
Compaq TCP/IP Services for
OpenVMS
Sockets API and System
ServicesProgramming
Order Number: AA–LU51L–TE

January 2001

This manual describes how to use Compaq TCP/IP Services for
OpenVMS to develop network applications using Berkeley Sockets or
OpenVMS system services.

Revision/Update Information: This manual supersedes the Compaq
TCP/IP Services for OpenVMS System
Services and C Socket Programming,
Version 5.0.

Software Version: Compaq TCP/IP Services for OpenVMS
Version 5.1

Operating System: OpenVMS Alpha Versions 7.1 and 7.2-1
OpenVMS VAX Versions 7.1 and 7.2

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

COMPAQ, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS and Tru64 are trademarks of Compaq Information Technologies, Inc in the United States
and other countries.

UNIX is a trademark of The Open Group in the United States and other countries.

All other product names mentioned herein may be the trademarks or registered trademarks of their
respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6529

This document is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xi

1 Application Programming Interfaces

1.1 BSD Sockets . 1–1
1.2 OpenVMS System Services . 1–1
1.3 Application Development Files . 1–2
1.3.1 Definition Files . 1–2
1.3.2 Libraries . 1–3
1.3.3 Programming Examples . 1–3
1.4 Compiling and Linking Compaq’s C Language Programs 1–4
1.4.1 Compiling and Linking Programs Using BSD Version 4.4 1–4
1.4.2 Compaq C Compilation Warnings . 1–4
1.5 Using 64-Bit Addresses (Alpha Only) . 1–5

2 Writing Network Applications

2.1 The Client/Server Communication Process . 2–1
2.1.1 Using the TCP Protocol . 2–1
2.1.2 Using the UDP Protocol . 2–4
2.2 Creating a Socket . 2–7
2.2.1 Creating Sockets (Sockets API) . 2–8
2.2.2 Creating Sockets (System Services) . 2–8
2.3 Binding a Socket (Optional for Clients) . 2–10
2.3.1 Binding a Socket (Sockets API) . 2–11
2.3.2 Binding a Socket (System Services) . 2–12
2.4 Making a Socket a Listener (TCP Protocol) . 2–14
2.4.1 Setting a Socket to Listen (Sockets API) . 2–15
2.4.2 Setting a Socket to Listen (System Services) . 2–16
2.5 Initiating a Connection (TCP Protocol) . 2–19
2.5.1 Initiating a Connection (Sockets API) . 2–19
2.5.2 Initiating a Connection (System Services) . 2–21
2.6 Accepting a Connection (TCP Protocol) . 2–24
2.6.1 Accepting a Connection (Sockets API) . 2–25
2.6.2 Accepting a Connection (System Services) . 2–27
2.7 Getting Socket Options . 2–31
2.7.1 Getting Socket Information (Sockets API) . 2–31
2.7.2 Getting Socket Information (System Services) 2–34
2.8 Setting Socket Options . 2–38
2.8.1 Setting Socket Options (Sockets API) . 2–38
2.8.2 Setting Socket Options (System Services) . 2–41
2.9 Reading Data . 2–46
2.9.1 Reading Data (Sockets API) . 2–46
2.9.2 Reading Data (System Services) . 2–48

iii

2.10 Receiving IP Multicast Datagrams . 2–52
2.11 Reading Out-of-Band Data (TCP Protocol) . 2–53
2.11.1 Reading OOB Data (Sockets API) . 2–54
2.11.2 Reading OOB Data (System Services) . 2–54
2.12 Peeking at Queued Messages . 2–55
2.12.1 Peeking at Data (Sockets API) . 2–55
2.12.2 Peeking at Data (System Services) . 2–58
2.13 Writing Data . 2–58
2.13.1 Writing Data (Sockets API) . 2–59
2.13.2 Writing Data (System Services) . 2–61
2.14 Writing OOB Data (TCP Protocol) . 2–67
2.14.1 Writing OOB Data (Sockets API) . 2–67
2.14.2 Writing OOB Data (System Services) . 2–68
2.15 Sending Datagrams (UDP Protocol) . 2–69
2.15.1 Sending Datagrams (System Services) . 2–69
2.15.2 Sending Broadcast Datagrams (Sockets API) . 2–70
2.15.3 Sending Broadcast Datagrams (System Services) 2–70
2.15.4 Sending Multicast Datagrams . 2–70
2.16 Using the Berkeley Internet Name Domain Service 2–72
2.16.1 BIND Lookups (Sockets API) . 2–72
2.16.2 BIND Lookups (System Services) . 2–73
2.17 Closing and Deleting a Socket . 2–77
2.17.1 Closing and Deleting (Sockets API) . 2–77
2.17.2 Closing and Deleting (System Services) . 2–78
2.18 Shutting Down Sockets . 2–80
2.18.1 Shutting Down a Socket (Sockets API) . 2–80
2.18.2 Shutting Down a Socket (System Services) . 2–81
2.19 Canceling I/O Operations . 2–84

3 Using the Sockets API

3.1 Internet Protocols . 3–1
3.1.1 TCP Sockets . 3–1
3.1.1.1 Wildcard Addressing . 3–1
3.1.2 UDP Sockets . 3–2
3.2 Structures . 3–2
3.2.1 hostent Structure . 3–3
3.2.2 in_addr Structure . 3–4
3.2.3 iovec Structure . 3–4
3.2.4 linger Structure . 3–4
3.2.5 msghdr Structure . 3–5
3.2.5.1 BSD Version 4.4 . 3–5
3.2.5.2 BSD Version 4.3 . 3–5
3.2.6 netent Structure . 3–6
3.2.7 sockaddr Structure . 3–6
3.2.7.1 BSD Version 4.4 . 3–6
3.2.7.2 BSD Version 4.3 . 3–7
3.2.8 sockaddr_in Structure . 3–7
3.2.9 timeval Structure . 3–7
3.3 Header Files . 3–8
3.4 Calling a Socket Function from an AST State . 3–8
3.5 Standard I/O Functions . 3–8
3.6 Event Flags . 3–9
3.7 Error Checking: errno Values . 3–9

iv

4 Sockets API Reference

4.1 Sockets API . 4–2
accept() . 4–3
bind() . 4–5
close() . 4–7
connect() . 4–8
decc$get_sdc() . 4–10
gethostbyaddr() . 4–11
gethostbyname() . 4–13
gethostname() . 4–14
getnetbyaddr() . 4–15
getnetbyname() . 4–16
getpeername() . 4–17
getprotobyname() . 4–18
getprotobynumber() . 4–19
getprotoent() . 4–20
getservbyname() . 4–21
getservbyport() . 4–22
getsockname() . 4–23
getsockopt() . 4–24
htonl() . 4–26
htons() . 4–27
inet_addr() . 4–28
inet_lnaof() . 4–30
inet_makeaddr() . 4–31
inet_netof() . 4–32
inet_network() . 4–33
inet_ntoa() . 4–34
ioctl() . 4–35
listen() . 4–37
ntohl() . 4–39
ntohs() . 4–40
read() . 4–41
recv() . 4–43
recvfrom() . 4–45
recvmsg() . 4–48
select() . 4–50
send() . 4–53
sendmsg() . 4–55
sendto() . 4–57
setsockopt() . 4–60
shutdown() . 4–62
socket() . 4–63
write() . 4–65

v

5 Using the $QIO System Service

5.1 $QIO System Service Variations . 5–1
5.2 $QIO Format . 5–1
5.2.1 Symbol Definition Files . 5–2
5.3 $QIO Functions . 5–2
5.4 $QIO Arguments . 5–3
5.4.1 $QIO Function-Independent Arguments . 5–3
5.4.2 I/O Status Block . 5–4
5.4.3 $QIO Function-Dependent Arguments . 5–4
5.5 Passing Arguments by Descriptor . 5–5
5.5.1 Specifying an Input Parameter List . 5–6
5.5.2 Specifying an Output Parameter List . 5–8
5.6 Specifying a Socket Name . 5–11
5.6.1 Specifying a Buffer List . 5–13

6 OpenVMS System Services Reference

6.1 System Service Descriptions . 6–2
$ASSIGN . 6–3
$CANCEL . 6–6
$DASSGN . 6–8
$QIO . 6–10

6.2 Network Pseudodevice Driver I/O Functions . 6–13
IO$_ACCESS . 6–14
IO$_ACCESS | IO$M_ACCEPT . 6–17
IO$_ACPCONTROL . 6–20
IO$_DEACCESS . 6–23
IO$_READVBLK . 6–25
IO$_SENSEMODE/IO$_SENSECHAR . 6–31
IO$_SETMODE/IO$_SETCHAR . 6–34
IO$_SETMODE | IO$M_OUTBAND . 6–40
IO$_SETMODE | IO$M_READATTN . 6–45
IO$_SETMODE | IO$M_WRTATTN . 6–50
IO$_WRITEVBLK . 6–55

6.3 TELNET Port Driver I/O Function Codes . 6–61
6.3.1 Interface Definition . 6–61
6.3.1.1 Item List Codes . 6–61
6.3.1.2 Characteristic Mask Bits . 6–63
6.3.1.3 Protocol Types . 6–63
6.3.1.4 Service Types . 6–64
6.3.2 Passing Parameters to the TELNET Port Driver 6–64

IO$_TTY_PORT | IO$M_TN_STARTUP . 6–65
IO$_TTY_PORT | IO$M_TN_SHUTDOWN . 6–67

6.3.3 Buffered Reading and Writing of Item Lists . 6–68
IO$_TTY_PORT_BUFIO | IO$M_TN_SENSEMODE 6–69
IO$_TTY_PORT_BUFIO | IO$M_TN_SETMODE 6–70

vi

A Socket Options

B IOCTL Requests

C Data Types

C.1 OpenVMS Data Types . C–1
C.2 C and C++ Implementations . C–5

D Error Codes

E Programming Examples

E.1 TCP Client/Server Examples (Sockets API) . E–2
E.1.1 TCP Client . E–2
E.1.2 TCP Server . E–9
E.1.3 TCP Server Accepting a Connection from the Auxiliary Server E–15
E.2 TCP Client/Server Examples (System Services) . E–20
E.2.1 TCP Client . E–20
E.2.2 TCP Server . E–29
E.2.3 TCP Server Accepting a Connection from the Auxiliary Server E–39
E.3 UDP Client/Server Examples (Sockets API) . E–46
E.3.1 UDP Client . E–46
E.3.2 UDP Server . E–52
E.4 UDP Client/Server Examples (System Services) . E–56
E.4.1 UDP Client . E–57
E.4.2 UDP Server . E–65

Index

Examples

2–1 Creating a Socket (Sockets API) . 2–8
2–2 Creating a Socket (System Services) . 2–9
2–3 Binding a Socket (Sockets API) . 2–11
2–4 Binding a Socket (System Services) . 2–12
2–5 Setting a Socket to Listen (Sockets API) . 2–15
2–6 Setting a Socket to Listen (System Services) . 2–16
2–7 Initiating a Connection (Sockets API) . 2–20
2–8 Initiating a Connection (System Services) . 2–21
2–9 Accepting a Connection (Sockets API) . 2–25
2–10 Accepting a Connection (System Services) . 2–27
2–11 Getting Socket Information (Sockets API) . 2–32
2–12 Getting Socket Information (System Services) 2–34
2–13 Setting Socket Options (Sockets API) . 2–39
2–14 Setting Socket Options (System Services) . 2–41
2–15 Reading Data (Sockets API) . 2–46
2–16 Reading Data (System Services) . 2–48
2–17 Reading OOB Data (Sockets API) . 2–54

vii

2–18 Reading OOB Data (System Services) . 2–55
2–19 Peeking at Data (Sockets API) . 2–56
2–20 Writing Data (Sockets API) . 2–59
2–21 Writing Data (System Services) . 2–61
2–22 Writing OOB Data (Sockets API) . 2–67
2–23 Writing OOB Data (System Services) . 2–69
2–24 BIND Lookup (Sockets API) . 2–72
2–25 BIND Lookup (System Services) . 2–74
2–26 Closing and Deleting a Socket (Sockets API) . 2–77
2–27 Closing and Deleting a Socket (System Services) 2–78
2–28 Shutting Down a Socket (Sockets API) . 2–80
2–29 Shutting Down a Socket (System Services) . 2–82
E–1 TCP Client (Sockets API) . E–2
E–2 TCP Server (Sockets API) . E–9
E–3 TCP Auxiliary Server (Sockets API) . E–15
E–4 TCP Client (System Services) . E–20
E–5 TCP Server (System Services) . E–29
E–6 TCP Auxiliary Server (System Services) . E–39
E–7 UDP Client (Sockets API) . E–46
E–8 UDP Server (Sockets API) . E–52
E–9 UDP Client (System Services) . E–57
E–10 UDP Server (System Services) . E–65

Figures

2–1 Client/Server Communication Process Using TCP 2–2
2–2 UDP Socket Communication Process . 2–5
5–1 I/O Status Block for a Successful READ or WRITE Operation 5–4
5–2 Specifying an Input Parameter List . 5–7
5–3 Setting Socket Options . 5–8
5–4 Setting IOCTL Parameters . 5–8
5–5 Specifying an Output Parameter List . 5–9
5–6 Getting Socket Options . 5–10
5–7 Getting IOCTL Parameters . 5–10
5–8 Specifying a Socket Name (BSD Version 4.3) . 5–12
5–9 Specifying a Socket Name (BSD Version 4.4) . 5–13
5–10 Specifying a Buffer List . 5–14
6–1 Subfunction Item List . 6–68

Tables

1 TCP/IP Services Documentation . xii
1–1 Network Definition Files . 1–2
1–2 C Language Definition Files . 1–2
1–3 Sockets API Libraries . 1–3
1–4 TCP Programming Examples . 1–3
1–5 UDP Programming Examples . 1–4

viii

2–1 TCP Server Tasks and Related Functions . 2–3
2–2 TCP Client Calling Sequence and Related Functions 2–4
2–3 UDP Server Tasks and Related Functions . 2–6
2–4 UDP Client Tasks and Related Functions . 2–6
3–1 TCP Socket Types . 3–1
3–2 Structures for Sockets API . 3–3
3–3 errno Values . 3–9
4–1 Sockets API Functions . 4–1
5–1 $QIO Arguments . 5–1
5–2 Network Symbol Definition Files . 5–2
5–3 $QIO Function Codes . 5–2
5–4 $QIO Function-Independent Arguments . 5–3
5–5 $QIO Function-Dependent Arguments . 5–5
6–1 OpenVMS System Service and Equivalent Sockets API Function 6–1
6–2 Network Pseudodevice Driver I/O Functions . 6–13
6–3 Subfunction Codes . 6–20
6–4 Call Codes . 6–20
6–5 Read Flags . 6–26
6–6 Socket Types . 6–34
6–7 List Codes for the p5 Item . 6–61
6–8 Characteristic Mask Bits . 6–63
6–9 Protocol Type Codes . 6–63
6–10 Service Type Codes . 6–64
A–1 Socket Options . A–1
A–2 TCP Protocol Options . A–3
A–3 IP Protocol Options . A–6
B–1 IOCTL Requests . B–1
C–1 TCP/IP Services Usage Data Type Entries . C–2
C–2 C and C++ Implementations . C–5
D–1 Translation of Socket Error Codes to OpenVMS Status Codes D–1
E–1 Client/Server Programming Examples . E–1

ix

Preface

The Compaq TCP/IP Services for OpenVMS product is the Compaq
implementation of the TCP/IP networking protocol suite and internet services
for OpenVMS Alpha and OpenVMS VAX systems.

A layered software product, TCP/IP Services provides a comprehensive suite
of functions and applications that support industry-standard protocols for
heterogeneous network communications and resource sharing.

See the Compaq TCP/IP Services for OpenVMS Installation and Configuration
manual for information about installing, configuring, and starting this product.

This manual describes how to use TCP/IP Services to develop network
applications using Berkeley Sockets or OpenVMS system services.

Intended Audience
This manual is intended for experienced programmers who want to write network
application programs that run in the TCP/IP Services environment. Readers
should be familiar with the C programming language, TCP/IP protocols, and
networking concepts.

Document Structure
This manual contains the following chapters and appendixes:

• Chapter 1 describes the application programming interfaces that TCP/IP
Services supports.

• Chapter 2 describes the typical function calls for developing network
applications using the TCP and UDP protocols and either the Sockets API
or OpenVMS system services programming interface. To help network
programmers write internet applications, this chapter provides examples of
network applications using the Sockets API and OpenVMS system services.

• Chapter 3 discusses information to consider when writing portable network
applications using the Sockets API.

• Chapter 4 contains Sockets API reference information.

• Chapter 5 describes how to use $QIO system services and data structures to
write network applications using OpenVMS system services.

• Chapter 6 contains OpenVMS system services and I/O function reference
information pertinent to TCP/IP Services. This information supplements the
OpenVMS system services programming information contained in OpenVMS
System Services Reference.

• Appendix A lists socket options supported by both programming interfaces.

• Appendix B lists IOCTL requests.

xi

• Appendix C describes TCP/IP Services data types.

• Appendix D lists Sockets API error codes and equivalent OpenVMS system
services status codes.

• Appendix E contains client/server application examples using the TCP and
UDP protocols.

Related Documentation
Table 1 lists the documents available with this version of TCP/IP Services.

Table 1 TCP/IP Services Documentation

Manual Contents

DIGITAL TCP/IP Services for
OpenVMS Concepts and Planning

This manual provides conceptual information about networking
and the TCP/IP protocol including a description of the Compaq
implementation of the Berkeley Internet Name Domain (BIND)
service and the Network File System (NFS). It outlines general
planning issues to consider before configuring your system to use
the TCP/IP Services software.

This manual also describes the manuals in the documentation
set, provides a glossary of terms and acronyms for the TCP/IP
Services software product, and documents how to contact the
InterNIC Registration Service to register domains and access
Request for Comments (RFCs).

Compaq TCP/IP Services for OpenVMS
Release Notes

This text file describes new features and changes to the software
including installation, upgrade, configuration, and compatibility
information. These notes also describe new and existing software
problems and restrictions, and software and documentation
corrections.

Print this text file at the beginning of the installation procedure
and read it before you install TCP/IP Services.

Compaq TCP/IP Services for OpenVMS
Installation and Configuration

This manual explains how to install and configure the TCP/IP
Services layered application product.

DIGITAL TCP/IP Services for
OpenVMS User’s Guide

This manual describes how to use the applications available with
TCP/IP Services such as remote file operations, email, TELNET,
TN3270, and network printing. This manual explains how to use
these services to communicate with systems on private internets
or on the worldwide Internet.

Compaq TCP/IP Services for OpenVMS
Management

This manual describes how to configure and manage the TCP/IP
Services product.

Use this manual with the Compaq TCP/IP Services for
OpenVMS Management Command Reference manual.

Compaq TCP/IP Services for OpenVMS
Management Command Reference

This manual describes the TCP/IP Services management
commands.

Use this manual with the Compaq TCP/IP Services for
OpenVMS Management manual.

Compaq TCP/IP Services for OpenVMS
Management Command Quick
Reference Card

This reference card lists the TCP/IP management commands by
component and describes the purpose of each command.

(continued on next page)

xii

Table 1 (Cont.) TCP/IP Services Documentation

Manual Contents

Compaq TCP/IP Services for OpenVMS
UNIX Command Reference Card

This reference card contains information about commonly
performed network management tasks and their corresponding
TCP/IP management and Compaq Tru64 UNIX command
formats.

DIGITAL TCP/IP Services for
OpenVMS ONC RPC Programming

This manual presents an overview of high-level programming
using open network computing remote procedure calls (ONC
RPC). This manual also describes the RPC programming
interface and how to use the RPCGEN protocol compiler to
create applications.

Compaq TCP/IP Services for OpenVMS
Sockets API and System Services
Programming

This manual describes how to use the Sockets API and OpenVMS
system services to develop network applications.

Compaq TCP/IP Services for OpenVMS
SNMP Programming and Reference

This manual describes the Simple Network Management Protocol
(SNMP) and the SNMP application programming interface
(eSNMP). It describes the subagents provided with TCP/IP
Services, utilities provided for managing subagents, and how to
build your own subagents.

Compaq TCP/IP Services for OpenVMS
Tuning and Troubleshooting

This manual provides information about how to isolate the
causes of network problems and how to tune the TCP/IP Services
software for the best performance.

Compaq TCP/IP Services for OpenVMS
Guide to IPv6

This manual describes the IPv6 environment, the roles of
systems in this environment, the types and function of the
different IPv6 addresses, and how to configure TCP/IP Services
to access the 6bone network.

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

For a comprehensive overview of the TCP/IP protocol suite, you might find the
following books useful.

• Internetworking with TCP/IP Vol 1: Principles, Protocols,and Architecture
by Douglas Comer, Prentice Hall Englewood Cliffs, New Jersey 07632, ISBN
0-13-468505-9.

• UNIX Network Programming Volume 1 Networking APIs: Sockets and XTI by
W. Richard Stevens, Prentice Hall PTR, Upper Saddle River, NJ 07458, ISBN
0-13-490012-X.

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

xiii

How To Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
TCP/IP Services is used to mean both:

• Compaq TCP/IP Services for OpenVMS Alpha

• Compaq TCP/IP Services for OpenVMS VAX

The following conventions are used in this manual. In addition, please note that
all IP addresses are fictitious.

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

xiv

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

This typeface indicates UNIX system output or user input,
commands, options, files, directories, utilities, hosts, and users.

In the C programming language, this typeface identifies the
following elements: keywords, the names of independently
compiled external functions and files, syntax summaries, and
references to variables or identifiers introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xv

1
Application Programming Interfaces

The application programming interfaces available with Compaq TCP/IP Services
for OpenVMS allow programmers to write network applications that are
independent of the underlying communication facilities. This means that the
system can support communications networks that use different sets of protocols,
naming conventions, and hardware platforms.

The TCP/IP Services product supports two network communication application
programming interfaces (APIs):

• Berkeley Software Distribution (BSD) Sockets

• OpenVMS system services

1.1 BSD Sockets
The Sockets application programming interface (API) supports only the C
programming language. The benefits of using this API include:

• Ease of use.

• Portability — you can create common code for use on UNIX, OpenVMS, and
many other platforms.

• 64-bit addressing capability on OpenVMS Alpha systems.

See Chapter 4 for a detailed description of Sockets API functions.

1.2 OpenVMS System Services
Each step in the Sockets communications process has a corresponding OpenVMS
system service routine. The benefits of using OpenVMS system services include:

• Improved application performance

• 64-bit addressing capability on OpenVMS Alpha systems

• Finer granularity of control

• Easier asynchronous programming

• Support for the following products

MACRO-32

BLISS-32

Compaq Ada

Compaq BASIC

Compaq C

Compaq C++

Application Programming Interfaces 1–1

Application Programming Interfaces
1.2 OpenVMS System Services

Compaq COBOL

Compaq Fortran

Compaq Pascal

See Chapter 6 for a detailed description of OpenVMS system service calls.

1.3 Application Development Files
TCP/IP Services provides definition files, a shared library file for use in
developing network applications and programming example files to assist in
learning how to develop network applications.

1.3.1 Definition Files
Table 1–1 lists the definition files that are included with TCP/IP Services in the
SYS$LIBRARY directory. Specific languages may also supply additional files that
define structures related to network programming. Check the documentation for
the language you are using.

Table 1–1 Network Definition Files

File Description

TCPIP$INETDEF.ADA Ada definition file

TCPIP$INETDEF.BAS BASIC definition file

TCPIP$INETDEF.FOR Fortran definition file

TCPIP$INETDEF.H C and C++ definition file

TCPIP$INETDEF.MAR MACRO-32 definition file

TCPIP$INETDEF.PAS Pascal definition file

TCPIP$INETDEF.PLI PL/I definition file

TCPIP$INETDEF.R32 BLISS-32 definition file

Compaq provides header files, data types, and support functions to facilitate
OpenVMS system services programming. The header files provide definitions for
constants. Table 1–2 lists the available files.

Table 1–2 C Language Definition Files

Header File Description

Common Industry Standard

IN.H Internet system. Constants, functions, and structures

INET.H Network address information

NETDB.H Network database library information

SIGNAL.H UNIX style signal value definitions

SOCKET.H BSD Sockets API

(continued on next page)

1–2 Application Programming Interfaces

Application Programming Interfaces
1.3 Application Development Files

Table 1–2 (Cont.) C Language Definition Files

Header File Description

OpenVMS Related

DESCRIP.H OpenVMS descriptor

IOCTL.H I/O control

IODEF.H I/O function codes

LIB$FUNCTIONS.H Run-time library function signatures

SSDEF.H System services status code

STARLET.H System services calls

TCPIP$INETDEF.H TCP/IP network constants, functions, and structures

Standard UNIX

STDIO.H Standard UNIX I/O functions

STDLIB.H Standard UNIX library functions

STRING.H String-handling functions

1.3.2 Libraries
Table 1–3 lists the routine libraries included with TCP/IP Services.

Table 1–3 Sockets API Libraries

File Location Description

TCPIP$IPC_SHR.EXE SYS$LIBRARY Sockets API Run-Time Library

TCPIP$LIB.OLB TCPIP$LIBRARY BSD Version 4.4 Sockets object
library

1.3.3 Programming Examples
Table 1–4 and Table 1–5 summarize the programming examples included with
TCP/IP Services in the TCPIP$EXAMPLES directory. Most of these examples
consist of a client and a corresponding server. Appendix E contains printed
examples of the programs described in Table 1–4 and Table 1–5.

Table 1–4 TCP Programming Examples

File Description

TCPIP$TCP_SERVER_SOCK.C
TCPIP$TCP_CLIENT_SOCK.C

Example TCP/IP client and server
using the Sockets API.

TCPIP$TCP_SERVER_SOCK_AUXS.C Example TCP/IP server using the
Sockets API that accepts connections
from the auxiliary server.

TCPIP$TCP_SERVER_QIO.C
TCPIP$TCP_CLIENT_QIO.C

Example TCP/IP client and server
using QIO system services.

(continued on next page)

Application Programming Interfaces 1–3

Application Programming Interfaces
1.3 Application Development Files

Table 1–4 (Cont.) TCP Programming Examples

File Description

TCPIP$TCP_SERVER_QIO_AUXS.C Example TCP/IP server using
QIO system services that accepts
connections from the auxiliary server.

TCPIP$TCP_CLIENT_QIO.MAR
TCPIP$TCP_SERVER_QIO.MAR

Example TCP/IP client and server
using QIO system services and the
MACRO-32 programming language.

Table 1–5 UDP Programming Examples

File Description

TCPIP$UDP_SERVER_SOCK.C
TCPIP$UDP_CLIENT_SOCK.C

Example UDP/IP client and server
using the Sockets API.

TCPIP$UDP_SERVER_QIO.C
TCPIP$UDP_CLIENT_QIO.C

Example UDP/IP client and server
using QIO system services.

TCPIP$UDP_CLIENT_QIO.MAR
TCPIP$UDP_SERVER_QIO.MAR

Example UDP/IP client and server
using QIO system services and the
MACRO-32 programming language.

1.4 Compiling and Linking Compaq’s C Language Programs
The examples in this manual were written using the Compaq C compiler. To
compile and link your program, enter the following commands:

$ CC MAIN.C/PREFIX=ALL
$ LINK MAIN.OBJ

1.4.1 Compiling and Linking Programs Using BSD Version 4.4
To compile and link your Compaq C program using BSD Version 4.4, enter the
following commands, where filename is the name of your program:

$ CC/PREFIX=ALL/DEFINE=(_SOCKADDR_LEN) filename.C

$ LINK/MAP filename

Instead of using the /DEFINE=(_SOCKADDR_LEN) option to the compile
command, you can change your code to include the following #DEFINE
preprocessor directive:

#DEFINE _SOCKADDR_LEN 1

This statement must appear before you include any of the following header files:

#include <in.h>
#include <netdb.h>
#include <inet.h>

1.4.2 Compaq C Compilation Warnings
Certain parameters to the TCP/IP Services Sockets API functions require
typecasting to avoid Compaq C compilation warnings. Typecasting is required
because of parameter prototyping, which the Compaq C header (filename.H) files
have in order to comply with ANSI standards. The Compaq Tru64 UNIX header
files have different requirements because their Sockets API functions are not
parameter prototyped.

1–4 Application Programming Interfaces

Application Programming Interfaces
1.5 Using 64-Bit Addresses (Alpha Only)

1.5 Using 64-Bit Addresses (Alpha Only)
For applications that run on OpenVMS Alpha systems, input and output (I/O)
operations can be performed directly to and from the P2 or S2 addressable space
by means of the 64-bit friendly $QIO and $QIOW system services.

To write data to a remote host, use the $QIO(IO$_WRITEVBLK) function with
either the p1 (input buffer) or p5 (input buffer list) parameter. The address you
specify for the parameter can be a 64-bit value.

To read data from a remote host, use the $QIO(IO$_READVBLK) function with
either the p1 (output buffer) or p6 (output buffer list) parameter. The address
you specify for the parameter can be a 64-bit value.

MACRO-32 does not provide 64-bit macros for system services. For more
information about MACRO-32 programming support and for 64-bit addressing in
general, see the OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features.

For more information about using the $QIO and $QIOW system services for
64-bit addressing, see Chapter 5 and Chapter 6.

Application Programming Interfaces 1–5

2
Writing Network Applications

You can use either the Sockets API or OpenVMS system services to write TCP/IP
applications that run on your corporate network. These applications consist of a
series of system calls that perform tasks, such as creating a socket, performing
host and IP address lookups, accepting and closing connections, and setting
socket options. These system calls are direct entry points that client and server
processes use to obtain services from the TCP/IP kernel software. System calls
look and behave exactly like other procedural calls in that they take arguments
and return one or more results, including a status value. These arguments can
contain values or pointers to objects in the application program.

This chapter describes the communication process followed by client and server
applications. This process reflects the sequence of system calls within the client
and server programs (see Tables 2–1 through 2–4). The chapter also includes
Sockets API and OpenVMS system services examples for each step in the
communication process.

2.1 The Client/Server Communication Process
The most commonly used paradigm in constructing distributed applications is
the client/server model. The requester, known as the client, sends a request to a
server and waits for a response. The server is an application-level program that
offers a service that can be reached over the network. Servers accept requests
that arrive over the network, perform their service, and return the result to the
client.

In addition to having a client and a server, the connection also has a mode
of communication. This variable can be either connection-oriented or
connectionless. When writing network applications, the developer uses the
mode of communication required by the application-level service. Therefore, if
the application-level service uses the connection-oriented mode of communication,
the developer uses the virtual circuit or the Transmission Control Protocol
(TCP) approach. If the application-level service uses the connectionless mode
of communication, then the developer uses the datagram or the User Datagram
Protocol (UDP) approach.

2.1.1 Using the TCP Protocol
Figure 2–1 shows the communication process for a TCP client/server
application.

Writing Network Applications 2–1

Writing Network Applications
2.1 The Client/Server Communication Process

Figure 2–1 Client/Server Communication Process Using TCP

VM-0570A-AI

Server end

Bind socket

Define listener

Accept connection
request (wait for

connection request
from client)

Receive
device information

Read data
and process
the request

Delete
device socket

Client end

Create socket

Bind socket

Read data

Delete socket

Send
connection request

Establish connection

Write data

Write data

7

5

4

3

1

Create socket

2

8

9

2

3

6

9

Delete socket

9

10

Delete
listener socket

Client start

Server start

Create socket
for listener

data request

data reply

In this figure:

1 Server issues a call to create a listening socket.

2 Server and client create a socket.

2–2 Writing Network Applications

Writing Network Applications
2.1 The Client/Server Communication Process

3 Server and client bind socket. (This step is optional for a client.)

4 Server converts an unconnected socket into a passive socket (LISTEN state).

5 Server issues an accept() and process blocks waiting for a connection
request.

6 Client sends a connection request.

7 Server accepts the connection; a new socket is created for communication with
this client.

8 Server receives device information from the local host.

9 Data exchange takes place.

1 0 Client and server delete the socket.

1 1 Server deletes the listener socket when the service to the client is
terminating.

For server applications that use the TCP protocol, Table 2–1 identifies the typical
communication tasks, the applicable Sockets API function, and the equivalent
OpenVMS system service.

Table 2–1 TCP Server Tasks and Related Functions

Task
Sockets API
Function

OpenVMS System Service
Function

Create a socket socket() $ASSIGN
$QIO(IO$_SETMODE)1

Bind socket name bind() $QIO(IO$_SETMODE)1

Define listener socket listen() $QIO(IO$_SETMODE)1

Accept connection request accept() $QIO(IO$_ACCESS | IO$M_
ACCEPT)

Exchange data read()
recv()
recvmsg()

$QIO(IO$_READVBLK)

write()
send()
sendmsg()

$QIO(IO$_WRITEVBLK)

Shut down the socket (optional) shutdown() $QIO(IO$_DEACCESS | IO$M_
SHUTDOWN)

Close and delete the socket close() $QIO(IO$_DEACCESS)
$DASSGN

1The $QIO system service calls for creating a socket, binding a socket name, and defining a network
pseudodevice as a listener are listed as three separate calls in this table. You can perform all three
steps with one $QIO(IO$_SETMODE) call.

For a client application using the TCP protocol, Table 2–2 shows the tasks in the
communication process, the applicable Sockets API functions, and the equivalent
OpenVMS system service.

Writing Network Applications 2–3

Writing Network Applications
2.1 The Client/Server Communication Process

Table 2–2 TCP Client Calling Sequence and Related Functions

Task
Sockets API
Function OpenVMS System Service Function

Create a socket socket() $ASSIGN
$QIO(IO$_SETMODE)1

Bind socket name bind() $QIO(IO$_SETMODE)1

Connect to server connect() $QIO(IO$_ACCESS)

Exchange data read()
recv()
recvmsg()

$QIO(IO$_READVBLK)

write()
send()
sendmsg()

$QIO(IO$_WRITEVBLK)

Shut down the socket
(optional)

shutdown() $QIO(IO$_DEACCESS | IO$M_
SHUTDOWN)

Close and delete the
socket

close() $QIO(IO$_DEACCESS)
$DASSGN

1The $QIO system service calls for creating a socket and binding a socket name are listed as two
separate calls in this table. You can perform both steps with one $QIO(IO$_SETMODE) call.

2.1.2 Using the UDP Protocol
Figure 2–2 shows the steps in the communication process for a client/server
application using the UDP protocol.

In this figure:

1 Server and client create a socket.

2 Server and client bind the socket name. (This step is optional for a client.)

3 Data exchange takes place.

4 Server and client delete the socket.

For server applications using the UDP protocol, Table 2–3 identifies the tasks
in the communication process, the Sockets API functions, and the equivalent
OpenVMS system service function.

2–4 Writing Network Applications

Writing Network Applications
2.1 The Client/Server Communication Process

Figure 2–2 UDP Socket Communication Process

VM-0571A-AI

Server start

Server end

Client start

Client end

data request

4

2

1 1

2

4

Read data
and process request

data reply

3

Create socket

Bind socket

Write data

Delete socket

Create socket

Bind socket

Write data

Read data

Delete socket

Writing Network Applications 2–5

Writing Network Applications
2.1 The Client/Server Communication Process

Table 2–3 UDP Server Tasks and Related Functions

Task
Sockets API
Function OpenVMS System Service Function

Create a socket socket() $ASSIGN
$QIO(IO$_SETMODE)1

Bind socket name bind() $QIO(IO$_SETMODE)1

Exchange data read()
recv()
recvfrom()
recvmsg()

$QIO(IO$_READVBLK)

write()
send()
sendto()
sendmsg()

$QIO(IO$_WRITEVBLK)

Shut down the socket
(optional)

shutdown() $QIO(IO$_DEACCESS | IO$M_
SHUTDOWN)

Close and delete the
socket

close() $QIO(IO$_DEACCESS)
$DASSGN

1The $QIO system service calls for creating a socket and binding a socket name are listed as two
separate calls in this table. You can perform both steps with one $QIO(IO$_SETMODE) call.

For client applications using the UDP protocol, Table 2–4 describes the tasks
in the communication process, the Sockets API function, and the equivalent
OpenVMS system service.

Table 2–4 UDP Client Tasks and Related Functions

Task
Sockets API
Function OpenVMS System Service Function

Create a socket socket() $ASSIGN
$QIO(IO$_SETMODE)1

Bind socket name
(optional)

bind() $QIO(IO$_SETMODE)1

Specify a destination
address for outgoing
datagrams

connect() $QIO(IO$_ACCESS)

Exchange data read()
recv()
recvfrom()
recvmsg()

$QIO(IO$_READVBLK)

write()
send()
sendto()
sendmsg()

$QIO(IO$_WRITEVBLK)

Shut down the socket
(optional)

shutdown() $QIO(IO$_DEACCESS | IO$M_
SHUTDOWN)

1The $QIO system service calls for creating a socket and binding a socket name are listed as two
separate calls in this table. You can perform both of these steps with one $QIO(IO$_SETMODE) call.

(continued on next page)

2–6 Writing Network Applications

Writing Network Applications
2.1 The Client/Server Communication Process

Table 2–4 (Cont.) UDP Client Tasks and Related Functions

Task
Sockets API
Function OpenVMS System Service Function

Close and delete the
socket

close() $QIO(IO$_DEACCESS)
$DASSGN

2.2 Creating a Socket
For network communication to take place between two processes, each process
requires an end point to establish a communication link between the two
processes. This end point, called a socket, sends messages to and receives
messages from the socket associated with the process at the other end of the
communication link.

Sockets are created by issuing a call to the socket() function (Sockets API) or by
the $ASSIGN and $QIO(IO$_SETMODE) routines (system service) specifying an
address family, a protocol family, and a socket type.

If the socket creation is successful, the operation returns a small nonnegative
integer value called a socket descriptor, or sockfd. From this point on, the
application program uses the socket descriptor to reference the newly created
socket.

In the TCP/IP Services implementation, this socket is also referred to as a device
socket. A device socket is the pairing of an OpenVMS network device and a
BSD-style socket. A device socket can be created implicitly when using the
Sockets API or explicitly when using OpenVMS system services.

To displaying information about a device socket, use the TCP/IP management
command SHOW DEVICE_SOCKET.

Perform the following steps to create a socket:

1. Assign a channel to the network device.

2. Create a socket.

The functions of the TCP/IP protocols are performed as I/O functions of the
network device. When using the TCP/IP Services software, TCPIP$DEVICE: is
the logical name for network devices.

When a channel is assigned to the TCPIP$DEVICE template network device,
TCP/IP Services creates a new pseudodevice with a unique unit number and
returns a channel number to use in subsequent operation requests with that
device.

When the auxiliary server creates your application server process in response to
incoming network traffic for a service with the LISTEN flag, it creates a device
socket for your application server process. For your application to receive the
device socket, assign a channel to SYS$NET, which is the logical name of a
network pseudodevice, and perform an appropriate $QIO(IO$_SETMODE)
operation. For examples of how to do this, see Appendix E. For a discussion of
the auxiliary server, see the Compaq TCP/IP Services for OpenVMS Management
manual.

Writing Network Applications 2–7

Writing Network Applications
2.2 Creating a Socket

2.2.1 Creating Sockets (Sockets API)
When using the Sockets API, create the socket with a call to the socket()
function. Example 2–1 shows how to use the socket() function to create a TCP
socket.

Example 2–1 Creating a Socket (Sockets API)

#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */

int main(void)
{

int sockfd;

/*
* create a socket
*/

1
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

1 This line creates the socket with the following arguments:

• AF_INET is the address family that references the socket in IPv4 protocol
format.

• SOCK_STREAM specifies that the socket type is stream (TCP).

• 0 specifies that the protocol type is IPPROTO_TCP (default).

2.2.2 Creating Sockets (System Services)
When you use OpenVMS system services, you make two calls to create the socket:

• $ASSIGN to assign a channel to the network device

• $QIO or $QIOW to create the socket

The Queue I/O Request ($QIO) service completes asynchronously. It returns
to the caller immediately after queuing the I/O request, without waiting for
the I/O operation to complete.

For synchronous completion, use the Queue I/O Request and Wait ($QIOW)
service. The $QIOW service is identical to the $QIO service, except the
$QIOW returns to the caller after the I/O operation completes.

When you make the $QIO or $QIOW call, use either the IO$_SETMODE or the
IO$_SETCHAR I/O function. You generally create, bind, and set up sockets to
listen with one $QIO call. The IO$_SETMODE and IO$_SETCHAR functions
perform in an identical manner, where network software is concerned. However,
you must have LOG_IO privilege to successfully use the IO$_SETMODE I/O
function.

2–8 Writing Network Applications

Writing Network Applications
2.2 Creating a Socket

Example 2–2 shows how to use the $ASSIGN and $QIOW system services to
create a TCP socket.

Example 2–2 Creating a Socket (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */
unsigned short channel; /* network device i/o channel */

1 struct sockchar sockchar; /* socket characteristics buffer */
$DESCRIPTOR(inet_device, /* string descriptor with logical */

"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

2
sockchar.prot = TCPIP$C_TCP;
sockchar.type = TCPIP$C_STREAM;
sockchar.af = TCPIP$C_AF_INET;

/*
* assign i/o channel to network device
*/

3
status = sys$assign(&inet_device, /* device name */

&channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}

(continued on next page)

Writing Network Applications 2–9

Writing Network Applications
2.2 Creating a Socket

Example 2–2 (Cont.) Creating a Socket (System Services)

/*
* create a socket
*/

4
status = sys$qiow(EFN$C_ENF, /* event flag */

channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

1 Define a sockchar structure to contain the characteristics of the type of
socket.

2 Initialize the sockchar structure with the address family, protocol family and
type of socket.

3 Assign a channel to a network device using a string descriptor with the logical
name of the network pseudodevice and a structure to receive the I/O channel.

4 Create the socket with a call to SYS$QIOW supplying the channel, the socket
characteristics and specifying an IO$_SETMODE function code.

2.3 Binding a Socket (Optional for Clients)
Binding a socket associates a local protocol address (that is, a 32-bit IPv4 address
and a 16-bit TCP or UDP port number) with a socket. To bind a socket, specify a
local interface address and local port number for the socket.

With the TCP protocol, you can specify an IP address, a port number, both an IP
address and port number or neither.

If the application is using the UDP protocol and needs to receive incoming
multicast or broadcast datagrams destined for a specific UDP port, see
Section 2.10 for information about specifying the SO_REUSEPORT option
when binding the socket.

2–10 Writing Network Applications

Writing Network Applications
2.3 Binding a Socket (Optional for Clients)

2.3.1 Binding a Socket (Sockets API)
Example 2–3 shows an example of a TCP application using the bind() function
to bind a socket name.

Note

The process must have a system user identification code (UIC) and the
SYSPRV, BYPASS, or OPER privilege to bind port numbers 1 to 1023.

Example 2–3 Binding a Socket (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define PORTNUM 12345 /* server port number */

int main(void)
{

int sockfd;
struct sockaddr_in addr;

/*
* initialize socket address structure
*/

memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(PORTNUM);
addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a socket
*/

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* bind ip address and port number to socket
*/

if (bind(sockfd,1 (struct sockaddr *) &addr,2 sizeof(addr)3) < 0)
{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

Writing Network Applications 2–11

Writing Network Applications
2.3 Binding a Socket (Optional for Clients)

In this example, the bind() function:

1 sockfd specifies the socket descriptor previously created with a call to the
socket() function.

2 addr specifies the address of the sockaddr_in structure that assigns a name
to the socket.

3 sizeof(addr) specifies the size of the sockaddr_in structure.

2.3.2 Binding a Socket (System Services)
Use the IO$_SETMODE or IO$_SETCHAR function of the $QIO system service
to bind a socket.

Note

The process must have a system user identification code (UIC), SYSPRV,
BYPASS, or OPER privileges to bind port numbers 1 to 1023.

Example 2–4 shows a TCP server using the IO$_SETMODE function to bind
sockets.

Example 2–4 Binding a Socket (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

#define PORTNUM 12345 /* server port number */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

(continued on next page)

2–12 Writing Network Applications

Writing Network Applications
2.3 Binding a Socket (Optional for Clients)

Example 2–4 (Cont.) Binding a Socket (System Services)

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */
unsigned short channel; /* network device i/o channel */
struct sockchar sockchar; /* socket characteristics buffer */
struct sockaddr_in addr; /* socket address structure */
struct itemlst_2 addr_itemlst; /* socket address item-list */
$DESCRIPTOR(inet_device, /* string descriptor with logical */

"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

sockchar.prot = TCPIP$C_TCP;
sockchar.type = TCPIP$C_STREAM;
sockchar.af = TCPIP$C_AF_INET;

/*
* initialize socket address item-list descriptor
*/

addr_itemlst.length = sizeof(addr);
addr_itemlst.type = TCPIP$C_SOCK_NAME;
addr_itemlst.address = &addr;

/*
* initialize socket address structure
*/

memset(&addr, 0, sizeof(addr));
addr.sin_family = TCPIP$C_AF_INET;
addr.sin_port = htons(PORTNUM);
addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

/*
* assign i/o channel to network device
*/

status = sys$assign(&inet_device, /* device name */
&channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}

/*
* create a socket
*/

(continued on next page)

Writing Network Applications 2–13

Writing Network Applications
2.3 Binding a Socket (Optional for Clients)

Example 2–4 (Cont.) Binding a Socket (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* bind ip address and port number to socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&addr_itemlst, /* p3 - local socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

2.4 Making a Socket a Listener (TCP Protocol)
Only server programs that use the TCP protocol need to set a socket to be a
listener. This allows the program to receive incoming connection requests. As a
connection-oriented protocol, TCP requires a connection; UDP, a connectionless
protocol, does not.

2–14 Writing Network Applications

Writing Network Applications
2.4 Making a Socket a Listener (TCP Protocol)

The listen() function:

• Converts the unconnected socket into a passive socket.

• Changes the state of the socket to LISTEN.

• Remains open for the life of the server.

• Tells the kernel to accept incoming connections directed to this socket.

2.4.1 Setting a Socket to Listen (Sockets API)
Example 2–5 shows how a TCP server uses the listen() function to set a socket
to listen for connection requests and to specify the number of incoming requests
that can wait to be queued for processing.

Example 2–5 Setting a Socket to Listen (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define BACKLOG 1 /* server backlog */
#define PORTNUM 12345 /* server port number */

int main(void)
{

int sockfd;
struct sockaddr_in addr;

/*
* initialize socket address structure
*/

memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(PORTNUM);
addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a socket
*/

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* bind ip address and port number to socket
*/

if (bind(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

(continued on next page)

Writing Network Applications 2–15

Writing Network Applications
2.4 Making a Socket a Listener (TCP Protocol)

Example 2–5 (Cont.) Setting a Socket to Listen (Sockets API)

/*
* set socket as a listen socket
*/
if (listen(sockfd, 1 BACKLOG 2) < 0)

{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

In this example of a listen() function:

1 sockfd is the socket descriptor previously defined by a call to the socket()
function.

2 BACKLOG specifies that only one pending connection can be queued at any
given time. The maximum number of connections is specified by the system
configuration variable somaxconn. The default value for somaxconn is
1024. Refer to the Compaq TCP/IP Services for OpenVMS Tuning and
Troubleshooting manual for how to display and change the somaxconn value
dynamically.

2.4.2 Setting a Socket to Listen (System Services)
Example 2–6 shows how to use the IO$_SETMODE function to set the socket to
listen for requests.

Example 2–6 Setting a Socket to Listen (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

#define BACKLOG 1 /* server backlog */
#define PORTNUM 12345 /* server port number */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

(continued on next page)

2–16 Writing Network Applications

Writing Network Applications
2.4 Making a Socket a Listener (TCP Protocol)

Example 2–6 (Cont.) Setting a Socket to Listen (System Services)

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */
unsigned short channel; /* network device i/o channel */
struct sockchar sockchar; /* socket characteristics buffer */
struct sockaddr_in addr; /* socket address structure */
struct itemlst_2 addr_itemlst; /* socket address item-list */
$DESCRIPTOR(inet_device, /* string descriptor with logical */

"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

sockchar.prot = TCPIP$C_TCP;
sockchar.type = TCPIP$C_STREAM;
sockchar.af = TCPIP$C_AF_INET;

/*
* initialize socket address item-list descriptor
*/

addr_itemlst.length = sizeof(addr);
addr_itemlst.type = TCPIP$C_SOCK_NAME;
addr_itemlst.address = &addr;

/*
* initialize socket address structure
*/

memset(&addr, 0, sizeof(addr));
addr.sin_family = TCPIP$C_AF_INET;
addr.sin_port = htons(PORTNUM);
addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

/*
* assign i/o channel to network device
*/

status = sys$assign(&inet_device, /* device name */
&channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

(continued on next page)

Writing Network Applications 2–17

Writing Network Applications
2.4 Making a Socket a Listener (TCP Protocol)

Example 2–6 (Cont.) Setting a Socket to Listen (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}

/*
* create a socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* bind ip address and port number to socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&addr_itemlst, /* p3 - local socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}

/*
* set socket as a listen socket
*/

(continued on next page)

2–18 Writing Network Applications

Writing Network Applications
2.4 Making a Socket a Listener (TCP Protocol)

Example 2–6 (Cont.) Setting a Socket to Listen (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
BACKLOG, /* p4 - connection backlog */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to set socket passive\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

Note

Although you can use separate $QIO calls for socket create, bind, and
listen operations, you can also perform these operations with one $QIO
call.

2.5 Initiating a Connection (TCP Protocol)
A TCP client establishes a connection with a TCP server by issuing the
connect() function. The connect() function initiates a three-way handshake
between the client and the server. This must be successful to establish the
connection.

2.5.1 Initiating a Connection (Sockets API)
To initiate a connection to a a TCP server, use the connect() function.
Example 2–7 shows a TCP client using the connect() function to initiate a
connection to a TCP server.

Writing Network Applications 2–19

Writing Network Applications
2.5 Initiating a Connection (TCP Protocol)

Example 2–7 Initiating a Connection (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define BUFSZ 1024 /* user input buffer size */
#define PORTNUM 12345 /* server port number */

void get_servaddr(void *addrptr)
{

char buf[BUFSIZ];
struct in_addr val;
struct hostent *host;

while (TRUE)
{
printf("Enter remote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read user input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

val.s_addr = inet_addr(buf);

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf)))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

int main(void)
{

int sockfd;
struct sockaddr_in addr;

/*
* initialize socket address structure
*/

memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(PORTNUM);
get_servaddr(&addr.sin_addr);

/*
* create a socket
*/

(continued on next page)

2–20 Writing Network Applications

Writing Network Applications
2.5 Initiating a Connection (TCP Protocol)

Example 2–7 (Cont.) Initiating a Connection (Sockets API)

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* connect to specified host and port number
*/

printf("Initiated connection to host: %s, port: %d\n",
inet_ntoa(addr.sin_addr), ntohs(addr.sin_port)

);

if (connect(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
{
perror("Failed to connect to server");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

2.5.2 Initiating a Connection (System Services)
To initiate a connection to a TCP server, use the $QIO system service with
the IO$_ACCESS function and the p3 argument. The p3 argument of the
IO$_ACCESS function is the address of an item_list_2 descriptor that points to
the remote socket name.

Example 2–8 shows a TCP client using the IO_$ACCESS function to initiate a
connection.

Example 2–8 Initiating a Connection (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

#define BUFSZ 1024 /* user input buffer size */
#define PORTNUM 12345 /* server port number */

(continued on next page)

Writing Network Applications 2–21

Writing Network Applications
2.5 Initiating a Connection (TCP Protocol)

Example 2–8 (Cont.) Initiating a Connection (System Services)

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

void get_servaddr(void *addrptr)
{

char buf[BUFSIZ];
struct in_addr val;
struct hostent *host;

while (TRUE)
{
printf("Enter remote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read user input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

val.s_addr = inet_addr(buf);

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf)))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

(continued on next page)

2–22 Writing Network Applications

Writing Network Applications
2.5 Initiating a Connection (TCP Protocol)

Example 2–8 (Cont.) Initiating a Connection (System Services)

int main(void)
{

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */
unsigned short channel; /* network device i/o channel */
struct sockchar sockchar; /* socket characteristics buffer */
struct sockaddr_in addr; /* socket address structure */
struct itemlst_2 addr_itemlst; /* socket address item-list */
$DESCRIPTOR(inet_device, /* string descriptor with logical */

"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

sockchar.prot = TCPIP$C_TCP;
sockchar.type = TCPIP$C_STREAM;
sockchar.af = TCPIP$C_AF_INET;

/*
* initialize socket address item-list descriptor
*/

addr_itemlst.length = sizeof(addr);
addr_itemlst.type = TCPIP$C_SOCK_NAME;
addr_itemlst.address = &addr;

/*
* initialize socket address structure
*/

memset(&addr, 0, sizeof(addr));
addr.sin_family = TCPIP$C_AF_INET;
addr.sin_port = htons(PORTNUM);
get_servaddr(&addr.sin_addr);

/*
* assign i/o channel to network device
*/

status = sys$assign(&inet_device, /* device name */
&channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}

/*
* create a socket
*/

(continued on next page)

Writing Network Applications 2–23

Writing Network Applications
2.5 Initiating a Connection (TCP Protocol)

Example 2–8 (Cont.) Initiating a Connection (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* connect to specified host and port number
*/

printf("Initiated connection to host: %s, port: %d\n",
inet_ntoa(addr.sin_addr), ntohs(addr.sin_port)

);

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_ACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&addr_itemlst, /* p3 - remote socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to connect to server\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

2.6 Accepting a Connection (TCP Protocol)
A TCP server program must be able to accept incoming connection requests from
client programs. The accept() function:

• Returns the next completed connection from the completed connection queue.

2–24 Writing Network Applications

Writing Network Applications
2.6 Accepting a Connection (TCP Protocol)

• Return a new socket descriptor that is connected with the client, called the
connected socket. There is one connected socket for each client connected to
the server. The connected socket remains until the server is finished serving
the client.

2.6.1 Accepting a Connection (Sockets API)
Example 2–9 shows how to use the accept() function.

Example 2–9 Accepting a Connection (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void)
{

int conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct sockaddr_in serv_addr; /* server socket address structure */

/*
* initialize client’s socket address structure
*/

memset(&cli_addr, 0, sizeof(cli_addr));

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a listen socket
*/

if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

(continued on next page)

Writing Network Applications 2–25

Writing Network Applications
2.6 Accepting a Connection (TCP Protocol)

Example 2–9 (Cont.) Accepting a Connection (Sockets API)
/*
* bind server’s ip address and port number to listen socket
*/

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

/*
* set socket as a listen socket
*/

if (listen(listen_sockfd, SERV_BACKLOG) < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

cli_addrlen = sizeof(cli_addr);

conn_sockfd = accept(listen_sockfd, 1
(struct sockaddr *) &cli_addr, 2
&cli_addrlen 3

);
if (conn_sockfd < 0)

{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

);

exit(EXIT_SUCCESS);
}

In this example of an accept() function:

1 listen_sockfd is the socket descriptor returned by the previous call to the
socket() function. This socket is bound to an address with the bind()
function. The listen() function changes the socket state from CLOSED to
LISTEN (converts the unconnected socket to a passive socket).

2 cli_addr contains the protocol address of the client.

3 cli_addrlen is a value/result parameter that initially contains the size of
the cli_addr structure. On return of the accept() function, the cli_addr
structure contains the actual length, in bytes, of the socket address structure
returned by the kernel for the connected socket.

2–26 Writing Network Applications

Writing Network Applications
2.6 Accepting a Connection (TCP Protocol)

2.6.2 Accepting a Connection (System Services)
To accept a connection request, use the following procedure:

1. Use the $ASSIGN system service to create a channel for the new connection.

2. Use the $QIO system service using the IO$_ACCESS function with the
IO$M_ACCEPT function modifier.

The p4 argument specifies the address of a word written with the channel
number of the new connection. If p3 specifies a valid output buffer, the $QIO
service returns the remote socket name.

Note

Specifying the IO$_ACCESS function is mandatory for TCP/IP.
The IO$_ACCESS function uses the p4 argument only with the
IO$M_ACCEPT modifier.

Example 2–10 shows a TCP server using the IO$_ACCESS function with the
IO$M_ACCEPT function modifier to accept incoming connection requests.

Example 2–10 Accepting a Connection (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

(continued on next page)

Writing Network Applications 2–27

Writing Network Applications
2.6 Accepting a Connection (TCP Protocol)

Example 2–10 (Cont.) Accepting a Connection (System Services)

struct itemlst_3
{ /* item-list 3 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
unsigned int *retlen; /* address of returned length */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */

unsigned short conn_channel; /* connect inet device i/o channel */

unsigned short listen_channel; /* listen inet device i/o channel */
struct sockchar listen_sockchar; /* listen socket characteristics */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct itemlst_3 cli_itemlst; /* client socket address item-list */

struct sockaddr_in serv_addr; /* server socket address structure */
struct itemlst_2 serv_itemlst; /* server socket address item-list */

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

listen_sockchar.prot = TCPIP$C_TCP;
listen_sockchar.type = TCPIP$C_STREAM;
listen_sockchar.af = TCPIP$C_AF_INET;

/*
* initialize client’s item-list descriptor
*/

memset(&cli_itemlst, 0, sizeof(cli_itemlst));
cli_itemlst.length = sizeof(cli_addr);
cli_itemlst.address = &cli_addr;
cli_itemlst.retlen = &cli_addrlen;

/*
* initialize client’s socket address structure
*/

memset(&cli_addr, 0, sizeof(cli_addr));

/*
* initialize server’s item-list descriptor
*/

serv_itemlst.length = sizeof(serv_addr);
serv_itemlst.type = TCPIP$C_SOCK_NAME;
serv_itemlst.address = &serv_addr;

(continued on next page)

2–28 Writing Network Applications

Writing Network Applications
2.6 Accepting a Connection (TCP Protocol)

Example 2–10 (Cont.) Accepting a Connection (System Services)

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

/*
* assign i/o channels to network device
*/

status = sys$assign(&inet_device, /* device name */
&listen_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (status & STS$M_SUCCESS)
status = sys$assign(&inet_device, /* device name */

&conn_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);
if (!(status & STS$M_SUCCESS))

{
printf("Failed to assign i/o channel(s)\n");
exit(status);
}

/*
* create a listen socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&listen_sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* bind server’s ip address and port number to listen socket
*/

(continued on next page)

Writing Network Applications 2–29

Writing Network Applications
2.6 Accepting a Connection (TCP Protocol)

Example 2–10 (Cont.) Accepting a Connection (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&serv_itemlst, /* p3 - local socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}

/*
* set socket as a listen socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
SERV_BACKLOG, /* p4 - connection backlog */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to set socket passive\n");
exit(status);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

(continued on next page)

2–30 Writing Network Applications

Writing Network Applications
2.6 Accepting a Connection (TCP Protocol)

Example 2–10 (Cont.) Accepting a Connection (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_ACCESS|IO$M_ACCEPT,

/* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&cli_itemlst, /* p3 - remote socket name */
&conn_channel, /* p4 - i/o channel for new */

/* connection */
0, /* p5 */
0 /* p6 */

);
if (status & STS$M_SUCCESS)

status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to accept client connection\n");
exit(status);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

);

exit(EXIT_SUCCESS);
}

2.7 Getting Socket Options
Obtaining socket information is useful if your program has management
functions, or if you have a complex program that uses multiple connections you
need to track.

2.7.1 Getting Socket Information (Sockets API)
You can use any of the following Sockets API functions to get socket information:

• getpeername()

• getsockname()

• getsockopt()

Writing Network Applications 2–31

Writing Network Applications
2.7 Getting Socket Options

Example 2–11 shows a TCP server using the getpeername() function to get the
remote IP address and port number associated with a socket.

Example 2–11 Getting Socket Information (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void)
{

int conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct sockaddr_in serv_addr; /* server socket address structure */

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a listen socket
*/

if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* bind server’s ip address and port number to listen socket
*/

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

/*
* set socket as a listen socket
*/

(continued on next page)

2–32 Writing Network Applications

Writing Network Applications
2.7 Getting Socket Options

Example 2–11 (Cont.) Getting Socket Information (Sockets API)

if (listen(listen_sockfd, SERV_BACKLOG) < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

/*
* accept connection from a client
*/
printf("Waiting for a client connection on port: %d\n",

ntohs(serv_addr.sin_port)
);

conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);

if (conn_sockfd < 0)
{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

/*
* log client connection request
*/

cli_addrlen = sizeof(cli_addr);
memset(&cli_addr, 0, sizeof(cli_addr));

if (getpeername(conn_sockfd 1 ,
(struct sockaddr *) &cli_addr, 2 &cli_addrlen 3) < 0)

{
perror("Failed to get client name");
exit(EXIT_FAILURE);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port) 4

);

exit(EXIT_SUCCESS);
}

1 conn_sockaddr is the socket descriptor returned by the previous call to the
accept() function.

2 cli_addr is the address structure for the connected socket.

3 cli_addrlen is the length of the address structure for the connected socket.

4 The printf statement accesses the information stored in the address
structure for the connected socket and displays the client’s IP address
and port number. The inet_ntoa () and the ntohs() functions are used to
convert the IP address and port number from their network byte order to the
host byte order.

Writing Network Applications 2–33

Writing Network Applications
2.7 Getting Socket Options

2.7.2 Getting Socket Information (System Services)
To obtain information about the parts of a socket, use the $QIO system service
with IO$_SENSEMODE to get socket information.

Example 2–12 shows a TCP client using the IO$_SENSEMODE function to get
the client’s IP address and port number.

Example 2–12 Getting Socket Information (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */
<valid_break>

/* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct itemlst_3
{ /* item-list 3 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
unsigned int *retlen; /* address of returned length */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */

(continued on next page)

2–34 Writing Network Applications

Writing Network Applications
2.7 Getting Socket Options

Example 2–12 (Cont.) Getting Socket Information (System Services)

unsigned short conn_channel; /* connect inet device i/o channel */

unsigned short listen_channel; /* listen inet device i/o channel */
struct sockchar listen_sockchar; /* listen socket characteristics */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct itemlst_3 cli_itemlst; /* client socket address item-list */

struct sockaddr_in serv_addr; /* server socket address structure */
struct itemlst_2 serv_itemlst; /* server socket address item-list */

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

listen_sockchar.prot = TCPIP$C_TCP;
listen_sockchar.type = TCPIP$C_STREAM;
listen_sockchar.af = TCPIP$C_AF_INET;

/*
* initialize client’s item-list descriptor
*/

cli_itemlst.length = sizeof(cli_addr);
cli_itemlst.type = TCPIP$C_SOCK_NAME;
cli_itemlst.address = &cli_addr;
cli_itemlst.retlen = &cli_addrlen;

/*
* initialize server’s item-list descriptor
*/

serv_itemlst.length = sizeof(serv_addr);
serv_itemlst.type = TCPIP$C_SOCK_NAME;
serv_itemlst.address = &serv_addr;

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

/*
* assign i/o channels to network device
*/

status = sys$assign(&inet_device, /* device name */
&listen_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (status & STS$M_SUCCESS)
status = sys$assign(&inet_device, /* device name */

&conn_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

(continued on next page)

Writing Network Applications 2–35

Writing Network Applications
2.7 Getting Socket Options

Example 2–12 (Cont.) Getting Socket Information (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel(s)\n");
exit(status);
}

/*
* create a listen socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&listen_sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* bind server’s ip address and port number to listen socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&serv_itemlst, /* p3 - local socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}

(continued on next page)

2–36 Writing Network Applications

Writing Network Applications
2.7 Getting Socket Options

Example 2–12 (Cont.) Getting Socket Information (System Services)
/*
* set socket as a listen socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
SERV_BACKLOG, /* p4 - connection backlog */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to set socket passive\n");
exit(status);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_ACCESS|IO$M_ACCEPT,

/* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
&conn_channel, /* p4 - i/o channel for new */

/* connection */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

Writing Network Applications 2–37

Writing Network Applications
2.7 Getting Socket Options

Example 2–12 (Cont.) Getting Socket Information (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to accept client connection\n");
exit(status);
}

/*
* log client connection request
*/

memset(&cli_addr, 0, sizeof(cli_addr));

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_SENSEMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
&cli_itemlst, /* p4 - peer socket name */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to get client name\n");
exit(status);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

);

exit(EXIT_SUCCESS);
}

2.8 Setting Socket Options
With TCP/IP Services, you use the setsockopt() function to set binary socket
options and socket options that return a value. Calls to setsockopt() specifying
unsupported options return an error code of ENOPROTOOPT.

2.8.1 Setting Socket Options (Sockets API)
Example 2–13 shows a TCP server using the setsockopt () function to set the
SO_REUSEADDR option.

2–38 Writing Network Applications

Writing Network Applications
2.8 Setting Socket Options

Example 2–13 Setting Socket Options (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void)
{

int optval = 1; /* SO_REUSEADDR’s option value (on) */

int conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct sockaddr_in serv_addr; /* server socket address structure */

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a listen socket
*/

if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* bind server’s ip address and port number to listen socket
*/

if (setsockopt(listen_sockfd, 1
SOL_SOCKET 2 , SO_REUSEADDR 3 , &optval 4 , sizeof(optval) 5) < 0)

{
perror("Failed to set socket option");
exit(EXIT_FAILURE);
}

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

/*
* set socket as a listen socket
*/

(continued on next page)

Writing Network Applications 2–39

Writing Network Applications
2.8 Setting Socket Options

Example 2–13 (Cont.) Setting Socket Options (Sockets API)

if (listen(listen_sockfd, SERV_BACKLOG) < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);

if (conn_sockfd < 0)
{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

/*
* log client connection request
*/

cli_addrlen = sizeof(cli_addr);
memset(&cli_addr, 0, sizeof(cli_addr));

if (getpeername(conn_sockfd,
(struct sockaddr *) &cli_addr, &cli_addrlen) < 0)

{
perror("Failed to get client name");
exit(EXIT_FAILURE);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

);

exit(EXIT_SUCCESS);
}

1 listen_sockfd refers to an open socket descriptor returned by the previous
call to the socket () function.

2 SOL_SOCKET specifies the code in the system to interpret the option. In this
case, the level is the general socket code.

3 SO_REUSEADDR is the socket option to be set. In this case, the socket option
allows reuse of local addresses.

4 optval is the value to set for the option. In this case, the value is 1, which
enables the option.

5 sizeof(optval) is the size of the option value.

2–40 Writing Network Applications

Writing Network Applications
2.8 Setting Socket Options

2.8.2 Setting Socket Options (System Services)
Example 2–14 shows how to set socket options using $QIO system services.

Example 2–14 Setting Socket Options (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct itemlst_3
{ /* item-list 3 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
unsigned int *retlen; /* address of returned length */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

int optval = 1; /* reuseaddr option value (on) */

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */

unsigned short conn_channel; /* connect inet device i/o channel */

(continued on next page)

Writing Network Applications 2–41

Writing Network Applications
2.8 Setting Socket Options

Example 2–14 (Cont.) Setting Socket Options (System Services)

unsigned short listen_channel; /* listen inet device i/o channel */
struct sockchar listen_sockchar; /* listen socket characteristics */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct itemlst_3 cli_itemlst; /* client socket address item-list */

struct sockaddr_in serv_addr; /* server socket address structure */
struct itemlst_2 serv_itemlst; /* server socket address item-list */

struct itemlst_2 sockopt_itemlst; /* server socket option item-list */
struct itemlst_2 reuseaddr_itemlst; /* reuseaddr option item-list */
$DESCRIPTOR(inet_device, /* string descriptor with logical */

"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

listen_sockchar.prot = TCPIP$C_TCP;
listen_sockchar.type = TCPIP$C_STREAM;
listen_sockchar.af = TCPIP$C_AF_INET;

/*
* initialize reuseaddr’s item-list element
*/

reuseaddr_itemlst.length = sizeof(optval);
reuseaddr_itemlst.type = TCPIP$C_REUSEADDR;
reuseaddr_itemlst.address = &optval;

/*
* initialize setsockopt’s item-list descriptor
*/

sockopt_itemlst.length = sizeof(reuseaddr_itemlst);
sockopt_itemlst.type = TCPIP$C_SOCKOPT;
sockopt_itemlst.address = &reuseaddr_itemlst;

/*
* initialize client’s item-list descriptor
*/

cli_itemlst.length = sizeof(cli_addr);
cli_itemlst.type = TCPIP$C_SOCK_NAME;
cli_itemlst.address = &cli_addr;
cli_itemlst.retlen = &cli_addrlen;

/*
* initialize server’s item-list descriptor
*/

serv_itemlst.length = sizeof(serv_addr);
serv_itemlst.type = TCPIP$C_SOCK_NAME;
serv_itemlst.address = &serv_addr;

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

(continued on next page)

2–42 Writing Network Applications

Writing Network Applications
2.8 Setting Socket Options

Example 2–14 (Cont.) Setting Socket Options (System Services)

/*
* assign i/o channels to network device
*/
status = sys$assign(&inet_device, /* device name */

&listen_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (status & STS$M_SUCCESS)
status = sys$assign(&inet_device, /* device name */

&conn_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel(s)\n");
exit(status);
}

/*
* create a listen socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&listen_sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* bind server’s ip address and port number to listen socket
*/

(continued on next page)

Writing Network Applications 2–43

Writing Network Applications
2.8 Setting Socket Options

Example 2–14 (Cont.) Setting Socket Options (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
&sockopt_itemlst, /* p5 - socket options */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to set socket option\n");
exit(status);
}

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&serv_itemlst, /* p3 - local socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}

/*
* set socket as a listen socket
*/
status = sys$qiow(EFN$C_ENF, /* event flag */

listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
SERV_BACKLOG, /* p4 - connection backlog */
0, /* p5 */
0 /* p6 */

);

(continued on next page)

2–44 Writing Network Applications

Writing Network Applications
2.8 Setting Socket Options

Example 2–14 (Cont.) Setting Socket Options (System Services)

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to set socket passive\n");
exit(status);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_ACCESS|IO$M_ACCEPT,

/* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
&conn_channel, /* p4 - i/o channel for new */

/* connection */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to accept client connection\n");
exit(status);
}

/*
* log client connection request
*/

memset(&cli_addr, 0, sizeof(cli_addr));

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_SENSEMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
&cli_itemlst, /* p4 - peer socket name */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

Writing Network Applications 2–45

Writing Network Applications
2.8 Setting Socket Options

Example 2–14 (Cont.) Setting Socket Options (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to get client name\n");
exit(status);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

);

exit(EXIT_SUCCESS);
}

2.9 Reading Data
TCP/IP Services allows the application to read data after it performs the following
operations:

• Create a socket

• Bind a socket name to the socket

• Establish a connection

2.9.1 Reading Data (Sockets API)
Example 2–15 shows a TCP client using the recv() function to read data.

Example 2–15 Reading Data (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define BUFSZ 1024 /* user input buffer size */
#define PORTNUM 12345 /* server port number */

void get_servaddr(void *addrptr)
{

char buf[BUFSIZ];
struct in_addr val;
struct hostent *host;

while (TRUE)
{
printf("Enter remote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read user input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

(continued on next page)

2–46 Writing Network Applications

Writing Network Applications
2.9 Reading Data

Example 2–15 (Cont.) Reading Data (Sockets API)

val.s_addr = inet_addr(buf);

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf)))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

int main(void)
{

char buf[512];
int nbytes, sockfd;
struct sockaddr_in addr;

/*
* initialize socket address structure
*/

memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(PORTNUM);
get_servaddr(&addr.sin_addr);
/*
* create a socket
*/

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* connect to specified host and port number
*/

printf("Initiated connection to host: %s, port: %d\n",
inet_ntoa(addr.sin_addr), ntohs(addr.sin_port)

);

if (connect(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
{
perror("Failed to connect to server");
exit(EXIT_FAILURE);
}

/*
* read data from connection
*/

nbytes = recv(sockfd,1 buf,2 sizeof(buf),3 0 4);
if (nbytes < 0)

{
perror("Failed to read data from connection");
exit(EXIT_FAILURE);
}

(continued on next page)

Writing Network Applications 2–47

Writing Network Applications
2.9 Reading Data

Example 2–15 (Cont.) Reading Data (Sockets API)

buf[nbytes] = 0;
printf("Data received: %s\n", buf);

exit(EXIT_SUCCESS);
}

1 sockfd is the socket descriptor previously defined by a call to the connect()
function.

2 buf points to the receive buffer where the data is placed.

3 sizeof (buf) is the size of the receive buffer.

4 0 indicates that out-of-band data is not being received.

2.9.2 Reading Data (System Services)
The $QIO IO$_READVBLK function transfers data received from the internet
host (and kept in system dynamic memory) into the address space of the user’s
process. After the read operation completes, the data in dynamic memory is
discarded.

Example 2–16 shows a TCP client using the IO$_READVBLK function to read
data into a single I/O buffer.

Example 2–16 Reading Data (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

#define BUFSZ 1024 /* user input buffer size */
#define PORTNUM 12345 /* server port number */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

(continued on next page)

2–48 Writing Network Applications

Writing Network Applications
2.9 Reading Data

Example 2–16 (Cont.) Reading Data (System Services)

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

void get_servaddr(void *addrptr)
{

char buf[BUFSIZ];
struct in_addr val;
struct hostent *host;

while (TRUE)
{
printf("Enter remote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read user input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

val.s_addr = inet_addr(buf);

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf)))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

int main(void)
{

char buf[512]; /* data buffer */
int buflen = sizeof(buf); /* length of data buffer */

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */
unsigned short channel; /* network device i/o channel */
struct sockchar sockchar; /* socket characteristics buffer */
struct sockaddr_in addr; /* socket address structure */
struct itemlst_2 addr_itemlst; /* socket address item-list */
$DESCRIPTOR(inet_device, /* string descriptor with logical */

"TCPIP$DEVICE:"); /* name of network pseudodevice */

(continued on next page)

Writing Network Applications 2–49

Writing Network Applications
2.9 Reading Data

Example 2–16 (Cont.) Reading Data (System Services)

/*
* initialize socket characteristics
*/

sockchar.prot = TCPIP$C_TCP;
sockchar.type = TCPIP$C_STREAM;
sockchar.af = TCPIP$C_AF_INET;

/*
* initialize socket address item-list descriptor
*/

addr_itemlst.length = sizeof(addr);
addr_itemlst.type = TCPIP$C_SOCK_NAME;
addr_itemlst.address = &addr;

/*
* initialize socket address structure
*/

memset(&addr, 0, sizeof(addr));
addr.sin_family = TCPIP$C_AF_INET;
addr.sin_port = htons(PORTNUM);
get_servaddr(&addr.sin_addr);

/*
* assign i/o channel to network device
*/
status = sys$assign(&inet_device, /* device name */

&channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}

/*
* create a socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

2–50 Writing Network Applications

Writing Network Applications
2.9 Reading Data

Example 2–16 (Cont.) Reading Data (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* connect to specified host and port number
*/

printf("Initiated connection to host: %s, port: %d\n",
inet_ntoa(addr.sin_addr), ntohs(addr.sin_port)

);
status = sys$qiow(EFN$C_ENF, /* event flag */

channel, /* i/o channel */
IO$_ACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&addr_itemlst, /* p3 - remote socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to connect to server\n");
exit(status);
}

/*
* read data from connection
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_READVBLK, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
buf, /* p1 - buffer address */
buflen, /* p2 - buffer length */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to read data from connection\n");
exit(status);
}

(continued on next page)

Writing Network Applications 2–51

Writing Network Applications
2.9 Reading Data

Example 2–16 (Cont.) Reading Data (System Services)

buf[iosb.bytcnt] = 0;
printf("Data received: %s\n", buf);

exit(EXIT_SUCCESS);
}

You can also specify a list of read buffers by omitting the p1 and p2 arguments
and passing the list of buffers as the p6 parameter. See Section 5.5.2 for more
information.

2.10 Receiving IP Multicast Datagrams
Before a host can receive (read) IP multicast datagrams destined for a particular
multicast group other than all hosts group, the application must direct the host
it is running on to become a member of that multicast group.

To join a group or drop membership from a group, specify the following options.
Make sure you include the IN.H header file.

• To join a multicast group, specify the appropriate option to the setsockopt()
system call:

– IP_ADD_MEMBERSHIP (Sockets API)

– TCPIP$C_IP_ADD_MEMBERSHIP (System Services)

For example:

struct ip_mreq mreq;
if (setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, & mreq,

sizeof(mreq)) == -1)
perror("setsockopt");

The mreq variable has the following structure:

struct ip_mreq {
struct in_addr (imr_multiaddr); /* IP multicast address of group */
struct in_addr (imr_interface); /* local IP address of interface */

};

In this structure, imr_interface can be specified as INADDR_ANY, which
allows an application to choose the default multicast interface.

Each multicast group membership is associated with a particular interface,
and multiple interfaces can join the same group. Alternatively, specifying
one of the host’s local addresses allows an application to select a particular,
multicast-capable interface. The maximum number of memberships that can
be added on a single socket is subject to the IP_MAX_MEMBERSHIPS value,
which is defined in the IN.H header file.

If multiple sockets request that a host join a multicast group, the host
remains a member of that multicast group until the last of those sockets is
closed.

• To drop membership from a multicast group, specify the appropriate option to
the setsockopt() system call:

– IP_DROP_MEMBERSHIP (Sockets API)

– TCPIP$C_IP_DROP_MEMBERSHIP (System Services)

2–52 Writing Network Applications

Writing Network Applications
2.10 Receiving IP Multicast Datagrams

For example:

struct ip_mreq mreq;
if (setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq,

sizeof(mreq))== -1)
perror("setsockopt");

The mreq variable contains the same structure values used for adding
membership.

To receive multicast datagrams sent to a specific UDP port, the receiving socket
must have been bound to that port using the $QIO(IO$_SETMODE) system
service function or the bind() Sockets API function. More than one process can
receive UDP datagrams destined for the same port if the function is preceded by
a setsockopt() system call that specifies the SO_REUSEPORT option.

For example:

int setreuse = 1;
if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &setreuse,

sizeof(setreuse)) == -1)
perror("setsockopt");

When the SO_REUSEPORT option is set, every incoming multicast or broadcast UDP
datagram destined for the shared port is delivered to all sockets bound to that
port.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by the
protocol type of the destination.

2.11 Reading Out-of-Band Data (TCP Protocol)
Only stream-type (TCP/IP) sockets can receive out-of-band (OOB) data. Upon
receiving a TCP/IP OOB character, TCP/IP Services stores a pointer in the
received stream to the character that precedes the OOB character.

A read operation with a user buffer size larger than the size of the received
stream up to the OOB character completes by returning to the user the received
stream up to, but not including, the OOB character.

Poll the socket to determine whether additional read operations are needed before
getting all the characters from the stream that precedes the OOB character.

Writing Network Applications 2–53

Writing Network Applications
2.11 Reading Out-of-Band Data (TCP Protocol)

2.11.1 Reading OOB Data (Sockets API)
You can use the recv() socket function with the MSG_OOB flag set to receive
out-of-band data regardless of how many of the preceding characters in the
stream you have received.

Example 2–17 shows a TCP server using the recv() function to receive out-of-
band data.

Example 2–17 Reading OOB Data (Sockets API)

retval = recv(sock_3,1 message,2 sizeof(message),3 flag);4
if (retval == -1)

{
perror ("receive");
cleanup(2, sock_2, sock_3);

}
else

printf (" %s\n", message);

1 sock_3 specifies that OOB data is received from socket 2.

2 message points to the read buffer where the data is placed.

3 sizeof (message) indicates the size of the read buffer.

4 flag, when set to MSG_OOB, indicates that OOB data is being received in
the specified buffer.

2.11.2 Reading OOB Data (System Services)
To receive OOB data from a remote process, use the IO$_READVBLK function
with the IO$M_INTERRUPT modifier.

To poll the socket, use a $QIO command with the IO$_SENSEMODE function
and the TCPIP$C_IOCTL subfunction that specifies the SIOCATMARK operation.

If the SIOCATMARK returns a value of 0, use additional read QIOs to read more
data before reading the OOB character. If the SIOCATMARK returns a value of
1, the next read QIO returns the OOB character.

These functions are useful if a socket has the OOBINLINE socket option set. The
OOB character is read with the characters in the stream (IO$_READVBLK) but
is not read before the preceding characters. To determine whether or not the first
character in the user buffer on the next read is an OOB, poll the socket.

To get a received OOB character for a socket with the socket option OOBINLINE
clear, use one of the following functions:

• $QIO with the function IO$_READVBLK | IO$M_INTERRUPT

• IO$_READVBLK with the P4 parameter TCPIP$C_MSG_OOB flag set

Example 2–18 shows how to use the IO$M_INTERRUPT modifier to read
out-of-band data.

2–54 Writing Network Applications

Writing Network Applications
2.11 Reading Out-of-Band Data (TCP Protocol)

Example 2–18 Reading OOB Data (System Services)

/*
** Attempt to receive the OOB data from the client.
** Use the function code of IO$_READVBLK, passing the address of the
** input buffer to P1, and the OOB code, TCPIP$C_MSG_OOB, to P4.
** We support the sending and receiving of a one byte of OOB data.
*/

sysSrvSts = sys$qiow(0, /* efn.v | 0 */
IOChanClient, /* chan.v */
IO$_READVBLK, /* func.v */
&iosb, /* iosb.r | 0 */
0, 0, /* astadr, astprm: UNUSED */
&OOBBuff, /* p1.r IO buffer */
MaxBuff, /* p2.v IO buffer size */
0, /* p3 UNUSED */
TCPIP$C_MSG_OOB, /* p4.v IO options flag */
0, 0 /* p5, p6 UNUSED */

);
if(((sysSrvSts & 1) != 1) || /* Validate the system service. */

((iosb.cond_value & 1) != 1)) /* Validate the IO status. */
{
cleanup(IOChanClient);
cleanup(IOChannel);
errorExit(sysSrvSts, iosb.cond_value);
}

else
if(iosb.count == 0)

printf(" FAILED to receive the message, no connection.\n");
else

printf(" SUCCEEDED in receiving ’%d’\n", OOBBuff);

2.12 Peeking at Queued Messages
You can use a read operation to look at data in a socket receive queue without
removing the data from the buffer. This is called peeking.

2.12.1 Peeking at Data (Sockets API)
Use the MSG_PEEK flag with the recv() function to peek at data in the socket
receive queue. Example 2–19 shows a TCP server using the recv() function with
the MSG_PEEK flag to peek at received data.

Writing Network Applications 2–55

Writing Network Applications
2.12 Peeking at Queued Messages

Example 2–19 Peeking at Data (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <unixio.h> /* define unix i/o */

#define BUFSZ 128 /* user input buffer size */
#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 1234 /* server port number */

int main(void)
{

char buf[BUFSIZ]; /* user input buffer */
int conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */

int optval = 1; /* SO_REUSEADDR’S option value (on) */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct sockaddr_in serv_addr; /* server socket address structure */

/*
* initialize client’s socket address structure
*/

memset(&cli_addr, 0, sizeof(cli_addr));

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a listen socket
*/

if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* bind server’s ip address and port number to listen socket
*/

if (setsockopt(listen_sockfd,
SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0)

{
perror("Failed to set socket option");
exit(EXIT_FAILURE);
}

(continued on next page)

2–56 Writing Network Applications

Writing Network Applications
2.12 Peeking at Queued Messages

Example 2–19 (Cont.) Peeking at Data (Sockets API)
if (bind(listen_sockfd,

(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

/*
* set socket as a listen socket
*/

if (listen(listen_sockfd, SERV_BACKLOG) < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

cli_addrlen = sizeof(cli_addr);

conn_sockfd = accept(listen_sockfd,
(struct sockaddr *) &cli_addr,
&cli_addrlen

);
if (conn_sockfd < 0)

{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

/*
* ask client to pick a character
*/

sprintf(buf, "Please pick a character: \r\n");

if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
{
perror("Failed to write data to connection");
exit(EXIT_FAILURE);
}

/*
* peek at client’s reply
*/
if (recv(conn_sockfd 1 , buf 2 , 1 3 , MSG_PEEK 4) != 1)

{
perror("Failed to read data from connection");
exit(EXIT_FAILURE);
}

sprintf(buf, "Before receiving, I see you picked ’%c’.\r\n", buf[0]);

if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
{
perror("Failed to write data to connection");
exit(EXIT_FAILURE);
}

(continued on next page)

Writing Network Applications 2–57

Writing Network Applications
2.12 Peeking at Queued Messages

Example 2–19 (Cont.) Peeking at Data (Sockets API)

/*
* now, read client’s reply
*/

if (recv(conn_sockfd, buf, 1, 0) != 1)
{
perror("Failed to read data from connection");
exit(EXIT_FAILURE);
}

sprintf(buf, "Sure enough, I received ’%c’.\r\n", buf[0]);

if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
{
perror("Failed to write data to connection");
exit(EXIT_FAILURE);
}

/*
* close sockets
*/

if (close(conn_sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

if (close(listen_sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

The recv() function receives data from a connected socket and places it in a
buffer, as follows:

1 conn_sockfd is the socket descriptor created as a result of a call to the
accept() function.

2 buf points to the buffer into which received data is placed.

3 1 indicates the size of the buffer.

4 MSG_PEEK is the flag that specifies the character entered is looked at without
removing it from the buffer.

2.12.2 Peeking at Data (System Services)
To peek at data that is next in the socket receive queue, use the IO$_READVBLK
function of the $QIO system service and use the TCPIP$C_MSG_PEEK flag. This
allows you to use multiple read operations on the same data.

2.13 Writing Data
For programs that use TCP, data writing occurs after a client program initiates
a connection and after the server program accepts the connection. When using
UDP, you also have the option of establishing a default peer address with a
specific socket, but this is not required for data transfer.

2–58 Writing Network Applications

Writing Network Applications
2.13 Writing Data

2.13.1 Writing Data (Sockets API)
Example 2–20 shows a TCP server using the send() function to transmit data.

Example 2–20 Writing Data (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void)
{

int optval = 1; /* SO_REUSEADDR’s option value (on) */

int conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct sockaddr_in serv_addr; /* server socket address structure */

char buf[] = "Hello, world!"; /* data buffer */

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a listen socket
*/

if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

(continued on next page)

Writing Network Applications 2–59

Writing Network Applications
2.13 Writing Data

Example 2–20 (Cont.) Writing Data (Sockets API)
/*
* bind server’s ip address and port number to listen socket
*/

if (setsockopt(listen_sockfd,
SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0)

{
perror("Failed to set socket option");
exit(EXIT_FAILURE);
}

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

/*
* set socket as a listen socket
*/

if (listen(listen_sockfd, SERV_BACKLOG) < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);

if (conn_sockfd < 0)
{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

/*
* log client connection request
*/

cli_addrlen = sizeof(cli_addr);
memset(&cli_addr, 0, sizeof(cli_addr));

if (getpeername(conn_sockfd,
(struct sockaddr *) &cli_addr, &cli_addrlen) < 0)

{
perror("Failed to get client name");
exit(EXIT_FAILURE);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

);

(continued on next page)

2–60 Writing Network Applications

Writing Network Applications
2.13 Writing Data

Example 2–20 (Cont.) Writing Data (Sockets API)
/*
* write data to connection
*/
if (send(conn_sockfd, 1 buf, 2 sizeof(buf),3 0 4) < 0)

{
perror("Failed to write data to connection");
exit(EXIT_FAILURE);
}

printf("Data sent: %s\n", buf);

exit(EXIT_SUCCESS);
}

1 conn_sockfd specifies the connected socket that is to receive the data.

2 buf is the address of the send buffer where the data to be sent is placed.

3 sizeof (buf) indicates the size of the send buffer.

4 flag, when set to 0, indicates that OOB data is not being sent.

2.13.2 Writing Data (System Services)
The IO$_WRITEVBLK function of the $QIO system service copies data from the
address space of the user’s process to system dynamic memory and then transfers
the data to an internet host or port.

Example 2–21 shows a TCP server using the IO$_WRITEVBLK function to
transmit a single data buffer. The $QIO(IO$_ACCESS | IO$M_ACCEPT) function
was previously executed to establish the connection with the client.

Example 2–21 Writing Data (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

(continued on next page)

Writing Network Applications 2–61

Writing Network Applications
2.13 Writing Data

Example 2–21 (Cont.) Writing Data (System Services)

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct itemlst_3
{ /* item-list 3 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
unsigned int *retlen; /* address of returned length */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

int optval = 1; /* reuseaddr option value (on) */

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */

unsigned short conn_channel; /* connect inet device i/o channel */

unsigned short listen_channel; /* listen inet device i/o channel */
struct sockchar listen_sockchar; /* listen socket characteristics */

unsigned int cli_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in cli_addr; /* client socket address structure */
struct itemlst_3 cli_itemlst; /* client socket address item-list */

struct sockaddr_in serv_addr; /* server socket address structure */
struct itemlst_2 serv_itemlst; /* server socket address item-list */

struct itemlst_2 sockopt_itemlst; /* server socket option item-list */
struct itemlst_2 reuseaddr_itemlst; /* reuseaddr option item-list */
char buf[] = "Hello, world!"; /* data buffer */
int buflen = sizeof(buf); /* length of data buffer */

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

listen_sockchar.prot = TCPIP$C_TCP;
listen_sockchar.type = TCPIP$C_STREAM;
listen_sockchar.af = TCPIP$C_AF_INET;

/*
* initialize reuseaddr’s item-list element
*/

reuseaddr_itemlst.length = sizeof(optval);
reuseaddr_itemlst.type = TCPIP$C_REUSEADDR;
reuseaddr_itemlst.address = &optval;

(continued on next page)

2–62 Writing Network Applications

Writing Network Applications
2.13 Writing Data

Example 2–21 (Cont.) Writing Data (System Services)

/*
* initialize setsockopt’s item-list descriptor
*/

sockopt_itemlst.length = sizeof(reuseaddr_itemlst);
sockopt_itemlst.type = TCPIP$C_SOCKOPT;
sockopt_itemlst.address = &reuseaddr_itemlst;

/*
* initialize client’s item-list descriptor
*/

cli_itemlst.length = sizeof(cli_addr);
cli_itemlst.type = TCPIP$C_SOCK_NAME;
cli_itemlst.address = &cli_addr;
cli_itemlst.retlen = &cli_addrlen;

/*
* initialize server’s item-list descriptor
*/

serv_itemlst.length = sizeof(serv_addr);
serv_itemlst.type = TCPIP$C_SOCK_NAME;
serv_itemlst.address = &serv_addr;

/*
* initialize server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;
/*
* assign i/o channels to network device
*/

status = sys$assign(&inet_device, /* device name */
&listen_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (status & STS$M_SUCCESS)
status = sys$assign(&inet_device, /* device name */

&conn_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel(s)\n");
exit(status);
}

/*
* create a listen socket
*/

(continued on next page)

Writing Network Applications 2–63

Writing Network Applications
2.13 Writing Data

Example 2–21 (Cont.) Writing Data (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&listen_sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* bind server’s ip address and port number to listen socket
*/
status = sys$qiow(EFN$C_ENF, /* event flag */

listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
&sockopt_itemlst, /* p5 - socket options */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to set socket option\n");
exit(status);
}

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&serv_itemlst, /* p3 - local socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

(continued on next page)

2–64 Writing Network Applications

Writing Network Applications
2.13 Writing Data

Example 2–21 (Cont.) Writing Data (System Services)

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}

/*
* set socket as a listen socket
*/
status = sys$qiow(EFN$C_ENF, /* event flag */

listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
SERV_BACKLOG, /* p4 - connection backlog */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to set socket passive\n");
exit(status);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_ACCESS|IO$M_ACCEPT,

/* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
&conn_channel, /* p4 - i/o channel for new */

/* connection */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

Writing Network Applications 2–65

Writing Network Applications
2.13 Writing Data

Example 2–21 (Cont.) Writing Data (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to accept client connection\n");
exit(status);
}

/*
* log client connection request
*/

memset(&cli_addr, 0, sizeof(cli_addr));

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_SENSEMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
&cli_itemlst, /* p4 - peer socket name */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to get client name\n");
exit(status);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)

);

/*
* write data to connection
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_WRITEVBLK, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
buf, /* p1 - buffer address */
buflen, /* p2 - buffer length */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

2–66 Writing Network Applications

Writing Network Applications
2.13 Writing Data

Example 2–21 (Cont.) Writing Data (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to write data to connection\n");
exit(status);
}

printf("Data sent: %s\n", buf);

exit(EXIT_SUCCESS);
}

You can also specify a list of write buffers by omitting the p1 and p2 parameters
and instead passing the list of buffers as the p5 parameter. Note that, when
writing a list of buffers, the p5 parameter is used; when reading a list, the p6
parameter is used. For more information, see Section 5.5.1.

2.14 Writing OOB Data (TCP Protocol)
If your application uses TCP, you can send OOB data to a remote process. At
the remote process, the message is delivered to the user through either the data
receive or the out-of-band data receive mechanism. You can write only 1 byte of
OOB data at a time.

2.14.1 Writing OOB Data (Sockets API)
To send OOB data to a remote process, use the MSG_OOB flag with the send(),
sendmsg(), and sendto() functions.

Example 2–22 shows a TCP server using the MSG_OOB flag with the send()
function.

Example 2–22 Writing OOB Data (Sockets API)

/* This program accepts a connection on TCP port 1234, sends the string,
"Hello, world!", waits two seconds, sends an urgent BEL (^G), waits
another two seconds, repeats the Hello message, and terminates. */

#include <types.h>
#include <in.h>
#include <socket.h>
#include <unixio.h>

#define PORTNUM 123
main() {

struct sockaddr_in lcladdr;
int r, s, one = 1;
char *message = "Hello, world!\r\n",

*oob_message = "\007";
memset()

(continued on next page)

Writing Network Applications 2–67

Writing Network Applications
2.14 Writing OOB Data (TCP Protocol)

Example 2–22 (Cont.) Writing OOB Data (Sockets API)

lcladdr.sin_family = AF_INET;
lcladdr.sin_addr.s_addr = INADDR_ANY;
lcladdr.sin_port = htons(PORTNUM);
if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) perror("socket");
if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)))

perror("setsockopt");
if (bind(s, &lcladdr, sizeof(lcladdr))) perror("bind");
if (listen(s, 1)) perror("listen");
if ((r = accept(s, 0, 0)) < 0) perror("accept");
if (send(r, message, strlen(message), 0) != strlen(message))

perror("send");
sleep(2);
if (send(r,1 oob_message,2 strlen(oob_message),3 MSG_OOB 4) !=

strlen(oob_message)) perror("send");
sleep(2);
if (send(r, message, strlen(message), 0) != strlen(message))

perror("send");
sleep(2);
if (close(r)) perror("close");
if (close(s)) perror("close");

}

The send() function is used to send OOB data to a remote socket, as follows:

1 r specifies the remote socket descriptor connected to the local socket as a
result of a call to the socket() function.

2 oob_message is the buffer containing the OOB data.

3 strlen(oob_message) specifies the length, in bytes, of the buffer containing
the out-of-band data.

4 MSG_OOB is the flag that indicates the data will be sent out of band.

2.14.2 Writing OOB Data (System Services)
To send out-of-band data to a remote process, use the $QIO system service
and use the IO$_WRITEVBLK function with the IO$M_INTERRUPT modifier.
Example 2–23 shows a TCP server using the MSG_OOB flag with the send()
function.

2–68 Writing Network Applications

Writing Network Applications
2.14 Writing OOB Data (TCP Protocol)

Example 2–23 Writing OOB Data (System Services)

/*
**
** Attempt to send Out Of Band data to a previously established network
** connection. Use the function code of IO$_WRITEVBLK, passing the address
** of the buffer to P1, and the OOB code, TCPIP$C_MSG_OOB, to P4.
**
*/

OOBBuff = 7;
sysSrvSts = sys$qiow(0, /* efn.v | 0 */

IOChannel, /* chan.v */
IO$_WRITEVBLK, /* func.v */
&iosb, /* iosb.r | 0 */
0, 0, /* astadr, astprm: UNUSED */
&OOBBuff, /* p1.r IO buffer */
1, /* p2.v IO buffer size */
0, /* p3 UNUSED */
TCPIP$C_MSG_OOB, /* p4.v IO options flag */
0, 0 /* p5, p6 UNUSED */

);
if(((sysSrvSts & 1) != 1) || /* Validate the system service status. */

((iosb.cond_value & 1) != 1)) /* Validate the IO status. */
{
cleanup(IOChannel);
errorExit(sysSrvSts, iosb.cond_value);
}

else
if(iosb.count == 0)

printf(" FAILED to send the OOB message, no connection.\n");
else

printf(" SUCCEEDED in sending the OOB message.\n");

2.15 Sending Datagrams (UDP Protocol)
An application that uses UDP can send a datagram to a remote host, send
broadcast datagrams to multiple remote hosts, or send multicast datagrams to
members of a group.

With broadcasting, you send datagrams in one operation to multiple remote
hosts on the specified subnetwork. With multicasting, you send datagrams in one
operation to all hosts that are members of a particular group. The member hosts
can be located on the local network or on remote networks, as long as the routers
are configured to support multicasting.

2.15.1 Sending Datagrams (System Services)
You can use either of the following methods to send datagrams:

• To send datagrams from the local host to one remote host, use the $QIO
system service with the IO$_ACCESS function modifier. This allows you to
specify the remote socket name once, and then to use the IO$_WRITEVBLK
function to send each datagram without specifying the socket name again.

• To send datagrams from the local host to several remote hosts, use the $QIO
system service with the IO$_WRITEVBLK function modifier, and specify the
remote socket name in the p3 argument field.

Writing Network Applications 2–69

Writing Network Applications
2.15 Sending Datagrams (UDP Protocol)

2.15.2 Sending Broadcast Datagrams (Sockets API)
You can broadcast datagrams by calling the sendto() function.

2.15.3 Sending Broadcast Datagrams (System Services)
To broadcast datagrams, use a $QIO system service command with the
IO$_WRITEVBLK function.

Before issuing broadcast messages, the application must issue the
IO$_SETMODE function. This sets the broadcast option in the socket. The
process must have a system UIC, and a SYSPRV, BYPASS, or OPER privilege to
issue broadcast messages. However, the system manager can disable privilege
checking with the management command SET PROTOCOL UDP /BROADCAST.
For more information, refer to the Compaq TCP/IP Services for OpenVMS
Management guide.

2.15.4 Sending Multicast Datagrams
To send IP multicast datagrams, specify the IP destination address in the range
of 224.0.0.0 to 239.255.255.255 using the $QIO(IO$_WRITEVBLK) system service
function or the sendto() Sockets API function. Make sure you include the IN.H
header file.

The system maps the specified IP destination address to the appropriate Ethernet
or FDDI multicast address before it transmits the datagram.

You can control multicast options by specifying the following arguments to the
setsockopt() system call, as appropriate:

• IP_MULTICAST_TTL (Sockets API)
TCPIP$C_IP_MULTICAST_TTL (OpenVMS system services)

Time to live (TTL). Takes an integer value between 0 and 255.

Value Result

0 Restricts distribution to applications running on the local host.

1 Forwards the multicast datagram to hosts on the local subnet.

1—255 With a multicast router attached to the sending host’s network, forwards
multicast datagrams beyond the local subnet.

Multicast routers forward the datagram to known networks that have hosts
belonging to the specified multicast group. The TTL value is decremented
by each multicast router in the path. When the TTL value reaches 0, the
datagram is no longer forwarded.

2–70 Writing Network Applications

Writing Network Applications
2.15 Sending Datagrams (UDP Protocol)

For example:

u_char ttl;
ttl=2;

if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl,
sizeof(ttl)) == -1)

perror("setsockopt");

• IP_MULTICAST_IF (Sockets API)
TCPIP$C_MULTICAST_IF (OpenVMS system services)

Multicast interface. Specifies a network interface other than that specified by
the route in the kernel routing table.

Unless the application specifies that an alternate network interface is
associated with the socket, the datagram addressed to an IP multicast
destination is transmitted from the default network interface. The default
interface is determined by the interface associated with the default route in
the kernel routing table or by the interface associated with an explicit route,
if one exists.

For example:

int sock;

struct in_addr ifaddress;

char *if_to_use = "16.141.64.251";
.
.
.

ifaddress.s_addr = inet_addr(if_to_use);

if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &ifaddress,

sizeof(ifaddress)) == -1)

perror ("error from setsockopt IP_MULTICAST_IF");

else

printf ("new interface set for sending multicast datagrams\n");

• IP_MULTICAST_LOOP (Sockets API)
TCPIP$C_MULTICAST_LOOP (OpenVMS system services)

Disables loopback of local delivery. If a multicast datagram is sent to a group
of which the sending host is a member, a copy of the datagram is looped
back by the IP layer for local delivery (default). To disable loopback delivery,
specify the loop value as 0.

For example:

u_char loop=0;
if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, &loop

sizeof(loop)) == -1)
perror("setsockopt");

To enable loopback delivery, specify a loop value of 1. For improved
performance, Compaq recommends that you disable the default unless
the host must receive copies of the datagrams.

Writing Network Applications 2–71

Writing Network Applications
2.16 Using the Berkeley Internet Name Domain Service

2.16 Using the Berkeley Internet Name Domain Service
The Berkeley Internet Name Domain (BIND) service is a host name and address
lookup service for the Internet. If BIND is enabled on your system, you can make
a call to the BIND resolver to obtain host names and addresses.

Typically, you make a call to the BIND resolver either before you bind a socket
or before you make a connection to a socket. You can also use this service to
translate either the local or remote host name to an address before making a
connection.

2.16.1 BIND Lookups (Sockets API)
If the BIND resolver is enabled on your system and the host name is not found
in the local database, you can use either of the following functions to search the
BIND database:

• gethostbyaddr() gets a host record from the local host or BIND database
when given the host address.

• gethostbyname() gets a host record from the local host or BIND database
when given the host name.

The host record contains both name and address information.

Example 2–24 shows how to use the gethostname(), gethostbyname(), and
gethostbyaddr() functions to find a local host name and address.

Example 2–24 BIND Lookup (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */

int main(void)
{

char host[1024];
struct in_addr addr;
struct hostent *hptr;
/*
* get name of local host
*/
if ((gethostname(host, sizeof(host))) < 0) 1

{
perror("Failed to get host’s local name");
exit(EXIT_FAILURE);
}

printf("Local hostname: %s\n", host);

/*
* lookup local host record by name
*/

(continued on next page)

2–72 Writing Network Applications

Writing Network Applications
2.16 Using the Berkeley Internet Name Domain Service

Example 2–24 (Cont.) BIND Lookup (Sockets API)

if (!(hptr = gethostbyname(host))) 2
{
perror("Failed to find record for local host");
exit(EXIT_FAILURE);
}

addr.s_addr = *(int *) hptr->h_addr;
printf("Official hostname: %s address: %s\n",

hptr->h_name, inet_ntoa(addr));

/*
* lookup local host record by address
*/

hptr = gethostbyaddr(&addr.s_addr, sizeof(addr.s_addr), AF_INET); 3
if (!hptr)

{
perror("Failed to find record for local host");
exit(EXIT_FAILURE);
}

printf("Back-translated hostname: %s\n", hptr->h_name);

exit(EXIT_SUCCESS);
}

In this example, the following functions and arguments were used to find a local
host name and address:

1 gethostname() gets the local host name.

host is the address of the buffer that receives the host name.

sizeof(host) is the size of the buffer that receives the host name.

2 gethostbyname() looks for the host record that has the specified name.

On successful return of the gethostbyname() function, hptr receives the
address of a hostent structure containing the host name, alias names, host
address type, length of address (4 or 16), and an array of IPv4 addresses of
the host being sought.

3 gethostbyaddr() looks for the host record that has the specified address.

addr.s_addr specifies the address of the host being sought. It points to a
series of bytes in network order, not to an ASCII string.

sizeof(addr.s_addr) specifies the number of bytes in the address to which
the first argument points.

AF_INET points to the supported address family.

2.16.2 BIND Lookups (System Services)
If BIND is enabled on your system, the IO$_ACPCONTROL function searches
the BIND database for the host name if it does not find the name in the local
host database. The p1 argument allows you to specify the gethostbyaddr() or
gethostbyname() network ACP subfunctions to control how the function searches
the database.

Writing Network Applications 2–73

Writing Network Applications
2.16 Using the Berkeley Internet Name Domain Service

Example 2–25 shows how to use OpenVMS system services to find a host name
and address.

Example 2–25 BIND Lookup (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct acpfunc
{ /* acp subfunction */
unsigned char code; /* subfunction code */
unsigned char type; /* call code */
unsigned short reserved; /* reserved (must be zero) */
};

int main(void)
{

char host[1024];
char hostent[2048];
struct in_addr addr;
struct hostent *hptr;

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */
unsigned short channel; /* network device i/o channel */

struct acpfunc func_byaddr = /* acp gethostbyaddr function code */
{ INETACP_FUNC$C_GETHOSTBYADDR, INETACP$C_HOSTENT_OFFSET, 0 };

struct acpfunc func_byname = /* acp gethostbyname function code */
{ INETACP_FUNC$C_GETHOSTBYNAME, INETACP$C_HOSTENT_OFFSET, 0 };

struct dsc$descriptor p1_dsc = /* acp function descriptor */
{ 0, DSCK_CLASS_S, DSCK_DTYPE_T, 0 };

struct dsc$descriptor p2_dsc = /* acp p2 argument descriptor */
{ 0, DSCK_CLASS_S, DSCK_DTYPE_T, 0 };

struct dsc$descriptor p4_dsc = /* acp p4 argument descriptor */
{ 0, DSCK_CLASS_S, DSCK_DTYPE_T, 0 };

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"TCPIP$DEVICE:"); /* name of network pseudodevice */

(continued on next page)

2–74 Writing Network Applications

Writing Network Applications
2.16 Using the Berkeley Internet Name Domain Service

Example 2–25 (Cont.) BIND Lookup (System Services)

/*
* get name of local host
*/

if ((gethostname(host, sizeof(host))) < 0)
{
perror("Failed to get host’s local name");
exit(EXIT_FAILURE);
}

printf("Local hostname: %s\n", host);
/*
* assign i/o channel to network device
*/

status = sys$assign(&inet_device, /* device name */
&channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}

/*
* lookup local host record by name
*/

p1_dsc.dsc$w_length = sizeof(func_byname);
p1_dsc.dsc$a_pointer = (char *) &func_byname;

p2_dsc.dsc$w_length = strlen(host);
p2_dsc.dsc$a_pointer = host;

p4_dsc.dsc$w_length = sizeof(hostent);
p4_dsc.dsc$a_pointer = hostent;

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_ACPCONTROL, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&p1_dsc, /* p1 - acp subfunction code */
&p2_dsc, /* p2 - hostname to lookup */
&p4_dsc.dsc$w_length,/* p3 - return length address */
&p4_dsc, /* p4 - output buffer address */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to find record for local host\n");
exit(status);
}

(continued on next page)

Writing Network Applications 2–75

Writing Network Applications
2.16 Using the Berkeley Internet Name Domain Service

Example 2–25 (Cont.) BIND Lookup (System Services)
hptr = (struct hostent *) hostent;
hptr->h_name += (unsigned int) hptr;
*(char **) &hptr->h_addr_list += (unsigned int) hptr;
*(char **) hptr->h_addr_list += (unsigned int) hptr;

addr.s_addr = *(int *) hptr->h_addr;
printf("Official hostname: %s address: %s\n",

hptr->h_name, inet_ntoa(addr));

/*
* lookup local host record by address
*/

p1_dsc.dsc$w_length = sizeof(func_byaddr);
p1_dsc.dsc$a_pointer = (char *) &func_byaddr;

p2_dsc.dsc$w_length = strlen(inet_ntoa(addr));
p2_dsc.dsc$a_pointer = inet_ntoa(addr);

p4_dsc.dsc$w_length = sizeof(hostent);
p4_dsc.dsc$a_pointer = hostent;

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_ACPCONTROL, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&p1_dsc, /* p1 - acp subfunction code */
&p2_dsc, /* p2 - ip address to lookup */
&p4_dsc.dsc$w_length,/* p3 - return length address */
&p4_dsc, /* p4 - output buffer address */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to find record for local host\n");
exit(status);
}

hptr = (struct hostent *) hostent;
hptr->h_name += (unsigned int) hptr;

printf("Back-translated hostname: %s\n", hptr->h_name);

/*
* deassign i/o channel to network device
*/

status = sys$dassgn(channel);
if (!(status & STS$M_SUCCESS))

{
printf("Failed to deassign i/o channel\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

2–76 Writing Network Applications

Writing Network Applications
2.17 Closing and Deleting a Socket

2.17 Closing and Deleting a Socket
Closing a socket means that the program can no longer transmit data. Depending
on how you close the socket, the program can receive data until the peer program
also closes the socket.

When a remote system closes a socket, notification is not immediate, and another
thread can erroneously attempt to use the socket.

If you send data to a closed socket, you might not receive an appropriate error
message. Set the TCPIP$FULL_DUPLEX_CLOSE socket option if you want to
have your application notified of an error when it sends data on a socket that has
already been closed by the peer.

When you delete a socket, all pending messages queued for transmission are sent
to the receiving socket before closing the connection.

2.17.1 Closing and Deleting (Sockets API)
Example 2–26 shows a TCP application using the close() function to close and
delete a socket.

Example 2–26 Closing and Deleting a Socket (Sockets API)

#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <unixio.h> /* define unix i/o */

int main(void)
{

int sockfd;

/*
* create a socket
*/

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* close socket
*/

if (close(sockfd) < 0) 1
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

1 The sockfd argument for the close() function closes the socket and deletes
the socket descriptor previously defined by the socket() function.

Writing Network Applications 2–77

Writing Network Applications
2.17 Closing and Deleting a Socket

2.17.2 Closing and Deleting (System Services)
Make the following calls to close and delete a socket:

1. $QIO(IO$_DEACCESS) — Stops transmitting data and closes the socket.

2. $DASSGN — Deletes the network device and deassigns the I/O channel
previously acquired with the $ASSIGN service.

Example 2–27 shows a TCP application using OpenVMS system services to close
and delete a socket.

Example 2–27 Closing and Deleting a Socket (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */
unsigned short channel; /* network device i/o channel */
struct sockchar sockchar; /* socket characteristics buffer */
$DESCRIPTOR(inet_device, /* string descriptor with logical */

"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

sockchar.prot = TCPIP$C_TCP;
sockchar.type = TCPIP$C_STREAM;
sockchar.af = TCPIP$C_AF_INET;

/*
* assign i/o channel to network device
*/

(continued on next page)

2–78 Writing Network Applications

Writing Network Applications
2.17 Closing and Deleting a Socket

Example 2–27 (Cont.) Closing and Deleting a Socket (System Services)

status = sys$assign(&inet_device, /* device name */
&channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}

/*
* create a socket
*/
status = sys$qiow(EFN$C_ENF, /* event flag */

channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* close socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_DEACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

Writing Network Applications 2–79

Writing Network Applications
2.17 Closing and Deleting a Socket

Example 2–27 (Cont.) Closing and Deleting a Socket (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to close socket\n");
exit(status);
}

/*
* deassign i/o channel to network device
*/

status = sys$dassgn(channel);
if (!(status & STS$M_SUCCESS))

{
printf("Failed to deassign i/o channel\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

2.18 Shutting Down Sockets
You can shut down a socket before closing and deleting it. The shutdown
operation allows you to shut down communication one process at a time. This
maintains unidirectional rather than the normal bidirectional connections,
allowing you to shut down communications on receive or transmit data queues, or
both. For example, if you no longer want to transmit data but want to continue
receiving data, shut down the transmit side of the socket connection and keep
open the receive side.

2.18.1 Shutting Down a Socket (Sockets API)
Example 2–28 shows a TCP application using the shutdown() function.

Example 2–28 Shutting Down a Socket (Sockets API)

#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <unixio.h> /* define unix i/o */

int main(void)
{

int sockfd;

/*
* create a socket
*/

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

(continued on next page)

2–80 Writing Network Applications

Writing Network Applications
2.18 Shutting Down Sockets

Example 2–28 (Cont.) Shutting Down a Socket (Sockets API)

/*
* shutdown a socket
*/

if (shutdown(sockfd,1 2 2) < 0)
{
perror("Failed to shutdown socket connections");
exit(EXIT_FAILURE);
}

/*
* close socket
*/

if (close(sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

1 sockfd specifies the socket descriptor for the socket being shut down.

Other valid socket descriptor values are:

• 1 closes the receive socket queue.

• 3 closes both the transmit and receive socket queues.

The close() function then closes the socket and deletes the socket descriptor.

2.18.2 Shutting Down a Socket (System Services)
To shut down a socket, use the IO$_DEACCESS function with the
IO$M_SHUTDOWN function modifier. This function shuts down all or part
of the full-duplex connection on the socket.

The application uses subfunctions or flags to specify whether pending I/O
operations are completed or discarded before the IO$_DEACCESS function
completes. After the IO$_DEACCESS function completes, messages can no longer
be transmitted or received.

Example 2–29 shows a TCP server using the IO$_DEACCESS function with the
IO$M_SHUTDOWN function modifier to shut down all communications. In this
example, no data is received or transmitted and all queued data is discarded.

Writing Network Applications 2–81

Writing Network Applications
2.18 Shutting Down Sockets

Example 2–29 Shutting Down a Socket (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define ’EFN$C_ENF’ event flag */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

/* structures, and functions */

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct sockchar
{ /* socket characteristics */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

int main(void)
{

struct iosb iosb; /* i/o status block */
unsigned int status; /* system service return status */
unsigned short channel; /* network device i/o channel */
struct sockchar sockchar; /* socket characteristics buffer */
$DESCRIPTOR(inet_device, /* string descriptor with logical */

"TCPIP$DEVICE:"); /* name of network pseudodevice */

/*
* initialize socket characteristics
*/

sockchar.prot = TCPIP$C_TCP;
sockchar.type = TCPIP$C_STREAM;
sockchar.af = TCPIP$C_AF_INET;

/*
* assign i/o channel to network device
*/

status = sys$assign(&inet_device, /* device name */
&channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel\n");
exit(status);
}

/*
* create a socket
*/

(continued on next page)

2–82 Writing Network Applications

Writing Network Applications
2.18 Shutting Down Sockets

Example 2–29 (Cont.) Shutting Down a Socket (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&sockchar, /* p1 - socket characteristics */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* shutdown a socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_DEACCESS|IO$M_SHUTDOWN,

/* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
TCPIP$C_DSC_ALL, /* p4 - discard all packets */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to shutdown socket connections\n");
exit(status);
}

/*
* close socket
*/

(continued on next page)

Writing Network Applications 2–83

Writing Network Applications
2.18 Shutting Down Sockets

Example 2–29 (Cont.) Shutting Down a Socket (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
channel, /* i/o channel */
IO$_DEACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to close socket\n");
exit(status);
}

/*
* deassign i/o channel to network device
*/

status = sys$dassgn(channel);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to deassign i/o channel\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

2.19 Canceling I/O Operations
The $CANCEL system service cancels pending I/O requests on a specific channel
or socket. This includes all I/O requests queued and in progress.

There is no Sockets API function for this operation; the Sockets API library
functions are synchronous.

2–84 Writing Network Applications

3
Using the Sockets API

This chapter contains information to help you increase the portability of
the network application programs that you write using the TCP/IP Services
implementation of the Sockets API.

3.1 Internet Protocols
The IP (Internet Protocol) family is a collection of protocols on the Transport layer
that use the internet address format. This section describes TCP (Transmission
Control Protocol) and UDP (User Datagram Protocol) sockets.

3.1.1 TCP Sockets
TCP provides reliable, flow-controlled, two-way transmission of data. A byte-
stream protocol used to support the SOCK_STREAM abstraction, TCP uses the
standard IP address format and provides a per-host collection of port addresses.
Thus, each address consists of an internet address specifying the host and
network, with a specific TCP port on the host identifying the peer entity.

Sockets using TCP are either active or passive, as described in Table 3–1.

Table 3–1 TCP Socket Types

Socket Type Description

Active Initiates connections to passive sockets. By default, TCP sockets
are active.

Active sockets use the connect() function to initiate connections.)

Passive Listens for connection requests from active sockets. To create a
passive socket, use the bind() function and then the listen()
function.

Passive sockets use the accept() function to accept incoming
connections.

If the server is running on a multihomed system, you can specify
wildcard addressing. Wildcard addressing allows a single
server to provide service to clients on multiple networks. (See
Section 3.1.1.1.)

3.1.1.1 Wildcard Addressing
When a server is running on a host that has more than one network interface
installed, you can use wildcard addressing to configure it to accept incoming
connections on all the interfaces.

The wildcard address is the any-interface choice. You specify this address by
setting the IP address in the socket address structure to INADDR_ANY before
calling the bind() function.

Using the Sockets API 3–1

Using the Sockets API
3.1 Internet Protocols

To create a socket that listens to all hosts on any network interface, perform these
steps:

1. Bind the internet address INADDR_ANY.

2. Specify the TCP port.

If you do not specify the port, the system assigns a unique port, starting at
port number 49152. Once connected, the socket’s address is fixed by the peer
entity’s location.

The address assigned to the socket is the address associated with the network
interface through which packets from the peer are being transmitted and
received. This address corresponds to the peer entity’s network.

TCP supports the setting of socket options with the setsockopt() function and
the checking of current option settings with the getsockopt function. Under most
circumstances, TCP sends data when it is presented. When outstanding data has
not been acknowledged, TCP gathers small amounts of output and sends it in a
single packet when an acknowledgment is received.

For a small number of clients, such as window systems that send a stream of
mouse events that receive no replies, this packetization can cause significant
delays. Therefore, TCP provides a Boolean option, TCP_NODELAY (from TCP.H),
to defeat this algorithm. The option level for the setsockopt() function is the
protocol number for TCP, which is available from getprotobyname(). In this
situation, servers may want to use TCP_NODELAY; however, network traffic may
increase significantly as a result.

3.1.2 UDP Sockets
UDP is a protocol that supports the SOCK_DGRAM abstraction for the internet
protocol family. UDP sockets are connectionless and are normally used with the
sendto() and recvfrom() functions. You can also use the connect() function to
establish the destination address for future datagrams; then you use the read(),
write(), send(), rec(), or recv() function to transmit or receive datagrams.

UDP address formats are identical to those used by TCP. In particular, UDP
provides a port identifier in addition to the normal internet address format. Note
that the UDP port space is separate from the TCP port space (for example, a UDP
port cannot be connected to a TCP port). Also, you can send broadcast packets
(assuming the underlying network supports this) by using a reserved broadcast
address. This address is network-interface dependent. The SO_BROADCAST option
must be set on the socket, and the process must have a privileged UIC or the
SYSPRV, BYPASS, or OPER privilege for broadcasting to succeed.

3.2 Structures
This section describes, in alphabetical order, the structures you supply
as arguments to the various Sockets API functions. Table 3–2 lists these
structures.

3–2 Using the Sockets API

Using the Sockets API
3.2 Structures

Table 3–2 Structures for Sockets API

Structure Description

hostent This structure holds a canonical host name, alias names, a host address
type, the length of the address, and a pointer to a list of host addresses.
This structure is a parameter value for host name and address lookup
functions.

in_addr This structure holds a 32-bit IPv4 address stored in network byte order.

iovec This structure holds the beginning address and length of an I/O buffer.

linger This structure holds option information for the close function.

msghdr This structure holds the protocol address, the size of the protocol
address, a scatter-and-gather array, the number of elements in the
scatter-and-gather array, ancillary data, the length of the ancillary
data, and returned flags. The structure is a parameter of the
recvmsg() and sendmsg() functions.

netent This structure holds a network name, a list of aliases associated with
the network, and the network number.

sockaddr The socket functions use this generic socket address structure to
function with any of the supported protocol families.

sockaddr_in This IPv4 socket address structure holds the length of the structure,
the address family, either a TCP or a UDP port number, and a 32-bit
IPv4 address stored in network byte order. The structure has a fixed
length of 16 bytes.

timeval This structure holds a time interval specified in seconds and
microseconds.

3.2.1 hostent Structure
The hostent structure, defined in the NETDB.H header file, holds a host name, a
list of aliases associated with the network, and the network’s number as specified
in an internet address from the hosts database.

The hostent structure definition is as follows:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses from name server */

};
#define h_addr h_addr_list[0] /* address, for backward compatibility */

The hostent structure members are as follows:

• h_name is a pointer to a null-terminated character string that is the official
(canonical) name of the host.

• h_aliases is a pointer to an array of pointers to alias names for the host.

• h_addrtype is the type of host address being returned (AF_INET).

• h_length is the length, in bytes, of the address. (For IPv4, this value is 4
bytes.)

• h_addr_list is a pointer to an array of pointers to the network addresses for
the host. Each host address is represented by a series of bytes in network
order. The list is terminated with a null pointer value.

Using the Sockets API 3–3

Using the Sockets API
3.2 Structures

• h_addr is the first address in the h_addr_list.

3.2.2 in_addr Structure
The in_addr structure, defined in the IN.H header file, holds an internet address.
The address format can be any of the supported internet address notation
formats.

The in_addr structure definition is as follows:

struct in_addr {
union {

struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
struct { u_short s_w1,s_w2; } S_un_w;
u_long S_addr;

} S_un;
#define s_addr S_un.S_addr /* can be used for most tcp & ip code */
#define s_host S_un.S_un_b.s_b2 /* host on imp */
#define s_net S_un.S_un_b.s_b1 /* network */
#define s_imp S_un.S_un_w.s_w2 /* imp */
#define s_impno S_un.S_un_b.s_b4 /* imp # */
#define s_lh S_un.S_un_b.s_b3 /* logical host */
};

3.2.3 iovec Structure
The iovec structure holds one scatter-and-gather buffer. Multiple
scatter-and-gather buffer descriptors are stored as an array of iovec elements.

The iovec structure definition is defined in the SOCKET.H header file.

The iovec structure definition is as follows:

struct iovec {
char *iov_base;
int iov_len;

}

The iovec structure members are as follows:

• iov_base is a pointer to a buffer.

• iov_len contains the size of the buffer to which iov_base points.

3.2.4 linger Structure
The linger structure, defined in the SOCKET.H header file, specifies the setting
or resetting of the socket option for the time interval that the socket lingers for
data. The linger structure is supported only by STREAM-type sockets.

The linger structure definition is as follows:

struct linger {
int l_onoff; /* option on/off */
int l_linger; /* linger time */

};

The linger structure members are as follows:

• l_onoff=1 sets linger; l_onoff=0 resets linger.

• l_linger is the number of seconds to linger. (The default is 120 seconds, or 2
minutes.)

3–4 Using the Sockets API

Using the Sockets API
3.2 Structures

3.2.5 msghdr Structure
The msghdr structure specifies the buffer parameter for the recvmsg and sendmsg
I/O functions. The structure allows you to specify an array of scatter and gather
buffers. The recvmsg function scatters the data to several user receive buffers,
and the sendmsg function gathers data from several user transmit buffers before
being transmitted.

The SOCKET.H header file defines the following structures for BSD Versions 4.3
and 4.4:

• msghdr structure (BSD Version 4.4)

• omsghdr structure (BSD Version 4.3)

3.2.5.1 BSD Version 4.4
The msghdr structure definition for use with BSD Version 4.4 is as follows:

struct msghdr {
void *msg_name; /* protocol address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* number of elements in msg_iov */
void *msg_control; /* ancillary data; must be aligned

for a cmsghdr structure */
int msg_controllen; /* length of ancillary data buffer */
int msg_flags; /* flags on received message */

};

The msghdr structure members are as follows:

• msg_name is the address of the destination socket if the socket is not
connected. If no address is required, you can set this field to null.

• msg_namelen is the length of the msg_name field.

• msg_iov is an array of I/O buffer pointers of the iovec structure form. See
Section 3.2.3 for a description of the iovec structure.

• msg_iovlen is the number of buffers in the msg_iov array.

• msg_control specifies the location of the optional ancillary data or control
information.

• msg_controllen is the size of the ancillary data in the msg_control buffer.

• mgs_flags, used only with the recvmsg function, is the value used by the
kernel to drive its receive processing.

3.2.5.2 BSD Version 4.3
The omsghdr structure definition for use with BSD Version 4.3 is as follows:

struct omsghdr {
char *msg_name; /* protocol address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* number of elements in msg_iov */
char *msg_accrights; /* access rights sent/received */
int msg_accrightslen; /* length of access rights buffer */

};

Using the Sockets API 3–5

Using the Sockets API
3.2 Structures

The omsghdr structure members are as follows:

• msg_name is the address of the destination socket if the socket is not
connected. If no address is required, you can set this field to null.

• msg_namelen is the length of the msg_name field.

• msg_iov is an array of I/O buffer pointers of the iovec structure form. See
Section 3.2.3 for a description of the iovec structure.

• msg_iovlen is the number of buffers in the msg_iov array.

• msg_accrights points to a buffer containing access rights sent with the
message.

• msg_accrightslen is the length of the msg_accrights buffer.

3.2.6 netent Structure
The netent structure, defined in the NETDB.H header file, holds a network
name, a list of aliases associated with the network, and the network’s number
specified as an internet address from the network database.

The netent structure definition is as follows:

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
long n_net; /* net number */

};

The netent structure members are as follows:

• n_name is the official network name.

• n_aliases is a null-terminated list of pointers to alternate names for the
network.

• n_addrtype is the type of the network number returned (AF_INET).

• n_net is the network number returned in host byte order.

3.2.7 sockaddr Structure
The sockaddr structure, defined in the SOCKET.H header file, holds a general
address family.

The SOCKET.H header file defines the following structures for BSD Versions 4.3
and 4.4:

• sockaddr structure (BSD Version 4.4)

• osockaddr structure (BSD Version 4.3)

3.2.7.1 BSD Version 4.4
The sockaddr structure definition for use with BSD Version 4.4 is as follows:

struct sockaddr {
u_char sa_len; /* total length */
u_char sa_family; /* address family */
char sa_data[14]; /* up to 14 bytes of direct address */

};

The sockaddr structure members are as follows:

• sa_len is the length of the structure.

3–6 Using the Sockets API

Using the Sockets API
3.2 Structures

• sa_family is the address family or domain in which the socket was created.

• sa_data is the data string of up to 14 bytes of direct address.

3.2.7.2 BSD Version 4.3
The osockaddr structure definition for use with BSD Version 4.3 is as follows:

struct osockaddr {
u_short sa_family; /* address family */
char sa_data[14]; /* up to 14 bytes of direct address */

};

The osockaddr structure members are as follows:

• sa_family is the address family or domain in which the socket was created.

• sa_data is the data string of up to 14 bytes of direct address.

3.2.8 sockaddr_in Structure
The sockaddr_in structure, defined in the IN.H header file, specifies an internet
address family.

The sockaddr_in structure definition is as follows:

struct sockaddr_in {
short sin_family; /* address family */
u_short sin_port; /* port number */
struct in_addr sin_addr; /* internet address */
char sin_zero[8]; /* 8-byte field of all zeroes */

};

The sockaddr_in structure members are as follows:

• sin_family is the address family (AF_INET).

• sin_port is the port number in network order.

• sin_addr is the internet address in network order.

• sin_zero is an 8-byte field containing all zeros.

3.2.9 timeval Structure
The timeval structure, defined in the SOCKET.H header file, specifies time
intervals. The timeval structure definition is as follows:

struct timeval {
long tv_sec;
long tv_usec;

};

The timeval structure members are as follows:

• tv_sec specifies the number of seconds to wait.

• tv_usec specifies the number of microseconds to wait.

Using the Sockets API 3–7

Using the Sockets API
3.3 Header Files

3.3 Header Files
You can include header files on a OpenVMS system using any one of the following
preprocessor directive statements:

#include types
#include <types.h>
#include <sys/types.h>

The #include types form of the #include preprocessor directive is possible on
OpenVMS systems because all header files are located in a text library in the
SYS$LIBRARY directory. On Compaq Tru64 UNIX systems, you must specify
header files (and subdirectories that locate a header file) within angle brackets
(< >) or double quotes (" ") .

For example, to include the header file TYPES.H, use the following form of the
#include directive:

#include <sys/types.h>

3.4 Calling a Socket Function from an AST State
Calls to various Sockets API functions return information within a static area.
The OpenVMS environment allows an asynchronous system trap (AST) routine
to interrupt a Sockets API function during its execution. In addition, the ASTs
of more privileged modes can interrupt ASTs of less privileged modes. Therefore,
be careful when calling a Sockets API function from an AST state while a
similar Sockets API function is being called from either a non-AST state or a
less-privileged access mode. You can use the SYS$SETAST system service to
enable and disable the reception of AST requests.

The Sockets API functions that use a static area are:

• gethostbyaddr()

• gethostbyname()

• getnetbyaddr()

• getnetbyname()

• getservbyname()

• getservbyport()

• getprotobyname()

• getprotobynumber()

Caution

Because these Sockets API functions access files to retrieve information,
you should not call these functions from either the KERNEL or the EXEC
mode when the ASTs are disabled.

3.5 Standard I/O Functions
You cannot use standard I/O functions with the Sockets API. Specifically, the
fdopen() function does not support sockets.

3–8 Using the Sockets API

Using the Sockets API
3.6 Event Flags

3.6 Event Flags
Socket functions can use event flags during their operation. To assign event flags,
use the library function LIB$GET_EF. Event flags are released when the function
no longer needs them.

3.7 Error Checking: errno Values
Most Sockets API functions return a value that indicates whether the function
was successful or unsuccessful. A return value of zero (0) indicates success, and a
value of –1 indicates the function was unsuccessful.

If the function is not successful, it stores an additional value in the external
variable errno. The value stored in errno is valid only when the function is not
successful. The error codes are defined in the ERRNO.H header file.

All function return codes and error values are of type integer unless otherwise
noted.

The errno values can be translated to a message similar to those found on
UNIX systems by using the perror() function. The perror() function writes a
message on the standard error stream that describes the current setting of the
external variable errno. The error message includes a character string containing
the name of the function that caused the error followed by a colon (:), a blank
space, the system message string, and a newline character.

Table 3–3 lists the possible errno values.

Table 3–3 errno Values

Error Description

EADDRINUSE Address already in use.

Each address can be used only once.

EADDRNOTAVAIL Cannot assign requested address.

Normally, these values result from an attempt to create a
socket with an address not on this machine.

EAFNOSUPPORT Address family not supported by protocol family.

An address incompatible with the requested protocol was
used.

EALREADY Operation already in progress.

An operation was attempted on a nonblocking object that
already had an operation in progress.

ECONNABORTED Software caused connection abort.

Indicates that the software caused a connection abort
because there is no space on the socket’s queue and the
socket cannot receive further connections.

A connection abort occurred internal to your host
machine.

ECONNREFUSED Connection refused.

(continued on next page)

Using the Sockets API 3–9

Using the Sockets API
3.7 Error Checking: errno Values

Table 3–3 (Cont.) errno Values

Error Description

No connection could be made because the target machine
actively refused it. This usually results from trying to
connect to a service that is inactive on a foreign host.

ECONNRESET Connection reset by peer.

A connection was forcibly closed by a peer. This usually
results from the peer executing a shutdown() call.

EDESTADDRREQ Destination address required.

A required address was omitted from an operation on a
socket.

EHOSTDOWN Host is down.

A socket operation failed because the destination host was
down.

EHOSTUNREACH No route to host.

A socket operation to an unreachable host was attempted.

EINPROGRESS Operation now in progress.

An operation that takes a long time to complete, such as
connect(), was attempted on a nonblocking object.

EISCONN Socket is already connected.

A connect() request was made on a socket that was
already connected, or a sendto() or sendmsg() request
on a connected socket specified a destination other than
the connected party.

A path name lookup involved more than eight symbolic
links.

EMSGSIZE Message too long.

A message sent on a socket was larger than the internal
message buffer.

ENETDOWN Network is down.

A socket operation encountered a dead network.

ENETRESET Network dropped connection on reset.

The host you were connected to failed and rebooted.

ENETUNREACH Network is unreachable.

A socket operation to an unreachable network was
attempted.

ENOBUFS No buffer space available.

An operation on a socket or pipe was not performed
because the system lacked sufficient buffer space.

ENOPROTOOPT Protocol not available.

A bad option was specified in a getsockopt() or
setsockopt() call.

ENOTSOCK Socket operation on a nonsocket.

ENTOTCONN Socket is not connected.

(continued on next page)

3–10 Using the Sockets API

Using the Sockets API
3.7 Error Checking: errno Values

Table 3–3 (Cont.) errno Values

Error Description

Request to send or receive data was not allowed because
the socket is not connected.

EOPNOTSUPP Operation not supported.

For example, trying to accept a connection on a datagram
socket.

EPFNOSUPPORT Protocol family not supported.

The protocol family was not configured into the system or
no implementation for it exists.

EPROTONOSUPPORT Protocol not supported.

The protocol was not configured into the system or no
implementation for it exists.

EPROTOTYPE Protocol wrong type for socket.

A protocol was specified that does not support the
semantics of the socket type requested. For example
you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

ESHUTDOWN Cannot send after socket shutdown.

A request to send data was not allowed because the socket
had already been shut down with a previous shutdown()
call.

ESOCKTNOSUPPORT Socket type not supported.

Support for the socket type was not configured into the
system or no implementation for it exists.

ETIMEDOUT Connection timed out.

A connect() request failed because the connected
party did not respond properly after a period of time.
(The timeout period is dependent on the communication
protocol.)

EVMSERR OpenVMS error code is nontranslatable.

Using the Sockets API 3–11

4
Sockets API Reference

This chapter describes the Sockets API functions that are listed in Table 4–1.

Table 4–1 Sockets API Functions

Function Description

accept() Accepts a connection on a passive socket.

bind() Binds a name to a socket.

close() Closes a connection and deletes a socket descriptor.

connect() Initiates a connection on a socket.

decc$get_sdc() Returns the socket device’s OpenVMS I/O channel associated
with a socket descriptor (for use with Compaq C).

gethostbyaddr() Searches the hosts database for a host record with a given
IPv4 address.

gethostbyname() Searches the hosts database for a host record with a given
name or alias.

gethostname() Returns the fully qualified name of the local host.

getnameinfo() Gets a node name and service name for an address and port
number.

getnetbyaddr() Searches the network database for a network record with a
given address.

getnetbyname() Searches the network database for a network record with a
given name or alias.

getpeername() Returns the name of the connected peer.

getprotobyname() Searches the protocols database until a matching protocol
name is found or until end of file is encountered.

getprotobynumber() Searches the protocols database until a matching protocol
number is found or until end of file is encountered.

getprotoent() Reads the next line in the protocols database.

getservbyname() Gets information on the named service from the network
services database.

getservbyport() Gets information on the named port from the network services
database.

getsockname() Returns the name associated with a socket.

getsockopt() Returns the options set on a socket.

htonl() Converts longwords from host byte order to network byte order.

htons() Converts short integers from host byte order to network byte
order.

(continued on next page)

Sockets API Reference 4–1

Sockets API Reference

Table 4–1 (Cont.) Sockets API Functions

Function Description

inet_addr() Converts internet addresses in text form into numeric internet
addresses.

inet_lnaof() Returns the local network address portion of an internet
address.

inet_makeaddr() Given a network address and a local address on that network,
returns an internet address.

inet_netof() Returns the internet network address portion of an internet
address.

inet_network() Converts a null-terminated text string representing an internet
address into a network address in local host format.

inet_ntoa() Converts an internet address into an ASCII (null-terminated)
string.

ioctl() Controls devices. Used for setting sockets for nonblocking I/O.

listen() Sets the maximum limit of outstanding connection requests for
a TCP socket.

ntohl() Converts longwords from network byte order into host byte
order.

ntohs() Converts short integers from network byte order into host byte
order.

read() Reads bytes from a file or socket and places them into a
user-defined buffer.

recv() Receives bytes from a connected socket and places them into a
user-defined buffer.

recvfrom() Receives bytes for a socket from any source.

recvmsg() Receives bytes on a socket and places them into scattered
buffers.

select() Allows the polling or checking of a group of sockets for I/O
activity.

send() Sends bytes through a socket to a connected peer.

sendmsg() Sends gathered bytes through a socket to any other socket.

sendto() Sends bytes through a socket to any other socket.

setsockopt() Sets options on a socket.

shutdown() Shuts down all or part of a bidirectional connection on a socket.

socket() Creates an endpoint for communication by returning a socket
descriptor.

write() Writes bytes from a buffer to a file or socket.

4.1 Sockets API
This section describes functions that comprise the Sockets API and that are
supported by TCP/IP Services.

4–2 Sockets API Reference

Sockets API Reference
accept()

accept()

Accepts a connection on a passive socket.

The $QIO equivalent is the IO$_ACCESS function with the IO$M_ACCEPT
function modifier.

Format

#include <types.h>

#include <socket.h>

int accept (int s, struct sockaddr *addr, int *addrlen);

Arguments

s
A socket descriptor returned by socket(), subsequently bound to an address with
bind(), which is listening for connections after a listen().

addr
A result parameter filled in with the address of the connecting entity, as known to
the Communications layer. The exact format of the structure to which the address
parameter points is determined by the domain in which the communication
is occurring. This version of Compaq C supports only the internet domain
(AF_INET).

addrlen
A value/result argument. It should initially contain the size of the structure
pointed to by addr. On return it will contain the actual length, in bytes, of the
sockaddr structure that has been filled in by the Communications layer. See
Section 3.2.7 for a description of the sockaddr structure.

Description

This function completes the first connection on the queue of pending connections,
creates a new socket with the same properties as s, and allocates and returns
a new descriptor for the socket. If no pending connections are present on the
queue and the socket is not marked as nonblocking, accept() blocks the caller
until a connection request is present. If the socket is marked nonblocking
by using a setsockopt() call and no pending connections are present on the
queue, accept() returns an error. You cannot use the accepted socket to accept
subsequent connections. The original socket s remains open (listening) for
other connection requests. This call is used with connection-based socket types
(SOCK_STREAM).

Related Functions
See also bind(), connect(), listen(), select(), and socket().

Sockets API Reference 4–3

Sockets API Reference
accept()

Return Values

x A nonnegative integer that is a descriptor for the
accepted socket.

-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
ECONNABORTED A connection has been aborted.
EFAULT The addr argument is not in a writable part of

the user address space.
EINTR The accept() function was interrupted by a

signal before a valid connection arrived.
EINVAL The socket is not accepting connections.
EMFILE There are too many open file descriptors.
ENFILE The maximum number of file descriptors in the

system is already open.
ENETDOWN TCP/IP Services was not started.
ENOBUFS The system has insufficient resources to complete

the call.
ENOMEM The system was unable to allocate kernel

memory.
ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The reference socket is not of type SOCK_STREAM.
EPROTO A protocol error occurred.
EWOULDBLOCK The socket is marked nonblocking, and no

connections are present to be accepted.

4–4 Sockets API Reference

Sockets API Reference
bind()

bind()

Binds a name to a socket.

The $QIO equivalent is the IO$_SETMODE function with the p3 argument.

Format

#include <types.h>

#include <socket.h>

int bind (int s, struct sockaddr *name, int namelen);

Arguments

s
A socket descriptor created with the socket() function.

name
Address of a structure used to assign a name to the socket in the format specific
to the family (AF_INET) socket address. See Section 3.2.7 for a description of the
sockaddr structure.

namelen
The size, in bytes, of the structure pointed to by name.

Description

This function assigns a port number and IP address to an unnamed socket. When
a socket is created with the socket() function, it exists in a name space (address
family) but has no name assigned. The bind() function requests that a name be
assigned to the socket.

Related Functions
See also connect(), getsockname(), listen(), and socket().

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EACCESS The requested address is protected, and the
current user has inadequate permission to access
it.

EADDRINUSE The specified internet address and ports are
already in use.

EADDRNOTAVAIL The specified address is not available from the
local machine.

EAFNOSUPPORT The specified address is invalid for the address
family of the specified socket.

Sockets API Reference 4–5

Sockets API Reference
bind()

EBADF The socket descriptor is invalid.
EDESTADDRREQ The address argument is a null pointer.
EFAULT The name argument is not a valid part of the

user address space.
EINVAL The socket is already bound to an address and

the protocol does not support binding to a new
address, the socket has been shut down, or the
length or the namelen argument is invalid for
the address family.

EISCONN The socket is already connected.
EISDIR The address argument is a null pointer.
ENOBUFS The system has insufficient resources to complete

the call.
ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The socket type of the specified socket does not

support binding to an address.

4–6 Sockets API Reference

Sockets API Reference
close()

close()

Closes a connection and deletes a socket descriptor.

The $QIO equivalent is the $DASSGN system service.

Format

#include <unixio.h>

int close (s);

Argument

s
A socket descriptor.

Description

This function deletes a descriptor from the per-process object (Compaq C
structure) reference table. Associated TCP connections close first.

If a call to the connect() function fails for a connection mode socket, applications
should use close() to deallocate the socket and descriptor.

Related Functions
See also accept(), socket(), and write().

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
EINTR The close() function was interrupted by a

signal that was caught.

Sockets API Reference 4–7

Sockets API Reference
connect()

connect()

Initiates a connection on a socket.

The $QIO equivalent is the IO$_ACCESS function.

Format

#include <types.h>

#include <socket.h>

int connect (int s, struct sockaddr *name, int namelen);

Arguments

s
A socket descriptor created with socket().

name
The address of a structure that specifies the name of the remote socket in the
format specific to the address family (AF_INET).

namelen
The size, in bytes, of the structure pointed to by name.

Description

If s is a socket descriptor of type SOCK_DGRAM, then this call permanently specifies
the peer where the data is sent. If s is of type SOCK_STREAM, then this call
attempts to make a connection to the specified socket.

Each communications space interprets the name argument. This argument
specifies the socket that is connected to the socket specified in s.

If the connect() function fails for a connection-mode socket, applications should
use the close() function to deallocate the socket and descriptor. If attempting to
reinitiate the connection, applications should create a new socket.

Related Functions
See also accept(), select(), socket(), getsockname(), and shutdown().

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EADDRINUSE Configuration problem. There are insufficient
ports available for the attempted connection.
The ipport_userreserved variable of the inet
subsystem should be increased.

EADDRNOTAVAIL The specified address is not available from the
local machine.

4–8 Sockets API Reference

Sockets API Reference
connect()

EAFNOSUPPORT The addresses in the specified address family
cannot be used with this socket.

EALREADY A connection request is already in progress for
the specified socket.

EBADF The socket descriptor is invalid.
ECONNREFUSED The attempt to connect was rejected.
EFAULT The name argument is not a valid part of the

user address space.
EHOSTUNREACH The specified host is not reachable.
EINPROGRESS O_NONBLOCK is set for the file descriptor

for the socket, and the connection cannot be
immediately established; the connection will be
established asynchronously.

EINTR The connect() function was interrupted by a
signal while waiting for the connection to be
established. Once established, the connection
may continue asynchronously.

EINVAL The value of the namelen argument is invalid
for the specified address family, or the sa_family
field in the socket address structure is invalid for
the protocol.

EISCONN The socket is already connected.
ELOOP Too many symbolic links were encountered in

translating the file specification in the address.
ENETDOWN The local network connection is not operational.
ENETUNREACH No route to the network or host is present.
ENOBUFS The system has insufficient resources to complete

the call.
ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The socket is listening and cannot be connected.
EPROTOTYPE The specified address has a different type than

the socket bound to the specified peer address.
ETIMEDOUT The connection request timed out without

establishing a connection.
EWOULDBLOCK The socket is nonblocking, and the connection

cannot be completed immediately. It is possible
to use the select() function to select the socket
for writing.

Sockets API Reference 4–9

Sockets API Reference
decc$get_sdc()

decc$get_sdc()

Returns the socket device channel (SDC) associated with a socket descriptor.

Format

#include <socket.h>

short int decc$get_sdc (int s);

Argument

s
A socket descriptor.

Description

This function returns the SDC associated with a socket. Normally, socket
descriptors are used either as file descriptors or with one of the functions that
takes an explicit socket descriptor as its argument. Sockets are implemented
using TCP/IP socket device channels. This function returns the SDC used by a
given socket descriptor so you can use the TCP/IP facilities directly by means of
various I/O system services ($QIO).

Return Values

0 Indicates that s is not an open socket descriptor.
x The SDC number.

4–10 Sockets API Reference

Sockets API Reference
gethostbyaddr()

gethostbyaddr()

Searches the hosts database sequentially from the beginning for a host record
with a given IPv4 address.

The $QIO equivalent is the IO$_ACPCONTROL function with the
INETACP_FUNC$C_GETHOSTBYADDR subfunction code.

Format

#include <netdb.h>

struct hostent *gethostbyaddr (const void *addr, size_t len, int type);

Arguments

addr
A pointer to a series of bytes in network order specifying the address of the host
sought.

len
The number of bytes in the address pointed to by the addr argument.

type
The type of address format being sought. Currently, only AF_INET is supported.

Description

This function finds the first host record in the hosts database with the given
address.

The gethostbyaddr() function uses a common static area for its return values.
This means that subsequent calls to this function overwrite previously returned
host entries. You must make a copy of the host entry if you want to save it.

Return Values

NULL Indicates an error; errno is set to one of the
following values.

x A pointer to an object having the hostent
structure. See Section 3.2.1 for a description
of the hostent structure.

Errors

ENETDOWN TCP/IP Services was not started.
HOST_NOT_FOUND Host is unknown.
NO_DATA The server recognized the request and the

name, but no address is available for the name.
Another type of name server request may be
successful.

NO_RECOVERY An unexpected server failure occurred. This is a
nonrecoverable error.

Sockets API Reference 4–11

Sockets API Reference
gethostbyaddr()

TRY_AGAIN A transient error occurred, for example,
the server did not respond. A retry may be
successful.

4–12 Sockets API Reference

Sockets API Reference
gethostbyname()

gethostbyname()

Searches the hosts database sequentially from the beginning for a host record
with a given name or alias.

This function also invokes the BIND resolver to query the appropriate name
server if the information requested is not in the hosts database.

The $QIO equivalent is the IO$_ACPCONTROL function with the
INETACP_FUNC$C_GETHOSTBYNAME subfunction code.

Format

#include <netdb.h>

struct hostent *gethostbyname (char *name);

Argument

name
A pointer to a null-terminated character string containing the name or an alias of
the host being sought.

Description

This function finds the first host in the hosts database with the given name or
alias.

The gethostbyname() function uses a common static area for its return values.
This means that subsequent calls to this function overwrite previously returned
host entries. You must make a copy of the host entry if you want to save it.

Return Values

NULL Indicates an error.
x A pointer to an object having the hostent

structure. See Section 3.2.1 for a description
of the hostent structure.

Errors

ENETDOWN TCP/IP Services was not started.
HOST_NOT_FOUND Host is unknown.
NO_DATA The server recognized the request and the

name, but no address is available for the name.
Another type of name server request may be
successful.

NO_RECOVERY An unexpected server failure occurred. This is a
nonrecoverable error.

TRY_AGAIN A transient error occurred, for example,
the server did not respond. A retry may be
successful.

Sockets API Reference 4–13

Sockets API Reference
gethostname()

gethostname()

Returns the fully qualified name of the local host.

Format

#include <types.h>

#include <socket.h>

int gethostname (char *name, int namelen) ;

Arguments

name
The address of a buffer where the name should be returned. The returned name
is null terminated unless sufficient space is not provided.

namelen
The size of the buffer pointed to by name.

Description

This function returns the translation of the logical names TCPIP$INET_HOST
and TCPIP$INET_DOMAIN when used with the TCP/IP Services software.

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EFAULT The buffer described by name and namelen is
not a valid, writable part of the user address
space.

4–14 Sockets API Reference

Sockets API Reference
getnetbyaddr()

getnetbyaddr()

Searches the network database sequentially from the beginning for a network
record with a given address.

The $QIO equivalent is the IO$_ACPCONTROL function with the
INETACP_FUNC$C_GETNETBYADDR subfunction code.

Format

#include <netdb.h>

struct netent *getnetbyaddr (long net, int type) ;

Arguments

net
The network number, in host byte order, of the networks database entry required.

type
The type of network being sought (AF_INET).

Description

This function finds the first network record in the networks database with the
given address.

The getnetbyaddr() and getnetbyname() functions use a common static area
for their return values. Subsequent calls to any of these functions overwrite any
previously returned network entry. You must make a copy of the network entry if
you want to save it.

Return Values

NULL Indicates end of file or an error.
x A pointer to an object having the netent

structure. See Section 3.2.6 for a description
of the netent structure.

Errors

EINVAL The net argument is invalid.
ESRCH The search failed.

Sockets API Reference 4–15

Sockets API Reference
getnetbyname()

getnetbyname()

Searches the networks database sequentially from the beginning for a network
record with a given name or alias.

The $QIO equivalent is the IO$_ACPCONTROL function with the
INETACP_FUNC$C_GETNETBYNAME subfunction code.

Format

#include <netdb.h>

struct netent *getnetbyname (char *name);

Argument

name
A pointer to a null-terminated character string containing either the network
name or an alias for the network name.

Description

This function finds the first network record in the networks database with the
given name or alias.

The getnetbyaddr() and getnetbyname() functions use a common static area
for their return values. Subsequent calls to any of these functions overwrite
previously returned network entries. You must make a copy of the network entry
if you want to save it.

Return Values

NULL Indicates end of file or an error.
x A pointer to an object having the netent

structure. See Section 3.2.6 for a description
of the netent structure.

Errors

EFAULT The buffer described by name is not a valid,
writable part of the user address space.

EINVAL The net or net_data argument is invalid.
ESRCH The search failed.

4–16 Sockets API Reference

Sockets API Reference
getpeername()

getpeername()

Returns the name of the connected peer.

The $QIO equivalent is the IO$_SENSEMODE function with the p4 argument.

Format

#include <types.h>

#include <socket.h>

int getpeername (int s, struct sockaddr *name, int *namelen);

Arguments

s
A socket descriptor created using socket().

name
A pointer to a buffer where the peer name is to be returned.

namelen
An address of an integer that specifies the size of the name buffer. On return, it
is modified to reflect the actual length, in bytes, of the name returned.

Description

This function returns the name of the peer connected to the specified socket
descriptor.

Related Functions
See also bind(), socket(), and getsockname().

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EBADF The descriptor is invalid.
EFAULT The name argument is not a valid part of the

user address space.
EINVAL The socket has been shut down.
ENOBUFS The system has insufficient resources to complete

the call.
ENOTCONN The socket is not connected.
ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The operation is not supported for the socket

protocol.

Sockets API Reference 4–17

Sockets API Reference
getprotobyname()

getprotobyname()

Searches the protocols database until a matching protocol name is found or until
end of file is encountered.

Format

#include <netdb.h>

struct protoent *getprotobyname (char *name);

Argument

name
A pointer to a string containing the desired protocol name.

Description

This function returns a pointer to a protoent structure containing data from the
protocols database:

struct protoent {
char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
long p_proto; /* protocol number */

};

The members of this structure are:

p_name The official name of the protocol.
p_aliases A zero-terminated list of alternate names for the

protocol.
p_proto The protocol number.

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getprotoent() and getprotobynumber().

Return Values

NULL Indicates end of file or an error; errno is set to
one of the following values.

x A pointer to a protoent structure.

4–18 Sockets API Reference

Sockets API Reference
getprotobynumber()

getprotobynumber()

Searches the protocols database until a matching protocol number is found or
until end of file is encountered.

Format

#include <netdb.h>

struct protoent *getprotobynumber (int *proto) ;

Argument

proto
A pointer to a string containing the desired protocol number.

Description

This function returns a pointer to a protoent structure containing the data from
the protocols database:

struct protoent {
char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
long p_proto; /* protocol number */

};

The members of this structure are:

p_name The official name of the protocol.
p_aliases A zero-terminated list of alternate names for the

protocol.
p_proto The protocol number.

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getprotoent() and getprotobyname().

Return Values

NULL Indicates end of file or an error.
x A pointer to a protoent structure.

Sockets API Reference 4–19

Sockets API Reference
getprotoent()

getprotoent()

Reads the next line from the protocols database.

Format

#include <netdb.h>

struct protoent *getprotoent();

Description

This function returns a pointer to a protoent structure containing the data from
the protocols database:

struct protoent {
char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
long p_proto; /* protocol number */

};

The members of this structure are:

p_name The official name of the protocol.
p_aliases A zero-terminated list of alternate names for the

protocol.
p_proto The protocol number.

The getprotoent() function keeps a pointer in the database, allowing successive
calls to be used to search the entire file.

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getprotobyname() and getprotobynumber().

Return Values

NULL Indicates an end of file or an error.
x A pointer to a protoent structure.

4–20 Sockets API Reference

Sockets API Reference
getservbyname()

getservbyname()

Gets information on the named service from the network services database.

Format

#include <netdb.h>

struct servent *getservbyname (char *name, char *proto);

Arguments

name
A pointer to a string containing the name of the service about which information
is required.

proto
A pointer to a string containing the name of the protocol (TCP or UDP) for which
to search.

Description

This function searches sequentially from the beginning of the file until a matching
service name is found, or until end of file is encountered. If a protocol name is
also supplied, searches must also match the protocol.

This function returns a pointer to a servent structure containing the data from
the network services database:

struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
long s_port; /* port service resides at */
char *s_proto; /* protocol to use */

};

The members of this structure are:

s_name The official name of the service.
s_aliases A zero-terminated list of alternate names for the

service.
s_port The port number at which the service resides.

Port numbers are returned in network byte order.
s_proto The name of the protocol to use when contacting

the service.

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getservbyport().

Return Values

NULL Indicates end of file or an error.
x A pointer to a servent structure.

Sockets API Reference 4–21

Sockets API Reference
getservbyport()

getservbyport()

Gets information on the specified port from the network services database.

Format

#include <netdb.h>

struct servent *getservbyport (int port, char *proto);

Arguments

port
The port number for which to search. This port number should be specified in
network byte order.

proto
A pointer to a string containing the name of the protocol (TCP or UDP) for which
to search.

Description

This function searches sequentially from the beginning of the file until a matching
port is found, or until end of file is encountered. If a protocol name is also
supplied, searches must also match the protocol.

This function returns a pointer to a servent structure containing the broken-out
fields of the requested line in the network services database:

struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
long s_port; /* port service resides at */
char *s_proto; /* protocol to use */

};

The members of this structure are:

s_name The official name of the service.
s_aliases A zero-terminated list of alternate names for the

service.
s_port The port number at which the service resides.

Port numbers are returned in network byte order.
s_proto The name of the protocol to use when contacting

the service.

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getservbyname().

Return Values

NULL Indicates end of file or an error.
x A pointer to a servent structure.

4–22 Sockets API Reference

Sockets API Reference
getsockname()

getsockname()

Returns the name associated with a socket.

The $QIO equivalent is the IO$_SENSEMODE function with the p3 argument.

Format

#include <types.h>

#include <socket.h>

int getsockname (int s, struct sockaddr *name, int *namelen);

Arguments

s
A socket descriptor created with socket() function and bound to the socket name
with the bind() function.

name
A pointer to the buffer in which getsockname() should return the socket name.

namelen
A pointer to an integer containing the size of the buffer pointed to by name. On
return, the integer contains the actual size, in bytes, of the name returned.

Description

This function returns the current name for the specified socket descriptor. The
name is a format specific to the address family (AF_INET) assigned to the socket.

The bind() function, not the getsockname() function, makes the association of
the name to the socket.

Related Functions
See also bind() and socket().

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EBADF The descriptor is invalid.
EFAULT The name argument is not a valid part of the

user address space.
ENOBUFS The system has insufficient resources to complete

the call.
ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The operation is not supported for this socket’s

protocol.

Sockets API Reference 4–23

Sockets API Reference
getsockopt()

getsockopt()

Returns the options set on a socket.

The $QIO equivalent is the IO$_SENSEMODE function.

Format

#include <types.h>

#include <socket.h>

int getsockopt (int s, int level, int optname, char *optval, unsigned int *optlen);

Arguments

s
A socket descriptor created by the socket() function.

level
The protocol level for which the socket options are desired. It can have one of the
following values:

SOL_SOCKET Get the options at the socket level.
p Any protocol number. Get the options for protocol

level specified by p. See the IN.H header file for
the various IPPROTO values.

optname
Interpreted by the protocol specified in the level. Options at each protocol level
are documented with the protocol.

For descriptions of the supported socket level options, see the description of
setsockopt() in this chapter.

optval
Points to a buffer in which the value of the specified option should be placed by
getsockopt().

optlen
Points to an integer containing the size of the buffer pointed to by optval. On
return, the integer is modified to contain the actual size of the option value
returned.

Description

This function gets information on socket options. See the appropriate protocol for
information about available options at each protocol level.

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

4–24 Sockets API Reference

Sockets API Reference
getsockopt()

Errors

EACCES The calling process does not have appropriate
permissions.

EBADF The socket descriptor is invalid.
EDOM The send and receive timeout values are too large

to fit in the timeout fields of the socket structure.
EFAULT The address pointed to by the optval argument

is not in a valid (writable) part of the process
space, or the optlen argument is not in a valid
part of the process address space.

EINVAL The optval or optlen argument is invalid; or the
socket is shut down.

ENOBUFS The system has insufficient resources to complete
the call.

ENOTSOCK The socket descriptor is invalid.
ENOPROTOOPT The option is unknown or the protocol is

unsupported.
EOPNOTSUPP The operation is not supported by the socket

protocol.
ENOPROTOOPT The option is unknown.
ENOTSOCK The socket descriptor is invalid.

Sockets API Reference 4–25

Sockets API Reference
htonl()

htonl()

Converts longwords from host byte order to network byte order.

Format

#include <in.h>

unsigned long int htonl (unsigned long int hostlong);

Argument

hostlong
A longword in host byte order (OpenVMS systems). All integers on OpenVMS
systems are in host byte order unless otherwise specified.

Description

This function converts 32-bit unsigned integers from host byte order to network
byte order.

Network byte order is the format in which data bytes are expected to be
transmitted through a network. All hosts on a network should send data in
network byte order. Not all hosts have an internal data representation format
that is identical to the network byte order. The host byte order is the format
in which bytes are ordered internally on a specific host. The host byte order on
OpenVMS systems differs from the network byte order.

This function is most often used with internet addresses. Network byte order
places the byte with the most significant bits at lower addresses, whereas
OpenVMS systems place the most significant bits at the highest address.

Note

The 64-bit return from OpenVMS Alpha systems has zero-extended bits
in the high 32 bits of R0.

Return Value

x A longword in network byte order.

4–26 Sockets API Reference

Sockets API Reference
htons()

htons()

Converts short integers from host byte order to network byte order.

Format

#include <in.h>

unsigned short int htons (unsigned short int hostshort);

Argument

hostshort
A short integer in host byte order (OpenVMS systems). All short integers on
OpenVMS systems are in host byte order unless otherwise specified.

Description

This function converts 16-bit unsigned integers from host byte order to network
byte order.

Network byte order is the format in which data bytes are expected to be
transmitted through a network. All hosts on a network should send data in
network byte order. Not all hosts have an internal data representation format
that is identical to the network byte order. The host byte order is the format
in which bytes are ordered internally on a specific host. The host byte order on
OpenVMS systems differs from the network byte order.

This function is most often used with ports as returned by getservent().
Network byte order places the byte with the most significant bits at lower
addresses, whereas OpenVMS systems place the most significant bits at the
highest address.

Note

The 64-bit return from OpenVMS Alpha systems has zero-extended bits
in the high 32 bits of R0.

Return Value

x A short integer in network byte order. Integers
in network byte order cannot be used for
arithmetic computation on OpenVMS systems.

Sockets API Reference 4–27

Sockets API Reference
inet_addr()

inet_addr()

Converts internet addresses in text form into numeric (binary) internet addresses
in dotted decimal format.

Format

#include <in.h>

#include <inet.h>

int inet_addr (char *cp);

Argument

cp
A pointer to a null-terminated character string containing an internet address in
the standard internet dotted-decimal format.

Description

This function returns an internet address in network byte order when given
an ASCII (null-terminated) string that represents the address in the internet
standard dotted-decimal format as its argument.

Internet addresses specified with the dotted-decimal format take one of the
following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the 4 bytes of an internet address. Note that when an
internet address is viewed as a 32-bit integer quantity on an OpenVMS system,
the bytes appear in binary as d.c.b.a. That is, OpenVMS bytes are ordered from
least significant to most significant.

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in a dotted-decimal address can be decimal,
octal, or hexadecimal, as specified in the C language. (That is, a leading 0x
or 0X implies hexadecimal; a leading 0 implies octal; otherwise, the number is
interpreted as decimal.)

Note

The 64-bit return from OpenVMS Alpha systems has zero-extended bits
in the high 32 bits of R0.

4–28 Sockets API Reference

Sockets API Reference
inet_addr()

Return Values

-1 Indicates that cp does not point to a proper
internet address.

x An internet address in network byte order.

Sockets API Reference 4–29

Sockets API Reference
inet_lnaof()

inet_lnaof()

Returns the local network address portion of an internet address.

Format

#include <in.h>

#include <inet.h>

int inet_lnaof (struct in_addr in);

Argument

in
An internet address.

Description

This function returns the local network address portion of a full internet address.

Note

The 64-bit return from OpenVMS Alpha systems has zero-extended bits
in the high 32 bits of R0.

Return Value

x The local network address portion of an internet
address, in host byte order.

4–30 Sockets API Reference

Sockets API Reference
inet_makeaddr()

inet_makeaddr()

Returns an internet address based on a particular local address and a network.

Format

#include <in.h>

#include <inet.h>

struct in_addr inet_makeaddr (int net, int lna);

Arguments

net
An internet network address in host byte order.

lna
A local network address on network net in host byte order.

Description

This function combines the net and lna arguments into a single internet address.

Note

The 64-bit return from OpenVMS Alpha systems has zero-extended bits
in the high 32 bits of R0.

Return Value

x An internet address in network byte order.

Sockets API Reference 4–31

Sockets API Reference
inet_netof()

inet_netof()

Returns the internet network address portion of an internet address.

Format

#include <in.h>

#include <inet.h>

int inet_netof (struct in_addr in);

Argument

in
An internet address.

Description

This function returns the internet network address (NET) portion of a full
internet address.

Note

The 64-bit return from OpenVMS Alpha systems has zero-extended bits
in the high 32 bits of R0.

Return Value

x The internet network portion of an internet
address, in host byte order.

4–32 Sockets API Reference

Sockets API Reference
inet_network()

inet_network()

Converts a null-terminated text string representing an internet address into a
network address in local host format.

Format

#include <in.h>

#include <inet.h>

int inet_network (char *cp);

Argument

cp
A pointer to an ASCII (null-terminated) character string containing a network
address in the dotted-decimal format.

Description

This function returns an internet network address as local host integer value
when an ASCII string representing the address in the internet standard
dotted-decimal format is given as its argument.

Note

The 64-bit return from OpenVMS Alpha systems has zero-extended bits
in the high 32 bits of R0.

Return Values

-1 Indicates that cp does not point to a proper
internet network address.

x An internet network address, in local host order.

Sockets API Reference 4–33

Sockets API Reference
inet_ntoa()

inet_ntoa()

Converts an internet address into a text string representing the address in the
standard internet dotted-decimal format.

Format

#include <in.h>

#include <inet.h>

char *inet_ntoa (struct in_addr in);

Argument

in
An internet address in network byte order.

Description

This function converts an internet address into an ASCII (null-terminated) string
that represents the address in standard internet dotted-decimal format.

Because the string is returned in a static buffer that is overwritten by subsequent
calls to inet_ntoa(), you should copy the string to a safe place.

Return Value

x A pointer to a string containing the internet
address in dotted-decimal format.

4–34 Sockets API Reference

Sockets API Reference
ioctl()

ioctl()

Controls I/O requests to obtain network information.

Format

#include <ioctl.h>

int ioctl (int s, int request, ... /* arg */);

Argument

s
Specifies the socket descriptor of the requested network device.

request
Specifies the type of ioctl command to be performed on the device. The request
types are grouped as follows:

• Socket operations

• File operations

• Interface operations

• ARP cache operations

• Routing table operations

Refer to Appendix B for a complete list of IOCTL commands.

arg
Specifies arguments for this request. The type of arg is dependent on the specific
ioctl() request and device to which the ioctl call is targeted.

Description

The ioctl() function performs a variety of control functions on devices. The
functions performed are device-specific control functions. The request and arg
arguments are passed to the file designated by fildes and then interpreted by
the device driver. The basic I/O functions are performed through the read() and
write() functions.

Encoded in an ioctl() request is whether the argument is an in argument or
an out argument, and the size of the arg argument in bytes. The macros and
definitions used to specify an ioctl() request are located in the IOCTL.H header
file.

Return Values

-1 Error; errno is set to indicate the error.

Sockets API Reference 4–35

Sockets API Reference
ioctl()

Errors

EBADF The fildes argument is not a valid open file
descriptor.

EINTR A signal was caught during the ioctl()
operation.

If an underlying device driver detects an error, errno might be set to one of the
following values:

EINVAL Either the request or the arg argument is not
valid.

ENOTTY Reserved for Compaq use. The fildes argument
is not associated with a character special device,
or the specified request does not apply to the type
of object that the fildes argument references.

ENXIO The request and arg arguments are valid for
this device driver, but the service requested
cannot be performed on the particular subdevice.

4–36 Sockets API Reference

Sockets API Reference
listen()

listen()

Converts an unconnected socket into a passive socket and indicates that the
kernel should accept incoming connection requests directed to the socket.

Sets the maximum limit of outstanding connection requests for a socket that is
connection-oriented.

The $QIO equivalent is the IO$_SETMODE function.

Format

int listen (int s, int backlog);

Arguments

s
A socket descriptor of type SOCK_STREAM created using the socket() function.

backlog
The maximum number of pending connections that can be queued on the socket
at any given time. The maximum number of pending connections can be set using
the sysconfig utility to set the value of somaxconn. The default value for the
maximum number of pending connections is 1024.

Description

This function creates a queue for pending connection requests on socket s with a
maximum size equal to the value of backlog. Connections can then be accepted
with the accept() function.

If a connection request arrives with the queue full (that is, more connections
pending than specified by the backlog argument), the request is ignored so that
TCP retries can succeed. If the backlog has not cleared by the time TCP times
out, the connect() function fails with an errno indication of ETIMEDOUT.

Related Functions
See also accept(), connect(), and socket().

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
EDESTADDRREQ The socket is not bound to a local address, and

the protocol does not support listening on an
unbound socket.

EINVAL The socket is already connected, or the socket is
shut down.

Sockets API Reference 4–37

Sockets API Reference
listen()

ENOBUFS The system has insufficient resources to complete
the call.

ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The referenced socket is not of a type that

supports the operation listen().

4–38 Sockets API Reference

Sockets API Reference
ntohl()

ntohl()

Converts longwords from network byte order to host byte order.

Format

#include <in.h>

unsigned long ntohl (unsigned long netlong);

Argument

netlong
A longword in network byte order. Integers in network byte order cannot be used
for arithmetic computation on OpenVMS systems.

Description

This function converts 32-bit unsigned integers from network byte order to host
byte order.

The network byte order is the format in which data bytes are expected to be
transmitted through a network. All hosts on a network should send data in
network byte order. Not all hosts have an internal data representation format
that is identical to the network byte order. The host byte order is the format
in which bytes are ordered internally on a specific host. The host byte order on
OpenVMS systems differs from the network byte order.

This function is most often used with internet addresses. Network byte order
places the byte with the most significant bits at lower addresses, whereas
OpenVMS systems place the most significant bits at the highest address.

Return Value

x A longword in host byte order.

Sockets API Reference 4–39

Sockets API Reference
ntohs()

ntohs()

Converts short integers from network byte order to host byte order.

Format

#include <in.h>

unsigned short ntohs (unsigned short netshort);

Argument

netshort
A short integer in network byte order. Integers in network byte order cannot be
used for arithmetic computation on OpenVMS systems.

Description

This function converts 16-bit unsigned integers from network byte order to host
byte order.

The network byte order is the format in which data bytes are expected to be
transmitted through a network. All hosts on a network should send data in
network byte order. Not all hosts have an internal data representation format
that is identical to the network byte order. The host byte order is the format
in which bytes are ordered internally on a specific host. The host byte order on
OpenVMS systems differs from the network byte order.

This function is most often used with internet ports as returned by getservent().
Network byte order places the byte with the most significant bits at lower
addresses, whereas OpenVMS systems place the most significant bits at the
highest address.

Return Value

x A short integer in host byte order (OpenVMS
systems).

4–40 Sockets API Reference

Sockets API Reference
read()

read()

Reads bytes from a socket or file and places them in a user-provided buffer.

The $QIO equivalent is the IO$_READVBLK function.

Format

#include <unixio.h>

int read (int d, void *buffer, int nbytes);

Arguments

d
A descriptor that must refer to a socket or file currently opened for reading.

buffer
The address of a user-provided buffer in which the input data is placed.

nbytes
The maximum number of bytes allowed in the read operation.

Description

If the end of file is not reached, the read() function returns nbytes. If the end
of file occurs during the read() function, it returns the number of bytes read.

Upon successful completion, read() returns the number of bytes actually read
and placed in the buffer.

Related Functions
See also socket().

Return Values

x The number of bytes read and placed in the
buffer.

0 Peer has closed the connection.
-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
ECONNRESET A connection was forcibly closed by a peer.
EFAULT The data was specified to be received into a

nonexistent or protected part of the process
address space.

EINTR A signal interrupted the recv() function before
any data was available.

EINVAL The MSG_OOB flag is set and no out-of-band
data is available.

Sockets API Reference 4–41

Sockets API Reference
read()

ENOBUFS The system has insufficient resources to complete
the call.

ENOMEM The system did not have sufficient memory to
fulfill the request.

ENOTCONN A receive is attempted on a connection-oriented
socket that is not connected.

ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The specified flags are not supported for this

socket type or protocol.
EWOULDBLOCK The socket is marked nonblocking, and no data is

waiting to be received.

4–42 Sockets API Reference

Sockets API Reference
recv()

recv()

Receives bytes from a connected socket and places them into a user-provided
buffer.

The $QIO equivalent is the IO$_READVBLK function.

Format

#include <types.h>

#include <socket.h>

int recv (int s, char *buf, int len, int flags);

Arguments

s
A socket descriptor created as the result of a call to accept() or connect().

buf
A pointer to a user-provided buffer into which received data will be placed.

len
The size of the buffer pointed to by buf.

flags
A bit mask that can contain one or more of the following flags. The mask is built
by using a logical OR operation on the appropriate values.

Flag Description

MSG_OOB Allows you to receive out-of-band data.
If out-of-band data is available, it is read
first. If no out-of-band data is available, the
MSG_OOB flag is ignored.
Use the send(), sendmsg(), and sendto()
functions to send out-of-band data.

MSG_PEEK Allows you to examine data in the receive
buffer without removing it from the system’s
buffers.

Description

This function receives data from a connected socket. To receive data on an
unconnected socket, use the recvfrom() or recvmsg() functions. The received
data is placed in the buffer buf.

Data is sent by the socket’s peer using the send, sendmsg(), sendto(), or
write() functions.

Use the select() function to determine when more data arrives.

If no data is available at the socket, the receive call waits for data to arrive,
unless the socket is nonblocking. If the socket is nonblocking, a -1 is returned
with the external variable errno set to EWOULDBLOCK.

Sockets API Reference 4–43

Sockets API Reference
recv()

Related Functions
See also read(), send(), sendmsg(), sendto(), and socket().

Return Values

x The number of bytes received and placed in buf.
0 Peer has closed its send side of the connection.
-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
ECONNRESET A connection was forcibly closed by a peer.
EFAULT The data was specified to be received into a

nonexistent or protected part of the process
address space.

EINTR A signal interrupted the recv() function before
any data was available.

EINVAL The MSG_OOB flag is set and no out-of-band
data is available.

ENOBUFS The system has insufficient resources to complete
the call.

ENOMEM The system did not have sufficient memory to
fulfill the request.

ENOTCONN A receive is attempted on a connection-oriented
socket that is not connected.

ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The specified flags are not supported for this

socket type or protocol.
EWOULDBLOCK The socket is marked nonblocking, and no data is

waiting to be received.

4–44 Sockets API Reference

Sockets API Reference
recvfrom()

recvfrom()

Receives bytes for a socket from any source.

Format

#include <types.h>

#include <socket.h>

int recvfrom (int s, char *buf, int len, int flags, struct sockaddr *from, int *fromlen) ;

Arguments

s
A socket descriptor created with the socket() function and bound to a name
using the bind() function or as a result of the accept() function.

buf
A pointer to a buffer into which received data is placed.

len
The size of the buffer pointed to by buf.

flags
A bit mask that can contain one or more of the following flags. The mask is built
by using a logical OR operation on the appropriate values.

Flag Description

MSG_OOB Allows you to receive out-of-band data. If out-of-
band data is available, it is read first.
If no out-of-band data is available, the MSG_
OOB flag is ignored. To send out-of-band data,
use the send(), sendmsg(), and sendto()
functions.

MSG_PEEK Allows you to examine the data that is next in
line to be received without actually removing it
from the system’s buffers.

from
A buffer that the recvfrom() function uses to place the address of the sender
who sent the data.

If from is non-null, the address is returned. If from is null, the address is not
returned.

fromlen
Points to an integer containing the size of the buffer pointed to by from. On
return, the integer is modified to contain the actual length of the socket address
structure returned.

Sockets API Reference 4–45

Sockets API Reference
recvfrom()

Description

This function allows a named, unconnected socket to receive data. The data is
placed in the buffer pointed to by buf, and the address of the sender of the data
is placed in the buffer pointed to by from if from is non-null. The structure
that from points to is assumed to be as large as the sockaddr structure. See
Section 3.2.7 for a description of the sockaddr structure.

To receive bytes from any source, the socket does not need to be connected.

You can use the select() function to determine if data is available.

If no data is available at the socket, the recvfrom() call waits for data to arrive,
unless the socket is nonblocking. If the socket is nonblocking, a -1 is returned
with the external variable errno set to EWOULDBLOCK.

Related Functions
See also read(), send(), sendmsg(), sendto(), and socket().

Return Values

x The number of bytes of data received and placed
in buf.

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
ECONNRESET A connection was forcibly closed by a peer.
EFAULT A valid message buffer was not specified.

Nonexistent or protected address space is
specified for the message buffer.

EINTR A signal interrupted the recvfrom() function
before any data was available.

EINVAL The MSG_OOB flag is set, and no out-of-band
data is available.

ENOBUFS The system has insufficient resources to complete
the call.

ENOMEM The system did not have sufficient memory to
fulfill the request.

ENOTCONN A receive is attempted on a connection-oriented
socket that is not connected.

ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The specified flags are not supported for this

socket type.
ETIMEDOUT The connection timed out when trying to

establish a connection or when a transmission
timed out on an active connection.

4–46 Sockets API Reference

Sockets API Reference
recvfrom()

EWOULDBLOCK The NBIO (nonblocking) flag is set for the socket
descriptor and the process delayed during the
write operation.

Sockets API Reference 4–47

Sockets API Reference
recvmsg()

recvmsg()

Receives bytes on a socket and places them into scattered buffers.

Format

#include <types.h>

#include <socket.h>

int recvmsg (int s, struct msghdr msg, int flags); (BSD Version 4.4)

int recvmsg (int s, struct omsghdr msg, int flags); (BSD Version 4.3)

Arguments

s
A socket descriptor created with the socket() function.

msg
See Section 3.2.5 for a description of the msghdr structure for BSD Versions 4.3
and 4.4.

flags
A bit mask that can contain one or more of the following flags. The mask is built
by using a logical OR operation on the appropriate values.

Flag Description

MSG_OOB Allows you to receive out-of-band data.
If out-of-band data is available, it is read first. If
no out-of-band data is available, the MSG_OOB
flag is ignored. Use send(), sendmsg(), and
sendto() functions to send out-of-band data.

MSG_PEEK Allows you to peek at the data that is next in
line to be received without actually removing it
from the system’s buffers.

Description

You can use this function with any socket, whether or not it is in a connected
state. It receives data sent by a call to sendmsg(), send(), or sendto(). The
message is scattered into several user buffers if such buffers are specified.

To receive data, the socket does not need to be connected to another socket.

When the ioveciovcnt array specifies more than one buffer, the input data is
scattered into iovcnt buffers as specified by the members of the iovec array:

iov0, iov1, ..., ioviovcnt

When a message is received, it is split among the buffers by filling the first buffer
in the list, then the second, and so on, until either all of the buffers are full or
there is no more data to be placed in the buffers.

You can use the select() function to determine when more data arrives.

4–48 Sockets API Reference

Sockets API Reference
recvmsg()

Related Functions
See also read(), send(), and socket().

Return Values

x The number of bytes returned in the msg_iov
buffers.

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
ECONNRESET A connection was forcibly closed by a peer.
EFAULT The message argument is not in a readable or

writable part of user address space.
EINTR This function was interrupted by a signal before

any data was available.
EINVAL The MSG_OOB flag is set, and no out-of-band

data is available.
The value of the msg_iovlen member of the
Lmsghdr structure is less than or equal to zero or
is greater than IOV_MAX.

ENOBUFS The system has insufficient resources to complete
the call.

ENOMEM The system did not have sufficient memory to
fulfill the request.

ENOTCONN A receive is attempted on a connection-oriented
socket that is not connected.

ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The specified flags are not supported for this

socket type.
EWOULDBLOCK The socket is marked nonblocking, and no data is

ready to be received.

Sockets API Reference 4–49

Sockets API Reference
select()

select()

Allows you to poll or check a group of sockets for I/O activity. This function
indicates which sockets are ready to be read or written, or which sockets have an
exception pending.

Format

#include <time.h>

int select (int nfds, int *readfds, int *writefds, int *execptfds, struct timeval *timeout);

Arguments

nfds
Specifies the number of open objects that may be ready for reading or writing
or that have exceptions pending. The nfds argument is normally limited
to FD_SETSIZE. Note that a single process can have a maximum of 65535
simultaneous channels (including sockets) on OpenVMS Alpha systems, and
a maximum of 2047 on OpenVMS VAX systems.

readfds
A pointer to an array of bits, organized as integers, that should be examined for
read readiness. If bit n of the longword is set, socket descriptor n is checked to
see whether it is ready to be read. All bits set in the bit mask must correspond to
the file descriptors of sockets. The select() function cannot be used on normal
files.

On return, the array to which readfds points contains a bit mask of the sockets
that are ready for reading. Only bits that were set on entry to the select()
function can be set on exit.

writefds
A pointer to an array of bits, organized as integers, that should be examined for
write readiness. If bit n of the longword is set, socket descriptor n is checked
to see whether it is ready to be written to. All bits set in the bit mask must
correspond to socket descriptors.

On return, the array to which writefds points contains a bit mask of the sockets
that are ready for writing. Only bits that were set on entry to the select()
function are set on exit.

exceptfds
A pointer to an array of bits, organized as integers, that is examined for
exceptions. If bit n of the longword is set, socket descriptor n is checked to
see whether it has any pending exceptions. All bits set in the bit mask must
correspond to the file descriptors of sockets.

On return, the array exceptfds pointer contains a bit mask of the sockets that
have exceptions pending. Only bits that were set on entry to the select()
function can be set on exit.

timeout
The length of time that the select() function should examine the sockets
before returning. If one of the sockets specified in the readfds, writefds, and
exceptfds bit masks is ready for I/O, the select() function returns before the
timeout period expires.

4–50 Sockets API Reference

Sockets API Reference
select()

The timeout argument points to a timeval structure. See Section 3.2.9 for a
description of the timeval structure.

Description

This function determines the I/O status of the sockets specified in the various
mask arguments. It returns when a socket is ready to be read or written, when
the timeout period expires, or when exceptions occur. If timeout is a non-null
pointer, it specifies a maximum interval to wait for the selection to complete.

If the timeout argument is null, the select() function blocks indefinitely until a
selected event occurs. To effect a poll, the value for timeout should be non-null,
and should point to a zero-value structure.

If a process is blocked on a select() function while waiting for input for a socket
and the sending process closes the socket, then the select() function notes this
as an event and unblocks the process. The descriptors are always modified on
return if the select() function returns because of the timeout.

Note

When the socket option SO_OOBINLINE is set on the device socket, the
select() function on both read and exception events returns the socket
mask that is set on both the read and the exception mask. Otherwise,
only the exception mask is set.

Related Functions
See also accept(), connect(), read(), recv(), recvfrom(), recvmsg(), send(),
sendmsg(), sendto(), and write().

Return Values

n The number of sockets ready for I/O or pending
exceptions. This value matches the number of
returned bits that are set in all output masks.

0 The select() function timed out before any
socket became ready for I/O.

-1 Error; errno is set to indicate the error.

Errors

EBADF One or more of the I/O descriptor sets specified
an invalid file descriptor.

EINTR A signal was delivered before the time limit
specified by the timeout argument expired and
before any of the selected events occurred.

EINVAL The time limit specified by the timeout
argument is invalid.
The nfds argument is less than zero, or greater
than or equal to FD_SETSIZE.

Sockets API Reference 4–51

Sockets API Reference
select()

EAGAIN Allocation of internal data structures failed. A
later call to the select() function may complete
successfully.

ENETDOWN TCP/IP Services was not started.
ENOTSOCK The socket descriptor is invalid.

4–52 Sockets API Reference

Sockets API Reference
send()

send()

Sends bytes through a socket to its connected peer.

The $QIO equivalent is the IO$_WRITEVBLK function.

Format

#include <types.h>

#include <socket.h>

int send (int s, char *msg, int len, int flags);

Arguments

s
A socket descriptor created with the socket() function that was connected to
another socket using the accept() or connect() function.

msg
A pointer to a buffer containing the data to be sent.

len
The length, in bytes, of the data pointed to by msg.

flags
Can be either 0 or MSG_OOB. If it is MSG_OOB, the data is sent out of band.
Data can be received before other pending data on the receiving socket if the
receiver also specifies MSG_OOB in the flag argument of its recv() or recvfrom()
call.

Description

You can use this function only on connected sockets. To send data on an
unconnected socket, use the sendmsg() or sendto() function. The send()
function passes data along to its connected peer, which can receive the data by
using the recv() or read() function.

If there is no space available to buffer the data being sent on the receiving end
of the connection, send() normally blocks until buffer space becomes available.
If the socket is defined as nonblocking, however, send() fails with an errno
indication of EWOULDBLOCK. If the message is too large to be sent in one piece, and
the socket type requires that messages be sent atomically (SOCK_DGRAM), send()
fails with an errno indication of EMSGSIZE.

No indication of failure to deliver is implicit in a send(). All errors (except
EWOULDBLOCK) are detected locally. You can use the select() function to
determine when it is possible to send more data.

Related Functions
See also read(), recv(), recvmsg(), recvfrom(), getsockopt(), and socket().

Sockets API Reference 4–53

Sockets API Reference
send()

Return Values

n The number of bytes sent. This value normally
equals len.

-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
ECONNRESET A connection was forcibly closed by a peer.
EDESTADDRREQ The socket is not connection-oriented, and no

peer address is set.
EFAULT The message argument is not in a readable or

writable part of the user address space.
EINTR A signal interrupted the send() before any data

was transmitted.
EMSGSIZE The message is too large to be sent all at once, as

the socket requires.
ENETDOWN The local network connection is not operational.
ENETUNREACH The destination network is unreachable.
ENOBUFS The system has insufficient resources to complete

the call.
ENOTCONN The socket is not connected or has not had the

peer prespecified.
ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The socket argument is associated with a socket

that does not support one or more of the values
set in flags.

EWOULDBLOCK The socket is marked nonblocking, and no space
is available for the send() function.

4–54 Sockets API Reference

Sockets API Reference
sendmsg()

sendmsg()

Sends gathered bytes through a socket to any other socket.

Format

#include <types.h>

#include <socket.h>

int sendmsg (int s, struct msghdr *msg, int flags); (BSD Version 4.4)

int sendmsg (int s, struct omsghdr *msg, int flags); (BSD Version 4.3)

Arguments

s
A socket descriptor created with the socket() function.

msg
A pointer to a msghdr structure containing the message to be sent. See
Section 3.2.5 for a description of the msghdr structure for BSD Versions 4.3
and 4.4.

The msg_iov field of the msghdr structure is used as a series of buffers from which
data is read in order until msg_iovlen bytes have been obtained.

flags
Can be either 0 or MSG_OOB. If it is equal to MSG_OOB, the data is sent out of band.
Data can be received before other pending data on the receiving socket if the
receiver specifies a flag of MSG_OOB.

Description

You can use this function on any socket to send data to any named socket. The
data in the msg_iov field of the msghdr structure is sent to the socket whose
address is specified in the msg_name field of the structure. The receiving socket
gets the data using the read(), recv(), recvfrom(), or recvmsg() function.
When the iovec array specifies more than one buffer, the data is gathered from
all specified buffers before being sent. See Section 3.2.3 for a description of the
iovec structure.

If no space is available to buffer the data on the receiving end of the connection,
the sendmsg() function blocks until buffer space becomes available. If the socket
is defined as nonblocking, the sendmsg() function fails with an errno indication
of EWOULDBLOCK. If the message is too large to be sent in one piece and the socket
type requires that messages be sent atomically (SOCK_DGRAM), the sendmsg()
fails with an errno indication of EMSGSIZE.

If the address specified is an INADDR_BROADCAST address, the
SO_BROADCAST socket option must be set and the process must have a system
UIC, OPER, SYSPRV, or BYPASS privilege for the I/O operation to succeed.

No indication of failure to deliver is implicit in the sendmsg() function. All errors
(except EWOULDBLOCK) are detected locally. You can use the select() function to
determine when it is possible to send more data.

Sockets API Reference 4–55

Sockets API Reference
sendmsg()

Related Functions
See also read(), recv(), recvfrom(), recvmsg(), socket(), and getsockopt().

Return Values

n The number of bytes sent.
-1 Error; errno is set to indicate the error.

Errors

ENOTSOCK The socket descriptor is invalid.
EFAULT An invalid user space address is specified for a

argument.
EMSGSIZE The socket requires that messages be sent

atomically, but the size of the message to be
sent makes this impossible.

EWOULDBLOCK Blocks if the system does not have enough space
for buffering the user data.

4–56 Sockets API Reference

Sockets API Reference
sendto()

sendto()

Sends bytes through a socket to any other socket.

The $QIO equivalent is the IO$_WRITEVBLK function.

Format

#include <types.h>

#include <socket.h>

int sendto (int s, char *msg, int len, int flags, struct sockaddr *to, int tolen);

Arguments

s
A socket descriptor created with the socket() function.

msg
A pointer to a buffer containing the data to be sent.

len
The length of the data pointed to by the msg argument.

flags
Can be either 0 or MSG_OOB. If it is MSG_OOB, the data is sent out of band. Data
can be received before other pending data on the receiving socket if the receiver
specifies MSG_OOB in its flag argument of its recv(), recvfrom() or recvmsg()
call.

to
Points to the address structure of the socket to which the data is to be sent.

tolen
The length of the address pointed to by the to argument.

Description

This function can be used on sockets to send data to named sockets. The
data in the msg buffer is sent to the socket whose address is specified in the
to argument, and the address of socket s is provided to the receiving socket.
The receiving socket gets the data using the read(), recv(), recvfrom(), or
recvmsg() function.

If there is no space available to buffer the data being sent on the receiving end of
the connection, the sendto() function blocks until buffer space becomes available.
If the socket is defined as nonblocking, the sendto() function fails with an errno
indication of EWOULDBLOCK. If the message is too large to be sent in one piece and
the socket type requires that messages be sent atomically (SOCK_DGRAM), the
sendto() function fails with an errno indication of EMSGSIZE.

No indication of failure to deliver is implicit in a sendto(). All errors (except
EWOULDBLOCK) are detected locally. You can use the select() function to
determine when it is possible to send more data.

Sockets API Reference 4–57

Sockets API Reference
sendto()

If the address specified is a INADDR_BROADCAST address, then the
SO_BROADCAST socket option must have been set and the process must
have SYSPRV or BYPASS privilege for the I/O operation to succeed.

Related Functions
See also read(), recv(), recvfrom(), recvmsg(), socket(), and getsockopt().

Return Values

n The number of bytes sent. This value normally
equals len.

-1 Error; errno is set to indicate the error.

Errors

EAFNOSUPPORT Addresses in the specified address family cannot
be used with this socket.

EBADF The socket descriptor is invalid.
ECONNRESET A connection was forcibly closed by a peer.
EDESTADDRREQ You did not specify a destination address for the

connectionless socket and no peer address is set.
EFAULT An invalid user space address is specified for a

argument.
EHOSTUNREACH The destination host is unreachable.
EINTR A signal interrupted sendto() before any data

was transmitted.
EINVAL The dest_len argument is not a valid size for the

specified address family.
EISCONN The connection-oriented socket for which a

destination address was specified is already
connected.

EMSGSIZE The message is too large to be sent all at once, as
the socket requires.

ENETDOWN The local network connection is not operational.
ENETUNREACH The destination network is unreachable.
ENOBUFS The system has insufficient to complete the call.
ENOMEM The system did not have sufficient memory to

fulfill the request.
ENOTCONN The socket is connection-oriented but is not

connected.
ENOTSOCK The socket descriptor is invalid.
EOPNOTSUPP The socket argument is associated with a socket

that does not support one or more of the values
set in flags.

4–58 Sockets API Reference

Sockets API Reference
sendto()

EPIPE The socket is shut down for writing or is
connection oriented, and the peer is closed or
shut down for reading. In the latter case, if the
socket is of type SOCK_STREAM, the SIGPIPE signal
is generated to the calling process.

EWOULDBLOCK The socket is marked nonblocking, and no space
is available for the sendto() function.

Sockets API Reference 4–59

Sockets API Reference
setsockopt()

setsockopt()

Sets options on a socket.

The $QIO equivalent is the IO$_SETMODE function.

Format

#include <types.h>

#include <socket.h>

int setsockopt (int s, int level, int optname, char *optval, int optlen);

Arguments

s
A socket descriptor created by the socket() function.

level
The protocol level for which the socket options are to be modified. It can have one
of the following values:

SOL_SOCKET Set the options at the socket level.
p Any protocol number. Set the options for protocol

level p. See the IN.H header file for the various
IPPROTO values.

optname
Interpreted by the protocol specified in level. Options at each protocol level are
documented with the protocol.

Refer to:

• Table A–1 for a list of socket options

• Table A–2 for a list of TCP options

• Table A–3 for a list of IP options

optval
Points to a buffer containing the arguments of the specified option.

All socket-level options other than SO_LINGER should be nonzero if the option is to
be enabled, or zero if it is to be disabled.

SO_LINGER uses a linger structure argument defined in the SOCKET.H header
file. This structure specifies the desired state of the option and the linger
interval. The option value for the SO_LINGER command is the address of a linger
structure. See Section 3.2.4 for a description of the linger structure.

If the socket promises the reliable delivery of data and l_onoff is nonzero, the
system blocks the process on the close() attempt until it is able to transmit the
data or until it decides it is unable to deliver the information. A timeout period,
called the linger interval, is specified in l_linger.

If l_onoff is set to zero and a close() is issued, the system processes the close
in a manner that allows the process to continue as soon as possible.

4–60 Sockets API Reference

Sockets API Reference
setsockopt()

optlen
An integer specifying the size of the buffer pointed to by optval.

Description

This function manipulates options associated with a socket. Options can exist at
multiple protocol levels. They are always present at the uppermost socket level.

When manipulating socket options, specify the level at which the option resides
and the name of the option. To manipulate options at the socket level, specify
the value of level as SOL_SOCKET. To manipulate options at any other level,
supply the protocol number of the appropriate protocol controlling the option.
For example, to indicate that an option is to be interpreted by TCP, set the value
for level argument to the protocol number (IPPROTO_TCP) of TCP. See the IN.H
header file for the various IPPROTO values.

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EACCES The calling process does not have appropriate
permissions.

EBADF The descriptor is invalid.
EDOM The send and receive timeout values are too large

to fit in the timeout fields of the socket structure.
EINVAL The optlen argument is invalid.
EISCONN The socket is already connected; the specified

option cannot be set when the socket is in the
connected state.

EFAULT The optval argument is not in a readable part of
the user address space.

ENOBUFS The system had insufficient resources to complete
the call.

ENOPROTOOPT The option is unknown.
ENOTSOCK The socket descriptor is invalid.
EFAULT The optname argument is invalid.

Sockets API Reference 4–61

Sockets API Reference
shutdown()

shutdown()

Shuts down all or part of a bidirectional connection on a socket. This function
does not allow further receives or sends, or both.

The $QIO equivalent is the IO$_DEACCESS function with the IO$M_
SHUTDOWN function modifier.

Format

#include <socket.h>

int shutdown (int s, int how) ;

Arguments

s
A socket descriptor that is in a connected state as a result of a previous call to
either connect() or accept().

how
How the socket is to be shut down. Use one of the following values:

0 Do not allow further calls to recv() on the socket.
1 Do not allow further calls to send() on the socket.
2 Do not allow further calls to both send() and recv().

Description

This function allows communications on a socket to be shut down one piece at a
time rather than all at once. Use the shutdown() function to create unidirectional
connections rather than the normal bidirectional (full-duplex) connections.

Related Functions
See also connect() and socket().

Return Values

0 Successful completion.
-1 Error; errno is set to indicate the error.

Errors

EBADF The socket descriptor is invalid.
EINVAL The how argument is invalid.
ENOBUFS The system has insufficient resources to complete

the call.
ENOTCONN The specified socket is not connected.
ENOTSOCK The socket descriptor is invalid.

4–62 Sockets API Reference

Sockets API Reference
socket()

socket()

Creates an endpoint for communication by returning a special kind of file
descriptor called a socket descriptor, which is associated with a TCP/IP Services
socket device channel.

The $QIO equivalent is the IO$_SETMODE function.

Format

#include <types.h>

#include <socket.h>

int socket (int af, int type, int protocol);

Arguments

af
The address family used in later references to the socket. Addresses specified in
subsequent operations using the socket are interpreted according to this family.
Currently, only the AF_INET (internet) and TCPIP$C_AUXS addresses are supported.

For a network application server with the LISTEN flag enabled, you specify the
TCPIP$C_AUXS address family to obtain the connected device socket created by the
auxiliary server in response to incoming network traffic. For an example of this
situation, refer to the example in Section E.1.3.

type
The socket types are:

• SOCK_STREAM — Provides sequenced, reliable, two-way, connection-based
byte streams with an available out-of-band data transmission mechanism.

• SOCK_DGRAM — Supports datagrams (connectionless, unreliable data
transmission mechanism).

• SOCK_RAW — Provides access to internal network interfaces. Available only
to users with either a system UIC or the SYSPRV privilege.

protocol
The protocol to be used with the socket. Normally, only a single protocol exists
to support a particular socket type using a given address format. However, if
many protocols exist, a particular protocol must be specified with this argument.
Use the protocol number that is specific to the communication domain in which
communication takes place.

Description

This function provides the primary mechanism for creating sockets. The type and
protocol of the socket affect the way the socket behaves and how it can be used.

The operation of sockets is controlled by socket-level options, which are defined in
the SOCKET.H header file and described in the setsockopt() function section of
this chapter.

Sockets API Reference 4–63

Sockets API Reference
socket()

Use the setsockopt() and getsockopt() functions to set and get options.
Options take an integer argument that should be nonzero if the option is to
be enabled or zero if it is to be disabled. SO_LINGER uses a linger structure
argument defined in <socket.h>.

Related Functions
See also accept(), bind(), connect(), listen(), read(), recv(), recvfrom(),
recvmsg(), select(), send(), sendmsg(), sendto(), shutdown(), and write().

Related Functions
See also getsockname() and getsockopt().

Return Values

x A file descriptor that refers to the socket
descriptor.

-1 Error; errno is set to indicate the error.

Errors

EACCES The process does not have sufficient privileges.
EAFNOSUPPORT The specified address family is not supported in

this version of the system.
EMFILE The per-process descriptor table is full.
ENETDOWN TCP/IP Services was not started.
ENFILE No more file descriptors are available for the

system.
ENOBUFS The system has insufficient resources to complete

the call.
ENOMEM The system was unable to allocate kernel

memory to increase the process descriptor table.
EPERM The process is attempting to open a raw socket

and does not have SYSTEM privilege.
EPROTONOSUPPORT The socket in the specified address family is not

supported.
EPROTOTYPE The socket type is not supported by the protocol.
ESOCKTNOSUPPORT The specified socket type is not supported in this

address family.

4–64 Sockets API Reference

Sockets API Reference
write()

write()

Writes bytes from a buffer to a file or socket.

The $QIO equivalent is the IO$_WRITEVBLK function.

Format

#include <unixio.h>

int write (int d, void *buffer, int nbytes);

Arguments

d
A descriptor that refers to a socket or file.

buffer
The address of a buffer from which the output data is to be taken.

nbytes
The maximum number of bytes involved in the write operation.

Description

This function attempts to write a buffer of data to a socket or file.

Related Functions
See also socket().

Return Values

x The number of bytes written to the socket or file.
-1 Error; errno is set to indicate the error.

Errors

EPIPE The socket is shut down for writing or is
connection oriented, and the peer is closed or
shut down for reading. In the latter case, if the
socket is of type SOCK_STREAM, the SIGPIPE signal
is generated to the calling process.

EWOULDBLOCK The NBIO (nonblocking) flag is set for the socket
descriptor, and the process is delayed during the
write operation.

EINVAL The nbytes argument is a negative value.
EAGAIN The O_NONBLOCK flag is set on this file, and the

process is delayed in the write operation.
EBADF The d argument does not specify a valid file

descriptor that is open for writing.

Sockets API Reference 4–65

Sockets API Reference
write()

EINTR A write() or pwrite() function on a pipe is
interrupted by a signal, and no bytes have been
transferred through the pipe.

EINVAL On of the following errors occurred:

• The STREAM or multiplexer referenced by d
is linked (directly or indirectly) downstream
from a multiplexer.

• The iov_count argument value was less
than or equal to zero or greater than
IOV_MAX.

• The sum of the iov_len values in the iov
array overflows a ssize_t data type.

• The file position pointer associated with the
d argument was a negative value.

• One of the iov_len values in the iov array
was negative, or the sum overflowed a 32-bit
integer.

EPERM An attempt was made to write to a socket of
type SOCK_STREAM that is not connected to a peer
socket.

EPIPE An attempt was made to write to a pipe that has
only one end open.
An attempt was made to write to a pipe or FIFO
that is not opened for reading by any process. A
SIGPIPE signal is sent to the process.

ERANGE An attempt was made to write to a STREAM socket
where nbytes are outside the specified minimum
and maximum range, and the minimum value is
nonzero.

4–66 Sockets API Reference

5
Using the $QIO System Service

This chapter describes how to use the $QIO system service and its data
structures with TCP/IP Services.

After you create a network pseudodevice (BG:) and assign a channel to it, use the
$QIO system service for I/O operations.

5.1 $QIO System Service Variations
The two variations of the $QIO system service are:

• Queue I/O Request ($QIO) — Completes asynchronously. It returns to the
caller immediately after queuing the I/O request, without waiting for the I/O
operation to complete.

• Queue I/O Request and Wait ($QIOW) — Completes synchronously. It returns
to the caller after the I/O operation completes.

The only difference between the $QIO and $QIOW calling sequences is the service
name. The system service arguments are the same.

5.2 $QIO Format
The $QIO calling sequence has the following format:

SYS$QIO [efn], chan, func, [iosb], [astadr], [astprm], [p1], [p2], [p3], [p4], [p5], [p6]

Table 5–1 describes each argument.

Table 5–1 $QIO Arguments

Argument Description

astadr AST (asynchronous system trap) service routine

astprm AST parameter to be passed

chan I/O channel

efn Event flag number

func Network pseudodevice function code and/or function modifier

iosb I/O status block

p1, p2, p3, p4, p5, p6 Function-specific I/O request parameters

Using the $QIO System Service 5–1

Using the $QIO System Service
5.2 $QIO Format

5.2.1 Symbol Definition Files
Table 5–2 lists the symbol definition files for the $QIO arguments p1 through
p6. Use the standard mechanism for the programming language you are using to
include the appropriate symbol definition files in your program.

Table 5–2 Network Symbol Definition Files

File Name Language

TCPIP$INETDEF.H Compaq C

TCPIP$INETDEF.FOR VAX Fortran

TCPIP$INETDEF.PAS VAX PASCAL

TCPIP$INETDEF.MAR MACRO-32

TCPIP$INETDEF.PLI VAX PL/1

TCPIP$INETDEF.R32 BLISS-32

TCPIP$INETDEF.ADA VAX Ada

TCPIP$INETDEF.BAS VAX BASIC

5.3 $QIO Functions
Table 5–3 lists the $QIO function codes commonly used in a network application.

Note

The IO$_SETMODE and IO$_SETCHAR function codes are identical. All
references to the IO$_SETMODE function code, its arguments, options,
function modifiers, and condition values returned also apply to the
IO$_SETCHAR function code, which is not explicitly described in this
manual.

The IO$_SENSEMODE and IO$_SENSECHAR function codes are
identical. All references to the IO$_SENSEMODE function code, its
arguments, options, function modifiers, and condition values returned
also apply to the IO$_SENSECHAR function code, which is not explicitly
described in this manual.

Table 5–3 $QIO Function Codes

Function Description

$QIO(IO$_SETMODE)
$QIO(IO$_SETCHAR)

Creates the socket by setting the internet domain,
protocol (socket) type, and protocol of the socket.

Binds a name (local address and port) to the socket.

Defines a network pseudodevice as a listener on a
TCP/IP server.

Specifies socket options.

$QIO(IO$_ACCESS) Initiates a connection request from a client to a remote
host using TCP.

(continued on next page)

5–2 Using the $QIO System Service

Using the $QIO System Service
5.3 $QIO Functions

Table 5–3 (Cont.) $QIO Function Codes

Function Description

Specifies the peer where you can send datagrams.

Accepts a connection request from a TCP/IP client
when used with the IO$M_ACCEPT function modifier.

$QIO(IO$_WRITEVBLK) Writes data (virtual block) from the local host to the
remote host for stream sockets, datagrams, and raw
IP.

$QIO(IO$_READVBLK) Reads data (virtual block) from the remote host to the
local host for stream sockets, datagrams, and raw IP.

$QIO(IO$_DEACCESS) Disconnects the link established between two
communication agents through an IO$_DEACCESS
function.

Shuts down the communication link when used with
the IO$M_SHUTDOWN function modifier. You can
shut down the receive or transmit portion of the link,
or both.

$QIO(IO$_SENSECHAR)
$QIO(IO$_SENSEMODE)

Obtains socket information.

5.4 $QIO Arguments
You pass two types of arguments with the $QIO system service: function-
independent arguments and function-dependent arguments. The following
sections provide information about $QIO system service arguments.

5.4.1 $QIO Function-Independent Arguments
Table 5–4 describes the $QIO function-independent arguments.

Table 5–4 $QIO Function-Independent Arguments

Argument Description

astadr Address of the asynchronous system trap (AST) routine to be executed
when the I/O operation is completed.

astprm A quadword (Alpha) or longword (VAX) containing the value to be
passed to the AST routine.

chan A longword value that contains the number of the I/O channel. The
$QIO system service uses only the low-order word.

efn A longword value of the event flag number that the $QIO system
service sets when the I/O operation completes. The $QIO system
service uses only the low-order byte.

func A longword value that specifies the network pseudodevice function code
and function modifiers that specify the operation to be performed.

Function modifiers affect the operation of a specified function code.
In MACRO-32, you use the exclamation point (!) to logically OR the
function code and its modifier. In Compaq C, you use the vertical bar
(|). This manual uses the vertical bar (|) in text.

(continued on next page)

Using the $QIO System Service 5–3

Using the $QIO System Service
5.4 $QIO Arguments

Table 5–4 (Cont.) $QIO Function-Independent Arguments

Argument Description

iosb The I/O status block that receives the final status message for the
I/O operation. The iosb argument is the address of the quadword I/O
status block. (For the format of the I/O status block, see Section 5.4.2.)

5.4.2 I/O Status Block
The system returns the status of a $QIO operation in the I/O status block
supplied as an argument to the $QIO call. In the case of a successful
IO$_READVBLK or an IO$_WRITEVBLK operation, the second word of the
I/O status block contains the number of bytes transferred during the operation
(see Figure 5–1).

Figure 5–1 I/O Status Block for a Successful READ or WRITE Operation

VM-0142A-AI

31 16 15 0
READ/WRITE

OpenVMS completion status codeTransfer size

Buffer address

With an unsuccessful IO$_READVBLK or an IO$_WRITEVBLK operation, in
most cases, the system returns a Compaq Tru64 UNIX error code in the second
word of the I/O status block.

The OpenVMS completion codes are defined in the SSDEF.H header file. The
Compaq Tru64 UNIX error codes are defined in the ERRNO.H header file and in
the TCPIP$INETDEF.H header file.

5.4.3 $QIO Function-Dependent Arguments
Arguments p1, p2, p3, p4, p5, and p6 to the $QIO system service are used to
pass function-dependent arguments. Table 5–5 lists arguments p1 through p6 for
the $QIO system service and indicates whether the parameter is passed by value,
by reference, or by descriptor.

5–4 Using the $QIO System Service

Using the $QIO System Service
5.4 $QIO Arguments

Table 5–5 $QIO Function-Dependent Arguments

$QIO p1 p2 p3 p4 p5 p6

IO$_ACCESS Not used Not used Remote
socket
name4

Not used Not used Not used

IO$_ACCESS |
IO$M_ACCEPT

Not used Not used Remote
socket
name5

Channel
number2

Not used Not used

IO$_ACPCONTROL Subfunction
code3

Input
parameter3

Buffer
length2

Buffer3 Not used Not used

IO$_DEACCESS Not used Not used Not used Not used Not used Not used

IO$_DEACCESS |
IO$M_SHUTDOWN

Not used Not used Not used Shutdown
flags 1

Not used Not used

IO$_READVBLK Buffer2 Buffer size1 Remote
socket
name5

Flags1 Not used Output
buffer list3

IO$_READVBLK |
IO$M_INTERRUPT

Buffer2 Buffer size1 Not used Not used Not used Not used

IO$_WRITEVBLK Buffer2 Buffer size1 Remote
socket
name4

Flags1 Input buffer
list3

Not used

IO$_WRITEVBLK |
IO$M_INTERRUPT

Buffer2 Buffer size1 Not used Not used Not used Not used

IO$_SETMODE Socket char2 Not used Local socket
name4

Backlog
limit1

Input
parameter
list4

Not used

IO$_SENSEMODE Not used Not used Local socket
name5

Remote
socket
name5

Not used Output
parameter
list4

1By value.
2By reference.
3By descriptor.
4By item_list_2 descriptor.
5By item_list_3 descriptor.

5.5 Passing Arguments by Descriptor
In addition to OpenVMS argument descriptors, I/O functions specific to TCP/IP
Services also pass arguments by using item_list_2 and item_list_3 argument
descriptors. The format of these argument descriptors is unique to TCP/IP
Services, and they supplement argument descriptors defined in the OpenVMS
Calling Standard.

Use of an item_list_2 or item_list_3 argument descriptor is indicated when the
argument’s passing mechanism is specified as an item_list_2 descriptor or an
item_list_3 descriptor. To determine an argument’s passing mechanism, refer to
the argument’s description in Chapter 6.

The item_list_2 argument descriptors describe the size, data type, and starting
address of a service parameter. An item_list_2 argument descriptor contains
three fields, as depicted in the following diagram:

Using the $QIO System Service 5–5

Using the $QIO System Service
5.5 Passing Arguments by Descriptor

VM-0558A-AI

Length
31 16 15 0

Type

Address

The first field is a word containing the length (in bytes) of the parameter being
described. The second field is a word containing a symbolic code specifying the
data type of the parameter. The third field is a longword containing the starting
address of the parameter.

The item_list_3 argument descriptors describe the size, data type, and address
of a buffer in which a service writes parameter information returned from a get
operation. An item_list_3 argument descriptor contains four fields, as depicted
in the following diagram:

VM-0559A-AI

Length
31 16 15 0

Type

Buffer address

Return length address

The first field is a word containing the length (in bytes) of the buffer in which
a service writes information. The length of the buffer needed depends on the
data type specified in the type field. If the value of buffer length is too small,
the service truncates the data. The second field is a word containing a symbolic
code specifying the type of information that a service is to return. The third field
is a longword containing the address of the buffer in which a service writes the
information. The fourth field is a longword containing the address of a longword
in which a service writes the length (in bytes) of the information it actually
returned.

5.5.1 Specifying an Input Parameter List
Use the p5 argument with the IO$_SETMODE function to specify input
parameter lists. The p5 argument specifies the address of a item_list_2
descriptor that points to and identifies the type of input parameter list.

To initialize an item_list_2 structure, you need to:

1. Set the descriptor’s type field to one of the following symbolic codes to specify
the type of input parameter list:

Symbolic Name Input Parameter List Type

TCPIP$C_SOCKOPT Socket options

TCPIP$C_TCPOPT TCP protocol options

TCPIP$C_IPOPT IP protocol options

TCPIP$C_IOCTL I/O control commands

2. Set the descriptor’s length field to specify the length of the input parameter
list.

5–6 Using the $QIO System Service

Using the $QIO System Service
5.5 Passing Arguments by Descriptor

3. Set the descriptor’s address field to specify the starting address of the input
parameter list.

Figure 5–2 illustrates how the p5 argument specifies an input parameter list.

Figure 5–2 Specifying an Input Parameter List

VM-0134A-AI

Length
31 16 15 0

Parameter type Length

Parameter address

Parameter type Length

Parameter address

item 1

item n

31 16 15 0 Parameter list type

 = addressp5

Parameter list address

~~ ~~

8 bytes

8 bytes

item_list_2 descriptor

...

input_parameter_list

As the name implies, input parameter lists consist of one or more contiguous
item_list_2 or ioctl_comm structures. The length of a input parameter list is
determined solely from the length field of its associated argument descriptor.
Input parameter lists are never terminated by a longword containing a zero.

Each item_list_2 structure that appears in an input parameter list describes an
individual parameter or item to set. Such items include socket or protocol options
as identified by the item’s type field.

To initialize an item_list_2 structure, you need to:

1. Set the item’s type field to one of the symbolic codes found in the following
tables:

Table A–1, Socket Options
Table A–2, TCP Protocol Options
Table A–3, IP Protocol Options

2. Set the item’s length field to specify the length of the item.

3. Set the item’s address field to specify the starting address of its data.

Figure 5–3 illustrates how to specify setting socket options.

Using the $QIO System Service 5–7

Using the $QIO System Service
5.5 Passing Arguments by Descriptor

Figure 5–3 Setting Socket Options

VM-0138A-AI

31 16 15 0

31 16 15 0

 = addressp5

~~ ~~

8 bytes

8 bytes

item_list_2 descriptor

...

Option name

Option address

Option length

Option name Option length

Option address

Parameter list address

TCPIP$C_SOCKOPT Length

input_parameter_list

item 1

item n

Each ioctl_comm structure appearing in an input parameter list contains an I/O
control command—the IOCTL request code (as defined by $SIOCDEF) and its
associated IOCTL structure address. Figure 5–4 illustrates how to specify (set)
I/O control (IOCTL) commands.

Figure 5–4 Setting IOCTL Parameters

VM-0139A-AI

31 16 15 0

31 0

 = addressp5

~~ ~~

8 bytes

8 bytes

item_list_2 descriptor

...

TCPIP$C_IOCTL

Parameter list address

IOCTL command

IOCTL structure address

IOCTL command

IOCTL structure address

Length

input_parameter_list

5.5.2 Specifying an Output Parameter List
Use the p6 argument with the IO$_SENSEMODE function to specify output
parameter lists. The p6 argument specifies the address of an item_list_2
descriptor that points to and identifies the type of output parameter list.

To initialize an item_list_2 structure, you need to:

1. Set the descriptor’s type field to one of the following symbolic codes to specify
the type of output parameter list:

5–8 Using the $QIO System Service

Using the $QIO System Service
5.5 Passing Arguments by Descriptor

Symbolic Name Output Parameter List Type

TCPIP$C_SOCKOPT Socket options

TCPIP$C_TCPOPT TCP protocol options

TCPIP$C_IPOPT IP protocol options

TCPIP$C_IOCTL I/O control commands

2. Set the descriptor’s length field to specify the length of the output parameter
list.

3. Set the descriptor’s address field to specify the starting address of the output
parameter list.

Figure 5–5 illustrates how the p6 argument specifies an output parameter list.

Figure 5–5 Specifying an Output Parameter List

VM-0135A-AI

Length
31 16 15 0

Parameter type Buffer length

Buffer address

Return length address

Parameter type Buffer length

Buffer address

Return length address

item 1

item n

31 16 15 0 Parameter list type

 = addressp6

Parameter list address

~~ ~~

12 bytes

12 bytes
item_list_2 descriptor

...

output_parameter_list

As the name implies, output parameter lists consist of one or more contiguous
item_list_3 or ioctl_comm structures. The length of an output parameter list
is determined solely from the length field of its associated argument descriptor.
Output parameter lists are never terminated by a longword containing a zero.

Each item_list_3 structure that appears in an output parameter list describes
an individual parameter or item to return. Such items include socket or protocol
options as identified by the item’s type field.

To initialize an item_list_3 structure, you need to:

1. Set the item’s type field to one of symbolic codes found in the following
tables:

Table A–1, Socket Options
Table A–2, TCP Protocol Options
Table A–3, IP Protocol Options

2. Set the item’s buffer length field to specify the length of its buffer.

3. Set the item’s buffer address field to specify the starting address of its buffer.

Using the $QIO System Service 5–9

Using the $QIO System Service
5.5 Passing Arguments by Descriptor

4. Set the item’s returned length address field to specify the address of a
longword to receive the length in bytes of the information actually returned
for this item.

Figure 5–6 illustrates how to specify getting socket options.

Figure 5–6 Getting Socket Options

VM-0140A-AI

31 16 15 0
31 16 15 0

 = addressp6

~~ ~~

12 bytes

12 bytes
item_list_2 descriptor

...

Option name Option length Parameter list address

TCPIP$C_SOCKOPT Length

Option address

Option name Option length

Option address

Option return length address

Option return length address

output_parameter_list

item 1

item n

Each ioctl_comm structure appearing in a output parameter list contains an I/O
control command—the IOCTL request code (as defined by $SIOCDEF) and its
associated IOCTL structure address. Figure 5–7 illustrates how to specify (get)
I/O control (IOCTL) commands.

Figure 5–7 Getting IOCTL Parameters

VM-0141A-AI

31 16 15 0

31 0

 = addressp5

~~ ~~

8 bytes

8 bytes

item_list_2 descriptor

...

LengthTCPIP$C_IOCTL

Parameter list address
IOCTL command

IOCTL structure address

IOCTL command

IOCTL structure address

output_parameter_list

5–10 Using the $QIO System Service

Using the $QIO System Service
5.6 Specifying a Socket Name

5.6 Specifying a Socket Name
Use the p3 or p4 argument with the IO$_ACCESS, IO$_READVBLK,
IO$_SENSEMODE, IO$_SETMODE, and IO$_WRITEVBLK functions to specify
a socket name. The p3 and p4 arguments specify the address of an item_list_2
or item_list_3 descriptor that points to a socket name structure. The socket
name structure contains address domain, port number, and host internet address.

Note

Port numbers 1 to 1023 require a system UIC or a UIC with SYSPRV and
BYPASS privileges when assigned. If you specify zero when binding a
socket name, the system assigns an available port.

Use an item_list_2 argument descriptor with the IO$_ACCESS,
IO$_WRITEVBLK, and IO$_SETMODE functions to specify (set) a socket
name. The descriptor’s parameter type is TCPIP$C_SOCK_NAME.

Use an item_list_3 argument descriptor with the
IO$_ACCESS | IO$M_ACCEPT, IO$_READVBLK, and IO$_SENSEMODE
functions to specify (get) a socket name. The descriptor’s parameter type is
TCPIP$C_SOCK_NAME.

With BSD Version 4.3, specify socket names as illustrated in Figure 5–8.

Using the $QIO System Service 5–11

Using the $QIO System Service
5.6 Specifying a Socket Name

Figure 5–8 Specifying a Socket Name (BSD Version 4.3)

VM-0136A-AI

Length
31 16 15 0

Port number Address family

Host Internet address

Unused
(must be 0)

31 16 15 0 TCPIP$C_SOCK_NAME

 = addressp3

Address

item_list_2
descriptor

16 bytes

socket_name

Length
31 16 15 0

Port number Address family

Host Internet address

Unused
(must be 0)

31 16 15 0 TCPIP$C_SOCK_NAME

 = addressp4

Buffer address

Return length address

Return length

item_list_3
descriptor

16 bytes

socket_name
longword

With BSD Version 4.4, specify socket names as illustrated in Figure 5–9. Note
that the first byte in the socket name is the length field. To accommodate
this field, use the IO$M_EXTEND function modifier for all I/O functions that
take a socket name as an output argument (IO$_ACCESS | IO$M_ACCEPT,
IO$_READVBLK, and IO$_SENSEMODE).

5–12 Using the $QIO System Service

Using the $QIO System Service
5.6 Specifying a Socket Name

Figure 5–9 Specifying a Socket Name (BSD Version 4.4)

VM-0137A-AI

Length
31 16 15 0

Port number Address
family

Size of
structure

Host Internet address

Unused
(must be 0)

31 16 15 8 7 0 TCPIP$C_SOCK_NAME

 = addressp3

Address

item_list_2
descriptor

16 bytes

socket_name

Length
31 16 15 0

Port number

Host Internet address

Unused
(must be 0)

31 16 15 0 TCPIP$C_SOCK_NAME

 = addressp4

Buffer address

Return length address

Return length

item_list_3
descriptor

16 bytes

socket_name
longword

Address
family

Size of
structure

8 7

5.6.1 Specifying a Buffer List
Use the p5 argument with the IO$_WRITEVBLK function to specify input buffer
lists. The p5 argument specifies the address of a 32- or 64-bit fixed-length
descriptor (on Alpha systems) or a 32-bit fixed-length descriptor (on VAX systems)
pointing to an input buffer list.

Use the p6 argument with the IO$_READVBLK function to specify output buffer
lists. The p6 argument specifies the address of a 32- or 64-bit fixed-length
descriptor (on Alpha systems) or a 32-bit fixed-length descriptor (on VAX systems)
pointing to an output buffer list.

To initialize the p5 or p6 arugment descriptor, you need to:

1. Set the descriptor’s data-type code (the DTYPE field) to DSC$K_DTYPE_DSC
to specify a buffer list containing one or more descriptors defining the length
and starting address of user buffers.

2. Set the descriptor’s class code (the CLASS field) to DSC$K_CLASS_S.

3. Set the descriptor’s length field to specify the length of the buffer list.

4. Set the descriptor’s MBO field to 1 and the MBMO field to all 1s if this is a
64-bit argument descriptor.

Using the $QIO System Service 5–13

Using the $QIO System Service
5.6 Specifying a Socket Name

Figure 5–10 illustrates how to specify a buffer list.

Figure 5–10 Specifying a Buffer List

VM-0580A-AI

31 16 1524 23 0

31 16 1524 23 0

 = addressp5/p6

~~ ~~
8 bytes

8 bytes 32-bit descriptor

...

CLASS DTYPE Buffer length
Buffer list address

CLASS (=1) DTYPE (=24) Length

Buffer address

CLASS DTYPE Buffer length

Buffer address

buffer_list (using 32-bit descriptors)

buffer_list (using 64-bit descriptors)

buffer 1

31 16 1524 23 0

 = addressp5/p6

64-bit descriptor

Buffer list address

CLASS (=1) DTYPE (=24) MBO (=1)

buffer n

buffer 1

buffer n

24 bytes

24 bytes

MBMO (= -1)

Length

31 16 1524 23

Buffer address

MBO (=1)

MBO (=1)

MBMO (= -1)

Buffer length

Buffer address

MBMO (= -1)

Buffer length

~~ ~~
...

CLASS DTYPE

CLASS DTYPE

0

Buffer lists, as the name implies, consist of one or more contiguous 32- or 64-bit
fixed-length descriptors (on Alpha systems) or 32-bit fixed-length descriptors (on
VAX systems).

5–14 Using the $QIO System Service

Using the $QIO System Service
5.6 Specifying a Socket Name

Each 32- or 64-bit descriptor that appears in a buffer list describes one user
buffer. Initialize each descriptor by setting its data type, class, length, and
address fields as appropriate for 32- and 64-bit descriptors.

For more information about using 32-bit and 64-bit descriptors, refer to the
OpenVMS Calling Standard.

Using the $QIO System Service 5–15

6
OpenVMS System Services Reference

This chapter provides detailed information about the OpenVMS system services
for writing network applications. The chapter also describes the network
pseudodevice driver and TELNET port driver I/O functions used with the $QIO
system service.

The descriptions of the system services and I/O function codes are targeted
specifically for network application programmers. For a general description of
these system services and I/O function codes, see the OpenVMS System Services
Reference manuals.

Table 6–1 lists the equivalent Sockets API function for each system service and
$QIO I/O function code in this chapter. See Chapter 4 for descriptions of the
Sockets API functions.

Table 6–1 OpenVMS System Service and Equivalent Sockets API Function

OpenVMS System Service Sockets API Function or Description

$ASSIGN socket()

$CANCEL close()

$DASSGN close()

$QIO

Network Pseudodevice I/O Function Codes:

IO$_ACCESS connect()

IO$_ACCESS | IO$M_ACCEPT accept()

IO$_ACPCONTROL gethostbyname(),
gethostbyaddr(), getnetbyname(),
getnetbyaddr()

IO$_DEACCESS close()

IO$_DEACCESS | IO$M_SHUTDOWN shutdown()

IO$_READVBLK read(), recv(), recvfrom(),
recvmsg()

IO$_SENSEMODE getsockopt(), ioctl(),
getpeername(), getsockname()

IO$_SENSECHAR getsockopt(), ioctl(),
getpeername(), getsockname()

IO$_SETMODE socket(), bind(), listen(),
setsockopt(), ioctl()

(continued on next page)

OpenVMS System Services Reference 6–1

OpenVMS System Services Reference

Table 6–1 (Cont.) OpenVMS System Service and Equivalent Sockets API
Function

OpenVMS System Service Sockets API Function or Description

IO$_SETCHAR socket(), bind(), listen(),
setsockopt(), ioctl()

IO$_WRITEVBLK send(), sendto(), sendmsg(),
write()

TELNET Port Driver I/O Function Codes:

IO$_TTY_PORT

IO$M_TN_STARTUP Binds a socket to a TELNET terminal
device.

IO$M_TN_SHUTDOWN Breaks a previously bound socket
terminal connection.

IO$_TTY_PORT_BUFIO

IO$M_TN_SENSEMODE Reads parameters associated with the
device.

IO$M_TN_SETMODE Writes parameters associated with the
device.

6.1 System Service Descriptions
This section describes the OpenVMS system service routines used to write
network applications.

Detailed information about each argument is listed for each I/O function. The
following format is used to describe each argument:

argument-name

OpenVMS usage: OpenVMS data type

type: argument data type

access: argument access

mechanism: argument passing mechanism

The purpose of the OpenVMS usage entry is to facilitate the coding of source-
language data type declarations in application programs. Ordinarily, the
standard data type is sufficient to describe the type of data passed by an
argument. However, within the OpenVMS operating system environment, many
system routines contain arguments whose conceptual nature or complexity
requires additional explanation.

See Appendix C for a list of the possible OpenVMS usage entries and their
definitions. Refer to the appropriate language implementation table in
Appendix C to determine the correct syntax of the type declaration in the
language you are using.

Note that the OpenVMS usage entry is not a traditional data type (such as the
standard data types of byte, word, longword, and so on). It is significant only
within the context of the OpenVMS operating system and is intended solely to
expedite data declarations within application programs.

6–2 OpenVMS System Services Reference

System Service Descriptions
$ASSIGN

$ASSIGN—Assign I/O Channel

Provides a calling process with an I/O channel, thereby allowing the calling
process to perform I/O operations on the network pseudodevice.

On Alpha systems, this service accepts 64-bit addresses.

Format

SYS$ASSIGN devnam, chan, [acmode], [mbxnam], [flags]

C Prototype

int sys$assign (void *devnam, unsigned short int *chan, unsigned int acmode, void *mbxnam,...);

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a
condition value in R0. Condition values that can be returned by this service are
listed under Condition Values Returned.

Arguments

devnam
OpenVMS usage: device_name
type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor-fixed-length string descriptor

(Alpha)
by 32-bit descriptor-fixed-length string descriptor (VAX)

Name of the device to which $ASSIGN is to assign a channel. The devnam
argument is the 32- or 64-bit address (on Alpha systems) or the 32-bit address
(on VAX systems) of a character string descriptor pointing to the network
pseudodevice name string (either TCPIP$DEVICE: or SYS$NET:).

chan
OpenVMS usage: channel
type: word (unsigned)
access: write only
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

Number of the channel that is assigned. The chan argument is the 32- or 64-bit
address (on Alpha systems) or the 32-bit address (on VAX systems) of a word into
which $ASSIGN writes the channel number.

acmode
OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS System Services Reference 6–3

System Service Descriptions
$ASSIGN

Access mode to be associated with the channel. I/O operations on the channel can
be performed only from equal and more privileged access modes. The $PSLDEF
macro defines the following symbols for the four access modes:

Symbol Access Mode Numeric Value

PSL$C_KERNEL Kernel 0
PSL$C_EXEC Executive 1
PSL$C_SUPER Supervisor 2
PSL$C_USER User 3

mbxnam
OpenVMS usage: device_name
type: character-coded text string
access: read only
mechanism: by 32- or 64-bit descriptor-fixed-length string descriptor

(Alpha)
by 32-bit descriptor-fixed-length string descriptor (VAX)

This argument is not used.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

An optional device-specific argument. The flags argument is a longword bit
mask. For more information about the applicability of the flags argument for a
particular device, refer to the OpenVMS I/O User’s Reference Manual.

Description

The $ASSIGN system service establishes a path to a device but does not check
whether the calling process has the capability to do I/O operations to the device.
The device drivers may apply privilege and protection restrictions. The calling
process must have NETMBX privilege to assign a channel.

System dynamic memory is required for the target device, and the I/O byte limit
quota from the process buffer is used.

When a channel is assigned to the TCPIP$DEVICE: template network device,
the network software creates a new device called BGn, where n is a unique unit
number. The corresponding channel number is used in any subsequent operation
requests for that device.

When the auxiliary server creates a process for a service with the LISTEN flag
set, the server creates a device socket. In order for your application to receive
the device socket, assign a channel to SYS$NET, which is the logical name of
a network pseudodevice, and perform an appropriate $QIO(IO$_SETMODE)
operation.

Channels remain assigned either until they are explicitly deassigned with the
Deassign I/O Channel ($DASSGN) service or, if they are user-mode channels,
until the image that assigned the channel exits.

6–4 OpenVMS System Services Reference

System Service Descriptions
$ASSIGN

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ACCVIO The caller cannot read the device string or string

descriptor, or the caller cannot write the channel
number.

SS$_DEVALLOC The device is allocated to another process.
SS$_DEVLSTFULL The system maximum number of BG: device

units has been reached.
SS$_EXQUOTA The process has exceeded its buffered I/O byte

limit (BIOLM) quota.
SS$_IVDEVNAM No device name was specified, the logical name

translation failed, or the device name string
contains invalid characters.

SS$_IVLOGNAM The device name string has a length of zero or
has more than 63 characters.

SS$_NOIOCHAN No I/O channel is available for assignment.
SS$_NOSUCHDEV The specified device does not exist.

OpenVMS System Services Reference 6–5

System Service Descriptions
$CANCEL

$CANCEL—Cancel I/O on Channel

Cancels all pending I/O requests on a specified channel.

Related Functions
The equivalent Sockets API function is close().

Format

SYS$CANCEL chan

C Prototype

int sys$cancel (unsigned short int chan);

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a
condition value in R0. Condition values that can be returned by this service are
listed under Condition Values Returned.

Arguments

chan
OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

I/O channel on which I/O is to be canceled. The chan argument is a word
containing the channel number.

Description

To cancel I/O on a channel, the access mode of the calling process must be equal
to or more privileged than the access mode of the process that made the original
channel assignment.

The $CANCEL service requires system dynamic memory and uses the process’s
buffered I/O limit (BIOLM) quota.

When a request currently in progress is canceled, the driver is notified
immediately. Actual cancellation may or may not occur immediately, depending
on the logical state of the driver. When cancellation does occur, the action taken
for I/O in progress is similar to that taken for queued requests. For example:

• The specified event flag is set.

• The first word of the I/O status block, if specified, is set to SS$_CANCEL
if the I/O request is queued, or to SS$_ABORT if the I/O operation is in
progress.

• If the asynchronous system trap (AST) is specified, it is queued.

6–6 OpenVMS System Services Reference

System Service Descriptions
$CANCEL

For proper synchronization between this service and the actual canceling of
I/O requests to take place, the issuing process must wait for the I/O process
to complete normally. Note that the I/O has been canceled. Outstanding I/O
requests are canceled automatically at image exit.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ABORT A physical line went down during a network

connect operation.
SS$_CANCEL The I/O operation was canceled by executing a

$CANCEL system service.
SS$_EXQUOTA The process has exceeded its buffered I/O limit

(BIOLM) quota.
SS$_INSFMEM Insufficient system dynamic memory to cancel

the I/O.
SS$_IVCHAN An invalid channel was specified (that is, a

channel number of 0 or a number larger than the
number of channels available).

SS$_NOPRIV The specified channel is not assigned or was
assigned from a more privileged access mode.

OpenVMS System Services Reference 6–7

System Service Descriptions
$DASSGN

$DASSGN—Deassign I/O Channel

Deassigns (releases) an I/O channel previously acquired using the Assign I/O
Channel ($ASSIGN) service.

Related Functions
The equivalent Sockets API function is close().

Format

SYS$DASSGN chan

C Prototype

int sys$dassgn (unsigned short int chan);

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a
condition value in R0. Condition values that can be returned by this service are
listed under Condition Values Returned.

Arguments

chan
OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel to be deassigned. The chan argument is a word
containing this number.

Description

After all communication is completed, use the $DASSGN system service to free
an I/O channel. A $DASSGN operation executed on a channel associated with a
network pseudodevice does the following:

• Ends all pending operations to send or receive data at $QIO level ($CANCEL
system service).

• Clears the port associated with the channel. When executing the $DASSGN
system service for TCP sockets, the socket remains until the connection is
closed on both the local and remote sides.

• Ends all communications with the network pseudodevice that the I/O channel
identifies.

• Frees the channel associated with the network pseudodevice. An I/O channel
can be deassigned only from an access mode equal to or more privileged than
the access mode from which the original channel assignment was made.

6–8 OpenVMS System Services Reference

System Service Descriptions
$DASSGN

I/O channels assigned from user mode are automatically deassigned at image
exit.

Note

Even after a $DASSGN has been issued, a TCP socket may remain
until the TCP close timeout interval expires. The default and maximum
timeout interval is either 10 minutes if the peer host is not responding
or 30 seconds after acknowledging the socket close. Although the TCP
socket is open, you cannot make a reference to that socket after issuing a
$DASSGN.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_IVCHAN An invalid channel number was specified (that

is, a channel number of zero or a number larger
than the number of channels available).

SS$_NOPRIV The specified channel is not assigned or is
assigned from a more privileged access mode.

OpenVMS System Services Reference 6–9

System Service Descriptions
$QIO

$QIO—Queue I/O Request

Queues an I/O request to a channel associated with a network pseudodevice.

The $QIO service is completed asynchronously; that is, it returns to the caller
immediately after queuing the I/O request, without waiting for the I/O operation
to be completed.)

For synchronous completion, use the Queue I/O Request and Wait ($QIOW)
service. The $QIOW service is identical to the $QIO service, except the $QIOW
returns to the caller after the I/O operation has completed.

On Alpha systems, this service accepts 64-bit addresses.

Format

SYS$QIO [efn],chan,func, [iosb],[astadr],[astprm], [p1],[p2],[p3],[p4], [p5],[p6]

C Prototype

int sys$qio (unsigned int efn, unsigned short int chan, unsigned int func, struct _iosb *iosb, void
(*astadr)(_ _unknown_params), _ _int64 astprm, void *p1, _ _int64 p2, _ _int64 p3, _ _int64
p4, _ _int64 p5, _ _int64 p6);

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a
condition value in R0. Condition values that can be returned by this service are
listed under Condition Values Returned.

Arguments

efn
OpenVMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag that $QIO sets when the I/O operation completes. The efn argument
is a longword value containing the number of the event flag, however, $QIO uses
only the low-order byte.

If efn is not specified, event flag 0 is set.

The specified event flag is set if the service terminates without queuing an I/O
request.

chan
OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

6–10 OpenVMS System Services Reference

System Service Descriptions
$QIO

I/O channel that is assigned to the device to which the request is directed. The
chan argument is a word value containing the number of the I/O channel.

func
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by value

Function codes and function modifiers specifying the operation to be performed.
The func argument is a longword containing the function code.

For information about the network pseudodevice and TELNET device function
codes and modifiers, see Section 6.2 and Section 6.3.

iosb
OpenVMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by 32-bit reference or 64-bit reference (Alpha)

by 32-bit reference (VAX)

I/O status block to receive the final completion status of the I/O operation. The
iosb is the address of the quadword I/O status block. See Figure 5–1 for a
description of the general structure of the I/O status block.

When the $QIO begins executing, it clears the event flag. The $QIO also clears
the quadword I/O status block if the iosb argument is specified.

Although the iosb argument is optional, Compaq strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in R0 and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$QIO service. The condition value returned in R0 provides information about
the success or failure of the service call itself; the condition values returned
in the I/O status block give information on the success or failure of the service
operation. Therefore, to access the success or failure of the $QIO call, check
the condition values returned in both the R0 and the I/O status block.

astadr
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

AST service routine to be executed when the I/O completes. The astadr argument
is the address of the AST routine.

The AST routine executes at the access mode of the caller of $QIO.

OpenVMS System Services Reference 6–11

System Service Descriptions
$QIO

astprm
OpenVMS usage: user_arg
type: quadword unsigned (Alpha); longword unsigned (VAX)
access: read only
mechanism: by 32- or 64-bit value (Alpha)

by 32-bit value (VAX)

AST parameter to be passed to the AST service routine. On Alpha systems,
the astprm argument is a quadword value containing the AST parameter. On
VAX systems, the astprm argument is a longword value containing the AST
parameter.

p1 to p6
OpenVMS usage: varying_arg
type: quadword unsigned (Alpha); longword unsigned (VAX)
access: read only
mechanism: by 32- or 64-bit reference or by 64-bit value depending on the

I/O function (Alpha)
by 32-bit reference or by 32-bit value depending on the I/O
function (VAX)

Optional device- and function-specific I/O request arguments. The parameter
values contained in these arguments vary according to the function for which
they are used. See Table 6–2 for descriptions of the network pseudodevice driver
I/O function codes; see Table 6–7 through Table 6–10 for related TELNET device
driver I/O function codes.

Description

The Queue I/O Request service operates only on assigned I/O channels and only
from access modes that are equal to or more privileged than the access mode from
which the original channel assignment was made.

For TCP/IP Services, $QIO uses the following system resources:

• The process’s AST limit (ASTLM) quota, if an AST service routine is specified.

• System dynamic memory, which is required to queue the I/O request. System
dynamic memory requirements are protocol specific.

• Additional memory, on a device-dependent basis.

For $QIO, completion can be synchronized as follows:

• By specifying the astadr argument to have an AST routine execute when the
I/O is completed.

• By calling the $SYNCH synchronize service to await completion of the I/O
operation. (If you want your I/O operation to complete synchronously, use the
$QIOW system service instead.)

Condition Values Returned

Each function used with $QIO has its own error codes. See the error codes listed
under the individual descriptions of the device driver I/O function code in the
remainder of this chapter.

6–12 OpenVMS System Services Reference

OpenVMS System Services Reference
6.2 Network Pseudodevice Driver I/O Functions

6.2 Network Pseudodevice Driver I/O Functions
The network pseudodevice allows physical, logical, and virtual I/O functions. The
physical and logical I/O functions are used only with the IP layer. Table 6–2 lists
the basic I/O functions and their modifiers. The sections that follow describe in
greater detail the operation of these I/O functions.

Table 6–2 Network Pseudodevice Driver I/O Functions

Function Code and Arguments Function Modifier Description

IO$_ACCESS p3,p4 IO$M_ACCEPT
IO$M_EXTEND
IO$M_NOW

Opens a connection.

IO$_ACPCONTROL p1, p2, p3, p4 Performs an ACP (ancillary control
process) operation.

IO$_DEACCESS p4 IO$M_NOW
IO$M_SHUTDOWN

Aborts or closes a connection.

IO$_READVBLK p1,p2,p3,p4,p6 IO$M_EXTEND
IO$M_INTERRUPT

Reads a virtual block.

IO$M_LOCKBUF
IO$M_PURGE

Controls the buffer operations.

IO$_SENSEMODE p2,p3,p4,p6 Reads the network pseudodevice
characteristics.

IO$_SENSECHAR p2,p3,p4,p6 Reads the network pseudodevice
characteristics.

IO$_SETMODE p1,p2, p3,p4,p5 IO$M_OUTBAND
IO$M_READATTN
IO$M_WRTATTN

Sets the network pseudodevice
characteristics for subsequent
operations.

IO$_SETCHAR p1,p2, p3,p4,p5 IO$M_OUTBAND
IO$M_READATTN
IO$M_WRTEATTN

Sets the network pseudodevice
characteristics for subsequent
operations.

IO$_WRITEVBLK p1,p2,p3,p4,p5 IO$M_INTERRUPT Writes a virtual block.

Table 5–2 lists the file names of the symbol definition files. These files specify
$QIO arguments (p1,p2,...p6) for applications written in the corresponding
programming languages. You must invoke the symbol definition by using the
appropriate include statement in your application.

OpenVMS System Services Reference 6–13

Network Pseudodevice Driver I/O Function Codes
IO$_ACCESS

IO$_ACCESS

When using a connection-oriented protocol, such as TCP, the IO$_ACCESS
function initiates a connection and specifies a remote port number and internet
address. When using a connectionless protocol, such as UDP, the IO$_ACCESS
function sets the remote port number and internet address.

For TCP, a connection request times out at a specified interval (75 seconds is the
default). This interval can be changed by the system manager. The program can
also set a specific timeout interval for a socket that it has created.

If a connection fails, you must deallocate the socket and then create a new socket
before trying to reconnect.

Related Functions
The equivalent Sockets API function is connect().

Arguments

p3
OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

The remote port number and internet address of the host to connect. The p3
argument is the address of an item_list_2 descriptor that points to the socket
address structure containing the remote port number and internet address.

Function Modifiers

IO$M_NOW Regardless of a $QIO or $QIOW, if the system
detects a condition that would cause the
operation to block, the system completes the
I/O operation and returns the SS$_SUSPENDED
status code.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_BADPARAM Programming error that occurred for one of the

following reasons:

• $QIO system service was specified without a
socket.

• An IO$_ACCESS function was specified
without the address of a remote socket name
(p3 was null).

SS$_BUGCHECK Inconsistent state. Report the problem to your
Compaq support representative.

SS$_CANCEL The I/O operation was canceled by a $CANCEL
system service.

6–14 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_ACCESS

SS$_CONNECFAIL The connection to a network object timed out or
failed.

SS$_DEVINTACT The network driver was not started.
SS$_DEVNOTMOUNT The network driver is loaded, but the INETACP

is not currently available for use.
SS$_DUPLNAM A network configuration error. No ports were

available for new connections.
SS$_EXQUOTA The process has exceeded its socket quota or

some other process quota.
SS$_FILALRACC The specified socket name is already in use by

one of the following:

• On a raw socket, the remote internet
address was already specified on a previous
IO$_ACCESS call.

• On a datagram, the remote internet
address was already specified on a previous
IO$_ACCESS call.

• On a stream socket, the IO$_ACCESS
function targeted a stream socket that was
already connected.

SS$_ILLCNTRFUNC Illegal function.
SS$_INSFMEM Insufficient system dynamic memory to complete

the service.
SS$_IVADDR The specified internet address was not found,

or an invalid port number and internet address
combination was specified with the IO$_ACCESS
function. Port 0 is not allowed with the
IO$_ACCESS function.

SS$_IVBUFLEN The size of the socket name structure specified
with the IO$_ACCESS function was invalid.

SS$_LINKABORT The remote socket closed the connection.
SS$_NOLICENSE The Compaq TCP/IP Services for OpenVMS

license is not present.
SS$_PROTOCOL A network protocol error occurred. The address

family specified in the socket address structure is
not supported.

SS$_REJECT The network connection is rejected for one of the
following reasons:

• An attempt was made to connect to a remote
socket that is already connected.

• An error was encountered while establishing
the connection

• The peer socket refused the connection
request or is closing the connection.

OpenVMS System Services Reference 6–15

Network Pseudodevice Driver I/O Function Codes
IO$_ACCESS

SS$_SHUT The local or remote node is no longer accepting
connections.

SS$_SUSPENDED The system detected a condition that might cause
the operation to block.

SS$_TIMEOUT A TCP connection timed out before the
connection could be established.

SS$_UNREACHABLE The remote node is currently unreachable.

6–16 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_ACCESS | IO$M_ACCEPT

IO$_ACCESS | IO$M_ACCEPT

This function is used with a connection-based protocol, such as TCP, to accept a
new connection on a passive socket.

This function completes the first connection on the queue of pending connections.

Related Functions
The equivalent Sockets API function is accept() .

Arguments

p3
OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_3 descriptor

The remote port number and internet address of a new connection. The p3
argument is the address of an item_list_3 descriptor that points to the socket
address structure into which the remote port number and internet address of the
new connection is written.

Use the IO$_ACCESS function with the IO$M_EXTEND modifier to specify a
BSD Version 4.4 formatted socket address structure.

p4
OpenVMS usage: channel
type: word (unsigned)
access: write only
mechanism: by reference

The I/O channel number assigned to a new connection. The p4 argument is the
address of a word into which the new connection’s channel number is written.

Function Modifiers

IO$M_EXTEND Allows the usage of BSD Version 4.4 formatted
socket address structures.

IO$M_NOW Regardless of a $QIO or $QIOW, if the system
detects a condition that would cause the
operation to block, the system completes the
I/O operation and returns the SS$_SUSPENDED
status code.

Condition Values Returned

SS$_NORMAL The service completed successfully.

OpenVMS System Services Reference 6–17

Network Pseudodevice Driver I/O Function Codes
IO$_ACCESS | IO$M_ACCEPT

SS$_BADPARAM Programming error that occurred for one of the
following reasons:

• $QIO system service was specified without a
socket.

• A IO$_ACCESS | IO$M_ACCEPT function
was specified without the address of the
channel for the new connection (p4 was null
or invalid).

SS$_BUGCHECK Inconsistent state. Report the problem to your
Compaq support representative.

SS$_CANCEL The I/O operation was canceled by a $CANCEL
system service.

SS$_DEVINTACT The network driver was not started.
SS$_DEVNOTMOUNT The network driver is loaded, but the INETACP

is not currently available for use.
SS$_EXQUOTA The process has exceeded its socket quota or

some other process quota.
SS$_FILALRACC The specified socket name is already in use by

one of the following:

• On a raw socket, the remote internet
address was already specified on a previous
IO$_ACCESS call.

• On a datagram, the remote internet
address was already specified on a previous
IO$_ACCESS call.

• On a stream socket, the IO$_ACCESS
function targeted a stream socket that was
already connected.

SS$_ILLCNTRFUNC Illegal function.
SS$_INSFMEM Insufficient system dynamic memory to complete

the service.
SS$_IVADDR The specified internet address was not found,

or an invalid port number and internet address
combination was specified with the IO$_ACCESS
function. Port 0 is not allowed with the
IO$_ACCESS function.

SS$_IVBUFLEN The size of the socket name structure specified
with the IO$_ACCESS function was invalid.

SS$_LINKABORT The remote socket closed the connection.
SS$_NOLICENSE The TCP/IP Services license is not present.
SS$_PROTOCOL A network protocol error occurred. The address

family specified in the socket address structure is
not supported.

6–18 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_ACCESS | IO$M_ACCEPT

SS$_REJECT The network connection is rejected for one of the
following reasons:

• An attempt was made to connect to a remote
socket that is already connected.

• An error was encountered while establishing
the connection

• The peer socket refused the connection
request or is closing the connection.

SS$_SHUT The local or remote node is no longer accepting
connections.

SS$_SUSPENDED The system detected a condition that might cause
the operation to block.

SS$_TIMEOUT A TCP connection timed out before the
connection could be established.

SS$_UNREACHABLE The remote node is currently unreachable.

OpenVMS System Services Reference 6–19

Network Pseudodevice Driver I/O Function Codes
IO$_ACPCONTROL

IO$_ACPCONTROL

The IO$_ACPCONTROL function accesses the network ACP to retrieve
information from the host and the network database files.

Related Functions
The equivalent Sockets API functions are gethostbyaddr(), gethostbyname(),
getnetbyaddr(), and getnetbyname().

Arguments

p1
OpenVMS usage: subfunction_code
type: longword (unsigned)
access: read only
mechanism: by descriptor-fixed-length descriptor

A longword identifying the network ACP operation to perform. The p1 argument
is the address of a descriptor pointing to this longword.

To specify the network ACP operation to perform, select a subfunction code from
Table 6–3 and a call code from Table 6–4.

Table 6–3 defines subfunction codes for network ACP operations.

Table 6–3 Subfunction Codes

Subfunction Code Description

INETACP_FUNC$C_GETHOSTBYADDR Get the host name of the specified
internet address from the host
database.

INETACP_FUNC$C_GETHOSTBYNAME Get the internet address of the
specified host from the host
database.

INETACP_FUNC$C_GETNETBYADDR Get the network name of the
specified internet address from
the network database.

INETACP_FUNC$C_GETNETBYNAME Get the internet address of
the specified network from the
network database.

Table 6–4 defines call codes for network ACP operations.

Table 6–4 Call Codes

Call Code Description

INETACP$C_ALIASES Returns the list of alias names associated
with the specified host or network from
the internet hosts or network database.

(continued on next page)

6–20 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_ACPCONTROL

Table 6–4 (Cont.) Call Codes

Call Code Description

INETACP$C_TRANS Returns the internet address associated
with the specified host or network as a
32-bit value in network byte order.

INETACPC$C_HOSTENT_OFFSET Returns full host information in a
modified hostent structure. In the
modified structure, pointers are replaced
with offsets from the beginning of the
structure.

INETACP$C_NETENT_OFFSET Returns full network information in
a modified netent structure. In the
modified structure, pointers are replaced
with offsets from the beginning of the
structure.

IO$_ACPCONTROL searches the local host database for the host’s name. If a
matching host name is not found in the local host database, IO$_ACPCONTROL
then searches the BIND database if the BIND resolver is enabled.

p2
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Input string for the network ACP operation containing one of the following: host
internet address, host name, network internet address, or network name. The p2
argument is the address of a string descriptor pointing to the input string.

All internet addresses are specified in dotted-decimal notation.

p3
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the output buffer returned by IO$_ACPCONTROL. The p3
argument is the address of a word in which the length of the output buffer is
written.

p4
OpenVMS usage: buffer
type: vector byte (unsigned)
access: write only
mechanism: by descriptor-fixed-length descriptor

Buffer into which IO$_ACPCONTROL writes its output data. The p4 argument
is the address of a descriptor pointing to the output buffer.

OpenVMS System Services Reference 6–21

Network Pseudodevice Driver I/O Function Codes
IO$_ACPCONTROL

The format of the data returned in the output buffer is dictated by the call code
specified by the p1 argument.

• Strings returned by IO$_ACPCONTROL with a call code of INETACP$C_
ALIASES consist one of the following: host internet address, host name,
network internet address, or network name. All internet addresses are
formatted using dotted-decimal notation. Alias names are separated by a null
character (0). The length of the returned string includes all null characters
that separate alias names.

• Internet addresses returned by IO$_ACPCONTROL with a call code of
INETACP$C_TRANS are 32-bit value and in network byte order.

• All hostent and netent structures returned by IO$_ACPCONTROL with a
call code of INETACP$C_HOSTENT_OFFSET or INETACP$C_NETENT_
OFFSET are modified; pointers are replaced with offsets from the beginning
of the structure.

Condition Values Returned

SS$_NORMAL The service completed successfully
SS$_ABORT An error was detected while performing an ACP

function.
SS$_BADPARAM Programming or internal error. A bad

parameter (name or address) was specified in
a GET{HOST,NET}BY{NAME,ADDRESS} ACP
call.

SS$_BUFFEROVF Programming error. There was not enough space
for returning all alias names in a
GET{HOST,NET}BY{NAME,ADDRESS} ACP
call.

SS$_ENDOFFILE The information requested is not in the database.
SS$_ILLCNTRFUNC Illegal function.
SS$_NOPRIV No privilege for the execution of an ACP function.
SS$_RESULTOVF The ACP overflowed the buffer in returning a

parameter.
SS$_SHUT The local or remote node is no longer accepting

connections.

6–22 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_DEACCESS

IO$_DEACCESS

The IO$_DEACCESS function closes a connection and deletes a socket. Any
pending messages queued for transmission are sent before tearing down the
connection.

When used with the IO$M_SHUTDOWN function modifier, the IO$_DEACCESS
function shuts down all or part of a bidirectional connection on a socket. Use the
p4 argument to specify the disposition of pending I/O operations on the socket.

You can specify a wait time or time-to-linger socket parameter (TCPIP$C_
LINGER option) for transmission completion before disconnecting the connection.
Use the IO$_SETMODE or IO$_SETCHAR function to set and clear the
TCPIP$C_LINGER option.

If you set the TCPIP$C_LINGER option, a $QIO call that uses the
IO$_DEACCESS function allows data queued to the socket to arrive at the
destination. The system is blocked until data arrives at the remote socket. The
socket data structure remains open for the duration of the TCP idle time interval.

If you do not set the TCPIP$C_LINGER option (option is set to 0), a $QIO call
that uses the IO$_DEACCESS function discards any data queued to the socket
and deallocates the socket data structure.

Note

For compatibility with Compaq Tru64 UNIX, the TCP/IP Services forces a
time to linger of 2 minutes on TCP stream sockets.

Related Functions
The equivalent Sockets API functions are close() and shutdown().

Arguments

p4
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of shutdown flags to specify the disposition of pending I/O operations
on the socket. The p4 argument is used only with the IO$M_SHUTDOWN
function modifier. The following table lists available shutdown flags.

Shutdown Flag Description

TCPIP$C_DSC_RCV Discards messages from the receive queue and
disallows further receiving. Pending messages in
the receive queue for this connection are discarded.

TCPIP$C_DSC_SND Discards messages from the send queue and disallows
sending new messages. Pending messages in the
transmit queue for this connection are discarded.

OpenVMS System Services Reference 6–23

Network Pseudodevice Driver I/O Function Codes
IO$_DEACCESS

Shutdown Flag Description

TCPIP$C_DSC_ALL Discards all messages and disallows both sending and
receiving. All pending messages are discarded.
Specifying this flag has the same effect as issuing a
$CANCEL QIO followed by an IO$_DEACCESS QIO
without specifying any flags.

Function Modifiers

IO$M_SHUTDOWN Causes all or part of a full-duplex connection on
a socket to be shut down.

IO$M_NOW Regardless of a $QIO or $QIOW, if the system
detects a condition that would cause the
operation to block, the system completes the
I/O operation and returns the SS$_SUSPENDED
status code.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_BADPARAM The IO$_DEACCESS operation failed to specify

a socket.
SS$_CANCEL The I/O operation was canceled by a $CANCEL

system service.
SS$_DEVINTACT The network driver was not started.
SS$_DEVNOTMOUNT The network driver is loaded, but the INETACP

is not currently available for use.
SS$_NOLINKS The specified socket was not connected.
SS$_SHUT The local or remote node is no longer accepting

connections.
SS$_SUSPENDED The system detected a condition that might cause

the operation to block.

6–24 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_READVBLK

IO$_READVBLK

The IO$_READVBLK function transfers data received from an internet host to
the specified user buffers. Use both p1 and p2 arguments to specify a single user
buffer. Use the p6 argument to specify multiple buffers.

For connection-oriented protocols, such as TCP, data is buffered in system space
as a stream of bytes. The IO$_READVBLK function completes (1) when there
is no more data buffered in system space for this socket, or (2) when there is no
more available space in the user buffer. Data that is buffered in system space but
did not fit in the user buffer is available to the user in subsequent $QIOs.

For connectionless protocols, datagram and raw socket data is buffered in system
space as a chain of records. The user buffer specified with a IO$_READVBLK
function is filled with data that is buffered in one record. Each IO$_READVBLK
reads data from one record. The IO$_READVBLK function completes (1) when all
data from a record is transferred to the user buffer, or (2) when there is no more
available space in the user buffer. Any data remaining in the current record that
did not fit in the user buffer is discarded. A subsequent $QIO reads data from
the next record buffered in system space.

Use the management command SHOW DEVICE_SOCKET/FULL to display
counters related to read operations.

Related Functions
The equivalent Sockets API functions are read(), recv(), recvfrom(), and
recvmsg().

Arguments

p1
OpenVMS usage: buffer
type: vector byte (unsigned)
access: read only
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32- or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of the buffer to receive the incoming data. The length of this buffer is
specified by the p2 argument.

p2
OpenVMS usage: buffer_length
type: quadword unsigned (Alpha); longword unsigned (VAX)
access: read only
mechanism: by 64-bit value (Alpha)

by 32-bit value (VAX)

The length (in bytes) of the buffer available to hold the incoming data. The
address of this buffer is specified by the p1 argument.

p3
OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_3 descriptor

OpenVMS System Services Reference 6–25

Network Pseudodevice Driver I/O Function Codes
IO$_READVBLK

The remote port number and internet address of the source of the datagram or
raw IP message (not TCP). The p3 argument is the address of an item_list_3
descriptor that points to the socket address structure into which the remote port
number and internet address of the message source is written.

Use the IO$_READVBLK function with the IO$M_EXTEND modifier to specify
a BSD Version 4.4 formatted socket address structure. If the IO$M_EXTEND
modifier is not specified, the IO$_READVBLK function returns a BSD Version 4.3
formatted socket address structure.

p4
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of flags to specify attributes for the read operations. Table 6–5 lists the
available read flags.

Table 6–5 Read Flags

Read Flag Description

TCPIP$C_MSG_OOB Reads an out-of-band byte.
TCPIP$C_MSG_PEEK Reads a message but leaves the message in the

queue.
TCPIP$C_MSG_NBIO Does not block the I/O operation if the

receive queue is empty (similar to using
IO$M_NOWAIT).

TCPIP$C_MSG_PURGE Flushes data from the queue (similar to using
IO$M_PURGE).

TCPIP$C_MSG_BLOCKALL Blocks the completion of the operation until the
buffer is filled completely or until the connection
is closed (similar to using IO$M_LOCKBUF).

p6
OpenVMS usage: buffer_list
type: vector byte (unsigned)
access: read only
mechanism: by 32- or 64-bit descriptor-fixed-length descriptor (Alpha)

by 32-bit descriptor-fixed-length descriptor (VAX)

Output buffer list describing one or more buffers to hold the incoming data. The
p6 argument is the 32- or 64-bit address (on Alpha systems) or the 32-bit address
(on VAX systems) of a descriptor that points to a output buffer list. Buffers are
filled in the order specified by the output buffer list. The transfer-length value
returned in the I/O status block is the total number of bytes transferred to all
buffers.

If you use the p1 and p2 arguments, do not use the p6 argument; they are
mutually exclusive.

6–26 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_READVBLK

Function Modifiers

IO$M_EXTEND Specifies the format of the socket address
structure to return when used with the p3
argument.
When specified, a BSD Version 4.4 formatted
socket address structure is returned that
identifies the source of the received UDP
datagram or raw IP message.

IO$M_INTERRUPT Reads an out-of-band (OOB) message.
This has the same effect as specifying the
TCPIP$C_MSG_OOB flag in the p4 argument.
On receiving a TCP/IP OOB character, TCP/IP
stores the pointer in the received stream with
the character that precedes the OOB character.
A read operation with a user-buffer size larger
than the size of the received stream up to the
OOB character completes and returns to the user
the received stream up to, but not including, the
OOB character.

To determine whether the socket must issue more
read $QIOs before getting all the characters
from the stream preceding an OOB character,
poll the socket. To do this, issue a $QIO
with the $IO_SENSEMODE function, and the
TCPIP$C_IOCTL subfunction that specifies the
SIOCATMARK command. The SIOCATMARK
values are as follows:

• 0 = Issue more read QIOs to read more data
before reading the OOB.

• 1 = The next read QIO will return the OOB.

Polling a socket is particularly useful when
the OOBINLINE socket option is set. When
the OOBINLINE is set, TCP/IP reads the OOB
character with the characters in the stream
(IO$_READVBLK), but not before reading
the preceding characters. Use this polling
mechanism to determine whether the first
character in the user buffer on the next read
is an OOB character.

OpenVMS System Services Reference 6–27

Network Pseudodevice Driver I/O Function Codes
IO$_READVBLK

On a socket without the OOBINLINE
option set, a received OOB will always be
read by issuing a $QIO with either the
IO$_READVBLK | IO$M_INTERRUPT or
IO$_READVBLK and the TCPIP$C_MSG_OOB
flag set. This can occur regardless of how many
preceding characters in the stream have been
returned to the user.

IO$M_LOCKBUF Blocks the completion of the I/O operation until
the user buffer is completely filled or until the
connection is closed. This is particularly useful
when you want to minimize the number of $QIO
service calls issued to read a data stream of a set
size. This function modifier supports only stream
protocols.

IO$M_NOWAIT Regardless of a $QIO or $QIOW, if the
system detects a condition that would
cause the operation to block, the system
completes the I/O operation and returns the
SS$_SUSPENDED status code.

IO$M_PURGE Flushes data from the socket receive queue
(discards data). If the user buffer is larger than
the amount of data in the queue, all data is
flushed.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ABORT Programming error, INET management error, or

hardware error. The execution of the I/O was
aborted.

SS$_ACCVIO Access to an invalid memory location or buffer
occurred.

6–28 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_READVBLK

SS$_BADPARAM One of the following methods was used to specify
a $QIO function with an invalid parameter:

• An I/O function executed without specifying
a device socket. First issue a $QIO with
the IO$_SETMODE function and the proper
parameters to create the device socket.

• An IO$_READVBLK function that does not
specify a correct buffer address (p1 or p6 is
null).

• An IO$_READVBLK function specified an
invalid vectored buffer (p6 is an invalid
descriptor).

• The socket has the OOBINLINE option
set, or there is no OOB character in
the socket’s OOB queue because the
character was either already read or never
received. This condition happens only if
you use the IO$M_INTERRUPT modifier
or set the TCPIP$C_MSG_OOB flag with
IO$_READVBLK.

SS$_CANCEL The I/O operation was canceled by a $CANCEL
system service.

SS$_DEVINTACT The network driver was not started.
SS$_DEVNOTMOUNT The network driver is loaded, but the INETACP

is not currently available for use.
SS$_INSFMEM INET management or programming error. There

is not enough buffer space for allocation. The
INET software needs more buffer space. You
should set a higher quota for the dynamic buffer
space, or shut down and restart your internet
with a larger static buffer space.

SS$_IVBUFLEN Programming error occurred for one of the
following reasons:

• The size of the buffer for an I/O function is
insufficient.

• An IO$_READVBLK specified a correct
buffer address (p1 valid), but does not specify
a buffer length (p2 is null).

SS$_LINKDISCON A virtual circuit (TCP/IP) was closed at the
initiative of the peer.

SS$_NOLINKS Programming error. Read attempt on
unconnected TCP socket.

SS$_SHUT The network is being shut down.

OpenVMS System Services Reference 6–29

Network Pseudodevice Driver I/O Function Codes
IO$_READVBLK

SS$_SUSPENDED The operation is blocked for one of the following
reasons:

• No messages were received, so the receive
operation cannot complete. The socket is
marked as nonblocking.

• The socket has the OOBINLINE option clear,
and the OOB character has already been
read.

SS$_TIMEOUT This applies to a socket that has KEEPALIVE
set. The connection was idle for longer than the
timeout interval (10 minutes is the default).

SS$_UNREACHABLE Communication status. The remote host or
network is unreachable.

6–30 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SENSEMODE/IO$_SENSECHAR

IO$_SENSEMODE/IO$_SENSECHAR

The IO$_SENSEMODE and IO$_SENSECHAR functions return one or more
parameters (characteristics) pertaining to the network driver.

Socket names (local and remote peer) are returned by using IO$_SENSEMODE’s
p3 and p4 arguments. Other parameters such as socket and protocol options, are
specified in an output parameter list using the IO$_SENSEMODE p6 argument.

IO$_SENSEMODE p3 and p4 arguments can be used with the p6 argument in a
single $QIO system service to return socket names as well as socket and protocol
options. IO$_SENSEMODE processes arguments in this order: p3, p4, p6. If
IO$_SENSEMODE detects an error, the IOSB contains the error and argument
address or the value that was at fault.

Refer to individual argument descriptions for details about specifying the type
and format of output parameters.

Arguments

p3
OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_3 descriptor

The port number and internet address of the local name associated with the
socket. The p3 argument is the address of an item_list_3 descriptor that points
to the socket address structure into which the local name is written.

Use the IO$_SENSEMODE function with the IO$M_EXTEND modifier to specify
a BSD Version 4.4 formatted socket address structure.

Related Functions
The Sockets API equivalent for this function is getsockname().

p4
OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_3 descriptor

The port number and internet address of the remote name associated with the
socket’s peer. The p3 argument is the address of an item_list_3 descriptor that
points to the socket address structure into which the peer name is written.

Use the IO$_SENSEMODE function with the IO$M_EXTEND modifier to specify
a BSD Version 4.4 formatted socket address structure.

Related Functions
The equivalent Sockets API function is getpeername().

p6
OpenVMS usage: output_parameter_list
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

OpenVMS System Services Reference 6–31

Network Pseudodevice Driver I/O Function Codes
IO$_SENSEMODE/IO$_SENSECHAR

Output parameter list describing one or more parameters to return. The p6
argument is the address of an item_list_2 descriptor that points to and identifies
the type of output parameter list.

The following are the types of output parameter lists:

Symbolic Name Output Parameter List Type

TCPIP$C_SOCKOPT Socket options
TCPIP$C_TCPOPT TCP protocol options
TCPIP$C_IPOPT IP protocol options
TCPIP$C_IOCTL I/O control commands

Each item_list_3 structure appearing in an output parameter list describes an
individual parameter or item to return. See Table A–1 for details about socket
option parameters; see Table A–2 for TCP protocol option parameters; and see
Table A–3 for IP protocol option parameters. Unsupported socket or protocol
options are ignored.

Each ioctl_com structure that appears in an output parameter list contains an
I/O control command — the get IOCTL request code and its associated IOCTL
structure address. See Table B–1 for details about IOCTL command parameters.

Unsupported socket options are ignored.

The equivalent Sockets API functions are getsockopt() and ioctl().

Function Modifiers

IO$M_EXTEND Specifies the format of the socket address
structure to return when used with the p3 or
p4 arguments.
When specified, a BSD Version 4.4 formatted
socket address structure is returned.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ACCVIO The service cannot access a buffer specified by

one or more arguments.
SS$_BADPARAM Programming error occurred for one of the

following reasons:

• $QIO system service was specified without a
socket.

• Error occurred processing a socket or protocol
option.

SS$_DEVINTACT The network driver was not started.
SS$_DEVNOTMOUNT The network driver is loaded, but the INETACP

is not currently available for use.

6–32 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SENSEMODE/IO$_SENSECHAR

SS$_ILLCNTRFUNC Programming error. The operation is
unsupported for one of the following reasons:

• An invalid IO$_SENSEMODE function for
the interface was specified. The interface
does not have an IOCTL routine.

• An IO$_SENSEMODE function that requires
a socket was specified, but the device did not
have one. Create a socket and then issue the
function.

• An unsupported operation was performed on
at least one of the following protocols: raw
IP, datagram, or stream sockets.

SS$_INSFMEM Insufficient system dynamic memory to complete
the service.

SS$_IVBUFLEN The size of a socket option buffer specified with
the IO$_SENSEMODE function was invalid.

SS$_NOSUCHDEV Programming error or INET management
error. An INET address is not in the Address
Resolution Protocol (ARP) table. An attempt to
show or delete an ARP table entry failed.

SS$_NOLINKS The specified socket was not connected.
SS$_NOOPER Programming error. An attempt to get ARP

information occurred without OPER privilege.
SS$_PROTOCOL A network protocol error occurred. The address

family specified in the socket address structure is
not supported.

SS$_SHUT The local or remote node is no longer accepting
connections.

SS$_UNREACHABLE The remote node is currently unreachable.

OpenVMS System Services Reference 6–33

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE/IO$_SETCHAR

IO$_SETMODE/IO$_SETCHAR

The IO$_SETMODE and IO$_SETCHAR functions set one or more parameters
(characteristics) pertaining to the network driver.

Sockets are created using the IO$_SETMODE p1 argument. Names are assigned
to sockets using the IO$_SETMODE p3 argument. Active sockets are converted
to passive sockets using the IO$_SETMODE p4 argument. Other parameters,
such as socket and protocol options, are specified in an input parameter list using
the IO$_SETMODE p5 argument.

The IO$_SETMODE p1, p3, and p4 arguments can be used with the p5
argument in a single $QIO system service to set socket names as well as socket
and protocol options. IO$_SETMODE processes arguments in this order: p1,
p3, p4, p5. If IO$_SETMODE detects an error, the IOSB contains the error and
argument address or the value that was at fault.

Refer to individual argument descriptions for details about specifying the type
and format of input parameters.

Arguments

p1
OpenVMS usage: socket_characteristics
type: longword (unsigned)
access: read only
mechanism: by reference

Longword specifying the protocol, socket type, and address family, of a new
socket. The p1 argument is the address of the longword containing the socket
characteristics.

The newly created socket is marked privileged if the image that creates a socket
runs in a process that has a privileged UIC or has BYPASS, OPER, or SYSPRV
privilege.

The following table shows protocol codes:

Protocol Description

TCPIP$C_TCP TCP/IP protocol
TCPIP$C_UDP UDP/IP protocol
TCPIP$C_RAW_IP IP protocol

Table 6–6 lists the valid socket types.

Table 6–6 Socket Types

Socket Type Description

TCPIP$C_STREAM Permits bidirectional, reliable, sequenced, and
unduplicated data flow without record boundaries.

(continued on next page)

6–34 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE/IO$_SETCHAR

Table 6–6 (Cont.) Socket Types

Socket Type Description

TCPIP$C_DGRAM Permits bidirectional data flow with record
boundaries. No provisions for sequencing, reliability,
or unduplicated messages.

TCPIP$C_RAW Permits access to the IP layer; used to develop new
protocols that are layered upon the IP layer.

The following table shows address family codes:

Address Family Description

TCPIP$C_AF_INET Internet domain (default).
TCPIP$C_AUXS Accept hand-off of a socket already created and

initialized by the auxiliary server.

Related Functions

The equivalent Sockets API function is socket().

p3
OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

The local name (that is, port number and internet address) to assign to the
socket. The p3 argument is the address of an item_list_2 descriptor that points
to the socket address structure containing the local name.

Related Functions
The equivalent Sockets API function is bind() .

p4
OpenVMS usage: connection_backlog
type: byte (unsigned)
access: read only
mechanism: by value

Maximum limit of outstanding connection requests for a socket that is connection
oriented. If more connection requests are received than are specified, the
additional requests are ignored so that TCP retries can succeed.

Related Functions
The equivalent Sockets API function is listen().

p5
OpenVMS usage: input_parameter_list
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

Input parameter list describing one or more parameters to set. The p5 argument
is the address of an item_list_2 descriptor that points to and identifies the type
of input parameter list.

OpenVMS System Services Reference 6–35

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE/IO$_SETCHAR

The following are the types of input parameter lists:

Symbolic Name Input Parameter List Type

TCPIP$C_SOCKOPT Socket options
TCPIP$C_TCPOPT TCP protocol options
TCPIP$C_IPOPT IP protocol options
TCPIP$C_IOCTL I/O control commands

Each item_list_2 structure appearing in an input parameter list describes an
individual parameter or item to set. See Table A–1 for details about socket option
parameters; see Table A–2 for TCP protocol option parameters; and see Table A–3
for details about IP protocol option parameters. Unsupported socket or protocol
options are ignored.

Each ioctl_com structure that appears in an input parameter list contains an
I/O control command — the set IOCTL request code and its associated IOCTL
structure address. See Table B–1 for details about IOCTL command parameters.

You can use one $QIO system call to set up several socket options at once.

Unsupported socket options are ignored.

To execute set IOCTL operations, you need a system UIC or SYSPRV, BYPASS,
or OPER privilege.

Related Functions
The equivalent Sockets API functions are setsockopt() and ioctl().

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ACCVIO The service cannot access a buffer specified by

one or more arguments.
SS$_BADPARAM Programming error that occurred for one of the

following reasons:

• $QIO system service was specified without a
socket.

• Error occurred processing a socket or protocol
option.

SS$_DEVINTACT The network driver was not started.
SS$_DEVNOTMOUNT The network driver is loaded, but the INETACP

is not currently available for use.
SS$_DUPLNAM Programming error. The port being bound is

already in use. An attempt to bind the socket to
an address and port failed.

6–36 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE/IO$_SETCHAR

SS$_EXQUOTA Programming or INET management error
occurred for one of the following reasons:

• An attempt to create a new socket with the
IO$_SETMODE function occurred, but the
maximum number of sockets was exceeded.
Increase the maximum number of sockets
(INET parameter).

• The number of sockets specified with
the IO$_SETMODE (listen) exceeds the
maximum number of sockets. Increase
the maximum number of sockets (INET
parameter), or reduce the listen parameter
(the number of sockets the listener socket can
create).

SS$_FILALRACC Programming error. The INET address is already
in use. An attempt to bind the socket to an
address and port failed.

SS$_ILLCNTRFUNC Programming error. The operation is not
supported for one of the following reasons:

• An invalid IO$_SETMODE function for the
interface occurred that does not have an
IOCTL routine.

• An attempt to perform an IO$_SETMODE
function required a socket, but the device did
not have one. Create a socket before issuing
the function.

SS$_IVADDR Programming error. The INET address you
specified using the IO$_SETMODE function
was not placed into the system. This resulted
in an invalid port number or INET address
combination. The INET address was invalid for
one of the following reasons:

• Port zero and INET address zero are not
allowed, or port zero is not allowed when
using an IO$_ACCESS or IO$_WRITEVBLK
function.

• An attempt to exceed the limit of allowable
permanent entries in the ARP table occurred.

• An attempt to bind a raw IP socket when
there are no interfaces defined in the system
occurred.

• An attempt to bind a raw IP socket to a null
INET address occurred.

SS$_INSFMEM Insufficient system dynamic memory to complete
the service.

OpenVMS System Services Reference 6–37

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE/IO$_SETCHAR

SS$_IVBUFLEN The size of a socket option buffer specified with
the IO$_SETMODE function was invalid.

SS$_NOLICENSE Programming or system management error. A
TCP/IP Services license is not present.

SS$_NOOPER Programming or INET management error. An
attempt to execute an I/O function that needs the
OPER privilege occurred.

SS$_NOPRIV Programming or INET management error. There
are not enough privileges for the attempted
operation for one of the following reasons:

• An attempt to broadcast an IP datagram on
a process without a system UIC or SYSPRV,
BYPASS, or OPER privilege occurred.

• An attempt to use a reserved port number
lower than 1024 occurred.

• An attempt to access a process that requires
a system UIC or SYSPRV, or BYPASS
privilege occurred.

• An attempt to use raw IP on a privileged
socket that requires the SYSPRV or BYPASS
privilege occurred.

SS$_NOSUCHDEV Programming error or INET management error.
An attempt to show or delete an ARP table entry
failed because the INET address is not found.

SS$_NOSUCHNODE Programming error or INET management error.
An attempt to delete a route from the routing
table failed because the entry was not found.

6–38 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE/IO$_SETCHAR

SS$_PROTOCOL Programming error. A specified protocol or
address family caused an error for one of the
following reasons:

• An invalid protocol type was specified at
socket creation.

• An unsupported protocol was specified.

• A protocol type that was not found in the
internal tables was specified.

• The address family is unsupported for one of
the following reasons:

An unsupported address family with
the IO$_SETMODE subfunction was
specified. Instead, specify the TCPIP$C_
AF_INET or TCPIP$C_UNSPEC address
family.

An unsupported address family for a
remote INET address with the IO$_
ACCESS or IO$_WRITEVBLK function
was specified. Instead, specify the
TCPIP$C_AF_INET address family.

An unsupported address family for
the local INET address with the IO$_
SETMODE function was specified.
Instead, specify the TCPIP$C_AF_INET
address family.

An unsupported address family for the
INET address of the routing module was
specified. Instead, specify the TCPIP$C_
AF_INET address family.

SS$_SHUT The local or remote node is no longer accepting
connections.

OpenVMS System Services Reference 6–39

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_OUTBAND

IO$_SETMODE | IO$M_OUTBAND

The IO$_SETMODE | IO$M_OUTBAND function/modifier combination requests
that the asynchronous system trap (AST) for an out-of-band (OOB) character
be delivered to the requesting process. This is to be done only when an OOB
character is received on the socket and there is no waiting read request. The
socket must be a TCP (stream) socket.

The Enable OOB character AST function allows an Attention AST to be delivered
to the requesting process only once. After the AST occurs, the function must
explicitly reenable AST delivery before a new AST can be delivered. This function
is subject to AST quotas.

Arguments

p1
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the OOB character AST
routine. To disable the AST, p1 equals 0.

p2
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be delivered to the AST routine specified by the p1 argument.

p3
OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to deliver the AST.

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ABORT Programming, INET management, or hardware

error.
SS$_ACCVIO Programming error. An attempt to access an

invalid memory location or buffer occurred.

6–40 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_OUTBAND

SS$_BADPARAM Programming error. A $QIO service with
an invalid parameter occurred for one of the
following reasons:

• An attempt to execute an IO$_SETMODE
function (all subfunctions, except socket
creation) without specifying a device socket.
Instead, create a device socket by issuing a
$QIO with the IO$_SETMODE function and
the proper parameters.

• A socket option was specified incorrectly.

SS$_DEVACTIVE INET management error. An attempt to change
the static INET parameters occurred. If new
parameters are needed, shut down the internet,
reset the static parameters, and issue the START
COMMUNICATION command.

SS$_DEVINTACT INET management error. The driver was not
started. Issue a START COMMUNICATION
command before issuing $QIO functions.

SS$_DEVNOTMOUNT INET management error. The INET startup
procedure executed incorrectly. The driver was
loaded, but the INET_ACP was not activated.
Execute the INET startup procedure again.

SS$_DUPLNAM Programming error. An attempt to bind a port
that is already in use occurred. An attempt to
bind the socket to an address and port failed.

SS$_EXQUOTA Programming or INET management error
occurred because of one of the following reasons:

• An attempt to create a new socket with the
IO$_SETMODE function failed because the
maximum number of sockets was exceeded.
Increase the maximum number of sockets
(INET parameter).

• The number of sockets specified with
the IO$_SETMODE (listen) exceeds the
maximum number of sockets. Increase
the maximum number of sockets (INET
parameter), or reduce the listen parameter
(the number of sockets that the listener
socket can create).

SS$_FILALRACC Programming error. INET address is already in
use. An attempt to bind the socket to an address
and port failed.

SS$_INSFMEM Programming or system management error: Not
enough resources to allocate new socket.

OpenVMS System Services Reference 6–41

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_OUTBAND

SS$_ILLCNTRFUNC Programming error. Operation is not supported
because of one of the following reasons:

• Invalid IO$_SETMODE (IOCTL) function
was used for the interface. The interface
does not have an IOCTL routine.

• An attempt to perform an IO$_SETMODE
(IOCTL) function that required a socket, but
the device did not have one. Create a socket
and issue the IOCTL function.

SS$_IVADDR Programming error. The specified INET address
is not in the system, and an invalid port number
or an invalid INET address combination was
specified with an IO$_SETMODE function (a
bind) for one of the following reasons:

• An attempt to bind the address failed because
the INET address is not in the system and
port zero and INET address zero are not
allowed.

• An attempt to make a permanent entry in an
ARP table that was full failed.

• An attempt was made to bind an IP socket
(raw IP) when there are no interfaces defined
in the system.

• An attempt was made to bind an IP socket
(raw IP) to a null INET address.

SS$_IVBUFLEN Programming error. The socket option buffer has
an invalid size.

SS$_NOLICENSE Programming or system management error.
TCP/IP Services not present.

SS$_NOOPER Programming or INET management error. An
attempt was made to execute an I/O function
that needs the OPER privilege.

6–42 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_OUTBAND

SS$_NOPRIV Programming or INET management error. Not
enough privileges for the attempted operation for
one of the following reasons:

• Broadcasting an IP datagram was denied
because the process does not have a system
UIC or SYSPRV, BYPASS, or OPER privilege.

• An attempt was made to use a reserved port
number lower than 1024.

• An operation accesses only processes that
have a system UIC or SYSPRV or BYPASS
privilege.

• Raw IP protocol can be used only on
privileged sockets. The process must have a
SYSPRV or BYPASS privilege.

SS$_NOSUCHDEV Programming error or INET management error.
An INET address is not in the ARP table. An
attempt to show or delete an ARP table entry
failed.

SS$_NOSUCHNODE Programming or INET management error. An
attempt to delete a route from the routing table
failed because a route entry was not found.

OpenVMS System Services Reference 6–43

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_OUTBAND

SS$_PROTOCOL Programming error because of one of the
following reasons:

• The protocol type specified at socket creation
is not valid.

• The protocol is not supported.

• The protocol type specified is not found in the
internal tables and therefore is an invalid
type.

• The address family is not supported for one
of the following reasons:

The address family specified with
an IO$_SETMODE function (IOCTL
subfunction) is not supported. The
address family should be the TCPIP$C_
AF_INET or TCPIP$C_UNSPEC address
family.

The address family of the local INET
address specified with an IO$_SETMODE
(bind) function is not supported. The
address family should be the TCPIP$C_
AF_INET address family.

The address family of the INET address
specified in a request to the routing
module is not supported. The address
family should be the TCPIP$C_AF_INET
address family.

SS$_SHUT The local or remote node is no longer accepting
connections.

6–44 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_READATTN

IO$_SETMODE | IO$M_READATTN

The IO$_SETMODE | IO$M_READATTN function/modifier combination requests
that an Attention AST be delivered to the requesting process when a data packet
is received on the socket and there is no waiting read request.

The Enable Read Attention AST function enables an Attention AST to be
delivered to the requesting process only once. After the AST occurs, the function
must explicitly reenable AST delivery before the AST can occur again. The
function is subject to AST quotas.

Consider the following when using IO$M_READATTN:

• There is a one-to-one correspondence between the number of times you enable
an Attention AST and the number of times the AST is delivered. For example,
for each enabled AST, one AST is delivered. If you enable an Attention AST
several times, several ASTs are delivered for one event when an event occurs.

• If an out-of-band (OOB) Attention AST is enabled, the OOB AST is delivered,
regardless of the following:

An enabled Read Attention AST

The TCPIP$C_OOBINLINE socket option

A READ $QIO waiting for completion on the socket

If the TCPIP$C_OOBINLINE option is set, then a waiting READ $QIO is
completed and the OOB character is returned in the data stream.

• If both an OOB AST and a Read Attention AST are enabled, only the OOB
AST is delivered when an OOB character is received.

• If a Read Attention AST is enabled and the TCPIP$C_OOBINLINE socket
option is set, a waiting READ $QIO completes and the OOB character is
returned in the data stream.

• If a Read Attention AST is enabled and the TCPIP$C_OOBINLINE socket
option is not set (clear), the Read Attention AST is delivered when an OOB
character is received, regardless of whether a READ $QIO is waiting for
completion. In this case, the OOB character is not returned in the data
stream. Therefore, if the OOB character is the only character received, the
READ $QIO does not complete.

Arguments

p1
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the Read Attention AST
routine. To disable the AST, set p1 to 0.

p2
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS System Services Reference 6–45

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_READATTN

AST parameter to be delivered to the AST routine.

p3
OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to deliver the AST.

Condition Values Returned

SS$_ABORT Programming, INET management, or hardware
error. The route entry already exists, so
the attempt to add a route entry using the
IO$_SETMODE function failed.

SS$_ACCVIO Programming error. An attempt to access an
invalid memory location or buffer occurred.

SS$_BADPARAM Programming error. The parameter specified
for a $QIO function was invalid for one of the
following reasons:

• An attempt to execute the IO$_SETMODE
subfunctions without specifying a device
socket occurred. Instead, create a device
socket by issuing a $QIO with the IO$_
SETMODE function and the proper
parameters.

• A socket option was specified incorrectly.

SS$_DEVACTIVE INET management error. An attempt to change
the static INET parameter was unsuccessful.
If you need new parameters, shut down the
internet, reset the static parameters, and issue
the START COMMUNICATION command.

SS$_DEVINTACT INET management error. The driver was not
started. Issue a START COMMUNICATION
command before issuing $QIO functions.

SS$_DEVNOTMOUNT INET management error. TCP/IP Services
improperly executed the startup procedure. The
driver was loaded, but the INET_ACP was not
activated. Execute the INET startup procedure
again.

SS$_DUPLNAM Programming error. An attempt to bind a port
already in use occurred so the operation to bind
the socket to the address and port failed.

6–46 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_READATTN

SS$_EXQUOTA Programming or INET management error. The
quota for the valid number of sockets caused an
error for one of the following reasons:

• An attempt to exceed the maximum number
of sockets by creating new socket with the
IO$_SETMODE function occurred. Increase
the maximum number of allowable sockets
(INET parameter) before creating more
sockets.

• The number of sockets specified with the
IO$_SETMODE function exceeds the
maximum number of sockets allowed.
Increase the maximum number of sockets
(INET parameter) or reduce the number of
sockets that the listener socket can create
(listen parameter).

SS$_FILALRACC Programming error. An attempt to bind the
socket to an address that is already in use
occurred and the operation failed.

SS$_INSFMEM Programming or system management error.
The system does not have enough resources to
allocate new socket.

SS$_ILLCNTRFUNC Programming error. Operation is not supported.

• Invalid IO$_SETMODE (IOCTL) function
was used for the interface. The interface
does not have an IOCTL routine.

• An attempt was made to perform an IO$_
SETMODE (IOCTL) function that required
a socket, but the device did not have one.
Create a socket and issue the IOCTL
function.

OpenVMS System Services Reference 6–47

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_READATTN

SS$_IVADDR Programming error. The specified INET address
is not in the system, and an invalid port number
or an invalid INET address combination was
specified with an IO$_SETMODE function (a
bind).

• An attempt to bind the address failed because
the INET address is not in the system, port
zero and INET address zero are not allowed,
or port zero is not allowed when using an
IO$_ACCESS or IO$_WRITEVBLK function.

• An attempt to make a permanent entry in
the ARP table failed because of lack of space.
Too many permanent entries.

• An attempt was made to bind an IP socket
(raw IP) when there are no interfaces defined
in the system.

• An attempt was made to bind an IP socket
(raw IP) to a null INET address.

SS$_IVBUFLEN Programming error. The socket option buffer has
an invalid size.

SS$_NOLICENSE Programming or system management error.
TCP/IP Services not present.

SS$_NOOPER Programming or INET management error. An
attempt was made to execute an I/O function
that needs the OPER privilege.

SS$_NOPRIV Programming or INET management error. Not
enough privileges for the attempted operation.

• Broadcasting an IP datagram was denied
because the process does not have a system
UIC or SYSPRV, BYPASS, or OPER privilege.

• An attempt was made to use a reserved port
number lower than 1024.

• An operation accesses only processes that
have a system UIC or SYSPRV, or BYPASS
privilege.

• Raw IP protocol can be used only on
privileged sockets. The process must have a
SYSPRV or BYPASS privilege.

SS$_NOSUCHDEV Programming error or INET management error.
An INET address is not in the ARP table. An
attempt to show or delete an ARP table entry
failed.

SS$_NOSUCHNODE Programming error or INET management error.
An attempt to delete a route from the routing
table failed because a route entry was not found.

6–48 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_READATTN

SS$_PROTOCOL Programming error.

• The protocol type specified at socket creation
is not valid.

• The protocol is not supported.

• The protocol type specified is not found in the
internal tables. It is an invalid type.

• The address family is not supported:

The address family specified with an IO$_
SETMODE function (IOCTL subfunction)
is not supported. The address family
should be the TCPIP$C_AF_INET or
TCPIP$C_UNSPEC address family.

The address family of the remote INET
address specified with an IO$_ACCESS
or IO$_WRITEVBLK function is not
supported (UDP/IP or TCP/IP). The
address family should be the TCPIP$C_
AF_INET address family.

The address family of the local INET
address specified with an IO$_SETMODE
(bind) function is not supported. The
address family should be the TCPIP$C_
AF_INET address family.

The address family of the INET address
that is specified in a request to the
routing module is not supported. The
address family should be the TCPIP$C_
AF_INET address family.

SS$_SHUT The local or remote node is no longer accepting
connections.

OpenVMS System Services Reference 6–49

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_WRTATTN

IO$_SETMODE | IO$M_WRTATTN

The IO$_SETMODE | IO$M_WRTATTN function/modifier combination (IO$M_
WRTATTN is Enable Write Attention AST) requests that an Attention AST be
delivered to the requesting process when a data packet can be queued to the
socket. For TCP sockets, this occurs when space becomes available in the TCP
transmit queue.

The Enable Write Attention AST function enables an Attention AST to be
delivered to the requesting process only once. After the AST occurs, the function
must explicitly reenable AST delivery before the AST can occur again. The
function is subject to AST quotas.

There is a one-to-one correspondence between the number of times you enable an
Attention AST and the number of times the AST is delivered. For example, for
each enabled AST, one AST is delivered. If you enable an Attention AST several
times, several ASTs are delivered for one event when the event occurs.

You can use the management command SHOW DEVICE_SOCKET to display
information about the socket’s characteristics, options, and state.

Arguments

p1
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the Write Attention AST
routine. To disable the AST, p1 is set to 0.

p2
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be delivered to the AST routine.

p3
OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to deliver the AST.

Condition Values Returned

SS$_ABORT Programming error, INET management error,
or hardware error. The route specified with
the IO$_SETMODE function already exists.
Therefore, the operation failed.

6–50 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_WRTATTN

SS$_ACCVIO Programming error. An attempt to access an
invalid memory location or buffer occurred.

SS$_BADPARAM Programming error. The parameter specified for
the $QIO I/O function was invalid for one of the
following reasons:

• An attempt to execute the IO$_SETMODE
functions without specifying a device socket
occurred. Instead, create a device socket by
issuing a $QIO with the IO$_SETMODE
function and the proper parameters.

• A socket option was specified incorrectly.

SS$_DEVACTIVE INET management error. You attempted to
change the static INET parameters. If you need
new parameters, shut down the internet, reset
the static parameters, and issue the START
COMMUNICATION command.

SS$_DEVINTACT INET management error. The driver is not
started. Issue a START COMMUNICATION
command before issuing $QIO functions.

SS$_DEVNOTMOUNT INET management error. The INET startup
procedure was improperly executed. The
driver was loaded, but the INET_ACP was not
activated. Execute the INET startup procedure
again.

SS$_DUPLNAM Programming error. Port that is being bound is
already in use. An attempt to bind the socket to
an address and port failed.

SS$_EXQUOTA Programming or INET management error.

• An attempt to create a new socket with
the IO$_SETMODE function and it failed
because the maximum number of sockets was
exceeded. Increase the maximum number of
sockets (INET parameter), and then create a
new socket.

• The number of sockets specified with the
IO$_SETMODE function exceeds the
allowable maximum number of sockets.
Increase the maximum number of sockets
(INET parameter), or reduce the number of
sockets that the listener socket can create
(listen parameter).

SS$_FILALRACC Programming error. Because the INET address
is already in use, an attempt to bind the socket
to an address and port failed.

SS$_INSFMEM Programming or system management error.
There are not enough resources to allocate a new
socket.

OpenVMS System Services Reference 6–51

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_WRTATTN

SS$_ILLCNTRFUNC Programming error. The operation is
unsupported for one of the following reasons:

• An invalid IO$_SETMODE function for the
interface was specified. The interface does
not have an IOCTL routine.

• An attempt to execute an IO$_SETMODE
function that required a socket, but the
device did not have one. Instead, create a
socket and issue the function.

SS$_IVADDR Programming error. An invalid port number and
INET address combination was specified with the
IO$_SETMODE bind function. This caused the
operation to fail for one of the following reasons:

• An illegal combination of port zero and INET
address zero was specified.

• An attempt to make a permanent entry in
the ARP table occurred, and the operation
failed because of lack of space. There are too
many permanent entries.

• An attempt to bind a raw IP socket occurred
when there were no interfaces defined in the
system.

• An attempt to bind a raw IP socket to a null
INET address occurred.

SS$_IVBUFLEN Programming error. An invalid size was specified
for the socket option buffer.

SS$_NOLICENSE Programming or system management error.
There is no TCP/IP Services license present.

SS$_NOOPER Programming or INET management error. An
attempt to execute an I/O function that needs the
OPER privilege occurred.

SS$_NOPRIV Programming or INET management error. The
operation failed for one of the following reasons:

• An attempt to broadcast an IP datagram for
a process without having a system UIC or
SYSPRV, BYPASS, or OPER privilege.

• An attempt to use a reserved port number
lower than 1024 occurred.

• An attempt to access a process without
having a system UIC or SYSPRV, or BYPASS
privilege occurred.

• An attempt to use raw IP on a socket that is
not a privileged socket occurred. To do this,
the process must have SYSPRV or BYPASS
privilege.

6–52 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_WRTATTN

SS$_NOSUCHDEV Programming error or INET management error.
An attempt to show or delete an entry in the
ARP table occurred. However, because the INET
address was not in the ARP table, the operation
failed.

SS$_NOSUCHNODE Programming error or INET management error.
An attempt to delete a route from the routing
information table (RIT) occurred. However,
because the route was not found in the RIT, the
operation failed.

SS$_PROTOCOL Programming error.

• An invalid protocol type was specified when
creating a socket.

• An unsupported protocol was specified.

• An unsupported protocol type was specified
because it is not found in the internal tables.

• An unsupported address family was specified
for one of the following reasons:

OpenVMS System Services Reference 6–53

Network Pseudodevice Driver I/O Function Codes
IO$_SETMODE | IO$M_WRTATTN

An invalid address
family was specified
with an IO$_SETMODE
subfunction. Instead,
specify the TCPIP$C_
AF_INET or TCPIP$C_
UNSPEC address family.

An address family of the
remote INET address for
a datagram or stream
socket was specified
with an IO$_ACCESS
or IO$_WRITEVBLK
function. Instead, specify
the TCPIP$C_AF_INET
address family.

An invalid address family
of the local INET address
was specified with an
IO$_SETMODE bind
function. Instead, specify
the TCPIP$C_AF_INET
address family.

You made a request to
the routing module by
specifying the address
family of the INET
address. Instead, specify
the TCPIP$C_AF_INET
address family.

SS$_SHUT The local or remote node is no longer accepting
connections.

6–54 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_WRITEVBLK

IO$_WRITEVBLK

The IO$_WRITEVBLK function transmits data from the specified user buffers to
an internet host. Use both p1 and p2 arguments to specify a single user buffer.
Use the p5 argument to specify multiple buffers.

For connection-oriented protocols, such as TCP, if the socket transmit buffer is
full, the IO$_WRITEVBLK function is blocked until the socket transmit buffer
has room for the user data.

For connectless-oriented protocols, such as UDP and raw IP, the user data
is transmitted in one datagram. If the user data is greater than the socket’s
transmit quota, the error code (SS$_TOOMUCHDATA) is returned.

Related Functions
The equivalent Sockets API functions are send(), sendto(), sendmsg(), and
write().

Arguments

p1
OpenVMS usage: buffer
type: vector byte (unsigned)
access: read only
mechanism: by 32- or 64-bit reference (Alpha)

by 32-bit reference (VAX)

The 32- or 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of the buffer containing the data to be transmitted. The length of this
buffer is specified by the p2 argument.

p2
OpenVMS usage: buffer_length
type: quadword unsigned (Alpha); longword unsigned (VAX)
access: read only
mechanism: by 64-bit value (Alpha)

by 32-bit value (VAX)

The length (in bytes) of the buffer containing data to be transmitted. The address
of this buffer is specified by the p1 argument.

p3
OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

The remote port number and internet address of the message destination. The
p3 argument is the address of an item_list_2 descriptor pointing to the socket
address structure containing the remote port number and internet address.

p4
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS System Services Reference 6–55

Network Pseudodevice Driver I/O Function Codes
IO$_WRITEVBLK

Longword of flags to specify attributes for this write operation. The following
table lists the available write flags:

Write Flag Description

TCPIP$C_MSG_OOB Writes an out-of-band (OOB) byte.
TCPIP$C_MSG_DONTROUTE Sends message directly without routing.
TCPIP$C_MSG_NBIO Completes the I/O operation and returns an

error if a condition arises that would cause
the I/O operation to be blocked. (Similar to
using IO$M_NOWAIT.)

p5
OpenVMS usage: buffer_list
type: vector byte (unsigned)
access: read only
mechanism: by 32- or 64-bit descriptor-fixed-length descriptor (Alpha)

by 32-bit descriptor-fixed-length descriptor (VAX)

Input buffer list describing one or more buffers containing the data to be
transmitted. The p5 argument is the 32- or 64-bit address (on Alpha systems)
or the 32-bit address (on VAX systems) of a descriptor pointing to a input buffer
list. Buffers are transmitted in the order specified by the input buffer list. The
transfer-length value returned in the I/O status block is the total number of bytes
transferred from all buffers.

If you use the p1 and p2 arguments, do not use the p5 argument; they are
mutually exclusive.

Function Modifiers

IO$M_EXTEND Allows the use of extended modifiers with BSD
Version 4.4. Valid only for datagram sockets
(UDP or raw IP); ignored for TCP.

IO$M_INTERRUPT Sends an OOB message.
IO$M_NOWAIT Regardless of a $QIO or $QIOW, if the system

detects a condition that would cause the
operation to block, the system completes the
I/O operation and returns the SS$_SUSPENDED
status code.
When using this function modified, always
check the message length in the IOSB to ensure
that all data is transferred. IO$_WRITEVBLK
returns a success status even if data is only
partially transferred.

6–56 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_WRITEVBLK

Condition Values Returned

SS$_ABORT Programming error, INET management error,
or hardware error. The execution of the I/O was
aborted.

SS$_ACCVIO Programming error. An attempt was made to
access an invalid memory location or buffer.

SS$_BADPARAM Programming error. A $QIO I/O function was
specified using an invalid parameter.

• An attempt was made to execute an
IO$_WRITEVBLK function without
specifying a device socket. First create a
device socket by issuing an IO$_SETMODE
function and the proper arguments.

• An attempt was made to issue an
IO$_WRITEVBLK function that did not
specify a correct buffer address (p1 or p5 is
null).

• An attempt was made to issue an IO$_
WRITEVBLK that specifies an invalid
vectored buffer (p5 specifies an invalid
address descriptor).

SS$_CANCEL The I/O operation was canceled by the $CANCEL
system service.

SS$_DEVINTACT The network driver was not started.
SS$_DEVNOTMOUNT The network driver is loaded, but the INETACP

in not currently available for use.
SS$_EXQUOTA Returned when process resource mode wait is

disabled. There is no internet request packet
(IRP) available for completing the request.
Increase the buffered I/O quota.

SS$_FILALRACC Programming error.

• INET address is already in use. An attempt
was made to bind the socket to an address
but the port failed.

• IP protocol (raw socket). An attempt was
made to specify a remote INET socket
address with an IO$_WRITEVBLK function,
while an INET address was already specified
with an IO$_ACCESS function.

• UDP/IP protocol. An attempt was made to
specify a remote INET socket address with
an IO$_WRITEVBLK function, while an
INET address was already specified with the
IO$_ACCESS function.

OpenVMS System Services Reference 6–57

Network Pseudodevice Driver I/O Function Codes
IO$_WRITEVBLK

SS$_ILLCNTRFUNC Programming error. Unsupported operation on
the protocol (IP, UDP/IP, TCP/IP).

SS$_INSFMEM INET management or programming error
returned when process resource mode wait is
disabled. Not enough system space for buffering
user data. A higher quota for socket buffer
space needs to be set, or the internet needs
more dynamic buffer space (number of dynamic
clusters should be increased).

SS$_IVADDR Programming error. The specified INET address
is not in the system, and an invalid port number
or an INET address combination was specified
with an IO$_WRITEVBLK operation.

• An attempt to bind the socket failed because
the INET address is not in the system, port
number zero and INET address zero are not
allowed, or port zero is not allowed with an
IO$_ACCESS or IO$_WRITEVBLK function.

• An attempt to get an interface INET address,
broadcast mask, or network mask failed.

• A send request was made on a datagram-
oriented protocol, but the destination address
is unknown or not specified.

SS$_IVBUFLEN Programming error.

• The size of the buffer for an I/O function is
insufficient.

• An attempt was made to issue an
IO$_WRITEVBLK function that specifies
a correct buffer address (p1 valid) but does
not specify a buffer length (p2 is null).

SS$_LINKDISCON Notification. Connection completion return code.
The virtual circuit (TCP/IP) was closed at the
initiative of the peer. The application must stop
sending data and must either shut down or close
the socket.

SS$_PROTOCOL Programming error. The address family of
the remote INET address specified with an
IO$_WRITEVBLK function is not supported
(UDP/IP or TCP/IP). The address family should
be the TCPIP$C_AF_INET address family.

6–58 OpenVMS System Services Reference

Network Pseudodevice Driver I/O Function Codes
IO$_WRITEVBLK

SS$_NOLINKS Programming error. The socket was not
connected (TCP/IP), or an INET port and address
were not specified with an IO$_ACCESS (UDP/IP
or IP).

• An IO$_WRITEVBLK with no remote INET
socket address was issued on a socket that
was not the object of an IO$_ACCESS
function (raw IP).

• An IO$_WRITEVBLK with no remote INET
socket address was issued on a socket that
was not the object of an IO$_ACCESS
function (UDP/IP).

• An attempt was made to disconnect a socket
that is not connected, or an attempt was
made to issue an IO$_WRITEVBLK function
on an unconnected socket (TCP/IP).

SS$_SHUT The local or remote node is no longer accepting
connections.

SS$_SUSPENDED The system detected a condition that might cause
the operation to block.

SS$_TIMEOUT Programming error, INET management error, or
hardware error.

• A TCP/IP connection timed out after several
unsuccessful retransmissions.

• On a TCP socket where KEEPALIVE is set,
the connection was idle for longer than the
timeout interval (The default is 10 minutes).

SS$_TOOMUCHDATA Programming or INET management error. The
message size was too large.

• An IP packet that is broadcast cannot be
fragmented.

• The Not Fragment IP flag was set and the
IP datagram was too large to be sent without
being fragmented.

• Internal error. The length of the Ethernet
datagram does not allow enough space for
the minimum IP header.

• The message to be sent on a UDP/IP or raw
IP socket is larger than the socket buffer
high water allows.

• An attempt was made to send or receive
more than 16 buffers specified with the p5
argument.

OpenVMS System Services Reference 6–59

Network Pseudodevice Driver I/O Function Codes
IO$_WRITEVBLK

SS$_UNREACHABLE Communication status. The remote host is
currently unreachable.
Hardware error. The data link adapter detected
an error and shut itself off. The TCP/IP Services
software is waiting for the adapter to come back
on line.

6–60 OpenVMS System Services Reference

OpenVMS System Services Reference
6.3 TELNET Port Driver I/O Function Codes

6.3 TELNET Port Driver I/O Function Codes
The TELNET port driver (TNDRIVER) provides terminal session support for
TCP stream connections using the RAW, NVT, RLOGIN, and TELNET protocols.
Either a remote device or an application can be present at the remote endpoint of
the connection.

A user program can manage a TELNET connection with the standard OpenVMS
$QIO system service by using the IO$_TTY_PORT and IO$_TTY_PORT_BUFIO
I/O function codes. This section describes these I/O function codes and their
associated arguments.

6.3.1 Interface Definition
The following definitions are used by the interface. The symbols are defined in
SYS$LIBRARY:TNIODEF.H.

6.3.1.1 Item List Codes
Table 6–7 describes the symbols used with the p5 parameter.

Table 6–7 List Codes for the p5 Item

Item Code
Maximum
Size Description

TN$_ACCPORNAM 64 Access port name string. When
written, the string’s length is
determined by the item_length
field. The value of item_length
should not be more than 63 bytes.
When read, the string is returned
in ASCIC format (the first byte
contains the string’s length), so a
size of 64 is appropriate.

TN$_CHARACTERISTICS 4 Characteristics mask. This
longword contains a bit mask of
the device’s characteristics read or
to be written. (See Table 6–8.)

TN$_CONNECTION_ATTEMPTS 4 Reconnection attempts. This item
is the number of unsuccessful
reconnection attempts which have
been made on a reconnectable
device. The value will be
reinitialized when a successful
connection is made. This item is
read only.

TN$_CONNECTION_INTERVAL 4 Minimum time (in seconds) before
reconnection attempts.

TN$_CONNECTION_TIMEOUT 4 Current time (in seconds) since the
last reconnection attempt. This
item is read only.

TN$_DATA_HIGH 4 Maximum amount of output data
(in bytes) buffered at the network
port. This number does not affect
the amount of data buffered within
the socket.

(continued on next page)

OpenVMS System Services Reference 6–61

OpenVMS System Services Reference
6.3 TELNET Port Driver I/O Function Codes

Table 6–7 (Cont.) List Codes for the p5 Item

Item Code
Maximum
Size Description

TN$_DEVICE_UNIT 4 Terminal device unit number.
When written, this value must be
between 1 and 9999.

TN$_IDLE_INTERVAL 4 Maximum idle time (in seconds)
allowed before a connection is to
be broken. Connections are not
broken if the device is stalled.

TN$_IDLE_TIMEOUT 4 Current time (in seconds) since last
output on the terminal. This item
is read only.

TN$_LOCAL_ADDRESS 32 Local sockaddr of the active
connection. When written, the
value of item_length determines
the size of the sockaddr. Note
that the sockaddr is in BSD
Version 4.4 format, which includes
a sockaddr size field. (C programs
should be compiled with the
_SOCKADDR_LEN symbol
defined.) This item is read only.

TN$_NETWORK_DEVICE_NAME 64 Name of the network pseudodevice
currently bound to the terminal.
When read, the data is returned
in ASCIC format (the first byte
contains the string’s length). This
item is read only.

TN$_PROTOCOL 4 Session protocol. (See Table 6–9.)

TN$_REMOTE_ADDRESS 32 Remote peer’s sockaddr of the
active connection. Note that the
sockaddr is in BSD Version
4.4 format, which includes a
sockaddr size field. The size
of the sockaddr should be
determined from this field. This
item is read only.

TN$_SERVICE_TYPE 4 Class of terminal service. (See
Table 6–10.)

TN$_STATUS 4 Current device and session status.
This item is read only.

6–62 OpenVMS System Services Reference

OpenVMS System Services Reference
6.3 TELNET Port Driver I/O Function Codes

6.3.1.2 Characteristic Mask Bits
Table 6–8 describes the characteristic mask bits used with the p5 parameter.

Table 6–8 Characteristic Mask Bits

Characteristic Description

TN$M_AUTOCONNECT The device supports automatic connect/reconnect.

TN$M_LOGIN_ON_DASSGN Initiate a login when the TELNET device is
deassigned. This characteristic requires the BYPASS
or SYSNAM privilege or executive or kernel mode
calls.

TN$M_LOGIN_TIMER Used in conjunction with TN$M_LOGIN_ON_
DASSGN, this bit indicates that the login completion
timer applies. If the TN device fails to login within 60
seconds, the connection will be broken and the device
deallocated. This characteristic requires the BYPASS
or SYSNAM privileges or executive or kernel mode
calls.

TN$M_PERMANENT_UCB The TELNET device is to remain until explicitly
deleted.

TN$M_RETAIN_ON_DASSGN The TELNET device is not to be deleted upon the
deassignment of the last channel to this device. This
condition is cleared on this last deassignment, so that
a subsequent assign and deassign will result in the
device being deleted.

TN$M_VIRTUAL_TERMINAL When logging in under this device, a virtual terminal
is to be created by TTDRIVER.

6.3.1.3 Protocol Types
Table 6–9 describes the protocol types used with the p5 parameter.

Table 6–9 Protocol Type Codes

Protocol Type Description

TN$K_PROTOCOL_UNDEFINED There is no explicit protocol for this session.
Data is transmitted and received on the socket
without any interpretation. This is a raw
connection.

TN$K_PROTOCOL_NVT Network Virtual Terminal (NVT) protocol.
The protocol understands basic session control
but does not include the options negotiation
present in the TELNET protocol.

TN$K_PROTOCOL_RLOGIN BSD Remote Login protocol. This simple
protocol provides some special control
character support but lacks the architecture
independence of the NVT and TELNET
protocols.

TN$K_PROTOCOL_TELNET TELNET protocol. Including the basic NVT
protocol, TELNET adds support for options
negotiation. This can provide an enhanced
terminal session depending upon the client
and server involved.

OpenVMS System Services Reference 6–63

OpenVMS System Services Reference
6.3 TELNET Port Driver I/O Function Codes

6.3.1.4 Service Types
Table 6–10 describes the service type codes used with the p5 parameter.

Table 6–10 Service Type Codes

Service Type Description

TN$K_SERVICE_NONE The service type is not currently known.

TN$K_SERVICE_INCOMING The service is an incoming connection.

TN$K_SERVICE_OUTGOING The service is an outgoing connection.

6.3.2 Passing Parameters to the TELNET Port Driver
The IO$_TTY_PORT function is used to pass $QIO parameters through the
terminal driver to the TELNET port driver. The actual subfunction is encoded as
an option mask and may be:

• IO$M_TN_STARTUP — Bind socket to a TELNET terminal.

• IO$M_TN_SHUTDOWN — Unbind socket from a TELNET terminal.

6–64 OpenVMS System Services Reference

TELNET Port Driver I/O Function Codes
IO$_TTY_PORT | IO$M_TN_STARTUP

IO$_TTY_PORT | IO$M_TN_STARTUP

Bind socket to a TELNET terminal.

This subfunction will bind a created (connected) socket to a TELNET terminal
device.

Arguments

p1
OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

The p1 argument contains the channel number of the socket over which the
TELNET session is to be established.

p2
OpenVMS usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

The p2 argument contains the protocol selection.

p3
OpenVMS usage: characteristics_mask
type: longword (unsigned)
access: read only
mechanism: by value

The p3 argument specifies a mask of characteristics to apply against the
connection. See Table 6–8 for possible values.

Description

The IO$M_TN_STARTUP subfunction allows the application to communicate
over a socket using the terminal driver QIO interface. Note that incoming
and outgoing data is processed by the terminal driver, and that the terminal’s
characteristics may affect the format of the data. Be aware that by default, the
terminal will echo incoming data back to the sender.

Once the subfunction completes, the application is free to perform all terminal
QIO functions on the connection. While the socket is bound to a terminal device,
it will process neither the IO$_READxBLK nor the IO$_WRITExBLK function,
and will return the error SS$_DEVINUSE.

Condition Values Returned

SS$_IVCHAN Programming error. The specified channel is not
valid.

OpenVMS System Services Reference 6–65

TELNET Port Driver I/O Function Codes
IO$_TTY_PORT | IO$M_TN_STARTUP

SS$_IVMODE Programming error. The access mode of the
channel is more privileged than the access mode
of the terminal’s channel.

SS$_NOPRIV Programming error. The TN$M_LOGIN_ON_
DASSGN characteristic was specified in a
characteristics mask from a QIO in USER or
SUPERVISOR mode without either the BYPASS
or SYSPRV privilege.

SS$_NOTNETDEV Programming error. The specified channel is an
assignment to a non-BG device.

SS$_PROTOCOL Programming error. The specified protocol
number is not valid, or the internet network
is not available.

6–66 OpenVMS System Services Reference

TELNET Port Driver I/O Function Codes
IO$_TTY_PORT | IO$M_TN_SHUTDOWN

IO$_TTY_PORT | IO$M_TN_SHUTDOWN

Unbind socket from a TELNET terminal.

This subfunction will unbind a previously bound socket-terminal connection.

Arguments

p1
OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

The p1 argument contains the channel number of the socket to establish the
TELNET session.

Description

The IO$M_TN_SHUTDOWN subfunction allows the application to break a
previously bound socket-terminal connection (created with IO$M_TN_STARTUP).
The channel must be from an assignment to the same network pseudodevice in
the socket-terminal connection.

Upon completion, the application retains the assignments to the connection
and the TELNET terminal, but they are no longer related. Any subsequent
IO$_READxBLK or IO$_WRITExBLK function on the socket channel will no
longer return the error SS$_DEVINUSE.

Condition Values Returned

SS$_IVCHAN Programming error. The specified channel is not
valid.

SS$_IVMODE Programming error. The access mode of the
channel is more privileged than the access mode
of the terminal’s channel.

SS$_NOTNETDEV Programming error. The specified channel is an
assignment to a non-BG device.

SS$_DEVREQERR Programming error. The device on the channel
does not match the device in the socket-terminal
connection.

OpenVMS System Services Reference 6–67

OpenVMS System Services Reference
IO$_TTY_PORT | IO$M_TN_SHUTDOWN

6.3.3 Buffered Reading and Writing of Item Lists
The IO$_TTY_PORT_BUFIO function is used to pass $QIO parameters through
the terminal driver to the TELNET port driver. IO$_TTY_PORT_BUFIO differs
from IO$_TTY_PORT in that certain subfunctions accept buffered item lists for
reading or writing parameters to the terminal device.

• IO$M_TN_SENSEMODE — Read device parameters.

• IO$M_TN_SETMODE — Write device parameters.

The subfunctions of IO$_TTY_PORT_BUFIO accept an item list for input or
output. Figure 6–1 shows the format of this item list.

Figure 6–1 Subfunction Item List

VM-0449A-AI

item_code item_length

item_address

0 0

Item 1

End of list

31 16 15 0

Items 2...n~~ ~~
...

The item list is terminated with an item_code and item_length, both of which are
zero.

The subfunctions of IO$_TTY_PORT_BUFIO can be combined into a single
QIO. For example, the IO$M_TN_SETMODE and IO$M_TN_CONNECT can
be combined to set the device’s parameters and then to attempt to make a
connection.

The subfunctions are performed in the following order:

1. IO$M_TN_SETMODE

2. IO$M_TN_CONNECT

3. IO$M_TN_SENSEMODE

4. IO$M_TN_DISCON

Note

Certain items are read only (IO$M_TN_SENSEMODE) and cannot be
written (IO$M_TN_SETMODE). Normally, attempting to write such items
would result in the error SS$_BADATTRIB. However, if a combination
operation (IO$M_TN_SENSEMODE | IO$M_TN_SETMODE) is being
performed, these items will not result in an error. Rather, the items
will be ignored in the IO$M_TN_SETMODE processing, and the QIO
will continue with IO$M_TN_SENSEMODE processing, returning the
information that the item specifies.

6–68 OpenVMS System Services Reference

TELNET Port Driver I/O Function Codes
IO$_TTY_PORT_BUFIO | IO$M_TN_SENSEMODE

IO$_TTY_PORT_BUFIO | IO$M_TN_SENSEMODE

Read device parameters.

Arguments

p5
OpenVMS usage: item_list_2
type: vector byte (unsigned)
access: read only
mechanism: by reference

The p5 argument is the address of an item list that contains a summary of
information to be read from the device.

Description

The IO$M_TN_SENSEMODE subfunction of IO$_TTY_PORT_BUFIO is used to
read the parameters associated with a device.

Condition Values Returned

SS$_BADATTRIB Programming error. The item code within the
list is not valid. This could be because of its
code, an attempt to write a read-only parameter,
or inappropriate size. The address of the item’s
buffer is returned in the second longword of the
I/O status block.

SS$_IVBUFLEN Programming error. The length of the specified
item is not acceptable. The address of the item’s
buffer is returned in the second longword of the
I/O status block.

SS$_NOPRIV Programming error. An item that requires a
privilege which the requestor does not have is
present in the item list. The address of the item’s
buffer is returned in the second longword of the
I/O status block.

OpenVMS System Services Reference 6–69

TELNET Port Driver I/O Function Codes
IO$_TTY_PORT_BUFIO | IO$M_TN_SETMODE

IO$_TTY_PORT_BUFIO | IO$M_TN_SETMODE

Write device parameters.

Arguments

p5
OpenVMS usage: item_list_2
type: vector (byte unsigned)
access: read only
mechanism: by reference

The p5 argument is the address of an item list that contains a summary of
information to be written to the device.

Description

The IO$M_TN_SETMODE subfunction of IO$_TTY_PORT_BUFIO is used to
write the parameters associated with a device.

Condition Values Returned

SS$_BADATTRIB Programming error. The item code within the
list is not valid. This could be because of its
code, an attempt to write a read-only parameter,
or inappropriate size. The address of the item’s
buffer is returned in the second longword of the
I/O status block.

SS$_DUPLNAM Programming error. An attempt to set the
device’s unit number via the TN$_DEVICE_
UNIT item has failed because that specified unit
number was already present.

SS$_IVBUFLEN Programming error. The length of the specified
item is not acceptable. The address of the item’s
buffer is returned in the second longword of the
I/O status block.

SS$_NOPRIV Programming error. An item that requires a
privilege which the requester does not have is
present in the item list. The address of the item’s
buffer is returned in the second longword of the
I/O status block.

6–70 OpenVMS System Services Reference

A
Socket Options

This appendix describes the socket options that you can set with the Sockets
API setsockopt() function and the $QIO system service IO$_SETMODE and
IO$_SETCHAR I/O function codes. You can query the value of these socket
options using the Sockets API getstockopt() function or the $QIO system
service IO$_SENSEMODE or IO$_SENSECHAR I/O function code.

The following tables list:

• Socket Options

• TCP Protocol Options

• IP Protocol Options

Table A–1 lists the socket options that are set at the SOL_SOCKET level and
their Sockets API and system service symbol names.

Table A–1 Socket Options

Sockets API Symbol System Service Symbol Description

SO_BROADCAST TCPIP$C_BROADCAST Permits the sending of broadcast messages.
Takes an integer parameter and requires
a system user identification code (UIC) or
SYSPRV, BYPASS, or OPER privilege. Optional
for a connectionless datagram.

SO_DONTROUTE TCPIP$C_DONTROUTE Indicates that outgoing messages should bypass
the standard routing facilities. Instead, the
messages are directed to the appropriate
network interface according to the network
portion of the destination address.

SO_ERROR TCPIP$C_ERROR Obtains the socket error status and clears the
error on the socket.

SO_FULL_DUPLEX_CLOSE TCPIP$C_FULL_DUPLEX_CLOSE When set before a close operation, the receive
and transmit sides of the communications are
closed.

SO_KEEPALIVE TCPIP$C_KEEPALIVE Keeps connections active. Enables the periodic
transmission of keepalive probes to the remote
system. If the remote system fails to respond to
the keepalive probes, the connection is broken.

If the SO_KEEPALIVE option is enabled, the
values of TCP_KEEPCNT, TCP_KEEPINTVL
and TCP_KEEPIDLE affect TCP behavior on
the socket.

(continued on next page)

Socket Options A–1

Socket Options

Table A–1 (Cont.) Socket Options

Sockets API Symbol System Service Symbol Description

SO_LINGER TCPIP$C_LINGER Lingers on a close() function if data is
present. Controls the action taken when unsent
messages queue on a socket and a close()
function is performed. Uses a linger structure
parameter defined in SOCKET.H to specify the
state of the option and the linger interval.

If SO_LINGER is specified, the system blocks
the process during the close() function
until it can transmit the data or until the time
expires. If the option is not specified and a
close() function is issued, the system allows
the process to resume as soon as possible.

SO_OOBINLINE TCPIP$C_OOBINLINE When this option is set, out-of-band data is
placed in the normal input queue. When
SO_OOBINLINE is set, the MSG_OOB flag
to the receive functions cannot be used to read
the out-of-band data. A value of 0 disables the
option, and a nonzero value enables the option.

SO_RCVBUF TCPIP$C_RCVBUF Sets the receive buffer size, in bytes. Takes an
integer parameter and requires a system UIC or
SYSPRV, BYPASS, or OPER privilege.

SO_RCVTIMEO TCPIP$C_RCVTIMEO For Compaq use only. Sets the timeout value for
a recv() operation. The argument to the two
sockopt functions is a pointer to a timeval
structure containing an integer value specified
in seconds.

SO_REUSEADDR TCPIP$C_REUSEADDR Specifies that the rules used in validating
addresses supplied by a bind() function
should allow reuse of local addresses. A value
of 0 disables the option, and a non-zero value
enables the option. The SO_REUSEPORT
option is automatically set when an application
sets SO_REUSEADDR

SO_REUSEPORT TCPIP$C_REUSEPORT Allows more than one process to receive UDP
datagrams destined for the same port. The
bind() call that binds a process to the port
must be preceded by a setsockopt() call
specifying this option. SO_REUSEPORT is
automatically set when an application sets the
SO_REUSEADDR option.

SO_SHARE TCPIP$C_SHARE Allows multiple processes to share the socket.

(continued on next page)

A–2 Socket Options

Socket Options

Table A–1 (Cont.) Socket Options

Sockets API Symbol System Service Symbol Description

SO_SNDBUF TCPIP$C_SNDBUF Sets the send buffer size in bytes. Takes an
integer parameter and requires a system UIC or
SYSPRV, BYPASS, or OPER privilege. Optional
for a connectionless datagram.

SO_SNDLOWAT TCPIP$C_SNDLOWAT Sets the low-water mark for a send()
operation. The send low-water mark is the
amount of space that must exist in the socket
send buffer for select() to return writeable.
Takes an integer value specified in bytes.

SO_SNDTIMEO TCPIP$C_SNDTIMEO For Compaq use only. Sets the timeout value
for a send() operation. The argument to the
two sockopt() functions is a pointer to a
timeval structure containing an integer value
specified in seconds.

SO_TYPE TCPIP$C_TYPE Obtains the socket type.

SO_USELOOPBACK TCPIP$C_USELOOPBACK For Compaq use only. This option applies only
to sockets in the routing domain (AF_ROUTE),
When you enable this option, the socket receives
a copy of everything sent on the socket.

Table A–2 lists the TCP protocol options that are set at the IPPROTO_TCP level
and their Sockets API and system service symbol names.

Table A–2 TCP Protocol Options

Sockets API Symbol System Service Symbol Description

TCP_KEEPCNT TCPIP$C_TCP_KEEPCNT When the SO_KEEPALIVE option is enabled, TCP sends
a keepalive probe to the remote system of a connection
that has been idle for a period of time. If the remote
system does not respond to the keepalive probe, TCP
retransmits a keepalive probe for a certain number of
times before a connection is considered to be broken.
The TCP_KEEPCNT option specifies the maximum
number of keepalive probes to be sent. The value of
TCP_KEEPCNT is an integer value between 1 and n,
where n is the value of the systemwide tcp_keepcnt
parameter. The default value for for the systemwide
parameter, tcp_keepcnt, is 8.

To display the values of the systemwide parameters,
enter the following command at the system prompt:

$ sysconfig -q inet
The default value for TCP_KEEPCNT is 8.

(continued on next page)

Socket Options A–3

Socket Options

Table A–2 (Cont.) TCP Protocol Options

Sockets API Symbol System Service Symbol Description

TCP_KEEPIDLE TCPIP$C_TCP_KEEPIDLE When the SO_KEEPALIVE option is enabled, TCP
sends a keepalive probe to the remote system of a
connection that has been idle for a period of time. If
the remote system does not respond to the keepalive
probe, TCP retransmits a keepalive probe for a certain
number of times before a connection is considered to
be broken. TCP_KEEPIDLE specifies the number of
seconds before TCP will send the initial keepalive probe.
The default value for TCP_KEEPIDLE is an integer
value between 1 and n, where n is the value for the
systemwide parameter tcp_keepidle. The default
value for tcp_keepidle, specified in half-second
units, is 150 (75 seconds).

To display the values of the systemwide parameters,
enter the following command at the system prompt:

$ sysconfig -q inet
The default value for TCP_KEEPIDLE is 75 seconds.

TCP_KEEPINIT TCPIP$C_TCP_KEEPINIT If a TCP connection cannot be established within a
period of time, TCP will time out the connection attempt.
The default timeout value for this initial connection
establishment is 75 seconds. The TCP_KEEPINIT
option specifies the number of seconds to wait before the
connection attempt times out. For passive connections,
the TCP_KEEPINIT option value is inherited from the
listening socket. The value of TCP_KEEPINIT is an
integer between 1 and n, where n is the value for the
systemwide parameter tcp_keepinit. The default
value of the systemwide parameter tcp_keepinit,
specified in half-second units, is 150 (75 seconds).

To display the values of the systemwide parameters,
enter the following command at the system prompt:

$ sysconfig -q inet
The TCP_KEEPINIT option does not require the
SO_KEEPALIVE option to be enabled.

TCP_KEEPINTVL TCPIP$C_TCP_KEEPINTVL When the SO_KEEPALIVE option is enabled, TCP
sends a keepalive probe to the remote system on a
connection that has been idle for a period of time. If the
remote system does not respond to a keepalive probe,
TCP retransmits the keepalive probe after a period of
time. The default value for this retransmit interval
is 75 seconds. The TCP_KEEPINTVL option specifies
the number of seconds to wait before retransmitting a
keepalive probe. The value of the TCP_KEEPINTVL
option is an integer between 1 and n, where n is the
value of the systemwide parameter tcp_keepintvl
which is specified in half-second units. The default value
for the systemwide parameter tcp_keepintvl is 150
(75 seconds).

To display the values of the systemwide parameters,
enter the following command at the system prompt:

$ sysconfig -q inet

(continued on next page)

A–4 Socket Options

Socket Options

Table A–2 (Cont.) TCP Protocol Options

Sockets API Symbol System Service Symbol Description

TCP_NODELAY TCPIP$C_TCP_NODELAY Specifies that the send() operation not be delayed to
merge packets.

Under most circumstances, TCP sends data when it
is presented. When outstanding data has not yet
been acknowledged, TCP gathers small amounts of
the data into a single packet and sends it when an
acknowledgment is received. This functionality can
cause significant delays for some clients that do not
expect replies (such as windowing systems that send a
stream of events from the mouse). The TCP_NODELAY
disables the Nagle algorithm, which reduces the number
of small packets on a wide area network.

TCP_MAXSEG TCPIP$C_TCP_MAXSEG Sets the maximum transmission unit (MTU) of a TCP
segment to a specified integer value from 1 to 65535.
The default is 576 bytes. Can only be set before a
listen() or connect() operation on the socket.
For passive connections, the value is obtained from the
listening socket.

Note that TCP does not use an MTU value that is less
than 32 or greater than the local network’s MTU. Setting
the option to zero results in the default behavior.

TCP_NODELACK TCPIP$C_TCP_NODELACK When specified, disables the algorithm that gathers
outstanding data that has not been acknowledged and
sends it in a single packet when acknowledgment is
received. Takes an integer value.

TCP protocol options that are obsolete but provided for backward compatibility

TCP_DROP_IDLE TCPIP$C_TCP_DROP_IDLE When the TCP_KEEPALIVE option is enabled, the
TCP_DROP_IDLE option specifies the time interval
after which a connection is dropped. The value of TCP_
DROP_IDLE is an integer specified in seconds. The
default value is 600 seconds.

When the TCP_DROP_IDLE option is set, the value
of the TCP_KEEPCNT option is calculated as the
value of TCP_DROP_IDLE divided by the value of
TCP_KEEPINTVL.

A call to getsockopt() function specifying
the TCP_DROP_IDLE option returns the result
of multiplying the values of TCP_KEEPCNT and
TCP_KEEPINTVL.

TCP_PROBE_IDLE TCPIP$C_TCP_PROBE_IDLE When the TCP_KEEPALIVE option is enabled, the
TCP_PROBE_IDLE option specifies the time interval
between the keepalive probes and for the connections
establishing the timeout. The default value for
TCP_PROBE_IDLE is 75 seconds. The value of
TCP_PROBE_IDLE is an integer specified in seconds.

When this option is set, TCP_KEEPINTVL,
TCP_KEEPIDLE and TCP_KEEPINIT are set to the
value specified for TCP_PROBE_IDLE.

A call to the getsockopt() function specifying
the TCP_PROBE_IDLE option returns the value of
TCP_KEEPINTVL.

Table A–3 lists options that are set at the IPPROTO_IP level and their Sockets
API and system service symbol names.

Socket Options A–5

Socket Options

Table A–3 IP Protocol Options

Sockets API Symbol System Service Symbol Description

IP_ADD_MEMBERSHIP TCPIP$C_IP_ADD_MEMBERSHIP Adds the host to the membership of a multicast
group.

A host must become a member of a multicast
group before it can receive datagrams sent to the
group.

Membership is associated with a single interface;
programs running on multihomed hosts may need
to join the same group on more than one interface.
Up to IP_MAX_MEMBERSHIPS (currently 20)
memberships may be added on a single socket.

IP_DROP_MEMBERSHIP TCPIP$C_IP_DROP_MEMBERSHIP Removes the host from the membership of a
multicast group.

IP_HDRINCL TCPIP$C_IP_HDRINCL If specified for a raw IP socket, you must build
the IP header for all datagrams sent on the raw
socket.

IP_MULTICAST_IF TCPIP$C_IP_MULTICAST_IF Specifies the interface for outgoing multicast
datagrams sent on this socket. The interface is
specified as an in_addr structure.

IP_MULTICAST_LOOP TCPIP$C_IP_MULTICAST_LOOP Disables loopback of local delivery.

If a multicast datagram is sent to a group which
the sending host is a member, a copy of the
datagram is looped back by the IP layer for local
delivery (the default). To disable the loopback
delivery, specify a value of 0.

IP_MULTICAST_TTL TCPIP$C_IP_MULTICAST_TTL Specifies the time-to-live (TTL) value for outgoing
multicast datagrams.

Takes an integer value between 0 and 255:

Value Action

0 Restricts distribution to applications
running on the local host.

1 Forwards the multicast datagram to
hosts on the local subnet.

2 - 255 With a multicast router attached to
the sending host’s network, forwards
multicast datagrams beyond the local
subnet.

Multicast routers forward the
datagram to known networks that
have hosts belonging to the specified
multicast group. The TTL value
is decremented by each multicast
router in the path. When the TTL
value is decremented to zero, the
datagram is no longer forwarded.

IP_OPTIONS TCPIP$C_IP_OPTIONS Provides IP options to be transmitted in the IP
header of each outgoing packet.

IP_RECVDSTADDR TCPIP$C_IP_RECVDSTADDR Enables a SOCK_DGRAM socket to receive the
destination IP address for a UDP datagram.

(continued on next page)

A–6 Socket Options

Socket Options

Table A–3 (Cont.) IP Protocol Options

Sockets API Symbol System Service Symbol Description

IP_RECVOPTS TCPIP$C_IP_RECVOPTS Enables a SOCK_DGRAM socket to receive IP
options.

IP_TTL TCPIP$C_IP_TTL Time to live (TTL) for a datagram.

IP_TOS TCPIP$C_IP_TOS Type of service (1-byte value).

Socket Options A–7

B
IOCTL Requests

The ioctl() Sockets API function and the IO$_SENSEMODE/IO$_SENSECHAR
and IO$_SETMODE/IO$_SETCHAR I/O function codes used with the $QIO
system service perform I/O control functions on a network device (BG:).

Table B–1 lists the IOCTL requests supported by TCP/IP Services, their data
types, the $QIO function code to use if using system services, and a description of
the operation.

Table B–1 IOCTL Requests

IOCTL Request Data Type
$QIO Function
Code Description

Socket Operations

SIOCSHIWAT int IO$_SETMODE Set high watermark.

SIOCGHIWAT int IO$_SENSEMODE Get high watermark.

SIOCSLOWAT int IO$_SETMODE Set low watermark.

SIOCGLOWAT int IO$_SENSEMODE Get low watermark.

SIOCATMARK int IO$_SENSEMODE Determines whether you are at
the out-of-band character mark.
The operation returns a nonzero
value if the socket’s read pointer
is currently at the end-of-band
mark or a zero value if the read
pointer is not at the out-of-band
mark. The value is returned in
the integer pointed to by the third
argument of the ioct() call.

Interface Operations

SIOCSIFADDR struct ifreq1 IO$_SETMODE Sets the interface address from
the ifr_addr member. The
initialization function for the
interface is also called.

SIOCSIFDSTADDR struct ifreq IO$_SETMODE Sets the point-to-point address
from the ifr_dstaddr member.

SIOCSIFFLAGS struct ifreq IO$_SETMODE Sets the interface flags from the
ifr_flags member.

1Defined in the IF.H header file.

(continued on next page)

IOCTL Requests B–1

IOCTL Requests

Table B–1 (Cont.) IOCTL Requests

IOCTL Request Data Type
$QIO Function
Code Description

Interface Operations

SIOCGIFFLAGS struct ifreq IO$_SENSEMODE Returns the interface flags
in the ifr_flags member.
The flags indicate whether
the interface is up (IFF_UP),
is a point-to-point interface
(IFF_POINTOPOINT), supports
broadcasts (IFF_BROADCAST), and
other flags.

SIOCSIFBRDADDR struct ifreq IO$_SETMODE Sets the broadcast address from
the ifr_broadaddr member.

SIOCSIFNETMASK struct ifreq IO$_SETMODE Sets the subnet address mask
from the ifr_addr member.

SIOCGIFMETRIC struct ifreq IO$_SENSEMODE Returns the interface routing
metric in the ifr_metric
member. The interface metric
is maintained by the kernel for
each interface but is used by the
routing daemon (routd). The
interface metric is added to the
hop count (to make an interface
less favorable).

SIOCSIFMETRIC struct ifreq IO$_SETMODE Sets the interface routing metric
from the ifr_metric member.

SIOCDIFADDR struct ifreq IO$_SETMODE Deletes an interface address

SIOCAIFADDR struct ifaliasreq1 IO$_SETMODE Adds or changes an interface alias.

SIOCPIFADDR struct ifaliasreq IO$_SETMODE Sets the primary interface
address.

SIOCADDMULTI struct ifreq IO$_SETMODE Adds a multicast address.

SIOCDELMULTI struct ifreq IO$_SETMODE Deletes a multicast address.

SIOCENABLBACK struct ifreq IO$_SETMODE Enables the loopback interface.

SIOCDISABLBACK struct ifreq IO$_SETMODE Disables the loopback interface.

SIOCSIPMTU struct ifreq IO$_SETMODE Sets the interface IP MTU value.

SIOCRIPMTU struct ifreq IO$_SENSEMODE Returns the interface IP MTU
value.

SIOCGIFINDEX struct ifreq IO$_SENSEMODE Returns the IF index value.

SIOCGMEDIAMTU struct ifreq IO$_SENSEMODE Returns the value of the media
MTU.

SIOCGIFTYPE struct ifreq IO$_SENSEMODE Returns the interface type.

SIOCGIFADDR struct ifreq IO$_SENSEMODE Returns the interface address.

SIOCGIFDSTADDR struct ifreq IO$_SENSEMODE Returns the point-to-point
interface address.

SIOCGIFBRDADDR struct ifreq IO$_SENSEMODE Returns the interface broadcast
address.

1Defined in the IF.H header file.

(continued on next page)

B–2 IOCTL Requests

IOCTL Requests

Table B–1 (Cont.) IOCTL Requests

IOCTL Request Data Type
$QIO Function
Code Description

Interface Operations

SIOCGIFCONF struct ifconf1 IO$_SENSEMODE Returns the interface list.

SIOCGIFNETMASK struct ifreq IO$_SENSEMODE Returns the interface subnet
address mask.

Routing Table Operations

SIOCADDRT struct ortentry2 IO$_SETMODE Adds an entry to the routing table.

SIOCDELRT struct ortentry IO$_SETMODE Deletes an entry from the routing
table.

ARP Cache Operations

SIOCSARP struct arpreq3 IO$_SETMODE Adds a new entry to or modifies an
existing entry in the ARP table.

SIOCDARP struct arpreq IO$_SETMODE Deletes an entry from the ARP
table.

SIOCGARP struct arpreq IO$_SENSEMODE Returns an ARP table entry.

1Defined in the IF.H header file.
2Defined in the ROUTE.H header file.
3Defined in the IF_ARP.H header file.

IOCTL Requests B–3

C
Data Types

As part of the OpenVMS common language environment, the TCP/IP system
services data types provide compatibility between procedure calls that support
many different high-level languages. Specifically, the OpenVMS data types apply
to both Alpha and VAX architectures as the mechanism for passing argument
data between procedures. This appendix describes the context and structure of
the TCP/IP system services data types and identifies the associated declarations
to each of the specific high-level language implementations.

C.1 OpenVMS Data Types
In Chapter 6, the OpenVMS usage entry in the TCP/IP Services documentation
format for system services indicates the OpenVMS data type of the argument.
Most data types can be considered conceptual types; that is, their meaning is
unique in the context of the OpenVMS operating system. The OpenVMS data
type access_mode is one example. The storage representation of this OpenVMS
type is an unsigned byte, and the conceptual content of this unsigned byte is
the fact that it designates a hardware access mode and therefore has only four
valid values: 0, kernel mode; 1, executive mode; 2, supervisor mode; and 3, user
mode. However, some OpenVMS data types are not conceptual types; that is,
they specify a storage representation but carry no other semantic content in the
OpenVMS context. For example, the data type byte_signed is not a conceptual
type.

Note

The OpenVMS usage entry is not a traditional data type such as the
OpenVMS standard data types—byte, word, longword, and so on. It
is significant only within the OpenVMS operating system environment
and is intended solely to expedite data declarations within application
programs.

To use the OpenVMS usage entry, perform the following steps:

1. Find the data type in Table C–1 and read its definition.

2. Find the same OpenVMS data type in the C and C++ language
implementation table (Table C–2) and its corresponding source language
type declaration.

3. Use this code as your type declaration in your application program. Note
that, in some instances, you might have to modify the declaration.

4. For all other OpenVMS data types not listed in Table C–2, refer to Appendix
F of the OpenVMS Programming Concepts, Volume 2 manual.

Data Types C–1

Data Types
C.1 OpenVMS Data Types

For both Alpha and VAX architectures, Table C–1 lists and describes OpenVMS
data type declarations for the OpenVMS usage entry of system services unique to
TCP/IP Services.

Table C–1 TCP/IP Services Usage Data Type Entries

Data Type Definition

buffer_list Structure that consists of one or more descriptors defining the length
and starting address of user buffers. On VAX systems, each descriptor
is a 32-bit fixed-length descriptor. On Alpha systems, each descriptor
can be a 32- or 64-bit fixed-length descriptor. For more information
concerning descriptors, see the OpenVMS Calling Standard.

input_parameter_list Structure that consists of one or more item_list_2 or ioctl_comm
structures.

Each item_list_2 structure describes an individual parameter that
can be set by a service. Such parameters include socket or protocol
options as identified by the item’s type field.

Each ioctl_comm structure describes an IOCTL command; its encoded
request code and address of its associated argument.

ioctl_comm Quadword structure that describes an IOCTL command’s encoded
request code and address of its associated argument. It contains two
longword fields, as depicted in the following diagram:

31 0

VM-0563A-AI

IOCTL request

IOCTL argument

The first field is a longword containing the IOCTL encoded request code
specifying the type of I/O control operation to be performed.

The second field is a longword containing the address of a variable or a
data structure targeted by this IOCTL command.

item_list_2 Quadword structure that describes the size, data type, and starting
address of a user-supplied data item. It contains three fields, as
depicted in the following diagram:

VM-0558A-AI

Length
31 16 15 0

Type

Address

The first field is a word containing the length (in bytes) of the user-
supplied data item being described.

The second field is a word containing a symbolic code specifying the
data type of the user-supplied data item.

The third field is a longword containing the starting address of the
user-supplied data item.

(continued on next page)

C–2 Data Types

Data Types
C.1 OpenVMS Data Types

Table C–1 (Cont.) TCP/IP Services Usage Data Type Entries

Data Type Definition

item_list_2 descriptor An item_list_2 structure, used as an argument descriptor and
containing structural information about the argument’s type and the
address of a data item. This data item is associated with the argument.

The format of this descriptor is unique to TCP/IP Services and
supplements argument descriptors defined in the OpenVMS Calling
Standard.

item_list_3 A 3-longword structure that describes the size, data type, and address
of a buffer in which a service writes information. It contains four fields,
as depicted in the following diagram:

VM-0559A-AI

Length
31 16 15 0

Type

Buffer address

Return length address

The first field is a word containing the length (in bytes) of the buffer
in which a service writes information. The length of the buffer needed
depends on the data type specified in the type field. If the value of
buffer length is too small, the service truncates the data.

The second field is a word containing a symbolic code and specifies the
type of information that a service is to return.

The third field is a longword containing the address of the buffer in
which a service writes the information.

The fourth field is a longword containing the address of a longword in
which a service writes the length in bytes of the information it actually
returned.

item_list_3 descriptor An item_list_3 structure, used as an argument descriptor and
containing structural information about the argument’s type and the
address of a buffer used to return service information. This buffer is
associated with the argument.

The format of this descriptor is unique to TCP/IP Services and
supplements argument descriptors defined in the OpenVMS Calling
Standard.

output_parameter_list Structure that consists of one or more item_list_3 or ioctl_comm
structures.

Each item_list_3 structure describes an individual parameter
that can be returned by a service. Such parameters include socket
or protocol options as identified by the item’s type field.

Each ioctl_comm structure describes an IOCTL command, its encoded
request code, and the address of its associated argument.

(continued on next page)

Data Types C–3

Data Types
C.1 OpenVMS Data Types

Table C–1 (Cont.) TCP/IP Services Usage Data Type Entries

Data Type Definition

socket_name Internet domain socket address structure that consists of a internet
address and a port number. The layout of socket address structures
varies between BSD Version 4.3 and BSD Version 4.4.

BSD Version 4.3 specifies a 16-byte socket address structure. It
contains four fields, as depicted in the following diagram:

VM-0566A-AI

Family
31 16 15 0

Port number

Internet address

Unused (MBZ)

The first field is a word identifying a socket address structure as
belonging to the internet domain (always a value of 2).

The second field is a word containing a 16-bit port number (stored in
network byte order) used to demultiplex transport-level messages.

The third field is a longword containing a 32-bit internet address (stored
in network byte order).

The fourth field is a quadword. It is unused but must be initialized to
all zeros.

BSD Version 4.4 specifies a 16-byte socket address structure. It
contains five fields, as depicted in the following diagram:

VM-0567A-AI

Family Length
31 16 15 8 7 0

Port number

Internet address

Unused (MBZ)

The first field is a byte containing the size of this socket address
structure (always a value of 16).

The second field is a byte identifying a socket address structure as
belonging to the internet domain (always a value of 2).

The third field is a word containing a 16-bit port number (stored in
network byte order) used to demultiplex transport-level messages.

The fourth field is a longword containing a 32-bit internet address
(stored in network byte order).

The fifth field is a quadword. It is unused but must be initialized to all
zeros.

(continued on next page)

C–4 Data Types

Data Types
C.1 OpenVMS Data Types

Table C–1 (Cont.) TCP/IP Services Usage Data Type Entries

Data Type Definition

subfunction_code Longword structure specifying the exact operation an IO$_
ACPCONTROL function is to perform. This structure has three fields,
as depicted in the following diagram:

VM-0568A-AI

31 16 15 8 7 0

Unused (MBZ) Call
code

Subfunction
code

The first field is a byte specifying the network ACP operation.

The second field is a byte specifying the network ACP suboperation.

The third field is word that is unused but must be initialized to all zeros
(MBZ).

socket_characteristics Longword structure specifying the address family, socket type, and
protocol of a new socket. This structure has three fields, as depicted in
the following diagram:

VM-0569A-AI

31 16 1524 23 0

ProtocolTypeAddress
family

The first field is a word specifying the protocol to be used with the
socket.

The second field is a byte specifying the socket type.

The third field is a byte specifying the address family.

C.2 C and C++ Implementations
Table C–2 lists the OpenVMS data types and their corresponding C and C++ data
type declarations.

Table C–2 C and C++ Implementations

OpenVMS Data Types C an C++ Implementations

buffer_list User defined1

input_parameter_list User defined1

ioctl_comm struct ioctl_comm
{
int ioctl_req; /* ioctl request code */
void *ioctl_arg; /* ioctl argument */
}

1The declaration of a user-defined data structure depends on how the data will be used. Such data structures can be
declared in a variety of ways, each of which is suitable only to specific applications.

(continued on next page)

Data Types C–5

Data Types
C.2 C and C++ Implementations

Table C–2 (Cont.) C and C++ Implementations

OpenVMS Data Types C an C++ Implementations

item_list_2 struct item_list_2
{
unsigned short length; /* item length */
unsigned short type; /* item type */
void *address; /* item address */
}

item_list_2 descriptor struct item_list_2
{
unsigned short length; /* argument length */
unsigned short type; /* argument type */
void *address; /* argument address */
}

item_list_3 struct item_list_3
{
unsigned short length; /* buffer length */
unsigned short type; /* buffer type */
void *address; /* buffer address */
unsigned int *retlen; /* buffer returned */

/* length address */
}

item_list_3 descriptor struct item_list_3
{
unsigned short length; /* argument length */
unsigned short type; /* argument type */
void *address; /* argument address */
unsigned int *retlen; /* argument returned */

/* length address */
}

output_parameter_list User defined1

socket_name #include <in.h>
struct sockaddr_in

subfunction_code struct acpfunc
{
unsigned char code; /* subfunction code */
unsigned char type; /* call code */
unsigned short reserved; /* reserved */

/* (must be zero) */
}

socket_characteristics struct sockchar
{
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
}

1The declaration of a user-defined data structure depends on how the data will be used. Such data structures can be
declared in a variety of ways, each of which is suitable only to specific applications.

C–6 Data Types

D
Error Codes

This appendix contains a table of Sockets API error codes and their equivalent
OpenVMS system service status codes (Table D–1). The Sockets API functions
use the Compaq C compiler.

Table D–1 Translation of Socket Error Codes to OpenVMS Status Codes

Sockets (Compaq C)
Error Code

OpenVMS
System Service
Status Code Meaning

0 SS$_NORMAL Success

1 EPERM SS$_ABORT Not owner

2 ENOENT SS$_ABORT No such file or directory

3 ESRCH SS$_NOSUCHNODE No such process

4 EINTR SS$_ABORT Interrupted system call

5 EIO SS$_ABORT I/O error

6 ENXIO SS$_NOSUCHDEV No such device or address

7 E2BIG SS$_ABORT Argument list too long

8 ENOEXEC SS$_ABORT Execution format error

9 EBADF SS$_BADPARAM Bad file number

10 ECHILD SS$_ABORT No children

11 EAGAIN SS$_ABORT No more processes

12 ENOMEM SS$_INSFMEM Not enough core

13 EACCES SS$_ABORT Permission denied

14 EFAULT SS$_ACCVIO Bad address

15 ENOTBLK SS$_ABORT Block device required

16 EBUSY SS$_ABORT Mount device busy

17 EEXIST SS$_FILALRACC File exists

18 EXDEV SS$_ABORT Cross-device link

19 ENODEV SS$_ABORT No such device

20 ENOTDIR SS$_ABORT Not a directory

21 EISDIR SS$_ABORT Is a directory

22 EINVAL SS$_BADPARAM Invalid argument

23 ENFILE SS$_ABORT File table overflow

24 EMFILE SS$_ABORT Too many open files

(continued on next page)

Error Codes D–1

Error Codes

Table D–1 (Cont.) Translation of Socket Error Codes to OpenVMS Status Codes

Sockets (Compaq C)
Error Code

OpenVMS
System Service
Status Code Meaning

25 ENOTTY SS$_ABORT Not a typewriter

26 ETXTBSY SS$_ABORT Text file busy

27 EFBIG SS$_ABORT File too large

28 ENOSPC SS$_ABORT No space left on device

29 ESPIPE SS$_ABORT Illegal seek

30 EROFS SS$_ABORT Read-only file system

31 EMLINK SS$_ABORT Too many links

32 EPIPE SS$_LINKDISCON Broken pipe

33 EDOM SS$_BADPARAM Argument too large

34 ERANGE SS$_TOOMUCHDATA Result too large

35 EWOULDBLOCK SS$_SUSPENDED Operation would block

36 EINPROGRESS SS$_ABORT Operation now in progress

37 EALREADY SS$_ABORT Operation already in progress

38 ENOTSOCK SS$_NOTNETDEV Socket operation on nonsocket

39 EDESTADDRREQ SS$_NOSUCHNODE Destination address required

40 EMSGSIZE SS$_TOOMUCHDATA Message too long

41 EPROTOTYPE SS$_PROTOCOL Protocol wrong type for socket

42 ENOPROTOOPT SS$_PROTOCOL Protocol not available

43 EPROTONOSUPPORT SS$_PROTOCOL Protocol not supported

44 ESOCKTNOSUPPORT SS$_PROTOCOL Socket type not supported

45 EOPNOTSUPP SS$_ILLCNTRFUNC Operation not supported on socket

46 EPFNOSUPPORT SS$_PROTOCOL Protocol family not supported

47 EAFNOSUPPORT SS$_PROTOCOL Address family not supported

48 EADDRINUSE SS$_DUPLNAM Address already in use

49 EADDRNOTAVAIL SS$_IVADDR Requested address cannot be
assigned

50 ENETDOWN SS$_UNREACHABLE Network is down

51 ENETUNREACH SS$_UNREACHABLE Network is unreachable

52 ENETRESET SS$_RESET Network dropped connection on
reset

53 ECONNABORTED SS$_LINKABORT Software caused connection abort

54 ECONNRESET SS$_CONNECFAIL Connection reset by peer

55 ENOBUFS SS$_INSFMEM No buffer space available

56 EISCONN SS$_FILALRACC Socket is already connected

57 ENOTCONN SS$_NOLINKS Socket is not connected

58 ESHUTDOWN SS$_SHUT Cannot send after socket shutdown

59 ETOOMANYREFS SS$_ABORT Too many references, cannot splice

(continued on next page)

D–2 Error Codes

Error Codes

Table D–1 (Cont.) Translation of Socket Error Codes to OpenVMS Status Codes

Sockets (Compaq C)
Error Code

OpenVMS
System Service
Status Code Meaning

60 ETIMEDOUT SS$_TIMEOUT Connection timed out

61 ECONNREFUSED SS$_REJECT Connection refused

62 ELOOP SS$_ABORT Too many levels of symbolic links

63 ENAMETOOLONG SS$_ABORT File name too long

64 EHOSTDOWN SS$_SHUT Host is down

65 EHOSTUNREACH SS$_UNREACHABLE No route to host

Error Codes D–3

E
Programming Examples

Table E–1 lists the sample programs contained in this appendix and on line in
the directory specified by the TCPIP$EXAMPLES system logical. See Table 1–4
and Table 1–5 for a complete list of all the sample programs provided on line in
the TCPIP$EXAMPLES directory.

Table E–1 Client/Server Programming Examples

File Refer to...

TCPIP$TCP_CLIENT_SOCK.C Section E.1.1

TCPIP$TCP_SERVER_SOCK.C Section E.1.2

TCPIP$TCP_SERVER_SOCK_AUXS.C Section E.1.3

TCPIP$TCP_CLIENT_QIO.C Section E.2.1

TCPIP$TCP_SERVER_QIO.C Section E.2.2

TCPIP$TCP_SERVER_QIO_AUXS.C Section E.2.3

TCPIP$UDP_CLIENT_SOCK.C Section E.3.1

TCPIP$UDP_SERVER_SOCK.C Section E.3.2

TCPIP$UDP_CLIENT_QIO.C Section E.4.1

TCPIP$UDP_SERVER_QIO.C Section E.4.2

Programming Examples E–1

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

E.1 TCP Client/Server Examples (Sockets API)
This section contains examples that show the following:

• A TCP/IP IPv4 client using BSD Version 4.x Sockets API to handle network
I/O operations.

• A TCP/IP IPv4 server using BSD Version 4.x Sockets API to handle network
I/O operations.

• A TCP/IP IPv4 server using BSD Version 4.x Sockets API to handle network
I/O operations, and how the server accepts connections from the auxiliary
server.

E.1.1 TCP Client
Example E–1 shows how a typical TCP IPv4 client uses the Sockets API to
handle the tasks of creating a socket, initiating server connections, reading
service connection data, and then terminating the server connections.

Example E–1 TCP Client (Sockets API)

#pragma module tcpip$tcp_client_sock \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a TCP/IP IPv4 client using 4.x BSD
* socket Application Programming Interface (API) to handle
* network I/O operations.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --

(continued on next page)

E–2 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–1 (Cont.) TCP Client (Sockets API)

*/
/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$TCP_CLIENT_SOCK.C
* $ link TCPIP$TCP_CLIENT_SOCK
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$TCP_CLIENT_SOCK.C
* $ link TCPIP$TCP_CLIENT_SOCK
*
*
* CONFIGURATION INSTRUCTIONS:
*
* No special configuration required.
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start the client’s server program as shown below:
*
* $ run tcpip$tcp_server_sock
* Waiting for a client connection on port: m
*
* 2) After the server program blocks, start this client program,
* entering the server host as shown below:
*
* $ run tcpip$tcp_client_sock
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 3) The client program then displays server connection information
* and server data as shown below:
*
* Initiated connection to host: a.b.c.d, port: n
* Data received: Hello, world!
*
* You can enter "ctrl/z" at any user prompt to terminate program
* execution.
*
*/

/*
* INCLUDE FILES:
*/

(continued on next page)

Programming Examples E–3

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–1 (Cont.) TCP Client (Sockets API)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */

#include <netdb.h> /* define network database library info */

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <unixio.h> /* define unix i/o */

/*
* NAMED CONSTANTS:
*/

#define BUFSZ 1024 /* user input buffer size */
#define SERV_PORTNUM 12345 /* server port number */

/*
* FORWARD REFERENCES:
*/

int main(void); /* client main */
void get_serv_addr(void *); /* get server host address */

/* Client Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the client’s main-line code. It handles all the tasks of the
* client including: socket creation, initiating server connections,
* reading server connection data, and terminating server connections.
*
* This example program implements a typical TCP IPv4 client using the
* BSD socket API to handle network i/o operations as shown below:
*
* 1) To create a socket:
*
* socket()
*
* 2) To initiate a connection:
*
* connect()
*
* 3) To transfer data:
*
* recv()
*
* 4) To shutdown a socket:
*
* shutdown()
*
* 5) To close a socket:
*
* close()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*

(continued on next page)

E–4 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–1 (Cont.) TCP Client (Sockets API)

* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:
*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/
int
main(void)
{

int sockfd; /* connection socket descriptor */

char buf[512]; /* client data buffer */

struct sockaddr_in serv_addr; /* server socket address structure */

/*
* init server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
get_serv_addr(&serv_addr.sin_addr);

/*
* create connection socket
*/

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* connect to specified host and port number
*/

printf("Initiated connection to host: %s, port: %d\n",
inet_ntoa(serv_addr.sin_addr), ntohs(serv_addr.sin_port)

);

(continued on next page)

Programming Examples E–5

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–1 (Cont.) TCP Client (Sockets API)

if (connect(sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to connect to server");
exit(EXIT_FAILURE);
}

/*
* connection established with a server;
* now attempt to read on this connection
*/

if (recv(sockfd, buf, sizeof(buf), 0) < 0)
{
perror("Failed to read data from server connection");
exit(EXIT_FAILURE);
}

printf("Data received: %s\n", buf); /* output client’s data buffer */

/*
* shutdown connection socket (both directions)
*/
if (shutdown(sockfd, 2) < 0)

{
perror("Failed to shutdown server connection");
exit(EXIT_FAILURE);
}

/*
* close connection socket
*/

if (close(sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

/* Get Server Host Address */

(continued on next page)

E–6 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–1 (Cont.) TCP Client (Sockets API)

/*
* FUNCTIONAL DESCRIPTION:
*
* This function gets the server host’s address from the user and then
* stores it in the server’s socket address structure. Note that the
* user can specify a server host by using either an IPv4 address in
* dotted-decimal notation (e.g. 16.20.10.126) or a host domain name
* (e.g. serverhost.compaq.com).
*
* Enter "ctrl/z" to terminate program execution.
*
* SYNOPSIS:
*
* void get_serv_addr(void *addrptr)
*
* FORMAL PARAMETERS:
*
* addrptr - pointer to socket address structure’s ’sin_addr’ field
* to store the specified network address
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* ** None **
*
* SIDE EFFECTS:
*
* Program execution is terminated if unable to read user’s input
*
*/
void
get_serv_addr(void *addrptr)
{

char buf[BUFSZ];
struct in_addr val;
struct hostent *host;

while (TRUE)
{
printf("Enter remote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read User input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

val.s_addr = inet_addr(buf);

(continued on next page)

Programming Examples E–7

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–1 (Cont.) TCP Client (Sockets API)

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf)))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

E–8 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

E.1.2 TCP Server
Example E–2 shows how a typical TCP IPv4 server uses the Sockets API to
handle the tasks of creating a socket, accepting or rejecting client connections,
writing client connection data, and then terminating client connections.

Example E–2 TCP Server (Sockets API)

#pragma module tcpip$tcp_server_sock \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a TCP/IP IPv4 server using 4.x BSD
* socket Application Programming Interface (API) to handle
* network I/O operations.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --
*/

/* Build, Configuration, and Run Instructions */

(continued on next page)

Programming Examples E–9

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–2 (Cont.) TCP Server (Sockets API)
/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$TCP_SERVER_SOCK.C
* $ link TCPIP$TCP_SERVER_SOCK
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$TCP_SERVER_SOCK.C
* $ link TCPIP$TCP_SERVER_SOCK
*
*
* CONFIGURATION INSTRUCTIONS:
*
* No special configuration required.
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start this server program as shown below:
*
* $ run tcpip$tcp_server_sock
* Waiting for a client connection on port: m
*
* 2) After the server program blocks, start the client program,
* entering the server host as shown below:
*
* $ run tcpip$tcp_client_sock
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 3) The server program then displays client connection information
* and client data as shown below:
*
* Accepted connection from host: a.b.c.d, port: n
* Data sent: Hello, world!
*
* You can enter "ctrl/z" at any user prompt to terminate program
* execution.
*
*/
/*

(continued on next page)

E–10 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–2 (Cont.) TCP Server (Sockets API)

* INCLUDE FILES:
*/
#include <in.h> /* define internet related constants, */

/* functions, and structures */
#include <inet.h> /* define network address info */

#include <netdb.h> /* define network database library info */

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <unixio.h> /* define unix i/o */

/*
* NAMED CONSTANTS:
*/

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

/*
* FORWARD REFERENCES:
*/

int main(void); /* server main */
/* Server Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the server’s main-line code. It handles all the tasks of the
* server including: socket creation, accepting and/or rejecting client
* connections, writing client connection data, and terminating client
* connections.
*
* This example program implements a typical TCP IPv4 server using the
* BSD socket API to handle network i/o operations as shown below:
*
* 1) To create a socket:
*
* socket()
*
* 2) To set REUSEADDR socket option:
*
* setsockopt()
*
* 3) To bind internet address and port number to a socket:
*
* bind()
*
* 4) To set an active socket to a passive (listen) socket:
*
* listen()
*
* 5) To accept a connection request:
*
* accept()
*
* 6) To transfer data:
*
* send()

(continued on next page)

Programming Examples E–11

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–2 (Cont.) TCP Server (Sockets API)
*
* 7) To shutdown a socket (both directions):
*
* shutdown()
*
* 8) To close a socket:
*
* close()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*
* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:
*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/
int
main(void)
{

int optval = 1; /* SO_REUSEADDR’S option value (on) */

int conn_sockfd; /* connection socket descriptor */
int listen_sockfd; /* listen socket descriptor */

unsigned int client_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in client_addr; /* client socket address structure */
struct sockaddr_in serv_addr; /* server socket address structure */

char buf[] = "Hello, World!"; /* server data buffer */

/*
* init client’s socket address structure
*/

memset(&client_addr, 0, sizeof(client_addr));

/*
* init server’s socket address structure
*/

(continued on next page)

E–12 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–2 (Cont.) TCP Server (Sockets API)

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a listen socket
*/

if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* bind server’s internet address and port number to listen socket
*/

if (setsockopt(listen_sockfd,
SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0)

{
perror("Failed to set socket option");
exit(EXIT_FAILURE);
}

if (bind(listen_sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

/*
* set listen socket as a passive socket
*/

if (listen(listen_sockfd, SERV_BACKLOG) < 0)
{
perror("Failed to set socket passive");
exit(EXIT_FAILURE);
}

/*
* accept connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

client_addrlen = sizeof(client_addr);

conn_sockfd = accept(listen_sockfd,
(struct sockaddr *) &client_addr,
&client_addrlen

);
if (conn_sockfd < 0)

{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

(continued on next page)

Programming Examples E–13

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–2 (Cont.) TCP Server (Sockets API)

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port)

);
/*
* connection established with a client;
* now attempt to write on this connection
*/

if (send(conn_sockfd, buf, sizeof(buf), 0) < 0)
{
perror("Failed to write data to client connection");
exit(EXIT_FAILURE);
}

printf("Data sent: %s\n", buf); /* output server’s data buffer */

/*
* shutdown connection socket (both directions)
*/

if (shutdown(conn_sockfd, 2) < 0)
{
perror("Failed to shutdown client connection");
exit(EXIT_FAILURE);
}

/*
* close connection socket
*/

if (close(conn_sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

/*
* close listen socket
*/

if (close(listen_sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

E–14 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

E.1.3 TCP Server Accepting a Connection from the Auxiliary Server
Example E–3 shows how a typical TCP/IP IPv4 server uses the BSD Version
4.x Sockets API to handle network I/O operations, and how the server accepts
connections from the auxiliary server.

Example E–3 TCP Auxiliary Server (Sockets API)

#pragma module tcpip$tcp_server_sock_auxs \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a TCP/IP IPv4 server using 4.x BSD
* socket Application Programming Interface (API) to handle
* network I/O operations. In addition, it shows how to
* accept connections from the auxiliary server.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --
*/

(continued on next page)

Programming Examples E–15

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–3 (Cont.) TCP Auxiliary Server (Sockets API)

/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$TCP_SERVER_SOCK_AUXS.C
* $ link TCPIP$TCP_SERVER_SOCK_AUXS
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$TCP_SERVER_SOCK_AUXS.C
* $ link TCPIP$TCP_SERVER_SOCK_AUXS
*
*
* CONFIGURATION INSTRUCTIONS:
*
* To configure this example program:
*
* 1) Create a service run command procedure, named HELLO_RUN.COM, that
* contains the following lines:
*
* $ define sys$output ddcu:[directory]hello_service.log
* $ define sys$error ddcu:[directory]hello_service.log
* $ run ddcu:[directory]tcpip$tcp_server_sock_auxs.exe
*
* where: ddcu:[directory] is the device and directory of where the
* hello service run command procedure file resides
*
* 2) Create a service database entry for the hello service as shown below:
*
* $ tcpip set service hello -
* _$ /port=12345 -
* _$ /protocol=tcp -
* _$ /user=vms_user_account -
* _$ /process_name=hello_world -
* _$ /file=ddcu:[directory]hello_run.com
*
* 3) Enable the hello service to run as shown below:
*
* $ tcpip enable service hello
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start the client program, entering the server host as shown below:
*
* $ run tcpip$tcp_client_sock
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 2) The auxiliary server receives the hello service request, creates a

(continued on next page)

E–16 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–3 (Cont.) TCP Auxiliary Server (Sockets API)
* process, then executes the commands in hello_run.com to run this
* server program. This server program then logs client connection
* information and client data to the service log before replying to
* the client host with a message of "Hello, world!".
*
*/

/*
* INCLUDE FILES:
*/

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
/* structures, and functions */

#include <unixio.h> /* define unix i/o */

/*
* FORWARD REFERENCES:
*/

int main(void); /* server main */
/* Server Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the server’s main-line code. It handles all the tasks of the
* server including: socket creation, writing client connection data,
* and terminating client connections.
*
* This example program implements a typical TCP IPv4 server using the
* BSD socket API to handle network i/o operations. In addition, it
* uses the auxiliary server to accept client connections.
*
* 1) To create a socket:
*
* socket()
*
* 2) To transfer data:
*
* send()
*
* 3) To close a socket:
*
* close()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*
* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:

(continued on next page)

Programming Examples E–17

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–3 (Cont.) TCP Auxiliary Server (Sockets API)

*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/

int
main(void)
{

int sockfd; /* socket descriptor */

unsigned int client_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in client_addr; /* client socket address structure */

char buf[] = "Hello, world!"; /* server data buffer */

/*
* init client’s socket address structure
*/

memset(&client_addr, 0, sizeof(client_addr));

/*
* create socket
*/

if ((sockfd = socket(TCPIP$C_AUXS, SOCK_STREAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* log this client connection
*/

client_addrlen = sizeof(client_addr);

if (getpeername(sockfd,
(struct sockaddr *) &client_addr, &client_addrlen) < 0)

{
perror("Failed to accept client connection");
exit(EXIT_FAILURE);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port)

);

(continued on next page)

E–18 Programming Examples

Programming Examples
E.1 TCP Client/Server Examples (Sockets API)

Example E–3 (Cont.) TCP Auxiliary Server (Sockets API)

/*
* connection established with a client;
* now attempt to write on this connection
*/

if (send(sockfd, buf, sizeof(buf), 0) < 0)
{
perror("Failed to write data to client connection");
exit(EXIT_FAILURE);
}

printf("Data sent: %s\n", buf); /* output server’s data buffer */

/*
* close socket
*/

if (close(sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

Programming Examples E–19

Programming Examples
E.2 TCP Client/Server Examples (System Services)

E.2 TCP Client/Server Examples (System Services)
This section contains the following examples:

• A TCP/IP IPv4 client using $QIO system services to handle network I/O
operations.

• A TCP/IP IPv4 server using $QIO system services to handle network I/O
operations.

• A TCP/IP IPv4 server using $QIO system services to handle network I/O
operations and how the server accepts connections from the auxiliary server.

E.2.1 TCP Client
Example E–4 shows how a typical TCP IPv4 client uses $QIO system services
to handle the tasks of creating a socket, initiating server connections, reading
service connection data, and then terminating the server connections.

Example E–4 TCP Client (System Services)

#pragma module tcpip$tcp_client_qio \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a TCP/IP IPv4 client using OpenVMS
* QIO system services to handle network I/O operations.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --
*/

(continued on next page)

E–20 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)

/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$TCP_CLIENT_QIO.C
* $ link TCPIP$TCP_CLIENT_QIO
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$TCP_CLIENT_QIO.C
* $ link TCPIP$TCP_CLIENT_QIO
*
*
* CONFIGURATION INSTRUCTIONS:
*
* No special configuration required.
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start the client’s server program as shown below:
*
* $ run tcpip$tcp_server_qio
* Waiting for a client connection on port: m
*
* 2) After the server program blocks, start this client program,
* entering the server host as shown below:
*
* $ run tcpip$tcp_client_qio
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 3) The client program then displays server connection information
* and server data as show below:
*
* Initiated connection to host: a.b.c.d, port: n
* Data received: Hello, world!
*
* You can enter "ctrl/z" at any user prompt to terminate program
* execution.
*
*/

/*
* INCLUDE FILES:
*/

#include <descrip.h> /* define OpenVMS descriptors */

#include <efndef.h> /* define ’EFN$C_ENF’ event flag */

(continued on next page)

Programming Examples E–21

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */

#include <netdb.h> /* define network database library info */

#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */

#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
/* structures, and functions */

/*
* NAMED CONSTANTS:
*/

#define BUFSZ 1024 /* user input buffer size */
#define SERV_PORTNUM 12345 /* server port number */

/*
* STRUCTURE DEFINITIONS:
*/

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct sockchar
{ /* socket characteristics buffer */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

/*
* FORWARD REFERENCES:
*/

int main(void); /* client main */
void get_serv_addr(void *); /* get server host address */

(continued on next page)

E–22 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)
/* Client Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the client’s main-line code. It handles all the tasks of the
* client including: socket creation, initiating server connections,
* reading server connection data, and terminating server connections.
*
* This example program implements a typical TCP IPv4 client using QIO
* system services to handle network i/o operations as shown below:
*
* 1) To create a socket:
*
* sys$assign() and sys$qiow(IO$_SETMODE)
*
* 2) To initiate a connection:
*
* sys$qiow(IO$_ACCESS)
*
* 3) To transfer data:
*
* sys$qiow(IO$_READVBLK)
*
* 4) To shutdown a socket:
*
* sys$qiow(IO$_DEACCESS|IO$M_SHUTDOWN)
*
* 5) To close and delete a socket:
*
* sys$qiow(IO$_DEACCESS) and sys$dassgn()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*
* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:
*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/

(continued on next page)

Programming Examples E–23

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)

int
main(void)
{

struct iosb iosb; /* i/o status block */

unsigned int status; /* system service return status */

char buf[512]; /* client data buffer */
int buflen = sizeof(buf); /* length of client data buffer */

unsigned short conn_channel; /* connect inet device i/o channel */
struct sockchar conn_sockchar; /* connect socket char buffer */

struct sockaddr_in serv_addr; /* server socket address structure */
struct itemlst_2 serv_itemlst; /* server item-list 2 descriptor */

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"TCPIP$DEVICE"); /* name of internet pseudodevice */

/*
* init connection socket characteristics buffer
*/

conn_sockchar.prot = TCPIP$C_TCP;
conn_sockchar.type = TCPIP$C_STREAM;
conn_sockchar.af = TCPIP$C_AF_INET;

/*
* init server’s item-list descriptor
*/

memset(&serv_itemlst, 0, sizeof(serv_itemlst));
serv_itemlst.length = sizeof(serv_addr);
serv_itemlst.address = &serv_addr;

/*
* init server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
get_serv_addr(&serv_addr.sin_addr);

/*
* assign device socket
*/

status = sys$assign(&inet_device, /* device name */
&conn_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel to TCPIP device\n");
exit(status);
}

/*
* create connection socket
*/

(continued on next page)

E–24 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&conn_sockchar, /* p1 - socket char buffer */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* connect to specified host and port number
*/

printf("Initiated connection to host: %s, port: %d\n",
inet_ntoa(serv_addr.sin_addr), ntohs(serv_addr.sin_port)

);

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_ACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&serv_itemlst, /* p3 - remote socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to connect to server\n");
exit(status);
}

/*
* connection established with a server;
* now attempt to read on this connection
*/

(continued on next page)

Programming Examples E–25

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_READVBLK, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
buf, /* p1 - buffer address */
buflen, /* p2 - buffer length */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to read data from server connection\n");
exit(status);
}

printf("Data received: %s\n", buf); /* output client’s data buffer */

/*
* shutdown connection socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_DEACCESS|IO$M_SHUTDOWN,

/* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
TCPIP$C_DSC_ALL, /* p4 - discard all packets */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to shutdown server connection\n");
exit(status);
}

/*
* close connection socket
*/

(continued on next page)

E–26 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_DEACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to close socket\n");
exit(status);
}

/*
* deassign device socket
*/

status = sys$dassgn(conn_channel);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to deassign i/o channel to TCPIP device\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

/* Get Server Host Address */

(continued on next page)

Programming Examples E–27

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)

/*
* FUNCTIONAL DESCRIPTION:
*
* This function gets the server host’s address from the user and then
* stores it in the server’s socket address structure. Note that the
* user can specify a server host by using either an IPv4 address in
* dotted-decimal notation (e.g. 16.20.10.126) or a host domain name
* (e.g. serverhost.compaq.com).
*
* Enter "ctrl/z" to terminate program execution.
*
* SYNOPSIS:
*
* void get_serv_addr(void *addrptr)
*
* FORMAL PARAMETERS:
*
* addrptr - pointer to socket address structure’s ’sin_addr’ field
* to store the specified network address
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* ** None **
*
* SIDE EFFECTS:
*
* Program execution is terminated if unable to read user’s input.
*
*/

void
get_serv_addr(void *addrptr)
{

char buf[BUFSZ];
struct in_addr val;
struct hostent *host;

while (TRUE)
{
printf("Enter remote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read user input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

val.s_addr = inet_addr(buf);

(continued on next page)

E–28 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–4 (Cont.) TCP Client (System Services)

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf)))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

E.2.2 TCP Server
Example E–5 shows how a typical TCP IPv4 server uses $QIO system services
to handle the tasks of creating a socket, accepting or rejecting client connections,
writing client connection data, and then terminating client connections.

Example E–5 TCP Server (System Services)

#pragma module tcpip$tcp_server_qio \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a TCP/IP IPv4 server using OpenVMS
* QIO system services to handle network I/O operations.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher

(continued on next page)

Programming Examples E–29

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --
*/

/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$TCP_SERVER_QIO.C
* $ link TCPIP$TCP_SERVER_QIO
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$TCP_SERVER_QIO.C
* $ link TCPIP$TCP_SERVER_QIO
*
*
* CONFIGURATION INSTRUCTIONS:
*
* No special configuration required.
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start this server program as shown below:
*
* $ run tcpip$tcp_server_qio
* Waiting for a client connection on port: m
*
* 2) After the server program blocks, start the client program,
* entering the server host as shown below:
*
* $ run tcpip$tcp_client_qio
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 3) The server program then displays client connection information
* and client data as shown below:
*
* Accepted connection from host: a.b.c.d, port: n
* Data sent: Hello, world!
*
* You can enter "ctrl/z" at any user prompt to terminate program
* execution.
*
*/

(continued on next page)

E–30 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)

/*
* INCLUDE FILES:
*/

#include <descrip.h> /* define OpenVMS descriptors */

#include <efndef.h> /* define ’EFN$C_ENF’ event flag */

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */

#include <netdb.h> /* define network database library info */

#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */

#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
/* structures, and functions */

/*
* NAMED CONSTANTS:
*/

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

/*
* STRUCTURE DEFINITIONS:
*/

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct itemlst_3
{ /* item-list 3 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
unsigned int *retlen; /* address of returned length */
};

struct sockchar
{ /* socket characteristics buffer */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

(continued on next page)

Programming Examples E–31

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)

/*
* FORWARD REFERENCES:
*/

int main(void); /* server main */
/* Server Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the server’s main-line code. It handles all the tasks of the
* server including: socket creation, accepting and/or rejecting client
* connections, writing client connection data, and terminating client
* connections.
*
* This example program implements a typical TCP IPv4 server using QIO
* system services to handle network i/o operations as shown below:
*
* 1) To create a socket and set REUSEADDR option:
*
* sys$assign() and sys$qiow(IO$_SETMODE)
*
* 2) To bind internet address and port number to a socket:
*
* sys$qiow(IO$_SETMODE)
*
* 3) To accept a connection request:
*
* sys$qiow(IO$_ACCESS|IO$M_ACCEPT)
*
* 4) To transfer data:
*
* sys$qiow(IO$_WRITEVBLK)
*
* 5) To shutdown a socket:
*
* sys$qiow(IO$_DEACCESS|IO$M_SHUTDOWN)
*
* 6) To close and delete a socket:
*
* sys$qiow(IO$_DEACCESS) and sys$dassgn()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*

(continued on next page)

E–32 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)

* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:
*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/
int
main(void)
{

int one = 1; /* reuseaddr option value */

struct iosb iosb; /* i/o status block */

unsigned int status; /* system service return status */

unsigned short conn_channel; /* connect inet device i/o channel */
unsigned short listen_channel; /* listen inet device i/o channel */

struct sockchar listen_sockchar; /* listen socket char buffer */

unsigned int client_retlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in client_addr; /* client socket address structure */
struct itemlst_3 client_itemlst; /* client item-list 3 descriptor */

struct sockaddr_in serv_addr; /* server socket address structure */
struct itemlst_2 serv_itemlst; /* server item-list 2 descriptor */

struct itemlst_2 sockopt_itemlst; /* sockopt item-list 2 descriptor */
struct itemlst_2 reuseaddr_itemlst; /* reuseaddr item-list 2 element */

char buf[] = "Hello, World!"; /* server data buffer */
int buflen = sizeof(buf); /* length of server data buffer */

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"TCPIP$DEVICE"); /* name of internet pseudodevice */

/*
* init listen socket characteristics buffer
*/

listen_sockchar.prot = TCPIP$C_TCP;
listen_sockchar.type = TCPIP$C_STREAM;
listen_sockchar.af = TCPIP$C_AF_INET;

(continued on next page)

Programming Examples E–33

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)

/*
* init reuseaddr’s item-list element
*/

reuseaddr_itemlst.length = sizeof(one);
reuseaddr_itemlst.type = TCPIP$C_REUSEADDR;
reuseaddr_itemlst.address = &one;

/*
* init sockopt’s item-list descriptor
*/

sockopt_itemlst.length = sizeof(reuseaddr_itemlst);
sockopt_itemlst.type = TCPIP$C_SOCKOPT;
sockopt_itemlst.address = &reuseaddr_itemlst;

/*
* init client’s item-list descriptor
*/

memset(&client_itemlst, 0, sizeof(client_itemlst));
client_itemlst.length = sizeof(client_addr);
client_itemlst.address = &client_addr;
client_itemlst.retlen = &client_retlen;

/*
* init client’s socket address structure
*/

memset(&client_addr, 0, sizeof(client_addr));

/*
* init server’s item-list descriptor
*/

serv_itemlst.length = sizeof(serv_addr);
serv_itemlst.type = TCPIP$C_SOCK_NAME;
serv_itemlst.address = &serv_addr;

/*
* init server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

/*
* assign device sockets
*/

status = sys$assign(&inet_device, /* device name */
&listen_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if ((status & STS$M_SUCCESS))
status = sys$assign(&inet_device, /* device name */

&conn_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

(continued on next page)

E–34 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel(s) to TCPIP device\n");
exit(status);
}

/*
* create a listen socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&listen_sockchar, /* p1 - socket char buffer */
0, /* p2 */
0, /* p3 */
0, /* p4 */
&sockopt_itemlst, /* p5 - socket options */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* bind server’s internet address and port number to
* listen socket; set socket as a passive socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&serv_itemlst, /* p3 - local socket name */
SERV_BACKLOG, /* p4 - connection backlog */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

Programming Examples E–35

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}

/*
* accept a connection from a client
*/

printf("Waiting for a client connection on port: %d\n",
ntohs(serv_addr.sin_port)

);

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_ACCESS|IO$M_ACCEPT,

/* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&client_itemlst, /* p3 - remote socket name */
&conn_channel, /* p4 - i/o channel for new */

/* connection */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to accept client connection\n");
exit(status);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port)

);

/*
* connection established with a client;
* now attempt to write on this connection
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_WRITEVBLK, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
buf, /* p1 - buffer address */
buflen, /* p2 - buffer length */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

E–36 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)

if (!(status & STS$M_SUCCESS))
{
printf("Failed to write data to client connection\n");
exit(status);
}

printf("Data sent: %s\n", buf); /* output server’s data buffer */

/*
* shutdown connection socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_DEACCESS|IO$M_SHUTDOWN,

/* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
TCPIP$C_DSC_ALL, /* p4 - discard all packets */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to shutdown client connection\n");
exit(status);
}

/*
* close connection socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_DEACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to close socket\n");
exit(status);
}

(continued on next page)

Programming Examples E–37

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–5 (Cont.) TCP Server (System Services)

/*
* close listen socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
listen_channel, /* i/o channel */
IO$_DEACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to close socket\n");
exit(status);
}

/*
* deassign all device sockets
*/

status = sys$dassgn(conn_channel);

if ((status & STS$M_SUCCESS))
status = sys$dassgn(listen_channel);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to deassign i/o channel(s) to TCPIP device\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

E–38 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

E.2.3 TCP Server Accepting a Connection from the Auxiliary Server
Example E–6 shows how a typical TCP/IP IPv4 server uses $QIO system services
to handle network I/O operations and the server accepts connections from the
auxiliary server.

Example E–6 TCP Auxiliary Server (System Services)

#pragma module tcpip$tcp_server_qio_auxs \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a TCP/IP IPv4 server using OpenVMS
* QIO system services to handle network I/O operations. In
* addition, it shows how to accept connections from the
* auxiliary server.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --
*/

(continued on next page)

Programming Examples E–39

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–6 (Cont.) TCP Auxiliary Server (System Services)

/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$TCP_SERVER_QIO_AUXS.C
* $ link TCPIP$TCP_SERVER_QIO_AUXS
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$TCP_SERVER_QIO_AUXS.C
* $ link TCPIP$TCP_SERVER_QIO_AUXS
*
*
* CONFIGURATION INSTRUCTIONS:
*
* To configure this example program:
*
* 1) Create a service run command procedure, named HELLO_RUN.COM, that
* contains the following lines:
*
* $ define sys$output ddcu:[directory]hello_service.log
* $ define sys$error ddcu:[directory]hello_service.log
* $ run ddcu:[directory]tcpip$tcp_server_qio_auxs.exe
*
* where: ddcu:[directory] is the device and directory of where the
* hello service run command procedure file resides
*
* 2) Create a service database entry for the hello service as shown below:
*
* $ tcpip set service hello -
* _$ /port=12345 -
* _$ /protocol=tcp -
* _$ /user=vms_user_account -
* _$ /process_name=hello_world -
* _$ /file=ddcu:[directory]hello_run.com
*
* 3) Enable the hello service to run as shown below:
*
* $ tcpip enable service hello
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start the client program, entering the server host as shown below:
*
* $ run tcpip$tcp_client_sock
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 2) The auxiliary server receives the hello service request, creates a
* process, then executes the commands in hello_run.com to run this

(continued on next page)

E–40 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–6 (Cont.) TCP Auxiliary Server (System Services)
* server program. This server program then logs client connection
* information and client data to the service log before replying to
* the client host with a message of "Hello, world!".
*
*/

/*
* INCLUDE FILES:
*/

#include <descrip.h> /* define OpenVMS descriptors */

#include <efndef.h> /* define ’EFN$C_ENF’ event flag */

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */

#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */

#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
/* structures, and functions */

* STRUCTURE DEFINITIONS:
*/

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct itemlst_3
{ /* item-list 3 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
unsigned int *retlen; /* address of returned length */
};

struct sockchar
{ /* socket characteristics buffer */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

/*
* FORWARD REFERENCES:
*/

(continued on next page)

Programming Examples E–41

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–6 (Cont.) TCP Auxiliary Server (System Services)

int main(void); /* server main */

/* Server Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the server’s main-line code. It handles all the tasks of the
* server including: socket creation, writing client connection data,
* and terminating client connections.
*
* This example program implements a typical TCP IPv4 server using QIO
* system services to handle network i/o operations. In addition, it
* uses the auxiliary server to accept client connections.
*
* 1) To create a socket:
*
* sys$assign() and sys$qiow(IO$_SETMODE)
*
* 2) To transfer data:
*
* sys$qiow(IO$_WRITEVBLK)
*
* 3) To close and delete a socket:
*
* sys$qiow(IO$_DEACCESS) and sys$dassgn()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*
* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:
*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/

(continued on next page)

E–42 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–6 (Cont.) TCP Auxiliary Server (System Services)

int
main(void)
{

struct iosb iosb; /* i/o status block */

unsigned int status; /* system service return status */

unsigned short conn_channel; /* connect inet device i/o channel */
struct sockchar conn_sockchar; /* connect socket char buffer */

unsigned int client_retlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in client_addr; /* client socket address structure */
struct itemlst_3 client_itemlst; /* client item-list 3 descriptor */

char buf[] = "Hello, world!"; /* server data buffer */
int buflen = sizeof(buf); /* length of server data buffer */

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"SYS$NET"); /* name of internet pseudodevice */

/*
* init connection socket characteristics buffer
*/

conn_sockchar.prot = TCPIP$C_TCP;
conn_sockchar.type = TCPIP$C_STREAM;
conn_sockchar.af = TCPIP$C_AUXS;

/*
* init client’s item-list descriptor
*/

memset(&client_itemlst, 0, sizeof(client_itemlst));
client_itemlst.length = sizeof(client_addr);
client_itemlst.address = &client_addr;
client_itemlst.retlen = &client_retlen;

/*
* init client’s socket address structure
*/

memset(&client_addr, 0, sizeof(client_addr));

/*
* assign device socket
*/

status = sys$assign(&inet_device, /* device name */
&conn_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel to TCPIP device\n");
exit(status);
}

/*
* create connection socket
*/

(continued on next page)

Programming Examples E–43

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–6 (Cont.) TCP Auxiliary Server (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&conn_sockchar, /* p1 - socket char buffer */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* log this client connection
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_SENSEMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
&client_itemlst, /* p4 - peer socket name */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to accept client connection\n");
exit(status);
}

printf("Accepted connection from host: %s, port: %d\n",
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port)

);

/*
* connection established with a client;
* now attempt to write on this connection
*/

(continued on next page)

E–44 Programming Examples

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–6 (Cont.) TCP Auxiliary Server (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
conn_channel, /* i/o channel */
IO$_WRITEVBLK, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
buf, /* p1 - buffer address */
buflen, /* p2 - buffer length */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to write data to client connection\n");
exit(status);
}

printf("Data sent: %s\n", buf); /* output server’s data buffer */
/*
* close connection socket
*/
status = sys$qiow(EFN$C_ENF, /* event flag */

conn_channel, /* i/o channel */
IO$_DEACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
TCPIP$C_DSC_ALL, /* p4 - discard all packets */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to close socket\n");
exit(status);
}

/*
* deassign device socket
*/

status = sys$dassgn(conn_channel);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to deassign i/o channel to TCPIP device\n");
exit(status);
}

(continued on next page)

Programming Examples E–45

Programming Examples
E.2 TCP Client/Server Examples (System Services)

Example E–6 (Cont.) TCP Auxiliary Server (System Services)

exit(EXIT_SUCCESS);
}

E.3 UDP Client/Server Examples (Sockets API)
This section contains the following examples:

• A UDP/IP IPv4 client using BSD Version 4.x Sockets API to handle network
I/O operations.

• A UDP/IP IPv4 server using BSD Version 4.x Sockets API to handle network
I/O operations.

E.3.1 UDP Client
Example E–7 shows how a typical UDP IPv4 client uses the Sockets API to
handle the tasks of creating a socket, writing server data, and deleting the
socket.

Example E–7 UDP Client (Sockets API)

#pragma module tcpip$udp_client_sock \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a UDP/IP IPv4 client using 4.x BSD
* socket Application Programming Interface (API) to handle
* network I/O operations.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*

(continued on next page)

E–46 Programming Examples

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–7 (Cont.) UDP Client (Sockets API)

* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --
*/

/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$UDP_CLIENT_SOCK.C
* $ link TCPIP$UDP_CLIENT_SOCK
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$UDP_CLIENT_SOCK.C
* $ link TCPIP$UDP_CLIENT_SOCK
*
*
* CONFIGURATION INSTRUCTIONS:
*
* No special configuration required.
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start the client’s server program as shown below:
*
* $ run tcpip$udp_server_sock
* Waiting for a client datagram on port: m
*
* 2) After the server program blocks, start this client program,
* entering the server host as shown below:
*
* $ run tcpip$udp_client_sock
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 3) The client program then displays server address information
* and server data as show below:
*
* Sent a datagram to host: a.b.c.d, port: n
* Data sent: Hello, world!
*
* You can enter "ctrl/z" at any user prompt to terminate program
* execution.
*
*/

(continued on next page)

Programming Examples E–47

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–7 (Cont.) UDP Client (Sockets API)

/*
* INCLUDE FILES:
*/

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */

#include <netdb.h> /* define network database library info */

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <unixio.h> /* define unix i/o */

/*
* NAMED CONSTANTS:
*/

#define BUFSZ 1024 /* user input buffer size */
#define SERV_PORTNUM 12345 /* server port number */

/*
* FORWARD REFERENCES:
*/

int main(void); /* client main */
void get_serv_addr(void *); /* get server host address */

/* Client Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the client’s main-line code. It handles all the tasks of the
* client including: socket creation, writing server data, and deleting
* the socket.
*
* This example program implements a typical UDP IPv4 client using the
* BSD socket API to handle network i/o operations as shown below:
*
* 1) To create a socket:
*
* socket()
*
* 2) To transfer data:
*
* sendto()
*
* 3) To close a socket:
*
* close()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*
* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:

(continued on next page)

E–48 Programming Examples

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–7 (Cont.) UDP Client (Sockets API)

*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/

int
main(void)
{

int sockfd; /* udp socket descriptor */

char buf[] = "Hello, World!"; /* client data buffer */

struct sockaddr_in serv_addr; /* server socket address structure */

/*
* init server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
get_serv_addr(&serv_addr.sin_addr);

/*
* create udp socket
*/

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* write datagram to server
*/

if (sendto(sockfd, buf, sizeof(buf), 0,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to write datagram to server");
exit(EXIT_FAILURE);
}

printf("Sent a datagram to host: %s, port: %d\n",
inet_ntoa(serv_addr.sin_addr), ntohs(serv_addr.sin_port)

);
printf("Data sent: %s\n", buf); /* output data buffer */

(continued on next page)

Programming Examples E–49

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–7 (Cont.) UDP Client (Sockets API)

/*
* close udp socket
*/

if (close(sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

/* Get Server Host Address */

/*
* FUNCTIONAL DESCRIPTION:
*
* This function gets the server host’s address from the user and then
* stores it in the server’s socket address structure. Note that the
* user can specify a server host by using either an IPv4 address in
* dotted-decimal notation (e.g. 16.20.10.126) or a host domain name
* (e.g. serverhost.compaq.com).
*
* Enter "ctrl/z" to terminate program execution.
*
* SYNOPSIS:
*
* void get_serv_addr(void *addrptr)
*
* FORMAL PARAMETERS:
*
* addrptr - pointer to socket address structure’s ’sin_addr’ field
* to store the specified network address
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* ** None **
*
* SIDE EFFECTS:
*
* Program execution is terminated if unable to read user’s input.
*
*/

void
get_serv_addr(void *addrptr)
{

char buf[BUFSZ];
struct in_addr val;
struct hostent *host;

while (TRUE)
{
printf("Enter remote host: ");

(continued on next page)

E–50 Programming Examples

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–7 (Cont.) UDP Client (Sockets API)

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read user input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

val.s_addr = inet_addr(buf);

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf)))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

Programming Examples E–51

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

E.3.2 UDP Server
Example E–8 shows how a typical UDP IPv4 server uses the Sockets API to
handle the tasks of creating a socket, binding a socket to the server’s internet
address and port, and reading client data.

Example E–8 UDP Server (Sockets API)

#pragma module tcpip$udp_server_sock \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a UDP/IP IPv4 server using 4.x BSD
* socket Application Programming Interface (API) to handle
* network I/O operations.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --
*/

(continued on next page)

E–52 Programming Examples

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–8 (Cont.) UDP Server (Sockets API)

/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$UDP_SERVER_SOCK.C
* $ link TCPIP$UDP_SERVER_SOCK
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$UDP_SERVER_SOCK.C
* $ link TCPIP$UDP_SERVER_SOCK
*
*
* CONFIGURATION INSTRUCTIONS:
*
* No special configuration required.
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start this server program server as shown below:
*
* $ run tcpip$udp_server_sock
* Waiting for a client datagram on port: m
*
* 2) After the server program blocks, start the client program,
* entering the server host as shown below:
*
* $ run tcpip$udp_client_sock
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 3) The server program then displays client address information
* and client data as show below:
*
* Received a datagram from host: a.b.c.d, port: n
* Data received: Hello, world!
*
* You can enter "ctrl/z" at any user prompt to terminate program
* execution.
*
*/

/*
* INCLUDE FILES:
*/

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */

#include <netdb.h> /* define network database library info */

(continued on next page)

Programming Examples E–53

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–8 (Cont.) UDP Server (Sockets API)

#include <socket.h> /* define BSD 4.x socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#include <unixio.h> /* define unix i/o */

/*
* NAMED CONSTANTS:
*/

#define SERV_PORTNUM 12345 /* server port number */

/*
* FORWARD REFERENCES:
*/

int main(void); /* server main */
/* Server Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the server’s main-line code. It handles all the tasks of the
* server including: socket creation, binding a socket to the server’s
* internet address and port, and reading client data.
*
* This example program implements a typical UDP IPv4 server using the
* BSD socket API to handle network i/o operations as shown below:
*
* 1) To create a socket:
*
* socket()
*
* 2) To set REUSEADDR socket option:
*
* setsockopt()
*
* 3) To bind internet address and port number to a socket:
*
* bind()
*
* 4) To transfer data:
*
* recvfrom()
*
* 5) To close a socket:
*
* close()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*
* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:
*
* ** None **

(continued on next page)

E–54 Programming Examples

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–8 (Cont.) UDP Server (Sockets API)

*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/

int
main(void)
{

char buf[512]; /* server data buffer */

int optval = 1; /* SO_REUSEADDR’S option value (on) */

int sockfd; /* socket descriptor */

unsigned int client_addrlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in client_addr; /* client socket address structure */
struct sockaddr_in serv_addr; /* server socket address structure */

/*
* init client’s socket address structure
*/

memset(&client_addr, 0, sizeof(client_addr));

/*
* init server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = INADDR_ANY;

/*
* create a udp socket
*/

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{
perror("Failed to create socket");
exit(EXIT_FAILURE);
}

/*
* bind server’s internet address and port number to socket
*/

(continued on next page)

Programming Examples E–55

Programming Examples
E.3 UDP Client/Server Examples (Sockets API)

Example E–8 (Cont.) UDP Server (Sockets API)

if (setsockopt(sockfd,
SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0)

{
perror("Failed to set socket option");
exit(EXIT_FAILURE);
}

if (bind(sockfd,
(struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
perror("Failed to bind socket");
exit(EXIT_FAILURE);
}

/*
* read datagram from client
*/

printf("Waiting for a client datagram on port: %d\n",
ntohs(serv_addr.sin_port)

);

client_addrlen = sizeof(client_addr);

if (recvfrom(sockfd, buf, sizeof(buf), 0,
(struct sockaddr *) &client_addr, &client_addrlen) < 0)

{
perror("Failed to read datagram from client");
exit(EXIT_FAILURE);
}

printf("Received a datagram from host: %s, port: %d\n",
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port)

);
printf("Data received: %s\n", buf); /* output client’s data buffer */

/*
* close udp socket
*/

if (close(sockfd) < 0)
{
perror("Failed to close socket");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

E.4 UDP Client/Server Examples (System Services)
This section contains the following examples:

• A UDP/IP IPv4 client using OpenVMS system services to handle network I/O
operations.

• A UDP/IP IPv4 server using OpenVMS system services to handle newtork I/O
operations.

E–56 Programming Examples

Programming Examples
E.4 UDP Client/Server Examples (System Services)

E.4.1 UDP Client
Example E–9 shows how a typical UDP IPv4 client uses $QIO system services
to handle the tasks of creating a socket, writing server data, and deleting the
socket.

Example E–9 UDP Client (System Services)

#pragma module tcpip$udp_client_qio \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a UDP/IP IPv4 client using OpenVMS
* QIO system services to handle network I/O operations.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989
*
* --
*/

(continued on next page)

Programming Examples E–57

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–9 (Cont.) UDP Client (System Services)

/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$UDP_CLIENT_QIO.C
* $ link TCPIP$UDP_CLIENT_QIO
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$UDP_CLIENT_QIO.C
* $ link TCPIP$UDP_CLIENT_QIO
*
*
* CONFIGURATION INSTRUCTIONS:
*
* No special configuration required.
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start the client’s server program as shown below:
*
* $ run tcpip$udp_server_qio
* Waiting for a client datagram on port: m
*
* 2) After the server program blocks, start this client program,
* entering the server host as shown below:
*
* $ run tcpip$udp_client_qio
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 3) The client program then displays server address information
* and server data as show below:
*
* Sent a datagram to host: a.b.c.d, port: n
* Data sent: Hello, world!
*
* You can enter "ctrl/z" at any user prompt to terminate program
* execution.
*
*/

/*
* INCLUDE FILES:
*/

#include <descrip.h> /* define OpenVMS descriptors */

#include <efndef.h> /* define ’EFN$C_ENF’ event flag */

(continued on next page)

E–58 Programming Examples

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–9 (Cont.) UDP Client (System Services)

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */

#include <netdb.h> /* define network database library info */

#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */

#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
/* structures, and functions */

/*
* NAMED CONSTANTS:
*/

#define BUFSZ 1024 /* user input buffer size */
#define SERV_PORTNUM 12345 /* server port number */

/*
* STRUCTURE DEFINITIONS:
*/

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct sockchar
{ /* socket characteristics buffer */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

/*
* FORWARD REFERENCES:
*/

int main(void); /* client main */
void get_serv_addr(void *); /* get server host address */

(continued on next page)

Programming Examples E–59

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–9 (Cont.) UDP Client (System Services)
/* Client Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the client’s main-line code. It handles all the tasks of the
* client including: socket creation, writing server data, and deleting
* the socket.
*
* This example program implements a typical UDP IPv4 client using QIO
* system services to handle network i/o operations as shown below:
*
* 1) To create a socket:
*
* sys$assign() and sys$qiow(IO$_SETMODE)
*
* 2) To transfer data:
*
* sys$qiow(IO$_WRITEVBLK)
*
* 3) To close and delete a socket:
*
* sys$qiow(IO$_DEACCESS) and sys$dassgn()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*
* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:
*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/

int
main(void)
{

struct iosb iosb; /* i/o status block */

unsigned int status; /* system service return status */

(continued on next page)

E–60 Programming Examples

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–9 (Cont.) UDP Client (System Services)

unsigned short inet_channel; /* inet device i/o channel */
struct sockchar udp_sockchar; /* udp socket char buffer */

struct sockaddr_in serv_addr; /* server socket address structure */
struct itemlst_2 serv_itemlst; /* server item-list 2 descriptor */

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"TCPIP$DEVICE"); /* name of internet pseudodevice */

char buf[] = "Hello, World!"; /* client data buffer */
int buflen = sizeof(buf); /* length of client data buffer */

/*
* init client socket characteristics buffer
*/

udp_sockchar.prot = TCPIP$C_UDP;
udp_sockchar.type = TCPIP$C_DGRAM;
udp_sockchar.af = TCPIP$C_AF_INET;

/*
* init server’s item-list descriptor
*/

memset(&serv_itemlst, 0, sizeof(serv_itemlst));
serv_itemlst.length = sizeof(serv_addr);
serv_itemlst.address = &serv_addr;

/*
* init server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
get_serv_addr(&serv_addr.sin_addr);

/*
* assign device socket
*/

status = sys$assign(&inet_device, /* device name */
&inet_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel to TCPIP device\n");
exit(status);
}

/*
* create udp socket
*/

(continued on next page)

Programming Examples E–61

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–9 (Cont.) UDP Client (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
inet_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&udp_sockchar, /* p1 - socket char buffer */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* write datagram to server
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
inet_channel, /* i/o channel */
IO$_WRITEVBLK, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
buf, /* p1 - buffer address */
buflen, /* p2 - buffer length */
&serv_itemlst, /* p3 - remote socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to write datagram to server\n");
exit(status);
}

printf("Sent a datagram to host: %s, port: %d\n",
inet_ntoa(serv_addr.sin_addr), ntohs(serv_addr.sin_port)

);
printf("Data sent: %s\n", buf); /* output data buffer */

/*
* close udp socket
*/

(continued on next page)

E–62 Programming Examples

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–9 (Cont.) UDP Client (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
inet_channel, /* i/o channel */
IO$_DEACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to close socket\n");
exit(status);
}

/*
* deassign device socket
*/

status = sys$dassgn(inet_channel);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to deassign i/o channel to TCPIP device\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

/* Get Server Host Address */

(continued on next page)

Programming Examples E–63

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–9 (Cont.) UDP Client (System Services)

/*
* FUNCTIONAL DESCRIPTION:
*
* This function gets the server host’s address from the user and then
* stores it in the server’s socket address structure. Note that the
* user can specify a server host by using either an IPv4 address in
* dotted-decimal notation (e.g. 16.20.10.126) or a host domain name
* (e.g. serverhost.compaq.com).
*
* Enter "ctrl/z" to terminate program execution.
*
* SYNOPSIS:
*
* void get_serv_addr(void *addrptr)
*
* FORMAL PARAMETERS:
*
* addrptr - pointer to socket address structure’s ’sin_addr’ field
* to store the specified network address
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* ** None **
*
* SIDE EFFECTS:
*
* Program execution is terminated if unable to read user’s input.
*
*/

void
get_serv_addr(void *addrptr)
{

char buf[BUFSZ];
struct in_addr val;
struct hostent *host;

while (TRUE)
{
printf("Enter remote host: ");

if (fgets(buf, sizeof(buf), stdin) == NULL)
{
printf("Failed to read user input\n");
exit(EXIT_FAILURE);
}

buf[strlen(buf)-1] = 0;

val.s_addr = inet_addr(buf);

(continued on next page)

E–64 Programming Examples

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–9 (Cont.) UDP Client (System Services)

if (val.s_addr != INADDR_NONE)
{
memcpy(addrptr, &val, sizeof(struct in_addr));
break;
}

if ((host = gethostbyname(buf)))
{
memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
break;
}

}
}

E.4.2 UDP Server
Example E–10 shows how a typical UDP IPv4 server uses $QIO system services
to handle the tasks of creating a socket, binding a socket to the server’s internet
address and port, and reading client data.

Example E–10 UDP Server (System Services)

#pragma module tcpip$udp_server_qio \
"V5.1-00"

/*
* Copyright 2000 Compaq Computer Corporation
*
* COMPAQ Registered in U.S. Patent and Trademark Office.
*
* Confidential computer software. Valid license from Compaq
* or authorized sublicensor required for possession, use or
* copying. Consistent with FAR 12.211 and 12.212, Commercial
* Computer Software, Computer Software Documentation, and
* Technical Data for Commercial Items are licensed to the
* U.S. Government under vendor’s standard commercial license.
*
* ++
* FACILITY:
*
* EXAMPLES
*
* ABSTRACT:
*
* This is an example of a UDP/IP IPv4 server using OpenVMS
* QIO system services to handle network I/O operations.
*
* Refer to ’Build, Configuration, and Run Instructions’ for
* details on how to build, configure, and run this program.
*
* ENVIRONMENT:
*
* OpenVMS Alpha/VAX V7.1
* TCP/IP Services V5.0 or higher
*
* AUTHOR:
*
* TCPIP Development Group, CREATION DATE: 23-May-1989

(continued on next page)

Programming Examples E–65

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–10 (Cont.) UDP Server (System Services)
*
* --
*/

/* Build, Configuration, and Run Instructions */

/*
* BUILD INSTRUCTIONS:
*
* To build this example program use commands of the form,
*
* using the DEC "C" compiler:
*
* $ cc/prefix=all TCPIP$UDP_SERVER_QIO.C
* $ link TCPIP$UDP_SERVER_QIO
*
* using the DEC "C++" compiler:
*
* $ cxx/prefix=all/define=VMS TCPIP$UDP_SERVER_QIO.C
* $ link TCPIP$UDP_SERVER_QIO
*
*
* CONFIGURATION INSTRUCTIONS:
*
* No special configuration required.
*
*
* RUN INSTRUCTIONS:
*
* To run this example program:
*
* 1) Start this server program as shown below:
*
* $ run tcpip$udp_server_qio
* Waiting for a client datagram on port: m
*
* 2) After the server program blocks, start the client program,
* entering the server host as shown below:
*
* $ run tcpip$udp_client_qio
* Enter remote host:
*
* Note: You can specify a server host by using either an IPv4
* address in dotted-decimal notation (e.g. 16.20.10.56)
* or a host domain name (e.g. serverhost.compaq.com).
*
* 3) The server program then displays client address information
* and client data as show below:
*
* Received a datagram from host: a.b.c.d, port: n
* Data received: Hello, world!
*
* You can enter "ctrl/z" at any user prompt to terminate program
* execution.
*
*/

/*
* INCLUDE FILES:
*/

#include <descrip.h> /* define OpenVMS descriptors */

(continued on next page)

E–66 Programming Examples

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–10 (Cont.) UDP Server (System Services)

#include <efndef.h> /* define ’EFN$C_ENF’ event flag */

#include <in.h> /* define internet related constants, */
/* functions, and structures */

#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */

#include <netdb.h> /* define network database library info */

#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */

#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
/* structures, and functions */

/*
* NAMED CONSTANTS:
*/

#define SERV_PORTNUM 12345 /* server port number */

/*
* STRUCTURE DEFINITIONS:
*/

struct iosb
{ /* i/o status block */
unsigned short status; /* i/o completion status */
unsigned short bytcnt; /* bytes transferred if read/write */
void *details; /* address of buffer or parameter */
};

struct itemlst_2
{ /* item-list 2 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
};

struct itemlst_3
{ /* item-list 3 descriptor/element */
unsigned short length; /* length */
unsigned short type; /* parameter type */
void *address; /* address of item list */
unsigned int *retlen; /* address of returned length */
};

struct sockchar
{ /* socket characteristics buffer */
unsigned short prot; /* protocol */
unsigned char type; /* type */
unsigned char af; /* address format */
};

/*
* FORWARD REFERENCES:
*/

int main(void); /* client main */

(continued on next page)

Programming Examples E–67

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–10 (Cont.) UDP Server (System Services)
/* Server Main */

/*
* FUNCTIONAL DESCRIPTION:
*
* This is the server’s main-line code. It handles all the tasks of the
* server including: socket creation, binding a socket to the server’s
* internet address and port, and reading client data.
*
* This example program implements a typical UDP IPv4 server using QIO
* system services to handle network i/o operations as shown below:
*
* 1) To create a socket and set REUSEADDR option:
*
* sys$assign() and sys$qiow(IO$_SETMODE)
*
* 2) To bind internet address and port number to a socket:
*
* sys$qiow(IO$_SETMODE)
*
* 3) To transfer data:
*
* sys$qiow(IO$_READVBLK)
*
* 4) To close and delete a socket:
*
* sys$qiow(IO$_DEACCESS) and sys$dassgn()
*
* This function is invoked by the DCL "RUN" command (see below); the
* function’s completion status is interpreted by DCL and if needed,
* an error message is displayed.
*
* SYNOPSIS:
*
* int main(void)
*
* FORMAL PARAMETERS:
*
* ** None **
*
* IMPLICIT INPUTS:
*
* ** None **
*
* IMPLICIT OUTPUTS:
*
* ** None **
*
* FUNCTION VALUE:
*
* completion status
*
* SIDE EFFECTS:
*
* ** None **
*
*/

(continued on next page)

E–68 Programming Examples

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–10 (Cont.) UDP Server (System Services)

int
main(void)
{

int one = 1; /* reuseaddr option value */

char buf[512]; /* server data buffer */
int buflen = sizeof(buf); /* length of server data buffer */

struct iosb iosb; /* i/o status block */

unsigned int status; /* system service return status */

unsigned short inet_channel; /* inet device i/o channel */
struct sockchar udp_sockchar; /* socket char buffer */

unsigned int client_retlen; /* returned length of client socket */
/* address structure */

struct sockaddr_in client_addr; /* client socket address structure */
struct itemlst_3 client_itemlst; /* client item-list 3 descriptor */

struct sockaddr_in serv_addr; /* server socket address structure */
struct itemlst_2 serv_itemlst; /* server item-list 2 descriptor */

struct itemlst_2 sockopt_itemlst; /* sockopt item-list 2 descriptor */
struct itemlst_2 reuseaddr_itemlst; /* reuseaddr item-list 2 element */

$DESCRIPTOR(inet_device, /* string descriptor with logical */
"TCPIP$DEVICE"); /* name of internet pseudodevice */

/*
* init udp socket characteristics buffer
*/

udp_sockchar.prot = TCPIP$C_UDP;
udp_sockchar.type = TCPIP$C_DGRAM;
udp_sockchar.af = TCPIP$C_AF_INET;

/*
* init reuseaddr’s item-list element
*/

reuseaddr_itemlst.length = sizeof(one);
reuseaddr_itemlst.type = TCPIP$C_REUSEADDR;
reuseaddr_itemlst.address = &one;

/*
* init sockopt’s item-list descriptor
*/

sockopt_itemlst.length = sizeof(reuseaddr_itemlst);
sockopt_itemlst.type = TCPIP$C_SOCKOPT;
sockopt_itemlst.address = &reuseaddr_itemlst;

/*
* init client’s item-list descriptor
*/

memset(&client_itemlst, 0, sizeof(client_itemlst));
client_itemlst.length = sizeof(client_addr);
client_itemlst.address = &client_addr;
client_itemlst.retlen = &client_retlen;

/*
* init client’s socket address structure
*/

memset(&client_addr, 0, sizeof(client_addr));

(continued on next page)

Programming Examples E–69

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–10 (Cont.) UDP Server (System Services)

/*
* init server’s item-list descriptor
*/

serv_itemlst.length = sizeof(serv_addr);
serv_itemlst.type = TCPIP$C_SOCK_NAME;
serv_itemlst.address = &serv_addr;

/*
* init server’s socket address structure
*/

memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = htons(SERV_PORTNUM);
serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

/*
* assign device socket
*/

status = sys$assign(&inet_device, /* device name */
&inet_channel, /* i/o channel */
0, /* access mode */
0 /* not used */

);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to assign i/o channel to TCPIP device\n");
exit(status);
}

/*
* create udp socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
inet_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
&udp_sockchar, /* p1 - socket char buffer */
0, /* p2 */
0, /* p3 */
0, /* p4 */
&sockopt_itemlst, /* p5 - socket options */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to create socket\n");
exit(status);
}

/*
* bind server’s internet address and port number to socket
*/

(continued on next page)

E–70 Programming Examples

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–10 (Cont.) UDP Server (System Services)

status = sys$qiow(EFN$C_ENF, /* event flag */
inet_channel, /* i/o channel */
IO$_SETMODE, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
&serv_itemlst, /* p3 - local socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to bind socket\n");
exit(status);
}

/*
* read datagram from client
*/

printf("Waiting for a client datagram on port: %d\n",
ntohs(serv_addr.sin_port)

);

status = sys$qiow(EFN$C_ENF, /* event flag */
inet_channel, /* i/o channel */
IO$_READVBLK, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
buf, /* p1 - buffer address */
buflen, /* p2 - buffer length */
&client_itemlst, /* p3 - remote socket name */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to read datagram from client\n");
exit(status);
}

(continued on next page)

Programming Examples E–71

Programming Examples
E.4 UDP Client/Server Examples (System Services)

Example E–10 (Cont.) UDP Server (System Services)

printf("Received a datagram from host: %s, port: %d\n",
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port)

);
printf("Data received: %s\n", buf); /* output client’s data */

/*
* close udp socket
*/

status = sys$qiow(EFN$C_ENF, /* event flag */
inet_channel, /* i/o channel */
IO$_DEACCESS, /* i/o function code */
&iosb, /* i/o status block */
0, /* ast service routine */
0, /* ast parameter */
0, /* p1 */
0, /* p2 */
0, /* p3 */
0, /* p4 */
0, /* p5 */
0 /* p6 */

);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (!(status & STS$M_SUCCESS))
{
printf("Failed to close socket\n");
exit(status);
}

/*
* deassign device socket
*/

status = sys$dassgn(inet_channel);

if (!(status & STS$M_SUCCESS))
{
printf("Failed to deassign i/o channel to TCPIP device\n");
exit(status);
}

exit(EXIT_SUCCESS);
}

E–72 Programming Examples

Index

A
accept() function, 4–3

how to use, 2–25
ACP operations

See IO$_ACPCONTROL function
Active sockets, 3–1
Addresses

using 64-bit (Alpha only), 1–5
Address families

IO$M_OUTBAND, 6–40
IO$_SETMODE function, 6–54

Alias names, 6–20
Application calling sequences

TCP client, 2–3
TCP server, 2–3
UDP client, 2–6
UDP server, 2–4

Application development files
C language definitions, 1–2
libraries, 1–2
network definitions, 1–2
programing examples, 1–2
standard UNIX definitions, 1–2

Application programming interfaces
supported APIs, 1–1

Arguments
iosb, 5–4
passing by descriptor, 5–5
$QIO system service, 5–1
$QIOW system service, 5–1

Assigning a channel
to the network device, 2–7

$ASSIGN system service, 2–7
access modes, 6–4
channel, 6–4
description, 6–3
I/O channel service, 6–3

AST routines
$QIO service, 6–11, 6–12

AST states
calling a Sockets API function, 3–8

Asynchronous queue requests, 6–10
Asynchronous system traps (ASTs), 3–8

B
Berkeley Internet Name Domain resolver

See BIND resolver
Berkeley Software Distribution Sockets API, 1–1
bind() function, 4–5
BIND lookups

using $QIO system service, 2–73
using Sockets API function, 2–72

BIND resolver
accessing, 2–72
service, 2–72
used with IO$_ACPCONTROL, 2–72

BIND service, 2–72
Broadcasting on a local network

See Broadcast messages
Broadcast messages

on a local network, 2–69
Buffers

limits
with $ASSIGN system service, 6–5

multiple, 6–25
operations, 6–13

C
Cancel operation, 2–84
$CANCEL system service, 6–6

canceling I/O operations, 2–84
CC command, 1–4

/DEFINE option, 1–4
using _SOCKADDR_LEN, 1–4

Channels
assigning to TCPIP$DEVICE:, 6–4
assigning to the network device, 2–7
canceling pending I/O requests, 6–6
deassigning

See $DASSGN system service
C language definition files, 1–2
close() function, 4–7

example, 2–77
Closing a connection

IO$_DEACCESS function, 6–13
Commands

CC, 1–4
LINK, 1–4

Index–1

Commands (cont’d)
SET PROTOCOL UDP

/BROADCAST qualifier, 2–70
to disable privilege checking, 2–70

SIOCATMARK, 6–27
START COMMUNICATION, 6–46

Compilation warnings, 1–4
Compiling with Compaq C, 1–4
connect() function, 4–8
Connections

accepting a request
with $QIO system service, 2–27
with Sockets API function, 2–25

closing, 6–23
disconnecting, 6–23
establishing a pseudoconnection, 2–21
initiating, 2–19 to 2–21
sending a request, 2–19
shutting down, 2–77, 6–24

D
$DASSGN system service

deleting a network device, 2–77
releasing an I/O channel, 6–8
timeout intervals, 6–9

Datagrams, 6–35
broadcasting, 2–69, 2–70
sending, 2–69

Data streams
reading out-of-band data, 2–53

Data structures, 5–4
Data type declarations

C and C++ implementations, C–5
Deassigning an I/O channel, 6–8
decc$get_sdc() function, 4–10
/DEFINE option

using _SOCKADDR_LEN, 1–4
#DEFINE preprocessor directive, 1–4
Definition files

location, 1–2
Device drivers

applying restrictions, 6–4
Device name

assigning a channel, 6–3

E
Enable Write Attention AST function

See IO$M_WRTATTN modifier
ERRNO.H file, 3–9
errno values, 3–9
Error checking, 3–9
Error codes, D–1
Errors

notification, 2–77

Event flags, 3–9
Examples

location of, E–1
EXEC mode

calling Sockets API functions from, 3–8

F
Flags

$QIO event, 5–1
Flushing data from queue, 6–26
Functions

See Sockets API functions

G
gethostbyaddr() function, 4–11
gethostbyname() function, 4–13
gethostname() function, 4–14
getnetbyaddr() function, 4–15
getnetbyname() function, 4–16
getpeername() function, 4–17
getprotobyname() function, 4–18
getprotobynumber() function, 4–19
getprotoent() function, 4–20
getservbyname() function, 4–21
getservbyport() function, 4–22
getsockname() function, 4–23
getsockopt() function, 4–24

H
Header files, 1–4, 3–8
Host addresses

mapping for client systems, 2–72
hostent structure, 3–3
htonl() function, 4–26
htons() function, 4–27

I
I/O

assigning a channel, 6–3
canceling, 6–6
canceling a request, 2–84
releasing a channel, 6–8
SET CHARACTERISTICS function, 6–34
SET MODE function, 6–34
status block, 6–11

I/O access modes, 6–4
I/O requests

asynchronous, 6–10
synchronous, 6–10

I/O status block, 5–4
#include files, 3–8
#include syntax, 3–8

Index–2

inet device
canceling I/O channel, 6–6

inet_addr() function, 4–28
inet_lnaof() function, 4–30
inet_makeaddr() function, 4–31
inet_netof() function, 4–32
inet_network() function, 4–33
inet_ntoa() function, 4–34
Internet address

specifying a local host, 2–10
Internet protocol family, 3–1
in_addr structure, 3–4
IO$M_ACCEPT modifier, 6–17

accepting a connection request, 2–24
IO$M_EXTEND modifier, 6–17, 6–27, 6–32, 6–56
IO$M_INTERRUPT modifier, 6–27, 6–56

examples, 2–54
reading out-of-band data, 2–53, 2–54
specifying an out-of-band data write, 2–67

IO$M_LOCKBUF modifier, 6–28
IO$M_NOWAIT modifier, 6–28, 6–56
IO$M_NOW modifier, 6–14, 6–17, 6–24
IO$M_OUTBAND modifier, 6–40
IO$M_PURGE modifier, 6–28
IO$M_READATTN modifier, 6–45
IO$M_SHUTDOWN modifier, 6–24
IO$M_TN_SENSEMODE modifier, 6–69
IO$M_TN_SETMODE modifier, 6–70
IO$M_TN_SHUTDOWN modifier, 6–67
IO$M_TN_STARTUP modifier, 6–65
IO$M_WRTATTN modifier, 6–50
IO$_ACCESS function

device channel, 6–14
establishing a pseudoconnection, 2–21
function modifiers, 6–14
initiating a connection, 2–19
IO$M_ACCEPT modifier, 2–24
remote socket name, 6–14
timeout intervals, 6–14

IO$_ACPCONTROL function, 6–20
inet call codes, 6–20
subfunction codes, 6–20
used with the BIND database, 2–72

IO$_DEACCESS function, 6–23
deleting a socket, 2–77
function modifiers, 6–24
linger option, 6–23
shutdown flags

IO$M_SHUTDOWN, 6–23
shutting down a connection, 2–77, 6–24

IO$_READVBLK, 6–25
function modifiers, 6–27

IO$_READVBLK function
flags, 6–26
flushing data from queue, 6–26
IO$M_EXTEND modifier, 6–27
IO$M_INTERRUPT modifier, 2–53, 6–27
item_list_3 descriptor, 6–26

IO$_READVBLK function (cont’d)
OOB character, 2–54
OpenVMS examples, 2–48
read flags, 6–26
specifying a logical read operation, 2–46
specifying a virtual read operation, 2–46
TCPIP$M_PEEK modifier, 2–55
timeout interval, 6–30

IO$_SENSECHAR function, 6–31
IO$_SENSEMODE function, 6–31

obtaining socket information, 2–31
reading out-of-band data, 2–53

IO$_SETCHAR function
binding a socket, 2–10
creating a socket, 2–7
protocols, 6–34
socket type, 6–34

IO$_SETMODE function, 6–40, 6–45, 6–50
binding a socket, 2–10
broadcasting datagrams, 2–69
creating a socket, 2–7
protocols, 6–34
sending broadcast datagrams, 2–70
setting as listener, 2–14, 2–16
socket type, 6–34
used for broadcast and multicast messages,

2–69
IO$_TTY_PORT function, 6–64
IO$_WRITEVBLK function, 6–55

broadcast and multicast messages, 2–69
flags, 6–56
IO$M_INTERRUPT modifier, 2–68
modifiers, 6–56
specify a write operation, 2–61
used in connection requests, 2–19

IOCTL
SIOCATMARK command, 6–27
subfunction, 6–27

ioctl() function, 4–35
IOCTL requests, B–1
iovec structure, 3–4
IP

protocol options, 6–32
IP addressing

use of wildcards, 3–1
IP family, 3–1
IP multicast datagrams

receiving, 2–52
sending, 2–70

IP protocol options, A–1
IP_ADD_MEMBERSHIP option, 2–52
IP_DROP_MEMBERSHIP option

for leaving a multicast group, 2–52
IP_MULTICAST_TTL option

for sending a multicast datagram, 2–70

Index–3

K
KERNEL mode

calling Sockets API functions from, 3–8

L
Linger option, 6–23
linger structure, 3–4
LINK command, 1–4
Linking with Compaq C, 1–4
Listen

for connection requests, 2–14
Sockets API example, 2–15

listen() function, 4–37
Local host address parameter

binding a socket, 2–10
Local socket

creating, 2–7
Lookups

BIND, 2–73

M
Message length

IOSB, 6–56
Messages

broadcast, 2–69, 2–70
discarding, 2–81, 6–24
out-of-band, 6–27
received, 6–25

msghdr structure, 3–5
Multicast IP datagrams

See IP multicast datagrams
Multiple buffers, 6–25

N
netent structure, 3–6, 6–21
NETMBX privileges, 6–4
Network application programs, 3–1
Network definition files, 1–2
Network device

See sockets
Network pseudodevice, 6–4

assigning a channel, 2–7
I/O functions, 6–13
memory requirements, 6–4
privileges and protections, 6–4
reading characteristics, 6–13
setting characteristics, 6–13

ntohl() function, 4–39
ntohs()function, 4–40

O
omsghdr structure, 3–5
Online program examples

location of, E–1
OOB

See Out-of-band character
OOB character, 6–27
OOBINLINE socket option, 6–27
Opening a connection

See IO$_ACCESS function
OpenVMS data types, C–1
OpenVMS programming interfaces, 1–1
OpenVMS related definition files, 1–2
OpenVMS status codes, D–1
OpenVMS system services

closing and deleting a socket, 2–78
connection accept, 2–27
connection request example, 2–21
reference, 6–1
shutting down a socket, 2–80
using, 5–1

Out-of-band character
request, 6–40

Out-of-band data
examples, 2–54
in a READ operation, 2–53
in a WRITE operation, 2–67
using the IO$M_INTERRUPT modifier, 2–54

P
Parameters

passing, 5–4
SIOCATMARK command, 6–27
types, 5–10

Passive sockets, 3–1
Peek feature, 2–55
Peeking at queued messages

during a READ operation, 2–55
Polling sockets, 6–27
Portability concerns

Sockets API functions, 3–8
Port numbers

specifying a local port, 2–14
Privilege and protection restrictions

applying, 6–4
Privileges

disabling, 2–70
IO$_SETMODE, 6–36
NETMBX, 6–4

Programming interfaces
Berkeley Software Distribution

Sockets API, 1–1
OpenVMS system services, 1–1

Index–4

Protection restrictions
applying, 6–4

Protocols
Internet, 3–1
IP family, 3–1
Transmission Control, 3–1
User Datagram, 3–1

PSL$C_EXEC access mode, 6–4
PSL$C_KERNEL access mode, 6–4
PSL$C_SUPER access mode, 6–4
PSL$C_USER access mode, 6–4

Q
$QIO arguments, 5–3, 5–5

item_list_2 data structure, 5–4
item_list_3 data structure, 5–4

$QIO system service, 6–10
arguments, 5–1
assigning channels, 2–7
BIND lookup, 2–73
broadcast and multicast messages, 2–69
call format, 5–1
close and delete function, 2–78
creating a socket, 2–7
description, 5–1
error codes, D–1
function codes, 5–2
function-dependent, 5–4
function-independent, 5–3
initiating a connection, 2–21
IO$_ACCESS function, 2–21
IO$_ACPCONTROL function, 2–72
IO$_DEACCESS function, 2–77
IO$_READVBLK function, 2–48, 2–54, 2–58
IO$_SENSEMODE function, 2–31, 2–54
IO$_SETCHAR function, 2–7, 2–10
IO$_SETMODE function, 2–7, 2–10, 2–69
IO$_WRITEVBLK function, 2–61, 2–68, 2–69
polling sockets, 2–53
$QIOW, 5–1
reading OOB data, 2–53 to 2–55
receiving OOB data, 2–53
specifying a buffer list, 5–13
specifying input parameter lists, 5–6
specifying output parameter lists, 5–8
specifying socket names, 5–11
using $QIO or $QIOW, 5–1
using READ operations with a stream, 2–53
when to use, 5–1

$QIOW system service, 6–10
See also $QIO
arguments, 5–1
description, 5–1

Queued messages
peeking during a READ operation, 2–55

Queue I/O Request and Wait service
See $QIO system service

Queue I/O Request service
See $QIO system service

Queues
flushing data from, 6–26

Quotas
AST limit, 6–12
BIOLM, 6–6

R
read() function, 4–41
Read functions, 6–25
Reading an out-of-band message, 6–27
Reading a virtual block

See IO$_READVBLK function
READ operation

IP multicast datagrams, 2–52
out-of-band

$QIO function, 2–54
Sockets API function, 2–54

peeking
at queued messages, 2–55
with $QIO system service, 2–58
with Sockets API function, 2–55

specifying out-of-band read data, 2–53
with $QIO system service, 2–48
with Sockets API function, 2–46

recv() function, 4–43
peek feature, 2–55

recvfrom() function, 4–45
recvmsg() function, 4–48
Releasing an I/O channel, 6–8
Remote socket

specifying a socket name, 2–69
Resolver

See BIND resolver
Restrictions

privilege, 6–4
protection, 6–4

S
select() function, 4–50
send() function, 2–61, 4–53
Sending a connection request

using $QIO system service, 2–21
using Sockets API interface, 2–19

Sending to a target process, 6–56
sendmsg() function, 4–55
sendto() function, 4–57
SET COMMUNICATION/BROADCAST command,

2–70
SET PROTOCOL UDP command

/BROADCAST qualifier, 2–70
to disable privilege checking, 2–70

Index–5

setsockopt() function, 4–60
SHOW DEVICE_SOCKET command, 6–50
shutdown() function, 4–62
Shutdown flags

IO$_DEACCESS, 6–23
Shutting down a connection

See IO$M_SHUTDOWN modifier
SIOCATMARK command, 6–27
sockaddr structure, 3–6, 3–7
sockaddr_in structure, 3–7, 5–13
socket() function, 4–63 to 4–64

example, 2–8
Socket name

IO$_ACCESS, 6–14
Socket options, A–1

OOBINLINE, 6–27
Sockets

active, 3–1
binding, 2–10

with $QIO system service, 2–12
with Sockets API function, 2–11

calling from EXEC mode, 3–8
canceling requests, 2–84
closing and deleting, 2–78

with Sockets API function, 2–77
connection request example, 2–20
creating, 2–7
creating with OpenVMS system services, 2–8
creating with Sockets API, 2–8
deleting, 2–77

with $QIO system service, 2–78
event flags, 3–9
functions

calling from AST state, 3–8
calling from KERNEL mode, 3–8
porting considerations, 3–8

listening, 2–14
with $QIO system service, 2–16
with Sockets API function, 2–15

naming, 2–10
obtaining information, 2–31

with $QIO system service, 2–34
with Sockets API functions, 2–31

options
TCPIP$FULL_DUPLEX_CLOSE, 2–77

passive, 3–1
peek feature, 2–55
polling, 2–53, 6–27
reading OOB data, 2–53
read operation, 2–54
receiving OOB data, 2–53
recv() function example, 2–46
shut down

with $QIO system service, 2–81
shuting down

with Sockets API function, 2–80
shutting down, 2–80

Sockets (cont’d)
TCP, 3–1
TCP/IP parameter types, 6–32
UDP, 3–2

Sockets API
error codes translated to $QIO equivalents,

D–1
standard I/O compilation warnings, 1–4

Sockets API error codes, D–1
Sockets API functions

introduction to writing, 3–1
Sockets API interface

initiating a connection, 2–19
Sockets API structures

hostent, 6–21
listing of, 3–3
netent, 6–21
sockaddr_in, 5–13
use with functions, 3–2

Socket types, 6–35
IO$_SETCHAR, 6–34
IO$_SETMODE, 6–34

SS$_ABORT, 6–6
Standard UNIX definition files, 1–2
Status

block fields, 5–4
test I/O status block, 6–11
UNIX completion fields, 5–4
word length, 5–4

Symbol definition files
for system services, 5–2
names, 6–13
TCPIP$INETDEF, 6–20

Synchronize $QIO completion, 6–12
Synchronous queue requests, 6–10
SYS$LIBRARY directory, 1–2
SYS$QIO system service

calling sequence, 5–1
System services

symbol definition files, 5–2

T
TCP

programming examples
client, 1–4
server, 1–4

protocol options, 6–32, A–1
sockets, 3–1

TCP/IP
accepting a connection, 2–24
client calling sequence, 2–3
client connection initiation, 2–19
making a socket a listener, 2–14
reading out-of-band data, 2–53
sending out-of-band data, 2–67
server calling sequence, 2–3, 2–6

Index–6

TCP/IP Services data types, C–2
TCPIP$C_AF_INET address family, 6–35
TCPIP$C_AUX address family, 6–35
TCPIP$C_DATA option, 5–10
TCPIP$C_DGRAM socket type, 6–34
TCPIP$C_DSC_ALL flag, 6–23
TCPIP$C_DSC_RCV flag, 6–23
TCPIP$C_DSC_SND flag, 6–23
TCPIP$C_IOCTL option, 5–10
TCPIP$C_IOCTL parameter types, 6–32
TCPIP$C_IPOPT option, 5–10
TCPIP$C_IPOPT parameter types, 6–32
TCPIP$C_IP_ADD_MEMBERSHIP option, 2–52
TCPIP$C_IP_DROP_MEMBERSHIP option, 2–52
TCPIP$C_IP_MULTICAST_TTL option

for sending a multicast datagram, 2–70
TCPIP$C_LINGER option, 6–23
TCPIP$C_MSG_OOB flag, 2–54
TCPIP$C_RAW socket type, 6–34
TCPIP$C_RAW_IP protocol, 6–34
TCPIP$C_SOCKOPT option, 5–10
TCPIP$C_SOCKOPT parameter types, 6–32
TCPIP$C_SOCK_NAME argument, 6–14
TCPIP$C_SOCK_NAME parameter, 6–26
TCPIP$C_STREAM socket type, 6–34
TCPIP$C_TCPOPT option, 5–10
TCPIP$C_TCPOPT parameter types, 6–32
TCPIP$C_TCP protocol, 6–34
TCPIP$C_UDP protocol, 6–34
TCPIP$DEVICE

See network device
TCPIP$FULL_DUPLEX_CLOSE option

set for error notification, 2–77
TCPIP$M_PEEK modifier

IO$_READVBLK function, 2–55
Timeout intervals

$DASSGN system service, 6–9
default, 6–14
IO$_ACCESS function, 6–14
IO$_READVBLK function, 6–30

timeval structure, 3–7

U
UDP

client calling sequence, 2–6
programming examples

client, 1–4
server, 1–4

receiving IP multicast datagrams, 2–52
sending a communication request, 2–69
sending broadcast and multicast messages,

2–69
writing data, 2–69

UDP/IP
server calling sequence, 2–4

UDP sockets, 3–2
UNIX completion status fields, 5–4
User Datagram Protocol

See UDP

W
Warnings

compilation, 1–4
Wildcard addressing, 3–1
write() function, 4–65
Write operation

broadcasting
with Sockets API function, 2–70

multicasting
with system service or Sockets API call,

2–70
out-of-band data

with $QIO system service, 2–68
with Sockets API function, 2–67

privileges required for UDP, 2–69
sending datagrams

with $QIO system service, 2–69
with $QIO system service, 2–61
with Sockets API function, 2–59

Writing a virtual block
See IO$_WRITEVBLK function

Index–7

