,@#$USRRB ;indicate success
.EXIT ;then exit program

AREA: .BLKW 2 ;EMT Argument block
.BLKW 4 ;Block for status
DEFEXT: .WORD 0,0,0,0 ;No default extensions
FEFAIL: .ASCIZ /?ECSIGE-F-.FETCH Failed/ ;Fetch failed message
NOFIL: .ASCIZ /?ECSIGE-E-File Not Found/ ;File not found
FILDEL: .ASCIZ /!ECSIGE-I-File Deleted/ ;Delete acknowledgment

.EVEN ;Fix boundary

OUTSP: .BLKW 39. ;Output specs go here
INSPEC =: OUTSP+CS.IN1 ;Input specs go here
HANLOD: .BLKW 1 ;Handlers begin loading here (if

;necessary)
.END START

2–50 RT–11 System Macro Library Manual

.CSTAT
EMT 375, Code 27
This request furnishes you with information about a channel.

Macro Call:

.CSTAT area,chan,addr

where:

area is the address of a two-word EMT argument block

chan is the number of the channel about which information is desired

addr is the address of a six-word block to contain the status

Request Format:

R0 area: 27 chan

addr

Notes
The six words passed back to the user consist of the following information:

• Channel status word (See the RT–11 System Internals Manual and the RT–11
Device Handlers Manual for details)

• Starting block number of file (0 if sequential-access device, or if channel was
opened with a non-file-structured .LOOKUP or .ENTER)

• Length of file (0 if non-file-structured device, or if channel was opened with a
non-file-structured .LOOKUP or .ENTER)

• Highest relative block written since file was opened (no information if non-file-
structured device). This word is maintained by the .WRITE/.WRITC/.WRITW
requests

• Unit number of device with which this channel is associated

.CSTAT supports extended device unit handlers by returning the one-letter device
name found in the $PNAM2 table, if the specified device unit is higher than 7.
If the specified device unit is in the 0-7 range, .CSTAT continues to return the
2-letter device name found in the $PNAME table.

• Radix–50 of the device name with which the channel is associated (Note: This is
a physical device name, unaffected by the use of a logical name when the channel
was open.)

Programmed Request Description and Examples 2–51

.CSTAT

Errors:

Code Explanation
0 The channel is not open.

Example:
.TITLE ECSTAT;2

;+
; .CSTAT - This is an example in the use of the .CSTAT request.
; In this example, .CSTAT is used to determine the .RAD50
; representation of the device with which the channel is associated.
; It also displays the starting block (in octal) and the length (in decimal).
;-
; to use, supply 1 input file name
;-

.MCALL .CSTAT,.CSIGEN,.PRINT,.EXIT

.MCALL .DEBUG .DPRINT
.ENABL LSB

.DEBUG SWITCH=ON,VALUE=YES
.DSABL LSB

CS.SBK =: 02 ;(.CSTDF) starting block returned
CS.LEN =: 04 ;(.CSTDF) length of file returned
CS.UNT =: 10 ;(.CSTDF) unit number returned
CS.NAM =: 12 ;(.CSTDF) device name returned

$USRRB =: 53 ;(.SYCDF) User Error Byte
SUCCS$ =: 001 ;(.UEBDF) success indication
FATAL$ =: 010 ;(.UEBDF) error indication
.ENABL LSB
START: MOV SP, R5 ;Save current stack pointer

.CSIGEN #DEVSDC,#DEFEXT ;Open files
MOV R5, SP ;Restore SP to clear any CSI options
.CSTAT #AREA,#3,#ADDR ;Get the status
BCS NOCHAN ;Channel 3 not open
MOV #ADDR+CS.UNT,R5 ;Point to unit #
MOV (R5)+,R0 ;Unit # to R0
ADD #^r 0,R0 ;Make it RAD50
CMP #^r 7,R0 ;Was it 0--7?
BGE 10$;Yes, xxn form
ADD #^r 0 ,R0 ;Else must have been 10--77 (xnn form)

10$: ADD (R5),R0 ;Get device name
MOV R0,DEVNAM ;’DEVNAM’ has RAD50 device name
.DPRINT ^"!ECSTAT-I-First block - ",ADDR+CS.SBK ;Display first block
.DPRINT ^"!ECSTAT-I-File length - ",ADDR+CS.LEN,DEC ;And size
BISB #SUCCS$,@#$USRRB ;Indicate success
.EXIT ;Exit the program

NOCHAN: .PRINT #MSG ;Print error message
BISB #FATAL$,@#$USRRB ;Indicate success
.EXIT ;then exit program

.DSABL LSB
MSG: .ASCIZ /?ECSTAT-F-No Input File/ ;Error message

.EVEN ;Fix boundary
AREA: .BLKW 5 ;EMT arg list
ADDR: .BLKW 6 ;Area for channel status
DEVNAM: .WORD 0 ;Storage for device name
DEFEXT: .WORD 0,0,0,0 ;No default extensions
DEVSDC: .BLKW 39. ;Start CSI tables here...

.END START

2–52 RT–11 System Macro Library Manual

.CTIMIO
Timeout
Macro Expansion
The .CTIMIO macro cancels the device time-out request in the handler interrupt
service section when an interrupt occurs to disable the completion routine (See
.TIMIO). The device time-out feature is only useable if it was selected during the
system generation process.

If the time interval has already elapsed and the device has timed out, the .CTIMIO
request fails and the completion routine has already been placed in the queue. The
.CTIMIO call returns with the C bit set when it fails because the completion routine
has already been queued.

Macro Call:

.CTIMIO tbk

where:

tbk is the address of the seven-word timer block shown in Table 2–2.

Table 2–2: Timer Block Format

Offset Filled in by Contents

0 .TIMIO High-order time word (expressed in ticks).

2 .TIMIO Low-order time word (expressed in ticks).

4 Monitor Link to next queue element; 0 indicates none.

6 Handler Owner’s job number; 0 for background job, MAXJOB
for foreground job, and job priority *2 for system jobs.
MAXJOB is equal to (the number of jobs in the system
* 2)-2. The job number for the foreground job is 2 in a
system without system jobs, and 16 for a system with
system jobs. The job number is set from the queue
element.

10 Handler Sequence number of timer request. Use the xx$COD, plus
the 177000. The valid range of sequence numbers is from
177000 to 177377.

12 Monitor -1

14 Handler Address of the completion routine to execute if timeout
occurs. The monitor zeroes this word when it calls the
completion routine, indicating that the timer block is
available for reuse.

Programmed Request Description and Examples 2–53

.CTIMIO

The .CTIMIO macro expands as follows:
.TITLE ECTIMI

.CTIMIO tbk

JSR R5,@$TIMIT
.WORD tbk-.
.WORD 1

Errors:
None.

Example:
Refer to the example for the .TIMIO request.

2–54 RT–11 System Macro Library Manual

.DATE
EMT 374, Code 12
This request returns in R0 the current date information from the system date word.
The date word returned is in the following format:

Bit: 15 14 13 ... 10 9 ... 5 4 ... 0
_____/_________/_______/_______/

Age Month Day Year

where:

The year value in bits 4 to 0 is the actual year minus 1972. The day in bits 9-5 is a
number from 1 to the length of the month. The month in bits 13 to 10 is a number
from 1 to 12. Age in bits 14 and 15 is a number from 0 to 3. The age value multiplied
by 3210 should be added to 1972 and to the year value in bits 4 through 0.

NOTE
RT–11 support of month- and year-rollover is a system
generation option; if not selected, the keyboard monitor
DATE command must be issued to change the month
and year.

Macro Call:

.DATE

Request Format:

R0 = 12 0

Errors:

No errors are returned. A zero result in R0 indicates that the user has not entered
a date.

Example:
.TITLE DATE.MAC

;+
; .DATE - This is an example in the use of the .DATE request.
; This example displays the date numerically
;
; INPUT: none
;
; OUTPUT: Day, Month, Year in Decimal
;
;
;
;ERRORS: 0 if no date entered
;-

Programmed Request Description and Examples 2–55

.DATE

.MCALL .DATE .DEBUG .DPRINT .EXIT
.ENABL LSB

.DEBUG SWITCH=ON,VALUE=YES
.DSABL LSB

$USRRB =: 53 ;(.SYCDF) User error byte
SUCCS$ =: 001 ;(.UEBDF) Success code
ERROR$ =: 004 ;(.UEBDF) Error code

.ENABL LSB ;54321098 76543210
DATE:: .DATE ;AAMMMMDD DDDYYYYY Get date in R0 via .DATE request

MOV R0,R2 ;Copy R0
BEQ 1$;If zero, no date was entered
BIC #^C37,R2 ;00000000 000YYYYY Clear all but year bits
MOV R0,R1 ;AAMMMMDD DDDYYYYY Copy R0 again
SWAB R1 ;DDDYYYYY AAMMMMMD Move age bits to low byte
ASR R1 ;?DDDYYYY YAAMMMMM And move them to 32.* position
BIC #^C140,R1;00000000 0AA00000 Save only age bits
ADD R1,R2 ;add into year
ADD #1972.,R2 ;Make it current year
MOV R0,R1 ;AAMMMMDD DDDYYYYY Copy date word again
ASL R1 ;AMMMMDDD DDYYYYY0 Get day bits
ASL R1 ;MMMMDDDD DYYYYY00 on a byte boundary...
ASL R1 ;MMMDDDDD YYYYY000
SWAB R1 ;YYYYY000 MMMDDDDD Put day bits in low order byte
BIC #^C37,R1 ;00000000 000DDDDD Clear all but day bits
SWAB R0 ;DDDYYYYY AAMMMMDD Put month bits in low byte
ASR R0 ;?DDDYYYY YAAMMMMD Right adjust
ASR R0 ;??DDDYYY YYAAMMMM month bits...
BIC #^C17,R0 ;00000000 0000MMMM Clear all but month bits
.DPRINT ^"!EDATE-I-Day - ",R1,DEC
.DPRINT ^"!EDATE-I-Month - ",R0,DEC
.DPRINT ^"!EDATE-I-Year - ",R2,DEC
BISB #SUCCS$,@#$USRRB ;Indicate success
.EXIT

1$: .DPRINT ^"?EDATE-I-No date set"
BISB #ERROR$,@#$USRRB ;Indicate minor error
.EXIT

.END DATE

2–56 RT–11 System Macro Library Manual

.DEBUG/.DPRINT
Use these run-time debug message macros to insert debugging messages into
programs. .DEBUG and .DPRINT enable simple printing of strings and optional
printing of 16-bit octal or decimal values. Before .DEBUG and .DPRINT are
issued, .ENABL LSB needs to be in effect. Alternatively, you can define local label
arguments in each call, but this is not recommended.

.DEBUG

.DEBUG sets up the environment for the .DPRINT macro and may generate routines
to support octal/decimal displays used by .DPRINT. The symbol ...V23 controls the
generation of .DPRINT macros:

• If ...V23 = 0, then .DPRINT macros will generate no code.

• If ...V23 = 177777, then all .DPRINT macros will be generated.

Other values for ...V23 may be used to select one or more classes of .DPRINT macros
to generate. This macro also defines the .DPSec macro used by the .DPRINT macro
to define the PSECT for the data strings.

Macro Call:

.DEBUG switch,class,pic,id,value,psect,code,?L1,?L2,?L3,?L4

where:

switch (Default) V23 to 0

ON/on Set V23 to value specified for CLASS

OFF/off Set V23 to 0

class 177777 (Default) Select all classes

xxxxxx Bit mask to select classes

pic Default Do not generate PIC code in .DPRINT macros

YES Generate PIC code in .DPRINT macros

id Default Do not generate code for separated I-D modes

YES Generate code for separated I-D modes

value Default Do not generate support subroutines for value printing

YES Generate support subroutines for value printing

psect (Deb$ug) PSECT used for text string generated by .DPRINT

code (Deb.ug) PSECT used for support subroutines

L1–L4 (xxxxx$) Local labels used for support routines

Programmed Request Description and Examples 2–57

.DEBUG/.DPRINT

For example,

.TITLE EDEBUG.MAC

;+
; This example shows some uses of the .DEBUG and .DPRINT
; to debug a program
;-

.MCALL .DEBUG .DPRINT .EXIT

.ENABL LSB
.DEBUG SWITCH=ON,VALUE=YES ;enable all classes by default

.DSABL LSB ;generate the octal and decimal
;display routines

.MACRO ...

.ENDM

$ERRBY =: 52 ;(.SYCDF) error byte

.ENABL LSB
MOWAT:

.DPRINT ^"Entering MOWAT routine"

...
SEC ;simulate error
MOVB #17,@#$ERRBY ;...

BCC 10$;test for error
MOVB @#$ERRBY,R0 ;get error byte
.DPRINT ^"Unexpected error - ",R0 ;display error "byte"

10$:

.DEBUG SWITCH=ON,CLASS=000001 ;display only class 1 .DPRINTs

.DPRINT ^"This should not print",CLASS=2

.DPRINT ^"This should print",CLASS=1

...

.DEBUG SWITCH=ON,CLASS=177777 ;display all classes of .DPRINTs
MOV #12345.,R0 ;load value for FARLEY

FARLEY:
.DPRINT ^"On entry to FARLEY, R0 is - ",R0,DEC
...
.EXIT

.END MOWAT

2–58 RT–11 System Macro Library Manual

.DEBUG/.DPRINT

.DPRINT
This macro conditionally generates code to print a string, thereby simplifying
program debugging. The class arguments of .DEBUG and .DPRINT can be used
to partition .DEBUG output into as many as 16 classes.

Macro Call:

.DPRINT string,value,type,class,?L1

where:

string String to print, enclosed in <>
.ASCII is generated with " " as delimiters

value Value to print if non-blank
Use R0 to print value in R0
Avoid stack references.
Note: .DPRINT issues a .PRINT that destroys (clears) location 52,
the error byte, before .DPRINT picks up any value to display. If you
want to display contents of the error byte, you must move it to a
temporary location, and reference that location in .DPRINT.

type (OCT) Display value in octal format
(DEC) Display value in decimal format

class (177777) Generate code if any class enabled
xxxxxx Generate code if ...V23 and class is non-zero

L1 (xxxxx$) Local symbol. If .ENABLE LSB is not in effect, you must
provide non-local user symbol for L1.

Programmed Request Description and Examples 2–59

.DELETE
EMT 375, Code 0
The .DELETE request deletes a specified file from a specified device. This request is
supported for distributed handlers that support direct access devices. .DELETE is
invalid for magtapes; however, a special directory user written handler could support
.DELETE.

Macro Call:

.DELETE area,chan,dblk[,seqnum]

where:

area is the address of a three-word EMT argument block

chan is the device channel number in the range 0-3768

dblk is the address of a four-word Radix–50 descriptor of the file to be
deleted

seqnum is a file position number (Not supported or used by any handler
supplied by Digital)

Request Format:

R0 area: 0 chan

addr

seqnum

Notes
The channel specified in the .DELETE request must be available when the request is
made or an error will occur. For RT–11 file structured devices, the file is deleted from
the device, and an empty entry of the same size is put in its place. A .DELETE issued
to a non-file-structured device is ignored. .DELETE requires that the handler used
be in memory when the request is made. When .DELETE is complete, the specified
channel is free for reuse.

Errors:

Code Explanation
0 Channel is not available.

1 File was not found in the device directory.

2 Invalid operation.

3 The file is protected and cannot be deleted.

Example:
See the example for .CSISPC.

2–60 RT–11 System Macro Library Manual

.DEVICE
EMT 375, Code 14, Subcodes 0, 1
This request enables your program to load device registers with any necessary
address values when the program is terminated. You set up the list of addresses
with the specified values.

This request provides this list of address-value pairs to the system whenever your
program terminates normally or abnormally. When you issue an .EXIT request or
a CTRL/C from the terminal, the system loads these designated addresses with the
corresponding values. In this way your program can turn off a device’s interrupt
enable bit whenever the program servicing the device terminates.

When you need to link requested tables, successive calls to .DEVICE are allowed.
When a program terminates and the monitor has processed the device list, the
monitor disables the feature until another .DEVICE call is executed. Therefore,
reenterable background programs should include .DEVICE as a part of the reenter
code.

The .DEVICE request is ignored when it is issued by a virtual job.

Macro Call:

.DEVICE area,addr[,link]

where:

area is the address of a two-word EMT argument block

addr is the address of a list of two-word elements.
Each element of a list is composed of a one-word address and a one-
word value to be put at that address. If addr is #0, any previous list
is discarded; in this form, the argument link must be omitted.

link is an optional argument that, if present, specifies linking of tables
on successive calls to .DEVICE. If the argument is omitted, the
list referenced in the previous .DEVICE request is replaced by the
new list. The argument must be supplied to cause linking of lists;
however, linked and unlinked list types cannot be mixed

Request Format:
Linked Unlinked

R0 area: 0 R0 area: 1

addr addr

14 14

NOTE
The list referenced by addr must be in either linking or
non-linking format. The different formats are shown
below. Both formats must be terminated with a

Programmed Request Description and Examples 2–61

.DEVICE

separate, zero-value word. Linking format must also
have a zero-value word as its first word.

Nonlinking Linking

addr: addr:
0

address address

.

.

.

.

.

.

0

value value

0

address address

value value

address address

value value

Errors:
None.

Example:

.TITLE EDEVIC;2

;+
; .DEVICE - This is an example in the use of the .DEVICE request.
; The example shows how .DEVICE is used to disable interrupts from
; a device upon termination of the program. In this case the device
; is a DL11 Serial Line Interface.
;-

.MCALL .DEVICE,.EXIT,.PROTECT,.UNPROTECT,.PRINT

.MACRO ...

.ENDM

.GLOBL DL11 ;Routine

.GLOBL DLVEC ;Vector

.GLOBL DLCSR ;CSR

2–62 RT–11 System Macro Library Manual

.DEVICE

START: .DEVICE #AREA,#LIST ;Setup disables DL11 interrupts
;on .EXIT or ^C^C

.PROTECT #AREA,#DLVEC+4 ;Protect the DL11 output vector
BCS BUSY ;Branch if already protected
... ;Set up data to transmit over DL11
JSR R5,DL11 ;Use DL11 xfer routine (see .INTEN

;example)
.WORD 128. ;Arguments...Word count
.WORD BUFFR ;Data buffer addr
... ;Continue processing...

FINI: .UNPROTECT #AREA,#DLVEC+4 ;...eventually to exit program
.EXIT

BUSY: .PRINT #NOVEC ;Print error message...
.EXIT ;then exit

AREA: .BLKW 3 ;EMT Argument block
LIST: .WORD DLCSR+4 ;CSR of DL11

.WORD 0 ;Fill it with ’0’

.WORD 0 ;List terminator
BUFFR: ;Data to send over DL11

.REPT 8. ;8 lines of 32 characters...

.ASCII /Hello DL11... Are You There ??/

.BYTE 15,12

.ENDR
NOVEC: .ASCIZ /?EDEVIC-F-Vector already protected/

;Error message text

.END START

Programmed Request Description and Examples 2–63

.DRAST
Macro Expansion (Handlers only)
The .DRAST macro sets up the interrupt and abort entry points, lowers the processor
priority, and enters the $INTEN routine in the resident monitor, which it finds by
using the pointer $INPTR. This pointer is filled in by the bootstrap (for a system
device) or RMON at .FETCH or load time (for a data device).

Macro Call:

.DRAST name,pri[,abo]

where:

name is the two-character device name

pri is the priority of the device, and also the priority at which the
interrupt service code is to execute

abo is an optional argument that represents the label of an abort entry
point. If you omit this argument, the macro generates a RETURN
instruction at the abort entry point, which is the word immediately
preceding the interrupt entry point.

Example:
.TITLE XX.MAC

;+
; XX.MAC - This is an example of a simple, RT-11 device driver to illustrate
; the use of the .DRBEG, .DRAST, .DRFIN, .DREND, .FORK & .QELDF requests.
; This driver could be used to output to a serial ASCII printer-terminal
; over a DL11 Serial Line Interface. To use this driver as an RT-11 device
; handler, simply install it via the INSTALL command (eg. ’INSTALL XX’).
;-

.MCALL .DRDEF

.DRDEF XX,0,0,0,176504,304
;MACRO expansion

; .MCALL .DRAST,.DRBEG,.DRBOT,.DREND,.DREST,.DRFIN,.DRFMS,.DRFMT
; .MCALL .DRINS,.DRPTR,.DRSET,.DRSPF,.DRTAB,.DRUSE,.DRVTB
; .MCALL .FORK,.QELDF
; .IIF NDF RTE$M RTE$M=0
; .IIF NE RTE$M RTE$M=1
; .IIF NDF TIM$IT TIM$IT=0
; .IIF NE TIM$IT TIM$IT=1
; .IIF NDF MMG$T MMG$T=0
; .IIF NE MMG$T MMG$T=1
; .IIF NDF ERL$G ERL$G=0
; .IIF NE ERL$G ERL$G=1
; .QELDF
;; Q.LINK=:0
;; Q.CSW=:2.
;; Q.BLKN=:4.
;; Q.FUNC=:6.
;; Q.JNUM=:7.
;; Q.UNIT=:7.
;; Q.BUFF=:^o10
;; Q.WCNT=:^o12
;; Q.COMP=:^o14

2–64 RT–11 System Macro Library Manual

.DRAST

;; Q$LINK=:Q.LINK-^o4
;; Q$CSW=:Q.CSW-^o4
;; Q$BLKN=:Q.BLKN-^o4
;; Q$FUNC=:Q.FUNC-^o4
;; Q$JNUM=:Q.JNUM-^o4
;; Q$UNIT=:Q.UNIT-^o4
;; Q$BUFF=:Q.BUFF-^o4
;; Q$WCNT=:Q.WCNT-^o4
;; Q$COMP=:Q.COMP-^o4
;; Q.ELGH=:^o16
; HDERR$=:1
; EOF$=:^o20000
; VARSZ$=:^o400
; ABTIO$=:^o1000
; SPFUN$=:^o2000
; HNDLR$=:^o4000
; SPECL$=:^o10000
; WONLY$=:^o20000
; RONLY$=:^o40000
; FILST$=:^o100000
; XXDSIZ=:0
; XX$COD=:0
; XXSTS=:<0>!<0>
;.IIF NDF XXVEC,XXVEC=304
; .ASECT
;.IIF NDF XXNAM,XXNAM=^rXX
; .=^o100
; .WORD 0
; .=^o176
;.IIF NDF XXCSR,XXCSR=176504
; .WORD XX$CSR

XX$PRI = 4 ;Priority of device

.DRBEG XX,XX$VEC ;Begin driver code with .DRBEG
;MACRO expansion

; .ASECT
; .=^o52
; .WORD <XXEND-XXSTRT>
; .WORD XXDSIZ
; .WORD XXSTS
; .WORD ^o<ERL$G+<MMG$T*2>+<TIM$IT*4>+<RTE$M*10>>
; .PSECT XXDVR
;XXSTRT::
; .WORD XX$VEC&^C3.
; .WORD XXINT-.,^o340
;XXSYS::
;XXLQE::.WORD 0
;XXCQE::.WORD 0
; .WORD 240

MOV XXCQE,R4 ;R4 => Current Q-Element
ASL Q$WCNT(R4) ;Make word count byte count
BCC XXERR ;A read from a write/only device?
BEQ XXDUN ;Zero word count...just exit

XXRET: BIS #100,@#XX$CSR ;Enable DL-11 interrupt
RETURN ;Return to monitor

; INTERRUPT SERVICE ROUTINE

Programmed Request Description and Examples 2–65

.DRAST

.DRAST XX,XX$PRI ;Use .DRAST to define Int Svc Sect.
;MACRO expansion...

; RETURN
;XXINT::JSR R5,@$INPTR
; .WORD ^C<XX$PRI*^o40>&^o340

MOV XXCQE,R4 ;R4 => Q-Element
TST @#XX$CSR ;Error?
BMI XXRET ;Yes...’hang’ until read,
BIC #100,@#XX$CSR ;Disable interrupts
.FORK XXFORK ;Continue at FORK level

XXNXT: TSTB @#XX$CSR ;Is device ready?
BPL XXRET ;No...go wait ’till it is
MOVB @Q$BUFF(R4),@#XX$CSR+2;Xfer byte from buffer to DL-11
INC Q$BUFF(R4) ;Bump the buffer pointer
INC Q$WCNT(R4) ;and the word count (it’s negative!)
BEQ XXDUN ;Branch if done
BR XXNXT ;Try to output another character

XXERR: BIS #HDERR$,@Q$CSW(R4);Set error bit in CSW
XXDUN: .DRFIN XX ;Use .DRFIN to return to Monitor

;MACRO expansion...
; .GLOBL XXCQE
; MOV PC,R4
; ADD #XXCQE-.,R4
; MOV @#^o54,R5
; JMP @^o270(R5)

XXFORK: .WORD 0,0,0,0 ;Fork Queue Element

.DREND XX ;Use .DREND to end code
;MACRO expansion...

; .PSECT XXDVR
;$INPTR::.WORD 0
;$FKPTR::.WORD 0
;XXEND==.

.END

2–66 RT–11 System Macro Library Manual

.DRBEG
Macro Expansion (Handlers Only)
.DRBEG sets up a variable number of words (at least six) as the first words of the
handler. The number of words set up by .DRBEG is determined by options selected
in this and other .DRxxx macros. This macro also generates the appropriate global
symbols for your handler. Before you use .DRBEG, you must invoke .DRDEF to
define xxCSR, xxVEC, xxDSIZ, and xxSTS (See macro .DRDEF).

Macro Call:

.DRBEG name[,SPFUN=spsym][,NSPFUN=nspsym]

where:

name is the 2-character device name.

spsym is the symbol name for the list of DMA standard special functions.

nspsym is the symbol name for the list of DMA nonstandard special functions.

The arguments, spsym and nspsym, point to lists of special functions within the
memory resident portion of the handler. The special functions are listed in the
same manner as that used by the .DRSPF macro extension table method for defining
special functions. Standard DMA special functions are listed in a group (assigned
a symbol name) and that symbol name is used by .DRBEG (spsym). Nonstandard
DMA special functions are listed in a separate group with a different symbol name
and that name is then used by .DRBEG (nspsym).

The size of the area in a handler that is set up by .DRBEG can vary according to
the options used to build the handler.

An additional word (word 6) has been added to the handler information set up in
block 1 by .DRBEG. The word has the value of a "NOP" instruction. The lowest 5
bits (0 through 4) of the word are used as bit flags to indicate the presence of entry
points in block 0 for the fetch, release, load, and unload handler service routines.
Those entry points are generated by the .DRPTR request. You will always get at
least six words, depending on options you specify to other of the .DR series of macros.

The following list shows the lowest 5 bits of the sixth word set up by .DRBEG and
their meaning when set:

Bits Contents
0 Fetch entry point exists in block 0

1 Release entry point exists in block 0

2 Load entry point exists in block 0

3 Unload entry point exists in block 0

4 Second flag word exists

Programmed Request Description and Examples 2–67

.DRBEG

Handlers and programs that interact with .DRBEG in a nonstandard manner or use
the size of the code generated by .DRBEG must account for that additional word or
words.

Example:
Refer to example in the RT–11 Device Handlers Manual.

2–68 RT–11 System Macro Library Manual

.DRBOT
Macro Expansion (Handlers Only)
.DRBOT generates a routine that issues a read request to read blocks 3-5 from the
device into memory. It generates an error message routine used to report errors
during the booting process. It generates a structure in which you write the read
routine that does the reading during the bootstrap. As such, the .DRBOT macro
sets up the primary driver. A primary driver must be added to a standard handler
for a data device to create a system device handler. The .DRBOT macro invokes the
.DREND macro to mark the end of the handler so that the primary driver is not
loaded into memory during normal operations.

Macro Call:

.DRBOT name,entry,read[,CONTROL=arg...,arg][,SIDES=n][,FORCE=n][,PSECT=psect]

where

name is the two-character device name

entry is the entry point of the software bootstrap routine

read is the entry point of the bootstrap read routine

CONTROL defines the types of controllers supported by this handler. The
values for arg can be UBUS or QBUS. If CONTROL is omitted,
both Unibus and Q-bus are assumed. This is correct for all
supported handlers

SIDES specifies single- or double-sided diskettes. If omitted, single-
sided diskettes are assumed. This is correct for all supported
handlers

FORCE
PSECT

Both arguments are passed to a .DREND macro automatically
generated by .DRBOT. See .DREND request for their use.

.DRBOT macro puts a pointer to the start of the primary driver into location 62 of
the handler file. It puts the length (in bytes) of the primary driver into location 64.
Location 66 of the handler file contains the offset from the start of the primary driver
to the start of the bootstrap read routine. The .DRBOT macro starts the bootstrap
area in the handler, this area is ended by a .DREND macro which you must explicitly
issue.

Example:

Refer to the RT–11 System Subroutine Library Manual for an example showing the
use of .DRBOT.

Programmed Request Description and Examples 2–69

.DRDEF
Macro Expansion (Handlers Only)
The .DRDEF macro sets up handler parameters, calls the driver macros from the
library, and defines useful symbols.

Four optional parameters, UNIT64, DMA, PERMUMR, and SERIAL, have been
added to the .DRDEF macro.

Macro Call:

.DRDEF name,code,stat,size,csr,vec
[,UNIT64=str][,DMA=str][,PERMUMR=n][,SERIAL=str]

where:

name is the two-character device name. See Table 2–3.

code is the numeric code that is the device identifier value for the device.
See Table 2–3.

stat is the device status bit pattern. The value for stat may use the
following symbols:

FILST$ = 100000 SPECL$ = 10000 ABTIO$ = 1000

RONLY$ = 40000 HNDLR$ = 4000 VARSZ$ = 400

WONLY$ = 20000 SPFUN$ = 2000

size is the size of the device in 256-word blocks.
If the device is not random access, place the value 0 in the .DRDEF
parameter size. The size of the RK device is 480010 blocks (113008);
the size for the MS (TS11 magtape) device is 0, since it is not random
access.

csr is the default address for the device’s control and status register

NOTE
If you specify CSR as *NO*, you
prevent it from filling in INSCSR.

vec is the default address for the device’s vector

UNIT64 indicates whether this handler supports extended device units. For
the UNIT64 parameter, valid arguments for str are:

no The default. This handler does not support
extended device units

yes This handler supports extended device units

2–70 RT–11 System Macro Library Manual

.DRDEF

DMA indicates whether this handler supports direct memory access. For
the DMA parameter, valid arguments for str are:

Yes This handler supports direct memory access

No This handler does not support direct memory
access. There is no default.

PERMUMR indicates this handler should be assigned n permanent UNIBUS
mapping registers. Valid values for n are 0 through 7. The default
is 0. The PERMUMR parameter implies support for DMA for this
handler; if you specify PERMUMR you need not specify DMA. If
you specify DMA you must use the argument YES.

SERIAL indicates whether this handler requires serialized I/O request
satisfaction. Magtape handlers, for example, should include this
parameter. The UB pseudohandler checks for the inclusion of this
parameter in determining when I/O request satisfaction must be
serialized. For the SERIAL parameter, valid arguments for str are:

No The default. This handler does not require
serialized I/O request satisfaction

Yes This handler requires serialized I/O request
satisfaction

Device-Identifier Byte
The low byte of the device status word, the device-identifier byte, identifies each
device in the system. You specify the correct device identifier as the code argument
to .DRDEF. The values are currently defined in octal as Table 2–3 shows.

Table 2–3: Device-Identifier Byte Values

Name Code Device

RK 0 RK05 Disk

1 Reserved

EL 2 Error Logger

LP 3 Parallel Interface Printer

TT 4 Console terminal

DL 5 RL01/RL02 Disk

DY 6 RX02 Diskette

7 Reserved

VS 10 RTEM Virtual System VS(M)

MT 11 TM11/TMA11/TU10/TS03 Magtape

Programmed Request Description and Examples 2–71

.DRDEF

Table 2–3 (Cont.): Device-Identifier Byte Values

Name Code Device

12-17 Reserved

MM 20 TJU16/TU45 Magtape

21 Reserved

DX 22 RX11/RX01 Diskette

DM 23 RK06/RK07 Disk

24 Reserved

NL 25 Null Device

26–30 Reserved (DECnet)

31–33 Reserved (CTS–300)

34 Reserved

MS 35 TS11/TS04/TS05 Magtape

36–40 Reserved

LS 41 Serial Interface Printer

MQ 42 Internal Message Handler

DR 43 DRV11J Interface (MRRT)

XT 44 Reserved (MRRT)

45 Reserved

LD 46 Logical disk handler

VM 47 KT11 pseudodisk handler

DU 50 MSCP disk class handler

SL 51 Single-line Command Editor

DZ 52 RX50 diskette (CTI Bus-based processor)

DW 53 Hard Disk (CTI Bus-based processor)

2–72 RT–11 System Macro Library Manual

.DRDEF

Table 2–3 (Cont.): Device-Identifier Byte Values

Name Code Device

PI 54 Professional interface

SP 55 Transparent spooler

56 Reserved

XC/XL 57 Communication port (Professional 325/350 or DL(V)–11)

MU 60 TMSCP magtape class handler

NC/NQ/NU 61 Ethernet class handler

SD 62 DBG–11 handler

ST 63 DBG–11 symbol table handler

64 Reserved

UB 65 UMR pseudohandler

To create device-identifier codes for devices that are not already supported by RT–
11, start by using code 3778 for the first device, 376 for the second, and so on. This
procedure should avoid conflicts with codes that RT–11 will use in the future for new
hardware devices.

The .DRDEF macro performs the following operations:

• A .MCALL is done for the following macros: .DRAST; .DRBEG; .DRBOT;
.DREND; .DRFIN; .DRINS; .DRSET; .DRVTB; .FORK; .QELDF.

• If the system generation conditionals TIMIT, MMGT, or ERL$G are undefined
in your program, they are defined as zero. If time-out support is selected, the
.DRDEF macro does a .MCALL for the .TIMIO and .CTIMIO macros.

• The .QELDF macro is invoked to define symbolic offsets within a queue element.

• The symbols listed above are defined for the device status bits.

• The following symbols are defined:

HDERR$=1 ;HARD ERROR BIT IN THE CSW

EOF$=20000 ;END OF FILE BIT IN THE CSW

• The symbol xxDSIZ is set to the value specified in size.

• The symbol xx$COD is set to the specified device identifier code.

• The symbol xxSTS is set to the value of the device identifier code plus the status
bits.

• If the symbol xx$CSR is not defined, it is set to the default csr value.

• If the symbol xx$VEC is not defined, it is set to the default vector value.

• The symbols xx$CSR and xx$VEC are made global.

Programmed Request Description and Examples 2–73

.DRDEF

You should invoke the .DRDEF macro near the beginning of your handler, after all
handler specific conditionals are defined.

Example:

See example shown for .DRAST.

2–74 RT–11 System Macro Library Manual

.DREND
Macro Expansion (Handlers Only)
The .DREND macro generates the table of addresses for service routines in RMON.

Macro Call:

.DREND name[,FORCE=n][,PSECT=psect]

where:

name is the two-character device name

FORCE Value specified in FORCE, combined with the settings of MMG$T,
ERL$G, and TIM$IT, selects the entries to be generated in the vector
table.
See Table 2–4 for the values in FORCE corresponding to the SYSGEN
options. For example, specifying FORCE = 4 generates the device
timeout vector in the table. Generating a vector in the handler vector
table does not create support in that handler for a SYSGEN feature.
The default value for FORCE is 0. Using a value of -1 for FORCE
will generate all the possible entries of the System Service Table.

PSECT forces the .DREND request to be placed in the specified program
section at link time. Use this argument when the handler is built
from several PSECTs and you want to force location of .DREND code
to properly determine the end of the memory-resident section of the
handler.

The generation of the termination table is dependent upon certain conditions. See
Table 2–4.

Table 2–4: System Service

Label Address Condition Source Value

$RLPTR: .WORD 0 ($RELOC) MMG$T=1 2

$MPPTR: .WORD 0 ($MPPHY) MMG$T=1 2

$GTBYT: .WORD 0 ($GETBYT) MMG$T=1 2

$PTBYT: .WORD 0 ($PUTBYT) MMG$T=1 2

$PTWRD: .WORD 0 ($PUTWRD) MMG$T=1 2

$ELPTR: .WORD 0 ($ERLOG) ERL$G=1 1

$TIMIT: .WORD 0 ($TIMIO) TIM$IT=1 4

$INPTR: .WORD 0 ($INTEN) always -

$FKPTR: .WORD 0 ($FORK) always -

Programmed Request Description and Examples 2–75

.DREND

The generation of the labels depends upon options chosen during the system
generation process. All the pointers in the shown in Table 2–4 are initialized when
the handler is loaded into memory with the .FETCH request, the LOAD command or
as the system device at bootstrap time. The pointers are initialized with the address
shown in the address column.

The addresses are located within the monitor. The first five addresses are locations
of subroutines that are available to device handlers under mapped monitors. Device
I/O time-out service is provided by $TIMIO and error logging is provided by $ERLOG.
The $INPTR and $FKPTR labels are always filled in. For further information, see
the RT–11 Device Handlers Manual.

Example:
Refer to the example for .DRAST.

2–76 RT–11 System Macro Library Manual

.DREST
Macro Expansion (Handlers Only)
The .DREST macro places device specific information in block 0 of a device handler.
The device specific information includes:

• The device class

• The variants of a device class and additional information about some device
classes

• Whether the device handler contains updatable internal data table(s) accessible
by SPFUN 372

• The type (device class) of the updatable internal data table

• Whether the device handler has a table in block 0 that contains bad-block
replacement information

• How the handler can be installed, loaded, and mounted

That information is used by RT–11 utilities to determine the characteristics of that
device handler.

Macro Call:

.DREST [CLASS=n][,MOD=n][,DATA=dptr][,TYPE=n][,SIZE=n][,REPLACE=rptr]
[,MOD2=n][,STAT2=symb])

where:

CLASS is the device class. Specify the device class symbol (DVC.xx) for n in
the CLASS argument. An octal device class value is stored in byte
20 of block 0 in the device handler. The following table lists valid
device class symbols and stored values for the CLASS argument.

Symbol Value Meaning
DVC.CT 6 Cassette tape (Obsolete; not supported)

DVC.DE 10 DECnet executive pseudohandler

DVC.DK 4 RT–11 file structured disk (DD, DL, DM, DP,
DT, DU, DW, DX, DY, DZ, LD, RK, VM)

DVC.DL 12 DECnet port (line) handler

DVC.DP 11 DECnet protocol pseudohandler

DVC.LP 7 Printer (LP, LS, SP)

DVC.MT 5 Magtape (MM, MS, MT, MU)

DVC.NI 13 Ethernet port handler (NC, NQ, NU)

DVC.NL 1 NULL handler (AT and NL)

Programmed Request Description and Examples 2–77

.DREST

DVC.PS 14 Pseudohandler (PI, SD, SL, ST, UB)

DVC.SB 20 Serialized input/output (PC and generic)

DVC.SI 16 Serialized input (generic)

DVC.SO 17 Serialized output (generic)

DVC.TP 3 Reserved

DVC.TT 2 Terminal class handler (BA and TT)

DVC.UK 0 Unknown device class

DVC.VT 15 Virtual terminal port handler (XL, XC)
Values in the range of 200 through 377 are
reserved for the user.

MOD indicates a variation or additional information about a device class.
Specify the device modification symbol (DVM.xx) for n in the MOD
argument. A device modification value is stored in byte 21 of block 0
in the device handler. Valid device modification symbols and stored
values for the MOD argument are:

Symbol Value Meaning
(None) 0 No variant or information (default)

DVM.DM 2 With CLASS=DVC.DK, indicates device has an
extra error word prefixed to SPFUN 376 and
SPFUN 377 buffers

DVM.DX 1 With CLASS=DVC.DK, indicates device is an
RX01-compatible drive

DVM.NS 1 With CLASS=DVC.MT, indicates file handler
has no file structure support

DVM.NF 200 With all class devices, indicates handler can
only be loaded and cannot be fetched. This
bit is read-only and cannot be set using the
.DREST macro. (This bit is set by the .DRPTR
macro with the FETCH=*NO* argument.)

2–78 RT–11 System Macro Library Manual

.DREST

DVM.NL 100 With all class devices, indicates handler cannot
be loaded. Bit DVM.NL is set by the .DRPTR
macro LOAD=*NO* argument.

DATA specifies whether the handler has internal updatable data table(s)
accessible by SPFUN 372. The DATA argument information is
stored in word 72 of block 0 in the handler. You must include the
TYPE argument if you specify the DATA argument. For the DATA
argument, dptr can be:

0 The default; specifies that the handler does not have an
internal data table

dptr is the file address of the internal data table(s). The file
address is a symbol that is defined within the handler and
associated by the linker with a file address.

TYPE specifies whether a device type classification exists for the internal
data table(s). The device type classification is made up of one-to-three
RAD50 characters and is normally the same as the RT–11 device
name. The TYPE argument information is stored in word 70 of block
0 in the handler. You must include the TYPE argument rad if you
specify the DATA argument dptr. For the TYPE argument, n can be:

omitted The default; the handler does not have a device type
classified internal table

rad The handler has a device type classified internal table, and
rad is the RAD50 device type classification

SIZE Provides size of table (pointed to by DATA), stored in word 74 of block
0 in the handler.

REPLACE specifies whether the handler has a table in block 0 that contains
bad-block replacement geometry information. The distributed DL
and DM handlers have a bad block replacement geometry table of
this type. The replace argument information is stored in word 32 of
block 0 in the handler. For the REPLACE argument, rptr can be:

0 The default; the handler does not contain a bad-block
replacement geometry table

Programmed Request Description and Examples 2–79

.DREST

rptr Is the file address of a bad-block replacement geometry
table. The file address is a symbol that is defined within
the handler and associated by the linker with a 16-bit
value.

MOD2 Currently only supports the LS handler:

DV2.V2 First .DRVTB table is followed by second display only. Sets
the 40000 bit in XX’CQE in the file.

STAT2 specifies the conditions under which the handler can be installed,
loaded, and mounted. The bit flag symbols can be OR’d to indicate
more than one condition. The STAT2 argument information is stored
in the second handler status word (H.STS2) at location 36 of block 0
in the handler. For the STAT2 argument, symb can be:

Symbol Meaning

0 The default; .DREST specifies no restrictions concerning
installation, loading, or mounting, which does not imply
that such restrictions do not exist elsewhere

HS2.BI The handler cannot be installed by the monitor bootstrap
(BSTRAP)

HS2.KI The handler cannot be installed by the INSTALL command

HS2.KL The handler cannot be loaded by the LOAD command. The
HS2.KL bit flag can be set by the .DRPTR LOAD=*NO*
parameter argument

HS2.KU The handler cannot be unloaded by the UNLOAD
command

HS2.MO The handler can be mounted by the MOUNT command
and dismounted by the DISMOUNT command

Although all .DREST arguments are optional, some arguments are paired. For
example, the mod argument has no meaning without the class argument. Also, the
data argument requires the type argument.

Errors:
None

Example:

.Title SK -- Handler Skeleton

;+
; .DRPTR/.DREST/.DRSPF - This is an example skeleton handler
; that illustrates using the .DRPTR, .DREST, and .DRSPF requests.
;-

2–80 RT–11 System Macro Library Manual

.DREST

.MCALL .DRDEF ; Get handler definitions

.MCALL .ASSUME ; Checking macro

.MCALL .EXIT ; To finish run

.MACRO ... ; Define ellipsis (allow
; ellipsis to assemble)

.ENDM

; Generate nonexecutable handler information tables
; containing the following information:
; Handler is SK
; Handler ID is 350 (user-written handler)
; Handler accepts neither .READ nor .WRITE
; Handler accepts .SPFUN requests
; Device is 1 block in size
; Device has a CSR at 176544
; Device has a vector at 20

.DRDEF SK,350,RONLY$!WONLY$!SPFUN$,1,176544,20

; Handler has .Fetch and $LOAD code to be executed:

.DRPTR FETCH=Fetch,LOAD=Load

; Handler is for a "Null" class device
; Handler has a data table called DATABL
; Data table is of the SKL format

.DREST CLASS=DVC.NL,DATA=DATABL,TYPE=SKL

; Handler accepts the following SPFUN codes:
; 372,376,377

.DRSPF 372,TYPE=T

.DRSPF 376,TYPE=W

.DRSPF 377,TYPE=R

; Handler CSR is not to be checked at install,
; but is to be displayed:

.DRINS -SK

... ; Here is any installation check code
RETURN

.ASSUME . LE 400,MESSAGE=^";Installation area overflow"

; Handler accepts SET SK [NO]BONES command:

.DRSET BONES,123456,CORPUS,NO

CORPUS: ; SET SK BONES
COM R3 ; Flip bits
NOP ; Pad code
.ASSUME . EQ CORPUS+4,MESSAGE=^";No option code in wrong place"

NOCORP: ; SET SK NOBONES
MOV R3,PICKNT ; Set value in block 1
RETURN

.ASSUME . LE 1000,MESSAGE=^";Set area overflow"

Programmed Request Description and Examples 2–81

.DREST

.DRBEG SK ; Handler Queue Manager Entry point
BR START ; Skip data table

DATABL:
.RAD50 "SKL" ; Table ID

WRIST: .BLKW 1 ; Table contents
ANKLE: .BLKW 1 ; ...

;Set up the Vector table:

SK$VTB: .DRVTB SK,SK$VEC,SKINT,0
.DRVTB ,SK$VEC+4,SKINT,1

PICKNT: .BLKW 1 ; Value controlled by Set command
.ASSUME .-2 LE SKSTRT+1000,MESSAGE=^";Set object not in block 1"

START: ; Executable Queue code
...
RETURN

.DRAST SK,4,ABORT ; Interrupt entry point
BCS INT2 ; Interrupt from second vector
...
RETURN

INT2: ; Second interrupt vector code
...
RETURN

ABORT: ; Abort entry point
...
.DRFIN SK ; Completion return

; End of memory resident part of handler

.DRBOT SK,ENTRY ; Boot code

ENTRY:
... ; Hard boot code to call read routine
RETURN

READ:
... ; Read routine
RETURN

.DREND SK ; End of boot code

.PSECT SETOVR ; Suggested block aligned PSect

FETCH:
... ; Code executed on FETCH
RETURN

LOAD:
... ; Code executed on LOAD
RETURN

RUN:
... ; Code executed on RUN
.EXIT
.END RUN

2–82 RT–11 System Macro Library Manual

.DRFIN
Macro Expansion (Handlers Only)
The .DRFIN macro generates the instructions for the jump back to the monitor at
the end of the handler I/O completion section. The macro makes the pointer to the
current queue element a global symbol, and it generates position-independent code
for the jump to the monitor. When control passes to the monitor after the jump, the
monitor releases the current queue element.

Macro Call:

.DRFIN name

where:

name is the two-character device name

Errors:
None.

Example:
Refer to the example for .DRAST.

Programmed Request Description and Examples 2–83

.DRINS
Macro Expansion (Handlers Only)
The .DRINS macro defines the following:

• Symbols for the locations that contain the CSR addresses listed by RESORC
(display CSRs) and the CSR checked by the INSTALL keyboard command.

• Separate entry points for installing the handler as a system device or as a data
device.

• List of CSR addresses in block 0.

Macro Call:

.DRINS name,<csr,csr,...>

where:

name The two-letter device mnemonic.

– name Specifying CSR = *NO* to the .DRDEF macro prevents it from filling
in INSCSR.

csr Specifies a symbolic CSR address for that device. If more than one
display CSR exists, separate them with commas and enclose the list
in angle brackets <>. With multiple display CSRs (For example, first
CSR is offset 176, second CSR is offset 174...), you do not have to list
the first CSR.

When the .DRINS macro is processed, the following symbols are defined, based on
the CSR addresses you provide:

INSCSR Installation check CSR

DISCSR First display CSR

DISCSn Subsequent display CSRs if any exist (n begins at 2 and is
incremented by 1 for each subsequent display CSR)

In addition, the .DRINS macro sets the location counter to 200. It defines the symbols
INSDAT =: 200) for the data device installation entry point, and defines the label
INSSYS as 202 (INSSYS =: 202), the system device installation entry point.

The following example shows the installation code generated by a .DRINS macro
used for a DX handler with two controllers.
.TITLE EDRIN1.MAC

.DRINS DX,DX$CS2 ;Generate installation code
;for two-controller RX01

2–84 RT–11 System Macro Library Manual

.DRINS

The next example shows the installation code generated by a .DRINS macro used
for a DU handler with three controllers.
.TITLE EDRIN3.MAC

.DRINS -DU,^/DU$CS2,DU$CS3/ ;GENERATE INSTALLATION CODE
;FOR THREE-CONTROLLER
;MSCP DEVICE

.TITLE EDRIN4.MAC

.=166
.WORD 0 ;End of list

DISCS3: .WORD DU$CS3 ;Third display CSR
DISCS2: .WORD DU$CS2 ;Second display CSR
DISCSR: .WORD DU$CSR ;First display CSR
INSCSR: .WORD 0 ;Install CSR (none)
INSDAT:
.=202
INSSYS:
.=200

Programmed Request Description and Examples 2–85

.DRPTR
Macro Expansion (Handlers Only)
The .DRPTR macro places pointers in block 0 of a device handler that references
handler service routines located at a file address in that handler. The file address
is a symbol that is defined within the handler and associated by the linker with a
16-bit value.

Handler service routines, used by utilities, monitors, and the handler itself, help
govern how the handler behaves during:

• Bootstrap operations (load argument)

• .FETCH and .RELEASE requests

• LOAD and UNLOAD commands

• Job abort (release argument)

Macro Call:

.DRPTR [FETCH=n][,RELEASE=n][,LOAd=n] [,UNLOAD=n]

where:

fetch specifies whether a handler service routine is called by the .FETCH
programmed request. For the FETCH argument, n can be:

0 The default; the handler does not have a service routine
for the .FETCH programmed request. The handler can
still be fetched

n is the file address of the service routine to be called by
.FETCH

NO A literal string; the handler cannot be fetched. The
handler can only be loaded.
Invalid with load=*NO* parameter argument.

release specifies whether a handler service routine is called by the
.RELEASE programmed request. For the release argument, n can
be:

0 The default; the handler does not have a service routine
for the .RELEASE programmed request

2–86 RT–11 System Macro Library Manual

.DRPTR

n is the file address of the service routine to be called by
.RELEASE

load specifies whether a handler service routine is called when the handler
is loaded by bootstrap routine or LOAD command. For the load
argument, n can be:

0 The default; the handler does not have a service routine
to be called when it is loaded

n is the file address of the service routine to be called when
the handler is loaded

NO A literal string; the handler cannot be loaded. The handler
must be fetched. Invalid with fetch=*NO* parameter
argument

unload specifies whether a handler service routine is called when the handler
is unloaded by the UNLOAD command. For the unload argument, n
can be:

0 The default; the handler does not have a service routine
to be called when it is unloaded

n is the file address of the service routine to be called when
the handler is unloaded

.DRPTR arguments are often paired and argument values are often matched because
routines they point to are used together or rely on each other. The fetch and load
argument values, other than *NO*, are often paired. Similarly, the release and
unload argument values are often the same.

Errors:
None.

Example:
See .DREST.

Programmed Request Description and Examples 2–87

.DRSET
Macro Expansion (Handlers Only)
The .DRSET macro sets up the option table for the SET command in block 0 of the
device handler file. The option table consists of a series of four-word entries, one
entry per option. Use this macro once for each SET option that is used. When used
a number of times, the macro calls must be sequential.

Macro Call:

.DRSET option,val,rtn[,mode]

where:

option is the name of the SET option, such as WIDTH or CR. The name can
be up to six alphanumeric characters long and should not contain
any embedded spaces or tabs

val is a parameter that is passed to the routine in R3. It can be a
numeric constant, such as minimum column width, or any one-word
instruction that is substituted for an existing one in block 1 of the
handler. It must not be a zero

rtn is the name of the routine that modifies the code in block 1 of the
handler. The entry point must be between offsets 400 and 776 in
block 0.

mode is an optional argument to indicate the type of SET parameter

A NO indicates that a NO prefix is valid for the option. NUM indicates that a decimal
numeric value is required. OCT indicates that an octal numeric value is required.
Omitting this argument indicates that the option takes neither a NO prefix nor a
numeric argument. NO may be combined with NUM or OCT.

The .DRSET macro does an .ASECT and sets the location counter to 400 for the
start of the table. The macro also generates a zero word for the end of the table and
leaves the location counter there. In this way, routines to modify codes are placed
immediately after the .DRSET calls in the handler, and their location in block 0 of
the handler file is made certain.

Errors:
None.

Example:
See .DREST.

2–88 RT–11 System Macro Library Manual

.DRSPF
Macro Expansion (Handlers Only)
The .DRSPF macro defines the special function codes supported by a handler.
.DRSPF builds a table or tables containing the supported special function codes.
RT–11 utilities or user programs use the table(s) to determine which special function
codes are supported by that handler. It is also used to generate tables of SPFUN
code to be used by error logging and UMR support.

Macro Call:

.DRSPF arg[,arg2][,TYPE=n]

where:

arg can be specified in two ways: the list method and the extension table
method which is discussed below.

arg2 is a list of special function codes. Only use the arg2 argument to
specify special function codes in an extension table, that is, when
the arg argument is a minus sign (-). See the discussion of the arg
argument in the extension table method description.

TYPE=n is an optional parameter specifying the type of special function or
functions that are coupled with this parameter. Include the TYPE=n
parameter only when your handler uses special functions and you
want to enable RT–11 error logging for the device controlled by the
handler or for use with UMR support.
The RT–11 error logger does not recognize the type of operation
performed by special function codes. Therefore, error logging for
devices that use special functions to perform read, write, or motion
operations requires the TYPE=n parameter to indicate which special
function codes perform the type of operation logged.
Specifying the TYPE=n parameter causes a bit value representing
the symbol n to be stored in bits 8, 9, and 10 of the word generated
by that invocation of .DRSPF. Table 2–5 shows the valid symbols, bit
pattern for bits 8, 9, and 10, and the meaning for the n argument:

Programmed Request Description and Examples 2–89

.DRSPF

Table 2–5: Special Functions for the TYPE=n Parameter

Symbol Bit Pattern Meaning

O 000 The letter O (default) indicates unknown special function
code type.

R 001 A read operation special function code. Any operation
that obtains data from a device is defined here as a read
operation.

W 010 A write operation special function code. Any operation that
directs data to a device is defined here as a write operation.

M 011 A motion operation special function code. Any operation
whose sole purpose is to cause the device to move is defined
here as a motion operation.

T 100 A read/write operation special function code. The sign of
the bit for the special function word count (wcnt) parameter
(determined by a special function subcode) determines if
the operation is a read or a write.

101-111 Reserved for Digital.

List Method
Arg can be a list of one or more special function codes. That list is located in block
0 of the handler at locations 22 through 27.

The list method is the simpler of the two methods, but you must adhere to certain
rules in specifying the list because of the way the special function codes are stored in
the handler. If this restriction is a problem, you may find the extension table more
useful.

Special function codes consist of three octal digits. When arg is used in this manner,
you are allowed a total of only three unique, ordered combinations of the first two
digits of a special function code in all lists or combination of lists. You can use any
octal digit as the third digit of any entry in those lists. That restriction is not a
problem for most handlers. You can define all supported special functions for most
handlers in one list or series of lists. For more information, refer to the RT–11 Device
Handlers Manual.

Each list must be enclosed in angle brackets (<>). Special function codes are
separated by commas (,). The special function codes can be specified in any order.

Do not specify the arg2 argument when using the .DRSPF macro in this manner.

An example list for the MU handler:

.TITLE EDRSP1.MAC

.DRSPF ^/360,370,371,372,373,374,375,376,377/

The same special functions for the MU handler could also be included in a series of
lists:

2–90 RT–11 System Macro Library Manual

.DRSPF

.TITLE EDRSP2.MAC

.DRSPF 360

.DRSPF ^/370,371,372/

.DRSPF ^/373,374,375/

.DRSPF ^/376,377/

In both examples, only two unique ordered combinations of the first two digits (36
and 37) of the special function codes were used.

Each of the ordered combinations of the first two digits, together with the various
third digits supported for that combination, is stored in a single word. Bits 8, 9, and
10 of that word are used to indicate the special function code type. See the TYPE=n
parameter.

Using the TYPE=n parameter can reduce the number of special function codes you
are allowed with the list method. Each type of special function code you specify
with the TYPE=n parameter requires one of the three allowable words and you can
specify only one combination of the first two code digits with each invocation.

For example, the following invocations of .DRSPF are valid for the list method for
one handler:

.TITLE EDRSP4.MAC

.DRSPF ^/377,374/,TYPE=R

.DRSPF 376,TYPE=W

.DRSPF 373

Extension Table Method
Arg can be a pointer to an extension table address. Do not place the extension table
in block 0 of the handler.

The pointer to the extension table address must be prefixed by a plus sign (+). The
extension table address must have the high bit cleared.

The extension table contains one or more .DRSPF macros. The arg argument for
each .DRSPF macro is a minus sign (-), and the arg2 argument is a list of special
function codes. Each of the special function codes in arg2 must have the same first
two octal digits. The list must be enclosed by angle brackets (<>). Special function
codes are separated by commas (,). The special function codes can be specified in
any order. The extension table is terminated by a word containing zero (0).

Each of the ordered combinations of the first two digits, together with the various
third digits supported for that combination, are stored in a single word. Bits 8,
9, and 10 of that word indicate the special function code type. See the TYPE=n
parameter.

Errors:
None.

Programmed Request Description and Examples 2–91

.DRSPF

In the following example, the pointer to the extension table is the symbol EXTTAB:

.TITLE EDRSP3.MAC

.DRSPF +EXTTAB

...
EXTTAB:

.DRSPF -,^/340,341/

.DRSPF -,^/350,351,353/

.DRSPF -,^/200,202,203,204,205/

.DRSPF -,^/210,212/

.WORD 0

The following invocations of .DRSPF are valid for the extension table method, since
the third invocation, containing code 354, requires a fourth word. Because this
fourth word would exceed the three-word limit of the list method, you must use the
extension table method and include code 354 in a fourth invocation.

.TITLE EDRSP5.MAC

.DRSPF 371,TYPE=W

.DRSPF 370,TYPE=R

.DRSPF ^/360,354/

Example:

.TITLE EDRSP6.MAC

.MCALL .DRSPF ; Get macro

.MACRO ... ; Elision macro

.ENDM ... ; Elision - "act of dropping
; out or suppressing"
; allows ellipsis to assemble

... ; Handler continues...

.DRSPF 370,TYPE=R ; A Read request

.DRSPF 371,TYPE=W ; A Write request

.DRSPF 367 ; That’s all we can support
; with list method -
; More are supported so

.DRSPF +XSPTAB ; point to extension table

... ; Handler continues beyond
; block 0

XSPTAB: ; SPFUN extension table
.DRSPF -,^/200,202,207,203/ ; 20X group
.DRSPF -,^/222,224,227/,TYPE=M ; 22X group
.WORD 000000 ; End of list

.END

See also the .DREST example in this manual.

2–92 RT–11 System Macro Library Manual

.DRTAB
Macro Expansion (Handlers Only)
The .DRTAB macro establishes the file address of a list of Digital-defined handler
data tables that are part of the RT–11 distributed handlers and is for Digital use
only. The file address is the number of bytes from the beginning of the file. A similar
macro, .DRUSE, is available for user-defined handler data tables.

.DRTAB is included in a distributed handler when that handler contains more than
one data table. Other distributed components can then reference the data tables.
For example, the distributed SL and LET use .DRTAB to reference data tables and
share data.

The relationship between the .DRTAB macro and .DREST macro is:

• When a distributed handler contains only one handler data table, .DREST is
used to describe that table.

• When a distributed handler contains more than one handler data table, the
.DRTAB macro is used to describe all those tables. The .DREST macro can be
included in a handler that includes the .DRTAB macro because other information
can be placed in the handler by .DREST. However, when the .DREST macro is
included in a handler that also includes the .DRTAB macro, the .DREST macro
does not contain the type and data arguments. (The information placed in the
handler by those .DREST macro arguments would be destroyed (overwritten) by
the .DRTAB macro type argument.)

Macro Call:

.DRTAB type,addr,size

where:

type is the handler data table format name in one to three RAD50
characters

addr is the file address of the handler data table

size is the size in bytes of the handler data table

Request Format:

R0= type

addr

size

.DRTAB is invoked once for each handler data table. Each invocation of .DRTAB
creates a 3-word descriptor containing the values specified for the type, addr, and
size arguments. A call to .DRTAB with no arguments specifies the end of that list
of handler data table descriptors.

Programmed Request Description and Examples 2–93

.DRTAB

.DRTAB places the file address of the list of handler data table descriptors in block 0
of the handler. The list of descriptors and the data tables themselves are not located
in block 0. When first invoked, .DRTAB sets up locations 70 through 74 in block 0
with the following contents:

Location Location After .DRTAB Is Invoked
70 -1 (indicates use of .DRTAB)

72 Pointer to list of handler data table descriptors

74 Size in bytes of total list of handler data table descriptors

2–94 RT–11 System Macro Library Manual

.DRUSE
Macro Expansion (Handlers Only)
The .DRUSE macro establishes the file address of a list of user-defined handler data
tables. The file address is the number of bytes from the beginning of the file. Use
.DRUSE when you want to define your own handler data table(s).

Macro Call:

.DRUSE type,addr,size

where:

type is a handler data table format name in one to three RAD50 characters

addr is the file address of the handler data table

size is the size in bytes of the handler data table

Request Format:

R0 = type

0

addr

size

Invoke .DRUSE once for each user-defined handler data table in your handler. Each
invocation of .DRUSE creates a 3-word descriptor containing the values you specified
for the type, addr, and size arguments. Call .DRUSE with no arguments to indicate
the end of the list of descriptors.

.DRUSE places the file address of the list of handler data table descriptors in block
0 of your handler. Do not place the list of descriptors or the data tables themselves
in block 0 of your handler. When you first invoke .DRUSE, it sets up location 106
in block 0 with the following contents:

Location Contents After .DRUSE Is Invoked
106 Pointer to list of handler data table descriptors

Errors:
None.

Programmed Request Description and Examples 2–95

.DRUSE

Example:

.TITLE EDRUSE.MAC

.PSECT OUTMEM

.DRUSE JFW,JIMS,SZJIM

.DRUSE JBM,JIMS2,SZJIM2

.DRUSE

JIMS: .WORD ^rJFW,1,2,3,4,5,6,7,8.
SZJIM=: .-JIMS
JIMS2: .WORD ^rJBM,10,1000,100000
SZJIM2=:.-JIMS2

2–96 RT–11 System Macro Library Manual

.DRVTB
Macro Expansion (Handlers Only)
The .DRVTB macro sets up a table of three-word entries for each vector of a
multivector device. The table entries contain the vector location, interrupt entry
point, and processor status word. You must use this macro once for each device
vector. The .DRVTB macros must be placed consecutively in the device handler
between the .DRBEG macro and the .DREND macro. They must not interfere with
the flow of control within the handler.

Macro Call:

.DRVTB name,vec,int[,ps]

where:

name is the two-character device name. This argument must be blank
except for the first-time use of .DRVTB

vec is the location of the vector, and must be between 0 and 474

int is the symbolic name of the interrupt handling routine. It must
appear elsewhere in the handler code. It generally takes the form
ddINT, where dd represents the two-character device name

ps is an optional value that specifies the low-order four bits of the
new Processor Status Word in the interrupt vector. This argument
defaults to zero if omitted. The priority bits of the PS are set to 7,
even if you omit this argument

Errors:
None.

Example:
Refer to the RT–11 Device Handlers Manual for an example of .DRVTB.

Programmed Request Description and Examples 2–97

.DSTAT
EMT 342
This .DSTAT request obtains information about a particular device. Refer to RT–11
Device Handlers Manual for details.

Macro Call:

.DSTAT retspc,dnam

where:

retspc is the address of a four-word block that stores the status information

dnam is the address of a word containing the Radix–50 device name.
.DSTAT looks for the device specified by dnam and, if successful,
returns four words of status starting at the address specified by
retspc. The four words returned are as follows:

Word 1 Status Word
Bits 0-7: The low-order byte contains a numeric code (.DEVDF) that is

the device identifier value for the device in the system.
Value is the numeric code parameter returned from the .DRDEF
request. For more information, refer to Table 2–3 under the
.DRDEF discussion.

Bits 8-15: The low-order byte contains value for stat (.DSTDF), a device
status bit pattern returned from the .DRDEF request. Values
may use the following symbols:

FILST$ = 100000 SPECL$ = 10000 ABTIO$ = 1000

RONLY$ = 40000 HNDLR$ = 4000 VARSZ$ = 400

WONLY$ = 20000 SPFUN$ = 2000

Word 2: Handler Size
The size of the device handler in bytes.

Word 3: Load Address +6
Non-zero implies the handler is now in memory. The address
returned is the load address of the handler +6.
Zero implies that it must be fetched before it can be used.

Word 4: Device Size
The size of the device (in 256-word blocks) for block-replaceable
devices; 0 for sequential-access devices, the smallest-sized
volume for variable-sized devices. The last block on the device
is the device size -1.

2–98 RT–11 System Macro Library Manual

.DSTAT

Notes
The device name can be a user-assigned name. .DSTAT information is extracted
from the device handler. Therefore, this request requires the handler for the device
to be present on the system device and installed on the system. Refer to RT–11
Device Handlers Manual.

Errors:

Code Explanation
0 Device not found in tables.

Example: See the example under .CSISPC.

Programmed Request Description and Examples 2–99

.ELAW
EMT 375, Code 36, Subcode 3
The .ELAW request eliminates a virtual address window.

Macro Call:

.ELAW area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the window definition block for the window to
be eliminated

Request Format:

R0 area: 36 3

addr

Errors:

Code Explanation
3 An invalid window identifier was specified.

17 Inactive mode or space was specified.

Example:
See .CRAW.

2–100 RT–11 System Macro Library Manual

.ELRG
Mapping
EMT 375, Code 36, Subcode 1
The .ELRG request directs the monitor to eliminate a dynamic region in physical
memory and return it to the free list where it can be used by other jobs.

When memory is freed after a region is eliminated, the .ELRG programmed request
concatenates contiguous areas of memory segmented in the allocation table.

Macro Call:

.ELRG area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the region definition block for the region to be
eliminated. Windows mapped to this region are unmapped. The
static region cannot be eliminated

Request Format:

R0 area: 36 1

addr

Errors:

Code Explanation
2 An invalid region identifier was specified.

14 Global region in use.

11 Deallocation failure.

Example:
See .CRAW.

Programmed Request Description and Examples 2–101

.ENTER
EMT 375, Code 2
The .ENTER request allocates space on the specified device and creates a tentative
entry in the directory with the name of the specified file. The channel number
specified is associated with the file.

Macro Call:

.ENTER area,chan,dblk,len[,seqnum]

where:

area is the address of a four-word EMT argument block

chan is a channel number in the range 0-3768

dblk is the address of a Radix–50 descriptor of the file to be created.
If the file name is not provided in dblk, it is a non-file-structured
.LOOKUP which connects the channel to the entire device, starting
at block 0.

len is the file size specification. If you don’t specify a value for len, the
value in area is used to specify the value for len.
For RT–11 structured devices, the value of this argument determines
the file length allocation:

0 is either half the largest empty entry or the entire
second-largest empty entry. Whichever is larger is
compared to MAXBLK (RMON fixed offset 314). The
smaller value is selected. Value may be expressed as:
MIN(MAXBLK, MAX(LEMPTY)/2, 2ND LEMPTY).

NOTE
MAXBLK is the maximum size
for nonspecific .ENTER requests
that are patched in the monitor
by changing RMON offset 314.
(See example for .PVAL.)

-1 is the smaller of the largest available empty entry
compared to MAXBLK (1777778 blocks.) Value may
be expressed as MIN(MAXBLK, LEMPTY).

m is a file of m blocks. Use this argument to specify the
number of blocks needed.

2–102 RT–11 System Macro Library Manual

.ENTER

seqnum is a parameter for magtape. Programming for specific devices such
as magtape is discussed in detail in RT–11 Device Handlers Manual.
Seqnum describes a file sequence number. The action taken depends
on whether the file name is given or is null. The sequence number
can have the following values:

0 Rewind the magtape and space forward until the file
name is found or until logical end-of-tape is detected.
If the file name is found, an error is generated. If the
file name is not found, then enter file. If the file name
is a null, a non-file-structured lookup is done (tape is
rewound)

-1 Space to the logical end-of-tape and enter file

-2 Rewind the magtape and space forward until the file
name is found or until logical end-of tape is detected.
A new logical end-of-tape is implied.

n Position magtape at file sequence number n if n is
greater than zero and the file name is not null

Request Format:

R0 area: 2 chan

dblk

len

seqnum

On return from this call, R0 contains the size of the area actually allocated for use.
Or zero (0) for a non-RT–11 device or non-file-structured .ENTER.

Notes
Because a file created with an .ENTER request is not permanent until a .CLOSE
request is given on that channel, the newly created file is not available to .LOOKUP,
and the channel cannot be used by .SAVESTATUS requests. However, it is possible
to read data that has just been written into the file by reading the channel number
on which the .ENTER was issued. When the .CLOSE to the channel is given, any
existing permanent unprotected file of the same name on the same device is deleted
and the new file becomes permanent. Although space is allocated to a file during
the .ENTER operation, the actual length of the file is determined when .CLOSE is
requested. The .CLOSZ request can be used to truncate the file wherever you wish.

Each program can have up to 255 files open on the system at any time. If required,
all 255 can be opened for output with the .ENTER function.

Programmed Request Description and Examples 2–103

.ENTER

When a file-structured .ENTER request is made, the device handler must be in
memory. Thus, a .FETCH should normally be executed before an .ENTER can be
done.

When using the zero-length feature of .ENTER, keep in mind that the space
allocated is less than the largest empty space. This can have an important effect in
transferring files between devices, particularly diskettes that have a relatively small
capacity. For example, transferring a 200-block file to a diskette, on which the largest
available empty space is 300 blocks, does not work with a zero-length .ENTER. Since
the .ENTER allocates half the largest space, only 150 blocks are really allocated and
an output error occurs during the transfer. When transferring from A to B, with the
length of A unknown, do a .LOOKUP first. This request returns the length so that
value can be used to do a fixed-length .ENTER. The .ENTER request generates hard
errors when problems are encountered during directory operations. These errors can
be detected after the operation with the .SERR request. Hard errors are passed to
the program when .SERR has been issued prior to .ENTER.

Errors:

Code Explanation
0 Channel is not available.

1 In a fixed-length request, no space greater than or equal to m
was found; or the device or the directory was found to be full.

2 Nonshareable device is already in use by another program.

3 A file by that name already exists and is protected. A new file
was not opened.

4 File sequence number was not found.

5 File sequence number is invalid or file name is null.

6 Request is issued to a nonexistent or otherwise invalid special-
directory device unit. The handler determines the validity of the
device unit.

Example:

.TITLE EENTER;2
;+
; .ENTER - This is an example in the use of the .ENTER request.
; The example makes a copy of the file ’PIP.SAV’ on device DK:
;-

.MCALL .LOOKUP,.ENTER,.WRITW,.READW,.CLOSE

.MCALL .PRINT,.EXIT

$ERRBY =: 52 ;(.SYCDF) EMT error byte
$USRRB =: 53 ;(.SYCDF) user error byte
SUCCS$ =: 001 ;(.UEBDF) success bit
FATAL$ =: 004 ;(.UEBDF) error bit

2–104 RT–11 System Macro Library Manual

.ENTER

.ENABL LSB
START: .LOOKUP #AREA,#0,#PIP ;Lookup file SY:PIP.SAV

BCS 4$;Branch if not there!
MOV R0,R3 ;Copy size of file to R3
.ENTER #AREA,#1,#TFILE,R3 ;Enter a new file of same size
BCS 5$;Branch if failed
CLR BLK ;Initialize block # to zero

1$: .READW #AREA,#0,#BUFFR,#256.,BLK ;Read a block
BCC 2$;Branch if successful
TSTB @#$ERRBY ;Was error EOF?
BEQ 3$;Branch if yes
MOV #RERR,R0 ;Hard read error message to R0
BR 7$;Branch to print message

2$: .WRITW #AREA,#1,#BUFFR,#256.,BLK ;Write a block
INC BLK ;*C*Bump block #
BCC 1$;Branch if write was ok
MOV #WERR,R0 ;R0 => Write error message
BR 7$;Branch to print message

3$: .CLOSE #1 ;Make new file permanent
MOV #DONE,R0 ;R0 => Done message
BR 6$;Branch to print message

4$: MOV #NOFIL,R0 ;R0 => File not found message
BR 7$;Branch to print it

5$: MOV #NOENT,R0 ;R0 => Enter Failed message
BR 7$;Branch to print message

6$: BISB #SUCCS$,@#$USRRB ;Indicate success
BR 8$

7$: BISB #FATAL$,@#$USRRB ;Indicate error
8$: .PRINT ;Print message on console

; terminal
.EXIT ;the exit program

AREA: .WORD 0 ;EMT Argument block
BLK: .WORD 0,0,0,0 ;
BUFFR: .BLKW 256. ;I/O Buffer
PIP: .RAD50 /SY/ ;File descriptors...

.RAD50 /PIP /

.RAD50 /SAV/
TFILE: .RAD50 /DK/

.RAD50 /PIP /

.RAD50 /TMP/
NOFIL: .ASCIZ /?EENTER-F-File not found/
NOENT: .ASCIZ /?EENTER-F-.ENTER Failed/
WERR: .ASCIZ /?EENTER-F-Write Error/
RERR: .ASCIZ /?EENTER-F-Read Error/
DONE: .ASCIZ /!EENTER-I-PIP Copy Complete/

.END START

Programmed Request Description and Examples 2–105

.EXIT
EMT 350
Macro Call:

.EXIT

The .EXIT request causes the user program to terminate. When used from a
background job, .EXIT causes KMON to run in the background area, prior to running
KMON; all outstanding mark-time requests are canceled; and I/O requests and/or
completion routines pending for that job are allowed to complete:

• If part of the background job resides where KMON and USR are to be read and
SET EXIT SWAP is in effect, the user program is written onto the system swap
blocks (the file SWAP.SYS). KMON and USR are then loaded and control goes to
KMON in the background area.

• If SET EXIT NOSWAP is in effect, the user program is overwritten when a .EXIT
is done.

If R0 = 0 when the .EXIT is done, an implicit .HRESET is executed when KMON
is entered, disabling the subsequent use of REENTER, START or CLOSE. See
.HRESET.

The .EXIT request enables a user program to pass command lines to KMON in the
chain information area (locations 500-7778) for execution after the job exits. This is
performed under the following conditions:

• The word (not byte) location 510 must contain the total number of bytes of
command lines to be passed to KMON.

• The command lines are stored, beginning at location 512. The lines must be
.ASCIZ strings with no embedded carriage return or line feed. For example:

.TITLE EEXIT1.MAC

XIT.NU =: 510 ;(.XITDF) char count
XIT.AS =: 512 ;(.XITDF) .Asciz command(s)

.=XIT.NU
.WORD B-A

.=XIT.AS
A: .ASCIZ /COPY A.MAC B.MAC/

.ASCIZ /DELETE A.MAC/
B:

The user program must set SPXIT$ or CHNIF$ in the Job Status Word before
doing an .EXIT, which must be issued with R0 = 0.

When the .EXIT request is used to pass command lines to KMON, the following
restrictions are in effect:

• If CHNIF$ of the JSW is set and if the feature is used by a program that
is invoked through an indirect file, the indirect file context is aborted before
executing the supplied command lines. Any unexecuted lines in the indirect file
are never executed.

2–106 RT–11 System Macro Library Manual

.EXIT

• If SPXIT$ of the JSW is set and the feature is used by a program invoked through
an indirect file, the indirect file context is preserved across the .EXIT request.

• An indirect file can be invoked, using the steps described above, only if a single
line containing the indirect file specification is passed to KMON. Attempts to
pass multiple indirect files or combinations of indirect command files and other
KMON commands yield incorrect results. An indirect file must be the last item
on a KMON command line.

The .EXIT request also resets any .CDFN and .QSET calls that were done and
executes an .UNLOCK if a .LOCK has been done. Thus, the CLOSE command from
the keyboard monitor does not operate for programs that perform .CDFN requests.

An attempt to use a .EXIT from a completion routine aborts the running job.

NOTE
You can prevent data passed to KMON from being
destroyed during the .EXIT request by not allowing the
User stack to overwrite this data area. If User passes
command lines to KMON, reset the stack pointer to
10008 or above before exiting.

Errors:
None.

Example:
.TITLE EEXIT2;2

;+
;.EXIT - This is an example in the use of the .EXIT request.
; The example demonstrates how a command line may be passed to
; Keyboard Monitor after job execution is stopped.
;-

.MCALL .EXIT
$JSW =: 44 ;(.SYCDF)JSW location
SPXIT$ =: 000040 ;(.JSWDF)Special command
CHNIF$ =: 004000 ;(.JSWDF)Std command
XIT.NU =: 510 ;(.XITDF)command length word
XIT.AS =: 512 ;(.XITDF)command ASCIZ

START: MOV #XIT.NU,R0 ;R0 => Communication area
MOV #CMDSTR,R1 ;R1 => Command string
MOV #START,SP ;Make sure that the stack is

;not in the communication area...
10$: MOVB (R1)+,(R0)+ ;Copy command string

CMP R1,#CMDEND ;Done?
BLO 10$;Branch if not
BIS #SPXIT$,@#$JSW ;Set the "chain" bit to alert KMON

;that there’s a command in the
;communication area

CLR R0 ;R0 must be zero !
.EXIT ;Exit the program

CMDSTR: .WORD CMDEND-CMDSTR-2
.ASCIZ "$Directory SRC:EEXIT2.MAC"

CMDEND:
.END START

Programmed Request Description and Examples 2–107

.FETCH/.RELEAS
EMT 343
The .FETCH request loads device handlers into memory from the system device.
FETCHing with mapped monitors is dependent upon a SYSGEN feature. FETCH
support is the default.

Macro Call:

.FETCH addr,dnam

where:

addr is the starting address at which the device handler is to be LOADed

dnam is the pointer to the Radix–50 device name

The storage address for the device handler is passed on the stack. When the .FETCH
is complete, R0 points to the first available location above the handler. If the handler
is already in memory, R0 contains the same value that was initially specified in the
argument addr. If less than 4008, a handler .RELEAS is being done. .RELEAS
does not remove a handler from memory that was LOADed. An UNLOAD must be
done. After a .RELEAS, you must issue a .FETCH to use the device again. .FETCH
issued from a foreground or system job will succeed, provided the specified handler
is currently in memory.

If the program is run under VBGEXE, the space for the fetched handler is allocated
from memory controlled by VBGEXE and the address passed by the user program
is not used.

Several requests require a device handler to be in memory for successful operation.
These include:

.CLOSE .FPROT .RENAME

.CLOSZ .GF* .SF*

.DELETE .LOOKUP .SPFUN

.ENTER .READ* .WRIT*

NOTE
I/O operations cannot be executed on devices unless the
handler for that device is in memory.

Errors:

Code Explanation
0 The device name specified is not installed and there is no logical

name that matches the name and the *catch-all has not been
assigned.

Example:
See example for .CSISPC.

2–108 RT–11 System Macro Library Manual

.FETCH/.RELEAS

The .RELEAS request notifies the monitor that a fetched device handler is no longer
needed. The .RELEAS is ignored if the handler is:

• Permanently resident (SY:, TT:, MQ:, UB:, PI:)

• Not in memory

• Loaded

.RELEAS of a valid device name from a foreground or system job is ignored.

Macro Call:

.RELEAS dnam

where:

dnam is the address of the Radix–50 device name

Errors:

Code Explanation
0 Device name is invalid.

Example:
.TITLE RELEAS.MAC

;In this example, the Null handler (NL) is loaded into memory,
;used, then released. If NL is LOADed the handler is
;resident, and .FETCH will return HSPACE in R0.

.MCALL .FETCH,.RELEAS,.EXIT,.PRINT

START: .FETCH #HSPACE,#NLNAME ;Load NL handler
BCS FERR ;Not available

; Use handler

.RELEAS #NLNAME ;Mark NL no longer in
;memory

.EXIT

FERR: .PRINT #NONL ;NL not available
.EXIT

NLNAME: .RAD50 /NL / ;Name for NL handler
NONL: .ASCIZ /?ERELEA-F-NL handler not available/

.EVEN
HSPACE: ;Beginning of handler

;area
.END START

Programmed Request Description and Examples 2–109

.FORK
Macro Expansion
The .FORK call is used when access to a shared resource must be serialized or when
a lengthy but non-time-critical section of code must be executed. .FORK issues a
subroutine call to the monitor and does not use an EMT instruction request.

Macro Call:

.FORK fkblk

where:

fkblk is a four-word block of memory allocated within the driver

Errors:
None.

The .FORK macro expands as follows:

.TITLE EFORK1.MAC

.FORK fkblk

JSR R5,@$FKPTR
.WORD fkblk-.

The .FORK call must be preceded by an .INTEN call. Your program must not
have left any information on the stack between the .INTEN and the .FORK calls.
The contents of registers R4 and R5 are preserved through the call and, on return,
registers R0 through R3 are available for use.

If you are using a .FORK call from a device handler, it is assumed that you used
.DREND provided for handlers. The .DREND macro allocates a word labeled
$FKPTR. This word is filled in when the handler is placed in memory with the
address of the monitor fork routine.

If you want to use the .FORK macro in an in-line interrupt service routine rather
than in a device handler, you must set up $FKPTR. The recommended way to do
this is as follows:

.TITLE EFORK2.MAC

$FORK =: 402 ;(.FIXDF)Monitor offset containing
;offset to fork processor

.GVAL #AREA,#$FORK ;Return value in R0
MOV R0,$FKPTR ;Save address of the

;fork processor
...

INTIN: ;Interrupt entry
.INTEN 4 ;Declare interrupt and drop to PR4
... ;Process quick stuff
.FORK FORKBK ;do a fork
... ;Process slow stuff
RETURN ;and return from interrupt

2–110 RT–11 System Macro Library Manual

.FORK

AREA: .BLKW 2 ;EMT request block
$FKPTR: .BLKW 1 ;Address of FORK routine
FORKBK: .BLKW 4 ;Fork block

Once the pointer is set up, use the macro in the usual way as follows:

.TITLE EFORK3.MAC

.FORK fkblk

This method permits you to preserve both R4 and R5 across the fork.

The fork request is linked into a fork queue and serviced on a first-in first-out
basis. On return to the handler or interrupt service routine following the call, the
interrupt has been dismissed and the processor is executing at priority 0. Therefore,
the .FORK request must not be used where it can be reentered using the same
fork block by another interrupt. It also should not be used with devices that have
continuous interrupts that cannot be disabled. The RT–11 Device Handlers Manual
gives additional information on the .FORK request.

Example:
Refer to the example following the description of .DRAST.

Programmed Request Description and Examples 2–111

.FPROT
EMT 375, Code 43
The .FPROT programmed request sets or removes file protection on individual RT–11
files. A file marked as protected cannot be deleted by .CLOSE, .DELETE, .ENTER,
or .RENAME requests. However, the contents of a protected file are not protected
against modification. Use .SFSTAT to set E.READ for more protection. For example,
a .LOOKUP of a protected file followed by a .WRITE to the file is permitted. To
protect a file from being written to, set E.READ (bit 14) in the file’s directory entry
status word. See the example for the .SFSTAT request.

Protection is enabled by setting E.PROT (bit 15) of a file’s directory entry status
word.

Macro Call:

.FPROT area, chan, dblk[,prot]

where:

area is the address of a three-word EMT argument block

chan is a channel number in the range 0-3768

dblk is the address of a four-word block containing the filespec in Radix–50
of the file

prot = #1—(or omitted) to protect the file from deletion
= #0—to remove protection so that the file can be deleted

Request Format:

R0 area: 43 chan

dblk

prot

Errors:

Code Explanation
0 Channel is not available.

1 File not found or not a file-structured device.
To find out what condition returned the error code, issue a
.DSTAT request to determine if a device is file structured.

2 Invalid operation.

3 Invalid value for PROT.

.FPROT returns the previous file status word in R0:

• If the high bit in R0 is off, the file was not previously protected.

2–112 RT–11 System Macro Library Manual

.FPROT

• If the high bit in R0 is on, the file was previously protected.

Example:
.TITLE EFPROT;2

;.FPROT, .SFDAT example.
;This is an example of the use of the .FPROT and .SFDAT
;programmed requests. It uses the "special" mode of the CSI to
;get an input filespec from the console terminal. .DSTATUS is
;used to determine if the device handler is loaded. If not, a
;.FETCH request is used to load the handler into memory. Finally,
;the file is marked as protected using the .FPROT request and
;the file date is changed to the current system date using the
;.SFDAT request.
;

.MCALL .FPROT, .FETCH, .CSISPC, .DSTATUS, .SFDAT, .PRINT, .EXIT

$USRRB =: 53 ;(.SYCDF) user error byte
SUCCS$ =: 001 ;(.UEBDF) success bit
ERROR$ =: 004 ;(.UEBDF) error bit

START: MOV SP,R5 ;Save SP, since CSI changes it
.CSISPC #OUTSP,#DEFEXT ;Use CSI to get input filespec
MOV R5,SP ;Restore SP
.DSTAT #STAT,#INSPEC ;Check the device
TST STAT+4 ;to see if the handler is

;resident
BNE 10$;Branch if it is
.FETCH #HANLOD,#INSPEC ;Otherwise, load that handler
BCC 10$;ok
.PRINT #LOFAIL ;Otherwise, print load error

;message
BR 30$;and try again

10$: .FPROT #EMTBLK,#0,#INSPEC,#1 ;Mark file as protected
BCC 20$;and branch if okay
.PRINT #PRFAIL ;Otherwise, print protect

;error message
BR 30$;and try again

20$: .SFDAT #EMTBLK,#0,#INSPEC,#0 ;Finally, set current date
;A date of 0 means "use
;current system date"

BCC 40$;Branch if everything is okay
.PRINT #SDFAIL ;Otherwise, print date error

;message
30$: BISB #ERROR$,@#$USRRB ;Indicate error

BR START ;and try again
40$: .EXIT ;Everything okay - exit to KMON

EMTBLK: .BLKW 4 ;The EMT argument block is
;built here

DEFEXT: .WORD 0,0,0,0 ;No default extensions
STAT: .BLKW 4 ;Block for .DSTATUS to use
LOFAIL: .ASCIZ /?EFPROT-F-.FETCH request failed/
PRFAIL: .ASCIZ /?EFPROT-F-.FPROT request failed/
SDFAIL: .ASCIZ /?EFPROT-E-.SFDAT request failed/

.EVEN
OUTSP: .BLKW 5*3 ;Output specs go here
INSPEC: .BLKW 4*6 ;Input specs go here
HANLOD: .BLKW 1 ;Handlers begin loading here

;(if necessary)
.END START

Programmed Request Description and Examples 2–113

.GCMAP
See .CMAP/.CMPDF/.GCMAP.

2–114 RT–11 System Macro Library Manual

.GFDAT
EMT 375, Code 44
The .GFDAT programmed request returns in R0 the creation date from a file’s
directory entry (E.DATE word). .GFDAT is not supported for the distributed special
directory handlers LP, LS, MM, MS, MT, MU, and SP.

Macro Call:

.GFDAT area,chan,dblk

where:

area is the address of a 4-word EMT argument block

chan is a channel number in the range of 0 to 376(octal)

dblk is the address of a 4-word block containing a device and file
specification in Radix–50; the file specification for which you want
to return the creation date.

Request Format:

R0 area: 44 chan

dblk

0 (Reserved)

(High byte is E.DATE offset14 0
into directory entry)

Errors:

Code Explanation
0 Channel is not available

1 File not found, or not a file-structured device.
If it is necessary to determine what condition returned the error
code, issue a .DSTAT request to determine if a device is file
structured

2 Invalid operation

3 Invalid EMT request block

Programmed Request Description and Examples 2–115

.GFDAT

Example:

.TITLE EGFDAT.MAC

; This program displays the creation date of SY:SWAP.SYS

.MCALL .GFDAT .PRINT .EXIT

START::
.GFDAT #AREA,#CHAN,#DBLK ;Get the file date
MOV R0,DATE ;*C* save result w/o changing carry
BCS ERROR ;Failure
MOV #PDATE4,R5 ;Pass parameter list
CALL DATE4Y ;Make the date displayable
CLRB DDATE+11. ;Terminate the string
.PRINT #DDATE ;And display it
.EXIT

ERROR:
.PRINT #ERRMSG ;GFDAT failed
.EXIT

CHAN =: 0 ;Available channel
DATE: .BLKW 1 ;File date
DBLK: .RAD50 "SY SWAP SYS" ;Dblock specifying file
AREA: .BLKW 4. ;EMT area

PDATE4: .WORD 2
.WORD DDATE ;Addr of ASCII format date
.WORD DATE ;Addr of RT-11 format binary date

DDATE: .BLKB 12. ;Displayable date
ERRMSG: .ASCIZ "?EGFDAT-F-.GFDAT Failed"

.END START

2–116 RT–11 System Macro Library Manual

.GFINF
EMT 375, Code 44
The .GFINF programmed request returns in R0 the word contents of the directory
entry offset you specify from a file’s directory entry. .GFINF is not supported for the
distributed special directory handlers LP, LS, MM, MS, MT, MU, and SP.

Macro Call:

.GFINF area,chan,dblk,offse

where:

area is the address of a 4-word EMT argument block

chan is a channel number in the range of 0 to 376(octal)

dblk is the address of a 4-word block containing a device and file
specification in Radix–50; the file specification for which you want
to return directory entry information.

offse is the octal byte offset for the directory entry word you want. The
offset must be even. For example, specifying offset 12 returns the
contents of E.USED in R0

Request Format:

R0 area: 44 chan

dblk

0 (Reserved)

(High byte is offset intooffse 0
directory entry)

Errors:

Code Explanation
0 Channel is not available

1 File not found, or not a file-structured device.
If it is necessary to determine what condition returned the error
code, issue a .DSTAT request to determine if a device is file
structured

2 Invalid operation

3 Invalid offset value

Programmed Request Description and Examples 2–117

.GFINF

Example:

.TITLE EGFINF;2
;
; This program displays the contents of offset 12(8)
; of the selected directory entry. It is displayed
; as a time based on the number of seconds since
; midnight divided by 3.
;

.MCALL .CSISPC .FETCH .RELEAS .PRINT .EXIT

.MCALL .GFINF

.GLOBL $DIVTK ;divide by number of ticks in a second

.GLOBL $DIVNN ;divide by value in R4

START:: MOV SP,R5 ;Save SP, since CSISPC changes it
.CSISPC #OUTSPC,#DEFEXT ;Get a file name
MOV R5,SP ;*C* Restore it (leave carry alone)
BCS CSIERR ;Error
.FETCH LIMIT+2,#INSPC ;Fetch the handler
BCS FETERR ;Error
.GFINF #AREA,#0,#INSPC,#E.USED ;Get directory entry value
BCS GFIERR ;Error
MOV R0,R1 ;build 32-bit value
CLR R0 ;out of 16 bit positive value
MOV #60./3.,R4 ;get number of seconds
CALL $DIVNN ;R0..R1 quotient, R3 remainder
MOV R3,-(SP) ;save number of seconds
ASL R3 ; *2
ADD R3,@SP ; *3
CALL $DIV60 ;get number of minutes
MOV R3,-(SP) ;R3 is number of minutes
MOV R1,-(SP) ;R1 is number of hours
MOV #OUTPUT,R5 ;point to output area
MOV #3,R4 ;number of values to process

10$: MOV (SP)+,R1 ;get the value
ASL R1 ;make into word index
MOV #CVT,R0 ;point to Ascii
ADD R1,R0 ; ...
MOVB (R0)+,(R5)+ ;copy into buffer
MOVB (R0)+,(R5)+ ; ...
TSTB (R5)+ ;skip ":"
SOB R4,10$;do hours, minutes, seconds

.PRINT #OUTPUT ;display time

.RELEASE #INSPC ;Dismiss handler
BR START ;And again

CSIERR: MOV #CSIMSG,R0
BR DONE

FETERR: MOV #FETMSG,R0
BR DONE

GFIERR: MOV #GFIMSG,R0
DONE: .PRINT R0

.EXIT

2–118 RT–11 System Macro Library Manual

.GFINF

E.USED=:12 ;Unused directory word
OUTSPC: .BLKW 3*5 ;CSISPC return area
INSPC: .BLKW 6*4 ; " " "
DEFEXT: .RAD50 " " ;Default extensions (none)
LIMIT: .LIMIT ;Memory usage (macro directive)
AREA: .BLKW 10. ;EMT request block area

CVT:
.ASCII "00010203040506070809"
.ASCII "10111213141516171819"
.ASCII "20212223242526272829"
.ASCII "30313233343536373839"
.ASCII "40414243444546474849"
.ASCII "50515253545556575859"

OUTPUT: .ASCIZ "XX:XX:XX"
CSIMSG: .ASCIZ "?EGFINF-E-CSI error"
FETMSG: .ASCIZ "?EGFINF-E-Fetch error"
GFIMSG: .ASCIZ "?EGFINF-E-GFINF error"

.END START

Programmed Request Description and Examples 2–119

.GFSTA
EMT 375, Code 44
The .GFSTA programmed request returns in R0 the status information from a file’s
directory entry (E.STAT word). .GFSTA is not supported for the distributed special
directory handlers LP, LS, MM, MS, MT, MU, and SP.

Macro Call:

.GFSTA area,chan,dblk

where:

area is the address of a 4-word EMT argument block

chan is a channel number in the range of 0 to 376(octal)

dblk is the address of a 4-word block containing a device and file
specification in Radix–50; the file specification for which you want
to return the file status word.

Request Format:

R0 area: 44 chan

dblk

0 (Reserved)

(High byte is E.STAT offset0 0
into directory entry)

Errors:

Code Explanation
0 Channel is not available

1 File not found, or not a file-structured device.
If it is necessary to determine what condition returned the error code,
issue a .DSTAT request to determine if a device is file structured

2 Invalid operation

3 Invalid offset value

2–120 RT–11 System Macro Library Manual

.GFSTA

Example:

.TITLE EGFSTA -- sample program for .GFSTA

.MCALL .CSISPC .SRESET .FETCH .GFSTA .PRINT .EXIT

.ENABL LSB

START::
10$:

.SRESET ;Dismiss handlers

.CSISPC #OUTSPC,#DEFEXT ;Get a file name
BCS CSIERR ;error
.FETCH LIMIT+2,#DBLK ;Fetch the handler
MOV R0,LIMIT+2 ;*C*new available pointer
BCS FETERR ;error
.GFSTAT #AREA,#0,#DBLK ;Get the file’s status word
BCS GFSERR ;error
MOV R0,R5 ;Save the return value
MOV #1,R1 ;start sliding bit
MOV #BITNAM,R2 ;point to bit name array

20$: BIT R1,R5 ;is the bit set in the status?
BEQ 30$;no
.PRINT R2 ;yes, display name

30$:
ASL R1 ;next bit
BEQ 10$;tried all bits
ADD #NAMLEN,R2 ;next name
BR 20$;test all bits

CSIERR: .PRINT #CSIMSG ;CSI error
.EXIT

FETERR: .PRINT #FETMSG ;Fetch error
.EXIT

GFSERR: .PRINT #GFSMSG ;GFSTA error
.EXIT

OUTSPC: .BLKW 3*5 ;output file specs (unused)
DBLK: .BLKW 4 ;first input file spec

.BLKW 5*4 ;rest of file specs (unused)

DEFEXT: .RAD50 " " ;default extensions (none)

LIMIT: .LIMIT

AREA: .BLKW 4

BITNAM:
.ASCIZ "000001?"

NAMLEN =: .-BITNAM
.ASCIZ "000002?"
.ASCIZ "000004?"
.ASCIZ "000010?"
.ASCIZ "000020?"
.ASCIZ "000040?"
.ASCIZ "000100?"
.ASCIZ "000200?"
.ASCIZ "E.TENT?"

Programmed Request Description and Examples 2–121

.GFSTA

.ASCIZ "E.MPTY?"

.ASCIZ "E.PERM "

.ASCIZ "E.EOS? "

.ASCIZ "010000?"

.ASCIZ "020000?"

.ASCIZ "E.READ "

.ASCIZ "E.PROT "

CSIMSG: .ASCIZ "?EGFSTA-E-CSISPC error"
FETMSG: .ASCIZ "?EGFSTA-E-Fetch error"
GFSMSG: .ASCIZ "?EGFSTA-E-GFSTAT error"

.END START

2–122 RT–11 System Macro Library Manual

.GMCX
EMT 375, Code 36, Subcode 6
The GMCX request returns the mapping status of a specified window. Status is
returned in the window definition block and can be used in a subsequent mapping
operation. Since the .CRAW request permits combined window creation and mapping
operations, entire windows can be changed by modifying certain fields of the window
definition block.

Macro Call:

.GMCX area[,addr]

where:

area is the address of a two-word EMT argument block

addr is the address of the window definition block where the specified
window’s status is returned

Request Format:

R0 area: 36 6

addr

The .GMCX request modifies the following fields of the window definition block:

W.NAPR base page address register of the window

W.NBAS window virtual address

W.NSIZ window size in 32-word blocks

W.RID region identifier

If the window whose status is requested is mapped to a region, the .GMCX request
loads the following additional fields in the window definition block; otherwise, these
locations are zeroed:

W.NOFF offset value into the region

W.NLEN length of the mapped window

W.NSTS state of the WS.MAP bit is set to 1 in the window status word

Errors:

Code Explanation
3 An illegal window identifier was specified

17 Inactive space or mode was specified

Example:
Refer to the RT–11 System Internals Manual.

Programmed Request Description and Examples 2–123

.GTIM
EMT 375, Code 21
.GTIM accesses the current time of day. The time is returned in two words and given
in terms of clock ticks past midnight.

Macro Call:

.GTIM area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the two-word area where the time is to be returned

Request Format:

R0 area: 21 0

addr

The high-order time is returned in the first word; the low-order time is returned
in the second word. Your program must perform the conversion from clock ticks to
hours, minutes, and seconds.

The basic clock frequency (50 or 60 Hz) can be determined from the configuration
word in the monitor (offset 3008 relative to the start of the resident monitor). In the
FB monitor, the time of day is automatically reset after 24:00, when a .GTIM request
is done and the date is changed if necessary. In the SB monitor, the time of day is not
reset unless you have selected the SB timer support option during system generation
process. The month is not automatically updated in either monitor. (Proper month
and year rollover is an option enabled during the system generation process.)

The default clock rate is 60 Hz, 60 ticks per second. Use SET CLOCK 50 or consult
the RT–11 System Generation Guide if conversion to a 50-Hz rate is necessary.

Note
Several SYSLIB routines that perform time conversion are CVTTIM, TIMASC and
TIME.

Errors:
None.

Example:
.TITLE EGTIM;2

;+
; .GTIM - This is an example in the use of the .GTIM request.
; This example includes a subroutine that can be assembled separately
; and linked with a user program.
;-

.MCALL .DEBUG .DPRINT .EXIT

2–124 RT–11 System Macro Library Manual

.GTIM

.ENABL LSB
.DEBUG SWITCH=ON,VALUE=YES

START::
CALL TIME ;get current time in binary
MOVB R4,R0 ;move hours to R0
.DPRINT ^"!EGTIM-I-Hours ",R0,DEC
SWAB R4 ;get minutes into low byte
MOVB R4,R0 ;move minutes to R0
.DPRINT ^"!EGTIM-I-Minutes ",R0,DEC
MOVB R5,R0 ;move seconds to R0
.DPRINT ^"!EGTIM-I-Seconds ",R0,DEC
SWAB R5 ;get ticks into low byte
MOVB R5,R0 ;move ticks to R0
.DPRINT ^"!EGTIM-I-Ticks ",R0,DEC
.EXIT

.PAGE
;+
; CALLING SEQUENCE: CALL TIME
;
; INPUT: none
;
; OUTPUT: R4 = Minutes in hi byte / hours in lo byte
; R5 = Ticks in hi byte / seconds in lo byte
; (in that order for ease of removal !)
;
; ERRORS: none possible
;
; NOTE: This example calls SYSLIB functions ’$DIVTK’ & ’$DIV60’
;-

.GLOBL $DIVTK,$DIV60

.MCALL .GTIM

TIME:: MOV #TICKS,R1 ;R1 points to where to put time
.GTIM #AREA,R1 ;Get ticks since midnight via .GTIM
MOV (R1)+,R0 ;R0 = lo order time
MOV @R1,R1 ;R1 = hi order time
CALL $DIVTK ;Call SYSLIB 32 bit divide by clk freq
MOV R3,R5 ;Save ticks
SWAB R5 ;Put them in hi byte
CALL $DIV60 ;Call SYSLIB divide by 60. routine
BISB R3,R5 ;Put seconds in lo byte
CALL $DIV60 ;Divide by 60. once again
MOV R3,R4 ;Put minutes in R4
SWAB R4 ;Move them to hi byte
BISB R1,R4 ;Put hours in lo byte
RETURN ;and return

AREA: .BLKW 2 ;EMT argument area
TICKS: .BLKW 2 ;Ticks since midnight returned here

.END START

Programmed Request Description and Examples 2–125

.GTJB
EMT 375, Code 20, Subcode 1
The .GTJB request returns information about a job in the system.

Macro Call:

.GTJB area,addr[,jobblk]

where:

area is the address of a three-word EMT argument block

addr is the address of an eight-word or twelve-word block into which
the parameters are passed.

jobblk is a pointer to a three-word ASCII logical job name for which
data are being requested. The values returned are:

Word Offset Contents
Word 0
J.BNUM

Job Number:

• System Job Monitors:
Background job is 0
System jobs are 2, 4, 6, 10, 12, 14
Foreground job is 16

• Non-System Monitors:
Background job is 0
Foreground job is 2

• Single Job Monitor:
Job number is 0

Word 1
J.BHLM

High-memory limit of job partition (highest
location available to a job in low memory if the
job executes a privileged .SETTOP -2 request)

Word 2
J.BLLM

Low-memory limit of job partition (first location)

Word 3
J.BCHN

Pointer to I/O channel space

Word 4
J.BIMP

Address of job’s impure area in monitors

Word 5
J.BLUN

Low byte: unit number of job’s console terminal
(used only with multiterminal option; 0 when
multiterminal feature is not used)
High byte: reserved for future use

2–126 RT–11 System Macro Library Manual

.GTJB

Word 6
J.BVHI

Virtual high limit for a job created with the linker
/V option (XM only; 0 when not running under the
mapped monitor or if /V option is not used)

Word 7–8 Reserved for future use

Word 9–11
J.BLNM

ASCII logical job name (system job monitors only;
contains nulls for non-system job monitors.)

Offset word 3 of addr, which describes where the I/O channel words begin, normally
indicates an address within the job’s impure area. However, when a .CDFN is
executed, the start of the I/O channel area changes to the user-specified area.

If the jobblk argument to the .GTJB request is:

• Between 0 and 16, it is interpreted as a job number.

• ’ME’ or equals -1, information about the current job is returned.

• Omitted or equals -3 (a V03B-compatible parameter block), only eight words of
information (corresponding to words 1-8 of addr) are returned.

In an environment without the system job feature, you can get another job’s status
only by specifying its job number (0 or 2).

Request Format:

R0 area: 20 1

addr

jobblk

Errors:

Code Explanation
0 No such job currently running.

Programmed Request Description and Examples 2–127

.GTJB

Example:
.TITLE EGTJB.MAC

;+
; .GTJB - This is an example of the .GTJB request. The
; example issues the request to determine if there is a loaded
; Foreground Job in the system. This program will execute properly
; with either a normal FB monitor or an FB monitor that includes
; System Job support.
;-

.MCALL .GVAL, .GTJB, .PRINT, .EXIT

$SYSGEN=: 372 ;(.FIXDF) Fixed offset to SYSGEN word
STASK$=: 40000 ;(.SGNDF)System Job option bit

START: MOV #2,R1 ;Assume FG job number = 2
.GVAL #AREA,#$SYSGEN ;Get SYSGEN option word
BIT #STASK$,R0 ;System job monitor?
BEQ 1$;Branch if not
MOV #16,R1 ;If so, FG job number = 16

1$: .GTJB #AREA,#JOBARG,R1 ;Find out if FG loaded
BCS 2$;Branch if no active FG job
.PRINT #FGLOAD ;Announce that FG job is loaded
.EXIT ;and exit from program.

2$: .PRINT #NOFG ;Announce that there’s no FG job
.EXIT ;and exit from program.

AREA: .BLKW 3 ;EMT Argument block
JOBARG: .BLKW 12. ;Job parameters passed back here

FGLOAD: .ASCIZ "!EGTJB-I-FG Loaded" ;FG loaded message
NOFG: .ASCIZ "?EGTJB-W-No FG job" ;No FG message

.END START

2–128 RT–11 System Macro Library Manual

.GTLIN
EMT 345
The .GTLIN request collects a line of input from the terminal or an indirect command
file, if one is active.

Macro Call:

.GTLIN linbuf[,prompt][,type]

where:

linbuf is the address of the buffer to receive the input line. This area must
be at least 81 bytes in length. The input line is stored in this area
and is terminated with a zero byte

prompt is an optional argument and is the address of a prompt string to be
printed on the console terminal. The prompt string has the same
format as the argument of a .PRINT request. Usually, the prompt
string ends with an octal 200 byte to suppress printing the carriage
return/line feed at the end of the prompt

type is an optional argument which, if specified, forces .GTLIN to take its
input from the terminal rather than from an indirect file.

Notes
In the following discussion, the term indirect refers to either command or control
files. Otherwise, descriptions pertain specifically to command files or to control files,
but not both.

IND control files let you provide a partial line of input to a program and to pass a
command to the program on the same line in which you invoke the program. KMON
command files, on the other hand, allow you to input multiple lines of input to a
program .GTLIN, like .CSIGEN and .CSISPC, requires the USR, but does no format
checking on the input line. Because the .GTLIN command is implemented in the
USR, the CSI will generate an error message if you attempt to enter more than
80 characters to a .GTLIN request. Normally, .GTLIN collects a line of input from
the terminal and returns it in the buffer you specify. However, if an indirect file is
active, .GTLIN collects the line of input from the command file as though it were
coming from the terminal.

When GTLIN$ of the Job Status Word is set and your program encounters a CTRL/C
in a command file, the .GTLIN request collects subsequent lines from the terminal.
If you then clear bit 3 of the Job Status Word, the next line collected by the .GTLIN
request is the CTRL/C in the indirect command file, which causes the program to
abort. Any additional input will come from the command file, if there are any more
lines in it. When TTLC$ of the Job Status Word is set, the .GTLIN request passes
lowercase letters.

An optional prompt string argument (similar to the CSI asterisk) allows your
program to query for input at the terminal. The prompt string argument is an
ASCIZ character string in the same format as that used by the .PRINT request. If

Programmed Request Description and Examples 2–129

.GTLIN

input is from an indirect file and the SET TT QUIET option is in effect, this prompt
is suppressed. If SET TT QUIET is not in effect, the prompt is printed before the line
is collected, regardless of whether the input comes from the terminal or an indirect
file. The prompt appears only once. It is not reissued if an input line is canceled
from the terminal by CTRL/U or multiple DELETE characters, unless the single-line
editor is running.

If your program requires a nonstandard command format, such as the user
identification code (UIC) specification for FILEX, you can use the .GTLIN request
to accept the command string input line. .GTLIN tracks indirect command files and
your program can do a pre-pass of the input line to remove the nonstandard syntax
before passing the edited line to .CSIGEN or .CSISPC.

NOTE
.GTLIN performs a temporary implicit unlock of the
USR while the line is being read from the console.

The only requests that can take their input from an indirect file are .CSIGEN,
.CSISPC, and .GTLIN. The .TTYIN and .TTINR requests cannot get characters from
an indirect command file. They get their input from the console terminal (or from a
BATCH file if BATCH is running). The .TTYIN and .TTINR requests and the .GTLIN
request with the optional type argument are useful for information that is dynamic
in nature—for example, when all files with a .MAC file type need to be deleted or
when a disk needs to be initialized. In these circumstances, the response to a system
query should be collected through a .TTYIN or a .GTLIN with the type argument
so that confirmation can be done interactively, even though the process may have
been invoked through an indirect file. However, the response to the linker’s Transfer
Symbol? query would normally be collected through a .GTLIN, so that the LINK
command could be invoked and the start address specified from an indirect file. Also,
if there is no active indirect command file, .GTLIN collects an input line from the
terminal.

Errors:

Code Explanation
0 Invalid command line (if the line is too long)

2–130 RT–11 System Macro Library Manual

.GTLIN

Example:
.TITLE EGTLIN.MAC

;+
; .GTLIN - This is an example in the use of the .GTLIN request.
; The example merely accepts input and echoes it back.
;-

.MCALL .GTLIN,.PRINT,.EXIT

$JSW =: 44 ;(.SYCDF) job status word
TTLC$ =: 040000 ;(.JSWDF) enable lowercase input

.ENABL LSB
START: BIS #TTLC$,@#$JSW ;Enable LC (no effect for CCL line)
10$: .GTLIN #BUFF,#PROMT ;Get a line of input from keyboard

TSTB BUFF ;Nothing entered?
BEQ 20$;Branch if nothing entered
.PRINT #BUFF ;Echo the input back
BR 10$;Go back for more

20$: .EXIT ;Exit program on null input
BUFF: .BLKW 41. ;80 character buffer (ASCIZ for .PRINT)
PROMT: .ASCII /Echo>/

.BYTE 200 ;no CRLF

.END START

Programmed Request Description and Examples 2–131

.GVAL/.PVAL
.GVAL: EMT 375, Code 34, Subcode 0
.PVAL: EMT 375, Code 34, Subcode 2, 4, 6
.GVAL and .PVAL must be used in a mapped environment to read or change any fixed
offset, and should be used with other RT–11 mapped monitors. The .GVAL request
returns in R0 the contents of a monitor fixed offset; the .PVAL request changes the
contents of a monitor offset. The .PVAL request also returns the old contents of an
offset in R0 to simplify saving and restoring an offset value.

.GVAL

Macro Call:

.GVAL area, offset

where:

area is the address of a two-word EMT argument block

offset is the displacement from the beginning of the resident monitor
to the word to be returned in R0

Request Format for .GVAL:

R0 area: 34 0

offset

.PVAL

Macro Call:

.PVAL area, offset, value[,TYPE=strg]

where:

area is the address of a three-word EMT argument block

offset is the displacement from the beginning of the resident monitor
to the word to be returned in R0

value is the new value to be placed in the fixed offset location

TYPE=strg Optional. Default argument is MOV or specify BIC or BIS:
MOV moves value to destination.
BIC uses value as a bit mask to clear offset.
BIS uses value to set offset.

2–132 RT–11 System Macro Library Manual

.GVAL/.PVAL

Request format for .PVAL:

R0 area: 34 x where:
x = 2 (MOV)

offset = 4 (BIC)
= 6 (BIS)

value

Errors:

Code Explanation
0 The offset requested is beyond the limits of the resident monitor.

1 Odd address.

Programmed Request Description and Examples 2–133

.GVAL/.PVAL

Example:
.TITLE EGVAL.MAC

;+
; .GVAL - This is an example of the .GVAL request. It finds out
; if the foreground job is active. Compare this example with the
; .GTJB example.
;-

.MCALL .GVAL, .PRINT, .EXIT

$CNFG1 =: 300 ;(.FIXDF)Offset in monitor of configuration word
FJOB$ =: 200 ;(.CF1DF)Bit in config word is on if FG active

START: .GVAL #AREA,#$CNFG1 ;Get monitor CONFIG word in R0
BIT #FJOB$,R0 ;See if FG Active bit is on
BEQ 1$;Branch if not
.PRINT #FGLOAD ;Announce FG is loaded
.EXIT ;then exit program

1$: .PRINT #NOFG ;Announce there’s no FG job
.EXIT ;then exit program

AREA: .BLKW 2 ;EMT argument block

FGLOAD: .ASCIZ "!EGVAL-I-FG Loaded" ;FG loaded message
NOFG: .ASCIZ "?EGVAL-W-No FG job" ;No FG message

.EVEN

.END START

.TITLE .PVAL.MAC

;+
; .PVAL - This is an example of the .PVAL request. The example
; illustrates a way of changing the default file size created
; by the .ENTER request. Compare this example with the .PEEK/.POKE
; example. .PVAL is used both to change the default file size and
; to read the old default file size, returning the old value in R0.
;-

.MCALL .PVAL .ENTER .PURGE .EXIT

.MCALL .DEBUG .DPRINT

.ENABL LSB
.DEBUG SWITCH=ON

$MAXBLK =: 314 ;(.FIXDF)Monitor offset of default file size
$USRRB =: 53 ;(.SYCDF) User Error Byte
SUCCS$ =: 001 ;(.UEBDF) success indication
FATAL$ =: 010 ;(.UEBDF) error indication

START: MOV #110,R1 ;Default size
.PVAL #EMTBLK,#$MAXBLK,R1 ;Change default file size

; to 72. (110(8)) blocks
MOV R0,OLDSIZ ;Save the old default
.ENTER #EMTBLK,#0,#DBLK,#0 ;Try non-specific size request
BCS ENTERR ;Failure
CMP R0,R1 ;Got expected size?
BNE SZ1ERR ;No
.PURGE #0 ;Get rid of temp file

2–134 RT–11 System Macro Library Manual

.GVAL/.PVAL

BIS #1,R1 ;Adjust default size
.PVAL #EMTBLK,#$MAXBLK,#1,BIS ;Change default file size

; to 73. (111(8)) blocks
.ENTER #EMTBLK,#0,#DBLK,#0 ;Try non-specific size request
BCS ENTERR ;Failure
CMP R0,R1 ;Got expected size?
BNE SZ2ERR ;No
.PURGE #0 ;Get rid of temp file

BIC #17,R1 ;Adjust default size
.PVAL #EMTBLK,#$MAXBLK,#17,BIC;Change default file size

; to 64. (100(8)) blocks
.ENTER #EMTBLK,#0,#DBLK,#0 ;Try non-specific size request
BCS ENTERR ;Failure
CMP R0,R1 ;Got expected size?
BNE SZ3ERR ;No
.PURGE #0 ;Get rid of temp file

.PVAL #EMTBLK,#$MAXBLK,#OLDSIZ ;Restore old size

.DPRINT ^"!EPVAL-I-Normal Successful Completion"
BISB #SUCCS$,@#$USRRB ;Indicate success
.EXIT ;Done

ENTERR: .DPRINT ^"?EPVAL-F-.Enter failed"
BR 10$

SZ1ERR: .DPRINT ^"?EPVAL-F-First file size wrong"
BR 10$

SZ2ERR: .DPRINT ^"?EPVAL-F-Second file size wrong"
BR 10$

SZ3ERR: .DPRINT ^"?EPVAL-F-Third file size wrong"
10$: BISB #FATAL$,@#$USRRB ;Indicate failure

.EXIT

DBLK: .RAD50 "DK XXXXXX.TMP"
EMTBLK: .BLKW 4 ;EMT argument block
OLDSIZ: .BLKW 1 ;Old default size is saved here

.END START

Programmed Request Description and Examples 2–135

.HERR/.SERR
.HERR: EMT 374, Code 5
.SERR: EMT 374, Code 4
.HERR and .SERR are complementary requests used to govern monitor behavior
for serious error conditions. During program execution, certain error conditions can
arise that cause the executing program to be aborted (See Table 2–6).

Normally, these errors cause program termination with one of the MON-F-error?
messages. However, in certain cases it is not feasible to abort the program because
of these errors. For example, a multi-user program must be able to retain control
and merely abort the user who generated the error. .SERR accomplishes this by
inhibiting the monitor from aborting the job and causing an error return to the
offending EMT. On return from that request, the carry bit is set and byte 52
contains a negative value indicating the error condition that occurred. In some cases
(such as the .LOOKUP and .ENTER requests), the .SERR request leaves channels
open. You must perform .PURGE or .CLOSE requests for these channels; otherwise,
subsequent .LOOKUP/.ENTER requests will fail.

.HERR turns off user error interception. It allows the system to abort the job on
fatal errors and generate an error message. (.HERR is the default case.)

Macro Calls:

.HERR

.SERR

Request Formats:

.HERR Request R0 =

.SERR Request R0 =

5 0

4 0

Errors:

The .HERR and .SERR programmed requests return a code value in R0 that lets a
subroutine implicitly control error condition handling:

Code Explanation
0 Previous state of error condition handling (.HERR/.SERR flag) was

.HERR

1 Previous state of error condition handling (.HERR/.SERR flag) was
.SERR

A subroutine’s error condition handling can be performed independently of the
program that calls the subroutine. For example, the following subroutine code

2–136 RT–11 System Macro Library Manual

.HERR/.SERR

fragment sets the .SERR flag, executes some code, then restores the previous error
condition handling status:

.TITLE ESERR.MAC

.MCALL .HERR .SERR .DEBUG .DPRINT

.MCALL .EXIT .ENTER .PURGE

.MACRO ...

.ENDM

.ENABL LSB
.DEBUG SWITCH=ON

START:
.DPRINT ^"!ESERR-I-Expect message 2"
.SERR ;Return errors to program
CALL SUBRTN
.ENTER #AREA,#255. ;Try invalid chan
.DPRINT ^"!ESERR-I-Message 2"
.DPRINT ^"!ESERR-I-Expect MON-F message"
.HERR ;Crash program on errors
CALL SUBRTN
.ENTER #AREA,#255. ;Try invalid chan
.DPRINT ^"?ESERR-F-Do not see this message"
.EXIT

AREA: .BLKW 10.

.PAGE
SUBRTN: ;Example subroutine

.SERR ;Protect subroutine from
; ?MON-F errors

MOV R0,SHERR ;Save old state
.ENTER #AREA,#255. ;Try invalid chan
... ;Execute some code
TST SHERR ;What was the previous setting?
BNE 10$;.SERR, so leave it
.HERR ;Drop back to .HERR

10$: RETURN

SHERR: .BLKW 1 ;Saved .S/HERR status

.END START

Programmed Request Description and Examples 2–137

.HERR/.SERR

Table 2–6 lists errors returned if soft error recovery is in effect. Traps to locations 4
and 10, floating-point exception traps, and CTRL/C aborts are not inhibited. These
errors have their own recovery mechanism.

Table 2–6: Soft Error Codes (.SERR)

Name Code Explanation

ER.USR -1 USR. Reserved.

ER.UNL -2 No device handler; this operation needs one.

ER.DIO -3 Error doing directory I/O.

ER.FET -4 .FETCH error. Either an I/O error occurred while the handler
was being used, or an attempt was made to load the handler
over USR or RMON.

ER.OVE -5 Reserved. Issued by overlay handler, but not passed to a
program.

ER.DFU -6 No more room for files in the directory.

ER.IAD -7 Invalid address. Tried to perform a monitor operation outside
the job partition.

ER.ICH -10 Invalid channel number; number is greater than actual
number of channels that exist.

ER.EMT -11 Invalid EMT; an invalid function code has been decoded.

12-13 Reserved for monitor internal use.

ER.DIR -14 Invalid directory.

ER.XFE -15 Unloaded handler under mapped system without fetch
support.

16-22 Reserved for monitor internal use.

2–138 RT–11 System Macro Library Manual

.HERR/.SERR

Example:
.TITLE EHERR1;2

;+
; .HERR / .SERR - This is an example in the use of the .HERR & .SERR
; requests. Under .SERR fatal errors will cause a return to the user
; program for processing and printing of an appropriate error message.
;-

.MCALL .HERR,.SERR,.LOOKUP,.PURGE

.MCALL .EXIT,.PRINT,.CSISPC

START: .SERR ;Let program handle fatal errors
MOV SP,R5 ;Save SP, since .CSISPC changes it
.CSISPC #OUTSP,#DEFEXT ;Use .CSISPC to get filespec
MOV R5,SP ;Restore it
.PURGE #0
.LOOKUP #AREA,#0,#OUTSP+36
BCS ERROR ;Branch if there was an error
.HERR ;Now permit ’?MON-F-’ errors.
.PRINT #LUPOK ;Announce successful LOOKUP
.EXIT ;Exit program

ERROR: MOVB @#52,R0 ;was the error fatal?
BMI FTLERR ;Branch if yes
.PRINT #NOFIL
BR START ;Try again ...

FTLERR: CALL DOSERR ;Display a .SERR error message
BR START ;try again ...

NOFIL: .ASCIZ "?HERR1-F-File Not Found"
LUPOK: .ASCIZ "!HERR1-I-Lookup succeeded"

.EVEN ;Fix boundary
AREA: .BLKW 4 ;EMT Argument block
DEFEXT: .WORD 0,0,0,0 ;No default extensions
OUTSP: .BLKW 5*3 ;Output specs go here
INSPEC: .BLKW 4*6 ;Input specs go here
HANLOD: .BLKW 1 ;Handlers begin loading here (if

;necessary)

.TITLE EHERR2.MAC

;+
;DOSERR subroutine displays a message for each .SERR error code.
;It expects the error code in R0 and destroys R0’s contents.
;-

.MCALL .PRINT

DOSERR::
TST R0 ;Negative code?
BPL 10$;no
CMP R0,#TBLEND-TBL/2 ;In range?
BGE 20$;yes

10$: CLR R0 ;No, unexpected code
20$: ASL R0 ;Multiply by 2 to make an index

MOV TBL(R0),R0 ;Put message address into R0
.PRINT ;and print it.
RETURN

Programmed Request Description and Examples 2–139

.HERR/.SERR

; ;(Overlay error)
; ;(invalid software sync. trap)
; ;(memory management fault)
; ;(memory error)
; ;(FPU trap)
TBLEND: .WORD UNLHAN ;unloaded handler (mapped)

.WORD INVDIR ;invalid directory

.WORD UNEXPE ;(Trap 10)

.WORD UNEXPE ;(Trap 4)

.WORD INVEMT ;invalid EMT number or subcode

.WORD INVCHN ;invalid channel number

.WORD INVADR ;invalid address in request

.WORD DIROVF ;directory overflow

.WORD UNEXPE ;(error from overlay handler)

.WORD BADFET ;bad fetch

.WORD DIRIOE ;directory I/O error

.WORD HANMEM ;device handler not in memory

.WORD UNEXPE ;(invalid address for USR SWAP)
TBL: .WORD UNEXPE ;unexpected code

UNEXPE: .ASCIZ "?DOSERR-F-Unexpected .SERR (negative) error code"
HANMEM: .ASCIZ "?DOSERR-F-Handler not in memory when required"
DIRIOE: .ASCIZ "?DOSERR-F-Directory I/O error"
BADFET: .ASCIZ "?DOSERR-F-.FETCH failed"
DIROVF: .ASCIZ "?DOSERR-F-Directory overflow"
INVADR: .ASCIZ "?DOSERR-F-Invalid address in EMT request"
INVCHN: .ASCIZ "?DOSERR-F-Invalid channel number in EMT request"
INVEMT: .ASCIZ "?DOSERR-F-Invalid EMT or subcode in request"
INVDIR: .ASCIZ "?DOSERR-F-Invalid directory"
UNLHAN: .ASCIZ "?DOSERR-F-Unloaded handler (.FETCH in mapped monitor)"

2–140 RT–11 System Macro Library Manual

.HRESET
EMT 357
The .HRESET request stops all I/O transfers in progress for the issuing job, and
then performs an .SRESET request. (.HRESET is not used to clear a hard-error
condition.) Only the I/O associated with the job that issued the .HRESET is affected
by entering active handlers at their abort entry points. All other transfers continue.

Macro Call:

.HRESET

Errors:
None.

Programmed Request Description and Examples 2–141

.INTEN
Macro Expansion
Interrupt service routines use .INTEN:

• To notify the monitor that an interrupt has occurred and to switch to system
state.

• To set the processor priority to the correct value.

• To save the contents of R4 and R5 before returning to the Interrupt Service
Routine. Any other registers must be saved by the routine.

Macro Call:

.INTEN prio[,pic]

where:

prio is the processor priority at which the interrupt routine is to run,
normally the priority at which the device requests an interrupt

pic is an optional argument that should be non-blank if the interrupt
routine is written as a PIC (position-independent code) routine. Any
interrupt routine written as a device handler must be a PIC routine
and must specify this argument

.INTEN issues a subroutine call to the monitor and does not use an EMT instruction
request.

All external interrupts must cause the processor to go to priority level 7. .INTEN
is used to lower the priority to the value, at which point the device should be run.
On return from .INTEN, the device interrupt can be serviced, at which point the
interrupt routine returns with a RETURN instruction.

NOTE
An RTI instruction should not be used to return from
an interrupt routine that uses an .INTEN.

Errors:
None.

2–142 RT–11 System Macro Library Manual

.INTEN

Example:
.TITLE EINTEN.MAC

;+
; DL11.MAC - This is an example in the use of the .INTEN request.
; The example is an in-line, interrupt service routine, which may
; be assembled separately and linked with a mainline program.
; The routine transfers data from a user specified buffer to a DL11
; Serial Line Interface.
;
; CALLING FORMAT: JSR R5,DL11 ;Initiate Output
; .WORD wordcount ;# words to transfer
; .WORD BUFFER ;Address of Data Buffer
; .
; .
; BUFFER: .BLKW wordcount
;-

.MCALL .INTEN

DLVEC = 304 ;DL11 Vector ***
DLCSR = 176504 ;DL11 OUTPUT CSR ***
DLPRI = 4 ;DL11 Priority for RT-11

DL11:: MOV (R5)+,(PC)+ ;I/O Initiation - Get word count
WCNT: .WORD 0

MOV (R5)+,(PC)+ ;Get address of Data Buffer
BUFAD: .WORD 0

ASL WCNT ;Make word count byte count
BEQ 1$;Just leave if zero word count
MOV #DLINT,@#DLVEC ;Initialize DL11 interrupt vector
BIS #100,@#DLCSR ;Enable interrupts

1$: RTS R5 ;Return to caller

DLINT: .INTEN DLPRI ;Interrupt service - Notify RT-11
;and drop priority to that of DL11

MOVB @BUFAD,@#DLCSR+2 ;Transfer a byte
INC BUFAD ;Bump buffer pointer
DEC WCNT ;All bytes transferred?
BEQ DLDUN ;Branch if yes
RETURN ;No return from interrupt thru RT-11

DLDUN: BIC #100,@#DLCSR ;All done - disable DL11 interrupts
RETURN ;Return thru RT-11
.END

Programmed Request Description and Examples 2–143

.LOCK/.UNLOCK
.LOCK: EMT 346
.UNLOCK: EMT 347

.LOCK
The .LOCK request keeps the USR in memory to provide any of its services required
by your program. A .LOCK inhibits another job from using the USR.

Macro Call:

.LOCK

The .LOCK request reduces time spent in file handling by eliminating the swapping
of the USR in and out of memory. The .LOCK request keeps other jobs from using
the USR while it is in use and loads USR into memory if it is not already in memory.
Under mapped monitors, USR is always in memory.

.LOCK causes the USR to be read into memory or swapped into memory. If all
the conditions that cause swapping are satisfied, the part of the user program over
which the USR swaps is written into the system swap blocks (the file SWAP.SYS)
and the USR is loaded. Otherwise, the copy of the USR in memory is used, and no
swapping occurs. (Note that certain calls always require a fresh copy of the USR.)

The .LOCK/.UNLOCK requests are complementary and must be matched. That is,
if you have issued three .LOCK requests, you must issue at least three .UNLOCK
requests. You can issue more .UNLOCK requests than .LOCK requests without
error.

Calling the CSI or using a .GTLIN request can also perform an implicit and
temporary .UNLOCK.

Notes

• Do not put executable code or data in the area occupied by the USR while it is
locked, because you can’t access the area until an .UNLOCK is issued. When
USR has swapped over, the return from the .LOCK request is to the USR itself,
rather than to the user program, In this way, the .LOCK function inhibits the
user program from being re-read.

• Once a .LOCK has been performed, it is not advisable for the program to destroy
the area occupied by the USR, even if no further use of the USR is required,
because this causes unpredictable results when an .UNLOCK is done.

• If a foreground job performs a .LOCK request while the background job owns the
USR, foreground execution is suspended until the USR is available. In this case,
it is possible for the background to lock out the foreground. (See the .TLOCK
request.)

Errors:
None.

2–144 RT–11 System Macro Library Manual

.LOCK/.UNLOCK

Example:
Refer to the example for the .UNLOCK request.

.UNLOCK
The .UNLOCK request releases the User Service Routine (USR) from memory if
it was placed there with a .LOCK request. If the .LOCK required a swap, the
.UNLOCK loads the user program back into memory. There is a .LOCK count. Each
time the user program does a .LOCK, the lock count is incremented. When the user
does an .UNLOCK, the lock count is decremented. When the lock count goes to 0,
the user program is swapped back in.

Macro Call:

.UNLOCK

Notes

• The number of .UNLOCK requests must at least match the number of .LOCK
requests that were issued. If more .LOCK requests are done, the USR remains
locked in memory. Extra .UNLOCK requests in your program do no harm since
they are ignored.

• With two jobs running, use .LOCK/.UNLOCK pairs only where absolutely
necessary. When a one job locks the USR, the other job cannot use it until it
is unlocked, which can degrade performance in some cases.

• Calling the CSI, with input coming from the terminal, results in an implicit
(though temporary) .UNLOCK.

• Make sure that the .UNLOCK request is not in the same area that the USR
swaps into; otherwise, the request can never be executed.

Errors:
None.

Example:
.TITLE ELOCK.MAC

;+
; .LOCK / .UNLOCK - This is an example in the use of the .LOCK and .UNLOCK
; requests. This example tries to obtain as much memory as possible (using
; the .SETTOP request), which will force the USR into a swapping mode. The
; .LOCK request will bring the USR into memory (over the high 2k of our little
; program !) and force it to remain there until an .UNLOCK is issued.
;-

.MCALL .LOCK,.UNLOCK,.LOOKUP

.MCALL .SETTOP,.PRINT,.EXIT

$USRRB =: 53 ;(.SYCDF) User error byte
SUCCS$ =: 001 ;(.UEBDF) Success code
ERROR$ =: 004 ;(.UEBDF) Error code
FATAL$ =: 010 ;(.UEBDF) Fatal code
$SYSPTR =: 54 ;(.SYCDF) Pointer to beginning of RMON

Programmed Request Description and Examples 2–145

.LOCK/.UNLOCK

START: .SETTOP @#$SYSPTR ;Try to allocate all of memory (up to
;RMON)

.LOCK ;bring USR into memory

.LOOKUP #AREA,#0,#FILE1 ;LOOKUP a file on channel 0
BCC 1$;Branch if successful

2$: .PRINT #LMSG ;Print Error Message
BISB #FATAL$,@#$USRRB ;Flag error
.EXIT ;then exit program

1$: .PRINT #F1FND ;Announce our success
MOV #AREA,R0 ;R0 => EMT Argument Block
INC @R0 ;Increment low byte of 1st arg (chan #)
MOV #FILE2,2(R0) ;Fill in pointer to new filespec
.LOOKUP ;Do the .LOOKUP from filled in arg block

;pointed to by R0.
BCS 2$;Branch on error
.PRINT #F2FND ;Say we found it
.UNLOCK ;now release the USR
BISB #SUCCS$,@#$USRRB ;Flag success
.EXIT ;and exit program

AREA: .BLKW 3 ;EMT Argument Block
FILE1: .RAD50 /SY/ ;A File we’re sure to find

.RAD50 /SWAP /

.RAD50 /SYS/
FILE2: .RAD50 /SY/ ;Another file we might find

.RAD50 /PIP /

.RAD50 /SAV/
LMSG: .ASCIZ /?ELOCK-F-Error on .LOOKUP/ ;Error message
F1FND: .ASCIZ /!ELOCK-I-Found SWAP.SYS/
F2FND: .ASCIZ /!ELOCK-I-Found PIP.SAV/

.EVEN

.END START

2–146 RT–11 System Macro Library Manual

.LOOKUP
EMT 375, Code 1
A .LOOKUP request can be used in two different ways:

• As a standard .LOOKUP file under all monitors.

• As an MQ job .LOOKUP under system job monitors.

Standard Lookup
The .LOOKUP request associates a specified channel with a device and existing file
for the purpose of performing I/O operations. The channel used is then busy until
one of the following requests is executed:

.CLOSE

.CLOSZ

.SAVESTATUS

.SRESET

.HRESET

.PURGE

.CSIGEN (if the channel is in the range 0-10 8)

Notes
If the program is overlaid, channel 178 is used by the overlay handler and should
not be modified.

If the first word of the file name (the second word of dblk) is 0 and the device is a
file-structured device, absolute block 0 of the device is designated as the beginning
of the file. This technique is called a non-file-structured .LOOKUP and allows I/O
operations to access any physical block on the device. If a file name is specified for
a device that is not file structured (such as LP:FILE.TYP), the name is ignored.

The handler for the selected device must be in memory for a .LOOKUP.

Be careful doing a non-file-structured .LOOKUP on a file-structured device. If your
program writes data, corruption of the device directory can occur and effectively
destroy the disk’s contents. The RT–11 directory starts in absolute block 6.

In particular, avoid doing a .LOOKUP or .ENTER with a file specification where the
file value is missing. Unless you know you want to open an entire device, always
supply a dummy file name when issuing a .LOOKUP or .ENTER.

Macro Call:

.LOOKUP area,chan,dblk[,seqnum]

where:

Programmed Request Description and Examples 2–147

.LOOKUP

area is the address of a three-word EMT argument block

chan is a channel number in the range 0-3768

dblk is the address of a four-word Radix–50 descriptor of the file or device
to be operated upon

seqnum is a file number for magtape.
If this argument is blank, a value of 0 is assumed.

For magtape, it describes a file sequence number. The action taken
depends on whether the file name is given or is null. The sequence
number can have the following values:

-1 Means suppress rewind and search for a file name
from the current tape position. If a file name is given,
a file-structured lookup is performed (do not rewind).
It is important that only -1 be specified and not any
other negative number. If the file name is null, a non-
file-structured lookup is done (tape is not moved).

0 Means rewind to the beginning of the tape and do a
non-file-structured lookup.

n Where n is any positive number. Position the tape at
file sequence number n and check that the file names
match. If the file names do not match, an error is
generated. If the file name is null, a file-structured
lookup is done on the file designated by seqnum.

On return from the .LOOKUP, R0 contains the length in blocks of the file just opened.
On a return from a .LOOKUP for a non-directory, file-structured device (typically
magtape), R0 contains 0 to indicate the unknown length.

Request Format:

R0 area: 1 chan

dblk

seqnum

Errors:

Code Explanation
0 Channel already open.

1 File indicated was not found on the device.

2–148 RT–11 System Macro Library Manual

.LOOKUP

2 File already open on a nonshareable device; for example,
magtape.

5 Argument is invalid; for example, magtape file sequence number.

6 Error code is returned in $ERRBY if the request is issued to
a nonexistent or otherwise invalid special-directory device unit.
The handler determines the validity of the device unit.

Example:
.TITLE ELOOKU.MAC

;+
; .LOOKUP - This is an example in the use of the .LOOKUP request.
; This example determines whether or not the RT-11 SWAP.SYS
; Workfile exists on device SY: and if so, prints its size in
; blocks on the console terminal.
;-

.MCALL .LOOKUP,.PRINT,.EXIT

$USRRB =: 53 ;(.SYCDF) User error byte
SUCCS$ =: 001 ;(.UEBDF) Success code
ERROR$ =: 004 ;(.UEBDF) Error code
FATAL$ =: 010 ;(.UEBDF) Fatal code

START: .LOOKUP #AREA,#0,#SPEC ;See if there’s a SY:SWAP.SYS
BCC 1$;Branch if there is
.PRINT #NOFIL ;Print ’File Not Found’ message
BISB #FATAL$,@#$USRRB ;indicate error
.EXIT ;then exit program

1$: MOV #SIZE,R1 ;R1 => where to put ASCII size
CALL CNV10 ;Convert size (in R0) to ASCII
.PRINT #BUFF ;Print size of QUFILE.TMP on console
BISB #SUCCS$,@#$USRRB ;indicate success
.EXIT ;then exit program

CNV10: MOV R0,-(SP) ;Subroutine to convert Binary # in R0
CLR R0 ;to Decimal ASCII by repetitive

1$: INC R0 ;subtraction. The remainder for each
SUB #10.,@SP ;radix is made into ASCII and pushed
BGE 1$;on the stack, then the routine calls
ADD #72,@SP ;itself. The code at 2$ pops the ASCII
DEC R0 ;digits off the stack and into the out-
BEQ 2$;put buffer, eventually returning to
CALL CNV10 ;the calling program. This is a VERY

2$: MOVB (SP)+,(R1)+ ;useful routine, is short and is
RETURN ;memory efficient.

AREA: .BLKW 3 ;EMT Argument Block
SPEC: .RAD50 /SY SWAP SYS/
BUFF: .ASCII /!ELOOKU-I-SY:SWAP.SYS = /
SIZE: .ASCIZ / Blocks/
NOFIL: .ASCIZ /?ELOOKU-F-File Not Found SY:SWAP.SYS/

.EVEN

.END START

System Job Lookup
The foreground and background jobs can send messages to each other via the existing
.SDAT/.RCVD/.MWAIT facility. A more general message facility is available to all

Programmed Request Description and Examples 2–149

.LOOKUP

jobs through the message queue (MQ) handler. By turning message handling into
a formal "device" handler, and treating messages as I/O to jobs, the existing .READ
/.WRITE/.WAIT mechanism can be used to transmit messages. A channel is opened
to a job via a .LOOKUP request, after which standard I/O requests are issued to
that channel.

Macro Call:

.LOOKUP area,chan,jobdes

where:

area is the address of a two-word EMT argument block

chan is the number of the channel to open

jobdes is the address of a four-word descriptor of the job to which messages
will be sent or received:

jobdes: .RAD50 /MQ/ ;use MQ device

.BYTE 0,0,0,0,0,0 ;insure null padding

10$: .=.-6

.ASCII /NAME/ ;Logical job name

.=10$

where logical-job-name can be from one to six characters long. It
must be padded with nulls if less than six characters long. If logical-
job-name is all nulls, the channel will be opened for .READ requests
only and will accept messages from any job

Request Format:

R0 area: 1 chan

jobdes

The .LOOKUP request associates a channel with a specified job for the purposes of
sending inter-task messages. R0 is undefined on return from the .LOOKUP.

Errors:

Code Explanation
0 Channel not available.

1 No such job.

2–150 RT–11 System Macro Library Manual

.LOOKUP

Example:

.TITLE ELOOKB.MAC

;+
; .LOOKUP - This is an example in the use of the .LOOKUP request
; to open a message channel to a System Job, specifically, the
; companion ELOOKF program. ELOOKF changes A to B, B to C, etc.
; It must be run under a monitor generated with System Job
; Support and you must SRUN/FRUN ELOOKF first.
;-

.MCALL .LOOKUP,.PRINT,.EXIT,.WRITW,.READW

$USRRB =: 53 ;(.SYCDF) User error byte
SUCCS$ =: 001 ;(.UEBDF) Success code
ERROR$ =: 004 ;(.UEBDF) Error code
FATAL$ =: 010 ;(.UEBDF) Fatal code

START: .LOOKUP #AREA,#0,#QMSG ;Try to open a channel to ELOOKF
BCC 1$;Branch if successful
.PRINT #NOJOB ;Error...print error message
BR 9$;and done

1$: .WRITW #AREA,#0,#RMSG+2,#RMSGZ-RMSG-2/2 ;Send a message to ELOOKF
BCS 2$;Branch if error
.READW #AREA,#0,#RMSG,#RMSGZ-RMSG-2/2 ;Wait for an ack message
BCS 2$;Branch if error
.PRINT #RUN ;Announce ELOOKF alive and well
.PRINT #RMSG+2+6 ;Print returned value
BISB #SUCCS$,@#$USRRB ;indicate it
.EXIT ;Then exit

2$: .PRINT #MSGERR ;Print error message
9$: BISB #FATAL$,@#$USRRB ;indicate it

.EXIT ;Then exit

AREA: .BLKW 5 ;EMT Argument Block
QMSG: .RAD50 /MQ/ ;Job Descriptor Block for .LOOKUP

.ASCII /ELOOKF/
RMSG: .WORD 0 ;area for return count

.ASCII /ELOOKB/ ;our name (for reply)

.ASCII /ABCDEF/ ;data

.ASCII /GHIJKL/ ;...
RMSGZ:

.BYTE 0

.EVEN
MSGERR: .ASCIZ /?ELOOKB-F-Message Error/ ;Error Messages, etc.
NOJOB: .ASCIZ /?ELOOKB-F-ELOOKF is not running/
RUN: .ASCIZ /!ELOOKB-I-ELOOKF is alive and running/

.EVEN

.END START

.TITLE ELOOKF.MAC

;+
; .LOOKUP - This is the system job to be used with the previous
; example program.
;-

.MCALL .LOOKUP,.PRINT,.EXIT,.WRITW,.READW

$USRRB =: 53 ;(.SYCDF) User error byte
SUCCS$ =: 001 ;(.UEBDF) Success code
ERROR$ =: 004 ;(.UEBDF) Error code
FATAL$ =: 010 ;(.UEBDF) Fatal code
BUFLEN =: 256. ;size of buffer

Programmed Request Description and Examples 2–151

.LOOKUP

START: .LOOKUP #AREA,#0,#QMSG ;Try to open an MQ link to anyone
BCS 10$;Branch if error

10$: .READW #AREA,#0,#RMSG,#BUFLEN+1 ;Wait for a message
BCS 50$;Branch if error
MOV RMSG,R1 ;load word count
CMP #BUFLEN,R1 ;is it all in the buffer?
BGE 20$;yes
MOV #BUFLEN,R1 ;else use truncated count

20$: MOV R1,R5 ;save count
SUB #6/2,R1 ;don’t change caller’s name
ASL R1 ;make into byte count
MOV #RMSG+2+6,R0 ;point to data area

30$: INCB (R0)+ ;update a byte
SOB R1,30$;through out the buffer

MOV #^RMQ,RMSG ;Build DBLK for MQ
.LOOKUP #AREA,#1,#RMSG ;Try to open an MQ link to sender
BCS 40$;Branch if successful
.WRITW #AREA,#1,#RMSG+2,R5 ;Return data to other program
BCS 50$;Branch if error
.PRINT #RUN ;Announce communication worked
BISB #SUCCS$,@#$USRRB ;indicate it
.EXIT ;Then exit

40$: .PRINT #LOOKER ;Error...print error message
BISB #FATAL$,@#$USRRB ;indicate it
.EXIT ;then exit program

50$: .PRINT #MSGERR ;Print error message
BISB #FATAL$,@#$USRRB ;indicate it
.EXIT ;Then exit

AREA: .BLKW 5 ;EMT Argument Block
QMSG: .RAD50 /MQ/ ;Job Descriptor Block for .LOOKUP

.BYTE 0,0,0,0,0,0 ;listen to any job
RMSG: .BLKW 1 ;Message buffer

.BLKW BUFLEN

MSGERR: .ASCIZ /?ELOOKF-F-Message Error/ ;Error Messages, etc.
LOOKER: .ASCIZ /?ELOOKF-F-LOOKUP on MQ failed/
RUN: .ASCIZ /!ELOOKF-I-Returned value to other program/

.EVEN

.END START

2–152 RT–11 System Macro Library Manual

.MAP/.UNMAP
.MAP: EMT 375, Code 36, Subcode 4
.UNMAP: EMT 375, Code 36, Subcode 5

MAP
The .MAP request maps a previously defined address window into a dynamic region
of extended memory or into the static region in the lower 28K words of memory. The
.MAP request checks to see if the specified window is already mapped. If it is, no
unmapping and remapping operations are performed.

The .UNMAP request (See below) unmaps a window and flags that portion of the
virtual address space as being inaccessible.

Macro Call:

.MAP area[,addr]

where:

area is the address of a two-word EMT argument block

addr is the address of the window definition block containing a description
of the window to be mapped and the region to which it will map

Request Format:

R0 area: 36 4

addr

Errors:

Code Explanation
2 An invalid region identifier was specified.

3 An invalid window identifier was specified.

4 The specified window was not mapped because the offset is
beyond the end of the region, the window is larger than the
region or the window extends beyond the bounds of the region.

Example:
See .CRAW.

Programmed Request Description and Examples 2–153

.MAP/.UNMAP

.UNMAP
The .UNMAP request unmaps a window and makes inaccessible that portion of
the program’s virtual address space. When an unmap operation is performed for
a virtual job, attempts to access the unmapped address space cause a memory
management fault. For a privileged job, the default (Kernel) mapping is restored
when a window is unmapped.

Macro Call:

.UNMAP area,addr

where:

area is the address of a two-word argument block

addr is the address of the window control block that describes the window
to be unmapped

Request Format:

R0 area: 36 5

addr

Errors:

Code Explanation
3 An illegal window identifier was specified.

5 The specified window was not already mapped.

Example:
See .CRAW.

2–154 RT–11 System Macro Library Manual

.MFPS/.MTPS
Macro Expansion
The .MFPS and .MTPS macro calls allow processor-independent user access to the
processor status word. The contents of the registers are preserved across either call.

The .MFPS call is used to read the priority bits only. Condition codes are destroyed
during the call and must be directly accessed (using conditional branch instructions)
if they are to be read in a processor-independent manner. (For another way to access
the PS, see .PEEK/.POKE.)

In the mapped monitor, .MFPS and .MTPS can be used only by virtual jobs using
.CALLK.

Macro Call:

.MFPS addr

where:

addr is the address into which the processor status is to be stored; if addr
is not present, the value is returned on the stack. Note that only the
priority bits are significant

The .MTPS call is used to set the priority bits.

Macro Call:

.MTPS value

where:

value is either the value or the address of the value (depending on
addressing mode) to be placed in the PSW. If value is not present,
the processor status word is taken from the stack. Note that the high
byte on the stack is set to 0 when value is present. If value is not
present, you should set the stack to the appropriate value. In either
case, the lower byte on the stack is put in the processor status word.

Perform MTPS and MFPS operations and access the condition codes by following
this special technique:

1. To get the PSW or to set the PSW to a desired value, follow this sequence of
instructions:

;+
; TO GET PS ...
;-

CALL MFPS ;Get PS
;Continue, PS in on stack ...

;+
; TO PUT PS ...
;-

Programmed Request Description and Examples 2–155

.MFPS/.MTPS

MOV NEWPS,-(SP) ;Put desired PS on stack ...
CALL MTPS ;Call MTPS

;Continue process w/ new PS ...

Errors:
None.

Example:

In the beginning of your program, set up the IOT trap vector as follows:
V.IOT =: 20 ;IOT vector address
PR7 =: 340 ;PS priority 7

.ASECT ;Set up IOT
. = V.IOT

.WORD GETPS ;IOT service address in ’MFPS’ subroutine

.WORD PR7 ; Priority 7

Elsewhere in your program place the following routines:
;+
; MFPS/MTPS ROUTINES ...
;-

MFPS: IOT ;Execute IOT
;Will return to caller w/ PS on stack

GETPS: MOV 4(SP),@SP ;Put user return on top
MOV 2(SP),4(SP) ;Move PS saved by IOT

MTPS: RTI ;Will return to caller w/ new PS

.TITLE EMFPS4.MAC

;+
; .MFPS / .MTPS - This is an example in the use of the .MFPS and .MTPS
; requests. The example is a skeleton mainline program which calls a
; subroutine to get the next free element in an RT11-like linked queue.
;-

.MCALL .MFPS,.MTPS,.EXIT,.PRINT,.TTINR

$JSW =: 44 ;Job Status Word location
TTSPC$ =: 10000 ;TTY Special bit
PR7 =: 340 ;Priority 7 in PS

START: ;Skeleton mainline program...
BIS #TTSPC$,@#$JSW ;Set TTY Special bit
...
CALL GETQUE ;Call subroutine to return next free

;element - on return R5 => element
BCC 1$;Branch if no error
.PRINT #NOELEM ;No more elements available
BIC #TTSPC$,@#$JSW ;Reset special bit
.EXIT ;Exit program

1$: ... ;Program continues
.PRINT #GOT1 ;Announce success

2$: .TTINR ;Wait for a key to be hit on console
BCS 2$
BR START

2–156 RT–11 System Macro Library Manual

.MFPS/.MTPS

GETQUE: MOV #QHEAD,R4 ;Point to queue head
TST @R4 ;Queue exhausted?
BEQ 11$;Yes...set error on leaving
.MFPS ;Save status on stack
.MTPS #PR7 ;Raise priority to 7
MOV @R4,R5 ;R5 points to next element
MOV @R5,@R4 ;Relink the queue
.MTPS ;Restore previous status
TST (PC)+ ;This clears carry & skips next

; instruction
11$: SEC ;Set carry bit (to flag error)

RETURN ;Return to caller

QHEAD: .WORD Q1 ;Queue head
Q1: .WORD Q2,0,0 ;3 linked queue elements
Q2: .WORD Q3,0,0
Q3: .WORD 0,0,0

NOELEM: .ASCIZ /?EMFPS4-W-No more Queue Elements Available/
GOT1: .ASCIZ /Element acquired...press any key to continue/

.END START

Programmed Request Description and Examples 2–157

.MRKT
EMT 375, Code 22
The .MRKT request schedules a completion routine to be entered after a specified
time interval (measured in clock ticks) has elapsed. Single-job monitor SB is
distributed without timer support, but it is a selectable option at SYSGEN.

A .MRKT request requires a queue element taken from the same list as the I/O
queue elements. The element is in use until either the completion routine is entered
or a cancel mark time request is issued (See .CMKT request). You should allocate
enough queue elements to handle at least as many mark time and I/O requests that
you expect may be simultaneously pending.

Macro Call:

.MRKT area,time,crtn,id

where:

area is the address of a four-word EMT argument block

time is the address of a two word-block containing the time interval
(high order first, low order second), specified as a number of
clock ticks

crtn is the entry point of a completion routine

id is a non-zero number or memory address assigned by the user
to identify the particular request to the completion routine and
to any cancel mark time requests. The number must be within
the range 1–176777; the rest (177700–177777) are reserved for
system use. The number need not be unique (Several .MRKT
requests can specify the same id). On entry to the completion
routine, the id number is in R0

Request Format:

R0 area: 22 0

time

id

crtn

Errors:

Code Explanation
0 No queue element was available.

2–158 RT–11 System Macro Library Manual

.MRKT

Example:
.TITLE EMRKT.MAC

;+
; .MRKT/.CMKT - This is an example of the use of the .MRKT/.CMKT requests.
; The example illustrates a user implemented "Timed Read" to cancel an
; input request after a specified time interval.
;-

.MCALL .MRKT,.TTINR,.EXIT,.PRINT

.MCALL .TTYOUT,.CMKT,.TWAIT,.QSET

LF =: 12 ;Line Feed
$JSW =: 44 ;(.SYCDF) Job Status Word location
TCBIT$ =: 100 ;(.JSWDF) Return C-bit bit in JSW
TTSPC$ =: 10000 ;(.JSWDF) Special Mode bit in JSW

START: .QSET #XQUE,#1 ;Need an extra Q-Elem for this
10$: MOV #PROMT,R0 ;Mainline - R0 => Prompt

MOV #BUFFR,R1 ;R1 => Input buffer
CALL TREAD$;Do a "timed read"
BCS 20$;C-bit set = Timed out
.PRINT #LINE ;"Process" data...
BR 10$;Go back for more

20$: .PRINT #TIMOUT ;Read timed out - could process
.EXIT ;partial data but we’ll just exit

;* TREAD$ - "Timed Read" Subroutine *
;* Input: R0 => Prompt String / R0 = 0 if no prompt *
;* R1 => Input Buffer *
;* Output: Buffer contains input chars, if any, terminated *
;* by a null char. C-Bit set if timed out *

TREAD$: TST R0 ;See if we have to prompt
BEQ 10$;Branch if no...
.PRINT ;Output prompt

10$: CLR TBYT ;Clear time-out flag
.MRKT #TAREA,#TIME,#TOUT,#1 ;Issue a .MRKT for 10 sec
BIS #TCBIT$,@#$JSW ;Set NoWait bit in JSW
CLRB @R1 ;Start with "empty" buffer

TTIN: .TWAIT #AREA ;Wait so we don’t lock out BG
.TTINR ;Look for a character
BIT #1,TBYT ;*C*Timed out?
BNE 10$;*C*Branch if yes
BCS TTIN ;Branch if input not complete
MOVB R0,(R1)+ ;Xfer 1st character
.CMKT #TAREA,#0 ;Cancel .MRKT

10$: BIS #TTSPC$,@#$JSW ;Turn on TT: Special mode
20$: .TTINR ;Flush TT: ring buffer

MOVB R0,(R1)+ ;*C*putting characters in user buffer
BCC 20$;If more char, go get ’em
CLRB -(R1) ;Terminate input with null byte
BIC #TCBIT$!TTSPC$,@#$JSW ;Clear bits in JSW
ROR TBYT ;Set carry if timed out
RETURN ;Return to caller

TOUT: INC TBYT ;Indicate time out happened
RETURN ;Leave completion code

Programmed Request Description and Examples 2–159

.MRKT

TBYT: .WORD 0 ;Time-out flag
XQUE: .BLKW 10. ;Extra Q-Element
AREA: .WORD 0,WAIT ;EMT Argument block for .TWAIT
TAREA: .BLKW 4 ;EMT Argument block for .MRKT
TIME: .WORD 0,600. ;Time-out interval (10 sec)
WAIT: .WORD 0,1 ;1/60 sec wait between .TTINRs
LINE: .ASCII "!EMRKT-I-Not in stock - Part # " ;Dummy response
BUFFR: .BLKB 81. ;User input buffer
PROMT: .ASCII "Enter Part # >" ;Prompt

.BYTE 200 ;No CRLF
TIMOUT: .ASCIZ "!EMRKT-I-Timed read expired" ;Too bad message

.END START

2–160 RT–11 System Macro Library Manual

.MSDS
EMT 375, Code 46
The .MSDS sets the lockstep of User data space and Supervisor data space and
returns the old status in R0. This value is not implemented in unmapped monitors.

Macro Call:

.MSDS area,value[,CODE=strg]

where:

area is the address of a two-word EMT request block area

value is the setting value desired.

CODE=strg specifies strg as either "SET" (default), "NOSET", "SP" or
"STACK"

Notes
In Supervisor mode when you want to establish your own data space, distinct from
User data space, you may not own any data space memory. Therefore, you cannot
use standard request code. .CMAP, .GCMAP and .MSDS introduce a concept that
allows you to specify CODE = "SP" or "STACK". In this way, you use "STACK" to:

• Build a request block on the stack

• Issue the request

• Clear the stack of the request

Errors:
None.

Example:

.TITLE EMSDS;2

.MCALL .CRRG .MSDS .CMPDF
.CMPDF

; Assume the following is running in Supy mode
...

.MSDS ,#CM.PR7,CODE=STACK ;disconnect PAR7 Supy D

; Here build a WDB and .CRRG request on the stack
; which remaps PAR7 Supy D

...

.CRRG SP ;map to Supy data in PAR7

; Here use the Supy data
...

.MSDS ,#0,CODE=STACK ;reconnect PAR7 User & Supy

...

Programmed Request Description and Examples 2–161

.MTATCH
EMT 375, Code 37, Subcode 5
.MTATCH is a multiterminal feature which must be selected at SYSGEN. The
.MTATCH request attaches a terminal for exclusive use by the requesting job. This
operation must be performed before any job can use a terminal with multiterminal
programmed requests, although a job can issue a .MTGET request before a
.MTATCH.

Macro Call:

.MTATCH area,addr,unit

where:

area is the address of a three-word EMT argument block

addr is the optional address of an asynchronous terminal status word,
or it must be #0. (The asynchronous terminal status word is a
system option you can select at SYSGEN.) In a fully-mapped
monitor, if you set the low bit of addr on, it will be treated as
a Supervisor/Data space; otherwise, it is treated as a User/Data
space address.

unit is the logical unit number of the terminal (The logical unit
number is the number assigned by the system to a particular
physical unit during the system generation process.)

Request Format:

R0 area: 37 5

addr

0 unit

Errors:

Code Explanation
2 Nonexistent logical unit number.

3 Invalid request; function code out of range.

4 Unit attached by another job (job number returned in R0).

5 In mapped monitors, the optional status word address is not in
valid user virtual address space.

6 Unit attached by a handler (Radix–50 handler name returned
in R0)

2–162 RT–11 System Macro Library Manual

.MTATCH

Example:

.TITLE EMTXXX;2
;+
; EMTXXX.MAC - The following is an example program that
; demonstrates the use of the multiterminal
; programmed requests. The program attaches all the
; terminals on a given system, then proceeds with an
; input/echo exercise on all attached terminals until
; CTRL/C is sent to it.
;-

.MCALL .MTATCH,.MTPRNT,.MTGET,.MTIN,.MTOUT

.MCALL .PRINT,.MTRCTO,.MTSET,.MTSTAT,.EXIT

HNGUP$ =: 4000 ;Terminal off-line bit
TTSPC$ =: 10000 ;Special mode bit
TTLC$ =: 40000 ;Lower-case mode bit
AS.INP =: 40000 ;Input available bit
M.TSTS =: 0 ;Terminal status word
M.TSTW =: 7 ;Terminal state byte
M.NLUN =: 4 ;# of LUNs word

ESC =: 033 ;Escape char

.ENABL LSB

EMTXXX: ;Start of program
.MTSTAT #MTA,#MSTAT ;Get MTTY status
MOV MSTAT+M.NLUN,R4 ;R4 = # LUNs
BEQ MERR ;None? Not MTTY!!!
CLR R1 ;Initial LUN = #0
MOV #AST,R2 ;R2 -> AST word array

10$: .MTATCH #MTA,R2,R1 ;Attach terminal
BCC 20$;Success!
CLRB TAI(R1) ;Set attach failed
BR 30$;Proceed with next LUN

20$: MOVB #1,TAI(R1) ;Attach successful
MOV R1,R3 ;Copy LUN
ASL R3 ;Multiply by 8 for offset
ASL R3 ;to the terminal status
ASL R3 ;block...
ADD #TSB,R3 ;R3 -> LUN’s TSB
.MTGET #MTA,R3,R1 ;Get LUN’s status
BIS #TTSPC$+TTLC$,M.TSTS(R3) ;Set special

;mode and lower case
.MTSET #MTA,R3,R1 ;Set LUN’s status
BITB #HNGUP$/400,M.TSTW(R3) ;On line?
BNE 30$;Nope!
.MTRCTO #MTA,R1 ;Reset CTRL/O
.MTPRNT #MTA,#HELLO,R1 ;Say hello...

30$: ADD #2,R2 ;R2 -> Next AST word
INC R1 ;Get next LUN
CMP R1,R4 ;Done?
BLOS 10$;Nope, go attach another

.DSABL LSB

.ENABL LSB

Programmed Request Description and Examples 2–163

.MTATCH

LOOP: ;Input & echo forever
CLR R1 ;Initial LUN = 0
MOV #AST,R2 ;R2 -> AST words

10$: TSTB TAI(R1) ;Terminal attached?
BEQ 20$;Nope...
BIT #AS.INP,(R2) ;Any input?
BEQ 20$;Nope...
.MTIN #MTA,#MTCHAR,R1,#1 ;Input a character
BCS ERR ;Ooops! Error on input
.MTOUT #MTA,#MTCHAR,R1,#1 ;Echo the character
BCS ERR ;Ooops! Error on output

20$: ADD #2,R2 ;Point to next AST word
INC R1 ;Get next LUN
CMP R1,R4 ;Done them all?
BLOS 10$;No, go check another
BR LOOP ;Yes, repeat (forever!)

ERR: .PRINT #UNEXP ;Unexpected error...
.EXIT ;Print message & exit!

MERR: .PRINT #NOMTTY ;Not multiterminal
.EXIT ;Print message & exit

AST: .BLKW 16. ;Asynchronous Terminal
;Status Words (1/LUN)

TAI: .BLKB 16. ;Terminal attached list
;1 Byte per LUN...
;0 = Not attached

MSTAT: .BLKW 8. ;MTTY status block
TSB: .BLKW 16.*4. ;Terminal status blocks

;16. blocks of 4 words
MTA: .BLKW 4 ;EMT argument block
MTCHAR: .BYTE 0 ;Character stored here

HELLO: .BYTE ESC
.ASCII "[H" ;home the cursor
.BYTE ESC
.ASCII "[J" ;erase rest (all of screen)
.ASCIZ "Hello! Characters typed will be echoed"

NOMTTY: .ASCIZ "?EMTXXX-F-Not multiterminal system"
UNEXP: .ASCIZ "?EMTXXX-F-Unexpected error"

.END EMTXXX ;End of program

2–164 RT–11 System Macro Library Manual

.MTDTCH
EMT 375, Code 37, Subcode 6
.MTDTCH is a multiterminal feature which must be selected during SYSGEN. The
request detaches a terminal from one job and makes it available for other jobs. When
a terminal is detached, it is deactivated, and unsolicited inputs are ignored. Input is
disabled immediately, but any characters in the output buffer are printed. Attempts
to detach a terminal not attached by the current job result in an error.

Macro Call:

.MTDTCH area,unit

where:

area is the address of a three-word EMT argument block

unit is the logical unit number (lun) of the terminal to be detached

Request Format:

R0 area: 37 6

unused

unit−−

Errors:

Code Explanation
1 Unit not attached.

2 Nonexistent logical unit number.

3 Function code out of range.

Example:
.TITLE EMTDTC;2

;+
; Attach to a multi-terminal unit, print a message
; then detach from it.
;-

.MCALL .MTDTCH,.MTPRNT,.MTATCH,.EXIT,.PRINT

LUN =: 3

START:
.MTATCH #MTA,#0,#LUN ;Attach to LUN
BCS 10$;Attach error
.MTPRNT #MTA,#MESS,#LUN ;Print message
BCS 20$;Unexpected error
.MTDTCH #MTA,#LUN ;Detach LUN
BCS 20$;Unexpected error
.EXIT

Programmed Request Description and Examples 2–165

.MTDTCH

10$: .PRINT #ATTERR ;Attach error
;(printed on console)

.EXIT

20$: .PRINT #UNKERR ;Unexpected error
;(printed on console)

.EXIT

ATTERR: .ASCIZ "?EMTDTC-F-Attach error"
UNKERR: .ASCIZ "?EMTDTC-F-Unexpected error"
MESS: .ASCIZ "!EMTDTC-I-Detaching terminal"

.EVEN
MTA: .BLKW 3

.END START

2–166 RT–11 System Macro Library Manual

.MTGET
EMT 375, Code 37, Subcode 1
.MTGET is a multiterminal feature which must be selected during SYSGEN. Issuing
the .MTGET request returns the status of the specified terminal unit to the caller.
If a .MTGET request fails because the terminal is owned by another job, the job
number of the owner (or name of the handler) is returned in R0. You do not need to
do an .MTATCH before using the .MTGET request. See .MTSET.

Macro Call:

.MTGET area,addr,unit

where:

area is the address of a three-word EMT argument block.

addr is the address of a four-word status block

unit is the logical unit number (lun) of the terminal whose status is
requested. A unit need not be attached to the job issuing a .MTGET
request. If the unit is attached to another job (error code 4), the
terminal status will be returned and the job number will be contained
in R0. For all other error conditions, the contents of R0 are undefined.

R0 area: 37 1

addr

unit−−

The status block has the following structure:

M.TSTS

M.FCNT M.TFIL

M.TST2

M.TSTW M.TWID

Programmed Request Description and Examples 2–167

.MTGET

The following information is contained in the status block:

Byte Offset Description
0 (M.TSTS) Terminal configuration word 1

2 (M.TST2) Terminal configuration word 2

4 (M.TFIL) Character requiring fillers

5 (M.FCNT) Number of fillers

6 (M.TWID) Carriage width

7 (M.TSTW) Terminal status byte (high byte of TSTDF)

Note that if an error occurs, and the error code is not 1 or 4, the status block will
not have been modified.

Terminal Configuration Word 1 - M.TSTS
The bit definitions for terminal configuration word 1 (M.TSTS) are as follows:

Name Value Bit Meaning
HWTAB$ 1 0 Terminal has hardware tab

CRLF$ 2 1 Output RETURN when carriage width
exceeded

FORM$ 4 2 Terminal has hardware form feed

FBTTY$ 10 3 Process CTRL/F and CTRL/B (and CTRL/X
if system job) as special command char-
acters (If clear, CTRL/F and CTRL/B are
treated as ordinary characters.)

TCBIT$ 100 6 Inhibit TT wait (similar to bit 6 in the Job
Status Word)

PAGE$ 200 7 Enable CTRL/S-CTRL/Q processing

7400 8-11 Line speed (baud rate) mask. The
terminal baud rate values for DZ11
/DZV11 and DH for bits 11–8 are as
follows:

Mask (M.TSTS bits 11-8) DZ Baud Rate DH Baud Rate
0000 50 50

0400 75 75

1000 110 110

1400 134.5 134.5

2000 150 150

2–168 RT–11 System Macro Library Manual

.MTGET

2400 300 300

3000 600 600

3400 1200 1200

4000 1800 1800

4400 2000 2000

5000 2400 2400

5400 3600 38400

6000 4800 4800

6400 7200 7200

7000 9600 9600

7400 n/a 19200

Name Value Bit Meaning
TTSPC$ 10000 12 Character mode input (same as bit 12 in

Job Status Word)

REMOT$ 20000 13 Terminal is remote (Read-only bit)

TTLC$ 40000 14 Lowercase to uppercase conversion disabled

BKSP$ 100000 15 Use backspace for rubout (video type
display)

Terminal Configuration Word 2 - M.TST2
The bit definitions for terminal configuration word 2 (M.TST2) are as follows:

Name Value Bit Meaning
CHRLN$ 3 0-1 Character length, which can be 5(00),

6(01), 7(10), or 8(11) bits (DZ only)

USTOP$ 4 2 Unit stop, which sends one stop bit when
clear, two stop bits when set (DZ only)

PAREN$ 10 3 Parity enable (DZ only)

ODDPR$ 20 4 Odd parity when set; even parity when
clear

140 5-6 Reserved

RPALL$ 200 7 Read pass all

77400 8-14 Reserved

WPALL$ 100000 15 Write pass all

Programmed Request Description and Examples 2–169

.MTGET

Terminal Status Byte - M.TST2
The bit definitions for terminal status byte (M.TST2) are as follows:

Name Value Bit Meaning
FILL$ 1 Fill sequence in progress

CTRLU$ 2 CTRL/U in progress

DTACH$ 20 Detach in progress

WRWT$ 40 TT: I/O flag

INEXP$ 100 Output interrupt is expected

PAGE$ 200 Output is suspended by XOFF

SHARE$ 2000 10 Terminal is shared console

HNGUP$ 4000 11 Terminal has hung up

DZ11$ 10000 12 Terminal interface is DZ11

CTRLC$ 40000 14 Double CTRL/C was entered (The .MT-
GET request resets this bit in the termi-
nal control block if it is on.)

CONSL$ 100000 15 Terminal is acting as console

Errors:

Code Explanation
1 Invalid unit number, unit not attached.

2 Nonexistent logical unit number.

3 Invalid request; function code out of range.

4 Unit attached by another job (job number returned in R0).

5 In the XM monitor, the status block address is not in valid user
virtual address space.

6 Unit attached by a handler (Radix–50 handler name returned
in R0)

Example:
Refer to the example for the .MTATCH request.

2–170 RT–11 System Macro Library Manual

.MTIN
EMT 375, Code 37, Subcode 2
.MTIN is a multiterminal feature that must be selected at SYSGEN. The .MTIN
request reads characters from a terminal. It is the multiterminal form of the .TTYIN
request. The .MTIN request moves one or more characters from the input ring buffer
to a buffer you specify. The terminal must be attached. An updated user buffer
address is returned in R0 if the request is successful. The .MTIN request has the
following form:

Macro Call:

.MTIN area,addr,unit[,chrcnt]

where:

area is the address of a three-word EMT argument block

addr is the byte address of the input buffer. If the

unit is the logical unit number of the terminal input

chrcnt is a character count indicating the number of characters to transfer.
The valid range is from 0 to 25510. A character count of zero means
one character

TCBIT$ and TTSPC$ in the M.TSTS word (See the .MTSET request) affect how the
.MTIN request processes input. TCBIT$, the inhibit terminal wait bit, determines
whether the .MTIN request waits or returns an error immediately if the appropriate
input is not available at the time the request is issued:

• If TCBIT$ is clear, the .MTIN request waits and the job is suspended until the
appropriate input is available.

• If TCBIT$ is set and the appropriate input is not available, .MTIN returns
immediately with the carry bit set.

TTSPC$, the special mode bit, determines what type of input is needed—an entire
line or a single character:

• If TTSPC$ is clear (normal mode I/O), input is available to the user program
only after one of the following line terminators has been typed: carriage return,
line-feed, CTRL/Z, or CTRL/C. Typing any of these passes all characters on that
line, one by one, to the user program.

• When TTSPC$ is set, it selects special mode I/O, in which each character is
immediately available to the user program as it is typed. See the .TTYIN request
for more information on normal and special mode I/O operation.

If TCBIT$ is set and TTSPC$ is clear, the .MTIN request returns immediately with
the carry bit set (code 0), if a line is not available.

If TCBIT$ is set and TTSPC$ is set (special mode I/O), the .MTIN request returns
immediately with the carry bit set, if a character is not available.

Programmed Request Description and Examples 2–171

.MTIN

Results are similar for the system console if TCBIT$ of the JSW is set. The
relationship between TCBIT$ and TTSPC$ in the terminal configuration word
(M.TSTS) for the .MTIN programmed request is as follows:

TCBIT$ TTSPC$ Meaning
0 0 Normal mode of input (echo provided); wait for line

1 0 Carry bit set if no line is available

1 1 Carry bit set if no character is available

0 1 No echo provided; wait for character

Request Format:

R0 area: 37 2

addr

chrcnt unit

Errors:

Code Explanation
0 No input available. TCBIT$ is set in the Job Status Word (for

the system console) or in M.TSTS by the .MTSET request.

1 Unit not attached.

2 Nonexistent logical unit number.

3 Function code out of range.

5 In the mapped monitor, the user buffer address is not in valid
user virtual address space.

Example:
Refer to the example for the .MTATCH request.

2–172 RT–11 System Macro Library Manual

.MTOUT
EMT 375, Code 37, Subcode 3
This multiterminal feature, selected during SYSGEN, is the multiterminal form of
the .TTYOUT request. The .MTOUT request places characters into the user buffer
in both User and Supervisor modes:

• If the program is executing in Supervisor mode, characters go into Supervisor-
mapped data space, if enabled; otherwise, characters go into Supervisor
instruction space.

• If the program is executing in User mode, characters go into User-mapped data
space, if enabled; otherwise, characters go into User instruction.

Macro Call:

.MTOUT area,addr,unit[,chrcnt]

where:

area is the address of a three-word EMT argument block.

addr is the address of the output buffer.
If low order bit of addr word is zero, the data buffer is in User
space. If low order bit is one, the data buffer is in Supervisor
space.

unit is the unit number of the terminal

chrcnt is a character count indicating the number of characters to
transfer. The valid range is from 0 to 25510

Notes
The .MTOUT request moves one or more characters from the user’s buffer to the
output ring buffer of the attached terminal. An updated user buffer address is
returned in R0 if the request is successful.

If a multiple-character request was made and there is not enough room in the output
ring buffer to transfer the requested number of characters, the request can either
wait for enough room to become available or it can return with a partial transfer.
TCBIT$ in terminal configuration word M.TSTS determines the response to the
request:

• If TCBIT$ in M.TSTS is clear, the request waits until it can complete the full
transfer.

• If TCBIT$ is set, the request returns with a partial transfer. R0 contains the
updated buffer address (pointing past the last character transferred), the C bit
is set, and the error code is 0.

Programmed Request Description and Examples 2–173

.MTOUT

For the .MTOUT request, the meaning of TCBIT$ in M.TSTS is as follows:

TCBIT$ Meaning
0 Normal mode for output; wait for room in buffer

1 Carry bit set: no room in output ring buffer

Request Format:

R0 area: 37 3

addr

chrcnt unit

Errors:

Code Explanation
0 No room in output buffer.

1 Unit not attached.

2 Nonexistent logical unit number.

3 Function code out of range.

5 In the mapped monitor, the user buffer address is not in valid
user virtual address space.

Example:
Refer to the example for the .MTATCH request.

2–174 RT–11 System Macro Library Manual

.MTPRNT
EMT 375, Code 37, Subcode 4
This multiterminal feature must be selected during SYSGEN. The .MTPRNT request
causes one or more lines to be printed at the specified terminal in a multiterminal
environment. This request is the multiterminal equivalent of the .PRINT request
(See .MTSET request for more details). Like the string used with the .PRINT
request, the string to be printed must be terminated with a null byte or a 200
byte:

.ASCIZ /string/

or

.ASCII /string/<200>

The null byte causes a RETURN/LINE FEED combination to be printed after the
string. The 200 byte suppresses the RETURN/LINE FEED combination and leaves
the carriage positioned after the last character of the string. The request does not
return until the transfer is complete.

Macro Call:

.MTPRNT area,addr,unit

where:

area is the address of a three-word EMT argument block

addr is the starting address of the character string to be printed

unit is the unit number associated with the terminal

Request Format:
R0 area: 37 4

addr

−− unit

Errors:

Code Explanation
1 Unit not attached.

2 Nonexistent logical unit number.

3 Function code out of range.

5 In the mapped monitor, the character string address is not in
valid user virtual address space.

Example:
Refer to the example for the .MTATCH request.

Programmed Request Description and Examples 2–175

.MTPS
See .MFPS/.MTPS.

2–176 RT–11 System Macro Library Manual

.MTRCTO
EMT 375, Code 37, Subcode 4
This multiterminal feature must be selected during SYSGEN. The .MTRCTO request
resets the CTRL/O switch of the specified terminal and enables terminal output in
a multiterminal environment. It is the multiterminal equivalent of the .RCTRLO
request.

Macro Call:

.MTRCTO area,unit

where:

area is the address of a three-word EMT argument block

unit is the unit number associated with the terminal

Request Format:

R0 area: 37 4

unused

−− unit

Errors:

Code Explanation
1 Unit not attached.

2 Nonexistent logical unit number.

3 Function code out of range.

Example:
Refer to the example for the .MTATCH request.

Programmed Request Description and Examples 2–177

.MTSET
EMT 375, Code 37, Subcode 0
.MTSET is a multiterminal feature which must be selected during SYSGEN. This
multiterminal request:

• Sets terminal and line characteristics.

• Determines the input/output mode of the terminal service requests for the
specified terminal.

For more detail on line characteristics, such as baud rate, number of data bits, stop
bits, and parity, refer to .MTGET.

Macro Call:

.MTSET area,addr,unit

where:

area is the address of a three-word EMT argument block

addr is the address of a four-word status block containing the line and
terminal status being set.
If low order bit of addr word is zero, the status block is in User space.
If low order bit is one, the status block is in Supervisor space.

unit is the logical unit number associated with the line and terminal

Request Format:

R0 area: 37 0

addr

−− unit

The .MTSET request sets the parameters listed below. When the program returns
from the request, the following information is returned to the status block:

Byte Offset Contents
0 (M.TSTS) Terminal configuration word 1 (The bit definitions are the same

as those for the .MTGET request.)

2 (M.TST2) Terminal configuration word 2 (The bit definitions are the same
as those for the .MTGET request.)

4 (M.TFIL) Character requiring fillers

5 (M.FCNT) Number of fillers

6 (M.TWID) Carriage width (byte)

2–178 RT–11 System Macro Library Manual

.MTSET

When issuing the .MTSET request, proceed as follows:

1. Issue an .MTGET request before using .MTSET.

2. Use BIS and BIC instructions to set or clear bit fields, modifying only the bits or
bytes that you intend to change.

3. Issue the .MTSET request to replace the previous terminal status with the
updated status.

Note that if an error occurs, and the error code is not 1, the status block remains
unmodified.

Errors:

Code Explanation
1 lun not attached.

2 Nonexistent logical unit number.

3 Function code out of range.

5 In the mapped monitor, the status block address is not in valid
user virtual address space.

Example:
Refer to the example for the .MTATCH request.

Programmed Request Description and Examples 2–179

.MTSTAT
EMT 375, Code 37
.MTSTAT is a multiterminal feature that must be selected at SYSGEN. The request
returns multiterminal system status information.

Macro Call:

.MTSTAT area,addr

where:

area is the address of a three-word EMT block

addr is the address of an eight-word status block where
multiterminal status information is returned.

addr is the address of a four-word status block containing the line
and terminal status being requested.

Byte Offset Explanation
0 (MST.1T) Offset from the base of the resident monitor to the first

terminal control block (TCB)

2 (MST.CT) Offset from the base of the resident monitor to the terminal
control block of the console terminal for the program

4 (MST.LU) The value (0-16 decimal) of the highest logical unit number
(LUN) built into the system

6 (MST.ST) The size of the terminal control block in bytes

10-17 Reserved

Request Format:

R0 area: 37 10

addr

0

Errors:

Code Explanation
3 Function code out of range

5 In mapped monitors, the status block address is not in valid user
address space.

Example:

Refer to the example for the .MTATCH request.

2–180 RT–11 System Macro Library Manual

.MWAIT
EMT 374, Code 11, Subcode 0
This request is similar to the .WAIT request, except that .MWAIT suspends execution
of the job issuing the request until all messages sent to the other job or requested
from the other job have been received. Using .MWAIT with .RCVD or .SDAT modes
of message handling causes the program to wait until data is transferred. This
request is available only under multijob monitors.

Macro Call:

.MWAIT

Request Format:

R0 = 11 0

Errors:
None.

Example:

;+
; .MWAIT - This is an example in the use of the .MWAIT request.
; The example is actually two programs, a Background job
; which sends messages, and a Foreground job, which receives them.
; NOTE: Each program should be assembled and linked separately.
;-

.TITLE EMWAIF
;+
; Foreground Program...
;-

.MCALL .RCVD,.MWAIT,.PRINT,.EXIT

.MACRO ...

.ENDM ...

MWAITF: .RCVD #AREA,#MBUFF,#40. ;Request a message up to 80 char.
... ;No error possible - always a BG

;Do some other processing
.PRINT #FGJOB ;like announcing FG active...
...
.MWAIT ;Wait for message to arrive...
TST MBUFF+2 ;Null message?
BEQ FEXIT ;Yes...exit the program
.PRINT #FMSG ;Announce we got the message...
.PRINT #MBUFF+2 ;and echo it back
BR MWAITF ;Loop to get another one

FEXIT: .EXIT ;Exit program

AREA: .BLKW 5 ;EMT Argument Block
MBUFF: .BLKW 41. ;Buffer - Msg length + 1

.WORD 0 ;Make sure 80 char message ends ASCIZ

Programmed Request Description and Examples 2–181

.MWAIT

FGJOB: .ASCIZ "!EMWAIF-I-FG running"
.EVEN

FMSG: .ASCIZ "!EMWAIF-I-Message from BG:"
.END MWAITF

.TITLE EMWAIB;2
;+
; Background Program - Send a message or a’null’ message
; to stop both programs.
;-

.MCALL .SDAT,.MWAIT,.GTLIN,.EXIT,.PRINT

MWAITB: CLR BUFF ;Clear 1st word
.GTLIN #BUFF,#PROMT ;Get something to send to FG from TTY
.SDAT #AREA,#BUFF,#40. ;Send input as message to FG
BCS 10$;Branch on error - No FG
.MWAIT ;Wait for message to be sent
TST BUFF ;Sent a null message?
BNE MWAITB ;No...loop to send another message.
.EXIT ;Yes...exit program

10$: .PRINT #NOFG ;No FG !
.EXIT ;Exit program

AREA: .BLKW 5 ;EMT Argument Block
BUFF: .BLKW 40. ;Up to 80 char message
PROMT: .ASCIZ "Enter message to be sent to FG job"
NOFG: .ASCIZ "?EMWAIB-F-No FG"

.END MWAITB

2–182 RT–11 System Macro Library Manual

.PEEK
EMT 375, Code 34, Subcode 1
The .PEEK programmed request accesses processor status and returns in R0 the
contents of a specified low memory location (below 28K words) or I/O page location.
.POKE deposits the value you specify into that low memory location (below 28K
words) or I/O page location.

Use both requests to access and alter some contents of the processor status (PS)
word. .PEEK and .POKE must be used in a mapped environment to change memory
locations not defined as monitor fixed offsets, and should be used with all RT–11
monitors for compatibility.

.PEEK is very similar to .GVAL, but references locations differently. Addresses
used by .PEEK are memory addresses. .GVAL accesses only monitor fixed offsets
calculated relative to the base of the resident monitor. Although you can use .PEEK
to access monitor fixed offsets, you have to find the base address of RMON, add the
offset value, and use the resulting address as an argument to .PEEK. For information
on valid bits, see .POKE.

Macro Call:

.PEEK area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the location to examine or change

Request Format:

R0 area: 34 1

addr

Errors:

Code Explanation
1 Odd or nonexistent address

Error code is returned with carry bit set, when an attempt is made
to access an odd or nonexistent address with .PEEK request.

Programmed Request Description and Examples 2–183

.PEEK

Example:
.TITLE EPEEK

;Example of .PEEK and .POKE programmed requests.
;This example illustrates a way of reading and setting
;the default file size used by the .ENTER request.
;Normally, this would be done using the .GVAL and .PVAL programmed
;requests. (Refer to the example given for the .PVAL request.) This
;example computes the address of the word in RMON containing the
;default file size used by the .ENTER request and uses .POKE
;both to change the default file size to 100. blocks and to return
;the old default file size in R0.
;

.MCALL .PEEK, .POKE, .ENTER, .CLOSZ, .EXIT

$RMON=: 54
$MAXBL=: 314

START: .PEEK #EMTBLK,#$RMON ;Pick up base of RMON from loc. 54
ADD #$MAXBL,R0 ;Add fixed offset of default file size,
MOV R0,R5
.POKE #EMTBLK,R5,NEWSIZ ;Set a new default file size, return old
MOV R0,OLDSIZ ;default file size in R0, save it
.ENTER #EMTBLK,#0,#DBLK,#0 ;create a file of default size
MOV R0,R1 ;Save the size
.CLOSZ #EMTBLK,#0,R1 ;close the file
.POKE #EMTBLK,R5,OLDSIZ ;Restore previous default size
.EXIT

EMTBLK: .BLKW 10. ;EMT area
NEWSIZ: .WORD 100.
OLDSIZ: .WORD 0 ;The old default size is saved here.
DBLK: .RAD50 "DK EPEEK TMP"

.END START

.TITLE EPEEK1.MAC

;+
; The following is a subroutine that returns the current
; PS contents (with undefined condition codes) in R0.
;
; It can be used to determine the current MODE (K, S, or U)
; the code is executing in.
;
; If the top two bits are 000000 - K, 040000 - S, 140000 - U
;
;NOTE: This even works on processors w/o addressable PSs.
;-

.MCALL .PEEK

PS =: 177776 ;PS address

MYMODE::
.PEEK #AREA,#PS ;Get PS Value into R0
RETURN

AREA: .BLKW 2 ;Request area

2–184 RT–11 System Macro Library Manual

.POKE
EMT 375, Code 34, Subcode 3, 5, 7
.POKE deposits the value you specify into a low memory location (below 28K words)
or I/O page location and returns the old contents of the memory location in R0. This
simplifies the saving and restoring of a location. .POKE supports BIC (bit clear) and
BIS (bit set) operations, as well as the previous MOV operation, using an optional
parameter, type.

.POKE is very similar to .PVAL, but references locations differently. Addresses
used by .POKE are memory addresses. .PVAL accesses only monitor fixed offsets
calculated relative to the base of the resident monitor. Although you can use .POKE
to access monitor fixed offsets, you have to find the base address of RMON, add the
offset value, and use the resulting address as an argument to .POKE.

Macro Call:

.POKE area,addr,value[,type]

where:

area is the address of a three-word EMT argument block

addr is the address of the location to examine and change

value is the new contents to place in the location

type is the instruction used to modify the address to the specified value.
The type parameter can be BIC, BIS, or MOV (default).

Request Format:

R0 area: 34 x where:
x = 3 (MOV)

addr = 5 (BIC)
= 7 (BIS)

value

An attempt to access an odd or nonexistent address with a .POKE request returns
the following error code with the carry bit set:

Code Explanation

1 Odd or nonexistent address

The .POKE request can alter priority bits in the processor status (PS) word:

• A .POKE request returns the contents of the PS with undefined condition codes.

• .POKE can modify all bits in the PS except the 000020 (trace trap) and 140000
(current mode) bits. However, modifying the 000400 (instruction suspension) or
004000 (register set) bits can cause unexpected results. Although not prohibited,
this is not recommended.

Programmed Request Description and Examples 2–185

.POKE

Modifying priority bits is supported. However, changing processor priority with
a .POKE request automatically lowers processor priority to zero (PR0) during the
time .POKE is executing. Therefore, a period of lowest processor priority exists
between the time the processor is running at a given priority and the time the
processor priority change takes effect.

Setting the carry bit is not recommended, as it causes .POKE to return an error.

• The priority portion of the modified PS is preserved at the completion of the
.POKE request.

Example:
See .PEEK.

2–186 RT–11 System Macro Library Manual

.PRINT
EMT 351
The .PRINT request causes output to be printed at the console terminal.

Macro Call:

.PRINT addr

where:

addr is the address of the string to be printed

The string to be printed can be terminated with either a null (0) byte or a 200 byte. If
the null (ASCIZ) format is used, the output is automatically followed by a RETURN
/LINE FEED combination. If a 2008 byte terminates the string, no RETURN/LINE
FEED combination is generated.

Control returns to the user program after all characters have been placed in the
output buffer.

When a foreground job is running and the job that is producing output changes, a B>
or F> displays the location of the job. Any text display generated by a job is produced
in the last indicated (background/foreground) until the next B> or F> display.

When a system job displays a message on the terminal, the message is preceded by
logical-job-name.

If the foreground job issues a message using .PRINT, the message is printed
immediately, no matter what the state of the background job. Therefore, for urgent
messages, use the .PRINT request (rather than .TTYOUT or .TTOUTR). The .PRINT
request forces a console switch and guarantees printing of the input line. If a
background job is doing a prompt and has printed an asterisk, but no RETURN/LINE
FEED combination, the console belongs to the background and .TTYOUTs from the
foreground are not printed until a carriage return is typed to the background. A
foreground job can force its message through by doing a .PRINT instead of the
.TTYOUT.

NOTE
Unlike other SYSMAC.SML definitions, .ENABL MCL
will not work for .PRINT; therefore, to use .PRINT, you
must do a .MCALL for it.

Errors:
None.

Example:
See .GTLIN.

Programmed Request Description and Examples 2–187

.PROTECT/.UNPROTECT
.PROTECT: EMT 375, Code 31, Subcode 0
.UNPROTECT: EMT 375, Code 31, Subcode 1

.PROTECT
The .PROTECT request allows a job to obtain exclusive control of a vector (two
words) in the area of 0 to 474. If the request is successful, it indicates that the
locations are not currently in use by another job or by the monitor. The job then can
place an interrupt address and priority into the protected locations and begin using
the associated device.

Macro Call:

.PROTECT area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the word pair to be protected

NOTE
The value of the addr argument must be a multiple of
four, and must be less than or equal to 4748. (That is,
the argument is the address of a word containing a value
that is a multiple of four, but the address itself is not.)
The two words at addr and addr+2 are protected.

Request Format:

R0 area: 31 0

addr

Errors:

Code Explanation
0 Protect failure; locations already in use.

1 Address addr is greater than 4748 or is not a multiple of 4.

2–188 RT–11 System Macro Library Manual

.PROTECT/.UNPROTECT

Example:
.TITLE EPROTE;2

;+
; .PROTECT / .UNPROTECT - This is an example in the use of the .PROTECT
; and .UNPROTECT requests. The example illustrates how to protect the
; vectors of a device while an inline interrupt service routine does
; a data transfer (in this case the device is a DL11 Serial Line
;Interface).
; When the program is finished, the vectors are unprotected for
;possible use by another job.
;-

.MCALL .DEVICE,.EXIT,.PROTECT,.UNPROTECT,.PRINT

.MACRO ...

.ENDM ...

.GLOBL DL11

START: .DEVICE #AREA,#LIST ;Setup to disable DL11 interrupts on
;.EXIT or ^C^C

.PROTECT #AREA,#300 ;Protect the DL11 vectors
BCS BUSY ;Branch if already protected
... ;Set up data to transmit over DL11
JSR R5,DL11 ;Use DL11 xfer routine (see .INTEN

;example)
.WORD 128. ;Arguments...Word count
.WORD BUFFR ;Data buffer addr
... ;Continue processing...

FINI: .UNPROTECT #AREA,#300 ;...eventually to exit program
.EXIT

BUSY: .PRINT #NOVEC ;Print error message...
.EXIT ;then exit

AREA: .BLKW 3 ;EMT Argument block

LIST: .WORD 176500 ;CSR of DL11
.WORD 0 ;Stuff it with ’0’
.WORD 0 ;List terminator

BUFFR: ;Data to send over DL11
.REPT 8. ;8 lines of 32 characters...
.ASCII "Hello DL11... Are You There ??"
.BYTE 15,12
.ENDR

NOVEC: .ASCIZ "?EPROTE-F-Vector already protected"

.END START

Programmed Request Description and Examples 2–189

.PROTECT/.UNPROTECT

.UNPROTECT
The .UNPROTECT request is the complement of the .PROTECT request. It cancels
any protected vectors in the 0 to 4748 area. An attempt to unprotect a vector that a
job has not protected is ignored.

Macro Call:

.UNPROTECT area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the protected vector pair that is going to be canceled.
The argument addr must be a multiple of four, and must be less than
or equal to 4748

Request Format:

R0 area: 31 1

addr

Errors:

Code Explanation
1 Address (addr) is greater than 4748 or is not a multiple of four.

Example:
See .PROTECT.

2–190 RT–11 System Macro Library Manual

.PURGE
EMT 374, Code 3
The .PURGE request makes a channel available, unlike .HRESET or .SRESET
which affects all channels for a job, .SAVESTATUS, .CLOSE or .CLOSZ which
make a .ENTERed channel permanent. .PURGE frees a channel without taking
any other action. If a tentative file has been entered on the channel, the file is
discarded. An attempt to purge a channel that is not open is ignored. When a
program makes a channel available by issuing a .PURGE request, the handler for
the device associated with that channel must now be in memory if the handler is
marked SPECL$ (supports a special directory structure).

NOTE
Do not purge channel 178 if your program is overlaid
because overlays are read on that channel.

Macro Call:

.PURGE chan

where:

chan is the number of the channel to be made available

Request Format:

R0 = 3 chan

Errors:
None.

Example:
See .SAVESTATUS.

Programmed Request Description and Examples 2–191

.PVAL
See .GVAL/.PVAL.

2–192 RT–11 System Macro Library Manual

.QELDF
Macro Expansion
The .QELDF macro symbolically defines queue element offsets.

Since the handler usually deals with queue element offsets relative to Q.BLKN, the
.QELDF macro also defines these associated symbolic offsets, using a $ character
substituted for the period (.).

Macro Call:

.QDELF list, E

In the following example, if memory address conditional (MMG$T) equals 1 (default),
additional offsets are generated for use only for mapped monitors. The length of
queue element (Q.ELGH) is controlled by the MMG$T setting.
Normal Offset Handler Offset Description
------------- -------------- ------------
Q.LINK=0 Q$LINK=Q.LINK-^o4 Link to next queue element
Q.CSW=2. Q$CSW=Q.CSW-^o4 Pointer to channel status word
Q.BLKN=4. Q$BLKN=Q.BLKN-^o4 Physical block number
Q.FUNC=6. Q$FUNC=Q.FUNC-^o4 Special function code
Q.2UNI=Q.FUNC Q$2UNI=Q.2UNI-^o4 High 3 bits of unit number(3)
Q.TYPE=Q.FUNC Q$TYPE=Q.TYPE-^o4 Normal I/O or special function flag(3)
Q.FMSK=^o17 Special function bits mask(3)
Q.2MSK=^o160 High 3 bits of unit number mask(3)
Q.TMSK=^o200 Normal or special flag mask(3)
Q.JNUM=7. Q$JNUM=Q.JNUM-^o4 Job number
Q.UNIT=Q.JNUM Q$UNIT=Q.UNIT-^o4 Low (or all) bits of unit number
Q.UMSK=^o3400 Unit number mask
Q.JMSK=^o74000 Job number mask
Q.BUFF=^o10 Q$BUFF=Q.BUFF-^o4 Buffer physical address
Q.WCNT=^o12 Q$WCNT=Q.WCNT-^o4 Transfer count
Q.COMP=^o14 Q$COMP=Q.COMP-^o4 Completion routine or I/O type flag

Q.PAR=^o16(2) Q$PAR=Q.PAR-^o4(2) DMA PAR1 base address
Q.MEM=^o20(2) Q$MEM=Q.MEM-^o4(2) CPU access PAR1 base address

Q.ELGH=^o16(1) Length of queue element
Q.ELGH=^o24(2) Length of queue element

(1) unmapped system (MMG$T=0)
(2) mapped system (MMG$T=1)
(3) extended unit handlers and systems only

Programmed Request Description and Examples 2–193

.QSET
EMT 353
.QSET request enables additional entries to the RT–11 I/O free queue.

Macro Call:

.QSET addr,len

where:

addr is the address at which the new elements are to start

len is the number of entries to be added. In the unmapped monitors, each
queue entry is seven words long; hence the space set aside for the
queue should be len*7 words. In the mapped monitors, 1010 words
per queue element are required. (For compatibility with all monitors,
use 1010 words.)

Generally, each program should require one more queue element than the total
number of I/O requests that will be active simultaneously on different channels.
Timing and message requests such as .MRKT, .TWAIT, .SDAT/C, and .RCVD/C also
require queue elements and must be considered when allocating queue elements for
a program. On completion, R0 contains the address of the first word beyond the
allocated queue elements. (Note that if synchronous I/O is done, such as .READW
/.WRITW, and no timing requests are done, no additional queue elements need be
allocated.)

The following programmed requests require queue elements:

.MRKT .READW .RCVDW .WRITW .SDATW

.READ .RCVD .WRITC .SDAT

.READC .RCVDC .WRITE .SDATC

Each time .QSET is called, a specified contiguous area of memory is divided into
seven-word segments (10-word10 for the mapped monitors) and is added to the queue
for that job. .QSET can be called as many times as required. The queue set up by
multiple .QSET requests is a linked list. Thus, .QSET need not be called with strictly
contiguous arguments. The space used for the new elements is allocated from your
program space. Make sure the program in no way alters the elements after they
are set up. The .SRESET and .HRESET requests discard all user-defined queue
elements; therefore, any previous .QSET requests must be reissued. However, you
must not specify the same space in two separate .QSET requests if there has been
no intervening .SRESET or .HRESET request.

Be sure to allocate sufficient memory for the number of queue elements requested.
The elements in the queue are altered asynchronously by the monitor; if enough
space is not allocated, destructive references occur in an unexpected area of memory.
The monitor returns the address of the first unused word beyond the queue elements.
Other restrictions on the placement of queue elements are that the USR must not
swap over them and they must not be in an overlay region. For jobs that run under
the mapped monitor, queue elements must be allocated in the lower 28K words of

2–194 RT–11 System Macro Library Manual

.QSET

memory, since they must be accessible in Kernel mapping. In addition, the elements
must not be in the virtual address space mapped by Kernel PAR1, specifically the
area from 20000 to 377768.

NOTE
Programs that are to run in mapped monitor as well
as multijob environments should allocate 1010 words
for each queue element. Alternatively, a program can
specify the start of a large area and use the returned
value in R0 as the top of the queue element.

Errors:

In an extended memory environment, an attempt to violate the PAR1 restriction
results in a ?MON-F-addr error, which can be intercepted with a .SERR
programmed request.

Example:
See .MRKT.

Programmed Request Description and Examples 2–195

.RCTRLO
EMT 355
The .RCTRLO request resets the CTRL/O flag for the terminal. A CTRL/O typed
while output is directed to the terminal causes output to be discarded until either
another CTRL/O is typed or the program resets the CTRL/O flag. Therefore, a
program with a message that must appear at the terminal should reset the CTRL/O
switch.

A program must issue a .RCTRLO request whenever it changes the contents of the
job status word (JSW). Issuing a .RCTRLO request updates the monitor’s internal
status information to reflect the current contents of the JSW.

Macro Call:

.RCTRLO

Errors:

WARNING
If the terminal is set to XOFF (no scroll or hold session),
.RCTRLO will not clear the XOFF condition.

Example:
.TITLE ERCTRL

;+
; .RCTRLO - This is an example in the use of the .RCTRLO request.
; In this example, the user program first calls the CSI in general mode,
; then processes the command. When finished, it returns to the CSI for
; another command line. To make sure that the prompting ’*’ typed by
; the CSI is not inhibited by a CTRL-O in effect from the last operation,
; terminal output is assured via the .RCTRLO request prior to the
; CSI call.
;-

.MCALL .RCTRLO,.CSIGEN

START: .RCTRLO ;Make sure TT: output is enabled
.CSIGEN #DSPACE,#DEXT,#0 ;Issue a .CSIGEN request to get

;command
;(CSI will prompt with ’*’)

; ... ;Process the command...
JMP START ;Get another command...

DEXT: .WORD 0,0,0,0 ;No default extensions

DSPACE =:. ;Space for handlers starts here

.END START

2–196 RT–11 System Macro Library Manual

.RCVD/.RCVDC/.RCVDW
EMT 375, Code 26
The .RCVD (receive data) request allows a job to read messages or data sent by
another job in a multijob environment.

Three forms of the .RCVD request are used with the .SDAT (send data) request.
The send-data receive-data request combination provides a general data/message
transfer system for communication between a foreground and a background job.
.RCVD requests can be thought of as .READ requests where data transfer is not
from a peripheral device, but from the other job in the system. Additional queue
elements should be allocated for buffered I/O operations in .RCVD and .RCVDC
requests (See the .QSET request). Under a system job monitor, .RCVD requests
and .SDAT requests remain valid for sending messages between background and
foreground jobs in addition to the general read and write capability available to all
jobs provided by MQ.

Be particularly careful if you use both synchronous (.RCVDW and .SDATW) and
asynchronous (.RCVDC and .SDATC) requests in the same program. If you issue
a mainline .SDATW while there is a pending .RCVDC, the .SDATW will wait until
the .RCVDC is satisfied. If the completion routine for the .RCVDC issues another
.RCVDC, the mainline .SDATW will never complete. In general, you should avoid the
use of both synchronous and asynchronous message requests in the same program.

.RCVD
The request is posted and the issuing job continues execution. When the job needs to
have the transmitted message, executing .MWAIT suspends the job until all .SDATx
and .RCVDx requests for the job are complete.

Macro Call:

.RCVD area,buf,wcnt[,BMODE=strg]

where:

area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message length and
message data are to be placed

wcnt is the number of words in the buffer

Programmed Request Description and Examples 2–197

.RCVD/.RCVDC/.RCVDW

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

Request Format:

No BMODE BMODE

R0 area: 26 0 26 0

reserved reserved

buf buf

1 mapping bits

1

wcnt wcnt

Upon completion of the .MWAIT, the first word of the message buffer contains the
number of words sent. Thus, the space allocated for the message should always be
at least one word larger than the actual message size expected. If the sending job
attempts to send more words than the receiver specified in the wcnt argument of the
.RCVD request, the first word of the buffer will contain the number of words that
the sender specified, but only wcnt words will be actually transferred. The rest of
the sender’s message will be ignored.

2–198 RT–11 System Macro Library Manual

.RCVD/.RCVDC/.RCVDW

Because wcnt (word count) is a variable number, the .SDAT/.RCVD combination can
transmit a few words or entire buffers. The data transfer can only complete when a
.SDATx is issued by the other job.

Programs using .RCVD/.SDAT must be carefully designed to either always transmit
/receive data in a fixed format or to have the capability of handling variable formats.
Messages are all processed in first-in first-out order. Thus, the receiver must be
certain it is receiving the message it actually wants. Message handling does not
check for a word count of zero before queuing a send or receive data request. Since
RT–11 distinguishes a send from a receive by complementing the word count, a
.SDAT of zero words is treated as a .RCVD of zero words. Avoid a word count of zero
at all times when using a .RCVD request.

Errors:

Code Explanation
0 No other job exists in the system. (A job exists as long as it is loaded,

whether or not it is active.)

Example:
Refer to the example for the .SDAT request.

Programmed Request Description and Examples 2–199

.RCVD/.RCVDC/.RCVDW

.RCVDC
The .RCVDC request receives data and enters a completion routine when the
message is received. The .RCVDC request is posted and the issuing job continues
to execute. When the other job sends a message, the completion routine specified is
entered.

Macro Call:

.RCVDC area,buf,wcnt,crtn[,BMODE=strg][,CMODE=strg]

where:

area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message length
/message data is to be placed

wcnt is the number of words in the buffer

crtn is the address of a completion routine to be entered

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

2–200 RT–11 System Macro Library Manual

.RCVD/.RCVDC/.RCVDW

CMODE = strg where strg is:

Value Description

U User space (default)

S Supervisor space

Specifying CMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
CMODE.

• Specifies the space for the crtn argument.

• Is a valid option only for fully mapped monitors.

Note that, if both BMODE and CMODE are specified, only
one additional word can be added that contains both flags.

As in the .RCVD request, word 0 of the buffer contains the number of words
transmitted when the transfer is complete.

Request Format:

No BMODE, CMODE BMODE or CMODE

R0 area: 26 0 26 0

reserved reserved

buf buf

mapping bits

wcnt wcnt

crtn

crtn

Errors:

Code Explanation
0 No other job exists in the system. (A job exists as long as it is loaded,

whether or not it is active.)

Programmed Request Description and Examples 2–201

.RCVD/.RCVDC/.RCVDW

Example:
.TITLE EREADC;2

;+
; .READC / .WRITC - This is an example in the use of the .READC /
; .WRITC requests. The example demonstrates event-driven I/O where
; a mainline program initiates a file transfer and completion routines
; continue it while the mainline proceeds with other processes. The
; example is another single file copy program, utilizing .CSIGEN to
; input the file specs, load the required handlers and open the files.
;-

.MCALL .READC,.WRITC,.CLOSE,.PRINT

.MCALL .CSIGEN,.EXIT,.WAIT,.SRESET

.MCALL .QSET

$ERRBY =: 52 ;(.SYCDF)Error Byte in SYSCOM

.ENABL LSB
START: MOV SP,R5 ;Save SP, since .C>SIGEN changes it

.CSIGEN #DSPACE,#DEFEXT ;Use CSIGEN to get handlers, files
MOV R5,SP ;Restore SP
.QSET #QUEUE,#2 ;Add some queue elements
CALL IOXFER ;Start I/O
.PRINT #MESSG ;Now simulate other mainline process
MOV #-1,R5 ;

10$: DEC R5 ; (kill some time)
BNE 10$;
TSTB EOF ;Did I/O complete?
BEQ 10$;No...do some more mainline work
INCB EOF ;Check for read/write error
BEQ WERR ;EOF = 0 = Write error
BLT RERR ;EOF .lt. 0 = Read error
.CLOSE #0 ;EOF > 0 = End of File
MOV #DONE,R0 ;R0 => We’re done messg
BR GBYE ;Merge to exit program

WERR: MOV #WRERR,R0 ;Set up error messages here...
BR GBYE

RERR: MOV #RDERR,R0
GBYE: .PRINT ;Print message

.SRESET ;Dismiss fetched handlers

.EXIT ;Exit program

WRDONE: .WAIT #0 ;Write compl rtne...write successful?
BCS 30$;Branch if not...

IOXFER: .READC #AREA,#3,,,#RDDONE ;Queue up a read
BCC 60$;Branch if ok...
TSTB @#$ERRBY ;Error - is it EOF?
BEQ 50$;Branch if yes

20$: DECB EOF ;User EOF Flag to indicate hard error
30$: DECB EOF ;EOF = -2 Read err / = -1 Write err

RETURN ;Leave completion code
RDDONE: .WAIT #3 ;Compl rtne #2 - was read ok?

BCS 20$;Branch if not
.WRITC #AREA,#0,,,#WRDONE ;Queue up a write...
BCS 30$;Branch if error

40$: INC BLOCK ;Bump block # for next read
RETURN ;Leave Completion code...

50$: INCB EOF ;Set EOF flag
60$: RETURN ;then return

2–202 RT–11 System Macro Library Manual

.RCVD/.RCVDC/.RCVDW

AREA:: .WORD 0 ;EMT Area block
BLOCK: .WORD 0 ;Block #,

.WORD BUFF ;Buffer addr & word count

.WORD 256. ;already fixed in block...

.WORD 0 ;Completion rtne addr

BUFF: .BLKW 256. ;I/O buffer

DEFEXT: .WORD 0,0,0,0 ;No default extensions for CSIGEN

QUEUE: .BLKW 2*10. ;Extra queue elements

EOF: .BYTE 0 ;EOF flag

DONE: .ASCIZ "!EREADC-I-I/O Transfer Complete"
MESSG: .ASCIZ "!EREADC-I-Simulating Mainline Processing"
WRERR: .ASCIZ "?EREADC-I-Write Error"
RDERR: .ASCIZ "?EREADC-I-Read Error"

.EVEN
DSPACE = . ;Handlers may be loaded starting here

.END START

.RCVDW
A message request is posted and the job issuing the request is suspended until all
pending .SDATx and .RCVDx requests for the job are complete. When the issuing
job runs again, the message has been received, and word 0 of the buffer indicates
the number of words transmitted.

Macro Call:

.RCVDW area,buf,wcnt,[,BMODE=strg]

where:

area is the address of a five-word EMT argument block

buf is the address of the buffer into which the message length
/message data is to be placed

wcnt is the number of words to be transmitted

Programmed Request Description and Examples 2–203

.RCVD/.RCVDC/.RCVDW

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

Request Format: No BMODE BMODE

R0 area: 0 26 0

reserved reserved

buf buf

0 mapping bits

0

26

wcnt wcnt

Errors:

Code Explanation
0 No other job exists in the system. (A job exists as long as it is loaded,

whether or not it is active.)

Example:
See .SDATW.

2–204 RT–11 System Macro Library Manual

.RDBBK
Macro Expansion
The .RDBBK macro defines symbols for the region definition block and reserves
space for it. The .RDBBK automatically invokes .RDBDF.

Use optional fourth parameter, BASE=n, to explicitly assign a base address to a
global region. Because the BASE=n parameter is optional, you do not need to modify
existing programs unless you want this new functionality. The .RDBBK macro has
the following syntax:

Macro Call:

.RDBBK rgsiz,rgsta,name[,BASE=n]

where:

rgsiz is the size of the dynamic region needed (expressed in 32-word
units)

rgsta is the region status byte

name is the name of the global region

BASE=n specifies the starting address of the region, expressed in 32-
word units. A value of 0 (or value omitted) means any
available base address is acceptable.

Errors:
None.

Example:

See .CRAW. See also the RT–11 System Internals Manual for a detailed description
of the extended memory feature.

Programmed Request Description and Examples 2–205

.RDBDF
Macro Expansion

The .RDBDF macro defines the symbolic offset names for the region definition block
and the names for the region status word bit patterns. This macro also defines the
length of the region definition block, but it does not reserve space for the region
definition block.

Macro Call:

.RDBDF

The .RDBDF macro expands as follows:

R.GID =: 0 ;Region ID
R.GSIZ=: 2. ;Size in chunks
R.GSTS=: 4. ;Status
R.GLLN=: 6. ;Length of simple RDB
R.GNAM=: 6. ;Name of global region (optional)
R.GBAS=: 10. ;Base physical address (optional)
R.GLGH=: 12. ;Length of complex RDB
RS.CRR=: ^o100000 ;Region created successfully
RS.UNM=: ^o40000 ;One or more windows eliminated
RS.NAL=: ^o20000 ;Region newly allocated
RS.NEW=: ^o10000 ;New global region
RS.GBL=: ^o4000 ;Create within a global region
RS.CGR=: ^o2000 ;Create new global region if not found
RS.AGE=: ^o1000 ;Enable auto elimination of region
RS.EGR=: ^o400 ;Eliminate global region
RS.EXI=: ^o200 ;Eliminate global region on exit / abort
RS.CAC=: ^o100 ;Bypass memory cache
RS.BAS=: ^o40 ;R.GBAS supplied
RS.NSM=: ^o20 ;Non-system memory
RS.DSP=: ^o2 ;reserved
RS.PVT=: ^o1 ;reserved

2–206 RT–11 System Macro Library Manual

.READ/.READC/.READW
EMT 375, Code 10
Read operations for the three modes of RT–11 I/O use the .READ, .READC, and
READW programmed requests.

Be particularly careful if you use both synchronous .READW and .SDATW and
asynchronous .READC requests in the same channel. If you issue a mainline
..READW while there is a pending .READC, the .READW will wait until the .READC
is satisfied. If the completion routine for the .READC issues another .READC, the
mainline .READW will never complete. In general, you should avoid the use of both
synchronous and asynchronous message requests in the same program.

For .READ and .READC, additional queue elements should be allocated for queued
I/O operations (See the .QSET request).

Upon return from any .READ, .READC, or .READW programmed request, R0
contains the number of words requested if the read is from a sequential-access
device. If the read is from a random-access device (disk), R0 contains the actual
number of words that will be read (.READ or .READC) or have been read (.READW),
provided no error is reported. This number is less than the requested word count
if an attempt is made to read past end-of-file, but a partial transfer of one or more
blocks is possible. In the case of a partial transfer, no error is indicated if a read
request is shortened. Therefore, a program should always use the returned word
count as the number of words available.

For example, suppose a file is five blocks long (it has block numbers 0 to 4) and a
request is issued to read 51210 words, starting at block 4. Since 512 words is two
blocks, and block 4 is the last block of the file, this is an attempt to read past end-
of-file. The monitor detects this and shortens the request to 25610 words. On return
from the request, R0 contains 256, indicating that a partial transfer occurred. Also,
since the request is shortened to an exact number of blocks, a request for 256 words
either succeeds or fails, but cannot be shortened.

An error is reported if a read is attempted starting with a block number that is
beyond the end-of-file. The carry bit is set, and error code 0 appears in byte 52. No
data is transferred in this case, and R0 contains a zero.

.READ
The .READ request transfers to memory a specified number of words from the device
associated with the specified channel. The channel is associated with the device
when a .LOOKUP or .ENTER request is executed. Control returns to the user
program immediately after the .READ is initiated, possibly before the transfer is
completed. No special action is taken by the monitor when the transfer is completed.

Programmed Request Description and Examples 2–207

.READ/.READC/.READW

Macro Call:

.READ area,chan,buf,wcnt,blk[,BMODE=strg]

where:

area is the address of a five- or six-word EMT argument block

chan is a channel number in the range 0-3768

buf is the address of the buffer to receive the data read

wcnt is the number of words to be read

blk is the block number to be read. For a file-structured
.LOOKUP, the block number is relative to the start of the file.
For a non-file-structured .LOOKUP, the block number is the
absolute block number on the device. Note the first block of a
file or device is block number 0. The user program normally
updates blk before it is used again. If input is from TT: and
blk=0, TT: issues an up-arrow (^) prompt (This is true for all
.READ* requests.)

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

Notes
.READ and .READC requests instruct the monitor to do a read from the device
by queuing a request for the device, then immediately returning control to your
program.

2–208 RT–11 System Macro Library Manual

.READ/.READC/.READW

In general the order in which I/O requests are completed is not guaranteed by the
operating system. A direct access device in a system which has the UB handler
active, the UB handler may reorder requests to optimize the use of unibus mapping
registers. In a system without UB active, requests within a job are handled on a
FIFO basis; but requests between jobs are done on a priority basis. The handler
for a nondirect access device should allow only one job to attach to a unit and the
handler should be marked as requiring serialization to preclude UB from reordering
operations.

Under certain circumstances, completion routines can be entered even if the .READC
request returns an error. Multiple asynchronous read request to a device can cause a
completion routine to be entered even when .READC returns an error. A high speed
device can return an error during the short window existing between two sections of
hardware processing code, the first of which checks the previous request, the second
of which checks the .READC request. The completion routine can be entered in the
interim before .READC returns for the second error check. Therefore, you should
exercise care when making multiple asynchronous read requests to a device if any
of the requests call a completion routine.

Read errors are returned from the .READ and .READC or the .WAIT request. Errors
can occur on the read or on the wait, but only one error is returned. Therefore, the
program must check for an error when the read is complete (.READ/BCS) and after
the wait (.WAIT/BCS). The wait request returns an error, but it does not indicate
which read caused the error.

Errors reported on the return from the read request are as follows:

• Nonexistent device/unit

• Nonexistent block

• In general, errors that do not require data transfers but are controller errors or
EOF errors

During the .READ and .READC requests, the monitor keeps track of errors in the
channel status word. If an error occurs before the monitor can return to the caller,
the error is reported on the return from the read request with the carry bit set and
the error value in R0. If the error occurs after return from the read request, the
error is reported on return from the next .WAIT, or the next .READ/.READC. Some
errors can be returned from .READ/.READC requests immediately, before any I/O
operation takes place. One condition that causes an immediate error return is an
attempt to read beyond end-of-file.

If .READ/C/W requests are used to receive messages under a system job monitor,
the buffer must be one word longer than the number of words expected to be read.
Upon completion of the data transfer, the first word of the buffer will contain a value
equal to the number of words actually transferred (as for .RCVD/C/W).

Programmed Request Description and Examples 2–209

.READ/.READC/.READW

Request Format:

No BMODE BMODE

R0 area: chan 10 chan

blk blk

1 mapping bits

1

10

buf buf

wcnt wcnt

When the user program needs to access the data read on the specified channel, issue
a .WAIT request as a check that the data has been read completely. If an error
occurred during the transfer, the .WAIT request indicates the error.

The handler for nondirect-access devices should allow only one job to attach to a
given unit. The handler should be marked, as requiring serialization to prevent UB
from reordering operations.

Errors:

Code Explanation
0 Attempt to read past end-of-file.

1 Hard error occurred on channel.

2 Channel is not open.

Example:

.TITLE EREAD
;+
; .READ / .WRITE - This is an example in the use of the .READ / .WRITE
; requests. The example demonstrates asynchronous I/O where a mainline
; program initiates input via .READ requests, does some other processing
; makes sure input has completed via the .WAIT request, then outputs
; the block just read. Another .WAIT is issued before the next read
; is issued to make sure the previous write has finished. This example
; is another single file copy program, utilizing .CSIGEN to input the
; file specs, load the required handlers and open the files.
;-

.MCALL .READ,.WRITE,.CLOSE,.PRINT

.MCALL .CSIGEN,.EXIT,.WAIT,.SRESET

$ERRBY =: 52 ;(.SYCDF)Error Byte in SYSCOM

2–210 RT–11 System Macro Library Manual

.READ/.READC/.READW

.ENABL LSB ;Enable local symbol block
START: .CSIGEN #DSPACE,#DEFEXT ;Use CSIGEN to get handlers, files

MOV #AREA,R5 ;R5 => EMT Argument list
CLR IOBLK ;Start reads with Block #0

1$: .READ R5,#3 ;Read a block...
BCS 6$;Branch on error
; . ;Then simulate
BIT #1,IOBLK ;some other
BNE 2$;meaningful(?)
.PRINT #MESSG ;process...
; .

2$: .WAIT #3 ;Did read finish OK?
BCS 5$;Branch if not (must be hard error!)
.WRITE R5,#0 ;Now write the block just read
BCS 3$;Branch on error
INC IOBLK ;Bump Block #
; . ;We could do some more processing here
.WAIT #0 ;Wait for write to finish
BCC 1$;Branch if write was successful

3$: MOV #WERR,R0 ;R0 => Write error msg
4$: .PRINT ;Report error

BR 7$;Merge to exit program
5$: MOV #RERR,R0 ;R0 => Read error msg

BR 4$;Branch to report error
6$: TSTB @#$ERRBY ;Read error...EOF?

BNE 5$;Branch if not
.PRINT #DONE ;Yes...announce completion
.CLOSE #0 ;Make output file permanent

7$: .SRESET ;Dismiss fetched handlers
.EXIT ;then exit program

AREA:: .WORD 0 ;EMT Area block
IOBLK: .WORD 0 ;Block #,

.WORD BUFF ;Buffer addr & word count

.WORD 256. ;already fixed in block...

.WORD 0 ;nowait type I/O

BUFF: .BLKW 256. ;I/O buffer

DEFEXT: .WORD 0,0,0,0 ;No default extensions for CSIGEN

DONE: .ASCIZ "!EREAD-I-I/O Transfer Complete"
MESSG: .ASCIZ "!EREAD-I-Simulating Mainline Processing"
WERR: .ASCIZ "?EREAD-F-Write Error"
RERR: .ASCIZ "?EREAD-F-Read Error"

.EVEN
DSPACE: ;Handlers may be loaded starting here

.END START

.READC
The .READC request transfers to memory a specified number of words from the
device associated with the specified channel. Control returns to the user program
immediately after the .READC is initiated. Attempting to read past end-of-file also
causes an immediate return, in this case with the carry bit set and the error byte set
to 0. Execution of the user program continues until the .READC is complete, then
control passes to the routine specified in the request. When a RETURN is executed
in the completion routine, control returns to the user program.

Programmed Request Description and Examples 2–211

.READ/.READC/.READW

Macro Call:

.READC area,chan,buf,wcnt,crtn,blk[,BMODE][,CMODE]

where:

area is the address of a five-word EMT argument block

chan is a channel number in the range 0-3768

buf is the address of the buffer to receive the data read

wcnt is the number of words to be read

crtn is the address of the user’s completion routine. The address
of the completion routine must be above 5008

blk is the block number to be read. For a file-structured
.LOOKUP, the block number is relative to the start of the
file. For a non-file-structured .LOOKUP, the block number is
the absolute block number on the device. The user program
normally updates blk before it is used again

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

2–212 RT–11 System Macro Library Manual

.READ/.READC/.READW

CMODE = strg where strg is:

Value Description

U User space (default)

S Supervisor space

Specifying CMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
CMODE.

• Specifies the space for the crtn argument.

• Is a valid option only for fully mapped monitors.

When a completion routine is called, error or end-of-file information for a channel is
not cleared. The next .WAIT or .READ/.READC on the channel (from either mainline
code or a completion routine) produces an immediate return with the C bit set and
the error code in byte 52. The completion routine will never be entered if the .READC
request returns an error.

Request Format:

No BMODE, CMODE BMODE, CMODE

R0 area: 10 chan 10 chan

blk blk

mapping bits

buf buf

wcnt wcnt

crtn

crtn

When a .READC completion routine is entered, the following conditions are true:

• R0 contains the contents of the channel status word for the operation. If HDERR$
of R0 is set, a hardware error occurred during the transfer; consequently, the data
may not be reliable. The end-of-file bit, EOF$ may be set.

• R1 contains the channel number of the operation. This is useful when the same
completion routine is to be used for transfers on different channels.

• On a file-structured transfer, a shortened read is reported when the .READC
request is returned, not when the completion routine is called.

Programmed Request Description and Examples 2–213

.READ/.READC/.READW

• R0 and R1 can be used by the routine, but all other registers must be saved
and restored. Data cannot be passed between the main program and completion
routines in any register or on the stack.

Errors:

Code Explanation
0 Attempt to read past end-of-file; no data was read.

1 Hard error occurred on channel.

2 Channel is not open.

Example:

.TITLE EREADC;2
;+
; .READC / .WRITC - This is an example in the use of the .READC /
; .WRITC requests. The example demonstrates event-driven I/O where
; a mainline program initiates a file transfer and completion routines
; continue it while the mainline proceeds with other processes. The
; example is another single file copy program, utilizing .CSIGEN to
; input the file specs, load the required handlers and open the files.
;-

.MCALL .READC,.WRITC,.CLOSE,.PRINT

.MCALL .CSIGEN,.EXIT,.WAIT,.SRESET

.MCALL .QSET

$ERRBY =: 52 ;(.SYCDF)Error Byte in SYSCOM

.ENABL LSB
START: MOV SP,R5 ;Save SP, since .C>SIGEN changes it

.CSIGEN #DSPACE,#DEFEXT ;Use CSIGEN to get handlers, files
MOV R5,SP ;Restore SP
.QSET #QUEUE,#2 ;Add some queue elements
CALL IOXFER ;Start I/O
.PRINT #MESSG ;Now simulate other mainline process
MOV #-1,R5 ;

10$: DEC R5 ; (kill some time)
BNE 10$;
TSTB EOF ;Did I/O complete?
BEQ 10$;No...do some more mainline work
INCB EOF ;Check for read/write error
BEQ WERR ;EOF = 0 = Write error
BLT RERR ;EOF .lt. 0 = Read error
.CLOSE #0 ;EOF > 0 = End of File
MOV #DONE,R0 ;R0 => We’re done messg
BR GBYE ;Merge to exit program

WERR: MOV #WRERR,R0 ;Set up error messages here...
BR GBYE

RERR: MOV #RDERR,R0
GBYE: .PRINT ;Print message

.SRESET ;Dismiss fetched handlers

.EXIT ;Exit program

2–214 RT–11 System Macro Library Manual

.READ/.READC/.READW

WRDONE: .WAIT #0 ;Write compl rtne...write successful?
BCS 30$;Branch if not...

IOXFER: .READC #AREA,#3,,,#RDDONE ;Queue up a read
BCC 60$;Branch if ok...
TSTB @#$ERRBY ;Error - is it EOF?
BEQ 50$;Branch if yes

20$: DECB EOF ;User EOF Flag to indicate hard error
30$: DECB EOF ;EOF = -2 Read err / = -1 Write err

RETURN ;Leave completion code
RDDONE: .WAIT #3 ;Compl rtne #2 - was read ok?

BCS 20$;Branch if not
.WRITC #AREA,#0,,,#WRDONE ;Queue up a write...
BCS 30$;Branch if error

40$: INC BLOCK ;Bump block # for next read
RETURN ;Leave Completion code...

50$: INCB EOF ;Set EOF flag
60$: RETURN ;then return

AREA:: .WORD 0 ;EMT Area block
BLOCK: .WORD 0 ;Block #,

.WORD BUFF ;Buffer addr & word count

.WORD 256. ;already fixed in block...

.WORD 0 ;Completion rtne addr

BUFF: .BLKW 256. ;I/O buffer

DEFEXT: .WORD 0,0,0,0 ;No default extensions for CSIGEN

QUEUE: .BLKW 2*10. ;Extra queue elements

EOF: .BYTE 0 ;EOF flag

DONE: .ASCIZ "!EREADC-I-I/O Transfer Complete"
MESSG: .ASCIZ "!EREADC-I-Simulating Mainline Processing"
WRERR: .ASCIZ "?EREADC-I-Write Error"
RDERR: .ASCIZ "?EREADC-I-Read Error"

.EVEN
DSPACE = . ;Handlers may be loaded starting here

.END START

.READW
The .READW request transfers to memory a specified number of words from the
device associated with the specified channel. When the .READW is complete or an
error is detected, control returns to the user program.

Macro Call:

.READW area,chan,buf,wcnt,blk[,BMODE=strg]

where:

area is the address of a five-word EMT argument block

chan is a channel number in the range 0-3768

buf is the address of the buffer to receive the data read

Programmed Request Description and Examples 2–215

.READ/.READC/.READW

wcnt is the number of words to be read; each .READ request can
transfer a maximum of 32K words

blk is the block number to be read. For a file-structured
.LOOKUP, the block number is relative to the start of the
file. For a non-file-structured .LOOKUP, the block number is
the absolute block number on the device. The user program
normally updates blk before it is used again

BMODE=strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

Request Format:

No BMODE BMODE

R0 area: chan 10 chan

blk blk

0 mapping bits

0

10

buf buf

wcnt wcnt

If no error occurred, the data is in memory at the specified address. In a multijob
environment, the other job can be run while the issuing job is waiting for the I/O

2–216 RT–11 System Macro Library Manual

.READ/.READC/.READW

to complete. If a volume is opened with a non-file-structured lookup and the word
count specified is greater than the number of words left on the volume, .READW
returns a hard error.

Errors:

Code Explanation
0 Attempt to read past end-of-file.

1 Hard error occurred on channel.

2 Channel is not open.

Example:
.TITLE EREADW

; .READW / .WRITW - This is an example in the use of the .READW / .WRITW
; requests. The example is a single file copy program. The file specs
; are input from the console terminal, and the input & output files opened
; via the general mode of the CSI. The file is copied using synchronous
; I/O, and the output file is made permanent via the .CLOSE request.

.MCALL .CSIGEN,.READW,.PRINT,.EXIT,.WRITW,.CLOSE,.SRESET
$ERRBY=:52 ;(.SYCDF) Error Byte Location

START: .CSIGEN #DSPACE,#DEXT ;Get string from terminal
CLR IOBLK ;Input block # starts with 0
MOV #AREA,R5 ;R5 => EMT Argument list

READ: .READW R5,#3 ;Read a block on Channel 3
;Blk#, Buff addr & WC already in arg

BCC 20$;Branch if no errors
TSTB @#$ERRBY ;Is error EOF?
BEQ 30$;Yes...
MOV #RERR,R0 ;R0 => Read Error Message

10$: .PRINT ;Print the message
BR 40$;Exit program

20$: .WRITW R5,#0 ;Write the block just read
INC IOBLK ;Bump block # (doesn’t affect C bit)
BCC READ ;Branch if no error
MOV #WERR,R0 ;R0 => Write error message
BR 10$;Branch to output the message

30$: .CLOSE #0 ;End-of-File...Close output channel
.PRINT #DONE ;Announce successful copy

40$: .SRESET ;Release handler(s) from memory
.EXIT ;Exit the program

DEXT: .WORD 0,0,0,0 ;No default extensions
AREA: .WORD 0 ;EMT Argument block
IOBLK: .WORD 0 ;Block #

.WORD BUFFR ;I/O Buffer addr

.WORD 256. ;Word Count

.WORD 0 ;
BUFFR: .BLKW 256. ;I/O Buffer
RERR: .ASCIZ "?EREADW-F-Read error"
WERR: .ASCIZ "?EREADW-F-Write error"
DONE: .ASCIZ "!EREADW-I-I/O Transfer Complete"

.EVEN
DSPACE =:. ;Handler(s) can be loaded starting here

.END START

Programmed Request Description and Examples 2–217

.RELEAS
See .FETCH/.RELEAS.

2–218 RT–11 System Macro Library Manual

.RENAME
EMT 375, Code 4
The .RENAME request changes the name of the file specified.

Macro Call:

.RENAME area,chan,dblk

where:

area is the address of a two-word EMT argument block

chan is an available channel number in the range 0-3768

dblk is the address of a block that specifies the file to be renamed followed
by the new file name

Request Format:

R0 area: 4 chan

dblk

The dblk argument consists of two consecutive Radix–50 device and file
specifications. For example:

.TITLE ERENA1

.RENAME #AREA,#7,#DBLK ;Rename using chan 7
BCS RENERR ;failed
BR RENOK ;success

DBLK: .RAD50 "DK " ;old file name
.RAD50 "ERENA1"
.RAD50 "TMP"
.RAD50 "DK " ;new file name
.RAD50 "ZRENA1"
.RAD50 "TMP"

The first string represents the file to be renamed and the device where it is stored.
The second represents the new file name. If a file with the same name as the new
file name specified already exists on the indicated device, it is deleted. The second
occurrence of logical name SRC is necessary for proper operation and should not
be omitted. The specified channel is left inactive when the .RENAME is complete.
.RENAME requires that the handler to be used be resident at the time the .RENAME
request is made. If it is not, a monitor error occurs. Note that .RENAME is valid
only on files on block-replaceable devices (disks). In magtape operations, the handler
returns an invalid operation code in byte 52 if a .RENAME request is attempted. A
.RENAME request to other devices is ignored.

Files cannot be protected or unprotected using the .RENAME request. To change
the protection status of a file, use the .FPROT or .SFSTA requests or the PROTECT
and UNPROTECT commands.

Programmed Request Description and Examples 2–219

.RENAME

File dates can be changed using the .SFDAT request.

Errors:

Code Explanation
0 Channel not available.

1 File not found.

2 Invalid operation.

3 A file by that name already exists and is protected. A .RENAME was
not done.

Example:
.TITLE ERENAM;2

; .RENAME - This is an example in the use of the .RENAME request. The
; example renames a file according to filespecs input thru the .CSISPC.
;-

.MCALL .RENAME,.PRINT,.EXIT

.MCALL .CSISPC,.FETCH,.SRESET
$ERRBYT =: 52 ;(.SYCDF) Error byte location

START: .CSISPC #FILESP,#DEFEXT ;Use .CSISPC to get file specs
.FETCH #HANLOD,#FILESP ;Get Handler from outspec
BCS 20$;Branch if failed
MOV #FILESP,R2 ;R2 => Outspec
MOV #FILESP+46,R3 ;R3 => Inspec
MOV @R2,FILESP+36 ;Copy device spec to inspec
.REPT 4 ;Copy outspec behind inspec
MOV (R2)+,(R3)+ ;for .RENAME...
.ENDR
.RENAME #AREA,#0,#FILESP+36 ;Rename input file
BCC 10$;Operation successful
DECB @#$ERRBY ;Make error code -1,0 or +1
BEQ 30$;Branch if File-Not-Found
MOV #ILLOP,R0 ;Illegal operation-set up msg
BR 40$;Branch to report error

10$: .SRESET ;Dismiss handlers
.EXIT ;Exit program

20$: MOV #NOHAN,R0 ;Fetch failed-set up message
BR 40$;Branch to report error

30$: MOV #NOFIL,R0 ;File not found-setup message
40$: .PRINT ;Print error message

BR 10$;Then exit via .SRESET

AREA: .BLKW 5 ;EMT Argument block

DEFEXT: .WORD 0,0,0,0 ;No default extensions

NOFIL: .ASCIZ "?ERENAM-F-File not found"
ILLOP: .ASCIZ "?ERENAM-F-Illegal Operation"
NOHAN: .ASCIZ "?ERENAM-F-.FETCH Failed"

.EVEN
FILESP: .BLKW 39. ;CSISPC Input Area
HANLOD = . ;Handlers can load here...

.END START

2–220 RT–11 System Macro Library Manual

.REOPEN
EMT 375, Code 6
The .REOPEN request associates the channel that was specified with a file on
which a .SAVESTATUS was performed. The .SAVESTATUS/.REOPEN combination
is useful when a large number of files must be operated on at one time. As many
files as are needed can be opened with .LOOKUP, and their status preserved with
.SAVESTATUS. When data is required from a file, a .REOPEN enables the program
to read from the file. The .REOPEN need not be done on the same channel as the
original .LOOKUP and .SAVESTATUS.

Macro Call:

.REOPEN area,chan,cblk

where:

area is the address of a two-word EMT argument block

chan is a channel number in the range 0-3768

cblk is the address of the five-word block where the channel status
information was stored

Request Format:

R0 area: 6 chan

cblk

Errors:

Code Explanation
0 The specified channel is not available. The .REOPEN has not been

done.

Example:
Refer to the example for the .SAVESTATUS request.

Programmed Request Description and Examples 2–221

.RSUM
See .SPND/.RSUM.

2–222 RT–11 System Macro Library Manual

.SAVESTATUS
EMT 375, Code 5
.SAVESTATUS stores, in a user-specified area of memory, the five-word channel
status information RT–11 requires to completely define a file. .SAVESTATUS places
data words in memory, frees the specified channel and closes the file. When the saved
channel data is required, the .REOPEN request is used. The five words returned by
.SAVESTATUS contain the following information:

Name Offset Contents

C.CSW 0 Channel status word

C.SBLK 2 Starting block number

C.LENG 4 Length of file

C.USED 6 Highest block written

C.DEVQ 10 Number of pending requests

C.UNIT 11 Device unit number

.SAVESTATUS can only be used if a file has been opened with .LOOKUP. If .ENTER
was used, .SAVESTATUS is invalid and returns an error. Note that .SAVESTATUS
is not valid for magtape files because additional status information in the device
handler is not available to .SAVESTATUS.

The .SAVESTATUS/.REOPEN requests used together can open many files on a
limited number of channels or allow all .LOOKUPs to be done at once to avoid
USR swapping. Although this is a useful combination, care must be observed when
using it. In particular, the following cases should be avoided:

• When a .SAVESTATUS is performed and the same file is then deleted before it
is reopened, it becomes available as an empty space that could be used by the
.ENTER command. If this sequence occurs, the contents of supposedly saved file
changes.

• Although the device handler for the required peripheral need not be in memory
for execution of a .REOPEN, the handler must be in memory when a .READ or
.WRITE is executed, or a fatal error is generated.

• .SAVESTATUS and .REOPEN are commonly used to consolidate all directory
access motion and code at one place in the program. All files necessary are opened
and their status saved, then they are reopened one at a time as needed. USR
swapping can be minimized by locking in the USR, doing .LOOKUP requests as
needed, using .SAVESTATUS to save the file data, and then unlocking the USR.
Be careful not to lock in the USR in a multijob environment. If the lower priority
job locks in the USR when the higher priority job requires it, the lower priority
job is delayed until the higher priority job unlocks the USR.

Programmed Request Description and Examples 2–223

.SAVESTATUS

Macro Call:

.SAVESTATUS area,chan,cblk

where:

area is the address of a two-word EMT argument block

chan is a channel number in the range 0-3768

cblk is the address of the five-word user memory block where the channel
status information is to be stored

Request Format:

R0 area: 5 chan

cblk

Errors:

Code Explanation
0 The channel specified is not open.

1 The file was opened with an .ENTER request or a .SAVESTATUS
request was performed for a magtape file.

Example:
.TITLE ESAVES;2

;+
; .SAVESTATUS / .REOPEN - This is an example in the use of the .SAVESTATUS
; /.REOPEN requests. These requests are most commonly used together to
; consolidate access to the USR at one place in the program or if the
; program must access more files than there are I/O channels available.
; Once a channel has been opened, its status may be saved, to be re-opened
; and used later as needed. This example merges 1-6 files into 1 file,
; reading all input files on one channel.
;-

.MCALL .CSIGEN,.SAVESTATUS,.REOPEN,.CLOSE,.EXIT

.MCALL .READW,.WRITW,.PRINT,.PURGE

$ERRBY =: 52 ;(.SYCDF)Error byte in SYSCOM

START: MOV SP,R5 ;Save SP, since .CSIGEN changes it
.CSIGEN #DSPACE,#DEFEXT ;Get file specs,open files,load handlers
MOV R5,SP ;Restore it
MOV #3,R4 ;R4 = 1st input channel
MOV #AREA,R3 ;R3 => EMT Argument block
MOV #SAVBLK,R5 ;R5 => Channel savestatus blocks

10$: .SAVEST R3,R4,R5 ;Save channel status
BCS 20$;Branch if channel never opened
ADD #12,R5 ;Adjust R5 to point to next status block
INC R4 ;Bump R4 to = next input channel
CMP #8.,R4 ;Done all input channels?
BGE 10$;Branch if not

20$: MOV #SAVBLK,R5 ;R5 => to 1st saved channel status
BEQ 60$;Branch if no input files

30$: .REOPEN R3,#3,R5 ;Re-open input channel on Ch 3

2–224 RT–11 System Macro Library Manual

.SAVESTATUS

CLR BLK ;Start reading with block 0
40$: .READW R3,#3,#BUFFR,#256.,BLK ;Read a block

BCC 50$;Branch if no error
TSTB @#$ERRBY ;Check if error = EOF
BNE 70$;Branch if not EOF
.PURGE #3 ;Clear input channel for re-use
ADD #12,R5 ;Point R5 to next saved ch status
TST @R5 ;Any more input channels?
BNE 30$;Branch if yes
.CLOSE #0 ;We’re done...close output channel
.PRINT #DONE ;Announce merge complete
.EXIT ;Exit program

50$: .WRITW R3,#0,#BUFFR,#256.,WBLK ;Write block just read
INC WBLK ;Bump to next output block
INC BLK ;same for input blk (doesn’t affect C bit)
BCC 40$;Branch if no error on write
MOV #WERR,R0 ;Write error - R0 => message
BR 80$;merge...

60$: MOV #NOINP,R0 ;R0 => No input files message
BR 80$;merge...

70$: MOV #RERR,R0 ;R0 => Read error msg
80$: .PRINT ;Report error

.EXIT ;then exit program

AREA: .BLKW 5 ;EMT Argument block

BLK: .WORD 0 ;Current read block
WBLK: .WORD 0 ;Current write block

SAVBLK::.BLKW 30. ;Saved channel status area

DEFEXT: .WORD 0,0,0,0 ;No default extensions for CSIGEN

NOINP: .ASCIZ "?ESAVES-F-No input files"
WERR: .ASCIZ "?ESAVES-F-Write Error"
RERR: .ASCIZ "?ESAVES-F-Read Error"
DONE: .ASCIZ "!ESAVES-I-I/O Transfer Completed"

.EVEN
BUFFR: .BLKW 256. ;I/O buffer
DSPACE = . ;Handlers start here...

.END START

Programmed Request Description and Examples 2–225

.SCCA
EMT 375, Code 35, Subcode 0, 1
The .SCCA programmed request:

• Inhibits a CTRL/C abort

• Indicates when a double CTRL/C is initiated at the keyboard

• Distinguishes between single and double CTRL/C commands

Macro Call:

.SCCA area,addr[,TYPE=strg]

where:

area is the address of a two-word parameter block

addr is the address of a terminal status word (an address of 0
reenables double CTRL/C aborts). In a fully-mapped monitor,
if you set the low bit of addr on, it will be treated as a
Supervisor/Data space; otherwise, it is treated as a User/Data
space address.

TYPE=strg Optional parameter that specifies mode of SCCA operation as
LOCAL (default) or GLOBAL.

Request format for LOCAL:

R0 area: 35 0

addr

Request format for GLOBAL:

R0 area: 35 1

addr

When .SCCA is in effect, CTRL/C characters are placed in the input ring buffer and
treated as normal characters without specific system functions. The request requires
a terminal status word address (addr) that is used to report consecutive CTRL/C
input sequences. AS.CTC of the status word is set when consecutive CTRL/C
characters are detected. The program must clear that bit. An .SCCA request with a
status word address of 0 disables the intercept and reenables CTRL/C system action.

Normally, the .SCCA request only affects the job currently running. When the
program exits, CTRL/C aborts are automatically reenabled. However, if your monitor
includes global SCCA support enabled through system generation, you can choose to
disable CTRL/C aborts for as long as you need. Set the TYPE argument to GLOBAL

2–226 RT–11 System Macro Library Manual

.SCCA

and set addr to any valid SCCA control word. (The word pointed to by addr is
described in TAS.DF.) Thereafter, all CTRL/C aborts will be inhibited until another
global .SCCA request is issued to set addr to 0. Only background jobs can issue
global .SCCA requests, and these do not affect foreground or system job operation.
Global .SCCA requests issued by foreground and system jobs act as local .SCCA
requests.

Notes
There are three cautions to observe when using .SCCA:

• The request can cause CTRL/C to appear in the terminal input stream, and the
program must provide a way to handle it.

• The request makes it impossible to terminate program loops from the terminal;
therefore, it should be used only in thoroughly tested, reliable programs.

When .SCCA is in effect and the program enters an infinite loop, the system
must be halted and rebootstrapped.

• CTRL/Cs from indirect command files or indirect control files are not intercepted
by the .SCCA.

Errors:
None.

Example:
.TITLE ESCCA;1

;+
; ESCCA - this is an example of .SCCA
;-

.MCALL .SCCA,.PRINT

VALCNT = : 100. ;wait count

START: .SCCA #AREA,#ADDR ;Disable Control/C
MOV #VALCNT,COUNT ;init counter

LOOP1: MOV AREA,AREA ;waste time
.PRINT #MSG1 ;^C has no effect
DEC COUNT
BNE LOOP1

.SCCA #AREA,#0 ;Enable Control/C
LOOP2: .PRINT #MSG2 ;^C will now work

BR LOOP2

AREA: .BLKW 4
ADDR: .WORD 0
COUNT: .BLKW 1
MSG1: .ASCIZ "!ESCCA-I-Ctrl/C is disabled"
MSG2: .ASCIZ "!ESCCA-I-Ctrl/C is enabled"

.END START

Programmed Request Description and Examples 2–227

.SDAT/.SDATC/.SDATW
EMT 375, Code 25
The .SDAT/.SDATC/.SDATW requests are used with the .RCVD/.RCVDW/.RCVDC
calls to allow message transfers between a foreground job and a background job
under multijob monitors. .SDAT transfers are similar to .WRITE requests, where
data transfer is not to a peripheral, but from one job to another. Additional I/O
queue elements should be allocated for buffered I/O operations in .SDAT and .SDATC
requests (See .QSET).

Message handling in the monitor does not check for a word count of zero before
queuing a send or receive data request. Since RT–11 distinguishes a send from a
receive by complementing the word count, a .SDAT* of zero words is treated as a
.RCVD* of zero words. Therefore, avoid a word count of zero at all times when using
a .SDAT* request.

You should avoid the use of both synchronous and asynchronous message requests in
the same program. Be particularly careful if you use both synchronous (.RCVDW and
.SDATW) and asynchronous (.RCVDC and .SDATC) requests in the same program.
Issuing a mainline .SDATW while there is a pending .RCVDC, causes .SDATW to
wait until the .RCVDC is satisfied. If the completion routine for .RCVDC issues
another .RCVDC, the mainline .SDATW will never complete.

.SDAT
Macro Call:

.SDAT area,buf,wcnt[,BMODE=strg]

where:

area is the address of a five- or six-word EMT argument block

buf is the buffer address of the beginning of the message to be
transferred

wcnt is the number of words to transfer

BMODE=strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

2–228 RT–11 System Macro Library Manual

.SDAT/.SDATC/.SDATW

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

Request Format:

No BMODE BMODE

R0 area: 25 0 25 0

unused

buf buf

0 mapping bits

0

unused

wcnt wcnt

Errors:

Code Explanation
0 No other job exists. (A job exists as long as it is loaded, whether or

not it is active.)

Example:
.TITLE ESDATF

;+
; .SDAT/.RCVD - This is an example in the use of the .SDAT/.RCVD
; requests. The example is actually two programs, a Background job
; which sends messages, and a Foreground job, which receives them.
; NOTE: Each program should be assembled and linked separately.
;-

;+
; Foreground Program...
;-

.MCALL .RCVD,.MWAIT,.PRINT,.EXIT

Programmed Request Description and Examples 2–229

.SDAT/.SDATC/.SDATW

STARTF: .RCVD #AREA,#MBUFF,#40. ;Request a message up to 80 char.
; ... ;No error possible - always a BG

;Do some other processing
.PRINT #FGJOB ;like announcing FG active...
.MWAIT ;Wait for message to arrive...
TST MBUFF+2 ;Null message?
BEQ FEXIT ;Yes...exit the program
.PRINT #FMSG ;Announce we got the message...
.PRINT #MBUFF+2 ;and echo it back
BR STARTF ;Loop to get another one

FEXIT: .EXIT ;Exit program

AREA: .BLKW 5 ;EMT Argument Block

MBUFF: .BLKW 41. ;Buffer - Msg length + 1
.WORD 0 ;Make sure 80 char message ends ASCIZ

FGJOB: .ASCIZ "!SDATF-I-Foreground running"
FMSG: .ASCIZ "!SDATF-I-Message from BG:"

.END STARTF

.TITLE ESDATB
;+
; Background Program - Send a ’null’ message to stop both programs
;-

.MCALL .SDAT,.MWAIT,.GTLIN,.EXIT,.PRINT

STARTB: CLR BUFF ;Clear 1st word
.GTLIN #BUFF,#PROMT ;Get something to send to FG from TTY
.SDAT #AREA,#BUFF,#40. ;Send input as message to FG
BCS 1$;Branch on error - No FG
.MWAIT ;Wait for message to be sent
TST BUFF ;Sent a null message?
BNE STARTB ;No...loop to send another message.
.EXIT ;Yes...exit program

1$: .PRINT #NOFG ;No FG !
.EXIT ;Exit program

AREA: .BLKW 5 ;EMT Argument Block

BUFF: .BLKW 40. ;Up to 80 char message
PROMT: .ASCIZ "Enter Message for FG:"
NOFG: .ASCIZ "?ESDATB-F-No FG"

.END STARTB

.SDATC
Macro Call:

.SDATC area,buf,wcnt,crtn[,BMODE=strg][,CMODE=strg]

where:

area is the address of a five-word or six-word EMT argument block

buf is the buffer address of the beginning of the message to be
transferred

wcnt is the number of words to transfer

2–230 RT–11 System Macro Library Manual

.SDAT/.SDATC/.SDATW

crtn is the address of the completion routine to be entered when
the message has been transmitted

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

CMODE = strg where strg is:

Value Description

U User space (default)

S Supervisor space

Specifying CMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
CMODE.

• Specifies the space for the crtn argument.

• Is a valid option only for fully mapped monitors.

Programmed Request Description and Examples 2–231

.SDAT/.SDATC/.SDATW

Request Format:

No BMODE, CMODE BMODE, CMODE

R0 area: 25 0 25 0

unused unused

buf buf

mapping bits

wcnt wcnt

crtn

crtn

Errors:

Code Explanation
0 No other job exists. (A job exists as long as it is loaded, whether or

not it is active.)

Example:
See DEMOFG.MAC and DEMOBG.MAC programs on the installation kit.

.SDATW
Macro Call:

.SDATW area,buf,wcnt[,BMODE=strg]

where:

area is the address of a five- or six-word EMT argument block

buf is the buffer address of the beginning of the message to be
transferred

wcnt is the number of words to transfer

2–232 RT–11 System Macro Library Manual

.SDAT/.SDATC/.SDATW

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

Request Format:

No BMODE BMODE

R0 area: 25 0 25 0

unused

buf buf

0 mapping bits

0

unused

wcnt wcnt

Errors:

Code Explanation
0 No other job exists. (A job exists as long as it is loaded, whether or

not it is active.)

Programmed Request Description and Examples 2–233

.SDAT/.SDATC/.SDATW

Example:
.TITLE ESDAWF

;+
; .SDATW/RCVDW - This is an example in the use of the .SDATW/.RCVDW
; requests. The example consists of two programs; a Foreground job
; which creates a file and sends a message to a Background program
; which copies the FG channel and reads a record from the file. Both
; programs must be assembled and linked separately.
;-
;+
; This is the Foreground program...
;-

.MCALL .ENTER,.PRINT,.SDATW,.EXIT,.RCVDW,.CLOSE,.WRITW

STARTF: MOV #AREA,R5 ;R5 => EMT argument block
.ENTER R5,#0,#FILE,#5 ;Create a 5 block file
.WRITW R5,#0,#RECRD,#256.,#4 ;Write a record BG is interested in
BCS ENTERR ;Branch on error
.SDATW R5,#BUFR,#2 ;Send message with info to BG
; . ;Do some other processing
.RCVDW R5,#BUFR,#1 ;When it’s time to exit, make sure
.CLOSE #0 ;BG is done with the file
.PRINT #FEXIT ;Tell user we’re exiting
.EXIT ;Exit the program

ENTERR: .PRINT #ERMSG ;Print error message
.EXIT ;then exit

FILE: .RAD50 /DK ESDAWF/ ;File spec for .ENTER
.RAD50 /TMP/

AREA: .BLKW 5 ;EMT argument block

BUFR: .WORD 0 ;Channel #
.WORD 4 ;Block #

RECRD: .BLKW 256. ;File record

ERMSG: .ASCIZ "?ESDAWF-F-Enter Error"
FEXIT: .ASCIZ "!ESDAWF-I-FG Job exiting"

.END STARTF

.TITLE ESDAWB
;+
; This is the Background program ...
;-

.MCALL .CHCOPY,.RCVDW,.READW,.EXIT,.PRINT,.SDATW

STARTB: MOV #AREA,R5 ;R5 => EMT arg block
.RCVDW R5,#MSG,#2 ;Wait for message from FG
BCS 10$;Branch if no FG
.CHCOPY R5,#0,MSG+2 ;Channel # (1st word of message)
BCS 20$;Branch if FG channel not open
.READW R5,#0,#BUFF,#256.,MSG+4 ;Read block (2nd word of msg)
BCS 30$;Branch if read error
; . ;Continue processing...
.SDATW R5,#MSG,#1 ;Tell FG we’re thru with file
.PRINT #BEXIT ;Tell user we’re thru
.EXIT ;then exit program

10$: MOV #NOJOB,R0 ;R0 => No FG error msg
BR 40$;Branch to print msg

2–234 RT–11 System Macro Library Manual

.SDAT/.SDATC/.SDATW

20$: MOV #NOCH,R0 ;R0 => FG ch not open msg
BR 40$;Branch...

30$: MOV #RDERR,R0 ;R0 => Read err msg
40$: .PRINT ;Print proper error msg

.EXIT ;then exit.

AREA: .BLKW 5 ;EMT argument blk
MSG: .BLKW 3 ;Message buffer
BUFF: .BLKW 256. ;File buffer

BEXIT: .ASCIZ "!ESDAWB-I-Channel-Record copy successful"
NOJOB: .ASCIZ "?ESDAWB-F-No FG Job"
NOCH: .ASCIZ "?ESDAWB-F-FG channel not open"
RDERR: .ASCIZ "?ESAWB-F-Read Error"

.END STARTB

Programmed Request Description and Examples 2–235

.SDTTM
EMT 375, Code 40
The .SDTTM (Set date and time) request allows your program to set the system date
and time.

Macro Call:

.SDTTM area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of a three-word block in user memory that contains
the new date and time

Request Format:

R0 area: 40 0

addr

Notes
The first word of the three-word parameter block contains the new system date in
internal format (See the .DATE programmed request). If this word is -1 (represents
an invalid date), the monitor ignores it. Put a -1 in the first word of the parameter
block if you want to change only the system time. If the first parameter word is
positive (not –1), it becomes the new system date. Note that the monitor does no
further checking on the date word. To be sure of a valid system date, you must specify
a value between 1 and 1210 in the month field (bits 13-10) and a value between 1
and the month length in the day field (bits 9-5). Bits 14 and 15 are the age bits. See
.DATE request for description of format.

The second and third words of the parameter block are the new high-order and low-
order time values, respectively. This value is the double-precision number of ticks
since midnight. If the high-order time word is negative, the monitor ignores the new
time. Put a negative value in the second word of the parameter block if you want
to change only the system date. If the second parameter word is positive, the new
time becomes the system time. The monitor does no further checking on the new
time. To be sure of a valid system time, you must specify a valid number of ticks
for the system line frequency. For a 60 Hz clock, the high-order time may not be
larger than 1178, and if it is equal to 117, the low-order time may not be equal to or
larger than 150008. For a 50 Hz clock, the high-order time may not be larger than
1018, and if it is equal to 101, the low-order time may not be equal to or larger than
1654008.

Changing the date and/or time has no effect on any outstanding mark time or timed
wait requests.

2–236 RT–11 System Macro Library Manual

.SDTTM

Errors:
None.

Example:
.TITLE ESDTTM;2

;+
; .SDTTM - This is an example in the use of the .SDTTM request.
; The example is a Daylight/Standard Time utility - to switch the
; current system time from Standard to Daylight or vice versa, call
; the program as a subroutine at the proper entry point.
;-

.MCALL .SDTTM, .GTIM

.ENABL LSB

STD:: MOV #MINSHR+4,R3 ;Subtract an hour
BR 10$

DALITE::MOV #PLUSHR+4,R3 ;Add an hour
10$: .GTIM #AREA,#TIME ;Get the current time

CALL JADD ;Adjust +/- 1 hour
.SDTTM #AREA,#NEWDT ;Set the new system time
RETURN ;Return to caller

JADD: ;Double precision integer add
MOV #TIME+4,R4 ;R4 => Low order of System time + 2
MOV -(R4),R2 ;Put low order of 1st operand in R2
ADD -(R3),R2 ;Add in low order of operand #2
MOV -(R4),R5 ;*C*Put high order of operand #1 in R5
ADC R5 ;Add in carry (no overflow possible!)
ADD -(R3),R5 ;Add in high order of operand #2

;(ditto!)
MOV R5,(R4)+ ;Store result where wanted
MOV R2,(R4)+
RETURN ;Return to caller

NEWDT: .WORD -1 ;.SDTTM arguments - No new date
TIME: .WORD 0,0 ;New time

PLUSHR: .WORD 3 ;One hour in clock ticks
.WORD 45700 ; (60 Hz clock!)

MINSHR: .WORD ^c3 ;Minus One hour in clock ticks
.WORD -45700

AREA: .WORD 0,0 ;EMT Argument Block
.END

Programmed Request Description and Examples 2–237

.SERR
See .HERR/.SERR

2–238 RT–11 System Macro Library Manual

.SETTOP
EMT 354
The .SETTOP request specifies a new address as a program’s upper limit. Using
.SETTOP offers significant performance improvement in running your program.

Macro Call:

.SETTOP addr

where:

addr is the address of the highest word of the area desired; that is, the last
word the program will modify, not the first word it leaves untouched

Notes

• A program should never do a .SETTOP and assume its new upper limit is the
address it requested. It must always examine the returned contents of R0 or
location 508 to determine its actual high address.

• The value returned in R0 or location 508 must be used as the absolute upper
limit. If this value is exceeded, vital parts of the monitor can be destroyed.

When .SETTOP specifies a new address as a program’s upper limit, the monitor
determines whether the address is valid and whether or not a memory swap is
necessary when the USR is required. When a program specifies an upper limit below
the start address of USR (normally specified in $USRLC in the resident monitor), no
swapping is necessary, because the program does not overlay the USR. If .SETTOP
from the background specifies a high limit greater than the address of the USR and
a SET USR NOSWAP command has not been given, a memory swap is required.
The use of .SETTOP in an extended memory environment is described at the end of
this section.

Careful use of the .SETTOP request provides a significant improvement in the
performance of your program. An approach that is used by several of the system-
supplied programs is as follows:

• A .SETTOP is done to the high limit of the code in a program before buffers
or work areas are allocated. If the program aborts, minimal writing of the user
program to the swap blocks (SWAP.SYS) occurs. However, the program is allowed
to be restarted successfully.

• A user command line is read through .CSISPC or .GTLIN. An appropriate USR
swap address is set in $UFLOT. Successive .DSTATUS, .SETTOP, and .FETCH
requests are performed to load necessary device handlers. This attempts to keep
the USR resident as long as possible during the procedure.

• Buffers and work areas are allocated as needed with appropriate .SETTOP
requests being issued to account for their size. Frequently, a .SETTOP of #-2

Programmed Request Description and Examples 2–239

.SETTOP

is performed to request all available memory to be given to the program. This
can be more useful than keeping the USR resident.

• If the process has a well-defined closing phase, issuing another .SETTOP will
cause the USR to become resident again to close files (Remember to set $UFLOT
to zero so that the USR again swaps in the normal area). On return from
.SETTOP, both R0 and the word in $USRTO contain the highest memory address
allocated for use.

When a requested address is higher than the highest address legal for the
requesting job, the address returned will be the highest legal address for the
job, not the requested address.

• When doing a final exit from a program, the monitor writes the program to the file
SWAP.SYS and then reads in the KMON. A .SETTOP #0 at exit time prevents the
monitor from swapping out the program to the swap blocks (SWAP.SYS) before
reading in the KMON, thus saving time. This procedure is especially useful on
a diskette system when indirect command files are used to run a sequence of
programs. The monitor command SET EXIT NOSWAP also disables program
swapping.

Errors:
None.

Example:

See .LOCK.

.SETTOP in an Extended Memory Environment
You can enable the extended memory feature of the .SETTOP programmed request
with the linker /V option or the LINK command with the /XM option (See RT–
11 System Utilities Manual or RT–11 Commands Manual). The RT–11 System
Internals Manual describes in detail the .SETTOP request in an extended memory
environment. The .SETTOP request operates in privileged and virtual jobs as
follows:

Privileged Jobs

• A .SETTOP that requests an upper limit below the virtual high limit of the
program will always return the virtual high limit of the program. The virtual
high limit is the last address in the highest PAR that the program uses. In this
case, a value can never be returned below the job’s virtual high limit.

• A .SETTOP that requests a job’s upper limit above the program’s virtual high
limit will return the highest available address as follows:

– Either the address requested or SYSLOW-2 (last used address, SYSLOW is
next address available) is returned, whichever is lower. SYSLOW is defined
as the start of the USR in the XM monitor.

– If the program’s virtual high limit is greater than SYSLOW (the user program
maps over the monitor or USR), the virtual high limit of the program will
always be returned.

2–240 RT–11 System Macro Library Manual

.SETTOP

Virtual Jobs

• As in privileged jobs, a .SETTOP request can never get less than the virtual high
limit of the job.

• If a .SETTOP requests an upper limit greater than the virtual high limit, the
following occurs:

– If the virtual high limit equals 177776, this value is returned since this is
the address limit in virtual memory. Otherwise, a new region and window
will be created. The size of the region and window will be determined by the
argument specified to the .SETTOP or by the amount of extended memory
that is available, whichever value is smaller. The .SETTOP argument
rounded to a 32-word boundary minus the high .LIMIT value for the program
equals the size of the region and window (See the RT–11 System Utilities
Manual and the RT–11 System Internals Manual for a description of the
.LIMIT directive in extended memory). If there are no region control blocks,
window control blocks, or extended memory available, the program’s virtual
high limit is returned. The .SETTOP request uses one of the region and
window control blocks allocated to the user, thus one less block is available
to the program if the linker /V option is used.

– Additional .SETTOP requests can only remap the original window created by
the first .SETTOP. Thus, additional requests will return an address no higher
than that established by the first request and no lower than the program
virtual high limit. An additional .SETTOP request whose argument is higher
than the first request will cause the entire first window to be mapped. An
additional .SETTOP request whose argument specifies a value below the
virtual high limit eliminates the region and window. If another .SETTOP
request then follows, it may create a new region and window.

Programmed Request Description and Examples 2–241

.SFDAT
EMT 375, Code 42
The .SFDAT programmed request allows a program to set or modify the creation
date in a file’s directory entry. Dates on protected as well as unprotected files can
be changed. .SFDAT is not supported for distributed special directory handlers LP,
LS, MM, MS, MT, MU, and SP.

Macro Call:

.SFDAT area, chan, dblk[,date]

where:

area is the address of a three-word EMT argument block

chan is a channel number in the range 0-3768

dblk is the address of a four-word block containing a filespec in Radix–50

date is the value of the new date, in RT–11 format. If this argument is #0
or omitted, the system date is used. No other check is made for an
invalid date

Request Format:

R0 area: 42 chan

dblk

date

Errors:

Code Explanation
0 Channel not available

1 File not found

2 Invalid operation (device not file structured)

Example:
Refer to the example for the .FPROT request.

2–242 RT–11 System Macro Library Manual

.SFINF
EMT 375, Code 44
The .SFINF programmed request saves in R0 and then modifies the contents of
the directory entry offset you specify from a file’s directory entry. .SFINF is not
supported for the distributed special directory handlers LP, LS, MM, MS, MT, MU,
and SP.

Macro Call:

.SFINF area,chan,dblk,value,type,offse,ucode

where:

area is the address of a 4-word or 5-word (see dblk) EMT argument block

chan is a channel number in the range of 0 to 3768

dblk is a four-word Radix–50 descriptor block that specifies the physical
device, file name, and file type to be operated upon.

value is the value used to modify the specified offset location.
For RT–11 file structured volume directories,

• If the offset is 0 (E.STAT) and the operation is a BIC or BIS,
E.STAT bits 000400, 001000, and 004000, must be clear.

• If the offset is E.STAT and the operation is a MOV, only the bottom
4 bits of E.STAT are moved.

For special directory volumes, no bit restrictions are enforced. The
operation is dependent on the handler.

type is the name indicating the operation to be performed:

Name Value Meaning
GET 0 Get value; a .GFDAT, .GFINF, or .GFSTA

operation

BIC 1 A bit clear (BIC) operation

BIS 2 A bit set (BIS) operation

MOV 3 A word move (MOV) operation

4-177 Reserved for Digital

USER ucode Reserved for the user

offse is the octal byte offset for the directory entry word for this operation.
The offset must be even and cannot be 10 (E.LENG). For example,
specifying offset 12 saves the current contents of E.USED in R0 and
modifies that location according to the value and type arguments

Programmed Request Description and Examples 2–243

.SFINF

ucode is the user operation code containing the value for the type parameter.
Specify ucode only when the type parameter argument is USER.
Specify values in the range 200–3778.

Request Format:

R0 area: 44 chan

dblk

offse type

value

Errors:

Special directory handlers define their own codes. For RT–11 file structure devices:

Code Explanation
0 Channel is not available

1 File not found, or not a file-structured device. If it is necessary to
determine what condition returned the error code, issue a .DSTAT
request to determine if a device is file structured.

2 Operation is invalid

3 Offset is invalid

4 Value is invalid

Example:

.TITLE ESFINF
;
; This program modifies the selected directory entry.
; It places in offset 12(8) of the entry, the current
; number of seconds since midnight divided by 3.
;

.MCALL .GTIM .CSISPC .FETCH .RELEAS .PRINT .EXIT

.MCALL .SFINF

.GLOBL $DIVTK ;divide by number of ticks in a second

.GLOBL $DIVNN ;divide by value in R4

2–244 RT–11 System Macro Library Manual

.SFINF

START::
.CSISPC #OUTSPC,#DEFEXT ;Get a file name
BCS CSIERR ;Error
.FETCH LIMIT+2,#INSPC ;Fetch the handler
BCS FETERR ;Error
.GTIM #AREA,#TIME ;Get the current time
MOV TIME+0,R0 ;Into registers for divide
MOV TIME+2,R1 ;...
CALL $DIVTK ;Get number of seconds past midnight
MOV #3,R4 ;Now divide that by 3
CALL $DIVNN ;... result in R1
.SFINF #AREA,#0,#INSPC,R1,MOV,#12 ;Modify

;directory entry
BCS SFIERR ;Error
.RELEASE #INSPC ;Dismiss handler
BR START ;And again

CSIERR: MOV #CSIMSG,R0
BR DONE

FETERR: MOV #FETMSG,R0
BR DONE

SFIERR: MOV #SFIMSG,R0
DONE: .PRINT R0

.EXIT

OUTSPC: .BLKW 3*5 ;CSISPC return area
INSPC: .BLKW 6*4 ; " " "
DEFEXT: .RAD50 " " ;Default extensions (none)
LIMIT: .LIMIT ;Memory usage (macro directive)
AREA: .BLKW 10. ;EMT request block area
TIME: .BLKW 2 ;Ticks since midnight

CSIMSG: .ASCIZ "?ESFINF-E-CSI error"
FETMSG: .ASCIZ "?ESFINF-E-Fetch error"
SFIMSG: .ASCIZ "?ESFINF-E-SFINF error"

.END START

Programmed Request Description and Examples 2–245

.SFPA
EMT 375, Code 30
By selecting .SFPA during SYSGEN, users with floating-point hardware can set trap
addresses to be entered when a floating-point exception occurs. Issue this request
with #1 as the addr argument to provide swapping of floating-point context without
setting a trap address. If no user trap address is specified and a floating-point (FP)
exception occurs, a ?MON-F-FPU trap occurs, and the job is aborted.

Macro Call:

.SFPA area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the routine to be entered when an exception
occurs. In a fully-mapped monitor, if you set the low bit
of addr on, it will be treated as a Supervisor/Data space;
otherwise, it is treated as a User/Data space address.

Request Format:

R0 area: 30 0

addr

Notes

• The user trap routine must save and restore any registers it uses. It exits with
an RTI instruction.

• If the address argument is #0, user floating-point routines are disabled and the
fatal ?MON-F-FPU trap error is produced by any further traps.

• In the multijob environment, an address value of #1 indicates that the FP
registers should be switched when a context switch occurs, but no user traps
are enabled. This allows both jobs to use the FP unit. An address of #1 to the
single-job monitor is equivalent to an address of #0.

• When the user routine is activated, it is necessary to re-execute an .SFPA request,
as the monitor disables user traps as soon as one is serviced. It does this to
prevent a possible infinite loop from being set up by repeated floating-point
exceptions.

• If the FP11 is being used, the instruction STST -(SP) is executed by the monitor
before entering the user’s trap routine. Thus, the trap routine must pop the
two status words off the stack before doing an RTI. The program can tell if FP
hardware is available by examining the configuration word in the monitor.

2–246 RT–11 System Macro Library Manual

.SFPA

Errors:
None.

Example:
.TITLE ESFPA;2

;+
; .SFPA - This is an example in the use of the .SFPA request. This
; example is a skeleton program which demonstrates how to set up a
; Floating Point trap routine, and the minimum action that routine
; must take before dismissing the error trap.
;-

.MCALL .SFPA,.EXIT,.PRINT

$SYPTR =: 54 ;(.SYCDF)Loc of beginning of Monitor
$CNFG1 =: 300 ;(.FIXDF)Offset to first config
HWFPU$ =: 100 ;(.CF1DF)FPU present bit

START: ; . ;Mainline program...
; .
.SFPA #AREA,#FPTRAP ;Set up FPU error trap
; . ;continue mainline program
DIVF F0,%1 ;cause a divide by 0 interrupt
.EXIT ;Exit program

FPTRAP: ;FPU exception routine
MOV R0,-(SP)
; . ;Handle exception...
.PRINT #FPTMSG ;Indicate it happened
; .

CKFPU: MOV @#$SYPTR,R0 ;R0 => base of RMON
BIT #HWFPU$,$CNFG1(R0) ;Check for FPU hdwe
BEQ 10$;Branch if none
MOV (SP)+,R0
CMP (SP)+,(SP)+ ;Must pop status regs off stack!
RTI

10$: MOV (SP)+,R0
RTI ;Before returning from interrupt

F0: .WORD 0,0
AREA: .BLKW 10.

FPTMSG: .ASCIZ "?ESFPA-W-FPU trap occurred"

.END START

Programmed Request Description and Examples 2–247

.SFSTAT
EMT 375, Code 44
The .SFSTAT programmed request saves in R0 and then modifies the contents of the
directory entry E.STAT offset from a file’s directory entry. .SFSTA is not supported
for the distributed special directory handlers LP, LS, MM, MS, MT, MU, and SP.

Macro Call:

.SFSTAT area,chan,dblk,value,type,ucode

where:

area is the address of a 4-word EMT argument block

chan is a channel number in the range of 0 to 376(octal)

dblk Four-word Radix–50 descriptor block that specifies the physical
device, file name, and file type to be operated upon.

value is the value to be placed in the E.STAT offset location.
For RT–11 file-structured volume directories,

• If the operation is a BIC or BIS, E.STAT bits 000400, 001000, and
004000 must be clear.

• If the operation is a MOV, only the bottom 4 bits of E.STAT are
moved.

For special directory volumes, no bit restrictions are enforced.

type is the name indicating the operation to be performed:

Name Value Meaning
GET 0 Get value; a .GFDAT, .GFINF, or .GFSTA

operation

BIC 1 A bit clear (BIC) operation

BIS 2 A bit set (BIS) operation

MOV 3 A word move (MOV) operation

4-1778 Reserved for Digital

USER ucode Reserved for the user (200–3228)

ucode is the user operation code containing the value from the type
parameter. Specify ucode only when the type parameter argument
is USER.

2–248 RT–11 System Macro Library Manual

.SFSTAT

Request Format:

R0 area: 44 chan

dblk

0 type

value

Errors:

Special directory handlers define their own codes. For RT–11 file structure devices:

Code Explanation
0 Channel is not available

1 File not found, or not a file-structured device. (If it is necessary to
determine what condition returned the error code, issue a .DSTAT
request to determine if a device is file structured)

2 Operation is invalid

3 Invalid EMT argument block

4 Invalid EMT argument block

Example:

.Title ESFSTA -- sample program for .SFSTA
;
; This program accepts 1 or more (possibly wild) file
; specifications, all on a single device, and a switch
; (/W or /R). It sets (/R) or clears (/W) the "readonly"
; bit in the directory entries for each matching file.
;
; The command line must be of the form:
;
; dev:file.typ[,...]{/R}
; {/W}
;

.MCALL .GTLIN .CSISPC .FETCH .SFSTA .PRINT .EXIT

.GLOBL IGTDIR IGTENT

.ENABL LSB

Programmed Request Description and Examples 2–249

.SFSTAT

START::
.GTLIN #CBUFFER,#PROMPT ;Get a command line
MOV #CBUFFER,R0 ;setup to prune the command line
CLR R1 ;pointer for char past ":"

10$:
CMPB @R0,#’: ;end of device spec?
BNE 20$;no
TST R1 ;first ":"?
BNE CMDERR ;no, invalid command line
MOV R0,R1 ;remember location
INC R1 ;of NEXT char

20$:
CMPB @R0,#’/ ;Switch introducer?
BNE 30$;no
MOV R0,R2 ;yes, save address
BR 40$;and quit scan

30$:
TSTB (R0)+ ;point to next char,

; and look for EOS
BNE 10$;more to look at

40$:
TST R1 ;was "dev:" found?
BEQ DEVERR ;no, required
.CSISPC #OUTSPC,#DEFEXT,#CBUFFER

;Parse any device spec
; and switches

BCS CSIERR ;error
MOV #2,R4 ;Assume /R, use BIS
MOV (SP)+,R0 ;get switch count
BEQ 100$;no switches, nothin’ to do

50$:
TST R0
BEQ 80$;checked all switches
BICB #040,@SP ;force uppercase
CMPB @SP,#’R ;/R?
BEQ 60$;yes
CMPB @SP,#’W ;/W?
BNE 70$;no
MOV #1,R4 ;yes, use BIC

60$:
DEC R0 ;reduce switch count
TST (SP)+ ;pop stack, check for value
BPL 50$;no value specified

70$: BR SWIERR ;unknown switch, or value specified

80$: MOV R4,TYPE ;save operation type

2–250 RT–11 System Macro Library Manual

.SFSTAT

.FETCH LIMIT+2,#DBLK ;Fetch the handler
BCS FETERR ;error
CLR DBLK+2 ;make DBlk Non-file structured
MOV R1,STRING ;where list of file specs starts
CLRB @R2 ;Terminate at first "/"
MOV #PGTDIR,R5 ;point to arg list
CALL IGTDIR ;setup for wildcard search
TST R0 ;any errors?
BNE GTDERR ;yes

90$:
MOV #PGTENT,R5 ;point to arg list
CALL IGTENT ;try for an entry
TST R0 ;any errors?
BMI 100$;error, or no (more) matches
.PRINT #FILNAM ;display selected names
MOV DBLK,ENTRY ;fill in device name

;Set or clear readonly bit:
.SFSTA #AREA,#1,#ENTRY,#040000,USER,TYPE
BCC 90$;no error

SFSERR: .PRINT #SFSMSG ;SFSTA error
BR 100$

DEVERR: .PRINT #DEVMSG ;DEV: not specified
BR 100$

CSIERR: .PRINT #CSIMSG ;CSI error
BR 100$

FETERR: .PRINT #FETMSG ;Fetch error
BR 100$

CMDERR: .PRINT #CMDMSG ;Command semantic error
BR 100$

SWIERR: .PRINT #SWIMSG ;Invalid switch or
; a value specified

BR 100$
GTDERR: .PRINT #GTDMSG ;IGTDIR error
100$: .EXIT

.DSABL LSB
DEFEXT: .RAD50 " " ;default extensions (none)
LIMIT: .LIMIT ;Program limits (macro directive)
LIT64.: .WORD 64. ;literal 64.
LIT0: .WORD 0 ;literal 0.

PGTENT: .WORD 5 ;IGTENT argument list
.WORD WORK
.WORD ENTRY
.WORD -1
.WORD -1
.WORD FILNAM

PGTDIR: .WORD 7 ;IGTDIR argument list
.WORD LIT64.
.WORD WORK
.WORD LIT0
.WORD BUFFER
.WORD -1
.WORD DBLK

STRING: .BLKW 1

Programmed Request Description and Examples 2–251

.SFSTAT

OUTSPC: .BLKW 3*5 ;output file specs (unused)
DBLK: .BLKW 4 ;first input file spec

.BLKW 5*4 ;rest of file specs (unused)

AREA: .BLKW 4 ;EMT area
WORK: .BLKW 64. ;IGT(DIR,ENT) work area
BUFFER: .BLKW 512. ;Directory segment buffer
ENTRY: .BLKW 7. ;returned directory entry
TYPE: .BLKW 1. ;BIC/BIS operation code

CBUFFER:.BLKB 81. ;Command line buffer

FILNAM: .ASCIZ "xxxxxx.xxx"
PROMPT: .ASCII "ESFSTA>"

.BYTE 200 ;No CR LF
DEVMSG: .ASCIZ "?ESFSTA-E-No device specified"
CSIMSG: .ASCIZ "?ESFSTA-E-CSISPC error"
FETMSG: .ASCIZ "?ESFSTA-E-Fetch error"
SFSMSG: .ASCIZ "?ESFSTA-E-SFSTAT error"
CMDMSG: .ASCIZ "?ESFSTA-E-More than 1 device specified"
SWIMSG: .ASCIZ "?ESFSTA-E-Invalid switch or value"
GTDMSG: .ASCIZ "?ESFSTA-E-IGtDir error"

.END START

2–252 RT–11 System Macro Library Manual

SOB
Macro Expansion
The SOB macro simulates the SOB instruction (subtract one and branch if not equal)
by generating the code:

DEC REG
BNE ADDR

You can use the SOB macro on all processors, but it is especially useful for processors
that do not have the hardware SOB instruction. If you are running on a processor
that supports the SOB instruction, simply eliminate the MACRO call to SOB
(.MCALL SOB), and the SOB instruction executes. Note that SOB is not preceded
by a dot (.).

Macro Call:

SOB reg,addr

where:

reg is the register whose contents will be decremented by 1

addr is the location to branch to if the register contents do not equal 0
after the decrement

In the following example, R0 is decremented by 1 and then tested. If the contents
do not equal 0, the program branches to the label HERE.

.TITLE ESOB2

.MCALL SOB

MOV #count,R0
MOV #source,R1
MOV #dest,R2

LOOP:
MOV (R1)+,(R2)+
SOB R0,LOOP

NOTE
The SOB instruction does not change any condition
codes. The SOB macro can change the N, Z, and V (but
not the C) condition codes.

Programmed Request Description and Examples 2–253

.SPCPS
EMT 375, Code 41
Support for this request must be selected during SYSGEN. The .SPCPS (save/set
mainline PC and PS) request allows a program’s completion routine to change the
flow of control of the mainline code.

.SPCPS saves the mainline code PC and PS, and changes the mainline PC to a new
value. If the mainline code is performing a monitor request, the monitor allows that
request to finish before doing any rerouting. The actual rerouting is deferred until
the mainline code is about to run. Therefore, the .SPCPS request returns an error
if it is reissued before an earlier request has been honored. Furthermore, the data
saved in the user block is not valid until the new mainline code is running.

Macro Call:

.SPCPS area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of a three-word block in user memory that contains
the new mainline PC, and that is to contain the old mainline PC and
PS

Request Format:

R0 area: 41 0

addr

Errors:

Code Explanation
0 The program issued the .SPCPS call from the mainline code rather

than a completion routine.

1 A previous .SPCPS request is outstanding.

When the program issues the .SPCPS request, the monitor saves the old mainline
PS in the third word of the three-word block and the old mainline PC in the second
word of the block. The monitor then changes the mainline PC to the contents of the
first word of the block.

2–254 RT–11 System Macro Library Manual

.SPCPS

Example:
.TITLE ESPCPS
.ENABL LC

;+
; .SPCPS - This is an example in the use of the .SPCPS request. In this
; example .SPCPS is used to reroute the mainline code after an I/O
; error or EOF is detected by a completion routine.
;-

.MCALL .READC,.WRITC,.CLOSE,.PRINT,.CSIGEN,.EXIT,.WAIT,.SRESET

.MCALL .SPCPS .QSET

$ERRBY =: 52 ;(.SYCDF)Error Byte in SYSCOM

.ENABL LSB
START: .CSIGEN #DSPACE,#DEFEXT ;Use CSIGEN to get handlers, files

.QSET #QEL,#QELNUM ;Allocate queue elements
CALL IOXFER ;Start I/O
.PRINT #MESSG ;Now simulate other mainline process

1$: DEC R5 ; (Kill some time)
BR 1$

FINI: .CLOSE #0 ;EOF > 0 = End of File
MOV #DONE,R0 ;R0 -> We’re done message
BR GBYE ;Merge to exit program

WERR: MOV #WRERR,R0 ;Set up error messages here...
BR GBYE

RERR: MOV #RDERR,R0
GBYE: .PRINT ;Print message

.SRESET ;Dismiss fetched handlers

.EXIT ;Exit program

WRDONE: .WAIT #0 ;Write compl rtne...write successful?
BCS 3$;Branch if not...

IOXFER: .READC #AREA,#3,,,#6$;Queue up a read
BCC 5$;Branch if ok...
TSTB @#$ERRBY ;Error - is it EOF?
BEQ 4$;Branch if yes

2$: MOV #RERR,SBLOK ;Move Read err rtne addr to arg block
BR 4$;Merge...

3$: MOV #WERR,SBLOK ;Move Write err rtne addr to arg block
4$: TSTB SPCALL ;Already done a .SPCPS?

BNE 5$;Yes...don’t do another
.SPCPS #AREA,#SBLOK ;De-rail mainline code
INCB SPCALL ;Flag we’ve done this
BCS 7$;Ooops! Something’s amiss!

5$: RETURN ;Leave completion code

6$: .WAIT #3 ;Completion routine #2 - was read ok?
BCS 2$;Branch if not
.WRITC #AREA,#0,,,#WRDONE ;Queue up a write...
BCS 3$;Branch if error
INC BLOK ;Bump block # for next read
RETURN ;Leave Completion code...

7$: .PRINT #SPERR ;Print .SPCPS failed message
RETURN

AREA:: .WORD 0 ;EMT Area block
BLOK: .WORD 0 ;Block #.

.WORD BUFF ;Buffer addr & word count

.WORD 256. ;already fixed in block...

.WORD 0 ;Completion routine addr

Programmed Request Description and Examples 2–255

.SPCPS

SBLOK: .WORD FINI,0,0 ;.SPCPS Argument block (FINI default)
QELNUM =: 3.
QEL: .BLKW 10.*QELNUM ;Queue elements

BUFF: .BLKW 256. ;I/O buffer

DEFEXT: .WORD 0,0,0,0 ;No default extensions for CSIGEN

SPCALL: .BYTE 0 ;.SPCPS called flag in case I/O error
;(compl rtne gets sched. regardless!)

.NLIST BEX
DONE: .ASCIZ "!ESPCPS-I-I/O Transfer Complete"
MESSG: .ASCIZ "!ESPCPS-I-Simulating Mainline Processing"
WRERR: .ASCIZ "?ESPCPS-F-Write Error"
RDERR: .ASCIZ "?ESPCPS-F-Read Error"
SPERR: .ASCIZ "?ESPCPS-F-.SPCPS Error"

.EVEN
DSPACE = . ;Handlers may be loaded starting here

.END START

2–256 RT–11 System Macro Library Manual

.SPFUN
EMT 375, Code 32
This request is used with certain device handlers to do device specific functions,
such as rewind and backspace. It can be used with some disks to allow reading and
writing of absolute sectors. It is commonly used to determine the size of devices of
variable size.

For device-specific information, refer to the RT–11 Device Handlers Manual.

Macro Call:

.SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=strg][,CMODE=strg]

where:

area is the address of a six-word EMT argument block

chan is a channel number in the range 0 to 3768

func is the numerical code of the function to be performed; these
codes must be negative

buf is the buffer address; this parameter must be set to zero if no
buffer is required

wcnt is defined in terms of the device handler associated with the
specified channel and in terms of the specified special function
code

blk is also defined in terms of the device handler associated with
the specified channel and in terms of the specified special
function code

crtn is the entry point of a completion routine. If left blank, 0 is
automatically inserted. This value is the same as for .READ,
.READC, and .READW:

0 Wait I/O (.READW)

1 Real time (.READ)

>500 Completion routine

Programmed Request Description and Examples 2–257

.SPFUN

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

CMODE = strg where strg is:

Value Description

U User space (default)

S Supervisor space

Specifying CMODE:

• Loads a word in the EMT request block area containing a
bit pattern matching the code specified for CMODE.

• Specifies the space for the crtn argument.

• Is a valid option only for fully mapped monitors.

2–258 RT–11 System Macro Library Manual

.SPFUN

Request Format:

R0 area: 32 chan

blk

wcnt

func flags

buf

crtn

The chan, blk, and wcnt arguments are the same as those defined for .READ/.WRITE
requests. If the crtn argument is left blank, the requested operation completes before
control returns to the user program. Specifying crtn as #1 is similar to executing
a .READ or .WRITE in that the function is initiated and returns immediately to
the user program. Use a .WAIT on the channel to make sure that the operation is
completed. The crtn argument is a completion routine address to be entered when
the operation is complete. See the RT–11 Device Handlers Manual for device-specific
information on buf, wcnt, and blk.

When using .SPFUN, be sure values in arguments are correct; otherwise, enter zero
(0) values into arguments to ensure the results of the operation.

Errors:

Code Explanation
0 Attempt to read or write past end-of-file, or invalid function value.

1 Hard error occurred on channel.

2 Channel is not open.

Example:
.TITLE ESPFUN

;+
; This program demonstrates the use of .SPFUN to get the size
; of a disk unit. To use it, enter a device name at the prompt.
;-

.MCALL .CSIGEN .SPFUN .DEBUG .DPRINT .EXIT

.MCALL .BR

.ENABL LSB
.DEBUG SWITCH=ON,VALUE=YES

SF.SIZ =: 373 ;(.SFDDF) Size request

Programmed Request Description and Examples 2–259

.SPFUN

START::
.CSIGEN #DEVSPC,#DEFEXT ;Get the device to size
BCS CSIERR ;failure
CLR REPLY ;Assume nothing
.SPFUN #AREA,#3,#SF.SIZ,#REPLY,#1,#0,#0 ;Ask for size
BCS SPFERR ;failure
.DPRINT ^/Block count = /,REPLY,DEC
BR START

CSIERR: .DPRINT ^/?ESPFUN-F-CSI error/
BR EXIT

SPFERR: .DPRINT ^/?ESPFUN-F-SPFUN error/
.BR EXIT

EXIT: .EXIT

DEFEXT: .WORD 0,0,0,0 ;No default extensions

REPLY: .BLKW 1 ;size

AREA: .BLKW 10. ;EMT block area

DEVSPC: .END START

2–260 RT–11 System Macro Library Manual

.SPND/.RSUM
EMT 374, Code 1/Code 2
The .SPND/.RSUM requests control execution of a job’s mainline code; that is, the
code that is not executing as a result of a completion routine:

• .SPND suspends the mainline and allows only completion routines (for I/O and
mark time requests) to run.

• .RSUM (from a completion routine) resumes the mainline code.

These functions enable a program to wait for a particular I/O or mark time request
by suspending the mainline code and having the selected event’s completion routine
issue a .RSUM. This differs from the .WAIT request, which suspends the mainline
code until all I/O operations on a specific channel have completed.

Macro Calls:
.SPND
.RSUM

Request Formats:

(.SPND) R0 =

(.RSUM) R0 =

1 0

2 0

Notes

• The monitor maintains a suspension counter for each job. This counter is
decremented by .SPND and incremented by .RSUM. A job is suspended only
if this counter is negative. Thus, if a .RSUM is issued before a .SPND, the latter
request returns immediately.

• A program must issue an equal number of .SPND and .RSUM requests.

• A .RSUM request from the mainline code increments the suspension counter.

• A .SPND request from a completion routine decrements the suspension counter,
but does not suspend the mainline. If a completion routine does a .SPND, the
mainline continues until it also issues a .SPND, at which time it is suspended
and requires two .RSUMs to proceed.

• Since a .TWAIT is simulated in the monitor using suspend and resume, a .RSUM
issued from a completion routine without a matching .SPND can cause the
mainline to continue past a timed wait before the entire time interval has elapsed.

• A .SPND or .RSUM, like most other programmed requests, can be issued from
within a user-written interrupt service routine if the .INTEN/.SYNCH sequence

Programmed Request Description and Examples 2–261

.SPND/.RSUM

is followed. All notes referring to .SPND/.RSUM from a completion routine also
apply to this case.

Errors:
None.

Example:
See RCVDC.

2–262 RT–11 System Macro Library Manual

.SRESET
EMT 352
Macro Call:

.SRESET

The .SRESET (software reset) request:

• Cancels any messages sent by the job.

• Waits for all job I/O to complete, which includes waiting for all completion
routines to run.

• Removes from memory any device handlers brought into memory via .FETCH
calls by this job. Handlers loaded by the keyboard monitor LOAD command
remain resident, as does the system device handler.

• Purges any currently open files. Files opened for output with .ENTER are never
made permanent.

• Reverts to using only 1610 I/O channels. Any channels defined with .CDFN are
discarded. A .CDFN must be reissued to open more than 16 channels after a
.SRESET is performed.

• Clears the job’s .SPND/.RSUM counter.

• Resets the I/O queue to one element. A .QSET request must be reissued to
allocate extra queue elements.

• Cancels all outstanding .MRKT requests.

Errors:
None.

Example:

See .RENAME.

Programmed Request Description and Examples 2–263

.SYNCH
Macro Expansion
This macro call enables your program to issue programmed requests from an
interrupt service routine. Code following the .SYNCH call runs at priority level
0 as a completion routine in the issuing job’s context. Programmed requests issued
from interrupt routines are not supported by the system and should not be performed
unless a .SYNCH is used. .SYNCH, like .INTEN, is not an EMT monitor request,
but rather a subroutine call to the monitor.

Macro Call:

.SYNCH area[,pic]

where:

area is the address of a seven-word block that you must set aside for use by
.SYNCH. This argument, area, represents a special seven-word block
used by .SYNCH as a queue element. This is not the same as the
regular area argument used by many other programmed requests.
The user must not confuse the two; he should set up a unique seven-
word block specifically for the .SYNCH request. The seven-word block
appears as:

Word Offset Contents
0 RT–11 maintains this word; its contents should not be

altered by the user

2 The current job’s number. Must be set up by the user
program. Obtained by a .GTJB call or from the I/O
queue element in a device handler

4 Unused.

6 Unused.

10 R0 contains this argument after successful return.

12 Must be -1.

14 Must be 0.

pic is an optional argument that, if non-blank, causes the .SYNCH macro
to produce position-independent code for use by device drivers

2–264 RT–11 System Macro Library Manual

.SYNCH

NOTE
.SYNCH assumes that the user has not pushed anything
on the stack between the .INTEN and .SYNCH calls.
This rule must be observed for proper operation.

Errors:

The monitor returns to the location immediately following the .SYNCH if the
.SYNCH was rejected. After failure of the .SYNCH routine, the routine is still
unable to issue programmed requests, and R4 and R5 are available for use. An
error is returned if another .SYNCH that specified the same seven-word block is
still pending.

Notes
The monitor dismisses the interrupt without returning to the .SYNCH routine if one
of the following conditions occur:

• You specified an invalid job number.

• The job number does not exist (for example, you specify 2, and there is no
foreground job).

• The job is exited or terminated with an .EXIT programmed request.

You can find out if the block is in use by:

• Checking location QS.CUP (offset 148). If this location contains a zero, the block
is available.

• Performing a .SYNCH call. If the block is busy, an error return will be performed.

Normal return is to the word after the error return. At this point, the routine is
in user state and is thus allowed to issue programmed requests. R0 contains the
argument that was in offset 108 of the block. R0 and R1 are free for use without
having to be saved. R4 and R5 are not free, and do not contain the same information
they contained before the .SYNCH request. A long time can elapse before the
program returns from a .SYNCH request since all interrupts must be serviced before
the main program can continue. Enter a RETURN to exit from the routine.

Example:
.TITLE SYNCH.MAC

;+
; .SYNCH - This is an example of the .SYNCH request.
; The example is a skeleton of a program which could input data
; from the outside world by means of an in-line interrupt service routine,
; buffer it until a whole block’s worth has been input, then use
; a .WRITE request to store the data on an RT-11 device.
;-

.MCALL .GTJB,.INTEN,.WRITE,.WAIT,.SYNCH,.EXIT,.PRINT

Programmed Request Description and Examples 2–265

.SYNCH

START: MOV #JOB,R5 ;Results of .GTJB go here
.GTJB #AREA,R5 ;Get job number (either FG or BG)
MOV (R5),SYNBLK+2 ;Store job number in .SYNCH block
; . ;Here we open an RT-11 output
; . ;device, then initiate input from
; . ;a "foreign" device, interrupts to
; . ;be handled by our in-line interrupt
; . ;service routine....

INTRPT: ;INTERRUPT SERVICE ROUTINE
.INTEN 5 ;Notify RT-11 and drop to priority 5
; . ;Process interrupt and buffer input
; . ;Time to write a buffer - switch
; . ;buffers (should be double buffered
; . ;so that interrupt processing can
; . ;continue during write operation).
.SYNCH #SYNBLK ;Do a .SYNCH so we can use a .WRITE
BR SYNFAIL ;Return here if a .SYNCH block in use
; . ;Return here if okay...
.WAIT #1 ;See if error on last write
BCS WRFAIL ;Branch if there was
.WRITE #AREA,#1,OBUFF,#256.,BLK

;Queue a write to store the data
INC BLK ;and bump the block number.
RETURN ;Re-enable interrupts and leave

SYNBLK: .WORD 0 ;.SYNCH block
.WORD 0 ;Job number goes here
.WORD 0 ;Next two words reserved
.WORD 0 ;
.WORD 5 ;R0 contains 5 on successful .SYNCH
.WORD -1,0 ;Required values for the Monitor

SYNFAIL: ;.SYNCH failed...
; . ;This can be a problem if the
; . ;next interrupt came in before the
; . ;buffer was written out!

WRFAIL: MOV #WERR,R0 ;R0 -> error message text
ERRM: .PRINT ;Output the error message

.EXIT ;then exit.

BLK: .WORD 0 ;Block number to write
AREA: .BLKW 5 ;EMT Argument block
JOB: .BLKW 8. ;Area for .GTJB data
OBUFF: .WORD 0 ;Pointer to current output buffer
IBUFF: .WORD 0 ;Pointer to current input buffer
BUFF1: .BLKW 256. ;Buffer 1
BUFF2: .BLKW 256. ;Buffer 2
WERR: .ASCIZ "?ESYNCH-F-Write Error"
SYNERR: .ASCIZ "?ESYNCH-F-SYNCH Failed"

.EVEN

.END START

2–266 RT–11 System Macro Library Manual

.TIMIO
Macro Expansion
The .TIMIO macro issues the device time-out call from a handler. This request
schedules a completion routine to run after the specified time interval has elapsed.
The completion routine runs in the context of the job indicated in the timer block. In
mapped systems, the completion routine executes with Kernel mapping, since it is
still a part of the interrupt service routine. (See the RT–11 System Internals Manual
for more information about interrupt service routines and the mapped monitor.)
As usual with completion routines, R0 and R1 are available for use. When the
completion routine is entered, R0 contains the sequence number of the request that
timed out.

Macro Call:

.TIMIO tbk,hi,lo

where:

tbk is the address of the timer block, a seven-word timer queue element.
(See timer block format shown under the .CTIMIO request.) You
must set up the address of the completion routine in the seventh
word of the timer block in a position-independent manner.

hi is the high-order word of a two-word time interval

lo is the low-order word of a two-word time interval

Example:
.TITLE TIMIO.MAC

;+
; TIMIO.MAC - This is an example of a simple, RT-11 device driver,
; to illustrate the use of the .TIMIO/.CTIMIO requests. The timeout
; completion routine will be entered if a character hasn’t been
; successfully transmitted in 1/10 sec (approx. 110 baud). In this
; example the completion routine takes no explicit action; the fact
; that the timeout occurred is enough to be considered a "hard" error.
;-

.MCALL .DRBEG,.DRAST,.DRFIN,.DREND,.QELDF,.TIMIO,.CTIMIO

.IIF NDF MMGT, MMGT=0 ;Define these in case not

.IIF NDF ERLG, ERLG=0 ;assembled with SYSCND.MAC

.IIF NDF RTEM, RTEM=0 ;...
TIM$IT=1

.IIF NDF SPVEC, SPVEC=304 ;Define default vector

.IIF NDF SPCSR, SPCSR=176504 ;Define default CSR addr

.IIF NDF SPPRI, SPPRI=4 ;Define default device priority

IOERR = 1 ;Hard I/O error bit definition
SPSTS = 20000 ;Device Status = Write only
SPSIZ = 0 ;Device Size = 0 (Char device)
TIME = 6 ;Timeout interval = 1/10 sec
COD = 377 ;Device i.d. code

Programmed Request Description and Examples 2–267

.TIMIO

.QELDF ;Use .QELDF to define Q-Elem offsets

.DRBEG SP,SP$VEC,SPSIZ,SPSTS ;Begin driver code with .DRBEG
MOV SPCQE,R4 ;R4 => Current Q-Element
ASL Q$WCNT(R4) ;Make word count byte count
BCC SPERR ;A read from a write/only device?
BEQ SPDUN ;Zero word count...just exit

SPRET: MOV PC,R5 ;Calculate PIC address
ADD #SPTOUT-.,R5 ;completion routine
MOV R5,TBLK+14 ;Move it to argument block
.TIMIO TBLK,0,TIME ;Schedule a marktime
BIS #100,@#SP$CSR ;Enable DL-11 interrupt
RETURN ;Return to monitor

; INTERRUPT SERVICE ROUTINE

.DRAST SP,SP$PRI ;Use .DRAST to define Int Svc Sect.
MOV SPCQE,R4 ;R4 => Q-Element
TST @#SP$CSR ;Error?
BMI SPRET ;Yes...’hang’ until ready
TSTB @#SP$CSR ;Is device ready?
BPL SPRET ;No...go wait ’till it is
.CTIMIO TBLK ;Cancel completion routine
BCS SPERR ;Too late - it timed out!
MOVB @Q$BUFF(R4),@#SP$CSR+2 ;Xfer byte from buffer to DL-11
INC Q$BUFF(R4) ;Bump the buffer pointer
INC Q$WCNT(R4) ;and the word count (it’s negative!)
BEQ SPDUN ;Branch if done
BR SPRET ;Go wait ’till char xmitted

SPTOUT: ; . ;Timeout completion routine
; . ;In this example, it does nothing.
; . ;In real life it may want to try
RETURN ;to take some corrective action...

SPERR: BIS #IOERR,@Q$CSW(R4) ;Set error bit in CSW
SPDUN: .DRFIN SP ;Use .DRFIN to return to Monitor

TBLK: .WORD 0,TIME,0,0,177000+COD ;.TIMIO argument block

.DREND SP ;Use .DREND to end code

.END

2–268 RT–11 System Macro Library Manual

.TLOCK
EMT 374, Code 7
The .TLOCK (test lock) request is used in an multijob environment to attempt to
gain ownership of the USR. It is identical to .LOCK in the single-job monitor. It
is similar to .LOCK in that, if successful, the user job returns with the USR in
memory. However, if a job attempts to .LOCK the USR while another job is using it,
the requesting job is suspended until the USR is free. With .TLOCK, if the USR is
not available, control returns immediately with the C bit set to indicate the .LOCK
request failed.

Macro Call:

.TLOCK

Request Format:

R0 = 7 0

Errors:

Code Explanation
0 USR is already in use by another job.

Example:
.TITLE ETLOCK

;+
; .TLOCK - This is an example in the use of the .TLOCK request.
; In this example, the user program needs the USR for a sub-job it is
; executing. If it fails to get the USR it "suspends" that sub-job and
; runs another sub-job (that perhaps doesn’t need the USR for execution).
; This type of procedure is useful to schedule several sub-jobs within
; a single background or foreground program.
;-

.MCALL .TLOCK,.LOOKUP,.UNLOCK,.EXIT,.PRINT

START: ;Begin Mainline program
.TLOCK ;Try to get the USR for 1st "job"
BCS SUSPND ;Failed...branch to "suspend" 1st job
.LOOKUP #AREA,#4,#FILE ;Succeeded...proceed with 1st job
BCS LKERR ;Branch if error on LOOKUP
; . ;1st job involves file processing...do

;it!
.PRINT #J1MSG ;Tell user we executed...
.UNLOCK ;1st job finished...release USR
TSTB J2SW ;Check if we ran Job #2 while USR busy
BNE 10$;Yup - we did
CALL JOB2 ;Nope - do it now

10$: .EXIT

Programmed Request Description and Examples 2–269

.TLOCK

SUSPND: ;"Suspend" current "job"
TSTB J2SW ;Did we already run Job #2
BNE START ;Yes - don’t do it again
JSR PC,JOB2 ;"Run" other "job"
INC J2SW ;Set switch that says we ran Job #2
BR START ;When it’s finished, try 1st job again

LKERR: .PRINT #LKMSG ;Error on .LOOKUP - Report it!
.EXIT

JOB2: .PRINT #J2MSG ;2nd "Job" - Doesn’t need USR
RETURN ;Return when done

AREA: .BLKW 5 ;EMT argument block
FILE: .RAD50 "SRC" ;File spec for Job #1

.RAD50 "ETLOCK" ;

.RAD50 "MAC" ;
LKMSG: .ASCIZ "?ETLOCK-F-File Not Found"
J1MSG: .ASCIZ "!ETLOCK-I-Job #1 Executed"
J2MSG: .ASCIZ "!ETLOCK-I-Job #2 Executed"
J2SW: .BYTE 0 ;Switch to control Job #2 execution

.EVEN

.END START

2–270 RT–11 System Macro Library Manual

.TRPSET
EMT 375, Code 3
.TRPSET enables a user job to intercept traps to 4 and 10 instead of having the job
aborted with a ?MON-F-Trap to 4 or ?MON-F-Trap to 10 message. If .TRPSET is in
effect when an error trap occurs, the user-specified routine is entered. The status of
the carry bit on entry to the routine determines which trap occurred: carry bit clear
indicates a trap to 4; carry bit set indicates a trap to 10. The user routine should
exit with an RTI instruction. Traps to 4 can also be caused by user stack overflow on
some processors (check your processor handbook). These traps are not intercepted
by the .TRPSET request, but they do cause job abort and a printout of the message
?MON-F-Trap to 4.

Macro Call:

.TRPSET area,addr

where:

area is the address of a two-word EMT argument block

addr is the address of the user’s trap routine. If an address of 0
is specified, trap interception is disabled. In a fully-mapped
monitor, if you set the low bit of addr on, it will be treated as a
Supervisor/Data space; otherwise, it is treated as a User/Data
space address.

Request Format:

R0 area: 3 0

addr

Notes
Reissue a .TRPSET request whenever an error trap occurs and the user routine is
entered. The monitor disables user trap interception prior to entering the user trap
routine. Thus, if a trap should occur from within the user’s trap routine, an error
message is generated and the job is aborted. The last operation the user routine
should perform before an RTI is to reissue the .TRPSET request.

In the mapped monitor, traps dispatched to a user program by .TRPSET execute in
User mode. They appear as interrupts of the user program by a synchronous trap
operation. Programs that intercept error traps by trying to steal the trap vectors
must be carefully designed to handle programs that are virtual jobs and those that
are privileged jobs:

• If the program is a virtual job, the stolen vector is in User virtual space that
is not mapped to Kernel vector space. The proper method is to use .TRPSET;
otherwise, interception attempts fail and the monitor continues to handle traps
to 4 and 10.

Programmed Request Description and Examples 2–271

.TRPSET

• If the program is a privileged job, it is mapped to the Kernel vector page. The
user can steal the error trap vectors from the monitor, but the benefits of doing
so must be carefully evaluated in each case. Trap routines run in the mapping
mode specified by bits 14 and 15 of the trap vector PS word. With both bits set
to 0, Kernel mode is set. However, Kernel mapping is not always equivalent to
user mapping, particularly when extended memory is being used. With both bits
14 and 15 of the PS set to 1, user mode is set, and the trap routine executes in
user mapping.

Errors:
None.

Example:
.TITLE TRPSET.MAC

;+
; .TRPSET - This is an example in the use of the .TRPSET request.
; In this example a user trap routine is set, then deliberate
; traps to 4 & 10 are caused (not very practical but it demonstrates
; that .TRPSET really works!).
;-

.MCALL .TRPSET,.EXIT,.PRINT

DIVZ =: 67 ;Divide by zero - illegal instruction

START: ;Begin example
.TRPSET #AREA,#TRPLOC ;Set up a trap routine to handle traps

;to 4 & 10...
DIVZ ;Illegal instruction - Trap to 10
MOV R0,R0 ;Legal instruction
TST @#160000 ;Non-existent memory - Trap to 4
.EXIT ;Exit program

TRPLOC: ;Trap routine
BCS 10$;C bit set = TRAP 10
.PRINT #TRP4 ;Report Trap to 4
BR 20$;Branch to reset trap routine

10$: .PRINT #TRP10 ;Report trap to 10
.TRPSET #AREA,#TRPLOC ;Reset trap routine address

20$: RTI ;Return to offending code

AREA: .WORD 0,0 ;EMT argument block
TRP4: .ASCIZ "?ETRPSE-W-Trap to 4"
TRP10: .ASCIZ "?ETRPSE-W-Trap to 10"

.END START

2–272 RT–11 System Macro Library Manual

.TTYIN/.TTINR
EMT 340
The requests .TTYIN and .TTINR transfer a character from the console terminal
to the user program. The character thus obtained appears right-justified (low byte)
in R0. The user can cause the characters to be returned in R0 only, or in R0 and
another location.

Macro Call:

.TTYIN char

.TTINR

where:

char is the location where the character in R0 is to be stored.
If char is specified, the character is in both R0 and the address
represented by char. If char is not specified, the character is in R0

The expansion of .TTYIN is:

EMT 340
BCS .-2

The expansion of .TTINR is:

EMT 340

If the carry bit is set when execution of the .TTINR request is completed, it indicates
that no character was available; the user has not yet typed a valid line. .TTINR does
not return the carry bit set, unless TCBIT$ of the job status word (JSW) was on when
the request was issued.

The choice of two modes of doing console terminal input is determined by TTSPC$
of the job status word. If TTSPC$ is 0, normal I/O is performed. In this mode, the
following conditions apply:

• The monitor echoes all characters typed.

• CTRL/U and the DELETE key perform line deletion and character deletion,
respectively.

• A carriage return, line feed, CTRL/Z, or CTRL/C must be typed before characters
on the current line are available to the program. As you type these, characters
on the line are sequentially passed to the user program.

If TTSPC$ is 1, the console is in special mode. The effects are:

• The monitor does not echo characters typed except for CTRL/C and CTRL/O.

• CTRL/U and the DELETE key do not perform special functions.

• Characters are immediately available to the program.

Programmed Request Description and Examples 2–273

.TTYIN/.TTINR

In special mode, the user program must echo the characters received. However,
CTRL/C and CTRL/O are acted on by the monitor in the usual way. TTSPC$ in
the JSW must be set by the user program. This bit is cleared when the program
terminates.

Regardless of the setting of TTSPC$, when a carriage return is entered, both carriage
return and line feed characters are passed to the program; if TTSPC$ is 0, these
characters will be echoed.

Lowercase conversion is determined by the setting of TTLC$ in the JSW:

• If TTLC$ is 0, lowercase characters are converted to uppercase before being
echoed (if TTSPC$ is 0) and passed to a program.

• If TTLC$ is 1, lowercase characters are echoed (if TTLC$ is 0) and passed as
received. TTLC$ is cleared when the program terminates.

CTRL/F and CTRL/B (and CTRL/X in system job monitors) are not affected by the
setting of TTSPC$. The monitor always acts on these characters (unless the SET
TT NOFB command is issued).

CTRL/S and CTRL/Q are intercepted by the monitor unless the SET TT NOPAGE
command is issued.

If a terminal input request is made and no character is available, job execution is
blocked until a character is ready. This is true for both .TTYIN and .TTINR, and
for both normal and special modes. If a program requires execution to continue and
the carry bit to be returned, it must set TCBIT$ of the Job Status Word before the
.TTINR request. TCBIT$ is cleared when a program terminates.

If the single-line editor has been enabled by the commands SET SL ON and SET
SL TTYIN, and if EDIT$ and TTSPC$ of the JSW are 0, input from a .TTYIN or
.TTINR request will be edited by SL. If either EDIT$ or TTSPC$ is set, SL will not
edit input. If SL is editing input, the state of TCBIT$ (inhibit TT wait) is ignored
and a .TTINR request will not return until an edited line is available.

NOTE
The .TTYIN request does not get characters from
indirect files. If this function is desired, the .GTLIN
request must be used.

Errors:

Code Explanation
0 No characters available in ring buffer.

Example:
See .TTYOUT/.TTOUTR.

2–274 RT–11 System Macro Library Manual

.TTYOUT/.TTOUTR
EMT 341
The requests .TTYOUT and .TTOUTR cause a character to be transmitted to the
console terminal. The difference between the two requests, as in the .TTYIN/.TTINR
requests, is that if there is no room for the character in the monitor’s buffer, the
.TTYOUT request waits for room before proceeding, while the .TTOUTR does not
wait for room and the character is not output.

Macro Call:

.TTYOUT char

.TTOUTR

where:

char is the location containing the character to be loaded in R0 and
printed. If not specified, the character in R0 is printed. Upon return
from the request, R0 still contains the character

The expansion of .TTYOUT is:

EMT 341
BCS .-2

The expansion of .TTOUTR is:

EMT 341

If the carry bit is set when execution of the .TTOUTR request is completed, it
indicates that there is no room in the buffer and that no character was output.
.TTOUTR normally does not return the carry bit set. Instead, the job is blocked
until room is available in the output buffer. If a job requires execution to continue
and the carry bit to be returned, it must turn on TCBIT$ of the Job Status Word
before issuing the request.

The .TTINR and .TTOUTR requests have been supplied to help those users who
want to continue rather than suspend program execution until a console operation
is complete. With these modes of I/O, if a no-character or no-room condition occurs,
the user program can continue processing and try the operation again at a later
time.

If a foreground job leaves TCBIT$ set in the Job Status Word, any further foreground
.TTYIN or .TTYOUT requests cause the system to lock out the background until
a character is available. Note also that each job in the foreground/background
environment has its own Job Status Word, and therefore can be in different terminal
modes independently of the other job.

Programmed Request Description and Examples 2–275

.TTYOUT/.TTOUTR

Errors:

Code Explanation
0 Output ring buffer full.

Example:
.TITLE ETTYIN

;+
; .TTYIN / .TTYOUT - This is an example in the use of the .TTYIN
; & .TTYOUT requests. The example accepts a line of input from the
; console keyboard, then echoes it on the terminal. Using .TTYIN &
; .TTYOUT requests illustrate Synchronous terminal I/O; i.e., the
; Monitor retains control (the job is blocked) until the requests
; are satisfied.
;-

.MCALL .TTYIN,.TTYOUT

START: MOV #BUFFER,R1 ;R1 => Character buffer
CLR R2 ;Clear character count

INLOOP: .TTYIN (R1)+ ;Read char into buffer
INC R2 ;Bump count
CMPB #12,R0 ;Was last char a LF ?
BNE INLOOP ;No...get next character
MOV #BUFFER,R1 ;Yes...point R1 to beginning of buffer

OUTLOOP:.TTYOUT (R1)+ ;Print a character
DEC R2 ;Decrease count...
BEQ START ;Done if count = 0
BR OUTLOOP ;Loop to print another character

BUFFER: .BLKW 64. ;Character buffer...

.END START

.TITLE ETTINR;
;+
; .TTINR / .TTOUTR - This is an example in the use of the .TTINR &
; .TTOUTR requests. Like ETTYIN.MAC, this example accepts lines of
; input from the console keyboard, then echoes it on the terminal.
; But rather than waiting for the user to type something at ’INLOOP’
; or wait for the output buffer to have available space at ’OUTLOOP’,
; the routine has been recoded using .TTINR and .TTOUTR to allow
; other processing to be carried out if a wait condition is reached.
;-

.MCALL .TTYIN,.TTYOUT,.RCTRLO

.MCALL .TTINR,.TTOUTR

$JSW =: 44 ;(.SYCDF)Location of Job Status Word
TCBIT$ =: 100 ;(.JSWDF)Nowait bit in JSW

START: MOV #BUFFER,R1 ;Point R1 to buffer
CLR R2 ;Clear character count
BIS #TCBIT$,@#$JSW ;Set Bit in JSW so .TTINR/.TTOUTR will
.RCTRLO ;return C bit set if no char/no room

INLOOP: .TTINR ;Get char from terminal
BCS NOCHAR ;None available

CHRIN: MOVB R0,(R1)+ ;Put char in buffer
INC R2 ;Increase count
CMPB R0,#12 ;Was last char = LF?
BNE INLOOP ;No...get next char
MOV #BUFFER,R1 ;Yes...point R1 to beginning of buffer

2–276 RT–11 System Macro Library Manual

.TTYOUT/.TTOUTR

OUTLOOP:MOVB (R1),R0 ;Put char in R0
.TTOUTR ;Try to print it
BCS NOROOM ;Branch if no room in output buffer

CHROUT: DEC R2 ;Decrease count
BEQ START ;Done if count=0
INC R1 ;Bump buffer pointer
BR OUTLOOP ;then branch to print next char

NOCHAR: ;Comes here if no char avail
.TTINR ;try to again to get one
BCC CHRIN ;There’s one avail this time!
; . ;Do other processing
BR NOCHAR ;Try again

NOROOM: ;Comes here if no room in buffer
MOVB (R1),R0 ;Put char in R0
.TTOUTR ;Try to print it again
BCC CHROUT ;Successful !
; . ;Code to be executed while waiting
; . ;Now we must hang to wait...
BIC #TCBIT$,@#$JSW ;Clear bit in JSW
.RCTRLO
.TTYOUT (R1) ;Use .TTYOUT to wait for room
BIS #TCBIT$,@#$JSW ;Finally successful - reset bit
.RCTRLO
BR CHROUT ;then return to output loop

BUFFER: .BLKW 64. ;Buffer
.END START

Programmed Request Description and Examples 2–277

.TWAIT
EMT 375, Code 24
Support for this request must be selected at SYSGEN. The .TWAIT request suspends
the user’s job for a specified length of time. .TWAIT requires a queue element and
should be a consideration when the .QSET request is issued.

Macro Call:

.TWAIT area,time

where:

area is the address of a two-word EMT argument block

time is a pointer to two words of time (high order first, low order second),
expressed in ticks

Request Format:

R0 area: 24 0

time

Notes

• Since a .TWAIT is simulated in the monitor using suspend and resume, a .RSUM
issued from a completion routine without a matching .SPND can cause the
mainstream to continue past a timed wait before the entire time interval has
elapsed. In addition, a .TWAIT issued within a completion routine is ignored by
the monitor, since it would block the job from ever running again.

• The unit of time for this request is clock ticks, which can be 50 Hz or 60 Hz,
depending on the local power supply, if your system has a line frequency clock.
This must be kept in mind when the time interval is specified. Check CLK50$
(.CF1DF) in $CNFG1 (.FIXDF) to see if this bit is set to 50Hz; if not, the frequency
is 60 Hz.

Errors:

Code Explanation
0 No queue element was available.

2–278 RT–11 System Macro Library Manual

.TWAIT

Example:
.TITLE TWAIT.MAC

;+
; .TWAIT - This is an example in the use of the .TWAIT request.
; .TWAIT is useful in applications where a program must be only
; activated periodically. This example will ’wake up’ every five seconds
; to perform a simulated "task", and then ’sleep’ again. (For example
; purposes this cycle will be repeated for a maximum of about 7 sec).
;_

.MCALL .TWAIT,.EXIT,.PRINT

START: CALL TASK ;Perform task...
10$: .TWAIT #AREA,#TIME ;Go to sleep for a second

BCS NOQ ;Branch if no queue element
CALL TASK ;Perform task again
DEC COUNT ;Bump counter - example good for 7 sec
BNE 10$;Branch if time’s not up
.PRINT #BYE ;Say we’re thru
.EXIT ;Exit program

TASK: ;Periodic task simulated here
INC TCNT ;Bump a counter
BIT #1,TCNT ;Is it odd?
BEQ 10$;Branch if not
.PRINT #TICK ;Odd counter prints "tick..."
RETURN ;Return to caller

10$: .PRINT #TOCK ;Even counter prints "tock"
RETURN ;Return to caller

NOQ: .PRINT #QERR ;Print error message
.EXIT ;Exit program

AREA: .WORD 0,0 ;EMT Argument block
TIME: .WORD 0,60.*1 ;60 ticks/sec * 1 seconds
COUNT: .WORD 7 ;Maximum cycles for example
TCNT: .WORD 0 ;Tick,tock count
TICK: .ASCII "Tick..."

.BYTE 200
TOCK: .ASCIZ "Tock"
BYE: .ASCIZ "!ETWAIT-I-Example Concluded"
QERR: .ASCIZ "?ETWAIT-F-No Q-Element Available"

.END START

Programmed Request Description and Examples 2–279

.UNLOCK, .UNMAP, .UNPROTECT
See .LOCK, .MAP, .PROTECT.

2–280 RT–11 System Macro Library Manual

.WAIT
EMT 374, Code 0
The .WAIT request suspends program execution until all input/output requests on
the specified channel are completed. The .WAIT request, combined with the .READ
/.WRITE requests, makes double buffering a simple process.

.WAIT also conveys information through its error returns. An error is returned if
the channel is not open or the last I/O operation resulted in a hardware error.

If an asynchronous operation on a channel results in end-of-file, the following .WAIT
programmed request will not detect it. The .WAIT request detects only hard error
conditions. A subsequent operation on that channel will detect end-of-file and will
return to the user immediately with the carry bit set and the end-of-file code in byte
52 ($ERRBY). Under these conditions, the subsequent operation is not initiated.

In a multijob system, executing a .WAIT when I/O is pending causes that job to be
suspended and another job to run, if possible.

Macro Call:

.WAIT chan

Request Format:

R0 = 0 chan

Errors:

Code Explanation
0 Channel specified is not open.

1 Hardware error occurred on the previous I/O operation on this
channel.

Example:
See .READ.

Programmed Request Description and Examples 2–281

.WDBBK
Macro Expansion
The .WDBBK macro defines symbols for the window definition block and reserves
space for it. Information provided to the arguments of this macro permits the
creation and mapping of a window through the use of the .CRAW request. Note
that .WDBBK automatically invokes .WDBDF.

Macro Call:

.WDBBK wnapr,wnsiz[,wnrid][,wnoff][,wnlen][,wnsts]

where:

wnapr is the number of the Active Page Register set that includes the
window’s base address. A window must start on a 4K-word boundary.
The valid range of values is from 0 through 7

wnsiz is the size of this window (expressed in 32-word units)

wnrid is the identification for the region to which this window maps. This
argument is optional; supply it if you need to map this window. Use
the value of R.GID from the region definition block for this argument
after you create the region to which this window must map

wnoff is the offset into the region at which to start mapping this window
(expressed in 32-word units). This argument is optional; supply it if
you need to map this window. The default is 0, which means that
the window starts mapping at the region’s base address

wnlen is the amount of this window to map (expressed in 32-word units).
This argument is optional; supply it if you need to map this window.
The default value is 0, which maps as much of the window as possible

wnsts is the window status word. This argument is optional; supply it if you
need to map this window when you issue the .CRAW request. Set bit
8, called WS.MAP, to cause .CRAW to perform an implied mapping
operation

Example:

See .CRAW. See also the RT–11 System Internals Manual for a detailed description
of the extended memory feature.

2–282 RT–11 System Macro Library Manual

.WDBDF
Macro Expansion
The .WDBDF macro defines the symbolic offset names for the window definition
block and the names for the window status word bit patterns. In addition, this
macro also defines the length, but doesn’t reserve any space for the definition block.
(See .WDBBK).

Macro Call:

.WDBDF

The .WDBDF macro expands as follows:

W.NID =: 0 ;Window ID
W.NAPR =: 1 ;PAR number
W.NBAS =: 2. ;Base address
W.NSIZ =: 4. ;Window size
W.NRID =: 6. ;Region ID
W.NOFF =: ^o10 ;Window offset
W.NLEN =: ^o12 ;Window length
W.NSTS =: ^o14 ;Window status
W.NLGH =: ^o16 ;Length of WDB
WS.CRW =: ^o100000 ;Window created
WS.UNM =: ^o40000 ;One or more windows unmapped
WS.ELW =: ^o20000 ;One or more windows eliminated
WS.DSI =: ^o10000 ;D-space inactive WS.D=WS.I=1
WS.IDD =: ^o4000 ;D-space window different WS.D=WS.I=1
WS.OVR =: ^o2000 ;reserved
WS.RO =: ^o1000 ;Window is read only
WS.MAP =: ^o400 ;Create and map window
WS.SPA =: ^o14 ;Bit field for address space(s)
WS.D =: ^o10 ;Map into data space
WS.I =: ^o4 ;Map into instruction space
WS.MOD =: ^o3 ;Field to indicate mode
WS.U =: ^o0 ;User
WS.S =: ^o1 ;Supervisor
WS.C =: ^o2 ;Current

Programmed Request Description and Examples 2–283

.WRITE/.WRITC/.WRITW
EMT 375, Code 11
The three modes of write operations for RT–11 I/O use the .WRITE, .WRITC, and
.WRITW programmed requests.

Note that in the case of .WRITE and .WRITC, additional queue elements should be
allocated for buffered I/O operations (See .QSET programmed request).

Under a monitor the with system job feature, .WRITE/C/W requests may be used to
send messages to other jobs in the system.

.WRITE
The .WRITE request transfers a specified number of words from memory to the
specified channel. Control returns to your program immediately after the request is
queued.

Macro Call:

.WRITE area,chan,buf,wcnt,blk[,BMODE=strg]

where:

area is the address of a five-word EMT argument block

chan is a channel number in the range 0 to 3768

buf is the address of the memory buffer to be used for output

wcnt is the number of words to be written

blk is the block number to be written. For a file-structured
.LOOKUP or .ENTER, the block number is relative to the start
of the file. For a non-file-structured .LOOKUP or .ENTER,
the block number is the absolute block number on the device.
The user program should normally update blk before it is used
again. Some devices, such as LP, may assign the blk argument
special meaning. For example, if blk = 0, LP issues a form
feed.

2–284 RT–11 System Macro Library Manual

.WRITE/.WRITC/.WRITW

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

Request Format:

No BMODE, CMODE BMODE, CMODE

R0 area: 11 chan 11 chan

blk blk

wcnt wcnt

mapping bits

buf buf

1

1

Notes
.WRITE and .WRITC instruct the monitor to do a write to a sequential- access device
(for example, magtape), then immediately return control to your program.

If the write is to a random-access device (disk), R0 contains the number of words that
will write (.WRITE or .WRITC) or have been written (.WRITW). If a write goes past
EOT on magtape, an error is returned and R0=0. Note that the write is done and
a completion routine, if specified, is entered, unless the request cannot be partially
filled (shortened word count = 0).

Programmed Request Description and Examples 2–285

.WRITE/.WRITC/.WRITW

If a request is made to write past the end-of-file on a random-access device, the word
count is shortened and an error is returned. The shortened word count is returned
in R0.

Errors:

Code Explanation
0 Attempted to write past end-of-file.

1 Hardware error.

2 Channel was not opened.

Example:
See .READ.

.WRITC
The .WRITC request transfers a specified number of words from memory to a
specified channel. Control returns to the user program immediately after the request
is queued. Execution of the user program continues until the request is fulfilled, then
control passes to the routine specified in the request. When the completion routine
executes a RETURN instruction, control returns to the user program.

Macro Call:

.WRITC area,chan,buf,wcnt,crtn,blk[,BMODE][,CMODE]

where:

area is the address of a five-word EMT argument block

chan is a channel number in the range 0 to 3768

buf is the address of the memory buffer to be used for output

wcnt is the number of words to be written

crtn is the address (>500 octal) of the completion routine to be
entered

blk is the block number to be written. For a file-structured
.LOOKUP or .ENTER, the block number is relative to the start
of the file. For a non-file-structured .LOOKUP or .ENTER, the
block number is the absolute block number on the device. Your
program should normally update blk before it is used again.
See the RT–11 Device Handlers Manual for the significance of
the block number for devices such as line printers.

2–286 RT–11 System Macro Library Manual

.WRITE/.WRITC/.WRITW

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

CMODE = strg where strg is:

Value Description

U User space (default)

S Supervisor space

Specifying CMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
CMODE.

• Specifies the space for the crtn argument.

• Is a valid option only for fully mapped monitors.

Programmed Request Description and Examples 2–287

.WRITE/.WRITC/.WRITW

Request Format:

No BMODE, CMODE BMODE, CMODE

R0 area: 11 chan 11 chan

blk blk

wcnt wcnt

mapping bits

buf buf

crtn

crtn

Notes
.WRITC instructs the monitor to do a write to a sequential- access device (for
example, magtape), then immediately returns control to your program.

If the write is to a random-access device (disk), R0 contains the number of words that
will write (.WRITE or .WRITC) or have been written (.WRITW). If a write goes past
EOT on magtape, an error is returned and R0=0. Note that the write is done and
a completion routine, if specified, is entered, unless the request cannot be partially
filled (shortened word count = 0).

If a request is made to write past the end-of-file on a random-access device, the word
count is shortened and an error is returned. The shortened word count is returned
in R0. When a .WRITC completion routine is entered, the following conditions are
true:

• R0 contains the contents of the channel status word for the operation. If bit 0
(HDERR$) of R0 is set, a hardware error occurred during the transfer and data
may be unreliable.

• R1 contains the octal channel number of the operation. This is useful when the
same completion routine is to be used for several different transfers.

• R0 and R1 are available for use by the routine, but all other registers must
be saved and restored. Data cannot be passed between the main program and
completion routines in any register or on the stack.

Errors:

Code Explanation
0 End-of-file on output. Tried to write outside limits of file.

1 Hardware error occurred.

2 Specified channel is not open.

Example:
Refer to the example following .READC.

2–288 RT–11 System Macro Library Manual

.WRITE/.WRITC/.WRITW

.WRITW
The .WRITW request transfers a specified number of words from memory to the
specified channel. Control returns to your program when the .WRITW is complete.

Macro Call:

.WRITW area,chan,buf,wcnt,blk[,BMODE=strg]

where:

area is the address of a five-word EMT argument block

chan is a channel number in the range 0 to 3768

buf is the address of the buffer to be used for output

wcnt is the number of words to be written. The number must be
positive

blk is the block number to be written. For a file-structured
.LOOKUP or .ENTER, the block number is relative to the start
of the file. For a non-file-structured .LOOKUP or .ENTER, the
block number is the absolute block number on the device. Your
program should normally update blk before it is used again.
See the RT–11 Device Handlers Manual for the significance of
the block number for devices such as line printers.

BMODE = strg where strg is:

Value Description

UD User data space (default)

UI User instruction space

SD Supervisor data space

SI Supervisor instruction space

CD Kernel data space

CI Kernel instruction space

Specifying BMODE:

• Loads an additional word in the EMT request block area
containing a bit pattern matching the code specified for
BMODE.

• Specifies mode and space for the buff argument.

• Is a valid option only in a fully mapped environment.

Programmed Request Description and Examples 2–289

.WRITE/.WRITC/.WRITW

Request Format:

No BMODE BMODE

R0 area: 11 chan 11 chan

blk blk

wcnt wcnt

mapping bits

buf buf

0

0

Notes
.WRITW instructs the monitor to do a write to a sequential- access device (for
example, magtape) or to a random-access device (disk), then returns control to your
program.

If the write is to a random-access device (disk), R0 contains the number of words
that have been written (.WRITW). If a request is made to write past the end-of-file
on a random-access device, the word count is shortened and an error is returned.
The shortened word count is returned in R0.

If a write on magtape goes past EOT, an error is returned and R0=0. Note that the
write is done and a completion routine, if specified, is entered, unless the request
cannot be partially filled (shortened word count = 0).

Errors:

Code Explanation
0 Attempted to write past EOF.

1 Hardware error.

2 Channel was not opened.

Example:
See .READW.

2–290 RT–11 System Macro Library Manual

Appendix A

Summary of Added and Changed Functionality

Table A–1 lists all new and changed program requests for previous releases of the
RT–11 Operating System, Version 4.0 through Version 5.6.

Table A–1: Summary of Added and Changed Functionality

Request Action Description

Version 4.0

.CHCOPY Changed Jobname parameter

.DRBOT Added Define handler boot area

.DRDEF Added Define handler information

.DRSET Added Generate SET table entry

.DRVTB Added Generate vector table entry

.GTJB Changed 12-word return and jobname parameter

.MTSTAT Added Return system-wide information about multiterminal

.SDTTM Added Set system date and/or time

.SPCPS Added Derail to specified address

Version 5.0

.ABTIO Added Abort I/O on a channel

.AUDIT Added <Reserved to Digital>

.DRBOT Changed Added CONTROL and SIDES parameters

.DREND Changed Added FORCE parameter

.FETCH Changed Available under XM

.FPROT Added Protect file from deletion

.GTLIN Changed Added TYPE parameter

.MODULE Added <Reserved to Digital>

.NLCSI Added <Reserved to Digital>

.PEEK Added Access Kernel memory

.POKE Added Modify Kernel memory

Summary of Added and Changed Functionality A–1

Table A–1 (Cont.): Summary of Added and Changed Functionality

Request Action Description

Version 5.0

.PVAL Added Modify monitor

.RMODULE Added <Reserved to Digital>

.SFDAT Added Set file date

.TWAIT Changed Available under SJ

Version 5.1

.ADDR Added Generate PIC address

.ASSUME Added Check assembly assumption

.BR Added Check assembly assumption on "drop-through"

.DREND Changed Added PSECT parameter

.DRINS Added Set up install area for handlers

.DRVTB Changed Added slotid for PRO support

.SCCA Changed Added TYPE parameter

SOB Added Simulate SOB instruction on old machines

Version 5.2

.CKxx Added Check register contents assumptions

.DRBOT Changed Added OFFSET parameter

.DREND Changed Made some symbols local by default (L1 and L2)

.MODULE Changed Provided default for VERSION parameter

.RDBBK Changed Added NAME parameter

Version 5.3

.CKxx Changed Documented

.DREST Added Supply extended handler status

.DRPTR Added Added (later deleted) FORMAT and SHOW parameters

.DRSPF Added Generate .SPFUN code table(s) in handlers

A–2 RT–11 System Macro Library Manual

Table A–1 (Cont.): Summary of Added and Changed Functionality

Request Action Description

Version 5.4

.DRBEG Changed Added ADDRCK,SPFUN, CODE, and L1 parameters

.DRBOT Changed Added FORCE, and PSECT parameters

.DRDEF Changed Added UNIT64, DMA, and PERMUMR parameters

.DREST Changed Added STAT2 parameter

.DRFMS Added <Reserved to Digital>

.DRFMT Added <Reserved to Digital>

.DRPTR Changed Deleted FORMAT and SHOW parameters

.DRTAB Added <Reserved to Digital>

.DRUSE Added Point to table(s) in handlers

.HERR Changed Added return of previous .HERR/.SERR state

.RDBBK Changed Added base parameter

.SERR Changed Added return of previous .HERR/.SERR state

Version 5.5

.CALLK Added Transfer control to Kernel mapping routine

.CLOSZ Added Specify size on new file closure

.DRBEG Changed Added LDTBL and NSPFUN parameters

.DRDEF Changed Added SERIAL parameter

.DRSPF Changed Added TYPE parameter

.FPROT Changed Return previous setting status

.GFDAT Added Return file date

.GFINF Added Return file directory entry information

.GFSTAT Added Return file directory status

.PEEK Changed Address 177776 accesses PS

.POKE Changed Added TYPE parameter

.POKE Changed Address 177776 accesses PS

.PVAL Changed Added TYPE parameter

.QELDF Changed Added definition of Q.MEM and Q$MEM

.SFINF Added Set file directory entry information

.SFSTAT Added Set file directory status

Summary of Added and Changed Functionality A–3

Table A–1 (Cont.): Summary of Added and Changed Functionality

Request Action Description

Version 5.6

.CALLS Added Transfer control to Supervisor mapping routine

.CKxx Changed Added LIST parameter

.CMAP Added Control mode and space mapping

.CMPDF Added Define masks for .CMAP, .GCMAP and .MSDS

.DEBUG Added Setup for .DPRINT

.DPRINT Added Display debugging information

.DPSEC Added <Reserved to Digital>

.GCMAP Added Return settings of mode and space mapping

.MSDS Added Control User / Supervisor D-space locking

.QELDF Changed Add LIST and E parameters; define more bits

.RCVD Changed Added BMODE parameter

.RCVDC Changed Added BMODE and CMODE parameters

.RCVDW Changed Added BMODE parameter

.RDBDF Changed Added LIST and E parameters

.READ Changed Added BMODE parameter

.READC Changed Added BMODE and CMODE parameters

.READW Changed Added BMODE parameter

.SDAT Changed Added BMODE parameter

.SDATC Changed Added BMODE and CMODE parameters

.SDATW Changed Added BMODE parameter

.SPFUN Changed Added BMODE and CMODE parameters

.WDBDF Changed Added LIST and E parameters

.WRITC Changed Added BMODE and CMODE parameters

.WRITE Changed Added BMODE parameter

.WRITW Changed Added BMODE parameter

A–4 RT–11 System Macro Library Manual

Index

A
.ABTIO

summary, 1–33
.ABTIO programmed request

description, 2–3
EMT 374, Code 13, 2–3

.ADDR
summary, 1–33

.ADDR macro
description, 2–4

Argument summary
list, 2–1

.ASSUME
summary, 1–33

.ASSUME macro
description, 2–5

B
.BR

summary, 1–33
.BR macro

description, 2–6

C
.CALL

summary, 1–33
.CALLK programmed request

Description, 2–7
EMT 373, 2–7

.CALLS
summary, 1–33

.CALLS macro
description, 2–9

.CDFN
summary, 1–34

.CDFN programmed request
description, 2–11
EMT 375, Code 15, 2–11

CHAIN.
summary, 1–34

.CHAIN programmed request

.CHAIN programmed request (Cont.)
Description, 2–13
EMT 374, Code 10, 2–13

.CHCOPY
summary, 1–40

.CHCOPY programmed request
description, 2–16
EMT 375, Code 13, 2–16

.CKxx
summary, 1–34

.CKXX macro
description, 2–19

.CLOSE
summary, 1–34

.CLOSE programmed request
description, 2–22
EMT 374, Code 6, 2–22

.CLOSZ
summary, 1–34

.CLOSZ programmed request
description, 2–24
EMT 375, Code 45, 2–24

.CMAP
summary, 1–40

.CMAP macro
description, 2–26
mapping context (I.CMAP), 2–27

.CMKT
summary, 1–34

.CMKT programmed request
description, 2–32
EMT 375, Code 23, 2–32

.CNTXSW
summary, 1–40

.CNTXSW programmed request
description, 2–34
EMT 375, Code 33, 2–34

Communications
See also .SDAT and .RCVD
foreground/background, 1–26

Consistency checking
.ASSUME, 1–33

Index–1

Consistency checking (Cont.)
.Ck.Rn, 1–33
.CKxx, 1–33

.CRAW
summary, 1–40

.CRAW programmed request
description, 2–36
EMT 375, Code 36, 2–36

.CRRG
summary, 1–40

.CRRG programmed request
description, 2–40
EMT 375, Code 36, 2–40

.CSIGEN
summary, 1–34

.CSIGEN programmed request
description, 2–41
EMT 344, 2–41

.CSISPC
summary, 1–34

.CSISPC programmed request
description, 2–47
EMT 345, 2–47

.CSTAT
summary, 1–34

.CSTAT programmed request
description, 2–51
EMT 375, Code 27, 2–51

.CTIMIO
summary, 1–34

.CTIMIO macro
description, 2–53

D
.DATE

summary, 1–34
.DATE programmed request

description, 2–55
EMT 374, Code 12, 2–55

.DEBUG
summary, 1–34

.DEBUG macro
description, 2–57

.DELETE
summary, 1–34

.DELETE programmed request
description, 2–60
EMT 375, Code 0, 2–60

.DEVICE

.DEVICE (Cont.)
summary, 1–34

Device handlers, 1–31
Device lookup

bypass, 1–32
.DEVICE programmed request

description, 2–61
EMT 375, Code 14, 2–61

.DPRINT macro
description, 2–59

.DRAST
summary, 1–34

.DRAST macro
description, 2–64

.DRBEG
summary, 1–34

.DRBEG macro
description, 2–67

.DRBOT
summary, 1–34

.DRBOT macro
description, 2–69

.DRDEF
summary, 1–34

.DRDEF macro
description, 2–70

.DREND
summary, 1–34

.DREND macro
description, 2–75

.DREST
summary, 1–34

.DREST macro
description, 2–77

.DRFIN
summary, 1–35

.DRFIN macro
description, 2–83

.DRINS
summary, 1–35

.DRINS macro
description, 2–84

.DRPTR
summary, 1–35

.DRPTR macro
description, 2–86

.DRSET
summary, 1–35

.DRSET macro
description, 2–88

Index–2

.DRSPF
summary, 1–35

.DRSPF macro
description, 2–89

.DRTAB
summary, 1–35

.DRTAB macro
description, 2–93

.DRUSE
summary, 1–35

.DRUSE macro
description, 2–95

.DRVTB
summary, 1–35

.DRVTB macro
description, 2–97

.DSTAT
summary, 1–35

.DSTAT programmed request
description, 2–98
EMT 342, 2–98

E
.ELAW

summary, 1–40
.ELAW programmed request

description, 2–100
EMT 375, Code 36, 2–100

.ELRG
summary, 1–40

.ELRG programmed request
description, 2–101
EMT 375, Code 36, 2–101

.ENTER
summary, 1–35

.ENTER programmed request
description, 2–102
EMT 375, Code 2, 2–102

.EXIT
summary, 1–35

.EXIT programmed request
description, 2–106
EMT 350, 2–106

F
.FETCH

summary, 1–35
.FETCH programmed request

description, 2–108

.FETCH programmed request (Cont.)
EMT 343, 2–108

File operations
See also .FETCH, .LOAD
file handlers, 1–22
input/output, 1–24
.REOPEN, 1–22
.SAVESTATUS, 1–22

Fixed-offset area
See also .GVAL, .PVAL, .PEEK, .POKE
accessing, 1–4

.FORK
summary, 1–35

.FORK macro
description, 2–110

.FPROT
summary, 1–35

.FPROT programmed request
description, 2–112
EMT 375, CODE 43, 2–112

Functions
extended memory functions, 1–29
list, 1–29

G
.GCMAP

description, 2–26
summary, 1–40

.GCMAP macro, 2–26

.GFDAT
summary, 1–35

.GFDAT programmed request
description, 2–115
EMT 375, Code 44, 2–115

.GFINF
summary, 1–35

.GFINF programmed request
description, 2–117
EMT 375, Code 44, 2–117

.GFSTA
summary, 1–35

.GFSTA programmed request
description, 2–120
EMT 375, Code 44, 2–120

.GMCX
summary, 1–40

.GMCX programmed request
description, 2–123
EMT 375, Code 36, 2–123

Index–3

.GTIM
summary, 1–35

.GTIM programmed request
description, 2–124
EMT 375, Code 21, 2–124

.GTJB
summary, 1–35

.GTJB programmed request
description, 2–126
EMT 375, Code 20, 2–126

.GTLIN
summary, 1–36

.GTLIN programmed request
description, 2–129
EMT 345, 2–129

.GVAL
summary, 1–36

.GVAL programmed request
description, 2–132
EMT 375, Code 34, 2–132

H
.HERR

summary, 1–36
.HERR programmed request

description, 2–136
EMT 374, Code 5, 2–136

.HRESET
summary, 1–36

.HRESET programmed request
See also .SRESET
description, 2–141
EMT 357, 2–141

I
Input/output operations

asynchronous I/O, 1–24
completion routines, 1–24
event-driven I/O, 1–24
multiterminal requests, 1–26
synchronous I/O, 1–24
terminal input/output, 1–26

.INTEN
summary, 1–36

.INTEN macro
description, 2–142

Interrupt service routines, 1–31

J
Job communications

See also .RCVD, .MWAIT, .SDAT
sending, receiving, 1–29

L
.LOCK

summary, 1–36
.LOCK programmed request

description, 2–144
EMT 346, 2–144

.LOOKUP
summary, 1–36

.LOOKUP programmed request
description, 2–147
EMT 375, Code 1, 2–147

M
.MACS

summary, 1–36
.MAP

summary, 1–40
.MAP programmed request

description, 2–153
EMT 375, Code 36, 2–153

.MFPS
summary, 1–36

.MFPS macro
description, 2–155

Monitor services
list of, 1–2

.MRKT
summary, 1–36

.MRKT programmed request
description, 2–158
EMT 375, Code 22, 2–158

.MSDS
summary, 1–40

.MSDS macro
description, 2–161

.MTATCH
summary, 1–36

.MTATCH programmed request
description, 2–162
EMT 375, Code 37, 2–162

.MTDTCH
summary, 1–36

.MTDTCH programmed request

Index–4

.MTDTCH programmed request (Cont.)
description, 2–165
EMT 375, Code 37, 2–165

.MTGET
summary, 1–36

.MTGET programmed request
description, 2–167
EMT 375, Code 37, 2–167

.MTIN
summary, 1–36

.MTIN programmed request
description, 2–171
EMT 375, Code 37, 2–171

.MTOUT
summary, 1–36

.MTOUT programmed request
description, 2–173
EMT 375, Code 37, 2–173

.MTPRNT
summary, 1–36

.MTPRNT programmed request
description, 2–175
EMT 375, Code 37, 2–175

.MTPS
summary, 1–36

.MTPS macro
description, 2–155

.MTRCTO
summary, 1–37

.MTRCTO programmed request
description, 2–177
EMT 375, Code 37, 2–177

.MTSET
summary, 1–37

.MTSET programmed request
description, 2–178
EMT 375, Code 37, 2–178

.MTSTAT
summary, 1–37

.MTSTAT programmed request
description, 2–180
EMT 375, Code 37, 2–180

.MTWAIT
summary, 1–40

Multiterminal operation, 1–4
.MWAIT programmed request

description, 2–181
EMT 375, Code 37, 2–181

P
.PEEK

summary, 1–37
.PEEK programmed request

See also .POKE
description, 2–183
EMT 375, Code 34, 2–183

.POKE
summary, 1–37

.POKE programmed request
See also .PEEK
description, 2–185
EMT 375, Code 34, 2–185

.PRINT
summary, 1–37

.PRINT programmed request
description, 2–187
EMT 351, 2–187

Programmed requests
command interpretation, 1–21
devices, 1–20
EMT instructions, 1–5
error processing, 1–20
extended memory functions, 1–29
for all environments, 1–33
implementation, 1–5
input/output access, 1–19
mapped environments, 1–40
memory allocation, 1–18
multijob environments, 1–40
summary, 1–1
types, 1–29

Program termination
See also .SRESET, .HRESET
job reset, 1–28
suspension, 1–28

.PROTECT
summary, 1–37

.PROTECT programmed request
See also .UNPROTECT
description, 2–188
EMT 375, Code 31, 2–188

.PUNROTECT programmed request
See also .PROTECT

.PURGE
summary, 1–37

.PURGE programmed request
description, 2–191

Index–5

.PURGE programmed request (Cont.)
EMT 374, Code 3, 2–191

.PVAL
summary, 1–37

.PVAL programmed request
description, 2–132
EMT 375, Code 34, 2–132

Q
.QELDF

summary, 1–37
.QELDF macro

description, 2–193
.QSET

summary, 1–37
.QSET programmed request

description, 2–194
EMT 353, 2–194

R
.RCTRLO

summary, 1–37
.RCTRLO programmed request

description, 2–196
EMT 355, 2–196

.RCVD
summary, 1–40

.RCVDC
summary, 1–40

.RCVDC programmed request
See also .SDATC
description, 2–197
EMT 375, Code 26, 2–197

.RCVD programmed request
See also .SDAT
description, 2–197
EMT 375, Code 26, 2–197

.RCVDW
summary, 1–40

.RCVDW programmed request
See also .SDATW
description, 2–197
EMT 375, Code 26, 2–197

.RDBBK
summary, 1–40

.RDBBK macro
See also .RDBDF
description, 2–205

.RDBDF
summary, 1–40

.RDBDF macro
See also .RDBBK
description, 2–206

.READ
summary, 1–37

.READC
summary, 1–37

.READC programmed request
See also .SDATC
description, 2–207
EMT 375, Code 10, 2–207

.READ programmed request
See also .SDAT
description, 2–207
EMT 375, Code 10, 2–207

.READW
summary, 1–37

.READW programmed request
See also .SDATW
description, 2–207
EMT 375, Code 10, 2–207

Regions
mapped, 1–29
unmapped, 1–29

.RELEASE
summary, 1–37

.RENAME
summary, 1–37

.RENAME programmed request
description, 2–219

.REOPEN
summary, 1–37

.REOPEN programmed request
See also .SAVESTATUS
description, 2–221
EMT 375, Code 6, 2–221

Request types
.CMAP, .GCMAP
.CRAW, .CRRG
.ELAW, .ELRG, 1–29
general mapping control, 1–29
map, 1–29
.MAP, .UNMAP, 1–29
region, 1–29
status, 1–29
window, 1–29

.RSUM

Index–6

.RSUM (Cont.)
summary, 1–37

.RSUM programmed request
description, 2–261
EMT 374, Code 2, 2–261

RT–11 Monitors
See also FB monitor
See also SB monitor
See also XB and ZB monitors
See also XM and XB monitors
multi-job mapped monitors, 1–3
multi-job unmapped monitors, 1–3
operational configurations, 1–2
single-job mapped monitors, 1–3
single-job unmapped monitors, 1–2

S
.SAVESTATUS

summary, 1–38
.SAVESTATUS programmed request

See also .REOPEN
description, 2–223
EMT 375, Code 5, 2–223

.SCCA
summary, 1–38

.SCCA programmed request
description, 2–226
EMT 375, Code 35, 2–226

.SDAT3

summary, 1–40
.SDATC3

summary, 1–40
.SDATC programmed request

See also .RCVDC
description, 2–228
EMT 375, Code 25, 2–228

.SDAT programmed request
See also .RCVD
description, 2–228
EMT 375, Code 25, 2–228

.SDATW3

summary, 1–40
.SDATW programmed request

See also .RCVDW
description, 2–228
EMT 375, Code 25, 2–228

.SDTTM
summary, 1–38

.SDTTM programmed request
description, 2–236
EMT 375, Code 40, 2–236

.SERR
summary, 1–38

.SERR programmed request
description, 2–136
EMT 374, Code 4, 2–136
table of error codes, 2–138

.SETTOP
summary, 1–38

.SETTOP programmed request
description, 2–239
EMT 354, 2–239

.SFDAT
summary, 1–38

.SFDAT programmed request
description, 2–242
EMT 375, Code 42, 2–242

.SFINF
summary, 1–38

.SFINF programmed request
description, 2–243
EMT 375, Code 44, 2–243

.SFPA
summary, 1–38

.SFPA programmed request
description, 2–246
EMT 375, Code 30, 2–246

.SFSTA
summary, 1–38

.SFSTAT programmed request
description, 2–248
EMT 375, Code 44, 2–248

SOB
summary, 1–38

SOB macro
description, 2–253

.SPCPS
summary, 1–38

.SPCPS programmed request
description, 2–254
EMT 375, Code 41, 2–254

.SPFUN
summary, 1–38

.SPFUN programmed request
description, 2–257
EMT 375, Code 32, 2–257

.SPND

Index–7

.SPND (Cont.)
summary, 1–38

.SPND programmed request
description, 2–261
EMT 374, Code 1, 2–261

.SRESET
summary, 1–38

.SRESET programmed request
description, 2–263
EMT 352, 2–263

.SYNCH
summary, 1–38

.SYNCH macro
description, 2–264

System communication areas, 1–4
System control

path flow, 1–6
System Conventions

addressing modes, 1–12
blank arguments, 1–11
Channels and channel numbers, 1–14
device blocks, 1–14
keyword macro arguments, 1–13
programmed request errors, 1–15
Program request format, 1–8
user service routine requirements, 1–15

System information
examining and reporting status, 1–21

System job environment
program requests in, 1–4

T
Timer support

See also .MRKT
selecting, 1–27

.TIMIO
summary, 1–38

.TIMIO macro
description, 2–267

.TLOCK
summary, 1–38

.TLOCK programmed request
description, 2–269
EMT 374, Code 7, 2–269

.TRPSET
summary, 1–38

.TRPSET programmed request
description, 2–271
EMT 375, Code 3, 2–271

.TTINR
summary, 1–38

.TTINR programmed request
description, 2–273
EMT 340, 2–273

.TTOUTR
summary, 1–38

.TTOUTR programmed request
description, 2–275
EMT 341, 2–275

.TTYIN
summary, 1–38

.TTYIN programmed request
description, 2–273
EMT 340, 2–273

.TTYOUT
summary, 1–38

.TTYOUT programmed request
description, 2–275
EMT 341, 2–275

.TWAIT
summary, 1–38

.TWAIT programmed request
See also .QSET
description, 2–278
EMT 375, Code 24, 2–278

U
.UNLOCK

summary, 1–39
.UNLOCK programmed request

description, 2–145
EMT 347, 2–145

.UNMAP
summary, 1–40

.UNMAP programmed request
description, 2–153
EMT 375, Code 36, 2–153

.UNPROTECT
summary, 1–39

.UNPROTECT programmed request
description, 2–190
EMT 375, Code 31, 2–190

Using programmed requests, 1–18
initialization and control, 1–18

USR
background job, 1–15
monitor offset 374, 1–15
protecting program areas, 1–15

Index–8

USR (Cont.)
swapping, 1–15
value of location 46, 1–15

V
..V1..

summary, 1–39
..V2..

summary, 1–39

W
.WAIT

summary, 1–39
.WAIT programmed request

description, 2–281
EMT 374, Code 0, 2–281
See also .READ/.WRITE, 2–281

.WDBBK
summary, 1–40

.WDBBK macro

See also .WDBDF
description, 2–282

.WDBDF
summary, 1–40

.WDBDF macro
See also .WDBBK
description, 2–283

.WRITC
summary, 1–39

.WRITC programmed request
description, 2–284
EMT 375, Code 11, 2–284

.WRITE
summary, 1–39

.WRITE programmed request
description, 2–284
EMT 375, Code 11, 2–284

.WRITW
summary, 1–39

.WRITW programmed request
description, 2–284
EMT 375, Code 11, 2–284

Index–9

