
HP TCP/IP Services for OpenVMS
Guide to SSH

BA548-90007
HP Part Number: BA548-90007
Published: July 2006, Edition 2.0

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Legal Notices

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

UNIX is a registered trademark of The Open Group.

Table of Contents

About This Document...7
1 Intended Audience...7
2 New and Changed Information in This Edition...7
3 Typographic Conventions..7
4 Document Organization..8
5 Related Information..8
6 Publishing History..9
7 HP Encourages Your Comments...9

1 Overview..11
1.1 Introduction to SSH..11

1.1.1 The Secure Shell Server...11
1.1.2 The Secure Shell Client..11

1.2 Introduction to Keys...12
1.2.1 Host Keys...12
1.2.2 User Keys...12
1.2.3 Generating Keys...12
1.2.4 Managing User Keys...12

1.3 SSH Authentication..12
1.4 How the SSH Client and Server Communicate..13
1.5 Port Forwarding..14
1.6 Upgrading SSH for OpenVMS..14

1.6.1 Server and Client Configuration Files...14

2 Configuring the Secure Shell Software...15
2.1 Running the TCPIP$CONFIG Configuration Command Procedure..15
2.2 Configuring the SSH Client...16
2.3 Configuring the SSH Server..17

3 Customizing the SSH Run-Time Environment...19
3.1 Setting up the Server Public Keys...19

3.1.1 Automatically Copying Key Files...19
3.1.2 Manually Copying the Key Files..20
3.1.3 Naming Conventions for the Server's Public Host Key...20

3.2 Modifying Client Configuration Parameters...21
3.3 Modifying Server Configuration Parameters..21
3.4 Authentication Methods...21
3.5 Specifying Authentication Methods..22
3.6 Setting Up Password Authentication...23

3.6.1 Setting Up Password Authentication on the Client..23
3.6.2 Setting Up Password Authentication on the Server...23

3.7 Setting Up Host-based Authentication..23
3.7.1 Setting Up Host-based Authentication on the Client ...23
3.7.2 Setting Up Host-based Authentication on the Server...23

3.8 Setting Up Public-Key Authentication..24
3.8.1 Setting Up Public-Key Authentication on the Client...24

3.8.1.1 Using SSH_KEYGEN to Rename Public-Key Files..25
3.8.2 Setting Up Public-Key Authentication on the Server...25

4 Managing the SSH Service..27
4.1 Starting and Stopping the SSH Client..27

Table of Contents 3

4.2 Starting and Stopping the SSH Server..27
4.3 Enabling IPv6 Networking..27
4.4 SSH Logical Names..28
4.5 Managing Auditing...28

4.5.1 How the Server Performs Auditing...28
4.5.2 Auditing Options for the Server Configuration File...29
4.5.3 Auditing Options for the Client Configuration File..29

4.6 Managing Account Passwords..29
4.6.1 Secondary Passwords..30

5 Port Forwarding...31
5.1 Standard Port Forwarding..31
5.2 Port Forwarding for FTP..32
5.3 X11 Port Forwarding...33
5.4 Managing Port Forwarding...34

6 Setting Up Kerberos/SSH Connections..35
6.1 Installing Kerberos RTL Images..35
6.2 Setting Up Kerberos...35

6.2.1 Configuring the Kerberos User and Host Principles...35
6.2.2 Configuring the Kerberos Authentication Method...36
6.2.3 SSH Kerberos Authentication Interoperability...36
6.2.4 SSH Client Configuration...36

6.3 Setting Up a Kerberos SSH Connection..36
6.3.1 Forwarding Credentials..36
6.3.2 Managing Kerberos Credential Forwarding..37
6.3.3 Forwarding Kerberos Credentials Example..37

6.4 Kerberos Password Authentication...38
6.5 Solving SSH/Kerberos Problems..38

7 SSH Command Reference..41
7.1 Before You Begin...41
7.2 Copying Files..41

7.2.1 File Types...41
7.2.2 Using the SCP Command...41

7.2.2.1 Command Synopsis...42
7.2.2.2 Parameters..42
7.2.2.3 Options..42
7.2.2.4 Example...42

7.2.3 Using the SFTP Command...43
7.2.3.1 Command Synopsis...43
7.2.3.2 Parameters..43
7.2.3.3 Options..43
7.2.3.4 Example...43

7.3 Remote Login and Command Execution..44
7.3.1 Command Synopsis...44
7.3.2 Parameters..44
7.3.3 Options..44
7.3.4 Example...45

7.4 Using SSH Commands in Batch Jobs..45
7.5 Using the SSH_KEYGEN Utility..46

7.5.1 Command Synopsis...46
7.5.2 Parameters..46
7.5.3 Options..46

7.6 Using the SSH_ADD Utility..46
7.6.1 Command Synopsis...46
7.6.2 Parameters...46

4 Table of Contents

7.6.3 Options..47
7.6.4 Description...47
7.6.5 Return Status...47
7.6.6 Example...47

7.7 Using the SSH_AGENT Utility..47
7.7.1 Command Synopsis...48
7.7.2 Options..48
7.7.3 Examples..48

8 Solving SSH Problems...49

A SSH Directories and Files..51
A.1 Client Directories and Files...51
A.2 Server Directories and Files..52

B SSH Client and Server Configuration Parameters...55
B.1 Client Configuration Parameters..55
B.2 Client Configuration File...56
B.3 Server Configuration Parameters..58
B.4 Server Configuration File..61

Glossary..65

Index...67

Table of Contents 5

6

About This Document
1 Intended Audience

This guide is intended for Secure Shell users and for system managers who need to configure, customize,
manage, and use SSH. The Guide to SSH assumes that you are familiar with:

• OpenVMS concepts and operation

• TCP/IP Services installation, configuration, and management

• SSH concepts and utilities

2 New and Changed Information in This Edition
This document supersedes the TCP/IP Services for OpenVMS Guide to SSH for Version 5.4 (AA-RVBUA-TE).
This manual is updated with the following features and information:

• Kerberos authentication, documented in Setting Up Kerberos.

• Enhancements to SSH for OpenVMS, including:

Support for IPv6•

• Command options for port forwarding

• SSH commands in batch jobs

• SSH command options

• Server and client configuration files

• Account passwords for non-OpenVMS clients

• Secondary passwords

If you are upgrading from an earlier version of SSH for OpenVMS, see “Upgrading SSH.”

3 Typographic Conventions
Book Title Title of a book. On the web and on the Instant Information DVD, it may be a hot link to

the book itself.
Command Command name or qualified command phrase.
ComputerOut Text displayed by the computer.
Emphasis Text that is emphasized.
Emphasis Text that is strongly emphasized.
KeyCap Name of a keyboard key. Note that Return and Enter both refer to the same key.
Term Defined use of an important word or phrase.
UserInput Commands and other text that you type.
Variable Name of a variable that you may replace in a command or function or information in a

display that represents several possible values.
[] Contents are optional in formats and command descriptions. If the contents are a list

separated by |, you must choose one of the items.
{ } Contents are required in formats and command descriptions. If the contents are a list

separated by |, you must choose one of the items.
... Preceding element may be repeated an arbitrary number of times.
| Separates items in a list of choices.
<element> An element used in a markup language.
attribute= An attribute used in a markup language.

1 Intended Audience 7

4 Document Organization
This guide describes how to configure, customize, manage, and use the Secure Shell software. It contains
the following chapters and appendixes:

• Chapter 1 introduces definitions and concepts that are important to understanding the Secure Shell
(SSH).

• Chapter 2 describes how to run the configuration procedure for SSH, how to configure the SSH server,
and how to configure the SSH client.

• Chapter 3 describes how to customize the SSH run-time environment to meet your organization's specific
security needs.

• Chapter 4 describes how to manage the SSH client and server.

• Chapter 5 describes port forwarding with SSH.

• Chapter 6 describes how to set up Kerberos security with SSH connections.

• Chapter 7 describes SSH commands and utilities that you can use to invoke SSH, copy files, and
manage keys.

• Chapter 8 describes how to solve login problems.

• Appendix A summarizes information about files and directories that the SSH client and server use.

• Appendix B shows the systemwide SSH client and server files that the TCPIP$CONFIG utility generates
during configuration.

• Glossary describes some of the terms that are used in this manual.

5 Related Information
The following manuals describe how to install, customize, and use TCP/IP Services:

• Compaq TCP/IP Services for OpenVMS Concepts and Planning
This manual provides conceptual information about TCP/IP networking on OpenVMS systems, including
general planning issues to consider before configuring your system to use the TCP/IP Services software.
This manual also describes the manuals in the TCP/IP Services documentation set and provides a
glossary of terms and acronyms for the TCP/IP Services software product.

• HP TCP/IP Services for OpenVMS Release Notes
The release notes provide version-specific information that supersedes the information in the
documentation set. The features, restrictions, and corrections in this version of the software are described
in the release notes. Always read the release notes before installing the software.

• HP TCP/IP Services for OpenVMS Installation and Configuration
This manual explains how to install and configure TCP/IP Services.

• HP TCP/IP Services for OpenVMS User's Guide
This manual describes how to use the applications available with TCP/IP Services such as remote file
operations, e-mail, TELNET, TN3270, and network printing.

• HP TCP/IP Services for OpenVMS Management
This manuals describes how to configure and manage the TCP/IP Services product.

• HP TCP/IP Services for OpenVMS Management Command Reference
This manual describes TCP/IP Services management commands.

• HP TCP/IP Services for OpenVMS Management Command Quick Reference Card
This reference card lists the TCP/IP management commands by component and describes the purpose
of each command.

8 About This Document

• HP TCP/IP Services for OpenVMS UNIX Command Equivalents Card
This reference card contains information about commonly performed network management tasks and
their corresponding TCP/IP management and UNIX command formats.

• HP TCP/IP Services for OpenVMS ONC RPC Programming
This manuals presents an overview of high-level programming using open network computing remote
procedure calls (ONC RPCs). This manual also describes the RPC programming interface and how to
use the RCPGEN protocol compiler to create applications.

• HP TCP/IP Services for OpenVMS Guide to SSH
This manual describes how to configure, set up, use, and manage the SSH for OpenVMS software.

• HP TCP/IP Services for OpenVMS Sockets API and System Services Programming
This manual describes how to use the Sockets API and OpenVMS system services to develop network
applications.

• HP TCP/IP Services for OpenVMS SNMP Programming and Reference
This manual describes the Simple Network Management Protocol (SNMP) and the SNMP application
programming environment (eSNMP). It describes the subagents provided with TCP/IP Services, utilities
provided for managing subagents, and how to build your own subagents.

• HP TCP/IP Services for OpenVMS Tuning and Troubleshooting
This manual provides information about how to isolate the causes of network problems and how to tune
the TCP/IP Services software for the best performance.

• HP TCP/IP Services for OpenVMS Guide to IPv6
This manual describes the IPv6 environment, the roles of systems in this environment, the types and
function of the different IPv6 addresses, and how to configure TCP/IP Services to access the IPv6
network.

For additional information about HP OpenVMS products and services, see the following World Wide Web
address:
http://www.hp.com/go/openvms

For a comprehensive overview of SSH, refer to the book:
SSH, The Secure Shell: The Definitive Guide by Daniel J. Barrett, Richard Silverman
O'Reilly and Associates. January 2001.

6 Publishing History
Publication DateEdition

Number
Supported VersionsSupported Operating SystemsManufacturing Part

Number

September 20031.0TCP/IP Services for OpenVMS
Version 5.4

OpenVMS Alpha Versions 7.3-1 and
7.3-2

AA–RVBUA–TE

July 20062.0TCP/IP Services for OpenVMS
Version 5.6

OpenVMS Alpha and I64 Versions
8.2 and 8.3

BA548–90007

7 HP Encourages Your Comments
HP encourages your comments concerning this document. We are truly committed to providing documentation
that meets your needs.
Please submit comments to:
http://docs.hp.com/assistance/feedback.html, or email your comments to openvmsdoc@hp.com
Please include the document title, manufacturing part number, and any comment, error found, or suggestion
for improvement you have concerning this document.

6 Publishing History 9

http://docs.hp.com/assistance/feedback.html

10

1 Overview
This chapter describes how SSH works on OpenVMS, including a review of some concepts that are important
for understanding the Secure Shell (SSH).
The following topics are covered:

• Introduction to SSH

• Introduction to Keys

• SSH Authentication

• How the SSH Client and Server Communicate

• Port Forwarding

• Upgrading SSH for OpenVMS

1.1 Introduction to SSH
Secure Shell is a combination of client and server software that transparently encrypts and decrypts data
flow between hosts on a network. SSH provides a suite of secure network commands that you can use in
addition to, or in place of, traditional nonsecure network commands like TELNET and FTP.
Using Secure Shell commands, you create a secure connection between systems running the Secure Shell
client and server software by providing the following security methods:

• Authentication -- Secure Shell servers and clients use an authentication method to reliably determine
each other's identity and the user's identity.

• Data encryption -- Secure Shell servers and clients exchange encrypted data. Data encryption is
transparent to the user.

1.1.1 The Secure Shell Server
A Secure Shell server (SSH server) is a system on which the system manager installs and runs the Secure
Shell server software.
The SSH server accepts and rejects incoming connections to the server from the SSH clients on remote hosts.
The SSH server listens on the port defined for the TCP/IP SSH service (port 22 by default). When a connection
request occurs, the auxiliary server creates a new server process that controls all data exchanges over the
new connection.
The SSH server provides the following functions:

• Secure remote user login

• Secure file transfer between remote computers

• Remote command execution

For all of these functions, the entire login and data transfer sessions, including user identification information,
are secured through user authentication and data encryption.

1.1.2 The Secure Shell Client
A Secure Shell client (SSH client) is a system on which the system manager installs the Secure Shell client
software.
SSH commands invoke the following SSH utilities:

• The SCP and SFTP commands copy files to and from an SSH server.

• The SSH command logs in to a remote server and performs remote command execution (tunnelling).

• The SSH key management utilities generate public-private key pairs and manipulate keys.

These commands and utilities are described in Chapter 7.

NOTE: SSH for OpenVMS software is based on SSH2 software from SSH Communication Security version
3.2.1. In the OpenVMS implementation, the commands SSH, SCP, and SFTP mean the same as SSH2,

1.1 Introduction to SSH 11

SCP2, and SFTP2. You can use either set of commands with SSH for OpenVMS. For more information about
these commands, enter the DCL HELP command. For example:

$ HELP SSH

1.2 Introduction to Keys
SSH uses public-key cryptography to verify the identity of hosts as well as the identity of individual users.
Public-key cryptography uses a pair of mathematically related keys. One key is public and is distributed to
anyone who wants it; the other key is private and is known only to the owner. When a message is encrypted
with a certain public key, it can only be decrypted by using the associated private key.

1.2.1 Host Keys
The SSH host public and private keys are asymmetric keys that distinguish and identify hosts. Specifically:

• The server host provides its public key to connecting clients so that they can verify the identity of the
server.

• The client host provides its public key to the server so that the server can verify the identity of the client
host during host-based authentication.

Host keys are created either during TCP/IP configuration by the TCPIP$CONFIG.COM command procedure,
or manually by a system manager, using the SSH_KEYGEN utility, as described in Chapter 7.

NOTE: SSH for OpenVMS is configured with a single SSH service listening port (22) and a single host
key. All incarnations of the SSH server process use the same host key.

1.2.2 User Keys
Public key authentication requires that a user also have a public-private key pair. The public key is published
and distributed, or copied, to all the SSH servers with which the user communicates. The private key is kept
on the local SSH client and must not be revealed to anyone except the key's owner. The user creates the
public-private key pair by using the SSH_KEYGEN key generation utility (described in Chapter 7). The user's
keys are used during public-key authentication. For information about the public-key authentication method,
see Chapter 3.

1.2.3 Generating Keys
Key are generated by using the SSH_KEYGEN utility, as described in Chapter 7. SSH_KEYGEN generates
both user's keys and host keys. For each key, the SSH_KEYGEN utility generates a pair of files: one with a
public key and one with a private key. These files are used by cryptographic algorithms.

1.2.4 Managing User Keys
A user might need several, even hundreds of keys. For example, you might use one key for each remote
server to which you connect, or one key for each account on a remote server. The following utilities are
available to help manage multiple keys:

• SSH_AGENT helps you manage and use keys.

• SSH_ADD helps you add private keys to the authentication agent.

For more information about these utilities, see Chapter 7.

1.3 SSH Authentication
Every SSH connection involves two types of authentication:

12 Overview

• Server authentication
For server authentication, the client verifies the identity of the SSH server. The SSH server authentication
process uses the server's host public key to ensure that the SSH server is not an impostor.

• User authentication
For user authentication, the server verifies the identity of the user requesting access. The user
authentication process uses the authentication methods specified in the server configuration file to verify
the user's identity.

You enable the authentication methods by editing the server and client configuration files, as described in
Chapter 3.
If your server also runs Kerberos for OpenVMS, you can enable Kerberos-based authentication, as described
in Chapter 6.

1.4 How the SSH Client and Server Communicate
During SSH client and server configuration, two configuration files are installed: a client configuration file,
which is read by an SSH client process when the SSH command is invoked; and the server configuration
file, which is read by an SSH server process when a connection request arrives from an SSH client. All
configuration files are ASCII text files and have either STREAM_LF format (for example, if copied directly
from a UNIX system), or variable-length format (if created with the TCPIP$CONFIG.COM command procedure
or with a text editor). Appendix B shows the SSH client and server configuration files.
After you install and configure the SSH software on all client and server hosts:

• Specify the authentication methods on the clients and server.

• Create and distribute key files.

• Start the SSH client and server.

When TCP/IP Services is started on an SSH server host, the auxiliary server creates a listening socket for
SSH. The SSH server is now ready to accept a remote connection request. When you execute an SSH
command on a remote client host, the SSH client is initiated. The client reads the configuration file and
initiates a TCP connection to a server host using the specified destination port. On an SSH server host, the
auxiliary server creates a copy of the server process, which reads the server's configuration file.
To establish a secure connection:
1. The SSH client and server exchange information about supported protocol versions. This enables different

implementations to overcome incompatibilities.
2. The SSH server initiates a host public key exchange with the client to prove its identity. Each server host

has a public and private key pair, which is created during the SSH server configuration. This pair
uniquely identifies the server host. The first time an SSH client connects to a server, SSH prompts the
user to accept a copy of the server's public host key with the following message:
Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)

(Note that the user response is case sensitive. Enter the response in lowercase letters.)

3. If the user response is yes, SSH copies the server's public host key to the SSH client host. The client
host uses this public host key to authenticate the SSH server on subsequent connections.

4. If, during subsequent connection attempts, the SSH client detects that the SSH server's host key differs
from the one stored on the client, the following message is displayed:
WARNING: HOST IDENTIFICATION HAS CHANGED!

The message continues with text that warns of a possible "man-in-the-middle" attack. This message does
not necessary mean that data has been compromised. The host key may have been legitimately changed.
The user should copy the server's new key or contact the system manager.

5. The SSH client and server negotiate session parameters by exchanging information about supported
parameters, including authentication methods, hash functions, and data compression methods.

1.4 How the SSH Client and Server Communicate 13

6. The SSH client and server develop a shared (symmetric) session key to encrypt data using a key exchange
method. When both the client and server know the secret data encryption key, a secure connection is
established and the client and server can exchange data securely. The session key expires either when
the session ends or when the session timer expires and a rekey operation is done.

7. After the SSH client and server authenticate each other, the session is ready to authenticate the user by
applying one or more of the authentication methods.

8. The SSH server checks the user's identity. The user must have a valid user account and home directory
on the server. If the server fails to authenticate the user, the server refuses the connection.

9. After SSH authenticates the user's identity, the actual secure data transfer between client and server
occurs.

10. The SSH server runs in a loop, accepting messages from the client, performing required actions, and
returning reply messages to the client.

11. When the user closes the connection, the server process terminates. The auxiliary server continues to
listen for new SSH connection requests.

1.5 Port Forwarding
Port forwarding encapsulates the TCP-based communication session between the SSH client and the SSH
server programs. Any TCP-based application or service can use port forwarding to take advantage of all
the benefits of SSH. Using port forwarding, SSH allows you to establish a "secure tunnel" between two hosts,
through which the participating applications operate transparently. For example, when you forward a regular
TELNET connection through SSH, all information, including your user name, password, and actual data, are
automatically encrypted and checked for integrity.
X11 port forwarding encrypts the X protocol (for X Window Systems). Using SSH, you can invoke X programs
on a remote machine and have them appear on your local display. In this case, all X-protocol data is secured.
For more information, see Chapter 5.

1.6 Upgrading SSH for OpenVMS
This version of SSH for OpenVMS is based on Version 3.2 of the SSH product offered by SSH
Communications, Inc. If you are upgrading SSH for OpenVMS from the version available on TCP/IP Services
for OpenVMS Version 5.4 and lower, read the product release notes to understand the changes in setting
up and managing this version of SSH.

1.6.1 Server and Client Configuration Files
The server and client configuration files in this version of SSH are different in several ways from those used
with earlier versions of SSH for OpenVMS. When you upgrade to the current version, you must recreate
both the server and client configuration files.
For this version of SSH, the server configuration file is:
TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SSHD2_CONFIG.

The client configuration file is:
TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SSH_CONFIG.

NOTE: When you extract these files, make sure to specify the final dot in the file name. For example:

$ LIBRARY/EXTRACT=sshd2_config/out=sshd2_config. SYS$LIBRARY:TCPIP$TEMPLATES.TLB

For more information about recreating the configuration files, refer to the product release notes.
Some of the configuration keywords have changed in this version of SSH. For more information, see Appendix
B.

14 Overview

2 Configuring the Secure Shell Software
After you install the TCP/IP Services software, as described in the HP TCP/IP Services for OpenVMS Installation
and Configuration manual, you must configure the SSH server and client using the menu-driven
TCPIP$CONFIG.COM command procedure.
This chapter covers the following topics:

• Running the TCPIP$CONFIG Configuration Procedure

• Configuring the SSH Client

• Configuring the SSH Server

2.1 Running the TCPIP$CONFIG Configuration Command Procedure
After TCP/IP installation is complete, the SSH service must be configured using the TCP/IP configuration
command procedure, TCPIP$CONFIG.COM. The configuration procedure creates the systemwide SSH
environment by setting up various components of SSH, such as configuration files and host keys.
Once you complete the client and server configuration using TCPIP$CONFIG, you can customize the
configuration with parameters to meet the needs of your specific run-time environment. For more information
about customizing your run-time environment, see Chapter 3. For general configuration procedures, refer
to the HP TCP/IP Services for OpenVMS Installation and Configuration manual.
To run the configuration command procedure, follow these steps:
1. Invoke the TCPIP$CONFIG configuration command procedure. The main Configuration menu is

displayed:
$ @ SYS$STARTUP:TCPIP$CONFIG.COM
 TCP/IP Network Configuration Procedure

 This procedure helps you define the parameters required
 to run HP TCP/IP Services for OpenVMS on this system.

 Checking TCP/IP Services for OpenVMS configuration database files.

 HP TCP/IP Services for OpenVMS Configuration Menu

 Configuration options:

 1 - Core environment
 2 - Client components
 3 - Server components
 4 - Optional components

 5 - Shutdown HP TCP/IP Services for OpenVMS
 6 - Startup HP TCP/IP Services for OpenVMS
 7 - Run tests

 A - Configure options 1 - 4
 [E] - Exit configuration procedure

2.1 Running the TCPIP$CONFIG Configuration Command Procedure 15

Enter configuration option:

2. Choose option 2 (Client components) to configure the SSH client.
3. Choose option 3 (Server components) to configure the SSH server. .
During the configuration procedure, TCPIP$CONFIG creates the systemwide environment necessary to run
the SSH client and server, including:

• The SSH server account TCPIP$SSH, and the account's default directory,
TCPIP$SSH_DEVICE:[TCPIP$SSH]. Note that the default device of the account is defined by the logical
name TCPIP$SSH_DEVICE. This logical name can be assigned by the system manager. If this logical
name is not defined, the default name is SYS$SYSDEVICE.

• All subdirectories and files required by the SSH server.

In addition, the configuration procedure copies all the necessary files from the distribution kit into the
appropriate directories. Table 2-1 lists the files that are created during the configuration of the SSH server
and SSH client.
Table 2-1 Files and Directories Created During SSH Configuration

Server/ ClientDescriptionFile NameDirectory on TCPIP$SSH_DEVICE:

ClientConfiguration fileSSH2_CONFIG.[TCPIP$SSH.SSH2]

Server
(and client for
host-based
authen-
tication)

Configuration fileSSHD2_CONFIG.[TCPIP$SSH.SSH2]

ServerContains a list of trusted hosts, used by the
host-based authentication method.

SHOSTS.EQUIV[TCPIP$SSH.SSH2]

ServerContains private (HOSTKEY) and public
(HOSTKEY.PUB) server host keys.

HOSTKEY.

HOSTKEY.PUB

[TCPIP$SSH.SSH2]

ServerContains random numbers for cryptographics
operations.

RANDOM_SEED.[TCPIP$SSH.SSH2]

ServerContains public keys of all remote client
hosts that may attempt to connect to the
server using host-based authentication.

[TCPIP$SSH.SSH2.KNOWNHOSTS]

ClientContains host keys for all remote servers to
which the user connects using the SSH client.

[TCPIP$SSH.SSH2.HOSTKEYS]

2.2 Configuring the SSH Client
When you choose Client components from the TCPIP$CONFIG Main Menu, the Client Components
Configuration Menu is displayed:
HP TCP/IP Services for OpenVMS Client Components Configuration Menu
Configuration options:
1 - DHCP Client Disabled Stopped
2 - FTP Client Enabled Stopped
3 - NFS Client Disabled Stopped
4 - REXEC and RSH Disabled Stopped
5 - RLOGIN Disabled Stopped
6 - SMTP Disabled Stopped
7 - SSH Client Disabled Stopped
8 - TELNET Enabled Stopped
9 - TELNETSYM Disabled Stopped

A - Configure options 1 - 9
[E] - Exit menu
Enter configuration option: 7

16 Configuring the Secure Shell Software

Configure the SSH client as described in the following procedure.
1. Enter option 7 (SSH Client) at the prompt. The SSH Client Configuration Options menu is displayed:

SSH CLIENT Configuration
Service is not defined in the SYSUAF.
Service is not enabled.
Service is stopped.

 SSH CLIENT configuration options:
 1 - Enable service on this node
 2 - Enable & Start service on this node
 [E] - Exit SSH_CLIENT configuration
Enter configuration option:

2. Choose the appropriate menu option. For example, choose configuration option 1 to enable the SSH
client on this node. The configuration procedure copies the systemwide client configuration file
SSH2_CONFIG. from the distribution kit into the directory TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2].
Creating TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH]SSH2_CONFIG.

The SSH2_CONFIG file contains keywords and values that each client process reads when it starts. In
many cases, the system manager may want to edit this file to make it user specific and to provide a
secure environment for the client host. You can copy and edit your own version of the configuration
file. For more information, see Chapter 3.
After the SSH client is configured, the following message and prompt are displayed if, for example,
the SSH server is not enabled and has not been configured:
The SSH SERVER is not enabled.
* Do you want to configure SSH SERVER [NO]:

If you want to configure the SSH server, type YES. Otherwise, press Enter or type NO.

2.3 Configuring the SSH Server
When you choose Server components from the TCPIP$CONFIG command procedure Main Menu, the Server
Components Configuration Menu is displayed:
HP TCP/IP Services for OpenVMS Server Components Configuration Menu
Configuration options:
1 - BIND Disabled Stopped 12 - NTP Disabled Stopped
2 - BOOTP Disabled Stopped 13 - PC-NFS Disabled Stopped

3 - DHCP Disabled Stopped 14 - POP Disabled Stopped

4 - FINGER Disabled Stopped 15 - PORTMAPPER Disabled Stopped

5 - FTP Disabled Started 16 - RLOGIN Disabled Started

6 - IMAP Disabled Stopped 17 - RMT Disabled Stopped

7 - LBROKER Disabled Stopped 18 - SNMP Disabled Started

8 - LPR/LPD Disabled Stopped 19 - SSH Enabled Started

9 - METRIC Disabled Stopped 20 - TELNET Disabled Started
10 - NFS Disabled Stopped 21 - TFTP Disabled Stopped
11 - LOCKD/STATD Disabled Stopped 22 - XDM Disabled Stopped

A - Configure options 1 - 22

2.3 Configuring the SSH Server 17

[E] Exit menu

Enter configuration option: 19

Configure the SSH server as described in the following procedure.
1. Enter option 19 (SSH configuration) at the prompt. The SSH Configuration Option menu appears.

SSH Configuration
Service is defined in the SYSUAF.
Service is defined in the TCPIP$SERVICE database.
Service is enabled on specific node.
Service is started.

 SSH configuration options:
 1 - Enable service on all nodes
 2 - Disable service on this node

 3 - Stop service on this node
 4 - Disable & Stop service on this node
 [E] - Exit SSH configuration

Enter configuration option:

2. Choose the appropriate menu option. For example, choose option 1 to enable SSH on this server. The
configuration procedure creates the SSH service entry and server configuration file:
Creating SSH Service Entry
Creating TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH]SSHD2_CONFIG.

3. Respond to the following question:
Create a new default Server host key? [YES]
Creating private key file: TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]HOSTKEY
reating public key file: TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]HOSTKEY.PUB

Type YES or press Enter to create new host key pair files, HOSTKEY and HOSTKEY.PUB. The
TCPIP$CONFIG command procedure creates the default key pair in the directory
TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2].
If you type NO to bypass creating new keys, your server may have no host keys (unless the host keys
were created at an earlier time). You may need to run the key generation utility, SSH_KEYGEN, to
generate keys before you can run SSH.

4. After the SSH server is configured, the following message and prompt are displayed if, for example,
the SSH client is not enabled and has not been configured:
The SSH CLIENT is not enabled.

If you want to configure the SSH client, type YES.

18 Configuring the Secure Shell Software

3 Customizing the SSH Run-Time Environment
When the TCP/IP configuration procedure has completed successfully, all of the required systemwide SSH
configuration parameters are established. The host is now prepared to become an SSH server by accepting
remote connections, and the SSH client is ready to execute SSH commands. Additional security methods
can be applied at the following levels:

• A systemwide setup, which is typically the system manager's responsibility and applies to running
instances of the client and server processes.

• A user-specific setup, which is typically the responsibility of the account owner, from whose account
the SSH connections are made on the client host or to which an SSH connection will be requested on
the server host.

This chapter describes how to customize the SSH run-time environment to meet your specific security
requirements, and discusses the following topics:

• Setting up the Server Public Keys

• Modifying Client Configuration Parameters

• Modifying Server Configuration Parameters

• Authentication Methods

3.1 Setting up the Server Public Keys
Any connection request from a client to an SSH server requires that the client obtain the server's public key.
During SSH server configuration, the TCPIP$CONFIG configuration procedure creates the systemwide
directory TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2.HOSTKEYS]. On a connection request, the SSH client
checks this directory for the appropriate server's host key and proceeds with authentication if the key is
found.
You can copy into this directory the host keys of all the remote servers to which you will connect from the
client host. You can specify the public key file to copy from the client when you make the first connection to
the server, or you can copy the public key files manually.

3.1.1 Automatically Copying Key Files
On a connection request, the SSH client checks the user's [username.SSH2.HOSTKEYS] directory for the
appropriate server's host key and proceeds with authentication if the key is found. If the file is not found in
either the systemwide or account-specific [username.SSH2.HOSTKEYS] directory, the first time that the user
makes a connection from the SSH client to a remote SSH server, the user is prompted to accept a copy of
the server's public host key (by default). This behavior can be controlled using the StrictHostKeyChecking
parameter in the client configuration file. This parameter accepts the following values:

• yes -- Causes authentication to fail if the file is not found.

• no -- Causes the SSH client to create the [username.SSH2.HOSTKEYS] subdirectory (if it does not exist),
and copies the SSH server's public key file into this subdirectory automatically.

• ask -- Causes the SSH server to prompt the user for a copy of the server's public host key. This is the
default.

If the StrictHostKeyChecking parameter is set to ask, and if the server's host key is in neither the server
nor the client's HOSTKEYS directory, the following message is displayed:
Host key not found from database.
Key fingerprint:
xikan-rokyr-miduc-zofut-nysig-ciryt-pyroc-fegil-zadyb-cokel-loxex
You can get a public key's fingerprint by running
$ ssh_keygen "-F" publickey.pub on the keyfile.
Are you sure you want to continue connecting (yes/no)?

3.1 Setting up the Server Public Keys 19

If you respond yes, the SSH client automatically creates the subdirectory
SYS$LOGIN:[username.SSH2.HOSTKEYS] (if it does not exist) and copies the server's public key into this
directory.
If you do not specify the StrictHostKeyChecking option, the default is ask.
SSH uses the [.SSH2] subdirectory to store multiple files needed for SSH to function. This directory is created
automatically by the SSH software, or the user can create one in the login directory (as defined by
SYS$LOGIN). For example, if SYS$LOGIN is defined as DKA0:[username], then the SSH2 subdirectory is
DKA0:[user-name.SSH2]. Throughout this manual, this directory is referred to as the [username.SSH2]
directory.
If necessary, you can create an SSH2 subdirectory in your user directory by entering the following commands:
$ SET DEFAULT SYS$LOGIN$
$ CREATE/DIR [.SSH2]

3.1.2 Manually Copying the Key Files
If your SSH client host does not have keys from remote servers in the systemwide directory, you can copy
the keys manually, as follows:
1. Create the subdirectory [.HOSTKEYS] in the user's SSH directory.
2. Copy the server's public key to this directory using the COPY/FTP command. Specify the proper access

privileges (for example: S:RWED,O:RWED,G:RE,W:R).
The format for the file name is KEY_portnumber_hostname.PUB, where:

• portnumber is the port number to be used to connect to the SSH server (22 by default).

• hostname is the host name used to connect to the SSH server (either hostname or
hostname.COM. Any dots in the host name are converted to underscore characters (myhost.com
becomes myhost_com).

If necessary, the file format is converted to Stream_LF format and the following message is displayed:
$ ssh VMSHOST

warning: Converting file ssh2/hostkeys/key_22_vmshost.pub to Stream_LF.

warning: File ssh2/hostkeys/key_22_vmshost.pub converted successfully to Stream_LF.

Authentication successful.

If the public key file cannot be converted, the following error message is displayed:
Error calling CONV$PASS_FILES for ssh2/hostkeys/key_22_vmshost.pub.
Status = {status text}

In this case, you can convert the file to Stream_LF format using the following command:
$ convert/fdl=SYS$SYSTEM:TCPIP$CONVERT.FDL keyfilename.PUB keyfilename.PUB

Where keyfilename is device:[username.SSH2.HOSTKEYS]KEY_22_remotename.PUB.

3.1.3 Naming Conventions for the Server's Public Host Key
By default, the server's public and host private key pair files are named HOSTKEY and HOSTKEY.PUB.
When you copy these these files manually, you must rename them following the proper naming conventions.
(When SSH copies the files, the proper file name is assigned automatically.) The name of the remote SSH
server's public key on the client host must be in the following format:
KEY_port_hostname.PUB

The port is typically 22. The hostname is the name of the remote SSH server. For example, when you copy
the public key from the remote SSH server MYSERVER to the client host, the key name becomes
KEY_22_MYSERVER.PUB. If the remote server's name uses dot notation in its name (for example,
MYSERVER.MYLAB.COM), SSH replaces the dots with underscores (for example,
KEY_22_MYSERVER_MYLAB_COM.PUB).

20 Customizing the SSH Run-Time Environment

For example, connect to an SSH server using the following command:
$ SSH USER@MYSERVER.MYLAB.COM

This command copies the remote SSH server's public key file HOSTKEY.PUB into a local directory as a file
named KEY_22_MYSERVER_MYLAB_COM.PUB. Note that underscores replace the dots in the destination
file.
If you copy these files manually, be sure to name the key files using this format. For example, if the server
name is MYSERVER.MYLAB.COM, copy its HOSTKEY.PUB file to KEY_22_MYSERVER_MYLAB_COM.PUB
in the appropriate directory.

3.2 Modifying Client Configuration Parameters
During configuration, the SSH2_CONFIG. file is copied to TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]. When
the user invokes the SSH command, the SSH client process reads the file and creates the run-time version of
the configuration parameters. If you want to specify user-specific parameters, you can create a client
configuration file in the [username.SSH2] directory. You can copy this file from a UNIX or an OpenVMS
system and then edit it, or create a new file from the template supplied by TCP/IP Services. The file can be
in either Stream_LF or variable-length format. For more information about the client configuration file, see
Appendix B.

3.3 Modifying Server Configuration Parameters
During configuration, the SSHD2_CONFIG. file is copied to the TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]
directory. When the connection is initiated from a remote client, the SSH server reads the file and creates
the run-time version of the configuration parameters. The SSH server loads this file and modifies the run-time
version of the parameters accordingly. You can copy this file from a UNIX or OpenVMS system and edit it,
or you can create a new file. The file can be in either Stream_LF or variable-length format.

3.4 Authentication Methods
Before it makes a connection, the SSH server determines the authentication methods that it will use by looking
in the server configuration file. For the SSH client to connect to the SSH server, it must find the same
authentication method in the client configuration file. Therefore, each of these methods requires configuration
on both the SSH client and server.
After the SSH client makes a connection request to a remote SSH server, the server sends the client its
permitted authentication methods. Depending on the agreed upon authentication method, the SSH server
may require the client to pass multiple authentication tests before connecting.
To configure the SSH client to use an authentication method, specify the authentication method in the client
configuration file in either the systemwide client configuration file
(TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SSH2_CONFIG.) or the user-specific client configuration file
([username.SSH2]SSH_CONFIG.). The authentication methods can be specified as arguments to the following
configuration parameters in the SSH server configuration file:

• AllowedAuthentications

• AccountingAuthentications

• AllowedAuthentications

• IntrusionAuthentications

• IntrusionIdentMethod

• IntrusionIdentSSH

• LogfailAuthentications

3.2 Modifying Client Configuration Parameters 21

The following SSH authentication methods are available:

• Password authentication. This method requires that you supply a password to the client, which transmits
the password encrypted to the server over the network. Then the SSH server performs authorization,
verifying the supplied password using the OpenVMS native password-authentication mechanism.

• Host-based authentication. This method allows you to avoid specifying any secret information about
the SSH client. Host-based authentication method trusts the relationships between hosts and does not
require you to prove your identity.
The SSH server host authenticates by verifying the following:

• The identity of the client host using the client's host public key file, which the system manager
maintains in the known hosts database. The directory [TCPIP$SSH.SSH2.KNOWNHOSTS] contains
public keys for all client hosts that use the host-based authentication method to connect to the
server.

• That the client host belongs to the trusted hosts list, which the system manager maintains on the
server. This list of trusted hosts enables you to log in to the server without proving your identity.

• Optionally, you can restrict users to only certain user names on the client host.

If any of these authentication checks fail, the connection is refused. An advantage of this method is that
it does not require the client to type a password or passphrases or to generate, distribute, and maintain
keys. This is convenient for batch processing. One disadvantage, however, is a reliance on the
identification of the host.
This method requires that the server manager maintain two pieces of information:

• The known hosts database, which contains the public key files of remote hosts.

• A trusted hosts file, which lists the trusted hosts (and, optionally, the user names).

• Public-key authentication. This method uses public-key cryptography to verify the client's identity and
requires two pieces of data: your private-public key pair, and, optionally, a passphrase to encode this
key for saving it in a file. This method is flexible because it allows additional control over authorization
by providing multiple keys and by applying restrictions to each key.
Public-key authentication requires management actions on both ends of an SSH connection. Both the
user on the client host and the system manager on the server host must create and maintain keys on
the client, copy public keys from the client to the server hosts, and provide passphrases.

You can also specify Kerberos authentication methods, as described in Chapter 6.

3.5 Specifying Authentication Methods
The authentication methods specified in the client configuration file (SSH2_CONFIG.) are attempted in the
order in which they are listed for the AllowedAuthentications keyword. If hostbased is listed first,
the SSH server tries hostbasedauthentication first.
For example, the client configuration file contains the following:
AllowedAuthentications hostbased,publickey,password

In this case, the server first tries to use hostbased, then public key, then password authentication. The first
successful authentication is used.
The order of the authentication methods specified in the server configuration file (SSHD2_CONFIG.) is
irrelevant. If the AllowedAuthentications keyword is missing or has no entries, the server accepts the
following authentication methods:

• hostbased

• publickey

• password

22 Customizing the SSH Run-Time Environment

3.6 Setting Up Password Authentication
To enable password authentication, set the AllowedAuthentications parameter in the SSH client host
and server host configuration files to password. No additional parameters are required. Password
authentication is the default.

3.6.1 Setting Up Password Authentication on the Client
Set the value of the AllowedAuthentications keyword to include the word password. For example:
AllowedAuthentications password

3.6.2 Setting Up Password Authentication on the Server
Set the following configuration parameters:
1. Specify the value of the AllowedAuthentications keyword as password, or omit the line. For

example:
AllowedAuthentications password

2. Specify the number of password attempts allowed by assigning a numeric value to the
PasswordGuesses keyword in this configuration file. For example:
PasswordGuesses 4

The default is 3 password attempts.

3.7 Setting Up Host-based Authentication
Host-based authentication requires configuration actions on both client and server hosts.

3.7.1 Setting Up Host-based Authentication on the Client
Set the following configuration parameters:

• Specify the value of the AllowedAuthentications parameter to include the word hostbased.
For example:
AllowedAuthentications hostbased

• Specify the value of the DefaultDomain keyword to be the fully-qualified domain name for the local
host. For example, if the fully-qualified domain name for the local host is color.art.com, enter the
following:
DefaultDomain color.art.com

3.7.2 Setting Up Host-based Authentication on the Server
1. Edit the server configuration file as follows:

• Set the value of the AllowedAuthentications parameter to include the word hostbased.
For example:
AllowedAuthentications hostbased

• To enable use of the user-specific SHOSTS. files, set the value of the IgnoreRhosts parameter
to no. For example:
IgnoreRhosts no

Because no is the default, the parameter can also be commented out, as follows:

3.6 Setting Up Password Authentication 23

#IgnoreRhosts no

If the IgnoreRhosts parameter is set to no, the SSH server looks up the host name in the
user-specific SHOSTS. file. If this parameter is set to yes, the host name is assumed to be in the
systemwide SHOSTS.EQUIV fle. See Appendix B for more information.

2. Edit the systemwide trusted hosts file, TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SHOSTS.EQUIV, to add
the fully qualified name of every SSH client host that will communicate with the server. You can also
enter a specific user name to limit access to that user. For example:
MYHOST.MYLAB.COM

or
MYHOST.MYLAB.COM smith

If the IgnoreRhosts parameter is set to no, you can also add the client host and optional user names
to the file SYS$LOGIN:SHOSTS. for a specific user.
If user names are used, those associated with OpenVMS client hosts must be in lowercase; those
associated wih UNIX client hosts must match the account name case as it exists on the UNIX host.

3. In host-based authentication, the client and server hosts authenticate each other. Therefore, the server
host must have the client's host public key. Copy the client's host public-key file
(CLIENTHOST::TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]HOSTKEY.PUB) to the server directory
(SERVERHOST::TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2.KNOWNHOSTS]). Name the key file
name using the following format:
fully-qualified-hostname_ ssh-dss.pub.

Specify the proper protection for the new file using the /PROTECTION=W=RE qualifier to the COPY
command. Without the proper protection, host-based authentication will not work.
For example, if the host name is green and its domain name is color.art.com, copy the client's
host public-key file as follows:
$ COPY SYS$LOGIN:[SSH2.KNOWNHOSTS]green_color_art_com_ssh-dss.pub -
_$ SERVERHOST::TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2.KNOWNHOSTS]-
_$ green_color_art_com_ssh-dss.pub/PROTECTION=(W=RE)

4. If you want your own version of the host public key files in addition to the systemwide file, copy the file
into your [username.SSH2.KNOWNHOSTS] directory. If the same file exists in both directories, the
SSH server uses the user-specific key-name file in your user directory.

3.8 Setting Up Public-Key Authentication
Public-key authentication requires the following configuration actions on the client and server host sides of
the connection.
1. Create public-private key pairs on the client host.
2. Install your public key in your accounts on all server hosts to which you want to connect. Your user

account on each server host might have many public keys for accessing it in different ways.

3.8.1 Setting Up Public-Key Authentication on the Client
1. Edit the client configuration file by setting the value of the AllowedAuthentications keyword to

include the word publickey. For example:
AllowedAuthentications publickey, password

2. From the user account, run the SSH_KEYGEN utility, as described in Chapter 7. This action creates the
public private key file. The default public key file name is [username.SSH2]ID_DSA_2048_A.
The file contains your private key, which you must protect so that only you can access it. To protect the
file, use the DCL command SET FILE/PROTECTION. For example:
$ SET FILE/PROTECTION=(S,W,G,O:RW) ID_DSA_2048_A.

24 Customizing the SSH Run-Time Environment

The [username.SSH2]ID_DSA_2048_A.PUB file contains your public key, which you can copy to
other hosts. Ensure that this file is available for world read access.

3. Create a file named [username.SSH2]IDENTIFICATION. The IDENTIFICATION. file identifies your
private-key file. For example, add the following line to the IDENTIFICATION. file if the name of your
private-key file (as generated by the SSH_KEYGEN utility) is ID_DSA_2048_A:
IdKey ID_DSA_2048_A

The IDENTIFICATION. file tells the client which private keys are available for use in authenticating the
server.

3.8.1.1 Using SSH_KEYGEN to Rename Public-Key Files
If you need multiple keys, use the SSH_KEYGEN utility to rename the public key files to be used with a
particular SSH server host. Rename the public key files to file names in the following format:
username-serverhostname.PUB.
Use the following format for the private key: username-serverhostname.
This convention makes it easier to copy designated public key files to the appropriate server hosts. For
example, assume that the public and private key files have been either generated as or renamed to the file
MEUSER-MYHOST_MYDOMAIN_COM.*. Create a file called [username.SSH2]IDENTIFICATION. and add
a line that identifies the name of your private key. Add the following line to the IDENTIFICATION. file:
IdKey MEUSER-MYHOST_MYDOMAIN_COM

For more information about the SSH_KEYGEN utility, see Chapter 7.

3.8.2 Setting Up Public-Key Authentication on the Server
1. Set the value of the AllowedAuthentications parameter in the server configuration file to include

the word publickey. For example:
AllowedAuthentications publickey

2. Create the subdirectory [username.SSH2] (if it does not exist).
3. Create the [username.SSH2]AUTHORIZATION. file.
4. Add entries to the [username.SSH2]AUTHORIZATION. file as necessary. Each entry is a single line

that identifies the user's client public key file name. The format of the entry is:
KEY username-hostname.PUB

For example, if the user's public key file name is MEUSER-MYHOST_MYDOMAIN_COM, add the
following line to the AUTHORIZATION. file:
KEY MEUSER-MYHOST_MYDOMAIN_COM.PUB

5. Copy the public key file to the server in the user's [username.SSH2] directory. Make sure the file is
protected properly (/PROTECTION=(S:WRED,O:WRED,G:RE,W:R)).

3.8 Setting Up Public-Key Authentication 25

26

4 Managing the SSH Service
This chapter describes how to manage the SSH client and the SSH server, and includes the following topics:

• Starting and Stopping the SSH Client

• Starting and Stopping the SSH Server

• Enabling IPv6 Networking

• SSH Logical Names

• Managing Auditing

• Managing Account Passwords

4.1 Starting and Stopping the SSH Client
To start the SSH client, enter the following command:
$ @SYS$STARTUP:TCPIP$SSH_CLIENT_STARTUP.COM

To stop the SSH client, enter the following command:
$ @SYS$STARTUP:TCPIP$SSH_CLIENT_SHUTDOWN.COM

You can also start and stop the SSH client from TCPIP$CONFIG.

4.2 Starting and Stopping the SSH Server
To start the SSH server, enter the following command:
$ @SYS$STARTUP:TCPIP$SSH_STARTUP.COM

To stop the server, enter the following command:
$ @SYS$STARTUP:TCPIP$SSH_SHUTDOWN.COM

If you enable the SSH service using the TCPIP$CONFIG.COM command procedure, the SSH server starts
automatically when TCP/IP Services is started. To enable the SSH server, from the SSH Server Configuration
menu, choose the Enable service option (1). For example:
SSH Configuration Service is not defined in the SYSUAF.
Service is defined in the TCPIP$SERVICE database.
Service is not enabled.
Service is stopped.

 SSH configuration options:
 Enable service on this node
 {E] - Exit SSH configuration
 Enter configuration option: 1

4.3 Enabling IPv6 Networking
This version of SSH for OpenVM supports IPv6 networking environments. To work in IPv6 environments, the
SSH service must be set to IPv6. To display the setting for SSH, enter the following TCP/IP management
command:
$ SHOW SERVICE SSH /FULL

Service: SSH
 State: Enabled
Port: 22 Protocol: TCP Address: 0.0.0.0
Inactivity: 5 User_name: TCPIP$SSH Process: TCPIP$SSH
Limit: 10000 Active: 0 Peak: 1

File: TCPIP$SYSTEM:TCPIP$SSH_RUN.COM
Flags: Listen IPv6

4.1 Starting and Stopping the SSH Client 27

Socket Opts: Rcheck Scheck
 Receive: 0 Send: 0

Log Opts: Acpt Actv Dactv Conn Error Exit Logi Logo Mdfy Rjct TimO Addr
 File: TCPIP$SSH_DEVICE:[TCPIP$SSH]TCPIP$SSH_RUN.LOG

Security
 Reject msg: TCPIP SSH Connection refused

 Accept host: 0.0.0.0
 Accept netw: 0.0.0.0

If the IPv6 flag is not included, enter the following command:
TCPIP> SET SERVICE SSH /FLAG=IPV6

For more information about these commands, see the TCP/IP Services for OpenVMS Management Command
Reference guide.

4.4 SSH Logical Names
The logical names described in Table 4-1 can be used to modify the behavior of the SSH service.
Table 4-1 Logical Names

FunctionName

Defines the device on which the SSH client default directory is
located. If you do not define this logical, the default is
SYS$SYSDEVICE.

TCPIP$SSH_DEVICE

Defines the OpenVMS equivalent of the /etc directory on UNIX
systems. Used internally by SSH software. Translates to
TCPIP$SSH_DEVICE:[TCPIP$SSH].

TCPIP$SSH_HOME

Defines the port on which an SSH authentication agent listens for
connections from clients. Used internally by SSH software, and
defined only in the job table for a process and its subprocesses.

TCPIP$SSH_AGENT_PORT

Defines the port on which a client of an SSH authentication agent
communicates with the agent. Used internally by SSH software, and
defined only in the job table for a process and its subprocesses.

TCPIP$SSH_CLIENT_PORT

Suppresses the warning messages you usually receive when you use
the OpenVMS SSH client to access the OpenSSH server.

TCPIP$SSH_TOLERANT_PROTOCOL_STATUS

Specifies alternate operational control over the SSH server. The
default is —1, which invokes the auxiliary server. Do not change this
logical name.

TCPIP$SSH_SERVER_PARAMS

Specifies the level of debug information. By default, this logical name
is set to 99.

TCPIP$SSH_SERVER_DEBUG

4.5 Managing Auditing
The following sections describe the SSH server auditing functions and the configuration parameters that you
can use to modify SSH auditing functions. For more information about the configuration parameters, see
Appendix B.

4.5.1 How the Server Performs Auditing
When auditing is enabled for the specified authentication method, the SSH server performs the following
functions depending on the type of login and whether the login attempt is successful.

28 Managing the SSH Service

When an interactive login is successful:

• The login failure count is set to 0.

• The last interactive login date is updated to the current date and time.

• If the user's password has expired but the user is not forced to change it before logging in, a warning
message is displayed and the pwd_expired flag is not set in the user's SYSUAF record.

• The user is allowed three failed attempts to log in. If all three attempts fail, the login failure count is
incremented by three.

• If the AccountingAuthentications keyword includes the current authentication method, the
accounting data is updated.

When a remote command execution is successful, no updates are made to the user's SYSUAF record; thus:

• The login failure count is not changed.

• The last noninteractive login date is not updated.

If the user's password has expired but the user is not forced to change it before logging in, a warning
message is displayed and the pwd_expired flag in the user's SYSUAF record is not set.
When the login or remote command execution fails:

• The login failure count in the user's SYSUAF record is incremented.

• If the IntrusionAuthentications keyword includes the current authentication method, the intrusion
database is updated with text controlled by the IntrusionIdentSsh and IntrusionIdentMethod
keywords in the server configuration file.

• If the AccountingAuthentications keyword includes the current authentication method, the
accounting data is updated.

4.5.2 Auditing Options for the Server Configuration File
You can include the following options in the server configuration file (TCPIP$SSHD_CONFIG.) to control
auditing functions.

• AccountingAuthentications

• AllowNonvmsLoginWithExpiredPw

• IntrusionAuthentications

• IntrusionIdentMethod

• IntrusionIdentSsh

• LogfailAuthentications

• PubkeyPassphraseGuesses

• UserLoginLimit

4.5.3 Auditing Options for the Client Configuration File
You can include the following options in the client configuration file (TCPIP$SSH_CONFIG.) to control auditing
functions.

• NumberOfHostkeyCopyPrompts

• NumberOfPasswordVerificationPrompts

• PubkeyPassphraseGuesses

The configuration parameters are described in Appendix B.

4.6 Managing Account Passwords
Some SSH client implementations allow users to change expired account passwords on OpenVMS. This
behavior is controlled in the server configuration file using the AllowNonvmsLoginWithExpiredPwd
parameter, as described in Appendix B.

4.6 Managing Account Passwords 29

4.6.1 Secondary Passwords
Some SSH client implementations require users to enter a second password. To make the SSH server prompt
for the second password, set the NumberOfPasswordVerificationPrompts parameter in the client
configuration file to at least 2, as described in Appendix B.

30 Managing the SSH Service

5 Port Forwarding
Port forwarding allows any TCP-based application or service to take advantage of all the benefits of a secure
tunnel between two hosts. After you have set up a secure tunnel, the participating applications operate
transparently. For example, when you forward a regular TELNET connection through SSH, all information,
including your user name, password, and actual data, are automatically encrypted and checked for integrity.
X11 port forwarding encrypts the X protocol (for X Window Systems). Using SSH, you can invoke X Window
programs on a remote machine and have them appear on your local display. In this case, all X-protocol
data is secured.
This chapter describes the following:

• Standard Port Forwarding

• Port Forwarding for FTP

• X11 Port Forwarding

• Managing Port Forwarding

5.1 Standard Port Forwarding
Use local port forwarding when the client application is running on the same system as the SSH client. Use
remote port forwarding if the client application is running on remotely. Local and remote port forwarding
are specified using the -"L" and -"R" options.

• From an OpenVMS system to another OpenVMS system

Local port forwarding
On system VMSHOST1, enter the following command:

•

$ SSH -"L" 2001:localhost:23 VMSHOST2

From another window on VMSHOST1, enter the following command:
$ TELNET localhost 2001

Result: The login prompt is displayed for VMSHOST2.

• Remote port forwarding
On system VMSHOST1, enter the following command:
$ SSH -"R" 2001:localhost:23 VMSHOST2

On system VMSHOST2, enter the following command:
$ TELNET localhost 2001

Result: The login prompt is displayed for VMSHOST1.

• From an SSH for OpenVMS client to a non SSH for OpenVMS server

Local port forwarding
On system VMSHOST1, enter the following command:

•

$ SSH -"L" 2001:localhost:23 NONVMSHOST

From another window on VMSHOST1, enter the following command:
$ TELNET localhost 2001

5.1 Standard Port Forwarding 31

Result: The login prompt is displayed for NONVMSHOST.

• Remote port forwarding
On system VMSHOST1, enter the following command:
$ SSH -"R" 2001:localhost:23 NONVMSHOST

On the system NONVMSHOST, enter the following command:
TELNET localhost 2001

Result: The login prompt is displayed for VMSHOST1.

• From a non SSH for OpenVMS client to an SSH for OpenVMS server

Local port forwarding
On system NONVMSHOST, enter the following commands:

•

SSH -L 2001:localhost:23 VMSHOST1

TELNET localhost 2001

Result: The login prompt is displayed for VMSHOST1.

• Remote port forwarding
On system NONVMSHOST, enter the following command:
SSH -R 2001:localhost:23 VMSHOST1

On system VMSHOST1, enter the following command:
$ TELNET localhost 2001

Result: The login prompt is displayed for VMSHOST1.

5.2 Port Forwarding for FTP
When you are connecting to an OpenVMS FTP server, in addition to the -"L" or -"R" options, you must
specify the FTP protocol and set the connection to passive mode, as shown in the following examples.
• From an OpenVMS system to another OpenVMS system

Local FTP port forwarding
On system VMSHOST1, enter the following commands:

•

$ SSH -"L" ftp/2001:localhost:21 VMSHOST2

From another window on VMHOST1, enter the following commands:
$ FTP localhost 2001

ftp> set passive on

Result: A secure FTP connection is established.

• Remote FTP port forwarding
On system VMSHOST1, enter the following command:
$ SSH -"R" ftp/2001:localhost:21 VMSHOST2

On system VMSHOST2, enter the following command:

32 Port Forwarding

$ FTP localhost 2001

ftp> set mode passive

Result: The connection is made to VMSHOST1.

• SSH for OpenVMS client to a non-SSH for OpenVMS server

Local FTP port forwarding
On system VMSHOST1, enter the following command:
$ SSH -"L" ftp/2001:localhost:21 NONVMSHOST

•

From another windows on VMSHOST1, enter the following command:
$ FTP localhost 2001

Result: The connection is made to NONVMSHOST.

• Remote FTP port forwarding
On system VMSHOST1, enter the following command:
$ SSH -"R" ftp/2001:localhost:21 NONVMSHOST

On system NONVMSHOST, enter the following command:
ftplocalhost 2001

ftp> set mode passive

Result: The connection is made to the VMSHOST1 system.

• Non SSH for OpenVMS client toSSH for OpenVMS server

Local FTP port forwarding
On system NONVMSHOST, enter the following commands:

•

ssh -L ftp/2001:localhost:21 VMSHOST1
ftp localhost 2001

ftp> set mode passive

Result: The connection is made to the VMSHOST1 system.

• Remote FTP port forwarding
On system NONVMSHOST, enter the following command:
ssh -R ftp/2001:localhost:21 VMSHOST1

On system VMSHOST1, enter the following command:
$ FTP localhost 2001

Result: The connection is made to the NONVMSHOST system.

5.3 X11 Port Forwarding
To use X11 port forwarding, include the ForwardX11 in the client configuration file (SSH_CONFIG.), or
use one of the following options to the SSH command:

5.3 X11 Port Forwarding 33

• The +x option, which enables untrusted X11 connections (default)

• The +X option, which enables trusted X11 connections

• The -x option, which disables X11 connections

When X11 port forwarding is enabled on both the SSH client and server, you can use SSH to connect to
an SSH server and invoke X11 client programs there, while having them appear on your local display. You
can also "chain" port forwarding across multiple systems, even if the intermediate systems are not running
the X11 server. For example, from SYSTEM1 you can use SSH to connect to SYSTEM2, and then from
SYSTEM2 connect to SYSTEM3. An X11 client application running on SYSTEM3 will be displayed securely
on SYSTEM1.
X11 access to an OpenVMS X11 server requires enabling access to the X11 client. On HP DECwindows
Motif for OpenVMS Systems, this can be done through the Style Manager/security option:
1. Add the appropriate values for node and user name, and the value tcpip as the transport. Details of

how to enable access on other platforms may differ.
2. To direct output to the forwarded X11 server port, enter the following command:

$ SET DISPLAY/CREATE/TRANSPORT=TCPIP/NODE=Xserver

For Xserver, specify the name of the SSH server. To direct output to the local SSH server, enter the
keyword LOCAL. To verify that the settings are correct, enter the following commands:
$ SHOW DISPLAY
 Device: WSA777: [user]
 Node: sshclient.myplace.com
 Transport: TCPIP
 Server: 10
 Screen: 0$ SHOW LOGICAL DECW$DISPLAY

For more details about the SET DISPLAY command, see the OpenVMS DCL Dictionary.

3. To terminate the display, exit the X11 client application, and log out of the SSH session, enter the
following command:
$ SET DISPLAY /DELETE

5.4 Managing Port Forwarding
The terminology used in port forwarding is reversed from that used in setting up an SSH session. Specifically:

• Use the SSH command on host VMSHOST1 to set up an X11 port forward to the SSH server on
VMSHOST2.

• Run the X11 client on host VMSHOST2 for display by the X11 server on host VMSHOST1.

The following configuration parameters allow you to control port forwarding:

• ForwardX11, specified in the client configuration file, controls whether the SSH client performs port
forwarding. This is set to yes by default.

• AllowX11Forwarding, specified in the server configuration file, controls whether the SSH server
allows port forwarding. This is set to yes by default.

• xauthpath, specified in the client configuration file, specifies the location of the Xauthentication
executable file.

For more information about these configuration parameters, see Appendix B.

34 Port Forwarding

6 Setting Up Kerberos/SSH Connections
In addition to the authentication methods described in Chapter 3, you can use Kerberos, the network
authentication protocol from the Massachusetts Institute of Technology. This chapter describes how to set up
and use Kerberos on SSH. Before you can use Kerberos authentication, you must set up Kerberos on
OpenVMS, as described in the OpenVMS HP Open Source Security for OpenVMS Volume 3: Kerberos
manual.

NOTE: This version of SSH for OpenVMS supports Kerberos for OpenVMS Version V2.1 and higher.

This chapter describes how to set up Kerberos authentication, including the following topics:

• Installing Kerberos RTL Images

• Setting Up Kerberos

• Setting Up a Kerberos SSH Connection

• Solving Problems with SSH and Kerberos

6.1 Installing Kerberos RTL Images
To use one of the Kerberos-based authentication methods, install the 32-bit Kerberos RTL image
SYS$SHARE:KRB$RTL32.EXE. For example, enter the following command:
$ INSTALL CREATE SYS$SHARE:KRB$RTL32.EXE/OPEN/HEADER_RESIDENT/SHARED

To use gssapi-with-mic authentication on the SSH client or server, you must also install the 32 bit GSSAPI
RTL image SYS$SHARE:GSS$RTL32.EXE. Enter the following command:
$ INSTALL CREATE SYS$SHARE:GSS$RTL32.EXE/OPEN/HEADER_RESIDENT/SHARED

In the system startup file, make sure that the Kerberos startup command procedured (KRB$STARTUP.COM)
runs only after the TCP/IP Services for OpenVMS startup command procedure (TCPIP$STARTUP.COM) has
been run.

6.2 Setting Up Kerberos
To use Kerberos-based SSH, you must:

• Configure the Kerberos user and host principals. You must also create the associated Kerberos keytab
entries, as described in the HP Open Source Security for OpenVMS Volume 3: Kerberos manual.

• Configure the SSH server and client to use the appropriate Kerberos authentication methods.

6.2.1 Configuring the Kerberos User and Host Principles
On each SSH server host to which a user may want to connect using Kerberos-based authentication method
or Kerberos password check, define a Kerberos host principal, as described in the OpenVMS Guide to
Security (Kerberos). The host principle for the SSH server host must be fully qualified. For example, a host
principal for the SSH server host with DNS name myhost.abcd.org in the Kerberos realm ABCD.ORG
would be specified as host/myhost.abcd.org@ABCD.ORG
To use the gssapi-with-mic authentication method, the server's local host database for itself must be
configured so that the first entry in the list is the fully-qualified domain name. Use the TCP/IP management
command SHOW HOST/LOCAL on the SSH server to make sure the server is defined by its fully-qualified
canonical name. For example, to set up gssapi-with-mic authentication on the SSH server host named
myhost.abcd.org, the local host entry must be defined as displayed by the following command:
MYHOST> TCPIP SHOW HOST/LOCAL MYHOST
 LOCAL database
Host address Host name
10.0.0.1 myhost.abcd.org, myhost, MYHOST,MYHOST.ABCD.ORG

6.1 Installing Kerberos RTL Images 35

6.2.2 Configuring the Kerberos Authentication Method
In addition, the SSH servers must be configured to accept requests for each authentication method that clients
will use. The following Kerberos authentication methods can be enabled:

• gssapi-with-mic

• kerberos-2 (kerberos-2@ssh.com)

• kerberos-tgt-2 (kerberos-tgt-2@ssh.com)

To enable the SSH server to provide an authentication method to SSH clients, add the Kerberos authentication
method name to the AllowedAuthentications configuration keyword in the server configuration file.
For more information about SSH authentication methods, see Chapter 3.
For example, if you want your SSH server to offer gssapi-with-mic and publickey authentication,
include the following in the server configuration file:
AllowedAuthentications: gssapi-with-mic, publickey

The Kerberos authentication methods are not part of the default configuration. You must explicitly include
them in the configuration file to use Kerberos authentication. For more information about modifying the server
and client configuration files, see Appendix B.

6.2.3 SSH Kerberos Authentication Interoperability
The kerberos-2@ssh.com and kerberos-tgt-2@ssh.com authentication methods are proprietary
(not specified by an IETF draft or RFC), and as such are supported only by the SSH implementations based
on software from SSH Communications, Inc. HP Tru64 UNIX also supports these authentication methods.
The gssapi-with-mic authentication method is based on an IETF draft (GSSAPI Authentication and Key
Exchange for the Secure Shell Protocol). As a public-domain specification, it is supported by a broader range
of SSH implementations, including those based on OpenSSH.
TCP/IP Services does not implement the key exchange part of the GSSAPI protocol. It implements only the
user authentication portion of this specification.

6.2.4 SSH Client Configuration
To enable a Kerberos authentication method on the SSH client, add the appropriate argument to the
AllowedAuthentications keyword in the SSH client configuration file. Kerberos-based authentication
methods are not enabled for AllowedAuthentications by default. You must enable them in your SSH
client configuration file. For example, to tell your SSH client to use the gssapi-with-mic method first,
then publickey, and then password authentication, enter the following:
AllowedAuthentications: gssapi-with-mic, publickey, password

6.3 Setting Up a Kerberos SSH Connection
To establish an SSH connection using Kerberos authentication, the SSH client user enters the kinit command
to obtain a ticket-granting ticket (TGT).

6.3.1 Forwarding Credentials
Kerberos allows SSH to forward Kerberos credentials from client host to server host, obviating the need for
users to re-enter their Kerberos password each time they use a Kerberized application. For example, with
credentials forwarding, a user on HOSTA issues a kinit command, connects to SSH from HOSTA to
HOSTB, and, once logged into HOSTB, connects to HOSTC, without ever issuing a kinit command on
HOSTB. After entering the kinit command on HOSTA, the credentials follow the user to the session on
HOSTB and then to the session on HOSTC.
To forward Kerberos credentials, include the -f option on the kinit command. This option indicates that
a forwardable TGT is to be produced.
In addition to the presence of a forwardable TGT, the Kerberized application being used must support
credentials forwarding. You can forward credentials when you are using the kerberos-tgt-2 and

36 Setting Up Kerberos/SSH Connections

gssapi-with-mic authentication methods. The kerberos-2 authentication method does not support
forwarding of the user's Kerberos credentials to the process on the SSH server host.

6.3.2 Managing Kerberos Credential Forwarding
Credentials are only forwarded from the client to the server if the GssapiDelegateCredentials client
configuration parameter is set to yes. If the parameter is set to yes, the SSH client delegates credentials to
the server. If it is set to no, the client does not delegate credentials. The default is no. For more information
about client configuration parameters, see Appendix B.

6.3.3 Forwarding Kerberos Credentials Example
The following example shows how to create forwardable Kerberos credentials and use them to connect:
 !!! User issues kinit with -f to get a forwardable TGT.

 !!! In this example the Kerberos principal user name is lower case and

 !!! the realm is uppercase.

 SYSA> kinit -f "smith"

 Password for smith@SYSA.XYZ.COM:

 !!! Connect to system "sysb" forcing use of kerberos-tgt-2 authentication

 !!! method.

 SYSA> ssh -o"AllowedAuthentications kerberos-tgt-2@ssh.com" smith@sysb

 Authentication successful.

 Welcome to HP OpenVMS Industry Standard 64 Evaluation Release V8.2

 !!! We've been allowed in. A klist -f (-f for "full") shows that we have a

 !!! TGT without having issued a kinit command on SYSB.

 SYSB> klist -f

 Ticket cache: FILE:WORK10$:[SMITH.KRB.SYSB.TMP]KRB5CC_1480589921

 Default principal: smith@SYSA.XYZ.COM

 Valid starting Expires Service principal

 09/22/05 14:18:53 09/23/05 00:17:16 krbtgt/SYSA.XYZ.COM@SYSA.XYZ.COM

 Flags: FfT

 Kerberos 4 ticket cache: krb$user:[tmp]k4_tkt_cache33488912

 KRB$KLIST: You have no tickets cached

 !!! Now use ssh to connect back to sysa but this time use the simpler

 !!! kerberos-2 authentication method.

 SYSB> ssh -o"AllowedAuthentications kerberos-2@ssh.com" smith@sysa

 Authentication successful.

 UNAUTHORIZED ACCESS PROHIBITED OpenVMS AXP (TM) Operating System, Version V8.2

 !!! We have been allowed in but have no TGT created for us because we

 !!! used kerberos-2:

 SYSA> klist -f

 KRB$KLIST: No credentials cache found (ticket cache FILE:krb$user:[tmp]krb5cc_33488912)

 Kerberos 4 ticket cache: krb$user:[tmp]k4_tkt_cache33488912

 KRB$KLIST: You have no tickets cached

6.3 Setting Up a Kerberos SSH Connection 37

6.4 Kerberos Password Authentication
In password authentication mode, the SSH server checks the password against Kerberos before checking it
against the SYSUAF. If the Kerberos password check passes, the SSH server considers the SSH password
authentication successful and the user is allowed in. If not, the password authentication continues on with
the SYSUAF check.
When the Kerberos password check succeeds, the SSH server provides to the user process on the server
system a forwardable TGT so that the user need not issue a kinit once logged in. Essentially the SSH server
has performed a kinit -f command on behalf of the user.
By default, Kerberos password authentication is not enabled. To enable Kerberos password check in password
authentication mode, set the TryKerberosPassword configuration parameter in the SSH server configuration
file to yes.
The TryKerberosPassword configuration parameter tells the SSH server in password authentication mode
to validate the user's password against Kerberos before validating against the SYSUAF. A yes value tells
the SSH server to validate the user's password against Kerberos. A no value tells the SSH server not to check
Kerberos. The TryKerberosPassword configuration field defaults to no.
To use Kerberos password authentication, you must have SYS$SHARE:KRB$RTL32.EXE installed, as described
in Installing Kerberos RTL Images.

6.5 Solving SSH/Kerberos Problems
Kerberos, while powerful, can be cumbersome to configure and deploy. Often, problems that occur with
Kerberos are related to misconfiguration of Kerberos, not a software problem with the applications using it.
To help determine the cause of connection problems, you can set the following configuration parameters:

• The GssapiSendError parameter tells the SSH server in gssapi-with-mic authentication mode
to send a GSSAPI error message (SSH_MSG_USERAUTH_GSSAPI_ERROR) to the client when an error
occurs. This message provides information about the error and is usually displayed to the client user.
A yes value tells the SSH server to send a GSSAPI error message. A no value tells it not to send the
message. By default, his parameter is set to no.

• The GssapiSendErrtok parameter tells the SSH server or client in gssapi-with-mic authentication
mode to send the SSH_MSG_USERAUTH_GSSAPI_ERRTOK message to the peer when an error occurs.
This message contains a gssapi error token that is decoded on the peer and causes diagnostic
information to be displayed.
A yes value tells the SSH client or server to send the SSH_MSG_USERAUTH_GSSAPI_ERRTOK message.
A no value tells it not to send the SSH_MSG_USERAUTH_GSSAPI_ERRTOK message. This parameter
defaults to no.

The following list describes how to respond to some of the common errors related to using SSH with Kerberos:

• Expired Kerberos ticket
Kerberos tickets have expiration dates. If you attempt to use the SSH client to connect using a Kerberos
authentication method and your ticket has expired, the following message is displayed:
$ ssh -o"AllowedAuthentications kerberos-2@ssh.com smith@sysb
Kerberos5 authentication failed: Your ticket has expired. Use kinit

• Nonforwardable Kerberos ticket with kerberos-tgt-2

When you use the kerberos-tgt-2 authentication method, your kinit command must include the
-f option to tell Kerberos that you want a forwardable TGT. If you have not specified kinit with -f and
try to use SSH with kerberos-tgt-2 authentication, the following message is displayed:
$ ssh -o"AllowedAuthentications kerberos-tgt-2@ssh.com" smith@sysb
Kerberos5 TGT forwarding failed: Ticket not forwardable? Try using kinit
-f

38 Setting Up Kerberos/SSH Connections

• No Kerberos ticket at all
If you use Kerberos based SSH authentication without having issued a kinit command to get a
Kerberos TGT, you see this message:
SYSA> ssh -o"AllowedAuthentications kerberos-tgt-2@ssh.com" smith@sysb
Kerberos5 TGT forwarding failed: You have no ticket. Use kinit -f

• Internal credentials cache error with gssapi-with-mic

You have tried to use the gssapi-with-mic authentication method with a forwardable TGT and the
GssapiDelegateCredentials client parameter is set to yes (the default). Authentication fails. The
following message is displayed:
MYHOST> ssh -o"allowedauthentications gssapi-with-mic" -
_MYHOST> -o"GssapiDelegateCredentials yes" smith@sysb
GSSAPI error from server: Miscellaneous failure
 Internal credentials cache error
warning: Authentication failed.

This type of failure causes the following warning in the SSH server log file:
Mon 12 06:43:13 WARNING: Miscellaneous failure
Internal credentials cache error

This message is only displayed to the SSH client user if the GssapiSendError server configuration
parameter is set to no.
To correct the problem while using forwardable tickets, set the GssapiDelegateCredentials client
configuration parameter for this session by entering the command as follows:
ssh -o"allowedauthentications gssapi-with-mic" -
_$ -o"GssapiDelegateCredentials no" smith@sysb

To continue without change the configuration options and without using forwardable tickets, enter the
kinit again, without the -f option. This command requesets a nonforwardable ticket.

Many problems are caused by errors in systemwide or Kerberos configuration. Misconfiguration can cause
problems like:

• Your SSH server log file shows the following error when trying to authenticate using gssapi-with-mic:
Mon 12 09:37:37 WARNING: Miscellaneous failure
Wrong principal in request

The problem could be an incorrect local host database entry on the SSH server for the SSH server itself.
Make sure the fully-qualified host name is used. Note that this message applies only to
gssapi-with-mic authentication.

• Your SSH server log file shows the following error when trying to authenticate using gssapi-with-mic:
Mon 19 09:19:37 WARNING: Miscellaneous failure
No principal in keytab matches desired name

This problem can be caused by a missing or incorrect host principal for the SSH server, or the host
principal is correct but the keytab entry is missing or incorrect. This is how the problem manifests itself
with gssapi-with-mic authentication.

• Your SSH client displays something similar to the following:

6.5 Solving SSH/Kerberos Problems 39

$ ssh -o"AllowedAuthentications kerberos-2@ssh.com" smith@sysb

Kerberos5 authentication failed: krb5_get_credentials(): KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN

warning: Authentication failed.

This problem can be caused by a missing or incorrect host principal for the SSH server, or the host
principal is correct but the keytab entry is missing or incorrect. This is how the problem manifests itself
with the kerberos-2 or kerberos-tgt-2 authentication.

• The SSH client or server (in the SSH server log) shows a message simlar to one of these:
WARNING: kerberos-2@ssh.com authentication failed since Kerberos wasn't initialized.

WARNING: gssapi-with-mic authentication failed since Kerberos wasn't initialized.

This message indicates that Kerberos for OpenVMS has not been installed properly. Refer to the HP
Open Source Security for OpenVMS Volume 3: Kerberos manual for installation instructions to remedy
the situation.

If SSH with Kerberos authentication fails, it is helpful to test another Kerberized application, such as TELNET,
which will often fail in the same way as does SSH, pointing to a problem with Kerberos configuration, rather
than to an SSH software problem.
The SSH server and client diagnostics features show errors and warnings indicating problems with calls to
Kerberos library routines. These types of errors list the Kerberos routine that failed and the failure return
status.
When you repeatedly make changes to host principals and keytab entries and files, existing tickets in the
credentials cache can contain stale information, making it appear that your changes to the Kerberos
configuration have not taken effect. Use the kdestroy and kinit commands to clear the credentials cache
before testing your configuration changes.

40 Setting Up Kerberos/SSH Connections

7 SSH Command Reference
This chapter describes SSH commands that you can use to invoke SSH, copy or transfer files, and manage
keys. It covers the following topics:

• Before You Begin

• Copying Files

• Remote Login and Command Execution

• Using SSH Commands in Batch Jobs

• Using the SSH_KEYGEN Utility

• Using the SSH_ADD Utility

• Using the SSH_AGENT Utility

7.1 Before You Begin
To use SSH client utilities at the DCL prompt, run the TCPIP$DEFINE_COMMANDS.COM command procedure.
Enter the following command:
$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM

NOTE: When you specify uppercase options, enclose them in quotation marks: for example, "-D".

7.2 Copying Files
You can use the following Secure Shell commands to copy files between clients and servers:

• SCP (or SCP2)

• SFTP (or SFTP2)

7.2.1 File Types
You can use SCP and SFTP to copy files of the following types:

• Variable-length

• VFC

• Fixed

• Fortran Carriage Control

• Stream-LF

Files that are indexed or relative cannot be copied directly. To transfer indexed files:
1. Create an encoded copy of the file with sequential organization with any one of the following options:

• Backup saveset

• Self-extracting image (such as from SPOOL COMPRESS /METHOD=DCX_AXPEXE)

• Zip archive

2. Transfer the converted file.
3. Convert back on the receiving end.

7.2.2 Using the SCP Command
The SCP command securely copies files between a Secure Shell client and server. This command is intended
as a secure replacement for the rcp command. When the user enters the SCP command, the client establishes
an SSH session. If authentication succeeds and the user's identity has been accepted by the server, the server

7.1 Before You Begin 41

executes the command. All communication is automatically encrypted. The session terminates when the
command completes. The SCP command does not require special privileges.

7.2.2.1 Command Synopsis
SCP [-D -dqQpuBrav146Vh] debug_level_spec]
[-c cipher] [-S ssh2-path]
[-P ssh-port]-b buf_size]
[-N max_requests] [-o ssh-option]
source-name destination-name

7.2.2.2 Parameters
source-name specifies the file to be copied, in the following format:
destination-name specified the location and file name for the copied file.
The general format for the source and destination name is as follows:
user@host#port :[directory]file-name

You can copy files or entire directories.

7.2.2.3 Options
Table 7–1 describes the options in you can use with the SCP command.
Table 7-1 SCP Command Options

DescriptionOption

Displays debug information to SYS$OUTPUT. The debug-level is a number between 0 and 99,
where 99 specifies that all debug information should be displayed.

-D debug-level

Makes sure that the destination-name parameter is a directory. If not, the SCP command exits with an
error message.

-d

Makes SCP quiet (only fatal errors are displayed).-q

Suppresses the progress indicator.-Q

Replaces files of the same name at the destination. This option applies to OpenVMS SSH servers only.-k

Sets batch mode on.-B

Displays information in verbose mode. This is equal to specifying the -D 2 option.-v

Engage scp1 compatibility.-1

Restricts communications to IPv4 networking. This is the default.-4

Enables IPv6 networking.-6

Specifies the encryption algorithm to use. See the description of the ciphers configuration parameter
in the client configuration file described in Appendix B. The -c option specifies one cipher; multiple
-c options are allowed.

-c cipher

Specifies an alternate location for the SSH server executable file.-S ssh-path

Specifies the port on which the SSH Server should listen for SCP connections.-P ssh-port

Defines the maximum buffer size for one request (default is 2048 bytes).-b

Defines the maximum buffer size of concurrent requests (default is 10).-N

Specifies client configuration parameter settings that override the settings specified in the client
configuration file. For more information, see Appendix B.

-o ssh-option

Displays the version of SSH.-V

Displays information about using the SCP utility.-h

7.2.2.4 Example
The following example shows how to copy files from a local system FILE.TXT to a remote system (VMSHOST)
and into the directory [MYDIR].

42 SSH Command Reference

$ SCP FILE.TXT KATHY@VMSHOST:DSK0:[MYDIR]

The following example shows how to copy FILE.TXT from a remote system (VMSHOST) to a local system and
renaming it to LOCAL_FILE.TXT:
$ SCP KATHY@VMSHOST:DSK0:[MYDIR]FILE.TXT LOCAL_FILE.TXT

7.2.3 Using the SFTP Command
You can use the SFTP command on a client to copy files to and from a server. Some SFTP commands and
syntax are similar to those for the FTP command, but SFTP does not use the FTP server or the FTP client for
its connections.

7.2.3.1 Command Synopsis
SFTP [-D debug_level_spec][-B batchfile] [-S path][-h] [-V] [-P ssh-port]
[b buffer_size] [-4] [-6][-o ssh_option]
user@host

For more details about SFTP commands, enter the help or help topic command at the sftp> prompt.
For example, to find more information about the open command, enter the following command:
sftp> help open

7.2.3.2 Parameters
The user@host parameter specifies the user name and host name of the destination for the file transfer.

7.2.3.3 Options
Table 7–2 describes the options you can use with the SFTP command.
Table 7-2 SFTP Command Options

DescriptionOption

Displays debug information. The debug-level value is a number between 0 and 99, where 99
specifies that all debug information should be displayed.

-D debug-level

Reads commands from a file instead of from SYS$INPUT. The default batch file is
SYS$LOGIN:TCPIP$SFTP_BATCHFILE.TXT. If you specify a different batch file, make sure the batch
file is in Stream-LF format.

-B batchfile

Specifies an alternate location for the SSH server executable file.-S ssh-path

Displays information about how to use the SFTP utility.-h

Displays the version of SSH.-V

Tells SFTP on which port the SSH server is listening.-P

Specifies the buffer size.-b buffer-size

Restricts communications to IPv4 networking.-4

Enables IPv6 networking.-6

Specifies additional SSH options.-o SSH-option

7.2.3.4 Example
The following example shows how to invoke SFTP. Enter SFTP commands at the sftp> prompt. For a list of
SFTP commands, enter the help command at the sftp> prompt. For example:
$ SFTP
sftp> help

7.2 Copying Files 43

7.3 Remote Login and Command Execution
The SSH command creates a secure network connection for remote login and remote command execution.
This command is intended as a secure replacement for the RLOGIN and RSH commands. When the user
enters the SSH command, the SSH client establishes a session with the server and proves the user's identity
to the server using a chosen authentication method, as described in Chapter 3. When the user's identity has
been accepted by the SSH server, all communication with the remote SSH server is automatically encrypted.
On the client, you can use the SSH command to log in remotely and execute remote commands.

7.3.1 Command Synopsis
SSH [options][username@]host[#port][command]

7.3.2 Parameters
The username@host#port parameter specifies the user name, the remote host, and the port on the remote
host to which to make a connection.
The command parameter specifies one or more commands to be executed on the remote host.

7.3.3 Options
Table 7–3 lists the options you can use with the SSH command.
Table 7-3 SSH Command Options

DescriptionOptions

Specifies the user for login to the remote system (same as login_name@host).-l login_name

Enables X11 port forwarding. Treats X11 clients as "untrusted."+x

Enables X11 port forwarding. Treats X11 clients as "trusted."+X

Disables X11 port forwarding.-x

Specifies the identity file for public-key authentication. This option takes the file name as a
parameter. It is assumed that the file resides in the user's [.SSH2] directory. This option can
also be specified in the configuration file.

-i file

Specifies an alternative client host configuration file instead of the default file. The specified
file name must include the directory where the file resides (for example,:
[.SSH2]MY_SSH2_CONFIG). Information from this file supersedes information from
TCPIP$SSH_DEVICE:[TCPIP$SSH]SSH2_CONFIG. and the user's [.SSH2]SSH2_CONFIG.
file.

-F file

Allocates a terminal device to the process.-t

Enables verbose mode. Displays verbose debugging messages. Equivalent to the -d2 option.
This option can also be specified in the client's configuration file.

-v

Displays debug information. The debug-level value is a number from 0 to 99, where 99
specifies that all debug information or a comma-separated list of assignments should be
displayed.

-d debug-level

Displays the version of SSH.-V

Disables warning messages. This option can also be specified in the client's configuration
file.

-q

Specifies the port to which to connect on the remote system.-p port

Does not request a session channel. This type of session does not disconnect automatically.
To disconnect a session begun with this option, enter the following TCP/IP Management
command:
$ TCPIP DISCONNECT DEVICE BGnnnn

Where BGnnnn is the SSH session's device socket, as displayed by the TCP/IP management
command SHOW DEVICE.

-S

44 SSH Command Reference

DescriptionOptions

Specifies that the given port on the local (client) system is to be forwarded to the specified
host and port on the remote system. This allocates a socket to listen to the port on the local
system. Whenever a connection is made to this port, the connection is forwarded over the
secure channel, and a connection is made to the specified host on the specified port from
the remote system. Only privileged user accounts can forward privileged ports. The protocol
enables the forwarding for the specfied protocol. The protocols implemented are TCP and
FTP; the default is no specific processing. Temporary forwardings are created for the FTP
data channel, effectively securing the whole FTP session. This option can also be specified
in the client configuration file (see Appendix B). FTP data channel forwarding works in
passive mode only. Be sure to set passive mode for FTP data channel connections.

-L [protocol/]
port:host:hostport

Specifies that the given port on the remote (server) system is to be forwarded to the specified
host and port on the local system. This allocates a socket to listen to the port on the remote
system. Whenever a connection is made to this port, the connection is forwarded over the
secure channel, and a connection is made to the specified host and port from the local
system. Only privileged user accounts can forward privileged ports on the remote system.
The protocol argument enables protocol-specific forwarding. The protocols implemented
are TCP and FTP; the default is no specific processing. Temporary forwardings are created
for FTP data channel, effectively securing the whole FTP session. This option can also be
specified in the client's configuration file (see Appendix B).

-R [protocol/]
port:host:hostport

Restricts communications to IPv4.-4

Enables IPv6 networking.-6

Specifies an option in the format used in the SSH2_CONFIG. configuration file. This is
useful for specifying an option for which there is no command-line option. Comment lines
are not accepted with this option.

-o option

Displays information about using the SSH utility.-h

To execute remote commands, enter the SSH command in the following format:
SSH [options] server_name [command]

When a user successfully logs in, the SSH server process:

• Runs with the user's privileges.

• Sets up a user environment.

• Sets the default directory to be the user's home directory.

• Executes the requested command.

7.3.4 Example
The following example shows how to execute the SHOW SYSTEM command on the remote host VMSHOST.
$ SSH VMSHOST SHOW SYSTEM

7.4 Using SSH Commands in Batch Jobs
With this version of SSH, you can use the SSH, SCP, and SFTP commands in batch jobs. However, because
these commands are ported from UNIX® implementations, some common OpenVMS assumptions must be
adjusted, including:

• SYS$INPUT, SYS$OUTPUT, and SYS$ERROR may not work as you expect.

• To execute the following commands in batch mode, you may need to use the following options:
$ SSH -o "batchmode yes"
$ SCP "-B"
$ SFTP "-B" filename

The file indicated by filename contains a sequence of SFTP command. If SFTP is invoked in batch
mode (from within a DCL command procedure (without the "—B" option), the following file name is
used by default: SYS$LOGIN:TCPIP$SSH_SFTP_BATCH.TXT.
For additional restrictions and guidelines, refer to the TCP/IP Services for OpenVMS Release Notes.

7.4 Using SSH Commands in Batch Jobs 45

7.5 Using the SSH_KEYGEN Utility
SSH_KEYGEN is the key-pair generation utility that generates and manages authentication keys for SSH.
Users who need to use SSH with public-key authentication can run this utility to create authentication keys.
The system manager can also use this utility to generate host keys. To set up public key authentication, see
“Setting Up Public Key Authentication.”

7.5.1 Command Synopsis
SSH_KEYGEN [options] [key1 key2...]

7.5.2 Parameters
The [key1 key2...] parameter specifies the name of one or more keys to generate.

7.5.3 Options
Table 7–4 describes the options that you can use with the SSH_KEYGEN command.
Table 7-4 SSH_KEYGEN Command Options

DescriptionOptions

Specifies the key strength, in bits. The default is 2048.-b key-number

Specifies the algorithm used to generate the keys. Specify either DSA or RSA. The default is DSA.-t key-algorithm

Specifies the key's comment string.-c comment-string

Specifies the passphrase used to protect the key.-p passphrase

Specifies that the key will be saved with an empty passphrase.-P

Displays a short summary of SSH_KEYGEN options.-h | -?

Hides the progress indicator.-q

Derives the public key from the private key file.-D file

Loads and displays information on a file.-i file

Specifies the number base for displaying key information. The default is 10.-B number

Displays the version string and exits.-V

Randomizes data from a file to a random pool.-r file

Dumps the fingerprint (a unique identifier) of the public key file.-F file

7.6 Using the SSH_ADD Utility
The SSH_ADD utility adds private keys into the authentication agent. The authentication agent must have
been started, usually with the SSH_AGENT utility, and must be running in a subprocess of the current process.
If a private key requires a passphrase, the SSH_ADD utility prompts you to enter it. Passphrases never go
over the network.
For SSH_ADD to process a key, both the private and public key files must be present in the same directory.
On OpenVMS, a public key file name must have the file extension .PUB (for example, MYKEY.PUB). A private
key file name has no file extension (for example, MYKEY.).

7.6.1 Command Synopsis
SSH_ADD [-l] [-d] [-D] files...

7.6.2 Parameters
The files... parameter specifies one or more public or private key files to load. If you do not specify any key
files, SSH_ADD reads the client configuration file (SSH2_CONFIG.) and the IDENTIFICATION. file. If these
files do not exist, SSH_ADD exits with an error message. SSH_ADD adds the keys listed in the

46 SSH Command Reference

IDENTIFICATION. file. The utility then adds any private key files it finds in the user's SSH directory. Note
that any file names in the SSH directory that begin with the letters "id" and that do not have the file extension
.PUB are assumed to be key files. For example, a file named id_22.txt causes SSH_ADD to fail.

7.6.3 Options
Table 7–5 describes the options you can use with the SSH_ADD command.
Table 7-5 SSH_ADD Command Options

DescriptionOptions

Lists all identities currently represented by the agent.-l

Removes the identity from the agent.-d

Deletes all identities from the agent.-D

7.6.4 Description
SSH_ADD attempts to load the identities from the specified key files.

7.6.5 Return Status
SSH_ADD returns one of the following exit codes in the case of an error:
TCPIP$_SSH_ADD2_EXIT_NOAGENT -- No connection could be made to the authentication agent.
Presumably there is no authentication agent active in the execution environment of the SSH_ADD utility.
TCPIP$_SSH_ADD2_EXIT_BADPASS -- The user did not supply a required passphrase.
TCPIP$_SSH_ADD2_EXIT_NOFILE -- An identity file could not be found, was unreadable, or was in the
wrong format.
TCPIP$_SSH_ADD2_EXIT_NOIDENTITY -- The agent does not have the requested identity.
TCPIP$_SSH_ADD2_EXIT_ERROR -- An unspecified error has occurred.

7.6.6 Example
• In this example, the SSH_AGENT is not running:

$ SSH_ADD

Failed to connect to authentication agent -- agent not running?

%TCPIP-E-SSH_ADD2_EXIT_N, no connection could be made to the authentication agent

• In this example, SSH_ADD adds the keys it finds in the IDENTIFICATION. file:
$ SSH_ADD

Unable to open ssh2/ssh2_config

Unable to open ssh2/identification

Adding identity: ssh2/id_dsa_1024_a.pub

Need passphrase for "ssh2/id_dsa_1024_a." (1024-bit dsa, kathy@host.computer.com,

Mon Aug 11 2003 15:39:46). Enter passphrase:

7.7 Using the SSH_AGENT Utility
The SSH_AGENT utility starts the SSH authentication agent to use an SSH client that is configured to use
public-key user authentication. Because the authentication agent holds private keys in memory, the user does

7.7 Using the SSH_AGENT Utility 47

not need to enter a passphrase if one exists for the key being used. As long as the agent is running, all
key-related operations are directed to the agent.
On startup, the agent does not hold any private keys. Keys are added by using the SSH_ADD command.
Several identities can be stored in the agent, and the agent can use any of these identities automatically.
The command SSH_ADD -l displays the identities currently held by the agent.
When the SSH agent starts up, it assigns the logical name TCPIP$SSH_AGENT_PORT in the process job
table, which is shared by a process and its subprocesses. Client programs use this value to start communication
with the agent, in turn assigning the logical name TCPIP$SSH_CLIENT_PORT. The agent uses the latter logical
name to check that the client is a valid user on the same job (that is, in the parent of the agent subprocess).
The agent terminates when the user logs out or stops the agent.

7.7.1 Command Synopsis
SSH_AGENT [-d debug_level]

7.7.2 Options
Table 7–6 describes the options you can use with the SSH_AGENT command.
Table 7-6 SSH_AGENT Command Options

DescriptionOptions

Displays debug information. The debug-level value is a number from 0 to 99, where 99 specifies
that all debug information or a comma-separated list of assignments should be displayed.

-d debug-level

7.7.3 Examples
The following example shows a normal agent startup and displays the value of the TCPIP$SSH_AGENT_PORT
logical name:
 $ SSH_AGENT
%DCL-S-SPAWNED, process USER01_67 spawned

$ SHOW USER/FULL
USER01 OpenVMS User Processes at 12-AUG-2003 13:49:36.29
Total number of users = 1, number of processes = 2
Username Process Name PID Terminal
USER01 USER01 00000B53 RTA1: (SYS01::USER01)
USER01 USER01_67 00000EB8 (subprocess of 00000B53)

$ SHOW LOGICAL TCPIP$SSH_AGENT_PORT
"TCPIP$SSH_AGENT_PORT" = "49198" (LNM$JOB_81425DC0)

The following example shows an attempt to start a second agent within the same parent process.
 $ SSH_AGENT
%DCL-S-SPAWNED, process USER01_253 spawned
$ Agent already running on port: 49198. Cannot start agent
%TCPIP-F-SSH_FATAL, non-specific fatal error condition

The following example shows the message displayed when a client not in the current user's job attempts to
connect to the user's agent subprocess:
$ Possible security attack. Actual socket port of client: 49202 did not match

value of logical name TCPIP$SSH_CLIENT_PORT: ""

48 SSH Command Reference

8 Solving SSH Problems
This chapter describes how to analyze and solve problems that prevent you from logging in using SSH.

NOTE: In this discussion, the user is the client user who executes the SSH command, or is the user who is
specified with the -l option to the SSH command.

Login is not permitted under the following conditions. In these cases, no auditing occurs.

• The user account does not exist.

• The user account has expired.

• The user account has access restrictions for the current day and time.

• The pwd_expired flag is set in the user's SYSUAF record.

• The keyword userloginlimithas a value of zero in the SSH server configuration file. (This applies
to all users.)

If any of the following conditions are true for the user on the SSH server, login is not permitted and auditing
occurs:

• The user failed the authentication (for example, invalid or missing keys for the host-based or public-key
method, invalid password for the password method, expired password and configured not to allow
client in with expired password).

• The user name is in the DenyUsers list, or is not in the AllowUsers list (if it exists) in the server configuration
file (SSHD2_CONFIG.).

• The user is in a group that is in the DenyGroups list, or is not in the AllowGroups list (if it exists) in
the server configuration file (SSHD2_CONFIG.). The groups in the DenyGroups and AllowGroups
lists are specified by the decimal representation that is the group portion of the UIC. That is, if a user's
UIC is [777,42], the following syntax denies the user and all other users with UIC [777,*]:
DenyGroups 511

• The disuser or autologin flag is set in the user's SYSUAF record.

• The user does not have OPER privilege and one of the following is true:

The number of interactive logins has exceeded the SYSGEN parameter IJOBLIM.•

• The UserLoginLimit parameter in the server configuration file is greater than zero and there
are already that number of logins for any individual user name.

• The client has been identified as an intruder.

If the user's password has expired and the connection is from an OpenVMS system to another OpenVMS
system, and the disforce_pwd_expired flag is not set in the user's SYSUAF, then the user must change
the password. The password dictionary, password history, and generated password lists are not used. The
number of failed attempts to verify the new password is specified using the
NumberOfPasswordVerificationPrompts parameter in the client configuration file.
The client user is not forced to change the password before logging in when:

• The connection is from OpenVMS to OpenVMS and the disforce_pwd_change flag is set in the
user's SYSUAF record.

• The connection is from a different SSH implementation to an OpenVMS system and the
AllowNonvmsLoginWithExpiredPw parameter is set to yes in the client configuration file. In these
cases, the pwd_expired flag is set in the user's SYSUAF record, so that any future attempts to log in
will fail if the password is not changed during the current session.

The client user login is rejected if:

49

• The connection is from a different SSH implementation to an OpenVMS system and the
AllowVmsLoginWithExpiredPw parameter is set to no in the server configuration file.

• The connection is from an OpenVMS system to a different SSH implementation, and the
AllowNonVmsLoginWithExpiredPw parameter is set to no in the server configuration file.

Examples

• If login is allowed but the password has expired, and the user is forced to change his password, the
following message is displayed before the first DCL prompt:
WARNING - Your password has expired; update immediately with SET PASSWORD!

• If the NumberOfPasswordVerificationPrompts parameter is set to 2, the following message is
displayed:
Your password has expired; you must set a new password to log in
New password:Verification:
New password verification error; please try again
Verification:

If verification fails a second time, the login attempt fails.

To get detailed tracing information, on the OpenVMS SSH server, enter the following command:
$ ASSIGN/SYS "-i -d 6" TCPIP$SSH_SERVER_PARAM

Trace information is written to the TCPIP$SSH_HOME:TCPIP$SSH_RUN.LOG file.

50 Solving SSH Problems

A SSH Directories and Files
This appendix summarizes information about files and directories that the SSH client and server use. Text
files can use either STREAM_LF format or variable-length format.

A.1 Client Directories and Files
TCPIP$SSH_DEVICE:[TCPIP$SSH]

Function: Default directory of the TCPIP$SSH account
Creation: During SSH configuration
Scope: Systemwide
Use: By running instances of the client and server processes

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]
Function: Contains multiple SSH files and subdirectories
Creation: During SSH client configuration
Scope: Systemwide
Use: By running instances of the client processes

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SSH2_CONFIG.
Function: Client configuration file
Creation: During SSH client configuration, by extracting a template file from the TCP/IP kit.
The system manager edits this file as necessary. Users can copy this file and make
user-specific modifications.
Scope: Systemwide
Use: Read by a starting client process

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2.HOSTKEYS]
Function: Contains public host keys of all remote servers that users will connect to using
SSH.
Creation: Empty during SSH client configuration, the system manager copies the files to this
directory from all servers before initiating connections. (This step may not be required. If
the server's public host key file is not in TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2.HOSTKEYS]
when the connection initiated, it can be copied automatically to the user specific directory
SYS$LOGIN:[SSH2.HOSTKEYS] on the client.) You control this behavior using the
StrictHostKeyChecking parameter in the server configuration file, as described in
Appendix B.
Scope: Systemwide
Use: For host authentication purposes; the client searches files in this directory for the server's
key before it searches the user-specific directory.

SYS$SYSDEVICE:[username.SSH2]
Function: Contains multiple SSH files and subdirectories
Creation: Either manually by the user, or automatically by running the client
Scope: User specific
Use: By running the client.

SYS$SYSDEVICE:[username.SSH2]SSH2_CONFIG.
Function: Client configuration file.
Creation: By the user, if necessary
Scope: User specific
Use: By a starting client process (if one exists) in lieu of the systemwide configuration file.

SYS$SYSDEVICE:[username.SSH2]IDENTIFICATION.
Function: Contains the identification of a user.
Creation: By the user when using public-key authentication

A.1 Client Directories and Files 51

Scope: User specific
Use: To identify a user for public-key authentication

SYS$SYSDEVICE:[username.SSH2.HOSTKEYS]
Function: Contains the public keys of the server hosts to which the client will connect.
Creation: By the user, if necessary. Files are copied here from a server, either automatically
when a connection is requested, or manually before initiating a connection.
Scope: User specific
Use: For host authentication purposes. First, the client tries to locate the remote host key in
this directory. If it is not found, the systemwide directory is used.

A.2 Server Directories and Files
TCPIP$SSH_DEVICE:[TCPIP$SSH]

Function: Default directory of TCPIP$SSH account
Creation: During SSH server configuration
Scope: Systemwide
Use: By running instances of the server and client processes

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]
Function: Contains multiple SSH files and subdirectories.
Creation: During SSH server configuration
Scope: Systemwide
Use: By running instances of the server and client processes

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SSHD2_CONFIG.
Function: Server configuration file
Creation: During SSH server configuration by extracting a template file from the TCP/IP kit.
The system manager edits the file as necessary.
Scope: Systemwide
Use: Read by a starting server process; also read by the client for host-based authentication.

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]HOSTKEY.
Function: Contains the private part of the host key pair. This file is owned by the system
account and has system read access only.
Creation: Together with the public part of the host key pair during SSH server configuration
(if requested). The new key can be created any time by a system manager running the
key-generation utility, SSH_KEYGEN, which creates both keys.
Scope: Systemwide
Use: By the server, when connection from a client is requested.

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]HOSTKEY.PUB
Function: Contains the public part of the host key. This file is writable by the system account
only and readable by world.
Creation: Together with the private part of the host key during SSH server configuration (if
requested). The new key can be created any time by a system manager running the key
generation utility, SSH_KEYGEN, which creates both keys).
Scope: Systemwide
Use: Server host identification. Required on the SSH client in the
[username.SSH2.KNOWNHOSTS] directory in order to use any authentication method.
Also required on the server for host-based authentication.

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SHOSTS.EQUIV
Function: List of trusted hosts.
Creation: An empty directory is created during SSH server configuration. The system manager
populates the file.
Scope: Systemwide

52 SSH Directories and Files

Use: As a systemwide list of trusted hosts checked by a server for host-based authentication.

TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2.KNOWNHOSTS]
Function: Systemwide directory that contains public keys of all remote client hosts that might
attempt to connect to the server using host-based authentication.
Creation: An empty file is created during SSH server configuration. It is populated by the
system manager as necessary by copying files from client hosts.
Scope: Systemwide
Use: The server gets public keys of remote client hosts from this directory when it it processing
a request for a host-based authentication connection.

SYS$LOGIN:SHOSTS.
Function: List of trusted hosts
Creation: By the user, if necessary
Scope: User specific
Use: As a user-specific list of trusted hosts, checked by the server for host-based
authentication. The server checks this list after it checks the systemwide SHOSTS.EQUIV,
enabling the user to allow access by hosts that are not in the systemwide list.

SYS$LOGIN:[SSH2]
Function: Contains multiple SSH files and subdirectories.
Creation: By the user, if necessary
Scope: User specific
Use: By running the server

SYS$LOGIN:[SSH2.KNOWNHOSTS]
Function: A user-specific directory that contains public keys of all remote client hosts that
might try to connect to the server using host-based authentication.
Creation: By the user, if necessary. The user populates the directory by copying files from
client hosts.
Scope: User specific
Use: The server gets public keys of remote client hosts from this directory when it is processing
a request for a host-based authentication connection. The file from this directory is used if
another file with the same name exists in the systemwide directory.

SYS$SYSLOGIN:[SSH2]AUTHORIZATION
Function: Contains information that allows the server to identify the user for public-key
authentication.
Creation: By the user, if necessary. The user populates this file by copying files from the
client hosts.
Scope: User specific
Use: The server uses the information in this file to identify the user.

A.2 Server Directories and Files 53

54

B SSH Client and Server Configuration Parameters
This appendix lists the systemwide SSH client and server parameters that the TCPIP$CONFIG configuration
procedure creates during SSH configuration, as described in Chapter 2.

NOTE: The default settings are used for options that do not appear in the configuration file.

The server configuration file is:
TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SSHD2.CONFIG.

The client configuration file is:
TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SSH.CONFIG.

B.1 Client Configuration Parameters
Some of the client configuration parameters that you can modify are as follows:
• AllowedAuthentications

Allowed values: hostbased, password, publickey, gssapi-with-mic,
kerberos-2@ssh.com, kerberos-tgt-2@ssh.com
Default: hostbased,password,publickey
Description: Specifies the authentication methods the client will attempt, in the order they will be
presented to the server.

The keyword all is equivalent to publickey, password, hostbased. The keyword none explicitly
disables all SSH authentication methods.

• DefaultDomain

Specifies the fully qualified domain name for the local host.

• ForwardX11

Enables X11 port forwarding (the default). To disable the SSH client from allowing X11 port forwarding,
set this parameter to No.

• GssapiDelegateCredentials

Delegates the user's credentials to the SSH server.

• NumberOfHostkeyCopyPrompts

Allowed values: an integer greater than 0
Default: 3
Description: Specifies the number of times the client user gets prompted to answer yes or no when
asked about continuing to start an SSH session, if there is no host key and the value of
StrictHostKeyChecking is ask.

• NumberOfPasswordVerificationPrompts

Allowed values: An integer greater than 0
Default: 3
Description: Specifies the number of times the client user is allowed to fail verification of the new
password when forced to change it on login. Applies to OpenVMS-to-OpenVMS connections only.
This number must be at least 2 to support second passwords.

• port

Allowed values: An integer value.
Default: 2
Description: Specifies the port number that SSH listens on. If you change the port number, you
must explicitly disable and then reenable the SSH server process with the correct port number.

For example, to change the port number to 2222, enter the following commands:
$ tcpip disable service ssh
$ tcpip set noservice ssh
$ tcpip set service ssh /port=2222 /proc=tcpip$ssh/user=tcpip$ssh —

B.1 Client Configuration Parameters 55

_$ /file=tcpip$system:tcpip$ssh_run.com /proto=tcp/limit=10000 —
_$ /log=(all,file=tcpip$ssh_device:[tcpip$ssh]tcpip$ssh_run.log)
$ tcpip enable service ssh

• PubkeyPassphraseGuesses

Allowed values: An integer greater than 0
Default: 3
Description: Specifies the number of guesses the client user is allowed for the passphrase associated
with public/private key pair. Used for public-key authentication method only.
The value of this option affects connections to servers on all platforms, including those on different
SSH implementations that may have problems associated with passphrase entry.
When the value is different on an OpenVMS client and the associated OpenVMS server, the lower
value takes precedence.
Each prompt for passphrase is of the following format: Passphrase for key
"ssh2/KAREN-SELFDBOB_SQA_UCX_ABC_ACME_COM"with comment "1024-bit dsa,
karen@dbob.sqa.ucx.abc.acme.com,Wed May 21 2003 12:42:14":
If the user enters an incorrect passphrase, the prompt appears the number of times specified for
the PubkeyPassphraseGuessesoption.

• StrictHostKeyChecking

Controls what happens if the server's public host key file is either invalid or not found in either the user's
[username.SSH2.HOSTKEYS] directory or the systemwide directory
TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2.HOSTKEYS]. The filename is in the format
KEY_portnumber_hostname.PUB, where portnumber is the port number used to establish the SSH
session (22 by default), and hostname is the host name used by the client user to establish the session.
This parameter accepts the following values:
• yes -- Causes authentication to fail if the file is not found.
• no -- Causes the SSH client to create the [username.SSH2.HOSTKEYS] subdirectory (if it does not

exist), and copies the SSH server's public key file into this subdirectory automatically.
• ask -- Causes the SSH server to prompt the user for a copy of the server's public host key. This is

the default. The prompt appears as follows:
Are you sure you want to continue connecting (yes/no)?

If you respond with yes, and the existing key file is invalid, the user is also prompted as follows:
Do you want to change the host key on disk (yes/no)?

• Xauthpath

Allowed values: OpenVMS file specification
Default: SYS$SYSTEM:DECW$XAUTH.EXE
Description: Specifies the path name of the Xauthentication executable file.

B.2 Client Configuration File
The following is an example of a typical SSH client configuration file:
SSH CONFIGURATION FILE FORMAT VERSION 1.1
REGEX-SYNTAX egrep
end of metaconfig
(do not change above lines!)

#
File name: SSH2_CONFIG.
Product: HP TCP/IP Services for OpenVMS
Version: T5.6-3D
#
Copyright 1976, 2005 Hewlett-Packard Development Company, L.P.
#

#

56 SSH Client and Server Configuration Parameters

ssh 3.2 client configuration information
#
Note: ".*" is used for all hosts, but you can use other hosts as well
#
.*:

HP Tru64 UNIX specific
Secure the r* utilities (no, yes)
#
EnforceSecureRutils no

General

 AuthenticationSuccessMsg yes
BatchMode no
Compression no
DontReadStdin no
EscapeChar ~
ForcePTTYAllocation no
GoBackground no
PasswordPrompt "%U@%H's password: "
 PasswordPrompt "%U's password: "
QuietMode no
SetRemoteEnv foobar=baz
 VerboseMode no

Network

 Port 22
 NoDelay no
 KeepAlive yes
SocksServer socks://mylogin@socks.ssh.com:1080/203.123.0.0/16,198.74.23.0/24
UseSocks5 no

Crypto

 Ciphers AnyStdCipher
 MACs AnyStdMAC
RekeyIntervalSeconds 3600
 StrictHostKeyChecking no

User public key authentication

 IdentityFile identification
 RandomSeedFile random_seed

Tunneling

ForwardAgent yes
ForwardX11 yes
GatewayPorts no
TrustX11Applications no
XauthPath <set by configure by default>

Tunnels that are set up upon login

LocalForward "110:pop3.company.com:110"
LocalForward "143:imap.company.com:143"
LocalForward "25:smtp.company.com:25"
RemoteForward "3000:localhost:22"

SSH1 compatibility

B.2 Client Configuration File 57

Ssh1InternalEmulation yes
 Ssh1Compatibility no
 Ssh1AgentCompatibility none
Ssh1AgentCompatibility traditional
Ssh1AgentCompatibility ssh2
Ssh1MaskPasswordLength yes
Ssh1Path /usr/local/bin/ssh1

Authentication
hostbased, publickey, and password are allowed by default
(least interactive method should be usually attempted first)

AllowedAuthentications publickey, keyboard-interactive, password
 AllowedAuthentications hostbased, publickey, password

Authentication, OpenVMS-specific

NumberOfHostkeyCopyPrompts 3
NumberOfPasswordVerificationPrompts 3
PubkeyPassphraseGuesses 3

For ssh-signer2 (only effective if set in the global configuration file,
usually TCPIP$SSH_DEVICE:[TCPIP$SSH.SSH2]SSH2_CONFIG., i.e., this file)

DefaultDomain foobar.com
 SshSignerPath /sys$system/tcpip$ssh_ssh-signer2

Examples of per host configurations

#alpha.*:
Host alpha.oof.fi
User username_at_alpha
PasswordPrompt "%U:s password at %H: "
Ciphers aes

#foobar:
Host foo.bar
User foo_user

B.3 Server Configuration Parameters
Some of the server configuration parameters that you can modify are as follows:

• AccountingAuthentications

Allowed values: password, publickey, hostbased, all, none. The keyword all is equivalent
to publickey, password, hostbased. The keyword none explicitly disables all SSH
authentication methods.
Default: publickey, password, hostbased
Description: Specifies the authentication methods for which accounting data is updated.
The following command displays the contents of the intrusion database: ACCOUNTING

• AllowedAuthentications

Specifies the authentication methods the server will allow.
Allowed values: password, publickey, hostbased, gssapi-with-mic, kerberos-2@ssh.com,
kerberos-tgt-2@ssh.com

Default: hostbased,password,publickey
Description: Specifies the authentication methods the server will accept.
The keyword all is equivalent to publickey, password, hostbased. The keyword none explicitly
disables all SSH authentication methods.

58 SSH Client and Server Configuration Parameters

• AllowGroups

The groups in the AllowGroups list are specified by the decimal representation that is the group
portion of the UIC. That is, if a user's UIC is [777,42], the following syntax allows the user and all other
users with UIC [777,*]:
AllowGroups 511

• AllowNonvmsLoginWithExpiredPw

Allowed values: yes, no
Default: no
Description: Controls behavior when a different SSH client implemention attempts to establish an
SSH connection to an OpenVMS server account with an expired password. The password change
option is implemented for OpenVMS-to-OpenVMS connections only. The value yes allows clients
to connect with the following warning message and sets the pwd_expired flag in the user's
SYSUAF record: WARNING - Your password has expired; update immediately
with SET PASSWORD! The value no rejects the login. The SSH client implementation must
support the CHANGEREQ mechanism (message type 60) to update passwords.

• AllowVmsLoginWithExpiredPw

Allows OpenVMS users to change expired passwords, if required. If the value is No, the login is
rejected.
For a user to be allowed to make a connection (from either an OpenVMS client or from a different SSH
implementation) with an expired password, the OpenVMS account must set the
DISFORCE_PWD_CHANGE flag. To set this flag, enter the following command:
$ MCR AUTHORIZE MODIFY USERNAME /FLAG=DISFORCE_PWD_CHANGE

When you log in to an account with an expired password, the following message is displayed:
WARNING - Your password has expired; update immediately with SET PASSWORD!

• AllowX11Forwarding

Enables X11 port forwarding.

• DenyGroups

The groups in the DenyGroups list are specified by the decimal representation that is the group portion
of the UIC. That is, if a user's UIC is [777,42], the following syntax denies the user and all other users
with UIC [777,*]:
DenyGroups 511

• IntrusionAuthentications

Allowed values: password, publickey, hostbased, all, none
Default: password
Description: Specifies the methods for which the server intrusion database is updated for the user
in case of login failure.
The following command displays the contents of the intrusion database: SHOW INTRUSION

• IntrusionIdentLocalUser

Allowed values: yes, no
Default: yes
Description: Controls whether intrusion identification records are identified by IP address or user
name. Set to yes,then the server uses the lcal user name in intrusion records. If this parameter is
set to no, uses SSH_xxxxxxxx, where xxxxxxxx is the intruder's IP address.

• IntrusionIdentMethod

Allowed values: password, publickey, hostbased, all, none. The keyword all is equivalent
to publickey, password, hostbased. The keyword none explicitly disables all SSH
authentication methods.
Default: publickey, password, hostbased

B.3 Server Configuration Parameters 59

Description: For entries in the intrusion database, this option controls whether the authentication
method is included in the text of the intrusion Source (as displayed by the SHOW INTRUSION
command). The value of this option is ignored if IntrusionAuthentications and
IntrusionIdentSsh are not both active for the specified method.
The following command displays the contents of the intrusion database: $ SHOW INTRUSION

• IntrusionIdentSSH

Allowed values: password, publickey, hostbased, all, none. The keyword all is equivalent
to publickey, password, hostbased. The keyword none explicitly disables all SSH
authentication methods.
Default: publickey, password, hostbased
Description: For entries in the intrusion database, this option controls whether the string SSH_ is
included in the text of the intrusion "Source" (as displayed by the SHOW INTRUSION command).
The value of this option is ignored if the IntrusionAuthentications is not active for the
specified method.
The following command displays thecontents of intrusion database: $ SHOW INTRUSION

• LogfailAuthentications

Allowed values: password, publickey, hostbased, all, none. The keyword all is equivalent
to publickey, password, hostbased. The keyword none explicitly disables all SSH
authentication methods.
Default: password
Description: Specifies the authentication methods for which the SYSUAF login failure count is
updated for the user. The following command displays the number of login failures: MCR
AUTHORIZE SHOW username.

• PasswordGuesses

Specifies the number of times the user can enter an incorrect password.

• IntrusionIdentLocalUser

Uses the local user name in the intrusion record. If set to No, uses SSH_xxxxxxxx (where xxxxxxx
is the IP address of the remote host, in hexadecimal format). The default is Yes.

• IgnoreRhosts

Specifies that the SHOSTS.EQUIV file be used to allow a user from one system to log in as a different
user from another host. If this parameter is set to No, the user-specific SHOSTS. file is used.

• PubkeyPassphraseGuesses

Allowed values: Integers greater than 0
Default: 3
Description: Specifies the number of times the client user is allowed to enter the passphrase
associated with public/private key pair. Used for public key authentication method only. In the
server configuration file, this value affects all clients, including those on OpenVMS systems.
When the value is different on an OpenVMS client and the associated OpenVMS server, the lower
value takes precedence.
Each prompt for passphrase is of the following format: Passphrase for key
"ssh2/KAREN-SELFDBOB_SQA_UCX_ABC_ACME_COM"with comment "1024-bit dsa,
karen@dbob.sqa.ucx.abc.acme.com,Wed May 21 2003 12:42:14":

• UserLoginLimit

Allowed values: integers from -1 to 8192
Default: -1
Description: Controls the number of times individual users can be logged in. If the value is -1, the
system-wide limit on interactive logins (SYSGEN parameter IJOBLIM) applies. If the value is greater
than zero, the number specifies the maximum number of times that an individual user can log in.
-1 = no limit on specific users
0 = disable all users
1 - 8192 = number of logins permitted for individual users
To display details on login processes for USER, enter the following command:$ SHOW USER
/FULL /NODE=serverhost

60 SSH Client and Server Configuration Parameters

B.4 Server Configuration File
The following is an example of a typical SSH server configuration file.
SSH CONFIGURATION FILE FORMAT VERSION 1.1

REGEX-SYNTAX egrep

end of metaconfig

(do not change above lines!)

#

File name: SSHD2_CONFIG.

Product: HP TCP/IP Services for OpenVMS

Version: T5.6-3D

#

Copyright 1976, 2005 Hewlett-Packard Development Company, L.P.

#

#

ssh 3.2 server configuration file

#

General

 HostKeyFile hostkey

 PublicHostKeyFile hostkey.pub

 RandomSeedFile random_seed

BannerMessageFile /etc/ssh2/ssh_banner_message

BannerMessageFile /etc/issue.net

SftpSyslogFacility LOCAL7

 SyslogFacility AUTH

SyslogFacility LOCAL7

QuietMode no

 VerboseMode no

Network

 Port 22

 ListenAddress any

 RequireReverseMapping no

ResolveClientHostName yes

 MaxBroadcastsPerSecond 0

MaxBroadcastsPerSecond 1

NoDelay no

KeepAlive yes

MaxConnections 50

MaxConnections 0

0 == number of connections not limited

Crypto

 Ciphers AnyCipher

Ciphers AnyStdCipher

Ciphers 3des

Following includes "none" 'cipher':

Ciphers AnyStd

 MACs AnyMAC

MACs AnyStdMAC

Following includes "none" 'mac':

MACs AnyStd

RekeyIntervalSeconds 3600

User

 CheckMail yes

 PrintMotd yes

StrictModes yes

B.4 Server Configuration File 61

Specifies 1 hour

(you can also use 'w' for week, 'd' for day, 'm' for minute, 's' for seconds)

IdleTimeOut 1h

without specifier, the default number is in seconds

IdleTimeOut 3600

 UserConfigDirectory "%Dssh2"

UserConfigDirectory "/etc/ssh2/auth/%U"

 AuthorizationFile authorization

This variable is set here, because by default it's empty, and so no

variables can be set. Because of that, we set a few common ones here.

 SettableEnvironmentVars LANG,LC_(ALL|COLLATE|CTYPE|MONETARY|NUMERIC|TIME),PATH,TERM,TZ

Tunneling

 AllowX11Forwarding yes

 AllowTcpForwarding yes

AllowTcpForwardingForUsers sjl, cowboyneal@slashdot\.org

DenyTcpForwardingForUsers 2[[:digit:]]*4,peelo

AllowTcpForwardingForGroups privileged_tcp_forwarders

DenyTcpForwardingForGroups coming_from_outside

Local port forwardings to host 10.1.0.25 ports 143 and 25 are

allowed for all users in group users.

Note that forwardings using the name of this host will be allowed (if

it can be resolved from the DNS).

ForwardACL allow local .*%users \i10\.1\.0\.25%(143|25)

Local port forwardings requested exactly to host proxy.company.com

port 8080 are allowed for users that have 's' as first character

and belong to the group with group id 10:

ForwardACL allow local s.*%10 proxy\.company\.com%8080

Remote port forwarding is denied for all users to all hosts:

ForwardACL deny remote .* .*

Authentication

hostbased, publickey and password are allowed by default

AllowedAuthentications hostbased, publickey, password

AllowedAuthentications publickey

 AllowedAuthentications gssapi-with-mic, kerberos-tgt-2@ssh.com, kerberos-2@ssh.com, publickey, password

Requireduthentications publickey, password

LoginGraceTime 600

AuthInteractiveFailureTimeout 2

HostbasedAuthForceClientHostnameDNSMatch no

UserKnownHosts yes

#

AuthPublicKey.MaxSize 0

AuthPublicKey.MinSize 0

 AllowAgentForwarding yes

AuthKbdInt.NumOptional 0

AuthKbdInt.Optional pam, password

AuthKbdInt.Required password

AuthKbdInt.Retries 3

62 SSH Client and Server Configuration Parameters

PermitEmptyPasswords no

 PasswordGuesses 3

Host restrictions

 AllowHosts localhost, *

Next one matches with, for example, taulu.foobar.com, tuoli.com, but

not tuoli1.com. Note that you have to input string "\." when you want it

to match only a literal dot. You also have to escape "," when you

want to use it in the pattern, because otherwise it is considered a list

separator.

AllowHosts t..l.\..*

The following matches any numerical IP-address (yes, it is cumbersome)

AllowHosts ([[:digit:]]{1\,3}\.){3}[[:digit:]]{1\,3}

Same thing is achieved with using the special prefix "\i" in a

pattern. This means that the pattern is only used to match

 # IP-addresses. Using the above example:

#

AllowHosts \i.*

#

You can probably see the difference between the two.

#

Also, you can use subnet masks, by using prefix "\m"

#

AllowHosts \m127.0/8

#

AllowHosts \m127.0.0.0/24

#

would match localhost ("127.0.0.1").

#

DenyHosts evil\.org, aol\.com

AllowSHosts trusted\.host\.org

DenySHosts not\.quite\.trusted\.org

IgnoreRhosts no

IgnoreRootRHosts no

#

(the above, if not set, is defaulted to the value of IgnoreRHosts)

User restrictions

AllowUsers sj.*,s[[:digit:]]*,s(jl|amza)

DenyUsers skuuppa,warezdude,31373

DenyUsers don@untrusted\.org

AllowGroups staff,users

DenyGroups guest,anonymous

 PermitRootLogin yes

PermitRootLogin nopwd

Chrooted environment

ChRootGroups sftp,guest

ChRootUsers anonymous,ftp,guest

SSH1 compatibility

B.4 Server Configuration File 63

Ssh1Compatibility no

Sshd1Path <set by configure by default>

This is given as argument to sshd1 with "-f" if sshd2 is invoked

with "-f", otherwise the default configuration for sshd1 is used.

Sshd1ConfigFile /etc/sshd_config_alternate

Subsystem definitions

Subsystems don't have defaults, so this is needed here (uncommented).

 subsystem-sftp /sys$system/tcpip$ssh_sftp-server2

Also internal sftp-server subsystem can be used.

subsystem-sftp internal://tcpip$ssh_sftp-server2

Subconfiguration

There are no default subconfiguration files. When specified the last

obtained keyword value will prevail. Note that the host specific files

are read before the user specific files.

Following matches (from) any host

#

HostSpecificConfig .* /etc/ssh2/subconfig/host_ext.example

#

Following matches to subnet mask:

#

HostSpecificConfig \m192.168.0.0/16 /etc/ssh2/subconfig/host_int.example

#

Following matches to users from ssh.com that have two character long

username or is sjl and belong to group wheel or wheel[0-9]

UserSpecificConfig (..|sjl)%wheel[[:digit:]]?@ssh\.com /etc/ssh2/subconfig/user.example

Following matches to the user anonymous from any host

UserSpecificConfig anonymous@.* /etc/ssh2/subconfig/anonymous.example

OpenVMS auditing and access control

AllowVmsLoginWithExpiredPw no

AllowNonvmsLoginWithExpiredPw no

UserLoginLimit -1

#

V5.5-02 Change pubkey to publickey

 AccountingAuthentications kerberos-tgt-2@ssh.com, kerberos-2@ssh.com, publickey, password ,hostbased

 IntrusionAuthentications kerberos-tgt-2@ssh.com, kerberos-2@ssh.com, publickey, password ,hostbased

IntrusionIdentMethod publickey,password,hostbased

IntrusionIdentSsh publickey,password,hostbased

 LogfailAuthentications kerberos-tgt-2@ssh.com, kerberos-2@ssh.com, publickey, password ,hostbased

PubkeyPassphraseGuesses 3

GssapiSendError yes

GssapiSendErrtok yes

64 SSH Client and Server Configuration Parameters

Glossary
This glossary defines some of the terms, abbreviations, and acronyms found in this document.

asymmetric key The use of two different keys (public and private) to authenticate a user connection.
authentication The process of determining another's identity. For example, the SSH server identifies itself to a

connecting client during session setup using the server host key and the public/private keypair.
The SSH client uses password, publickey, or hostbased authentication to establish its identity to
the server.

authentication
agent

The SSH_AGENT utility, which allows you to manage keys.

data integrity The state that exists when data has not been changed.
decrypt The process of modifying encrypted data so that it can be read.
DSA Private digital key signature algorithm
encrypt The process of modifying data to make it impossible to be read except by the proper decryption

function.
encryption The process of modifying the data stream such that it can only be read by the appropriate

decryption technique.
GSSAPI GSSAPI Authentication and Key Exchange for the Secure Shell Protocol (a Kerberos authentication

method).
host keys The public-private key pair that identifies the server host.
host-based
authentication

The authentication method where the client and server hosts authenticate each other.

kerberos The security protocol that provides strong authentication by using secret-key cryptography.
kerberos password
authentication

The authentication method used by Kerberos—aware applications.

known hosts
database

The database that contains public keys for all client hosts that use the host-based authentication
method to connect to the server.

nonrepudiation The function that identifies data so that a user or entity cannot deny ownership or action related
to the data.

password
authentication

The authentication method in which the client transmits an encrypted password encrypted to the
server.

port forwarding The function of encapsulating the TCP-based communication session between the SSH client and
the SSH server programs. The result is a secure tunnel.

private key Of the key pair, the key that is known only to the user. When a message is encrypted with a
public key, it can only be decrypted using the private key.

public key Of the key pair, the key that is distributed to other systems as part of authentication or another
security procedure.

public key
cryptography

The process of using a pair of mathematically related keys to verify the identity of hosts and users.

public-key
authentication

The authentication method that uses public-key cryptography to verify the client's identity and
requires two pieces of data: your private-public key pair, and, optionally, a passphrase.

public-key
cryptography

A method of identifying hosts and users using two cryptographically generated keys: a public
key and a private key.

public-private key
pair

The set of keys required to perform cryptographic security.

remote command
execution

The process of establishing an interactive session on a remote system without connecting to it
(also called tunneling).

remote login The process of logging into a system running the SSH server from another system. SSH ensures
the data communicated between your client and the SSH server is secure.

65

RSA Rivest-Shamir-Adelman. A private key encryption algorithm
Secure Shell The Internet standard for secure file transfers and remote login and command execution. Also

known as SSH.
Secure Shell client See SSH client.
Secure Shell server See SSH server.
secure tunnel A communication path established for securely transmitting data using applications that are not

SSH-aware.
SSH See Secure Shell. In the context of the TCP/IP Services for OpenVMS documentation, this is also

referred to as SSH for OpenVMS.
SSH client Secure Shell client.
SSH server Secure Shell server.
stream-LF file File record format in which data is stored as a stream of bytes.
trusted hosts Hosts to which you can log in without proving your identity.
tunneling See Remote Command Execution.
variable-length file Record-oriented file structure inwhich the length of the record varies, and is determined from an

explicit field or end-of-record marker.
X Window System A protocol for displaying server data on a client system.
X11 A protocol for displaying X terminal formatted server data on client systems.
X11 port
forwarding

An authentication method that encrypts X protocol, which is used by X Window systems.

66 Glossary

Index

A
AllowedAuthentications, 22
authentication, 12

customizing password, 23
host-based, 22
password, 22
public-key, 22
setting up host-based, 23
setting_up public-key, 24

authentication methods, 21
setting up, 22

C
client

configuring, 16
starting and stopping, 27

Client Components Configuration Menu, 16
Client-server communication, 13
comands

and utilities, 11
configuration files, 13
configuring the SSH client, 16
configuring the SSH server, 17
copying files

to and from an SSH server, 11
copying the server's public key to the client, 19
Credentials, forwarding, 36
cryptographic algorithms, 12

G
generating keys, 12, 46

H
host based authentication, 13
Host principal, Kerberos, 35
HOSTKEY., 16
HOSTKEY.PUB, 16

K
Kerberos

authentication methods, 36
client configuration, 36
password authentication, 38

Kerberos connections, establishing, 36
Kerberos host principal, configuring, 35
Kerberos/SSH setup, 35
key

agent, 47
public host, naming conventions for the Server's, 20
public, copying the server's, 19

keys
generating, 12, 46
host, 12
managing user's, 12
overview, 12

user, 12
know hosts database, 22

L
logical names, 28

M
Main TCPIP$CONFIG.COM Configuration menu, 15
modifying client configuration parameters, 21

P
Password authentication

Kerberos, 38
password authentication, 13
port forwarding, 14, 31

R
RANDOM_SEED., 16
remote command execution, 44
remote login, 44
RTL images, installing, 35
running the TCPIP$CONFIG configuration command

procedure, 15

S
SCP, 11
SCP command, 41
Secure Server (SSH)

client definition, 11
server definition, 11

Secure Shell
client, 11
overview, 11
server, 11

secure tunnel, 14
server

configuring, 17
starting and stopping, 27

Server Components Configuration Menu, 17
SFTP, 11
SFTP command, 43
SHOSTS.EQUIV, 16
specifying authentication methods, 22
SSH command, 44
SSH communication process, 13
SSH2_CONFIG, 16
SSH_ADD, 46
SSH_ADD utility, 12
SSH_AGENT utility, 12
SSH_KEYGEN, 46
SSH_KEYGEN utility, 12
SSHD2_CONFIG., 16, 21
starting and stopping the SSH client, 27
starting and stopping the SSH server, 27
STREAM_LF format, 13
SYS$SYSDEVICE, 16

67

T
TCPIP$CONFIG.COM command procedure, 12–13
TCPIP$DEFINE_COMMANDS procedure, 41
TELNET, 31

U
utilities

and commands, 11
SSH_ADD, 12
SSH_AGENT, 12
SSH_KEYGEN, 12

V
variable-length format, 13

X
X Windows Systems, 14, 31

68 Index

	HP TCP/IP Services for OpenVMS Guide to SSH
	About This Document
	1 Intended Audience
	2 New and Changed Information in This Edition
	3 Typographic Conventions
	4 Document Organization
	5 Related Information
	6 Publishing History
	7 HP Encourages Your Comments

	1 Overview
	1.1 Introduction to SSH
	1.1.1 The Secure Shell Server
	1.1.2 The Secure Shell Client

	1.2 Introduction to Keys
	1.2.1 Host Keys
	1.2.2 User Keys
	1.2.3 Generating Keys
	1.2.4 Managing User Keys

	1.3 SSH Authentication
	1.4 How the SSH Client and Server Communicate
	1.5 Port Forwarding
	1.6 Upgrading SSH for OpenVMS
	1.6.1 Server and Client Configuration Files

	2 Configuring the Secure Shell Software
	2.1 Running the TCPIP$CONFIG Configuration Command Procedure
	2.2 Configuring the SSH Client
	2.3 Configuring the SSH Server

	3 Customizing the SSH Run-Time Environment
	3.1 Setting up the Server Public Keys
	3.1.1 Automatically Copying Key Files
	3.1.2 Manually Copying the Key Files
	3.1.3 Naming Conventions for the Server's Public Host Key

	3.2 Modifying Client Configuration Parameters
	3.3 Modifying Server Configuration Parameters
	3.4 Authentication Methods
	3.5 Specifying Authentication Methods
	3.6 Setting Up Password Authentication
	3.6.1 Setting Up Password Authentication on the Client
	3.6.2 Setting Up Password Authentication on the Server

	3.7 Setting Up Host-based Authentication
	3.7.1 Setting Up Host-based Authentication on the Client
	3.7.2 Setting Up Host-based Authentication on the Server

	3.8 Setting Up Public-Key Authentication
	3.8.1 Setting Up Public-Key Authentication on the Client
	3.8.1.1 Using SSH_KEYGEN to Rename Public-Key Files

	3.8.2 Setting Up Public-Key Authentication on the Server

	4 Managing the SSH Service
	4.1 Starting and Stopping the SSH Client
	4.2 Starting and Stopping the SSH Server
	4.3 Enabling IPv6 Networking
	4.4 SSH Logical Names
	4.5 Managing Auditing
	4.5.1 How the Server Performs Auditing
	4.5.2 Auditing Options for the Server Configuration File
	4.5.3 Auditing Options for the Client Configuration File

	4.6 Managing Account Passwords
	4.6.1 Secondary Passwords

	5 Port Forwarding
	5.1 Standard Port Forwarding
	5.2 Port Forwarding for FTP
	5.3 X11 Port Forwarding
	5.4 Managing Port Forwarding

	6 Setting Up Kerberos/SSH Connections
	6.1 Installing Kerberos RTL Images
	6.2 Setting Up Kerberos
	6.2.1 Configuring the Kerberos User and Host Principles
	6.2.2 Configuring the Kerberos Authentication Method
	6.2.3 SSH Kerberos Authentication Interoperability
	6.2.4 SSH Client Configuration

	6.3 Setting Up a Kerberos SSH Connection
	6.3.1 Forwarding Credentials
	6.3.2 Managing Kerberos Credential Forwarding
	6.3.3 Forwarding Kerberos Credentials Example

	6.4 Kerberos Password Authentication
	6.5 Solving SSH/Kerberos Problems

	7 SSH Command Reference
	7.1 Before You Begin
	7.2 Copying Files
	7.2.1 File Types
	7.2.2 Using the SCP Command
	7.2.2.1 Command Synopsis
	7.2.2.2 Parameters
	7.2.2.3 Options
	7.2.2.4 Example

	7.2.3 Using the SFTP Command
	7.2.3.1 Command Synopsis
	7.2.3.2 Parameters
	7.2.3.3 Options
	7.2.3.4 Example

	7.3 Remote Login and Command Execution
	7.3.1 Command Synopsis
	7.3.2 Parameters
	7.3.3 Options
	7.3.4 Example

	7.4 Using SSH Commands in Batch Jobs
	7.5 Using the SSH_KEYGEN Utility
	7.5.1 Command Synopsis
	7.5.2 Parameters
	7.5.3 Options

	7.6 Using the SSH_ADD Utility
	7.6.1 Command Synopsis
	7.6.2 Parameters
	7.6.3 Options
	7.6.4 Description
	7.6.5 Return Status
	7.6.6 Example

	7.7 Using the SSH_AGENT Utility
	7.7.1 Command Synopsis
	7.7.2 Options
	7.7.3 Examples

	8 Solving SSH Problems
	A SSH Directories and Files
	A.1 Client Directories and Files
	A.2 Server Directories and Files

	B SSH Client and Server Configuration Parameters
	B.1 Client Configuration Parameters
	B.2 Client Configuration File
	B.3 Server Configuration Parameters
	B.4 Server Configuration File

	Glossary
	Index

