DIGITAL TCP/IP Services for
OpenVMS

ONC RPC Programming

Order Number: AA-QO6VE-TE

January 1999

This manual provides an overview of high-level programming with open
network computing remote procedure calls (ONC RPC), describes how to
use the RPCGEN protocol compiler to create applications, and describes
the RPC programming interface.

Revision Information: This is a revised manual.

Operating System: OpenVMS Alpha Versions 7.1, 7.2
OpenVMS VAX Versions 7.1, 7.2

Software Version: DIGITAL TCP/IP Services

for OpenVMS Version 5.0

Compaq Computer Corporation
Houston, Texas



January 1999

Compaq Computer Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Compaq or an authorized sublicensor.

Compagq conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Compaq Computer Corporation 1999. All rights reserved.

The following are trademarks of Compag Computer Corporation: ACMS, Alpha, Compaq, DDCMP,
DEC, DECdtm, DECnet, DECNIS, DECserver, DECsystem, DIGITAL, DIGITAL UNIX, DNA,
InfoServer, LAT, OpenVMS, PATHWORKS, POLYCENTER, ULTRIX, VAX, VAXstation, VMS, and
the Compaqg logo.

The following are third-party trademarks:

CRAY is a registered trademark of Cray Research, Inc.

HP and Hewlett-Packard are registered trademarks of Hewlett-Packard Company.
IBM and OS/2 are registered trademarks of International Business Machines Corporation.
Macintosh is a registered trademark of Apple Computer, Inc.

MS-DOS is a registered trademark of Microsoft Corporation.

MultiNet is a registered trademark of Process Software Corporation.

OSF/1 is a registered trademark of Open Software Foundation, Inc.

OSl is a registered trademark of CA Management, Inc.

PostScript is a registered trademark of Adobe Systems Incorporated.

SCO is a trademark of Santa Cruz Operations, Inc.

Sun, NFS, and PC-NFS are registered trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6528

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT, Version 2.1.



Preface

Contents

1 Introduction to Remote Procedure Calls

11
1.2
13
1.4

14.1
1.4.2
15
1.6
1.7

OVEIVIBW . o o
The RPC Model .. ... .. . e
RPC Procedure VErSiONS. . . .. ..o
Using Portmapper to Determine the Destination Port Number of RPC

PaCKetS . .

Portmapper Notes for TCP/IP Services . .......................
Displaying Registered RPC Servers .. ......... ... . ...

RPC Independence from Transport Protocol . . .. ....................
External Data Representation (XDR) . .. ........ ... ... .. . .. .. ...
Assigning Program Numbers . .. ... ... .

2 Writing RPC Applications with the RPCGEN Protocol Compiler

2.1
2.2

221
222
2.2.3
224
2.2.5
2.2.6
2.3

231
2.3.2
2.3.3
234
235
2.3.6
2.3.7
2.4

2.5

2.6

26.1
2.6.2
2.6.3
264
2.7

2.7.1
2.7.2

The RPCGEN Protocol Compiler . ....... ... . ... . ..
Simple Example: Using RPCGEN to Generate Client and Server RPC
C0dE . o o

RPC Protocol Specification File Describing Remote Procedure . . ... ..
Implementing the Procedure Declared in the Protocol Specification . .
The Client Program That Calls the Remote Procedure ............
Running RPCGEN . . ... ... . . . e
Compiling the Client and Server Programs . .. ..................
Copying the Server to a Remote System and Running It...........

Advanced Example: Using RPCGEN to Generate XDR Routines .......

The RPC Protocol Specification ..............................
Implementing the Procedure Declared in the Protocol Specification . .
The Client Program that Calls the Remote Procedure .. ...........
Running RPCGEN . . .. ... . . . . e
Compiling the File of XDR Routines ..........................
Compiling the Client and Server Programs . .. ..................
Copying the Server to a Remote System and Running It...........

Debugging Applications . .. ... .. . .
The C PreproCeSSOr . . oo v ittt e e et e e e e
RPCGEN Programming . .. ... ..ottt et e e

Network TyPes . . oo
User-Provided Define Statements ... .............. ... .......
INETd SUPPOrt . . .o
Dispatch Tables . ... ... .. . . . . e

Client Programming . . . .. ..ot e e e e e

Timeout Changes . . . .. ..
Client Authentication. ... ... ... . ... . ..

e
AR R

TNTTT
(o2 BN epRN@) I &) IE SN Y

LN
=

I T T T NNNNDNDNN
=L

PRPPOOOOOONOODOOTOOARANOOOWOLOOWOOUIADN

I\)I\DNI\)I\JI\)I\JI\)rl\)I\JI\JI\)I\)I\)I\JI\JI\)I\)
NNNRPRPRRRRPRRPRERERERRR



2.8

281
2.8.2
29

29.1
29.2
293
294
295
2.9.6
2.9.7
2938
2.9.9

Server Programming . . .
Handling Broadcasts

Passing Data to Server Procedures ............. ... ...

RPC and XDR Languages
Definitions .. ... ...
Enumerations .. ...
Typedefs..........
Constants.........
Declarations . . .. ...
Structures ........
Unions . ..........
Programs .........
Special Cases . . . ...

RPCGEN ............

3 RPC Application Programming Interface

3.1
3.2
3.2.1
3.2.2
3.2.3
3.24
3.25
3.3
331
3.3.2
3.3.3
3.4
3.5
351
3.5.2
3.5.3
3.6
3.6.1
3.6.2
3.7
3.8
3.8.1
3.8.2
3.8.3
3.8.4

RPC Layers ..........
Middle Layer of RPC . ..
Using callrpc ... ...
Using registerrpc and

SVC FUN &ttt et e e e

Using XDR Routines to Pass Arbitrary Data Types . .. ............
User-Defined XDR Routines . . .. ...
XDR Serializing Defaults . .. ........ ... ... .. . .. . .

Lowest Layer of RPC . ..

The Server Side and the Lowest RPC Layer ....................
The Client Side and the Lowest RPC Layer. . ...................
Memory Allocation with XDR. . ... ... ... ... .. . .

Raw RPC . ...........

Miscellaneous RPC Features . . ... i e
Using Selecton the Server Side . . .. ........ .. .. ... ... .. ......

Broadcast RPC . . . ..
Batching..........

Authentication of RPC Calls .. ....... ... . .. . . . . . . . ...

The Client Side . ...
The Server Side . . ..

Using the Internet Service Daemon (INETd) . .. ....................

Additional Examples . ..

Program Versions on the Server Side . . . . ......... .. ... ... .....
Program Versions on the ClientSide . . ........................
Using the TCP Transport . . .. ... e

Callback Procedures.

4 External Data Representation

4.1

411
4.1.2
4.2

421
422
4.2.3
4.2.4

Usefulness of XDR . . . ..
A Canonical Standard
The XDR Library . ..

XDR Library Primitives .

Number and Single-Character Filters .. .......................

Floating-Point Filters
Enumeration Filters.
Possibility of No Data

ooooooooclaowoooooo
OO O~NOPANDNPEP

|
=
=

3-13
3-15
3-17
3-17
3-17
3-19
3-23
3-23
3-24
3-26
3-26
3-27
3-28
3-30
3-34

B DBADMDMDDD

|
O~NNOOO A~ DB



425
4251
4.25.2
4.25.3
4254
4255
4256
4257
4.2.6
4.3

4.4
441
4472
443
4.4.4
4.5

Constructed Data Type Filters . . .. ........ ... .. .. ... ... ......

Strings . .

Variable-Length Byte Arrays . ... ...
Variable-Length Arrays of Arbitrary Data Elements ...........
Fixed-Length Arrays of Arbitrary Data Elements .............
Opaque Data . ... ... ..
Discriminated Unions .. ............ . . .

Pointers .

Non-filter Primitives ... ...... .. ... . .. .
XDR Operation DIirections . . .. ... .. e
XDR Stream ACCESS . . ..ottt

Standard 1/O Streams . ... ...

Memory Streams . . ... ...

Record (TCP/IP) Streams . . . . .. ..t

XDR Stream Implementation. .. ............. .. .. ... .. . ... ...

Advanced Topics .

5 ONC RPC Client Routines

auth_destroy . ..
authnone_create .
authunix_create .

authunix create default. . ........ ... ... ... .. . ... . . . .. . ..

callrpc ........
cIlnt_broadcast . .
cintcall .......
cint_control . ...
cint create .. ...
clnt_create_vers .
clnt_destroy . . ..
cint_freeres .. ..
cint_geterr .. ...
clnt_pcreateerror
clnt_perrno. . ...
clnt_perror .. ...
cInt_spcreateerror
cIlnt_sperrno . . ..
cInt_sperror . . ..
clntraw_create . .
cinttcp_create . . .
cIntudp_bufcreate
cIntudp_create . .
get_myaddress . .
get_myaddr_dest

5-3

5-4

5-5

5-6

5-7

5-9
5-11
5-12
5-13
5-15
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-29
5-31
5-33
5-34



6 ONC RPC Portmapper Routines

pmap_getmaps . . . . .. .. 6-2
pmap_getmaps_VIMS . . . . . .. .. e 6-3
pmap_getport . . . .. ... 6-4
pmap_rmtcall . ... ... . 6-5
10T o =2 67
PMaP _UNSEL . . ..o e 6-8

7 ONC RPC Server Routines

FegISTEITPC . . . o 7-3
Seterr_reply ... 7-4
SVC_AeStIOY . . . ot 7-5
SVC freeargs . . .o 7-6
SVC _gBtargS . . . oo -7
sve_getcaller. . ... 7-8
SVC getreqset .. ..o 7-9
SVC FegISter . . o 7-11
SVC UM ot it e e e e e e 7-12
SVC_sendreply . . ... 7-13
SVC_UNFEQISTEr . . . oo 7-14
SVCEIT_aUth . .o 7-15
SVCEIT_dEeCOOE . . o . o 7-16
SVCEIT_NOPKOC . . o vttt e e e e e e e e e e e e e e e 7-17
SVCEIT _NOPIOQ -« v v v e e e e e e e e e e e e e e e 7-18
SVCEBIT _PrOgVEES . . vt et e e e e e e e 7-19
SVCRIT _SYS M T . o o 7-20
sveerr_weakauth ... ... ... . . . 7-21
SVCIAW _CreaTE . . . . i it e e e 7-22
svefd _create . ... ... 7-23
svCtCp_Create .. ... .. .. ... ... 7-24
sveudp_bufcreate . ... .. 7-25
SVCUAP_Create . . . .o 7-26
XPIE FEgIS el . o e 7-27
XPIrE UNFEgISter . . o e 7-28
_authenticate . ... ... 7-29

8 XDR Routine Reference

vi

xdr_accepted _reply . . . ... 8-3
XAT_@FTAY . o e 8-4
Xdr_authunix_parms . . ... ... 8-5
XAr_bool . .o 8-6
XAr DY S . . 8-7
xdr_callhdr . .. ... 8-8
XAr_callmsg . ... 8-9
XAr_char . . .. e 8-10



xdr_double ... ... 8-11

XAT BNUM . . e 8-12
xdr_float. . .. ... . . e 8-13
XAr_free .. o e 8-14
XAr _NYPer . o 8-15
XAV Nt . 8-16
XAr_lONg . oo 8-17
XAT_OPAQUE . .« . ot 8-18
xdr_opaque_auth . ... ... ... 8-19
XAT PMIAD . . ot 8-20
XAT PMaPD VNS & o o e e e 8-21
XAr_pmaplist . . ... 8-22
Xdr_pmapliSt VIS . . ... 8-23
XAr_POINter . . . 8-24
XAr_reference . ... 8-25
xdr_rejected_reply . .. .. 8-26
XAr_replymsg . ..o 8-27
XAr ShOrt . . 8-28
XAr SEriNG . . 8-29
XAr_u char . ... 8-30
XAr _U_NYper . . 8-31
XAr U Nt . e 8-32
XAr_U_lONg . .o 8-33
XAr_U_ShOrt . ... 8-34
XAr_UNION . o 8-35
XAY VECHOr . .. 8-36
XAr VOId . . 8-37
XAr WEapString . . . ..o e 8-38
XArmMeEM _Create . . . . .. e 8-39
XArreC Create . . ... .. . e 8-40
xdrrec_endofrecord . . ... ... 8-42
XArrec _eof . . . 8-43
Xdrrec_SKIprecord . . .. ... 8-44
XArstdio_create . . ... ... 8-45

A Acronyms

Index

Examples

2-1
2-2
2-3
2-4
2-5
2-6

Printing a Remote Message Without ONCRPC . .. ............... 2-2
RPC Protocol Specification File Simple Example .. ............... 2-4
Remote Procedure Definition ... ......... .. ... ... ... .. ... . ... 2-5
Client Program that Calls the Remote Procedure ................ 2-6
RPC Protocol Specification File—Advanced Example . . ............ 2-11
Remote Procedure Implementation ........................... 2-12

Vii



2—7
2-8
3-1
3-2
3-3
34
3-5
3-6

37
3-8
3-9
3-10
3-11

3-12
3-13
3-14
3-15
3-16
4-1
4-2
4-3
4-4

Figures

1-1

Tables

viii

1

3-1
5-1
6-1
7-1
8-1
8-2
A-1

Client Program that Calls the Server . ........................
Using the Percent Sign to Bypass Interpretation of a Line .........
Using callrpc . . ...
Remote Server Procedure . . ... . .
Using registerrpc in the Main Body of a Server Program ..........
Server Program Using Lowest Layer of RPC . .. .................
Using Lowest RPC Layer to Control Data Transport and Delivery . ..

Debugging and Testing the Noncommunication Parts of an
Application . . .. ...

Server Batching . . ... ...
Client Batching .. ... . e
Authentication on Server Side . .. .. ... ... . .
C Procedure That Returns Two Different Data Types .............

Determining Server-Supported Versions and Creating Associated
Client Handles . . . ... ... .

RPC Example that Uses TCP Protocol—XDR Routine . ............
RPC Example that Uses TCP Protocol— Client . . .. ..............
RPC Example that Uses TCP Protocol— Server .................
Client Usage of the gettransient Routine . .. ....................
Server Usage of the gettransient Routine . .....................
Structure and Associated XDR Routine . .......................
Declaration and Associated XDR Routines. . . ...................
Declarations and XDR Routines. . . ......... ... ...
Constructs and XDR Procedure ............. ...

Basic Network Communication with Remote Procedure Call .. ... ...

DIGITAL TCP/IP Services for OpenVMS Documentation ..........
XDR ROULINES . ..
ONC RPC Client RoUtines . . . ... ...t e
ONC RPC Portmapper Routines . ............ ...,
ONC RPC SERVER ROULINES . . . . ..o
XDR Data Conversion ROULINES . . . .. ..ot
XDR Stream Handling Routines . ............ .. .. ... ... ... ...
ACTONYIMS . . o e e e

2-14
2-18

3-3
3-5
3-9
3-11

3-15
3-19
3-21
3-24
3-27

3-28
3-30
3-31
3-33
3-35
3-36
4-10
4-10
4-11
4-13



Preface

The DIGITAL TCP/IP Services for OpenVMS product is Compagqg’s implementation
of the TCP/IP networking protocol suite and internet services for OpenVMS Alpha
and OpenVMS VAX systems.

A layered software product, DIGITAL TCP/IP Services for OpenVMS provides a
comprehensive suite of functions and applications that support industry-standard
protocols for heterogeneous network communications and resource sharing.

This manual provides an overview of high-level programming with open network
computing remote procedure calls (ONC RPC), describes how to use the RPCGEN
protocol compiler to create applications, and describes the RPC programming
interface.

Intended Audience

This manual assumes a knowledge of network theory and is for eperienced
programmers who want to write network applications using ONC RPC without
needing to know about the underlying network.

New and Changed Features

DIGITAL TCP/IP Services for OpenVMS Version 5.0 provides a new kernel based
on the IPv4 kernel ported from Compag's DIGITAL UNIX Version 4.0D.1

Other new features include:

= Dynamic Host Configuration Protocol (DHCP) that allows the system manager
to provide dynamic allocation of IP addresses from a single OpenVMS host.

= Gateway routing daemon (GATED) server and a comprehensive suite of
interior and exterior routing protocols that offer advanced routing options.

= Classless Inter-domain routing (CIDR) that allows networks to be built with
variable-length subnetworks.

e PathMTU discovery, a mechanism that allows an IP host to determine the
most efficient packet size for use on a particular path between the source to
the destination host.

= UNIX management utilities to assist with the management of OpenVMS
systems in a mixed UNIX and OpenVMS environment.

= New implementations of NTP, SNMP, and BIND.

= Improved online help and a new message database for use with the OpenVMS
Help Message utility (MSGHLP).

1 This kernel is based on the Berkeley Software Distribution (BSD) Versions 4.3 and 4.4
with enhancements from Compaq Computer Corporation.



Document Structure
This manual contains eight chapters:

Chapter 1 Provides an overview of high-level programming through remote procedure
calls (RPC), and discusses the RPC model and versions, external data
representation, and RPC independence from network transport protocol.

This chapter is for anyone interested in ONC RPC.

Chapter 2 Describes how to write RPC client and server applications with the
RPCGEN protocol compiler. It also provides some information on
RPCGEN, client and server programming, debugging applications, the
C preprocessor, and RPC language syntax. This chapter also describes
how to create routines for external data representation (XDR).

This chapter is for programmers who want to use RPCGEN to write
RPC-based network applications.

Chapter 3 Describes the RPC programming interface layers, XDR serialization
defaults, raw RPC, and miscellaneous RPC features.

This chapter is for programmers who need to understand RPC mechanisms
to write customized network applications.

Chapter 4 Contains information about the XDR library.

This chapter is for programmers who want to implement RPC and XDR on
new systems.

Chapter 5 Contains descriptions of each of the RPC subroutine calls commonly used
by client programs.

Chapter 6 Contains descriptions of each of the RPC subroutine calls used by both
client and server programs to access the Portmapper service.

Chapter 7 Contains descriptions of each of the RPC subroutine calls commonly used
by client programs.

Chapter 8 Contains descriptions of each of the XDR subroutine calls.

Related Documentation

Table 1 lists the manuals available with this version of DIGITAL TCP/IP Services
for OpenVMS.

Table 1 DIGITAL TCP/IP Services for OpenVMS Documentation

Manual Contents
DIGITAL TCP/IP Services for This text file describes new features and changes to the software
OpenVMS Release Notes including installation, upgrade, configuration, and compatibility

information. These notes also describe new and existing software
problems and restrictions, and software and documentation
corrections.

Print this text file at the beginning of the installation procedure
and read it before you install DIGITAL TCP/IP Services for

OpenVMS.
DIGITAL TCP/IP Services for This manual explains how to install and configure the DIGITAL
OpenVMS Installation and TCP/IP Services for OpenVMS layered application product.

Configuration
(continued on next page)



Table 1 (Cont.) DIGITAL TCP/IP Services for OpenVMS Documentation

Manual Contents

DIGITAL TCP/IP Services for This manual describes how to use the applications available

OpenVMS User’s Guide with DIGITAL TCP/IP Services for OpenVMS such as remote
file operations, e-mail, TELNET, TN3270, and network
printing. This manual also explains how to use these services
to communicate with systems on private internets or on the
worldwide Internet.

DIGITAL TCP/IP Services for This manual describes how to configure and manage the

OpenVMS Management DIGITAL TCP/IP Services for OpenVMS product.
Use this manual with the DIGITAL TCP/IP Services for
OpenVMS Management Command Reference manual.

DIGITAL TCP/IP Services for This manual describes the DIGITAL TCP/IP Services for

OpenVMS Management Command OpenVMS management commands.

Reference Use this manual with the DIGITAL TCP/IP Services for
OpenVMS Management manual.

DIGITAL TCP/IP Services for This manual presents an overview of high-level programming

OpenVMS ONC RPC Programming using open network computing remote procedure calls (ONC
RPC). This manual also describes the RPC programming
interface and how to use the RPCGEN protocol compiler to
create applications.

DIGITAL TCP/IP Services for This manual describes how to use the OpenVMS system services

OpenVMS System Services and C and C Socket programming interfaces to develop network-based

Socket Programming applications.

DIGITAL TCP/IP Services for This manual describes the Extensible Simple Network

OpenVMS eSNMP Programming and Management Protocol (eSNMP), the eSNMP application

Reference

programming interface (API), and how to build additional
subagents to manage vendor-specific equipment.

For additional information about the DIGITAL TCP/IP Services for OpenVMS
products and services, access the DIGITAL OpenVMS World Wide Web site at the
following URL:

http://ww. openvns. di gi tal . com
You might find the Internetworking with TCP/IP: Principles, Protocols, and

Architecture by Douglas Comer useful if you are looking for a comprehensive
overview of the TCP/IP protocol suite.

Terminology

DIGITAL TCP/IP Services for OpenVMS Version 5.0 completes the change
initiated several releases ago when the product name changed from "ULTRIX
Connection (UCX)" to "DIGITAL TCP/IP Services for OpenVMS." To complete this
change, the identifier "UCX" is replaced with "TCPIP" in the following cases:

e Registered product facility code

= Management command prompt

= All messages, examples, and banners

= All product file names and databases

= All logical names, except those retained for compatibility

= All associated product documentation

Xi



DIGITAL TCP/IP Services for OpenVMS is used to mean both:
= DIGITAL TCP/IP Services for OpenVMS Alpha
= DIGITAL TCP/IP Services for OpenVMS VAX

The auxiliary server is the DIGITAL TCP/IP Services for OpenVMS
implementation of the UNIX internet daemon (i net d).

NFS is the DIGITAL TCP/IP Services for OpenVMS implementation of the NFS
protocols, including the NFS server, the NFS client, and PC-NFS.

TN3270 means the TELNET client software that emulates IBM 3270 model
terminals.

The term UNIX refers to the DIGITAL UNIX operating system. DIGITAL UNIX
is fully compatible with Version 4.3 and Version 4.4 of the Berkeley Software
Distribution (BSD).

Host and node both mean a system connected to an internet.

The term Internet refers to the global interconnection of networks, as defined by
RFC 1208, which consists of large networks using TCP/IP to provide universal
connectivity, reaching the Defense Advanced Projects Research Internet, MILNET,
NSFnet, CERN, and many worldwide universities, government research labs,
military installations, and business enterprises.

The term internet refers to private interconnected networks that use TCP/IP to
connect together and function as one, virtual network.

Acronyms
The following acronyms are used throughout this manual:
BIND Berkeley Internet Name Domain
FTP File Transfer Protocol
SNMP Simple Network Management Protocol
SMTP Simple Mail Transfer Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
UbDP User Datagram Protocol
See Appendix A for a full listing of DIGITAL TCP/IP Services for OpenVMS
acronyms.

Conventions

Xii

All IP addresses in this manual represent fictitious addresses. The following
conventions apply to this manual.

Convention Meaning

UPPERCASE TEXT Indicates names of OpenVMS and DIGITAL TCP/IP Services
for OpenVMS commands, options, utilities, files, directories,
hosts, and users.

| ower case speci al Indicates UNIX system output or user input, commands,
type options, files, directories, utilities, hosts, and users.

bold text Indicates a new term.



Convention

Meaning

italic text

[]
{}

Indicates a variable.
Indicates that you press the Return key.

Indicates that you press the Control key while you press the
key noted by x.

In command format descriptions, indicates the enclosed
element is optional. You can enter as many as you want.

In command format descriptions, indicates you must enter

at least one listed element. For readability, each element is
either listed on a separate line or separated by vertical bars
(|)- Unless otherwise instructed, use a space to separate these
elements when using them with commands.

Horizontal ellipsis points in examples indicate additional
optional arguments have been omitted.

Vertical ellipsis points indicate omission of items from a code
example or display example; the items are omitted because
they are not important to the topic being discussed.

Reader’'s Comments

Compaq welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet
Fax
Mail

openvmsdoc@zko.mts.dec.com
603 884-0120, Attention: OSSG Documentation, ZKO3-4/U08

Compag Computer Corporation

OSSG Documentation Group, ZK03-4/U08
110 Spit Brook Rd.

Nashua, NH 03062-2698

How To Order Additional Documentation

Visit the OpenVMS Documentation World Wide Web site at the following URL to
learn how to order additional documentation:

http://ww. openvns. di gi tal . com 81/

If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Xii






1

Introduction to Remote Procedure Calls

1.1 Overview

High-level programming through open network computing remote procedure
calls (ONC RPC) provides logical client-to-server communication for network
application development—without the need to program most of the interface to
the underlying network. With RPC, the client makes a remote procedure call
that sends requests to the server, which calls a dispatch routine, performs the
requested service, and sends back a reply before the call returns to the client.

RPC does not require the client to be knowledgeable about the underlying
network. For example, a program can simply call a local C routine that returns
the number of users on a remote system much like making a system call. You can
make remote procedure calls between different processes on the same system.

1.2 The RPC Model

The remote procedure call model is similar to that of the local model, which works
as follows:

1. The caller places arguments to a procedure in a specific location (such as an
argument variable).

2. The caller temporarily transfers control to the procedure.

3. When the caller gains control again, it obtains the results of the procedure
from the specified location.

4. The caller then continues program execution.

Introduction to Remote Procedure Calls 1-1



Introduction to Remote Procedure Calls
1.2 The RPC Model

As Figure 1-1 shows, the remote procedure call is similar to the local model,
in that one thread of control logically winds through two processes—that of the
client (caller) and that of the server:

1. The client process sends a call message to the server process and blocks (that
is, waits) for a reply message. The call message contains the parameters of
the procedure and the reply message contains the procedure results.

2. When the client receives the reply message, it gets the results of the
procedure.

3. The client process then continues executing.

On the server side, a process is dormant—awaiting the arrival of a call message.
When one arrives, the server process computes a reply that it then sends back to
the requesting client. After this, the server process becomes dormant again.

Figure 1-1 shows a synchronous RPC call, in which only one of the two processes
is active at a given time. The remote procedure call hides the details of the
network transport. However, the RPC protocol does not restrict the concurrency
model. For example, RPC calls may be asynchronous so the client can do another
task while waiting for the reply from the server. Another possibility is that the
server could create a task to process a certain type of request automatically,
freeing it to service other requests. Although RPC provides a way to avoid
programming the underlying network transport, it still allows this where
necessary.

1-2 Introduction to Remote Procedure Calls



Introduction to Remote Procedure Calls
1.2 The RPC Model

Figure 1-1 Basic Network Communication with Remote Procedure Call

Client Program on Machine A Service Daemon on Machine B
RPC call
Invoke
Program

Call Procedure

Service
executes

Return answer

Request
completed

Return repl
Program
continues

LKG-9173-94R

Introduction to Remote Procedure Calls 1-3



Introduction to Remote Procedure Calls
1.3 RPC Procedure Versions

1.3 RPC Procedure Versions

Each RPC procedure is defined uniquely by program and procedure numbers.
The program number specifies a group of related remote procedures, each of
which has a different procedure number. Each program also has a version
number so, when a minor change is made to a remote service (adding a new
procedure, for example), a new program number does not have to be assigned.
When you want to call a procedure to find the number of remote users, you
must know the appropriate program, version, and procedure numbers to use to
contact the service. You can find this information in several places. On UNIX
systems, the / et ¢/ rpc file lists some RPC programs and the RPCINFO command
lists the registered RPC programs and corresponding version numbers running
on a particular system. On OpenVMS systems, the SHOW PORTMAPPER
management command serves the same purpose as the RPCINFO command.

Typically, a service provides a protocol description so you can write client
applications that call the service. The RPC Administrator at Sun Microsystems,
Inc. has a list of programs that have been registered with Sun (that is, have
received port numbers from them), but you can write your own local RPC
programs. Knowing the program and procedure numbers is useful only if the
program is running on a system to which you have access.

1.4 Using Portmapper to Determine the Destination Port Number of
RPC Packets

The TCP/IP Services software starts the Portmapper network service when it
receives the first network request for the Portmapper port. Interaction between
RPC programs and the Portmapper occurs as follows:

1. After the system manager starts the Portmapper, it listens for UDP and TCP
requests on port 111 of the host system.

2. When a RPC server program activates on a system, it registers itself with its
local Portmapper. The Portmapper software keeps a table of all registered
services.

3. To access the services available on a system, RPC client programs send RPC
call messages to a system’s Portmapper specifying the program and version
number with which they wish to communicate.

4. The Portmapper program examines its local cache of registered RPC servers.
If the server is registered, then the Portmapper uses an RPC reply message
to return the port number that the RPC client program should use to
communicate with the RPC server.

5. The RPC client program then uses the provided port number in all
subsequent RPC calls.

Refer to the DIGITAL TCP/IP Services for OpenVMS Management manual for
more information about the Portmapper service.

1.4.1 Portmapper Notes for TCP/IP Services

The Portmapper service on TCP/IP Services differs from Portmapper software on
other hosts in the following ways:

= When an RPC server that is registered with the Portmapper exits, the
Portmapper purges any registrations for that server program.

1-4 Introduction to Remote Procedure Calls



Introduction to Remote Procedure Calls
1.4 Using Portmapper to Determine the Destination Port Number of RPC Packets

e An RPC process can only register or unregister its own Portmapper entries.
Any attempt to remove a registration for another RPC server will fail.

= The Portmapper includes its own mappings (on the UDP and TCP port 111).
These mappings are available using the pnap_get maps routine.

= All data structures used for the RPC pmap_xXxX routines are identical to other
RPC implementations with the exception of the two additional structures
pmap_vns and pmapl i st _vnms. These structures include the field pm pi d which
is the OpenVMS process ID.

1.4.2 Displaying Registered RPC Servers

You can display current RPC registration information known to the Portmapper
program. On UNIX systems use the rpci nfo command. On OpenVMS systems
use the SHOW PORTMAPPER management command. The rpci nfo or SHOW
PORTMAPPER commands can also find the RPC services registered on a specific
host and report their port numbers and the transports for which the services
are registered. For more information, see the DIGITAL TCP/IP Services for
OpenVMS Management manual.

1.5 RPC Independence from Transport Protocol

The RPC protocol is concerned only with the specification and interpretation of
messages; it is independent of transport protocols because it needs no information
on how a message is passed among processes.

Also, RPC does not implement any kind of reliability; the application itself

must be aware of the transport protocol type underlying RPC. With a reliable
transport, such as TCP/IP, the application need not do much else. However, an
application must use its own retransmission and timeout policy if it is running on
top of an unreliable transport, such as UDP/IP.

Because of transport independence, the RPC protocol does not actively interpret
anything about remote procedures or their execution. Instead, the application
infers required information from the underlying protocol (where such information
should be specified explicitly). For example, if RPC is running on top of an
unreliable transport (such as UDP/IP) and the application retransmits RPC
messages after short timeouts, and if the application receives no reply, then it can
infer only that a certain procedure was executed zero or more times. If it receives
a reply, then the application infers that the procedure was executed at least once.

With a reliable transport, such as TCP/IP, the application can infer from a reply
message that the procedure was executed exactly once, but if it receives no reply
message, it cannot assume the remote procedure was not executed.

Note

Even with a connection-oriented protocol such as TCP, an application still
needs timeouts and reconnection procedures to handle server crashes.

ONC RPC is currently supported on both UDP/IP and TCP/IP transports. The
selection of the transport depends on the application requirements. The UDP
transport, which is connectionless, is a good choice if the application has the
following characteristics:

Introduction to Remote Procedure Calls 1-5



Introduction to Remote Procedure Calls
1.5 RPC Independence from Transport Protocol

e The procedures are idempotent; that is, the same procedure can be executed
more than once without any side effects. For example, reading a block of data
is idempotent; creating a file is not.

= The size of both the arguments and results is smaller than the UDP packet
size of 8K bytes.

= The server is required to handle as many as several hundred clients. The
UDP server can do so because it does not retain any information about the
client state. By contrast, the TCP server holds state information for each
open client connection and this limits its available resources.

TCP (connection-oriented) is a good transport choice if the application has any of
the following characteristics:

= The application needs a reliable underlying transport.
= The procedures are non-idempotent.

= The size of either the arguments or the results exceeds 8K bytes.

1.6 External Data Representation (XDR)

RPC can handle arbitrary data structures, regardless of the byte order or
structure layout convention on a particular system. It does this by converting
them to a network standard called external data representation (XDR) before
sending them over the network. XDR is a system-independent description and
encoding of data that can communicate between diverse systems, such as a VAX,
Sun workstation, IBM PC, or CRAY.

Converting from a particular system representation to XDR format is called
serializing; the reverse process is deserializing.

1.7 Assigning Program Numbers

1-6

Program numbers are assigned in groups of 0x20000000 according to the
following chart:

0x00000000—0x1fffffff Defined by Sun Microsystems
0x20000000—0x3fffffff Defined by user
0x40000000—0x5f ffffff Transient
0x60000000—0x7fffffff Reserved

0x80000000—O0xOf ffffff Reserved

0xa0000000—O0xbf ffffff Reserved

0xc0000000—Oxdf ffffff Reserved
0xe0000000—O0xffffffff Reserved

Sun Microsystems administers the first range of numbers, which should be
identical for all ONC RPC users. An ONC RPC application for general use should
have an assigned number in this first range. The second range of numbers is for
specific, user-defined customer applications, and is primarily for debugging new
programs. The third, called the Transient group, is reserved for applications that
generate program numbers dynamically. The final groups are reserved for future
use, and are not used.

Introduction to Remote Procedure Calls



Introduction to Remote Procedure Calls
1.7 Assigning Program Numbers

To register a protocol specification, send a request by network mail to
rpc@sun.com, or write to:

RPC Admi ni strator

Sun M crosyst ens

2550 Garcia Ave.
Mountain View, CA 94043

Include a compilable RPCGEN .X file describing your protocol. You will then
receive a unique program number. See Chapter 2 for more information about
RPCGEN .X files.

Introduction to Remote Procedure Calls 1-7






Writing RPC Applications with the RPCGEN
Protocol Compiler

2.1 The RPCGEN Protocol Compiler

The RPCGEN protocol compiler accepts a remote program interface definition
written in RPC language, which is similar to C. It then produces C language
output consisting of: client skeleton routines, server skeleton routines, XDR filter
routines for both arguments and results, a header file that contains common
definitions, and optionally, dispatch tables that the server uses to invoke routines
that are based on authorization checks.

The client skeleton interface to the RPC library hides the network from the client
program, and the server skeleton hides the network from the server procedures
invoked by remote clients. You compile and link output files from RPCGEN as
usual. The server code generated by RPCGEN supports INETd. You can start
the server via INETd or at the command line.

You can write server procedures in any language that has system calling
conventions. To get an executable server program, link the server procedure
with the server skeleton from RPCGEN. To create an executable client program,
write an ordinary main program that makes local procedure calls to the client
skeletons, and link the program with the client skeleton from RPCGEN. If
necessary, the RPCGEN options enable you to suppress skeleton generation and
specify the transport to be used by the server skeleton.

The RPCGEN protocol compiler helps to reduce development time in the following
ways:

= It greatly reduces network interface programming.
e It can mix low-level code with high-level code.

= For speed-critical applications, you can link customized high-level code with
the RPCGEN output.

= You can use RPCGEN output as a starting point, and rewrite as necessary.

Refer to the RPCGEN command description at the end of this chapter for more
information about programming applications that use remote procedure calls or
for writing XDR routines that convert procedure arguments and results into their
network format (or vice versa). For a discussion of RPC programming without
RPCGEN, see Chapter 3.

Writing RPC Applications with the RPCGEN Protocol Compiler 2-1



Writing RPC Applications with the RPCGEN Protocol Compiler
2.2 Simple Example: Using RPCGEN to Generate Client and Server RPC Code

2.2 Simple Example: Using RPCGEN to Generate Client and Server
RPC Code

This section shows how to convert a simple routine —one that prints messages
to the system console on a single system (OPCOM on OpenVMS)—to an ONC
RPC application that runs remotely over the network. To do this, the RPCGEN
protocol compiler is used to generate client and server RPC code. Example 2-1
(see file SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]PRINTMSG.C) shows
the routine before conversion.

Compile and run the program shown in the example (you will need OPER
privileges):

$ CC/ DECC PRI NTMSG

$ LI NK PRI NTMSG

$ MCR SYS$DI SK: [] PRI NTMSG "Red rubber bal | "

90000000006 OPCOM 27- SEP-1995 14:39:22.59 %88888888680

Message from user GEORGE on BOSTON
Message Delivered!
$

If the print message procedure at the bottom of the printnmsg. ¢ program of
Example 2—-1 were converted into a remote procedure, you could call it from
anywhere in the network, instead of only from the program where it is embedded.
Before doing this, it is necessary to write a protocol specification in RPC language
that describes the remote procedure, as shown in the next section.

Example 2-1 Printing a Remote Message Without ONC RPC
/*

** printmsg.c: OpenVMS print a message on the consol e

*|

#include <descrip. h>
#incl ude <opcdef. h>
#include <stdio. h>
#include <stdlib. h>
#include <string. h>

extern int SYS$SNDOPR(struct dsc$descriptor_s *, unsigned short);
static int printnmessage(char *);

mai n(argc, argv)
int argc;
char *argv[];

char *nessage;

int exit();

if (argc !'=2) {
fprintf(stderr, "usage: % <nmessage>\n", argv[O0]);
exit (1);

nmessage = argv[1];

if (!printmessage(nessage)) {
fprintf(stderr,"%: couldnt print your nmessage\n", argv[0]);
exit (1);

}
printf("Message Delivered!'\n");
exit (0);
}

(continued on next page)

2-2 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.2 Simple Example: Using RPCGEN to Generate Client and Server RPC Code

Example 2-1 (Cont.) Printing a Remote Message Without ONC RPC

/*
** Print a message to the console. Return a Bool ean indicating
** whet her the message was actual ly printed.
*|
static int
print nessage(nsg)
char *nsg;
{

struct dsc$descriptor_s desc;

union {
char buffer[256]; /* Preallocate space for text */
struct opcdef opc;
} message;

int status;

/*
** Build the nessage request bl ock.

*|

nessage. opc. opc$h_ns_type = OPC$_RQ RQST;
message. opc. opc$b_ns_target = OPC$M NM CENTRL;
message. opc. opc$w_nms_status = 0;

message. opc. opc$l _ms_rqstid = 0;

strcpy((char *) &message. opc. opc$l _nms_text, nsg);
desc. dsc$a_pointer = (char *) &message. opc;
desc. dsc$w | ength = (char *) &message.opc.opc$l _nms_text -

—~———

(char *) &message +
strlien((char *) &message.opc.opc$l ns_text);
/*
** Send the nessage to the console.
*|
status = SYS$SNDOPR( &desc, [* MBGBUF */
0); [* CHAN */
if (status & 1)
return 1;
return 0;

}

Writing RPC Applications with the RPCGEN Protocol Compiler 2-3



Writing RPC Applications with the RPCGEN Protocol Compiler
2.2 Simple Example: Using RPCGEN to Generate Client and Server RPC Code

2.2.1 RPC Protocol Specification File Describing Remote Procedure

To create the specification file, you must know all the input and output
parameter types. In Example 2-1, the print message procedure takes

a string as input, and returns an integer as output. Example 2-2 (see
SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]MSG.X) is the RPC protocol
specification file that describes the remote version of the pri nt nessage procedure.

Remote procedures are part of remote programs, so Example 2-2 actually declares
a remote program containing a single procedure, PRI NTMESSAGE. By convention,
all RPC services provide for a NULL procedure (procedure 0), normally used

for "pinging." (See the DIGITAL TCP/IP Services for OpenVMS Management
manual.) The RPC protocol specification file in Example 2-2 declares the

PRI NTMESSAGE procedure to be in version 1 of the remote program. No NULL
procedure (procedure 0) is necessary in the protocol definition because RPCGEN
generates it automatically.

In RPC language, the convention (though not a requirement) is to make all
declarations in uppercase characters. Notice that the argument type is string,
not char *, because a char * in C is ambiguous. Programmers usually intend it
to mean a null-terminated string of characters, but it could also be a pointer to a
single character or to an array of characters. In RPC language, a null-terminated
string is unambiguously of type stri ng.

Example 2-2 RPC Protocol Specification File Simple Example
/*
* neg. X: Renpte message printing protocol
*|
pr ogr am MESSAGEPROG {
version MESSAGEVERS {
int PRINTMESSAGE(string) = 1;

} =1
} = 0x20000099;

2-4 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler

2.2 Simple Example: Using RPCGEN to Generate Client and Server RPC Code

2.2.2 Implementing the Procedure Declared in the Protocol Specification

Example 2-3 (see SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.RPCIMSG _
SERVER.C) defines the remote procedure declared in the RPC protocol
specification file of the previous example.

Example 2-3 Remote Procedure Definition

/*

** nmpg_server.c: QOpenVMS inplenentation of the renote procedure

**

*|

"printnessage"

#include <descrip.h> /* OpenVMS descriptor definitions */
#include <opcdef.h> [* QpenVMS $SNDOPR() definitions */
#include <rpc/rpc.h> /* always needed */ 1

#include "nsg. h" /* meg.h will be generated by RPCGEN */

extern int SYSESNDOPR(struct dsc$descriptor_s *, unsigned short);

/*

** Renpte version of "printnessage"

*|

int *
printnessage 1(nsg) 2

char **nsg; 3

struct dsc$descriptor_s desc;

union {
char buffer[256]; /* Preallocate space for text */
struct opcdef opc;
} nessage;

static int result;

int status;

/*

** Build the message request bl ock.

*

/

nessage. opc. opc$b_ns_type OPC$_RQ _RQST;

message. opc. opc$h_nms_target = OPCSM NM CENTRL

message. opc. opc$w_ms_status = 0;

message. opc. opc$l _nms_rgstid = 0;

strcpy((char *) &nessage opc. opc$l nme_text, *nmsgQ);

desc. dsc$a_pointer = (char *) &message. opc;

desc. dsc$w | ength = (char *) &message.opc.opc$l nms_text -
)
(

(char *) &message +
strlen((char *) &message.opc.opc$l ns_text);

status = SYS$SNDOPR( &desc, [* MSGBUF */
0); [* CHAN */

if (status & 1)

result = 1;
el se
result = 0;

return &esult; 4

In this example, the declaration of the remote procedure, pri nt message_1, differs
from that of the local procedure print nessage in four ways:

1

It includes the <rpc/rpc. h> file and the "nsg. h" header files. The rpc/rpc.h
file is located in the directory TCPIP$RPC:. To ensure portability in header
files references, most of the examples in this manual assume you have defined
the symbol RPC to be equal to TCPIP$RPC:

Writing RPC Applications with the RPCGEN Protocol Compiler 2-5



Writing RPC Applications with the RPCGEN Protocol Compiler
2.2 Simple Example: Using RPCGEN to Generate Client and Server RPC Code

$ DEFI NE RPC TCPI P$RPC:
before using the RPCGEN compiler and the DECC compiler.

2 It has _1 appended to its name. In general, all remote procedures called by
RPCGEN skeleton routines are named by the following rule: The name in the
procedure definition (here, PRI NTMESSAGE) is converted to all lowercase letters,
and an underscore (_) and version number (here, 1) is appended to it.

3 It takes a pointer to a string instead of a string itself. This is true of all
remote procedures — they always take pointers to their arguments rather
than the arguments themselves; if there are no arguments, specify voi d.

4 It returns a pointer to an integer instead of an integer itself. This is also
characteristic of remote procedures—they return pointers to their results.
Therefore, it is important to have the result declared as a st ati c; if there are
no arguments, specify voi d.

2.2.3 The Client Program That Calls the Remote Procedure

Example 2-4 (see
SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]JRPRINTMSG.C) declares
the main client program, r pri nt nsg. ¢, that calls the remote procedure.

Example 2-4 Client Program that Calls the Remote Procedure

/*
** rprintmsg.c: remote QpenVMS version of "printnsg.c"
*|

#include <stdio. h>

#include <rpc/rpc. h> [* always needed */

#include "nsg. h" [* msg.h will be generated by RPCGEN */
mai n(argc, argv)

int argc
char *argv[];

CLI ENT *cl;

char  *nessage;

i nt *result;

char  *server;

if (argc !'=3) {
fprintf(stderr, "usage: % host nmessage\n", argv[0]);
exit(1);

server = argv[1];
nmessage = argv[2];

(continued on next page)

2-6 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.2 Simple Example: Using RPCGEN to Generate Client and Server RPC Code

Example 2—4 (Cont.) Client Program that Calls the Remote Procedure

/*
** Create client "handle" used for calling MESSAGEPROG on
** the server designated on the command line. W tell
** the RPC package to use the TCP protocol when
** contacting the server.
*|
cl = clnt_create(server, MESSAGEPROG MESSAGEVERS, "tcp"); 1
if (cl == NULL) {
/*
** Couldn’t establish connection with server.
** Print error message and stop.
*]
clnt_pcreateerror(server);
exit(1);

/*

** Call the renpte procedure "printmessage” on the server
*]

result = printnmessage 1(&message, cl); 2

if (result == NULL) { 3
/*
** An error occurred while calling the server.
** Print error nessage and stop.
x|
clnt_perror(cl, server);
exit(1);
}

/*
** (kay, we successfully called the renote procedure.
*|
if (*result ==0) { 4
/*
** Server was unable to print our nessage.
** Print error nmessage and stop.
*|
fprintf
exit(1);
}
/*
** The message got printed on the server’s console
*|
printf("Message delivered to %!\n", server);
exit(0);
}

In this example, the following events occur:

1

First, the RPC library routine cl nt _creat e creates a client "handle." The last
parameter to ¢l nt_create is "tcp", the transport on which you want to run

your application. (Alternatively, you could have used "udp".)

Next, the program calls the remote procedure pri nt nessage_1 in exactly the
same way as specified in nsg_server. c, except for the inserted client handle

as the second argument.

The remote procedure call can fail in two ways: The RPC mechanism itself
can fail or there can be an error in the execution of the remote procedure. In

the former case, the remote procedure, print message_1, returns NULL.

Writing RPC Applications with the RPCGEN Protocol Compiler 2-7

stderr, "9%: 9% couldn't print your message\n", argv[0], server);



Writing RPC Applications with the RPCGEN Protocol Compiler
2.2 Simple Example: Using RPCGEN to Generate Client and Server RPC Code

4

In the later case, error reporting is application-dependent. In this example,
the remote procedure reports any error via *resul t.

2.2.4 Running RPCGEN

Use the RPCGEN protocol compiler on the RPC protocol specification file, MSG.X,
(from Example 2-2) to generate client and server RPC code automatically:

$ RPCGEN MSG X

Using RPCGEN like this—without options—automatically creates the following
files from the input file MSG.X:

A header file called MSG.H that contains #defi ne statements for
MESSAGEPROG, MESSAGEVERS, and PRI NTMESSAGE so you can use them in
the other modules. You must include MSG.H in both the client and server
modules.

A file containing client skeleton routines. RPCGEN forms the client skeleton
file name, MSG_CLNT.C, by appending _CLNT to the file name and
substituting the file type suffix, .C. The MSG_CLNT.C file contains only

one client skeleton routine, print nessage_1, referred to in the rprint nsg
client program.

A file containing server skeleton routines. RPCGEN forms the server skeleton
file name, MSG_SVC.C, by appending _SVC to the file name and substituting
the file type suffix, .C. The nmsg_svc. ¢ program calls the print message 1
routine in the nsg_server. c program.

Note

The /TABLE option of RPCGEN creates an additional output file of index
information for dispatching service routines. See Section 2.6.4 for more
information about dispatch tables.

2.2.5 Compiling the Client and Server Programs

After the RPCGEN protocol compilation, use two cc compilation statements to
create a client program and a server program:

To create the client program called r pri nt msg, compile the client program,
rprintnsg. c, and the the client skeleton program (nsg_cl nt. c¢) from the
original RPCGEN compilation, then link the two object files together with the
RPC object library:

$ CC/ DECC RPRI NTMSG C
$ O/ DECC MSG_CLNT. C
$ LINK RPRI NTVSG, MSG_CLNT, TCPI P$RPC; TCPI PSRPCXDR/ LI BRARY

To create a server program called nsg_server, compile the server program
msg_server. c and the server skeleton program (nmsg_svc. ¢) from the original
RPCGEN compilation, then link the two object files together with the RPC
object library:

$ CC/ DECC MSG_SERVER. C

$ CC/ DECC MSG_SVC. C
$ LINK MSG_SERVER MSG_SVC, TCPI P$RPC; TCPI PSRPCXDR/ LI BRARY

2-8 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.2 Simple Example: Using RPCGEN to Generate Client and Server RPC Code

Note

If you want to use the shareable version of the RPC object
library, reference the shareable version of the library,
SYS$SHARE:TCPIP$RPCXDR_SHR/SHARE, in your LINK options
file.

2.2.6 Copying the Server to a Remote System and Running It

Copy the server program nsg_server to a remote system called space in this
example. Then, run it in as a detached process there:

$ RUN DETACHED MSG_SERVER

Note

You can invoke servers generated by RPCGEN from the command line as
well as with port monitors such as INETd, if you generate them with the
/INET_SERVICE option.

From a local system (eart h) you can now print a message on the console of the
remote system space:

$ MCR SYS$DI SK: [ ] RPRINTMSG "space" "Hello out there..."

The message Hel | 0 out there... appears on the console of the system space.
You can print a message on any console (including your own) with this program if
you copy the server to that system and run it.

Writing RPC Applications with the RPCGEN Protocol Compiler 2-9



Writing RPC Applications with the RPCGEN Protocol Compiler
2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

Section 2.2 explained how to use RPCGEN to generate client and server RPC
code automatically to convert a simple procedure to one that runs remotely over
the network. The RPCGEN protocol compiler can also generate the external data
representation (XDR) routines that convert local data structures into network
format (and vice versa).

The following sections present a more advanced example of a complete RPC
service—a remote directory listing service that uses RPCGEN to generate both
the client and server skeletons as well as XDR routines.

2.3.1 The RPC Protocol Specification

As with the simple example, you must first create an RPC protocol
specification file. This file, DIR.X, is shown in Example 2-5 (see
SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]DIR.X).

Note

You can define types (such as readdir_res in Example 2-5) by using the
struct, uni on, and enumkeywords, but do not use these keywords in later
variable declarations of those types. For example, if you define uni on
resul ts, you must declare it later by using resul t s, not uni on resul ts.
The RPCGEN protocol compiler compiles RPC unions into C structures,
so it is an error to declare them later by using the uni on keyword.

Running RPCGEN on DIR.X creates four output files:
= Header file (DIR.H)

= Client skeleton file (DIR_CLNT.C)

= Server skeleton file (DIR_SVC.C)

= File of XDR routines (DIR_XDR.C)

The first three files have already been described. The fourth file, DIR_XDR.C,
contains the XDR routines that convert the declared data types into XDR format
(and vice versa). For each data type present in the .X file, RPCGEN assumes
that the RPC/XDR library contains a routine with the name of that data type
prefixed by xdr _, for example, xdr _i nt. If the .X file defines the data type, then
RPCGEN generates the required XDR routines (for example, DIR_XDR.C). If the
X file contains no such data types, then RPCGEN does not generate the file. If
the program uses a data type but does not define it, then you must provide that
XDR routine. This enables you to create your own customized XDR routines.

2-10 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

Example 2-5 RPC Protocol Specification File—Advanced Example
/ *

* dir.x: Renote directory listing protoco

*|

[* maximumlength of a directory entry */
const MAXNAMELEN = 255

[* a directory entry */

typedef string nametype<MAXNAVELEN>

[* alink inthe listing */
typedef struct namenode *nanelist;
/*

* Anode in the directory listing

*|
struct namenode {
nanmet ype nane; [* name of directory entry */
namel | st next; [* next entry */
/*
* The result of a READDIR operation
*|
union readdir_res switch (int Errno) {
case 0
namelist list; /* no error: return directory listing */
defaul t:
voi d; [* error occurred: nothing else to return */
¥
* The directory programdefinition
*|

program DI RPROG {
version DI RVERS {
readdir _res
READDI R( nanetype) =1
b=
} = 0x20000076

Writing RPC Applications with the RPCGEN Protocol Compiler 2-11



Writing RPC Applications with the RPCGEN Protocol Compiler
2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

2.3.2 Implementing the Procedure Declared in the Protocol Specification

Example 2—6 (see SYSSCOMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]DIR_
SERVER.C) consists of the dir_server. ¢ program that implements the remote
READDI R procedure from the previous RPC protocol specification file.

Example 2-6 Remote Procedure Implementation

/ *

** dir_server.c: remote QpenVMS readdir inplementation
*|

#include <errno. h>

#include <rns. h>

#include <rpc/rpc.h> /* Always needed */

#include "dir.h" [* Created by RPCGEN */

extern int SYS$PARSE(struct FAB *);
extern int SYS$SEARCH(struct FAB *);

extern char *malloc();

readdir _res *
readdir_1(dirnane)
namet ype *di rnane;

{
char  expanded_name[ NAMBC_MAXRSS+1] ;
struct FAB fab;
struct NAM nam
nanel i st nl;
namel i st *nl p;
static readdir _res res; /* nmust be static! */
char  resul tant _name[ NAMBC_MAXRSS+1] ;
int exit();
/*
** |nitialize the FAB.
*|
fab = cc$rns_fab;
fab. fab$l _fna = *dirnane;
fab.fab$b_fns = strlen(*dirnane);
fab.fab$l _dna = "SYS$DI SK: []*.*;*";
fab.fab$b_dns = strlen(fab.fab$l _dna);
/*
** Initialize the NAM
*|
nam = cc$rns_nam
nam nan$l _esa = expanded_nane;
nam nanfb_ess = NAMBC MAXRSS;
nam nan$l rsa = resul tant _nang;
nam nanBb rss = NAMBC MAXRSS;
fab. fab$l _nam = &nam
/*
** Parse the specification and see if it works.
*|
i f (SYSSPARSE(&fab) & 1) {
/*
** Free previous result
*|

xdr_free(xdr_readdir_res, &res);

(continued on next page)

2-12 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

Example 2—-6 (Cont.) Remote Procedure Implementation
/*
** Col lect directory entries.
** Menory allocated here will be freed by xdr _free
** next time readdir_1 is called
*|
nlp = &es.readdir res_u.list;
whi | e (SYS$SEARCH(&fab) & 1) {
resul tant _name[ nam nangb_rsl] = "\0’;
nl = (nanmenode *) mall oc(sizeof (nanenode));
*nlp = nl;
nl->name = (char *) nalloc(nam nan$b_nane +
nam nangb_type +
nam nanfb_ver + 1);
strcpy(nl->nane, nam nan$l nane);
nlp = &nl->next;

}
*nlp = NULL;
/*
** Return the result
*

res.Errno = 0;
} I* SYS$PARSE() */
el se
res.Errno = fab.fab$l sts;

return &res;

}

Writing RPC Applications with the RPCGEN Protocol Compiler 2-13



Writing RPC Applications with the RPCGEN Protocol Compiler
2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

2.3.3 The Client Program that Calls the Remote Procedure

Example 2—7 (see SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]RLS.C)
shows the client side program, rl s. ¢, that calls the remote server procedure.

Example 2—7 Client Program that Calls the Server
/ *

* rls.c: Renote directory listing client

*|

#incl ude <errno. h>

#include <rms. h>

#include <stdio. h>

#include <rpc/rpc. h> /* always need this */
#include "dir.h"

mai n(argc, argv)
int argc,
char *argv[];

{
CLIENT *cl;
char  *dir;
nanelist nl;

readdir _res *result;
char  *server;
int exit();

if (argc !'=3) {
fprintf(stderr, "usage: % host directory\n", argv[0]);
exit(1)
}

server = argv[1];
dir =argv[?];

/*

** Create client "handle" used for calling D RPROG on
** the server designated on the command line. Use

** the tcp protocol when contacting the server

cl = clnt_create(server, DIRPROG DI RVERS, "tcp");
if (cl == NULL) {

/*

** Couldn't establish connection with server

** Print error message and stop

*]

clnt_pcreateerror(server)

exit(1)

}

/*
** Call the renote procedure readdir on the server
*]
result = readdir_1(&dir, cl);
if (result == NULL) {
/*
** An RPC error occurred while calling the server
** Print error nmessage and stop
*]
clnt_perror(cl, server);
exit(1)
}

(continued on next page)

2-14 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

Example 2—7 (Cont.) Client Program that Calls the Server

/*
** (kay, we successfully called the renmote procedure.
*|
if (result->Errno !'=0) {
/*
** Arenote systemerror occurred.
** Print error nmessage and stop.
**/
errno = result->Errno;
perror(dir);
exit(1);
}
/*

** Successfully got a directory listing.
** Print it out.

*
/
for (nl =result->readdir_res_u.list;
nl 1= NULL;
nl = nl->next)
printf("%\n", nl->nane);
exit(0);
}

Writing RPC Applications with the RPCGEN Protocol Compiler 2-15



Writing RPC Applications with the RPCGEN Protocol Compiler
2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

2.3.4 Running RPCGEN

As with the simple example, you must run the RPCGEN protocol compiler on the
RPC protocol specification file DIR.X:

$ RPCGEN DIR X

RPCGEN creates a header file, DIR.H, an output file of client skeletons routines,
DIR_CLNT.C, and an output file of server skeleton routines, DIR_SVC.C. For this
advanced example, RPCGEN also generates the file of XDR routines, DIR_XDR.C.

2.3.5 Compiling the File of XDR Routines
The next step is to compile the file of XDR routines, DIR_XDR.C:
$ CC/ DECC DI R_XDR

2.3.6 Compiling the Client and Server Programs

After the XDR compilation, use two CC and LINK sequences to create the client
program and the server program:

= To create the client program called r| s, compile the client program, RLS.C
and the client skeleton program from the original RPCGEN compilation DIR_
CLNT.C. Then link the two object files and the object file produced by the
recent compilation of the file of XDR routines together with the RPC object
library:
$ CCO DECC RLS.C

$ CC/ DECC DIR CLNT.C
$ LINK RLS, DI R_CLNT, DI R_XDR, TCPI P$RPC: TCPI PSRPCXDR/ LI BRARY

= To create the server program called di r _server, compile the remote READDI R
implementation program, DIR_SERVER.C and the server skeleton program
from the original RPCGEN compilation, DIR_SVC.C. Then link the two object
files and the object file produced by the recent compilation of the file of XDR
routines together with the RPC object library:
$ CC/ DECC DI R _SERVER. C

$ OC/DECC DIR SVC.C
$ LINK DI R_SERVER, DI R_SVC, DI R_XDR, TCPI P$RPC: TCPI PSRPCXDR! LI BRARY

Note

If you want to use the shareable version of the RPC object
library, reference the shareable version of the library,
SYS$SHARE:TCPIP$RPCXDR_SHR, in your LINK options file.

2.3.7 Copying the Server to a Remote System and Running It

Copy the server program dir_server to a remote system called space in this
example. Then, run it as a detached process:

$ RUN DETACHED DI R_SERVER
From the local system earth invoke the RLS program to provide a directory
listing on the system where di r _server is running in background mode. The

following example shows the command and output (a directory listing of / usr/ pub
on system space):

2-16 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.3 Advanced Example: Using RPCGEN to Generate XDR Routines

$ MCR SYS$DI SK: [] RLS "space" "/usr/ pub"

asci i
eqnchar
kbd

mar g8
tabelr
t abs

t abs4

Note

Client code generated by RPCGEN does not release the memory allocated
for the results of the RPC call. You can call xdr_free to deallocate the
memory when no longer needed. This is similar to calling free, except
that you must also pass the XDR routine for the result. For example,
after printing the directory listing in the previous example, you could call
xdr_free as follows:

xdr_free(xdr _readdir_res, result);

2.4 Debugging Applications

It is difficult to debug distributed applications that have separate client and
server processes. To simplify this, you can test the client program and the server
procedure as a single program by linking them with each other rather than
with the client and server skeletons. To do this, you must first remove calls to
client creation RPC library routines (for example, cl nt _create). To create the
single debuggable file RLS.EXE, compile each file and then link them together as
follows:

$ CC/DECC RLS. C
$ CC/DECC DI R CLNT. C

$ CC/ DECC DI R _SERVER. C
$ CC/DECC DIR_XDR C
% LI NK RLS, DI R_CLNT, DI R_SERVER, DI R_XDR, TCPI P$RPC: TCPI PSRPCXDR/ LI BRARY

The procedure calls are executed as ordinary local procedure calls and you can
debug the program with a local debugger. When the program is working, link
the client program to the client skeleton produced by RPCGEN and the server
procedures to the server skeleton produced by RPCGEN.

There are two kinds of errors possible in an RPC call:

1. A problem with the remote procedure call mechanism.

This occurs when a procedure is unavailable, the remote server does not
respond, the remote server cannot decode the arguments, and so on. As in
Example 2—7, an RPC error occurs if resul t is NULL.

The program can print the reason for the failure by using cl nt _perror, or it
can return an error string through cl nt _sperror.

2. A problem with the server itself.

As in Example 2-6, an error occurs if opendi r fails; that is why readdir_res
is of type uni on. The handling of these types of errors is the responsibility of
the programmer.

Writing RPC Applications with the RPCGEN Protocol Compiler 2-17



Writing RPC Applications with the RPCGEN Protocol Compiler
2.5 The C Preprocessor

2.5 The C Preprocessor

The C preprocessor, CC/DECC/PREPROCESSOR, runs on all input files before
they are compiled, so all the preprocessor directives are legal within an .X file.
RPCGEN may define up to five macro identifiers, depending on which output file
you are generating. The following table lists these macros:

Identifier Usage

RPC_HDR For header-file output
RPC_XDR For XDR routine output
RPC_SVC For server-skeleton output
RPC_CLNT For client-skeleton output
RPC_TBL For index-table output

Also, RPCGEN does some additional preprocessing of the input file. Any line that
begins with a percent sign (% passes directly into the output file, without any
interpretation. Example 2—-8 demonstrates this processing feature.

Example 2-8 Using the Percent Sign to Bypass Interpretation of a Line
/*
* tine.x: Renote tine protocol
*|
program TI MEPROG {
version TI MEVERS {
unsi gned int TIMEGET(void) = 1,
b=l
} = 44,
#i fdef RPC_SVC
% nt *
% imeget _1()
%
% static int thetineg,
%
% thetime = tinme(0);

% return (& hetinme);
0,

#endi f

Using the percent sign feature does not guarantee that RPCGEN will place the
output where you intend. If you have problems of this type, do not use this
feature.

2-18 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.6 RPCGEN Programming

2.6 RPCGEN Programming

The following sections contain additional RPCGEN programming information
about network types, defining symbols, INETd support, and dispatch tables.

2.6.1 Network Types

By default, RPCGEN generates server code for both UDP and TCP transports.
The /ITRANSPORT option creates a server that responds to requests on the
specified transport. The following example creates a UDP server from a file called
PROTO.X:

$ RPCGEN / TRANSPORT=UDP PROTO. X

2.6.2 User-Provided Define Statements

The RPCGEN protocol compiler provides a way to define symbols and assign
values to them. These defined symbols are passed on to the C preprocessor
when it is invoked. This facility is useful when, for example, invoking debugging
code that is enabled only when you define the DEBUG symbol. For example, to
enable the DEBUG symbol in the code generated from the PROTO.X file, use the
following command:

$ RPCGEN / DEFI NE=DEBUG PROTO. X

2.6.3 INETd Support

The RPCGEN protocol compiler can create RPC servers that INETd can invoke
when it receives a request for that service. For example, to generate INETd
support for the code generated for the PROTO.X file, use the following command:

RPCGEN /| NET_SERVI CE PROTO. X

The server code in proto_svc. ¢ supports INETd. For more information on setting
up entries for RPC services, see Section 3.7.

In many applications, it is useful for services to wait after responding to a
request, on the chance that another will soon follow. However, if there is

no call within a certain time (by default, 120 seconds), the server exits and
the port monitor continues to monitor requests for its services. You can use
the /TIMEOUT_SECONDS option to change the default waiting time. In the
following example, the server waits only 20 seconds before exiting:

$ RPCGEN /I NET_SERVI CE / TI MEQUT_SECONDS=20 PROTO. X
If you want the server to exit immediately, use /ITIMEOUT_SECONDS = 0; if

you want the server to wait forever (a normal server situation), use /TIMEOUT _
SECONDS = -1.

2.6.4 Dispatch Tables

Dispatch tables are often useful. For example, the server dispatch routine may
need to check authorization and then invoke the service routine, or a client
library may need to control all details of storage management and XDR data
conversion. The following RPCGEN command generates RPC dispatch tables for
each program defined in the protocol description file, PROTO.X, and places them
in the file PROTO_TBL.I (the suffix .l indicates index):

$ RPCGEN / TABLE PROTO. X

Writing RPC Applications with the RPCGEN Protocol Compiler 2-19



Writing RPC Applications with the RPCGEN Protocol Compiler
2.6 RPCGEN Programming

Each entry in the table is a struct rpcgen_tabl e defined in the header file,
PROTO.H, as follows:

struct rpcgen_table {

char *(*proc)();
xdrproc_t  inproc;
unsi gned len_in;
xdrproc_t  outproc;
unsi gned len_out;

b
In this definition:
e proc is a pointer to the service routine
e inproc is a pointer to the input (arguments) XDR routine
= |en_inis the length in bytes of the input argument
= outproc is a pointer to the output (results) XDR routine
= |en_out is the length in bytes of the output result

The table dirprog_1 tabl e is indexed by procedure number. The variable
dirprog_1 nproc contains the number of entries in the table. The find_proc
routine in the following example shows how to locate a procedure in the dispatch
tables.

struct rpcgen_table *
find_proc(proc)
[ ong proc;

if (proc >= dirprog_1 nproc)

[* error */
el se
return (&dirprog 1 table[proc]);
}

Each entry in the dispatch table (in the file input_file_ TBL.l) contains a pointer
to the corresponding service routine. However, the service routine is not defined
in the client code. To avoid generating unresolved external references, and to
require only one source file for the dispatch table, the actual service routine
initializer is RPCGEN_ACTI ON( proc_ver). The following example shows the
dispatch table entry for the procedure print nessage with a procedure number of

1
(char *(*)()) RPCGEN_ACTI O\( pri nt message_1),
xdr _wrapstring, 0,
xdr_int, 0,

With this feature, you can include the same dispatch table in both the client and
the server. Use the following def i ne statement when compiling the client:

#define RPCGEN_ACTION(routine) 0

Use the following def i ne statement when compiling the server:
#define RPCGEN_ACTI ON(routine) routine

2-20 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.7 Client Programming

2.7 Client Programming

The following sections contain client programming information about default
timeouts and client authentication.

2.7.1 Timeout Changes

A call to cl nt_creat e sets a default timeout of 25 seconds for RPC calls. RPC
waits for 25 seconds to get the results from the server. If it does not get any
results, then this usually means that one of the following conditions exists:

= The server is not running.
= The remote system has crashed.
= The network is unreachable.

In such cases, the function returns NULL; you can print the error with
cl nt _perrno.

Sometimes you may need to change the timeout value to accommodate the
application or because the server is slow or far away. Change the timeout by
using ¢l nt_control. The code segment in the following example demonstrates
the use of cl nt_control .

struct timeval tv;
CLI ENT *cl;

¢l = clnt_create("sonmehost", SOVEPROG, SOMVEVERS, "tcp");
if (cl == NULL) {
exit(1);

tv.tv_sec = 60; /* change tineout to 1 mnute */
tv.tv_usec = 0; /* this should always be set */
clnt_control (cl, CLSET TIMEQUT, &tv);

2.7.2 Client Authentication

By default, client creation routines do not handle client authentication.
Sometimes, you may want the client to authenticate itself to the server. This
is easy to do, as shown in the following code segment:
CLIENT *cl;
cl = clnt_create("sonehost", SOVEPROG SOMEVERS, "udp");
if (cl !'= NULL) {

/* To set UNI X style authentication */

cl->cl _auth = authunix_create default();

For more information on authentication, see Section 3.6.

Writing RPC Applications with the RPCGEN Protocol Compiler 2-21



Writing RPC Applications with the RPCGEN Protocol Compiler
2.8 Server Programming

2.8 Server Programming

The following sections contain server programming information about system
broadcasts and passing data to server procedures.

2.8.1 Handling Broadcasts

Sometimes, clients broadcast to determine whether a particular server exists

on the network, or to determine all the servers for a particular program and
version number. You make these calls with ¢l nt _broadcast (for which there is no
RPCGEN support). Refer to Section 3.5.2.

When a procedure is known to be called via broadcast RPC, it is best for

the server not to reply unless it can provide useful information to the client.
Otherwise, servers could overload the network with useless replies. To prevent
the server from replying, a remote procedure can return NULL as its result; the
server code generated by RPCGEN can detect this and prevent a reply.

In the following example, the procedure replies only if it acts as an NFS server:

void *
reply_if_nfsserver()

char notnull; /* just here so we can use its address */
if (access("/etc/exports", F OK) < 0) {
return (NULL); /* prevent RPC fromreplying */

}

/*

* return non-null pointer so RPC will send out a reply
*]

return ((void *)&notnull);

}

If a procedure returns type voi d *, it must return a non-null pointer if it wants
RPC to reply for it.

2.8.2 Passing Data to Server Procedures

Server procedures often need to know more about an RPC call than just its
arguments. For example, getting authentication information is useful to
procedures that want to implement some level of security. This information

is supplied to the server procedure as a second argument. (For details, see the
structure of svc_req in Section 3.6.2.) The following code segment shows the
use of svc_req, where the first part of the previous print nessage_1 procedure is
modified to allow only root users to print a message to the console:

int *
printnmessage_1(msg, rqgstp)
char **nsg;
struct svc_req *raqstp;
{
static int result; [* Must be static */
FI LE *f;

struct authunix_parnms *aup;

aup = (struct authunix_parns *)rqstp->rq_clntcred;
if (aup->aup_uid !'=0) {

result = 0;

return (&result);

/* Same code as before */

2-22 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.9 RPC and XDR Languages

2.9 RPC and XDR Languages

The RPC language is an extension of the XDR language through the addition
of the programand versi on types. The XDR language is similar to C. For a
complete description of the XDR language syntax, see RFC 1014: XDR: External
Data Representation Standard. For a description of the RPC extensions to

the XDR language, see RFC 1057: RPC: Remote Procedure Calls Protocol
Specification Version 2.

The following sections describe the syntax of the RPC and XDR languages, with
examples and descriptions of how RPCGEN compiles the various RPC and XDR
type definitions into C type definitions in the output header file.

2.9.1 Definitions
An RPC language file consists of a series of definitions:

definition-list:
definition
definition ";" definition-list

RPC recognizes the following definition types:

definition:
enum definition
typedef - definition
const-definition
decl aration-definition
struct-definition
uni on-definition
program definition

2.9.2 Enumerations

XDR enumerations have the same syntax as C enumerations:

enum definition:
“enunt enumident "{"
enum val ue- i st

enum val ue-1ist:

enum val ue

enumvalue "," enumval ue-1i st
enum val ue:

enum val ue-i dent

enumval ue-ident "=" val ue

The following example defines a enumtype with three values:

enum col ortype {
RED = 0,
GREEN = 1,
BLUE = 2

b

This coding compiles into the following:

enum col ortype {
RED = 0,
GREEN = 1,
BLUE = 2,

t’ypedef enum col ortype col ortype;

Writing RPC Applications with the RPCGEN Protocol Compiler 2-23



Writing RPC Applications with the RPCGEN Protocol Compiler
2.9 RPC and XDR Languages

2.9.3 Typedefs
XDR typedef s have the same syntax as C typedefs:

t ypedef - definition:
"typedef" declaration

The following example in XDR defines a f name_t ype that declares file name
strings with a maximum length of 255 characters:

typedef string fname_type<255>;
The following example shows the corresponding C definition for this:
typedef char *fname_type;

2.9.4 Constants

XDR constants are used wherever an integer constant is used (for example, in
array size specifications), as shown by the following syntax:

const-definition:
"const" const-ident "=" integer

The following XDR example defines a constant DOZEN equal to 12:
const DOZEN = 12;

The following example shows the corresponding C definition for this:
#define DOZEN 12

2.9.5 Declarations
XDR provides only four kinds of declarations, shown by the following syntax:

decl aration:
si mpl e-decl aration
fixed-array-declaration
variabl e-array-declaration
poi nter-decl aration

The following lists the syntax for each, followed by examples:

e Simple declarations

si npl e- decl arati on:
type-ident variable-ident

For example, col ortype col or in XDR, is the same in C: col ortype col or.

= Fixed-length array declarations

fixed-array-declaration:
type-ident variable-ident "[" value "]"

For example, col ortype pal ette[ 8] in XDR, is the same in C: col ortype
pal ette[ 8].
= \Variable-length array declarations

These have no explicit syntax in C, so XDR creates its own by using angle
brackets, as in the following syntax:

variabl e-array-declaration:
type-ident variable-ident "<" value ">"
type-ident variable-ident "<" ">"

2-24 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.9 RPC and XDR Languages

Specify the maximum size between the angle brackets. You can omit the
value, indicating that the array can be of any size, as shown in the following
example:

int heights<12>;/* at nost 12 itens */
int widths<>; /* any nunber of itenms */

Variable-length arrays have no explicit syntax in C, so RPCGEN compiles
each of their declarations into a struct. For example, RPCGEN compiles the
hei ght s declaration into the following struct :
struct {
u_int heights_len;/* nunber of itens in array */
int *heights_val;/* pointer to array */
} heights;

Here, the _| en component stores the number of items in the array and the
_val component stores the pointer to the array. The first part of each of these
component names is the same as the name of the declared XDR variable.

e Pointer declarations

These are the same in XDR as in C. You cannot send pointers over the
network, but you can use XDR pointers to send recursive data types, such
as lists and trees. In XDR language, this type is called opti onal - dat a, not
poi nter, as in the following syntax:

optional - dat a:
type-ident "*"variabl e-ident

An example of this (the same in both XDR and C) follows:
listitem *next;

2.9.6 Structures

XDR declares a struct almost exactly like its C counterpart. The XDR syntax is
the following:

struct-definition:
"struct" struct-ident "{"
declaration-1list
||}||

declaration-list:
declaration ";"

n.on

declaration ";" declaration-Ilist

The following example shows an XDR structure for a two-dimensional coordinate,
followed by the C structure into which RPCGEN compiles it in the output header
file:
struct coord {

int x

inty;
The following example shows the C structure that results from compiling the
previous XDR structure:

struct coord {
int x;
inty;

b
typedef struct coord coord,;

Writing RPC Applications with the RPCGEN Protocol Compiler 2-25



Writing RPC Applications with the RPCGEN Protocol Compiler
2.9 RPC and XDR Languages

Here, the output is identical to the input, except for the added t ypedef at the
end of the output. This enables the use of coor d instead of struct coord in
declarations.

2.9.7 Unions

XDR unions are discriminated unions, and are different from C unions. They are
more analogous to Pascal variant records than to C unions. The syntax is shown
here:
uni on-definition:
"union" union-ident "switch" ("sinple declaration") "{"

case-|ist

case-list:
"case" value ":" declaration ";" _
"case" value ":" declaration ";" case-list
"default"™ ":" declaration ;'

The following is an example of a type that might be returned as the result of a
read data. If there is no error, it returns a block of data; otherwise, it returns

nothing:
union read_result switch (int errno) {
case 0:
opaque data[1024];
defaul t:
voi d;

b
RPCGEN compiles this coding into the following:

struct read_result {
int errno;
union {
char data[ 1024];
} read_result _u;

t’ypedef struct read_result read_result;

Notice that the union component of the output structure has the same name as
the structure type name, except for the suffix, _u.

2.9.8 Programs
You declare RPC programs using the following syntax:

program definition:
"progrant programident "{"
version-1ist
||}|| n :|l Val ue

version-list:
version ";"
version ";" version-list
version:
"version" version-ident "{"
procedure-|i st

u}u n_n Val ue

procedure-1ist:
procedure ";"

procedure ";" procedure-|ist

procedure:
type-ident procedure-ident

("type-ident")" "=" value

2-26 Writing RPC Applications with the RPCGEN Protocol Compiler



Writing RPC Applications with the RPCGEN Protocol Compiler
2.9 RPC and XDR Languages

The following example shows a program specification for a time protocol program:

/*
* time.x: Get or set the time. Tinme is represented as nunber
* of seconds since 0:00, January 1, 1970.
*
/
program TI MEPROG {
version TIMEVERS {
unsi gned int TIMEGET(void) = 1,
voi d TI MESET(unsi gned) = 2;

b=
} =44
This coding compiles into the following #def i ne statements in the output header

file:

#define TI MEPROG 44
#define TI MEVERS 1
#define TIMEGET 1
#define TIMESET 2

2.9.9 Special Cases

The following list describes exceptions to the syntax rules described in the
previous sections:

e Booleans

C has no built-in boolean type. However, the RPC library has a boolean
type called bool _t that is either TRUE or FALSE. RPCGEN compiles items
declared as type bool in XDR language into bool _t in the output header file.
For example, RPCGEN compiles bool married into bool t married.

e Strings
C has no built-in string type, but instead uses the null-terminated char
* convention. In XDR language, you declare strings by using the string
keyword. RPCGEN compiles each string into a char * in the output
header file. The maximum size contained in the angle brackets specifies
the maximum number of characters allowed in the strings (excluding
the NULL character). For example, RPCGEN compiles string name<32>
into char *name. You can omit a maximum size to indicate a string of
arbitrary length. For example, RPCGEN compiles string | ongname<> into
char *| ongnane.

e Opaque data

RPC and XDR use opaque data to describe untyped data, which consists
simply of sequences of arbitrary bytes. You declare opaque data as an array of
either fixed or variable length. An opaque declaration of a fixed-length array
is opaque di skbl ock[ 512], whose C counterpart is char di skbl ock[512] .
An opaque declaration of a variable-length array is opaque fi | edat a<1024>,
whose C counterpart could be the following:

struct {

u_int filedata len;

char *filedata_ val;
} filedata;

Writing RPC Applications with the RPCGEN Protocol Compiler 2-27



Writing RPC Applications with the RPCGEN Protocol Compiler
2.9 RPC and XDR Languages

e \oids

In a voi d declaration, the variable is not named. The declaration is just a
voi d. Declarations of voi d occur only in union and program definitions (as
the argument or result of a remote procedure).

2-28 Writing RPC Applications with the RPCGEN Protocol Compiler



RPCGEN

RPCGEN

Format

Parameters

A code-generating tool for creating programming skeletons that implement the
RPC mechanism.

Note

RPCGEN runs the C preprocessor, CC/DECC/PREPROCESSOR, on

all input files before actually interpreted the files. Therefore, all the
preprocessor directives are legal within an RPCGEN input file. For each
type of output file, RPCGEN defines a special preprocessor symbol for use
by the RPCGEN programmer:

RPC_HDR Defined when compiling into header files

RPC_XDR Defined when compiling into XDR routines

RPC SVC Defined when compiling into server-side skeletons
RPC_CLNT Defined when compiling into client-side skeletons
RPC TBL Defined when compiling into RPC dispatch table

In addition, RPCGEN does a little preprocessing of its own. RPCGEN
passes any line beginning with "%" directly into the output file, without
interpreting the line.

RPCGEN  infile[/HEADER_FILE ]

[/CLIENT_STUBS_FILE | /DISPATCH_TABLE | /XDR_FILE]
[/[SERVER_STUBS_FILE | /TRANSPORT [=(TCP,UDP)[]]

[/TABLE]

[/DEFINE = (name=[value][,....]) | /OUTPUT = file]

[/DEFINE = (name=[value][,....]) | /ERRLOG | /INET_SERVICE | /OUTPUT = file |
[TIMEOUT_SECONDS=seconds]]|

infile

The input file to RPCGEN. The input file contains ONC RPC programming
language. This language is very similar to the C language. By default, RPCGEN
uses the name of the input file to create the four default output files as follows:

infile.H—the header file
infile_CLNT.C—the client skeleton

infile_SVC.C—the server skeleton with support for both UDP and TCP
transports

infile_XDR.C—the XDR routines

If you specify the IDISPATCH_TABLE qualifier, RPCGEN uses the default name
infile_TBL.I for the dispatch table.

Writing RPC Applications with the RPCGEN Protocol Compiler 2-29



RPCGEN

Qualifiers

/CLIENT_STUBS_FILE

Optional.

DIGITAL UNIX equivalent: -l
Default: Create a client skeleton file.

Creates the client skeleton file.

Mutually exclusive with the /IDISPATCH_TABLE, /[HEADER_FILE, /SERVER _
STUBS_FILE, /TRANSPORT, and XDR_FILE qualifiers.

/IDEFINE = (name[=value][,....])
Optional.

DIGITAL UNIX equivalent: -D
Default: No definitions.

Defines one or more symbol names. Equivalent to one or more #def i ne directives.
Names are defined as they appear in the argument to the qualifier. For example,
/DEFINE=TEST=1 creates the line #defi ne TEST=1 in the output files. If you
omit the value, RPCGEN defines the name with the value 1.

IDISPATCH_TABLE

Optional.

DIGITAL UNIX equivalent: -t
Default: No dispatch file created.

Creates the server dispatch table file. An RPCGEN dispatch table contains:
= Pointers to the service routines corresponding to a procedure

= A pointer to the input and output arguments

= The size of these routines

A server can use the dispatch table to check authorization and then to execute the
service routine; a client may use it to deal with the details of storage management
and XDR data conversion.

Mutually exclusive with the /CLIENT_STUBS_FILE, /[HEADER_FILE, /SERVER_
STUBS_FILE, /TRANSPORT, and XDR_FILE qualifiers.

/ERRLOG

Optional.

DIGITAL UNIX equivalent: -L
Default: Logging to stderr.

Specifies that servers should log errors to the operator console instead of using
fprintf with stderr. You must install servers with OPER privileges in order to
use this feature.

/HEADER_FILE

Optional.

DIGITAL UNIX equivalent: -h
Default: Create a header file.

Creates the C data definitions header file. Use the /TABLE qualifier in
conjunction with this qualifier to generate a header file that supports dispatch
tables.

2-30 Writing RPC Applications with the RPCGEN Protocol Compiler



RPCGEN

Mutually exclusive with the /CLIENT_STUBS_FILE, /DISPATCH_TABLE,
/SERVER_STUBS_FILE, /TRANSPORT, and XDR_FILE qualifiers.

/INET_SERVICE

Optional.

DIGITAL UNIX equivalent: -1
Default: no INETd support.

Compiles support for INETd in the server side stubs. You can start servers
yourself or you can have INETd start them. Servers started by INETd log all
error messages to the operator console.

If there are no pending client requests, the INETd servers exit after 120 seconds
(default). You can change this default with the /TIMEOUT_SECONDS qualifier.

When RPCGEN creates servers with INETd support, it defines two global
variables: _rpcpnstart and rpcfdtype. The runtime value of _rpcpnstart is
1 or O depending on whether INDEd started the server program. The value of
rpcf dt ype should be SOCK_STREAM or SOCK_DGRAM depending on the type of the
connection.

/OUTPUT = file

Optional.

DIGITAL UNIX equivalent: -0

Default: Direct output to one of the standard default files.

Use this qualifier to direct the output of the /CLIENT_STUBS_FILE,
IDISPATCH_TABLE, /[HEADER_FILE, /SERVER_STUBS FILE, /TRANSPORT,
and /XDR_FILE qualifiers.

/SERVER_STUBS FILE

Optional.

DIGITAL UNIX equivalent: -m
Default: Create a server skeleton file.

Creates a server skeleton file without the nai n routine. Use this qualifier to
generate a server skeleton when you wish to create your own nai n routine. This
option is useful for programs that have callback routines and for programs that
have customized initialization requirements.

Mutually exclusive with the /CLIENT_STUBS_FILE, /DISPATCH_TABLE,
/HEADER_FILE, /TRANSPORT, and XDR_FILE qualifiers.

ITABLE

Optional.

DIGITAL UNIX equivalent: -T

Default: No dispatch table code created.

Creates the code in the header file to support an RPCGEN dispatch table. You
can use this qualifier only when you are generating all files (the default) or when
you are using the /HEADER_FILE qualifier to generate the header file. This
ITABLE qualifier includes a definition of the dispatch table structure in the
header file; it does not modify the server routine to use the table.

ITRANSPORT [= (TCP, UDP)]

Optional.

DIGITAL UNIX equivalent: -s

Default: Create a server-side skeleton that supports both protocols.

Writing RPC Applications with the RPCGEN Protocol Compiler 2-31



RPCGEN

Examples

Creates a server-side skeleton that includes a mai n routine that uses the given
transport. The supported transports are UDP and TCP. To compile a server that
supports multiple transports, specify both.

/ITIMEOUT_SECONDS=seconds
Optional.

DIGITAL UNIX equivalent: -K
Default: 120 seconds.

If INETd starts the server, this option specifies the time (in seconds) after which
the server should exit if there is no further activity. By default, if there are no
pending client requests, INETd servers exit after 120 seconds. This option is
useful for customization. If seconds is 0, the server exits after serving a request.
If seconds is -1, the server never exits after being started by INETd.

/IXDR_FILE

Optional.

DIGITAL UNIX equivalent: -c
Default: Create an XDR file.

You can customize some of your XDR routines by leaving those data types
undefined. For every data type that is undefined, RPCGEN assumes that there
exists a routine with the name xdr _ prepended to the name of the undefined

type.

Mutually exclusive with the /CLIENT_STUBS_FILE, /DISPATCH_TABLE,
JHEADER_FILE, /TRANSPORT, and /SERVER_STUBS_FILE qualifiers.

1. RPCGEN /ERRLOG / TABLE PROTO X

This example generates all of the five possible files using the default file
names: PROTO.H, PROTO_CLNT.C, PROTO_SVC.C, PROTO_XDR.C, and
PROTO_TBL.l. The PROTO_SVC.C code supports the use of the dispatch
table found in PROTO_TBL.I. The server error messages are logged to the
operator console, instead of being sent to the standard error.

2. RPCGEN /I NET_SERVI CE / TI MEQUT_SECONDS=20 PROTO. X
This example generates four output files using the default file names:
PROTO.H, PROTO_CLNT.C, PROTO_SVC.C, and PROTO_XDR.C. INETd
starts the server and the server exits after 20 seconds of inactivity.

3. RPCGEN /HEADER FI LE / TABLE PROTO. X
This example sends the header file (with support for dispatch tables) to the
default output file PROTO.H.

4. RPCGEN / TRANSPORT=TCP PROTO. X
This example sends the server skeleton file for the transport TCP to the
default output file PROTO_SVC.C.

5. RPCGEN / HEADER FI LE / TABLE / QUTPUT=PROTO TABLE. H PROTO. X

This example sends the header file (with support for dispatch tables) to the
output file PROTO_TABLE.H.

2-32 Writing RPC Applications with the RPCGEN Protocol Compiler



3

RPC Application Programming Interface

For most applications, you do not need the information in this chapter; you can
simply use the automatic features of the RPCGEN protocol compiler (described
in Chapter 2). This chapter requires an understanding of network theory; it is
for programmers who must write customized network applications using remote
procedure calls, and who need to know about the RPC mechanisms hidden by
RPCGEN.

3.1 RPC Layers

The ONC RPC interface consists of three layers: highest, middle, and lowest. For
ONC RPC programming, only the middle and lowest layers are of interest. For

a complete specification of the routines in the remote procedure call library, see
Chapter 5 through Chapter 8.

The middle layer routines are adequate for most applications. This layer is
"RPC proper" because you do not need to write additional programming code for
network sockets, the operating system, or any other low-level implementation
mechanisms. At this level, you simply make remote procedure calls to routines
on other systems. For example, you can make simple ONC RPC calls by using
the following RPC routines:

e registerrpc, which obtains a unique systemwide procedure-identification
number

= callrpc, which executes a remote procedure call
= svc_run, which calls a remote procedure in response to an RPC request

The middle layer is not suitable for complex programming tasks because it
sacrifices flexibility for simplicity. Although it is adequate for many tasks, the
middle layer does not provide the following:

= Timeout specifications

= Choice of transport

= Operating system process control

= Processing flexibility after occurrence of error
= Multiple kinds of call authentication

The lowest layer is suitable for programming tasks that require greater efficiency
or flexibility. The lowest layer routines include client creation routines such as:

= clnt _create, which creates a client handle
e clnt_call, which calls the server
= svcudp_create, which creates a UDP server handle

= svc_register, which registers the server

RPC Application Programming Interface 3-1



RPC Application Programming Interface
3.2 Middle Layer of RPC

3.2 Middle Layer of RPC

The middle layer is the simplest RPC program interface; from this layer you
make explicit RPC calls and use the functions cal | rpc and regi sterrpc.

3.2.1 Using callrpc

The simplest way to make remote procedure calls is through the RPC library
routine cal | rpc. The programming code in Example 3-1, which obtains the
number of remote users, shows the usage of cal | rpc.

The cal | rpc routine has eight parameters. In Example 3-1, the first parameter,
argv[ 1], is the name of the remote server system as specified in the command
line which invoked the rnusers program. The next three, RUSERSPROG,
RUSERSVERS, and RUSERSPRCC_NUM are the program, version, and procedure
numbers that together identify the procedure to be called (these are defined in
rusers. h). The fifth and sixth parameters are an XDR filter (xdr _voi d) and an
argument (0) to be encoded and passed to the remote procedure. You provide an
XDR filter procedure to encode or decode system-dependent data to or from the
XDR format.

The final two parameters are an XDR filter, xdr _u_| ong, for decoding the
results returned by the remote procedure and a pointer, &users, to the storage
location of the procedure results. Multiple arguments and results are handled by
embedding them in structures.

If cal | r pc completes successfully, it returns zero; otherwise it returns a non-zero
value. The return codes are found in <rpc/clnt.h>. The cal | rpc routine needs
the type of the RPC argument, as well as a pointer to the argument itself (and
similarly for the result). For RUSERSPROC_NUM the return value is an unsigned
long. This is why cal | rpc has xdr _u_|l ong as its first return parameter, which
means that the result is of type unsi gned | ong, and &nusers as its second
return parameter, which is a pointer to the location that stores the long result.
RUSERSPROC_NUM takes no argument, so the argument parameter of cal | rpc is
xdr_voi d. In such cases, the argument must be NULL.

If cal | rpc gets no answer after trying several times to deliver a message, it
returns with an error code. Methods for adjusting the number of retries or for
using a different protocol require you to use the lowest layer of the RPC library,
discussed in Section 3.3.

The remote server procedure corresponding to the cal | r pc usage example might
look like the one in Example 3-2.

This procedure takes one argument—a pointer to the input of the remote
procedure call (ignored in the example)—and returns a pointer to the result. In
the current version of C, character pointers are the generic pointers, so the input
argument and the return value can be cast to char *.

3-2 RPC Application Programming Interface



RPC Application Programming Interface
3.2 Middle Layer of RPC

Example 3-1 Using callrpc
/ *
* rnusers.c - programto return the nunber of users on a renpte host
*|
#include <stdio. h>
#include <rpc/rpc. h>
#include "rusers.h"

mai n(argc, argv)
int argc;
char **argv;

unsigned |ong nusers;
Int stat;

if (arge '=2) {
[ stderr, "usage: rnusers hostnane\n")

if (stat = callrpc(argv[l],
RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM
xdr _void, 0, xdr_u_long, &nusers) !'=10) {
clnt_perrno(stat)
exit(1);

printf("%l users on %\n", nusers, argv[1]);
exit(0);

Example 3-2 Remote Server Procedure

unsi gned long *
nuser (i ndat a)
char *indata

{
static unsigned |ong nusers;
/*
* Add code here to conpute the nunber of users
* and place result in variable nusers
* For this exanple, nusers is set to 5.
*|
nusers = 5;
return(&nusers);
}

RPC Application Programming Interface 3-3



RPC Application Programming Interface
3.2 Middle Layer of RPC

3.2.2 Using registerrpc and svc_run

Normally, a server registers all the RPC calls it plans to handle, and then
goes into an infinite loop waiting to service requests. Using RPCGEN for this
also generates a server dispatch function. You can write a server yourself by
using regi sterrpc. Example 3-3 is a program showing how you would use
regi sterrpc in the main body of a server program that registers a single
procedure; the remote procedure returns a single unsi gned | ong result.

The regi st errpc routine establishes the correspondence between a procedure and
a given RPC procedure number. The first three parameters (defined in rusers. h),
RUSERPROG, RUSERSVERS, and RUSERSPROC_NUM are the program, version, and
procedure numbers of the remote procedure to be registered; nuser is the name
of the local procedure that implements the remote procedure; and xdr _voi d and
xdr_u_| ong are the XDR filters for the remote procedure’s arguments and results,
respectively. (Multiple arguments or multiple results are passed as structures.)

The underlying transport mechanism for regi st errpc is UDP.

Note

The UDP transport mechanism can handle only arguments and results
that are less than 8K bytes in length.

After registering the local procedure, the main procedure of the server program
calls the RPC dispatcher using the svc_run routine. The svc_run routine calls
the remote procedures in response to RPC requests and decodes remote procedure
arguments and encodes results. To do this, it uses the XDR filters specified when
the remote procedure was registered with regi sterrpc.

The remote server procedure, nuser, was already shown in Example 3-2 and is
duplicated in this example. This procedure takes one argument—a pointer to
the input of the remote procedure call (ignored in the example)—and returns
a pointer to the result. In the current version of C, character pointers are the
generic pointers, so the input argument and the return value can be cast to
char *.

3-4 RPC Application Programming Interface



RPC Application Programming Interface
3.2 Middle Layer of RPC

Example 3-3 Using registerrpc in the Main Body of a Server Program

/*

* nusers_server.c - server to return the nunber of users on a host
*/

#incl ude <stdio. h>

#include <rpc/rpc. h> [* required */

#include "rusers.h" [* for prog, vers definitions */

unsi gned | ong *nuser();
mai n()

int exit();

regi sterrpc( RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM
nuser, xdr_void, xdr_u_long);

sve_run(); I* Never returns */
fprintf(stderr, "Error: svc_run returned!\n")
exit(1);

}

unsi gned long *
nuser (i ndat a)
char *indata

{
static unsigned |ong nusers;
/*
* Add code here to conpute the nunber of users
* and place result in variable nusers
* For this exanple, nusers is set to 5.
*|
nusers = 5;
return(&nusers);
}

RPC Application Programming Interface 3-5



RPC Application Programming Interface
3.2 Middle Layer of RPC

3.2.3 Using XDR Routines to Pass Arbitrary Data Types

RPC can handle arbitrary data structures—regardless of system conventions
for byte order and structure layout—by converting them to their external data
representation (XDR) before sending them over the network. The process of
converting from a particular system representation to XDR format is called
serializing, and the reverse process is called deserializing. The type field
parameters of cal | rpc and regi sterrpc can be a built-in procedure like
xdr_u_l ong (in the previous example), or one that you supply. XDR has the
built-in routines shown on the opposite page.

You cannot use the xdr _string routine with either cal | rpc or regi sterrpc,
each of which passes only two parameters to an XDR routine. Instead, use
xdr_wrapstring, which takes only two parameters and calls xdr _stri ng.

Table 3—-1 XDR Routines

Built-In XDR Integer Routines

xdr_short xdr_u_short
xdr_int xdr_u_int
xdr_long xdr_u_long
xdr_hyper xdr_u_hyper

Built-In XDR Floating-Point Routines
xdr_float xdr_double

Built-In XDR Character Routines
xdr_char xdr_u_char

Built-In XDR Enumeration Routines
xdr_bool xdr_u_enum

Built-In XDR Array Routines

xdr_array xdr_bytes
xdr_vector xdr_string
xdr_wrapstring xdr_opaque

Built-In XDR Pointer Routines
xdr_reference xdr_pointer

3-6 RPC Application Programming Interface



RPC Application Programming Interface
3.2 Middle Layer of RPC

3.2.4 User-Defined XDR Routines
Suppose that you want to send the following structure:

struct sinple {
int a;
short b;

} sinple;
To send it, you would use the following cal | rpc call:

cal I rpc(host nane, PROGNUM VERSNUM PROCNUM
xdr_sinple, &sinple ...);

With this call to cal | rpc, you could define the routine xdr _si npl e as in the
following example:

#include <rpc/rpc. h>
xdr _si npl e(xdrsp, sinplep)

XDR *xdr sp;
struct sinple *sinplep;

if (!xdr_int(xdrsp, &sinplep->a))
return (0);

if (!xdr_short(xdrsp, &sinplep->b))
return (0);

return (1);

An XDR routine returns nonzero (evaluates to TRUE in C) if it completes
successfully; otherwise, it returns zero: For a complete description of XDR, see
RFC 1014: XDR: External Data Representation Standard and Chapter 4 of this
manual.

Note

It is best to use RPCGEN to generate XDR routines. Use the /XDR_FILE
option of RPCGEN to generate only the _XDR.C file.

As another example, if you want to send a variable array of integers, you might
package them as a structure like this:
struct varintarr {
int *data;
int arrinth;
} arr;

Then, you would make an RPC call such as this:

cal I rpc(host nane, PROGNUM VERSNUM PROCNUM
xdr_varintarr, &arr, .....

You could then define xdr _varintarr as shown:

xdr_varintarr(xdrsp, arrp)
XDR *xdr sp;
struct varintarr *arrp;

return (xdr_array(xdrsp, &arrp->data, &arrp->arrinth,
MAXLEN, sizeof (int), xdr_int));
}

The xdr _array routine takes as parameters the XDR handle, a pointer to the
array, a pointer to the size of the array, the maximum allowable array size, the
size of each array element, and an XDR routine for handling each array element.

RPC Application Programming Interface 3-7



RPC Application Programming Interface
3.2 Middle Layer of RPC

If you know the size of the array in advance, you can use xdr _vect or, which
serializes fixed-length arrays, as shown in the following example:

int intarr[SlZE;

xdr_intarr(xdrsp, intarr)
XDR *xdr sp;
int intarr[];

return (xdr_vector(xdrsp, intarr, SIZE sizeof(int),
xdr_int));

3.2.5 XDR Serializing Defaults

XDR always converts quantities to 4-byte multiples when serializing. If the
examples in Section 3.2.4 had used characters instead of integers, each character
would occupy 32 bits. This is why XDR has the built-in routine xdr _byt es, which
is like xdr _array except that it packs characters. The xdr byt es routine has four
parameters, similar to the first four of xdr _array. For null-terminated strings,
XDR provides the built-in routine xdr _string, which is the same as xdr _byt es
without the length parameter.

When serializing, XDR gets the string length from strl en, and on deserializing
it creates a null-terminated string. The following example calls the user-
defined routine xdr _si npl e, as well as the built-in functions xdr _string and
xdr _reference (which locates pointers):

struct final exanple {

char *string;

struct sinple *sinplep;
} final exanpl e;

xdr _final exanpl e(xdrsp, finalp)
XDR *xdr sp;
struct final exanple *finalp;

{
if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
return (0);
if (!xdr_reference(xdrsp, &finalp->sinplep,
si zeof (struct sinple), xdr_sinple);
return (0);
return (1);
}

Note that xdr _si npl e could be called here instead of xdr _r ef erence.

3-8 RPC Application Programming Interface



RPC Application Programming Interface
3.3 Lowest Layer of RPC

3.3 Lowest Layer of RPC

Examples in previous sections show how RPC handles many details automatically
through defaults. The following sections describe how to change the defaults by
using the lowest layer RPC routines.

The lowest layer of RPC allows you to do the following:

= Use TCP as the underlying transport instead of UDP. Using TCP allows you
to exceed the 8K-byte data limitation imposed by UDP.

= Allocate and free memory explicitly while serializing or deserializing with
XDR routines.

= Use authentication on either the client or server side, through credential
verification.

3.3.1 The Server Side and the Lowest RPC Layer

The server for the nusers program in Example 3—4 does the same work as the
previous nusers_server. ¢ program that used regi sterrpc (see Example 3-3).
However, it uses the lowest layer of RPC.

Example 3—-4 Server Program Using Lowest Layer of RPC

#include <stdio. h>
#include <rpc/rpc. h>
#include <rpc/pmap_clnt. h>
#include "rusers.h"

mai n()

SVCXPRT *transp;
unsi gned | ong nuser();
int exit();

transp = svcudp_creat e( RPC_ANYSOCK); 1

if (transp == NULL){
fprintf(stderr, "can't create an RPC server\n");
exit(1);

}
prap_unset (RUSERSPROG, RUSERSVERS); 2
if (!svc_register(transp, RUSERSPROG RUSERSVERS, 3
nuser, |PPROTO UDP)) {
fprintf(stderr, "can't regi ster RUSER service\n");
exit(1);

sve_run(); /* Never returns */ 4
fprintf(stderr, "should never reach this point\n");

unsi gned | ong

nuser(rqgstp, transp) 5
struct svc_req *rgstp;
SVCXPRT *transp;

unsi gned | ong nusers;

(continued on next page)

RPC Application Programming Interface 3-9



RPC Application Programming Interface
3.3 Lowest Layer of RPC

Example 3-4 (Cont.) Server Program Using Lowest Layer of RPC

switch (rqgstp->rg_proc) {
case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can't reply to RPC call\n");
return;
case RUSERSPROC_NUM
/*
* Code here to conpute the nunber of users
* and assign it to the variable nusers
* For this exanple, nusers is set to 5.
*|
nusers = 5;
if (!svc_sendreply(transp, xdr_u_long, &nusers))
fprintf(stderr, "can't reply to RPC call\n");
return;
defaul t:
svcerr_noproc(transp);
return,

}

In this example, the following events occur:

1 The server calls svcudp_create to get a transport handle for receiving and
replying to RPC messages. If the argument to svcudp_creat e is RPC_ANYSQOCK,
the RPC library creates a socket on which to receive and reply to RPC calls.
Otherwise, svcudp_creat e expects its argument to be a valid socket number.
If you specify your own socket, it can be bound or unbound. If it is bound to
a port by the user, the port numbers of svcudp_create and cl ntudp_create
(the low-level client routine) must match. The regi sterrpc routine uses
svcudp_create to get a UDP handle. If you need a more reliable protocol, call
svctcp_create instead.

2 The next step is to call pmap_unset so if the nuser server crashed earlier, any
previous trace of it is erased before restarting. More precisely, pmap_unset
erases the entry for RUSERSPROG from the Portmapper tables.

3 Use acall to svc_register to associate the program number RUSERSPROG and
the version RUSERSVERS with the procedure nuser. Unlike regi sterrpc, there
are no XDR routines in the registration process, and registration is at the
program level rather than the procedure level.

A service can register its port number with the local Portmapper service by
specifying a non-zero protocol number in the final argument of svc_regi ster.
A client determines the server’s port number by consulting the Portmapper
on its server system. Specifying a zero port number in ¢l ntudp_create or
clnttcp_create does this automatically.

4  Finally, use a call to the svc_run routine to put the program into a wait state
until RPC requests arrive.

5 The server routine nuser must call and dispatch the appropriate XDR
routines based on the procedure number. The nuser routine explicitly handles
two cases that are taken care of automatically by regi sterrpc:

e The procedure NULLPROC (currently zero) returns with no results. This can
be used as a simple test for detecting if a remote program is running.

e There is a check for invalid procedure numbers; if the program detects
one, it calls svcerr_noproc to handle the error.

3-10 RPC Application Programming Interface



RPC Application Programming Interface
3.3 Lowest Layer of RPC

The nuser service routine serializes the results and returns them to the RPC
client via svc_sendrepl y. Its first parameter is the server handle, the second
is the XDR routine, and the third is a pointer to the data to be returned. It
is not necessary to have nusers declared as static here because the program
calls svc_sendr epl y within that function itself.

To show how a server handles an RPC program that receives data, you could
add to the previous example, a procedure called RUSERSPROC BOOL, which has
an argument nuser s, and returns TRUE or FALSE depending on whether the
number of users logged on is equal to nusers. It would look like this:

case RUSERSPROC BOOL: {
int bool ;
unsi gned nuser query;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
svcerr_decode(transp);
return;

}
/*
* Code to set nusers = nunber of users
*|
if (nuserquery == nusers)
bool = TRUE;
el se
bool = FALSE;
if (!svc_sendreply(transp, xdr_bool, &bool))
fprintf(stderr, "can't reply to RPC call\n");
return;

}

Here, the svc_get ar gs routine takes as arguments a server handle, the XDR
routine, and a pointer to where the input is to be placed.

3.3.2 The Client Side and the Lowest RPC Layer

When you use cal | rpc, you cannot control either the RPC delivery mechanism
or the socket that transports the data. The lowest layer of RPC enables you

to modify these parameters, as shown in Example 3-5, which calls the nuser
service.

Example 3-5 Using Lowest RPC Layer to Control Data Transport and Delivery

#incl ude <stdio. h>
#include <rpc/rpc. h>
#include <sys/tine.h>
#incl ude <netdb. h>
#include "rusers.h"

mai n(argc, argv)
int argc;
char **argv;

(continued on next page)

RPC Application Programming Interface 3-11



RPC Application Programming Interface
3.3 Lowest Layer of RPC

Example 3-5 (Cont.) Using Lowest RPC Layer to Control Data Transport and
Delivery

struct hostent *hp;

struct timeval pertry_timeout, total tineout;
struct sockaddr in server addr;

int sock = RPC_ANYSQOCK;

regi ster CLIENT *client;

enumclnt_stat clnt_stat;

unsi gned | ong nusers;

int exit();

if (argc !'=2) {
fprintf(stderr, "usage: nusers hostnane\n");
exit(-1);

if ((hp = gethostbyname(argv[1])) == NULL) {
fprintf(stderr, "can't get addr for 9%\n",argv[1]);
exit(-1);

pertry_tinmeout.tv_sec = 3;

pertry timeout.tv_usec = 0;

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,
hp->h_l engt h);

server _addr.sin famly = AF | NET;

server_addr.sin_port = 0

if ((client = clntudp_create(&server_addr, RUSERSPROG 1
RUSERSVERS, pertry_timeout, &sock)) == NULL) {
clnt_pcreateerror("clntudp _create");
exit(-1);

total timeout.tv_sec = 20;
total timeout.tv_usec = 0;

clnt_stat = clnt_call(client, RUSERSPROC NUM xdr_void, 2
0, xdr_u_long, &nusers, total tineout);

if (clnt_stat !'= RPC SUCCESS) {
clnt_perror(client, "rpc");
exit(-1);

printf("%l users on %\n", nusers, argv[1]);
clnt_destroy(client); 3
exit(0);

1 This example calls the cl nt udp_creat e routine to get a client handle for the
UDP transport. To get a TCP client handle you would use ¢l nttcp_create.
The parameters to ¢l ntudp_creat e are the server address, the program
number, the version number, a timeout value, and a pointer to a socket.

If the client does not hear from the server within the time specified in
pertry_tineout, the request may be sent again to the server. When the
sin_port is 0, RPC queries the remote Portmapper to find out the address of
the remote service.

2 The lowest level version of cal | rpc is cl nt _cal |, which takes a client handle
rather than a host name. The parameters to cl nt_cal | are a client handle,
the procedure number, the XDR routine for serializing the argument, a
pointer to the argument, the XDR routine for deserializing the results, a
pointer to where the results will be placed, and the time in seconds to wait for

3-12 RPC Application Programming Interface



RPC Application Programming Interface
3.3 Lowest Layer of RPC

a reply. The number of times that cl nt _cal | attempts to contact the server
is equal to the total _timeout value divided by the pertry_timeout value
specified in the cl ntudp_create call.

3 The clnt_destroy call always deallocates the space associated with the
CLI ENT handle. It closes the socket associated with the CLI ENT handle only if
the RPC library opened it. If the socket was opened by the user, it remains
open. This makes it possible, in cases where there are multiple client handles
using the same socket, to destroy one handle without closing the socket that
other handles are using.

To make a stream connection, replace the call to ¢l nt udp_creat e with a call to
clnttcp _create:

clnttcp_create(&server_addr, prognum versnum &sock,
i nbuf si ze, outbufsize);

Here, there is no timeout argument; instead, the "receive" and "send" buffer sizes
must be specified. When the program makes a call to cl nttcp_create, RPC
creates a TCP client handle and establishes a TCP connection. All RPC calls
using the client handle use the same TCP connection. The server side of an RPC
call using TCP has svcudp_creat e replaced by svctcp_create:

transp = svctcp_create( RPC_ANYSOCK, 0, 0);

The last two arguments to svctcp_create are "send" and "receive" sizes,
respectively. If, as here, 0 is specified for either of these, the system chooses
default values.

The simplest routine that creates a client handle is ¢l nt _create:
clnt=clnt_create(server_host, prognum versnumtransport);

The parameters here are the name of the host on which the service resides, the
program and version number, and the transport to be used. The transport can be
either udp for UDP or t cp for TCP. You can change the default timeouts by using
clnt_control. For more information, refer to Section 2.7.

3.3.3 Memory Allocation with XDR

To enable memory allocation, the second parameter of xdr _byt es is a pointer

to a pointer to an array of bytes, rather than the pointer to the array itself. If
the pointer has the value NULL, then xdr _byt es allocates space for the array and
returns a pointer to it, putting the size of the array in the third argument. For
example, the following XDR routine xdr _chararr 1, handles a fixed array of bytes
with length Sl ZE:

xdr _chararr1(xdrsp, chararr)
XDR *xdr sp;
char *chararr;

{

char *p;

int len;

p = chararr;

| en = SIZE

return (xdr_bytes(xdrsp, &p, &en, SIZE));
}

RPC Application Programming Interface 3-13



RPC Application Programming Interface
3.3 Lowest Layer of RPC

Here, if space has already been allocated in chararr, it can be called from a
server like this:

char array[ Sl ZE];
svc_getargs(transp, xdr_chararrl, array);
If you want XDR to do the allocation, you must rewrite this routine in this way:

xdr_chararr2(xdrsp, chararrp)
XDR *xdr sp;
char **chararrp;

L

int len;

len = SIZE;

return (xdr_bytes(xdrsp, charrarrp, &en, SIZE));
}

The RPC call might look like this:
char *arrayptr;

arrayptr = NULL;

svc_getargs(transp, xdr_chararr2, &arrayptr);

/*

* Use the result here

*]

svc_freeargs(transp, xdr_chararr2, &arrayptr);
After using the character array, you can free it with svc_freeargs; this will not
free any memory if the variable indicating it has the value NULL. For example,
in the earlier routine xdr _fi nal exanpl e in Section 3.2.5, if fi nal p->string was
NULL, it would not be freed. The same is true for fi nal p- >si npl ep.

To summarize, each XDR routine is responsible for serializing, deserializing, and
freeing memory as follows:

= When called from cal | r pc, the XDR routine uses its serializing part.
= When called from svc_get ar gs, the XDR routine uses its deserializer part.

= When called from svc_freeargs, the XDR routine uses its memory deallocator
part.

When building simple examples as shown in this section, you can ignore the three
modes. See Chapter 4 for examples of more sophisticated XDR routines that
determine mode and any required modification.

3-14 RPC Application Programming Interface



RPC Application Programming Interface
3.4 Raw RPC

3.4 Raw RPC

Raw RPC refers to the use of pseudo-RPC interface routines that do not use any
real transport at all. These routines, ¢l ntraw create and svcraw create, help in
debugging and testing the non-communications-oriented aspects of an application
before running it over a real network. Example 3-6 shows their use.

In this example,

= All the RPC calls occur within the same thread of control.

e SvC_run is not called.

= It is necessary that the server handle be created before the client handle.
= svcraw create takes no parameters.

e The last parameter to svc_regi ster is 0, which means that it will not
register with Portmapper.

= The server dispatch routine is the same as it is for normal RPC servers.

Example 3-6 Debugging and Testing the Noncommunication Parts of an
Application

/*

* Asinple programto increment the nunber by 1

|

#include <stdio. h>
#include <rpc/rpc. h>
#include <rpc/raw h> [* required for raw */

struct timeval TIMEQUT = {0, O};
static void server();

mai n()
int argc;
char **argv;

CLI ENT *clnt;

SVCXPRT *svc;

int num= 0, ans;

int exit();

if (argc == 2)
num = atoi (argv[1]);

SvC = svcraw create();

if (sve == NULL) {
fprintf(stderr,”"Could not create server handle\n");
exit(1);

svc_register(sve, 200000, 1, server, 0);
clnt = clntraw create(200000, 1);

if (clnt == NULL) {
clnt_pcreateerror("raw');
exit(1);

(continued on next page)

RPC Application Programming Interface 3-15



RPC Application Programming Interface
3.4 Raw RPC

Example 3-6 (Cont.) Debugging and Testing the Noncommunication Parts of
an Application

if (cInt_call(clnt, 1, xdr_int, &um xdr_int, &ans,
TI MEQUT) != RPC_SUCCESS) {
clnt_perror(clnt, "raw');

exit(1);
printf("Client: nunmber returned %l\n", ans);
exit(0) ;
}
static void

server(rgstp, transp)

struct svc_req *rqstp; /* the request */
SVCXPRT *transp; /* the handle created by svcraw create */

int num
int exit();

switch(rgstp->rqg_proc) {
case 0
if (svc_sendreply(transp, xdr_void, 0) == FALSE) {
fprintf(stderr, "error in null proc\n");
exit(1);

return;

case 1:
br eak;

defaul t:
svcerr_noproc(transp);
return;

if (!svc_getargs(transp, xdr_int, &un)) {
svcerr_decode(transp);
return;

}

numt+;

if (svc_sendreply(transp, xdr_int, &wunm == FALSE) {
fprintf(stderr, "error in sending answer\n");
exit(1);

return;

3-16 RPC Application Programming Interface



RPC Application Programming Interface
3.5 Miscellaneous RPC Features

3.5 Miscellaneous RPC Features

The following sections describe other useful features for RPC programming.

3.5.1 Using Select on the Server Side

Suppose a process simultaneously responds to RPC requests and performs
another activity. If the other activity periodically updates a data structure, the
process can set an alarm signal before calling svc_run. However, if the other
activity must wait on a file descriptor, the svc_run call does not work. The code
for svc_run is as follows:

voi d

sve_run()

fd_set readfds;
int dtbsz = getdtabl esize();

for (55) {
readfds = svc_fds;
switch (select(dtbhsz, &eadfds, NULL, NULL, NULL)) {

case -1:

if (errno != EBADF)
continue;

perror("select");
return;

case 0:
continue;

defaul t:
svc_getreqset (& eadf ds);

}

You can bypass svc_run and call svc_getreqset if you know the file descriptors of
the sockets associated with the programs on which you are waiting. In this way,
you can have your own sel ect that waits on the RPC socket, and you can have
your own descriptors. Note that svc_f ds is a bit mask of all the file descriptors
that RPC uses for services. It can change whenever the program calls any RPC
library routine, because descriptors are constantly being opened and closed, for
example, for TCP connections.

Note

If you are handling signals in your application, do not make any system
call that accidentally sets errno. If this happens, reset errno to its
previous value before returning from your signal handler.

3.5.2 Broadcast RPC

The Portmapper required by broadcast RPC is a daemon that converts RPC
program numbers into TCP/IP protocol port numbers. The main differences
between broadcast RPC and normal RPC are the following:

= Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more from each responding server).

= Broadcast RPC supports only packet-oriented (connectionless) transport
protocols such as UDP/IP.

RPC Application Programming Interface 3-17



RPC Application Programming Interface
3.5 Miscellaneous RPC Features

= Broadcast RPC filters out all unsuccessful responses; if a version mismatch
exists between the broadcaster and a remote service, the user of broadcast
RPC never knows.

= All broadcast messages are sent to the Portmapper port; thus, only services
that register themselves with their Portmapper are accessible via broadcast
RPC.

= Broadcast requests are limited in size to 1400 bytes. Replies can be up to
8800 bytes (the current maximum UDP packet size).

In the following example, the procedure eachresul t is called each time the
program obtains a response. It returns a boolean that indicates whether the user
wants more responses. If the argument eachresult is NULL, cl nt _broadcast
returns without waiting for any replies:

#include <rpc/pmap_clnt. h>

enum cl nt_stat clnt_stat;

u_long prognum [* program nunber */

u_long ver snum [* version nunber */

u_long procnum [* procedure nunber */
xdrproc_t 1nproc; [* xdr routine for args */
caddr_t in; [* pointer to args */
xdrproc_t outproc; [* xdr routine for results */
caddr t  out; [* pointer to results */

bool _t (*eachresult)();/* call with each result gotten */

E:Int_stat = cl nt _broadcast (prognum versnum procnum
inproc, in, outproc, out, eachresult)

In the following example, if done is TRUE, broadcasting stops and
clnt_broadcast returns successfully. Otherwise, the routine waits for another
response. The request is rebroadcast after a few seconds of waiting. If no
responses come back in a default total timeout period, the routine returns with
RPC_TI MEDQUT:

bool _t done;
caddr _t resultsp;
struct sockaddr in *raddr; /* Addr of responding server */

done = eachresult (resul tsp, raddr)

For more information, see Section 2.8.1.

3-18 RPC Application Programming Interface



RPC Application Programming Interface
3.5 Miscellaneous RPC Features

3.5.3 Batching

In normal RPC, a client sends a call message and waits for the server to reply
by indicating that the call succeeded. This implies that the client must wait idle
while the server processes a call. This is inefficient if the client does not want or
need an acknowledgment for every message sent.

Through a process called batching, a program can place RPC messages in a
"pipeline” of calls to a desired server. In order to use batching the following
conditions must be true: which:

e No RPC call in the pipeline should require a response from the server. The
server does not send a response message until the client program flushes the
pipeline.

= The pipeline of calls is transported on a reliable byte stream transport, such
as TCP/IP.

Because the server does not respond to every call, the client can generate new
calls in parallel with the server executing previous calls. Also, the TCP/IP
implementation holds several call messages in a buffer and sends them to the
server in one Wit e system call. This overlapped execution greatly decreases the
interprocess communication overhead of the client and server processes, and the
total elapsed time of a series of calls. Because the batched calls are buffered,
the client must eventually do a nonbatched call to flush the pipeline. When the
program flushes the connection, RPC sends a normal request to the server. The
server processes this request and sends back a reply.

In the following example of server batching, assume that a string-rendering
service (in example, a simple print to stdout) has two similar calls—one
provides a string and returns void results, and the other provides a string
and does nothing else. The service (using the TCP/IP transport) may look like
Example 3-7.

Example 3-7 Server Batching

#i ncl ude <stdio.h>
#include <rpc/rpc. h>
#include "render.h"

voi d renderdi spatch();
mai n()
SVCXPRT *transp;
int exit();

transp = svctcp_create( RPC_ANYSOCK, 0, 0);

if (transp == NULL){
fprintf(stderr, "can't create an RPC server\n");
exit(1);

pap_unset ( RENDERPROG, RENDERVERS) ;

if (!svc_register(transp, RENDERPROG RENDERVERS,
render di spat ch, | PPROTO TCP)) {
fprintf(stderr, "can't regi ster RENDER service\n");
exit(1);

(continued on next page)

RPC Application Programming Interface 3-19



RPC Application Programming Interface
3.5 Miscellaneous RPC Features

Example 3-7 (Cont.) Server Batching

svc_run(); /* Never returns */
fprintf(stderr, "should never reach this point\n");

voi d
renderdi spat ch(rgstp, transp)

struct svc_req *rgstp;
SVCXPRT *transp;

{
char *s = NULL;
switch (rgstp->rg_proc) {
case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can't reply to RPC call\n");
return;
case RENDERSTRI NG
if (!svc_getargs(transp, xdr_wapstring, &s)) {
fprintf(stderr, "can't decode argunents\n");
/*
* Tell client he erred
*|
svcerr_decode(transp);
return;
L
* Code here to render the string "s"
*|
printf("Render: %\n"), s;
if (!svc_sendreply(transp, xdr_void, NULL))
fprintf(stderr, "can’t reply to RPC call\n");
break;
case RENDERSTRI NG BATCHED:
if (!svc_getargs(transp, xdr_wapstring, &s)) {
fprintf(stderr, "can't decode arguments\n");
/*
* W are silent in the face of protocol errors
*|
br eak;
}
/*
* Code here to render string s, but send no reply!
*|
printf("Render: %\n"), s;
br eak;
defaul t:
svcerr_noproc(transp);
return;
.
* Now free string allocated while decoding argunents
*|
svc_freeargs(transp, xdr_wapstring, &s);
}

3-20 RPC Application Programming Interface



RPC Application Programming Interface
3.5 Miscellaneous RPC Features

In the previous example, the service could have one procedure that takes the
string and a boolean to indicate whether the procedure will respond. For a client
to use batching effectively, the client must perform RPC calls on a TCP-based
transport and the actual calls must have the following attributes:

e The XDR routine of the result must be zero (NULL).

= The timeout of the RPC call must be zero. (Do not rely on ¢l nt_control to
assist in batching.)

If a UDP transport is used instead, the client call becomes a message to the
server and the RPC mechanism becomes simply a message-passing system, with
no batching possible. In Example 3-8, a client uses batching to supply several
strings; batching is flushed when the client gets a null string (EOF).

In this example, the server sends no message, making the clients unable to
receive notice of any failures that may occur. Therefore, the clients must handle
any errors.

Using a UNIX-to_ UNIX RPC connection, an example similar to this one was
completed to render all of the lines (approximately 2000) in the UNIX file / et ¢
[ terntap. The rendering service simply discarded the entire file. The example
was run in four configurations, in different amounts of time:

e System to itself, regular RPC — 50 seconds
= System to itself, batched RPC — 16 seconds
= System to another, regular RPC — 52 seconds
= System to another, batched RPC — 10 seconds

In the test environment, running only fscanf on /etc/terntap required 6
seconds. These timings show the advantage of protocols that enable overlapped
execution, although they are difficult to design.

Example 3-8 Client Batching

#incl ude <stdio. h>
#include <rpc/rpc. h>
#include "render.h"

mai n(argc, argv)
int argc;
char **argv;

struct timeval total tineout;
regi ster CLIENT *client;
enumclnt_stat clnt_stat;
char buf[1000], *s = buf;

int exit(), atoi();

char *host, *fnane;

FILE *f;

int renderop;

host = argv[1];
renderop = atoi(argv[2]);
fname = argv[3];

(continued on next page)

RPC Application Programming Interface 3-21



RPC Application Programming Interface
3.5 Miscellaneous RPC Features

Example 3-8 (Cont.) Client Batching

f = fopen(fnane, "r");
if (f == NULL){
printf("Unable to open file\ln");
\ exit(0);
if ((client =clnt_create(argv
RENDERPROG, RENDERVERS, "tcp
perror("clnttcp _create");
exit(-1);

1

[1]
")) == NULL) {

1
)

switch (renderop) {
case RENDERSTRI NG
total timeout.tv_sec = 5;
total timeout.tv_usec = 0;
while (fscanf(f,"%", s) != EOF) {
clnt_stat = clnt_call(client, RENDERSTRI NG
xdr_wrapstring, &s, xdr_void, NULL, total tinmeout);
if (clnt_stat !'= RPC_SUCCESS) {
clnt_perror(client, "batching rpc");
exit(-1);

br eak;
case RENDERSTRI NG _BATCHED:
total timeout.tv_sec = 0; [* set timeout to zero */
total timeout.tv_usec = 0;
while (fscanf(f,"%", s) != EOF) {
clnt_stat = clnt_call(client, RENDERSTRI NG BATCHED,
xdr _wrapstring, &s, NULL, NULL, total timeout);
if (clnt_stat !'= RPC_SUCCESS) {
clnt_perror(client, "batching rpc");
exit(-1);

}
/* Now flush the pipeline */

total timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC, xdr _void, NULL,
xdr_void, NULL, total timeout);
if (clnt_stat !'= RPC SUCCESS) {
clnt_perror(client, "batching rpc");
exit(-1);

break;
defaul t:

return;
}

clnt_destroy(client);
fclose(f);
exit(0);

3-22 RPC Application Programming Interface



RPC Application Programming Interface
3.6 Authentication of RPC Calls

3.6 Authentication of RPC Calls

In the examples presented so far, the client never identified itself to the server,
nor did the server require it from the client. Every RPC call is authenticated by
the RPC package on the server, and similarly, the RPC client package generates
and sends authentication parameters. Just as different transports (TCP/IP or
UDP/IP) can be used when creating RPC clients and servers, different forms of
authentication can be associated with RPC clients. The default authentication
type is none. The authentication subsystem of the RPC package, with its ability
to create and send authentication parameters, can support commercially available
authentication software.

This manual describes only one type of authentication—authentication through
the operating system. The following sections describe client and server side
authentication through the operating system.

3.6.1 The Client Side
Assume that a client creates the following new RPC client handle:
clnt = clntudp_create(address, prognum versnum wait, sockp)
The client handle includes a field describing the associated authentication handle:
clnt->cl _auth = authnone_create();

The RPC client can choose to use authentication that is native to the operating
system by setting cl nt - >cl _aut h after creating the RPC client handle:

clnt->cl _auth = authuni x_create_defaul t();

This causes each RPC call associated with cl nt to carry with it the following
authentication credentials structure:

/*
* credentials native to the operating system
*
/
struct authunix_parnms {
u_long aup_tine; [* credentials creation tine */
char *aup_machnane; /* host name where client is */
int aup_uid; [* client’s CpenVMs uid *|
int aup_gid; [* client’s current group id */
uint aup_len; [* element length of aup_gids */
[* (set to 0 on QOpenVMB) )
int *aup_gi ds; [* array of groups user is in */
[* (set to NULL on QpenVMS)  */
b

In this example, the fields are set by aut huni x_create_defaul t by invoking

the appropriate system calls. Because the program created this new style of
authentication, the program is responsible for destroying it (to save memory) with
the following:

aut h_destroy(clnt->cl _auth);

RPC Application Programming Interface 3-23



RPC Application Programming Interface
3.6 Authentication of RPC Calls

3.6.2 The Server Side

It is difficult for service implementors to handle authentication because the RPC
package passes to the service dispatch routine a request that has an arbitrary
authentication style associated with it. Consider the fields of a request handle
passed to a service dispatch routine:

/*
* An RPC Service request
*|
struct svc_req {
u_long rq_prog; /* service program nunber */
u_long rq_vers; [* service protocol vers num*/
u_long rq_proc; /* desired procedure nunber */
struct opaque_auth rqg_cred; /* raw credentials fromwire */
caddr t rq_clntcred; [* credentials (read only) */
b
The rg_cred is mostly opaque, except for one field, the style of authentication
credentials:
/*

* Authentication info. Mstly opaque to the programer.
¥

struct opaque_auth {

enum t oa_flavor; [* style of credentials */
caddr t  oa_base; /* address of nore auth stuff */
u_int oa_l ength; /* not to exceed MAX AUTH BYTES */

The RPC package guarantees the following to the service dispatch routine:

= The rq_cred field of the request is well formed; that is, the service
implementor can use the rq_cred. oa_fl avor field of the request to determine
the authentication style used by the client. The service implementor can
also inspect other fields of rq_cred if the style is not supported by the RPC
package.

e Therq_clntcred field of the request is either NULL or points to a well formed
structure that corresponds to a supported style of authentication credentials.

The rqg_cl ntcred field also could be cast to a pointer to an aut huni x_par ns
structure. If rg_clntcred is NULL, the service implementor can inspect the other
(opaque) fields of r g_cred to determine whether the service knows about a new
type of authentication that is unknown to the RPC package.

Example 3-9 extends the previous remote user’s service (see Example 3-3) so it
computes results for all users except UID 16.

Example 3-9 Authentication on Server Side

nuser(rqstp, transp)
struct svc_req *rgstp;
SVCXPRT *transp;

struct authunix_parns *unix_cred;
int uid;
unsi gned | ong nusers;

(continued on next page)

3-24 RPC Application Programming Interface



RPC Application Programming Interface
3.6 Authentication of RPC Calls

Example 3-9 (Cont.) Authentication on Server Side

/*
* we don't care about authentication for null proc
x|
if (rgstp->rg_proc == NULLPROC) {
if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can't reply to RPC call\n");

return;
}
/*
* now get the uid
¥

switch (rqgstp->rq_cred.oa flavor) {

case AUTH UNI X:
uni x_cred = (struct authunix_parns *)rqstp->rq_clntcred,
uid = unix_cred->aup_uid;
br eak;

case AUTH NULL:

defaul t: /* return weak authentication error */
svcerr_weakaut h(transp);
return;

}
switch (rastp->rg_proc) {
case RUSERSPROC_NUM

/*
* make sure client is allowed to call this proc
*]
if (uid == 16) {
svcerr_systenerr(transp);
return;
}
/*

* Code here to conpute the nunber of users
* and assign it to the variable nusers
*|

if (!svc_sendreply(transp, xdr_u_long, é&nusers))
fprintf(stderr, "can't reply to RPC call\n");
return;

defaul t:
svcerr_noproc(transp);
return;

}

As in this example, it is not customary to check the authentication parameters
associated with NULLPROC (procedure 0). Also, if the authentication parameter
type is not suitable for your service, have your program call svcerr_weakaut h.

The service protocol itself returns status for access denied; in this example,
the protocol does not do this. Instead, it makes a call to the service primitive,
svecerr_systemerr. RPC deals only with authentication and not with the access
control of an individual service. The services themselves must implement their
own access control policies and reflect these policies as return statuses in their
protocols.

RPC Application Programming Interface 3-25



RPC Application Programming Interface
3.7 Using the Internet Service Daemon (INETd)

3.7 Using the Internet Service Daemon (INETd)

You can start an RPC server from INETd. The only difference from the usual
code is that it is best to have the service creation routine called in the following
form because INETd passes a socket as file descriptor O:

svcudp_create(0); /* For UDP */

svctcp_create(0,0,0); /* For listener TCP sockets */
svefd create(0,0,0); /* For connected TCP sockets */

transp
transp
transp

Also, call svc_register as follows, with the last parameter flag set to 0, because
the program is already registered with the Portmapper by INETd:

svc_register(transp, PROGNUM VERSNUM service, 0);

If you want to exit from the server process and return control to INETd, you must
do so explicitly, because svC_r un never returns.

To show all the RPC service entries in the services database, use the following

command:

TCPI P> SHOW SERV/ RPC/ PERM

Servi ce Program Nunber Versi ons Support ed
MEL 101010 1- 10
TORMVE 20202 1- 2
TCPI P>

To show detailed information about a single RPC service entry in the services
database, use the following command:

TCPI P> SHOW SERVI CES/ FULL/ PERMANENT MEL

Service: MEL
Port: 1111 Protocol: UDP Address: 0.0.0.0
Inactivity: 5 User _nane: GEORGE Process: MEL
Limt: 1
File: NLAO:
Fl ags: Listen
Socket Opts: Rcheck Scheck
Recei ve: 0 Send: 0
Log Opts: None
File: not defined
RPC Opts
Program nunber : 101010 Low versi on: 1 High version: 10
Security

Reject msg: not defined
Accept host: 0.0.0.0
Accept netw 0.0.0.0
TCPI P>

For information about how to add RPC servers to the services database, see
DIGITAL TCP/IP Services for OpenVMS Management.

3.8 Additional Examples

The following sections present additional examples for server and client sides,
TCP, and callback procedures.

3-26 RPC Application Programming Interface



RPC Application Programming Interface
3.8 Additional Examples

3.8.1 Program Versions on the Server Side

By convention, the first version of program PROG is designated as PROGVERS ORI G
and the most recent version is PROGVERS. Suppose there is a new version of the
user program that returns an unsi gned short result rather than a | ong result.
If you name this version RUSERSVERS SHORT, then a server that wants to support
both versions would register both. It is not necessary to create another server
handle for the new version, as shown in this segment of code:

if (!svc_register(transp, RUSERSPROG RUSERSVERS ORI G,
nuser, |PPROTO TCP)) {
fprintf(stderr, "can't register RUSER service\n");
exit(1);

}
If (!svc_register(transp, RUSERSPROG RUSERSVERS SHORT,
nuser, |PPROTO TCP)) {
fprintf(stderr, "can't register new service\n");
exit(1);

You can handle both versions with the same C procedure, as in Example 3-10.

Example 3-10 C Procedure That Returns Two Different Data Types

nuser (rgstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

unsi gned |ong nusers;
unsi gned short nusers2;

switch (rqstp->rg_proc) {
case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "can't reply to RPC call\n");
return;
}
return;
case RUSERSPROC_NUM
/*
* Code here to conmpute the number of users
* and assign it to the variable, nusers
*|
nusers2 = nusers;
switch (rgstp->rg_vers) {
case RUSERSVERS ORI G
if (!svc_sendreply(transp, xdr_u_long, é&nusers)) {
fprintf(stderr,"can’t reply to RPC call\n");

br eak;
case RUSERSVERS SHORT:
if ('svc_sendreply(transp, xdr_u_short, &nusers2)) {
fprintf(stderr,"can’'t reply to RPC call\n");

br eak;
defaul t:

svcerr_noproc(transp);
return;

RPC Application Programming Interface 3-27



RPC Application Programming Interface
3.8 Additional Examples

3.8.2 Program Versions on the Client Side

The network can have different versions of an RPC server. For example, one
server might run RUSERSVERS ORI G, and another might run RUSERSVERS SHORT.

If the version of the server running does not match the version number in the
client creation routines, then cl nt _cal | fails with a RPC_PROGVERSM SMATCH
error. You can determine the version numbers supported by the server and

then create a client handle with an appropriate version number. To do this, use
clnt_create_vers (refer to Chapter 5 for more information) or the routine shown
in Example 3-11.

1 The program begins by creating the client handle with the cl nt_create
routine.

2 Next, the cl nt_cal | routine attempts to call the remote program. Because
of the previous cl nt _creat e call, the program version requested is
RUSERVERS_SHORT. If the cl nt _cal | routine is successful, the version was
correct.

3 Iftheclnt_call attempt failed, then the program checks the failure reason.
If it is RPC_PROGVERSM SMATCH, the program goes on to find the versions
supported.

4 In this step the program parses the error status and retrieves the highest and
lowest versions supported by the server. The program then checks to see if
the version RUSERSVERS SHORT is in the supported range.

5 If the RUSERSVERS_SHORT version is supported, the program destroys the old
client handle using the cl nt _destroy routine. It then creates a new handle
using the RUSERSVERS_SHORT version.

6 Finally, the program uses the new client handle to make a call to the server
using the RUSERSVERS_SHORT version.

Example 3-11 Determining Server-Supported Versions and Creating
Associated Client Handles

/*
* Asanple client to sense server versions
*

#include <rpc/rpc. h>
#incl ude <stdio. h>
#include "rusers.h

mai n(argc, argv)
int argc;
char **argv;

struct rpc_err rpcerr;
struct timeval to;
CLIENT *clnt;

enum clnt_stat status;
int maxvers, mnvers;
int exit();

u_short nums;

u_int numl;

char *host;

host = argv[1];

(continued on next page)

3-28 RPC Application Programming Interface



RPC Application Programming Interface
3.8 Additional Examples

Example 3-11 (Cont.) Determining Server-Supported Versions and Creating

Associated Client Handles
clnt = clnt_create(host, RUSERSPROG RUSERSVERS SHORT, "udp"); 1

if (clnt == NULL) {
clnt_pcreateerror("clnt");
exit(-1);

to.tv_sec = 10; /* set the tinme outs */

to.tv_usec = 0;

status = clnt_call(clnt, RUSERSPROC NUM 2
xdr _void, NULL, xdr_u_short, &ums, to);

if (status == RPC SUCCESS) {
/* W found the I atest version nunber */
clnt_destroy(clnt);
printf("num= %l\n", nums);
exit(0);

if (status != RPC PROGVERSM SMATCH) { 3
/* Some other error */
clnt_perror(clnt, "rusers");
exit(-1);

clnt_geterr(clnt, &pcerr); 4
maxvers = rpcerr.re_vers. high; /*highest version supported */
mnvers = rpcerr.re_vers.low, /*lowest version supported */

i f (RUSERSVERS ORI G < minvers ||
RUSERS ORI G > maxvers) {
[* doesn’t meet mininmum standards */
clnt_perror(clnt, "version msmatch");
exit(-1);

[* This version not supported */
clnt_destroy(clnt); [* destroy the earlier handle */ 5
clnt = clnt_create(host, RUSERSPROG

RUSERSVERS ORI G "udp"); /* try different version */

if (clnt == NULL) {
clnt_pcreateerror("clnt");
exit(-1);

status = clnt_call(clnt, RUSERSPROCNUM 6
xdr_void, NULL, xdr_u_long, &uml, to);

if (status == RPC SUCCESS) {
[* W found the latest version nunber */
printf("num= %\n", numl);

} else {
clnt_perror(clnt, "rusers");
exit(-1);

RPC Application Programming Interface 3-29



RPC Application Programming Interface
3.8 Additional Examples

3.8.3 Using the TCP Transport

Examples 3-12, 3-13, and 3-14 work like the remote file copy command RCP. The
initiator of the RPC call, snd, takes its standard input and sends it to the server
rcv, which prints it on standard output. The RPC call uses TCP. The example
also shows how an XDR procedure behaves differently on serialization than on
deserialization.

Example 3-12 RPC Example that Uses TCP Protocol—XDR Routine
/*

* The XDR routine:
* on decode, read fromwre, wite onto fp
* on encode, read fromfp, wite onto wire
*|

#include <stdio. h>
#include <rpc/rpc. h>

xdr_rep(xdrs, fp)
XDR *xdrs;
FILE *fp;

unsi gned | ong size;
char buf [BUFSI Z], *p;

if (xdrs->x_op == XDR_FREE)/* nothing to free */
return 1,
while (1) {
if (xdrs->x_op == XDR_ENCODE) {
if ((size = fread(buf, sizeof(char), BUFSIZ,
fp)) == 0 && ferror(fp)) {
fprintf(stderr, "can't fread\n");
return (1);

}
p = buf;
if (!xdr_bytes(xdrs, &p, &size, BUFSIZ))
return (0);
if (size ==0)
return (1);
if (xdrs->x_op == XDR_DECODE) {
if (fwite(buf, sizeof(char), size,
fp) I=size) {
fprintf(stderr, "can't fwite\n");
return (1);

3-30 RPC Application Programming Interface



RPC Application Programming Interface
3.8 Additional Examples

Example 3-13 RPC Example that Uses TCP Protocol— Client
/ *

* snd.c - the sender routines

*|

#include <stdio. h>

#include <netdb. h>

#include <rpc/rpc. h>

#include <sys/socket.h>

#include "rcp. h" [* for prog, vers definitions */

mai n(argc, argv)
int argc
char **argv;

{
int xdr_rep();
int err;
int exit();
int callrpctep();
if (argc < 2) {
fprintf(stderr, "usage: % servernane\n", argv[0])
exit(-1);
}
if ((err = callrpctcp(argv[1], RCPPROG RCPPRCC
RCPVERS, xdr _rcp, stdin, xdr_void, 0) > 0)) {
clnt_perrno(err)
fprintf(stderr, "can't make RPC call\n");
exit(1)
}
exit(0);
}
int

cal I rpctcp(host, prognum procnhum versnum
inproc, in, outproc, out)
char *host, *in, *out;
xdrproc_t inproc, outproc;

struct sockaddr in server_addr
int socket = RPC _ANYSQOCK;
enumclnt_stat clnt_stat;
struct hostent *hp;

regi ster CLIENT *client;
struct timeval total timneout;
voi d bcopy();

(continued on next page)

RPC Application Programming Interface 3-31



RPC Application Programming Interface
3.8 Additional Examples

Example 3-13 (Cont.) RPC Example that Uses TCP Protocol— Client

if ((hp = gethosthynane(host)) == NULL) {
fprintf(stderr, "can't get addr for "%’ \n", host);
return (-1);

}
bcopy(hp->h_addr, (caddr_t)&server _addr.sin_addr,
hp->h_l engt h);
server_addr.sin_famly = AF_I NET;
server _addr.sin port = 0
if ((client =clnttcp_create(&server_addr, prognum
versnum &socket, BUFSIZ, BUFSIZ)) == NULL) {
clnt_pcreateerror("rpctcp_create");
return (-1);

total timeout.tv_sec = 20;

total timeout.tv_usec = 0;

clnt_stat =clnt_call(client, procnum
inproc, in, outproc, out, total timneout);

clnt_destroy(client);

return ((int)clnt_stat);

3-32 RPC Application Programming Interface



RPC Application Programming Interface
3.8 Additional Examples

Example 3-14 RPC Example that Uses TCP Protocol— Server
/ *

* rcv.c - the receiving routines

*

/

#incl ude <stdio. h>
#include <rpc/rpc. h>
#include <rpc/pmap_clnt.h>
#include "rcp. h" [* for prog, vers definitions */

mai n()

regi ster SVCXPRT *transp
int rcp_service(), exit();

if ((transp = svctcp_create( RPC_ANYSOCK,
BUFSI Z, BUFSIZ)) == NULL) {
fprintf(stderr,"svctcp_create: error\n");
exit(1);

}
pmap_unset (RCPPROG, RCPVERS) ;
if ('svc_register(transp, RCPPROG
RCPVERS, rcp_service, |PPROTO TCP)) {
fprintf(stderr, "svc_register: error\n");
exit(1)

svc_run(); /* never returns */
fprintf(stderr, "svc_run should never return\n");

}
int
rcp_service(rqstp, transp)

register struct svc_req *rqstp
regi ster SVCXPRT *transp

int xdr_rep();

switch (rgstp->rqg_proc) {
case NULLPROC:
if (svc_sendreply(transp, xdr_void, 0) == 0)
fprintf(stderr, "err: rcp_service");
return
case RCPPROC:
if (!svc_getargs(transp, xdr_rcp, stdout)) {
svcerr_decode(transp);
return;

if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can't reply\n");
return
defaul t:
svcerr_noproc(transp);
return

RPC Application Programming Interface 3-33



RPC Application Programming Interface
3.8 Additional Examples

3.8.4 Callback Procedures

It is sometimes useful to have a server become a client, and make an RPC call
back to the process that is its client. An example of this is remote debugging,
where the client is a window-system program and the server is a debugger
running on the remote system. Mostly, the user clicks a mouse button at the
debugging window (converting this to a debugger command), and then makes
an RPC call to the server (where the debugger is actually running), telling it to
execute that command. However, when the debugger reaches a breakpoint, the
roles are reversed, and the debugger wants to make an RPC call to the window
program, so it can tell the user that a breakpoint has been reached.

Callbacks are also useful when the client cannot block (that is, wait) to hear back
from the server (possibly because of excessive processing in serving the request).
In such cases, the server could acknowledge the request and use a callback to

reply.

To do an RPC callback, you need a program number on which to make the

RPC call. The program number is generated dynamically, so it must be in the
transient range 0x40000000 to Oc5fffffff. The sample routine gettransi ent
returns a valid program number in the transient range, and registers it with the
Portmapper. It only communicates with the Portmapper running on the same
system as the gettransi ent routine itself.

The call to pmap_set is a test-and-set operation, because it indivisibly tests
whether a program number has been registered; if not, it is reserved. The
following example shows the sample gettransi ent routine:

#include <stdio. h>
#include <rpc/rpc. h>

gettransient(proto, vers, portnum

int proto;
u_long vers;
u_short portnum
{
static u_long prognum = 0x40000000;
whil e (!pmap_set (prognum+, vers, proto, portnun)
continue;
return (prognum- 1);
}

Note that the call to nt ohs for port numis unnecessary because it was already
passed in host byte order (as pmap_set expects).

The following list describes how the client/server programs in Example 3—-15 and
Example 3-16 use the gettransi ent routine:

= The client makes an RPC call to the server, passing it a transient program
number.

e The client waits to receive a call back from the server at that program
number.

e The server registers the program (EXAMPLEPROG), so it can receive the RPC
call informing it of the callback program number.

e At some random time (on receiving an SIGALRM signal in this example), it
sends a callback RPC call, using the program number it received earlier.

3-34 RPC Application Programming Interface



RPC Application Programming Interface
3.8 Additional Examples

In Example 3-15 and Example 3-16, both the client and the server are on the
same system; otherwise, host name handling would be different.

Example 3-15 Client Usage of the gettransient Routine
/ *

* client

*/

#incl ude <stdio.h>

#include <rpc/rpc. h>

#include "exanple.h"

int callback();
mai n()

int tnp_prog;

char host nane[ 256] ;

SVCXPRT *xprt;

int stat;

int callback(), gettransient();
int exit();

get host nane( host nane, si zeof (host nane));

if ((xprt = svcudp_create(RPC_ANYSOCK)) == NULL) {
fprintf(stderr, "rpc_server: svcudp _create\n");
exit(1);

if ((trnp_prog = gettransient(|PPROTO UDP, 1,
xprt->xp_port)) == 0) {
fprintf(stderr,"Client: failed to get transient nunber\n");
exit(1);

}
fprintf(stderr, "Client: got program nunber %8x\n", tnp_prog);
[* protocol is O - gettransient does registering */

(void)svc_register(xprt, tnp_prog, 1, callback, 0);
stat = callrpc(hostnane, EXAMPLEPROG, EXAMPLEVERS,
EXAMPLEPROC CALLBACK, xdr _i nt, & np_prog, xdr_voi d, 0);
if (stat != RPC_SUCCESS) {
clnt_perrno(stat);
exit(1);

sve_run();
fprintf(stderr, "Error: svc_run shouldnt return\n");

}

I nt

cal | back(rqstp, transp)
register struct svc_req *rqstp;
regi ster SVCXPRT *transp;

int exit();
switch (rqgstp->rg_proc) {
case 0:
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err: exanpleprog\n");
return (1);

return (0);

(continued on next page)

RPC Application Programming Interface 3-35



RPC Application Programming Interface
3.8 Additional Examples

Example 3-15 (Cont.) Client Usage of the gettransient Routine

case 1:
fprintf(stderr, "Client: got callback\n")
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "Client: error replyingto exanpl eprog\n")
return (1);

b
exit(0)

return (0);

Example 3-16 Server Usage of the gettransient Routine
/ *

* server

*/

#incl ude <stdio.h>

#include <rpc/rpc. h>

#incl ude <sys/signal.h>

#include "exanpl e. h"

char host nang[ 256] ;
voi d docal | back(int);
int pnum= -1, /* program nunber for callback routine */

mai n()

char *get newprog():

get host nane( host nane, si zeof (host nane));
regi sterrpc( EXAMPLEPROG, EXAMPLEVERS

EXAVMPLEPROC CALLBACK, getnewprog, xdr_int, xdr_void);
signal (S| GALRM docal | back);

al arm(10);
sve_run();
fprintf(stderr, "Server: error, svc_run shouldn't return\in");
}
char *
get newpr og( pnunp)
int *pnunp;
pnum = *(int *)pnunp;
return NULL;
}
voi d

docal | back(int signum

int ans;

(continued on next page)

3-36 RPC Application Programming Interface



RPC Application Programming Interface
3.8 Additional Examples

Example 3-16 (Cont.) Server Usage of the gettransient Routine

if (pnum==-1) {
fprintf(stderr, "Server: program nunber not received yet");
signal (SI GALRM docal | back);
alarn(10);
return;

ans = callrpc(hostname, pnum 1, 1, xdr_void, O,
xdr_void, 0);
if (ans !'= RPC_SUCCESS) {
fprintf(stderr, "Server: 9%\n",clnt_sperrno(ans));
exit(1);

i f (ans == RPC_SUCCESS)
exit(0);

RPC Application Programming Interface 3-37






A

External Data Representation

This chapter describes the external data representation (XDR) standard, a set

of routines that enable C programmers to describe arbitrary data structures in
a system-independent way. For a formal specification of the XDR standard, see
RFC 1014: XDR: External Data Representation Standard.

XDR is the backbone of ONC RPC, because data for remote procedure calls
is transmitted using the XDR standard. ONC RPC uses the XDR routines to
transmit data that is read or written from several types of systems. For a
complete specification of the XDR routines, see Chapter 8.

This chapter also contains a short tutorial overview of the XDR routines, a guide
to accessing currently available XDR streams, and information on defining new
streams and data types.

XDR was designed to work across different languages, operating systems, and
computer architectures. Most users (particularly RPC users) only need the
information on number filters (Section 4.2.1) floating-point filters (Section 4.2.2)
and enumeration filters (Section 4.2.3). Programmers who want to implement
RPC and XDR on new systems should read the rest of the chapter.

Note

You can use RPCGEN to write XDR routines regardless of whether RPC
calls are being made.

C programs that need XDR routines must include the file <rpc/rpc. h>, which
contains all necessary interfaces to the XDR system. The object library contains
all the XDR routines, so you can link as you usually would when using a library.
If you wish to use a shareable version of the library, reference the library
SYS$SHARE:TCPIP$RPCXDR_SHR in your LINK options file.

4.1 Usefulness of XDR

Consider the following two programs, writer.c and reader. c:
#include <stdio.h>
mai n() I* witer.c */
long i;
for (i =0; 1 <8; i++) {
if (fwite((char *)& , sizeof(i), 1, stdout) !'= 1) {

fprintf(stderr, "failed!'\n");
exit(1);

.
exit(0);

External Data Representation 4-1



External Data Representation
4.1 Usefulness of XDR

#i ncl ude <stdio. h>

mai n() /* reader.c */
long i, j;
for (j =0, ] <8 j+4) {
if (fread((char *)& , sizeof (i), 1, stdin) I=1) {

fprintf(stderr, "failed/\n");
exit(1);

%rintf(“%d "),
%)rintf("\n");
} exit(0);

The two programs appear to be portable because:
e They pass | i nt checking.

= They work the same when executed on two different hardware architectures,
Sun Microsystem’s SPARC architecture and Compaq’s Alpha architecture.

Piping the output of the wri ter.c program to the reader. ¢ program gives
identical results on an Alpha computer or on a Sun computer, as shown:

sun%writer | reader
01234567
sun%

$ witer | reader
01234567
$

With local area networks and Berkeley UNIX 4.2 BSD came the concept of
network pipes, in which a process produces data on one system, and a second
process on another system uses this data. You can construct a network pipe
with writer.c and reader.c. Here, the first process (on a Sun Microsystem’s
computer) produces data used by a second process (on a Compaq Alpha computer):
sun%witer | rsh al pha reader

0 16777216 33554432 50331648 67108864 83886080 100663296

117440512
sun%

You get identical results by executing wri ter. ¢ on the Compaq Alpha computer
and reader. ¢ on the Sun computer. These results occur because the byte
ordering of long integers differs between the Alpha computer and the Sun
computer, although the word size is the same. Note that 16777216 is equal to
224. When 4 bytes are reversed, the 1 is in the 24th bit.

Whenever data is shared by two or more system types, there is a need for
portable data. You can make programs data-portable by replacing the read and
write calls with calls to an XDR library routine xdr _| ong, which is a filter that
recognizes the standard representation of a long integer in its external form.
Here are the revised versions of witer.c and reader. c:

[ * Revi sed Version of witer.c */

#incl ude <stdio. h>
#include <rpc/rpc.h>  [* xdr is a sub-library of rpc */

4-2 External Data Representation



mai n(

}
/*

#i ncl
#i ncl

mai n(

}

External Data Representation

) [* witer.c */

XDR xdrs;
long i;
xdrstdio_create(&xdrs, stdout, XDR ENCCDE);
for (i =0; i <8 i++) {
if (!xdr_long(&xdrs, &)) {
fprintf(stderr, "failed!'\n");

exit(1);

.
exit(0);

Revised Version of reader.c *|
ude <stdio. h>
ude <rpc/rpc. h> /* XDRis a sub-library of
) [* reader.c */
XDR xdrs;
long i, j;

xdrstdio_create(é&xdrs, stdin, XDR DECCDE);
for (j =0 ] <8 j++) {
if (!xdr_long(&xdrs, &)) {
fprintf(stderr, "failed \n");
exit(1);

}
printf("%d", i);

{)rintf("\n");
exit(0);

4.1 Usefulness of XDR

RPC */

The new programs were executed on an Alpha computer, a Sun computer, and
from a Sun computer to an Alpha computer; the results are as follows:

sun%
012
sun%

$ wri
012
$

sun%
012
sun%

witer | reader
34567

ter | reader
34567

witer | rsh al pha reader
34567

Note

Arbitrary data structures create portability problems, particularly with

al

lignment and pointers:

Alignment on word boundaries may cause the size of a structure to

vary on different systems.

A pointer has no meaning outside the system where it is defined.

External Data Representation 4-3



External Data Representation
4.1 Usefulness of XDR

4.1.1 A Canonical Standard

The XDR approach to standardizing data representations is canonical,

because XDR defines a single byte order (big-endian), a single floating-point
representation (IEEE), and so on. A program running on any system can use
XDR to create portable data by translating its local representation to the XDR
standard. Similarly, any such program can read portable data by translating the
XDR standard representation to the local equivalent.

The single standard treats separately those programs that create or send portable
data and those that use or receive the data. A new system or language has no
effect on existing portable data creators and users. Any new system simply uses
the canonical standards of XDR; the local representations of other system are
irrelevant. To existing programs on other systems, the local representations of
the new system are also irrelevant. There are strong precedents for the canonical
approach of XDR. For example, TCP/IP, UDP/IP, XNS, Ethernet, and all protocols
below layer 5 of the 1ISO model, are canonical protocols. The advantage of any
canonical approach is simplicity; in the case of XDR, a single set of conversion
routines is written once.

The canonical approach does have one disadvantage of little practical importance.
Suppose two little-endian systems transfer integers according to the XDR
standard. The sending system converts the integers from little-endian byte
order to XDR (big-endian) byte order, and the receiving system does the reverse.
Because both systems observe the same byte order, the conversions were really
unnecessary. Fortunately, the time spent converting to and from a canonical
representation is insignificant, especially in networking applications. Most of the
time required to prepare a data structure for transfer is not spent in conversion
but in traversing the elements of the data structure.

4.1.2 The XDR Library

The XDR library enables you to write and read arbitrary C constructs
consistently. This makes it useful even when the data is not shared among
systems on a network. The XDR library can do this because it has filter routines
for strings (null-terminated arrays of bytes), structures, unions, and arrays.
Using more primitive routines, you can write your own specific XDR routines to
describe arbitrary data structures, including elements of arrays, arms of unions,
or objects pointed at from other structures. The structures themselves may
contain arrays of arbitrary elements, or pointers to other structures.

The previous Wwriter.c and reader. ¢ routines manipulate data by using standard
1/0 routines, so xdrstdi o_create was used. The parameters to XDR stream
creation routines vary according to their function. For example, xdrstdi o_create
takes the following parameters:

= A pointer to an XDR structure that it initializes
e A pointer to a Fl LE that the input or output acts upon

= The operation—either XDR_ENCODE for serializing in wri ter.c or XDR_DECODE
for deserializing in reader. c

It is not necessary for RPC users to create XDR streams; the RPC system itself
can create these streams and pass them to the users. There is a family of
XDR stream creation routines in which each member treats the stream of bits
differently.

4-4 External Data Representation



External Data Representation
4.1 Usefulness of XDR

The xdr _| ong primitive is characteristic of most XDR library primitives and all
client XDR routines for two reasons:

= The routine returns FALSE (0) if it fails, and TRUE (1) if it succeeds.

= For each data type xxx, there is an associated XDR routine of the form:

xdr_xxx(xdrs, xp)
XDR *xdrs;
XXX *Xp;

{

}

In this case, xxx is | ong, and the corresponding XDR routine is a primitive,
xdr _'ong. The client could also define an arbitrary structure xxx in which case
the client would also supply the routine xdr _Xxx, describing each field by calling
XDR routines of the appropriate type. In all cases, the first parameter, xdrs, is
treated as an opaque handle and passed to the primitive routines.

XDR routines are direction-independent; that is, the same routines are called to
serialize or deserialize data. This feature is important for portable data. Calling
the same routine for either operation practically guarantees that serialized
data can also be deserialized. Thus, one routine is used by both producer and
consumer of networked data.

You implement direction independence by passing a pointer to an object rather
than the object itself (only with deserialization is the object modified). If needed,
the user can obtain the direction of the XDR operation. See Section 4.3 for
details.

For a more complicated example, assume that a person’s gross assets and
liabilities are to be exchanged among processes, and each is a separate data type:
struct gnunbers {

| ong g_assets;
long g_liabilities;

The corresponding XDR routine describing this structure would be as follows:

bool _t /* TRUE i s success, FALSE is failure */
xdr _gnunbers(xdrs, gp)
XDR *xdrs;

struct gnunbers *gp;

if (xdr_long(xdrs, &gp->g assets) &&
xdr_long(xdrs, &gp->g_liabilities))
return( TRUE) ;
return(FALSE);

In the preceding example, the parameter, xdr s, is never inspected or modified; it
is only passed to subcomponent routines. The program must inspect the return
value of each XDR routine call and stop immediately and return FALSE upon
subroutine failure.

The preceding example also shows that the type bool _t is declared as an integer
whose only value is TRUE (1) or FALSE (0). The following definitions apply:

#define bool t int
#define TRUE 1
#define FALSE 0

External Data Representation 4-5



External Data Representation
4.1 Usefulness of XDR

With these conventions, you can rewrite xdr _gnunbers as follows:

bool _t
xdr _gnunbers(xdrs, gp)
XDR *xdrs;

struct gnunbers *gp;

return(xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities));
}

Either coding style can be used.

4.2 XDR Library Primitives

The following sections describe the XDR primitives— basic and constructed data
types—and XDR utilities. The include file <r pc/ xdr. h>, (automatically included
by <rpc/rpc. h>), defines the interface to these primitives and utilities.

4.2.1 Number and Single-Character Filters

The XDR library provides primitives that translate between numbers and single
characters and their corresponding external representations. Primitives include
the set of numbers in:

[signed, unsigned] * [char, short, int, long, hyper]
Specifically, the ten primitives are:

bool t xdr _char(xdrs, cp)
XDR *xdrs;
char *cp;

bool _t xdr_u_char(xdrs, ucp)
XDR *xdrs;
unsi gned char *ucp;

bool _t xdr_short(xdrs, sip)
XDR *xdrs;
short *sip;

bool t xdr_u_short(xdrs, sup)
XDR *xdrs;
u_short *sup;

bool _t xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

bool t xdr u_int(xdrs, up)
XDR *xdrs;
unsi gned *up;

bool _t xdr _long(xdrs, Iip)
XDR *xdrs;
long *lip;

bool t xdr_u_long(xdrs, |up)
XDR *xdrs;
u_long *lup;

bool _t xdr_hyper(xdrs, hp)
XDR *xdrs;
longlong_t *hp;

bool _t xdr_u_hyper (xdrs, uhp)
XDR *xdrs;
u_longlong t *uhp;

4-6 External Data Representation



External Data Representation
4.2 XDR Library Primitives

The first parameter, xdrs, is a pointer to an XDR stream handle. The second
parameter is a pointer to the number that provides data to the stream or receives
data from it. All routines return TRUE if they complete successfully, and FALSE
if they do not.

For more information on number filters, see Chapter 8.

4.2.2 Floating-Point Filters
The XDR library also provides primitive routines for floating-point types in C:

bool _t xdr _float(xdrs, fp)
XDR *xdrs;
float *fp;

bool t xdr_doubl e(xdrs, dp)
XDR *xdrs;
doubl e *dp;

The first parameter, xdr s, is a pointer to an XDR stream handle. The second
parameter is a pointer to the floating-point number that provides data to the
stream or receives data from it. Both routines return TRUE if they complete
successfully, and FALSE if they do not.

Note

Because the numbers are represented in IEEE floating point format over
the network, routines may fail when decoding a valid IEEE representation
into a system-specific representation, or vice versa.

To control the local representation of floating point numbers, you can
choose the floating point type when you compile your RPC program
or you can use different XDR routines to explicitly control the local
representation. For more information on floating-point filters, see the
xdr _doubl e and xdr _fl oat routines in Chapter 8.

4.2.3 Enumeration Filters

The XDR library provides a primitive for generic enumerations; it assumes that
a C enumhas the same representation inside the system as a C i nteger. The
bool _t (boolean) type is an important instance of the enumtype. The external
representation of a bool _t type is always TRUE (1) or FALSE (0) as shown here:
#define bool t int

#define FALSE 0

#define TRUE 1
#define enumt int

bool t xdr_enum(xdrs, ep)
XDR *xdrs;
enumt *ep;

bool _t xdr_bool (xdrs, bp)
XDR *xdrs;
bool _t *bp;

The second parameters ep and bp are pointers to the enumerations or booleans
that provide data to, or receive data from, the stream xdrs.

For more information on enumeration filters, see Chapter 8.

External Data Representation 4-7



External Data Representation
4.2 XDR Library Primitives

4.2.4 Possibility of No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when no
data is passed or required. The following routine does this:

bool _t xdr_void(); /* always returns TRUE */

4.2.5 Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and
perform more complicated functions than the primitives previously discussed.
The following sections include primitives for strings, arrays, unions, and pointers
to structures.

Constructed data type primitives may use memory management. In many cases,
memory is allocated when deserializing data with XDR_DECODE. XDR enables
memory deallocation through the XDR_FREE operation. The three XDR directional
operations are XDR_ENCODE, XDR_DECODE, and XDR_FREE.

For more information on constructed data filters, see Chapter 8.

4.2.5.1 Strings
In C, a string is defined as a sequence of bytes terminated by a NULL byte, which
is not considered when calculating string length. When a string is passed or
manipulated, there must be a pointer to it. Therefore, the XDR library defines
a string to be a char *, not a sequence of characters. The external and internal
representations of a string are different. Externally, strings are represented
as sequences of ASCII characters; internally, with character pointers. The
xdr _string routine converts between the two, as shown:
bool _t xdr_string(xdrs, sp, maxlength)

XDR *xdrs;

char **sp;
u_int maxlength;

The first parameter, xdrs, is the XDR stream handle; the second, sp, is a
pointer to a string (type char **). The third parameter, max!| engt h, specifies

the maximum number of bytes allowed during encoding or decoding; its value

is usually specified by a protocol. For example, a protocol may specify that a

file name cannot be longer than 255 characters. Keep max| engt h small because
overflow conditions may occur if xdr _string has to call mal | oc for space. The
routine returns FALSE if the number of characters exceeds max| engt h; otherwise,
it returns TRUE.

The behavior of xdr_string is similar to that of other routines in this section.
For the direction XDR_ENCCDE, the parameter sp points to a string of a certain
length; if the string does not exceed max| engt h, the bytes are serialized.

For the direction XDR_DECODE, the effect of deserializing a string is subtle. First,
the length of the incoming string is determined; it must not exceed max!| engt h.
Next, sp is dereferenced; if the value is NULL, then a string of the appropriate
length is allocated and *sp is set to this string. If the original value of *sp is not
NULL, then XDR assumes that a target area (which can hold strings no longer
than max!| engt h) has been allocated. In either case, the string is decoded into the
target area, and the routine appends a NULL character to it.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If the
string is not NULL, it is freed and *sp is set to NULL. In this operation, xdr _string
ignores the max!| engt h parameter.

4-8 External Data Representation



External Data Representation
4.2 XDR Library Primitives

4.2.5.2 Variable-Length Byte Arrays

Often, variable-length arrays of bytes are preferable to strings. Byte arrays differ
from strings in the following three ways:

1. The length of the array (the byte count) is located explicitly in an unsigned
integer.

2. The byte sequence is not terminated by a NULL character.
3. The external and internal byte representation is the same.

The primitive xdr _bytes converts between the internal and external
representations of byte arrays:
bool t xdr_bytes(xdrs, bpp, Ip, maxlength)

XDR *xdrs;

char **bpp;

u_int *lIp;

u_int maxl ength;
The usage of the first, second, and fourth parameters are identical to the same
parameters of xdr_string (Section 4.2.5.1). The length of the byte area is
obtained by dereferencing | p when serializing; *I p is set to the byte length
when deserializing.

4.2.5.3 Variable-Length Arrays of Arbitrary Data Elements
The XDR library provides a primitive for handling arrays of arbitrary elements.
The xdr _byt es routine treats a subset of generic arrays, in which the size of
array elements is known to be 1, and the external description of each element is
built in. The generic array primitive, xdr _array, requires parameters identical
to those of xdr _byt es in addition to two more: the size of array elements and an
XDR routine to handle each of the elements.

This routine encodes or decodes each array element:

bool _t

xdr_array(xdrs, ap, |p, maxlength, elenentsiz, xdr_elenent)
XDR *xdrs;
char **ap;
u_int *lIp;

u_int maxlength;
u_int elenmentsiz;
bool _t (*xdr_elenent)();

The parameter ap is a pointer to the pointer to the array. If *ap is NULL when
the array is being deserialized, XDR allocates an array of the appropriate size
and sets *ap to that array. The element count of the array is obtained from *| p
when the array is serialized; *| p is set to the array length when the array is
deserialized. The parameter nmaxl engt h is the maximum allowable number of
array elements; el ement si z is the byte size of each array element. (You can also
use the C function si zeof to obtain this value.) The xdr_el ement routine is called
to serialize, deserialize, or free each element of the array.

Examples 4-1, 4-2, and 4-3 show the recursiveness of the XDR library routines
already discussed.

A user on a networked system can be identified in three ways:
= The system name, such as krypt on (use the get host nane socket routine)

e The user’s UID (use the get eui d run-time routine)

External Data Representation 4-9



External Data Representation
4.2 XDR Library Primitives

e On UNIX systems, the group numbers to which the user belongs (not
implemented on OpenVMS systems)

Example 4-1 shows how a structure with this information and its associated XDR
routine could be coded:

Example 4-1 Structure and Associated XDR Routine

struct netuser {
char *nu_syst emane;
int nu_ui d;
u_int  nu_glen;
int *nu_gi ds;

b
#define NLEN 255 [* system nanes < 256 chars */
#define NGRPS 20 [* user can't be in > 20 groups */

bool _t

xdr _netuser(xdrs, nup)
XDR *xdrs;
struct netuser *nup;

return(xdr_string(xdrs, &nup->nu_systemane, NLEN) &&
xdr _int(xdrs, &uup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen,
NGRPS, sizeof (int), xdr_int));
}

A party of network users could be implemented as an array of net user structure.
Example 4-2 shows the declaration and its associated XDR routines:

Example 4-2 Declaration and Associated XDR Routines

struct party {
uint p_len;
struct netuser *p_nusers;

b
#define PLEN 500 /* max number of users in a party */

bool _t
xdr_party(xdrs, pp)
XDR *xdrs;

struct party *pp;

return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,
sizeof (struct netuser), xdr_netuser));

}

The parameters to mai n (argc and ar gv) can be combined into a structure, and
an array of these structures can make up a history of commands. Example 4-3
shows how the declarations and XDR routines might look:

4-10 External Data Representation



External Data Representation
4.2 XDR Library Primitives

Example 4-3 Declarations and XDR Routines

struct cmd {

u_int c_argc;

char **c_argy;
b
#define ALEN 1000 /* args cannot be > 1000 chars */
#define NARGC 100 /* commands cannot have > 100 args */
struct history {

u_int h_len;

struct cmd *h_cnds;

b
#define NCMDS 75 /* history is no nore than 75 commands */

bool _t
xdr _wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;
{ .
return(xdr_string(xdrs, sp, ALEN));
}
bool _t
xdr _cnd(xdrs, cp)
XDR *xdrs;
struct cmd *cp;
return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARCC,
sizeof (char *), xdr_wrapstring));
}
bool t
xdr _history(xdrs, hp)

XDR *xdrs;
struct history *hp;

return(xdr_array(xdrs, &hp->h_cnds, &hp->h_|en, NCVDS,
sizeof (struct cmd), xdr_cnd));

In Example 4-3, the routine xdr_wrapstring is needed to package the

xdr _string routine, because the implementation of xdr _array only passes two
parameters to the array element description routine; xdr _wrapst ri ng supplies
the third parameter to xdr_string.

4.2.5.4 Fixed-Length Arrays of Arbitrary Data Elements
The XDR library provides a primitive, xdr _vect or, for fixed-length arrays:

#define NLEN 255 /* system nanmes nust be < 256 chars */
#define NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser {
char *nu_syst emane;
int nu_uid;
int nu_gids[ NGRPS];

1

bool _t

xdr _netuser(xdrs, nup)
XDR *xdrs;

{ struct netuser *nup;

int i;

External Data Representation 4-11



External Data Representation
4.2 XDR Library Primitives

if (!xdr_string(xdrs, &nup->nu_systemane, NLEN))
return( FALSE) ;
(!'xdr_int(xdrs, &nup->nu_uid))
return( FALSE) ;
if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int),
xdr_int)) {
return( FALSE) ;

if

} %et urn( TRUE) ;

4.2.5.5 Opaque Data

Some protocols pass handles from a server to a client. The client later passes
back the handles, without first inspecting them; that is, handles are opaque. The
xdr _opaque primitive describes fixed-size, opaque bytes:
bool _t xdr_opaque(xdrs, p, len)

XDR *xdrs;

char *p;

u_int len;

The first parameter xdr s is the XDR stream handle. The second parameter p
is the location of the bytes and the third paramter | en is the number of bytes
in the opaque object. By definition, the data within the opaque object is not
system-portable.

4.2.5.6 Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is a C
uni on and an enum t value that selects an arm of the uni on:

struct xdr_discrim{
enumt val ue;
bool _t (*proc)();

bool _t xdr_union(xdrs, dscnp, unp, arns, defaultarm
XDR *xdrs;
enumt *dscnp;
char *unp;
struct xdr_discrim *arns;
bool t (*defaultarm(); /* may equal NULL */

In this example, the routine translates the discriminant of the union at *dscnp.
The discriminant is always an enum t. Next, the union at *unp is translated.
The parameter ar ns is a pointer to an array of xdr _di scri mstructures. Each
structure contains an ordered pair of [ val ue, proc].

If the union’s discriminant is equal to the associated value, then proc is called
to translate the union. The end of the xdr_di scri mstructure array is denoted
by a routine of value NULL. If the discriminant is not in the ar ns array, then the
def aul t ar mprocedure is called if it is non-null; otherwise, the routine returns
FALSE.

Example 4—4 shows how to serialize or deserialize a discriminated union. In
the example, suppose that the type of a union is an integer, character pointer (a
string), or a gnunber s structure (described in Section 4.1.2). Also, assume the
union and its current type are declared in a structure, as follows:

4-12 External Data Representation



External Data Representation
4.2 XDR Library Primitives

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {
enum ut ype utype; [* the union’s discrinmnant */
uni on {
int ival;
char *pval;
struct gnunbers gn;
} uval;

Example 4-4 shows the constructs and XDR procedure that serialize or
deserialize the discriminated union:

Example 4-4 Constructs and XDR Procedure

struct xdr _discrimu_tag arns[4] = {
{ INTEGER, xdr_int },
{ GNUMBERS, xdr _gnunbers }
{ STRING xdr_wrapstring },
{ __dontcare_, NULL }
/* always terminate arnms with a NULL xdr_proc */

bool _t

xdr _u_tag(xdrs, utp)
XDR *xdrs;
struct u_tag *utp;

return(xdr_union(xdrs, &utp->utype, &utp->uval,
u_tag arms, NULL));

The routine xdr _gnunbers was discussed in Section 4.1.2 and xdr _w apstring
was presented in Example 4-3. The default arm parameter to xdr _uni on (the
last parameter) is NULL in Example 4-4. Therefore, the value of the union’s
discriminant can only be a value listed in the u_tag_arns array. Example 4-4
also shows that the elements of the arm’s array do not need to be sorted.

The values of the discriminant may be sparse, though in Example 4-4 they are
not. It is always good practice to explicitly assign integer values to each element
of the discriminant’s type. This will document the external representation of
the discriminant and guarantee that different C compilers provide identical
discriminant values.

4.2.5.7 Pointers
In C it is useful to put within a structure any pointers to another structure. The
xdr_reference primitive makes it easy to serialize, deserialize, and free these
referenced structures. A structure of structure pointers is shown here:

bool _t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int ssize;
bool _t (*proc)();

Parameter xdrs is the XDR stream handle, pp is a pointer to the pointer to the
structure, ssi ze is the size in bytes of the structure (use the C function si zeof
to obtain this value), and proc is the XDR routine that describes the structure.
When decoding data, storage is allocated if *pp is NULL.

External Data Representation 4-13



External Data Representation
4.2 XDR Library Primitives

There is no need for a primitive xdr_struct to describe a structure within a
structure, because pointers are always sufficient.

Note

The xdr _reference and xdr_array primitives are not interchangeable
external representations of data.

The following example describes a structure (and its corresponding XDR routine)
that contains an item of data and a pointer to a gnunber s structure that has more
information about that item of data.

Suppose there is a structure containing a person’s name and a pointer to a
gnumber s structure containing the person’s gross assets and liabilities. This
structure has the following construct:

struct pgn {
char *nane;
struct gnunbers *gnp;

This structure has the following corresponding XDR routine:

bool t
xdr_pgn(xdrs, pp)
XDR *xdrs;

struct pgn *pp;

if (xdr_string(xdrs, &pp->name, NLEN) &&
xdr_reference(xdrs, &pp->gnp,
si zeof (struct gnunbers), xdr_gnunbers))
return( TRUE) ;
return( FALSE);

In many applications, C programmers attach double meaning to the values

of a pointer. Typically the value NULL means data is not necessary, but some
application-specific interpretation applies. In essence, the C programmer is
encoding a discriminated union efficiently by overloading the interpretation of the
value of a pointer.

For example, in the previous structure, a NULL pointer value for gnp could indicate
that the person’s assets and liabilities are unknown; that is, the pointer value
encodes two things: whether the data is known, and if it is known, where it is
located in memory. Linked lists are an extreme example of the use of application-
specific pointer interpretation.

During serialization, the primitive xdr _reference cannot attach any special
meaning to a pointer with the value NULL. That is, passing a pointer to a pointer
whose value is NULL to xdr _ref erence when serializing data will most likely
cause a memory fault and a core dump.

The xdr _poi nter correctly handles NULL pointers. For more information about its
use, see Section 4.5.

4-14 External Data Representation



External Data Representation
4.2 XDR Library Primitives

4.2.6 Non-filter Primitives
The non-filter primitives that follow are for manipulating XDR streams:

u_int xdr_getpos(xdrs)
XDR *xdrs;

bool t xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

xdr _dest roy(xdrs)
XDR *xdrs;

The routine xdr _get pos returns an unsigned integer that describes the current
position in the data stream.

Note

In some XDR streams, the returned value of xdr _get pos is meaningless;
the routine returns a -1 in this case (though -1 should be a legitimate
value).

The routine xdr_set pos sets a stream position to pos. However, in some
XDR streams, setting a position is impossible; in such cases, xdr _set pos
returns FALSE.

This routine also fails if the requested position is explicitly out of bounds.
The definition of bounds varies according to the stream.

The xdr _destroy primitive destroys the XDR stream. Usage of the stream after
calling this routine is undefined.

4.3 XDR Operation Directions

Though not recommended, you may want to optimize XDR routines by using the
direction of the operation: XDR_ENCODE, XDR_DECCDE, or XDR_FREE. For example,
the value xdr s- >x_op contains the direction of the XDR operation. An example in
Section 4.5 shows the usefulness of the xdr s- >x_op field.

4.4 XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine, which
takes arguments for the specific properties of the stream. Streams currently exist
for serialization or deserialization of data to or from standard 1/O FILE streams,
TCP/IP connections and files, and memory.

4.4.1 Standard I/O Streams

XDR streams can be interfaced to standard 1/O using the xdrstdio_create
routine as follows:

#incl ude <stdio. h>
#include <rpc/rpc.h>  /* XDR streans part of RPC */

voi d

xdrstdio_create(xdrs, fp, x_op)
XDR *xdrs;
FILE *fp;
enum xdr_op x_op;

External Data Representation 4-15



External Data Representation
4.4 XDR Stream Access

The routine xdr st di o_creat e initializes an XDR stream pointed to by xdrs. The
XDR stream interfaces to the standard 1/O library. Parameter f p is an open file,
and x_op is an XDR direction.

4.4.2 Memory Streams

A memory stream enables the streaming of data into or out of a specified area of
memory:

#include <rpc/rpc. h>

voi d
xdrmem create(xdrs, addr, len, x_op)
XDR *xdrs;
char *addr;
u_int len;
enum xdr_op x_op;

The routine xdr mem cr eat e initializes an XDR stream in local memory that is
pointed to by parameter addr ; parameter | en is the length in bytes of the memory.
The parameters xdrs and x_op are identical to the corresponding parameters of
xdrstdi o_create. Currently, the UDP/IP implementation of ONC RPC uses
xdrmem creat e. Complete call or result messages are built-in memory before
calling the sendt 0 system routine.

4.4.3 Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record-marking standard that
is, in turn, built on top of a file or a Berkeley UNIX 4.2 BSD connection interface,
as shown:

#include <rpc/rpc. h> [* xdr streans part of rpc */

xdrrec_create(xdrs, sendsize, recvsize, iohandle, readproc, witeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandl e;
int (*readproc)(), (*witeproc)();

The routine xdrrec_creat e provides an XDR stream interface that allows for a
bidirectional, arbitrarily long sequence of records. The contents of the records
are meant to be data in XDR form. The stream’s primary use is for interfacing
RPC to TCP connections. However, it can be used to stream data into or out of
ordinary files.

The parameter xdr s is similar to the corresponding parameter described in
Section 4.4.1. The stream does its own data buffering, similar to that of standard
1/0. The parameters sendsi ze and recvsi ze determine the size in bytes of the
output and input buffers, respectively; if their values are zero, defaults are used.
When a buffer needs to be filled or flushed, the routine readproc or wri t eproc is
called, respectively.

If xxx is readproc or witeproc, then it has the following form:

[* returns the actual nunber of bytes transferred;
*-1is anerror
*|
int
xxx(iohandl e, buf, Ien)
char *iohandl e;
char *buf;
int nbytes;

4-16 External Data Representation



External Data Representation
4.4 XDR Stream Access

The usage of these routines is similar to the system calls read and wite.
However, the first parameter to each routine is the opaque parameter i ohandl e.
The other two parameters (buf and nbyt es) and the results (byte count) are
identical to the system routines.

The XDR stream enables you to delimit records in the byte stream. This is
discussed in Section 4.5. The following primitives are specific to record streams:

bool _t
xdrrec_endof record(xdrs, flushnow)
XDR *xdrs;
bool _t flushnow,
bool _t
xdrrec_skiprecord(xdrs)
XDR *xdrs;
bool _t
xdrrec_eof (xdrs)
XDR *xdrs;

The routine xdrrec_endof record causes the current outgoing data to be marked
as a record. If the parameter f| ushnow is TRUE, then the stream’s Wi t eproc
will be called; otherwise, Wit eproc will be called when the output buffer has
been filled.

The routine xdrrec_ski precord causes an input stream’s position to be moved
past the current record boundary and onto the beginning of the next record in the
stream. If there is no more data in the stream’s input buffer, then the routine
xdrrec_eof returns TRUE. This does not mean that there is no more data in the
underlying file descriptor.

4.4.4 XDR Stream Implementation

This section provides the abstract data types needed to implement new instances
of XDR streams. The following structure defines the interface to an XDR stream:

enum xdr_op { XDR ENCODE=0, XDR DECODE=1, XDR FREE=2 };
typedef struct {

enum xdr_op x_op; [* operation; fast added param */
struct xdr_ops {
bool _t (*x_getlong)(); /* get long from stream */
bool _t (*x_putlong)(); /* put long to stream */
bool t (*x_getbytes)(); /* get bytes fromstream*/
bool 't (*x_putbytes)(); /* put bytes to stream*/
uint (*x_getpostn)(); /* return streamoffset */
bool _t (*x_setpostn)(); /* reposition offset */
caddr t (*x_inline)(); /* ptr to buffered data */
Va D (*x_destroy)(); [/* free private area */
} *x_ops;
caddr _t x_public; [* users’ data */
caddr t x_private; /* pointer to private data */
caddr _t x_base; * private for position info */
int x_handy; /* extra private word */

} XOR

The x_op field is the current operation being performed on the stream. This
field is important to the XDR primitives, but is not expected to affect the
implementation of a stream. The fields x_privat e, x_base, and x_handy pertain
to a particular stream implementation. The field x_publ i ¢ is for the XDR client
and must not be used by the XDR stream implementations or the XDR primitives.
The macros x_get postn, x_set postn, and x_dest roy, access operations. The
operation x_i nl i ne takes two parameters: an XDR *, and an unsigned integer,

External Data Representation 4-17



External Data Representation
4.4 XDR Stream Access

which is a byte count. The routine returns a pointer to a piece of the stream’s
internal buffer. The program can then use the buffer segment for any purpose.
To the stream, the bytes in the buffer segment have been consumed or put. The
routine may return NULL if it cannot return a buffer segment of the requested size.
(The x_i nl'i ne routine is for maximizing efficient use of processor cycles. The
resulting buffer is not data-portable, so using this feature is not recommended.)

The operations x_get byt es and x_put byt es get and put sequences of bytes
from or to the underlying stream; they return TRUE if successful, and FALSE
otherwise. The routines have identical parameters (replace Xxx with either x_get
or X_put):
bool _t
xxxbytes(xdrs, buf, bytecount)

XDR *xdrs;

char *buf;

u_int bytecount;

The x_get | ong and x_put | ong routines receive and put long numbers to and from
the data stream. These routines must translate the numbers between the system
representation and the (standard) external representation. The operating system
primitives ht onl and nt ohl help to do this. The higher-level XDR implementation
assumes that signed and unsigned long integers contain the same number of bits,
and that nonnegative integers have the same bit representations as unsigned
integers. The routines return TRUE if they succeed, and FALSE if they do not.
They have identical parameters (replace xxX with either x_get or x_put):

bool _t

xxxlong(xdrs, |p)

XDR *xdrs;
long *Ip;

Implementors of new XDR streams must make an XDR structure (with new
operation routines) available to clients, using some kind of creation routine.

4.5 Advanced Topics

This section describes advanced techniques for passing data structures, such as
linked lists (of arbitrary length). The examples in this section are written using
both the XDR C library routines and the XDR data description language.

The last example in Section 4.1.2 presents a C data structure and its associated
XDR routines for an individual’s gross assets and liabilities. The example is
duplicated here:

struct gnunbers {

| ong g_assets;
long g_liabilities;

bool _t
xdr _gnunbers(xdrs, gp)
XDR *xdrs;
struct gnunbers *gp;
{
if (xdr_long(xdrs, & gp->g_assets)))
return(xdr_long(xdrs, & gp->g_liabilities)));
return( FALSE);
}

4-18 External Data Representation



External Data Representation
4.5 Advanced Topics

If you want to implement a linked list of such information, you could construct
the following data structure:

struct gnunbers_node {
struct gnunbers gn_nunbers;
struct gnunbers_node *gn_next;

typedef struct gnunbers node *gnunbers |ist;

You can think of the head of the linked list as the data object; that is, the head
is not merely a convenient shorthand for a structure. Similarly the gn_next
field indicates whether the object has terminated. Unfortunately, if the object
continues, the gn_next field is also the address of where it continues. The link
addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive
declaration of gnumbers_list:

struct gnunbers {
int g _assets;
int g liabilities;

b

struct gnumbers_node {
gnunbers gn_nunbers;
gnunbers_node *gn_next;

Here, the boolean indicates whether there is more data following it. If the
boolean is FALSE, then it is the last data field of the structure; if TRUE, then
it is followed by a gnunbers structure and (recursively) by a gnunbers_|ist.
Note that the C declaration has no boolean explicitly declared in it (though the
gn_next field implicitly carries the information), while the XDR data description
has no pointer explicitly declared in it. From the XDR description in the
previous paragraph, you can determine how to write the XDR routines for a
gnurmbers_list. That is, the xdr _poi nter primitive would implement the XDR
union. Unfortunately—due to recursion—using XDR on a list with the following
routines causes the C stack to grow linearly with respect to the number of nodes
in the list:

bool _t
xdr _gnunbers_node(xdrs, gn)
XDR *xdrs;

gnunbers_node *gn;

return(xdr_gnunbers(xdrs, &gn->gn_nunbers) &&
xdr _gnunbers_list(xdrs, &gp->gn_next));

bool _t

xdr _gnunbers_list(xdrs, gnp)
XDR *xdrs;

{ gnunbers_list *gnp;
return(xdr_pointer(xdrs, gnp,
si zeof (struct gnumbers_node),

\ xdr _gnunbers_node));

External Data Representation 4-19



External Data Representation
4.5 Advanced Topics

The following routine combines these two mutually recursive routines into a
single, non-recursive one:

bool _t
xdr _gnunbers_list(xdrs, gnp)
XDR *xdrs;
gnunbers_|ist *gnp;
{
bool t nore data;
gnunbers_list *nextp;
for (;3) {
nmore_data = (*gnp !'= NULL);
if (!xdr_bool (xdrs, &nmore data)) {
return(FALSE);
if (! nore_data) {
br eak;
}
if (xdrs->x_op == XDR FREE) {
nextp = & *gnp)->gn_next;
}
if (!xdr_reference(xdrs, gnp,
si zeof (struct gnunmbers_node), xdr_gnumbers)) {
return(FALSE);
gnp = (xdrs->x_op == XDR FREE) ?
nextp . & *gnp)->gn_next;
}
*gnp = NULL;
return( TRUE) ;
}

The first task is to find out if there is more data, so the boolean information can
be serialized. Notice that this is unnecessary in the XDR_DECODE case, because the
value of nmore_dat a is not known until it is deserialized in the next statement,
which uses XDR on the nore_dat a field of the XDR union. If there is no more
data, this last pointer is set to NULL to indicate the list end, and a TRUE is
returned to indicate completion. Setting the pointer to NULL is only important in
the XDR_DECODE case, since it is already NULL in the XDR_ENCODE and XDR_FREE
cases.

Next, if the direction is XDR_FREE, the value of next p is set to indicate the location
of the next pointer in the list. This is for dereferencing gnp to find the location of
the next item in the list; after the next statement, the storage pointed to by gnp is
deallocated and is no longer valid. This cannot be done for all directions because,
in the XDR_DECODE direction, the value of gnp is not set until the next statement.

Next, XDR operates on the data in the node through the primitive xdr _ref erence,
which is like xdr _poi nter (which was used before). However, xdr_ref erence
does not send over the boolean indicating whether there is more data; it is used
instead of xdr _poi nt er because XDR has already been used on this information.
Notice that the XDR routine passed is not the same type as an element in the
list. The routine passed is xdr _gnunbers, for using XDR on gnunber s; however,
each element in the list is of type gnunbers_node. The xdr _gnunbers_node is not
passed because it is recursive; instead, use xdr _gnunber s, which uses XDR on
all of the non-recursive parts. Note that this works only if the gn_nunbers field
is the first item in each element, so the addresses are identical when passed to
xdr_reference.

4-20 External Data Representation



External Data Representation
4.5 Advanced Topics

Finally, gnp is updated to point to the next item in the list. If the direction is
XDR_FREE, it is set to the previously saved value; otherwise, gnp is dereferenced
to get the proper value. Although more difficult to understand than the recursive
version, the non-recursive routine is much less likely to overflow the C stack.

It also runs more efficiently because a lot of procedure call overhead has been
removed. Most lists are small though (in the hundreds of items or less) and the
recursive version should be sufficient for them.

External Data Representation 4-21






5

ONC RPC Client Routines

This chapter describes the client routines that allow C programs to make
procedure calls to server programs across the network.

Table 5-1 indicates the task that the routine performs.

Table 5-1 ONC RPC Client Routines

Routine

Task Category

aut h_destroy
aut hnone create
aut huni x_create

aut huni x_create_defaul t

callrpc
cl nt_broadcast

clnt_cal
clnt_contro

clnt_create
clnt_create vers
clnt_destroy
clnt_freeres
clnt_geterr

cl nt_pcreateerror
clnt_perrno

cl nt_perror

Destroys authentication information associated with an
authentication handle (macro).

Creates and returns a null authentication handle for the
client process.

Creates and returns a UNIX-style authentication handle
for the client process.

Creates and returns a UNIX-style authentication handle
containing default authentication information for the
client process.

Calls the remote procedure identified by the routine’s
arguments.

Broadcasts a remote procedure call to all locally-connected
networks using the broadcast address.

Calls a remote procedure (macro).

Changes or retrieves information about an RPC client
process (macro)

Creates an RPC client handle for a remote server
procedure.

Creates an RPC client handle for a remote server
procedure having the highest supported version number
within a specified range.

Destroys a client handle (macro).

Frees the memory that RPC allocated when it decoded a
remote procedure’s results (macro).

Returns an error code indicating why an RPC call failed
(macro).

Prints an error message indicating why RPC could not
create a client handle.

Prints an error message indicating why a cal | rpc or
cl nt_broadcast routine failed

Prints an error message indicating why a cl nt _cal |
routine failed.

(continued on next page)

ONC RPC Client Routines 5-1



ONC RPC Client Routines

Table 5-1 (Cont.) ONC RPC Client Routines

Routine

Task Category

cl nt_spcreateerror
cl nt_sperrno
clnt_sperror
clntraw create
clnttcp create

cl ntudp_bufcreate
clntudp_create

get _nyaddress
get _nyaddr _dest

Returns a message string indicating why RPC could not
create a client handle.

Returns a message string indicating why a cal | rpc or
cl nt_broadcast routine failed.

Returns a message string indicating why a cl nt _cal |
routine failed.

Creates an RPC client handle for a server procedure
included in the same program as the client.

Creates an RPC client handle for a remote server
procedure using the TCP transport.

Creates an RPC client handle for a remote server
procedure using a buffered UDP transport.

Creates an RPC client handle for a remote server
procedure using the UDP transport.

Returns the local host’s internet address.

Returns the local host's internet address as seen by the
remote host.

5-2 ONC RPC Client Routines



auth_destroy

auth_destroy

A macro that frees the memory associated with the authentication handle created
by the aut hnone_cr eat e and aut huni x_cr eat e routines.

Format
#include <rpc/rpc.h>
void auth_destroy(AUTH *auth_handle)
Arguments
auth_handle
An RPC authentication handle created by the aut hnone create,
aut huni x_create, or aut huni x_creat e_defaul t routine.
Description

Frees the memory associated with the AUTH data structure created by the
aut hnone_creat e, aut huni x_create, or aut huni x_create_default routine. Be
careful not to reference the data structure after calling this routine.

Return Values

None

ONC RPC Client Routines 5-3



authnone_create

authnone_create

Creates a authentication handle for passing null credentials and verifiers to
remote systems.

Format
#include <rpc/rpc.h>
AUTH *authnone_create ()
Arguments
None
Description

Creates and returns an authentication handle that passes null authentication
information with each remote procedure call. Use this routine if the server
process does not require authentication information. RPC uses this routine as the
default authentication routine unless you create another authentication handle
using either the aut huni x_creat e or aut huni x_create_defaul t routine.

Return Values

AUTH * Authentication handle containing the pertinent
information.
NULL Indicates allocation of AUTH handle failed.

5-4 ONC RPC Client Routines



authunix_create

authunix_create

Format

Arguments

Description

Creates and returns an RPC authentication handle that contains UNIX-style
authentication information.

#include <rpc/rpc.h>

AUTH *authunix_create(char *host, int uid, int gid, int len, int *aup_gids );

host

Pointer to the name of the host on which the information was created. This is
usually the name of the system running the client process.

uid

The user’s user identification.

gid

The user’s current group.

len
The number of elements in aup_gi ds array.

Note

This parameter is ignored by the product’s RPC implementation.

aup_gids
A pointer to an array of groups to which the user belongs.

Note

This parameter is ignored by the product’s RPC implementation.

Implements UNIX-style authentication parameters. The client uses no encryption
for its credentials and only sends null verifiers. The server sends back null
verifiers or optionally a verifier that suggests a new shorthand for the credentials.

Return Values

AUTH * Authentication handle containing the pertinent
information.
NULL Indicates allocation of AUTH handle failed.

ONC RPC Client Routines 5-5



authunix_create_default

authunix_create_default

Returns a default authentication handle.

Format

#include <rpc/rpc.h>

AUTH *authunix_create_default( )
Arguments

None
Description

Calls the aut huni x_cr eat e routine with the local host name, effective process ID
and group ID, and the process default groups.

Return Values

AUTH * Authentication handle containing the pertinent
information.
NULL Indicates allocation of AUTH handle failed.

Examples

1. auth_destroy(client->cl _auth)
client->cl _auth = authunix_create_default();

This example overrides the default aut hnone_creat e action. The client
handle, client, is returned by the clnt_create, clnt_create vers,
clnttcp_create, or cl ntudp_creat e routine.

5-6 ONC RPC Client Routines



callrpc

callrpc

Format

Arguments

Description

Executes a remote procedure call.

#include <rpc/rpc.h>

int callrpc(char *host, u_long prognum, u_long versnum, u_long procnum, xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out);

host
A pointer to the name of the host on which the remote procedure resides.

prognum
The program number associated with the remote procedure.

versnum
The version number associated with the remote procedure.

procnum
The procedure number associated with the remote procedure.

inproc
The XDR routine used to encode the remote procedure’s arguments.

in
A pointer to the remote procedure’s arguments.

outproc
The XDR routine used to decode the remote procedure’s results.

out
A pointer to the remote procedure’s results.

Calls the remote procedure associated with prognum versnum and procnumon
the host host. This routine performs the same functions as a set of calls to

the cInt_create, clnt_call, and cl nt_destroy routines. This routine returns
RPC SUCCESS if it succeeds, or the value of enumcl nt _stat cast to an integer if
it fails. The routine cl nt _perrno is handy for translating a failure status into a
message.

Note

Calling remote procedures with this routine uses UDP/IP as a transport;
see ¢l ntudp_creat e for restrictions. You do not have control of timeouts
or authentication using this routine. If you want to use the TCP
transport, use the cl nt_create or cl nttcp_create routine.

ONC RPC Client Routines 5-7



callrpc

Return Values

RPC_SUCCESS Indicates success.
clnt_stat Returns a value of type enumcl nt _stat cast to
type i nt containing the status of the cal | rpc

operation.

5-8 ONC RPC Client Routines



cInt_broadcast

cint_broadcast

Executes a remote procedure call that is sent to all locally connected networks
using the broadcast address.

Format
#include <rpc/rpc.h>

enum cint_stat clnt_broadcast(u_long prognum, u_long versnum, u_long procnum, xdrproc_t inproc,
char * in, xdrproc_t outproc, char * out, resultproc_t eachresult);

Arguments

prognum
The program number associated with the remote procedure.

versnum
The version number associated with the remote procedure.

prochum
The procedure number associated with the remote procedure.

inproc
The XDR routine used to encode the remote procedure’s arguments.

in
A pointer to the remote procedure’s arguments.

outproc
The XDR routine used to decode the remote procedure’s results.

out
A pointer to the remote procedure’s results.

eachresult
Called each time the routine receives a response. Specify the routine as follows:

int eachresult(char *resultsp, struct sockaddr _in *addr)

resul t sp is the same as the parameter passed to ¢l nt _broadcast (), except
that the remote procedure’s output is decoded there. addr is a pointer to a
sockaddr _i n structure containing the address of the host that sent the results.

If eachresul t is NULL, the cl nt _broadcast routine returns without waiting for
any replies.

Description

Performs the same function as the cal | r pc routine, except that the call message
is sent to all locally connected networks using the broadcast address. Each time
it receives a response, this routine calls the eachresul t routine. If eachresul t
returns zero, cl nt _broadcast waits for more replies; otherwise it assumes success
and returns RPC_SUCCESS.

ONC RPC Client Routines 5-9



cint_broadcast

Note

This routine uses the UDP protocol. Broadcast sockets are limited in size
to the maximum transfer unit of the data link. For Ethernet, this value
is 1400 bytes. For FDDI, this value is 4500 bytes.

Return Values

RPC_SUCCESS Indicates success.
clnt_stat Returns the buffer of type enumcl nt _stat
containing the status of the cl nt _broadcast

operation.

5-10 ONC RPC Client Routines



cint_call

cint_call

Format

Arguments

Description

A macro that calls a remote procedure.

#include <rpc/rpc.h>

enum cint_stat cint_call(CLIENT *handle, u_long procnum, xdrproc_t inproc, char *in, xdrproc_t outproc,
char *out, struct timeval timeout);

handle
A pointer to a client handle created by any of the client handle creation routines.

prochum
The procedure number associated with the remote procedure.

inproc
The XDR routine used to encode the remote procedure’s arguments.

in
A pointer to the remote procedure’s arguments.

outproc
The XDR routine used to decode the remote procedure’s results.

out
A pointer to the remote procedure’s results.

timeout

A structure describing the time allowed for results to return to the client. If you
have previously used the cl nt_control macro with the CLSET_TI MECUT code, this
value is ignored.

Use the cl nt_cal | macro after using one of the client handle creation routines.
After you are finished with the handle, return it using the cl nt _destroy macro.
Use the cl nt_perror to print any errors that occurred.

Return Values

RPC_SUCCESS Indicates success.

clnt_stat Returns the buffer of type enumcl nt st at
containing the status of the cl nt _cal | operation.

ONC RPC Client Routines 5-11



cint_control

cint_control

A macro that changes or retrieves information about an RPC client process.

Format
#include <rpc/rpc.h>
bool_t clInt_control(CLIENT *handle, u_int code, char *info);

Arguments
handle
A pointer to a client handle created by any of the client handle creation routines.
code
A code designating the type of information to be set or retrieved.
info
A pointer to a buffer containing the information for a SET operation or the results
of a GET operation.

Description
For UDP and TCP transports specify any of the following for code:
CLSET _TIMEOUT struct timeval Set total timeout
CLGET_TIMEOUT struct timeval Get total timeout
CLGET_SERVER_ADDR struct sockaddr_in Get server address
CLGET_FD int Get associated socket
CL_FD _CLOSE void Close socket on

cl nt_destroy

CL_FD_NCLOSE void Leave socket open on

clnt_destroy

If you set the timeout using ¢l nt_control, ONC RPC ignores the timeout
parameter in all future cl nt_cal | calls. The default total timeout is 25 seconds.

For the UDP transport two additional options are available:

CLSET _RETRY_TIMEOUT struct timeval Set retry timeout
CLGET_RETRY_TIMEOUT struct timeval Get retry timeout

The timeout value in these two calls is the time that UDP waits for a response
before retransmitting the message to the server. The default time is 5 seconds.
The retry timeout controls when UDP retransmits the request, the total timeout
controls the total time that the client should wait for a response. For example,

with the default settings, UDP will retry the transmission four times at 5-second
intervals.

Return Values

TRUE Success
FALSE Failure

5-12 ONC RPC Client Routines



cint_create

cint_create

Format

Arguments

Description

Creates a client handle and returns its address.

#include <rpc/rpc.h>

CLIENT *cInt_create(char *host, u_long prognum, u_long versnum, char *protocol);

host
A pointer to the name of the remote host.

prognum
The program number associated with the remote procedure.

versnum
The version number associated with the remote procedure.

protocol
A pointer to a string containing the name of the protocol for transmitting and
receiving RPC messages. Specify either t cp or udp.

The cl nt _creat e routine creates an RPC client handle for prognum An RPC
client handle is a structure containing information about the RPC client. The
client can use the UDP or TCP transport protocol.

This routine uses the Portmapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP
transport, and 4000 bytes for the TCP transport. The retry time for the UDP
transport is five seconds.

Use the cl nt _creat e routine instead of the cal | rpc or ¢l nt _broadcast routines
if you want to use one of the following:

= The TCP transport
e A non-null authentication
< More than one active client at the same time

You can also use the ¢l nttcp_create routine to use the TCP protocol, or the
cl ntudp_creat e routine to use the UDP protocol.

The ¢l nt _creat e routine uses the global variable rpc_createerr. rpc_createerr
is a structure that contains the most recent service creation error. Use
rpc_createerrif you want the client program to handle the error. The value

of rpc_createerr is set by any RPC client creation routine that does not succeed.

ONC RPC Client Routines 5-13



clnt_create

Note

If the requested program is available on the host but the program does
not support the requested version number, this routine still succeeds.
A subsequent call to the cl nt_cal | routine will discover the version
mismatch. Use the cl nt_create_vers routine if you want to avoid this

condition.
Return Values
CLI ENT * Client handle containing the server information.
NULL Error occurred while creating the client

handle. Use the ¢l nt_pcreateerror or
cl nt_spcreateerror routine to obtain diagnostic
information.

5-14 ONC RPC Client Routines



cint_create_vers

cint_create_vers

Format

Arguments

Description

Creates a client handle and returns its address. Seeks to use a server supporting
the highest version number within a specified range.

#include <rpc/rpc.h>

CLIENT *cInt_create_vers(char *host, u_long prognum, u_long *versnum, u_long min_vers, u_long
max_vers, char *protocol);

host
A pointer to the name of the remote host.

prognum
The program number associated with the remote procedure.

versnum

The version number associated with the remote procedure. This value is returned
by the routine. The value is the highest version number supported by the
remote server that is in the range of version numbers specified by m n_vers and
max_vers. The argument may remain undefined; see additional information in
the Description section.

min_vers
The minimum acceptable version number for the remote procedure.

max_vers
The maximum acceptable version number for the remote procedure.

protocol
A pointer to a string containing the name of the protocol for transmitting and
receiving RPC messages. Specify either t cp or udp.

The cl nt _create_vers routine creates an RPC client handle for prognum An
RPC client handle is a structure containing information about the RPC client.
The client can use the UDP or TCP transport protocol.

This routine uses the Portmapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP
transport, and 4000 bytes for the TCP transport. The retry time for the UDP
transport is 5 seconds.

The cl nt_create_vers routine differs from the standard cl nt_creat e routine
in that it seeks out the highest version number supported by the server. If the
server does not support any version numbers within the requested range, the

routine returns NULL and the ver snumvariable is undefined.

ONC RPC Client Routines 5-15



cint_create _vers

The clnt_create_vers routine uses the global variable rpc_createerr.
rpc_createerr is a structure that contains the most recent service creation
error. Use rpc_createerr if you want the client program to handle the error. The
value of rpc_createerr is set by any RPC client creation routine that does not
succeed.

Return Values

CLI ENT * Client handle containing the server information.

NULL Error occurred while creating the client handle.
Usually the error indicates that the server does
not support any version numbers within the
requested range. Use the cl nt_pcreateerror or
clnt_spcreateerror routine to obtain diagnostic
information.

5-16 ONC RPC Client Routines



clnt_destroy

cint_destroy

Format

Arguments

Description

A macro that frees the memory associated with an RPC client handle.

#include <rpc/rpc.h>
void clnt_destroy(CLIENT *handle);

handle
A pointer to a client handle created by any of the client handle creation routines.

The cl nt _destroy routine destroys the client's RPC handle by deallocating all
memory related to the handle. The client is undefined after the cl nt _destroy
call.

If the cl nt_creat e routine had previously opened the socket associated with
the client handle or the program had used the cl nt _control routine to set CL_
FD_CLOSE, this routine closes the socket. If the cl nt _creat e routine had not
previously opened the socket associated with the client handle or the program
had used the cl nt _control routine to set CL_FD_NCLOSE, this routine leaves
the socket open.

Return Values

None

ONC RPC Client Routines 5-17



cint_freeres

cint_freeres

A macro that frees the memory that was allocated when the remote procedure’s
results were decoded.

Format
#include <rpc/rpc.h>
bool_t clnt_freeres(CLIENT *handle, xdrproc_t outproc, char *out);
Arguments
handle
A pointer to a client handle created by any of the client handle creation routines.
outproc
The XDR routine used to decode the remote procedure’s results.
out
A pointer to the remote procedure’s results.
Description

The cl nt_freeres routine calls the xdr _free routine to deallocate the memory
where the remote procedure’s results are stored.

Return Values

TRUE Success.
FALSE Error occurred while freeing the memory.

5-18 ONC RPC Client Routines



cint_geterr

cint_geterr

Format

Arguments

Description

A macro that returns error information indicating why an RPC call failed.

#include <rpc/rpc.h>

void clInt_geterr(CLIENT *handle, struct rpc_err *errp);

handle
A pointer to a client handle created by any of the client handle creation routines.

errp
A pointer to an rpc_err structure containing information that indicates why an
RPC call failed. This information is the same information as cl nt _stat contains,
plus one of the following: the C error number, the range of server versions
supported, or authentication errors.

This macro copies the error information from the client handle to the structure
referenced by errp. The macro is mainly for diagnostic use.

Return Values

None

ONC RPC Client Routines 5-19



clnt_pcreateerror

clnt_pcreateerror

Prints a message explaining why ONC RPC could not create a client handle.

Format

#include <rpc/rpc.h>

void clnt_pcreateerror(char *sp);
Arguments

sp

A pointer to a string to be used as the beginning of the error message.
Description

The cl nt_pcreat eerror routine prints a message to SYS$SOUTPUT. The message
consists of the sp parameter followed by an RPC-generated error message. Use
this routine when the clnt_create, clnttcp_create, or cl ntudp_create routine
fails.

Return Values

None

5-20 ONC RPC Client Routines



clnt_perrno

cint_perrno

Prints a message indicating why the cal | rpc or ¢l nt _broadcast routine failed.

Format
#include <rpc/rpc.h>

void clnt_perrno(enum cInt_stat stat) ;

Arguments

stat
A buffer containing status information.

Description

Prints a message to standard error corresponding to the condition indicated by
the stat argument.

The data type declaration for cl nt _stat inrpc/rpc. h lists the standard errors.
Return Values

None

ONC RPC Client Routines 5-21



clnt_perror

cint_perror

Prints a message explaining why an ONC RPC routine failed.

Format

#include <rpc/rpc.h>

void clnt_perror(CLIENT *handle, char *sp);
Arguments

handle

A pointer to the client handle used in the call that failed.

sp

A pointer to a string to be used as the beginning of the error message.
Description

Prints a message to standard error indicating why an ONC RPC call failed. The
message is prepended with string sp and a colon.

Return Values

None

5-22 ONC RPC Client Routines



cInt_spcreateerror

clnt_spcreateerror

Returns a message indicating why RPC could not create a client handle.

Format

#include <rpc/rpc.h>

char *cInt_spcreateerror(char *sp);
Arguments

sp

A pointer to a string to be used as the beginning of the error message.
Description

The cl nt_spcreateerror routine returns the address of a message string. The
message consists of the sp parameter followed by an error message generated by
calling the cl nt _sperrno routine. Use the cl nt _spcreat eerror routine when the
clnt _create, clnttcp_create, or cl ntudp_create routine fails.

Use this routine if:

= You want to save the string.

= You do not want to use fprintf to print the message.

= The message format is different from the one that cl nt _perrno supports.

The address that cl nt _spcreateerror returns is the address of its own internal
string buffer. The cl nt_spcreat eerror routine overwrites this buffer with each
call. Therefore, you must copy the string to your own buffer if you wish to save
the string.

Return Values

char * A pointer to the message string terminated with
a NULL character.

NULL The routine was not able to allocate its internal
buffer.

ONC RPC Client Routines 5-23



clnt_sperrno

clnt_sperrno

Returns a message indicating why the cal | rpc or ¢l nt _broadcast routine failed
to create a client handle.

Format

#include <rpc/rpc.h>

char *cInt_sperrno(enum cint_stat stat);
Arguments

stat

A buffer containing status information.
Description

The cl nt_sperrno routine returns a pointer to a string.

Use this routine instead if:

= The server does not have a stderr file; many servers do not.

= You want to save the string.

= You do not want to use fprintf to print the message.

= The message format is different from the one that cl nt _perrno supports.

The address that ¢l nt _sperrno returns is a pointer to the error message string
for the error. Therefore, you do not have to copy the string to your own buffer in
order to save the string.

Return Values

char * A pointer to the message string terminated with
a NULL character.

5-24 ONC RPC Client Routines



clnt_sperror

clnt_sperror

Format

Arguments

Description

Returns a message indicating why an ONC RPC routine failed.

#include <rpc/rpc.h>

char *cInt_sperror(CLIENT *handle, char *sp);

handle
A pointer to the client handle used in the call that failed.

sp
A pointer to a string to be used as the beginning of the error message.

The cl nt_sperror routine returns a pointer to a message string. The message
consists of the sp parameter followed by an error message generated by calling
the cl nt _sperrno routine. Use this routine when the cl nt_cal | routine fails.

Use this routine if:

= You want to save the string.

= You do not want to use fprintf to print the message.

= The message format is different from the one that cl nt _perrno supports.

The address that cl nt _sperror returns is a pointer to its own internal string
buffer. The cl nt_sperror routine overwrites this buffer with each call. Therefore,
you must copy the string to your own buffer if you wish to save the string.

Return Values

char * A pointer to the message string terminated with
a NULL character.

NULL The routine was not able to allocate its internal
buffer.

ONC RPC Client Routines 5-25



clntraw_create

clntraw_create

Format

Arguments

Description

Creates a client handle for memory-based ONC RPC for simple testing and
timing.

#include <rpc/rpc.h>

CLIENT *cIntraw_create(u_long prognum, u_long versnum);

prognum
The program number associated with the remote program.

versnum
The version number associated with the remote program.

Creates an in-program ONC RPC client for the remote program prognum version
versnum The transport used to pass messages to the service is actually a buffer
within the process’s address space, so the corresponding server should live in
the same address space; see svcraw_create. This allows simulation of and
acquisition of ONC RPC overheads, such as round-trip times, without any kernel
interference.

Return Values

CLI ENT * A pointer to a client handle.
NULL Indicates failure.

5-26 ONC RPC Client Routines



clnttcp_create

clnttcp_create

Format

Arguments

Description

Creates an ONC RPC client handle for a TCP/IP connection.

#include <rpc/rpc.h>

CLIENT *cInttcp_create(struct sockaddr_in *addr, u_long prognum, u_long versnum, int *sockp, u_int
sendsize, u_int recvsize);

addr
A pointer to a buffer containing the internet address where the remote program
is located.

prognum
The program number associated with the remote procedure.

versnum
The version number associated with the remote procedure.

sockp
A pointer to the socket number to be used for the remote procedure call. If sockp
is RPC_ANYSCCK, then this routine opens a new socket and sets sockp.

sendsize
The size of the send buffer. If you specify 0 the routine chooses a suitable default.

recvsize
The size of the receive buffer. If you specify 0 the routine chooses a suitable
default.

Creates an ONC RPC client handle for the remote program prognum version
ver snumat address addr. The client uses TCP/IP as a transport. The routine is
similar to the cl nt _creat e routine, except ¢l nttcp_create allows you to specify
a socket and the send and receive buffer sizes.

If you specify the port number as zero by using addr - >si n_port, the Portmapper
provides the number of the port on which the remote program is listening.

The cl nttcp_create routine uses the global variable rpc_createerr.
rpc_createerr is a structure that contains the most recent service creation
error. Use rpc_createerr if you want the client program to handle the error. The
value of rpc_createerr is set by any RPC client creation routine that does not
succeed. The rpc_createerr variable is defined in the CLNT.H file.

The socket referenced by sockp is copied into a private area for RPC to use. It is
the client’s responsibility to close the socket referenced by sockp.

The authentication scheme for the client, client->cl _auth, gets set to null
authentication. The calling program can set this to something different if
necessary.

ONC RPC Client Routines 5-27



clnttcp_create

Note

If the requested program is available on the host but the program does
not support the requested version number, this routine still succeeds.
A subsequent call to the cl nt_cal | routine will discover the version
mismatch. Use the cl nt_create_vers routine if you want to avoid this

condition.
Return Values
CLI ENT * A pointer to the client handle.
NULL Indicates failure.

5-28 ONC RPC Client Routines



cIntudp_bufcreate

cintudp_bufcreate

Format

Arguments

Description

Creates an ONC RPC client handle for a buffered 1/O UDP connection.

#include <rpc/rpc.h>

CLIENT *cIntudp_bufcreate(struct sockaddr_in *addr, u_long prognum, u_long versnum, struct timeval
wait, register int *sockp, u_int sendsize, u_int recvsize);

addr
A pointer to a buffer containing the internet address where the remote program
is located.

prognum
The program number associated with the remote procedure.

versnum
The version number associated with the remote procedure.

wait
The amount of time used between call retransmission if no response is received.
Retransmission occurs until the ONC RPC calls time out.

sockp
A pointer to the socket number to be used for the remote procedure call. If sockp
is RPC_ANYSCCK, then this routine opens a new socket and sets sockp.

sendsize
The size of the send buffer. If you specify 0, the routine chooses a suitable default.

recvsize
The size of the receive buffer. If you specify 0, the routine chooses a suitable
default.

Creates an ONC RPC client handle for the remote program prognum version
versnumat address addr. The client uses UDP as the transport. The routine
is similar to the cl nt _creat e routine, except cl nt udp_buf creat e allows you to
specify a socket, the UDP retransmission time, and the send and receive buffer
sizes.

If you specify the port number as zero by using addr - >si n_port, the Portmapper
provides the number of the port on which the remote program is listening.

The cl ntudp_buf creat e routine uses the global variable rpc_createerr.
rpc_createerr is a structure that contains the most recent service creation
error. Use rpc_createerr if you want the client program to handle the error. The
value of rpc_createerr is set by any RPC client creation routine that does not
succeed. The rpc_createerr variable is defined in the CLNT.H file.

The socket referenced by sockp is copied into a private area for RPC to use. It is
the client’s responsibility to close the socket referenced by sockp.

ONC RPC Client Routines 5-29



clntudp_bufcreate

The authentication scheme for the client, cl i ent->cl _auth, gets set to null
authentication. The calling program can set this to something different if

necessary.
Note

If addr->si n_port is 0 and the requested program is available on the
host but the program does not support the requested version number, this
routine still succeeds. A subsequent call to the cl nt_cal | routine will
discover the version mismatch. Use the cl nt_create_vers routine if you

want to avoid this condition.

Return Values

CLI ENT * A pointer to the client handle.
NULL Indicates failure.

5-30 ONC RPC Client Routines



cIntudp_create

clntudp_create

Format

Arguments

Description

Creates an ONC RPC client handle for a non-buffered 1/O UDP connection.

#include <rpc/rpc.h>

CLIENT *cIntudp_create(struct sockaddr_in *addr, u_long prognum, u_long versnum, struct timeval
wait, register int *sockp);

addr
A pointer to a buffer containing the internet address where the remote program
is located.

prognum
The program number associated with the remote procedure.

versnum
The version number associated with the remote procedure.

wait
The amount of time used between call retransmission if no response is received.
Retransmission occurs until the ONC RPC calls time out.

sockp
A pointer to the socket number to be used for the remote procedure call. If sockp
is RPC_ANYSCCK, then this routine opens a new socket and sets sockp.

Creates an ONC RPC client handle for the remote program prognum version
ver snumat address addr. The client uses UDP as the transport. The routine is
similar to the cl nt _creat e routine, except ¢l ntudp_creat e allows you to specify
a socket and the UDP retransmission time.

If you specify the port number as zero by using addr - >si n_port, the Portmapper
provides the number of the port on which the remote program is listening.

The cl ntudp_creat e routine uses the global variable rpc_createerr.
rpc_createerr is a structure that contains the most recent service creation
error. Use rpc_createerr if you want the client program to handle the error. The
value of rpc_createerr is set by any RPC client creation routine that does not
succeed. The rpc_createerr variable is defined in the CLNT.H file.

The socket referenced by sockp is copied into a private area for RPC to use. It is
the client’s responsibility to close the socket referenced by sockp.

The authentication scheme for the client, client->cl _auth, gets set to null
authentication. The calling program can set this to something different if
necessary.

ONC RPC Client Routines 5-31



clntudp_create

Notes

Since UDP/IP messages can only hold up to 8 Kbytes of encoded data,
this transport cannot be used for procedures that take large arguments or
return huge results.

If addr->si n_port is 0 and the requested program is available on the
host but the program does not support the requested version number, this
routine still succeeds. A subsequent call to the cl nt _cal | routine will
discover the version mismatch. Use the cl nt_create_vers routine if you
want to avoid this condition.

Return Values

CLI ENT * A pointer to the client handle.
NULL Indicates failure.

5-32 ONC RPC Client Routines



get_myaddress

get_myaddress

Returns the local host’s internet address.

Format
#include <rpc/rpc.h>
void get myaddress(struct sockaddr_in *addr);
Arguments
addr
A pointer to a sockaddr _i n structure that the routine will load with the internet
address of the host where the local procedure resides.
Description

Puts the local host’s internet address into addr without doing any name
translation. The port number is always set to ht ons ( PMAPPORT) .

Return Values

None

ONC RPC Client Routines 5-33



get_myaddr_dest

get_myaddr_dest
Returns the local host'’s internet address according to a destination address.

Format
#include <rpc/rpc.h>

void get myaddr_dest(struct sockaddr_in *addr, struct sockaddr_in *dest);

Arguments

addr

A pointer to a sockaddr _i n structure that the routine will load with the local
internet address which would provide a connection to the remote address specified
in dest .

dest
A pointer to a sockaddr _i n structure containing an internet address of a remote
host.

Description

Since the local host may have multiple network addresses (each on its own
interface), this routine is used to select the local address which would provide a
connection to the remote address specified in dest .

This is an alternative to get host byname, which invokes yellow pages. It takes a
destination (where we are trying to get to) and finds an exact network match to
go to.

Return Values

None

5-34 ONC RPC Client Routines



6

ONC RPC Portmapper Routines

This chapter describes the routines that allow C programs to access the
Portmapper network service.

Table 6-1 indicates the task that each routine performs.

Table 6-1 ONC RPC Portmapper Routines

Routine

Task Category

pmap_get maps
pmap_get maps_vns

pmap_get port
pmap_r nt cal
pmap_set

pmap_unset

Returns a list of port mappings for the specified remote host.

Returns a list of port mappings (including OpenVMS process
IDs) for the specified remote host.

Returns the port number on which the specified service is
waiting.

Requests the Portmapper on the specified remote host to call
the specified procedure on that host.

Registers a remote server procedure with the host'’s
Portmapper.

Unregisters a remote server procedure with the host’s
Portmapper.

ONC RPC Portmapper Routines 6-1



pmap_getmaps

pmap_getmaps

Returns a copy of the current port mappings on a remote host.

Format
#include <rpc/pmap_cint.h>
struct pmaplist *pmap_getmaps(struct sockaddr_in *addr);
Arguments
addr
A pointer to a sockaddr _i n structure containing the internet address of the host
whose Portmapper you wish to call.
Description

A client interface to the Portmapper, which returns a list of the current ONC
RPC program-to-port mappings on the host located at the internet address addr .
The SHOW PORTMAPPER management command uses this routine.

Return Values

struct pnaplist * A pointer to the returned list of server-to-port
mappings on host addr .
NULL Indicates failure.

6—2 ONC RPC Portmapper Routines



pmap_getmaps_vms

pmap_getmaps_vms

Returns a copy of the current port mappings on a remote host running TCP/IP
Services software.

Format
#include <rpc/pmap_cint.h>
struct pmaplist vms *pmap_getmaps_vms(struct sockaddr_in *addr);
Arguments
addr
A pointer to a sockaddr _i n structure containing the internet address of the host
whose Portmapper you wish to call.
Description

This routine is similar to the pmap_get maps routine. However, pnap_get naps_vns
also returns the process identifiers (PIDs) that are required for mapping requests
to TCP/IP Services hosts.

Return Values

struct pmaplist * A pointer to the returned list of server-to-port
mappings on host addr .
NULL Indicates failure.

ONC RPC Portmapper Routines 6-3



pmap_getport

pmap_getport

Format

Arguments

Description

Returns the port number on which the specified service is waiting.

#include <rpc/pmap_cint.h>

u_short pmap_getport(struct sockaddr_in *addr, u_long prognum, u_long versnum, u_long protocol );

addr
A pointer to a sockaddr _i n structure containing the internet address of the host
where the remote Portmapper resides.

prognum
The program number associated with the remote procedure.

versnum
The version number associated with the remote procedure.

protocol
The transport protocol that the remote procedure uses. Specify either
| PPROTO_UDP or | PPROTO_TCP.

A client interface to the Portmapper. This routine returns the port number on
which waits a server that supports program number prognum version Ver snum
and speaks the transport protocol associated with prot ocol (I PPROTO_UDP or

| PPROTO_TCP).

Notes

If the requested version is not available, but at least the requested
program is registered, the routine returns a port number.

The pmap_get port routine returns the port number in host byte order not
network byte order. For certain routines you may need to convert this
value to network byte order using the ht ons routine. For example, the
sockaddr _i n structure requires that the port number be in network byte

Return Values

order.
X The port number of the service on the remote
system.
0 No mapping exists or RPC could not contact the

remote Portmapper service. In the latter case,
the global variable rpc_createerr.cf_error
contains the ONC RPC status.

6-4 ONC RPC Portmapper Routines



pmap_rmtcall

pmap_rmtcall

The client interface to the Portmapper service for a remote call and broadcast
service. This routine allows a program to do a lookup and call in one step.

Format
#include <rpc/pmap_cint.h>
enum cint_stat pmap_rmtcall(struct sockaddr_in *addr, u_long prognum, u_long versnum, u_long
procnum, xdrproc_t inproc, char * in xdrproc_t outproc, char * out, struct timeval
timeout, u_long *port );
Arguments
addr
A pointer to a sockaddr _i n structure containing the internet address of the host
where the remote Portmapper resides.
prognum
The program number associated with the remote procedure.
versnum
The version number associated with the remote procedure.
procnum
The procedure number associated with the remote procedure.
inproc
The XDR routine used to encode the remote procedure’s arguments.
in
A pointer to the remote procedure’s arguments.
outproc
The XDR routine used to decode the remote procedure’s results.
out
A pointer to the remote procedure’s results.
timeout
A timeval structure describing the time allowed for the results to return to the
client.
port
A pointer to a location for the returned port number. Modified to the remote
program’s port number if the pmap_rnt cal | routine succeeds.
Description

A client interface to the Portmapper, which instructs the Portmapper on the host
at the internet address *addr to make a call on your behalf to a procedure on that
host. Use this procedure for a pi ng operation and nothing else. You can use the
cl nt_perrno routine to print any error message.

ONC RPC Portmapper Routines 6-5



pmap_rmtcall

Note

If the requested procedure is not registered with the remote Portmapper,
the remote Portmapper does not reply to the request. The call to
pmap_rntcal | will eventually time out. The pmap_rntcal | does not
perform authentication.

Return Values

enumcl nt _stat Returns the buffer containing the status of the
operation.

6-6 ONC RPC Portmapper Routines



pmap_set

pmap_set

Format

Arguments

Description

Called by the server procedure to have the Portmapper create a mapping of the
procedure’s program and version number.

#include <rpc/pmap_cint.h>

bool t pmap_set(u_long prognum, u_long versnum, u_long protocol, u_short port);

prognum
The program number associated with the server procedure.

versnum
The version number associated with the server procedure.

protocol
The transport protocol that the server procedure uses. Specify either | PPROTO_UDP
or | PPROTO TCP.

port
The port number associated with the server program.

A server interface to the Portmapper, which establishes a mapping between the
triple [ prognum ver snum prot ocol ] and port on the server’s Portmapper service.
The svc_regi ster routine calls this routine to register the server with the local
Portmapper.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

ONC RPC Portmapper Routines 6-7



pmap_unset

pmap_unset

Called by the server procedure to have the Portmapper delete a mapping of the
procedure’s program and version number.

Format
#include <rpc/pmap_cint.h>
bool t pmap_unset(u_long prognum, u_long versnum);
Arguments
prognum
The program number associated with the server procedure.
versnum
The version number associated with the server procedure.
Description

A server interface to the Portmapper, which destroys all mapping between the
triple [ prognum versnum *] and ports on the local host’s Portmapper.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

6-8 ONC RPC Portmapper Routines



v

ONC RPC Server Routines

This chapter describes the server routines that allow C programs to receive
procedure calls from client programs over the network.

Table 7-1 indicates the task that each routine performs.

Table 7-1 ONC RPC SERVER Routines

Routine

Task Category

registerrpc
seterr_reply

svc_destroy
svc_freeargs

svc_getargs
svc_getcal l er

svc_getregset
SvVC_register
svc_run

svc_sendreply
svc_unregi ster
svcerr_auth

svcerr_decode
svcerr_noproc
svcerr_noprog

SVCErr_progvers

svcerr_systenerr

svcerr_weakaut h

Creates a server handle and registers the server program with
the Portmapper.

Fills in the error field in an RPC reply message with the
specified error information.

Destroys a server handle (macro).

Frees the memory allocated when RPC decoded the server
procedure’s arguments (macro).

Decodes the server procedure’s arguments (macro).

Returns the address of the client that called the server
procedure (macro).

Reads data for each server connection.
Registers the server program with the Portmapper.

Waits for incoming RPC requests and dispatches to the
appropriate service routine.

Sends the results of an RPC request to the client.
Unregisters the server program with the Portmapper.

Sends an error message to the client indicating that the
authentication information was not correctly formatted.

Sends an error message to the client indicating that the server
could not decode the arguments.

Sends an error message to the client indicating that the server
does not implement the desired procedure.

Sends an error message to the client indicating that the
requested program is not available.

Sends an error message to the client indicating that the
requested version is not available.

Sends an error message to the client indicating that a system
error occurred.

Sends an error message to the client indicating that the
authentication information was correctly formatted but was
insufficient.

(continued on next page)

ONC RPC Server Routines 7-1



ONC RPC Server Routines

Table 7-1 (Cont.) ONC RPC SERVER Routines

Routine

Task Category

svcraw create

svcfd create
svctcp_create
svcudp_bufcreate
svcudp_create
Xprt_register

Xprt_unregister

_authenticate

Creates a server handle for a client that shares the same
program space.

Creates a server handle for a specified TCP socket.
Creates a server handle using the TCP protocol.
Creates a server handle using buffered UDP transport.
Creates a server handle using the UDP transport.

Adds the UDP or TCP socket associated with the specified
server handle to the list of registered sockets.

Removes the UDP or TCP socket associated with the specified
server handle from the list of sockets.

Authenticates an RPC request message.

7-2 ONC RPC Server Routines



registerrpc

registerrpc
Obtains a unique systemwide procedure identification number.

Format
#include <rpc/rpc.h>

int registerrpc(u_long prognum, u_long versnum, u_long procnum, char *(*progname)(), xdrproc_t
inproc, xdrproc_t outproc );

Arguments
prognum

The program number associated with the service procedure.

versnum
The version number associated with the service procedure.

procnum
The procedure number associated with the service procedure.

progname
The address of the service procedure being registered with the ONC RPC service
package.

inproc
The XDR routine used to decode the service procedure’s arguments.

outproc
The XDR routine used to encode the service procedure’s results.

Description
The regi st errpc routine performs the following tasks for a server:
= Creates a UDP server handle. See the svcudp_creat e routine for restrictions.
= Calls the svc_regi ster routine to register the program with the Portmapper.

= Adds prognum versnum and procnumto an internal list of registered
procedures. When the server receives a request, it uses this list to determine
which routine to call.

A server should call regi sterrpc for every procedure it implements, except for
the NULL procedure. If a request arrives for program prognum version ver snum
and procedure procnum prognane is called with a pointer to its parameters.

Return Values

0 Indicates success.
-1 Indicates failure.

ONC RPC Server Routines 7-3



seterr_reply

seterr_reply

Fills in the error text in a reply message.

Format
#include <rpc/rpc.h>

void seterr_reply(struct rpc_msg *msg, struct rpc_err *error);

Arguments

msg
A pointer to a reply message buffer.

error
A pointer to an rpc_err structure containing the error associated with the reply
message.

Description

Given a reply message, seterr_reply fills in the error field.

Return Values

None

7-4 ONC RPC Server Routines



svc_destroy

svc_destroy

A macro that frees the memory associated with an RPC server handle.

Format
#include <rpc/rpc.h>
void svc_destroy(SVCXPRT *xprt);
Arguments
xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.
Description

The svc_destroy routine returns all the private data structures associated
with a server handle. If the server handle creation routine received the value
RPC_ANYSQCK as the socket, svc_destroy closes the socket. Otherwise, your
program must close the socket.

Return Values

None

ONC RPC Server Routines 7-5



svc_freeargs

svc_freeargs

Format

Arguments

Description

A macro that frees the memory allocated when the procedure’s arguments were
decoded.

#include <rpc/rpc.h>

bool t svc freeargs(SVCXPRT *xprt, xdrproc_t inproc, char *in);

xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.

inproc
The XDR routine used to decode the service procedure’s arguments.

in
A pointer to the service procedure’s decoded arguments.

The svc_destroy routine returns the memory that the svc_get args routine
allocated to hold the service procedure’s decoded arguments. This routine calls
the xdr_free routine.

Return Values

TRUE Success; memory successfully deallocated.
FALSE Failure; memory not deallocated.

7-6 ONC RPC Server Routines



svc_getargs

svc_getargs

Format

Arguments

Description

A macro that decodes the service procedure’s arguments.

#include <rpc/rpc.h>

bool_t svc_getargs(SVCXPRT *xprt, xdrproc_t inproc, char *in);

xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.

inproc

The XDR routine used to decode the service procedure’s arguments.
in

A pointer to the service procedure’s decoded arguments.

This routine calls the specified XDR routine to decode the arguments passed to
the service procedure.

Return Values

TRUE Successfully decoded.
FALSE Decoding unsuccessful.

ONC RPC Server Routines 7-7



svc_getcaller

svc_getcaller

A macro that returns the address of the client that called the service procedure.

Format
#include <rpc/rpc.h>
struct sockaddr_in *svc_getcaller(SVCXPRT *xprt);
Arguments
xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.
Description

This routine returns a sockaddr _i n structure containing the internet address of
the RPC client routine that called the service procedure.

Return Values

struct sockaddr in A pointer to the socket descriptor.

7-8 ONC RPC Server Routines



svc_getreqgset

svc_getreqset

Format

Arguments

Description

Example

Returns data for each server connection.

#include <rpc/rpc.h>

void svc_getregset(fd_set *rdfds);

rdfds
A pointer to the read file descriptor bit mask modified by the sel ect routine.

The svc_getreqset routine is for servers that implement custom asynchronous
event processing or that do not use the svc_run routine. You may only use
svc_fdset when the server does not use Svc_run.

You are unlikely to call this routine directly, because the svc_r un routine calls it.
However, there are times when you cannot call svc_run. For example, suppose a
program services RPC requests and reads or writes to another socket at the same
time. The program cannot call svc_run. It must call sel ect and svc_get regset.

The server calls svc_getregset when a call to the sel ect system call determines
the server has received one or more RPC requests. The svc_getreqset routine
reads in data for each server connection, then calls the server program to handle
the data.

The svc_getreqset routine does not return a value. It finishes executing after all
sockets associated with the variable r df ds have been serviced.

You may use the global variable svc_fdset with svc_getreqset. The svc_f dset
variable is the RPC server’s read file descriptor bit mask.

To use svc_fdset:
1. Copy the global variable svc_f dset into a temporary variable.

2. Pass the temporary variable to the sel ect routine. The sel ect routine
overwrites the variable and returns it.

3. Pass the temporary variable to the svc_getreqset routine.

#def i ne MAXSOCK 10

int readfds[ MAXSOCK+1], /* sockets to select front/
bl

ONC RPC Server Routines 7-9



svc_getregset

for(i =0, j =0; i << MAXSOCK; i++)
if((svc_fdset[i].sockname != 0) && (svc_fdset[i].socknane != -1))
readfds[]++] = svc_fdset[i].socknane
readfds[j] = 0; /* list of sockets ends with a zero */
switch(select(0, readfds, 0, 0, 0))
{

case -1: [* an error happened */

case 0: [* time out */
br eak;

defaul t: /* 1 or more sockets ready for reading */
errno =0
svc_getreqset (readfds)
if( errno == ENETDOM || errno == ENOTCONN)
sys$exit ( SS$_TH RDPARTY)

Return Values

None

7-10 ONC RPC Server Routines



SvC_register

SvC_register

Format

Arguments

Description

Registers the server program with the Portmapper service.

#include <rpc/rpc.h>

bool_t svc_register(SVCXPRT *xprt, u_long prognum, u_long versnum, void (*dispatch)(), u_long
protocol);

xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.

prognum
The program number associated with the server procedure.

versnum
The version number associated with the server procedure.

dispatch

The address of the service dispatch procedure that the server procedure calls.
The procedure di spat ch has the following form:

voi d dispatch(request, xprt)

struct svc_req *request;

SVCXPRT *xprt;

The svc_run and svc_getreqset call the di spat ch routine.

protocol

The protocol that the server procedure uses. Values for this parameter are
zero, IPPROTO_UDP, or IPPROTO_TCP. If prot ocol is zero, the service is not
registered with the Portmapper service.

Associates prognumand ver snumwith the service dispatch procedure di spat ch. If
protocol is non-zero, then a mapping of the triple [ prognum ver snum protocol ]
to xprt->xp_port is also established with the local Portmapper service.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

ONC RPC Server Routines 7-11



svc_run

svc_run

Format

Arguments

Description

Waits for incoming RPC requests and calls the svc_getreqset routine to dispatch
to the appropriate RPC server program.

#include <rpc/rpc.h>

void svc_run();

None

The svc_run routine calls the sel ect routine to wait for RPC requests. When a
request arrives, svc_run calls the svc_getreqset routine. Then svc_run calls the
sel ect routine again.

The svc_run routine never returns.

You may use the global variable svc_f dset with the svc_run routine. See the
svc_getreqgset routine for more information on svc_fdset.

Return Values

Never returns

7-12 ONC RPC Server Routines



svc_sendreply

svc_sendreply

Format

Arguments

Description

Sends the results of a remote procedure call to an RPC client.

#include <rpc/rpc.h>

bool_t svc_sendreply(SVCXPRT *xprt, xdrproc_t outproc, char *out);

xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.

outproc
The XDR routine used to encode the server procedure’s results.

out
A pointer to the server procedure’s results.

Called by an ONC RPC service’s dispatch routine to send the results of a remote
procedure call.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

ONC RPC Server Routines 7-13



svc_unregister

svC_unregister

Calls the Portmapper to unregister the specified program and version for all
protocols. The program and version are removed from the list of active servers.

Format
#include <rpc/rpc.h>
void svc_unregister(u_long prognum, u_long versnum);
Arguments
prognum
The program number associated with the server procedure.
versnum
The version number associated with the server procedure.
Description

Removes all mapping of the double [ prognum versnunj to dispatch routines, and
of the triple [ prognum versnum *] to port number.

Return Values

None

7-14 ONC RPC Server Routines



svcerr_auth

svcerr_auth

Sends an authentication error to the client.

Format
#include <rpc/rpc.h>

void svcerr_auth(SVCXPRT *xprt, enum auth_stat why);

Arguments

xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.

why
The reason for the authentication error.

Description

Called by a service dispatch routine that refuses to perform a remote procedure
call due to an authentication error.

Return Values

None

ONC RPC Server Routines 7-15



svcerr_decode

svcerr_decode

Sends an error code to the client indicating that the server procedure cannot
decode the client’'s arguments.

Format
#include <rpc/rpc.h>
void svcerr_decode(SVCXPRT *xprt);
Arguments
xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.
Description

Called by a service dispatch routine that cannot successfully decode its
parameters. See also the svc_get args routine.

Return Values

None

7-16 ONC RPC Server Routines



svcerr_noproc

svcerr_noproc

Sends an error code to the client indicating that the server program does not
implement the requested procedure.

Format
#include <rpc/rpc.h>
void svcerr_noproc(SVCXPRT *xprt);
Arguments
xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.
Description

Called by a service dispatch routine that does not implement the procedure
number that the client requested.

Return Values

None

ONC RPC Server Routines 7-17



svcerr_noprog

svcerr_noprog

Sends an error code to the client indicating that the server program is not
registered with the Portmapper.

Format
#include <rpc/rpc.h>
void svcerr_noprog(SVCXPRT *xprt);
Arguments
xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.
Description

Called when the desired program is not registered with the ONC RPC package.
Generally, the Portmapper informs the client when a server is not registered.
Therefore, service implementors usually do not use this routine.

Return Values

None

7-18 ONC RPC Server Routines



svcerr_progvers

SVCerr_progvers

Format

Arguments

Description

Sends an error code to the client indicating that the requested program is
registered with the Portmapper but the requested version of the program is
not registered.

#include <rpc/rpc.h>

void svcerr_progvers(SVCXPRT *xprt, u_long low_vers, u_long high_vers);

xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.

low_vers
The lowest version of the requested program that the server supports.

high_vers
The highest version of the requested program that the server supports.

Called when the desired version of a program is not registered with the ONC
RPC package. Generally, the Portmapper informs the client when a requested
program version is not registered. Therefore, service implementors usually do not
use this routine.

Return Values

None

ONC RPC Server Routines 7-19



svcerr_systemerr

svcerr_systemerr

Sends an error code to the client indicating that the an error occurred that is not
handled by the protocol being used.

Format
#include <rpc/rpc.h>
void svcerr_systemerr(SVCXPRT *xprt);
Arguments
xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.
Description

Called by a service dispatch routine when it detects a system error not covered by
any particular protocol. For example, if a service can no longer allocate storage,
it may call this routine.

Return Values

None

7-20 ONC RPC Server Routines



svcerr_weakauth

svcerr_weakauth

Sends an error code to the client indicating that an authentication error occurred.
The authentication information was correct but was insufficient.

Format
#include <rpc/rpc.h>
void svcerr_weakauth(SVCXPRT *xprt);
Arguments
xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.
Description

Called by a service dispatch routine that refuses to perform a remote procedure
call due to insufficient (but correct) authentication parameters. The routine calls
svcerr_auth (xprt, AUTH TOOWEAK) .

Return Values

None

ONC RPC Server Routines 7-21



svcraw_create

svCcraw_create

Format

Arguments

Description

Creates a server handle for memory-based ONC RPC for simple testing and
timing.

#include <rpc/rpc.h>

SVCXPRT *svcraw_create();

None

Creates a in-program ONC RPC service transport, to which it returns a
pointer. The transport is really a buffer within the process’s address space,

so the corresponding client should live in the same address space; see the

cl ntraw create routine. The svcraw create and cl ntraw creat e routines allow
simulation and acquisition of ONC RPC overheads (such as round-trip times),
without any kernel interference.

Return Values

SVCXPRT * A pointer to an RPC server handle for the in-
memory transport.
NULL Indicates failure.

7-22 ONC RPC Server Routines



svcfd_create

svcfd_create

Format

Arguments

Description

Creates an RPC server handle using the specified open file descriptor.

#include <rpc/rpc.h>

SVCXPRT *svcfd_create(int fd, u_int sendsize, u_int recvsize);

fd
The number of an open file descriptor.

sendsize
The size of the send buffer. If you specify 0, the routine chooses a suitable default.

recvsize

The size of the receive buffer. If you specify 0, the routine chooses a suitable
default.

Creates an RPC server handle using the specified TCP socket, to which it returns
a pointer. The server should call the svcfd_creat e routine after it accepts an
incoming TCP connection.

Return Values

SVCXPRT * A pointer to the server handle.
NULL Indicates failure.

ONC RPC Server Routines 7-23



SvCtcp_create

svctcp_create

Creates an ONC RPC server handle for a TCP/IP connection.

Format
#include <rpc/rpc.h>
SVCXPRT *svctcp_create(int sock, u_int sendsize, u_int recvsize);

Arguments
sock
The socket with which the connection is associated. If sock is RPC_ANYSOCK, then
this routine opens a new socket and sets sock. If the socket is not bound to a
local TCP port, then this routine binds it to an arbitrary port.
sendsize
The size of the send buffer. If you specify 0, the routine chooses a suitable default.
recvsize
The size of the receive buffer. If you specify 0, the routine chooses a suitable
default.

Description

Creates an RPC server handle using the TCP/IP transport, to which it returns
a pointer. Upon completion, xprt->xp_sock is the transport’s socket descriptor,
and xprt->xp_port is the transport’s port number. The service is automatically
registered as a transporter (thereby including its socket in svc_f ds such that its
socket descriptor is included in all RPC sel ect system calls).

Return Values

SVCXPRT * A pointer to the server handle.
NULL Indicates failure.

7-24 ONC RPC Server Routines



svcudp_bufcreate

svcudp_bufcreate

Creates an ONC RPC server handle for a buffered 1/0 UDP connection.

Format
#include <rpc/rpc.h>
SVCXPRT *svcudp_bufcreate(int sock, u_int sendsize, u_int recvsize);
Arguments
sock
The socket with which the connection is associated. If sock is RPC_ANYSOCK, then
this routine opens a new socket and sets sock.
sendsize
The size of the send buffer. If you specify 0, the routine chooses a suitable default.
recvsize
The size of the receive buffer. If you specify 0, the routine chooses a suitable
default.
Description

Creates an RPC server handle using the UDP transport, to which it returns a
pointer. Upon completion, Xprt->xp_sock is the transport’s socket descriptor,
and xprt->xp_port is the transport's port number. The service is automatically
registered as a transporter (thereby including its socket in svc_f ds such that its
socket descriptor is included in all RPC sel ect system calls).

Return Values

SVCXPRT * A pointer to the server handle.
NULL Indicates failure.

ONC RPC Server Routines 7-25



svcudp_create

svcudp_create

Creates an ONC RPC server handle for a non-buffered 1/0 UDP connection.

Format
#include <rpc/rpc.h>
SVCXPRT  *svcudp_create(int sock);
Arguments
sock
The socket with which the connection is associated. If sock is RPC_ANYSOCK, then
this routine opens a new socket and sets sock.
Description

Creates an RPC server handle using the UDP transport, to which it returns a
pointer. Upon completion, xprt->xp_sock is the transport’s socket descriptor,
and xprt->xp_port is the transport’s port number. The service is automatically
registered as a transporter (thereby including its socket in svc_f ds such that its
socket descriptor is included in all RPC sel ect system calls).

Note

Since UDP/IP-based ONC RPC messages can only hold up to 8 Kbytes of
encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

Return Values

SVCXPRT * A pointer to the server handle.
NULL Indicates failure.

7-26 ONC RPC Server Routines



Xprt_register

Xprt_register

Format

Arguments

Description

Adds a socket associated with an RPC server handle to the list of registered
sockets.

#include <rpc/rpc.h>

void xprt_register(SVCXPRT *xprt);

xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.

Activation of a transport handle involves setting the most appropriate bit for the
socket associated with xprt in the svc_fds mask. When svc_run() is invoked,
activity on the transport handle is eligible to be processed by the server.

The svc_regi ster routine calls this routine; therefore, you are unlikely to use
this routine directly.

Return Values

None

ONC RPC Server Routines 7-27



Xprt_unregister

Xprt_unregister

Format

Arguments

Description

Removes a socket associated with an RPC server handle from the list of registered
sockets.

#include <rpc/rpc.h>

void xprt_unregister(SVCXPRT *xprt);

xprt
A pointer to an RPC server handle created by any of the server handle creation
routines.

Removes the socket associated with the indicated handle from the list of
registered sockets maintained in the svc_f dset variable. Activity on the socket
associated with xprt will no longer be checked by the svc_run routine.

The svc_unregi st er routine calls this routine; therefore, you are unlikely to use
this routine directly.

Return Values

None

7-28 ONC RPC Server Routines



_authenticate

_authenticate

Format

Arguments

Description

Authenticates the request message.

#include <rpc/rpc.h>

enum auth_stat _authenticate(struct svc_req *rgst, struct rpc_msg *msg);

rgst
A pointer to an svC_req structure with the requested program number, procedure
number, version number, and credentials passed by the client.

msg
A pointer to an rpc_nsg structure with members that make up the RPC message.

Returns AUTH (K if the message is authenticated successfully. If it returns
AUTH X the routine also does the following:

= Setsrqst->rq_xprt->verf to the appropriate response verifier.
e Setsrqst->rqg_client_cred to the "cooked" form of the credentials.

The expression rgst->rq_xprt->verf must be preallocated, and its length set
appropriately.

The program still owns and is responsible for nsg- >u. cnb. cred and nsg-
>u. cnb. verf. The authentication system retains ownership of rqst -
>rg_client_cred, the "cooked" credentials.

Return Values

enumaut h_st at The return status code for the authentication
checks:

AUTH_OK=0—Authentication checks
successful.

AUTH_BADCRED=1—Invalid credentials
(seal broken)
AUTH_REJECTEDCRED=2—Client should
begin new session
AUTH_BADVERF=3—Invalid verifier (seal
broken)
AUTH_REJECTEDVERF=4—Verifier expired
or was replayed
AUTH_TOOWEAK=5—Rejected due to
security reasons
AUTH_INVALIDRESP=6—Invalid response
verifier

AUTH_FAILED=7—some unknown reason

ONC RPC Server Routines 7-29






8

XDR Routine Reference

This chapter describes the routines that specify external data representation.
They allow C programmers to describe arbitrary data structures in a system-
independent fashion. These routines transmit data for remote procedure

calls.

Table 8-1 indicates the type of task that each routine performs.

Table 8—1 XDR Data Conversion Routines

Routine

Encodes and Decodes...

xdr_accepted reply
xdr_array

xdr _aut huni x_par s
xdr _boo

xdr_bytes

xdr _cal | hdr
xdr_cal I msg

xdr _char
xdr_doubl e
xdr_enum

xdr_fl oat

xdr _hyper

xdr _int

xdr_long

xdr _opaque
xdr_opaque_auth

xdr _pmap
xdr_prmap_vns

xdr _pnapl i st

xdr _pmapl i st_vms
xdr _poi nt er
xdr_reference

xdr _rejected reply
xdr _repl ymsg

Accepted RPC messages
Variable-length arrays

UNIX-style authentication information
Boolean values

Single bytes

Static part of RPC request message headers
RPC request messages

Single characters

Double-precision floating-point numbers
Enumerations

Single-precision floating-point numbers
Quad words (hyperintegers)

4-byte integers

Longwords

Fixed-length opaque data structures

Opaque opaque_aut h structures containing authentication
information

Portmapper parameters
Portmapper parameters (including OpenVMS process IDs)
Portmapper lists
Portmapper lists (including OpenVMS process 1Ds)
Data structure pointers
Data structure pointers
Rejected RPC reply messages
RPC reply messages
(continued on next page)

XDR Routine Reference 8-1



XDR Routine Reference

Table 8-1 (Cont.) XDR Data Conversion Routines

Routine Encodes and Decodes...
xdr_short 2-byte integers
xdr_string Null-terminated strings
xdr _u_char Unsigned characters
xdr_u_hyper Unsigned quadwords (hyperintegers)
xdr_u_int Unsigned four-byte integers
xdr_u_| ong Unsigned long integers
xdr_u_short Unsigned two-byte integers
xdr _uni on Unions

xdr_vect or Fixed-length arrays
xdr_void (A dummy routine)

xdr_wrapstring

Null-terminated strings

This chapter also describes the XDR routines that manage XDR streams. They
allow C programmers to handle XDR streams in a system-independent fashion.

Table 8-2 indicates the type of task that each routine performs.

Table 8-2 XDR Stream Handling Routines

Routine

Task

xdr_free
xdrmem create
xdrrec_create

xdrrec_endof record
xdrrec_eof

xdrrec_ski precord
xdrstdio create
xdr_accepted reply

Deallocates an XDR data structure
Creates an XDR stream handle describing a memory buffer

Creates an XDR stream handle describing a record-oriented
TCP-based connection

Generates an end-of-record indication for an XDR record

Positions the data pointer to the end of the current XDR record
and indicates if any more records follow the current record

Positions the data pointer at the end of the current XDR record
Creates an XDR stream handle describing a St di 0 stream
Accepted RPC messages

8-2 XDR Routine Reference



xdr_accepted_reply

xdr_accepted_reply

Format

Arguments

Description

Serializes and deserializes a message-accepted indication in an RPC reply
message.

#include <tcpip$rpexdr.h>
bool t xdr_accepted_reply(XDR *xdrs, struct accepted_reply *arp);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

arp
A pointer to a buffer to which the message-accepted indication is written.

Used for encoding reply messages. This routine encodes the status of the RPC
call and, in the case of success, the call results as well. This routine is useful
for users who wish to generate messages without using the ONC RPC package.
It returns the message-accepted variant of a reply message union in the arp
argument.

The xdr _repl ynsg routine calls this routine.

Return Values

TRUE Indicates success.
FALSE Indicates failure to encode the message.

XDR Routine Reference 8-3



xdr_array

xdr_array

Format

Arguments

Description

Serializes and deserializes the elements of a variable-length array.

#include <tcpip$rpcxdr.h>

bool_t xdr_array(XDR *xdrs, char **arrp, u_int *sizep, u_int maxsize, u_int elsize, xdrproc_t elproc);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

arrp
A pointer to the pointer to the array.

sizep
A pointer to the number of elements in the array. This element count cannot
exceed the maxsi ze parameter.

maxsize
The maximum size of the si zep parameter. This value is the maximum number
of elements that the array can hold.

elsize
The size, in bytes, of each of the array’s elements.

elproc
The XDR routine to call that handles each element of the array.

A filter primitive that translates between variable-length arrays and their
corresponding external representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-4 XDR Routine Reference



xdr_authunix_parms

xdr_authunix_parms

Format

Arguments

Description

Serializes and deserializes credentials in an authentication parameter structure.

#include <tcpip$rpcxdr.h>

bool_t xdr_authunix_parms (XDR *xdrs, struct authunix_parms *authp);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

authp
A pointer to an aut huni x_par ns structure.

Used for externally describing standard UNIX credentials. On a TCP/IP Services
host, this routine encodes the host name, the user ID, and the group ID. It sets
the group ID list to NULL. This routine is useful for users who want to generate
these credentials without using the ONC RPC authentication package.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-5



xdr_bool

xdr_bool

Serializes and deserializes boolean data.
Format

#include <tcpip$rpcxdr.h>

bool_t xdr_bool (XDR *xdrs, bool_t *bp);
Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream handle

creation routines.

bp

A pointer to the boolean data.
Description

A filter primitive that translates between booleans (integers) and their external
representations. When encoding data, this filter produces values of either one or
ZEero.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-6 XDR Routine Reference



xdr_bytes

xdr_bytes

Format

Arguments

Description

Serializes and deserializes a counted byte array.

#include <tcpip$rpcxdr.h>

bool_t xdr_bytes (XDR *xdrs, char **bpp, u_int *sizep, u_int maxsize);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

bpp
A pointer to a pointer to the byte array.

sizep
A pointer to the length of the byte array.

maxsize
The maximum size of the length of the byte array.

A filter primitive that translates between a variable-length byte array and its
external representation. The length of the array is located at si zep; the array
cannot be longer than maxsi ze. If *bpp is NULL, xdr byt es allocates maxsi ze
bytes.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-7



xdr_callhdr

xdr_callhdr

Serializes and deserializes the static part of a call message header.

Format
#include <tcpip$rpcxdr.h>
bool_t xdr_callhdr(XDR *xdrs, struct rpc_msg *chdrp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

chdrp
A pointer to the call header data.
Description

Describes call header messages. This routine is useful for users who want to
generate messages without using the ONC RPC package. The xdr_cal | hdr
routine encodes the following fields: transaction ID, direction, RPC version,
server program number, and server version.

Return Values

TRUE Indicate success.
FALSE Indicates failure.

8-8 XDR Routine Reference



xdr_callmsg

xdr_callmsg

Format

Arguments

Description

Serializes and deserializes an ONC RPC call message.

#include <tcpip$rpcxdr.h>

bool_t xdr_callmsg(XDR *xdrs, struct rpc_msg *cmsgp);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

cmsgp
A pointer to an r pc_nsg structure that describes the RPC call message.

This routine is useful for users who want to generate messages without using
the ONC RPC package. The xdr _cal | msg routine encodes the following fields:
transaction ID, direction, RPC version, server program number, server version
number, server procedure number, and client authentication.

The pmap_rntcal | and svc_sendreply routines call xdr _cal | nsg.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-9



xdr_char

xdr_char

Serializes and deserializes character data.
Format

#include <tcpip$rpcxdr.h>

bool_t xdr_char(XDR *xdrs, char *cp);
Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream handle

creation routines.

cp

A pointer to a character.
Description

A filter primitive that translates between internal representations of characters
and their XDR representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-10 XDR Routine Reference



xdr_double

xdr_double

Serializes and deserializes VAX and IEEE double-precision floating-point
numbers.

Format
#include <tcpip$rpexdr.h>
bool t xdr_double(XDR *xdrs, double *dp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

dp
A pointer to the double-precision floating-point number.

Description

A filter primitive that translates between double-precision numbers and their
external representations.

This routine is actually implemented by four XDR routines:

xdr _double D  converts VAX D-format floating-point numbers
xdr _double_G  converts VAX G-format floating-point numbers
xdr_double T  converts IEEE T-format floating-point numbers
xdr_double_X  converts IEEE X-format floating-point numbers

You can reference these routines explicitly or you can use compiler settings to
control which routine is used when you reference the xdr _doubl e routine.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-11



xdr_enum

xdr_enum

Serializes and deserializes enumerations.
Format

#include <tcpip$rpcxdr.h>

bool_t xdr_enum(XDR *xdrs, enum_t *ep);
Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream handle

creation routines.

ep

A pointer to the enumeration data.
Description

A filter primitive that translates between enumerations (actually integers) and
their external representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-12 XDR Routine Reference



xdr_float

xdr_float

Format

Arguments

Description

Serializes and deserializes VAX and IEEE single-precision floating-point numbers.

#include <tcpip$rpcxdr.h>
bool_t xdr_float(XDR *xdrs, float *fp);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

fp
A pointer to a single-precision floating-point number.

A filter primitive that translates between single-precision floating-point numbers
and their external representations.

This routine is actually implemented by two XDR routines:

xdr_float_F converts VAX F-format floating-point numbers
xdr float_S converts IEEE T-format floating-point numbers

You can reference these routines explicitly or you can use compiler settings to
control which routine is used when you reference the xdr _f| oat routine.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-13



xdr_free

xdr_free

Format

Arguments

Description

Deallocates the memory associated with the indicated data structure.

#include <tcpip$rpcxdr.h>

bool_t xdr_free(xdrproc_t proc, char *objp);

proc
The XDR routine for the data structure being freed.

objp
A pointer to the data structure to be freed.

Releases memory allocated for the data structure to which obj p points. The
pointer passed to this routine is not freed, but what it points to is freed
(recursively). Use this routine to free decoded data that is no longer needed.
Never use this routine for encoded data.

Return Values

TRUE Indicate success.
FALSE Indicates failure.

8-14 XDR Routine Reference



xdr_hyper

xdr_hyper
Serializes and deserializes VAX quadwords (known in XDR as hyper-integers).

Format
#include <tcpip$rpcxdr.h>
bool_t xdr_hyper(XDR *xdrs, quad *hp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

hp
A pointer to the hyper-integer data.

Description

A filter primitive that translates between hyper-integers and their external
representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-15



xdr_int

xdr_int

Serializes and deserializes integers.
Format

#include <tcpip$rpcxdr.h>

bool_t xdr_int(XDR *xdrs, int *ip);
Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream handle

creation routines.

ip

A pointer to the integer data.
Description

A filter primitive that translates between integers and their external
representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-16 XDR Routine Reference



xdr_long

xdr_long

Serializes and deserializes long integers.
Format

#include <tcpip$rpcxdr.h>

bool_t xdr_long(XDR *xdrs, long *Ip);
Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream handle

creation routines.

Ip

A pointer to a long integer.
Description

A filter primitive that translates between long integers and their external
representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-17



xdr_opaque

xdr_opaque
Serializes and deserializes opaque structures.

Format
#include <tcpip$rpcxdr.h>

bool_t xdr_opaque(XDR *xdrs, char *op, u_int cnt);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

op
A pointer to the opaque data.

cnt
The size of op in bytes.

Description

A filter primitive that translates between fixed-size opaque data and its external
representation. This routine treats the data as a fixed length of bytes and does
not attempt to convert the bytes.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-18 XDR Routine Reference



xdr_opaque_auth

xdr_opaque_auth

Format

Arguments

Description

Serializes and deserializes ONC RPC authentication information message.

#include <tcpip$rpcxdr.h>
bool_t xdr_opaque_auth(XDR *xdrs, struct opaque_auth *authp);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

authp

A pointer to an opaque_aut h structure describing authentication information. The
pointer should reference data created by the aut hnone_creat e, aut huni x_create,
or aut huni x_create_defaul t routine.

Translates ONC RPC authentication information messages. This routine is useful
for users who want to generate messages without using the ONC RPC package.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-19



xdr_pmap

xdr_pmap
Serializes and deserializes Portmapper parameters.
Format
#include <tcpip$rpcxdr.h>
bool_t xdr_pmap(XDR *xdrs, struct pmap *regs);
Arguments
xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.
regs
A pointer to the pmap structure. This structure contains the program number,
version number, protocol number, and port number.
Description

Describes parameters to various Portmapper procedures, externally. This routine
is useful for users who want to generate these parameters without using the
Portmapper interface.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-20 XDR Routine Reference



xdr_pmap_vms

xdr_pmap_vms

Format

Arguments

Description

Serializes and deserializes OpenVMS-specific Portmapper parameters.

#include <tcpip$rpcxdr.h>

bool_t xdr_pmap_vms(XDR *xdrs, struct pmap_vms *regs);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

regs
A pointer to the pmap_vns structure. This structure contains the program number,
version number, protocol number, port number and the OpenVMS-specific process
identification.

This routine is similar to xdr _pmap( ), except it also includes the process
identification in the pmap_vns structure.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-21



xdr_pmaplist

xdr_pmaplist

Serializes and deserializes a list of Portmapper port mappings.

Format
#include <tcpip$rpcxdr.h>
bool_t xdr_pmaplist(XDR *xdrs, struct pmaplist **rpp);

Arguments
xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.
rpp _
A pointer to a pointer to a pmapl i st structure containing a list of Portmapper
programs and their respective information. If the routine is used to decode a
Portmapper listing, it sets r pp to the address of a newly-allocated linked list of
pmapl i st structures.

Description

Describes a list of port mappings, externally. This routine is useful for users who
want to generate these parameters without using the Portmapper interface.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-22 XDR Routine Reference



xdr_pmaplist_vms

xdr_pmaplist_vms

Format

Arguments

Description

Serializes and deserializes a list of Portmapper port mappings for OpenVMS
systems.

#include <tcpip$rpexdr.h>

bool_t xdr_pmaplist vms (XDR *xdrs, struct pmaplist_ vms **rpp);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

rpp

A pointer to a pointer to a pmapl i st _vns structure containing a list of Portmapper
programs and their respective information, including OpenVMS-specific
information.

This routine is similar to the xdr_pmapl i st routine, except it also includes the
process identification in the pmapl i st _vns structure.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-23



xdr_pointer

xdr_pointer

Serializes and deserializes indirect pointers and the data being pointed to.

Format
#include <tcpip$rpcxdr.h>
bool_t xdr_pointer(XDR *xdrs, char **objpp, u_int objsize, xdrproc_t objproc);
Arguments
xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.
objpp
A pointer to a pointer to the data being converted.
objsize
The size of the data structure in bytes.
objproc
The XDR procedure that filters the structure between its local form and its
external representation.
Description

An XDR routine for translating data structures that contain pointers to other
structures, such as a linked list. The xdr_poi nter routine is similar to the
xdr _reference routine. The differences are that the xdr _poi nt er routine handles
pointers with the value NULL and that it translates the pointer values to a
boolean. If the boolean is TRUE, the data follows the boolean.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-24 XDR Routine Reference



xdr_reference

xdr_reference

Format

Arguments

Description

Serializes and deserializes indirect pointers and the data being pointed to.

#include <tcpip$rpcxdr.h>

bool_t xdr_reference(XDR *xdrs, char **objpp, u_int objsize, xdrproc_t objproc);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

objpp

A pointer to a pointer to the structure containing the data being converted. If
obj pp is zero, the xdr _ref erence routine allocates the necessary storage when
decoding. This argument must be non-zero during encoding.

objsize
The size of the structure in bytes.
objproc

The XDR procedure that filters the structure between its local form and its
external representation.

A primitive that provides pointer chasing within structures.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-25



xdr_rejected_reply

xdr_rejected_reply

Serializes and deserializes the remainder of an RPC reply message after the
header indicates that the reply is rejected.
Format
#include <tcpip$rpexdr.h>
bool t xdr_rejected reply(XDR *xdrs, struct rejected_reply *rrp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

rep
A pointer to the rej ect ed_reply structure describing the rejected-reply message.

Description

Describes ONC RPC reply messages. This routine is useful for users who want to
generate messages without using the ONC RPC package.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-26 XDR Routine Reference



xdr_replymsg

xdr_replymsg

Serializes and deserializes the RPC reply header and then calls the appropriate
routine to interpret the rest of the message.

Format
#include <tcpip$rpexdr.h>
bool t xdr_replymsg(XDR *xdrs, struct rpc_msg *rmsgp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

rmsgp
A pointer to the rpc_msg structure describing the reply message.

Description

Describes ONC RPC reply messages. This routine is useful for users who
want to generate messages without using the ONC RPC package. This routine
interprets the message header and then calls either the xdr _accepted_reply or
the xdr _rej ected_reply routine to interpret the body of the RPC message.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-27



xdr_short

xdr_short

Serializes and deserializes short integers.
Format

#include <tcpip$rpcxdr.h>

bool_t xdr_short(XDR *xdrs, short *sp);
Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream handle

creation routines.

sp

A pointer to a short integer.
Description

A filter primitive that translates between short integers and their external
representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-28 XDR Routine Reference



xdr_string

xdr_string

Format

Arguments

Description

Serializes and deserializes strings (arrays of bytes terminated by a NULL
character).

#include <tcpip$rpexdr.h>

bool_t xdr_string(XDR *xdrs, char **spp, u_int maxsize);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

spp
A pointer to a pointer to a character string.

maxsize
The maximum size of the string.

A filter primitive that translates between strings and their corresponding
external representations. Strings cannot be longer than the value specified with
the maxsi ze parameter.

While decoding, if *spp is NULL, this routine allocates the necessary storage to
hold the NULL-terminated string and sets *spp to point to the allocated storage.

This routine is the same as the xdr _wrapst ri ng routine, except that this routine
allows you to specify maxsi ze.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-29



xdr_u_char

xdr_u_char

Serializes and deserializes unsigned characters.

Format
#include <tcpip$rpcxdr.h>

bool_t xdr_u_char(XDR *xdrs, char *ucp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

ucp
A pointer to a character.

Description

A filter primitive that translates between internal representation of unsigned
characters and their XDR representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-30 XDR Routine Reference



xdr_u_hyper

xdr_u_hyper

Serializes and deserializes unsigned VAX quadwords (known in XDR as hyper-
integers).
Format
#include <tcpip$rpexdr.h>
bool t xdr_u_hyper(XDR *xdrs, unsigned quad *uhp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

uhp
A pointer to the unsigned hyper-integer.

Description

A filter primitive that translates between unsigned hyper-integers and their
external representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-31



xdr_u_int

xdr_u_int

Serializes and deserializes unsigned integers.
Format

#include <tcpip$rpcxdr.h>

bool_t xdr_u_int(XDR *xdrs, unsigned *uip);
Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream handle

creation routines.

uip

A pointer to the unsigned integer.
Description

A filter primitive that translates between unsigned integers and their external
representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-32 XDR Routine Reference



xdr_u_long

xdr_u_long
Serializes and deserializes unsigned long integers.

Format
#include <tcpip$rpcxdr.h>
bool_t xdr_u_long(XDR *xdrs, unsigned long *ulp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

ulp
A pointer to the unsigned long integer.

Description

A filter primitive that translates between unsigned long integers and their
external representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-33



xdr_u_short

xdr_u_short

Serializes and deserializes unsigned short integers.

Format
#include <tcpip$rpcxdr.h>

bool_t xdr_u_short(XDR *xdrs, unsigned short *usp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

usp
A pointer to the unsigned short integer.

Description

A filter primitive that translates between unsigned short integers and their
external representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-34 XDR Routine Reference



xdr_union

xdr_union

Format

Arguments

Description

Serializes and deserializes discriminant unions.

#include <tcpip$rpcxdr.h>

bool_t xdr_union(XDR *xdrs, enum *dscmp, char *unp, struct xdr_discrim *choices, xdrproc_t default);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

dscmp
A pointer to the union’s discriminant.

unp
A pointer to the union’s data.

choices

A pointer to an array of xdr _di scri mstructures. Each structure contains an
ordered pair of [ val ue, proc]. The final structure in the array is denoted by a
pointer with the value NULL.

default
The address of the default XDR routine to call if the dscnp argument is not found
in the choi ces array.

A filter primitive that translates between a discriminated union and its
corresponding external representation. The xdr _uni on routine first translates the
discriminant of the union located at dscnp. This discriminant is always of type
enum t.

Next, the routine translates the union data located at unp. To translate the union
data the xdr _uni on routine first searches the structure pointed to by the choi ces
argument for the union discriminant passed in the dscnp argument. If a match is
found, the xdr _uni on routine calls proc to translate the union data.

The end of the xdr _di scri mstructure array must contain an entry with the value
NULL for proc. If the xdr_uni on routine reaches this entry before finding a match,
the routine calls the def aul t procedure (if it is not NULL).

Return Values

TRUE Indicates success.
FALSE Indicates failure.

XDR Routine Reference 8-35



xdr_vector

xdr_vector

Serializes and deserializes the elements of a fixed-length array (known as a

vector).
Format
#include <tcpip$rpexdr.h>
bool_t xdr_vector(XDR *xdrs, char **vecpp, u_int elnum, u_int elsize, xdrproc_t elproc);
Arguments
xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.
vecpp
A pointer to a pointer to the array.
elnum
The number of elements in the array.
elsize
The size, in bytes, of each element.
elproc
The XDR routine to handle each element.
Description

A routine that calls el proc to prepare the elements of an array for XDR
messages.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-36 XDR Routine Reference



xdr_void

xdr_void
When there is no data to convert, this routine is passed to ONC RPC routines
that require an XDR procedure parameter.
Format
#include <tcpip$rpexdr.h>
bool t xdr_void();
Description

This routine is used as a placeholder for a program that passes no data in a
remote procedure call. Most client and server routines expect an XDR routine to
be called, even when there is no data to pass.

Return Values

This routine always returns TRUE.

XDR Routine Reference 8-37



xdr_wrapstring

xdr_wrapstring

Serializes and deserializes NULL-terminated strings.

Format
#include <tcpip$rpcxdr.h>
bool_t xdr_wrapstring(XDR *xdrs, char **spp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

spp
A pointer to a pointer to a string.

Description

A primitive that calls xdr_string(xdrs, sp, MAXUNSI GNED) ; where MAXUNSI GNED
is the maximum value of an unsigned integer. This routine is useful because the
ONC RPC client and server routines pass the XDR stream handle and a single

pointer as parameters to any referenced XDR routines. The xdr _string routine,
one of the most frequently used ONC RPC primitives, requires three parameters.

While decoding, if *sp is NULL, the necessary storage is allocated to hold the
null-terminated string and *sp is set to point to it.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-38 XDR Routine Reference



xdrmem_ create

xdrmem_create

Format

Arguments

Description

Initializes an XDR stream descriptor for a memory buffer.

#include <tcpip$rpcxdr.h>

void xdrmem_create(XDR *xdrs, char *addr, u_int size, enum xdr_op op);

xdrs
A pointer to the XDR stream handle being created. The routine xdr mem creat e
fills in xdr s with encoding and decoding information.

addr
A pointer to the memory buffer.

size
The length of the memory buffer.

op
An XDR operation, one of: XDR_ENCCDE, XDR_DECODE, and XDR_FREE.

The stream handle xdr s is initialized with the operation op, the buffer addr and
si ze, and the operations context for an xdr memstream.

Return Values

None

XDR Routine Reference 8-39



xdrrec_create

xdrrec_create

Initializes a record-oriented XDR stream descriptor.

Format
#include <tcpip$rpcxdr.h>

void xdrrec_create(XDR *xdrs, u_int sendsize, u_int recvsize, char *tcp_handle, int (*readit)(), int
(*writeit)());

Arguments

xdrs
A pointer to the XDR stream handle being created. The routine xdrrec_create
fills in xdr s with encoding and decoding information.

sendsize
The send buffer size.

recvsize
The receive buffer size.

tcp_handle
A pointer to an opaque handle that is passed as the first parameter to the
procedures (*readit)() and (*writeit)().

(*readit)()
Read procedure that takes the opaque handle t cp_handl e. The routine must use
the following format:

int readit(char *tcp_handle, char *buffer, u_long |en)
where tcp_handle is the client or server handle, buffer is the buffer to fill, and

len is the number of bytes to read. The readit routine should return either the
number of bytes read or the value - 1 if an error occurs.

(*writeit)()
Write procedure that takes the opaque handle t cp_handl e. The routine must use
the following format:

int witeit(char *tcp_handle, char *buffer, u_long |en)

where tcp_handle is the client or server handle, buffer is the buffer to write, and
len is the number of bytes to write. The readit routine should return either the
number of bytes written or the value - 1 if an error occurs.

8-40 XDR Routine Reference



xdrrec_create

Description

The stream descriptor for xdr s initializes the maximum allowable size for a
request r ecvsi ze and reply sendsi ze, the addresses of the routine to perform the
read (readit) and write (witeit), and the TCP handle used for network 1/0.

Return Values

None

XDR Routine Reference 8-41



xdrrec_endofrecord

xdrrec_endofrecord

Format

Arguments

Description

Generates an end-of-record for an XDR record.

#include <tcpip$rpcxdr.h>

bool_t xdrrec_endofrecord (XDR *xdrs, bool_t sendnow);

xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.

sendnow

Indicates whether the record should be sent. If sendnow is TRUE,
xdrrec_endof record sends the record by calling the witeit routine specified in
the call to xdrrec_create. If sendnow is FALSE, xdrrec_endof record marks the
end of the record and calls witeit when the buffer is full.

This routine lets an application support batch calls and pipelined procedure calls.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-42 XDR Routine Reference



xdrrec_eof

xdrrec_eof

Moves the buffer pointer to the end of the current record and returns an
indication if any more data exists in the buffer.

Format
#include <tcpip$rpexdr.h>
bool_t xdrrec_eof (XDR *xdrs);
Arguments
xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.
Description

Returns TRUE if there is no more input in the buffer after consuming the rest of
the current record.

Return Values

TRUE Indicates no more input in the buffer.
FALSE Indicates more input in the buffer.

XDR Routine Reference 8-43



xdrrec_skiprecord

xdrrec_skiprecord

Guarantees proper record alignment during deserialization from an incoming

stream.
Format
#include <tcpip$rpexdr.h>
bool_t xdrrec_skiprecord (XDR *xdrs);
Arguments
xdrs
A pointer to an XDR stream handle created by one of the XDR stream handle
creation routines.
Description

This routine ensures that the stream is properly aligned in preparation for a
subsequent read. It is recommended that when a record stream is being used,
this routine is called prior to any operations that would read from the stream.

This routine is similar to the xdrrec_eof routine, except that this routine does
not verify if there is more data in the buffer.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

8-44 XDR Routine Reference



xdrstdio_create

xdrstdio_create

Initializes a st di 0 XDR stream.

Format
#include <tcpip$rpcxdr.h>
void xdrstdio_create (XDR *xdrs, FILE *file, enum xdr_op op);
Arguments
xdrs
A pointer to the XDR stream handle being created. The routine xdrstdi o_create
fills in xdr s with encoding and decoding information..
file
A pointer to the FI LE structure that is to be associated with the stream.
op
An XDR operation, one of: XDR_ENCODE, XDR_DECODE, and XDR_FREE.
Description

Initializes a st di 0 stream for the specified file.

Return Values

None

XDR Routine Reference 8-45






A

Acronyms

Table A-1 shows TCP/IP acronyms and other acronyms related to open

networking.

Table A-1 Acronyms

Acronym Meaning

ACL access control list

ACP ancillary control process

API application programming interface

ARP Address Resolution Protocol

AST asynchronous system trap

BIND Berkeley Internet Name Domain

BOOTP Bootstrap Protocol

BSD Berkeley Standard Distribution

CFS container file system

CRA Cambridge Research Associates

CSLIP Compressed Serial Line Internet Protocol
DARPA Defense Advanced Research Projects Agency
DA domain administrator

DCE data circuit-terminating equipment

DDN Defense Data Network

DMCS Digital Multinational Character Set
DNIC data network identification code

DNS Domain Name Service

DST Daylight Savings Time

EBCDIC Extended Binary Coded Decimal Interchange Code
EOF end of file

EOL end of line

FDDI Fiber Distributed Data Interface

FID file identification

FQDN Fully Qualified Domain Name

FTN FORTRAN carriage control

FTP File Transfer Protocol

GID group identification

(continued on next page)

Acronyms A-1



Acronyms

Table A-1 (Cont.) Acronyms

Acronym Meaning

GMT Greenwich Mean Time

ICMP Internet Control Message Protocol
IDS IBM 3270 Information Display System
1P Internet Protocol

IRP 1/0O request packets

ISDN Integrated Services Digital Networks
IVP Installation Verification Procedure
LAN local area network

LFDP long-format data packet

LMF License Management Facility

LNA local network address

LPD Line Printer Daemon Protocol

LPR Line Printer Protocol

MBUF memory buffer

MFD Master File Directory

MIB Management Information Base

MTU message transfer unit

NFS Network File System

NRCS National Replacement Character Set
NS name server

NTP Network Time Protocol

oDS On-Disk Structure

ONC RPC open network computing remote procedure calls
(0]0]=] Out of Band

PAK Product Authorization Key

PDU protocol data unit

PID process identification

PPP Point-to-Point Protocol

PRN print file format control

PSDN Packet Switching Data Network
PWIP PATHWORKS Internet Protocol
RARP Reverse Address Resolution Protocol
REXEC Remote Executive

RFC Request for Comments

RIP Routing Information Protocol
RLOGIN Remote Login

RLP Remote Line Printer

RCP Remote Copy

(continued on next page)

A-2 Acronyms



Acronyms

Table A-1 (Cont.) Acronyms

Acronym Meaning

RMS Record Management Services
RPC remote procedure calls

RRQ read request

RR resource record

RSH Remote Shell

SDC Socket Device Channel

SLIP Serial Line Internet Protocol
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SOA Start of Authority

SPR Software Performance Report
SRI Stanford Research Institute
STD Standard Time Zone

TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TP Time Protocol

UAF User Authorization File

ucB unit control blocks

UCP TCP/IP Services Management Control Program
UDP User Datagram Protocol

uicC User Identification Code

uiD user identification

uTC Universal Coordinated Time
UUCP UNIX-to-UNIX Copy Program
VFC variable with fixed-length control
WAN wide area network

WKS Well Known Services

XDR external data representation
XID exchange identification

YP Yellow Pages

Acronyms A-3






A

Acronyms, A-1to A-3

_authenti cat e routine, 7-29

Authentication, 3-23

aut hnone_creat e routine, 5-4
example, 3-23

aut huni x_cr eat e routine, 5-5

aut huni x_create_defaul t routine, 5-6
example, 3-23

aut h_dest r oy macro, 5-3

aut h_destr oy routine
example, 3-23

B

Index

clnt_pcreateerror routine, 5-20
example, 3-28, 3-31

cl nt_perrno routine, 5-21
example, 3-31

clnt_perror routine, 5-22
example, 3-28

cl nt_spcreateerror routine, 5-23

cl nt_sperrno routine, 5-24

cl nt_sperror routine, 5-25

G

Batching, 3-19
Broadcast RPC, 3-17

C

get _nyaddr ess routine, 5-33
get _nyaddr _dest routine, 5-34

INETd support, 3-26

P

Callbacks, 3-34
cal I rpc routine, 5-7
example, 3-2, 3-35
Client
routine reference, 5-1 to 5-34
cl ntraw creat e routine, 5-26
example, 3-15
clnttcp_create routine, 5-27
example, 3-11, 3-31
cl ntudp_buf creat e routine, 5-29
cl ntudp_creat e routine, 5-31
example, 3-11
clnt_broadcast routine, 5-9
overview, 3-17
clnt_call routine, 5-11
example, 3-11, 3-28, 3-31
clnt_control routine, 5-12
clnt_create routine, 5-13
example, 3-11, 3-28
clnt_create_vers routine, 5-15
cl nt_destroy routine, 5-17
example, 3-11, 3-28, 3-31
clnt_freeres routine, 5-18
clnt_geterr routine, 5-19

pmap_get maps routine, 6-2
pmap_get maps_vns routine, 6-3
pmap_get port routine, 6-4
pmap_rntcal | routine, 6-5
pmap_set routine, 6-7
example, 3-34
pmap_unset routine, 6-8
example, 3-9
Portmapper
routine reference, 6-1 to 6-8
RPC use of, 1-4
SHOW PORTMAPPER command, 1-5
TCP/IP Services notes for, 1-4
Program numbers, 1-6

R

Raw RPC, 3-15

regi sterrpc routine, 7-3
example, 3-4

RPC language, 2-23

RPCGEN
authentication, 2-21
broadcasts, 2-22
compiling output files, 2-8, 2-16
debugging programs, 2-17
/DEFINE option, 2-19

Index—1



RPCGEN (cont'd)
defining symbols, 2-19
/IDISPATCH option, 2-19
dispatch tables, 2-19
INETd support, 2-19
/INET_SERVICE option, 2-19
invoking, 2-8, 2-16
outputs, 2-8, 2-16
specifying transport type, 2-19
timeout handling, 2-21
ITRANSPORT option, 2-19
use of C Preprocessor, 2-18

S

sel ect system call, 3-17
Server
routine reference, 7-1 to 7-29
seterr_reply routine, 7-4
svcerr_aut h routine, 7-15
svcerr_decode routine, 7-16
svcerr_noproc routine, 7-17
example, 3-24, 3-33
svcerr_noprog routine, 7-18
Svcerr_progvers routine, 7-19
svcerr_systenerr routine, 7-20
example, 3-24
svcerr_weakaut h routine, 7-21
example, 3-24
svcfd_create routine, 7-23
svcraw creat e routine, 7-22
example, 3-15
svct cp_creat e routine, 7-24
example, 3-33
svcudp_buf creat e routine, 7-25
svcudp_creat e routine, 7-26
example, 3-9, 3-35
svc_destroy routine, 7-5
svc_freeargs routine, 7-6
svc_getargs routine, 7-7
example, 3-9, 3-33
svc_getcall er routine, 7-8
svc_getreqset routine, 7-9
SVC_register routine, 7-11
example, 3-9, 3-27, 3-33
SvC_run routine, 7-12
example, 3-4, 3-9, 3-33
svc_sendreply routine, 7-13
example, 3-9, 3-27, 3-33, 3-35
svc_unregi ster routine, 7-14

T

Testing RPC programs, 3-15

Index—2

V

Version numbers, 1-4

X

XDR
enumeration filters, 4-7
fixed-length array filters, 4-11
floating-point filters, 4-7
introduction, 1-6
language, 2-23
memory allocation with, 3-13
memory streams, 4-16
number filters, 4-6
opaque data filters, 4-12
operation direction, 4-15
pointer filters, 4-13
record streams, 4-16
routine reference, 8-1 to 8-45
serializing defaults, 3-8
standard 1/O streams, 4-15
string filters, 4-8
union structure filters, 4-12
user-defined routines, 3-7
using to pass data, 3-6
variable-length byte array filters, 4-9
variable-length opaque array filters, 4-9
void data filter, 4-8
xdr mem cr eat e XDR routine, 8-39
xdrrec_create XDR routine, 8-40
xdrrec_endof record XDR routine, 8-42
xdrrec_eof XDR routine, 8-43
xdrrec_ski precord XDR routine, 8-44
xdrstdi o_create XDR routine, 8-45
xdr_accepted_reply XDR routine, 8-3
xdr _array XDR routine, 8-4
xdr _aut huni x_par ms XDR routine, 8-5
xdr_bool XDR routine, 8-6
xdr _byt es XDR routine, 8-7
xdr_cal | hdr XDR routine, 8-8
xdr_cal | m6g XDR routine, 8-9
xdr _char XDR routine, 8-10
xdr _doubl e XDR routine, 8-11
xdr_enumxXDR routine, 8-12
xdr_float XDR routine, 8-13
xdr _free XDR routine, 8-14
xdr _hyper XDR routine, 8-15
xdr _int XDR routine, 8-16
xdr _| ong XDR routine, 8-17
xdr _opaque XDR routine, 8-18
xdr _opaque_aut h XDR routine, 8-19
xdr _pmap XDR routine, 8-20
xdr_pmapl i St XDR routine, 8-22
xdr _pmapl i st _vims XDR routine, 8-23



xdr _pmap_vms XDR routine, 8-21

xdr _poi nter XDR routine, 8-24

xdr _reference XDR routine, 8-25
xdr_rejected_reply XDR routine, 8-26
xdr _repl ymsg XDR routine, 8-27
xdr_short XDR routine, 8-28

xdr _string XDR routine, 8-29

xdr_uni on XDR routine, 8-35
xdr_u_char XDR routine, 8-30

xdr _u_hyper XDR routine, 8-31
xdr_u_int XDR routine, 8-32

xdr _u_l ong XDR routine, 8-33

xdr _u_short XDR routine, 8-34
xdr_vect or XDR routine, 8-36
xdr_voi d XDR routine, 8-37

xdr _wrapstring XDR routine, 8-38
Xprt_regi ster routine, 7-27
Xprt_unregi ster routine, 7-28

Index—3






