OpenVMS VAX System Dump
Analyzer Utility Manual

Order Number: AA-PV6TD-TE

April 2001

This manual explains how to use the System Dump Analyzer (SDA) to
investigate system failures and examine a running system.

Revision/Update Information:  This manual supersedes the VMS
System Dump Analyzer Utility Manual,
\ersion 6.0

Software Version: OpenVMS VAX Version 7.3

Compaqg Computer Corporation
Houston, Texas



© 2001 Compag Computer Corporation

Compagq, AlphaServer, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark
Office.

OpenVMS, Alpha, and DECdirect are trademarks of Compaq Information Technologies Group, L.P.
in the United States and other countries.

UNIX and X/Open are trademarks of The Open Group in the United States and other countries.
All other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaqg required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compagq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject

to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZKA4556

The Compag OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.



Contents

Preface . ... vii
SDA DeSCIIPLION . . .o SDA-1
1 System Management and SDA. . . .. .. ... .. SDA-4
1.1 Understanding the System Dump File .. . . ...................... SDA-4
1.1.1 Choosing Between SYSDUMP.DMP and PAGEFILE.SYS Files . .. SDA-4
1.1.2 Choosinga Dump File Style. . .. ........ ... .. ... . ... ...... SDA-6
1.2 Saving System DUMPS . . ... o SDA-6
1.3 Invoking SDA in the Site-Specific Startup Command Procedure . . . .. SDA-7
2 Analyzing a System DUMpP . . . . ... SDA-8
2.1 INVOKING SDA . . ... e SDA-9
2.2 Mapping the Contents of the Dump File ... .................... SDA-9
2.3 Building the SDA Symbol Table. .. ........ ... ... ... .. ... .... SDA-10
2.4 Executing the SDA Initialization File (SDAS$INIT) ............... SDA-10
3 Analyzing a Running System . . . . ... ... . .. SDA-11
4 SDA COoNteXt . ..ot SDA-12
5 CPU Context . ... . SDA-12
6 Process Context . . ... ... .. SDA-13
7 SDA Command Format .. ... ... ... SDA-15
7.1 General Command Format. . . ........... ... . ... SDA-15
7.2 EXPressions . .. ... SDA-15
7.2.1 Radix Operators . . . ...t e e SDA-16
7.2.2 Arithmetic and Logical Operators ......................... SDA-16
7.2.3 Precedence Operators. . . ... ..ottt SDA-17
7.2.4 Symbols . .. SDA-17
8 Investigating System Failures . . ....... ... ... .. ... . .. . .. SDA-19
8.1 General Procedure for Analyzing System Failures. ... ............ SDA-19
8.2 Fatal Bugcheck Conditions .............. ... ... ... SDA-20
8.2.1 Fatal Exceptions . . ... ... ... SDA-20
8.2.2 lHlegal Page Faults . . .. ... . ... . SDA-23
9 A Sample System Failure . ...... ... .. .. . . ... SDA-24
9.1 Identifying the Bugcheck . .. ... ... ... . . .. .. . .. . SDA-25
9.2 Identifying the Exception. . .. ....... .. ... . . .. . SDA-25
9.3 Locating the Source of the Exception . . .. ...................... SDA-26
9.3.1 Finding the Driver by Using the Program Counter ............ SDA-26
9.3.2 Calculating the Offset into the Driver’s Program Section ....... SDA-27
9.4 Finding the Problem Within the Routine . .. .................... SDA-28
9.4.1 Examining the Routine . .......... ... ... ... .. ... .. ... SDA-28
9.4.2 Checking the Values of Key Variables ...................... SDA-29
9.4.3 Identifying and Correcting the Defective Code . . ... ........... SDA-30
10 Inducing a System Failure . .. ... ... ... . ... SDA-31
10.1 Meeting Crash Dump Requirements ... ....................... SDA-31
10.2 Examples of How to Cause System Failures . ................... SDA-32



SDA USage SUMMAIY ... ... e SDA-35

SDA Qualifiers . ... .. SDA-36
ICRASH_DUMP . .. e e SDA-37
IRELEASE . . ot SDA-38
ISYMBOL .« oottt e e SDA-39
ISYSTEM . ot SDA-40

SDA Commands . ... SDA-41
@ (Execute Procedure) . .. ... ... SDA-44
ATTACH SDA-45
COPY L SDA-46
DEFINE . . ..o SDA-47
EVALUATE . ... SDA-51
EXAMINE . .. SDA-53
P SDA-57
FORMAT .t SDA-58
HELP . . SDA-60
READ . . .t SDA-62
REPEAT . . ottt e SDA-67
SEARCH . ... SDA-69
SET CPU ..ot SDA-71
SETLOG ..ottt SDA-74
SET OUTPUT .ottt e e SDA-75
SET PROCESS ..\ ittt it SDA-76
SET RMS . oo SDA-79
SHOW CALL_FRAME . . ..ottt SDA-82
SHOW CLUSTER . ... ittt SDA-85
SHOW CONNECTIONS .. ... e e SDA-90
SHOW CPU . ..o e e SDA-94
SHOW CRASH . . ... SDA-98
SHOW DEVICE . .. oot oottt e et SDA-103
SHOW EXECUTIVE ...ttt SDA-110
SHOW HEADER .. ..ttt e SDA-112
SHOW LAN . .ot e SDA-113
SHOW LOCK . .ottt e SDA-121
SHOW LOGS . . .ttt e SDA-125
SHOW PAGE_TABLE . ... ... e SDA-126
SHOW PEN _DATA . . .o e SDA-131
SHOW POOL . . ..t o et e e e e SDA-135
SHOW PORTS . .t ittt et e e e e SDA-142
SHOW PROCESS . ..t ittt et SDA-149
SHOW RESOURCE . .. oottt it et e e e i SDA-161
SHOW RMS . .o SDA-166
SHOW RSPID . ..ot e e SDA-167
SHOW SPINLOCKS . ...ttt e SDA-169
SHOW STACK . ..ttt e e SDA-176
SHOW SUMMARY . . ..ot SDA-178



Index

Figures

SDA-1
SDA-2
SDA-3
SDA-4
SDA-5

Tables

SDA-1
SDA-2
SDA-3
SDA-4
SDA-5
SDA-6
SDA-7
SDA-8
SDA-9
SDA-10
SDA-11
SDA-12

SDA-13
SDA-14

SDA-15

SDA-16
SDA-17
SDA-18

SDA-19

SDA-20
SDA-21
SDA-22
SDA-23

SHOW SYMBOL . ... e
SHOW TRANSACTIONS . . . . .
SPAWN
VALIDATE QUEUE . . . ... e

Pointer Argument List on the Stack . .........................
Mechanism Array . . .. ... ..
Signal Array . ...
Stack Following an lllegal Page-Fault Error .. ..................
Call Frame . ... ..

Selecting and Displaying Information About Processes . ...........
Displaying Information about Data Structures ..................
Examining, Evaluating, and Validating Information ..............
Searching for, Formatting, and Copying Information .. ............
Managing the SDA Utility and the SDA Symbol Table ............
Displaying Information Produced by DECdtm .. .................
Comparison of Full and Subset Dump Files. . ...................
SDA Operators . . . ...
SDA Symbols . . . ...
Descriptions of SDA Qualifiers. .. ......... ... . ... ... .. ... ...
Descriptions of SDA Commands. . . . ...

Modules Containing Global Symbols and Data Structures Used by
S A

Modules Defining Global Locations Within the Executive Image . . . ..

SET RMS Command Keywords for Displaying Process RMS
Information ... .. ... . ...

Contents of the SHOW LOCK and SHOW PROCESS/LOCKS
Displays . . . ..

Virtual Page Information in the SHOW PAGE_TABLE Display .. ...
Physical Page Information in the SHOW PAGE_TABLE Display .. ..

Page Frame Number Information in the SHOW PFN_DATA
Display . . ...

Process Section Table Entry Information in the SHOW PROCESS
Display . . ...

Process 1/0 Channel Information in the SHOW PROCESS Display . . .
Resource Information in the SHOW RESOURCE Display . .........
Static Spin LOCKS . . ... ...
Process Information in the SHOW SUMMARY Display . ...........

SDA-181
SDA-182
SDA-183
SDA-185

SDA-1
SDA-2
SDA-2
SDA-3
SDA-3
SDA-3
SDA-6
SDA-16
SDA-17
SDA-36
SDA-41

SDA-63
SDA-63

SDA-79

SDA-122
SDA-126
SDA-128

SDA-131

SDA-154
SDA-155
SDA-161
SDA-170
SDA-178






Preface

Intended Audience

The OpenVMS VAX System Dump Analyzer Utility Manual is primarily intended
for the system programmer who must investigate the causes of system failures
and debug kernel-mode code, such as a device driver. This programmer should
have some knowledge of OpenVMS data structures to properly interpret the
results of System Dump Analyzer (SDA) commands.

This manual also includes information required by the system manager in order
to maintain the system resources necessary to capture and store system crash
dumps. Those who need to determine the cause of a hung process or improve
system performance can refer to this manual for instructions for using SDA to
analyze a running system.

Document Structure

The OpenVMS VAX System Dump Analyzer Utility Manual contains the following
sections:

Section Description of Contents

SDA Description Includes the following information:

= An introduction to the functions of the System Dump Analyzer
(SDA)

= A description of SDA features
« A discussion of key concepts of SDA
e An illustration of the use of SDA

This section also includes instructions for maintaining the optimal
environment for the analysis of system failures and notes the
requirements for processes invoking SDA.

SDA Usage Summarizes how to use SDA, including invoking SDA, exiting from
Summary SDA, and recording the output of an SDA session. It also describes
required privileges.

SDA Qualifiers Describes ANALYZE command qualifiers that govern the behavior
of SDA: /CRASH_DUMP, /RELEASE, /ISYMBOL, and /SYSTEM.

vii



Section

Description of Contents

SDA Commands

Describes each SDA command; descriptions include the following
information about each command:

e Function
e Format
e Parameters

This section also provides examples of situations in which specific
commands are useful.

Related Documents

Additional information is available in the following documents:

e OpenVMS System Manager’s Manual, Volume 1: Essentials

e OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems

= OpenVMS System Management Utilities Reference Manual

 Guide to Creating OpenVMS Modular Procedures

e OpenVMS Performance Management
= OpenVMS VAX Device Support Manual®
e OpenVMS DCL Dictionary

e OpenVMS System Services Reference Manual

Investigators of VMScluster failures will find the discussion in OpenVMS Cluster
Systems and the discussion of the Show Cluster utility in the OpenVMS System
Management Utilities Reference Manual helpful in understanding the output of
several SDA commands.

For additional information about Compag OpenVMS products and services, access
the Compaq website at the following location:

http:// ww. openvns. conpag. conl

Reader’'s Comments

Compag welcomes your comments on this manual. Please send comments to
either of the following addresses:

viii

Internet
Mail

openvmsdoc@compag.com

Compag Computer Corporation

OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.

Nashua, NH 03062-2698

1
CD-ROM.

This manual has been archived but is available on the OpenVMS Documentation



How To Order Additional Documentation

Use the following World Wide Web address to order additional documentation:

http:// waw. openvis. conpag. com

If you need help deciding which documentation best meets your needs, call

800-282-6672.

Conventions

The following conventions are used in this manual:

Ctrl/x

PF1 x

0

[1

{}

bold text

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

A horizontal ellipsis in examples indicates one of the following
possibilities:

= Additional optional arguments in a statement have been
omitted.

= The preceding item or items can be repeated one or more
times.

= Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you choose more than
one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.



italic text

UPPERCASE TEXT

Monospace t ext

numbers

Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device

type).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names

of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.



SDA Description

When a fatal error causes the system to fail, the operating system copies the
contents of memory to a system dump file; the system also records the hardware
context of each processor in the system.

The System Dump Analyzer (SDA) provides a means of interpreting the contents
of the system dump file, thus enabling you to examine the status of each processor
at the time of the failure and to investigate the probable causes of the crash.

To examine the system dump file, you invoke SDA by using the DCL command
ANALYZE/CRASH_DUMP. You can also invoke SDA to analyze a running system,
using the DCL command ANALYZE/SYSTEM. Most SDA commands generate
useful output in this mode of operation.

Caution

Although the analysis of a running system might be instructive, be aware
that system context, process context, and a processor’s hardware context
remain fluid during any given display. In a multiprocessing environment,
a process running SDA might be rescheduled to a different processor
frequently during analysis. Therefore, Compaq recommends that you not
examine the hardware context of processors in a running system.

Following are brief explanations of SDA qualifiers. Details about these qualifiers
are in the SDA Qualifiers section.

Qualifier Description

/CRASH_DUMP Invokes SDA to analyze a specified dump file

/RELEASE Invokes SDA to release those blocks that are occupied by a crash
dump in a specified system paging file

/SYMBOL Specifies a system symbol table for SDA to use in place of the
system symbol table it uses by default (SYS$SYSTEM:SYS.STB)

/[SYSTEM Invokes SDA to analyze a running system

The following tables show the SDA commands that you can use to perform
operations within the SDA utility. These commands are in groups of related
information. Details about SDA commands are in the SDA Commands section.

Table SDA-1 describes information that you can select and display about
processes.

Table SDA-1 Selecting and Displaying Information About Processes

Operation SDA Command

Display the condition of the operating system and the SHOW CRASH
hardware context of each processor in the system at the
time of a crash

Display a summary of all processes on the system SHOW SUMMARY
(continued on next page)

SDA-1



SDA Description

SDA-2

Table SDA-1 (Cont.) Selecting and Displaying Information About Processes

Operation SDA Command
Select a process to become the SDA current process SET PROCESS
Examine the memory of any process SHOW PROCESS

Select a specific processor in a multiprocessing system as  SET CPU
the subject of analysis

Display information about the state of a processor at the SHOW CPU
time of the system failure

Display multiprocessor synchronization information SHOW SPINLOCKS
Display the contents of a specific process stack or the SHOW STACK
interrupt stack of a specific processor

Display the layout of the loadable executive images SHOW EXECUTIVE

Table SDA-2 describes information that you can display about data structures.

Table SDA-2 Displaying Information about Data Structures

Operation SDA Command

Display memory management data structures SHOW POOL,
SHOW PFEN_DATA,
SHOW PAGE_TABLE

Display device status, as reflected in system data SHOW DEVICE

structures

Display OpenVMS RMS data structures of a process SHOW PROCESS/RMS

Display lock management data structures SHOW RESOURCE,
SHOW LOCK

Display information contained in various local area SHOW LAN

network (LAN) data structures

Display VAXcluster management data structures SHOW CLUSTER,
SHOW CONNECTIONS,
SHOW RSPID,
SHOW PORTS

Table SDA-3 describes SDA commands that you can use to examine, evaluate,
and validate information.

Table SDA-3 Examining, Evaluating, and Validating Information

Operation SDA Command

Evaluate an expression in hexadecimal and decimal, EVALUATE
interpreting its value as a symbol, a condition value, a
page table entry (PTE), or a processor status longword

(PSL)

Examine the contents of memory locations, optionally EXAMINE
interpreting them as MACRO instructions, a PTE, or a

PSL

Validate the integrity of the links in a queue VALIDATE QUEUE

Table SDA-4 describes the SDA commands that you can use to search for, format,
and copy information.



SDA Description

Table SDA—4 Searching for, Formatting, and Copying Information

Operation

SDA Command

Search memory for a given value

Format system data structures

Format a call frame from a stack location
Copy the system dump file

SEARCH

FORMAT

SHOW CALL_FRAME
COPY

Table SDA-5 describes the operations you can perform to manage the SDA utility

and the SDA symbol table.

Table SDA-5 Managing the SDA Utility and the SDA Symbol Table

Operation

SDA Command

Define keys to invoke SDA commands

Switch control of your terminal from your current process
to another process in your job

Direct (or echo) the output of an SDA session to a file or
device

Repeat execution of the last command issued
Create a subprocess of the process currently running SDA

Change the options shown by the SHOW PROCESS/RMS
command

Define symbols to represent values or locations in memory
and add them to the SDA symbol table

Read a set of global symbols into the SDA symbol table

Display the hexadecimal value of a symbol and, if the
value is equal to an address location, the contents of that
location

Exit from the SDA display or from the SDA utility

DEFINE/KEY
ATTACH

SET OUTPUT or
SET LOG

REPEAT
SPAWN
SET RMS

DEFINE

READ

SHOW SYMBOL

EXIT

Table SDA-6 describes the commands that you can use to display information

produced by DECdtm.

Table SDA—6 Displaying Information Produced by DECdtm

Operation

SDA Command

Display information about all transactions on the node or
about a specified transaction

Display information about transaction logs currently open
for the node

SHOW TRANSACTIONS

SHOW LOGS

Although SDA provides a great deal of information, it does not analyze all the
control blocks and data contained in memory. For this reason, in the event

of system failure it is extremely important that you send Compaq a Software
Performance Report (SPR) and a copy of the system dump file written at the time

of the failure.

SDA-3



SDA Description

1 System Management and SDA

The system manager must perform the following operations in regard to the
system dump file:

= Ensure that the system writes a dump file whenever the system fails.

< Ensure that the dump file is large enough to contain all the information to be
saved.

= Ensure that the dump file is saved for analysis.

The following sections describe these tasks.

1.1 Understanding the System Dump File

The operating system attempts to write information into the system dump file
only if the system parameter DUMPBUG is set. 1 If DUMPBUG is set and the
operating system fails, the system writes the contents of the error log buffers,
processor registers, and physical memory into the system dump file, overwriting
its previous contents.

If the system dump file is too small, it cannot contain all of memory when a
system failure occurs. For most systems, this means that the system’s page table
(SPT) is not included in the dump. SDA cannot analyze a dump unless the entire
SPT is included in the dump.

1.1.1 Choosing Between SYSDUMP.DMP and PAGEFILE.SYS Files

SDA-4

SYS$SYSTEM:SYSDUMP.DMP (SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP)

is furnished as an empty file in the software distribution kit. To successfully
store a crash dump, you must make SYS$SYSTEM:SYSDUMP.DMP large
enough to hold all the information to be written when the system fails. If

this is not possible, you can have dumps written into the system paging file,
SYS$SYSTEM:PAGEFILE.SYS. You can enlarge or adjust the size of either of
these files by using the CREATE command of the System Generation utility
(SYSGEN), as described in the OpenVMS System Management Utilities Reference
Manual.

Using SYSDUMP.DMP

To calculate the correct size for SYS$SYSTEM:SYSDUMP.DMP, use the following
formula:

Si ze-in-bl ocks( SYSSSYSTEM SYSDUMP. DVP)

si ze-in-pages(physi cal - menmory)

(nunber-of -error-1og-buffers * bl ocks- per-buffer)
1

You can use the DCL command SHOW MEMORY to determine the total size of
physical memory on your system. In addition, you must account for any MA780
multiport memory installed on your system. The number of error log buffers in
any given system varies, depending on the setting of the ERRORLOGBUFFERS
system parameter. (See the OpenVMS System Management Utilities Reference
Manual for additional information about this parameter.)

+ + 1

! The DUMPBUG parameter is set by default. To examine or change its value, consult the

OpenVMS System Management Utilities Reference Manual.



SDA Description

Using PAGEFILE.SYS

If SYS$SSYSTEM:SYSDUMP.DMP does not exist, the operating system writes
the dump of physical memory into SYS$SYSTEM:PAGEFILE.SYS, the system’s
paging file, overwriting the contents of that file. If the SAVEDUMP system
parameter is set, the dump file is retained in PAGEFILE.SYS when the system
is booted. If it is clear, the entire paging file is used for paging, and any dump
written to the paging file is lost.?

Do not use a selective dump (DUMPSTYLE=1) style with PAGEFILE.SYS. If the
PAGEFILE is used for a selective dump, and if the PAGEFILE is not large enough
to contain all the logical memory blocks, the dump fills the entire pagefile and the
system may hang on reboot. When selective dumping is setup, all available space
will be used to write out the logical memory blocks. If the pagefile is large enough
to contain all of physical memory, there is no reason to use selective dumping and
a full memory dump (DUMPSTYLE=0) should be used.

To calculate the minimum size for SYS$SYSTEM:PAGEFILE.SYS, use the
following formula:

si ze-in-bl ocks( SYS$SYSTEM PAGEFI LE. SYS)
= size-in-pages(physi cal - menmory)
+ (nunber-of -error-1o0g-buffers * bl ocks-per-buffer)
+1
+ 1000

Caution

This formula calculates only the minimum size requirement for saving a
dump in the system’s primary page file. For most systems, the page file
must be larger than this to avoid hanging the system. (See the OpenVMS
System Manager’s Manual, Volume 1: Essentials and OpenVMS System
Manager’s Manual, Volume 2: Tuning, Monitoring, and Complex Systems
for more information.)

Freeing Space in PAGEFILE.SYS

If you use SYS$SYSTEM:PAGEFILE.SYS to hold system crash dumps, you must
later free the space occupied by the dump so that the pager can use it. Usually,
you include SDA commands in the site-specific startup command procedure
(SYSSMANAGER:SYSTARTUP_VMS.COM) to free this space; if you do not, your
system might hang during the startup procedure.

A common method of freeing space is to copy the dump from
SYS$SYSTEM:PAGEFILE.SYS to another file, using the SDA COPY command.
(Although you can also use the DCL COPY command to copy a dump file, only
the SDA COPY command frees the pages occupied by the dump from the system’s
paging file.)

Occasionally, you might want to free the pages in the paging file that are taken
up by the dump without having to copy the dump elsewhere. When you issue the
ANALYZE/CRASH_DUMP/RELEASE command, SDA immediately releases the
pages to be used for system paging, effectively deleting the dump.

2 The SAVEDUMP parameter is clear by default. To examine or change its value, consult
the OpenVMS System Management Utilities Reference Manual.

SDA-5



SDA Descrip

tion

Note

The ANALYZE/CRASH_DUMP/RELEASE command does not allow you to
analyze the dump before deleting it.

1.1.2 Choosing a Dump File Style

In certain system configurations, it might be impossible to preserve the entire
contents of memory in a disk file. For instance, a large memory system or a
system with small disk capacity might not be able to supply enough disk space
for a full memory dump. In normal circumstances, if the system dump file cannot
accommodate all of memory, SDA cannot analyze the dump.

To preserve those portions of memory that contain information most useful in
determining the causes of system failures, a system manager sets the static
system parameter DUMPSTYLE to 1. When the DUMPSTYLE parameter is
set, AUTOGEN attempts to create a dump file large enough to contain ample
information for SDA to analyze a failure. When the DUMPSTYLE parameter is
clear (the default), AUTOGEN attempts to create a dump file large enough to
contain all of physical memory.

A comparison of full and subset style dump files appears in Table SDA-7.

Table SDA-7 Comparison of Full and Subset Dump Files

Full Subset

Available
Information

Unavailable
Information

SDA Command
Limitations

Complete contents of physical memory in System page table, global page table,
use, stored in order of increasing physical system space memory, and process and
address (for instance, system and global control regions (plus global pages) for
page tables are stored last). all saved processes.

Contents of paged-out memory at the time  Contents of paged-out memory at the

of the crash. time of the crash, process and control
regions of unsaved processes, and
memory not mapped by a page table
(such as the free and modified lists).

None. The following commands are not
useful for unsaved processes: SHOW
PROCESS/CHANNELS, SHOW
PROCESS/RMS, SHOW STACK, and
SHOW SUMMARY/IMAGE.

1.2 Saving System Dumps

SDA-6

Every time the operating system writes information to the system dump file, it
writes over whatever was previously stored in the file. For this reason, as system
manager, you need to save the contents of the file after a system failure has
occurred.

Using the SDA COPY Command

You can use the SDA COPY command or the DCL COPY command in your site-
specific startup procedure. Compaq recommends using the SDA COPY command
because it marks the dump file as copied. This is particularly important if the
dump was written into the paging file, SYS$SYSTEM:PAGEFILE.SYS, because
the SDA COPY command releases to the pager the pages that were occupied by
the dump.



SDA Description

Using /IGNORE=NOBACKUP

Because system dump files are set to NOBACKUP, the Backup utility
(BACKUP) does not copy dump files to tape unless you use the qualifier
/IGNORE=NOBACKUP when invoking BACKUP. When you use the SDA COPY
command to copy the system dump file to another file, the new file is not set to
NOBACKUP.

As included in the distribution kit, SYS$SYSTEM:SYSDUMP.DMP is protected
against world access. Because a dump file can contain privileged information,
Compaq recommends that you continue to protect dump files from universal read
access.

1.3 Invoking SDA in the Site-Specific Startup Command Procedure

Because a listing of the SDA output is an important source of information

in determining the cause of a system failure, it is a good idea to have SDA
produce such a listing after every failure. The system manager can ensure the
creation of a listing by modifying the site-specific startup command procedure
SYSSMANAGER:SYSTARTUP_VMS.COM so that it invokes SDA when the
system is booted.

When invoked in the site-specific startup procedure, SDA executes the specified
commands only if the system is booting immediately after a system failure. SDA
examines a flag in the dump file's header that indicates whether it has already
processed the file. If the flag is set, SDA merely exits. If the flag is clear, SDA
executes the specified commands and sets the flag. This flag is clear when the
operating system initially writes a crash dump, except for those resulting from an
operator-requested shutdown (for instance, SYS$SYSTEM:SHUTDOWN.COM).

Using SYSDUMP.DMP

The following example shows typical commands that you might add to your
site-specific startup command procedure to produce an SDA listing after each

failure.

$!

$! Print dunp listing if systemjust failed

$!

$ ANALYZE/ CRASH DUMP SYS$SYSTEM SYSDUMP. DVP
COPY SYS$SYSTEM SAVEDUMP. DMP ! Save dunp file
SET OUTPUT DI SK1: SYSDUWP. LI S I Create listing file
READY EXEC I Read synbols into the SDA synbol table
SHOW CRASH I Display crash information
SHOW STACK I Show current stack
SHOW SUMVARY I List all active processes
SHOW PROCESS/ PCB/ PHDY REG I Display current process
SHOW SYMBOL/ ALL ! Print system synbol table
EXIT

$ PRINT DI SK1: SYSDUWP. LI S

The COPY command in the preceding example saves the contents of the file
SYS$SYSTEM:SYSDUMP.DMP. If your system’s startup command file does not
save a copy of the contents of this file, this crash dump information is lost in
the next system failure, when the system saves the information about the new
failure, overwriting the contents of SYS$SYSTEM:SYSDUMP.DMP.

SDA-7



SDA Description

Using PAGEFILE.SYS

If you are using the SYS$SYSTEM:PAGEFILE.SYS as the crash dump file, you
must include SDA commands in SYS$MANAGER:SYSTARTUP_VMS.COM that
free the space occupied by the dump so that the pager can use it. For instance:

$ ANALYZE/ CRASH DUMP SYS$SYSTEM PAGEFI LE. SYS

ooPY dunp_filespec
EXIT

2 Analyzing a System Dump

SDA-8

SDA performs certain tasks prior to bringing a dump into memory, presenting its
initial displays, and accepting command input. This section describes those tasks,
which include the following:

< Verifying that the process invoking it has privileges to read the dump file
< Using RMS to read in pages upon request

= Reading the system symbol tables (SYS$SYSTEM:SYS.STB and
SYS$SYSTEM:REQSYSDEF.STB)

< Executing the commands in the SDA initialization file

For detailed information about the investigation of a system failure, see
Section 8.

Requirements
To be able to analyze a dump file, your process must have the following:

< Read access to the file that contains the dump and to copies of the following
symbol tables, which SDA reads by default:

— SYS$SYSTEM:SYS.STB (the system symbol table)

— SYS$SYSTEM:REQSYSDEF.STB (the required subset of the symbols in
the file SYSDEF.STB)

= A system UIC or SYSPRV privilege for a process to read the dump file.

As included in the distribution kit, SYS$SYSTEM:SYSDUMP.DMP,
SYS$SYSTEM:SYS.STB, and SYS$SYSTEM:REQSYSDEF.STB are protected
against world access.

= Sufficient virtual address space for SDA to access the entire dump and any
required symbol tables.

To ensure that SDA has the correct amount of virtual address space, a value
of 16,000 of the system parameter VIRTUALPAGECNT should be sufficient to
analyze any dump, unless there is an exceptionally large number of symbols.
You might need to increase the size if your particular installation places
heavy demands on the virtual address space of the process.



SDA Description

2.1 Invoking SDA

If your process satisfies these conditions, you can issue the DCL command
ANALYZE/CRASH_DUMP to invoke SDA. If you do not specify the name of a
dump file in the command, SDA prompts you for the name of the file, as follows:

$ ANALYZE/ CRASH DUWP
_Dunp File:

The default file specification is as follows:
disk:[default-dir]SYSDUMP.DMP

disk and [default-dir] represent the disk and directory specified in your last SET
DEFAULT command.

2.2 Mapping the Contents of the Dump File

SDA first attempts to map the contents of physical memory as stored in the
specified dump file. To do this, it must first locate the system page table (SPT)
among its contents. The SPT contains one entry for each page of system virtual
address space.

The SPT appears at the largest physical addresses in a typical configuration. As
a result, if a dump file is too small, the SPT cannot be written to it in the event
of system failure.

If SDA cannot find the SPT in the dump file, it displays either of the following
messages:

%EDA- E- SPTNOTFND, system page table not found in dunp file
%EDA- E- SHORTDUMP, the dunp only contains mout of n pages of physical nenory

If SDA displays either of these error messages, you cannot analyze the crash
dump, but must take steps to ensure that any subsequent dump can be preserved.
To do this, you must increase the size of the dump file, as indicated in Section 1.1,
or adjust the system DUMPSTYLE parameter, as discussed in Section 1.1.2.

Under certain conditions, the system might not save some memory locations in
the system dump file. For instance, during halt/restart bugchecks, the system

does not preserve the contents of general registers. If such a bugcheck occurs,

SDA indicates in the SHOW CRASH display that the contents of the registers

were destroyed. Additionally, if a bugcheck occurs during system initialization,
the contents of the register display might be unreliable. The symptom of such

a bugcheck is a SHOW SUMMARY display that shows no processes or only the
swapper process.

Also, if you use an SDA command to access a virtual address that has no
corresponding physical address, SDA displays the following error message:

%EDA- E- NOTI NPHYS, 'l ocation’ not in physical menory

When you analyze a subset dump file, if you use an SDA command to access a
virtual address that has a corresponding physical address but was not saved in
the dump file, SDA displays the following error message:

%EDA- E- MEMNOTSVD, nmerory not saved in the dunp file

SDA-9



SDA Description

2.3 Building the SDA Symbol Table

After locating and reading the system dump file, SDA attempts to read

the system symbol table file into the SDA symbol table. This file, named
SYS$SYSTEM:SYS.STB by default, contains most of the global symbols used
by the operating system. SDA also reads into its symbol table a subset of
SYS$SYSTEM:SYSDEF.STB, called SYS$SYSTEM:REQSYSDEF.STB, that it
requires to identify locations in memory.

If SDA cannot find the system symbol table file, or if it is given a file that is not
a system symbol table in the /SYMBOL qualifier to the ANALYZE command, it
halts with a fatal error.

When SDA finishes building its symbol table, it displays a message identifying
itself and the immediate cause of the crash. In the following example, the cause
of the crash was an illegal exception occurring at an IPL above IPL$ _ASTDEL or
while using the interrupt stack.

Dunp taken on 28-Jan-1993 18:10:09.79
| N\VEXCEPTN, Exception while above ASTDEL or on interrupt stack

2.4 Executing the SDA Initialization File (SDAS$INIT)

SDA-10

After displaying the crash summary, SDA executes the commands in the SDA
initialization file, if you have established one. SDA refers to its initialization
file by using the logical name SDASINIT. If SDA cannot find the file defined as
SDASINIT, it searches for the file SYS$SLOGIN:SDA.INIT.

The initialization file can contain SDA commands that read symbols into SDA's
symbol table, define keys, establish a log of SDA commands and output, or
perform other tasks. For instance, you might want to use an SDA initialization
file to augment SDA's symbol table with definitions helpful in locating system
code.

If you issue the following command, SDA includes those symbols that define
many of the system’s data structures, including those in the 1/O database:

READ SYS$SYSTEM SYSDEF. STB

You might also find it very helpful to define those symbols that identify the
modules in the images that make up the executive. You can do this by issuing the
following command:

READ/ EXECUTI VE SYS$LCADABLE_| MAGES

After SDA executes the commands in the initialization file, it displays its prompt,
as follows:

SDA>

The SDA> prompt indicates that you can use SDA interactively and enter SDA
commands.

An SDA initialization file can invoke a command procedure with the @ command.
However, such command procedures cannot themselves invoke a command
procedure (that is, you cannot have nested command procedures).



SDA Description

3 Analyzing a Running System

Occasionally, an internal problem hinders system performance but does not
cause a system failure. By allowing you to examine the running system,
SDA provides the means to search for the solution to the problem without
disturbing the operating system. For example, you can use SDA to examine
the stack and memory of a process that is stalled in a scheduler state, such
as a miscellaneous wait (MWAIT) or a suspended (SUSP) state (see OpenVMS
Performance Management).

If your process has change-mode-to-kernel (CMKRNL) privilege, you can invoke
SDA to examine the system. Use the following DCL command:

$ ANALYZE/ SYSTEM
SDA then does the following:

1. Attempts to load the system symbol table (SYS$SYSTEM:SYS.STB) and
symbol table SYS$SYSTEM:REQSYSDEF.STB.

2. Executes the contents of any existing SDA initialization file, as it does when
invoked to analyze a crash dump (see Sections 2.3 and 2.4, respectively).

3. Displays its identification message and prompt, as follows:

OpenVMS Syst em anal yzer
SDA>
The SDA> prompt indicates that you can use SDA interactively and enter SDA

commands. When analyzing a running system, SDA sets its process context to
that of the process running SDA.

If you are undertaking an analysis of a running system, take the following
considerations into account:

e When used in this mode, SDA does not map the entire system but instead
retrieves only the information it needs to process each individual command.
To update any given display, you must reissue the previous command.

Caution

When using SDA to analyze a running system, use caution in interpreting
its displays. Because system states change frequently, it is possible that
the information SDA displays might be inconsistent with the actual,
volatile state of the system at any given moment.

= Certain SDA commands are illegal in this mode, such as SHOW CPU and
SET CPU. If you use these commands, SDA displays the following error
message:

%SDA- E- CMDNOTVLD, conmand not valid on the running system

e The SHOW CRASH command, although valid, does not display the contents
of any of the processor’s set of hardware registers. Also, the “Time of system
crash” information refers to the time you entered the ANALYZE/SYSTEM
command.

SDA-11



SDA Description

4 SDA Context

When invoked to analyze either a crash dump or a running system, SDA
establishes a default context from which it interprets certain commands.

When the subject of analysis is a uniprocessor system, SDAs context is solely
process context. That is, SDA can interpret its process-specific commands
in the context of either the process current on the uniprocessor or some other
process in some other scheduling state.

When you initially invoke SDA to analyze a crash dump, its process context
defaults to that of the process that was current at the time of the crash. When
you invoke SDA to analyze a running system, its process context defaults to that
of the current process; that is, the one executing SDA.

You can change SDA’s process context by issuing any of the following commands:

SET PROCESS/INDEX=nn
SET PROCESS name
SHOW PROCESS/INDEX=nn

5 CPU Context

SDA-12

In a uniprocessor system only one CPU exists, and the concept of SDA CPU
context is not an issue. However, for a multiprocessor system with more than
one active CPU, SDA must maintain an idea of CPU context to provide a

way of displaying information bound to a specific CPU, such as the reason for
the bugcheck exception, the currently executing process, the current IPL, the
contents of CPU registers, and any owned spin locks. When you first invoke SDA
to analyze a crash dump, the “SDA current CPU” is the CPU that induced the
system failure.

Changing the CPU Context

You can use several SDA commands to change the CPU context. When you
change the CPU context, the “SDA current process” is changed to the current
process on the “SDA current CPU” to synchronize CPU context and process
context. If no current process is on the “SDA current CPU,” the “SDA current
process” is undefined; no process context information will be available until you
set SDA process context to a specific process.

Type HELP PROCESS_CONTEXT for specific information about the “SDA
current process.”

The following SDA commands change the “SDA current CPU":

Command Description

SET CPU cpu_id Changes the “SDA current CPU” to CPU cpu_id

SHOW CPU cpu_id Changes the “SDA current CPU” to CPU cpu_id

SHOW CRASH Changes the “SDA current CPU” to the CPU that induced the

system failure

If you select a process that is the current process on a CPU, the following
commands change the “SDA current CPU” to that CPU:

SET PROCESS name
SET PROCESS/INDEX=nn
SHOW PROCESS name



SDA Description

SHOW PROCESS/INDEX=nn
No other SDA commands affect the “SDA current CPU.”

Note

When you analyze the running system, you cannot use the SET CPU
and SHOW CPU commands because SDA does not have access to all the
CPU-specific information about the running system.

6 Process Context

In a uniprocessor system, process context might be the process that is current
on the CPU or the process in whose context process-specific SDA commands

are interpreted. For a multiprocessor system with more than one active CPU,
however, the meaning of “SDA process context” changes so that it includes a way
to display information relevant to a specific process both when the process is
current on a processor and when the process is not.

You can use several SDA commands to change SDA process context. Following is
a list of the results of some of these changes:

= When you change the “SDA current process” to the current process on a CPU,
the “SDA current CPU” is changed to the new CPU to synchronize CPU
context and process context.

= When you change the “SDA current process” to a process that is not current
on any processor, the “SDA current CPU” is not changed.

= When you change the SDA CPU context to a CPU that has no current process,
the “SDA current process” is undefined; no process context information is
available until you set SDA process context to a specific process.

Type HELP CPU_CONTEXT for specific information about the “SDA current
CPU."

The following SDA commands change the “SDA current process”:

Command Description

SET PROCESS name Changes the “SDA current process” to the named
process

SET PROCESS /INDEX=n Changes the “SDA current process” to the process with
index n

SHOW PROCESS name Changes the “SDA current process” to the named
process

SHOW PROCESS /INDEX=n Changes the “SDA current process” to the process with
index n

The following commands change the SDA process context if the “SDA current
process” is not the current process on the selected CPU:

SDA-13



SDA Description

Command Description

SET CPU cpu_id Changes the “SDA current process” to the current process on
CPU cpu_id

SHOW CPU cpu_id Changes the “SDA current process” to the current process on
CPU cpu_id

SHOW CRASH Changes the “SDA current process” to the current process on

the CPU that induced the system failure

No other SDA commands affect the “SDA current process.”

Note

When you analyze the running system, CPU context is not used because
all the CPU-specific information might not be available.

Changing the SDA CPU Context

When you invoke SDA to analyze a crash dump from a multiprocessing system
with more than one active CPU, SDA maintains a second dimension of context—
its CPU context—that allows it to display certain processor-specific information,
such as the reason for the bugcheck exception, the currently executing process,
the current IPL, the contents of processor-specific registers, the interrupt stack
pointer (ISP), and the spin locks owned by the processor. When you invoke SDA
to analyze a multiprocessor’s crash dump, its CPU context defaults to that of the
processor that induced the system failure.3

You can change the SDA CPU context by using any of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH

Changing CPU context involves an implicit change in process context in either of
the following ways:

< If there is a current process on the CPU made current, SDA process context
is changed to that of that CPU's current process.

= If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until you set SDA
process context to that of a specific process.

Likewise, changing process context can involve a switch of CPU context as well.
For instance, if you issue a SET PROCESS command for a process that is current
on another CPU, SDA automatically changes its CPU context to that of the CPU
on which that process is current. The following commands can have this effect if
the name or index number (nn) refers to a current process:

SET PROCESS name

SET PROCESS/INDEX=nn
SHOW PROCESS name
SHOW PROCESS/INDEX=nn

3 When you are analyzing a running system, CPU context is not accessible to SDA.

Therefore, the SET CPU and SHOW CPU commands are not permitted.

SDA-14



SDA Description

7 SDA Command Format

The following sections describe the format of SDA commands and the expressions
you can use with SDA commands.

7.1 General Command Format

SDA uses a command format similar to that used by the DCL interpreter. You
issue commands in this general format:

command-name[/qualifier...] [parameter][/qualifier...] ['comment]

where:

command-name

/qualifier

parameter

lcomment

7.2 Expressions

Is an SDA command. Each command tells the utility to perform a
function. Commands can consist of one or more words, and can be
abbreviated to the number of characters that make the command

unique. For example, SH stands for SHOW and SE stands for SET.

Modifies the action of an SDA command. A qualifier is always preceded
by a slash (/). Several qualifiers can follow a single parameter or
command name, but a slash must precede each. You can abbreviate
qualifiers to the shortest string of characters that uniquely identifies
the qualifier.

Is the target of the command. For example, SHOW PROCESS RUSKIN
tells SDA to display the context of the process RUSKIN. The command
EXAMINE 80104CD0;40 displays the contents of 40 bytes of memory,
beginning with location 80104CDO.

When you supply part of a file specification as a parameter, SDA
assumes default values for the omitted portions of the specification.
The default device SYS$DISK and default directory are those specified
in your most recent SET DEFAULT command. See the OpenVMS DCL
Dictionary for a description of the DCL command SET DEFAULT.

Consists of text that describes the command, but this text is not
actually part of the command. Comments are useful for documenting
SDA command procedures. When executing a command, SDA ignores
the exclamation point (!) and all characters that follow it on the same
line.

You can use expressions as parameters for some SDA commands, such as
SEARCH and EXAMINE. To create expressions, you can use any of the following

elements:

e Numerals

< Radix operators

= Arithmetic and logical operators

= Precedence operators

= Symbols

The following sections describe elements other than numerals.

SDA-15



SDA Description

7.2.1 Radix Operators

Radix operators determine which numeric base SDA uses to evaluate
expressions. You can use one of three radix operators to specify the radix of
the numeric expression that follows the operator:

e X (hexadecimal)
e /O (octal)
e /D (decimal)

The default radix is hexadecimal. SDA displays hexadecimal numbers with
leading zeros and decimal numbers with leading spaces.

7.2.2 Arithmetic and Logical Operators

SDA-16

There are two types of arithmetic and logical operators, both of which are listed
in Table SDA-8.

< Unary operators affect the value of the expression that follows them.
= Binary operators combine the operands that precede and follow them.

In evaluating expressions containing binary operators, SDA performs logical
AND, OR, and XOR operations, and multiplication, division, and arithmetic
shifting before addition and subtraction. Note that the SDA arithmetic operators
perform integer arithmetic on 32-bit operands.

Table SDA-8 SDA Operators

Operator Action

Unary Operators

# Performs a logical NOT of the expression

+ Makes the value of the expression positive

- Makes the value of the expression negative

@ Evaluates the following expression as a virtual address, then uses the
contents of that address as value

G Adds 800000004¢ to the value of the expression1

H Adds 7FFE0000;¢ to the value of the expression?

Binary Operators

+ Addition

- Subtraction

* Multiplication
& Logical AND
| Logical OR

\ Logical XOR

1The unary operator G corresponds to the first virtual address in system space. For example, the
expression GD40 can be used to represent the address 80000D40¢.

2The unary operator H corresponds to a convenient base address in the control region of a process
(7FFE0000,5). You can therefore refer to an address such as 7FFE2A64,6 as H2A64.

(continued on next page)



SDA Description

Table SDA-8 (Cont.) SDA Operators

Operator Action

Binary Operators

/ Division®
@ Arithmetic shifting

31n division, SDA truncates the quotient to an integer, if necessary, and does not retain a remainder.

7.2.3 Precedence Operators

SDA uses parentheses as precedence operators. Expressions enclosed in
parentheses are evaluated first. SDA evaluates nested parenthetical expressions
from the innermost to the outermost pairs of parentheses.

7.2.4 Symbols

Names of symbols can contain from 1 to 31 alphanumeric characters and can
include the dollar sign ($) and underscore (_) characters. Symbols can take
values from —7FFFFFFF5 to 7TFFFFFFF4g.

By default, SDA copies symbols into its symbol table from the files
SYS$SYSTEM:SYS.STB and SYS$SYSTEM:REQSYSDEF.STB. To add more
symbols to the symbol table, you can use the following SDA commands:

e READ—to add symbols from other symbol tables or object modules
= DEFINE—to create symbols and add them to the symbol table
In addition, SDA provides the symbols described in Table SDA-9.

Table SDA-9 SDA Symbols

Symbol Meaning

. (period) Current location

2P_CDDB Address of alternate CDDB for MSCP-served device®
2P_UCB Address of alternate UCB for dual-pathed device®
AMB Associated mailbox UCB pointer!

AP Argument pointer?

CDDB Address of class driver descriptor block for MSCP-served device®
CLUSTRLOA Base address of loadable VAXcluster code

CRB Address of channel request block!

DDB Address of device data block*

DDT Address of driver dispatch table?

1The SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent
to the last displayed device unit. See the description of the SHOW DEVICE command for additional
information.

2The value of those symbols representing the current SDA process context changes whenever you
issue a command that changes the context (see Section 4). These symbols include the general-purpose
registers (RO through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP);

the page table base and length registers (POBR, POLR, P1BR, and P1LR); and the processor status
longword (PSL).

(continued on next page)

SDA-17



SDA Description

Table SDA-9 (Cont.) SDA Symbols

Symbol Meaning

nnDRIVER Base address of a driver prologue table (DPT); such a symbol exists
for each loaded device driver in the system?®

ESP Executive stack pointer?

FP Frame pointer?

FPEMUL Base address of the code that emulates floating-point instructions

G 800000006, the base address of system space

H 7FFE000016

IRP Address of 1/0 request packet!

JiB Job information block

KSP Kernel stack pointer?

LNM Address of logical name block for mailbox*

MCHK Address within loadable CPU-specific routines

MSCP Address of loadable MSCP server code

ORB Address of object rights block!

POBR Base register for the program region (P0)?

POLR Length register for the program region (P0)2

P1BR Base register for the control region (P1)2

P1LR Length register for the control region (P1)2

PC Program counter?

PCB Process control block

PDT Address of port descriptor table?

PHD Process header

PSL Processor status longword?

RO through R11
RMS
RWAITCNT

SB

SCSLOA

SP

SSP

SYSLOA
TMSCP

ucB

General registers?

Base address of the RMS image

Resource wait count for MSCP-served device!

Address of system block®

Base address of loadable common SCS services
Current stack pointer of a process?

Supervisor stack pointer?

Base address of loadable processor-specific system code
Address of loadable TMSCP server code

Address of unit control block®

1The SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent
to the last displayed device unit. See the description of the SHOW DEVICE command for additional

information.

2The value of those symbols representing the current SDA process context changes whenever you
issue a command that changes the context (see Section 4). These symbols include the general-purpose
registers (RO through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP);

the page table base and length registers (POBR, POLR, P1BR, and P1LR); and the processor status

longword (PSL).

3The notation nn within the symbol NnnDRIVER represents a 2-letter, generic device/controller name
(for example, LPDRIVER).

(continued on next page)



SDA Description

Table SDA-9 (Cont.) SDA Symbols

Symbol Meaning
USP User stack pointer?
VCB Address of volume control block for mounted device®

1The SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent
to the last displayed device unit. See the description of the SHOW DEVICE command for additional
information.

2The value of those symbols representing the current SDA process context changes whenever you
issue a command that changes the context (see Section 4). These symbols include the general-purpose
registers (RO through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP);

the page table base and length registers (POBR, POLR, P1BR, and P1LR); and the processor status
longword (PSL).

When SDA displays an address, it displays that address both in hexadecimal
and as a symbol, if possible. If the address is within FFFg of the value of a
symbol, SDA displays the symbol plus the offset from the value of that symbol
to the address. If more than one symbol’s value is within FFFg of the address,
SDA displays the symbol whose value is the closest. If no symbols have values
within FFFqg of the address, SDA displays no symbol. (For an example, see the
description of the SHOW STACK command.)

8 Investigating System Failures

This section discusses how the operating system handles internal errors and
suggests procedures that can aid you in determining the causes of these errors.
To conclude, it illustrates, through detailed analysis of a sample system failure,
how SDA helps you find the causes of operating system problems.

For a complete description of the commands discussed in the sections that follow,
refer to the SDA Commands section.

8.1 General Procedure for Analyzing System Failures

When the operating system detects an internal error so severe that normal
operation cannot continue, it signals a condition known as a fatal bugcheck and
shuts itself down. A specific bugcheck code describes each such error.

To resolve the problem, you must find the reason for the bugcheck. Most failures
are caused by errors in user-written device drivers or other privileged code not
supplied by Compaq. To identify and correct these errors, you need a listing of
the code in question.

Occasionally, a system failure is the result of a hardware failure or an error in
code supplied by Compaq. A hardware failure requires the attention of Compaq
Services. To diagnose an error in code supplied by Compagq, you need listings of
that code, which are available from Compaq on CDROM.

Following are the steps you can take to diagnose an error:

1. Start the search for the error by locating the line of code that signaled the
bugcheck. Invoke SDA and use the SHOW CRASH command to display the
contents of the program counter (PC). The PC contains the address of the
instruction immediately following the instruction that signaled the bugcheck.

2. Use the SHOW STACK command to display the contents of the stack. The
PC often contains an address in the exception handler. This address is the
address of the instruction that signaled the bugcheck, but not the address of
the instruction that caused it. In this case, the address of the instruction that

SDA-19



SDA Description

caused the bugcheck is located on the stack. See Section 8.2 for information
about how to proceed for several types of bugchecks.

Once you have found the address of the instruction that caused the bugcheck,
you need to find the module in which the failing instruction resides. Use the
SHOW DEVICE command to determine whether the instruction is part of a
device driver.

If the module is not part of a driver, examine the linker's map of
the module or modules you are debugging to determine whether the
instruction that caused the bugcheck is in your programs.

If the module is not within a driver or other code supplied by Compagq,
perform the following steps:

a.

Issue the following SDA command:
SDA> SHOW EXECUTI VE

This command shows the location and size of each of the loadable
images that make up the executive.

Compare the suspected address with the addresses of the system
images.

If the address is within one of the images, issue the following
command:

SDA> READI EXECUTI VE SYS$LOADABLE | MAGES:

This command loads the symbols that define locations within the
loadable portion of the executive. (READ/EXECUTIVE is the default
display.)

Examine the failing address by issuing the following command:
SDA> EXAM NE @C

SDA then displays the address in the PC as an offset from the nearest
global symbol. This symbol might be the module’s starting address,
although it is possible that the code you are examining might not be
in the module whose name is displayed.

4. To determine the general cause of the system failure, examine the code that
signaled the bugcheck.

8.2 Fatal Bugcheck Conditions

Several conditions result in a bugcheck. Normally, these occasions are rare.
When they do occur, it is likely that they are in the nature of a fatal exception
or an illegal page fault occurring within privileged code. This section describes
the symptoms of these bugchecks. A discussion of other exceptions and condition
handling in general appears in the OpenVMS System Services Reference Manual.

8.2.1 Fatal Exceptions
An exception is fatal when it occurs while the following conditions exist:

SDA-20

The process is using the interrupt stack.
The process is executing above IPL 2 (IPL$ ASTDEL).

The process is executing in a privileged (kernel or executive) processor access
mode and has not declared a condition handler to deal with the exception.



SDA Description

When the system fails, the operating system reports the approximate cause of the
failure on the console terminal. SDA displays a similar message when you issue
a SHOW CRASH command. For instance, for a fatal exception, SDA can display
one of these messages:

FATALEXCPT, Fatal executive or kernel node exception
| NVEXCEPTN, Exception while above ASTDEL or on interrupt stack
SSRVEXCEPT, Unexpected system service exception

Although several exception conditions are possible, access violations are the most
common. When the hardware detects an access violation, information useful in
finding the cause of the violation is pushed onto either the kernel stack or the
interrupt stack. If the access violation occurs when the hardware is using the
interrupt stack, this information appears on the interrupt stack.

The INVEXCEPTN, SSRVEXCEPT, and FATALEXCPT bugchecks place two
argument lists, known as the mechanism and signal arrays, on the stack.

The SSRVEXCEPT and FATALEXCPT bugchecks push an additional argument
list onto the stack above these arrays; INVEXCEPTN does not. This pointer array
(see Figure SDA-1) contains the number 2 in its first longword, indicating that
the following two longwords complete the array. The second longword contains
the stack address of the signal array; the third contains the stack address of the
mechanism array.

Figure SDA-1 Pointer Argument List on the Stack

00000002

Signal Array Address

Mechanism Array Address

ZK-1920-GE

The first longword of the mechanism array (see Figure SDA-2) contains a 4,
indicating that the four subsequent longwords complete the array. These four
longwords are used by the procedures that search for a condition handler and
report exceptions.

SDA-21



SDA Description

SDA-22

Figure SDA—2 Mechanism Array

00000004
Frame
Depth
RO
R1
ZK-1921-GE
The values in the mechanism array are the following:
Value Meaning
00000004 Number of longwords that follow. In a mechanism array, this value is
always 4.
Frame Address of the FP (frame pointer) of the establisher’s call frame.
Depth Depth of the search for a condition handler.
RO Contents of RO at the time of the exception.
R1 Contents of R1 at the time of the exception.

The signal array (see Figure SDA-3) appears somewhat further down the stack.
A signal array contains the exception code, zero or more exception parameters,
the PC, and the PSL. The size of a signal array can thus vary from exception to
exception.

Figure SDA-3 Signal Array

00000005

0000000C

Reason Mask

Virtual Address

PC

PSL

ZK-1922-GE



SDA Description

For access violations, the signal array is set up as follows:

Value Meaning

00000005 Number of longwords that follow. For access violations, this
value is always 5.

0000000C Exception code. The value 0C,s represents an access violation.
You can identify the exception code by using the SDA command
EVALUATE/CONDITION.

Reason mask Longword mask. If bit 0 of this longword is set, the failing
instruction (at the PC saved below) caused a length violation.
If bit 1 is set, it referred to a location whose page table entry is
in a “no access” page. Bit 2 indicates the type of access used by
the failing instruction: it is set for write and modify operations
and clear for read operations.

Virtual address Virtual address that the failing instruction tried to reference.
PC PC whose execution resulted in the exception.
PSL PSL at the time of the exception.

In the case of a fatal exception, you can find the code that signaled it by
examining the PC in the signal array. Use the SHOW STACK command to
display the stack in use when the failure occurred and then locate the mechanism
and signal arrays. Once you obtain the PC, which points to the instruction that
signaled the exception, you can identify the module where the instruction is
located by following the instructions in Section 9.3.

8.2.2 lllegal Page Faults

A PGFIPLHI bugcheck occurs when a page fault occurs while the interrupt
priority level (IPL) is greater than 2 (IPL$_ASTDEL). When the system fails
because of an illegal page fault, the following message appears on the console
terminal:

PGFI PLHI, page fault with IPL too high

When an illegal page fault occurs, the stack appears as shown in Figure SDA-4.

SDA-23



SDA Description

Figure SDA-4 Stack Following an lllegal Page-Fault Error

R4

R5

Reason Mask

Virtual Address

PC
PSL
ZK-1923-GE

Six longwords describe the error:
Longword Contents
R4 Contents of R4 at the time of the bugcheck.
R5 Contents of R5 at the time of the bugcheck.
Reason mask Longword mask. If bit O of this longword is set, the failing

instruction (at the PC saved below) caused a length violation.
If bit 1 is set, it referred to a location whose page table entry is
in an “access” page. Bit 2 indicates the type of access used by
the failing instruction: it is set for write and modify operations
and clear for read operations.

Virtual address Virtual address being referenced by the instruction that caused
the page fault.

PC PC containing the address of the instruction that caused the
page fault.

PSL PSL at the time of the page fault.

If the operating system detects a page fault while the IPL is higher than IPL$_
ASTDEL, you can obtain the address of the instruction that caused the fault by
examining the PC pushed onto the current operating stack. Follow the steps
outlined in Section 9.3 to determine which module issued the instruction.

9 A Sample System Failure

SDA-24

This section steps through the analysis of a system failure using, as an example,
a printer driver. Three events lead up to this failure:

1. The line printer goes off line for 3 hours.
2. The line printer comes back on line.

3. The operating system signals a bugcheck, writes information to the system
dump file, and shuts itself down.

The following sections describe the actions to take in investigating the causes of
this system crash.



SDA Description

9.1 Identifying the Bugcheck

First, invoke SDA to analyze the system dump file. The initialization message
indicates the type of bugcheck that occurred as follows:

Dunp taken on 31-JAN-1993 16: 34:31.23
| NVEXCEPTN, Exception while above ASTDEL or on interrupt stack

SDA>

An exception occurred that caused the system to signal a bugcheck, and signal
and mechanism arrays have been created on the current operating stack.

9.2 Identifying the Exception

Use the SHOW STACK command to display the current operating stack. In this
case, it is the interrupt stack. The following example shows the interrupt stack
and the signal and mechanism arrays. See the SHOW STACK command for a
complete description of the format of the stack display.

CPU 01 Processor stack

Current operating stack (INTERRUPT)
8006A378 8000844B  ACP$WRI TEBLK+0AO

SP => 8006A398 7TFFDC340
8006A39C  8006A3A0
8006A3A0 80004E7D  EXESREFLECT+0DA
8006A3A4 04080009
8006A3A8 00000004
8006A3AC  7FFDC368
8006A3B0 FFFFFFFD
8006A3B4 8001774E
8006A3B8 0000074F
8006A3BC 00000001
8006A3C0 00000005
8006A3CA 0000000C
8006A3C8 00000000
8006A3CC  80069E00
8006A3D0 8005D003
8006A3D4 04080000
8006A3D8 80009604 EXE$FORKDSPTHH01C

The mechanism array begins at address 8006A3A8,¢ and ends at address
8006A3B8;¢. Its first longword contains 000000041¢. The signal array begins
at address 8006A3C04¢ and ends at 8006A3D44¢. Its first longword contains
000000051¢ and its second longword contains 0000000C.g. Examination of the
signal array shows the following:

= The exception code is 0C;¢, indicating an access violation.

= The reason mask is zero, indicating that the instruction caused a protection
violation (instead of a length violation) when it tried to read the location
(rather than write to it).

= The virtual address that the instruction attempted to reference was
80069E00;¢.

SDA-25



SDA Description

e The PC of the instruction that referred to the bad virtual address was
8005D0034¢.

Issuing the SDA command EVALUATE/PSL 04080000 makes the following

information apparent:

e The IPL was 8 at the time of the exception (shown by bits 16 through 20 of
the PSL).

= The current operating stack was the interrupt stack (bit 26 of the PSL is set

to 1).

= The process was executing in kernel mode at the time of the exception (shown
by bits 24 and 25 of the PSL).

Use the SHOW PAGE_TABLE command to display the system page table, as
shown in the following example. The page containing location 80069E00,¢ is not
available to any access mode (a null page); thus, the virtual address is not valid.

SDA> SHOW PAGE_TABLE

System page tabl e

ADDRESS

80068400
80068600
80068800
80068A00
80068C00
80068E00
80069000
80069200
80069400
80069600
80069800
80069A00
80069C00

SVAPTE  PTE

80777B08 7CAOFFC8
80777B0C 7CAOFFC8
80777B10 7CAOFFC8
80777B14 7CAOFFC8
80777B18 7CAOFFC8
80777B1C 7CAOFFC8
80777B20 7CAOFFC8
80777B24 7CAOFFC8
80777B28 TCAOFFC8
80777B2C 7CAOFFC8
80777B30 7CAOFFC8
80777B34 780016C9
80777B38 78000E15

40 NULL PAGES

TYPE

STX
STX
STX
STX
STX
STX
STX
STX
STX
STX
STX

PROT BITS PAGTYP LOC STATE TYPE REFCNT ~ BAK SVAPTE FLINK BLINK

R
UR
R
UR
R
R
UR
R
R
UR
R

TRANS LR
TRANS UR

AARARARARARARXRXRARAXRRX

K SYSTEM FREELST 00 01 0 0040FFC8 80777B34 03AF OEI15
K SYSTEM FREELST 00 01 0 0040FFC8  80777B38 16C9 2592

9.3 Locating the Source of the Exception

Because the printer went off line and then came back on line, as shown on the
console listing in Section 9.2, the problem might exist in the driver code. SDA
can help you determine which driver might contain the faulty code.

9.3.1 Finding the Driver by Using the Program Counter

The first step in determining whether the failing instruction is within a driver
is to examine the PC in the signal array using the EXAMINE/INSTRUCTION
command. This has two results:

SDA-26

= If possible, it displays the contents of the address as a MACRO instruction.

= It identifies the address as an offset from the symbol, nnDRIVER, if the
address lies within the first FFF1g bytes of such a symbol. SDA defines a
symbol in the form of nnDRIVER for each device driver connected to the
system. This symbol represents the base of the driver prologue table (DPT).
Each DPT is part of the device driver it describes and is immediately followed
by that driver’s code.



SDA Description

In the following example, the instruction that caused the exception is located
within the printer driver.

SDA> EXAM NE/ | NSTRUCTI ON 8005D003
LPDRIVER+2B3 MVB  (R3)+ (R0)

If SDA is unable to find a symbol within FFFg bytes of the memory location you
specify, it displays the location as an absolute address. This often, but not always,
means the instruction that caused the exception is not part of a device driver.

To determine whether an instruction is part of a driver, use the SHOW DEVICE
command to display the starting addresses and lengths of all the drivers in

the system. If the address of the failing instruction falls within the range of
addresses shown for a given driver, the failing instruction is a part of that driver.
The following example shows a partial list of the drivers in the display generated
by the SHOW DEVICE command.

/0 data structures

DDB |i st
Addr ess Control |l er ACP Driver DPT  DPT size
80000ECC HELI UMSDBA FLIXQP DBDRI VER  800F7AD0O 08FD
80001040 OPA OPERATOR 80001622 0061
8000126C MBA MBDRI VER  800015B0 0578
80001460 NLA NLDRI VER  800015E9 05A3

801E2800 HEL| UMBDVA F11XQP DVDRI VER  800B5CBO  0AAQ
801E2980 HELI UMBDLA FL1IXQP DLDRI VER  800B6A50 08D0

9.3.2 Calculating the Offset into the Driver’s Program Section
The offsets that SDA displays from nnDRIVER are actually offsets from the
DPT. As such, these offsets do not exactly correspond to the offsets shown in
driver listings, which represent offsets from the beginning of the program section
(PSECT) in which a given instruction appears. Because a driver usually contains
more than one PSECT, you must use the driver's map to determine the location
of the failing instruction within the driver listing.

To calculate the location of the instruction within the driver listing, refer to the
“Program Section Synopsis” section of the driver’s map. Determine in which
PSECT the offset given by SDA occurs and subtract the base of the PSECT from
the offset. You can then use the resulting figure as an index into the driver
listing.

If SDA does not display the address as an offset from nnDRIVER, but the address
is within the address range of a driver in the SHOW DEVICE display, you must
first subtract the address of the DPT from the failing address. Using the result
as the offset, you can then follow the steps previously outlined for determining
the index of the instruction into a driver listing.

SDA-27



SDA Description

9.4 Finding the Problem Within the Routine

To find the problem within the routine, examine the printer’s driver code. In
the system failure discussed in this example, the instruction that caused the
exception is MOVB (R3)+,(R0). To check the contents of R3, use the EXAMINE
command as follows:

SDA> EXAM NE R3
R3: 80069E00 "...."
The invalid virtual address, as recorded in the signal array, is stored in R3. In

the following driver code excerpt, the instruction in question appears at line 599.
It is likely that the contents of R3 have been incremented too many times.

581 STARTI O

582 MOVL UCBSL_| RP(R5), R3 ;Retrieve address of 1/0 packet

583 MW | RP$L_MEDI A+2(R3

584 UCB$W BOFF( R5) : Set nunber of characters to print
585 MOVL UCBSL_SVAPTE(R5), R3 ; Get address of system buffer

586 MVAB  12(R3), R3 ;Get address of data area

587 MOVL UCBSL_CRB( R5) , R4 ;Get address of CRB

588 MOVL @CRBSL_| NTD+VECSL | DB(R4), R4 ; Get device CSR address

589 ;

590 ; START NEXT QUTPUT SEQUENCE

591 ;

592

593 10$: ADDL3  #LP DBR R4, RO ;Cal cul ate address of data buffer register
594 MOVZW.  UCB$W BOFF( R5) , R1 ; Get nunber of characters remining
595 MOVW  #7X8080, R2 ;CGet control register test mask

596 BRB 25% ;Start out put

597 20$: BITW R, (R4) © ;Printer ready or have paper problen®
598 BLEQ  30% ;If LEQ not ready or paper problem
599 MVB  (R3)+ (R0) @ ;Qutput next character

600 ASHL #1, G'\EXE$GL_UBDELAY, - ( SP) ; Delay 3*2 u-seconds

601 24%; SOBGEQ (SP),24$ ;Delay loop calibrated to machine speed
602 ADDL #4, SP ;Pop extra longword of f stack

603 25$: SOBGEQ R1,20$ © ;Any nore characters to output?

604 BRW 70$ ;All done, BRWto set return status

Explanations of the circled numbers in the example are in Section 9.4.1.

9.4.1 Examining the Routine

SDA-28

The MOVB instruction is part of a routine that reads characters from a buffer
and writes them to the printer. The routine contains the loop of instructions
that starts at the label 20$ and ends at 25$. This loop executes once for each
character in the buffer, performing these steps:

@ The driver checks the printer’s status register to see if the printer is ready.

@ |If the printer is ready, the driver gets a character from the buffer and moves
it to the printer’s data register, to which RO points.

© It then decrements R1, which contains the count of characters left to print. If
R1 contains a number greater than 0, control is passed back to the instruction
at 20%$, and the loop begins again.

Steps 1 and 2 are repeated until the contents of R1 are O or the printer signals
that it is not ready.

If the printer signals that it is not ready, the driver transfers control to 30$ (line
598), the beginning of a routine that waits for an interrupt from the printer.
When the printer becomes ready, it interrupts the driver and execution of the loop
resumes.



SDA Description

Examine the code to determine which variables control the loop.

The byte count (BCNT) is the number of characters in the buffer. Note that
BCNT is set by a function decision table (FDT) routine and that this routine sets
the value of BCNT to the number of characters in the buffer. In line 586, the
starting address of a buffer that is BCNT bytes in size is moved into R3.

Note also that the number of characters left to be printed is represented by the
byte offset (BOFF), the offset into the buffer at which the driver finds the next
character to be printed. This value controls the number of times the loop is
executed.

Because the exception is an access violation, either R3 or RO must contain an
incorrect value. You can determine that RO is probably valid by the following
logic:

= The instruction at 10$ (ADDL3 #LP_DBR,R4,R0) places an address in RO and
RO is not modified again until the failing instruction (line 599).

= The value in R4 at the time that the instruction at 10$ is executed was
derived from the addresses of the device’s unit control block (UCB) (line 587)
and CRB (line 599). Although it is possible that these data structures might
contain wrong information, it is unlikely.

Thus, the contents of R3 seem to be the cause of the failure.

The most likely reason that the contents of R3 are wrong is that the MOVB
instruction at line 599 executes too many times. You can check this by comparing
the contents of UCB$W_BOFF and UCB$W_BCNT. If UCB$W_BOFF contains

a larger value than that in UCB$W_BCNT, then R3 contains a value that is too
large, indicating that the MOVB instruction has incremented the contents of R3
too many times.

9.4.2 Checking the Values of Key Variables
Because the start-1/0 routine requires that R5 contain the address of the printer’s
UCB, and because several other instructions reference R5 without error before
any instruction in the loop does, you can assume that R5 contains the address of
the right UCB. To compare BOFF and BCNT, use the command FORMAT @RS5 to
display the contents of the UCB, as shown in the following session.

SDA> READ SYS$SYSTEM SYSDEF. STB

SDA> FORMAT @5
8005D160  UCBSL_FQFL 80003948
UCBSL_RQFL
UCBSW MB_SEED
UCBSW UNI'T_SEED
8005D164  UCBSL_FQBL 80003948
UCBSL_RQBL
8005D168  UCBSW S| ZE 0122
8005D16A  UCB$B_TYPE 10
8005D16B  UCBSB_FI PL 34
UCBSB_FLCK

SDA-29



SDA Description

8005D1C8  UCBSL_SVAPTE 80062720

8005D1CC UCB$W BOFF 0795
8005D1CE UCBSW BCNT 006D
8005D1D0 UCB$B_ERTCNT 00
8005D1D1 UCB$B_ERTMAX 00

8005D1D2 UCB$W ERRCNT 0000

SDA>

If you have only one printer in your system configuration, you do not need to use
the FORMAT command. Instead, you can use the command SHOW DEVICE LP.

Because only one printer is connected to the processor, only one UCB is associated
with a printer for SDA to display.

The output produced by the FORMAT @R5 command shows that UCB$W_BOFF
contains a value greater than that in UCB$W_BCNT; it should be smaller.
Therefore, the value stored in BOFF is incorrect.

Thus, the value of BOFF is not the number of characters that remain in the
buffer. This value is used in calculating an address that is referenced at an
elevated IPL. When this address is within a null page (unreadable in all access
modes), an attempt to reference it causes the system to fail.

9.4.3 Identifying and Correcting the Defective Code

SDA-30

Examine the printer driver code to locate all instructions that modify UCB$W _
BOFF. The value changes in two circumstances:

< Immediately after the driver detects that the printer is not ready and that
the problem is not a paper problem (line 609).

= When the wait-for-interrupt routine’s timeout count of 12 seconds is
exhausted (lines 616 and 630). At this time, the contents of R1, plus 1,
are stored in UCB$W_BOFF (line 631).

When the printer times out, the driver should not modify UCB$W_BOFF. It does
so, however, in line 631. The driver should modify the contents of UCB$W_BOFF
only when it is certain that the printer printed the character. When the printer
times out, this is not the case. Furthermore, the wait-for-interrupt routine
preserves only registers R3, R4, and R5, so that only those registers can be used
unmodified after the execution of the wait-for-interrupt routine. Thus, the use of
R1 in line 631 is an error.

To correct the problem, change the WFIKPCH argument (line 616) so that, when
the printer times out, the WFIKPCH macro transfers control to 50% rather than
to 40%.



SDA Description

607

608 30%: BNEQ  40% ; If NEQ paper problem

609 ADDVWB  #1, RL, UCB$W BOFF(R5) ; Save nunmber of characters renaining
610 DEVI CELOCK -

611 LOCKADDR=UCBSL_DLCK(R5),- ;Lock device interrupts

612 SAVI PL=- ( SP) ; Save current |PL

613 BITW  #"X80, LP_CSR(R4) ;Is it ready now?

614 BNEQ  35% ;If NEQ yes, it's ready

615 BISB  #"X40, LP_CSR(R4) ;Set interrupt enable

616 WFI KPCH 408, #12 ;Wait for ready interrupt

617 | OFORK ;Create a fork process

618 BRB 10% ; ...and start next output

619

620 35%:

621 DEVI CEUNLOCK -

622 LOCKADDR=UCBSL_DLCK(R5), - ; Unl ock device interrupts
623 NEW PL=( SP) + ; Restore | PL

624 CLRW  LP_CSR(R4) ;Disable device interrupts

625 BRB 10% ;G transfer nore characters

626 ;

627 ; PRINTER HAS PAPER PROBLEM

628 ;

629

630 40$: CLRL  UCB$L_LP OFLCNT(R5) ;O ear offline counter

631 ADDWB  #1, R1, UCB3W BOFF(R5) ; Save nunber of characters remaining
632 50%: CLRW  LP_CSR(R4) ;Disable printer interrupt

633 | OFORK ; Lower to fork |evel

634 BBS #UCB$V_CANCEL, UCBSW STS(R5), 80$ ;If set, cancel |/O operation
635 TSTW  LP _CSR(R4) ;Printer still have paper problen?
636 BLSS  55% ;I f LSS yes

637 MOVL #15, UCBSL_LP_TI MEQUT(R5) ;Set tineout val ue

638 BRB 10% ; ...and start next output

10 Inducing a System Failure

If the operating system is not performing well and you want to create a dump
you can examine, you must induce a system failure. Occasionally, a device driver
or other user-written, kernel-mode code can cause the system to execute a loop of
code at a high priority, interfering with normal system operation. This can occur
even though you have set a breakpoint in the code if the loop is encountered
before the breakpoint. To gain control of the system in such circumstances, you
must cause the system to fail and then reboot it.

If the system has suspended all noticeable activity (if it is “hung”), see the
examples of causing system failures in Section 10.2.

If you are generating a system crash in response to a system hang, be sure

to record the PC at the time of the system halt as well as the contents of the
general registers. Submit this information to Compaq, along with the Software
Performance Report (SPR) and a copy of the generated system dump file.

10.1 Meeting Crash Dump Requirements

The following requirements must be met before the system can write a complete
crash dump:

< You must not halt the system until the console dump messages have been
printed in their entirety and the memory contents have been written to the
crash dump file. Be sure to allow sufficient time for these events to take place
or make sure that all disk activity has stopped before using the console to
halt the system.

SDA-31



SDA Description

= There must be a crash dump file in SYS$SYSTEM: named either
SYSDUMP.DMP or PAGEFILE.SYS.

This dump file must be either large enough to hold the entire contents
of memory (as discussed in Section 1.1) or, if the DUMPSTYLE system
parameter is set, large enough to accommodate a subset dump (see
Section 1.1.2).

If SYSDUMP.DMP is not present, the operating system attempts to write
crash dumps to PAGEFILE.SYS. In this case, the SAVEDUMP system
parameter must be 1 (the default is 0).

e The DUMPBUG system parameter must be 1 (the default is 1).

10.2 Examples of How to Cause System Failures

SDA-32

The following examples show the sequence of console commands needed to cause
a system failure on each type of processor. In each instance, after halting the
processor and examining its registers, you place the equivalent of —1 (for example,
FFFFFFFFqg) into the PC. The value placed in the PSL sets the processor access
mode to kernel and the IPL to 31. After these commands are executed, an
INVEXCEPTN bugcheck is reported on the console terminal, followed by a listing
of the contents of the processor registers.

The console volume of most processors contains a command file named either
CRASH.COM or CRASH.CMD, which you can execute to perform these
commands. Note that the console sessions recorded in this section omit much of
the information the console displays in response to the listed commands.

VAX 85x0/8700/88x0

The following series of console commands causes a system failure on the VAX
85x0/8700/88x0 systems. (Note that the console prompt for the VAX 8810, 8820,
and 8830 systems is PS-CIO-0> and not >>>.)

$
>>> SET CPU CURRENT_PRI MARY
>>> HALT
200 Left CPU -- CPU halted
PC = 8001911C
>>> @RASH
|
' Command procedure to force bugcheck via access violation
|
SET VERI FY
SET CPU CURRENT_PRI MARY  !'Select primry
EXAM NE PSL I'Display PSL

M 00000000 00420008
EXAM NE/ |/ NEXT 4 0

DEPOSI T PC FFFFFFFF ISet PC=-1 to force ACCVIO
DEPCSI T PSL 41F0000 I'Set IPL=31, interrupt stack
CONTI NUE ' Execute fromPC=-1



SDA Description

VAX 82x0/83x0, VAXstation 3520/3540, 6000 Series, and 9000 Series

The following console commands cause a system failure on a VAX 82x0/83x0
system, a VAXstation 3520/3540 system, a VAX 6000 series system, or a VAX
9000 series system.

$
PC = 80008B1F

>>> E P

>>> F| 0

>>> B/ | +

>>> Ef| +

>>> B/ | +

>>> Ef| +

>>> O/ G F FFFFFFFF
>>> D P 41F0000
>>> C

VAX 8600/8650

The following console commands cause a system failure on the VAX 8600/8650
systems.

$
>>> @RASH

SET QU ET OFF I Make cl earer
SET ABORT OFF I'Don't abort on E/VIR command
HALT

CPU stopped, | NVOKED BY CONSOLE (CSM code 11)

PC 80008BLF

UNJAM I'Clear the way
E PSL I'Display PSL
U PSL 00000000
EI1/IN4 O I'Display stack pointers
E SP I'Get current stack pointers
G OE 80000C40
E/vir/next:40 @ 'Dunp top of stack
D PC FFFFFFFF 'l nvalidate the PC
D PSL 1F0000 'Kernel node, IPL 31
SET ABORT ON I'Restore abort flag
SET QU ET ON I'Shut out put of f
CONTI NUE I'Force a machi ne check

VAX-11/780 and VAX-11/785

The following console commands cause a system failure on the VAX-11/780 and
VAX-11/785 processors.

$

>>> (@RASH

HALT l'Halt system exanine PC,
HALTED AT 80008A89

EXAM NE PSL I'PSL,

00000000

EXAM NE/ | NTERN NEXT: 4 0 land all stack pointers
DEPCSIT PC = -1 'I'nvalidate PC

DEPOSI T PSL = 41F0000 I Kernel node, IPL 31

SDA-33



SDA Description

SDA-34

CONTI NUE

VAX-11/750

The following code causes a system failure on a VAX-11/750. On this processor,
the HALT command is a NOP; a Ctrl/P automatically halts the processor.

$ [

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

FFFFFFF
0000

O —— T
AT+ + + +0O

F
1F

ocummmmmm =T

MicroVAX 3400/3600/3900 Series, VAXstation/MicroVAX 3100,
VAXstation/MicroVAX 2000, MicroVAX Il, and VAX 4000 Series

To force a crash of a MicroVAX, you must first halt the processor. (After you halt
the processor, press the HALT button again so that it is popped out and is not
illuminated.) Then, issue the following console commands:

>>> E PSL

>>> B/ I/N4 0

>>> D PC FFFFFFFF
>>> D PSL 41F0000
>>> C

VAX-11/730

The following console commands cause a system failure on a VAX-11/730. Ctrl/P
automatically halts the processor.

$
>>> H

>>> E PSL

>>> EHI1/N4 0

>>> D PC FFFFFFFF
>>> D PSL 1F0000
>>> C



SDA Usage Summary

The System Dump Analyzer is a utility that you can use to help determine the
causes of system failures. This utility is also useful for examining the running

system.

Format

analyze {/CRASH_DUMP [/RELEASE] filespec| /SYSTEM}
[/[SYMBOL=system-symbol-table]

Command Parameter

filespec

Name of the file that contains the dump you want to analyze. At least one field
of the filespec is required, and it can be any field. The default filespec is the
highest version of SYSDUMP.DMP in your default directory.

Usage Summary

The following table summarizes how to perform key SDA operations.

Operation

Command

Explanation or Requirements

Invoke SDA to analyze a
system dump

Invoke SDA to analyze a
running system

Send all output from
SDA to a file

Redirect the output to
your terminal

Send a copy of all the
commands you enter
and all the output those
commands produce to a
file

Exit an SDA display or
the SDA utility

$ ANALYZE/CRASH_
DUMP filename

$ ANALYZE/SYSTEM

SDA> SET OUTPUT
filename

$ SET OUTPUT
SYS$OUTPUT

SDA> SET LOG filename

SDA> EXIT

If you do not specify a file name, SDA prompts
you for one.

Reading the dump file usually requires system
privilege (SYSPRV), but your system manager
can allow less privileged processes to read dump
files.

Your process needs change-mode-to-kernel
(CMKRNL) privilege to release page file dump
blocks, whether you use the /RELEASE qualifier
or the SDA COPY command.

Your process must have change-mode-to-kernel
(CMKRNL) privilege. You cannot specify a file
name with the /SYSTEM qualifier.

The file produced is 132 columns wide and is
formatted for output to a printer.

The file produced is 132 columns wide and is
formatted for output to a printer.

If SDA is in display mode, you must use the
EXIT command twice: once to exit display mode
and a second time to exit SDA.

SDA-35



SDA Usage Summary

SDA Qualifiers

The following qualifiers, described in this section, determine whether the object
of an SDA session is a crash dump or a running system. They also help create
the environment of an SDA session. Table SDA-10 briefly describes the SDA
qualifiers.

Table SDA-10 Descriptions of SDA Qualifiers

Qualifier Description

/CRASH_DUMP Invokes SDA to analyze a specified dump file

/RELEASE Invokes SDA to release those blocks that are occupied by a crash
dump in a specified system paging file

/ISYMBOL Specifies a system symbol table for SDA to use in place of the
system symbol table it uses by default (SYS$SYSTEM:SYS.STB)

ISYSTEM Invokes SDA to analyze a running system

SDA-36



System Dump Analyzer
/ICRASH_DUMP

ICRASH_DUMP

Format

Parameter

Description

Examples

Invokes SDA to analyze the specified dump file.

/CRASH_DUMP filespec

filespec
Name of the crash dump file to be analyzed. The default file specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

See Section 2 for additional information on crash dump analysis.

1. $ ANALYZE/ CRASH DUWP SYS$SYSTEM SYSDUMP. DVP
$ ANALYZE/ CRASH SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP.

2. $ ANALYZE/ CRASH SYS$SYSTEM PAGEFI LE. SYS

This command invokes SDA to analyze a crash dump stored in the system
paging file.

SDA-37



System Dump Analyzer

IRELEASE

IRELEASE
Invokes SDA to release those blocks in the specified system paging file occupied
by a crash dump.

Format
/RELEASE filespec

Parameter
filespec
Name of the system page file (SYS$SYSTEM:PAGEFILE.SYS). The default file
specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

Description
You use the /RELEASE qualifier to release from the system paging file those
blocks occupied by a crash dump. When invoked with the /RELEASE qualifier,
SDA immediately deletes the dump from the paging file and allows no opportunity
to analyze its contents.
When you specify the /RELEASE qualifier in the ANALYZE command, you must
also do the following:
1. Use the /CRASH_DUMP qualifier.
2. Include the name of the system paging file (SYS$SYSTEM:PAGEFILE.SYS)

as the filespec.

If you do not specify the system paging file or the specified paging file does not
contain a dump, SDA generates the following messages:
Y%BDA- E- BLKSNRLSD, no dunp blocks in page file to release, or not page file
Y%EDA- E- NOTPAGFI L, specified file is not the page file

Example

$ ANALYZE/ CRASH_DUWP/ RELEASE SYS$SYSTEM PAGEFI LE. SYS

SDA-38

This command invokes SDA to release to the paging file those blocks in
SYS$SYSTEM:PAGEFILE.SYS occupied by a crash dump.



System Dump Analyzer
/ISYMBOL

/ISYMBOL

Format

Parameter

Description

Example

Specifies a system symbol table for SDA to use in place of the system symbol
table it uses by default (SYS$SYSTEM:SYS.STB).

/ISYMBOL =system-symbol-table

system-symbol table

File specification of the SDA system symbol table needed to define symbols
required by SDA to analyze a dump from a particular system. The specified
system-symbol-table must contain those symbols required by SDA to find
certain locations in the executive image.

If you do not specify the /SYMBOL qualifier, SDA uses SYS$SYSTEM:SYS.STB
by default. When you do specify the /SYMBOL qualifier, SDA assumes the default
disk and directory to be SYS$DISK: that is, the disk and directory specified in
your last SET DEFAULT command. If SDA is given a file that is not a system
symbol table in the /SYMBOL qualifier, it halts with a fatal error.

The /ISYMBOL qualifier allows you to specify a system symbol table, other than
SYS$SYSTEM:SYS.STB, to load into the SDA symbol table. This might be
necessary, for instance, to analyze a crash dump taken on a processor running a
different version of OpenVMS.

You can use the /[SYMBOL qualifier whether you are analyzing a system dump or
a running system.

$ ANALYZE/ CRASH_DUMP/ SYMBOL=SYS$CRASH: SYS. STB SYS$SYSTEM

This command invokes SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP, using the system symbol table at
SYS$CRASH:SYS.STB.

SDA-39



System Dump Analyzer

ISYSTEM

ISYSTEM
Invokes SDA to analyze a running system.

Format
/SYSTEM

Parameters
None.

Description
See Section 3 for a full discussion of using SDA to analyze a running system.
You cannot specify the /CRASH_DUMP or /RELEASE qualifiers when you include
the /SYSTEM qualifier in the ANALYZE command.

Example

$ ANALYZE/ SYSTEM

This command invokes SDA to analyze the running system.

SDA-40



SDA Commands

System Dump Analyzer

Table SDA-11 briefly describes the SDA commands that are explained fully in the

following section.

Table SDA-11 Descriptions of SDA Commands

Command Description

@ (Execute Causes SDA to execute SDA commands contained in a file

Procedure)

ATTACH Switches control of your terminal from your current process
to another process in your job

COPY Copies the contents of the dump file to another file

DEFINE Assigns a value to a symbol or associates an SDA command
with a terminal key

EVALUATE Computes and displays the value of the specified expression
in both hexadecimal and decimal

EXAMINE Displays either the contents of a location or range of locations
in physical memory, or the contents of a register

EXIT Exits from an SDA display or exits from the SDA utility

FORMAT Displays a formatted list of the contents of a block of memory

HELP Displays information about the SDA utility, its operation,
and the format of its commands

READ Loads the global symbols contained in the specified object
module into the SDA symbol table

REPEAT Repeats execution of the last command issued

SEARCH Scans a range of memory locations for all occurrences of a
specified value

SET CPU Selects a processor to become the SDA current CPU

SET LOG Initiates or discontinues the recording of an SDA session in a
text file

SET OUTPUT Redirects output from SDA to the specified file or device

SET PROCESS Selects a process to become the SDA current process

SET RMS Changes the options shown by the SHOW PROCESS/RMS
command

SHOW CALL_ Displays the locations and contents of the longwords

FRAME representing a procedure call frame

SHOW Displays connection manager and system communications

CLUSTER services (SCS) information for all nodes in a cluster

SHOW Displays information about all active connections between

CONNECTIONS

SHOW CPU

SCS processes or a single connection

Displays information about the state of a processor at the
time of the system failure

(continued on next page)

SDA-41



System Dump Analyzer

SDA-42

Table SDA-11 (Cont.) Descriptions of SDA Commands

Command

Description

SHOW CRASH

SHOW DEVICE

SHOW
EXECUTIVE

SHOW HEADER
SHOW LAN

SHOW LOCK
SHOW LOGS
SHOW PAGE_

TABLE

SHOW PFN_
DATA

SHOW POOL
SHOW PORTS
SHOW PROCESS
SHOW
RESOURCE
SHOW RMS

SHOW RSPID

SHOW
SPINLOCKS

SHOW STACK

SHOW
SUMMARY

In the analysis of a system failure, displays information
about the state of the system at the time of the failure;
in the analysis of a running system, provides information
identifying the system

Displays a list of all devices in the system and their
associated data structures or displays the data structures
associated with a given device or devices

Displays the location and size of each loadable image that
makes up the executive

Displays the header of the dump file

Displays information contained in various local area network
(LAN) data structures

Displays information about all lock management locks in the
system, cached locks, or a specified lock

Displays information about transaction logs currently open
for the node

Displays a range of system page table entries, the entire
system page table, or the entire global page table

Displays information that is contained in the page lists and
PFN database

Displays information about the disposition of paged and
nonpaged memory, nonpaged dynamic storage pool, and
paged dynamic storage pool

Displays those portions of the port descriptor table (PDT)
that are port independent

Displays the software and hardware context of any process in
the balance set

Displays information about all resources in the system or
about a resource associated with a specific lock

Displays the RMS data structures selected by the SET RMS
command to be included in the default display of the SHOW
PROCESS/RMS command

Displays information about response IDs (RSPIDs) of all SCS
connections or, optionally, a specific SCS connection

Displays information taken from the data structures
that provide system synchronization in a multiprocessing
environment

Displays the location and contents of the four process stacks
(of the SDA current process) and the interrupt stack (of the
SDA current CPU)

Displays a list of all active processes and the values of the
parameters used in swapping and scheduling those processes

(continued on next page)



System Dump Analyzer

Table SDA-11 (Cont.) Descriptions of SDA Commands

Command Description

SHOW SYMBOL  Displays the hexadecimal value of a symbol and, if the value
is equal to an address location, the contents of that location

SHOW Displays information about all transactions on the node or

TRANSACTIONS about a specified transaction

SPAWN Creates a subprocess of the process currently running SDA,
copying the context of the current process to the subprocess

VALIDATE Validates the integrity of the specified queue by checking the

QUEUE pointers in the queue

SDA-43



System Dump Analyzer
@ (Execute Procedure)

@ (Execute Procedure)

Format

Parameter

Example
SDA> @ISUAL

SDA-44

Causes SDA to execute SDA commands contained in a file. Use this command to
execute a set of frequently used SDA commands.

@filespec

filespec
Name of a file that contains the SDA commands to be executed. The default file
type is .COM.

The Execute Procedure command executes the following commands, as contained
in a file named USUAL.COM:

SET OUTPUT LASTCRASH. LIS
SHOW CRASH

SHOW PROCESS

SHOW STACK

SHOW SUMVARY

This command procedure first makes the file LASTCRASH.LIS the destination for
output generated by subsequent SDA commands. Next, the command procedure
sends to the file information about the crash and its context, a description of the
process executing at the time of the process, the contents of the stack on which
the crash occurred, and a list of the processes active on the CPU that crashed.

An EXIT command within a command procedure terminates the procedure at
that point, as would an end-of-file marker.

You cannot nest command procedures.



System Dump Analyzer

ATTACH
ATTACH
Switches control of your terminal from your current process to another process in
your job.
Format
ATTACH [/PARENT] process-name
Parameter
process-name
Name of the process to which you want to transfer control.
Qualifier
/PARENT
Transfers control of the terminal to the parent process of the current process.
When you specify this qualifier, you cannot specify the process-name parameter.
Examples

1. SDA> ATTACH PARENT

This ATTACH command attaches the terminal to the parent process of the
current process.

2. SDA> ATTACH DUMPER

This ATTACH command attaches the terminal to a process named DUMPER
in the same job as the current process.

SDA-45



System Dump Analyzer

COPY

COPY

Format

Parameter

Description

Example

Copies the contents of the dump file to another file.

COPY output-filespec

output-filespec
Name of the device, directory, and file to which SDA copies the dump file. The
default file specification is:

SYS$DISK:[default-dir]filename.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. You must supply at least the file name.

Each time the system fails, it copies the contents of physical memory and the
hardware context of the current process (as directed by the DUMPSTYLE
parameter) into the file SYS$SYSTEM:SYSDUMP.DMP (or the paging file),
overwriting its current contents. If you do not save this crash dump elsewhere, it
will be overwritten the next time the system fails.

The COPY command allows you to preserve a crash dump by copying its contents
to another file. It is generally useful to invoke SDA during system initialization
(from within SYSSMANAGER:SYSTARTUP_VMS.COM) to execute the COPY
command. This ensures that a copy of the dump file is made each time the
system fails.

The COPY command does not affect the contents of
SYS$SYSTEM:SYSDUMP.DMP.

If you are using the paging file (SYS$SYSTEM:PAGEFILE.SYS) as the dump file
instead of SYSDUMP.DMP, you can use the COPY command to explicitly release
the blocks of the paging file that contain the dump, thus making them available
for paging. Although the copy operation succeeds nonetheless, the release
operation requires that your process have change-mode-to-kernel (CMKRNL)
privilege. Once the dump pages have been released from the paging file, the
dump information in those pages might be lost. You need to analyze the copy of
the dump created by the COPY command.

SDA> COPY SYS$CRASH: SAVEDUMP

SDA-46

The COPY command copies the dump file into the file
SYS$CRASH:SAVEDUMP.DMP.



System Dump Analyzer
DEFINE

DEFINE

Format

Parameters

Assigns a value to a symbol or associates an SDA command with a terminal key.

DEFINE [symbols-name [=] expression| /KEY key-name command |[/qualifier....]]

symbol-name

Name, containing from 1 to 31 alphanumeric characters, that identifies the
symbol. See Section 7.2.4 for a description of SDA symbol syntax and a list of
default symbols.

expression
Definition of the symbol’s value. See Section 7.2 for a discussion of the
components of SDA expressions.

key-name
Name of the key to be defined. You can define the following keys under SDA:

Key Name Key Designation

PF1 LK201, VT100, VT52 Red
PF2 LK201, VT100, VT52 Blue
PF3 LK201, VT100, VT52 Black
PF4 LK201, VT100

KPO ... KP9 Keypad 0-9

PERIOD

Keypad period
COMMA Keypad comma
MINUS Keypad minus
ENTER Keypad Enter
UP Up arrow
DOWN Down arrow
LEFT Left arrow
RIGHT Right arrow
El LK201 Find
E2 LK201 Insert Here
E3 LK201 Remove
E4 LK201 Select
ES5 LK201 Prev Screen
E6 LK201 Next Screen
HELP LK201 Help
DO LK201 Do
F7 ... F20 LK201 function keys

SDA-47



System Dump Analyzer

DEFINE

Qualifiers

SDA-48

command
SDA command the key is to be defined as. The command must be enclosed in
guotation marks (" ").

/ECHO

/NOECHO

Determines whether the equivalence string is displayed on the terminal screen
after the defined key has been pressed. The /INOECHO qualifier functions only
with the /TERMINATE qualifier. The default is /ECHO.

/IF_STATE=(state-name, ...)

INOIF_STATE

Specifies a list of one or more states, one of which must be in effect for the key
definition to be in effect. States are placed in effect by the /SET_STATE qualifier,
which is described in this section.

The state-name is an alphanumeric string, enclosed in quotation marks (" "). By
including several state names, you can define a key to have the same function

in all the specified states. If you specify only one state name, you can omit the
parentheses.

If you omit the /IF_STATE qualifier—or use /INOIF_STATE—the current state is
used.

IKEY

Defines a key as an SDA command. You need only to press the defined key and
the Return key to issue the command. If you use the /TERMINATE qualifier as
well, you do not need to press the Return key.

When you define some keys as SDA commands, you must press Ctrl/V first
before those keys will execute the commands. This is because of the escape
sequences the keys generate and the way the terminal driver handles those
escape sequences. The following keys, when defined as SDA commands, must be
preceded by a Ctrl/V:

Key Name Key Designation
LEFT Left arrow

RIGHT Right arrow
F7...F14 LK201 function keys

/ISET_STATE=state-name

Causes the key being defined to cause a key state change rather than issue an
SDA command. When you use the /SET_STATE qualifier, you supply the name of
a key state in place of the key-name parameter. In addition, you must define the
command parameter as a pair of quotation marks (" ").

The key state can be any name you think appropriate. For example, you can
define the PF1 key to set the state to GOLD and use the /IF_STATE=GOLD
qualifier to allow two definitions for other keys, one in the GOLD state and one in
the non-GOLD state.



Description

Examples

System Dump Analyzer
DEFINE

ITERMINATE

INOTERMINATE

Causes the key definition to include termination of the command, which causes
SDA to execute the command when the defined key is pressed. Therefore, you do
not have to press the Return key after you press the defined key if you specify the
ITERMINATE qualifier.

The DEFINE command causes SDA to evaluate an expression and then assign
its value to a symbol. Both the DEFINE and EVALUATE commands perform
computations in order to evaluate expressions. DEFINE adds symbols to the SDA
symbol table but does not display the results of the computation. EVALUATE
displays the results of the computation but does not add symbols to the SDA
symbol table.

The DEFINE/KEY command associates an SDA command with the specified key,
in accordance with any specified qualifiers.

If the symbol or key is already defined, SDA replaces the old definition with the
new one. Symbols and keys remain defined until you exit SDA.

1. SDA> DEFINE BEG N = 80058E00
SDA> DEFI NE END = 80058E60
SDA> EXAM NE BEG N: END

In this example, DEFINE defines two addresses, called BEGIN and END.
These symbols serve as reference points in memory, defining a range of
memory locations that the EXAMINE command can inspect.

2. SDA> DEFINE NEXT = @C
SDA> EXAM NE/ | NSTRUCTI ON NEXT
NEXT:  MOVL @0(Ré), RO

Symbol NEXT defines the address contained in the program counter so that
you can use the symbol in an EXAMINE/INSTRUCTION command.

3. SDA> DEFINE VEC SCH$G._PCBVEC
SDA> EXAM NE VEC
VEC. 80B7D31C ".Q."

After the value of global symbol SCH$GL_PCBVEC has been assigned to
the symbol VEC, VEC is used to examine the memory location or value
represented by the global symbol.

4. SDA> DEFINE COUNT = 7
SDA> DEFINE RESULT = COUNT * COUNT
SDA>  EVALUATE RESULT
Hex = 00000031  Decimal = 49 PR$_SBI S
RESULT

The first DEFINE command assigns the value 7 to symbol COUNT. The
second DEFINE command defines RESULT to be the result of the evaluation
of an arithmetic expression using the symbol COUNT. Evaluation of RESULT
shows that system symbol PR$_SBIS has an equivalent value.

SDA-49



System Dump Analyzer

DEFINE

SDA-50

5.

SDA> DEFI NE/ KEY PF1 " SHOW STACK"

SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

7FFESDD4 00001703 SGN$C_MAXPGFL+703
7FFES8DD8 80127920
7FFESDDC 00000000
7FFESDEO 00000000
7FFESDE4 00000000
7FFES8DE8 00000000
TFFEBDEC T7FF743E4
7TFFE8DFO  7FF743CC

SP => 7FFE8DF4 8000E646 EXESCMODEXEC+1EE
7FFE8DF8 7FFEDE96 SYS$CMKRNL+006
7FFESDFC  03C00000

The DEFINE/KEY command defines PF1 as the SHOW STACK command.
When you press the PF1 key, SDA displays the command and waits for you to
press the Return key.

SDA> DEFI NE/ KEY/ TERM NATE PF1 " SHOW STACK"
SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

The DEFINE/KEY command defines PF1 as the SHOW STACK command.
Also specifying the /TERMINATE qualifier causes SDA to execute the SHOW
STACK command without waiting for you to press the Return key.

SDA> DEFI NE/ KEY/ SET_STATE="GREEN' PF1 ""

SDA> DEFI NE/ KEY/ TERM NATE/ | F_STATE=GREEN PF3 " SHOW STACK"
SDA> SHOW STACK

Process stacks (on CPU 00)

Current operating stack (KERNEL):

The first DEFINE command defines PF1 as a key that sets command state
GREEN. The trailing pair of quotation marks is required syntax, indicating
that no command is to be executed when you press this key.

The second DEFINE command defines PF3 as the SHOW STACK command,
but using the /IF_STATE qualifier makes the definition valid only when the
command state is GREEN. Thus, you must press PF1 before pressing PF3 to
issue the SHOW STACK command. The /TERMINATE qualifier causes the
command to execute as soon as you press the PF3 key.



System Dump Analyzer
EVALUATE

EVALUATE

Format

Parameter

Qualifiers

Description

Examples

Computes and displays the value of the specified expression in both hexadecimal
and decimal. Alternative evaluations of the expression are available with the use
of the qualifiers defined for this command.

EVALUATE {/CONDITION_VALUE |/PSL|/PTE |/SYMBOLS} expression

expression
SDA expression to be evaluated. Section 7.2 describes the components of SDA
expressions.

/CONDITION_VALUE
Displays the message that the $SGETMSG system service obtains for the value of
the expression.

/PSL
Evaluates the specified expression in the format of a processor status longword.

IPTE

Interprets and displays the expression as a page table entry (PTE). The individual
fields of the PTE are separated and an overall description of the PTE’s type is
provided.

/ISYMBOLS

Specifies that all symbols that are known to be equal to the evaluated expression
are to be listed in alphabetical order. The default behavior of the EVALUATE
command displays only the first several such symbols.

If the expression is equal to the value of a symbol in the SDA symbol table, that
symbol is displayed. If no symbol with this value is known, the next lower valued
symbol is displayed with an appropriate offset if the offset is small enough for the
selected symbol to be considered useful.

1. SDA> EVALUATE -1
Hex = FFFFFFFF  Decimal = -1 PR$_XSI D_NBNNN

The EVALUATE command evaluates a numeric expression, displays the
value of that expression in hexadecimal and decimal notation, and displays a
symbol that has been defined to have an equivalent value.

SDA-51



System Dump Analyzer

EVALUATE

SDA-52

SDA> EVALUATE 1

Hex = 00000001 Decinal = 1 ACP$V_SWAPGRP
ACP$V_WRI TECHK
EVTS$_EVENT

The EVALUATE command evaluates a numeric expression and displays the
value of that expression in hexadecimal and decimal notation. This example
also shows the symbols that have the displayed value. A finite number of
symbols are displayed by default.

SDA> DEFINE TEN = A

SDA> EVALUATE TEN

Hex = 0000000A  Decimal = 10 EXESV_FATAL_BUG
SGNSC_M NWSCNT

TEN

This example shows the definition of a symbol named TEN. The EVALUATE
command then shows the value of the symbol.

Note that A, the value assigned to the symbol by the DEFINE command,
could be a symbol. When SDA evaluates a string that can be either a symbol
or a hexadecimal numeral, it first searches its symbol table for a definition of
the symbol. If SDA finds no definition for the string, it evaluates the string
as a hexadecimal number.

SDA> EVALUATE (((TEN * 6) + (-1/4)) + 6)
Hex = 00000042  Decimal = 66

This example shows how SDA evaluates an expression of several terms,
including symbols and rational fractions. SDA evaluates the symbol,
substitutes its value in the expression, and then evaluates the expression.
Note that the fraction —1/4—is truncated to O.

SDA> EVALUATE/ CONDI TI ON 80000018
YBYSTEM W EXQUOTA, exceeded quota

This example shows the output of an EVALUATE/CONDITION command.

SDA> EVALUATE/ PSL 04080009
CWP TP FPD I'S CURMOD PRVYMXD IPL DV FUIVT NZ V C
0 0 0 1 KERN KERN 08 0 0 001001

SDA interprets the entered value 04080009 as though it were a processor
status longword (PSL) and displays the resulting field values of that
longword.

SDA> EVALUATE/ PTE ABCDFFEE

|31 28| 27 24| 23 20| 19 16] 15 12|11 8|7

| | | |
e B T S L EE s EE CEE S TR S S
[1] 0101 |O|--] 21 |--] Q] ODFFEE

e T S S Eh ek e S S e e O ok T E ST
Vid Prot=EW M Omn=U w Page Frame Nunber

Page is Active and Valid

The EVALUATE/PTE command displays the expression ABCDFFEE as a
page table entry (PTE) and labels the fields. It also describes the status of
the page.



System Dump Analyzer
EXAMINE

EXAMINE

Format

Parameter

Qualifiers

Displays either the contents of a location or range of locations in physical memory;,
or the contents of a register. You can use location parameters to display specific
locations or use qualifiers to display entire process and system regions of memory.

EXAMINE [/qualifier[,...]] [location]

location

Location in memory to be examined. You can represent a location by any valid
SDA expression (see Section 7.2). To examine a range of locations, use the
following format:

m:n  Range of locations to be examined, from m to n

m;n  Range of locations to be examined, starting at m and continuing for n
bytes

The default location that SDA uses is initially 0 in the program region (P0) of
either of the following:

= The process that was executing at the time the system failed (if you are
examining a crash dump)

= Your process (if you are examining the running system)

Subsequent uses of the EXAMINE command with no parameter specified increase
the last address examined by 4. Use of the /INSTRUCTION qualifier increases
the default address as appropriate to the translation of the instruction. To
examine memory locations of other processes, you must use the SET PROCESS
command.

JALL

Examines all the locations in the program and control regions and parts of
the writable system region, displaying the contents of memory in hexadecimal
longwords. Do not specify parameters when you use this qualifier.

/CONDITION_VALUE
Examines the specified longword, displaying the message the $GETMSG system
service obtains for the value in the longword.

/INSTRUCTION

Translates the contents of the specified range of memory locations into
MACRO instruction format. If more than 16 bytes are specified in the range,
/INSTRUCTION processing might skip some bytes at the beginning of the range
to ensure that SDA is properly synchronized with the start of each instruction.
You can override this synchronization by specifying the /NOSKIP qualifier.

The length of the instruction displayed varies according to the opcode and
addressing mode. If SDA cannot decode a memory location, it issues the following
message:

SDA-53



System Dump Analyzer

EXAMINE
%SDA- E- NO NSTRAN, cannot translate instruction
When you use this qualifier with the EXAMINE command, SDA calculates
subsequent default addresses by adding the length of the last instruction,
including all operands, to the last address examined.
/INOSKIP
Causes the EXAMINE command not to skip any bytes in the range when
translating the contents of memory into MACRO instructions. The /NOSKIP
qualifier causes the execution of the /INSTRUCTION qualifier by default.
/INOSUPPRESS
Inhibits the suppression of zeros when displaying memory with one of the
following qualifiers: /ALL, /PO, /P1, /[SYSTEM.
/PO
Displays the entire program region for the default process. Do not specify
parameters when you use this qualifier.
/P1
Displays the entire control region for the default process. Do not specify
parameters when you use this qualifier.
/PSL
Examines the specified longword, displaying its contents in the format of a
processor status longword. This qualifier must precede any parameters used in
the command line.
/PTE
Interprets and displays the specified longword as a page table entry (PTE). The
display separates individual fields of the PTE and provides an overall description
of the PTE's type.
/ISYSTEM
Displays portions of the writable system region. Do not specify parameters when
you use this qualifier.
ITIME
Examines the specified quadword, displaying its contents in the format of a
system-date-and-time quadword.

Description

The following sections describe how to use the EXAMINE command.

Examining Locations

When you use the EXAMINE command to look at a location, SDA displays the
location in symbolic notation (symbolic name plus offset), if possible, and its
contents in hexadecimal and ASCII formats:

SDA> EXAM NE G6605C0
806605C0: 80002119 ".!.."

If the ASCII character that corresponds to the value contained in a byte is not
printable, SDA displays a period (.). If the specified location does not exist in
memory, SDA displays this message:

%EDA- E- NOTI NPHYS, address : not in physical nmenmory

SDA-54



System Dump Analyzer
EXAMINE

To examine a range of locations, you can designate starting and ending locations
separated by a colon. For example:

SDA> EXAM NE (40: G200

Alternatively, you can specify a location and a length, in bytes, separated by a
semicolon. For example:

SDA> EXAM NE (400; 16

When used to display the contents of a range of locations, the EXAMINE
command displays six columns of information:

= Each of the first four columns represents a longword of memory, the contents
of which are displayed in hexadecimal format.

= The fifth column lists the ASCII value of each byte in each longword displayed
in the previous four columns.

e The sixth column contains the address of the first, or rightmost, longword
in each line. This address is also the address of the first, or leftmost,
character in the ASCII representation of the longwords. Thus, you read
the hexadecimal dump display from right to left, and the ASCII display from
left to right.

If a series of virtual addresses does not exist in physical memory, SDA displays a
message specifying the range of addresses that were not translated. For example:

SDA> EXAM NE 100: 220
Virtual Iocations 00000100 through O00001FF are not in physical menory

0130011A 0120011B 0130011E 0110011F ...... 0... ... 0. 00000200
01200107 02300510 04310216 04210218 ..!...1...0... . 00000210
01100103 01100104 01200105 01200106 .. ... ......... 00000220

Addresses 10046 through 1FFq do not exist in memory, as the message indicates.
SDA displays the contents of those addresses that do exist (200, through 2204¢).

If a range of virtual locations contains only zeros, SDA displays this message:
Zeros suppressed from'locl to 'loc2

Note that if you make a mistake specifying a virtual address for the EXAMINE
command and you are examining global page table entries, your system

may crash with a bugcheck. This occurs rarely and only when you use
ANALYZE/SYSTEM.

Decoding Locations

You can translate the contents of memory locations into MACRO instruction
format by using the /INSTRUCTION qualifier. This qualifier causes SDA

to display the location in symbolic notation (if possible) and its contents in
instruction format. The operands of decoded instructions are also displayed in
symbolic notation.

If the specified range of locations does not begin on an instruction boundary, SDA
skips bytes until it locates the next valid instruction and issues the following
message:

%BDA- W | NSKI PPED, unreasonabl e instruction stream- n bytes skipped

In this message, n represents the number of bytes that SDA could not translate.

SDA-55



System Dump Analyzer

EXAMINE

Examples

SDA-56

Examining Memory Regions
You can display an entire region of virtual memory by using one or more of the
qualifiers /ALL, /SYSTEM, /PO, and P1, with the EXAMINE command.

Other Uses
Other uses of the EXAMINE command appear in the following examples.

1. SDA> EXAM NE/ SYSTEM
Syst em Regi on Menory

00040039 8FBC0010 00040038 8FBCO010 ....8....... 9... 800000000

This example shows only the first two lines of the display generated by the
EXAMINE/SYSTEM command. Note that in the dump the fifth byte from the
right contains the value 38;5. The ASCII value of 38,4, the character 8, is
represented in the fifth character from the left in column 5.

Likewise, the thirteenth byte from the right in the dump columns contains
the value 39:5. The ASCII value of 39.¢ is 9, and 9 is represented in the
ASCII column as the thirteenth character from the left.

2. SDA> EXAM NE/ PSL G1268

CWP TP FPD IS CURMOD PRVMXD |PL DV FU IV T N
1

VC_C
1 0 0 0 KERN KERN 00 0 1 01 00

Z
1
This example shows the display produced by the EXAMINE/PSL command.

The address of the longword examined is 80001268,.

3. SDA> EXAM NE/ PTE G775F480

|31 28| 27 24| 23 2019 16] 15 12]11 87

I I | |

T e S TR N I S L e
[1] 2110 |1]--]00]--] 0 00FOF4

Tk e e T e S S e S D
Vid Prot= URKWM Omn=K w Page Frame Nunber

Page is Active and Valid
The EXAMINE/PTE command displays and formats the system page table
entry at 8775F4804.

4. SDA> EXAM NE/ TI ME EXE$GQ SYSTI ME
18- FEB- 1993 02: 07: 25. 88

The EXAMINE/TIME command displays the formatted value of the system
time quadword (EXE$GQ_SYSTIME).



System Dump Analyzer
EXIT

EXIT

Format

Parameters

Qualifiers

Description

Exits from an SDA display or from the SDA utility.

EXIT

None.

None.

If SDA is displaying information about a video display terminal—and if that
information extends beyond one screen—SDA displays a screen overflow
prompt at the bottom of the screen:*

Press RETURN for nore.
SDA>

If you want to discontinue the current display at this point, enter the EXIT
command. If you want SDA to execute another command, enter that command.
SDA discontinues the display as if you entered EXIT, and then executes the
command you entered.

When the screen overflow prompt does not immediately precede the SDA>
prompt, entering EXIT causes your process to cease executing the SDA utility.
When you issue EXIT within a command procedure (either the SDA initialization
file or a command procedure invoked with the @ command), SDA terminates
execution of the procedure and returns to the SDA prompt.

4 On hardcopy terminals, SDA does not display such a prompt.

SDA-57



System Dump Analyzer

FORMAT

FORMAT
Displays a formatted list of the contents of a block of memory.

Format
FORMAT [/qualifier] location

Parameter
location
Location of the beginning of the data block. The location can be given as any
valid SDA expression.

Qualifier
ITYPE=block-type
Forces SDA to characterize and format a data block at location as the specified
type of data structure. The /TYPE qualifier thus overrides the default behavior of
the FORMAT command in determining the type of a data block, as described in
the Description section. The block-type can be the symbolic prefix of any data
structure.

Description

SDA-58

The FORMAT command performs the following actions:

= Characterizes a range of locations as a system data block

= Assigns, if possible, a symbol to each item of data within the block
= Displays all the data within the block

Normally, you use the FORMAT command without the /TYPE qualifier. Used in
this manner, it examines the byte in the structure that contains the type of the
structure. In most data structures, this byte occurs at an offset of 0A1g into the
structure. If this byte does not contain a valid block type, the FORMAT command
halts with this message:

Y%BDA- E- | NVBLKTYP, invalid block type in specified block

However, if this byte does contain a valid block type, SDA checks the next byte
(offset 0B1g) for a secondary block type. When SDA has determined the type of
block, it searches for the symbols that correspond to that type of block.

If SDA cannot find the symbols associated with the block type it has found (or
that you specified in the /TYPE qualifier), it issues this message:

No "bl ock-type" synbols found to format this block

If you receive this message, you might want to read additional symbols into the
SDA symbol table and retry the FORMAT command. Most symbols that define
data structures are contained within SYS$SYSTEM:SYSDEF.STB. Thus, you
would issue the following command:

$ READ SYS$SYSTEM SYSDEF. STB



System Dump Analyzer
FORMAT

Certain data structures do not contain a block type at offset 0A;g5. If this byte
contains information other than a block type—or the byte does not contain a valid
block type—SDA displays this message:

%EDA- E- | NVBLKTYP, invalid block type in specified block

To format such a block, you must reissue the FORMAT command, using the
ITYPE qualifier to designate a block-type.

The FORMAT command produces a 3-column display:
e The first column shows the virtual address of each item within the block.

e The second column lists each symbolic name associated with a location within
the block.

e The third column shows the contents of each item in hexadecimal format.

Example

SDA> READ SYS$SYSTEM SYSDEF. STB
SDA> FORVAT 800B81F0

800B81F0  UCBSL_FQFL 80000F10
UCBSL_RQFL
UCBSW MB_SEED
UCBSW UNI'T_SEED
800B81F4  UCBSL FQBL 800026A8
UCBSL_RQBL
800B81F8  UCBSW SI ZE 00ED
800BS1FA  UCB$B TYPE 10
800B81FB  UCB$B_FLCK 07
800B81FC  UCB$L_ASTQFL 800F80EQ
UCBSL_FPC
UCBST_PARTNER
80088200  UCB$L_ASTQBL 8002CF80
UCBSL_FR3
80088204  UCB$L_FIRST 8002CA00
UCBSL_FR4
UCBSW MBGVAX
UCBSW MBGCNT

From SYS$SYSTEM:SYSDEF.STB, the READ command loads into SDA's symbol
table the symbols needed for formatting system data structures. The FORMAT
command displays the data structure that begins at 800B81F044, a unit control
block (UCB). If a field has more than one symbolic name, all such names are
displayed. Thus, the field that starts at 800B8204,¢ has three designations:
UCBS$L_FIRST and UCBS$L_FR4, alternative names for the longword; and the
two subfields, UCB$W_MSGMAX and UCB$W_MSGCNT.

The contents of each field appear to the right of the symbolic name of the field.
Thus, the contents of UCB$L_FIRST are 8002CA00,¢.

SDA-59



System Dump Analyzer

HELP
HELP
Displays information about the SDA utility, its operation, and the format of its
commands.
Format
HELP [command-name]
Parameter
command-name
Command for which you need information.
You can also specify the following keywords in place of command-name.
Keyword Function
CPU_CONTEXT Describes the concept of CPU context as it governs the
behavior of SDA in uniprocessor and multiprocessor
environments
EXECUTE_ Causes SDA to execute SDA commands contained in a
COMMAND file
EXPRESSIONS Prints a description of SDA expressions
INITIALIZATION Describes the circumstances under which SDA executes
an initialization file when first invoked
OPERATION Describes how to operate SDA at your terminal and by
means of the site-specific startup procedure
PROCESS_CONTEXT Describes the concept of process context as it governs
the behavior of SDA in uniprocessor and multiprocessor
environments
SYMBOLS Consists of up to 31 letters and numbers, and
can include the dollar sign ($) and underscore ()
characters. When you invoke SDA, it reads in the
global symbols from symbols table psect of SYS$BASE_
IMAGE.EXE, and from REQSYSDEF.STB, a required
subset of the symbols in the file SYSDEF.STB. You can
add other symbols to SDA's symbol table by using the
DEFINE and READ commands.
Qualifiers
None.
Description

SDA-60

The HELP command displays brief descriptions of SDA commands and concepts
on the terminal screen (or sends these descriptions to the file designated in a SET
OUTPUT command). You can request additional information by specifying the
name of a topic in response to the Topic? prompt.



System Dump Analyzer
HELP

If you do not specify a parameter in the HELP command, it lists those commands
and topics for which you can request help, as follows:

[ nformation avail abl e:

ATTACH copY CPU_Cont ext DEFI NE EVALUATE  EXAM NE

Execut e_Conmmrand EXIT Expr essi ons FORMAT HELP

Initialization Qperation Process_Cont ext READ REPEAT

SEARCH SET SHOW SPAWN Synbol's  VALI DATE QUEUE
Topi c?

SDA-61



System Dump Analyzer

READ

READ

Format

Parameter

Qualifiers

Description

SDA-62

Loads the global symbols contained in the specified object module into the SDA
symbol table.

READ {/EXECUTIVE directory-spec| [RELOCATE=expression] |filespec}

filespec

Name of the device, directory, and file that contains the object module from which
you want to copy global symbols. The filespec defaults to SYS$DISK:[default-
dir]filename.STB, where SYS$DISK and [default-dir] represent the disk and
directory specified in your last SET DEFAULT command. You must specify a file
name.

/EXECUTIVE directory-spec

Reads into the SDA symbol table all global symbols and global entry
points defined within all loadable images that make up the executive. (See
Table SDA-13 for a list of those images.)

The directory-spec is the name of the directory containing the loadable images
of the executive. This parameter defaults to SYS$LOADABLE_IMAGES.

/RELOCATE=expression

Adds the value of expression to the value of each symbol in the symbol table
file to be read. You can use the /RELOCATE qualifier only if you also specify
a filespec. The /RELOCATE qualifier is useful for examining images that are
position independent and are loaded at a base of zero.

The READ command symbolically identifies locations in memory for which

the default symbol table (SYS$SYSTEM:SYS.STB) provides no definition. In
other words, the required global symbols are located in modules that have been
compiled and linked separately from the executive.®

The object module file specified in the READ command can be one of the
following:

= Output of a compiler or assembler (for example, an .OBJ file)

= Output generated by the linker qualifier /SYMBOL_TABLE (for example, an
.STB file)

Most often the object module file is a file provided by the operating system
in SYS$SYSTEM or SYS$LOADABLE_IMAGES. Many SDA applications, for
instance, need to load the definitions of system data structures by issuing a
READ command specifying SYS$SYSTEM:SYSDEF.STB. Others require the
definitions of specific global entry points within the executive image that are
contained within those object modules included in the executive.

5 SDA extracts no local symbols from the object module.



System Dump Analyzer
READ

Table SDA-12 lists those object module files provided in SYS$SYSTEM.
Table SDA-13 lists those loadable images in SYSSLOADABLE_IMAGES that
define locations within the executive image.

Table SDA-12 Modules Containing Global Symbols and Data Structures Used

by SDA

File Contents

CLUSTRLOA.STB Symbols for loadable VAXcluster management code

DCLDEF.STB Symbols for the DCL interpreter

IMGDEF.STB Symbols for the image activator

NETDEF.STB Symbols for DECnet data structures

RMSDEF.STB Symbols that define RMS internal and user data
structures and RMS$_xxx completion codes

SCSDEF.STB Symbols that define data structures for system
communications services

SYSDEF.STB Symbols that define system data structures, including
the 1/0 database

TCPIP$SNET_ Data structure definitions for TCP/IP internet driver,

GLOBALS.STB! execlet, and ACP data structures

TCPIPSNFS_ Data structure definitions for TCP/IP NFS server

GLOBALS.STB!

TCPIP$PROXY _
GLOBALS.STB!

TCPIP$PWIP_
GLOBALS.STB!

TCPIP$TN_
GLOBALS.STB!

Data structure definitions for TCP/IP proxy execlet

Data structure definitions for TCP/IP PWIP driver, and
ACP data structures

Data structure definitions for TCP/IP TELNET/RLOGIN
server driver data structures

10nly available if TCP/IP has been installed. These are found in SYS$SYSTEM, so that all files are
not automatically read in when you issue a READ/EXEC command.

Table SDA-13 Modules Defining Global Locations Within the Executive Image

File Contents

CPULOA.EXE Processor-specific data and initialization
routines

ERRORLOG.EXE Error logging routines and system
services

EVENT_FLAGS AND _ASTS.EXE Event flag and AST delivery routines

EXCEPTION.EXE

and system services

Bugcheck and exception handling
routines and those system services
that declare condition and exit handlers

IMAGE_MANAGEMENT.EXE Image activator and the related system

services
(continued on next page)

SDA-63



System Dump Analyzer

READ

SDA-64

Table SDA-13 (Cont.) Modules Defining Global Locations Within the Executive

Image

File

Contents

I0_ROUTINES.EXE

LMF$GROUP_TABLE.EXE
LOCKING.EXE

LOGICAL_NAMES.EXE

MESSAGE_ROUTINES.EXE

PAGE_MANAGEMENT.EXE

PRIMITIVE_IO.EXE
PROCESS_MANAGEMENT.EXE

RECOVERY_UNIT_SERVICES.EXE
RMS.EXE

SECURITY.EXE

SYSDEVICE.EXE
SYSGETSYIL.EXE

SYSLICENSE.EXE

SYSMSG.EXE
SYSTEM_PRIMITIVES.EXE

SYSTEM_SYNCHRONIZATION.EXE

TCPIP$BGDRIVER.STB!
TCPIP$INETACP.STB!
TCPIP$INTERNET_SERVICES.STB!

$QIO system service, related system
services (for example, SYS$CANCEL
and SYS$ASSIGN), and supporting
routines

Data for valid, licensed product groups
Lock management routines and system
services

Logical name routines and system
services

System message routines and system
services (including SYS$SNDJBC and
SYSSGETTIM)

System pager, its supporting routines,
and page management system
services (including SYS$CRMPSC,
SYS$CREDEL, and SYS$ADJSTK)

Console I/O routines

Scheduler, report system event, and
supporting routines and system services

Recovery unit system services

Global symbols and entry points for
RMS

Security management routines and
system services

Mailbox driver and null driver

Get System Information system service
(SYS$GETSYI)

Licensing system service
(SYS$LICENSE)

System messages

Miscellaneous basic system routines,
including those that allocate system
memory, maintain system time, create
fork processes, and control mutex
acquisition

Routines that enforce synchronization in
a multiprocessing system

TCP/IP internet driver

TCP/IP internet ACP

TCP/IP internet execlet

10nly available if TCP/IP has been installed. These are found in SYS$SYSTEM, so that all files are
not automatically read in when you issue a READ/EXEC command.

(continued on next page)



Examples

System Dump Analyzer
READ

Table SDA-13 (Cont.) Modules Defining Global Locations Within the Executive

Image
File Contents
TCPIP$NFS_SERVICES.STB! Symbols for the TCP/IP NFS server
TCPIP$PROXY_SERVICES.STB! Symbols for the TCP/IP proxy execlet
TCPIP$PWIPACP.STB! TCP/IP PWIP ACP
TCPIP$PWIPDRIVER.STB! TCP/IP PWIP driver
TCPIP$TNDRIVER.STB?! TCP/IP TELNET/RLOGIN server driver
WORKING_SET_ Swapper, its supporting routines,
MANAGEMENT.EXE and working set management system

services

10nly available if TCP/IP has been installed. These are found in SYS$SYSTEM, so that all files are
not automatically read in when you issue a READ/EXEC command.

1. SDA> READ SYS$SYSTEM SYSDEF. STB
%SDA- | - READSYM readi ng synbol table SYS$COMMON: [ SYSEXE] SYSDEF. STB; 1

The READ command causes SDA to add all the global symbols in
SYS$SYSTEM:SYSDEF.STB to the SDA symbol table. Such symbols are
useful when you are formatting an I/O data structure, such as a unit control
block or an 1/O request packet.

2. SDA> EXAM I NST EXE$Q O+2; 4

EXE$Q O+00002: CHWK  #001F
EXE$Q O+00006:  RET
SDA> EXAM I NST V_EXE$Q O

9%6DA- E- BADSYM unknown synbol "V _EXE$Q O'
SDA> READ/ RELOCATE=| O ROUTI NES SYS$LOADABLE | MAGES: | O ROUTI NES. EXE

9%6DA- | - READSYM reading synbol table SYSSCOMMON: [ SYSSLDR] | O ROUTI NES. EXE; 1
SDA> EXAM | NST EXESQ O+2; 4

EXESQ 0+00002: MZBL 04(AP), R3
EXESQ 0+00006: CWPB  R3, #3F
SDA>  EXAM I NST V_EXESQ O+2; 4

V_EXE$Q 0+00002: CHVK  #0O1F
V_EXE$Ql 0+00006:  RET

This SDA session shows that the initial examination of the instructions at
EXE$QIO+2 and EXE$QIO+6 produces the vector for the system service,

not the system service code itself. The subsequent READ instruction brings
into the SDA symbol table the global symbols defined for the system’s 1/O
routines, including one that redefines the entry point of the system service

to be the start of the routine EXE$QIO. Thus, the second examination of the
same memory locations produces the first two instructions in the routine. The
READ command creates a special symbol, V_EXE$QIO, that points to the
system service vector.

SDA-65



System Dump Analyzer
READ

3. SDA> SHOW STACK
Process stacks (on CPU 01)

Current operating stack (KERNEL):

7FF8F2B0 806BA870
7FF8F2B4  7TFF8F4C0
7FF8F2B8 8016F33E PAGE_MANAGEMENT+0053E

SDA> READI RELOCATE=PAGE_MANAGEMENT SYS$LOADABLE_| MAGES: PAGE_MANAGEMENT. EXE
%SDA- | - READSYM readi ng synbol table SYS$COMMON: [ SYS$LDR] PAGE MANAGEMENT. EXE; 1
SDA>  SHOW STACK

Process stacks (on CPU 01)

Current operating stack (KERNEL):

7FF8F2B0  806BA870
7FF8F2B4  7TFFBFACD
7FF8F2B8 8016F33E  MMVGBLOCK_SYSTEM PAGES+00188

The initial SHOW STACK command contains an address that SDA resolves
into an offset from the PAGE_MANAGEMENT module of the executive. The
READ command loads the corresponding symbols into the SDA symbol table
such that the reissue of the SHOW STACK command subsequently identifies
the same location as an offset within a specific page management routine.

4.  READ EXEC

%SDA- | - READSYM readi ng symbol table SYS$COWMON: [ SYS$LDR] RECOVERY_UNI T_SERVI CES. EXE; 1
%SDA- | - READSYM readi ng symbol table SYS$COWON: [ SYSSLDR] RVS. EXE; 1

%SDA- | - READSYM readi ng symbol table SYSSCOWON: [ SYSSLDR| CPULOA. EXE; 1
%SDA- | - READSYM reading symbol table SYS$COWMON: [ SYSSLDR] LMF$GROUP_TABLE. EXE; 1
%BDA- | - READSYM readi ng symbol table SYSSCOMMON: [ SYS$LDR] SYSLI CENSE. EXE; 1
%SDA- | - READSYM readi ng synbol table SYS$COWON: [ SYSSLDR] SYSGETSYI . EXE; 1
%BDA- | - READSYM reading symbol table SYS$COWMON: [ SYSSLDR] SYSDEVI CE. EXE; 1
%BDA- | - READSYM readi ng symbol table SYSSCOMMON: [ SYS$LDR] MESSAGE_ROUTI NES. EXE; 1
%SDA- | - READSYM reading synbol table SYS$COWMON: [ SYSSLDR] EXCEPTI ON. EXE; 1
%BDA- | - READSYM readi ng symbol table SYS$COWON: [ SYSSLDR] LOG CAL_NAMES. EXE; 1
Y%BDA- | - READSYM reading symbol table SYSSCOWON: [ SYSSLDR] SECURI TY. EXE; 1
%BDA- | - READSYM reading symbol table SYS$COVMON: [ SYSSLDR] LOCKI NG EXE; 1
%BDA- | - READSYM readi ng symbol table SYS$COWMON: [ SYSSLDR] PAGE_MANAGEMENT. EXE; 1
%SDA- | - READSYM readi ng symbol table SYSSCOWMON: [ SYSSLDR| WORKI NG_SET_MANAGEMENT. EXE; 1
%SDA- | - READSYM readi ng symbol table SYS$COWMON: | SYS$LDR] | MAGE MANAGEMENT. EXE; 1
%GDA- | - READSYM readi ng synbol table SYSSCOMMON: [ SYSSLDR| EVENT_FLAGS_AND_ASTS. EXE; 1
%SDA- | - READSYM readi ng symbol table SYS$COWMON: [ SYS$LDR] | O ROUTI NES. EXE; 1
%SDA- | - READSYM readi ng symbol table SYS$COWON: [ SYSSLDR] PROCESS MANAGEMENT. EXE; 1
%BDA- | - READSYM readi ng symbol table SYS$COWON: [ SYSSLDR] ERRORLOG. EXE; 1
%SDA- | - READSYM readi ng symbol table SYS$COWON: [ SYSSLDR| PRI M TI VE_| O. EXE; 1
%BDA- | - READSYM readi ng symbol table SYS$COVMON: [ SYS$LDR] SYSTEM SYNCHRONI ZATI ON. EXE; 1
%SDA- | - READSYM readi ng symbol table SYSSCOWON: [ SYSSLDR| SYSTEM PRI M Tl VES. EXE; 1

This READ command brings all global symbols defined in the modules of
SYS$SYSTEM:SYS.EXE (as listed in Table SDA-13) into the SDA symbol
table. Included in its results is the work performed by the READ commands
illustrated in the two previous examples. The READ/EXECUTIVE command,
however, does not load those symbols contained in the modules described in
Table SDA-12.

SDA-66



System Dump Analyzer
REPEAT

REPEAT

Format

Parameters

Qualifiers

Description

Examples

1.

Repeats execution of the last command issued. On terminal devices, the KP0O key
performs the same function as the REPEAT command.

REPEAT

None.

None.

The REPEAT command is useful for stepping through a linked list of data
structures or for examining a sequence of memory locations.

SDA> FCRVAT @ OC$GL_DEVLI ST

8000B540  DDBSL_LI NK 8000B398
8000B544  DDBSL_UCB 8000B5ED
8000B548  DDBSW SI ZE 0044
8000B554  DDB$B_NAME LEN 03
DDBST_NAVE " OPAY
SDA> FORMAT @
8000B398  DDBSL_LINK 8000BBED
8000B39C  DDB$L_UCB 8000B9ED
8000B3A0  DDB$W SI ZE 0044
8000BSAC  DDB$B_NANE_LEN 03
DDB$T_NANE " NBA"
SDA>
8000BBED  DDBSL_LI NK 807F8500
8000BBE4  DDBSL_UCB 8000BC80
8000BBES  DDB$W S| ZE 0044
- )
8000BBF4  DDB$B_NAME LEN 03
DDB$T_NANE " NLA"

This series of FORMAT commands pursues the chain of device data blocks
(DDBs) from the system global symbol IOC$GL_DEVLIST. The second FORMAT
command is constructed so that it refers to the contents of the address at the
current location (see Section 7.2.4 for a discussion of SDA symbols). Subsequently,

SDA-67



System Dump Analyzer
REPEAT

pressing the KPO key—or issuing the REPEAT command—is sufficient to display
each DDB in the device list.

2. SDA> SHOW CALL_FRAME
Call Frame Infornation

Call Frame Generated by CALLG Instruction

Condi tion Handl er 7FFE7D78 00000000

SP Align Bits = 00 7FFE7D7C 00000000
Saved AP 7FFE7D80  7FFE7DCO CTL$GL_KSTKBAS+005C0
Saved FP 7FFE7D84 TFFE7D94 CTL$GL_KSTKBAS+00594

SDA> SHOW CALL_FRANE/ NEXT_FP
Call Frame Information

Call Frame Generated by CALLS Instruction

Condi tion Handl er 7FFE7D94 00000000
SP Align Bits = 00 7FFE7D98  20F00000
Saved AP 7FFE7TDOC  7FFED024 CTL$GL_KSTKBAS+005E4
Saved FP 7FFETDA0  7FFE7DE4 SYSTEM PRI M TI VES+020AA
SDA> REPEAT

Call Frame Infornation

Call Frame Generated by CALLG Instruction
Condi ti on Handl er 7FFE7DE4 00000000

The first SHOW CALL_FRAME displays the call frame indicated by the current
FP value. Because the /INEXT_FP qualifier to the instruction displays the call
frame indicated by the saved FP in the current call frame, you can use the
REPEAT command to repeat the SHOW CALL_FRAME/NEXT_FP command and
follow a chain of call frames.

SDA-68



System Dump Analyzer
SEARCH

SEARCH

Format

Parameters

Qualifiers

Description

Examples

Scans a range of memory locations for all occurrences of a specified value.

SEARCH [/qualifier] range[=]expression

range
Location in memory to be searched. A location can be represented by any valid
SDA expression (see Section 7.2). To search a range of locations, use the following
format:

m:n  Range of locations to be searched, from m to n
m;n  Range of locations to be searched, starting at m and continuing for n bytes

expression

Indication of the value for which SDA is to search. SDA evaluates the
expression and searches the specified range of memory for the resulting
value. For a description of SDA expressions, see Section 7.2.

/LENGTH={LONGWORD | WORD | BYTE}

Specifies the size of the expression value that the SEARCH command uses for
matching. If you do not specify the /[LENGTH qualifier, the SEARCH command
uses a longword length by default.

ISTEPS={QUADWORD | LONGWORD | WORD | BYTE}

Specifies the granularity of the search through the specified memory range.
After the SEARCH command has performed the comparison between the value of
expression and memory location, it adds the specified step factor to the address
of the memory location to determine the next location to undergo the comparison.
If you do not specify the /STEPS qualifier, the SEARCH command uses a step
factor of one longword.

SEARCH displays each location as each value is found.

1. SDA> SEARCH GB81FO0; 500 60068
Searching from 800B81F0 to 800B36F0 in LONGAORD steps for 00060068. ..
Match at 800B8210
SDA>

The SEARCH command finds the value 0060068 in the longword at
800B8210.

SDA-69



System Dump Analyzer

SEARCH

SDA-70

SDA> SEARCH STEPS=BYTE 80000000; 1000 6

Sear ching from 80000000 to 80001000 in BYTE steps for 00000006. ..
Mat ch at 80000A99

SDA>

The SEARCH command finds the value 00000006 in the longword at
80000A99.

SDA> SEARCH LENGTH=WORD 80000000; 2000 6

Sear ching from 80000000 to 80002000 in LONGAORD steps for 0006. ..
Mat ch at 80000054

Match at 800001EC

Match at 800012AC

Mat ch at 800012B8

SDA>

The SEARCH command finds the value 0006 in the longword locations
80000054, 800001EC, 800012AC, and 800012BS8.



System Dump Analyzer
SET CPU

SET CPU

Format

Parameter

Qualifiers

Description

Selects a processor to become the SDA current CPU.

SET CPU cpu-id

cpu-id

Numeric value from 00,5 to 1F;¢ indicating the identity of the processor to be
made the current CPU. If you specify a value outside this range or a cpu-id of a
processor that was not active at the time of the system failure, SDA displays the
following message:

%BDA- E- CPUNOTVLD, CPU not booted or CPU nunmber out of range

None.

When you invoke SDA to examine a system dump, the SDA current CPU context
defaults to that of the processor that caused the system to fail. When analyzing a
crash from a multiprocessing system, you might find it useful at times to examine
the context of another processor in the configuration.

The SET CPU command changes the current SDA CPU context to that of the
processor indicated by cpu-id. The CPU specified by this command becomes the
current CPU for SDA until you exit SDA or change SDA CPU context by issuing
one of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH

The following commands also change SDA CPU context if the name or index
number (nn) refers to a current process:

SET PROCESS name

SET PROCESS/INDEX=nn
SHOW PROCESS name
SHOW PROCESS/INDEX=nn

Changing CPU context can cause an implicit change in process context under the
following circumstances:

= If there is a current process on the CPU made current, SDA changes its
process context to that of that CPU’s current process.

« If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until you set SDA
process context to that of a specific process.

See Section 4 for further discussion on the way in which SDA maintains its
context information.

SDA-71



System Dump Analyzer
SET CPU

You cannot use the SET CPU command when examining the running system with
SDA.

Example

$ ANALYZE/ CRASH SYS$SYSTEM SYSDUWP. DVP

Dunp taken on 22- FEB-1993 14:22:17.66
NOBUFPCKT, Required buffer packet not present

SDA> SHOW CPU
CPU 01 Processor crash information

CPU 01 reason for Bugcheck: NOBUFPCKT, Required buffer packet not present

SDA> SHOW STACK
CPU 01 Processor stack

Current operating stack (INTERRUPT):

80DAFB4C  8018BC20
80DAFB50 TFFCG53E

SDA> SET CPU 00
SDA> SHOW CPU

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: CPUEXI T, Shutdown requested by another CPU

SDA> SHOW STACK
CPU 00 Processor stack

Current operating stack (INTERRUPT):

8016ABD8 00011F4C
8016ABDC ~ 00010F56

SDA> SHOW CRASH
System crash information

Time of systemcrash: 22-FEB-1993 14:22:17.66

SDA> SHOW STACK
CPU 01 Processor stack

Current operating stack (I NTERRUPT):

SDA-72



System Dump Analyzer
SET CPU

80DAFB4C  8018BC20
80DAFB50 TFFC653E

The series of SHOW CPU and SHOW STACK commands in this example
illustrates the switching of CPU context within an SDA session:

1. When you first invoke SDA, it is, by default, within the CPU context of the
processor that caused the crash (CPU 01). This is illustrated by the first set
of SHOW CPU and SHOW STACK commands.

2. The SET CPU 00 command explicitly changes SDA CPU context to that of
CPU 00, as illustrated by the second sequence of SHOW CPU and SHOW
STACK commands.

Note that a SHOW CPU 00 command would have the same effect as the two
commands SET CPU 00 and SHOW CPU, changing the SDA CPU context in
addition to displaying the processor-specific information. Unlike the SHOW
CPU cpu-id command, no display is associated with the SET CPU cpu-id
command.

3. The SHOW CRASH command resets the SDA CPU context to that of the
processor that caused the crash (CPU 01).

SDA-73



System Dump Analyzer

SET LOG

SET LOG
Initiates or discontinues the recording of an SDA session in a text file.

Format
SET [NOJLOG filespec

Parameter
filespec
Name of the file in which you want SDA to log your commands and their output.
The default filespec is SYS$DISK:[default_dir]filename.LOG, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last SET
DEFAULT command. You must specify a file name.

Qualifiers
None.

Description

SDA-74

The SET LOG command echoes the commands and output of an SDA session to a
log file. The SET NOLOG command terminates this behavior.

There are the following differences between the SET LOG command and the SET
OUTPUT command:

= When logging is in effect, your commands and their results are still displayed
on your terminal. The SET OUTPUT command causes the displays to be
redirected to the output file such that they no longer appear on the screen.

< If an SDA command requires that you press Return to produce successive
screens of display, the log file produced by SET LOG will record only those
screens that are actually displayed. SET OUTPUT, however, sends the entire
output of all SDA commands to its listing file.

e The SET LOG command produces a log file with a default file type of .LOG;
the SET OUTPUT command produces a listing file whose default file type is
.LIS.

e The SET LOG command does not record output from the HELP command
in its log file. The SET OUTPUT command can record HELP output in its
listing file.

e The SET LOG command does not record SDA error messages in its log file.
The SET OUTPUT command can record SDA error messages in its listing file.

< The SET OUTPUT command generates a table of contents, each item of
which refers to a display written to its listing file. SET OUTPUT also
produces running heads for each page of output. The SET LOG command
does not produce these items in its log file.

Note that, if you have used the SET OUTPUT command to redirect output to a
listing file, you cannot use a SET LOG command to direct the same output to a
log file.



System Dump Analyzer
SET OUTPUT

SET OUTPUT

Format

Parameter

Description

Redirects output from SDA to the specified file or device.

SET OUTPUT filespec

filespec

Name of the file to which SDA is to send the output generated by its commands.
The default filespec is SYS$DISK:[default_dir]filename.LIS, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last SET
DEFAULT command. You must specify a file name.

When you use the SET OUTPUT command to send the SDA output to a file or
device, SDA continues to display the SDA commands that you enter but sends the
output generated by those commands to the file or device that you specify. (See
the description of the SET LOG command for a list of differences between SET
LOG and the SET OUTPUT command.)

When you finish directing SDA commands to an output file and want to return to
interactive display, issue the following command:

SDA> SET OUTPUT SYS$QUTPUT

If you use the SET OUTPUT command to send the SDA output to a listing file,
SDA bhuilds a table of contents that identifies the displays you selected and places
the table of contents at the beginning of the output file. The SET OUTPUT
command formats the output into pages and produces a running head at the top
of each page.

SDA-75



System Dump Analyzer
SET PROCESS

SET PROCESS

Format

Parameter

Qualifiers

Description

SDA-76

Selects a process to become the SDA current process.

SET PROCESS {process-name |/INDEX=nn|/SYSTEM}

process-name
Name of the process to become the SDA current process. The process-name is
a string containing up to 15 uppercase or lowercase characters; numerals, the
dollar sign ($) character, and the underscore (_) character can also be included
in the string. If you include characters other than these, you must enclose the
entire string in quotation marks (" ").

/INDEX=nn

Specifies the process to be made current by its index into the system’s list of
software process control blocks (PCBs). You can supply either of the following
values for nn:

= The process index itself

= The process identification (PID) or extended PID longword, from which SDA
extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY.

/ISYSTEM

Specifies that the system process be made the SDA current process. Each system
(uniprocessor or multiprocessor) uses a single system process control block (PCB)
and process header (PHD) as dummy structures, located in system space, that
record the system working set, global section table, global page table, and other
systemwide data.

When you issue an SDA command such as an EXAMINE command, SDA
displays the contents of memory locations in its current process. To display any
information about another process, you must change the current process with the
SET PROCESS command.

When you invoke SDA to analyze a crash dump, its process context defaults

to that of the process that was current at the time of the crash. If the crash
occurred on a multiprocessing system, SDA sets the CPU context to that of the
processor that crashed the system and the process context to that of the process
that was current on that processor.

When you invoke SDA to analyze a running system, its process context defaults
to that of the current process; that is, the one executing SDA.



Example

System Dump Analyzer
SET PROCESS

The SET PROCESS command changes the current SDA process context to that
of the process indicated by name or /INDEX=nn. The process specified by this
command becomes the current process for SDA until you exit SDA or change SDA
process context by issuing one of the following commands:

SET PROCESS/INDEX=nn
SET PROCESS process-name
SHOW PROCESS/INDEX=nn

In the analysis of a crash dump from a multiprocessing system, changing process
context can involve a switch of CPU context as well. For instance, if you issue a
SET PROCESS command for a process that is current on another CPU, SDA will
automatically change its CPU context to that of the CPU on which that process is
current. The following commands can have this effect if process-name or index
number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/INDEX=nn
SHOW PROCESS process-name
SHOW PROCESS/INDEX=nn

See Section 4 for further discussion on the way in which SDA maintains its
context information.

SDA> SHOW PROCESS
Process index: 0012 Name: NETACP Extended PID. 28C00092

Process status: 00149001  RES, WAKEPEN, NOACNT, PHDRES, LOG N

PCB addr ess 800F1140 JI B address 801FDA0O
PHD address 80477200 Swapfile disk address 01000F01

SDA> SHOW SUMVARY
Current process summary

Ext ended | ndx Process name User nane State Pri PCB PHD VKkset
& 1 I R T I
28000080 0000 SW NGER COM 0 80002100 80001F88 0
28000081 0001 SWAPPER HB 16 800023C8 80002250 0
28000483 0003 KLI NGON KLI NGON MMI T 6 8010FEA0 803F8600 323
28000085 0005 ERRFMI SYSTEM COM 10 800B5A10 8061DA00 69

28000087 0007 OPCOM SYSTEM LEF 7 800C7000 80227A00 71

SDASSET PROCESS ERRFMT
SDA> SHOW PROCESS
Process index: 0005 Name: ERRFMI  Extended PID: 28C00085

Process status: 00040001  RES, PHDRES
PCB address 800B5A10 JI B address 801E5C00

The first SHOW PROCESS command shows the current process to be NETACP.
The SHOW SUMMARY command shows the names of the processes that exist.

SDA-77



System Dump Analyzer
SET PROCESS

The SET PROCESS command sets the current process to ERRFMT, as shown by
the second SHOW PROCESS command. Note that the SET PROCESS command
could also have been issued as one of the following:

SDA> SET PROCESS/ | NDEX=5
SDA> SET PROCESS/ | NDEX=801E5Q00

SDA-78



System Dump Analyzer
SET RMS

SET RMS

Format

Parameter

Changes the options shown by the SHOW PROCESS/RMS command.

SET RMS

option

=(option[,...])

Data structure or other information to be displayed by the SHOW PROCESS/RMS
command. Table SDA-14 lists those keywords that you can use as options.

Table SDA-14 SET RMS Command Keywords for Displaying Process RMS

Information
Keyword Meaning
[NOJALL:ifi]t All control blocks (default)
[NOJASB Asynchronous context block
[NO]BDB Buffer descriptor block
[NO]BDBSUM BDB summary page
[NO]BLB Buffer lock block
[NO]BLBSUM Buffer lock summary page
[NO]CCB Channel control block
[NO]DRC Directory cache
[NO]JFAB File access block
[NOJFCB File control block
[NOJFWA File work area
[NO]GBD Global buffer descriptor
[NO]GBDSUM GBD summary page
[NO]GBH Global buffer header
[NO]GBSB Global buffer synchronization block
[NO]JIDX Index descriptor

[NO]IFAB[:ifi]}
[NOIFB[:ifi]
[NOJIRAB
[NOJIRB
[NOJJFB
[NOJNAM
[NOJNWA

Internal FAB
Internal FAB
Internal RAB
Internal RAB
Journaling file block
Name block
Network work area

1The optional parameter ifi is an internal file identification. The default ifi (ALL) is all the files the
current process has opened.

(continued on next page)

SDA-79



System Dump Analyzer

SET RMS

Qualifiers

Description

Examples

SDA-80

Table SDA-14 (Cont.) SET RMS Command Keywords for Displaying Process
RMS Information

Keyword Meaning

[NO]JPIO Image 1/0 (NOPIO), the default, or process 1/0 (P10)?
[NOJRAB Record access block

[NO]JRLB Record lock block

[NOJRU Recovery unit structures, including the recovery unit block

(RUB), recovery unit stream block (RUSB), and recovery unit
file block (RUFB)

[NO]SFSB Shared file synchronization block

[NOJwCB Window control block

[NO]XAB Extended attribute block

[NOJ* Current list of options displayed by the SHOW RMS
command

23pecifying the P10 option causes the SHOW PROCESS/RMS command to display the indicated
structures for process-permanent file 1/0.

The default option is ALL:ALL,NOPIO, designating for display by the SHOW
PROCESS/RMS command all structures for all files related to the image 1/O of
the process.

To list more than one option, enclose the list in parentheses and separate options
by commas. You can add a given data structure to those displayed by ensuring
that the list of keywords begins with the * (asterisk) symbol. You can delete a
given data structure from the current display by preceding its keyword with NO.

None.

The SET RMS command determines the data structures to be displayed by the
SHOW PROCESS/RMS command. (See the examples included in the discussion
of the SHOW PROCESS command for an indication of the information provided
by various displays.) You can examine the options that are currently selected by
issuing a SHOW RMS command.

1. SDA> SHOWRMVB
RMVS Display Options: |FB, | RB, | DX BDB, BDBSUM ASB, CCB, WCB, FCB, FAB, RAB, NAM
XAB, RLB, BLB, BLBSUM GBD, GBH, FWA, GBDSUM JFB, NWA, RU, DRC, SFSB, GBSB
Display RM5 structures for all IFl val ues.

SDA> SET RVB=IFB
SDA>  SHOW RV

RVS Display Options: |FB
Display RMB structures for all IFl val ues.

The first SHOW RMS command shows the default selection of data structures



System Dump Analyzer
SET RMS

that are displayed in response to a SHOW PROCESS/RMS command. The
SET RMS command selects only the IFB to be displayed by subsequent
SET/PROCESS commands.

SDA> SET RMB=(*, BLB, BLBSUM RLB)
SDA>  SHOW RVB

RVB Display Options: |FB, RLB, BLB, BLBSUM

Display RMS structures for all IFl val ues.
The SET RMS command adds BLB, BLBSUM, and RLB to the list of data
structures that the SHOW PROCESS/RMS command currently displays.

SDA> SET RVB=(*, NORLB, | FB: 05)
SDA> SHOW RVB

RVS Display Options: |FB, BLB, BLBSUM
Di splay RMS structures only for |FI=5.

The SET RMS command removes the RLB from those data structures
displayed by the SHOW PROCESS/RMS command and causes only
information about the file with the ifi of 5 to be displayed.

SDA> SET RMB=(*, PI )

The SET RMS command indicates that the data structures designated for
display by SHOW PROCESS/RMS be associated with process-permanent 1/0
instead of image 1/0.

SDA-81



System Dump Analyzer
SHOW CALL_FRAME

SHOW CALL_FRAME

Format

Parameter

Qualifier

Description

SDA-82

Displays the locations and contents of the longwords representing a procedure
call frame.

SHOW CALL_FRAME [starting-address |/INEXT_FP]

starting-address

Expression representing the starting address of the procedure call frame to be
displayed. The default starting-address is the longword contained in the FP
register of the SDA current process.

INEXT_FP

Displays the procedure call frame starting at the address stored in the FP
longword of the last call frame displayed by this command. You must have issued
a SHOW CALL_FRAME command previously in the current SDA session to use
the /INEXT_FP qualifier to the command.

Whenever a procedure is called using CALLG or CALLS instructions, information
is stored on the stack of the calling routine in the form of a procedure call frame.
Figure SDA-5 illustrates the format of a call frame.®

The SHOW CALL_FRAME command interprets the contents of the designated
call frame and displays whether the call frame was generated by a CALLG or
CALLS instruction. If it locates nonzero bits in the portion of the second longword
that represents the upper byte of the processor status word (PSW), it presents a
message that indicates the fault or trap in effect. For example:

Nonzero PSWBits (15:8) => Reserved Cperand Fault on RET
SHOW_CALL_FRAME then produces four columns of information:
= The components of the call frame.

= The virtual addresses that are part of the call frame.

= The contents of the longwords at these addresses.

< A symbolic representation of the contents of each longword, if possible. SDA
does not attempt to symbolize the second longword in the call frame (mask-
PSW longword), which contains the register save mask and the processor
status word (PSW).

In Figure SDA-5, the second longword contains the stack pointer alignment (SPA) bits,
which indicate the zero to three bytes needed to align the frame to a longword boundary.
The S bit is set if the frame resulted from a CALLS instruction; it is clear if it resulted
from a CALLG instruction.



System Dump Analyzer
SHOW CALL_FRAME

Figure SDA-5 Call Frame

Condition Handler Address

SPA|S |0 Mask <11:0> Saved PSW <15:5> 0 [ (FP)

Saved AP

Saved FP

Saved PC

Saved RO

Saved R11

ZK-6564-GE

The SHOW CALL_FRAME command follows this listing with an indication of
how many bytes were used to align the call frame to a longword boundary.

For call frames generated by a CALLS instruction, the SHOW CALL_FRAME
instruction displays the argument list to the call frame in three columns
containing the virtual address of each item, its contents, and its symbolic
representation.

All valid procedure call frames begin on a longword boundary. If the specified
address expression does not begin on a longword boundary, the call frame is
invalid and SDA displays the following message:

Invalid Call Frame:  Start Address Not On Longword Boundary

If you attempt to format an address that is not a call frame or is an invalid call
frame (that is, bit 28 of the second longword is not 0), SDA displays the following
message:

Invalid Call Frame: Bit 28 is Set in "Msk-PSW Longword

When using the SHOW CALL_FRAME/NEXT_FP command to follow a chain of
call frames, SDA signals the end of the chain by this message:

%EDA- E- NOTI NPHYS, 00000000 : not in physical menory

This message indicates that the saved FP in the previous call frame has a zero
value.

SDA-83



System Dump Analyzer
SHOW CALL_FRAME

Example

SDA> SHOW CALL_FRAME
Call Frame Information

Call Frame Generated by CALLG Instruction

Condi tion Handl er 7FFE7D78 00000000

SP Align Bits = 00 7FFE7D7C 00000000
Saved AP 7FFE7DB0  7FFE7DCO CTL$GL_KSTKBAS+005C0
Saved FP 7FFE7D84  7TFFE7D94 CTL$GL_KSTKBAS+00594
Return PC 7FFE7D88 8015303F EXCEPTI ON+0043F

Align Stack by 0 Bytes =>
SDA> SHOW CALL_FRAME/ NEXT FP
Call Frame Information

Call Frame Generated by CALLS Instruction

Condi tion Handl er 7FFE7D94 00000000
SP Align Bits = 00 7FFE7D98 20FC0000
Saved AP TFFE7TDOC T7FFED024
Saved FP 7FFE7DA0  7FFE7DE4 CTL$G._KSTKBAS+005E4
Return PC 7FFE7DA4  801D58AA MMVISHI MCRESET+00066
R2 7FFE7DA8  7FFE7DDO CTL$G._KSTKBAS+005D0
R3 7FFE7DAC 7FFDBIF8
R4 7FFE7DB0  8026C720
R5 7FFE7DB4  7FFDBAOO
R6 7FFE7DB8 7FFE6300 CTL$A DI SPVEC+00500
R7 7FFE7DBC 00000003
Align Stack by 0 Bytes =>
Argunent Li st 7FFE7DC0 00000003
7FFE7DCA  7FFE7DDO CTL$G._KSTKBAS+005D0

7FFE7DC8 00000000
7FFE7DCC 00000000

SDA> SHOW CALL_FRAME/ NEXT_FP
Call Frame Information

Call Frame Generated by CALLG Instruction

Condi tion Handl er 7FFE7DE4 00000000
SP Align Bits = 00 7FFE7DES 00000000
Saved AP 7FFE7DEC 7FFED024
Saved FP 7FFE7DFO  7FFECFF8
Return PC 7FFE7DF4  8015303F EXCEPTI ON+0043F

Align Stack by 0 Bytes =>

The SHOW CALL_FRAME commands in this SDA session follow a chain of call
frames from that specified in the FP of the SDA current process.

SDA-84



System Dump Analyzer
SHOW CLUSTER

SHOW CLUSTER

Format

Parameters

Qualifiers

Description

Displays connection manager and system communications services (SCS)
information for all nodes in a cluster.

SHOW CLUSTER {/CSID=csid |/NODE=name |/SCS}

None.

/CSID=csid

Displays VAXcluster system information for a specific VAXcluster member node.
The value csid is the cluster system identification number (CSID) of the node to
be displayed.’

/INODE=name
Displays VAXcluster system information for a specific VAXcluster member node.
The value name is the name of the node to be displayed.

/ISCS
Displays a view of the cluster as seen by SCS.

By default, the SHOW CLUSTER command provides a view of the VAXcluster
system from the perspective of the connection manager. When you use the /SCS
qualifier, however, SHOW CLUSTER provides a view of the cluster from the
perspective of the port driver or drivers.

VAXcluster as Seen by the Connection Manager
The SHOW CLUSTER command provides a series of displays.

The VAXcluster summary display supplies the following information:
= Number of votes required for a quorum

< Number of votes currently available

< Number of votes allocated to the quorum disk

= Status summary indicating whether a quorum is present

The CSB list displays information about the VAXcluster system blocks (CSB)
currently in operation; there is one CSB assigned to each node of the cluster. For
each CSB, the CSB list displays the following information:

e |Its address
« Name of the VAXcluster node it describes

e CSID associated with the node

" You can find the CSID for a specific node in a cluster by examining the CSB list display

of the SHOW CLUSTER command. Other SDA displays refer to a system’s CSID. For
instance, the SHOW LOCK command indicates where a lock is mastered or held by
CSID.

SDA-85



System Dump Analyzer
SHOW CLUSTER

Examples

< Number of votes (if any) provided by the node
e Its state®
e |ts status

The cluster block display includes information recorded in the cluster block
(CLUB), including a list of activated flags, a summary of quorum and vote
information, and other data that applies to the cluster from the perspective of the
node for which SDA is being run.

The cluster failover control block display provides detailed information
concerning the cluster failover control block (CLUFCB), and the cluster quorum
disk control block display provides detailed information from the cluster
quorum disk control block (CLUDCB).

Subsequent displays provide information for each CSB listed previously in the
CSB list display. Each display shows the state and flags of a CSB, as well as
other specific node information. (See the Show Cluster utility section of the
OpenVMS System Management Utilities Reference Manual for information about
the flags for VAXcluster nodes.)

VAXcluster as Seen by the Port Driver
The SHOW CLUSTER/SCS command provides a series of displays.

The SCS listening process directory lists those processes that are listening for
incoming SCS connect requests. For each of these processes, this display records
the following information:

= Address of its directory entry

= Connection ID

= Name

= Explanatory information, if available

The SCS systems summary display provides the system block (SB) address,
node name, system type, system ID, and the number of connection paths for each
SCS system. An SCS system can be a VAXcluster member, HSC, UDA, or other
such device.

Subsequent displays provide detailed information for each of the system blocks
and the associated path blocks. The system block displays include the maximum
message and datagram sizes, local hardware and software data, and SCS
poller information. Path block displays include information that describes the
connection, including remote functions and other path-related data.

1. SDA> SHOW CLUSTER
VAXcl uster data structures

- VAXcluster Summary ---
Quorum Votes QuorumDisk Votes  Status Summary

2 3 1 quor um

SDA-86

8 For information about the state and status of nodes, see the description of the ADD

command in the Show Cluster utility section of the OpenVMS System Management
Utilities Reference Manual.



CSB |i st
Address  Node CSID \ot es
803686F0 SOLLY 000100C8 1
80368550 @US 000100C9 1
80367B90 DORIS 000100C5 1

- Cluster Block (CLUB)
Fl ags: 10080001 cl uster,init,quorum

System Dump Analyzer

State Status

open nenber, gf _active
open menber, gf _active
open nenber, gf _active

801C3F70 ---

Quor um Vot es 213 Last transaction code 02
Quorum Di sk Votes 1 Last trans. nunber 1126
Nodes 3 Last coordinator CSID 00000000
Quorum Di sk $255$DUA2 Last time stanp 26- MAR- 1993
Found Node SYSID 0000000008A0 18:52: 32
Foundi ng Time 3-DEC- 1992 Largest trans. id 00000466
00: 01: 44 Resource Alloc. retry 0
I ndex of next CSID 00D2 Figure of Merit 00000000
Quorum Disk Cntrl Block 80334E00 Menber State Seq. Num 0190
Timer Entry Address 00000000 Foreign O uster 00000000
CSP Queue enpty
--- Custer Failover Control Block (CLUFCB) 801C407C ---
Fl ags: 00000000
Fai |l over Step Index 00000028 CSB of Synchr. System  803686F0
Fai l over Instance ID 00000466
--- Cluster Quorum Disk Control Block (CLUDCB) 80334EQ0 ---
State: 0001 gs_not _ready
Fl ags: 0000
Iteration Counter 0 UCB address 00000000
Activity Counter 0 TQE address 80419F40
Quorumfile LBN 00000000 | RP address 803665A0
- SOLLY Cluster SystemBlock (CSB) 803686F0 ---
State: 01 open
Fl ags: 02020302 nenber, cluster, qf _active, sel ected, status_rcvd
Quor unt Vot es 211 Next seq. number 0247 Send queue
Quor. Disk Vote 1 Last seq numrcvd 0314 Resend queue
CSID 000100C8 Last ack. seq num 0247 Bl ock xfer Q
Eco/ Versi on 0/12 Unacked nessages 1 CDT address
Reconn. tinme 00000059 Ack limt 4 PDT address
Ref. count 2 Incarnation 18- DEC 1993 TQE address
Ref. time 18- DEC- 1993 08:52: 20 SB address
08:53: 58 Lock ngr dir wgt 1 Current CDRP

SHOW CLUSTER

00000000
00000000

enpty
801C28F0
801CEA20
00000000

8041B6EO
00000000

This example shows the screen displays for the SHOW CLUSTER command.
(Displays for nodes GUS and DORIS, similar to that for node SOLLY, are also
included in the SHOW CLUSTER output but have been omitted from this

example.)

SDA-87



System Dump Analyzer
SHOW CLUSTER

2. SDA> SHOW CLUSTER / CSI D=000100C8
VAXcl uster data structures

- SOLLY Custer SystemBlock (CSB) 803686F0 ---

State: 01 open
Fl ags: 02020302 nenber, cl uster, gf _active, sel ected, status_rcvd

Quor unt Vot es 211 Next seq. number 0247 Send queue 00000000
Quor. Disk Vote 1 Last seq numrcvd 0314 Resend queue 00000000
CSID 000100C8 Last ack. seq num 0247 Bl ock xfer Q enmpty
Eco/ Versi on 0/12 Unacked nessages 1 CDT address 801C28F0
Reconn. time 00000059 Ack limt 4 PDT address 801CEA20
Ref. count 2 Incarnation 18- DEC- 1993 TCQE address 00000000
Ref. time 18- DEC 1993 08: 52: 20 SB address 8041B6EO

08:53; 58 Lock ngr dir wgt 1 Current CDRP 00000000

This example shows the use of the /CSID qualifier to obtain information about a
specific node (in this instance, node SOLLY).

3. SDA> SHOW CLUSTER / NODE=LEONO1
VAXcl uster data structures

- LEONO1 Cluster System Block (CSB) 9863BC00 ---

State: 01 open

Status 0206E1A2 nenber, gf noaccess, cl uster, sel ected, status_rcvd
cwps, rangel ock, dyn_remaster, dts, vce

Cpbl ty 00000001 rnBsec

Quor unt Vot es 4/1 Next seq. nunber 5D8B Send queue 987C3F80
Quor. Disk Vote 10 Last seq numrcvd 3302 Resend queue 00000000
CSID 00200093 Last ack. seq num 5D3A Bl ock xfer Q enpty
Eco/ Versi on 0/ 24 Unacked nessages 0 CDT address 98300600
Reconn. time 00000000 Ack limt 3 PDT address 98388590
Ref. count 2 Incarnation 26-JAN-1993 TCQE address 00000000
Ref. time 26-JAN-1993 15; 14; 37 SB addr ess 98638140

15: 28: 43 Lock ngr dir wgt 1 Current CDRP 00000000

This example shows the use of the INODE qualifier to obtain information about a
specific node (in this instance, node LEONOL1).

4. SDA> SHOW CLUSTER / SCS
VAXcl uster data structures

- SCS Listening Process Directory ---

Entry Address Connection ID Process Nane [ nformation
80419060 08EE0000 SCS$DI RECTCRY
80419E20 08EE0001 VMBSVAXcl ust er

- SCS Systens Sunmary ---

SB Addr ess Node Type System D Pat hs
8041A120 PI NTO HSC 00000000F10E 1
8041AA20 DRI S VS 0000000008A9 1
8041AB40 GQuUs VB 0000000008A1 1
8041B6EO SOLLY NS 0000000008A0 1
8041D420 DODGER HSC 00000000F00F 1

SDA-88



- PINTO System Bl ock (SB) 8041A120 ---

System | D 00000000F10E
Max message size 66
Max dat agram si ze 62
Local hardware type HS50
Local hardware vers. 022702220222

022202220222

Local software type
Local software vers.
Local software incarn.

SCS pol I er tineout
SCS pol | er enabl e mask

- Path Block (PB) 8041C400 ---

Status: 0000
Renot e sta. addr. 00000000000E
Renote state 00000000000E
Renot e hardware rev. 00000225
Remote func. mask 4F710200
Resetting port 0E
Handshake retry cnt. 1
Msg. buf. wait queue enmpty

- DORI'S System Bl ock (SB) 8041AA20 ---

System I D 0000000008A9
Max message Size 112
Max dat agram si ze 576
Local hardware type V780
Local hardware vers. 010E0138207A

000030030E10

Renote port type
Nunber of data paths
Cabl es state

Local state

Port dev. name

SCS MS@EBUF addr ess
PDT address

Local software type
Local software vers.
Local software incarn.

SCS pol l er timeout
SCS pol I er enabl e mask

- Path Block (PB) 80437E80 ---

Status: 0000
Renpte sta. addr. 000000000002
Renote state ENAB
Renote hardware rev. 00040003
Remote func. mask FFFFFFOO
Resetting port 02
Handshake retry cnt. 1
Msg. buf. wait queue enpty

Remote port type
Nunber of data paths
Cabl es state

Local state

Port dev. name

SCS MS@EBUF addr ess
PDT address

System Dump Analyzer
SHOW CLUSTER

HSC

X301
8355FE00
008DAS9A
000F

01

HSC

2

A KB X
OPEN

PABO
80390270
801CEA20

VB

V5.0
A9D31760
008DA59B
oooC

00

Cl 780

2

A- K B-&K
OPEN

PABO
8036F0B0
801CEA20

This example shows a subset of a typical output for the SHOW CLUSTER/SCS
command. In this system, there are three nodes (DORIS, GUS, and SOLLY), and
there are two HSCs (PINTO and DODGER). After the summary information in
the first two screen displays, specific information for each system block and its
associated path block is shown.

SDA-89



System Dump Analyzer
SHOW CONNECTIONS

SHOW CONNECTIONS

Format

Parameters

Qualifiers

Description

SDA-90

Displays information about all active connections between systems
communications services (SCS) processes or a single connection. This command
displays information that is in the connection descriptor table (CDT).

SHOW CONNECTIONS {/ADDR or /ADDRESS=cdt-address| /NODE=name |
ISYSAP=name}

None.

/ADDR or /ADDRESS=cdt-address
Displays information contained in the connection descriptor table (CDT) for a
specific connection.®

/NODE=name
Displays information contained in the connection descriptor table (CDT) for a
specific node.

/ISYSAP=name
Displays information contained in the connection descriptor table (CDT) for a
specific system application (SYSAP).

The SHOW CONNECTIONS command provides a series of displays.

The CDT summary page lists information regarding each connection on the
local system, including the following:

e CDT address

= Name of the local process with which the CDT is associated

= Connection ID

= Current state

< Name of the remote node (if any) to which it is currently connected

The CDT summary page concludes with a count of CDTs that are free and
available to the system.

SHOW CONNECTIONS next displays a page of detailed information for each
active CDT listed previously.

® You can find the cdt-address for any active connection on the system in the CDT

summary page display of the SHOW CONNECTIONS command. In addition, CDT

addresses are stored in many individual data structures related to SCS connections.

These data structures include class driver request packets (CDRPs) and unit control

blocks (UCBs) for class drivers that use SCS and cluster system blocks (CSBs) for the
connection manager.



Examples

1.

System Dump Analyzer

SHOW CONNECTIONS
SDA> SHOW CONNECTI ONS
VAXcl uster data structures
- CDT Sunmary Page ---
CDT Address  Local Process Connection ID State Renot e Node
801C2670 SCS$DI RECTORY 08EE0000 listen
801C2710 VVB$VAXc! ust er 08EE0001 [isten
801C27B0 VIVB$VAXc! ust er 08FF0002 open DORI S
801C2850 VWB$DI SK_CL_DRVR 08FD0003 open PI NTO
801C28F0 VIVBSVAXc! ust er 08EF0004 open SOLLY
801C2990 VIVS$VAXc! ust er 08F00005 open GQUs

Nunber of free CDTs: 32

- Connection Descriptor Table (CDT) 801C2670 ---

State: 0001 listen Local Process: SCS$DI RECTORY
Bl ocked State: 0000

Local Con. ID 08EE0000 Datagrams sent Message queue enpty
Remote Con. ID 78A30017 Datagrans rcvd Send Credit Q empty
Receive Credit 0 Datagramdiscard PB address 80438300

Send Credit 1 Messages Sent PDT address 801CEA20
Mn. Rec. Credit 0 Messages Revd. Error Notify 8022B816
Pend Rec. Credit 0 Send Data Init. Recei ve Buffer 00000000
Initial Rec. Credit 0 Req Data Init. Connect Data 00000000

Rem Sta.  00000000000C Bytes Sent Aux. Structure 00000000
Rej / Di sconn Reason 0 Bytes rcvd
Queued for BDT 0 Total bytes map

Queued Send Credit 0

This example shows the CDT summary page and the first page of the detailed
displays for each CDT.

OO OO ODOODODOOO

SDA> SHOW CONNECTI ONS / ADDRESS=801C27B0
VAXcl uster data structures

- Connection Descriptor Table (CDT) 801C27BO ---

State: 0002 open Local Process: VIVB$VAXcl ust er
Bl ocked State: 0000 Remote Node::Process:  DORIS:: VMS$VAXcl ust er

Local Con. ID 08FF0002 Datagrams sent 0 Message queue enpty
Remote Con. |1D 33440003 Datagranms rcvd 0 Send Credit Q empty

Receive Credit 4 Datagramdiscard 0 PB address 80437E80

This example shows the use of the /ADDRESS qualifier to obtain information
about a specific connection.

SDA-91



System Dump Analyzer
SHOW CONNECTIONS

SDA-92

3.

SDA> SHOW CONNECTI ONS/ NCDE=MOON

VAXcl uster data structures

- Connection Descriptor

Tabl e (CDT) 98310EEO ---

Renot e Node: : Process: MOON:: VMS$DI SK_CL_DRVR

State: 0002 open Local Process: VBCP$DI SK
Bl ocked State: 0000

Local Con. ID 7C79004E Dat agr ans sent 0
Renote Con. ID 009F0069 Dat agrans rcvd 0
Receive Credit 16 Dat agram di scard 0
Send Credit 10 Messages Sent 964
Mn. Rec. Credit 1 Messages Recvd. 808
Pend Rec. Credit 0 Send Data Init. 0
Initial Rec. Credit 10 Req Data Init. 0
Rem Sta. 000000000009 Bytes Sent 0
Rej / Di sconn Reason 0 Bytes rcvd 0
Queued for BDT 0 Total bytes map 0

Queued Send Credit 0
- Connection Descriptor

State: 0002 open Local Process:

Bl ocked State: 0000

Local Con. ID 7CCD0047
Remote Con. ID 817F005D

- Connection Descriptor

State: 0002 open Local Process:

Bl ocked State: 0000

Local Con. ID  7C790038
Renote Con. ID 4B51005B

- Connection Descriptor

State: 0002 open Local Process:

Bl ocked State: 0000

Local Con. ID 7C790037
Remote Con. 1D 23B20068

Tabl e (CDT) 98310540 ---

SCA$TRANSPORT

Message queue enpty
Send Credit Q enpty
PB address 98348200

PDT address 98336590
Error Notify 98B6158D
Receive Buffer 986791E8
Connect Data 98B60079
Aux. Structure 98679A80

Renot e Node: : Process: MOON: : SCASTRANSPCRT

Dat agr ans sent 0
Dat agrams rcvd 0

Tabl e (CDT) 9830F0AQ - --

VMBSDI SK_CL_DRVR

Message queue enpty
Send Credit Q enpty

Renot e Node: : Process: MOON: : MSCP$DI SK

Dat agr ans sent 0
Dat agrans rcvd 0

Tabl e (CDT) 9830EF40 ---

Renot e Node: : Process:
Dat agr ans sent 0
Dat agrans rcvd 0

VMBSTAPE_CL_DRVR
NOON: : MSCP$TAPE

Message queue enpty
Send Credit Q enpty

Message queue enpty
Send Credit Q enpty

The command in this example displays information in the CDT about the

node MOON.

SDA> SHOW CONNECTI ONS/ SYSAP=SCA$TRANSPORT

- CDT Summary Page ---
CDT Address  Local Process

9830A7C0 SCASTRANSPCRT
98310540 SCA$TRANSPORT
98310800 SCA$TRANSPORT

Nurmber of free CDT's: 158

- Connection Descriptor

Connection ID State

7C790003 listen
7CCD0047 open
7CD50049 open

Tabl e (CDT) 9830A7C0 ---

Renot e Node

METECR
OCALA



System Dump Analyzer

SHOW CONNECTIONS

State: 0001 listen Local Process: SCASTRANSPORT
Bl ocked State: 0000
Local Con. ID 7C790003 Dat agr ans sent 0 Message queue enpty
Remote Con. |D 00000000 Dat agrans rcvd 0 Send Credit Q enpty
Receive Credit 0 Dat agram di scard 0 PB address 00000000
Send Credit 0 Messages Sent 0 PDT address 00000000
Mn. Rec. Credit 0 Messages Recvd. 0 Error Notify 968D9ESB
Pend Rec. Credit 0 Send Data Init. 0 Recei ve Buffer 00000000
Initial Rec. Credit 0 Req Data Init. 0 Connect Data 00000000
Rem Sta. 000000000000 Bytes Sent 0 Aux. Structure 00000000
Rej / Di sconn Reason 0 Bytes rcvd 0
Queued for BDT 0 Total bytes map 0
Queued Send Credit 0

- Connection Descriptor Table (CDT) 98310540 ---
State: 0002 open Local Process: SCA$TRANSPORT
Bl ocked State: 0000 Remot e Node:: Process: METEOR: : SCASTRANSPORT
Local Con. ID 7CCD0047 Dat agrans sent 0 Message queue enmpty
Remote Con. ID 817F005D  Datagrans rcvd 0 Send Credit Q enpty

- Connection Descriptor Table (CDT) 98310800 ---
State: 0002 open Local Process: SCASTRANSPORT
Bl ocked State: 0000 Remot e Node: : Process: OCALA: : SCASTRANSPORT
Local Con. ID 7CD50049 Dat agr ans sent 0 Message queue empty

Remote Con. ID EFB80009 Dat agrans rcvd 0 Send Credit Q enpty

This example shows the use of the /SYSAP qualifier to show which nodes in
the cluster are connected to SCA$STRANSPORT.

SDA-93



System Dump Analyzer

SHOW CPU

SHOW CPU

Format

Parameter

Qualifiers

Description

SDA-94

Displays information about the state of a processor at the time of the system
failure.

SHOW CPU [cpu-id]

cpu-id

Numeric value from 00 to 1F;¢ indicating the identity of the processor for which
context information is to be displayed. If you specify a value outside this range,
or you specify the cpu-id of a processor that was not active at the time of the
system failure, SDA displays the following message:

%BDA- E- CPUNOTVLD, CPU not booted or CPU nunber out of range

If you use the cpu-id parameter, the SHOW CPU command performs an implicit
SET CPU command, making the processor indicated by cpu-id the current CPU
for subsequent SDA commands. (See the description of the SET CPU command
and Section 4 for information about how this can affect the CPU context—and
process context—in which SDA commands execute.)

None.

The SHOW CPU command displays crash information about the processor
specified by cpu-id or, by default, the SDA current CPU, as defined in Section 4.
You cannot use the SHOW CPU command when examining the running system
with SDA.

The SHOW CPU command produces several displays. First, there is a brief
description of the crash and its environment that includes the following:

< Reason for the bugcheck

< Name of the currently executing process. If no process has been scheduled on
this processor, SDA displays the following message:

Process currently executing: no processes currently schedul ed on the processor

= File specification of the image executing within the current process (if there is
a current process)

= Interrupt priority level (IPL) of the processor at the time of the system failure

Next, the general registers display shows the contents of the processor’s
general-purpose registers (RO through R11) and the AP, FP, SP, PC, and PSL at
the time of the crash.

The processor registers display consists of the following three parts:
= Common processor registers

= Processor-specific registers



System Dump Analyzer
SHOW CPU

= Stack pointers and memory interconnect silos

The first section includes registers that maintain the virtual address space,
system space, or other system functions of the current process. The following
registers are among those displayed:

Register Description

POBR Program region (PO space) base register
POLR Program region length register

P1BR Control region (P1 space) base register
P1LR Control region length register

SBR System region (SO space) base register
SLR System region length register

PCBB Process control block base register
SCBB System control block base register
ASTLVL Asynchronous system trap level

SISR Software interrupt summary register
ICCS Internal clock control and status register
SID System identification register

The second section of the processor registers display shows those registers
that are specific to the type of processor being examined. (The SHOW CRASH
command displays the processor type.) The contents of the register display vary
according to the type of processor involved in the crash and are used primarily in
hardware diagnostics.

The final section of the display includes the five stack pointers: the interrupt
stack pointer (ISP) and the four pointers of the kernel, executive, supervisor, and
user stacks (KSP, ESP, SSP, and USP, respectively). Certain processors, such as
the VAX 8800 and VAX 8600 processors, also display the contents of the silos of
their memory interconnects in this section.

The SHOW CPU command concludes with a listing of the spin locks, if any, owned
by the processor at the time of the crash, reproducing some of the information
given by the SHOW SPINLOCKS command. The spin lock display includes the
following information:

< Name of the spin lock.

= Address of the spin lock data structure (SPL).

< IPL and rank of the spin lock.

< Number of processors waiting for this processor to release the spin lock.

= Indication of the depth of this processor’s ownership of the spin lock. A
number greater than 1 indicates that this processor has nested acquisitions of
the spin lock.

SDA-95



System Dump Analyzer
SHOW CPU

Example

SDA> SHOW CPU

CPU 00 Processor crash informtion

CPU 00 reason for Bugcheck: | NVEXCEPTN, Exception while above ASTDEL or
on interrupt stack

Process currently executing: NETACP

Current image file: $254$DUA200: [ SYS6. SYSCOWMON. | <SYSEXE>NETACP. EXE; 3

Current IPL: 8

(decimal)

Ceneral registers:

RO
R4
R8
AP
PSL

00000008
00000002
00000000
0000BE34

T8AR

00080009

Processor registers:

NM bus

SDA-96

POBR
POLR
P1BR
P1LR

| CR
TODR
COR

| SP
KSP
ESP
SSP
UsP

silo:

816EB600
00000C0C
80FFCE0O
001FFC5F

FFFFEDEA
2B914COF
00000001

8016AC00
TFFE7D30
7FFEQEOO
7FFEDEOO
7TFF8E590

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00080000 R2 =
8047FCA0 R6 =
00000062 R10 =
7FFE7DDO  SP =
SBR = 01A6A800
SLR = 00065600
PCBB = 008AF2A0
SCBB = 01A62600
REVRL = 11121111
REVR2 = FFOOFF12

CPU NFO= 000009F7

8047FCA0  R3 = 000003AC
00000036 R7 = 00000000
7FFE7TD70  R11 = 0000747C
TFFE7D30 PC = 80146682
ASTLVL = 00000004
SISR = 00000000
ICCS = 00000041
SID = 067F014F

NM FSR = 000C0000
NM EAR = 2243F830



System Dump Analyzer

Spinl ocks currently owned by CPU 00

| OLOCK8 Address : 80185E50
Omer CPU ID : 00 | PL : 08
Omnership Depth : 0001 Rank : 14
CPUs Wi ting : 0000 Index : 34

SDA> EXAM NE RS
R5: 8047FCA0 "@G "
SDA>  SHOW PROCESS

Process index: 000D Name: NETACP Extended PID: 33C0010D

Process status: 00148001  RES, NOACNT, PHDRES, LOG N

SDA>  SHOW CPU 01
CPU 01 Processor crash infornation

CPU 01 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU
Process currently executing: no processes currently schedul ed on this CPU

Current IPL: 31 (decimal)

No spinlocks currently owned by CPU 01

SDA> EXAM NE R5

R5: 83EDGE00  ".Ai."
SDA>  SHOW PROCESS

%BDA- E- BADPROC, no such process

SHOW CPU

This SDA session illustrates the output of the SHOW CPU command in the
analysis of a crash dump from a VAX 8800 multiprocessing system with two
active processors. The first SHOW CPU command displays the crash information
particular to CPU 00, which initially posted an INVEXCEPTN bugcheck from
within process NETACP and then requested CPU 01 to take a bugcheck
(CPUEXIT) as well. That the crash occurred at IPL 8 signifies, perhaps, that

a driver fork process is involved.

The second instance of the SHOW CPU command (SHOW CPU 01) corroborates

that CPU 01 was requested to crash by CPU 00.

Significantly, the second SHOW CPU command changes both the SDA current
CPU context and current process context. The two EXAMINE R5 commands are
executed under different CPU contexts; the values they produce differ. In the
CPU context of CPU 00, the current process context is that of process NETACP.
There is no current process on CPU 01; thus, SDA process context is initially

undefined when its CPU context is changed to that of CPU 01.

SDA-97



System Dump Analyzer
SHOW CRASH

SHOW CRASH

Format

Parameters

Qualifiers

Description

SDA-98

In the analysis of a system failure, displays information about the state of the
system at the time of the failure. In the analysis of a running system, provides
information identifying the system.

SHOW CRASH

None.

None.

The SHOW CRASH command has two different manifestations, depending upon
whether you use it while analyzing a running system or a system failure.

In either case, if the SDA current CPU context is not that of the processor that
signaled the bugcheck, the SHOW CRASH command performs an implicit SET
CPU command to make that processor the SDA current CPU. (See the description
of the SET CPU command and Section 4 for a discussion of how this can affect
the CPU context—and process context—in which SDA commands execute.)

When used during the analysis of a running system, the SHOW CRASH command
produces a display that describes the system and the version of OpenVMS that

it is running. The system crash information display contains the following
information:

< Date and time that the ANALYZE/SYSTEM command was issued (titled
“Time of system crash” in the display)

= Name and version number of the operating system

< Major and minor IDs of the operating system

= ldentity of the system, including an indication of its VAXcluster membership
= CPU ID of the primary CPU

= Two bit masks indicating which processors in the system are active and which
are available for booting, respectively

When used during the analysis of a system failure, the SHOW CRASH command
produces several displays that identify the system and describe its state at the
time of the failure.

The system crash information display in this context provides the following
information:

= Date and time of the system crash.
< Name and version number of the operating system.

< Major and minor IDs of the operating system.



Examples

System Dump Analyzer
SHOW CRASH

Identity of the system, including an indication of its VAXcluster membership
and the location of the primary CPU in a multiprocessing configuration.

CPU IDs of both the primary CPU and the CPU that initiated the bugcheck.
In a uniprocessor system, these IDs are identical.

Two bit masks indicating which processors in the system are active and which
are available for booting, respectively.

For each active processor in the system, the name of the bugcheck that
caused the failure. Generally, there will be only one significant bugcheck
in the system. All other processors typically display the following as their
reason for taking a bugcheck:

CPUEXI T, Shutdown requested by another CPU

Subsequent screens of the SHOW CRASH command display information about
the state of each active processor on the system at the time of the system failure.
The information in these screens is identical to that produced by the SHOW CPU
command, including the general-purpose registers, processor-specific registers,
stack pointers, and records of spin lock ownership. The first such screen presents
information about the processor that caused the crash; others follow according to
the numerical order of their CPU IDs.

1.

$ ANALYZE/ SYSTEM
OpenVMs VAX System anal yzer

SDA> SHOW CRASH
System crash information

Time of systemcrash: 25-FEB-1993 11:18:06. 84

Version of system OpenVMs VAX VERSION 6.0

System Version Major ID)Mnor 1D 10/11

VAXcl uster node: BIGIOP, a VAX 8800 - primary CPU (left) was booted
Primary CPU ID. 01

Bi t mask of CPUs active/available: 00000003/00000003
SDA>  SHOW PROCESS
Y%B8DA- E- BADPROC, no such process

When issued from within the analysis of a running system, the SHOW
CRASH command displays the time the ANALYZE/SYSTEM command

was issued as the “Time of system crash.” The display indicates that the
OpenVMS VAX system in use is a VAX 8800 multiprocessing system, the left
CPU of which is the primary CPU. The bit mask indicates that there are two
processors available and both are running.

Note that no SDA current process is defined at this time.

SDA-99



System Dump Analyzer

SHOW CRASH

SDA-100

2.

$ ANALYZE/ CRASH SYS$SYSTEM

OpenVMS VAX System dunp anal yzer
Dunp taken on 23- FEB-1993 12:44: 30. 23

| NVEXCEPTN, Exception while above ASTDEL or on

interrupt stack

SDA> SHOW CRASH

System crash information @

Time of systemcrash: 23-FEB-1993 12:44:30. 23

Version of system OpenVMS VAX VERSION 6.0
System Version Major IDMnor ID 10/11

VAXcl uster node: MOOSE, a VAX 8800 - prinary CPU (left) was booted
Crash CPU ID/Primary CPU ID:  00/01

Bi t mask of CPUs active/avail able:

CPU bugcheck codes: @

00000003/ 00000003

CPU 00 -- | NVEXCEPTN, Exception while above ASTDEL or on

interrupt

stack

1 other -- CPUEXIT, Shutdown requested by another CPU

CPU 00 Processor crash

information

CPU 00 reason for Bugcheck: | NVEXCEPTN, Exception while above ASTDEL
or oninterrupt stack ©

Process currently executing on this CPU: NETACP ©
Current image file: $254$DUA200: [ SYS6. SYSCOMVON. ] [ SYSEXE] NETACP. EXE; 3

Current IPL; 8 (decimal) @

General registers:

RO = 00000008 Rl = 00080000 R2 = 8047FC40 R3 = 000003AC
R4 = 00000002 R5 = 8047FCA0 R6 = 00000036 R7 = 00000000
R8 = 00000000 R9 = 00000062 R10 = 7FFE7D70 R11 = 0000747C
AP = 0000BE34 FP = 7FFE7TDD0 SP = 7FFE7D30 PC = 80146682
PSL = 00080009

Processor registers:
POBR = 816EB600 SBR = 01A6A300 ASTLVL = 00000004
POLR = 0000000C SLR = 00065600 SISR = 00000000
P1BR = 80FFCEOQ PCBB = 008AF2A0 ICCS = 00000041
P1LR = 001FFC5F SCBB = 01A62600 SID = 067F014F
I CR = FFFFEDEA REVR1 = 11121111 NM FSR = 000C0000
TODR = 2B914COF REVR2 = FFOOFF12 NM EAR = 2243F830
COR = 00000001 CPUI NFO= 000009F7 MEMCSRO= 000700F0

NBI A0 CSRO = 00203810 NBI AL CSRO = 00000000

| SP = 8016AC00
KSP = 7FFE7D30
ESP = 7FFE9E00
SSP = TFFEDEOO
Usp = 7FF8E590

NM bus silo:



00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Spinlocks currently owned by CPU 00

| OLOCK8

Omer CPU ID : 00
Ownership Depth : 0001
CPUs Waiting . 0000

Address :
| PL
Rank
| ndex

CPU 01 Processor crash informtion

System Dump Analyzer
SHOW CRASH

80185E50

. 08
c 14
. 34

CPU 01 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU
Process currently executing on this CPU:
Current 1PL: 31 (decimal)
General registers:

RO = 00000020 R1 =
R4 = 80487000 R5 =
R8 = 7FF28E68 R9 =
AP = TFF28D90 FP =
PSL = 041F0000
Processor registers:

POBR = 83EESE00
POLR = 000001C1
P1IBR = 837FA600
PILR = 001FF935

I CR = FFFFE7TCL
TODR = 2B914COF

CR = 00000001
NBI A0 CSRO = 00203810
| SP = 80DAFBF8

KSP = TFFETEQQ

ESP = 7TFFE9EOO

SSP = TFFEDO4E

usp = 7FF28D90

NM bus silo:

00000000 R2 =
83EDSE00  R6 =
7FFA2808 R10 =
TFF28D98 SP =

SBR = 01A6A800
SLR = 00065600

PCBB = 00BB62A0
SCBB = 01A62600
REVRL 11121111

REVR2 = FFOOFF12
CPUI NFO= 000009F7

None

8000CA78 R3 = 80DAF000
7FFA4188 R7 = TFF28EB8
7FFA4000 RI1 = 7FFE0070
80DAFBF8 PC = 80765465

ASTLVL = 00000004

SISR = 00000000
ICCS = 00000041
SID = 06FF014F

NM FSR = 000C0000
NM EAR = 24080000
MEMCSRO= 000700F0

NBI A1 CSRO = 00000000

SDA-101



System Dump Analyzer
SHOW CRASH

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

No spinlocks currently owned by CPU 01

This long display reflects the output of the SHOW CRASH command within
the analysis of a system failure that occurred on a VAX 8800 multiprocessing
system.

The first part of the display includes the following information:

O Identification of the system and the version of OpenVMS it was running
at the time of the crash.

® Indication that the failed processor (CPU 00) was not the primary
processor (CPU 01), but requested CPU 01 to take a CPUEXIT bugcheck.
(CPU 01 was, in fact, idle at the time of the crash.)

The next part of the display shows information particular to CPU 00:

© CPU 00 encountered an INVEXCEPTN bugcheck while executing the
NETACP process.

O Although the next step in the analysis might be to examine the interrupt
stack of CPU 00, the fact that the failure occurred at IPL 8 might indicate
that an 1/O driver is involved.

At the end of the example, SDA CPU context remains that of CPU 00; its
current process context is that of the NETACP process.

SDA-102



System Dump Analyzer
SHOW DEVICE

SHOW DEVICE

Format

Parameter

Qualifier

Displays a list of all devices in the system and their associated data structures or
displays the data structures associated with a given device or devices.

SHOW DEVICE {device-name |/ADDRESS=ucb-address}

device-name
Device or devices for which data structures are to be displayed. There are several
uses of the device-name parameter.

To Display the Structures

for ... Action

All devices in the system Do not specify a device-name (for example,
SHOW DEVICE).

A single device Specify an entire device-name (for example,

SHOW DEVICE VTA20).

All devices of a certain type Specify only the device type and controller
on a single controller designation (for example, SHOW DEVICE RTA
or SHOW DEVICE RTB).

All devices of a certain type Specify only the device type (for example, SHOW

on any controller DEVICE RT).
All devices whose names Specify the character or character string (for
begin with a certain example, SHOW DEVICE D).

character or character string

All devices on a single node Specify only the node name or HSC name (for
or HSC example, SHOW DEVICE GREENS$).

In a VAXcluster environment, device information is displayed for each device in
the cluster with the specified device-name. You can limit the display to those
devices that are on a particular node or HSC by specifying the node name or HSC
name as part of the device-name (for example, GREEN$D or GREEN$DB).

/ADDRESS=ucb-address

Indicates the device for which data structure information is to be displayed by
the address of its unit control block (UCB). The /ADDRESS qualifier is thus an
alternate method of supplying a device name to the SHOW DEVICE command. If
both the device-name parameter and the /ADDRESS qualifier appear in a single
SHOW DEVICE command, SDA responds only to the parameter or qualifier that
appears first.

SDA-103



System Dump Analyzer
SHOW DEVICE

Description

SDA-104

The SHOW DEVICE command produces several displays taken from system data
structures that describe the devices in the system configuration.

If you use the SHOW DEVICE command to display information for more than
one device or one or more controllers, it initially produces the DDB list display
to provide a brief summary of the devices for which it renders information in
subsequent screens.

Information in the DDB list appears in six columns, the contents of which are as
follows:

= Address of the device data block (DDB)
= Controller name

< Name of the ancillary control process (ACP) or extended QIO processor (XQP)
associated with the device

< Name of the device driver
= Address of the driver prologue table (DPT)
e Size of the DPT

The SHOW DEVICE command then produces a display of information pertinent
to the device controller. This display includes information gathered from the
following structures:

= Device data block (DDB)

< Primary channel request block (CRB)
= Interrupt dispatch block (IDB)

= Driver dispatch table (DDT)

If the controller is an HSC controller, SHOW DEVICE also displays information
from its system block (SB) and each path block (PB).

Many of these structures contain pointers to other structures and driver routines.
Most notably, the DDT display points to various routines located within driver
code, such as the start 1/O routine, unit initialization routine, and cancel 1/O
routine.

For each device unit subject to the SHOW DEVICE command, SDA displays
information taken from its unit control block, including a list of all 1/O request
packets (IRPs) in its I/0O request queue. For certain mass-storage devices, SHOW
DEVICE also displays information from the primary class driver data block
(CDDB), the volume control block (VCB), and the ACP queue block (AQB). For
units that are part of a shadow set, SDA displays a summary of shadow set
membership.

As it displays information for a given device unit, SHOW DEVICE defines the
following symbols as appropriate.

Symbol Meaning
ucB Address of unit control block
SB Address of system block



Examples

System Dump Analyzer
SHOW DEVICE

Symbol Meaning

ORB Address of object rights block

DDB Address of device data block

DDT Address of driver dispatch table

CRB Address of channel request block

AMB Associated mailbox UCB pointer

IRP Address of 1/0 request packet

2P_UCB Address of alternate UCB for dual-pathed device
LNM Address of logical name block for mailbox

PDT Address of port descriptor table

CDDB Address of class driver descriptor block for MSCP-served device
2P_CDDB Address of alternate CDDB for MSCP-served device
RWAITCNT Resource wait count for MSCP-served device

VCB Address of volume control block for mounted device

If you are examining a driver-related crash, you might find it helpful to issue

a SHOW STACK command after the appropriate SHOW DEVICE command,
examining the stack for any of these symbols. Note, however, that although
SHOW DEVICE defines those symbols relevant to the last device unit it has
displayed, and redefines symbols relevant to any subsequently displayed device
unit, it does not undefine symbols. (For instance, SHOW DEVICE DUAO defines
the symbol PDT, but SHOW DEVICE MBAO: does not undefine it, even though
the PDT structure is not associated with a mailbox device.)

To maintain the accuracy of symbols that appear in the stack listing, use the
DEFINE command to modify the symbol name. For example:

SDA> DEFI NE DUAO_PDT PDT
SDA> DEFI NE MBAO_UCB UCB

See the descriptions of the READ and FORMAT commands for additional
information about defining and examining the contents of device data structures.

For a detailed explanation of 1/0 data structures displayed by SDA, consult the
OpenVMS VAX Device Support Manual.

1. SDA>SHOW DEVI CE VTA20

VTA20 ==> LTA20 VT200_Seri es UCB address: 8042E4Q0

Devi ce status: 00010110 online, bsy, del et euch
Characteristics: 00040007 rec,ccl,trmavl,idv, odv
00000200 nnm

Oaner U C [000001, 000004]  Operation count 5793 ORB address 8042E590

PID 00010064  Error count 0 DDB address 80CEF2EQ
O ass/ Type 42/ 6E  Reference count 2 DDT address 807696FB
Def. buf. size 80 BOFF 0155 CRB address 80BC8B00
DEVDEPEND 180093A0  Byte count 0100 IRP address 80BE2B00
DEVDEPND2 7962100C  SVAPTE 804801C0 /O wait queue enpty
FLCK/ DLCK 00000012  DEVSTS 0000

I/0 request queue

SDA-105



System Dump Analyzer

SHOW DEVICE

SDA-106

STATE | RP PID MODE CHAN FUNC  WCB EFN  AST |0SB  STATUS

C 80BE2BO0O 00010064 E FFCO C000 00000000 29 80127458 7FFA800C 0003
nop bufio, func

This example reproduces the SHOW DEVICE display for a single device unit,
VTA20. Whereas this display lists information from the UCB for VTAZ20,
including some addresses of key data structures and a list of pending 1/0
requests for the unit, it does not display information about the controller

or its device driver. To display the latter sort of information, specify the
device-name as VTA (for example, SHOW DEVICE VTA).

SDA> SHOW DEVI CE DU
/0O data structures

Addr ess Control | er ACP Driver DPT  DPT size

8000B3C0 BLUES$DUA F11XQP DSDRI VER  807735B0 679D
8000B2B8 REDSDUA F11XQP DSDRIVER  807735B0 679D
8000BICO REDSDUS FL1IXQP DSDRI VER  807735B0 679D
80D08BAO Bl GTGP$DUA F11XQP DSDRIVER  807735B0 679D
80D08AE0 TI MEI NSDUA FL1XQP DSDRI VER  807735B0 679D

Preés RETURN for nore.

This excerpt from the output of the SHOW DEVICE DU command illustrates
the format of the DDB list display. In this case, the DDB list concerns
itself with those devices whose device type begins with DU (that is, DUA and
DUS). It displays devices of these types attached to various HSCs (RED$ and
BLUES$) and systems in a cluster (BIGTOP$ and TIMEINS).

Following the DDB list, SHOW DEVICE DU produces displays for each
controller and each unit on each controller, as illustrated in the next example.



System Dump Analyzer

3. SDA> SHOW DEVI CE DUS

/0O data structures

DDB |i st
Addr ess Control I er ACP Driver DPT  DPT size
80D0B9CO RED$DUS F11XQP DSDRI VER  807735B0 679D
Control | er: RED$DUS
- LOVE System Bl ock (SB) 80D0C500 ---
System I D 00000000FFF2 Local software type HSC
Max nessage size 66 Local software vers. Y35Q
Max datagram si ze 62 Local software incarn.  6DF9EGEQ
Local hardware type HS50 008FCC33
Local hardware vers. 2722722221A3 SCS pol l er tineout 0002
000000272272 SCS pol | er enabl e mask 01
- Path Block (PB) 80DOBEAQ ---
Status: 0028
Remote sta. addr. 000000000008 Renot e port type HSC
Remote state 00000000000B Nunber of data paths 2
Rermot e hardware rev. 00000225 Cables state A- X B- XX
Renote func. mask 4F710200 Local state OPEN
Resetting port 05 Port dev. name PAAQD
Handshake retry cnt. 1 SCS MSGBUF address 80BCD510
Msg. buf. wait queue empty PDT address 803B38D0
--- Device Data Block (DDB) 80D0BICO ---
Driver name DUDRIVER  Alloc. class 254  DDT address
ACP i dent F11  SB address 80D0C500
ACP cl ass PACK  UCB address 803B9C60
Primary Channel Request Bl ock (CRB) 80BF7000 ---
Ref erence count 17 Vait queue empty Aux. struct.
Due tine 00012DCC Timeout rout.  807743D1 Ti meout |ink
| DB address 80D0C440 Crl. init.
ADP addr ess 80BF7F70
--- Driver Dispatch Table (DDT) 80773640 ---
Errlog buf sz 0 Di ag buf sz 104 FDT size
Start 1/0 80773B21 Regi ster dunp return FDT address
At start 1/0 return Unit init 80775970 Mt verify
Cancel 1/0 807763A7 Unsol int 80774602 Cloned UCB
RED$SDUS3 RA81 UCB address:

Device status: 00021810 online,valid,unload,lcl _valid
Characteristics; 1CAD4008 dir,fod, shr,avl, mt,elg,idv,odv,rnd
000002A1 cl u, mscp, srv, nnm

SHOW DEVICE

80773640

803B4150
8039E03C
80773774

244
80773680
80775BC2

return

803B9C60

SDA-107



System Dump Analyzer
SHOW DEVICE

Oaner U C [100001, 000063]  Operation count 55595  ORB address 803B9D90

PID 00000000 Error count 0 DDB address 80D0BIC0
Alloc. lock ID 00010161 Reference count 3 DDT address 80773640
Alloc. class 254  Online count 2 VCB address 80440940
C ass/ Type 01/15 BOFF 0000 CRB address 80BF7000
Def. buf. size 512  Byte count 0A00  PDT address 803B38D0
DEVDEPEND 04EQ0E33  SVAPTE 835C7738 CDDB address  803B4150
DEVDEPND2 00000000 DEVSTS 0004 1/Owait queue enpty
FLCK/ DLCK 00000012  RWAI TCNT 0000

- Primary Class Driver Data Bl ock (CDDB) 803B4150 ---

St at us: 1040 al cl s_set, bshadow
Control l er Flags: 80D6 cf shadw, cf _mths,cf _this,cf_msc,cf _attn,cf_replc
Al l ocation class 254 CDRP Queue 80BD1170 DDB addr ess 8000B2B8
System | D 0000FFF2 Restart Queue empty CRB address 80BF7000
0000 DAP Count 1 CDDB i nk 80300100

Contrl. ID 0000FFF2 Contr. timeout 75 PDT addr ess 803B38L00

01010000 Rei nit Count 0 Original UCB 00000000
Response | D 00000000 Wait UCB Count 0 UCB chain 803B89A0
MSCP Cnd status FFFFFFFF

*** 1[0 request queue is enpty ***
- Volune Control Block (VCB) 8044D940 ---
Vol ume: VVSCVBMASTER Lock nane: VMSCMSMASTER
Status: A0 extfid,system
Status2: 15 writethru, mountver, nohi ghwat er
Shadow status: 21 shadmast, mvbegun
Mount count 1 Rel . vol une 0 AB address 80DOBAED
Transactions 3 Max. files 111384 RVT address 803B9C60
Free bl ocks 205989 Rsvd. files 9 FCB queue 80BD87B0
W ndow si ze 7 Cluster size 3 Cache bl k. 8044DA30
Vol. lock ID 00010167 Def. extend sz. 5 Shadow mem FL 80CF5C40
Block. lock ID 01A50139 Record size 0 Shadow mem BL 80CF5BEQ
Shadow [ ock 1D 00010168
- Shadow set $254$DUS3 nenber summary ---

Vol ume:  JAZZLORE
Physi cal unit Primary path Secondary path Menber status
$254$DUAL29 RED -- none -- Shadow set nenmber
$254$DUAL39 RED -- none -- Shadow set nenber

SDA-108



System Dump Analyzer
SHOW DEVICE

- ACP Queue Block (AQB) 80DOBAEQ - --
ACP requests are serviced by the extended Qo Processor (XQP)
Status: 14 defsys, xqi oproc

Mount count 56 ACP type f11v2 Request queue 00000000
ACP cl ass 0

**% ACP request queue is enmpty ***

RED$DUS5 RAS0 UCB address: 803B9DFO

Device status: 00021810 online,valid, unload,|cl_valid
Characteristics: 1CAD4008 dir,fod, shr,avl, mt,elg,idv,odv,rnd
000002A1 cl u, mscp, srv, nnm

This example illustrates the output of the command SHOW DEVICE DUS,
where two shadow sets (RED$DUS3 and RED$DUSS5) are associated with the
HSC REDS$. There is a controller display for RED$DUS and a unit display for
each of the two shadow sets.

SDA-109



System Dump Analyzer
SHOW EXECUTIVE

SHOW EXECUTIVE

Format

Parameters

Qualifiers

Description

SDA-110

Displays the location and size of each loadable image that makes up the
executive.

SHOW EXECUTIVE

None.

None.

The executive consists of a fixed portion and a loadable portion. The fixed portion
is known as SYS$SYSTEM:SYS.EXE and consists of three parts:

= System service dispatch vectors
= Universal executive routine vectors
= Globally referenced data cells

The loadable portion consists of a number of independent images that perform
the work of the operating system.

The SHOW EXECUTIVE command lists the location and size of each image
within the loadable portion of the executive image. It can thus enable you to
determine whether a given memory address falls within the range occupied by a
particular loadable image. (Table SDA-13 describes the contents of each loadable
image.)

By default, SDA displays each location within the loadable portion of the
executive as an offset from the beginning of one of the loadable images; for
instance, EXCEPTION+00282. Similarly, those symbols that represent system
services point to the vector region and not to the system service's loadable code.
When tracing the course of a system failure through the listings of modules
contained within a given loadable executive image, you might find it useful to
load into the SDA symbol table all global symbols and global entry points defined
within one or all modules that make up the loadable portion of the executive
image. See the description of the READ command for additional information.

The SHOW EXECUTIVE command usually shows all components of the executive
image, as illustrated in the following example. In rare circumstances, you might
obtain a partial listing. For instance, once it has loaded the EXCEPTION module
(in the INIT phase of system initialization), the system can successfully post

a bugcheck exception and save a crash dump. Later, if the system should fail
sometime during initialization, it might not have been able to load some of the
modules that appear above EXCEPTION in the SHOW EXECUTIVE display (see
the example).



Example

SDA> SHOW EXECUTI VE
VMS Executive Layout

SYSMSG

RECOVERY_UNI T_SERVI CES
RVB

CPULOA

LMF$GROUP_TABLE

SYSLI CENSE

SYSGETSYI

SYSDEVI CE
NESSAGE_ROUTI NES
EXCEPTI ON

LOG CAL_NAMES

SECURI TY

LOCKI NG
PAGE_MANAGENENT
WORKTNG_SET_MANAGEMENT
| MAGE_ MANAGENENT
EVENT_FLAGS_AND ASTS

| O ROUTI NES
PROCESS_MANAGENENT
ERRORLOG

PRMTIVE IO

SYSTEM SYNCHRONI ZATI ON
SYSTEM PRI M TI VES

Base

8015AA00
80211400
80183600
80182800
801B3800
801B4000
801B5A00
801B7400
801B9000
801CBAOO
801D4600
801D6600
80108200
801DAE0O
801E2E00
801E7C00
801EAA00
801ECA00
801F3200
80204000
80205C00
80207000
80209200

End

80183600
80212000
801A7E00
801B3200
801B3C00
80185400
80187000
801BBA00
801BB600
801D3E00
801D6000
801D7C00
801DA800
801E2600
801E7200
801EA400
801EBEOO
801F2000
801F9400
80205600
80206C00
80208000
8020C400

System Dump Analyzer
SHOW EXECUTIVE

Length

00028C00
00000C00
00024800
00000A00
00000400
00001400
00001600
00001600
00002600
00008400
00001A00
00001600
00002600
00007800
00004400
00002800
00001400
00006800
00006200
00000A00
00001000
00001C00
00003200

The SHOW EXECUTIVE command displays the location and length of the
loadable images included in the executive.

SDA-111



System Dump Analyzer
SHOW HEADER

SHOW HEADER

Displays the header of the dump file.

Format
SHOW HEADER

Parameters

None.

Qualifiers

None.

Description

The SHOW HEADER command produces a 10-column display, each line of which
displays both the hexadecimal and ASCII representation of the contents of

the dump file header in 32-byte intervals. Thus, the first eight columns, when
read right to left, represent the hexadecimal contents of 32 bytes of the header;
similarly, the ninth column, when read left to right, records the ASCII equivalent
of the contents. (Note that the period character [.] in this column indicates an
ASCII character that cannot be displayed.)

After it displays the contents of the first header block, the SHOW HEADER
command displays the hexadecimal contents of the saved error log buffers.

See the VAX/VMS Internals and Data Structures manual for a discussion of the
information contained in the dump file header.

SDA>  SHOW HEADER
Dunp file header

7FF03944 7FFEDO4E . . . 000000C1 00000000 ................c.coon.n. N...D9.. 00000000
00000000 00000000 . . . 00040000 80185200 .R ..............cccoiiiiiiin... 00000020
00000000 00000000 . . . 00000000 00000000 ...........ccvvvriiiiiininnnnnnn. 00000040
00020000 00000000 . . . 15000011 00000000 ..............c.ccoviiiiiinnnnn., 00000060
414E454C 45480800 . . . 0000012C 00000000 ..., ..........ccovvvnnnn.. GARNER 00000080

FE9EOO7F F74D7COA . . . 00000000 00002020 ........... % @o41. ... .. M. 000000A0

Saved error |og messages

00000000 00000009 . . . 801D8739 00000300 ....9....... S 80108600
7B0090AC 2FCBCEC2 . . . 414E454C 45480800 ..GARNER ........... & zxcv. O .. 801D8620

00202041 4E454C45 . . . 01080100 0000C30A .A........ doooot GARNER . 801D8640

The SHOW HEADER command displays the contents of the dump file’s header
from address 6B0;g to address C904¢. Ellipses indicate hexadecimal information
omitted from the display.

SDA-112



System Dump Analyzer
SHOW LAN

SHOW LAN

Format

Parameters

Qualifiers

Displays information contained in various local area network (LAN) data
structures. The default qualifiers are /CSMACD/FDDI.

SHOW LAN [/qualifier],...]]

None.

/CLIENT=xx

Specifies that information be displayed for the specified client. Valid client
designators are SCA, DECNET, LAT, MOPRC, TCPIP, DIAG, ELN, BIOS, LAST,
USER, ARP, MOPDL, LOOP, BRIDGE, DNAME, ENCRY, DTIME, and LTM.
/CLIENT, /DEVICE, and /UNIT are synonymous and mutually exclusive; each
must be the last qualifier stated on an SDA command line.

/CLUEXIT
Specifies that cluster protocol information be displayed.

/COUNTERS
Specifies that the LAN station block (LSB) and unit control block (UCB) counters
be displayed.

ICSMACD
Specifies that Carrier Sense, Multiple Access with Collision Detect (CSMACD)
information for the LAN be displayed.

/ICSMACD/FDDI (default)
Displays both Ethernet and FDDI information.

/DEVICE=xx[dn]

Specifies that information be displayed for the specified device. Device
designators are specified in the format xxdn, where xx is the type of device,

d is the device letter, and n is the unit number. The device letter and unit
number are optional. /CLIENT, /DEVICE, and /UNIT are synonymous and
mutually exclusive; each must be the last qualifier stated on an SDA command
line.

/ERRORS
Specifies that the LSB and UCB error counters be displayed.

/FDDI
Specifies that Fiber Distributed Data Interface (FDDI) controller information for
the LAN be displayed.

/FULL
Specifies that all information from the LAN, LSB, and UCB data structures be
displayed.

SDA-113



System Dump Analyzer
SHOW LAN

/SUMMARY
Specifies that only a summary of LAN information (a list of flags, LSBs, UCBsS,
and base addresses) be printed. This is the default.

ITIMESTAMPS
Specifies to print time information (start and stop times and error times) from
the device and unit data structures. SDA displays the data in chronological order.

JUNIT=xx/[dn]

Specifies that information be displayed for the specified unit. Unit designators
are specified in the format xx/[dn], where xX is the type of unit, d is the device
letter, and n is the unit number. The device letter and unit number are optional.
/CLIENT, /DEVICE, and /UNIT are synonymous and mutually exclusive; each
must be the last qualifier stated on an SDA command line.

Description

The SHOW LAN command displays information contained in various local area
network (LAN) data structures. By default, or when you specify the /SUMMARY
gualifier, SHOW LAN displays a list of flags, LSBs, UCBs, and base addresses.
When you specify the /FULL qualifier, SHOW LAN displays all information found
in the LAN, LSB, and UCB data structures.

Examples

1. SDA> SHOW LAN
- LAN Device Sunmary 26- JAN-1993 20:57:41 --

LAN bl ock address = 9834C680 (6 stations)
LAN flags: 0002 LAN init

LSB address = 98358B40
Device state = 001B Inited, Run, Ctl _Rdy, Ti ner
- EXA Unit Summary 26- JAN-1993 20:57:41 --
UCB UCB Addr Fnt  Val ue Cient State
EXA0 98358540
EXAL 98376340 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd
EXA3 98ACD240 Eth  60-03 DECNET 0004 Uniq
EXA5 983A9580 FEth  80-41 LAST 0015 Strtn, Uniq, Strtd

LSB address = 98369B40
Device state = 4013 I nited, Run, Ti mer

- FXA Unit Summary 26- JAN- 1993 20:57:41 --

ucB UCB Addr Fnt  Val ue Cient State

FXAO 98369840

FXAL 98391980 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd
FXA2 98AC9680 Eth  60-03 DECNET 0017 Strtn, Len, Uniq, Strtd
FXA3 98AC7100 Eth  60-01 MOPDL  001F Strtn, Uniq, Share, Strtd
FXA4 98ACOBB0 Eth  90-00 LOOP 001D Strtn, Uniq, Share, Strtd
FXAS 98395380 Eth  60-04 LAT 0015 Strtn, Uniqg, Strtd

LSB address = 9836CE00

Device state = 001B Inited, Run, CtI _Rdy, Ti ner

- EXB Unit Sunmary 26- JAN-1993 20:57:41 --

SDA-114



System Dump Analyzer

SHOW LAN

ucB UCB Addr Fmt  Val ue dient State
EXBO 98358880
EXB1 983B8B00 Eth  60-07 SCA 0017 Strtn, Len,Uniq, Strtd
EXB2 98ACD500 Eth  60-03 DECNET 0004 Uni q
LSB address = 9836FEQ0
Device state = 001B Inited, Run, CtI _Rdy, Ti ner

- EXC Unit Sunmary 26- JAN- 1993 20:57:41 --
ucB UCB Addr Fmt  Val ue Cient State
EXC0 9836CA80
EXC1 983C08C0 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd
EXC2 98ACD7C0 Eth  60-03 DECNET 0004 Uni g
LSB address = 98376600
Device state = 001B Inited, Run, Ct1 _Rdy, Ti mer

- EXD Unit Summary 26- JAN-1993 20:57:41 --
ucB UCB Addr Fmt  Val ue dient State
EXDO 9836FA80
EXD1 983C8680 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd
EXD2 98ACDAS0 Eth  60-03 DECNET 0004 Uni g
LSB address = 98378340
Device state = 4013 Inited, Run, Ti mer

- FXB Unit Sunmary 26- JAN-1993 20:57: 41 --
ucB UCB Addr Fnmt  Val ue dient State
FXBO 98377F80
FXB1 98300440 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd

FXB2 98AC9900 Eth  60-03 DECNET 0004 Uni q

The SHOW LAN command in this example displays information about LAN
data structures, including CSMACD and FDDI information.

SDA>  SHOW LAN' COUNTERS/ DEV=DECNET
-- EZA1 60-03 (DECNET) Counters Information 19-JUL-1993 14:27:02 --

Last receive None Last transmt 19-JUL 14: 26:51
Cctets received 580539 Cctets sent 2399353240
PDUs received 8194 PDUs sent 5618
Mast octets received 0 Mast octets sent 0
Mcast PDUs received 0 Mcast PDUs sent 0
Unavai | user buffer 0 Last start attenpt None
Last start done 19-JUL 06: 40: 22 Last start failed None

The SHOW LAN command in this example displays the counters for device
DECNET.

SDA> SHOW LAN CSMACD
- LAN Device Sunmmary 26- JAN-1993 20:57:22 --

LAN bl ock address = 9834C680 (6 stations)
LAN flags: 0002 LAN init

LSB address = 98358B40
Device state = 001B Inited, Run, Ct1 _Rdy, Ti mer

- EXA Unit Summary 26- JAN- 1993 20:57:22 --

SDA-115



System Dump Analyzer

SHOW LAN

SDA-116

ucB UCB Addr Fnt  Val ue Cient State

EXAQ 98358540

EXAL 98376340 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd
EXA3 98ACD240 Eth  60-03 DECNET 0004 Uniq

EXA5 983A9580 Eth  80-41 LAST 0015 Strtn,Unig, Strtd
LSB address = 9836CE00

Device state = 001B Inited, Run, Ctl _Rdy, Ti ner

- EXB Unit Sunmary 26- JAN-1993 20:57:22 --

ucB UCB Addr Fnt  Val ue Qient State

EXBO 98358880

EXB1 983B8B00 Eth  60-07 SCA 0017 Strtn, Len, Uniqg, Strtd
EXB2 98ACD500 Eth  60-03 DECNET 0004 Uniq

LSB address = 9836FE00

Device state = 001B Inited, Run, Ct1 _Rdy, Ti mer

- EXC Unit Sunmary 26- JAN-1993 20:57:22 --

UcB UCB Addr Fnt  Val ue Cient State

EXC0 9836CA80

EXC1 983C08C0 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd
EXC2 98ACD7C0 Eth  60-03 DECNET 0004 Uniq

LSB address = 98376600

Device state = 001B Inited, Run, CtI _Rdy, Ti ner

- EXD Unit Summary 26- JAN-1993 20:57:22 --

UcB UCB Addr Fnt  Val ue Cient State

EXDO 9836FA80

EXD1 983C8680 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd
EXD2 98ACDAS0 Eth  60-03 DECNET 0004 Uniq

The SHOW LAN command in this example displays CSMACD information for
the LAN.

SDA SHOW LAN FDDI
-- LAN Device Summary 26-JAN-1993 20:57:07 --

LAN bl ock address = 9834C680 (6 stations)
LAN flags: 0002 LANinit

LSB address 98369B40

Device state = 4013 Inited, Run, Ti nmer

- FXA Unit Summary 26- JAN-1993 20:57:07 --
ucs UCB Addr Fnt  Val ue Cient State
FXAO 98369840
FXAL 98391980 Eth  60-07 SCA 0017 Strtn, Len, Uniq, Strtd
FXA2 98AC9680 Eth  60-03 DECNET 0017 Strtn, Len, Unig, Strtd
FXA3 98AC7100 Eth  60-01 MOPDL  001F Strtn, Uniq, Share, Strtd
FXA4 98AC9BB0 Eth  90-00 LOCP 001D Strtn, Uni g, Share, Strtd
FXAS 98395380 Eth  60-04 LAT 0015 Strtn, Unig, Strtd
LSB address = 98378340
Device state = 4013 Inited, Run, Ti ner

- FXB Unit Sunmary 26- JAN-1993 20:57:07 --



ucB UCB Addr
FXBO 98377F80
FXB1 983D0440
FXB2 98AC9900

System Dump Analyzer

SHOW LAN
Fnt  Val ue dient State
Eth 60-07 SCA 0017 Strtn, Len,Uniq, Strtd
Eth 60-03 DECNET 0004 Uni q

The SHOW LAN command in this example displays FDDI information.

SDA> SHOW LAN FULL
LAN Data Structures

- LAN Information Summary 27- JAN- 1993 09: 54:50 --

LAN flags: 0002 LAN init

LAN nodul e version 1 First SVAPTE 81FAFC14
LAN address 80EA8C00 Nunber of PTEs 4
Nurmber of stations 1 SVA of pages 80A00A00
First LSB address 80ECE700

- LAN CSMACD Network Managenent 27- JAN-1993 09:54:50 --

Creation tine None Tines created 0
Del etion tine None Ti mes del eted 0
Mbdul e EAB 00000000 Latest EIB 00000000
Port EAB 00000000

Station EAB 00000000

- LAN FDDI Network Management 27-JAN-1993 09:54:50 --

Creation tine None Tines created 0
Deletion tine None Ti mes del eted 0
Mbdul e EAB 00000000 Latest EIB 00000000
Port EAB 00000000

Station EAB 00000000

Li nk EAB 00000000

PHY port EAB 00000000

- ESA Device Information 27-JAN-1993 09: 54:50 --

LSB address 80ECE700 Active unit count 2
LAN versi on 00000001 06000036 Driver version 00000001 06000009
LAN code address 80ECB8BF9 Driver code address 80EC68B0
Devi ce name ES _LANCE Devi ce type 24
Devi ce version 00000000 00000000 DLL type CSMACD
Dat a chai ning N Al multicast state OFF
Control l er node NORMAL Prom scuous node OFF
CRC generation node N Har dwar e node 0000
Physical address  AA-00-04-00-50-FD  Hardware address  08-00- 2B- 2A- D7- F7

Flags: 0000

Characteristics: 0000

Status: 0013 Inited, Run, Ti mer

DAT stage 00000000 DAT xnt status 0000001A 001A0001
DAT nunber started 1 DAT xnt conplete 26- JAN 13: 20: 31
DAT nunber failed 0 DAT rcv found None
Creation tine None Create count 0
Deletion tine None Enabl e count 0
Enabl ed tine None Fatal error count 0
Di sabled tine None Excessive col lisons 0
Last receive 27-JAN 09: 54: 50 Last fatal error None
Last transmt 27- JAN 09: 54: 47 Prev fatal error None

Last fork sched

Last fork tine

27-JAN 09: 54: 50
27-JAN 09: 54: 50

Last exc collision 26-JAN 16:36: 26

SDA-117



System Dump Analyzer

SHOW LAN

SDA-118

Rev buffers owned by device
Xmt entries owned by device
Xmt entries owned by host

Nvgnt advi sed buffer count

El B address
LPB address

[N e N {o)

0

00000000
00000000

System buffer quota
Devi ce dependent | ongword
# restarts pending

Events | ogged

0
00000000
0

0

NMynt assi gned adr 00- 00- 00- 00- 00- 00

- ESA Queue Information 27-JAN-1993 09:54:50 --

Control hold queue
Control request qu
Control pending qu

Transnit request queue
Transmit pending queue

Receive buffer que
Recei ve pending qu
Post process queue
Del ay queue

Auto restart queue

Netwk ngnt hol d queue

eue
eue

ue
eue

80ECE820
80ECE828
80ECE830
80ECE818
80ECE838
80ECE840
80ECE848
80ECE850
80ECE858
80ECE860
80ECE868

- ESA Multicast Address

AB- 00- 00- 04- 00- 00
9- 00- 2B- 04- 00- 00

ESAQ 80EC61C0
ESA2 80EFD600
ESA4 80F505C0

- ESA Internal Counters Information 27-JAN-1993 09: 54:50 --

Internal counters address  80ECF6E8

Nurmber of ports
No work transmts
Bad PTE transnits

Fatal error count
Transmt timeouts
Restart failures
Power failures
Har dware errors
Control tineouts

Loopback sent
System I D sent
ReqCounters sent

-- ESAO Tenplate Unit Information 27-JAN-1993 09:54:50 --

St at us:
Stat us:
Status:
Stat us:
Status:
Stat us:
Status:
Stat us:
St at us:
Stat us:
Status:

I nformation 27-JAN-1993 09: 54:50 --

Valid, empty
Valid, enmpty
Valid, empty
Valid, enmpty
Valid, enmpty
Valid, enpty
Valid, 9 elements
Valid, enmpty
Valid, empty
Valid, enmpty
Valid, enmpty

- ESA Unit Summary 27- JAN-1993 09:54:50 --

Fnt

Eth
Eth

Val ue

60-03
80-41

[
N
OFPRPO OO0 O0OO0OO OoOOoo

Cient State

DECNET 0017 Strtn, Len, Unig, Strtd
LAST 0015 Strtn, Unig,Strtd

Internal counters size
d obal page transnits
SVAPTE/ BOFF transnits
Buf fer Adr transnits

RDL errors

Last fatal error
Prev fatal error
Last error CSR
Fatal error code
Prev fatal error

Loopback failures
System D failures
ReqCounters failures

None
None
00000000
None
None

0
0
0



LSB address 80ECE700
Packet for mat Et her net
Device buffer size 1500
Maxi mum buf f er size 1500
Har dwar e buffer quota 9
Recei ve buffer quota 0
Al ow promclient ON
Proni scuous node OFF
802.2 service OFF
Dat a chai ni ng OFF
Paddi ng node N
Automatic restart OFF
CRC generation node N
Mai nt enance state ON
P2 paraneters 00000000
Al nulticast node OFF
Rev buffer quota 0

System Dump Analyzer

SHOW LAN
\CI B addr ess 00000000
Error count 0
LAN medi um CSMACD
Eth protocol type 00- 00

802E protocol ID 00- 00- 00- 00- 00
802.2 SAP 00
802.2 Group SAPs 00, 00, 00, 00
Maxi mum header size 0
Har dwar e addr ess
Physi cal address

08- 00- 2B- 2A- D7- F7
FF- FF- FF- FF- FF- FF

Can change address OFF
Access node EXCLUSI VE
Control l er node NORMAL
Rev buffs to queue 1
Starter’s PID 00000000
Creator’s PID 00000000
LSB size 5986

-- ESA2 60-03 (DECNET) Unit Information 27-JAN-1993 09:54:50 --

LSB address 80ECE700
Packet for mat Et her net
Device buffer size 1500
Maxi mum buf fer size 1498
Har dwar e buffer quota 9
Recei ve buffer quota 15040
Al ow promclient ON
Prom scuous node OFF
802.2 service OFF
Dat a chai ning OFF
Paddi ng node N
Automatic restart OFF
CRC generation node N
Mhi nt enance state N
P2 paraneters 00374395
Al nulticast node OFF
Rev buffer quota 15040

-- ESA2 60-03 (DECNET) Counters

Last receive 27- JAN 09: 54: 50

Cctets received 5087025
PDUs recei ved 34018
Mast octets received 2189558
Mcast PDUs received 9877
Unavai | user buffer 11

Last start done 26- JAN 13:20: 32

Recei ve | RP queue
Shared users queue
Recei ve pending queue

80EFD7C4 Status:
80EFD7B4 St at us:
80EFD7BC St at us:

VCI B addr ess 00000000
Error count 0
LAN nedi um CSMACD
Eth protocol type 60- 03

802E protocol ID 00- 00- 00- 00- 00

802.2 SAP 00
802.2 G oup SAPs 00, 00, 00, 00
Maxi mum header size 16

08- 00- 2B- 2A- D7- F7
AA- 00- 04- 00- 50- FD

Har dwar e addr ess
Physi cal address

Can change address OFF
Access node EXCLUSI VE
Control l er node NORMAL
Rev buffs to queue 10
Starter’s PID 0001000C
Creator’s PID 0001000C
LSB size 5986

& Msc Info 27-JAN-1993 09:54:50 --

Last transmt 27-JAN 09: 54: 47

Cctets sent 2310540
PDUs sent 29121
Mast octets sent 246850
Mcast PDUs sent 4937
Last start attenpt None
Last start failed None
Share UCB total quota 0

Valid, 1 elenent

Valid, enmpty

Valid, enmpty

-- ESA2 60-03 (DECNET) Multicast Address Info 27-JAN-1993 09:54:50 --

Mil ticast address table, enbedded:
AB- 00- 00- 04- 00- 00

- ESA4 80-41 (LAST) Unit Information 27-JAN-1993 09:54:50 --

LSB address
Packet format

80ECE700
Et her net

VCI B address 80F504F3
Error count 0

SDA-119



System Dump Analyzer

SHOW LAN

SDA-120

- ESA4 80-41 (LAST) Counters & Msc Info 27-JAN-1993 09:54:50 --

Last receive 27-JAN 09: 54: 39 Last transmt 27- JAN 09: 54: 38
Cctets received 1941967 Cctets sent 371740

- ESA4 80-41 (LAST) Multicast Address Info 27-JAN-1993 09:54:50 --

Mil ticast address table, enbedded:
09- 00- 2B- 04- 00- 00

The SHOW LAN/FULL command in this example displays information for all
LAN, LSB, and UCB data structures.

SDA> SHOW LAN Tl MESTAMPS
LAN Data Structures

- LAN History Informtion 19-JUL-1993 14:27:38 --

19-JUL 14:27:38.93 EZA Last receive
19-JUL 14:27:38.93 EZA Last fork schedul ed
19-JUL 14:27:38.93 EZA Last fork time
19-JUL 14:27:36.05 EZA Last transnt

19-JUL 14:27:36.05 EZAL DECNET  Last transmit
19-JUL 14:23:54.41 EZA164 D AG Last start conpleted

19-JUL 08:05:16.09 EZA Last excessive collision
19-JUL 06:40:22.94 EZAL DECNET  Last start conpleted
19-JUL 06:40:21.94 EZA Last DAT transmit

The SHOW LAN command displays LAN timestamp information.



System Dump Analyzer
SHOW LOCK

SHOW LOCK

Format

Parameters

Qualifiers

Description

Displays information about all lock management locks in the system, cached
locks, or a specified lock.

SHOW LOCK {lock-id |/ALL |/CACHED |/NAME=resource-name}

lock-id
Name of a specific lock. You cannot specify both a lock-id and a resource-name
in the same command line.

JALL
Lists all locks that exist in the system. This is the default behavior of the SHOW
LOCK command.

ICACHED
Shows only cached lock blocks (LKBS).

INAME=resource-name

Displays information about the resource associated with the lock whose resource
name begins with the specified resource-name. For case-sensitive names,
enclose the resource-name in quotation marks. You cannot specify both a
lock-id and resource-name in the same command line.

The SHOW LOCK command displays the information described in Table SDA-15
for each lock management lock in the system or for the lock indicated by lock-id.
(Use the SHOW SPINLOCK command to display information about spin locks.)
You can obtain a similar display for the locks owned by a specific process by
issuing the appropriate SHOW PROCESS/LOCKS command. See the OpenVMS
System Services Reference Manual for additional discussion of the significance of
this information.

You can display information about the resource to which a lock is queued by
issuing the SHOW RESOURCE command and specifying the lock-id of the
resource.

SDA-121



System Dump Analyzer
SHOW LOCK

SDA-122

Table SDA-15 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS

Display Element

Description

Process Indext

Namel
Extended PID1

Lock ID
PID

Flags

Par. ID
Granted at
Sublocks
LKB

Resource

Status

Length

Index into the PCB array to a pointer to the process
control block (PCB) of the process that owns the lock.

Name of the process that owns the lock.

Clusterwide identification of the process that owns the
lock.

Identification of the lock.

Systemwide identification of the lock.

Information specified in the request for the lock.
Identification of the lock’s parent lock.

Lock mode at which the lock was granted.
Identification numbers of the locks that the lock owns.
Address of the lock block (LKB). If a blocking AST

has been enabled for this lock, the notation “BLKAST”
appears next to the LKB address.

Dump of the resource name. The two leftmost columns
of the dump show its contents as hexadecimal values,
the least significant byte being represented by the
rightmost two digits. The rightmost column represents
its contents as ASCII text, the least significant byte
being represented by the leftmost character.

Status of the lock, information used internally by the
lock manager.

Length of the resource name.

Processor access mode of the name space in which the
resource block (RSB) associated with the lock resides.

Owner of the resource. Certain resources owned by the
operating system list “System” as the owner. Resources
owned by a group have the number (in octal) of the
owning group in this field.

Indication of whether the lock is mastered on the local
system or is a process copy.

1You produce this display element only by using the SHOW PROCESS/LOCKS command.




Examples

1.

System Dump Analyzer
SHOW LOCK

SDA> SHOW LOCK
Lock dat abase

Lock id: 00010001 PID: 00000000  Flags:  NOQUEUE SYNCSTS SYSTEM

Par. id: 00000000 Ganted at EX CVTSYS
Subl ocks: 1
LKB: 80D0B8A0

Resour ce: 5F535953 24535953 SYS$SYS_ Status: NOQUOTA
Length 16 00000000 4C774449 [ Dut. ..

Exec. node 00000000 00000000  ........

System 00000000 00000000  ........

Local copy

Lock id: 00010004 PID 00000000  Fl ags: CONVERT SYNCSTS CVTSYS
Par. id: 00000000 Ganted at CR

Subl ocks: 16
LKB: 80D091A0  BLKAST
Resour ce: 40567624 42313146 F11B$vVM Status: NOQUOTA

Length 18  20204E41 4A353153 S15JAN
Kernel nmode 00000000 00002020  ......
System 00000000 00000000  ........
Local copy

Lock id: 00280009 PID: 00000000 Flags:  VALBLK CONVERT SYNCSTS

Par. id: 00000000 Ganted at CR NOQUOTA CVTSYS
Subl ocks: 0

LKB: 80CDA380

Resour ce: 52414B5F 24535953 SYS$ KAR Status: MSTCPY

Length 17 30415544 24455441  ATE$DUAO
Kernel node 00000000 0000003A  :.......
System 00000000 00000000  ........
Master copy of |ock 001COOF5 on system 000100A1

SDA>  SHOW RESOURCE/ LOCK=280009
Resource dat abase

Address of RSB: 80BD2150 G oup grant node: CR
Parent RSB: 00000000 Conversion grant mode: CR
Sub- RSB count : 0 BLKAST count: 0
Val ue bl ock: 00000000 00000000 00000000 00000019 Seq. # 0000002D
Resour ce: 52414B5F 24535953 SYS$_KAR
Length 17 30415544 24455441 ATE$DUAO CSID: 00000000
Kernel node 00000000 0000003A  :.......
System 00000000 00000000  ........
G anted queue (Lock ID/ G node)
OODA1269 CR 00280009 CR 0094054D CR
00270B9F CR 00D70BFE CR 000DOF4F CR
000D1017 CR 00601418 CR 01131450 CR
000F1964 CR 000200DF CR

Conversion queue (Lock ID/ G/Rg node):
¥x EMPTY QUEUE ***

Wi ting queue (Lock ID/ Rgq node)
*xx EMPTY QUEUE ***

SDA-123



System Dump Analyzer

SHOW LOCK

SDA-124

This SDA session shows the output of the SHOW LOCK command for several
locks. The SHOW RESOURCE command, executed for the last displayed lock,
verifies that the lock is in the resource’s granted queue, among many other
locks given concurrent read (CR) access to the resource. (See Table SDA-21
for a full explanation of the contents of the display of the SHOW RESOURCE
command.)

SDA SHOW LOCK/ CACHE
Lock dat abase

Lock id: 6D000032 PID: 00010028 Flags:  VALBLK SYNCSTS SYSTEM
Par. id: 01000002  SUBLCKs: 0 NOQUOTA
LKB:  80F67C00  BLKAST: 00000000
PRI ORTY: 0000
Ganted at PW  00000000- FFFFFFFF
Resour ce: 00257324 42313146 F11B$s% Status: NOQUOTA CACHED
Length 10 00000000 00000000  ........
Kernel node 00000000 00000000  ........
System 00000000 00000000  ........
Local copy
Lock id: 7B00003B PID: 0001000B  Flags:  VALBLK SYNCSTS SYSTEM
Par. id: 01000002  SUBLCKs: 0 NOQUOTA
LKB:  80F51F80  BLKAST: 00000000
PRI ORTY: 0000
Ganted at PW  00000000- FFFFFFFF
Resour ce: 08E97324 42313146 F11B$sé. Status: NOQUOTA CACHED
Length 10 00000000 00000000  ........
Kernel node 00000000 00000000  ........
System 00000000 00000000  ........
Local copy

This example of the SHOW LOCK/CACHE command displays the contents of
cached lock blocks (LKBS).



System Dump Analyzer
SHOW LOGS

SHOW LOGS

Displays information about transaction logs currently open for the node.

Format
SHOW LOGS [/qualifier[,...]]
Qualifier
IDISPLAY=(item [,...])
Specifies the type of information to be displayed. The argument to /DISPLAY can
be either a single item or a list. The following items can be specified.
Item Description
ALL All transaction log control structure information. This is the
default behavior.
OPENS Transaction log open requests.
READS Transaction log read requests.
WRITES Transaction log write requests.
Example

SDA> SHOW LOGS/ DI SPLAY=( OPENS, WRI TES)

The SHOW LOGS command displays the log open request and log write request
information for all open transaction logs for the node.

SDA-125



System Dump Analyzer
SHOW PAGE_TABLE

SHOW PAGE_TABLE

Format

Parameter

Qualifiers

Description

SDA-126

Displays a range of system page table entries, the entire system page table, or
the entire global page table.

SHOW PAGE_TABLE [/qualifier[,...]] [range]

range
Range of virtual addresses for which SDA is to display page table entries. You
can express a range using the following format:

m:n  Range of virtual addresses from m to n
m;n  Range of virtual addresses starting at m and continuing for n bytes

/GLOBAL
Lists the global page table.

/ISYSTEM
Lists the system page table.

JALL
Lists both the global and system page tables. This is the default behavior of
SHOW PAGE_TABLE.

For each virtual address displayed by the SHOW PAGE_TABLE command,
the first six columns of the listing provide the associated page table entry and
describe its location, characteristics, and contents (see Table SDA-16). SDA
obtains this information from the system page table.

If the virtual page has been mapped to a physical page, the last nine columns of
the listing include information from the page frame number (PFN) database (see
Table SDA-17). Otherwise, the section is left blank.

SDA indicates pages are inaccessible by displaying the following message:
-------- n NULL PAGES

Here, n indicates the number of inaccessible pages.

Table SDA-16 Virtual Page Information in the SHOW PAGE_TABLE Display

Value Meaning

ADDRESS System virtual address that marks the base of the virtual page.

SVAPTE System virtual address of the page table entry that maps the
virtual page.

(continued on next page)



System Dump Analyzer
SHOW PAGE_TABLE

Table SDA-16 (Cont.) Virtual Page Information in the SHOW PAGE_TABLE

Display

Value

Meaning

PTE

Type

PROT

Contents of the page table entry, a longword that describes a
system virtual page.

Type of virtual page. There are the following eight types:

VALID

Valid page (in main memory).

TRANS

Transitional page (between main memory and page lists).

DZERO
Demand-allocated, zero-filled page.

PGFIL

Page within a paging file.
STX

Section table’s index page.

GPTX
Index page for a global page table.

IOPAG
Page in 1/0 address space.

NXMEM

Page not represented in physical memory. The page frame
number (PFN) of this page is not mapped by any of the
system’s memory controllers. This indicates an error
condition.

Protection code, derived from bits in the PTE, that designates the
type of access (read or write, or both) granted to processor access
modes (kernel, executive, supervisor, or user).

(continued on next page)

SDA-127



System Dump Analyzer
SHOW PAGE_TABLE

Table SDA-16 (Cont.) Virtual Page Information in the SHOW PAGE_TABLE
Display

Value Meaning

Bits Letters that represent the setting of a bit or a combination of
bits in the PTE. These bits indicate attributes of a page. The
following codes are listed:

- M

Page has been modified.
- L

Page is locked into a working set.
K

Owner can access the page in kernel mode.
- E

Owner can access the page in executive mode.
e S

Owner can access the page in supervisor mode.
- U

Owner can access the page in user mode.

Table SDA-17 Physical Page Information in the SHOW PAGE_TABLE Display

Category Meaning
PAGTYP Type of physical page. One of the following six types:
< PROCESS
Page is part of process space.
e SYSTEM
Page is part of system space.
e GLOBAL
Page is part of a global section.
- PPGTBL
Page is part of a process’s page table.
< GPGTBL
Page is part of a global page table.
e GBLWRT

Page is part of a global, writable section.

(continued on next page)

SDA-128



System Dump Analyzer
SHOW PAGE_TABLE

Table SDA-17 (Cont.) Physical Page Information in the SHOW PAGE_TABLE

Display

Category Meaning

LOC Location of the page within the system. One of the following
eight locations:
 ACTIVE

Page is in a working set.
e MDFYLST
Page is in the modified page list.
e FREELST
Page is in the free page list.
e BADLST
Page is in the bad page list.
e RELPEND
Release of the page is pending.
< RDERROR
Page has had an error during an attempted read operation.
 PAGEOUT
Page is being written into a paging file.
< PAGEIN
Page is being brought into memory from a paging file.

STATE Byte that describes the state of the physical page.

TYPE Byte that describes the type of virtual page. The types in this
column are the hexadecimal codes that stand for the page
types that appear in column PAGTYP of this display, described
previously.

REFCOUNT Count of the processes that are referencing this PFN. If the
value of REFCOUNT is nonzero, the page is used in at least one
working set. If the value is zero, the page is not used in any
working set.

BAK Address of the backing store; location on a disk device to which
pages can be written.

SVAPTE Virtual address associated with this page frame. The two
SVAPTEsSs indicate a valid link between physical and virtual
address space.

FLINK Forward link within PFN database that points to the next
virtual page. This longword also acts as the count of the number
of processes that are sharing this global section.

BLINK Backward link within PFN database. Also acts as an index into

the working set list.

SDA-129



System Dump Analyzer
SHOW PAGE_TABLE

Example

SDA>SHOW PAGE_TABLE
System page table

ADDRESS

8014B000
8014B200
8014B400
8014B600
8014B800
8014BA00
8014BC00

8014BE00
8014C000
8014C200
8014C400
8014C600
8014C800
8014CA00

SDA-130

SVAPTE  PTE

8AD22E00 F8020725 VALID UR
8AD22E04 F8020726 VALID UR
8AD22E08 F8020727 VALID UR
8AD22E0C F8020728 VALID UR
8AD22E10 F8020729 VALID UR
8AD22E14 EC02072A VALID UREW M
8AD22E18 F402072B VALID URKW M

8AD22FEC F801F10E VALID UR
8AD22FF0 F801F10F VALID UR
8AD22FF4 F801F173 VALID UR
8AD22FF8 F801F172 VALID UR
8AD22FFC F801F17F VALID UR
8AD23000 F801F17E VALID UR
8AD23004 7801EBC6 TRANS UR

RARAXRXARARARARRXR

K SYSTEM ACTI VE
K SYSTEM ACTI VE
K SYSTEM ACTI VE
K SYSTEM ACTI VE
K SYSTEM ACTI VE
K SYSTEM ACTI VE

07
07
07
07
07
07

K SYSTEM FREELST 00

01
01
01
01
01
01
01

[

TYPE PROT BITS PAGTYP LOC STATE TYPE REFCNT BAK

0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8
0040FFF8

SVAPTE

8AD22FEC
8AD22FF0
8AD22FF4
8AD22FF8
8AD22FFC
8AD23000
8AD23004

FLINK

00000000
00000000
00000000
00000000
00000000
00000000
0000D38B

BLI NK

00000258
00000257
000004B1
00000301
000000F5
00000174
0001EBCY



System Dump Analyzer
SHOW PFN_DATA

SHOW PFEN_DATA

Format

Parameter

Qualifiers

Description

Displays information that is contained in the page lists and PFN database.

SHOW PFN_DATA [pfn] [/qualifier]

pfn
Page frame number (PFN) of the physical page for which information is to be
displayed.

JALL

Displays the free page list, modified page list, and bad page list. This is the
default behavior of the SHOW PFN_DATA command. SDA precedes each list
with a count of the pages it contains and its low and high limits.

/IBAD
Displays the bad page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/FREE
Displays the free page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/MODIFIED
Displays the modified page list. SDA precedes the list with a count of the pages
it contains, its low limit, and its high limit.

ISYSTEM
Displays the entire PFN database in order by page frame number, starting at
PFN 0000.

For each page frame number it displays, the SHOW PFN_DATA command lists
information used in translating physical page addresses to virtual page addresses.
Table SDA-18 lists the contents of the display.

Table SDA-18 Page Frame Number Information in the SHOW PFN_DATA

Display
Item Contents
PFN Page frame number

PTE ADDRESS  System virtual address of the page table entry that describes
the virtual page mapped into this physical page
(continued on next page)

SDA-131



System Dump Analyzer
SHOW PFN_DATA

Table SDA-18 (Cont.) Page Frame Number Information in the SHOW PFN_

DATA Display

Item Contents

BAK Place to find context, as information about this page when all
links to this PTE are broken: either an index into a process
section table or the number of a virtual block in the paging file

REFCNT Number of references being made to this page

FLINK Address of the next page in the list in which this virtual page
currently resides

BLINK Address of the previous page in the list in which this virtual
page currently resides

TYPE Type of virtual page; one of the following:

SDA-132

00

Process page

01

System page

02

Global, read-only page
03

Global, read/write page
04

Process page-table page
05

Global page-table page

(continued on next page)



System Dump Analyzer
SHOW PFN_DATA

Table SDA-18 (Cont.) Page Frame Number Information in the SHOW PFN_

DATA Display
Iltem Contents
STATE State of the virtual page, the low nibble of which can be one of

the following:

0
Page is on the free page list.

1
Page is on the modified page list.

2
Page is on the bad page list.

3

Release of the page to the free or modified page list is
pending.

4
Error occurred as the page was being read from the disk.

5

Modified page writer is currently writing the page to the
disk.

6

Page fault handler is currently reading the page from the
disk.

7
Page is active and valid.

SDA-133



System Dump Analyzer
SHOW PFN_DATA

Example

SDA>SHOW PFN_DATA
Free page list

Count : 225

Low limt: 57

Hgh limt: 1073741824

PFN  PTE ADDRESS BAK REFCNT FLI NK BLI NK TYPE STATE
1329 8047AF3C 03002A83 0 1963 0000 00 PROCESS 00 FREELST

1963 8047AB10 03002A43 0 017C 1329 00 PROCESS 00 FREELST
017C  8047B3F8 03002A84 0 14B4 1963 00 PROCESS 00 FREELST
14B4 8047B464 03002A85 0 1529 017C 00 PROCESS 00 FREELST
1529 8047AA34 03002A87 0 1485 14B4 00 PROCESS 00 FREELST
1485 8047AC80 030010B3 0 1707 1529 00 PROCESS 00 FREELST

In this example, the SHOW PFN_DATA command displays the information for
the free page list, the modified page list, and the bad page list, and then all of the
PFN database, including the first three lists.

SDA-134



System Dump Analyzer
SHOW POOL

SHOW POOL

Format

Parameters

Qualifiers

Displays information about the disposition of paged and nonpaged memory,
nonpaged dynamic storage pool, and paged dynamic storage pool.

SHOW POOL [range][/ALL | /FREE |/HEADER |/INONPAGED |
IPAGED | /RING_BUFFER | /STATISTICS |
ISUMMARY | /TYPE=block-type]

range
Range of virtual addresses in pool that SDA is to examine. You can express a
range using the following format:

m:n  Range of virtual addresses in pool from m to n
m;n  Range of virtual addresses in pool starting at m and continuing for n bytes

/ALL

Displays the entire contents of allocated pool, including the pool lists, nonpaged
dynamic storage pool, and paged dynamic storage pool. This is the default
behavior of the SHOW POOL command.

/[FREE

Displays the entire contents, both allocated and free, of the specified region or
regions of pool. You cannot use the /FREE qualifier when you use a range to
indicate a region of pool to be displayed.

/HEADER
Displays only the first 16 longwords of each data block found within the specified
region or regions of pool.

INONPAGED
Displays the contents of the nonpaged dynamic storage pool currently in use.

/IPAGED
Displays the contents of the paged dynamic storage pool currently in use.

/RING_BUFFER

Displays the contents of the nonpaged pool history ring buffer if pool-checking
has been enabled. Entries are displayed in reverse chronological order, that

is, the most recent to the least recent. You cannot use this qualifier with any
other SHOW POOL qualifier. This qualifier is most useful when analyzing crash
dumps; output might not be consistent when used on a running system.

ISTATISTICS
Displays usage statistics about each pool list if pool-checking has been enabled.
For each list, the following are displayed:

e Queue header address

e Packet size

SDA-135



System Dump Analyzer
SHOW POOL

Description

SDA-136

Attempts, failures, and deallocations

SDA does not synchronize its access to these last three counters with other
CPUs in a symmetric multiprocessing (SMP) system. Therefore, the numbers
might not add up to what you would expect in a multiprocessor configuration.
However, the statistics do provide a good indicator of overall pool activity.

/SUMMARY
Displays only an allocation summary for each specified region of pool.

ITYPE=block-type

Displays the blocks within the specified region or regions of pool that are of the
indicated block-type. If SDA finds no blocks of that type in the pool region, it
displays a blank screen, followed by an allocation summary of the region.

The SHOW POOL command displays information about the contents of any
specified region of pool in an 8-column format. Following are explanations and
examples of the contents of the full display.

Column 1 contains the type of control block that starts at the virtual address
in pool indicated in column 2. If SDA cannot interpret the block type, it
displays a block type of “UNKNOWN.” Column 3 lists the number of bytes
(in decimal) of memory allocated to the block. The block size is fixed for
SRPs, IRPs, and LRPs, and is variable in the paged and nonpaged pools. For
example:

CIVM6G  80BADEOO 208

The remaining columns contain a dump of the contents of the block, in 4-
longword intervals, until the block is complete. Columns 4 through 7 display,
from right to left, the contents in hexadecimal; column 8 displays, from left
to right, the contents in ASCII. If the ASCII value of a byte is not a printing
character, SDA displays a period (.) instead. For example:

Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

001000DA 003C0090 0000A900 00036FF0 .o........ <U..
D9B3001C 00000000 A0B5001D 35E60017 ...5............
41414141 00000600 65EA0004 00000600 . ... ... e.... AAAA

41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA

For each region of pool it examines, the SHOW POOL command displays
an allocation summary. This 4-column table lists, in column 2, the types

of control blocks identified in the region and records the number of each in
column 1. The last two columns represent the amount of the pool region
occupied by each type of control block: column 3 records the total number of
bytes, and column 4 records the percentage. The summary concludes with
an indication of the number of bytes used within the particular pool region,
as well as the number of bytes remaining. It provides an estimate of the
percentage of the region that has been allocated. For example:



Total space used

176
288
144

Total space utilization = 100%

Examples

1.

SDA> SHOW POOL (OBADEOO; 260

Non- paged dynani ¢ storage poo

(29%
(48%
(24%
608 out of 608 total bytes, 0 bytes left

System Dump Analyzer

Dunp of blocks allocated from non-paged poo

CMSG  80BADEOO 144

001000DA 00300090 0000A900 00036FF0 .o........ < ...
D9B3001C 00000000

41414141
41414141
41414141

UNKNOWN 80BADEQO 112

00000600
41414141
41414141

41414141 41414141

41414141
41414141
41414141

ODG  8OBADED0 144

41414141
41414141
41414141

807708BB 003B0090

61616161
61616161
61616161

UNKNOVWN 80BADF60 64

61616161
61616161
61616161
61616161

ODG  80BADFAD 144

61616161
61616161
61616161

61616161
61616161
61616161
61616161

807708BB 003B0090

61616161
61616161
61616161

UNKNOWN 80BAE030 48

61616161
61616161
61616161

61616161
61616161
61616161

61616161
61616161
61616161

AO0B5001D
65EA0004
41414141
41414141

41414141
41414141
41414141
41414141

0004D7EO
61616161
61616161
61616161

61616161
61616161
61616161
61616161

0003FFCD
61616161
61616161
61616161

61616161
61616161
61616161

35E60017 ...5............
00000600 ....... e.... AAAA
41414141 AAAAAAAAAAAAAAAA
41414141 AAAAAAAAAAAAAAAA

41414141 AAAAAAAAAAAAAAAA
41414141 AAAAAAAAAAAAAAAA
41414141 AAAAAAAAAAAAAAAA
41414141 AAAAAAAAAAAAAAAA

000008F0 .......... S W
016CE87C ..|.aaaaaaaaaaaa
61616161 aaaaaaaaaaaaaaaa

61616161 aaaaaaaaaaaaaaaa

61616161 aaaaaaaaaaaaaaaa
61616161 aaaaaaaaaaaaaaaa
61616161 aaaaaaaaaaaaaaaa
61616161 aaaaaaaaaaaaaaaa

0004B1BO ..........;... W,
016CE94C L. 1. aaaaaaaaaaaa
61616161 aaaaaaaaaaaaaaaa
61616161 aaaaaaaaaaaaaaaa

61616161 aaaaaaaaaaaaaaaa
61616161 aaaaaaaaaaaaaaaa
61616161 aaaaaaaaaaaaaaaa

SHOW POOL

SDA-137



System Dump Analyzer
SHOW POOL

Summary of non-paged pool contents

3 UNKNOW = 176 (29%
2 CDG = 288 (48%
1 OMG = 144 (24%

Total space used = 608 out of 608 total bytes, 0 bytes left

Total space utilization = 100%

This example, which uses a range of values, examines 608 (2604g) bytes of
nonpaged pool, starting at address 80BADE0O,5. SDA attempts to identify
allocated blocks as it proceeds through the specified region of pool, and displays
an allocation summary when it completes the listing.

2. SDA> SHOW POOL/ FREE
Non- paged dynani ¢ storage pool

Dunp of blocks allocated from non-paged pool
UNKNOWN 80E7CA00 67136

0000E53B 80E9ECO0 00010000 80F16625 9% fi. . . . .. ié.;a. .
0000E53B 80E9ECO0 00010001 80F16625 9% fi. .. ... ié.;a..
0000E53B 80E9ECO0 00010000 80F166A3 £ffi...... ié.;4..
0000E53B 80E9ECO0 00010001 80F166A3 £ffi...... ié.;a..
0000E53B 80E9ECO0 00010000 80F16066 f........ ié.;4..
0000E53B 80E9ECO0 00010001 80F16066 f........ ié.;a..
0000E53B 80E9ECO0 00010000 80F16F32 20fi. .. ... ié.;4..
0000E53B 80E9ECO0 00010001 80F16F32 20fi...... ié.;a..
0000E53D 80EA1B08 00010000 80F16F48 Hofi. ... ... . =a..
0000E53D 80E9ECO0 00010001 80F16F48 Hofi. .. ... 1é.=4..
0000E53D 80E9ECO0 00010000 80F170D8 @pfi. . . ... ié.=a..

The SHOW POOL/FREE command in this example produces a display similar
in format and extent to that presented in Example 1. However, it displays the
unallocated portions of pool in addition to those that are used.

SDA-138



System Dump Analyzer
SHOW POOL

SDA> SHOW POOL/ PAGED/ HEADER
Paged dynami ¢ storage pool

Dunp of blocks allocated from paged pool

RSHT 8024FE00 528

802DC710 00380210 00000000 FFFFFF80 .......... 8...-.
LNM 80250010 96
8015B847 00400060 802D75A0 00000000 ..... u-.". @G..

LNM 80250070 48

8015B847 01400030 802500A0 802D7400 .t-...%0.@G ..
LNM 802500A0 96

8015B847 02400060 802DC170 80250070 p.%p.-.'. @G ..
LNM 80250100 48

8015B847 00400030 802DC510 802E1B6O ‘.....-.0.@G ..

The SHOW POOL/PAGED/HEADER command displays only the name of each
block allocated from paged pool, its starting address, its size, and the first four
longwords of its contents.

SDA SHOW POOL/ RI NG_BUFFER

(Non- Paged Pool History Ring-Buffer
(512 entries: Mst recent first)

Packet Adr Size Type Subtype Caller’'s PC Routine called Entry Adr
DA9EE5SQD 168 |IRP 3 D8012BF1 EXE$DEANONPAGED DA4C7750
DAA27ECD 192 DSRV 3 DA591941 EXE$SDEANONPAGED DA4CT740
DAD47B40 168 |IRP 0 DA591918 EXE$DEANONPAGED DA4C7730
DAAB5400 24 FRK 52 DA590252 EXE$SDEANONPAGED DA4CT720
DAAB5400 24 TQE 0 DA591276 EXE$ALONONPAGED DA4C7710

DADA7B40 168 |IRP 64 DA59184A EXESALONONPAGED DA4C7700

DAAG6500 172 IRP 64 DB251C80 EXESALONONPAGED DAACTT70
DAA32300 192 MG 0 DA54C2C8 EXE$DEANONPAGED DA4C7760

This example of the SHOW POOL/RING_BUFFER command displays the
contents of the nonpaged pool history ring buffer, with the most recent entries
displayed first.

SDA-139



System Dump Analyzer
SHOW POOL

5. SDA SHOW PQOL/ STATI STI CS

Li st head Li st Al oc. Al oc

Addr ess Size Attenpts Fai l ures Deal | ocs
DBOA9030 64 2077039 1121 2073964
DB0A9038 128 6323789 4502 6309357
DB0A9040 192 21085351 1903 21078538
DB0A9048 256 502388 2025 499705
DBOA9050 320 1372168 3512 1367707
DB0A9058 384 32649 774 31899
DBOA9060 448 2463316 1025 2462243
DB0A9068 512 357170 2181 354754
DBOA9070 576 293998 2438 291476
DB0A9078 640 168145 645 167482
DB0A9080 704 83645 2043 81547
DB0A9088 768 34852 120 34726
DB0A9090 832 21263 44 21215
D80A9290 4928 2305645 3283 2302249
DB0A9298 4992 9 0 6
DB0A92A0 5056 0 0 0
DB0A92A8 5120 1 0 0

This example of the SHOW POOL/STATISTICS command displays usage
statistics about each pool list.

6. SDA SHOW POOL/ SUMVARY
Summary of non-paged pool contents

145 UNKNOW = 191616 (18%
2 ADP = 1280 (0%
35 ACB = 2624 (0%
3 AGB = 192 (0%
17 CRB = 2368 (0%
16 DDB = 2048 (0%
355 FCB = 113600 (11%
3 FRK = 18240 (1%
16 1DB = 1088 (0%
42 |RP = 8064 (0%
20 PCB = 10240 (1%
48 TE = 3072 (0%
70 UCB = 21696 (2%
5 VCB = 1280 (0%
299 WB = 51008 (5%
287 BUFIO = 112128 (11%
5 TYPAHD = 1920 (0%
2 ML = 4736 (0%
3 NET = 4160 (0%
15 CxB = 23616 (2%
5 NDB = 2112 (0%

= 132928 (13%

14 DPT

Total space used = 1016896 out of 1068032 total bytes, 51136 bytes |eft
Total space utilization = 95%

Summary of paged pool contents

SDA-140



33

224
153

118

225

~
PNRPNNRRPNNRE N

Total space used

System Dump Analyzer

UNKNOW = 36480 (15%
PQB = 2256 (0%
GSD = 14240 (6%
KFE = 10864 (4%
ML = 9% (0%
KFRH = 46736 (209
RSHT = 528 (0%
XVB = 18048 (7%
LNM = 16720 (7%
KFD = 224 (0%
KFPB = 16 (0%
aA = 20264 (129
CHP = 0216 (4%
ORB = 5248 (2%
ARB = 34912 (15%
PTC = 3072 (1%
0B = 1344 (0%
PGD = 208 (0%

229472 out of 524800 total bytes, 295328 bytes |eft

Total space utilization = 43%

SHOW POOL

This example of the SHOW POOL/SUMMARY command displays an allocation

summary for each region of pool.

SDA-141



System Dump Analyzer
SHOW PORTS

SHOW PORTS

Format

Parameters

Qualifiers

Description

SDA-142

Displays those portions of the port descriptor table (PDT) that are port
independent.

SHOW PORTS [/qualifier],...]]

None.

/ADDRESS=pdt-address
Displays the specified port descriptor table (PDT).10

/BUS[=bus-address]
Displays BUS (LAN device) structure data.

/CHANNEL[=channel-address]
Displays channel (CH) data.

/DEVICE
Displays the network path description for a channel.

IMESSAGE
Displays the message data associated with a virtual circuit (VC).

/NODE=name
Displays virtual circuit (VC) information associated with the named node on the
specified PDT. You must use this qualifier with /ADDRESS qualifier.

/VC[=vc-address]
Displays the virtual circuit data.

The SHOW PORTS command provides port-independent information from the
port descriptor table (PDT) for those Cl ports with full SCS connections. This
information is used by all system communications services (SCS) port drivers.

Note that the SHOW PORTS command does not display similar information
about UDA ports, BDA ports, and similar controllers.

The SHOW PORTS command also defines symbols for PEDRIVER based on the
cluster configuration. These symbols include the following information:

= Virtual circuit (VC) control blocks for each of the remote systems

10 You can find the pdt-address for any active connection on the system in the PDT
summary page display of the SHOW PORTS command. This command also defines
the symbol PE_PDT. CDT addresses are also stored in many individual data structures
related to SCS connections; for instance, in the path block displays of the SHOW
CLUSTER/SCS command.



System Dump Analyzer
SHOW PORTS

e BUS data structure for each of the local LAN adapters
= Some of the data structures used by both PEDRIVER and the LAN drivers

The following symbols are defined automatically:

Symbol

Explanation or Example

VC_nodename

CH_nodename

BUS busname

PE_PDT
MGMT_VCRP_busname

HELLO_VCRP_busname

VCIB_busname
UCB_LAVC busname

UCBO_LAVC busname
LDC_LAVC busname

LSB_LAVC busname

VC_NODE1, address of the local node’s virtual
circuit to node NODE1

The preferred channel for the virtual circuit; for
example, CH_NODEL1, address of the local node’s
preferred channel to node NODE1

BUS _ETA, address of the local node’'s BUS structure
associated with LAN adapter ETAO

Address of PEDRIVER’s port descriptor table

MGMT_VCRP_ETA, address of the management
VVCRP for BUS ETA

HELLO_VCRP_ETA, address of the HELLO
message VCRP for BUS ETA
VCIB_ETA, address of the VCIB for BUS ETA

UCB_LAVC ETA, address of the LAN device's UCB
used for the local area VAXcluster protocol

UCBO_LAVC _ETA, address of the LAN device’s
template UCB

LDC_LAVC _ETA, address of the LDC structure
associated with LAN device ETA

LSB_LAVC_ETA, address of the LSB structure
associated with LAN device ETA

These symbols equate to system addresses for the corresponding data structures.
You can use these symbols, or an address, after the equal sign in SDA commands.

The SHOW PORTS command produces several displays. The initial display, the
PDT summary page, lists the PDT address, port type, device name, and driver
name for each PDT. Subsequent displays provide information taken from each
PDT listed on the summary page.

You can use the /ADDRESS qualifier of the SHOW PORTS command to produce
more detailed information about a specific port. The first display of the SHOW
PORTS/ADDRESS command duplicates the last display of the SHOW PORTS
command, listing information stored in the port's PDT. Subsequent displays list
information about the port blocks and virtual circuits associated with the port.

SDA-143



System Dump Analyzer
SHOW PORTS

Examples

1. SDA> SHOW PORTS/ ADDR=PE_PDT

VAXcl uster data structures

- Port Descriptor Table (PDT) 806C37A0 ---

SDA-144

Type: 03 pe
Characteristics: 0000
Msg Header Size 32 Connect 80799F94 Recycl h_Msg _Buf 8079ADSA
Max Xfer Bcnt FFFFFFFF  Deal | oc_Dg_Buf 8079AFDA Request Data 8079B1CC
DG Header Size 288 Disconnect 8079A06B Send_Dat a 80798215
Pol | er Sweep 31 Unnap 8079B510 Send_Dg_Buf 8079B03E
Fork Block WQ enpty Map 8079B111 Send_Msg_Buf 8079AEA8
UCB Address 806C0E5S0 Map_Bypass 8079BOF8 Send_Cnt _Msg_Buf 8079AEAF
ADP Addr ess 00000000 Map_Irp 8079B101 Read_Count 80796059
Accept 80799FEC Map_Irp_Bypass 8079BOF0 RI's_Read_Count  80796DD3
Al oc_Dg_Buf 8079AFC6 (Queue_Dg_Buf  8079AFE0 M eset 80799C94
Al oc_Msg_Buf 8079AD05 Queue_Milt_Dgs 8079AFE8 Mstart 80799C9E
Deal | oc_Msg_Buf 8079ADE3 Recycl _Msg_Buf 8079AD94 Stop_Vcs 8079BEDD
Deal | oc_Msg_Buf _Reg 8079ADF6 Rej ect 8079A036 Send_Dg_Reg 80798031

- Port Block 80B091BO ---
Status: 0001 authorize
\VC Count: 5
Secs Since Last Zeroed: 311728
SBUF Size 436 LBUF Size 1788
SBUF Count 12 LBUF Count 1
SBUF Max 768 LBUF Max 384
SBUF Quo 13 LBUF Quo 1
SBUF M ss 18 LBUF M ss 12235
SBUF All ocs 499579 LBUF Al l ocs 16824
SBUFs In Use 0 LBUFs In Use 0
Peak SBUF In Use 14 Peak LBUF In Use 34
SBUF Queue Enpty 0 LBUF Queue Enpty 0
TR SBUF Queue Enpty 0
No SBUF for ACK 0
Bus Addr Bus LAN Address Error Count Last Error  Tinme of Last Error
80B08920 LCL 00-00- 00- 00- 00- 00 0
80B08090 ESA AA-00- 04-00- 33-FD 75 00000334 25- MAR-1993 23:39: 28. 27
80B008BO XQA 08- 00- 2B- 0A- 6A- 6B 12 0000002C 23- MAR- 1993 12:43:59. 07
80AF6E90 XQB 08- 00- 2B- 08- CB- B3 0

--- Virtual Grcuit (VO Summary ---

VC Addr Node SCSID Lel ID  Status Sunmary Last Event Tine
806CD1A0  NCDE12 64819 223/DF open, path 1- JAN- 1993 00: 00: 00. 03
806CD6E0  NCDE13 64856 222/ DE open, path 1- JAN-1993 00: 00: 07.
806CDIA0  NCDE14 64587 221/DD open, path 22- MAR- 1993 18:34:10.18
80700530 NCDE15 64555 220/ DC open, path 22- MAR- 1993 18:57: 33.
8074AB60 NODEL6 64841 219/DB open, path 25- MAR- 1993 20:42: 38. 20

The SHOW PORTS/ADDRESS command displays the port descriptor table
(PDT) structure, some of the fields in the PORT structure, the BUS summary,

and the virtual circuit summary.



SDA>SHOW PORTS/ BUS=BUS_ESA

VAXcl uster data structures

- BUS: 80B08090 (ESA)

System Dump Analyzer
SHOW PORTS

Device: ES_LANCE LAN Address: AA-00-04-00-33-FD---

LAN Har dwar e Address:

08- 00- 2B- 12- AE- Al

Status: 00000A03 run, online, xnt _chai ni ng_di sabl ed, restart

------- Transmi t
Msg Xnt 434107
Mast Msgs 103939
Mast Bytes 13304192
Bytes Xnt 59789962
Qutstand 1/GCs 0
Xmt Errors 75
Last Xnmt Error 00000334
- Receive Errors ----
TR Mast Rev
Rcv Bad SCSID
Rcv Short Msg
Fail CH Alloc
Fail VC Alloc
Wong PORT

0
0
0
0
0
0

------- Receive -------
Msg Rev 1170090
Mast Msgs 859601
Mast Bytes 96272072
Bytes Rcv 146674695
Buf fer Size 1424
Rcv Ring Size 8
Tine of Last Xmt

------ BUS Tiner ------

Handshake TMO 8079FA50
Listen TMO 8079FA54
HELLO ti ner 1
HELLO Xnt err 38

- Structure Addresses ---
PORT Address 80B091B0
VCI B Addr 80B08248
HELLO Message Addr 80B082D8
BYE Message Addr 80B08468
Delete BUS Rtn Adr 8079E424

Error 25- MAR-1993 23:39:28. 27
Datal i nk Events
Last 22- MAR-1993 18: 25: 25. 12

Last Event 00001202
Port Usable 1
Port Unusabl e 0
Address Change 1
Port Restart Fail 0

The SHOW PORTS/BUS=BUS_id command displays the data for the specified
BUS structure. The last event time is at the top of the lower right-hand
column. If an error was counted, the last error time is displayed under Xmt
Errors. The normal status is: RUN, ONLINE, and RESTART.

The Xmt Error field indicates a problem detected during transmission of a
message. The error rate should be less than one per hour.

SDA> SHOW PORTS/ VC=VC_BREE

VAXcl uster data structures

.-~ Virtual Gircuit (VC) 806CDBED ---

Renote System Nane: BREE  (0: VAX) Renot e SCSSYSTEM D: 64856
Local System|D: 222 (DE) Status: 0005 open, path
------ Transmit ------- ------ VC O osures ---- - Congestion Control ----
Msg Xnt 216686 SeqMsg TMO 0 UnAcked Msgs 1
Unsequence 3 CC DFQ Enpty 0 Pipe Quota Reached 33
Sequence 149643 Topol ogy Change 0 OM Queue Len 0
Re Xt 545 NPAGEDYN Low 0 Mx CMD Queue Len 5
Lone ACK 66495 RSVP Threshol d 15
Bytes Xnt 33309074 Pi pe Quota 31
------- Receive ------- - Messages Discarded - ----- Channel Selection ----
Msg Rev 194492 No Xmt Chan 0 Preferred Channel 80704320
Unsequence 1 Recv Short Msg 0 Delay Tine FB7E6F80
Sequence 178905 Illegal Seq Msg 0 Buffer Size 1424
ReRev 30 Bad Checksum 0 Channel Count 6
Lone ACK 15531 TR DFQ Enpty 0 Channel Selections 3920
Cache 26 TR MFQ Enpty 0 Protocol 1.3.0
[ ACK 0 CC MFQ Enpty 0 Open 1-JAN-1993 00:00: 07.03
Bytes Rev 52086897 Cache Mss 0 Cs 17-NOv-1858 00:00: 00.00
- Channel Sunmary for Virtual Crcuit (BREE ) 806CDGEO --
Address Type Xmt Tinme Size Preferred Best Last State Change
80704320 Preferred FB7E6F80 1424 812 617  22-MAR-1993 18:14:07.0
807043E0 Active FB7E735E 1424 95 4 25-MAR-1993 20:01:15.1
807050D0 Active FB7ETFED 1424 431 0  25-MAR-1993 20:01:15.1
806CDB20 Active FB7E728E 1424 868 1470 25-MAR- 1993 20:01:15.1
80705010 Active FB7E7043 1424 738 9  25-MAR- 1993 20:00: 58. 1
806CDBE0  Active FB7E7BB5 1424 976 1744 25-MAR- 1993 20:00: 31.1

SDA-145



System Dump Analyzer

SHOW PORTS

SDA-146

The SHOW PORTS/VC=VC_id command displays the virtual circuit data for
the specified remote node and a channel summary. In this display, the upper
center of the display contains the virtual circuit status. The lower right-hand
corner contains the virtual circuit open and close times.

The ReXmt field indicates a problem sending messages to the remote system.
The error rate per hour should be less than the Pipe Quota field.

The ReRcv field indicates a problem receiving messages from the remote
system. The error rate per hour should be less than the Pipe Quota field.

SDA> SHOW PORTS/ MESSAGE/ VC=addr ess

This SHOW PORTS command displays the virtual circuit data for the
specified remote node, followed by the message data for the remote node. The
virtual circuit message display shows the counters for the following items:

— Sequenced message delivery
— Any messages in the process of being transmitted or in the receive cache

The following is an example of part of a display resulting from the
SHOW PORTS/MESSAGE/VC=vc-address command:

VAXcl uster data structures

- Sequenced Message Counters Virtual Circuit (VC) 806CDGEQ ---
NSU. 4457 HAA: 4456 LAR 4455 HSR B3AA Cache Mask: 00000000
Messages Waiting for ACKs
VCRP adr Len Flgs Seq Ack Message Data

SDA> SHOW PORTS/ CHANNEL=CH_BREE

This SHOW PORTS command displays the data for the specified channel.
The normal state is OPEN, with a status of PATH, OPEN, and RMT_HWA _
VALID.

In the following example display resulting from this command, the top of
the display shows the remote device name, the remote device type, and the
channel open and close times.



System Dump Analyzer
SHOW PORTS

VAXcl uster data structures

. PEDRI VER Channel (CH 80704320) for Virtual Grcuit (VC 806CD6E0) BREE

State: 0004 open Status: OB path, open,rnt_hwa valid
BUS: 80B008B0 (XQ@) Lcl Device: XQ DELQA Lcl LAN Address: 08-00-2B- 0A- 6A- 6B
Rmt Name: XQB Rt Device: XQDEQTA Rnt LAN Address: 08-00-2B-13-70-88
Rmt Seq # 0002  Qpen:22- MAR-1993 18:14:07.01 C osed: 17- NOV- 1858 00: 00: 00. 00
------- Transnit ------ ------- Receive ------- ----- Channel Selection ----
Lel CH Seq # 0001 Msg Rev 139205 Average Xnt Tinme FB879740
Msg Xnt 66707 Mast Msgs 103906 Renote Buffer Size 1424
Crl Mgs 1 Mast Bytes 10182788 Max Buffer Size 1424
Crl Bytes 98 Crl Msgs 2 Best Channel 615
Bytes Xnt 9130385 Ctrl Bytes 196 Preferred Channel 810
Rt Ring Size 31 Bytes Rev 22654333 Retransmit Penalty 2
--------------- Channel Errors ---------------  Xnt Error Penalty 12
Handshake TMO 0 Short CC Msgs 0 ------- Channel Tiner ------
Listen TMO 0 Inconpat Chan 0 Timer Entry Flink 8079FA3C
Bad Aut hori ze 0 No MSCP Srvr 0 Blink 80705010
Bad ECO 0 Disk Not Srvd 0 Last Ring Index 08
Bad Multicast 0 Odd TR Msgs 0 Protocol 1.3.0
Topol ogy Change 0 Supported Services 00000000

SDA> SHOW PORTS/ DEVI CE/ CHANNEL/ VC=vc- addr ess

This SHOW PORTS command displays the following information:

— Virtual circuit data for the specified remote node

— Channel data

— The network path description for each channel to the remote node
The following is an example of a display resulting from the

SHOW PORTS/DEVICE/CHANNEL/VC=vc-address command:

VAXcl uster data structures

80030010  NODE SGRPCP: VAXst ation 3300; RDGB-4/UL0

800C9300 ADAPTER  ESA; SGRPOP: VAXstation 3300; RDOB-4/UL0 (08-00- 2B- 12- AE- Al)
80D3CDBO  COMPONENT RD34C4, |-Custer Segment DAMPR

80D40380  COVPONENT RD34C4, |-Cluster Segnent SELNI

80D36AD0  COVPONENT | -Cl uster Segnent

80D2D4C0 P COMPONENT RDCB-4 Lab, DIVER |-Cluster Segnent SELNI

80D323F0 NODE PELLNM rack mounted McroVAX I1; RD®B-4 Lab

This display is useful after the local area VAXcluster network failure analysis
data has been loaded. After a network failure analysis, this display indicates
primary and secondary failed component suspects in the following ways:

e P: Primary suspect
= S: Secondary suspect

= ?: Component that cannot be proved to be working

SDA> SHOW PORTS / DEVI CE / CHANNEL=addr ess

This SHOW PORTS command displays the channel data and the network
path description if it was provided by the network failure analysis.

SDA-147



System Dump Analyzer

SHOW PORTS

SDA-148

SDA> SHOW PORTS/ BUS/ CHANNEL/ DEVI CE/ MESSAGE/ VC/ ADDRESS=PE_PDT

This command displays all of the bus structures, all of the virtual circuits and
their message counters, and channels, including network path descriptions
when available.

SDA> SHOW PORTS/ ADDR=862C8D80/ NAMVE=DAVI D3
VAXcl uster data structures

- Virtual Grcuit (VC) 862C8D80 ---

Remote System Nane: DAVI D3 (0: VAX) Renot e SCSSYSTEM D: 64588

Local SystemID: 213 (D5) Status: 0005 open, path
------ Transmit ------- ------ VC Cosures ---- - Congestion Control ----
Msg Xnt 19 SegMsg TMO 0 Pipe Quota/Slo/Max 1/31/31
Unsequence 16 CC DFQ Enpty 0 Pipe Quota Reached 0
Sequence 3 Topol ogy Change 0 Xm T 0/1
ReXnt 0/0 NPAGEDYN Low 0 RndTrp uS 3000000+0
Lone ACK 0 UnAcked Msgs 0
Bytes Xnt 1058 CVMD Queue Len/ Max 0/0
------- Receive ------- - Messages Discarded - ----- Channel Selection ----
Msg Rev 10 No Xmt Chan 0 Preferred Channel 00000000
Unsequence 16 Rcv Short Msg 0 Delay Time 003266DB
Sequence 0 Illegal Seq Mg 0 Buffer Size 1424
ReRcv 0 Bad Checksum 0 Channel Count 2
Lone ACK 0 TR DFQ Enpty 0 Channel Selections 9
Cache 0 TR MFQ Enpty 0 Protocol 1.3.0
[T ACK 0 CC MFQ Enpty 0 Open 8-FEB-1993 11:30:43.60
Bytes Rev 440 Cache Mss 0 Os 8-FEB-1993 11:28:30.69
- Channel Summary for Virtual Gircuit (DAVID3) 862C8D80 --
Addr ess Type Xmt Time Size Preferred Best Last State Change
862CB600 Active 000927BF 1424 3 4 8-FEB-1993 11:30:53.69
862C8F00 Active 000927BF 1424 6 2 8-FEB-1993 11:30:43.60

The command in this example displays virtual connect information associated
with the DAVID3 node, which is associated with the port descriptor table
whose address is 862C8D80.



System Dump Analyzer
SHOW PROCESS

SHOW PROCESS

Format

Parameters

Qualifiers

Displays the software and hardware context of any process in the balance set.

SHOW PROCESS [/qualifier[,...]]JALL | process-name | /INDEX=nn| /SYSTEM]

ALL
Shows information about all processes that exist in the system.

process-name
Name of the process for which information is to be displayed.l!

You can determine the names of the processes in the system by issuing a SHOW
SUMMARY command.

The process-name can contain up to 15 letters and numerals, including the
underscore (_) and dollar sign ($) characters. If it contains any other characters,
you must enclose the process-name in quotation marks (" ").

JALL

Displays all information shown by the following qualifiers: /CHANNEL, /PAGE_
TABLES, /PCB, /PHD, /PROCESS_SECTION_TABLE, /REGISTERS, and
IWORKING_SET.

/CHANNEL
Displays information about the 1/O channels assigned to the process.

[IMAGES

Displays the address of the image control block, the start and end addresses
of the image, the activation code, the protected and shareable flags, the image
name, and the major and minor IDs of the image.

/INDEX=nn or /ID=nn

Specifies the process for which information is to be displayed by its index into the
system’s list of software process control blocks (PCBs). You can supply either of
the following values for nn:

= The process index itself

= The process identification (PID) or extended PID longword, from which SDA
extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY.

1 Use of the process-name parameter, the /INDEX qualifier, or the /SYSTEM qualifier
causes the SHOW PROCESS command to perform an implicit SET PROCESS command,
making the indicated process the current process for subsequent SDA commands. (See
the description of the SET PROCESS command and Section 4 for information about
how this) can affect the process context—and CPU context—in which SDA commands
execute.

SDA-149



System Dump Analyzer
SHOW PROCESS

SDA-150

/LOCKS
Displays the lock management locks owned by the current process.

The /LOCKS qualifier produces a display similar in format to that produced by
the SHOW LOCKS command. See Table SDA-15 for additional information.

/PO
Displays the page tables for PO space. See the description of the /PAGE_TABLES
qualifier.

/P1
Displays the page tables for P1 space. See the description of the /PAGE_TABLES
qualifier.

/PAGE_TABLESor /PPT [range|/PO|/P1]
Displays the page tables PO and P1 spaces, or, optionally, either the page table or
the page table entries for a range of addresses.

You can express a range using the following format:
m:n  Displays the page table entries that correspond to the range of virtual
addresses from m to n

m;n  Displays the page table entries that correspond to a range of n pages,
starting with page m

/PARTICIPANTS[=DISPLAY=(item [,...])]

Displays information about all transactions for the process. The argument
to DISPLAY can be either a single item or a list. The following items can be
specified.

Item Description

ALL All transaction control structures for the transactions.
This is the default behavior.

BRANCHES Control structures for branches of the transactions.

PARTICIPANTS Control structures for resource managers participating
in the transactions.

THREADS Control structures for threads of the transactions.

TRANSACTIONS Transaction control structures for the transactions.

/PCB

Displays the information contained in the software process control block (PCB).
This is the default behavior of the SHOW PROCESS command.

/PHD
Lists information included in the process header (PHD).

/PROCESS_SECTION_TABLE or /PST
Lists the information contained in the process section table (PST).

/REGISTERS

Lists the hardware context of the process, as reflected in the registers of the
process stored in the hardware PCB and—if the process is current on a processor
in the system—the registers of the processor.



System Dump Analyzer
SHOW PROCESS

/IRMS[=optionl[,...]]

Displays certain specified RMS data structures for each image 1/0 or process-
permanent 1/O file the process has open. To display RMS data structures for
process-permanent files, specify the P1O option to this qualifier.

SDA determines the structures to be displayed according to either of the following
methods:

« If you provide the name of a structure or structures in the option parameter,
SHOW PROCESS/RMS displays information from only the specified
structures. (See Table SDA-14 for a list of keywords that you can supply
as options.)

« If you do not specify an option, SHOW PROCESS/RMS displays the current
list of options as shown by the SHOW RMS command and set by the SET
RMS command.

ISYSTEM

Displays the system process control block.12 The system PCB and process header
(PHD) are dummy structures that are located in system space. These structures
contain the system working set, global section table, global page table, and other
systemwide data.

ITRANSACTIONS=(optionl[,...])

Displays information about all transactions, or the specified transaction, for the
process. The following two options can be specified either together or separately:
= DISPLAY=(item [,...])

Specifies the type of information to be displayed. The argument to DISPLAY
can be either a single item or a list. The following items can be specified.

Item Description

ALL All transaction control structures for the specified
transaction. This is the default behavior.

BRANCHES Control structures for branches of the specified
transaction.

PARTICIPANTS Control structures for resource managers
participating in the specified transaction.

THREADS Control structures for threads of the specified
transaction.

TRANSACTIONS Transaction control structures for the specified

transaction.

12 Use of the process-name parameter, the /INDEX qualifier, or the /SYSTEM qualifier
causes the SHOW PROCESS command to perform an implicit SET PROCESS command,
making the indicated process the current process for subsequent SDA commands. (See
the description of the SET PROCESS command and Section 4 for information about
how this) can affect the process context—and CPU context—in which SDA commands
execute.

SDA-151



System Dump Analyzer
SHOW PROCESS

Description

SDA-152

= TID=tid
Specifies the transaction for which information is to be displayed. If you omit

the TID option, the SHOW PROCESS/TRANSACTIONS command displays
information about all transactions for the process.

If you omit these options, the SHOW PROCESS/TRANSACTIONS command
displays all information about all transactions for the process.

Note that the SHOW PROCESS/TRANSACTIONS and SHOW
PROCESS/PARTICIPANTS commands display the same information about
transactions, but in different orders. The SHOW PROCESS/TRANSACTIONS
command walks down a transaction queue. The SHOW
PROCESS/PARTICIPANTS command walks down a resource manager queue.

IVECTOR_REGS
Displays the saved process vector registers.

/WORKING_SET or /WSL
Displays the working set list of the process.

The SHOW PROCESS command displays information about the process specified
by process-name, the process specified with the /INDEX qualifier, the system
process, or all processes. By default, the SHOW PROCESS command produces
information about the SDA current process, as explained in Section 4.

The SHOW PROCESS command performs an implicit SET PROCESS command
under certain uses of its qualifiers and parameters, as explained in Section 4,
Section 5, and Section 6. If you use the SHOW PROCESS command and name
a process that is the current process on a CPU, SDA temporarily assigns the
symbols shown in Table SDA-9 to the values in the process. You can then refer
to those symbols when you use the FORMAT command.

The default of the SHOW PROCESS command provides information taken
from the software process control block (PCB).12 This information describes the
following characteristics of the process:

= Software context

= Condition-handling information

= Information about interprocess communication

< Information about counts, quotas, and resource usage

Among the displayed information are the PID, EPID, priority, job information
block (JIB) address, and process header (PHD) address of the process. SHOW
PROCESS also describes the resources owned by the process, such as event
flags and mutexes. The “State” field records the current scheduling state of the
process; in a multiprocessing system, the display indicates the CPU ID of any
process whose state is CUR.

The SHOW PROCESS/ALL command displays additional process-specific
information, also provided by several of the individual qualifiers to the command.

13 This is the first display provided by the /ALL qualifier and the only display provided by
the /PCB qualifier.



System Dump Analyzer
SHOW PROCESS

The process header display, also produced by the /PHD qualifier, provides
information taken from the process header (PHD), which is swapped into memory
when the process becomes part of the balance set. Each item listed in the display
reflects a quantity, count, or limit for the process’s use of the following resources:

= Process memory

= The pager

= The scheduler

= Asynchronous system traps
= /O activity

= CPU activity

The process registers display, also produced by the /REGISTERS qualifier,
describes the hardware context of the context, as reflected in its registers.

The hardware context of a process is stored in two places:

« If the process is currently executing on a processor in the system (that is,
in the CUR scheduling state), its hardware context is contained in that
processor’s registers. (That is, the registers of the process and the registers
of the processor contain identical values, as illustrated by a SHOW CPU
command for that processor or a SHOW CRASH command if the process was
current at the time of the system failure.)

« If the process is not executing, its hardware context is stored in the part of
the PHD known as the hardware PCB.

The process registers display first lists those registers stored in the hardware
PCB (“Saved process registers”). If the process to be displayed is currently
executing on a processor in the system, the display then lists the processor’s
registers (“Active registers for the current process”). In each section, the display
lists the registers in the following groups:

= General-purpose registers (RO through R11 and the AP, FP, and PC)
= Stack pointers (KSP, ESP, SSP, and USP)

= Special-purpose registers (PC and PSL)

= Base and length registers (POBR, P1BR, POLR, and P1LR)

The working set information and working set list displays, also produced
by the /IWORKING_SET qualifier, describe those virtual pages that the process
can access without a page fault. After a brief description of the size, scope,
and characteristics of the working set list itself, SDA displays the following
information for each entry in the working set list.

Column Contents

INDEX Index into the working set list at which information for this entry
can be found

ADDRESS Virtual address of the page in the process address space that this
entry describes

SDA-153



System Dump Analyzer
SHOW PROCESS

SDA-154

Column Contents
STATUS Three columns that list the following status information:
= Page type

= Location of the page in physical memory

< Indication of whether the page is locked into the working set

When SDA locates one or more unused working set entries, it issues the following
message:

--- nenpty entries
In this message, n is the number (in decimal) of contiguous, unused entries.

The process section table information and process section table displays,
also produced by the /PROCESS_SECTION_TABLE qualifier, list each entry in

the process section table (PST) and display the offsets to the first free entry and
last used entry.

SDA displays the information listed in Table SDA-19 for each PST entry.

Table SDA-19 Process Section Table Entry Information in the SHOW PROCESS

Display
Part Definition
INDEX Offset into the PST at which the entry is found. Because entries

in the process section table begin at the highest location in
the table, and the table expands toward lower addresses, the
following expression determines the address of an entry in the
table: PHD + PSTBASOFF—INDEX.

ADDRESS Virtual address that marks the beginning of the first page of the
section described by this entry.

PAGES Length, in pages, of the process section.

VBN Virtual block number, the number of the file’s virtual block that
is mapped into the section'’s first page.

CLUSTER Cluster size used when faulting pages into this process section.

REFCNT Number of pages of this section that are currently mapped.

FLINK Forward link, the pointer to the next entry in the PST list.

BLINK Backward link, the pointer to the previous entry in the PST list.

FLAGS Flags that describe the access that processes have to the process
section.

The PO page table and P1 page table displays, also produced by the /PAGE_
TABLES qualifier, display listings of the page table entries of the process in the
same format as that produced by the SHOW PAGE_TABLE command (see Tables
SDA-16 and SDA-17).

The process active channels display, the last produced by SHOW
PROCESS/ALL and the only one produced by the /CHANNEL qualifier, displays
the following information for each 1/O channel assigned to the process.



System Dump Analyzer
SHOW PROCESS

Column Contents

Channel Number of the channel

Window Address of the window control block (WCB) for
the file if the device is a file-oriented device; zero
otherwise

Status Status of the device: “Busy” if the device has an
1/0O operation outstanding; blank otherwise

Device/file accessed Name of the device and, if applicable, name of

the file being accessed on that device

The information listed under the heading “Device/file accessed” varies from
channel to channel and from process to process. SDA displays certain information
according to the conditions listed in Table SDA-20.

Table SDA-20 Process I/0 Channel Information in the SHOW PROCESS
Display

Information Displayed? Type of Process

dcuu: SDA displays this information for devices that are not
file structured, such as terminals, and for processes that
do not open files in the normal way.

dcuu:filespec SDA displays this information only if you are examining
a running system and only if your process has enough
privilege to translate the file-id into the filespec.

dcuu:(file-id)filespec SDA displays this information only when you are
examining a dump. The filespec corresponds to the
file-id on the device listed. If you are examining a dump
from your own system, the filespec is probably valid. If
you are examining a dump from another system, the
filespec is probably meaningless in the context of your
system.

dcuu:(file-id) The file-id no longer points to a valid filespec, as when
you look at a dump from another system; or the process
in which you are running SDA does not have enough
privilege to translate the file-id into the corresponding
filespec.

1This table uses the following formulas to identify the information displayed:
dcuu:(file-id)filespec

where:

dcuu: is the name of the device.

file-id is the RMS file identification.

filespec is the full file specification, including directory name.

SDA-155



System Dump Analyzer
SHOW PROCESS

Examples

1. SDA> SHOW PROCESS

Process index: 001B  Nane: PUTP1 Extended PID: 27E0011B

Process status: 00044001 RES, BATCH, PHDRES

PCB address 803C7710 JI B address 806B9100
PHD address 81F5C400 Swapfile di sk address 02002FAL
Master internal PID 0001001B Subprocess count 0
Internal PID 0001001B Creator internal PID 00000000
Ext ended PID 27E0011B Creator extended PID 00000000
State CUR 00 Term nation mai | box 0000
Current priority 3 AST' s enabl ed KES
Base priority 3 AST's active E

uc [00011, 000176] AST' s remai ni ng 39
Mit ex count 0 Buffered I/O count/linit 12/12
Vi ting EF cluster 0 Direct 1/0count/linit 18/ 18
Starting wait time 1B001CIC  BUFIO byte count/linit 31968/ 31968
Event flag wait mask BFFFFFFF  # open files allowed |eft 90
Local EF cluster 0 20000001 Tinmer entries allowed |eft 9
Local EF cluster 1 (0000000 Active page table count 0

G obal cluster 2 pointer 00000000 Process W5 page count 1020

G obal cluster 3 pointer 00000000 Q@ obal WS page count 233

The SHOW PROCESS command displays information taken from the
software PCB of PUTP1, the SDA current process. According to the
“State” field in the display, process PUTP1 is current on CPU 00 in the
multiprocessing system.

2. SDA> SHOW PROCESS/ ALL

Process index: 00AD Name: GLOBE Extended PID. 462002AD

Process status: 02040001  RES, PHDRES
PCB address 8044E650 JI B address 806E0010

Process header

First free PO address 0007D600  Accunul ated CPU tine 00000559
Free PTEs between PO/P1 276902 CPU since last quantum FFEE
First free Pl address TFEF2200 Subprocess quota 8
Free page file pages 24234 AST linmit 50
Page fault cluster size 16 Process header index 0020
Page table cluster size 2 Backup address vector 00003E12
Fl ags 0002 WL index save area 00003980
Direct 1/0 count 509 PTs having | ocked WSLs 5
Buffered I/0 count 827 PTs having valid WLs 20
Linmit on CPU time 00000000 Active page tables 21
Maxi num page file count 25600 Maxi num active PTs 26
Total page faults 7589 Guaranteed fluid WS pages 20
File limt 50 Extra dynamic WS entries 698
Timer queue |imt 10 Locked WSLE counts array 1CD8
Paging file index 06000000 Valid WSLE counts array 2564
Saved process registers

RO = 00000001 RL = 00000000 R2 = 8000CA78 R3 = 8044E6A0
R4 = 8044E650 R5 = 00000000 R6 = 00000000 R7 = 00000003
R8 = 00001F60 RO = TFFIFB38 RI0 = 7FFIFAO8 R11 = 7FFE0070

SDA-156



System Dump Analyzer
SHOW PROCESS

AP = TFEFAAE4A  FP = TFEF4AEC PC = 801622B4  PSL = 03000000
KSP = 7FFETEO0  ESP = 7FFE9EO0  SSP = 7FFEDO4E  USP = 7FEF4AE4
POBR = 82D43600 POLR = 000003EB  P1BR = 82654E00  PILR = 001FF792
Active registers for current process
RO = 00000001 RL = 80002398 R2 = 00000000 R3 = 00000000
R4 = TFFAO5A0  R5 = 00000000 R6 = 0007D400 R7 = 00000010
R8 = 00001F60  R9 = 7FFIFB38 R1I0 = 7FFIFAO8 R11 = 7FFE0070
AP = 7FFE9D70  FP = 7FFE9D58 PC = 80162045 PSL = 01400000
KSP = 7FFETEO0  ESP = 7FFE9D58  SSP = 7FFEDO4E  USP = 7FEF4AE4
Wrking set information
First WL entry 0074 Current authorized working set size 2048
First locked entry 00A6 Default (initial) working set size 512
First dynanic entry 00B9 Maxi mum wor ki ng set all oned (quota) 2048
Last entry replaced 018C
Last entry in |ist 0561
Working set |ist
INDEX ADDRESS  STATUS

0074 7FFE7C00
0075 7FFE7A00
0076 7FFE7800

VALI D PROCESS WSLOCK
VALI D PROCESS WSLOCK
VALI D PROCESS WSLOCK

Process section table information

Last entry allocated FFAO
First free PST entry 0000
Process section table
I NDEX ADDRESS PAGES W NDOW VBN  CLUSTER CHANNEL REFCNT FLINK BLINK  FLAGS
FFF8 00000200 0000000A 8082C400 00000002 0 7FFCCFDO 10 FFE8 FFFO
FFFO 00001600 00000007 8082C400 0000000C 0 7FFCCFDO 0 FFF8 FFE8 WRT CRF
FFE8 00002400 00000012 8082C400 00000013 0 7FFCCFDO 18 FFFO FFF8
PO bage tabl e
ADDRESS SVAPTE  PTE TYPE PROT BITS PAGTYP LOC STATE TYPE REFCNT  BAK SVAPTE FLINK BLI NK
-------- 1 NULL PAGE
00000200 82D43604 F9804F73 VALID UR U PROCESS ACTIVE 07 00 1 0040FFF8  82D43604 0000 0153
00000400 82D43608 F9806905 VALID UR U PROCESS ACTIVE 07 00 1 0040FFF8  82D43608 0000 0154
VALID UR U PROCESS ACTIVE 07 00 1 0040FFF8  82D4360C 0000 0155

00000600 82D4360C F9807569

P1 bage tabl e

ADDRESS SVAPTE  PTE TYPE PROT BITS PAGTYP LOC STATE TYPE REFCNT ~ BAK SVAPTE  FLI NK BLI NK
TFEF2400 82E52CA8 21800000 DZERO UW U
7FEF2600 82E52CAC 21800000 DZERO UW U

DZERO UW U

7FEF2800 82E52C50 21800000

SDA-157



System Dump Analyzer
SHOW PROCESS

Channel W ndow
0010 00000000
0020 8082C400
0030 807F2260
0040 00000000
0050 00000000
0060 807EFFEO
0070 807EECCO
0080 80838E80
0090 807E4880
00A0 80818720
00B0 8083CFCO
0000 8083DECO

SDA-158

Process active channels

Status Device/file accessed

ROCK$DIA233:
ROCK$DJA233: (1008, 48490, 0)
LOVESDUA200: ( 209, 1, 0) [ V5COMVON. SYSLI B] SMGSHR EXE; 1 (section fil e)

VTATL:
VTATL:

LOVESDUA200: ( 195, 1, 0) [ V5COMVON, SYSLI B] LI BRTL. EXE; 1 (section file)
LOVESDUA200: (199, 1, 0) [ VSCOMVON. SYSLI B MIHRTL. EXE; 1 (section fil e)
LOVESDUA200: (196, 1, 0) [ VSCOMVON. SYSLI B] LI BRTL2. EXE; 1

LOVESDUA200: ( 210, 1, 0) [ V5OOMMON. SYSLI B] SORTSHR. EXE; 1

LOVESDUA200: (191, 1, 0) [ V5COMVON. SYSLI B] FDLSHR EXE; 1

LOVESDUA200: ( 169, 1, 0) [ V5COMVON. SYSLI B] COWSHR. EXE; 1

ROCK$DUA233: (1026, 16, 0)

The SHOW PROCESS/ALL command displays information taken from the
software PCB of process GLOBE, and then proceeds to display the process
header, the registers of the process, the process section table, the PO page
table, the P1 page table, and information about the 1/0 channels owned by
the process. You can also obtain these displays by using the /PCB, /PHD,
/IREGISTERS, /PROCESS_SECTION_TABLE, /PO, /P1, and /CHANNEL
qualifiers, respectively.

SDA>  SHOW PROCESS/ LOCKS/ | NDEX=0A

Lock data:

Lock id: 09960A0F PID: 0001000A Flags:  VALBLK CONVERT SYNCSTS
Par. id: 00000000 Ganted at PW SYSTEM

Subl ocks: 100

LKB: 8082BOEO

Resour ce: 00300248 24534D52 RVB$H. <. Status: ASYNC

Length 26  444BACAF 46020000 ... FOLKD

Kernel node 00202020 20202024 $ .

System 00000000 00000000  ........

Local copy

The SHOW PROCESS/LOCKS/INDEX=0A command displays information
about the locks held by process JOB_CONTROL, whose PCB is at index 0A,
into the system’s PCB list. This command implicitly makes JOB_CONTROL
the SDA current process for subsequent commands that display process
context information. It has no effect on SDA CPU context because JOB_
CONTROL is not current on any processor in the multiprocessing system.

SDA> SHOW RMVS

RVS Display Options: |FB,|RB,|DX BDB, BDBSUM ASB, CCB, WCB, FCB, FAB, RAB, NAM XAB, RLB,
BLB, BLBSUM GBD, GBH, FWA, GBDSUM JFB, NWA, RU, DRC, SFSB, GBSB



System Dump Analyzer
SHOW PROCESS

Display RVS structures for all IFl values.

SDA> SHOW PROCESS/ RVB

Process index: 0032 Name: BEASSEM MIHRTL_  Extended PID: 27200132

| FAB Address: 7FF9C808 |FI: 0002 Organi zation: Sequential

PRI M DEV: 1CAD4108 DI R, FOD, SHR, AVL, ELG, | DV, DV, RND

BKPBI TS: 00080020 ACCESSED, NORECLK

BLN: 3A 58. BI D: 0B 11

EFN: 00 MODE: 03

| CS: 00000001 ASBADDR: 00000000

| 082: 0000 WAIT_Q FLINK: 00000000

| OS4: 00000000 ARGLST: TFF21418
ATINLBUF: 00000000 WAIT_Q BLINK: 00000000

FSBPTR: 00000000 AGENT_MDE: 03

SHR: 02 SHRGET

| RAB_LNK: TFF9C958 CHNL: 00C0

FAC. 02 GET

ORGCASE: 00 Sequent i al

LAST_FAB: 00081FD0 NWA_PTR: 00000000

| Fl: 0002 ECHO I SI': 0000

FWA_PTR 7FF9CC00

BDB_FLNK: 7FFICBBO DEVBUFSI Z: 00000200 512.
BDB_BLNK: 7TFF9CB60 RTDEQ 0000 0.
RFMORG. 02 VAR

RAT: 02 CR

LRL: 004C 76. HBK_DI SK: 00000000

FFB: 0084 132. EBK_DI SK: 00000000

FSZ: 00 0. BKS: 00 0.
DEQ 0000 0. MRS: 0000 0.
HBK: 0000000C 12. GBC: 0000 0.
EBK: 0000000C

LAST_GOOD _EBK: 00000000 0. LAST_GOOD FFB: 0000 0.
RNS_LEN: 00000000 LOCK_BDB: 00000000

The SHOW PROCESS/RMS command displays RMS data structures for the
current SDA process.

SDA> SHOW PROCESS/ | MAGES

Process activated images

| CB Start End Type Imge Nane Major ID,Mnor ID
7FF83878 00000200 00000DFF MAIN SHOW PRCC | MAGES 0,0
7FF84100 0003AC00 0003FBFF GLOBAL PRT SHR DECWSTRANSPORT_COMVON 12,12
7FF84400 00036200 0003ABFF GLOBAL COWSHR 1,0

7FF84470 0002E400 000361FF GLOBAL FDLSHR 1,0

7FF84560 00021A00 0002E3FF GLOBAL SORTSHR 2, 28

7FF845D0 00000EO0 000089FF GLOBAL LIBRTL2 1,12

7FF835F8 00008A00 000219FF GLOBAL SHR LIBRTL 1,14
7FF84800 00060C00 000767FF MNERGED SHR ADARTL 0,0
7FF84720 00076800 000AO3FF GLOBAL SHR MIHRTL 129, 32781

Total images =9 Pages al l ocated = 1017

SDA-159



System Dump Analyzer
SHOW PROCESS

SDA-160

The SHOW PROCESS/IMAGES command displays the address of the image
control block, the start and end addresses of the image, the activation code,
the protected and shareable flags, the image name, and the major and minor
IDs of the image.

SDA> SHOW PROCESS/ TRANSACTI ONS=( DI SPLAY=THREADS,
Tl D=FAC21DE2- BA38- 0092- 8FAG- B24B)

The SHOW PROCESS command displays the transaction thread information
for the transaction whose identifier is FAC21DE2-BA88-0092-8FA6-B24B.



System Dump Analyzer
SHOW RESOURCE

SHOW RESOURCE

Format

Parameters

Qualifiers

Description

Displays information about all resources in the system or about a resource
associated with a specific lock.

SHOW RESOURCE {/ALL |/LOCKID=lock-id |/NAME=resource-name}

None.

JALL
Displays information from all resource blocks (RSBs) in the system. This is the
default behavior of the SHOW RESOURCE command.

/LOCKID=lock-id
Displays information about the resource associated with the lock with the
specified lock-id.

INAME=resource-name

Displays information about the resource whose resource name begins with the
specified resource-name. For case-sensitive names, enclose resource-name in
quotation marks.

The SHOW RESOURCE command displays the information listed in
Table SDA-21 for each resource in the system or for the specific resource
associated with the specified lock-id.

Table SDA-21 Resource Information in the SHOW RESOURCE Display

Field Contents

Address of RSB Address of the resource block (RSB) that describes this
resource.

Parent RSB Address of the RSB that is the parent of this RSB. This
field is 00000000 if the RSB itself is a parent block.

Sub-RSB count Number of RSBs of which this RSB is the parent. This

field is O if the RSB has no sub-RSBs.
(continued on next page)

SDA-161



System Dump Analyzer
SHOW RESOURCE

Table SDA-21 (Cont.) Resource Information in the SHOW RESOURCE Display

Field

Contents

Group grant mode

Conversion grant mode

BLKAST count
Value block

Sequence #

CSID

SDA-162

Indication of the most restrictive mode in which a
lock on this resource has been granted. This field can
contain the following values (shown in order from the
least restrictive mode to the most restrictive):

e NL

Null mode
e« CR

Concurrent-read mode
- CW

Concurrent-write mode
« PR

Protected-read mode
- PW

Protected-write mode
e EX

Exclusive mode

For information about conflicting and incompatible lock
modes, see the OpenVMS System Services Reference
Manual.

Indication of the most restrictive lock mode to which a
lock on this resource is waiting to be converted. This
does not include the mode for which the lock at the
head of the conversion queue is waiting.

Number of locks on this resource that have requested a
blocking AST.

Hexadecimal dump of the 16-byte block value block
associated with this resource.

Sequence number associated with the resource’s value
block. If the number indicates that the value block is
not valid, the words “Not valid” appear to the right of
the number.

Cluster system identification number (CSID) of the
node that owns the resource.

(continued on next page)



System Dump Analyzer
SHOW RESOURCE

Table SDA-21 (Cont.) Resource Information in the SHOW RESOURCE Display
Field Contents

Resource Dump of the name of this resource, as stored at the end
of the RSB. The first two columns are the hexadecimal
representation of the name, with the least significant
byte represented by the rightmost two digits in the
rightmost column. The third column contains the
ASCII representation of the name, the least significant
byte being represented by the leftmost character in the
column. Periods in this column represent values that
correspond to nonprinting ASCII characters.

Length Length in bytes of the resource name.

— Processor mode of the name space in which this RSB
resides.

— Owner of the resource. Certain resources, owned by
the operating system, list “System” as the owner.
Locks owned by a group have the number (in octal) of
the owning group in this field.

Granted queue List of locks on this resource that have been granted.
For each lock in the list, SDA displays the number
of the lock and the lock mode in which the lock was
granted.

Conversion queue List of locks waiting to be converted from one mode
to another. For each lock in the list, SDA displays
the number of the lock, the mode in which the lock
was granted, and the mode to which the lock is to be
converted.

Waiting queue List of locks waiting to be granted. For each lock in
the list, SDA displays the number of the lock and the
mode requested for that lock.

Examples
1. SDA> SHOW RESOURCE

SDA-163



System Dump Analyzer
SHOW RESOURCE

Resour ce dat abase

Address of RSB: 807F6120 Group grant node: NL
Parent RSB 806EA180 Conversion grant node: NL
Sub- RSB count : 0 BLKAST count: 0
Val ue block: ~ 806CE510 00000000 00000002 00000002  Seg. # 00000008
Resour ce: 09ED7324 42313146 F11B$si .
Length 10 00000000 00000200  ........ CSID: 00020041
Kernel node 00000000 00000000  ........
System 00000000 00000000  ........
Ganted queue (Lock ID/ G node):

006801AE NL
Conversion queue (Lock ID/ G/Rg node):

*xx EMPTY QUEUE ***
Waiting queue (Lock 1D/ Rg node):

*x% EMPTY QUEUE ***
Address of RSB: 807EB9E0 Group grant node: PW
Parent RSB: 00000000 Conversion grant node: EX
Sub- RSB count : 0 BLKAST count: 1
Val ue block: 00000000 00000003 00000000 0000FFF2  Seq. #  0000027F Not valid
Resour ce: 32245F24 44414853 SHAD$_$2
Length 16  3A31534A 44243435 54$DJS1: CSID: 0002001A
Kernel node 00000000 00000000  ........

00000000 00000000  ........

System

The SHOW RESOURCE command displays information taken from the RSBs of
all resources in the system. For instance, the RSB at 807TEB9EOQ4¢4 is a parent
block with no sub-RSBs. The most restrictive lock granted on this resource is in
protected-write (PW) mode. There is a lock on the conversion queue waiting to be
converted from PW mode to exclusive (EX) mode.

2. SDA> SHOW PROCESS/ LOCKS

Process index: 001C Name: STARTQ Extended PID: 4800011C

Lock data:

Lock id: 0117054F PID: 0001001C Flags:  VALBLK SYNCSTS SYSTEM
Par. id: 00000000 Ganted at PW NOQUOTA

Subl ocks: 0

LKB: 808091A0

Resour ce: 45527624 42313146 F11B$VRE Status: NOQUOTA

Length 18 20205241 4D323053 S02MAR

Kernel node 00000000 00002020  ......

System 00000000 00000000  ........

Process copy of |ock 008209CF on system 0002001

SDA>  SHOW RESOURCE/ LOCKI D=117054F

SDA-164



System Dump Analyzer
SHOW RESOURCE

Resour ce dat abase

Address of RSB: 806BB050 G oup grant node: NL

Parent RSB: 00000000 Conversion grant nmode: NL

Sub- RSB count : 4 BLKAST count: 0

Val ue block: 00960102 0000330B 000735AA 5A020005 Seq. #:  00006D9F
Resour ce: 45527624 42313146 F11B$vRE

Length 18 20205241 4D323053 S02MAR CSID:  0002001A
Kernel node 00000000 00002020  ......

System 00000000 00000000  ........

Ganted queue (Lock ID/ G node):
0117054F PW 00060545 CR

Conversion queue (Lock 1D/ G/Rgq node):
¥** EMPTY QUEUE ***

Wi ting queue (Lock ID/ Rq nmode):
*%x EMPTY QUEUE ***

The SHOW PROCESS/LOCKS command lists all locks associated with

the SDA current process, STARTQ. Its display is identical to that of

the SHOW LOCK command, illustrated in Table SDA-15. The SHOW
RESOURCE/LOCKID=117054F command determines that this particular lock is
on the granted queue in protected-write mode for the resource at 806BB0504¢.

SDA>  SHOW RESOURCE/ NAVE=R\G$
Resource dat abase

Address of RSB: 80EFBE4A0 GGVODE: EX Status: DI RENTR VALID
Parent RSB: 00000000 CGVODE: EX

Sub- RSB count : 2 FGVODE: EX

Lock Count: 1 CSID: 00000000

BLKAST count : 1 RQSEQ\WM 0000

Resour ce: 00030014 24534D52 RMS$.... Valblk: 00000000 00000000
Length 26  4D565841 56020000 ... VAXVM 00000000 00000000
Exec. node 00202035 35305653  SV055 .

Syst em 00000000 00000000 ........ Segnum 00000000

Ganted queue (Lock ID/ G node / Range):
6400004C EX 00000000- FFFFFFFF

Conversion queue (Lock ID/ G node / Range -> Rq node / Range):
¥x EMPTY QUEUE ***

Wi ting queue (Lock ID/ Rq node / Range):
¥ EMPTY QUEUE ***

This example of the SHOW RESOURCE/NAME command displays information
about the resource whose name begins with RMS$.

SDA-165



System Dump Analyzer
SHOW RMS

SHOW RMS

Displays the RMS data structures selected by the SET RMS command to be
included in the default display of the SHOW PROCESS/RMS command.

Format
SHOW RMS

Parameters
None.

Qualifiers
None.

Description
The SHOW RMS command lists the names of the data structures selected for the
default display of the SHOW PROCESS/RMS command.
For a description of the significance of the options listed in the SHOW RMS
display, see the description of the SET RMS command and Table SDA-14.
For an illustration of the information displayed by the SHOW PROCESS/RMS
command, see the examples included in the description of the SHOW PROCESS
command.

Examples

1. SDA> SHOWRMVS

RVS Display Options: |FB,IRB, I DX BDB, BDBSUM ASB, CCB, WCB, FCB, FAB, RAB, NAM
XAB, RLB, BLB, BLBSUM GBD, GBH, FWA, GBDSUM JFB, NWA, RU, DRC, SFSB, GBSB
Display RMS structures for all IFl val ues.

The SHOW RMS command displays the full set of options available for display
by the SHOW PROCESS/RMS command. SDA, by default, selects the full set of
RMS options at the beginning of an analysis.

SDA> SET RMB=(I FB, CCB, \CB)
SDA>  SHOW R\VB

RMS Di splay Options: |FB, CCB, WCB

Display RMS structures for all IFl val ues.
The SET RMS command establishes the IFB, CCB, and WCB as the structures to
be displayed when you issue the SHOW PROCESS/RMS command. The SHOW
RMS command verifies this selection of RMS options.

SDA-166



System Dump Analyzer
SHOW RSPID

SHOW RSPID

Format

Parameters

Qualifier

Description

Displays information about response IDs (RSPIDs) of all SCS connections or,
optionally, a specific SCS connection.

SHOW RSPID [/CONNECTION=cdt-address]

None.

/CONNECTION=cdt-address
Displays RSPID information for the specific SCS connection whose connection
descriptor table (CDT) address is provided in cdt-address.14

Whenever a local system application (SYSAP) requires a response from a remote
SYSAP, the local system assigns a unique number, called an RSPID, to the
response. The RSPID is transmitted in the original request (as a means of
identification), and the remote SYSAP returns the same RSPID in its response to
the original request.

The SHOW RSPID command displays information taken from the response
descriptor table (RDT), which lists the currently open local requests that require
responses from SYSAPs at a remote node. For each RSPID, SDA displays the
following information:

e RSPID value

= Address of the class driver request packet (CDRP), which generally represents
the original request

= Address of the CDT using the RSPID
< Name of the local process using the RSPID

= Remote node from which a response is required (and has not yet been
received)

¥ You can find the cdt-address for any active connection on the system in the CDT
summary page display of the SHOW CONNECTIONS command. CDT addresses are
also stored in many individual data structures related to SCS connections. These data
structures include class driver request packets (CDRPs) and unit control blocks (UCBSs)
for class drivers that use SCS and cluster system blocks (CSBs) for the connection
manager.

SDA-167



System Dump Analyzer
SHOW RSPID

Examples

1. SDA> SHOWRSPID

VAXcl uster data structures

- Summary of Response Descriptor Tabl e(RDT) 8037A4A8 ---

RSPI D CDRP Address CDT Address Local Process Nanme Renot e Node
04C30000 80391780 8037AB50 VWS$DI SK_CL_DRVR SOMHAT
06260001 80804FAQ 8037AF10 VMB$VAXcl ust er WALKI N

0C390002 807E0460 8037AD30 VVB$VAXc| ust er CLEO

The SHOW RSPID command shows the response IDs that are currently open for
all local connections in the VAXcluster system.

2. SDA> SHOW RSPI D/ CONNECTI ON=G37B700

VAXcl uster data structures

- Summary of Response Descriptor Tabl e(RDT) 8037A4A8 ---
RSPI D CDRP Address CDT Address Local Process Nane Renot e Node

08B8001C 807F0300 8037B7D0 VVB$VAXc| ust er METECR
0915001D 807F08A0 8037B7D0 VMB$VAXc! ust er METECR

The SHOW RSPID/CONNECTION=G37B7D0 command displays only those
RSPIDs in use that are associated with the SCS connection whose CDT is at
address 8037B7D0;g.

SDA-168



System Dump Analyzer
SHOW SPINLOCKS

SHOW SPINLOCKS

Format

Parameter

Qualifiers

Displays information taken from the data structures that provide system
synchronization in a multiprocessing environment.

The default qualifiers are /STATIC and /IDYNAMIC.

SHOW SPINLOCKS [/OWNED][/BRIEF | /FULL][/DYNAMIC |/STATIC]
[name | /ADDRESS=expression | INDEX=expression]

name
Name of the spin lock, fork lock, or device lock structure to be displayed.

You can obtain the names of the static system spin locks and fork locks from
Table SDA-22. Device lock names are of the form [node$]lock, where node
optionally indicates the VAXcluster node name (allocation class) and lock
indicates the device and controller identification (for example, HAETAR$DUA).

/ADDRESS=expression

Displays the lock at the address specified in expression. You can use the
/ADDRESS qualifier to display a specific device lock; however, the name of the
device lock is listed as “Unknown” in the display.

/BRIEF

Produces a condensed display of the lock information displayed by default by
the SHOW SPINLOCKS command, including the following: address, spin lock
name or device name, IPL or device IPL, rank, index, ownership depth, number
of waiting CPUs, CPU ID of the owner CPU, and interlock status (depth of
ownership).

/IDYNAMIC
Displays information for all device locks in the system.

/FULL
Displays full descriptive and diagnostic information for each displayed spin lock,
fork lock, or device lock.

/INDEX=expression
Displays the system spin lock whose index is specified in expression. You cannot
use the /INDEX qualifier to display a device lock.

/OWNED

Displays information for all spin locks, fork locks, and device locks owned by the
SDA current CPU. If a processor does not own any spin locks, SDA displays the
following message:

No spinlocks currently owned by CPU xx
The xx represents the CPU ID of the processor.

SDA-169



System Dump Analyzer
SHOW SPINLOCKS

Description

ISTATIC
Displays information for all system spin locks and fork locks.

The SHOW SPINLOCKS command displays status and diagnostic information
about the multiprocessing synchronization structures known as spin locks.

A static spin lock is a spin lock whose data structure is permanently assembled
into the system. Static spin locks are accessed as indexes into a vector of
longword addresses called the spin lock vector, the address of which is
contained in SMP$AR_SPNLKVEC. System spin locks and fork locks are static
spin locks. Table SDA-22 lists the static spin locks.

A dynamic spin lock is a spin lock that is created based on the configuration
of a particular system. One such dynamic spin lock is the device lock SYSGEN
creates when configuring a particular device. This device lock synchronizes
access to the device’s registers and certain UCB fields. The operating system
creates a dynamic spin lock by allocating space from nonpaged pool, rather than
assembling the lock into the system as it does in creating a static spin lock.

See the OpenVMS VAX Device Support Manual®® for a full discussion of the
role of spin locks in maintaining synchronization of kernel mode activities in a
multiprocessing environment.

Table SDA-22 Static Spin Locks

Name Description

QUEUEAST Fork lock for queuing ASTs at IPL 6

FILSYS Lock on file system structures

IOLOCKS8 Fork lock for executing a driver fork process at IPL 8

PR_LK8 Primary CPU's private lock for IPL 8

TIMER Lock for adding and deleting timer queue entries and searching the timer
gueue

JiB Lock for manipulating job nonpaged pool quotas as reflected by the fields
JIBSL_BYTCNT and JIB$L_BYTLM in the job information block (JIB)

MMG Lock on memory management, PFN database, swapper, modified page
writer, and creation of per-CPU database structures

SCHED Lock on process control blocks (PCBs), scheduler database, and mutex
acquisition and release structures

IOLOCK9 Fork lock for executing a driver fork process at IPL 9

PR_LK9 Primary CPU's private lock for IPL 9

IOLOCK10 Fork lock for executing a driver fork process at IPL 10

PR_LK10 Primary CPU’s private lock for IPL 10

IOLOCK11 Fork lock for executing a driver fork process at IPL 11

PR_LK11 Primary CPU'’s private lock for IPL 11

SDA-170

(continued on next page)

15 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.



System Dump Analyzer
SHOW SPINLOCKS

Table SDA-22 (Cont.) Static Spin Locks

Name Description

MAILBOX Lock for sending messages to mailboxes

POOL Lock on nonpaged pool database

PERFMON Lock for 1/0 performance monitoring

INVALIDATE Lock for system space translation buffer (TB) invalidation

VIRTCONS Lock for ownership of the virtual console

HWCLK Lock on hardware clock database, including the quadword containing the
due time of the first timer queue entry (EXE$GQ_1ST_TIME) and the
guadword containing the system time (EXE$GQ _SYSTIME)

MEGA Lock for serializing access to fork-wait queue

MCHECK Lock for synchronizing certain machine error handling

EMB Lock for allocating and releasing error logging buffers

Note

The MCHECK and EMB spin locks, formerly separate spin locks in
previous releases of OpenVMS, have been merged. When you analyze
a crash, you might see one or both names when you display static spin
locks.

For each spin lock, fork lock, or device lock in the system, SHOW SPINLOCKS
provides the following information:

Name of the spin lock (or device name for the device lock)

Address of the spin lock data structure (SPL)

The owner CPU’'s CPU ID

IPL at which allocation of the lock is synchronized on a local processor

Number of nested acquisitions of the spin lock by the processor owning the
spin lock (“*Ownership Depth”)

Rank of the spin lock
Number of processors waiting to obtain the spin lock
Spin lock index (for static spin locks only)

Timeout interval for spin lock acquisition (in terms of 10 milliseconds)

SHOW SPINLOCKS/BRIEF produces a condensed display of this same
information.

If the system under analysis was executing with full-checking multiprocessing
enabled (according to the setting of the MULTIPROCESSING system parameter),
SHOW SPINLOCKS/FULL adds to the spin lock display the last eight PCs at
which the lock was acquired or released. If applicable, SDA also displays the PC
of the last release of multiple, nested acquisitions of the lock.

SDA-171



System Dump Analyzer
SHOW SPINLOCKS

Examples

1. SDA> SHOW SPI NLOCKS
System static spinlock structures

EVB Address : 801B9EF8
Omner CPU ID . None | PL o 1F
Oanership Depth : 0000 Rank : 00

CPUs Wi ting ;0000 Index : 20
Tineout interval 002DC60

MCHECK Address : 801B9F48
Omner CPU ID . None | PL . 1F
Omnership Depth : 0000 Rank : 01

CPUs Wi ting ;0000 Index : 21

Ti meout interval 002DC60

| OLOCK8 Address : 801BA538
Oaner CPU ID . 02 | PL . 08
Omnership Depth : 0001 Rank : 14
CPUs Wi ting : 0000 Index : 34

Ti meout interval 002DC60

%/siem dynani ¢ spinlock structures

HAETARSMBA Address : 801BAL78
Oaer CPU ID : None | PL . 0B
Oanership Depth : 0000 Rank . 08

CPUs Wi ting ;0000 Index : 28

Ti meout interval 002DC60

HAETARSNLA Address : 801BAL78
Oaner CPU ID : None | PL . 08
Oanership Depth : 0000 Rank . 08

CPUs Waiting : 0000 Index : 28

Ti meout interval 002DC60

HAETARSPAA Address : 8063A620
Omer CPU ID . 02 DI PL ;14
Omnership Depth : 0001 Rank ;14

CPUs Wi ting : 0000

Ti neout interval 002DC60

This excerpt illustrates the default output of the SHOW SPINLOCKS
command. Note that the CPU whose CPU ID is 2 owns the fork lock
IOLOCKS8. CPU 2 must have an IPL of at least 8, which is the acquisition
IPL of the fork lock. CPU 2 has no nested ownership of the fork lock. The
rank of IOLOCKS is 1444, indicating that CPU 2 could not own any locks with
a logical rank of 15,4 or higher when it acquired IOLOCKS.

Similarly, while owning IOLOCKS8, CPU 2 cannot obtain any additional spin
locks with a logical rank of 14,4 or lower.

No CPUs are waiting for the fork lock; its index is 344¢.

SDA-172



System Dump Analyzer
SHOW SPINLOCKS

SDA> SHOW SPI NLOCKS/ BRI EF
Address Spinl ock Nane I PL Rank Index Depth #Witing Oaner CPU Interlock

801B9EF8 EMB 1F 00 20 00 0000 None Free
801B9EF8 MCHECK 1F 00 20 00 0000 None Free
801B9F98 MEGA 1F 02 22 00 0000 None Free
801B9FE8 HWCLK 16 03 23 00 0000 None Free
801BA038 VI RTCONS 14 04 24 00 0000 None Free
801BA088 | NVALI DATE 13 05 25 00 0000 None Free
801BA0OD8 PERFMON OF 06 26 00 0000 None Free
801BA128 POCL 0B 07 27 00 0000 None Free
801BA178 MAI LBOX 0B 08 28 00 0000 None Free
801BA1C8 PR LK11 0B 09 29 00 0000 None Free
801BA218 | OLOCK11 0B 0A 2A 00 0000 None Free
801BA268 PR_LK10 OA OB 2B 00 0000 None Free
801BA2B8 | OLOCK10 0A 0C 2C 00 0000 None Free
801BA308 PR _LK9 09 0D 2D 00 0000 None Free
801BA358 | OLOCK9 09 OE 2E 00 0000 None Free
801BA3A8 SCHED 08 OF 2F 00 0000 None Free
801BA3F8 MVG 08 10 30 00 0000 None Free
801BA448 JI B 08 11 31 00 0000 None Free
801BA498 TI MER 08 12 32 00 0000 None Free
801BA4E8 PR _LKS8 08 13 33 00 0000 None Free
801BA538 | OLOCK8 08 14 34 01 0000 02 00
801BA588 FI LSYS 08 15 35 00 0000 None Free
801BA5D8 QUEUEAST 06 16 36 00 0000 None Free
8016A628 ASTDEL 02 17 37 00 0000 None Free

Address Device Name DI PL Rank Index Depth #WMiting Oaner CPU Interlock

801BA178 HAETARSMBA 0B 08 28 00 0000 None Free
801BA178 HAETARSNLA 08 08 28 00 0000 None Free
8063A620 HAETARSPAA 14 14 01 0000 02 00
8063C5C0 HAETARSXEA 15 FF 00 0000 None Free
8063CAA0 HAETARSXGA 15 FF 00 0000 None Free
8063C380 HAETAR$SPEA 14 FF 00 0000 None Free
8063ACA0 HAETARSTXA 15 FF 00 0000 None Free
8063A520 HAETARSLCA 15 FF 00 0000 None Free

801BA538 HAETARSCNA 08 14 34 01 0000 02 00

This excerpt illustrates the condensed form of the display produced in the
first example.

SDA-173



System Dump Analyzer
SHOW SPINLOCKS

3. SDA> SHOW SPI NLOCKS/ OWNED
System static spinlock structures

| OLOCK8 Address : 801BA538
Oaner CPU ID 02 | PL : 08
Omnership Depth : 0001 Rank ;14
CPUs Wi ting : 0000 Index : 34

Ti meout interval 002DC60

Sysi em dynami ¢ spinlock structures

HAETARSPAA Address : 8063A620
Owner CPU ID . 02 DI PL c 14
Omnership Depth : 0001 Rank : 14

CPUs Wi ting ;0000

Ti meout interval 002DC60

HAETARSCNA Address : 801BA538
Owmer CPU ID : 02 | PL . 08
Omnership Depth : 0001 Rank : 14

CPUs Wi ting ;0000 Index : 34

Ti meout interval 002DC60

HAETARSNET Address : 801BA538
Owmner CPU ID 0 02 | PL . 08
Omnership Depth : 0001 Rank : 14

CPUs Wi ting : 0000 Index : 34
Timeout interval 002DC60

HAETARSNDA Address : 801BA538
Omner CPU ID 02 | PL . 08
Omnership Depth : 0001 Rank : 14

CPUs Wi ting ;0000 Index : 34

Tineout interval 002DC60

The SHOW SPINLOCKS/OWNED command shows all owned spin locks in
the system.

SDA-174



4.

System Dump Analyzer
SHOW SPINLOCKS

SDA> SHOW SPI NLOCKS/ FULL
System static spinlock structures

EMB Address : 801B9EF8
Omner CPU ID : None | PL . 1F
Oanership Depth : 0000 Rank . 00
CPUs Wi ting . 0000 Index : 20

Ti meout interval 002DC60

Spi nl ock EMB was |ast acquired or released from
(Mbst recently) 80195146 ERL$WAKE+00089
. 801950EF ERL$WAKE+00032
80195146 ERL$WAKE+00089
801950EF ERL$WAKE+00032
80195146 ERL$WAKE+00089
801950EF ERL$WAKE+00032
. 80195146 ERL$WAKE+00089
(Least recently) 801950EF ERL$WAKE+00032

Last rel ease of mul tiple acquisitions occurred at:
801194F9 EXES$I NSI 0Q+00044

| OLOCK8 Address : 801BA538
Oaner CPU ID ;02 | PL . 08
Oanership Depth : 0001 Rank 14
CPUs Wi ting : 0000 [ndex : 34

Ti meout interval 002DC60

Spi nl ock 1 0LOCK8 was | ast acquired or released from
(Most recently) 801BBE08 EXE$FORKDSPTH+0007E
. 80198EBF EXE$Q OACPPKT+00052
80198E7E EXE$Q QACPPKT+00011
80199BB2 | OC$CHECK_HWw+0032D
80182DE5 LCK$QUEUED EXI T+0001D
80182884 LCK$AR _COMVPAT _TBL+0007C
. 8018357E EXE$DEQ+00189
(Least recently) 80183428 EXE$DEQ+00033

The SHOW SPINLOCKS/FULL command displays a list of the last eight PCs
that have accessed the spin lock. For instance, the fork dispatcher contains
the code that most recently acquired the fork lock.

SDA-175



System Dump Analyzer
SHOW STACK

SHOW STACK

Format

Parameters

Qualifiers

Description

SDA-176

Displays the location and contents of the four process stacks of the SDA current
process and the interrupt stack of the SDA current CPU.

SHOW STACK [range | /qualifier[,...]]

range
Range of memory locations you want to display in stack format. You can express
a range using the following format:

m:n  Range of virtual addresses from m to n
m;n  Range of virtual addresses starting at m and continuing for n bytes

/ALL
Displays the locations and contents of the four process stacks for the SDA current
process and the interrupt stack for the SDA current CPU.

/EXECUTIVE
Shows the executive stack for the SDA current process.

/INTERRUPT
Shows the interrupt stack for the SDA current CPU.

/KERNEL
Shows the kernel stack for the SDA current process.

/SUPERVISOR
Shows the supervisor stack for the SDA current process.

/USER
Shows the user stack for the SDA current process.

The SHOW STACK command, by default, displays the stack that was in use when
the system failed or, in the analysis of a running system, the current operating
stack. For any other process made the SDA current process, the SHOW STACK
command by default shows its current operating stack.

The various qualifiers to the command can display any of the four per-process
stacks for the SDA current process, as well as the interrupt stack for the SDA
current CPU.

You can define SDA process and CPU context by using the SET CPU, SHOW
CPU, SHOW CRASH, SET PROCESS, and SHOW PROCESS commands as
indicated in their command descriptions. A complete discussion of SDA context
control appears in Section 4.



System Dump Analyzer
SHOW STACK

SDA provides the following information in each stack display.

Section

Contents

Identity of stack

Stack pointer

Stack address

Stack contents

Symbols

SDA indicates whether the stack is a process stack
(user, supervisor, executive, or kernel) or the processor
interrupt stack. If the interrupt stack is being displayed,
SDA displays the CPU ID of the processor that owns

it. Similarly, if the SDA current process is currently
scheduled on a processor in the system, SHOW STACK
also specifies the CPU ID of the processor on which the
process is scheduled.

The stack pointer identifies the top of the stack. The
display indicates the stack pointer by the symbol SP =>.

SDA lists all the virtual addresses that the operating
system has allocated to the stack. The stack addresses
are listed in a column that increases in increments of 4
bytes (one longword).

SDA lists the contents of the stack in a column to the
right of the stack addresses.

SDA attempts to display the contents of a location
symbolically, using a symbol and an offset.

If the address is not within FFFg of the value of any
existing symbol, this column is left blank.

If a stack is empty, the display shows the following:

SP =>

Example
SDA> SHOW STACK

Process stacks (on CPU 00)

Current operating stack (USER):

TFF73278
7FF7327C
TFF73280
TFF73284

SP => T7FF73288
7FF7328C
TFF73290
TFF73294
TFF73298

200C0000
00001518
TFF732F0
000187A7

0000060A
00000000
00000003
7FF73800
7TFF73800

(STACK 1S ENPTY)

SGNSC_MAXPGFL+518

RVB$_ECHO+72E
BUGS_NOHDIMT+002

The SHOW STACK command displays a user stack that was the current
operating stack for a process scheduled on CPU 00. The data shown above the
stack pointer might not be valid. The symbol to the right of the columns, BUG$ _
NOHDJMT+002, is the result of the SDA attempt to interpret the contents of the
longword at the top of the stack as a symbol meaningful to the user. In this case,
the value on the stack and the value of BUG$_NOHDJMT are unrelated.

SDA-177



System Dump Analyzer
SHOW SUMMARY

SHOW SUMMARY

Displays a list of all active processes and the values of the parameters used in
swapping and scheduling those processes.

Format
SHOW SUMMARY [/IMAGE]

Parameters

None.

Qualifier
[IMAGE
Causes SDA to display, if possible, the name of the image being executed within
each process.

Description

The SHOW SUMMARY command displays the information in Table SDA-23 for
each active process in the system.

Table SDA-23 Process Information in the SHOW SUMMARY Display

Column Contents

Extended PID 32-bit number that uniquely identifies the process
Indx Index of this process into the PCB array

Process name Name assigned to the process

Username Name of the user who created the process

(continued on next page)

SDA-178



System Dump Analyzer
SHOW SUMMARY

Table SDA-23 (Cont.) Process Information in the SHOW SUMMARY Display

Column Contents
State Current state of the process, one of the following 14 states:
- COM
Computable and resident in memory
- COMO
Computable but outswapped
= CUR
Currently executing?
- CEF
Waiting for a common event flag
- LEF
Waiting for a local event flag
- LEFO

Outswapped and waiting for a local event flag

HIB
Hibernating

HIBO
Hibernating and outswapped

SUSP
Suspended

SUSPO
Suspended and outswapped

PFW

Waiting for a page that is not in memory (page-fault
wait)

FPG

Waiting to add a page to its working set (free-page wait)
COLPG

Waiting for a page collision to be resolved (collided-page
wait); this usually occurs when several processes cause
page faults on the same shared page

MWAIT

Waiting for a system resource (miscellaneous wait)

Pri Current scheduling priority of the process

1For a process in the CUR state executing in a multiprocessing environment, SDA indicates the CPU
ID of the processor on which the process is current. This information, however, might not be accurate
in SHOW SUMMARY displays produced in the analysis of a running system.

(continued on next page)

SDA-179



System Dump Analyzer
SHOW SUMMARY

Table SDA-23 (Cont.) Process Information in the SHOW SUMMARY Display

Column Contents

PCB Address of the process control block

PHD Address of the process header

Wkset Number (in decimal) of pages currently in the working set of

the process

Example

SDA> SHOW SUMVARY/ | MAGE
Current process summary

Extended |ndx Process nanme User name State  Pri PCB PHD Vkset

D IR e T T

33000101 0001 SWAPPER H B 16 8000C3C0 8000C200 0

33000205 0005 _RTAS: S| VAD LEF 4 80482FE0 82120E00 293

33000106 0006 ERRFMI SYSTEM H B 8 80432950 80DB4600 126
$254$DUA200: [ SYS6. SYSCOMMON. | [ SYSEXE] ERRFMT. EXE; 1

33C00107 0007 CACHE SERVER SYSTEM H B 16 80432AC0 81121E00 120
$254$DUA200: [ SYS6. SYSCOMMON. | [ SYSEXE] FI LESERV. EXE; 400

33000108 0008 CLUSTER SERVER SYSTEM H B 10 804331F0 81246600 313

$254$DUA200: [ SYS6. SYSCOWON. ] [ SYSEXE] CSP. EXE; 300

3300010D 000D NETACP DECNET CUR 00 10 80440500 816DB600 1500
$254$DUA200: [ SYS6. SYSCOVVON. ] <SYSEXE>NETACP. EXE; 3
33C0010E 000 EVL DECNET H B 4 8044CDB0 817FCEO0 68

$254$DUA200: [ SYS6. SYSCOWDN. | <SYSEXE>EVL. EXE

The SHOW SUMMARY/IMAGE command describes all active processes in the
system at the time of the system failure. Note that the process NETACP is in the
CUR state on CPU 00 of a multiprocessor system at the time of the failure.

SDA-180



System Dump Analyzer
SHOW SYMBOL

SHOW SYMBOL

Format

Parameter

Qualifier

Description

Examples

Displays the hexadecimal value of a symbol and, if the value is equal to an
address location, the contents of that location.

SHOW SYMBOL [/ALL] symbol-name

symbol-name
Name of the symbol to be displayed. You must provide a symbol-name.

JALL
Displays information about all symbols whose names begin with the characters
specified in symbol-name.

The SHOW SYMBOL/ALL command is useful for determining the values of
symbols that belong to a symbol set, as illustrated in the examples.

SDA> SHOW SYMBOL G
G = 80000000 : 8FBCOFFC

The SHOW SYMBOL command evaluates the symbol G as 800000004 and
displays the contents of address 800000004 as 8FBCOFFC4g.

SDA>  SHOW SYMBOL/ ALL BUG

Synbol s sorted by nane

BUGSBUI LD_HEADE 80002038 => 24A89F16 BUGS_CONSOLRX50 00000640 => 10A2020E
BUGSDUWMP_REG ST 80002040 => 24A89F16 BUGS_CONTRACT ~ 000000C0

BUGSFATAL 80002048 => 24A89F16 BUGS_CPUBUSYWAI 00000780 => 6501FB30
BUGSL_BUGCHK_FL 80004108 => 00000001 BUGS_CPUCEASED 000005E8 => 5EDD0000
BUGSL_FATAL_SPS 8000410C => 7FFE7C6C BUGS_CPUEXIT  000006B8 => 218FD007
BUGSREAD_ERR RE 80002050 => 24A89F16 BUGS_CPUSANI TY 00000778 => 8A031164
BUGSREBOOT 80002058 => 6E9E9F17 BUGS_CTERM 00000678 => 00000004

BUGSTABLE 8000D09E => 00280001 BUGS_CWBERR 00000698 => 004CA14E

This example shows the display produced by the SHOW SYMBOL/ALL
command. SDA searches its symbol table for all symbols that begin with the
string “BUG” and displays the symbols and their values. Although certain
values equate to memory addresses, it is doubtful that the contents of those
addresses are actually relevant to the symbol definitions in this instance.

SDA-181



System Dump Analyzer
SHOW TRANSACTIONS

SHOW TRANSACTIONS

Format

Qualifiers

Examples

Displays information about all transactions on the node or about a specified
transaction.

SHOW TRANSACTIONS [/qualifier],...]]

/DISPLAY=(item [,...])
Specifies the type of information to be displayed. The argument to /DISPLAY can
be either a single item or a list. The following items can be specified.

Item Description

ALL All transaction control structures for the specified
transaction. This is the default behavior.

BRANCHES Control structures for branches of the specified
transaction.

PARTICIPANTS Control structures for resource managers participating
in the specified transaction.

THREADS Control structures for threads of the specified
transaction.

TRANSACTIONS Transaction control structures for the specified

transaction.

/SUMMARY
Displays statistics for transactions on the node. The /ISUMMARY qualifier cannot
be used with the /TID or /DISPLAY qualifier.

/TID=tid

Specifies the transaction for which information is to be displayed. If you omit the
/TID qualifier, the SHOW TRANSACTIONS command displays information about
all transactions on the node.

1. SDA> SHOW TRANSACTI ONS/ Tl D=FAC21DE2- BA38- 0092- 8FAG- 00000000B24B

The SHOW TRANSACTIONS command displays all the transaction control
structure information for the transaction identified by the transaction identifier.

2. SDA> SHOW TRANSACTI ONS/ DI SPLAY=( PARTI Cl PANTS, BRANCHES)

SDA-182

The SHOW TRANSACTIONS command displays the transaction branch and
resource manager information for all transactions on the node.



System Dump Analyzer
SPAWN

SPAWN

Format

Parameter

Qualifiers

Creates a subprocess of the process currently running SDA, copying the context
of the current process to the subprocess and, optionally, executing within the
subprocess a specified command.

SPAWN [/qualifier[,...]] [command]

command
Name of the command that you want executed by the subprocess.

/INPUT=filespec

Specifies an input file containing one or more command strings to be executed
by the spawned subprocess. If you specify a command string with an input file,
the command string is processed before the commands in the input file. Once
processing is complete, the subprocess is terminated.

/INOLOGICAL_NAMES

Specifies that the logical names of the parent process are not to be copied to the
subprocess. The default behavior is that the logical names of the parent process
are copied to the subprocess.

INOSYMBOLS

Specifies that the DCL global and local symbols of the parent process are not
to be passed to the subprocess. The default behavior is that these symbols are
passed to the subprocess.

INOTIFY

Specifies that a message is to be broadcast to SYSSOUTPUT when the subprocess
completes processing or aborts. The default behavior is that such a message is
not sent to SYS$OUTPUT.

When you use this qualifier, you must also specify the /INOWAIT qualifier.

INOWAIT

Specifies that the system is not to wait until the subprocess is completed before
allowing more commands to be specified. This qualifier allows you to specify new
commands while the spawned subprocess is running. If you specify /NOWAIT, you
should use /OUTPUT to direct the output of the subprocess to a file to prevent
more than one process from simultaneously using your terminal.

The default behavior is that the system waits until the subprocess is completed
before allowing more commands to be specified.

/OUTPUT=filespec

Specifies an output file to which the results of the SPAWN operation are written.
You should specify an output other than SYS$SOUTPUT whenever you specify
INOWAIT to prevent output from the spawned subprocess from being displayed
while you are specifying new commands. If you omit the /OUTPUT qualifier,
output is written to the current SYS$OUTPUT device.

SDA-183



System Dump Analyzer

SPAWN
/PROCESS=process-name
Specifies the name of the subprocess to be created. The default name of the
subprocess is username_n, where username is the user name of the parent
process.

Example

SDA> SPAWN

$ MIL

$ DR

$ LO

Process SYSTEM 1 |ogged out at 5- MAR-1993 15:42:23.59
SDA>

This example uses the SPAWN command to create a subprocess that issues DCL
commands to invoke the Mail utility. The subprocess then lists the contents of a
directory before logging out to return to the parent process executing SDA.

SDA-184



System Dump Analyzer
VALIDATE QUEUE

VALIDATE QUEUE

Format

Parameter

Qualifiers

Description

Validates the integrity of the specified queue by checking the pointers in the
queue.

VALIDATE QUEUE [address] [/qualifier],...]]

address
Address of an element in a queue.

If you specify a period (.) as the address, SDA uses the last evaluated expression
as the queue element’s address.

If you do not specify an address, the VALIDATE QUEUE command determines
the address from the last issued VALIDATE QUEUE command in the current
SDA session.

If you do not specify an address, and no queue has previously been specified,
SDA displays the following error message:

%BDA- E- NOQUEUE, no queue has been specified for validation

IMAXIMUM_LINKS=nn
Specifies the number of entries in the queue that are to be validated.

/SELF_RELATIVE
Specifies that the selected queue is a self-relative queue.

The VALIDATE QUEUE command uses the forward and backward pointers in
each element of the queue to make sure that all such pointers are valid and
that the integrity of the queue is intact. If the queue is intact, SDA displays the
following message:

Queue is conplete, total of n elenments in the queue

In these messages, n represents the number of entries the VALIDATE QUEUE
command has found in the queue.

If SDA discovers an error in the queue, it displays one of the following error
messages:

Error in forward queue linkage at address nnnnnnnn after tracing x elenents
Error conparing backward link to previous structure address (nnnnnnnn)
Error occurred in queue elenent at address oooooooo after tracing pppp el enents

These messages can appear frequently when the VALIDATE QUEUE command

is used within an SDA session that is analyzing a running system. In a running
system, the composition of a queue can change while the command is tracing its
links, thus producing an error message.

SDA-185



Examples

SDA-186

If there are no entries in the queue, SDA displays this message:

The queue is enpty

1.

SDA> VALI DATE QUEUE SCH$GQ LEFWQ MAXI MUM LI NKS=3
The queue is consistent through 3 el enents

This example validates three elements in the SCH$GQ _LEFWQ queue.

SDA> VALI DATE QUEUE/ SELF_RELATI VE | OC3GL_| RPFL
Queue is conplete, total of 159 elenments in the queue

This example validates the self-relative queue that is the IRP pool list. The
validation is successful and determines that there are 159 IRPs in the list.



A

Access violations, SDA-21, SDA-23
ACP (ancillary control process), SDA-104
Addition operator (+), SDA-16
Addresses, examining, SDA-53
/ADDRESS qualifier, SDA-90, SDA-103,
SDA-142
/ALL qualifier, SDA-53, SDA-121, SDA-131,
SDA-149, SDA-161, SDA-181
SHOW PAGE_TABLE command, SDA-126
SHOW STACK command, SDA-176
AMB symbol, SDA-17
ANALYZE/CRASH_DUMP/RELEASE command,
SDA-5
ANALYZE/CRASH_DUMP command, SDA-9,
SDA-35
ANALYZE/SYSTEM command, SDA-3, SDA-35
ANALYZE command, SDA-35
/CRASH_DUMP qualifier, SDA-37
/IRELEASE qualifier, SDA-38
/ISYMBOL qualifier, SDA-39
ISYSTEM qualifier, SDA-40
Analyzing a crash dump
See Crash dumps
See System failures
Analyzing a running system, SDA-11, SDA-40
privileges required, SDA-11, SDA-35
AND operator (&), SDA-16
AP (argument pointer), SDA-17
AP symbol, SDA-17
AQBs (ACP queue blocks), SDA-105
Arithmetic operators, SDA-16
shifting (@), SDA-17
ASBs (asynchronous save blocks), SDA-79
ASTLVL register, displaying, SDA-95
AST routines, global symbols, SDA-63
ATTACH command, SDA-45

B

Backup utility (BACKUP), copying system dump
file, SDA-7
Bad page list, displaying, SDA-131

Index

/BAD qualifier, SDA-131
BDBs (buffer descriptor blocks), SDA-79
BDBSUM (BDB summary page), SDA-79
Binary operators, SDA-16 to SDA-17
BLBs (buffer lock blocks), SDA-79
BLBSUM (BLB summary page), SDA-79
Bugchecks

code, SDA-19

fatal conditions, SDA-20 to SDA-24

global symbols, SDA-63

halt/restart, SDA-9

handling routines, SDA-63

identifying, SDA-25

reasons for taking, SDA-99
/BUS qualifier, SDA-142

C

ICACHED qualifier, SDA-121
Call frames
displaying in SDA, SDA-82
following a chain, SDA-82
Cancel 1/0O routine, SDA-104
CCBs (channel control blocks), displaying in SDA,
SDA-79
CDDBs (class driver data blocks), SDA-105
CDDB symbol, SDA-17
CDRPs (class driver request packets), SDA-90,
SDA-167
CDTs (connection descriptor tables), SDA-167
displaying contents, SDA-90
displaying SDA information, SDA-90
/CHANNEL qualifier, SDA-142, SDA-154
CLUBs (cluster blocks), SDA-86
CLUDCBsS (cluster quorum disk control blocks),
SDA-86
CLUFCBs (cluster failover control blocks),
SDA-86
Cluster management code, global symbols,
SDA-63
CLUSTRLOA.STB file, SDA-63
CLUSTRLOA symbol, SDA-17
Condition-handling routines, global symbols,
SDA-63
Condition values
evaluating, SDA-51
examining, SDA-53

Index-1



/CONDITION_VALUE qualifier, SDA-51
Connection manager, displaying SDA information,
SDA-85
/CONNECTION qualifier, SDA-167
Connections
displaying SDA information about, SDA-142,
SDA-167
Connections, displaying SDA information about,
SDA-90
Context
SDA CPU, SDA-14
SDA process, SDA-12
Control blocks, formatting, SDA-58
Control region, SDA-18
base register, SDA-18
examining, SDA-54
length register, SDA-18
page table, displaying, SDA-150
Control region operator (H), SDA-16
COPY command, SDA-5, SDA-6, SDA-46
CPU context
changing, SDA-94
SDA current, SDA-71
using the SET PROCESS command,
SDA-77
using the SHOW CPU command, SDA-94
using the SHOW CRASH command,
SDA-98
using the SHOW PROCESS command,
SDA-149
displaying, SDA-94
CPU identification number, SDA-94
CPULOA.EXE file, global symbols, SDA-63
Crash dumps

See System failures
file headers, SDA-112
incomplete, SDA-9
privileges required, SDA-35
requirements, SDA-8
short, SDA-9
/CRASH_DUMP qualifier, SDA-9
CRBs (channel request blocks), SDA-104
CRB symbol, SDA-17
CREATE command, SDA-4
CSBs (cluster system blocks), SDA-85, SDA-90
/CSID qualifier, SDA-85
CSIDs (cluster system identification numbers),
SDA-85, SDA-162
Current location symbol (.), SDA-17

D

Data structures
formatting, SDA-58
stepping through a linked list, SDA-67

Index—2

DCLDEF.STB file, SDA-63
DCL interpreter, global symbols, SDA-63
DDBs (device data blocks), SDA-104
DDB symbol, SDA-17
DDTs (driver dispatch tables), SDA-104
DDT symbol, SDA-17
Decimal value of an expression, SDA-51
DECnet data structures, global symbols, SDA-63
DEFINE command, SDA-47
Device driver routines, address, SDA-104
Device drivers

base address of driver prologue table (DPT),

SDA-18

locating, SDA-18

locating a failing instruction, SDA-27
/IDEVICE qualifier, SDA-142
Devices, displaying SDA information, SDA-103
Division operator (/), SDA-17
DPT base address, SDA-27
DPTs (driver prologue tables), SDA-104
DRIVER symbol

See nnDRIVER symbol
DUMPBUG system parameter, SDA-4, SDA-32
Dump files

analyzing, SDA-35

copying the contents, SDA-46
DUMPSTYLE system parameter, SDA-6
DUMP subset, SDA-6

E

/ECHO qualifier, DEFINE command, SDA-48
ERRORLOG.EXE file, SDA-63
ERRORLOGBUFFERS system parameter, SDA-4
Error logging

global symbols, SDA-63

routines, SDA-63
ESP symbol, SDA-18
EVALUATE/PSL command, SDA-26
EVALUATE command, SDA-51
Event flag routines, global symbols, SDA-63
EVENT_FLAGS_AND_ASTS.EXE file, global

symbols, SDA-63
EXAMINE/INSTRUCTION command, SDA-26
EXAMINE command, SDA-20, SDA-28, SDA-53
EXCEPTION.EXE file, global symbols, SDA-63
Exception-handling routines, global symbols,
SDA-63

Exceptions

fatal, SDA-20

identifying causes of, SDA-25
Execute procedure (@) command, SDA-44
Executive images

contents, SDA-63, SDA-110

global symbols, SDA-62




/IEXECUTIVE qualifier, SDA-62, SDA-176
Executive stack pointer, SDA-18

EXIT command, SDA-57

Expressions, SDA-15, SDA-19
Expressions, evaluating, SDA-51

F

FABs (file access blocks), SDA-79

Fatal exceptions, SDA-20

FATALEXCPT bugcheck, SDA-21

FCBs (file control blocks), SDA-79

Floating-point emulation code, base address,
SDA-18

FORMAT command, SDA-29, SDA-58, SDA-67

FPEMUL symbol, SDA-18

FP symbol, SDA-18

Frame pointers, SDA-18

Free page list, displaying, SDA-131

/FREE qualifier, SDA-131, SDA-135

FWAs (file work areas), SDA-79

G

GBDs (global buffer descriptors), summary page,
SDA-79

GBHs (global buffer headers), SDA-79

GBSBs (global buffer synchronization blocks),
SDA-79

Global page tables, displaying, SDA-126

/GLOBAL qualifier, SDA-126

G operator, SDA-16

G symbol, SDA-18

H

/HEADER qualifier, SDA-135

HELP command, SDA-60

HELP command, recording output, SDA-74
Hexadecimal value of an expression, SDA-51
H operator, SDA-16

H symbol, SDA-18

1/O databases, displaying SDA information,
SDA-103

ICCS register, displaying, SDA-95
IDBs (interrupt dispatch blocks), SDA-104
/1D qualifier, SDA-149
IDXs (index descriptors), SDA-79
IFABs (internal file access blocks), SDA-79
IFIs (internal file identifiers), SDA-79
/IF_STATE qualifier, SDA-48
Image activator

global symbols, SDA-63

Image activator, global symbol, SDA-63

Image 1/O structures, SDA-80

/IMAGE qualifier, SDA-178

/IIMAGES qualifier, SDA-149

IMAGE_MANAGEMENT.EXE file, global symbols,
SDA-63

IMGDEF.STB file, SDA-63

/INDEX qualifier, SDA-76, SDA-149

/INPUT qualifier, SDA-183

/INSTRUCTION qualifier, on EXAMINE command,
SDA-53

Interlocked queues, validating, SDA-185

/INTERRUPT qualifier, SDA-176

Interrupt stack, displaying contents, SDA-176

INVEXCEPTN bugcheck, SDA-21

I0_ROUTINES.EXE file, global symbols, SDA-64

IPL$_ASTDEL value, PGFIPLHI bugcheck,
SDA-23

IRABSs (internal record access blocks), SDA-79

IRPs (/O request packets), SDA-104

IRP symbol, SDA-18

J

JFBs (journaling file blocks), SDA-79
JIBs (job information blocks), SDA-152
JIB symbol, SDA-18

K

/KERNEL qualifier, SDA-176
Kernel stacks
displaying contents, SDA-176
pointer, SDA-18
IKEY qualifier, SDA-48
Keys (in records), defining for SDA, SDA-47
KSP symbol, SDA-18

L

Linker map, use in crash dump analysis, SDA-20
LKBs (lock blocks)
definition, SDA-122
displaying only cached, SDA-121
LMF$GROUP_TABLE.EXE file, global symbols,
SDA-64
LNM symbol, SDA-18
Location in memory
examining, SDA-53
SDA default, SDA-53
translating to MACRO instruction, SDA-53
/LOCKID qualifier, SDA-161
LOCKING.EXE file, SDA-64
Lock management routines, global symbols,
SDA-64

Index-3



Lock manager, displaying SDA information,
SDA-121
Lock mode, SDA-162
Locks, displaying SDA information, SDA-161
/LOCKS qualifier, SDA-150
Logical operators, SDA-16
AND (&), SDA-16
NOT (#), SDA-16
OR (] ) SDA-16
XOR (\), SDA-16
LOGICAL_NAMES.EXE file, global symbols,
SDA-64

M

MA780 multiport memory, configuring a dump file
for, SDA-5
Machine check code, base address, SDA-18
MACRO instruction, formatting memory with
SDA, SDA-53
Mathematical operators, SDA-16
MCHK symbol, SDA-18
Mechanism arrays, SDA-21, SDA-25
Memory
contents of a block
formatting, SDA-58
locations
decoding, SDA-55
examining, SDA-53, SDA-54
regions, SDA-56
IMESSAGE qualifier, SDA-142
MESSAGE_ROUTINES.EXE file, global symbols,
SDA-64
Modified page list, displaying, SDA-131
/IMODIFIED qualifier, SDA-131
Modules, finding failing, SDA-27
MSCP server code, base address, SDA-18
MSCP symbol, SDA-18
Multiplication operator (*), SDA-16
Multiprocessing, global symbols, SDA-64
Multiprocessors
analyzing crash dumps, SDA-12
displaying synchronization structures,
SDA-169

N

NAMs (name blocks), SDA-79

Negative operator (-), SDA-16

NETDEF.STB file, SDA-63

nnNDRIVER symbol, SDA-18

INODE qualifier, SDA-85, SDA-90

INOLOGICAL_NAMES qualifier, SDA-183

Nonpaged dynamic storage pool, displaying
contents, SDA-135

INONPAGED qualifier, SDA-135

Index—4

INOSKIP qualifier, SDA-54
INOSUPPRESS qualifier, SDA-54
/INOSYMBOLS qualifier, SDA-183
INOTIFY qualifier, SDA-183

NOT operator (#), SDA-16
INOWAIT qualifier, SDA-183

NWAs (network work areas), SDA-79

O

OpenVMS RMS

See RMS
Operators

precedence of, SDA-16, SDA-17
ORB symbol, SDA-18
OR operator (| ), SDA-16
/OUTPUT qualifier, SDA-183

P

PFNs (page frame numbers)

POBR register, displaying, SDA-95

POBR symbol, SDA-18

POLR register, displaying, SDA-95

POLR symbol, SDA-18

PO page table, displaying, SDA-150

/PO qualifier, SDA-150

PO region, examining, SDA-54

P1BR register, displaying, SDA-95

P1BR symbol, SDA-18

P1LR register, displaying, SDA-95

P1LR symbol, SDA-18

P1 page table, displaying, SDA-150

/P1 qualifier, SDA-54, SDA-150

P1 region, examining, SDA-54

Paged dynamic storage pool, displaying contents,
SDA-135

/IPAGED qualifier, SDA-135

Page faults, illegal, SDA-23

Page files

See SYS$SYSTEM:PAGEFILE.SYS file
using as system dump file, SDA-8
Page tables
displaying, SDA-150
Page tables, displaying, SDA-126
PAGE_MANAGEMENT.EXE file, global symbols,
SDA-64
/IPAGE_TABLES qualifier, SDA-150
Parentheses (), as precedence operators, SDA-17
IPARENT qualifier, SDA-45
/IPARTICIPANTS qualifier, SDA-150
PBs (path blocks), SDA-104
PCBB register, displaying, SDA-95
/PCB qualifier, SDA-150
PCBs (process control blocks), SDA-180
displaying, SDA-150, SDA-151
hardware, SDA-153



PCB symbol, SDA-18
PCs (program counters), SDA-18
PCs (program counters), in a crash dump,
SDA-19
PC symbol, SDA-18
PDTs (port descriptor tables), SDA-142
PDT symbol, SDA-18
PFN database, SDA-126
PFN database, displaying, SDA-131
PGFIPLHI bugcheck, SDA-23
/PHD qualifier, SDA-150
PHDs (process headers), SDA-180
PHDs (process headers), displaying, SDA-150
PHD symbol, SDA-18
PID numbers
SDA uses to extract correct index, SDA-149
Pool lists
displaying contents, SDA-135
statistics about, SDA-135
Port drivers, displaying SDA information,
SDA-85
Ports, displaying SDA information, SDA-142
Positive operator (+), SDA-16
Precedence operators, parentheses used as,
SDA-17
PRIMITIVE_IO.EXE file, global symbols, SDA-64
Process contexts, changing, SDA-71, SDA-76,
SDA-98, SDA-149
Process control region, SDA-18
Process control region, operatior (H), SDA-16
Processes
channel, SDA-149
displaying
SDA information, SDA-149, SDA-178
examining hung, SDA-11
image, SDA-178
listening, SDA-86
lock, SDA-150
scheduling state, SDA-153, SDA-179
spawning a subprocess, SDA-183
Process indexes, SDA-149
Process names, SDA-149
Processor context, changing, SDA-71, SDA-77,
SDA-94, SDA-98, SDA-149
Processor-specific loadable code, base address,
SDA-18
Processor status longwords
See PSLs
Processor types, displaying, SDA-95
Process-permanent 1/O structures, SDA-80
/PROCESS qualifier, SDA-184
PROCESS_MANAGEMENT.EXE file, global
symbols, SDA-64
/PROCESS_SECTION_TABLE qualifier, SDA-150
Program regions
base register, SDA-18
displaying page tables, SDA-150
examining, SDA-54

Program regions (cont'd)
length register, SDA-18
/PSL qualifier, SDA-54
PSLs (processor status longwords)
evaluating, SDA-26, SDA-51
examining, SDA-54
symbol, SDA-18
/PST qualifier, SDA-150
PSTs (process section tables) displaying, SDA-150
IPTE qualifier, SDA-51, SDA-54
PTEs (page table entries)
evaluating, SDA-51
examining, SDA-54
2P_CDDB symbol, SDA-17
2P_UCB symbol, SDA-17

Q

Queues
stepping through, SDA-67
validating, SDA-185

R

RABs (record access blocks), SDA-80
Radixes, default, SDA-16
Radix operators, SDA-16
RDTs (response descriptor tables), SDA-167
READ/EXECUTIVE command, SDA-20
READ command, SDA-62
READ command, SYS$DISK, SDA-63
Recovery unit system services, global symbols,
SDA-64
RECOVERY_UNIT_SERVICES.EXE file, global
symbols, SDA-64
Registers
displaying, SDA-94, SDA-150
general, SDA-18
/IREGISTERS qualifier, SDA-150
/RELEASE qualifier, SDA-5
/RELOCATE qualifier, SDA-62
REPEAT command, SDA-67
Report system event, global symbols, SDA-64
Resources, displaying SDA information, SDA-161
Ring buffer, nonpaged pool history, SDA-135
/RING_BUFFER qualifier, SDA-135
RLBs (record lock blocks), SDA-80
RMS
data structures shown by SDA, SDA-79
displaying data structures, SDA-151, SDA-166
global symbols, SDA-63, SDA-64
image
base address, SDA-18
symbol, SDA-18
RMS.EXE file, SDA-64
RMSDEF.STB file, SDA-63

Index-5



IRMS qualifier, SDA-151

RSBs (resource blocks), SDA-122, SDA-161

RSPID (response ID), displaying SDA information,
SDA-167

RUBs (recovery unit blocks), SDA-80

RUFBs (recovery unit file blocks), SDA-80

RUSBSs (recovery unit stream blocks), SDA-80

RWAITCNT symbol, SDA-18

S

SO region, examining, SDA-54
SAVEDUMP system parameter, SDA-5
SBR register, displaying, SDA-95
SBs (system blocks), SDA-86, SDA-104
SB symbol, SDA-18
SCBB register, displaying, SDA-95
Schedulers, global symbols, SDA-64
SCS (System Communications Services)
base address, SDA-18
displaying SDA information, SDA-85, SDA-86,
SDA-90, SDA-142, SDA-167
global symbols, SDA-63
SCSDEF.STB file, SDA-63
SCSLOA symbol, SDA-18
/SCS qualifier, SDA-85
SDASINIT logical name, SDA-10
SDA current CPU
changing, SDA-14
displaying, SDA-176
implicitly setting using /SYSTEM qualifier,
SDA-149
implicitly setting using SHOW CRASH
command, SDA-98
selecting using SET CPU command, SDA-71
selecting using SET PROCESS command,
SDA-77
using the SHOW CPU command, SDA-94
SDA current process
changing, SDA-12
changing using SHOW CRASH command,
SDA-98
displaying, SDA-176
implicitly changed, SDA-14, SDA-71
implicitly setting using /SYSTEM qualifier,
SDA-149
selecting using SET PROCESS command,
SDA-76
SDA symbol table, SDA-17
building, SDA-10
expanding, SDA-10
SEARCH command, SDA-69
SECURITY.EXE file, global symbols, SDA-64
Self-relative queue, validating, SDA-185
/ISELF_RELATIVE qualifier, SDA-185
SET CPU command, SDA-14, SDA-71

Index—6

SET CPU command, analyzing a running system,
SDA-11

SET LOG command, SDA-74

SET LOG command, compared with SET OUTPUT
command, SDA-74

SET NOLOG command, SDA-74

SET OUTPUT command, SDA-75

SET OUTPUT command, compared with SET LOG
command, SDA-74

SET PROCESS command, SDA-12, SDA-76

SET RMS command, SDA-79

ISET_STATE qualifier, SDA-48

SFSBs (shared file synchronization blocks),
SDA-80

Shadow sets, displaying SDA information,
SDA-105

Shifting operator (@), SDA-17

SHOW CALL_FRAME command, SDA-68,
SDA-82

SHOW CLUSTER command, SDA-85

SHOW CONNECTIONS command, SDA-90

SHOW CPU command, SDA-14, SDA-T71,
SDA-94

analyzing a running system, SDA-11

SHOW CRASH command, SDA-14, SDA-19,
SDA-21, SDA-71, SDA-98

SHOW CRASH command, analyzing a running
system, SDA-11

SHOW DEVICE command, SDA-20, SDA-27,
SDA-103

SHOW EXECUTIVE command, SDA-20,
SDA-110

SHOW HEADER command, SDA-112

SHOW LAN command, SDA-113

SHOW LOCK command, SDA-121

SHOW LOGS command, SDA-125

SHOW MEMORY command, SDA-4

SHOW PAGE_TABLE command, SDA-26,
SDA-126

SHOW PFN_DATA command, SDA-131

SHOW POOL command, SDA-135

SHOW PORTS command, SDA-142

SHOW PROCESS/ALL command, SDA-152

SHOW PROCESS/LOCKS command, SDA-121

SHOW PROCESS/RMS command, SDA-166

SHOW PROCESS/RMS command, selecting
display options, SDA-80

SHOW PROCESS command, SDA-77, SDA-149

SHOW RESOURCE command, SDA-121,
SDA-161

SHOW RMS command, SDA-166

SHOW RSPID command, SDA-167

SHOW SPINLOCKS command, SDA-170

SHOW STACK command, SDA-25, SDA-176

SHOW SUMMARY command, SDA-149,
SDA-178



SHOW SYMBOL command, SDA-181

SHOW TRANSACTIONS command, SDA-182
Shutdown, operator-requested, SDA-7

SID register, displaying, SDA-95

Signal array, SDA-22

SISR register, displaying, SDA-95
Site-specific startup procedure

See SYSSMANAGER:SYSTARTUP_VMS.COM
SLR register, displaying, SDA-95
SPAWN command, SDA-183
Spin locks
displaying SDA information, SDA-169
owned, SDA-95
SPRs (Software Performance Reports), SDA-3,
SDA-31
SP symbol, SDA-18
SPTs (system page tables)
displaying, SDA-26, SDA-126
in system dump file, SDA-4, SDA-9
SSP symbol, SDA-18
SSRVEXCEPT bugcheck, SDA-21
Stack frames
displaying in SDA, SDA-82
following a chain, SDA-82
Stack pointer, SDA-18
Stacks, displaying contents, SDA-176
Start 1/O routine, SDA-104
ISTATISTICS qualifier, SDA-135
Subprocesses, SDA-183
Subtraction operator (-), SDA-16
/ISUMMARY qualifier, SDA-136
/SUPERVISOR qualifier, SDA-176
Supervisor stack
displaying contents, SDA-176
pointer to, SDA-18
Swapper, global symbols, SDA-65
Symbols, SDA-17 to SDA-19
defining
for SDA, SDA-47
displaying, SDA-19
evaluating, SDA-181
finding in memory location, SDA-27
listing, SDA-181
loading into the SDA symbol table, SDA-62
name, SDA-17, SDA-47
representing executive modules, SDA-110
user-defined, SDA-47
SYMBOLS qualifier, for SDA EVALUATE
command, SDA-51
Symbol table files, reading into SDA symbol table,
SDA-62
Symbol tables

See SDA symbol table

See system symbol table
specifying an alternate SDA, SDA-39

SYS$DISK logical name, SDA-63
SYS$MANAGER:SYSTARTUP_VMS.COM
command procedure
invoking SDA, SDA-7
producing an SDA listing, SDA-7
releasing page file blocks, SDA-5
SYS$SYSTEM:OPCCRASH.COM command
procedure
involvement in writing crash dump, SDA-7
SYS$SYSTEM:PAGEFILE.SYS file, SDA-8,
SDA-32
See System dump files
as dump file, SDA-5
releasing blocks containing a crash dump,
SDA-38
SYS$SYSTEM:REQSYSDEF.STB file, SDA-8,
SDA-10
SYS$SYSTEM:SHUTDOWN.COM command
procedure, involvement in writing crash dump,
SDA-7
SYS$SYSTEM:SYS.EXE file, SDA-62
SYS$SYSTEM:SYS.EXE file, contents, SDA-63,
SDA-110
SYS$SYSTEM:SYS.STB file, SDA-8, SDA-10,
SDA-11, SDA-20
SYS$SYSTEM:SYSDEF.STB file, SDA-10
SYS$SYSTEM:SYSDUMP.DMP file, SDA-32

See System dump files
protection, SDA-7
size of, SDA-4
SYSAP (system application), SDA-167
ISYSAP qualifier, SDA-90
SYSDEVICE.EXE file, global symbols, SDA-64
SYSGETSYI.EXE file, global symbols, SDA-64
SYSLICENSE.EXE file, global symbols, SDA-64
SYSLOA symbol, SDA-18
SYSMSG.EXE file, global symbols, SDA-64
System Dump Analyzer utility (SDA)
commands, SDA-15 to SDA-19
exiting, SDA-57
System dump files, SDA-4 to SDA-6
copying, SDA-6
header, SDA-7
mapping physical memory to, SDA-9
requirements for analysis, SDA-8
saving, SDA-6
size, SDA-4
System failures
analyzing, SDA-19 to SDA-31
causing, SDA-31 to SDA-35
diagnosing from PC contents, SDA-19
example, SDA-24 to SDA-31
summary, SDA-98
System hang, SDA-31
System images
contents, SDA-63, SDA-110
global symbols, SDA-62

Index—7



System management, creating a crash dump file,
SDA-4
System map, SDA-20
System message routines, global symbols,
SDA-64
System page file
as dump file, SDA-5
releasing blocks containing a crash dump,
SDA-38
System page tables

See SPTs
System processes, SDA-76
ISYSTEM qualifier, SDA-54, SDA-76, SDA-126,
SDA-131, SDA-151
System region, examining, SDA-54
Systems
analyzing running, SDA-3, SDA-11, SDA-35
investigating performance problems, SDA-11
System space base address, SDA-18
System space operator (G), SDA-16
System symbol table, SDA-8, SDA-17
System time quadword, examining, SDA-54
SYSTEM_PRIMITIVES.EXE file, global symbols,
SDA-64
SYSTEM_SYNCHRONIZATION.EXE file, global
symbols, SDA-64

T

TCPIP$BGDRIVER.STB, global symbols, SDA-64
TCPIPSINTEETACP.STB, global symbols,
SDA-64
TCPIPSINTERNET_SERVICES.STB, global
symbols, SDA-64
TCPIPSNET_GLOBALS.STB file, SDA-63
TCPIP$SNFS_GLOBALS.STB file, SDA-63
TCPIP$SNFS_SERVICES.STB file, SDA-65
TCPIP$PROXY_GLOBALS.STB file, SDA-63
TCPIP$PROXY_SERVICES.STB file, SDA-65
TCPIP$PWIPACP.STB, global symbols, SDA-65
TCPIP$SPWIPDRIVER.STB, global symbols,
SDA-65
TCPIP$PWIP_GLOBALS.STB file, SDA-63
TCPIP$TNDRIVER.STB, global symbols, SDA-65
TCPIP$TN_GLOBALS.STB file, SDA-63
Terminal keys, defining for SDA, SDA-47
ITERMINATE qualifier, SDA-49
ITIME qualifier, SDA-54

Index—8

TMSCP server code, base address, SDA-18
TMSCP symbol, SDA-18
ITRANSACTIONS qualifier, SDA-151
ITYPE qualifier, SDA-58, SDA-136

U

UCBs (unit control blocks), SDA-90

UCB symbol, SDA-18

Unary operators, SDA-16

/USER qualifier, SDA-176

User stacks
displaying contents, SDA-176
pointer, SDA-19

USP symbol, SDA-19

V

VALIDATE QUEUE command, SDA-185

VAXcluster environments
base address of loadable code, SDA-17
displaying SDA information, SDA-85
summary display, SDA-85

VCBs (volume control blocks), SDA-105

VCB symbol, SDA-19

IVC qualifier, SDA-142

IVECTOR_REGS qualifier, SDA-152

Virtual address operator (@), SDA-16

Virtual address space, sufficient for system dump

analysis, SDA-8
VIRTUALPAGECNT system parameter, SDA-8

wW

WCBs (window control blocks), SDA-80

Working set lists, displaying, SDA-152

/WORKING_SET qualifier, SDA-152

WORKING_SET_MANAGEMENT.EXE file, global
symbols, SDA-65

/WSL qualifier, SDA-152

X

XABs (extended attribute blocks), SDA-80
XOR operator (\), SDA-16
XQP (extended QIO processor), SDA-104



	OpenVMSVAXSystem Dump Analyzer Utility Manual
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How To Order Additional Documentation
	Conventions

	SDA Description
	1 System Management and SDA
	1.1 Understanding the System Dump File
	1.1.1 Choosing Between SYSDUMP.DMP and PAGEFILE.SYS Files
	1.1.2 Choosing a Dump File Style

	1.2 Saving System Dumps
	1.3 Invoking SDA in the Site-Specific Startup Command Procedure

	2 Analyzing a System Dump
	2.1 Invoking SDA
	2.2 Mapping the Contents of the Dump File
	2.3 Building the SDA Symbol Table
	2.4 Executing the SDA Initialization File (SDA$INIT)

	3 Analyzing a Running System
	4 SDA Context
	5 CPU Context
	6 Process Context
	7 SDA Command Format
	7.1 General Command Format
	7.2 Expressions
	7.2.1 Radix Operators
	7.2.2 Arithmetic and Logical Operators
	7.2.3 Precedence Operators
	7.2.4 Symbols


	8 Investigating System Failures
	8.1 General Procedure for Analyzing System Failures
	8.2 Fatal Bugcheck Conditions
	8.2.1 Fatal Exceptions
	8.2.2 Illegal Page Faults


	9 A Sample System Failure
	9.1 Identifying the Bugcheck
	9.2 Identifying the Exception
	9.3 Locating the Source of the Exception
	9.3.1 Finding the Driver by Using the Program Counter
	9.3.2 Calculating the Offset into the Driver’s Program Section

	9.4 Finding the Problem Within the Routine
	9.4.1 Examining the Routine
	9.4.2 Checking the Values of Key Variables
	9.4.3 Identifying and Correcting the Defective Code


	10 Inducing a System Failure
	10.1 Meeting Crash Dump Requirements
	10.2 Examples of How to Cause System Failures


	SDA Usage Summary
	SDA Qualifiers
	/CRASH_DUMP
	/RELEASE
	/SYMBOL
	/SYSTEM

	SDA Commands
	@ (Execute Procedure)
	ATTACH
	COPY
	DEFINE
	EVALUATE
	EXAMINE
	EXIT
	FORMAT
	HELP
	READ
	REPEAT
	SEARCH
	SET CPU
	SET LOG
	SET OUTPUT
	SET PROCESS
	SET RMS
	SHOW CALL_FRAME
	SHOW CLUSTER
	SHOW CONNECTIONS
	SHOW CPU
	SHOW CRASH
	SHOW DEVICE
	SHOW EXECUTIVE
	SHOW HEADER
	SHOW LAN
	SHOW LOCK
	SHOW LOGS
	SHOW PAGE_TABLE
	SHOW PFN_DATA
	SHOW POOL
	SHOW PORTS
	SHOW PROCESS
	SHOW RESOURCE
	SHOW RMS
	SHOW RSPID
	SHOW SPINLOCKS
	SHOW STACK
	SHOW SUMMARY
	SHOW SYMBOL
	SHOW TRANSACTIONS
	SPAWN
	VALIDATE QUEUE

	Index
	Figures
	Figure SDA–1 Pointer Argument List on the Stack
	Figure SDA–2 Mechanism Array
	Figure SDA–3 Signal Array
	Figure SDA–4 Stack Following an Illegal Page-Fault Error
	Figure SDA–5 Call Frame

	Tables
	Table SDA–1 Selecting and Displaying Information About Processes
	Table SDA–2 Displaying Information about Data Structures
	Table SDA–3 Examining, Evaluating, and Validating Information
	Table SDA–4 Searching for, Formatting, and Copying Information
	Table SDA–5 Managing the SDA Utility and the SDA Symbol Table
	Table SDA–6 Displaying Information Produced by DECdtm
	Table SDA–7 Comparison of Full and Subset Dump Files
	Table SDA–8 SDA Operators
	Table SDA–9 SDA Symbols
	Table SDA–10 Descriptions of SDA Qualifiers
	Table SDA–11 Descriptions of SDA Commands
	Table SDA–12 Modules Containing Global Symbols and Data Structures Used by SDA
	Table SDA–13 Modules Defining Global Locations Within the Executive Image
	Table SDA–14 SET RMS Command Keywords for Displaying Process RMS Information
	Table SDA–15 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS Displays
	Table SDA–16 Virtual Page Information in the SHOW PAGE_TABLE Display
	Table SDA–17 Physical Page Information in the SHOW PAGE_TABLE Display
	Table SDA–18 Page Frame Number Information in the SHOW PFN_DATA Display
	Table SDA–19 Process Section Table Entry Information in the SHOW PROCESS Display
	Table SDA–20 Process I/O Channel Information in the SHOW PROCESS Display
	Table SDA–21 Resource Information in the SHOW RESOURCE Display
	Table SDA–22 Static Spin Locks
	Table SDA–23 Process Information in the SHOW SUMMARY Display




