
Compaq TCP/IP Services for
OpenVMS
Guide to IPv6
Order Number: AA–RNJ3A–TE

January 2001

This manual describes the Compaq TCP/IP Services for OpenVMS
IPv6 features and how to install and configure IPv6 on your system.
In addition, this manual describes changes in the socket application
programming interface (API) and how to port your applications to run in
an IPv6 environment.

Revision Information: This is a new manual.

Software Version: Compaq TCP/IP Services for OpenVMS
Version 5.1

Operating Systems: OpenVMS Alpha Versions 7.1, 7.2-1,
OpenVMS VAX Versions 7.1, 7.2

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

COMPAQ, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS and Tru64 are trademarks of Compaq Information Technologies Group, L.P. in the United
States and other countries.

All other product names mentioned herein may be the trademarks or registered trademarks of their
respective companies.

Confidential computer software. Valid license from Compaq or authorized sublicensor required
for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6645

This document is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . ix

1 What Is IPv6?

1.1 Terminology . 1–1
1.2 Introduction to IPv6 Addresses . 1–2
1.2.1 Address Text Representation . 1–2
1.2.2 Types of Addresses . 1–3
1.2.2.1 Unicast Addresses . 1–3
1.2.2.2 Anycast Address . 1–6
1.2.2.3 Multicast Address . 1–6
1.2.3 Address Prefixes . 1–8
1.2.4 Address Autoconfiguration . 1–8
1.2.5 Address Resolution . 1–9
1.3 Address Assignment . 1–9
1.3.1 Aggregatable Global Unicast Addresses . 1–10
1.3.2 Aggregatable Testing Addresses . 1–10
1.4 IPv6 Environment . 1–11

2 Configuring IPv6

2.1 Preparing for Configuration . 2–1
2.2 IPv6 System Configuration Examples . 2–5
2.2.1 Simple Host-to-Host Configuration . 2–5
2.2.2 Host-to-Host with Router Configuration . 2–6
2.2.3 IPv6 Network-to-IPv6 Network with Router Configuration 2–6
2.2.4 Multiple IPv6 Networks and Multiple Routers Configuration 2–7
2.2.5 Host-to-Host over Tunnel Configuration . 2–8
2.2.6 Host-to-Router over Tunnel Configuration . 2–9
2.2.7 IPv6 Network to IPv6 Network over Tunnel Configuration 2–11
2.3 Configuring IPv6 Hosts and Routers . 2–12
2.3.1 Configuring an IPv6 Host . 2–13
2.3.2 onfiguring an IPv6 Router . 2–14
2.4 Postconfiguration Tasks . 2–17
2.4.1 Connecting to the 6bone Network . 2–18
2.4.2 Initializing a New Interface for IPv6 . 2–18
2.4.2.1 Setting the IPv6 Interface Identifier . 2–19
2.4.2.2 Removing IPv6 from an Interface . 2–19
2.4.3 Creating a Configured Tunnel . 2–19
2.4.4 Adding an Address to an Interface . 2–20
2.4.5 Deleting an Address from an Interface . 2–20
2.4.6 Adding or Deleting a Default Router . 2–21
2.4.7 Manually Adding a Route for an On-Link Prefix 2–21
2.4.8 Configuring a Router . 2–22

iii

2.4.9 Editing the Router Configuration File . 2–22

3 Configuring BIND

3.1 IPv6 Server Guidelines . 3–1
3.2 Sample BIND Configuration Files . 3–2
3.3 Enabling Dynamic Updates to the DNS Database 3–3
3.4 Local Hosts Database TCPIP$ETC:IPNODES.DAT 3–5
3.5 Converting from BIND 4.9* . 3–5

4 Monitoring the Network

4.1 Testing Access to Internet Network Hosts with the ping Command 4–1
4.2 Displaying Network Statistics with the netstat Command 4–1
4.3 Displaying a Datagram’s Route to a Network Host with the traceroute

Command . 4–2
4.4 IPv6 Process Log Files . 4–3

5 Solving IPv6 Problems

5.1 Using the Diagnostic Suggestions . 5–1
5.2 Getting Started . 5–1
5.3 Solving IPv6 Network Problems . 5–2
5.4 Solving IPv6 Host Problems . 5–2
5.4.1 IPv6 Process Is Not Started . 5–3
5.4.2 Host Is Unknown . 5–3
5.4.3 On-Link Node Is Not Reachable . 5–3
5.4.4 Off-Link Node Is Not Reachable . 5–4
5.4.5 Your Node Is Unreachable . 5–5
5.4.6 Connection Is Not Accepted . 5–6
5.4.7 Connection Terminates . 5–6
5.5 Solving IPv6 Router Problems . 5–6
5.5.1 IPv6 Process Is Not Running . 5–6
5.5.2 Host Is Unknown . 5–7
5.5.3 On-Link Node Is Unreachable . 5–7
5.5.4 Off-Link Node Is Unreachable . 5–8
5.5.5 On-Link Node Addresses Are Not Configured 5–9
5.5.6 Router Does Not Forward Messages . 5–9
5.5.7 Your Node Is Unreachable . 5–10
5.5.8 Connection Is Not Accepted . 5–10
5.5.9 Connection Terminates . 5–10

6 Application Interface to Sockets

6.1 Socket Interface . 6–1
6.2 Interface Identification . 6–2
6.2.1 if_nametoindex Function . 6–2
6.2.2 if_indextoname Function . 6–3
6.2.3 if_nameindex Function . 6–3
6.2.4 if_freenameindex Function . 6–3
6.3 IPv6 Multicast Datagrams . 6–4
6.3.1 Sending IPv6 Multicast Datagrams . 6–4
6.3.2 Receiving IPv6 Multicast Datagrams . 6–5
6.4 Socket Options . 6–6

iv

6.5 Library Functions . 6–7
6.5.1 Node Name to Address Translation Functions 6–7
6.5.1.1 getaddrinfo Function . 6–7
6.5.2 Address to Node Name Translation Functions 6–11
6.5.2.1 getnameinfo Function . 6–11
6.5.2.2 freeaddrinfo Function . 6–13
6.5.3 Address Conversion Functions . 6–13
6.5.3.1 inet_pton Function . 6–13
6.5.3.2 inet_ntop Function . 6–15
6.5.4 Address-Testing Macros . 6–15
6.6 Guidelines for Compiling and Linking IPv6 Applications 6–16

7 Porting Applications

7.1 Using AF_INET6 Sockets . 7–1
7.2 Name Changes . 7–7
7.3 Structure Changes . 7–7
7.3.1 in_addr Structure . 7–7
7.3.2 sockaddr Structure . 7–8
7.3.3 sockaddr_in Structure . 7–8
7.3.4 hostent Structure . 7–8
7.4 Function Call Changes . 7–9
7.4.1 gethostbyaddr Function Call . 7–9
7.4.2 gethostbyname Function Call . 7–9
7.4.3 inet_ntoa Function Call . 7–10
7.4.4 inet_addr Function Call . 7–10
7.5 Other Application Changes . 7–10
7.5.1 Comparing IP Addresses . 7–10
7.5.2 Comparing an IP Address to the Wildcard Address 7–11
7.5.3 Using int Data Types to Hold IP Addresses . 7–11
7.5.4 Using Functions that Return IP Addresses . 7–12
7.5.5 Changing Socket Options . 7–12
7.6 Sample Client/Server Programs . 7–12
7.6.1 Programs Using AF_INET Sockets . 7–12
7.6.1.1 Client Program . 7–12
7.6.1.2 Server Program . 7–14
7.6.2 Programs Using AF_INET6 Sockets . 7–16
7.6.2.1 Client Program . 7–16
7.6.2.2 Server Program . 7–19
7.6.3 Sample Program Output . 7–21

A Supported IPv6 RFCs

B IPv6 Extensions to Management Commands and IPv6 Processes

B.1 IPv6 Extensions to Management Commands . B–1
B.1.1 ifconfig Command . B–1
B.1.2 iptunnel Command . B–2
B.1.3 netstat Command . B–3
B.1.4 traceroute Command . B–4
B.2 IPv6 Processes . B–4
B.2.1 TCPIP$ND6HOST . B–4

v

B.2.2 TCPIP$IP6RTRD Process . B–5
B.2.2.1 Interface Keyword Information . B–5
B.2.2.2 Address-Prefix Keyword Information . B–6

C Deprecated Library Functions

C.1 getipnodebyname Function . C–1
C.2 getipnodebyaddr Function . C–4
C.3 freehostent Function . C–5

Examples

2–1 Sample TCPIP$IP6RTRD.CONF File . 2–22
3–1 Sample IPV6.DB File . 3–2
3–2 Sample IPV6.REV File . 3–3
3–3 Sample TCPIP$BIND.CONF_IPV6 File . 3–4

Figures

1–1 Unicast Addresses . 1–3
1–2 64-Bit Prefix Plus 64-Bit Interface ID . 1–4
1–3 IPv4-Compatible IPv6 Address . 1–5
1–4 IPv4-Mapped IPv6 Address . 1–5
1–5 IPv6 Link-Local Unicast Address . 1–6
1–6 IPv6 Site-Local Unicast Address . 1–6
1–7 IPv6 Multicast Address . 1–7
1–8 Aggregatable Global Unicast Address Format 1–10
1–9 Aggregatable Testing Address Format . 1–11
1–10 Host-to-Host Configuration with No Router . 1–12
1–11 Host-to-Host Configuration with Router . 1–12
1–12 IPv6 Network to IPv6 Network with Router Configuration 1–13
1–13 Multiple IPv6 Networks and Multiple Routers Configuration 1–13
1–14 Host-to-Host Configuration over Tunnel . 1–14
1–15 Host-to-Router Configuration over Tunnel . 1–14
1–16 IPv6 Network-to-IPv6 Network Configuration over Tunnel 1–15
2–1 Configuration Worksheet . 2–2
2–2 Simple Host-to-Host Configuration . 2–5
2–3 Host-to-Host with Router Configuration . 2–6
2–4 IPv6 Network-to-IPv6 Network with Router Configuration 2–7
2–5 Multiple IPv6 Networks and Multiple Routers Configuration 2–8
2–6 Host-to-Host over Tunnel Configuration . 2–9
2–7 Host-to-Router over Tunnel Configuration . 2–10
2–8 Router Not Advertising a Global Address Prefix 2–10
2–9 Router Advertising a Global Address Prefix . 2–11
2–10 Router A Not Advertising a Global Prefix on the Tunnel Link 2–11
2–11 IPv6 Network to IPv6 Network over Tunnel Configuration 2–12
7–1 Using AF_INET Socket for IPv4 Communications 7–2
7–2 Using AF_INET6 Socket to Send IPv4 Communications 7–3

vi

7–3 Using AF_INET6 Socket to Receive IPv4 Communications 7–4
7–4 Using AF_INET6 Socket for IPv6 Communications 7–6

Tables

1 TCP/IP Services Documentation . x
1–1 Well-Known Multicast Addresses . 1–7
1–2 IPv6 Address Types and Prefixes . 1–8
6–1 ai_flags Member Values . 6–9
6–2 Flag Bits . 6–12
6–3 Summary of Address-Testing Macros . 6–15
7–1 Name Changes . 7–7
B–1 RFC 2461 Interface Keywords and Values . B–5
B–2 RFC 2461 Prefix Keywords . B–6
B–3 RFC 2080 Prefix Keywords . B–6
C–1 Node Name to Address Processing . C–2
C–2 AI_ADDRCONFIG Flag . C–3
C–3 AI_DEFAULT Flag . C–3

vii

Preface

The Compaq TCP/IP Services for OpenVMS product is the Compaq
implementation of the TCP/IP networking protocol suite and internet services
for OpenVMS Alpha and OpenVMS VAX systems.

TCP/IP Services provides a comprehensive suite of functions and applications that
support industry-standard protocols for heterogeneous network communications
and resource sharing.

This manual describes IPv6 features included in this version of TCP/IP Services.
The manual covers installing and configuring your system for IPv6, changes to
the socket API, and how to port your applications to run in an IPv6 environment.

Intended Audience
This manual is for experienced OpenVMS and UNIX system managers and
assumes a working knowledge of OpenVMS system management, TCP/IP
networking, and TCP/IP terminology.

The manual is also for programmers who want to rewrite their applications for
the IPv6 environment.

Document Structure
This manual contains the following chapters and appendixes:

Chapter 1 Describes the IPv6 environment, the roles of systems in this
environment, the types and function of the different IPv6 addresses,
and how to connect to the 6bone network.

Chapter 2 Describes how to configure the IPv6 software.

Chapter 3 Provides guidelines for running BIND in an IPv6 environment.

Chapter 4 Describes the resources for monitoring IPv6 network traffic.

Chapter 5 Describes how to solve IPv6 problems.

Chapter 6 Describes the IPv6 additions to the socket API.

Chapter 7 Describes how to port applications.

Appendix A Describes the supported IPv6 RFCs.

Appendix B Lists commands and processes supported in this version.

Appendix C Describes deprecated functions that have been replaced by new ones.

ix

Related Documents
Table 1 lists the documents available with this version of TCP/IP Services.

Table 1 TCP/IP Services Documentation

Manual Contents

DIGITAL TCP/IP Services for
OpenVMS Concepts and Planning

This manual provides conceptual information about networking
and the TCP/IP protocol including a description of the Compaq
implementation of the Berkeley Internet Name Domain (BIND)
service and the Network File System (NFS). It outlines general
planning issues to consider before configuring your system to use
the TCP/IP Services software.

This manual also describes the manuals in the documentation
set, provides a glossary of terms and acronyms for the TCP/IP
Services software product, and documents how to contact the
InterNIC Registration Service to register domains and access
Requests for Comments (RFCs).

Compaq TCP/IP Services for OpenVMS
Release Notes

The release notes provide version-specific information that
supersedes the information in the documentation set. The
features, restrictions, and corrections in this version of the
software are described in the release notes. Always read the
release notes before installing the software.

Compaq TCP/IP Services for OpenVMS
Installation and Configuration

This manual explains how to install and configure the TCP/IP
Services product.

DIGITAL TCP/IP Services for
OpenVMS User’s Guide

This manual describes how to use the applications available with
TCP/IP Services such as remote file operations, email, TELNET,
TN3270, and network printing. This manual explains how to use
these services to communicate with systems on private internets
or on the worldwide Internet.

Compaq TCP/IP Services for OpenVMS
Management

This manual describes how to configure and manage the TCP/IP
Services product.

Use this manual with the Compaq TCP/IP Services for
OpenVMS Management Command Reference manual.

Compaq TCP/IP Services for OpenVMS
Management Command Reference

This manual describes the TCP/IP Services management
commands.

Use this manual with the Compaq TCP/IP Services for
OpenVMS Management manual.

Compaq TCP/IP Services for OpenVMS
Management Command Quick
Reference Card

This reference card lists the TCP/IP management commands by
component and describes the purpose of each command.

Compaq TCP/IP Services for OpenVMS
UNIX Command Reference Card

This reference card contains information about commonly
performed network management tasks and their corresponding
TCP/IP management and Compaq Tru64 UNIX command
formats.

DIGITAL TCP/IP Services for
OpenVMS ONC RPC Programming

This manual presents an overview of high-level programming
using open network computing remote procedure calls (ONC
RPCs). This manual also describes the RPC programming
interface and how to use the RPCGEN protocol compiler to create
applications.

Compaq TCP/IP Services for OpenVMS
Sockets API and System Services
Programming

This manual describes how to use the Sockets API and OpenVMS
system services to develop network applications.

(continued on next page)

x

Table 1 (Cont.) TCP/IP Services Documentation

Manual Contents

Compaq TCP/IP Services for OpenVMS
SNMP Programming and Reference

This manual describes the Simple Network Management Protocol
(SNMP) and the SNMP application programming interface
(eSNMP). It describes the subagents provided with TCP/IP
Services, utilities provided for managing subagents, and how to
build your own subagents.

Compaq TCP/IP Services for OpenVMS
Tuning and Troubleshooting

This manual provides information about how to isolate the
causes of network problems and how to tune the TCP/IP Services
software for the best performance.

Compaq TCP/IP Services for OpenVMS
Guide to IPv6

This manual describes the IPv6 environment, the roles of
systems in this environment, the types and function of the
different IPv6 addresses, and how to configure TCP/IP Services
to access the 6bone network.

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

For a comprehensive overview of the TCP/IP protocol suite, you might find the
book Internetworking with TCP/IP: Principles, Protocols, and Architecture, by
Douglas Comer, useful.

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
Visit the following World Wide Web address for information about how to order
additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The name TCP/IP Services means both:

• Compaq TCP/IP Services for OpenVMS Alpha

• Compaq TCP/IP Services for OpenVMS VAX

The name UNIX refers to the Compaq Tru64 UNIX operating system.

xi

The following conventions are used in this manual. In addition, please note that
all IP addresses are fictitious.

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

xii

Monospace text Monospace type indicates code examples and interactive screen
displays.

This typeface indicates UNIX system output or user input,
commands, options, files, directories, utilities, hosts, and users.

In the C programming language, this typeface identifies the
following elements: keywords, the names of independently
compiled external functions and files, syntax summaries, and
references to variables or identifiers introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiii

1
What Is IPv6?

In the early 1990s, members of the Internet community realized that the address
space and certain aspects of the current TCP/IP architecture were not capable
of sustaining the explosive growth of the Internet. The problems included
the exhaustion of the Internet address space, the size of routing tables, and
requirements for new technology features.

The Internet Engineering Task Force (IETF) made several efforts to study and
improve the use of the 32-bit Internet Protocol (IPv4) addresses. They also
tackled the longer-term goal of identifying and replacing protocols and services
that would limit growth.

These efforts identified the 32-bit addressing architecture of IPv4 as the principal
problem affecting router overhead and network administration. In addition,
IPv4 addresses were often unevenly allocated in blocks that were too large or
too small; therefore, these addresses were difficult to change within any existing
network.

In July 1994, the Internet Protocol Next Generation (IPng) directorate announced
Internet Protocol Version 6 (IPv6) as the replacement network layer protocol,
and IETF working groups began to build specifications. (See RFC 1752, The
Recommendation for the IP Next Generation Protocol, for additional information
about the IPv6 protocol selection process.)

IPv6 is both a completely new network layer protocol and a major revision of the
Internet architecture. As such, it builds upon and incorporates experience gained
with IPv4. This chapter describes the following:

• Terminology

• IPv6 addressing

• IPv6 environment

• IPv6 configuration

• Postconfiguration tasks

1.1 Terminology
The following terms are used in this chapter:

• Node

Any system that uses the IPv6 protocol to communicate.

• Router

A node that forwards IPv6 packets addressed to other nodes. These systems
typically have more than one network interface installed and configured.

What Is IPv6? 1–1

What Is IPv6?
1.1 Terminology

• Host

Any system that is not a router.

• Link

A medium or facility over which nodes communicate with each other at the
Link layer. Examples include Ethernet, FDDI links, or internet layer tunnels.

• interface

A node’s attachment to a link. An interface is usually assigned an IPv6
address or addresses.

1.2 Introduction to IPv6 Addresses
The most noticeable feature of IPv6 is the address itself. The address size
is increased from 32 bits to 128 bits. The following sections describe the
components of the IPV6 address.

1.2.1 Address Text Representation
Use the following syntax to represent IPv6 addresses as text strings:

x:x:x:x:x:x:x:x

The x is a hexadecimal value of a 16-bit piece of the address. For example, the
following addresses are IPv6 addresses:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

1070:0:0:0:0:800:200C:417B

IPv6 addresses can contain long strings of zero (0) bits. To make it easier to write
these addresses, you can use a double colon (::) once in an address to represent
one or more 16-bit groups of zeros. For example, you can compress the second
IPv6 address example in the following way:

1070::800:200C:417B

Alternately, you can use the following syntax to represent IPv6 addresses in an
environment of both IPv4 and IPv6 nodes:

x:x:x:x:x:x:d.d.d.d

In this case, x is a hexadecimal value of a 16-bit piece of the address (six high-
order pieces) and d is a decimal value of an 8-bit piece of address (four low-order
pieces) in standard, dotted-quad IPv4 form. For example, the following are IPv6
addresses:

0:0:0:0:0:0:13.1.68.3

0:0:0:0:0:FFFF:129.144.52.38

When compressed, these addresses are as follows:

::13.1.68.3

::FFFF:129.144.52.38

1–2 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Like IPv4 address prefixes, IPv6 address prefixes are represented using the
Classless Inter-Domain Routing (CIDR) notation. This notation has the following
format:

ipv6-address/prefix-length

For example, you can represent the 60-bit hexadecimal prefix 12AB00000000CD3
in any of the following ways:

12AB:0000:0000:CD30:0000:0000:0000:0000/60

12AB::CD30:0:0:0:0/60

12AB:0:0:CD30::/60

1.2.2 Types of Addresses
There are three types of IPv6 addresses:

• Unicast

• Anycast

• Multicast

Note

Unlike IPv4, IPv6 does not define a broadcast address. To get the function
of a broadcast address, use a multicast address. (See Section 1.2.2.3.)

The following sections describe the unicast, anycast, and multicast address
types.

1.2.2.1 Unicast Addresses
A unicast address is an identifier for an interface. Packets sent to a unicast
address are delivered to the node containing the interface that is identified by the
address.

Figure 1–1 shows the format of unicast addresses.

Figure 1–1 Unicast Addresses

VM-0617A-AI

node address

0 128

This address typically consists of a 64-bit prefix followed by a 64-bit interface ID,
as shown in Figure 1–2.

What Is IPv6? 1–3

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Figure 1–2 64-Bit Prefix Plus 64-Bit Interface ID

VM-0618A-AI

64 bits 64 bits

0 128

 prefix Interface ID

An interface ID identifies an interface on a link. The interface ID is required to
be unique on a link, but it may also be unique over a broader scope. In many
cases, the interface ID is derived from its Link layer address. The same interface
ID can be used on multiple interfaces on a single node.

The following list describes commonly used unicast addresses and their values:

• Unspecified address

Indicates the absence of an address and is never assigned to an interface. The
unspecified address has the following value:

0:0:0:0:0:0:0:0 (normal form)

:: (compressed form)

• Loopback address

Used by a node to send IP datagrams to itself and is typically assigned to the
loopback interface.

The IPv6 loopback address has the following value:

0:0:0:0:0:0:0:1 (normal form)

::1 (compressed form)

• IPv6 addresses with embedded IPv4 addresses

Used in mixed IPv4 and IPv6 environments and can be either of the
following:

– IPv4-compatible IPv6 address

Used by IPv6 nodes to tunnel IPv6 packets across an IPv4 routing
infrastructure. The IPv4 address is carried in the low-order 32 bits.
Figure 1–3 shows the format of the IPV4-compatible IPV6 address.

1–4 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Figure 1–3 IPv4-Compatible IPv6 Address

VM-0619A-AI

80 bits 16 bits

0 128

32 bits

0000.........0000 IPv4 Address00000

Note

Do not use IPv4-compatible IPv6 addresses in DNS or in
TCPIP$ETC:IPNODES.

– IPv4-mapped IPv6 address

Used to represent an IPv4 address and to identify nodes that do not
support IPv6. This address is not used in an IPv6 packet. Figure 1–4
shows the format of the IPv4-mapped IPv6 address.

Figure 1–4 IPv4-Mapped IPv6 Address

VM-0620A-AI

80 bits 16 bits

0 128

32 bits

0000.........0000 IPv4 AddressFFFF

• Local-use IPv6 unicast addresses can be either of the following:

– Link-local

Used for addressing on a single link when performing address
autoconfiguration or neighbor discovery or when no routers are present.
Figure 1–5 shows the format of the link-local address.

What Is IPv6? 1–5

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Figure 1–5 IPv6 Link-Local Unicast Address

VM-0621A-AI

10 bits 54 bits

0 128

64 bits

1111111010 Interface ID00...............00

– Site-local

Used for sites or organizations that are not connected to the global
Internet. Figure 1–6 shows the format of the site-local address.

Figure 1–6 IPv6 Site-Local Unicast Address

VM-0622A-AI

10 bits 38 bits 16 bits

0 128

64 bits

1111111011 00..........00 Interface IDSubnet ID

If you plan to use site-local addresses, be aware of the following
guidelines:

* Do not connect a single node to multiple sites.

* Do not use site-local addresses in the global DNS (the addresses
should not be visible outside the site).

* Do not advertise or propagate routes containing site-local prefixes
outside the site.

1.2.2.2 Anycast Address
An anycast address is an identifier for a set of interfaces typically belonging to
different nodes. Packets sent to an anycast address are delivered to one of the
interfaces identified as the ‘‘nearest’’ address, according to the routing protocol’s
measure of distance.

The format for anycast addresses is identical to the unicast format.

1.2.2.3 Multicast Address
A multicast address is an identifier for a group of nodes. It is similar to an IPv4
multicast address. Figure 1–7 shows the format for multicast addresses.

1–6 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

Figure 1–7 IPv6 Multicast Address

VM-0623A-AI

8 bits 4 bits4 bits

0 128

112 bits

11..11 Group ID

Scope

Flags

In the multicast address format, the fields have the following definitions:

11..11 Identifies the address as multicast.

Flags Can be either of the following values:

• 0000, which indicates a permanently assigned
(well-known) multicast address,

• 0001, which indicates a nonpermanently assigned
(transient) multicast address.

Scope Indicates the scope of the multicast group. The
following table lists the scope values:

Value
(Hex) Scope

1 Node-local

2 Link-local

5 Site-local

8 Organization-local

E Global

Group ID Identifies the multicast group within the specified
scope.

Table 1–1 lists some well-known multicast addresses.

Table 1–1 Well-Known Multicast Addresses

Multicast
Address Meaning

FF02::1 All nodes (link-local)

FF02::2 All routers (link-local)

FF02::9 All RIPng routers (link-local)

What Is IPv6? 1–7

What Is IPv6?
1.2 Introduction to IPv6 Addresses

1.2.3 Address Prefixes
Each IPv6 address has a unique pattern of leading bits that indicates its address
type. These leading bits are called the format prefix. Table 1–2 lists some IPv6
address types and their prefixes.

Table 1–2 IPv6 Address Types and Prefixes

Address Type Prefix

Aggregatable global unicast 2000::/3

Link-local FE80::/10

Site-local FEC0::/10

Multicast FF00::/8

1.2.4 Address Autoconfiguration
The IPv6 address changes have led to the following definitions for configuring
addresses:

• Stateless address autoconfiguration

• Dynamic Host Configuration Protocol Version 6 (DHCPv6), which is stateful
address autoconfiguration

In the stateless model, nodes learn address prefixes by listening for Router
Advertisement packets. Addresses are formed by combining the prefix with a
data link-specific interface token, which is typically derived from the data link
address of the interface. This model is favored by administrators who do not need
tight control over address configuration. See RFC 2462 for more information.

In DHCPv6, hosts may request addresses, configuration information and services
from dedicated configuration servers. This model is favored by administrators
who want to delegate addresses based on a client/server model. The DHCPv6
Internet Drafts are currently undergoing revision. See the DHCP charter web
page for more information:

www.ietf.org/html.charters/dhc-charter.html

Note

Version 5.1 of Compaq TCP/IP Services for OpenVMS does not support
DHCPv6.

In both cases, the resulting addresses have associated lifetimes, and systems
must be able to acquire new addresses and release expired addresses. Combined
with the ability to register updated address information with Domain Name
System (DNS) servers, these mechanisms provide a path towards network
renumbering and provide network administrators with control over the use of
network addresses without manual intervention on each host on the network.

1–8 What Is IPv6?

What Is IPv6?
1.2 Introduction to IPv6 Addresses

1.2.5 Address Resolution
The Domain Name System (DNS) provides support for mapping names to IP
addresses and mapping IP addresses back to their corresponding names. Because
of the increased size of the IPv6 address, the DNS has the following new features:

• AAAA resource record type

This holds IPv6 addresses, encoded in network byte order. The version of
BIND shipped with Compaq TCP/IP Services for OpenVMS supports AAAA
records.

• AAAA query

A query for a specified domain name in the Internet class returns all
associated AAAA resource records in the response.

• IP6.INT domain for looking up a name for a specified address (address-to-
name mapping)

An IPv6 address is represented in reverse order as a sequence of 4-bit nibbles
separated by dots with the suffix .IP6.INT appended. For example, the IPv6
address 4321:0:1:2:3:4:567:89ab has the following inverse-lookup domain
name:

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.IP6.INT

See Chapter 3 for guidelines on configuring BIND in an IPv6 environment.

1.3 Address Assignment
IPv6 addresses are now being deployed by the regional registries. See the IANA
web page at the following location for more information:

http://www.ipv6.org/iana-ann.html

In addition, you can contact your Internet Service Provider (ISP) to obtain an
IPv6 address.

Because of the need to test various implementations of the IPv6 RFCs, the IETF
has defined a temporary IPv6 address allocation scheme. You can assign the
addresses in this scheme to hosts and routers for testing IPv6 on the 6bone (a
prototype IPv6 implementation that can be used for testing). See the 6bone home
page at the following location for more information about 6bone address allocation
and assignment:

http://www.6bone.net

At the present time, the 6bone test addresses are aggregatable global
unicast addresses. Contact your 6bone service provider (for example, gw-
6bone@pa.dec.com) for a 6bone address delegation.

The following sections describe the formats for the aggregatable IPv6 addresses.

What Is IPv6? 1–9

What Is IPv6?
1.3 Address Assignment

1.3.1 Aggregatable Global Unicast Addresses
The aggregatable global unicast address format for IPv6 is designed to support
current provider-based aggregation and new exchange-based aggregation.
Whether a site connects to a provider or to an exchange, the address format
enables efficient route aggregation for either type. Figure 1–8 shows the
format for an aggregatable global unicast address. (See RFC 2374 for additional
information.)

Figure 1–8 Aggregatable Global Unicast Address Format

0 128

Format
Prefix

Reserved

NLA ID SLA ID Interface IDTLA ID

VM-0624A-AI

24 bits 16 bits 64 bits3 bits 13 bits 8 bits

In this address format, the fields have the following definitions:

Format Prefix The format prefix. For aggregatable global unicast addresses, the value
for this field is 001.

TLA ID The top-level aggregation identifier.

Reserved Reserved for future use. At present, set to all zeros (0).

NLA ID The next-level aggregation identifier. These are assigned by the TLA
ID administrator to create an addressing hierarchy and to identify
end-user sites. Each organization assigned a TLA ID is also assigned
24 bits of NLA ID space whose layout and use is the responsibility of
the organization.

SLA ID The site-level aggregation identifier. These are used by an individual
organization to create its own local addressing hierarchy and to identify
subnets.

Interface ID The 64-bit interface identifier of the interface that is connected to the
link.

1.3.2 Aggregatable Testing Addresses
Figure 1–9 shows the format for aggregatable global unicast addresses for IPv6
testing. (See RFC 2471 for more information about the proposed testing address
allocation plan.)

1–10 What Is IPv6?

What Is IPv6?
1.3 Address Assignment

Figure 1–9 Aggregatable Testing Address Format

VM-0625A-AI

24 bits 16 bits

0 128

64 bits3 bits 13 bits 8 bits

001 pNLA ID SLA ID1111111111110 Interface ID

pTLA ID

In this address format, the fields have the following definitions:

001 The format prefix for aggregatable global unicast addresses.

1111111111110 The 6bone top-level aggregation (TLA) identifier, 0x1FFE,
which is reserved by the Internet Assigned Numbers Naming
Authority (IANA) and is used temporarily for IPv6 testing.

pTLA ID The pseudo top-level aggregation identifier. This is assigned by
the pTLA ID administrator to define the top level of aggegation
(backbone sites) for the 6bone network.

pNLA ID The pseudo next-level aggregation identifier. This is the ID
assigned by the pTLA ID administrator to create an addressing
hierarchy and to identify end-user sites on the 6bone network.

SLA ID The site-level aggregation identifier. This is the ID assigned
by an organization to create its own local addressing hierarchy
and to identify subnets.

Interface ID The 64-bit interface identifier of the interface that is connected
to the link.

For the most current information about pTLA and pNLA assignments, see the
6bone home page at the following location:

http://www.6bone.net

1.4 IPv6 Environment
This section shows some example IPv6 configurations. Select a configuration that
most closely matches the environment in which you want to configure IPv6 on
your system.

Figure 1–10 shows a simple LAN configuration in which host A and host B
communicate using IPv6 with no router.

What Is IPv6? 1–11

What Is IPv6?
1.4 IPv6 Environment

Figure 1–10 Host-to-Host Configuration with No Router

VM-0626A-AI

Key:
IPv6 packets (native)

fe80::0a00:2bff:fee2:1e10 fe80::0a00:2bff:fee2:1e11

Host BHost A

Figure 1–11 shows a simple LAN configuration in which host A, host B, and
router A communicate using IPv6. Host A and host B obtain global addresses
from router A.

Figure 1–11 Host-to-Host Configuration with Router

VM-0627A-AI

Key:
IPv6 packets (native)

Host B

dec:1:1::0a00:2bff:fee2:1e10 dec:1:1::0a00:2bff:fee2:1e11
fe80::0a00:2bff:fee2:1e10 fe80::0a00:2bff:fee2:1e11

dec:1:1::0a00:2bff:fee2:1e12
fe80::0a00:2bff:fee2:1e12

Host A

Router
A

Figure 1–12 shows a configuration in which two IPv6 networks are connected
through an IPv6 router (router A).

1–12 What Is IPv6?

What Is IPv6?
1.4 IPv6 Environment

Figure 1–12 IPv6 Network to IPv6 Network with Router Configuration

VM-0628A-AI

Host A Host B

Host C Host D

Router
A

dec:1:2::/64

dec:1:1::/64

Figure 1–13 shows a configuration in which four IPv6 networks are connected
using three routers. The three routers exchange routing information with each
other using the RIPng protocol.

Figure 1–13 Multiple IPv6 Networks and Multiple Routers Configuration

VM-0629A-AI

Host A Host B

Host C Host D

Router
A

Host E Host F

Host G Host H

Router
C

Router
B

dec:1:3::/64dec:1:1::/64

dec:1:2::/64 dec:1:4::/64

Figure 1–14 shows a configuration in which host A and host B, connected to an
IPv4 network, communicate using IPv6 through an IPv4 tunnel.

What Is IPv6? 1–13

What Is IPv6?
1.4 IPv6 Environment

Figure 1–14 Host-to-Host Configuration over Tunnel

VM-0630A-AI

IPv4
Network

Key:
IPv6 packets in an IPv4 tunnel

v4/v6 v4/v6

1.2.3.4
fe80::1.2.3.4

5.6.7.8
fe80::5.6.7.8

Host BHost A

Figure 1–15 shows a configuration in which host X is connected to an IPv4
network. Router A, an IPv6 router, is connected to the same IPv4 network and
is also connected to two IPv6 networks. Host X communicates with host B using
IPv6 through an IPv4 tunnel between host X and router A.

Figure 1–15 Host-to-Router Configuration over Tunnel

VM-0631A-AI

IPv4
Network

Key:
IPv6 packets in an IPv4 tunnel
IPv6 packets (native)

fe80::1.2.3.4

1.2.3.4

fe80::5.6.7.8

5.6.7.8

dec:1:2::/64

dec:1:1::/64

dec:3:1::5.6.7.8
Host X

Host A

Host C

Host B

Host D

Router
A

Figure 1–16 shows a configuration in which four IPv6 networks are connected
through two routers and an IPv4 network. Host A communicates with host F
through an IPv4 tunnel between router A and router B.

1–14 What Is IPv6?

What Is IPv6?
1.4 IPv6 Environment

Figure 1–16 IPv6 Network-to-IPv6 Network Configuration over Tunnel

VM-0632A-AI

IPv4
Network

Host A Host B

Host C Host D

Key:
IPv6 packets in an IPv4 tunnel
IPv6 packets (native)

Router
A

fe80::1.2.3.4

1.2.3.4

fe80::5.6.7.8

5.6.7.8

Host E

Host G Host H

Router
B

dec:2:1::/64dec:1:1::/64

dec:1:2::/64 dec:2:2::/64

Host F

What Is IPv6? 1–15

2
Configuring IPv6

After installimg Compaq TCP/IP Services for OpenVMS Version 5.1, you can
configure your system to communicate in an IPv6 network environment by
performing the tasks described in the following sections. You can configure your
node as either of the following:

• IPv6 host

• IPv6 router

2.1 Preparing for Configuration
Before you configure the network software, you must gather information about
your system and network environment. The Configuration Worksheet shown
in Figure 2–1 can help you assemble this information in an orderly fashion.
The following sections describe the information that you need to record on the
worksheet.

Configuring IPv6 2–1

Configuring IPv6
2.1 Preparing for Configuration

Figure 2–1 Configuration Worksheet

VM-0633A-AI

IPv6 Configuration

Address prefix:

Start IPv6: yes no

IPv6 router: yes no
IPv6 interfaces:

Destination prefix:

Next hop address:

RIPng: yes no

Manual routes: yes no

Configured tunnel: yes no

Manual Routes

Router Interface:

Address prefix:

RIPng: yes no

Interface:

Domain name:

Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:

DNS/BIND

Configured Tunnel

Address prefix:

RIPng: yes no

Interface:

Destination prefix:

Next hop address:
Interface:

1

2

3

4

5

1 IPv6 Configuration

• IPv6 router

If you want this system to function as an IPv6 router, check Yes;
otherwise, check No. If you check No, the system is configured as an IPv6
host.

An IPv6 router can advertise address prefixes to all hosts on connected
links (for example, a LAN and a configured tunnel) and can forward
packets to their destinations. Packets can be forwarded directly on link or
over IPv4 tunnels.

• IPv6 interfaces

Enter the device names of the network interface to the IPv6 network. For
example, WE0 and WF0. If you are creating a configured tunnel only on
your system, enter None.

2–2 Configuring IPv6

Configuring IPv6
2.1 Preparing for Configuration

• Configured tunnel

If you want IPv6 to run over a configured IPv4 tunnel, check Yes;
otherwise, check No. A configured tunnel has one source and one
destination in an IPv4 network. You should use configured tunnels
instead of automatic tunnels. You can configure multiple configured
tunnels.

• Automatic tunnel

If you want to configure IPv6 to run over IPv4 automatic tunnels, check
Yes; otherwise, check No.

• Manual routes

If you want to configure manual routes to other systems, check Yes;
otherwise, check No.

On a router, you might want to configure manual routes if one of the
following conditions is true:

You want a configured tunnel and you are not advertising an address
prefix on the tunnel link.

You want a configured tunnel and the router at the other end of the
tunnel is not running the RIPng protocol.

Your system is not running the RIPng protocol.

On a host, you might want to configure manual routes if you want a
configured tunnel to a router and the router is not advertising itself as a
default router on the tunnel link.

• Start IPv6

If you want the IPv6 initialization script executed from the configuration
utility, check Yes. If you want the initialization script executed during the
next system boot, check No.

2 DNS/BIND

• Domain name

The fully qualified domain name for your node. This consists of
the host name and the DNS/BIND domain name (for example,
host1.subdomain.example).

3 Configured Tunnel

• Interface

The name of the configured tunnel interface. For example, IT0.

• Destination IPv4 address

The remote node’s IPv4 address (the remote end of the tunnel).

• Source IPv4 address

Your node’s IPv4 address (this end of the tunnel).

• RIPng

If your system is a router and you want the router to run the RIPng
protocol on the tunnel link to exchange IPv6 routing information with a
router at the remote end of the tunnel, check Yes; otherwise, check No.

Configuring IPv6 2–3

Configuring IPv6
2.1 Preparing for Configuration

• Address prefix

If your system is a router and you want to advertise address prefixes to
the node at the remote end of the tunnel, enter a 64-bit prefix; otherwise,
write Done. If your system is an IPv6 host and the router at the remote
end of the tunnel is not advertising an address prefix, enter a 64-bit prefix
to be configured on the tunnel interface.

4 Router

• Interface

The name of the interface on which you want to run the RIPng protocol or
advertise an address prefix.

• RIPng

If you want the router to run the RIPng protocol on the specified interface
and to exchange IPv6 routing information with other routers on the LAN,
check Yes; otherwise, check No.

• Address prefix

If you want to advertise address prefixes to all hosts on the link, enter a
64-bit prefix; otherwise, write Done. If you do not specify a 64-bit prefix,
the router will not advertise an address prefix. All hosts must obtain
their prefix information from another source. Prefixes in IPv6 define a
subnet and are typically configured on a router for a specific link by the
network administrator. The router advertises this prefix to all nodes
connected to that link, along with the length of the prefix, whether the
prefix is on link (that is, a neighbor), whether the prefix can also be used
for stateless address configuration, and the length of time the prefix is
valid.

5 Manual Routes

• Destination prefix

The address prefix of a remote IPv6 network. The address prefix contains
a Classless Inter-Domain Routing (CIDR) style bit length, for example,
5F00::/8. If you want to use the default route, write Default.

• Interface

The name of the interface through which you are sending traffic to the
remote IPv6 network.

• Next hop address

The IPv6 address of the first router in the path to the destination prefix.
Write the link local address of the router. If the connection to the router
is over an IPv4 tunnel, write the link local IPv6 address of the remote
tunnel endpoint.

When you run the TCPIP$IP6_SETUP configuration utility, it gathers
information from the system and prompts you for additional configuration
information.

2–4 Configuring IPv6

Configuring IPv6
2.2 IPv6 System Configuration Examples

2.2 IPv6 System Configuration Examples
This section shows how to use the configuration worksheet to assemble
information for selected configurations. Each example shows how individual
systems are configured. In some cases, additional options for you to consider are
provided.

Note

OpenVMS interface names must be in uppercase.

2.2.1 Simple Host-to-Host Configuration
In a simple host-to-host configuration (shown in Figure 1–10), host A and host
B use IPv6 link-local addresses. By default, the TCPIP$IP6_SETUP command
configures the hosts automatically with a link-local address for your system.
Figure 2–2 shows the completed worksheet for host A.

Figure 2–2 Simple Host-to-Host Configuration

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no
IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

WE0

VM-0634A-AI

After you configure IPv6 on host A, add a link-local address for host B to the
TCPIP$ETC:IPNODES.DAT file. (For more information about these files, see
Section 3.4.) The configuration process for host B in this configuration is similar
to that for host A.

In this configuration, no global address prefix is advertised on the LAN. If you
want to advertise a global address prefix, you can either configure one of the
hosts as a router by using TCPIP$IP6_SETUP or add an IPv6 router to the LAN
configuration. An IPv6 router advertises a global prefix on the link.

You can use the netstat -in command to view a local node’s link-local and global
addresses.

The following TELNET command connects host A to host B using host B’s link-local
address:

$ TELNET fe80::0a00:2bff:fee2:1e11

Alternately, you can place the address and node name in the
TCPIP$ETC:IPNODES.DAT file. Then use the node name as the argument
to the TELNET command. (For more information about this file, see Section 3.4.)

Configuring IPv6 2–5

Configuring IPv6
2.2 IPv6 System Configuration Examples

2.2.2 Host-to-Host with Router Configuration
In a host-to-host with router configuration (shown in Figure 1–11), host A and
host B are on a LAN with router A. In this case, router A advertises the global
address prefix dec:1:1::/64 on the LAN. Host A and host B use this address
prefix to create global IPv6 addresses. (See Chapter 1 for information about
obtaining experimental testing addresses.) Figure 2–3 shows the completed
worksheet for router A.

Figure 2–3 Host-to-Host with Router Configuration

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no
IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Address prefix:

RIPng: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

VM-0635A-AI

WE0

WE0

dec:1:1::/64

After you configure IPv6 on router A, add the global addresses for the other hosts
to the TCPIP$ETC:IPNODES.DAT file. (For more information about this file,
see Section 3.4.) Repeat this step on host A and host B. Alternatively, you could
establish DNS/BIND in your network using the global addresses.

2.2.3 IPv6 Network-to-IPv6 Network with Router Configuration
In an IPv6 network-to-IPv6 network with router configuration (shown in
Figure 1–12), two IPv6 networks are connected to each other through router
A and its two interfaces. Figure 2–4 shows the completed worksheet for router A.

2–6 Configuring IPv6

Configuring IPv6
2.2 IPv6 System Configuration Examples

Figure 2–4 IPv6 Network-to-IPv6 Network with Router Configuration

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no
IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Address prefix:

RIPng: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

VM-0636A-AI

WE0

WE0

WE1

dec:1:1::/64

dec:1:2::/64

WE1

2.2.4 Multiple IPv6 Networks and Multiple Routers Configuration
In this example configuration (shown in Figure 1–13), four IPv6 networks are
connected to each other using three routers. In this configuration, the routers
must exchange routing information in order to learn the routes to other subnets
in the network. To accomplish this, each router must run the RIPng protocol.
Figure 2–5 shows the completed worksheet for router A.

Configuring IPv6 2–7

Configuring IPv6
2.2 IPv6 System Configuration Examples

Figure 2–5 Multiple IPv6 Networks and Multiple Routers Configuration

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no
IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Address prefix:

RIPng: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

VM-0637A-AI

WE0

WE0

WE1

dec:1:1::/64

dec:1:2::/64

WE1

The completed worksheets for router B and C would be similar.

2.2.5 Host-to-Host over Tunnel Configuration
In a host-to-host over tunnel configuration (shown in Figure 1–14), two IPv6
systems communicate with each other over a configured tunnel through an IPv4
network and use IPv6 link-local addresses. Figure 2–6 shows the completed
worksheet for host A.

2–8 Configuring IPv6

Configuring IPv6
2.2 IPv6 System Configuration Examples

Figure 2–6 Host-to-Host over Tunnel Configuration

IT0

5.6.7.8
1.2.3.4

VM-0638A-AI

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes
IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:Configured Tunnel

Address prefix:

RIPng: yes no

no
none

After you configure IPv6 on host A, add the link-local address for host B to
the TCPIP$ETC:IPNODES.DAT file. (For more information about this file, see
Section 3.4.) The configuration process for host B in this configuration is similar
to that for host A.

With this configuration, no global address prefix is advertised on the tunnel. If
you want to advertise a global address prefix, you can configure one of the hosts
as a router by using TCPIP$IP6_SETUP. An IPv6 router advertises a global
prefix on the link.

To view a local node’s link-local and global addresses, use the netstat -in
command.

The following TELNET command connects host A to host B:

$ telnet fe80::5.6.7.8

Alternately, you can place the address and node name in the
TCPIP$ETC:IPNODES.DAT file. Then use the Node name as the argument
to the TELNET command.

2.2.6 Host-to-Router over Tunnel Configuration
In a host-to-router over tunnel configuration (shown in Figure 1–15), host X
communicates with host B over a configured tunnel through an IPv4 network;
both nodes use IPv6 addresses. The tunnel in this case is between host X and
router A. Figure 2–7 shows the completed worksheet for host X when router A
is advertising itself as the default router for the tunnel link and is advertising a
global address prefix on the tunnel link.

Configuring IPv6 2–9

Configuring IPv6
2.2 IPv6 System Configuration Examples

Figure 2–7 Host-to-Router over Tunnel Configuration

IT0

5.6.7.8
1.2.3.4

VM-0638A-AI

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes
IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:Configured Tunnel

Address prefix:

RIPng: yes no

no
none

If router A is not advertising a global address prefix on the tunnel link, the value
dec:3:1::/64 would be in the Address prefix field in the Configured Tunnel
section of the host X worksheet. If router A is not advertising itself as the default
router for the tunnel link, the information shown in Figure 2–8 would also be on
the host X worksheet:

Figure 2–8 Router Not Advertising a Global Address Prefix

VM-0640A-AI

Destination prefix:

Next hop address:

Manual Routes

Interface:

Manual routes: yes no

default

IT0
fe80::1.2.3.4

Figure 2–9 shows the completed worksheet for router A when router A is
advertising a global address prefix on the tunnel link.

2–10 Configuring IPv6

Configuring IPv6
2.2 IPv6 System Configuration Examples

Figure 2–9 Router Advertising a Global Address Prefix

IPv6 Configuration

Start IPv6: yes no

IPv6 router: yes no
IPv6 interfaces:

Manual routes: yes no

Configured tunnel: yes no
Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:Configured Tunnel

Address prefix:

RIPng: yes no

WE0 WE1

VM-0641A-AI

IT0
5.6.7.8
1.2.3.4

dec:3:1::/64

If router A is not advertising a global prefix on the tunnel link, the information
shown in Figure 2–10 would be on the router A worksheet. Note the manual
route to host X. Instead of specifying a destination network prefix, you specify
the host route, dec:3:1::5.6.7.8, to host X. The next hop is the link-local IPv6
address of host X’s tunnel interface, fe80::5.6.7.8.

Figure 2–10 Router A Not Advertising a Global Prefix on the Tunnel Link

VM-0639A-AI

Destination prefix:

Next hop address:

Manual Routes

Interface:

Manual routes: yes no

dec:3:1::5.6.7.8

IT0
fe80::5.6.7.8

2.2.7 IPv6 Network to IPv6 Network over Tunnel Configuration
In an IPv6 to IPv6 network over tunnel configuration (shown in Figure 1–16),
host A communicates with host F over a configured tunnel through an IPv4
network. The host configuration is similar to that of host A Section 2.2.1. All
hosts automatically use their default router in order to communicate with hosts
on other networks. Figure 2–11 shows the worksheet for router A.

Configuring IPv6 2–11

Configuring IPv6
2.2 IPv6 System Configuration Examples

Figure 2–11 IPv6 Network to IPv6 Network over Tunnel Configuration

WE0

IT0
5.6.7.8

1.2.3.4

WE1

VM-0642A-AI

IPv6 Configuration

Address prefix:

Start IPv6: yes no

IPv6 router: yes no
IPv6 interfaces:

RIPng: yes no

Manual routes: yes no

Configured tunnel: yes no

Router Interface:

Address prefix:

RIPng: yes no

Interface:

Automatic tunnel: yes no

Source IPv4 address:
Destination IPv4 address:

Interface:Configured Tunnel

Address prefix:

RIPng: yes no

WE0

WE1

dec:1:1::/64

dec:1:2::/64

You do not have to run RIPng on the WE0 and WE1 interfaces because no routers
are attached to the interfaces.

The configuration of router B is similar, except that the source and destination
addresses for the configured tunnel would be switched and the address prefixes
advertised on WE0 and WE1 would be dec:2:1::/64 and dec:2:2::/64,
respectively.

Note

If the routers were not configured to use RIPng over the tunnel interface,
each router would need to specify a manual route to the other.

2.3 Configuring IPv6 Hosts and Routers
This section describes how to configure your system as either an IPv6 host or an
IPv6 router.

2–12 Configuring IPv6

Configuring IPv6
2.3 Configuring IPv6 Hosts and Routers

2.3.1 Configuring an IPv6 Host
To configure your system as an IPv6 host, do the following:

1. Log in as SYSTEM. Configure your IPv4 stack through the menu-driven
TCPIP$CONFIG configuration procedure. This procedure is described in
the Compaq TCP/IP Services for OpenVMS Installation and Configuration
manual.

Note

Add the following line to your LOGIN.COM file:

$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM

This command procedure defines the UNIX management commands as
foreign commands. Rerun your LOGIN.COM to make the definitions
effective for the current process.

2. Invoke the TCPIP$IP6_SETUP utility by entering the following command:

$ @SYS$MANAGER:TCPIP$IP6_SETUP

The utility displays information about the IPv6 network configuration
procedure and tells you that you can configure the system as either an IPv6
host or an IPv6 router.

3. Choose to configure the system as an IPv6 host by responding to the following
prompt:

Configure this system as an IPv6 router? [NO]:

Press Return to configure the system as an IPv6 host.

4. Answer the prompts about configuring each interface on your system. The
procedure displays the following questions:

Do you want to enable IPv6 on this interface?

Enable IPv6 on interface WF0? [YES]:

Press Return if you want to enable IPv6 on this interface; enter N if you do
not.

If your system has multiple interfaces, the procedure repeats this questions
for each interface.

5. Indicate whether you want to configure an automatic tunnel by responding to
the following prompt:

Configure an IPv6 over IPv4 automatic tunnel interface? [NO]:

If you want to configure an automatic tunnel, enter Y and press Return; if
not, press Return.

6. Indicate whether you want to create a configured tunnel or additional
configured tunnels by responding to the following prompt:

Create a configured tunnel? [NO]:

If you want to create a configured tunnel, enter Y and press Return. You will
be prompted for source and destination addresses in steps 7 and 8.

Configuring IPv6 2–13

Configuring IPv6
2.3 Configuring IPv6 Hosts and Routers

If you do not want to create a configured tunnel or if you have finished adding
a series of configured tunnels, press Return. The procedure goes to step 10.

7. If you chose to create a configured tunnel, enter the tunnel’s source IPv4
address in response to the following prompt:

Source IPv4 address of tunnel IT0?:

Enter an IPv4 address in the standard format (xx.xx.xx.xx) and press
Return.

8. Enter the tunnel’s destination IPv4 address in response to the following
prompt:

Destination IPv4 address of tunnel IT0?:

Enter an IPv4 address in the following format (xx.xx.xx.xx) and press
Return.

9. Indicate whether you want to create another configured tunnel by responding
to the following prompt:

Create another configured tunnel? [NO]

If you want to create another configured tunnel, enter Y and press Return.
The procedure takes you back to steps 6 through 8 for each additional
configured tunnel you choose to create.

If you do not want to create another configured tunnel, press Return.

10. The procedure asks whether you want to create a host configuration file based
on the choices you have made.

Create IPv6 Host configuration file?

Please enter YES or NO [YES]:

If you are not satisfied with the configuration, enter N and press Return. The
utility ends immediately without changing any of the current configuration
files.

If you are satisfied with the configuration, enter Y and press Return. The
TCPIP$IP6_SETUP command procedure creates a configuration file called
SYS$SYSTEM:TCPIP$INET6_CONFIG.DAT.

11. You must now shut down TCP/IP Services for OpenVMS and then restart the
network in order to enable IPv6.

2.3.2 onfiguring an IPv6 Router
To configure your system as an IPv6 router, do the following:

1. Log in as SYSTEM. Configure your IPv4 stack through the menu-driven
TCPIP$CONFIG configuration procedure. This procedure is described in
the Compaq TCP/IP Services for OpenVMS Installation and Configuration
manual.

2–14 Configuring IPv6

Configuring IPv6
2.3 Configuring IPv6 Hosts and Routers

Note

Add the following line to your LOGIN.COM file:

$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM

This command procedure defines the UNIX management commands as
foreign commands. Rerun your LOGIN.COM to make the definitions
effective for the current process.

2. Invoke the TCPIP$IP6_SETUP utility by entering the following command:

$ @SYS$MANAGER:TCPIP$IP6_SETUP

The utility displays information about the IPv6 network configuration
procedure and tells you that you can configure the system as either an IPv6
host or an IPv6 router.

3. Choose to configure the system as an IPv6 router by responding to the
following prompt:

Configure this system as an IPv6 router? [NO]:

If you want to configure the system as an IPv6 router, enter Y and press
Return.

4. Answer the prompts about configuring each interface on your system. The
procedure displays the following questions:

Do you want to enable IPv6 on this interface?

Enable IPv6 on interface WF0? [YES]:

Press Return if you want to enable IPv6 on this interface; enter N if you do
not.

5. Answer the prompts about enabling IPv6 routing on each interface on your
system. The procedure displays the following questions:

Do you want to enable IPv6 routing on this interface?

Enable IPv6 routing on interface WF0? [YES]:

Press Return if you want to enable IPv6 routing on this interface; enter N if
you do not.

6. Indicate whether you want the router to run the RIPng protocol on the
designated interface by responding to the following prompt:

Enable RIPng on interface WF0? [YES]:

If you want the router to run the RIPng protocol, press Return; enter N and
press Return if you do not.

7. Indicate whether you want the router to advertise an IPv6 address prefix for
the LAN on the designated interface, by responding to the following prompt:

Address prefix to advertise on interface WF0?:

Configuring IPv6 2–15

Configuring IPv6
2.3 Configuring IPv6 Hosts and Routers

If you want the router to advertise an IPv6 address prefix, enter a 64-bit
address prefix for the interface and press Return. The procedure repeats the
same prompt. You can enter as many additional prefixes as you want for the
interface. When you are finished, enter Done and press Return.

If you do not want the router to advertise an IPv6 address prefix on the
designated interface, enter Done and press Return.

If there are additional interfaces on your system, the procedure returns to
steps 4 through 7 for each interface. Once you have configured all interfaces,
the procedure goes to step 8.

8. Indicate whether you want to configure an automatic tunnel by responding to
the following prompt:

Configure an IPv6 over IPv4 automatic tunnel interface? [NO]:

If you want to configure an automatic tunnel, enter Y and press Return; if
not, press Return.

9. Indicate whether you want to create a configured tunnel or additional
configured tunnels by responding to the following prompt:

Create a configured tunnel? [NO]:

If you want to create a configured tunnel, enter Y and press Return. You will
be prompted for source and destination addresses in steps 10 and 11.

If you do not want to create a configured tunnel or if you have finished adding
a series of configured tunnels, press Return. The procedure goes to step 16.

10. If you chose to create a configured tunnel, enter the tunnel’s source IPv4
address in response to the following prompt:

Source IPv4 address of tunnel IT0?:

Enter an IPv4 address in the standard format (xx.xx.xx.xx) and press
Return.

11. Enter the tunnel’s destination IPv4 address in response to the following
prompt:

Destination IPv4 address of tunnel IT0?:

Enter an IPv4 address in the following format (xx.xx.xx.xx) and press
Return.

12. Indicate whether you want to enable IPv6 routing on the interface by
reponding to the following prompt:

Enable IPv6 routing on interface IT0? [YES]:

If you want to enable IPv6 routing on the interface, press Return; if not, enter
N and press Return.

13. Indicate whether you want to enable RIPng on the interface by responding to
the following prompt:

Enable RIPng on interface IT0? [YES]:

Press Return if you want to enable RIPng protocol on this interface; enter N
and press Return if you do not.

2–16 Configuring IPv6

Configuring IPv6
2.3 Configuring IPv6 Hosts and Routers

14. Indicate whether you want the host to use an IPv6 address prefix on the
tunnel interface by responding to the following prompt:

Address prefix to advertise on interface IT0?:

If you want the host to use an IPv6 address prefix because a router is not
advertising a global address prefix, enter the prefix and press Return. Enter
as many prefixes as you want. When you are finished entering prefixes for
the interface, enter Done and press Return.

If you do not want the host to use an IPv6 address prefix on the tunnel
interface, enter Done and press Return.

15. Indicate whether you want to create another configured tunnel by responding
to the following prompt:

Create another configured tunnel? [NO]:

If you want to create another configured tunnel, enter Y and press Return.
The procedure returns to step 9.

If you do not want to create another configured tunnel, press Return.

16. The TCPIP$IP6_SETUP utility displays the configuration information
and asks you to indicate whether you want to update the current startup
procedures with the new configuration information.

Create IPv6 Router configuration files?

Please enter YES or NO [YES]:

If you are not satisfied with the configuration, enter N and press Return. The
utility ends immediately without changing any of the current configuration
files.

If you are satisfied with the configuration, enter Y and press Return. The
TCPIP$IP6_SETUP command procedure creates a configuration file called
SYS$SYSTEM:TCPIP$INET6_CONFIG.DAT and a router configuration file
called SYS$SYSTEM:TCPIP$IP6RTRD.CONF, both with default values.

17. You must now shut down TCP/IP Services for OpenVMS and then restart the
network in order to enable IPv6.

2.4 Postconfiguration Tasks
After restarting the network with IPv6 enabled, you might want to do the
following:

• Connect to the 6bone network

• Initialize a new interface for IPv6

• Create a configured tunnel

• Add addresses to or delete addresses from an interface

• Add or delete a default router

• Manually add a route for an onlink prefix

• Configure a router

• Edit the router configuration file

The following sections describe these tasks.

Configuring IPv6 2–17

Configuring IPv6
2.4 Postconfiguration Tasks

2.4.1 Connecting to the 6bone Network
To connect to the 6bone, choose a 6bone point that is reasonably close
to your normal IPv4 paths into the Internet. The 6bone web site at
http://www.6bone.net contains information on how to join the 6bone and
how to find an attachment point. If you want to connect to the 6bone through the
Compaq Palo Alto site either before or after you configure IPv6 on your host or
router, complete the following steps:

1. Register your IPv4 tunnel by sending your 6bone IPv6 address prefix and the
IPv4 address of your router to the following address:

gw-6bone@pa.dec.com

2. Wait for confirmation that support for your tunnel is configured at Compaq.

Compaq will provide both an IPv6 global address prefix for you to use at your
site and the IPv4 address of the Compaq Palo Alto router.

3. Configure your tunnel by running the TCPIP$IP6_SETUP utility.

4. Verify that your tunnel is operational by issuing the ping command to one of
the following Compaq IPv6 nodes:

altavista.ipv6.digital.com
ftp.ipv6.digital.com
www.ipv6.digital.com

For additional information on connecting to the 6bone, see the 6bone home
page at the following location:

http://www.6bone.net

2.4.2 Initializing a New Interface for IPv6
In some cases, you might want to either add a new interface card to your system
or change an interface card from one type to another. After the new card is
installed, you must initialize it for IPv6 operation. To initialize an interface, use
the ifconfig command with the following syntax:

ifconfig device ipv6 up

Note

OpenVMS interface names must be in uppercase. When you enter them
with UNIX management commands at the DCL prompt, you must enclose
the name of the interface in double quotation marks.

For LAN interfaces, the ifconfig command creates the link-local address
(FE80::) and starts detection of duplicate addresses.

For example, to initialize Ethernet interface WE0 for use with IPv6, enter the
following:

$ ifconfig "WE0" ipv6 up

To initialize the loopback interface for use with IPv6, enter the following:

$ ifconfig "LO0" ipv6 up

2–18 Configuring IPv6

Configuring IPv6
2.4 Postconfiguration Tasks

To initialize the automatic tunnel interface, enter the following:

$ ifconfig "TN0" ipv6 up

This command designates one of the system’s IPv4 addresses for use as the tunnel
endpoint.

If you want the designated IPv4 address to be the permanent tunnel endpoint,
you must use TCPIP$IP6_SETUP.

2.4.2.1 Setting the IPv6 Interface Identifier
You can set the IPv6 interface ID at the same time you initialize an interface by
using the ifconfig command with the ip6interfaceid parameter. For example,
to initialize Ethernet interface WE0 for use with IPv6 and to set its interface ID
to the 64-bit value 0x0123456789abcdef, enter the following:

$ ifconfig "WE0" ip6interfaceid ::0123:4567:89ab:cdef ipv6 up

Although the interface ID is expressed in standard IPv6 address format, only the
low-order 64 bits are used.

2.4.2.2 Removing IPv6 from an Interface
Removing IPv6 from an interface removes the IPv6 configuration associated with
the interface, including all IPv6 addresses and IPv6 routes through the interface.
To remove IPv6 from an interface, use the ifconfig command with the following
syntax:

ifconfig device -ipv6

For example, to remove IPv6 from Ethernet interface WE0, enter the following:

$ ifconfig "WE0" -ipv6

2.4.3 Creating a Configured Tunnel
To create a configured tunnel, use the iptunnel command with the following
syntax:

iptunnel create []

For example, to create a tunnel to remote system 16.20.136.47, enter the following
command:

$ iptunnel create 16.20.136.47

To initialize the tunnel for IPv6 operation, enter the following:

$ ifconfig "IT0" ipv6 up

Note

OpenVMS interface names must be in uppercase. When you enter them
with UNIX management commands at the DCL prompt, you must enclose
the name of the interface in double quotation marks.

Configuring IPv6 2–19

Configuring IPv6
2.4 Postconfiguration Tasks

2.4.4 Adding an Address to an Interface
To add or assign an IPv6 prefix to an interface and to direct the kernel to
automatically append the interface identifier, use the ifconfig command with
the following syntax:

ifconfig inet6 ip6prefix

The following example assigns the address dec:2::0a00:2bff:fe12:3456 to
interface WE0 (the interface ID is 0a00:2bff:fe12:3456):

$ ifconfig "WE0" inet6 ip6prefix dec:2::/64

The ip6prefix parameter directs the kernel to automatically append the interface
identifier to the address prefix.

To add or assign a full IPv6 address to an interface manually, use the ifconfig
command with the following syntax:

ifconfig inet6

The following example assigns the address dec:2::1 to interface WE0:

$ ifconfig "WE0" inet6 dec:2::1

Note

For IPv6 hosts, the TCPIP$ND6HOST process configures interface
prefixes automatically, depending on the contents of router
advertisements.

For IPv6 routers, the TCPIP$IP6RTRD process configures
interface prefixes automatically, depending on the contents of the
SYS$SYSTEM:TCPIP$IP6RTRD.CONF file.

2.4.5 Deleting an Address from an Interface
To delete an IPv6 address from an interface manually, use the ifconfig command
with the following syntax:

ifconfig inet6 delete

For example:

$ ifconfig "WE0" inet6 delete dec:2::1

Note

OpenVMS interface names must be in uppercase. When you enter them
with UNIX management commands at the DCL prompt, you must enclose
the name of the interface in double quotation marks.

2–20 Configuring IPv6

Configuring IPv6
2.4 Postconfiguration Tasks

2.4.6 Adding or Deleting a Default Router
To add a default router, use the route utility with the following syntax:

route add -inet6 default -I

For example:

$ route add -inet6 default fe80::0a00:2bff:fe12:3456 -"I" "WE0"

Note

UNIX flags and OpenVMS interface names are case sensitive. When
entering UNIX management commands at the DCL prompt, you must
enclose uppercase UNIX flags and OpenVMS interface names in quotes.

To delete a default router, use the route utility with the following syntax:

route delete -inet6 default -I

For example:

$ route delete -inet6 default fe80::0a00:2bff:fe12:3456 -"I" "WE0"

Note

For IPv6 hosts, the TCPIP$ND6HOST process performs the add and
delete router operations automatically, depending on the contents of
router advertisements.

2.4.7 Manually Adding a Route for an On-Link Prefix
After you manually add an address prefix to an interface, you also can add a
static route so that traffic to other hosts with the same prefix is sent directly
to the destination rather than through a router. For example, if the prefix
DEC:5::/64 has been added to the Ethernet interface WE0, which has been
initialized with the link-local address fe80::0a00:2bff:fe12:3456, the following
command adds a route to neighboring hosts with the same prefix:

$ route add -inet6 dec:5::/64 fe80::0a00:2bff:fe12:3456 -interface

This command specifies that destinations with prefix dec:5::0/64 are reachable
through the interface with address fe80::0a00:2bff:fe12:3456. That is,
dec:5::0/64 is an on-link prefix.

Note

For IPv6 hosts, the TCPIP$ND6HOST process automatically adds on-link
prefixes based on the contents of router advertisements.

Configuring IPv6 2–21

Configuring IPv6
2.4 Postconfiguration Tasks

2.4.8 Configuring a Router
Before configuring a router, you must enable forwarding by setting the
ipv6forwarding and ipv6router attributes of the kernel inet subsystem to
1. You set these attributes by entering the following sysconfig commands:

$ sysconfig -r inet ipv6forwarding=1
$ sysconfig -r inet ipv6router=1

2.4.9 Editing the Router Configuration File
After you configure the system as an IPv6 router, the TCPIP$IP6RTRD process
sends out periodic router advertisements for the following reasons:

• To advertise itself as a potential default router for IPv6 traffic. The IPv6
hosts on the link receive these advertisements as part of their Neighbor
Discovery processing.

• To advertise an IPv6 address prefix, in which case hosts on the link perform
address autoconfiguration.

The SYS$SYSTEM:TCPIP$IP6RTRD.CONF file contains the configuration
data needed to send Router Advertisement messages. This file is created when
TCPIP$IP6_SETUP is run (if the system is configured as a router). The link
interface and advertised prefix are inserted, and other default values are used.
You can modify this file as appropriate for your network, for example, when using
multiple prefix values. Example 2–1 shows a sample configuration file.

Example 2–1 Sample TCPIP$IP6RTRD.CONF File

#
Sample ip6rtrd configuration file
#
interface WE0 {

MaxRtrAdvInterval 600
MinRtrAdvInterval 200
AdvManagedFlag 0
AdvOtherConfigFlag 0
AdvLinkMTU 1500
AdvReachableTime 0
AdvRetransTimer 0
AdvMaxHopLimit 64
AdvDefaultLifetime 1800
Prefix dec:1::/64 {

AdvValidLifetime 1200
AdvPreferredLifetime 600
AdvOnLinkFlag 1
AdvAutonomousFlag 1

}
}

See Section B.2.2 for more information about the TCP/IP$IP RTRD.CONF. file.

2–22 Configuring IPv6

3
Configuring BIND

The information in this chapter is for experienced DNS/BIND administrators.
If you are not a DNS/BIND administrator, give this information to the
administrator for your site.

The DNS implementation is based on BIND Version 8.1.2, which provides
more extensive configuration options than previous versions (for example,
access control lists, categorized logging). As a result, the configuration format
has changed. In previous releases, the BIND configuration was stored in
UCX$CONFIGURATION.DAT. With TCP/IP Services Version 5.1, the BIND
configuration is maintained as an ASCII text file called TCPIP$BIND.CONF.

Important

For IPv6 environments, the BIND server supports AAAA lookups over
IPv4 (AF_INET) connections only. The resolver and server have not
been ported to IPv6, but IPv6 applications can make getaddrinfo and
getnameinfo calls to retrieve the AAAA records.

The BIND resolver and server support dynamic updates to the DNS/BIND
database. See Section 3.3 for information about enabling this feature.

3.1 IPv6 Server Guidelines
Configuring an IPv6 master server is similar to configuring an IPv4 master server
with a few exceptions. The following sections describe the exceptions.

To configure a DNS/BIND server to operate in an IPv6 environment, review the
following guidelines:

• Select a node to function as an IPv6 name server.

• Dedicate a zone to IPv6 addresses, or add IPv6 addresses to your enterprise’s
current zone.

• If you want global IPv6 name services, you must delegate a domain under the
ip6.int domain for the reverse lookup of IPv6 addresses. Send mail to the
following address to request a domain for reverse lookups:

bmanning@isi.edu

See RFC 1886 for more information.

Configuring BIND 3–1

Configuring BIND
3.1 IPv6 Server Guidelines

• If the system is configured as a DNS/BIND server, change the resolver
configuration to point to the local node for name lookups, as follows:

1. Run the TCP/IP Services configuration procedure:

>
$ @SYS$STARTUP:TCPIP$CONFIG

2. Select Core Environment.

3. Select Resolver.

4. Enter the BIND server of LOCALHOST.

3.2 Sample BIND Configuration Files
The SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.IPV6.BIND] directory contains
DNS configuration files that show sample IPv6 information for you to study and
adapt to your environment. Of the files in that directory, the following example
files contain IPv6 information that show reverse lookup addresses:

Example 3–1 Sample IPV6.DB File

; ***
; * *
; * Copyright 2000 Compaq Computer Corporation *
; * *
; * The software contained on this media is proprietary to *
; * and embodies the confidential technology of Compaq *
; * Computer Corporation. Possession, use, duplication or *
; * dissemination of the software and media is authorized only *
; * pursuant to a valid written license from Compaq Computer *
; * Corporation. *
; * *
; * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
; * by the U.S. Government is subject to restrictions as set *
; * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
; * or in FAR 52.227-19, as applicable. *
; * *
; ***

;
; Example BIND data file for ipv6.my.domain
;
@ IN SOA ns.my.domain. postmaster.ns.my.domain. (

1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

;
; Nameservers (must have IPv4 addresses until BIND gets ported to IPv6)
;

IN NS ns.my.domain.
;
; IPv6 nodes
;

host1 IN AAAA 5F00:0000:0102:0300:0203:0800:2B0A:0B0C
host2 IN AAAA 5F00:0000:0102:0300:0203:0800:2B0D:0E0F

3–2 Configuring BIND

Configuring BIND
3.3 Enabling Dynamic Updates to the DNS Database

Example 3–2 Sample IPV6.REV File

; ***
; * *
; * Copyright 2000 Compaq Computer Corporation *
; * *
; * The software contained on this media is proprietary to *
; * and embodies the confidential technology of Compaq *
; * Computer Corporation. Possession, use, duplication or *
; * dissemination of the software and media is authorized only *
; * pursuant to a valid written license from Compaq Computer *
; * Corporation. *
; * *
; * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
; * by the U.S. Government is subject to restrictions as set *
; * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
; * or in FAR 52.227-19, as applicable. *
; * *
; ***

;
; Example BIND data file for 3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.IP6.INT
;
; (corresponds to the 5F00:0000:0102:0300:0203::/80 prefix)
;
@ IN SOA ns.my.domain. postmaster.ns.my.domain. (

1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

;
; Nameservers (must have IPv4 addresses until BIND gets ported to IPv6)
;

IN NS ns.my.domain.
;
; IPv6 nodes
;

c.0.b.0.a.0.b.2.0.0.8.0 IN PTR host1.ipv6.my.domain.
f.0.e.0.d.0.b.2.0.0.8.0 IN PTR host2.ipv6.my.domain.

3.3 Enabling Dynamic Updates to the DNS Database
To enable dynamic updates for a DNS/BIND server, do the following:

• Edit the TCPIP$BIND.CONF file and add the allow-update substatement
to the zone statements for those zones you want to dynamically update and
for the reverse lookup zone. For example, the following statements are the
result of editing the first two zone statements in Example 3–3 and making
the required changes:

Configuring BIND 3–3

Configuring BIND
3.3 Enabling Dynamic Updates to the DNS Database

Example 3–3 Sample TCPIP$BIND.CONF_IPV6 File

// ***
// * *
// * Copyright 2000 Compaq Computer Corporation *
// * *
// * The software contained on this media is proprietary to *
// * and embodies the confidential technology of Compaq *
// * Computer Corporation. Possession, use, duplication or *
// * dissemination of the software and media is authorized only *
// * pursuant to a valid written license from Compaq Computer *
// * Corporation. *
// * *
// * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
// * by the U.S. Government is subject to restrictions as set *
// * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
// * or in FAR 52.227-19, as applicable. *
// * *
// ***

//
// Example named.conf file
//

options {
directory "sys$specific:[tcpip$bind]";

};

zone "ipv6.my.domain" {
type master;
file "ipv6.db";
};

zone "3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.IP6.INT" {
type master;
file "ipv6.rev";
};

zone "0.0.127.in-addr.arpa" {
type master;
file "127_0_0.db";
};

zone "LOCALHOST" in {
type master;
file "LOCALHOST.DB";

};

zone "." {
type hint;
file "root.hint";

};

zone "ipv6.my.domain" {
type master;
file "ipv6.db";
allow-update { any; };

};
zone "3.0.2.0.0.0.3.0.2.0.1.0.0.0.0.0.0.0.f.5.IP6.INT" {
type master;

file "ipv6.rev";
allow-update { any; };

};

3–4 Configuring BIND

Configuring BIND
3.3 Enabling Dynamic Updates to the DNS Database

• Start the TCP/IP Services product as follows:

$ SYS$STARTUP:TCPIP$STARTUP

3.4 Local Hosts Database TCPIP$ETC:IPNODES.DAT
TCP/IP Services for OpenVMS provides an editable ASCII version of the local
hosts database, TCPIP$ETC:IPNODES.DAT, to support local definition of IPv6
addresses.

Configuring the BIND resolver using TCPIP$CONFIG.COM will produce a
template file in TCPIP$ETC:IPNODES.DAT.

Note

Be aware that TCPIP SET/SHOW HOST commands do not operate on
this file and will affect only the traditional (RMS indexed) local hosts
database.

The IPNODES file contains information regarding the known IP nodes (both IPv4
and IPv6) on the network.

For each node, a single line should be present with the following information:

IP_address canonical_nodename aliases

Items are separated by any number of blanks or tab characters, or both. The
pound sign (#) indicates the beginning of a comment; characters up to the end of
the line are not interpreted by routines that search the file.

Network addresses, both IPv4 and IPv6, are specified in IPv6 notation using
the inet_pton() routine from the Internet address manipulation library. Node
names can contain any printable character other than a field delimiter, newline,
or comment character.

The following routines, getaddrinfo() and getnameinfo() as defined in the
Internet draft that supersedes RFC 2553 (Basic Socket Interface Extensions for
IPv6), support the use of the TCPIP$ETC:IPNODES.DAT file.

For details about using these routines see, Section 6.5.1.1 and Section 6.5.2.1.

3.5 Converting from BIND 4.9*
The TCP/IP Services product provides a rollover utility you can use to convert
your UCX BIND configuration to the new BIND 8.1 format. Issue the TCPIP
CONVERT/CONFIGURATION BIND command to convert your files to the new
format.

See the Compaq TCP/IP Services for OpenVMS Management guide for more
information about this utility.

Configuring BIND 3–5

4
Monitoring the Network

To monitor your network, use the following UNIX style management tools:

• ping command

• netstat command

• traceroute command

• IPv6 process log files

See Appendix B for more information about both IPv6 extensions to the
management utilities and IPv6 processes.

The following sections describe each topic.

4.1 Testing Access to Internet Network Hosts with the ping
Command

The ping command accepts an IPv4 address, IPv6 address, or node name on the
command line. The following sample command specifies an IPv6 address:

$ ping -c 2 5F00:2100:108C:4000:8C40:800:2B2D:2B2

PING (5F00:2100:108C:4000:8C40:800:2B2D:2B2): 56 data bytes
64 bytes from 5F00:2100:108C:4000:8C40:800:2B2D:2B2: icmp6_seq=0

hlim=58 time=17 ms
64 bytes from 5F00:2100:108C:4000:8C40:800:2B2D:2B2: icmp6_seq=1

hlim=58 time=17 ms
----5F00:2100:108C:4000:8C40:800:2B2D:2B2 PING Statistics----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms) min/avg/max = 17/17/17 ms

The ping command accepts a -V4 or -V6 flag to send an IPv4 ECHO_REQUEST
to a node with an IPv4 address, or to send an IPv6 ECHO_REQUEST to a node
with an IPv6 address, respectively. If you do not specify either flag, the ping
command sends an appropriate ECHO_REQUEST based on the address family
being used.

You can also use the -I flag to force the use of a specific interface. For example:

$ ping -"I" "WE0" FE80::800:2B2D:2B2

4.2 Displaying Network Statistics with the netstat Command
You can display network statistics for sockets, interfaces, and routing tables.
The netstat command accepts either the -f inet or -f inet6 flag to limit the
data displayed to either IPv4 or IPv6, respectively. For example, the netstat -f
inet6 -rn command displays only IPv6 routing table entries, whereas the default
displays both IPv4 and IPv6 entries.

Monitoring the Network 4–1

Monitoring the Network
4.2 Displaying Network Statistics with the netstat Command

The netstat -s commmand displays statistics for all protocols including IPv6 and
ICMPv6.

$ netstat -s

Note

UNIX flags are case sensitive. When using an uppercase flag you must
enclose it with quotes to get the expected behavior. OpenVMS interface
names are case sensitive. The name of the interface must be enclosed
with quotes.

4.3 Displaying a Datagram’s Route to a Network Host with the
traceroute Command

The traceroute command used with the host argument prints the route that
packets take to both IPv4 and IPv6 hosts.

In the following examples, the backslash (\) and the continuation of output onto
a second line is for display purposes only. In actual output, the information
appears on a single line.

$ traceroute -n host1-v6
traceroute to host1-v6.corp.com (3ffe:1200:4110:3:a00:2bff:feb4:89c5), \
30 hops max, 24 byte packets
1 fe80::a00:2bff:fe2a:1ed3 130.86 ms 119.141 ms 119.14 ms
2 3ffe:1200:4110:1:a00:2bff:fe2d:2b2 126.014 ms 117.308 ms 116.33 ms
3 3ffe:1200:4110:3:a00:2bff:feb4:89c5 122.195 ms 135.882 ms 119.263 ms

$ traceroute 3ffe:1200:4110:3:a00:2bff:feb4:89c5
traceroute to 3ffe:1200:4110:3:a00:2bff:feb4:89c5 \
(3ffe:1200:4110:3:a00:2bff:feb4:89c5), 30 hops max, 24 byte packets
1 fe80::a00:2bff:fe2a:1ed3 (fe80::a00:2bff:fe2a:1ed3) 123.046 ms \
114.258 ms 117.188 ms
2 host2-v6.corp.com (3ffe:1200:4110:1:a00:2bff:fe2d:2b2) 115.234 ms \
117.188 ms 116.287 ms
3 host1-v6.corp.com (3ffe:1200:4110:3:a00:2bff:feb4:89c5) 120.241 ms \
113.398 ms 120.24 ms

When the route has an IPv6 over IPv4 tunnel, traceroute views this as a single
hop. It prints only the IPv6 addresses of the nodes at each end of a tunnel, and
none of the intermediate IPv4 routers between the tunnel source and destination.
If a traceroute command over a tunnel interface fails, run the command again
and specify the tunnel’s IPv4 destination address.

The following command shows a trace across the 6bone network to destination
tw4.es.net. Note that the intermediate routers appear to drop every other
message. The probable reason for this is that the routers rate-limit IPv6 ICMP
error messages to one per second. Rate-limiting ICMP error messages is valid
behavior.

In the following examples, the backslash (\) and the continuation of output onto
a second line is for display purposes only. In actual output, the information
appears on a single line.

4–2 Monitoring the Network

Monitoring the Network
4.3 Displaying a Datagram’s Route to a Network Host with the traceroute Command

$ traceroute tw4.es.net
traceroute to tw4.es.net (3ffe:780:40:1:a00:2bff:febc:e96c), 30 hops max, 24 byte packets
1 gw1.ipv6.pa-x.dec.com (3ffe:1280:1000:1::f842:1428) 83.985 ms * 83.000 ms
2 3ffe:700:20:1::21 (3ffe:700:20:1::21) 108.399 ms * 112.305 ms
3 3ffe:780:40:1:a00:2bff:febc:e96c(3ffe:780:40:1:a00:2bff:febc:e96c) \
124.023 ms 134.766 ms 116.211 ms

The following example shows a trace to destination yogi-gbl using 2000-byte
messages. It also shows the effect of path MTU discovery on traceroute results.

$ traceroute yogi-gbl 2000
traceroute to yogi-gbl (fec0:10:60:0:200:f8ff:fe40:d8e6), 30 hops max, 2024 byte packets
1 a30rtr-gbl (fec0:10:30:0:200:f8ff:fe45:cfb2) 5.859 ms 3.906 ms 3.907 ms
2 fec0:10:20:0:a00:2bff:feb0:972d (fec0:10:20:0:a00:2bff:feb0:972d) \
4.882 ms 3.906 ms 3.906 ms
3 * fec0:10:40:1::a0a:283c (fec0:10:40:1::a0a:283c) 6.836 ms 6.836 ms
4 yogi-gbl (fec0:10:60:0:200:f8ff:fe40:d8e6) 8.789 ms 8.789 ms 7.812 ms

Hops 1 and 2 occur across Ethernet links that have a link MTU of 1500 bytes.
Hop 3 occurs across a configured tunnel with an MTU of 1280 bytes.

The 1500-byte message fragments were transmitted without error until they hit
the tunnel. The first fragment across hop 3 triggered a ‘‘message too big’’ error,
which in turn caused the sender to record a reduced Path MTU for yogi-gbl. The
sender sent all subsequent messages with smaller fragments. The traceroute
display shows that the first probe to the tunnel was dropped but that all others
succeeded.

4.4 IPv6 Process Log Files
The TCPIP$ND6HOSTD and TCPIP$IP6RTRD processes log informational and
severe events in the TCPIP$ND6HOSTD.LOG and TCPIP$IP6RTRD.LOG files,
which are located in the SYS$MANAGER directory.

Currently logging is always enabled.

Monitoring the Network 4–3

5
Solving IPv6 Problems

This chapter contains a diagnostic map to help you solve problems that might
occur when you use the IPv6 network and network services. Use this chapter
along with the appropriate Compaq documentation to solve as many problems as
possible.

5.1 Using the Diagnostic Suggestions
IPv6 network and network service problems can occur for a number of reasons.
This chapter should help you isolate the problem.

After you isolate the problem, the section refers you to other sections for
instructions on how to use the various problem-solving tools and utilities.

You may experience problems that are not documented in this manual when
you use the IPv6 network software with other products. See the getting started
documentation for the other products for additional information.

5.2 Getting Started
Before you start problem solving, ensure that communications hardware is ready
for use. Verify the following:

• The system’s physical connections are properly installed. See the
documentation for your system and communications hardware device.

• Event logging is enabled to monitor network events. See the system
administration manual for information about starting event logging and for
descriptions of event messages.

Also check the product release notes for up-to-date information on known
problems.

You should be familiar with the following terms:

• On-link node

An on-link node is attached to the same subnetwork as your system. This
subnetwork can be a LAN or an IPv6-over-IPv4 configured tunnel. There are
no IPv6 routers between your system and the on-link node.

For a configured tunnel, the on-link node is the node at the destination end of
the tunnel.

Solving IPv6 Problems 5–1

Solving IPv6 Problems
5.2 Getting Started

• Off-link node

An off-link node is not attached to the same subnetwork as your system.
There is at least one IPv6 router between your system and the off-link node.

5.3 Solving IPv6 Network Problems
This section describes the most basic causes of IPv6 network problems. Before
investigating further, make sure you perform the following checks:

1. Make sure the system is on and has completed all startup procedures.

Check the power to your system. See the system management manual for
your system’s startup procedure and any problem solving information.

2. Verify IPv6 installation.

To verify that the IPv6 components are installed, enter the following
command:

$ TCPIP SHO VER/ALL

TCP/IP Services Version 5.1 files should be listed. If the components are not
listed, install TCP/IP Services for OpenVMS Version 5.1 by using the PCSI
command. See the Compaq TCP/IP Services for OpenVMS Installation and
Configuration manual for information about installing the product.

3. Verify IPv6 configuration.

To verify that IPv6 is configured, enter the following command:

$ DIR SYS$MANAGER:TCPIP$INET6_CONFIG.DAT

See Chapter 2 for information about setting up and configuring an IPv6 host
or router.

4. Verify that IPv6 is started.

To verify that IPv6 is started, enter the following commands:

$ SHO LOG TCPIP$IPv6_STARTED
$ ping ::1

If the ‘‘host is unreachable’’ message appears, enable IPv6 by entering the
following command:

$ @SYS$STARTUP:TCPIP$STARTUP

This creates the IPv6 interfaces, brings them up, and starts the IPv6
processes.

See Section 5.4 for a description of IPv6 host problems; see Section 5.5 for a
description of IPv6 router problems.

5.4 Solving IPv6 Host Problems
This section describes possible problems with IPv6 hosts and procedures for
solving them.

5–2 Solving IPv6 Problems

Solving IPv6 Problems
5.4 Solving IPv6 Host Problems

5.4.1 IPv6 Process Is Not Started
Verify that the TCPIP$ND6HOST process is running by issuing the following
command:

$ SHO SYS /PROCESS=TCPIP$ND6HOST

If the process is not running, enable IPv6 with the following command:

$ @SYS$STARTUP:TCPIP$STARTUP.COM

This creates the IPv6 interfaces, brings them up, and starts the
TCPIP$ND6HOST process.

5.4.2 Host Is Unknown
If a remote host is not known, the following message appears:

unknown host

Perform the following steps:

1. Check whether the user is using a valid host name to reach the remote host.

2. Check whether the remote host is in another name domain and whether the
user specified the full domain name.

3. If your site uses the BIND name service for name-to-address translation,
make sure the database contains an entry for the remote host.

If it does not, edit the TCPIP$ETC:TCPIP$IPNODES.DAT file to add the
host.

4. If you are using a BIND server to search the BIND database for name-
to-addres s translation, make sure the resolver is pointing to a valid
BIND server. If your nameserver is on the local host, make sure that the
BIND server is running. See the Compaq TCP/IP Services for OpenVMS
Management guide for additional information about setting up your BIND
environment.

5.4.3 On-Link Node Is Not Reachable
If an on-link node is not reachable, one of the following messages appears:

host is unreachable
network is unreachable
timeout

Verify that an on-link node or router (if one exists) is reachable by using the ping
command. If the command fails or if packets are frequently dropped, perform the
following steps:

1. If the node is attached to a LAN, check the data link counters by using the
LANCP SHO DEVICE device /COUNTERS command. Problems with the
counters and their possible causes are as follows:

• Zero blocks sent or received can indicate a network hardware failure or a
wiring problem.

• High collision rates can indicate an improperly wired network or a node
that is sending excessive message traffic.

• Data overrun and buffer unavailable errors indicate that your system is
misconfigured.

Solving IPv6 Problems 5–3

Solving IPv6 Problems
5.4 Solving IPv6 Host Problems

2. If there is no problem with the data link counters, check the IPv6 and
ICMPv6 counters with the netstat -p ipv6 and netstat -p ipv6 -icmp
commands, respectively. Problems with counters and their possible causes
are:

• Packets discarded because of errors, or errors resulting from ICMP errors,
indicate that another node is generating invalid messages. Other counters
show more specific information.

• Allocation errors can indicate excessive message traffic, a misconfigured
system, or a program that repeatedly allocates memory without freeing
it.

3. Using the ifconfig -a command, verify that IPv6 network interfaces exist,
are up, and have inet6 addresses. If the interfaces do not have inet6
addresses, check the startup file TCPIP$INET6_CONFIG.DAT. Run the
TCPIP$IP6_SETUP utility to correct any errors.

If your interface does not have a global or site-local address, contact your
network administrator to verify that your local router is advertising a prefix
on the link. If there is no local router, you can define a prefix by using the
ifconfig command.

4. Contact the system administrator for the adjacent on-link node. Verify that
the on-link node is up and running, that it is configured correctly for IPv6,
and that the address you are using is enabled on the node’s interface.

5. If IPv4 is configured on both systems, issue the ping command to the on-link
node’s IPv4 address, If the commands succeeds, verify the IPv6 configuration
on both systems. If the command fails, see the appropriate troubleshooting
manuals.

6. Issue the ping command to other nodes on the link to determine whether
the failure is confined to one node or extends to multiple nodes. Partial
connectivity might indicate a faulty network device or cable on the link.

7. If the link is a configured tunnel, do the following:

a. Verify the tunnel source and destination addresses by using the ifconfig
-a command. Contact the administrator for the tunnel destination
node and verify that your source and destination addresses match the
destination and source addresses on that node.

b. Issue the ping command to the tunnel destination address. If the
command fails, see the Compaq TCP/IP Services for OpenVMS
Management guide for more information.

5.4.4 Off-Link Node Is Not Reachable
If an off-link node is not reachable, one of the following message appears:

host is unreachable
network is unreachable
timeout

Verify that an off-link node is reachable by issuing the ping command.

If there is 100% packet loss, perform the following steps:

1. Verify connectivity between your system and an on-link router by using the
ping command.

5–4 Solving IPv6 Problems

Solving IPv6 Problems
5.4 Solving IPv6 Host Problems

If the command fails or shows frequently dropped packets, follow the steps in
Section 5.4.3.

If you do not know the address to a router, issue the following command:

$ ping -"I" interface ff02::2

2. Verify that the interface over which you are sending messages has a global or
site-local unicast address enabled by using the ifconfig -a command.

If it does not, contact the router’s administrator to verify that the router is
advertising a prefix on the link.

If the link is a configured tunnel and the router is not advertising an address
prefix, manually define one for the tunnel by using the TCPIP$IP6_SETUP
utility.

3. Contact the administrator for the remote system to verify that the system
is up and running, that it is configured correctly for IPv6, and that the IPv6
address on its interface is the same as the address you are using.

If the address is different, check your system’s
TCPIP$ETC:TCPIP$IPNODES.DAT file, or have the administrator for
the remote system check the DNS entry.

4. Verify that there is a default route (with U and G flags set) to a router on
the network by issuing the netstat -rf inet6 command. If there is no
default route, contact the router administrator to check whether the router is
advertising itself as a default router.

Also, check other routers to see whether your messages are being directed on
the wrong path.

5. Trace the path to the off-link node by using the traceroute command.

Frequently dropped packets might indicate either network congestion or an
intermittent routing problem. To determine the cause, do the following:

1. Verify connectivity between your system and an on-link router by using the
ping command.

2. Trace the path to the off-link node by using the traceroute command.

5.4.5 Your Node Is Unreachable
If someone reports a problem reaching your node from another node, perform the
following steps:

1. Verify that their node is reachable by issuing the ping command.

If the command fails, follow the steps in Section 5.4.3 for an on-link node or
Section 5.4.4 for an off-link node.

2. If they are using a name from the DNS database, verify that the address for
your node in the DNS database matches one of the addresses configured on
your system’s interfaces.

Use the nslookup -type=AAAA node-name command to retrieve the address
from DNS and the ifconfig -a command to display addresses for your
system.

Solving IPv6 Problems 5–5

Solving IPv6 Problems
5.4 Solving IPv6 Host Problems

3. If they are using an address defined in their local host file
TCPIP$ETC:TCPIP$IPNODES.DAT, use the ifconfig -a command to
compare that address with the addresses configured on your system’s
interfaces.

5.4.6 Connection Is Not Accepted
If a remote node is not configured to accept a connection from your application,
the following message might appear:

connection refused

Verify that TCP/IP Services has been correctly configured on the remote node to
accept connections.

Contact the administrator for the remote node and ask whether the correct
socket-based service definitions are defined in the TCPIP$SERVICES.DAT file.
Check whether the service has IPv6 enabled.

5.4.7 Connection Terminates
If the connection terminates abnormally or a network application appears to
hang, perform the following steps:

1. Verify that there is network connectivity to the remote node by using the ping
command immediately after the failure.

If the ping command fails or shows a high rate of packet loss, follow the steps
in either Section 5.4.3 for on-link nodes, or in Section 5.4.4 for off-link nodes.

2. If your application transfers a large amount of data over the network, verify
whether large or fragmented messages are being handled correctly by using
the ping -s 2000 nodename command.

If the ping command fails, trace the path to the remote node with 1200-byte
packets by using the traceroute nodename 1200 command. All IPv6 links
should support message sizes of at least 1280 bytes. This command might
show the location of the problem in the network.

3. Run the application with different client and server nodes located on different
links in the network.

5.5 Solving IPv6 Router Problems
This section describes problems with IPv6 routers.

5.5.1 IPv6 Process Is Not Running
Verify that the TCPIP$IP6RTRD process is running by issuing the following
command:

$ SHO SYS /PROCESS=TCPIP$IP6RTRD

If the process is not running, start IPv6 with the following command:

$ @SYS$STARTUP:TCPIP$STARTUP.COM

This creates the IPv6 interfaces, brings them up, and starts the TCPIP$IP6RTRD
process.

5–6 Solving IPv6 Problems

Solving IPv6 Problems
5.5 Solving IPv6 Router Problems

5.5.2 Host Is Unknown
If a remote host is not known, the following message appears:

unknown host

Perform the following steps:

1. Check whether the user is using a valid host name to reach the remote host.

2. Check if the remote host is in another name domain and whether the user
specified the full domain name.

3. If your site uses the BIND name service for name-to-address translation,
make sure the database contains an entry for the remote host.

If it does not, edit TCPIP$ETC:TCPIP$IPNODES.DAT file to add the host.

4. If you are using a BIND server to search the BIND database for name-to-
address translation, make sure the resolver is pointing to a valid BIND server.
If your name server is on the local host, make sure that the BIND server is
running. See the Compaq TCP/IP Services for OpenVMS Management guide
for additional information about setting up your BIND environment.

5.5.3 On-Link Node Is Unreachable
If an on-link node is not reachable, one of the following messages can appear:

host is unreachable
network is unreachable
timeout

Verify that an on-link node or router is reachable by using the ping command. If
the command fails or if packets are frequently dropped, complete the following
steps:

1. If the node is attached to a LAN, check the data link counters by using the
LANCP SHO DEVICE device /COUNTERS command. Problems with the
counters and their possible causes are as follows:

• Zero blocks sent or received can indicate a network hardware failure or a
wiring problem.

• High collision rates can indicate an improperly wired network or a node
that is sending excessive message traffic.

• Data overrun and buffer unavailable errors indicate your system is
misconfigured.

2. If the data link counters are okay, check the IPv6 and ICMPv6 counters with
the netstat -p ipv6 and netstat -p ipv6 -icmp commands, respectively.
Problems with the counters and their possible causes are as follows:

• Packets discarded because of errors, or errors resulting from ICMP errors,
indicate that another node is generating invalid messages. Other counters
show more specific information.

• Allocation errors can indicate excessive message traffic, a misconfigured
system, or a program that repeatedly allocates memory without freeing
it.

Solving IPv6 Problems 5–7

Solving IPv6 Problems
5.5 Solving IPv6 Router Problems

3. Verify that IPv6 network interfaces exist, are up, and have inet6 addresses
by using the ifconfig -a command. If they do not have inet6 addresses,
check the configuration file TCPIP$INET6_CONFIG.DAT. Run the
TCPIP$IP6_SETUP utility to correct any errors.

4. Contact the system administrator for the adjacent on-link node and verify
that the on-link node is up and running, that it is configured correctly for
IPv6, and that the address you are using is enabled on the node’s interface.

5. If IPv4 is configured on both systems, issue the ping command to the on-link
node’s IPv4 address. If the command succeeds, verify the IPv6 configuration
on both systems. If the command fails, see the appropriate troubleshooting
manuals.

6. Issue the ping command to other nodes on the link to determine whether
the failure is confined to one node or whether it extends to multiple nodes.
Partial connectivity might indicate a faulty network device or cable on the
link.

7. If the link is a configured tunnel, do the following:

a. Verify the tunnel source and destination addresses by using the ifconfig
-a command. Contact the administrator for the tunnel destination
node and verify that your source and destination addresses match the
destination and source addresses on that node.

b. Issue the ping command to the tunnel destination address. If the
command fails, see the Compaq TCP/IP Services for OpenVMS
Management guide for more information.

5.5.4 Off-Link Node Is Unreachable
If an off-link node is not reachable, the following messages appear:

host is unreachable
network is unreachable
timeout

Verify that an off-link node is reachable by issuing the ping command.

If there is 100% packet loss, perform the following steps:

1. Verify connectivity between your system and an on-link router by using the
ping command.

If the command fails or shows frequently dropped packets, follow the steps in
Section 5.5.3.

2. Verify that the interface over which you are sending messages has a global or
site-local unicast address enabled by using the ifconfig -a command.

If it does not, check the prefixes defined in the
SYS$SYSTEM:TCPIP$IP6RTRD.CONF file. Run the TCPIP$IP6_SETUP
utility to correct any errors.

3. Contact the administrator for the remote system to verify that the system
is up and running, that it is configured correctly for IPv6, and that the IPv6
address on its interface is the same as the address you are using.

If the address is different, check your system’s
TCPIP$ETC:TCPIP$IPNODES.DAT file, or have the remote system
administrator check the DNS entry.

5–8 Solving IPv6 Problems

Solving IPv6 Problems
5.5 Solving IPv6 Router Problems

4. Verify that there is a default route (with U and G flags set) to a router on the
network by issuing the netstat -rf inet6 command.

If the route is missing or incorrect, check the routes and the address prefixes
in the SYS$SYSTEM:TCPIP$IP6RTRD.CONF file.

If your site uses RIPng, verify that RIP is enabled in the
SYS$SYSTEM:TCPIP$IP6RTRD.CONF file. If it is, contact the administrator
of the next router to verify that RIP is enabled.

5. Trace the path to the off-link node by using the traceroute command.

Frequently dropped packets indicate either network congestion or an intermittent
routing problem.

To determine the cause, do the following:

1. Verify connectivity between your system and an on-link router by using the
ping command.

2. Trace the path to the off-link node by using the traceroute command.

5.5.5 On-Link Node Addresses Are Not Configured
IPv6 hosts generate their global and site-local unicast addresses automatically by
using address prefixes provided by a router on the link. If an on-link node cannot
autoconfigure its addresses, perform the following steps:

1. Verify that the host is reachable from your router by using the ping command
and specifying the host’s link-local address. If the command fails or shows a
high rate of packet loss, follow the steps in Section 5.5.3.

2. Edit the SYS$SYSTEM:TCPIP$IP6RTRD.CONF file and verify that the
router is configured to advertise the correct prefixes and that the timers are
reasonable. See Chapter 2 and Appendix B for more information.

5.5.6 Router Does Not Forward Messages
If another network user reports that message transmission appears to be failing
at your router, perform the following steps:

1. Obtain the source and destination addresses of the message that your router
is not forwarding. Then verify that your router can reach each node by using
the ping command.

If the command fails or shows a high rate of packet loss, follow the steps in
Section 5.5.3 for on-link nodes, or in Section 5.5.4 for off-link nodes.

2. If your router is running the RIPng protocol, verify that the IPv6 router
process is running by issuing the following command:

$ SHO SYS /PROCESS=TCPIP$IP6RTRD

If the process is running, edit the SYS$SYSTEM:TCPIP$IP6RTRD.CONF file
and verify that the RIPng protocol is enabled on each IPv6 link. If it is not,
your node may not be propagating routes correctly.

3. Make sure that you are not using manual routes on some interfaces
and RIPng routes on other interfaces. Manual routes defined in the
TCPIP$ROUTE.DAT file do not get propagated to other routers with RIPng.

Solving IPv6 Problems 5–9

Solving IPv6 Problems
5.5 Solving IPv6 Router Problems

5.5.7 Your Node Is Unreachable
If someone reports a problem reaching your node from another node, perform the
following steps:

1. Verify that their node is reachable by issuing the ping command.

If the command fails, follow the steps in Section 5.5.3 for an on-link node, or
Section 5.5.4 for an off-link nodes.

2. If they are using a name from the DNS database, verify that the address for
your node in the DNS database matches one of the addresses configured on
your system’s interfaces.

Use the nslookup -type=AAAA node-name command to retrieve the address
from DNS; use the ifconfig -a command to display addresses for your
system.

3. If they are using an address defined in their local host file, compare that
address with the addresses configured on your system’s interfaces by using
the ifconfig -a command.

5.5.8 Connection Is Not Accepted
If a remote node is not configured to accept a connection from your application,
the following message might appear:

connection refused

Verify that TCP/IP Services has been correctly configured on the remote node to
accept connections.

Contact the administrator for the remote node and ask whether the correct
socket-based service definitions are defined in the TCPIP$SERVICES.DAT file.
Check whether the service has IPv6 enabled.

5.5.9 Connection Terminates
If the connection terminates abnormally or if a network application appears to
hang, perform the following steps:

1. Verify that there is network connectivity to the remote node by using the ping
command immediately after the failure.

If the ping command fails or shows a high rate of packet loss, follow the steps
in Section 5.5.3 for an on-link node, or in Section 5.5.4 for an off-link node.

2. If your application transfers a large amount of data over the network, verify
that large or fragmented messages are being handled correctly by using the
ping -s 2000 nodename command.

If the ping command fails, trace the path to the remote node with 1200-byte
packets by using the traceroute nodename 1200 command. All IPv6 links
should support message sizes of at least 1280 bytes. This command might
show the location of the problem in the network.

3. Run the application with different client and server nodes located on different
links in the network.

5–10 Solving IPv6 Problems

6
Application Interface to Sockets

The TCP/IP Services for OpenVMS programming interface supports the Berkeley
Software Distribution (BSD) socket programming interface. It also supports the
basic sockets interface extensions for Internet Protocol Version 6 (IPv6) as defined
in RFC 2553. The basic syntax of socket functions remains the same. Existing
IPv4 applications will continue to operate as before, and IPv6 applications can
interoperate with IPv4 applications.

TCP/IP Services for OpenVMS provides Internet domain support for the address
family AF_INET and AF_INET6.

This chapter describes the following aspects of the API:

• Socket interface

• Interface identification

• IPv6 multicast datagrams

• Socket options

• Library functions

• Guidelines for compiling and linking

6.1 Socket Interface
The IPv6 socket interface incorporates the following changes:

• New address family: AF_INET6

• New protocol family: PF_INET6

• New address structure: in6_addr

struct in6_addr {
uint8_t s6_addr[16]:

}

The address is stored in network byte order as an array of sixteen 8-bit
elements.

• Revised socket address structure: sockaddr_in6

If the _SOCKADDR_LEN symbol is defined in an application, the following
BSD Version 4.4 structure is used:

Application Interface to Sockets 6–1

Application Interface to Sockets
6.1 Socket Interface

struct sockaddr_in6 {
uint8_t sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

};

Note

BSD Version 4.3 will be supported in a subsequent release.

• New wildcard address, defined in network byte order. The address has the
following forms:

A global variable, in6addr_any, that is an in6_addr structure.

A symbolic constant, IN6ADDR_ANY_INIT, that can be used to initialize
an in6_addr structure only when it is declared.

• New loopback address, defined in network byte order. The address has the
following forms:

A global variable, in6addr_loopback, that is an in6_addr structure.

A symbolic constant, IN6ADDR_LOOPBACK_INIT, that can be used to
initialize an in6_addr structure only when it is declared.

The basic syntax of socket functions remains the same. Existing IPv4 applications
will continue to operate as before. IPv6 applications can interoperate with IPv4
applications.

6.2 Interface Identification
To identify the interface on which a datagram is received, on which a datagram
is to be sent, and on which a multicast group is joined, the API uses a small,
positive integer called an interface index. The kernel assigns this integer to an
interface when the interface is initialized.

The API defines the following new functions:

Function Description

if_nametoindex Maps an interface name to its corresponding index.

if_indextoname Maps an interface index to its corresponding name.

if_nameindex Returns an array of all interface names and indexes.

if_freenameindex Frees dynamic memory allocated by if_nameindex to
the array of interface names and indexes.

6.2.1 if_nametoindex Function
The if_nametoindex function has the following syntax:

#include <net/if.h>

unsigned int if_nametoindex(
const char *ifname);

6–2 Application Interface to Sockets

Application Interface to Sockets
6.2 Interface Identification

If the interface does not exist, the function returns 0 and sets errno to ENXIO.
If a system error occurs, the function returns 0 and sets errno to an appropriate
value.

6.2.2 if_indextoname Function
The if_indextoname function has the following syntax:

#include <net/if.h>

char *if_indextoname(
unsigned int ifindex,
char *ifname);

The ifname argument points to a buffer that is IFNAMSIZ bytes in length
(IFNAMSIZ is defined in TCPIP$EXAMPLES:IF.H). If an interface name is
found, it is returned in the buffer. If no interface name corresponds to the
specified index, the function returns NULL and sets errno to ENXIO. If a system
error occurs, the function returns NULL and sets errno to an appropriate value.

6.2.3 if_nameindex Function
The if_nameindex function has the following syntax:

#include <net/if.h>
struct if_nameindex *if_nameindex(void);

The following if_nameindex structure must also be defined (by including
(TCPIP$EXAMPLES:IF.H) prior to the call to if_nameindex:

struct if_nameindex {
unsigned int if_index;
char *if_name;

};

The if_nameindex function dynamically allocates memory for an array of
if_nameindex structures, one structure for each interface. A structure with
an if_index value of 0 and a NULL if_name value indicates the end of the
array. If an error occurs, the function returns a NULL pointer and sets errno
to an appropriate value. To free the memory allocated by this function, use the
if_freenameindex function.

6.2.4 if_freenameindex Function
The if_freenameindex function has the following syntax:

#include <net/if.h>

void if_freenameindex(
struct if_nameindex *ptr);

The if_freenameindex function frees dynamic memory that was allocated by the
if_nameindex function. The argument to this function is the pointer that was
returned by the if_nameindex function.

Application Interface to Sockets 6–3

Application Interface to Sockets
6.3 IPv6 Multicast Datagrams

6.3 IPv6 Multicast Datagrams
6.3.1 Sending IPv6 Multicast Datagrams

To send IPv6 multicast datagrams, an application indicates the multicast group
to send to by specifying an IPv6 multicast address in a sendto system call. The
system maps the specified IPv6 destination address to the appropriate Ethernet
or FDDI multicast address prior to transmitting the datagram.

An application can explicitly control multicast options with arguments to the
setsockopt system call. The following options can be set by an application using
the setsockopt system call:

• Hop limit (IPV6_MULTICAST_HOPS)

• Multicast interface (IPV6_MULTICAST_IF)

• Disabling loopback of local delivery (IPV6_MULTICAST_LOOP)

Note

The examples here illustrate how to use the setsockopt options that
apply to IPv6 multicast datagrams only.

The IPV6_MULTICAST_HOPS option to the setsockopt system call allows an
application to specify a value between 0 and 255 for the hop limit field.

Multicast datagrams with a hop limit value of 0 restrict distribution of the
multicast datagram to applications running on the local host. Multicast
datagrams with a hop limit value of 1 are forwarded only to hosts on the
local link. If a multicast datagram has a hop limit value greater than 1 and a
multicast router is attached to the sending host’s network, multicast datagrams
can be forwarded beyond the local link. Multicast routers forward the datagram
to known networks that have hosts belonging to the specified multicast group.
The hop limit value is decremented by each multicast router in the path. When
the hop limit value is decremented to 0, the datagram is not forwarded further.

The following example shows how to use the IPV6_MULTICAST_HOPS option to
the setsockopt system call:

u_char hops;
hops=2;

if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops,
sizeof(hops)) < 0)
perror("setsockopt: IPV6_MULTICAST_HOPS error");

A datagram addressed to an IPv6 multicast address is transmitted from the
default network interface unless the application specifies that an alternate
network interface is associated with the socket. The default interface is
determined by the interface associated with the default route in the kernel
routing table or by the interface associated with an explicit route, if one exists.
Using the IPV6_MULTICAST_IF option to the setsockopt system call, an
application can specify a network interface other than that specified by the route
in the kernel routing table.

6–4 Application Interface to Sockets

Application Interface to Sockets
6.3 IPv6 Multicast Datagrams

The following example shows how to use the IPV6_MULTICAST_IF option to the
setsockopt system call to specify an interface other than the default:

u_int if_index = 1;
.
.
.
if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_IF, &if_index,

sizeof(if_index)) < 0)
perror ("setsockopt: IPV6_MULTICAST_IF error");

else
printf ("new interface set for sending multicast datagrams\n");

The if_index parameter specifies the interface index of the desired interface, or
specifies 0 to select a default interface. You can use the if_nametoindex routine
to find the interface index.

If a multicast datagram is sent to a group that has the sending node is a member,
a copy of the datagram is, by default, looped back by the IP layer for local
delivery. The IPV6_MULTICAST_LOOP option to the setsockopt system call
allows an application to disable this loopback delivery.

The following example shows how to use the IPV6_MULTICAST_LOOP option to
the setsockopt system call:

u_char loop=0;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop,

sizeof(loop)) < 0)
perror("setsockopt: IPV6_MULTICAST_LOOP error");

If the value of loop is 0, loopback is disabled; if the value of loop is 1, loopback
is enabled. For performance reasons, you should disable the default, unless
applications on the same host must receive copies of the datagrams.

6.3.2 Receiving IPv6 Multicast Datagrams
Before a node can receive IPv6 multicast datagrams destined for a particular
multicast group other than the All Nodes group, an application must direct the
node to become a member of that multicast group.

This section describes how an application can direct a node to add itself to and
remove itself from a multicast group.

An application can direct the node it is running on to join a multicast group by
using the IPV6_JOIN_GROUP option to the setsockopt system call:

struct ipv6_mreq imr6;
.
.
.
imr6.ipv6mr_interface = if_index;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP,

(char *)&imr6, sizeof(imr6)) < 0)
perror("setsockopt: IPV6_JOIN_GROUP error");

The imr6 parameter has the following structure:

structipv6_mreq {
struct in6_addr ipv6mr_multiaddr; /* IP multicast address of

group */
unsigned int ipv6mr_interface; /* local interface index*/
};

Application Interface to Sockets 6–5

Application Interface to Sockets
6.3 IPv6 Multicast Datagrams

Each multicast group membership is associated with a particular interface. It
is possible to join the same group on multiple interfaces. The ipv6mr_interface
variable can be specified with a value of 0, which allows an application to choose
the default multicast interface. Alternatively, specifying one of the host’s local
interfaces allows an application to select a particular multicast-capable interface.
The maximum number of memberships that can be added on a single socket
is subject to the IPV6_MAX_MEMBERSHIPS value, which is defined in the
<netinet/in.h> header file.

To drop membership from a particular multicast group, use the IPV6_LEAVE_
GROUP option to the setsockopt system call:

struct ipv6_mreq imr6;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_LEAVE_GROUP, &imr6,

sizeof(imr6)) < 0)
perror("setsockopt: IPV6_LEAVE_GROUP error");

The imr6 parameter contains the same structure values used for adding
membership.

If multiple sockets request that a node join a particular multicast group, the node
remains a member of that multicast group until the last of those sockets is closed.

To receive multicast datagrams sent to a specific UDP port, the receiving socket
must have bound to that port using the bind system call. More than one process
can receive UDP datagrams destined for the same port if the bind system call is
preceded by a setsockopt system call that specifies the SO_REUSEPORT option.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by the
protocol type of the destination.

6.4 Socket Options
To support IPv6, the setsockopt and getsockopt functions recognize a new
IPPROTO_IPV6 level.

In addition, the setsockopt function defines the following new options:

Option Function

IPV6_UNICAST_HOPS Sets the hop limit for all subsequent unicast packets
sent on a socket.

You can also use this option with the getsockopt
function to determine the current hop limit for a
socket.

IPV6_MULTICAST_IF Sets the interface to use for outgoing multicast
packets.

IPV6_MULTICAST_HOPS Sets the hop limit for outgoing multicast packets.

IPV6_MULTICAST_LOOP Controls whether to deliver outgoing multicast packets
back to the local application.

IPV6_JOIN_GROUP Joins a multicast group on the specified interface.

IPV6_LEAVE_GROUP Leaves a multicast group on the specified interface.

See RFC 2553 for more information on these socket options.

6–6 Application Interface to Sockets

Application Interface to Sockets
6.5 Library Functions

6.5 Library Functions
The following are the changes to the library functions to accommodate the IPv6
enhancements:

• Node name to address translation

• Address to node name translation

• Address conversion functions

• Address-testing macros

6.5.1 Node Name to Address Translation Functions
The following resolver options are available for node name to address translation:

Option Function

gethostbyname Existing function that returns IPv4 addresses.

getaddrinfo New protocol-independent function for mapping names
to addresses.

freeaddrinfo New function that returns addrinfo structures and
dynamic storage to the system.

The following sections describe these changes in detail.

6.5.1.1 getaddrinfo Function
The getaddrinfo function has the following syntax:

#include <netdb.h>

int getaddrinfo(
const char *nodename,
const char *servname,
const struct addrinfo *hints,
struct addrinfo **res);

Parameters

• nodename

Points to a network node name, alias, or numeric host address (for example,
an IPv4 dotted-decimal address or an IPv6 hexadecimal address). This is a
null-terminated string or NULL. NULL means the service location is local to
the caller. The nodename and servname parameters cannot both be NULL.

• servname

Points to a network service name or port number. This is a null-terminated
string or NULL; NULL returns network-level addresses for the specified
nodename). The nodename and servname parameters cannot both be
NULL.

• hints

Points to an addrinfo structure that contains information about the type of
socket the caller supports. The <netdb.h> header file defines the addrinfo
structure. This is an optional parameter.

Application Interface to Sockets 6–7

Application Interface to Sockets
6.5 Library Functions

• res

Points to a linked list of one or more addrinfo structures.

Description

The getaddrinfo() routine takes a service location (nodename) or a service
name (servname), or both, and returns a pointer to a linked list of one or more
structures of type addrinfo. Its members specify data obtained from either the
local hosts database TCPIP$ETC:IPNODES.DAT file, local TCPIP$HOSTS.DAT
file, or one of the files distributed by DNS/BIND.

The <netdb.h> header file defines the addrinfo structure.

If you specify the hints parameter, all addrinfo structure members other than
the following members must be zero or a NULL pointer:

• ai_flags

Controls the processing behavior of getaddrinfo. See Table 6–1 for a
complete description of the flags.

• ai_family

Specifies to return addresses for use with a specific protocol family.

If you specify a value of AF_UNSPEC, the routine returns addresses for
any protocol family that can be used with nodename or servname.

If the value is not AF_UNSPEC and ai_protocol is not zero, the routine
returns addresses for use only with the specified protocol family and
protocol.

If the application handles only IPv4, set this member of the hints
structure to PF_INET.

If ai_family is set to PF_INET6, the function looks only in the
TCPIP$ETC:IPNODES.DAT file and the lookup fails in the BIND
database.

• ai_socktype

Specifies a socket type for the given service. If you specify a value of 0, you
will accept any socket type. This resolves the service name for all socket
types and returns all successful results.

• ai_protocol

Specifies a network protocol. If you specify a value of 0, you will accept any
protocol. If the application handles only TCP, set this member to IPPROTO_
TCP.

If the hints parameter is a NULL pointer, this is identical to passing an addrinfo
structure that has been initialized to zero, and the the ai_family member set to
AF_UNSPEC.

Table 6–1 describes the ai_flags member values.

6–8 Application Interface to Sockets

Application Interface to Sockets
6.5 Library Functions

Table 6–1 ai_flags Member Values

Flag Value Description

AI_V4MAPPED If af value is AF_NET: If af value is AF_INET6:

Ignored. Searches for AAAA
records.

The lookup sequence
is LOCAL host database,
TCPIP$ETC:IPNODES.DAT,
BIND database.

If AAAA records found,
returns IPv6 records.

If no AAAA records found,
searches for A records.

If A records found,
returns IPv4-mapped
IPv6 addresses.

If no A records found,
returns a NULL pointer.

AI_ALL | AI_
V4MAPPED

If af value is AF_NET: If af value is AF_INET6:

Ignored. Searches for AAAA
records.

The lookup sequence
is LOCAL host database,
TCPIP$ETC:IPNODES.DAT,
BIND database.

If AAAA records found,
returns IPv6 records.

If no AAAA records found,
searches for A records.

If A records found,
returns IPv4-mapped
IPv6 addresses.

If no A records found,
returns a NULL pointer.

AI_CANONNAME If the nodename parameter is not NULL, the function
searches for the specified node’s canonical name.

Upon successful completion, the ai_canonname member of
the first addrinfo structure in the linked list points to a
null-terminated string containing the canonical name of the
specified node name.

If the canonical name is not available, the ai_canonname
member refers to the nodename parameter or to a string with
the same contents.

The ai_flags field contents are undefined.

AI_NUMERICHOST A non-NULL node name string must be a numeric host address
string.

Resolution of the service name is not performed.

(continued on next page)

Application Interface to Sockets 6–9

Application Interface to Sockets
6.5 Library Functions

Table 6–1 (Cont.) ai_flags Member Values

Flag Value Description

AI_NUMERICSERV A non-NULL service name string must be a numeric port
string.

Resolution of the service name is not performed.

AI_PASSIVE Returns a socket address structure that your application can
use in a call to bind().

If the nodename parameter is a NULL pointer, the IP address
portion of the socket address structure is set to INADDR_ANY
(for an IPv4 address) or IN6ADDR_ANY_INIT (for an IPv6
address).

If not set, returns a socket address structure that your
application can use to call connect() (for a connection-
oriented protocol) or either connect(), sendto(), or
sendmsg() (for a connectionless protocol). If the nodename
parameter is a NULL pointer, the IP address portion of the
socket address structure is set to the loopback address.

You can use the flags in any combination to achieve finer control of the translation
process. The AI_ADDRCONFIG flag is typically used in combination with other
flags to modify the search based on the source address or addresses configured on
the system. The following table describes how the AI_ADDRCONFIG flags works
by itself.

Flag Value If af Value is AF_NET If af Value is AF_INET6

AI_ADDRCONFIG If an IPv4 source address is
configured, searches for A
records.

If an IPv6 source address
is configured, searches for
AAAA records.

Most applications will want to use the combination of the AI_ADDRCONFIG and
AI_V4MAPPED flags to control their search. To simplify this for the programmer,
the AI_DEFAULT symbol, which is a logical OR of AI_ADDRCONFIG and AI_
V4MAPPED, is defined. The following table describes how AI_DEFAULT directs
the search.

Flag Value If af Value is AF_NET If af Value is AF_INET6

AI_DEFAULT Searches for A records only if an
IPv4 source address is configured
on the system. If found, returns
IPv4 addresses. If not, returns a
NULL pointer.

Searches for AAAA records
only if an IPv6 source
address is configured on
the system. If found,
returns IPv6 addresses.
If not and if an IPv4
address is configured
on the system, searches
for A records. If found,
returns IPv4-mapped IPv6
addresses. If not, returns
a NULL pointer.

These flags are defined in <netdb.h>.

6–10 Application Interface to Sockets

Application Interface to Sockets
6.5 Library Functions

addrinfo Structure Processing

Upon successful return, getaddrinfo returns a pointer to a linked list of one
or more addrinfo structures. The application can process each addrinfo
structure in the list by following the ai_next pointer until a NULL pointer is
encountered. In each returned addrinfo structure, the ai_family, ai_socktype,
and ai_protocol members are the corresponding arguments for a call to the
socket() function. The ai_addr member points to a filled-in socket address
structure whose length is specified by the ai_addrlen member.

Return values

Upon successful completion, the getaddrinfo() function returns a 0 (zero); upon
failure, it returns a nonzero value.

6.5.2 Address to Node Name Translation Functions
The following functions are available for address to node name translation:

Option Function

gethostbyaddr Existing function that returns a node name for an
IPv4 address.

getnameinfo New protocol-independent function for mapping
addresses to names.

freeaddrinfo New function that returns addrinfo structures and
dynamic storage to the system.

The following sections describe these changes.

6.5.2.1 getnameinfo Function
The getnameinfo function has the following syntax:

int getnameinfo(
const struct sockaddr *sa,
socklen_t salen,
char *host,
size_t hostlen,
char **serv,
size_t servlen,
int flags);

Parameters

• sa

Points either to a sockaddr_in structure (for IPv4) or to a sockaddr_in6
structure (for IPv6) that holds the IP address and port number.

• salen

Specifies the length of either the sockaddr_in structure or the sockaddr_in6
structure.

• node

Points to a buffer in which to receive the null-terminated network node name
or alias corresponding to the address contained in the sa. A NULL pointer
instructs the routine not to return a node name. The node parameter and
serv parameter cannot both be zero.

Application Interface to Sockets 6–11

Application Interface to Sockets
6.5 Library Functions

• nodelen

Specifies the length of the node buffer. A value of zero instructs the routine
not to return a node name.

• serv

Points to a buffer in which to receive the null-terminated network service
name associated with the port number contained in sa. A NULL pointer
instructs the routine not to return a service name. The node parameter and
serv parameter cannot both be zero.

• servlen

Specifies the length of the serv buffer. A value of zero instructs the routine
not to return a service name.

• flags

Specifies changes to the routine’s default actions. By default, the routine
searches for the fully qualified domain name of the node in the host’s database
and returns it. See Table 6–2 for a list of flag bits and their meanings.

Description

The getnameinfo() routine looks up an IP address and port number in a
sockaddr structure specified by sa and returns node name and service name text
strings in the buffers pointed to by the node and serv parameters, respectively.

If the node name is not found, the routine returns the numeric form of the node
address, regardless of the value of the flags parameter. If the service’s name is
not found, the routine returns the numeric form of the service’s address (port
number) regardless of the value of the flags parameter.

The application must provide buffers large enough to hold the fully qualified
domain name and the service name, including the terminating null characters.

Flag bits

Table 6–2 describes the flag bits and, if set, their meanings.

Table 6–2 Flag Bits

Flag Value Description

NI_DGRAM Specifies that the service is a datagram service
(SOCK_DGRAM). The default assumes a stream
service (SOCK_STREAM). This is required for the few
ports (512-514) that have different services for UDP
and TCP.

NI_NAMEREQD Returns an error if the host name cannot be located in
the host’s database.

NI_NOFQDN Searches the host’s database and returns the node
name portion of the fully qualified domain name for
local hosts.

NI_NUMERICHOST Returns the numeric form of the host’s address
instead of its name. Resolution of the host name is
not performed.

(continued on next page)

6–12 Application Interface to Sockets

Application Interface to Sockets
6.5 Library Functions

Table 6–2 (Cont.) Flag Bits

Flag Value Description

NI_NUMERICSERV Returns the numeric form (port number) of the service
address instead of its name. Resolution of the host
name is not performed.

The two NI_NUMERIC* flags are required to support the -n flag that many
commands provide. All flags are defined in <netdb.h> header file.

Return Values

Upon successful completion, the getnameinfo() function returns 0 (zero); upon
failure, it returns a nonzero value.

6.5.2.2 freeaddrinfo Function
This new function frees system resources used by an address information
structure.

The freeaddrinfo() routine frees one or more addrinfo structures and any
dynamic storage associated with the structures. The process continues until the
routine encounters a NULL ai_next pointer.

The freeaddrinfo function has the following syntax:

#include <netdb.h>

void freeaddrinfo(
struct addrinfo *ai);

The ai parameter is a pointer to the addrinfo structure to be freed.

The <netdb.h> header file defines the addrinfo structure.

6.5.3 Address Conversion Functions
The following address conversion functions are new. They convert both IPv4 and
IPv6 addresses.

Option Function

inet_pton Converts an address in its standard text presentation
form to its numeric binary form, in network byte order.

inet_ntop Converts a numeric address to a text string suitable
for presentation.

6.5.3.1 inet_pton Function
This function has the following syntax:

int inet_pton(
int af,
const char *src,
void *dst);

Parameters

• af

Specifies the address family. Valid values are AF_INET for an IPv4 address
and AF_INET6 for an IPv6 address.

Application Interface to Sockets 6–13

Application Interface to Sockets
6.5 Library Functions

• src

Points to the address text string to be converted.

• dst

Points to a buffer that is to contain the numeric address.

Description

The inet_pton() function converts a text string to a numeric value in Internet
network byte order.

• If the af parameter is AF_INET, the function accepts a string in the standard
IPv4 dotted-decimal format:

ddd.ddd.ddd.ddd

In this format, ddd is a one- to three-digit decimal number between 0 and
255.

• If the af parameter is AF_INET6, the function accepts a string in the
following format:

x:x:x:x:x:x:x:x

In this format, x is the hexadecimal value of a 16-bit piece of the address.

IPv6 addresses can contain long strings of zero (0) bits. To make it easier to
write these addresses, you can use double-colon characters (::) one time in an
address to represent 1 or more 16-bit groups of zeros.

• For mixed IPv4 and IPv6 environments, the following format is also accepted:

x:x:x:x:x:x:ddd.ddd.ddd.ddd

In this format, x is the hexadecimal value of a 16-bit piece of the address, and
ddd is a one- to three-digit decimal value between 0 and 255 that represents
the IPv4 address. See RFC 2373 for more information about IPv6 addressing
formats.

The calling application is responsible for ensuring that the buffer referred to
by the dst parameter is large enough to hold the numeric address. AF_INET
addresses require 4 bytes and AF_INET6 addresses require 16 bytes.

Return values

Upon successful completion, the inet_pton() function returns a 1. If the input
string is neither a valid IPv4 dotted-decimal string nor a valid IPv6 address
string, the function returns a 0. If any other error occurs, the function returns a
-1.

Errors

If the inet_pton() routine call fails, errno is set to the following value:

EAFNOSUPPORT The address family specified in the af parameter is
unknown.

6–14 Application Interface to Sockets

Application Interface to Sockets
6.5 Library Functions

6.5.3.2 inet_ntop Function
This function has the following syntax:

const char *inet_ntop(
int af,
const void *src,
char *dst,
size_t size);

Parameters

• af

Specifies the address family. Valid values are AF_INET for an IPv4 address
and AF_INET6 for an IPv6 address.

• src

Points to a buffer that contains the numeric Internet address.

• dst

Points to a buffer that is to contain the text string.

• size

Specifies the size of the buffer pointed to by the dst parameter. For IPv4
addresses, the minimum buffer size is 16 octets; for IPv6 addresses, the
minimum buffer size is 46 octets. The <netinet/in.h> header file defines the
INET_ADDRSTRLEN and INET6_ADDRSTRLEN constants, respectively, for
these values.

Description

The inet_ntop() function converts a numeric Internet address value to a text
string.

Return values

Upon successful conversion, the inet_ntop() function returns a pointer to the
buffer containing the text string. If the function fails, it returns a pointer to the
buffer containing NULL.

6.5.4 Address-Testing Macros
Table 6–3 lists the currently defined address-testing macros and the return value
for a valid test. To use these macros, include the following file in your application:

#include <net/in.h>

Table 6–3 Summary of Address-Testing Macros

Macro Return

IN6_IS_ADDR_UNSPECIFIED True, if specified type.

IN6_IS_ADDR_LOOPBACK True, if specified type.

IN6_IS_ADDR_MULTICAST True, if specified type.

IN6_IS_ADDR_LINKLOCAL True, if specified type.

IN6_IS_ADDR_SITELOCAL True, if specified type.

(continued on next page)

Application Interface to Sockets 6–15

Application Interface to Sockets
6.5 Library Functions

Table 6–3 (Cont.) Summary of Address-Testing Macros

Macro Return

IN6_IS_ADDR_V4MAPPED True, if specified type.

IN6_IS_ADDR_V4COMPAT True, if specified type.

IN6_IS_ADDR_MC_NODELOCAL True, if specified scope.

IN6_IS_ADDR_MC_LINKLOCAL True, if specified scope.

IN6_IS_ADDR_MC_SITELOCAL True, if specified scope.

IN6_IS_ADDR_MC_ORGLOCAL True, if specified scope.

IN6_IS_ADDR_MC_GLOBAL True, if specified scope.

IN6_ARE_ADDR_EQUAL True, if addresses are equal.

6.6 Guidelines for Compiling and Linking IPv6 Applications
To compile an IPv6 application, you need to set up the following environment:

$ DEFINE DECC$SYSTEM_INCLUDE TCPIP$EXAMPLES:
$ DEFINE ARPA TCPIP$EXAMPLES:
$ DEFINE NET TCPIP$EXAMPLES:
$ DEFINE NETINET TCPIP$EXAMPLES:
$ DEFINE SYS TCPIP$EXAMPLES:

This is a temporary measure and is required until Compaq C has all the IPv6
include files.

The library functions described in this chapter are included in the Compaq
TCP/IP Services for OpenVMS Version 5.1 kit.

6–16 Application Interface to Sockets

7
Porting Applications

This chapter describes the changes you must make in your application code to
operate in an IPv6 networking environment.

• Name changes

• Structure changes

• Other changes

You can also use this information as guidelines for creating new IPv6-ready
applications.

See RFC 2553, Basic Socket Interface Extensions for IPv6, for complete
information on the changes to the BSD socket applications programming
interface (API). The basic syntax of socket functions remains the same. Existing
IPv4 applications will continue to operate as before, and IPv6 applications can
interoperate with IPv4 applications.

7.1 Using AF_INET6 Sockets
At present, applications use AF_INET sockets for IPv4 communications.
Figure 7–1 shows a sample sequence of events for an application that uses an
AF_INET socket to send IPv4 packets.

Porting Applications 7–1

Porting Applications
7.1 Using AF_INET6 Sockets

Figure 7–1 Using AF_INET Socket for IPv4 Communications

1.2.3.4

1.2.3.4

1.2.3.4

TCPIP$ETC:
IPNODES

or
DNS

Hosts
Database

gethostbyname ("host1")
User

Application

user space

kernel space

Socket layer

TCP UDP

IPv4
packet

IPv4

host1 = 1.2.3.4

open AF_INET socket (UDP)

VM-0643A-AI

1

2

34

5

6

1 Application calls gethostbyname and passes the host name, host1.

2 The search finds host1 in the hosts database and gethostbyname returns the
IPv4 address 1.2.3.4.

3 The application opens an AF_INET socket.

4 The application sends information to the 1.2.3.4 address.

5 The socket layer passes the information and address to the UDP module.

6 The UDP module puts the 1.2.3.4 address into the packet header and passes
the information to the IPv4 module for transmission.

Section 7.6.1.1 contains sample program code that demonstrates these steps.

7–2 Porting Applications

Porting Applications
7.1 Using AF_INET6 Sockets

You can use the AF_INET6 socket for both IPv6 and IPv4 communications.
For IPv4 communications, create an AF_INET6 socket and pass it a
sockaddr_in6 structure that contains an IPv4-mapped IPv6 address (for example,
::ffff:1.2.3.4). Figure 7–2 shows the sequence of events for an application
that uses an AF_INET6 socket to send IPv4 packets.

Figure 7–2 Using AF_INET6 Socket to Send IPv4 Communications

::ffff:1.2.3.4

::ffff:1.2.3.4

1.2.3.4

IP

User
Application

user space

kernel space

TCP UDP

IPv4
packet

IPv4 IPv6

host1 = ::ffff:1.2.3.4 host1 = 1.2.3.4

open AF_INET6 socket (UDP)

getaddrinfo
("host1", "", hints, result)

VM-0644A-AI

1

2

34

5

6

Socket layer

TCPIP$ETC:
IPNODES

or
DNS

Hosts
Database

1 Application calls getaddrinfo and passes the host name (host1), the AF_
INET6 address family hint, and the AI_DEFAULT flag hint. The flag tells the
function that if an IPv4 address is found for host1, return the address as an
IPv4-mapped IPv6 address.

2 The search finds an IPv4 address, 1.2.3.4, for host1 in the hosts database and
getaddrinfo returns the IPv4-mapped IPv6 address ::ffff:1.2.3.4.

Porting Applications 7–3

Porting Applications
7.1 Using AF_INET6 Sockets

3 The application opens an AF_INET6 socket.

4 The application sends information to the ::ffff:1.2.3.4 address.

5 The socket layer passes the information and address to the UDP module.

6 The UDP module identifies the IPv4-mapped IPv6 address, puts the 1.2.3.4
address into the packet header, and passes the information to the IPv4
module for transmission.

AF_INET6 sockets can receive messages sent to either IPv4 or IPv6 addresses
on the system. An AF_INET6 socket uses the IPv4-mapped IPv6 address format
to represent IPv4 addresses. Figure 7–3 shows the sequence of events for an
application that uses an AF_INET6 socket to receive IPv4 packets.

Figure 7–3 Using AF_INET6 Socket to Receive IPv4 Communications

::ffff:1.2.3.4

1.2.3.4

IP

User
Application

user space

kernel space

TCP UDP

IPv4 IPv6

::ffff:1.2.3.4=host1 1.2.3.4=host1

open AF_INET6 socket (TCP)

5

6

1
4

::ffff:1.2.3.4
3

2

getnameinfo
("&sa, salen, &node, nodelen,
 "", 0, flags)

Socket layer

TCPIP$ETC:
IPNODES

or
DNS

Hosts
Database

IPv4
packet VM-0645A-AI

7–4 Porting Applications

Porting Applications
7.1 Using AF_INET6 Sockets

1 The application opens an AF_INET6 socket, binds to it, and listens on it.

2 An IPv4 packet arrives and passes through the IPv4 module.

3 The TCP layer strips off the packet header and passes the information and
the IPv4-mapped IPv6 address ::ffff:1.2.3.4 to the socket layer.

4 The application calls accept and retrieves the information from the socket.

5 The application calls getnameinfo and passes the ::ffff:1.2.3.4 address
and the NI_NAMEREQD flag. The flag tells the function to return the host
name for the address. See Table 6–2 for a description of the flag bits and
their meanings.

6 The search finds the host name for the 1.2.3.4 address in the hosts database,
and getnameinfo returns the host name.

For IPv6 communications, create an AF_INET6 socket and pass it a
sockaddr_in6 structure that contains an IPv6 address (for example,
3ffe:1200::a00:2bff:fe2d:02b2). Figure 7–4 shows the sequence of events
for an application that uses an AF_INET6 socket to send IPv6 packets.

Porting Applications 7–5

Porting Applications
7.1 Using AF_INET6 Sockets

Figure 7–4 Using AF_INET6 Socket for IPv6 Communications

3ffe:1200::a00:
2bff:fe2d:02b2

3ffe:1200::a00:2bff:fe2d:02b2

3ffe:1200::a00:2bff:fe2d:02b2

IP

User
Application

user space

kernel space

TCP UDP

IPv6
packet

IPv4 IPv6

host1 = 3ffe:1200::a00:
2bff:fe2d:02b2

open AF_INET6 socket (UDP)

VM-0651A-AI

1

2

3
4

5

6

Socket layer

getaddrinfo
("host1", "", hints, result) TCPIP$ETC:

IPNODES
or

DNS

Hosts
Database

1 Application calls getaddrinfo and passes the host name (host1), the AF_
INET6 address family hint, and the AI_DEFAULT flag hint. The flag tells the
function that if an IPv4 address is found for host1, to return it.

2 The search finds an IPv6 address for host1 in the hosts database, and
getaddrinfo returns the IPv6 address 3ffe:1200::a00:2bff:fe2d:02b2.

3 The application opens an AF_INET6 socket.

4 The application sends information to the 3ffe:1200::a00:2bff:fe2d:02b2
address.

5 The socket layer passes the information and address to the UDP module.

6 The UDP module identifies the IPv6 address and puts the
3ffe:1200::a00:2bff:fe2d:02b2 address into the packet header and
passes the information to the IPv6 module for transmission.

7–6 Porting Applications

Porting Applications
7.1 Using AF_INET6 Sockets

Section 7.6.2.1 contains sample program code that demonstrates these steps.

The following sections show how to convert an existing AF_INET application to
an AF_INET6 application that is capable of communicating over both IPv4 and
IPv6.

7.2 Name Changes
Most of the changes required are straightforward and mechanical, though some
may require a bit of code restructuring. For example, a routine that returns an
int data type holding an IPv4 address may need to be modified to take as an
extra parameter a pointer to an in6_addr into which it writes the IPv6 address.
Table 7–1 summarizes the changes you must make to your application’s code.

Table 7–1 Name Changes

Search file for Replace with Comments

AF_INET AF_INET6 Replace with IPv6 address family
macro.

PF_INET PF_INET6 Replace with IPv6 protocol family
macro.

INADDR_ANY in6addr_any Replace with IPv6 global variable.

7.3 Structure Changes
The structure names and field names have changed for the following structures:

• in_addr

• sockaddr_in

• sockaddr

• hostent

The following sections discuss these changes.

7.3.1 in_addr Structure
Applications that use the IPv4 in_addr structure must be changed to use the
IPv6 in6_addr structure, as follows:

IPv4 Structure IPv6 Structure

struct in_addr
unsigned int s_addr

struct in6_addr
uint8_t s6_addr

Make the following changes to your application, as needed:

1. Change the structure name in_addr to in6_addr.

2. Change the data type from unsigned int to uint8_t and the field name
s_addr to s6_addr.

Porting Applications 7–7

Porting Applications
7.3 Structure Changes

7.3.2 sockaddr Structure
Applications that use the generic socket address structure (sockaddr) to hold an
AF_INET socket address (sockaddr_in) must be changed to use the AF_INET6
sockaddr_in6 structure, as follows:

AF_INET Structure AF_INET6 Structure

struct sockaddr struct sockaddr_in6

Make the following change to your application, as needed:

1. Change structure name sockaddr to sockaddr_in6.

For example, sizeof(struct sockaddr).

Note

A sockaddr_in6 structure is larger than a sockaddr structure.

7.3.3 sockaddr_in Structure
Applications that use the BSD Version 4.4 IPv4 sockaddr_in structure must be
changed to use the IPv6 sockaddr_in6 structure, as follows:

IPv4 Structure IPv6 Structure

struct sockaddr_in
unsigned char sin_len
sa_family_t sin_family
in_port_t sin_port
struct addr sin_addr

struct sockaddr_in6
uint8_t sin6_len
sa_family_t sin6_family
int_port_t sin6_port
struct in6_addr sin6_addr

Make the following changes to your application, as needed:

1. Change structure name sockaddr_in to sockaddr_in6. Initialize the entire
sockaddr_in6 structure to zero after your structure declarations.

2. Change the data type unsigned char to uint8_t and the field name sin_len
to sin6_len.

3. Change the field name sin_family to sin6_family.

4. Change the field name sin_port to sin6_port.

5. Change the field name sin_addr to sin6_addr.

7.3.4 hostent Structure
Applications that use the hostent structure must be changed to use the addrinfo
structure, as follows:

AF_INET Structure AF_INET6 Structure

struct hostent struct addrinfo

Make the following change to your application, as needed:

1. Change the structure name hostent to addrinfo.

7–8 Porting Applications

Porting Applications
7.4 Function Call Changes

7.4 Function Call Changes
The names and parameters have changed for the following function calls:

• gethostbyaddr

• gethostbyname

• inet_ntoa

• inet_addr

The following sections discuss these changes.

7.4.1 gethostbyaddr Function Call
Applications that use the IPv4 gethostbyaddr function call must be changed to
use the IPv6 getnameinfo function call, as follows:

AF_INET Call AF_INET6 Call

gethostbyaddr(xxx,4,AF_
INET)

err=getnameinfo(&sockaddr,sockaddr_len, node_name, name_
len, service, service_len, flags);

Make the following change to your application, as needed:

1. Change the function name from gethostbyaddr to getnameinfo and provide
a pointer to the socket address structure, a character string for the returned
node name, an integer for the length of the returned node name, a character
string to receive the returned service name, an integer for the length of the
returned service name, and an integer that specifies the type of address
processing to be performed.

7.4.2 gethostbyname Function Call
Applications that use the gethostbyname function call must be changed to use the
getaddrinfo function call, as folllows:

AF_INET Call AF_INET6 Call

gethostbyname(name) err=getaddrinfo(node_name, service_name, &hints, &result);
.
.
.
freeaddrinfo(&result);

Make the following changes to your application, as needed:

1. Change the function name from gethostbyname to getaddrinfo and provide
a character string that contains the node name, a character string that
contains the service name to use, a pointer to a hints structure that contains
processing options, and a pointer to an addrinfo structure or structures for
the returned address information.

2. Add a call to the freeaddrinfo routine to free the addrinfo structure or
structures when your application is finished using them.

Porting Applications 7–9

Porting Applications
7.4 Function Call Changes

7.4.3 inet_ntoa Function Call
Applications that use the inet_ntoa function call must be changed to use the
getnameinfo function call, as follows:

AF_INET Call AF_INET6 Call

inet_ntoa(addr) err=getnameinfo(&sockaddr,sockaddr_len, node_name, name_
len, service, service_len, NI_NUMERICHOST);

Make the following change to your application, as needed:

1. Change the function name from inet_ntoa to getnameinfo and provide a
pointer to the socket address structure, a character string for the returned
node name, an integer for the length of the returned node name, a character
string to receive the returned service name, an integer for the length of the
returned service name, and the NI_NUMERICHOST flag.

7.4.4 inet_addr Function Call
Applications that use the inet_addr function call must be changed to use the
getaddrinfo function call, as follows:

AF_INET Call AF_INET6 Call

result=inet_
addr(&string)

err=getaddrinfo(node_name, service_name, &hints, &result);
.
.
.
freeaddrinfo(&result);

Make the following change to your application, as needed:

1. Change the function name from inet_addr to getaddrinfo and provide a
character string that contains the node name, a character string that contains
the service name to use, a pointer to a hints structure that contains the AI_
NUMERICHOST option, and a pointer to an addrinfo structure or structures
for the returned address information.

2. Add a call to the freeaddrinfo routine to free the addrinfo structure or
structures when your application is finished using them.

7.5 Other Application Changes
In addition to the name changes, you should review your code for specific uses of
IP address information and variables.

7.5.1 Comparing IP Addresses
If your application compares IP addresses or tests IP addresses for equality, the
in6_addr structure changes (see in Section 7.3.1) will change the comparison of
int quantities to a comparison of structures. This will break the code and cause
compiler errors.

Make either of the following changes to your application, as needed:

7–10 Porting Applications

Porting Applications
7.5 Other Application Changes

AF_INET Code AF_INET6 Code

(addr1->s_addr = = addr2->s_addr) (memcmp(addr1, addr2, sizeof(struct in6_
addr)) = = 0)

1. Change the equality expression to one that uses the memcmp (memory
comparison) function.

AF_INET Code AF_INET6 Code

(addr1->s_addr = = addr2->s_addr) IN6_ARE_ADDR_EQUAL(addr1, addr2)

1. Change the equality expression to one that uses the IN6_ARE_ADDR_EQUAL
macro.

7.5.2 Comparing an IP Address to the Wildcard Address
If your application compares an IP address to the wildcard address, the in6_addr
structure changes (see Section 7.3.1) will change the comparison of int quantities
to a comparison of structures. This will break the code and cause compiler errors.

Make either of the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

(addr->s_addr = = INADDR_ANY) IN6_IS_ADDR_UNSPECIFIED(addr)

1. Change the equality expression to one that uses the
IN6_IS_ADDR_UNSPECIFIED macro.

AF_INET Code AF_INET6 Code

(addr->s_addr = = INADDR_ANY) (memcmp(addr, in6addr_any, sizeof(struct in6_addr)) = = 0)

1. Change the equality expression to one that uses the memcmp (memory
comparison) function.

7.5.3 Using int Data Types to Hold IP Addresses
If your application uses int data types to hold IP addresses, the in6_addr
structure changes (see Section 7.3.1) will change the assignment. This will break
the code and cause compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr foo;
int bar;
.
.
.
bar = foo.s_addr;

struct in6_addr foo;
struct in6_addr bar;
.
.
.
bar = foo;

1. Change the data type for bar from int to a struct in6_addr.

2. Change the assignment statement for bar to remove the s_addr field
reference.

Porting Applications 7–11

Porting Applications
7.5 Other Application Changes

7.5.4 Using Functions that Return IP Addresses
If your application uses functions that return IP addresses as int data types, the
in6_addr structure changes (see Section 7.3.1 will change the destination of the
return value from an int to an array of char. This will break the code and cause
compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr *addr;
addr->s_addr = foo(xxx);

struct in6_addr *addr;
foo(xxx, addr);

1. Restructure the function to enable you to pass the address of the structure in
the call. In addition, modify the function to write the return value into the
structure pointed to by addr.

7.5.5 Changing Socket Options
If your application uses IPv4 IP-level socket options, change them to the
corresponding IPv6 options.

7.6 Sample Client/Server Programs
This section contains sample client and server programs that demonstrate the
differences between IPv4 and IPv6 coding conventions:

• Section 7.6.1 contains sample programs using IPv4 AF_INET sockets.

• Section 7.6.2 contains sample programs using IPv6 AF_INET6 sockets.

To build the examples, use the following commands:

$ DEFINE DECC$SYSTEM_INCLUDE TCPIP$EXAMPLES:
$ DEFINE ARPA TCPIP$EXAMPLES:
$ DEFINE NET TCPIP$EXAMPLES:
$ DEFINE NETINET TCPIP$EXAMPLES:
$ DEFINE SYS TCPIP$EXAMPLES:

$ CC/NOOPT/STANDARD=VAXC/PREFIX=ALL/EXTERN_MODEL=STRICT_REFDEF/DEFINE=(INET6,_SOCKADDR_LEN) client.c
$ LINK/MAP client,TCPIP$LIBRARY:TCPIP$LIB/lib

$ CC/NOOPT/STANDARD=VAXC/PREFIX=ALL/EXTERN_MODEL=STRICT_REFDEF/DEFINE=(INET6,_SOCKADDR_LEN) server.c
$ LINK/MAP server,TCPIP$LIBRARY:TCPIP$LIB/lib

7.6.1 Programs Using AF_INET Sockets
This section contains a client and a server program that use AF_INET sockets.

7.6.1.1 Client Program
The following is a sample client program that you can build, compile and run on
your system. The program sends a request to and receives a response from the
system specified on the command line.

7–12 Porting Applications

Porting Applications
7.6 Sample Client/Server Programs

/*
* ***
* * *
* * Copyright 2000 Compaq Computer Corporation *
* * *
* * The software contained on this media is proprietary to *
* * and embodies the confidential technology of Compaq *
* * Computer Corporation. Possession, use, duplication or *
* * dissemination of the software and media is authorized only *
* * pursuant to a valid written license from Compaq Computer *
* * Corporation. *
* * *
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* * by the U.S. Government is subject to restrictions as set *
* * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
* * or in FAR 52.227-19, as applicable. *
* * *
* ***
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define SERVER_PORT 7639
#define CLIENT_PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv)

{
int s;
char databuf[MAXBUFSIZE];
int dcount;
struct sockaddr_in serveraddr; 1
struct sockaddr_in clientaddr;
int serveraddrlen;
const char *ap;
const char *request = "this is the client’s request";
struct hostent *hp;
char *server;

if (argc < 2) {
printf("Usage: client <server>\n");
exit(1);

}
server = argv[1];

bzero((char *) &serveraddr, sizeof(struct sockaddr_in)); 2
serveraddr.sin_family = AF_INET;
if ((hp = gethostbyname(server)) == NULL) { 3

printf("unknown host: %s\n", server);
exit(2);

}
serveraddr.sin_port = htons(SERVER_PORT);

Porting Applications 7–13

Porting Applications
7.6 Sample Client/Server Programs

while (hp->h_addr_list[0] != NULL) {
if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) { 4

perror("socket");
exit(3);

}
memcpy(&serveraddr.sin_addr.s_addr, hp->h_addr_list[0],

hp->h_length);

if (connect(s, (struct sockaddr *)&serveraddr, sizeof(serveraddr)) < 0) {
perror("connect");
close(s);
hp->h_addr_list++;
continue;

}
break;

}
if (send(s, request, strlen(request), 0) < 0) { 5

perror("send");
exit(5);

}
dcount = recv(s, databuf, sizeof(databuf), 0);
if (dcount < 0) {

perror("recv");
exit(6);

}
databuf[dcount] = ’\0’;

hp = gethostbyaddr((char *)&serveraddr.sin_addr.s_addr, 6
sizeof(serveraddr.sin_addr.s_addr), AF_INET);

ap = inet_ntoa(serveraddr.sin_addr); 7
printf("Response received from");
if (hp != NULL)

printf(" %s", hp->h_name);
if (ap != NULL)

printf(" (%s)", ap);
printf(": %s\n", databuf);

close(s);
}

1 Declares sockaddr_in structures.

2 Clears the server address and sets up server variables.

3 Calls gethostbyname to obtain the server address.

4 Creates AF_INET socket.

5 Sends a request to the server.

6 Calls gethostbyaddr to retrieve the server name.

7 Calls inet_ntoa to convert the server address to a text string.

7.6.1.2 Server Program
The following is a sample server program that you can build, compile, and run on
your system. The program receives requests from and sends responses to client
programs on other systems.

7–14 Porting Applications

Porting Applications
7.6 Sample Client/Server Programs

/*
* ***
* * *
* * Copyright 2000 Compaq Computer Corporation *
* * *
* * The software contained on this media is proprietary to *
* * and embodies the confidential technology of Compaq *
* * Computer Corporation. Possession, use, duplication or *
* * dissemination of the software and media is authorized only *
* * pursuant to a valid written license from Compaq Computer *
* * Corporation. *
* * *
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* * by the U.S. Government is subject to restrictions as set *
* * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
* * or in FAR 52.227-19, as applicable. *
* * *
* ***
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define SERVER_PORT 7639
#define CLIENT_PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv)

{
int s;
char databuf[MAXBUFSIZE];
int dcount;
struct sockaddr_in serveraddr; 1
struct sockaddr_in clientaddr;
int clientaddrlen;
struct hostent *hp;
const char *ap;
const char *response = "this is the server’s response";
u_short port;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) { 2
perror("socket");
exit(1);

}

bzero((char *) &serveraddr, sizeof(struct sockaddr_in)); 3
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
serveraddr.sin_port = htons(SERVER_PORT);

Porting Applications 7–15

Porting Applications
7.6 Sample Client/Server Programs

if (bind(s, (struct sockaddr *)&serveraddr, sizeof(serveraddr)) < 0) {
perror("bind");
exit(2);

}
if (listen(s, SOMAXCONN) < 0) {

perror("Listen");
close(s);
exit(3);

while (1) {
int new_s;
clientaddrlen = sizeof(clientaddr);
new_s = accept(s, (Struct sockaddr*)&clientaddr, &clientaddrlen);

dcount = recv(new_s, databuf, sizeof(databuf), 0);
if (dcount <= 0) {

perror("recv");
close(new_s);
continue;

}
databuf[dcount] = ’\0’;
hp = gethostbyaddr((char *)&clientaddr.sin_addr.s_addr, 4

sizeof(clientaddr.sin_addr.s_addr), AF_INET);
ap = inet_ntoa(clientaddr.sin_addr); 5
port = ntohs(clientaddr.sin_port);
printf("Request received from");
if (hp != NULL)

printf(" %s", hp->h_name);
if (ap != NULL)

printf(" (%s)", ap);
printf(" port %d \"%s\"\n", port, databuf);

if (send(new_s, response, strlen(response), 0) < 0) {
perror("send");
continue;

}
close(new_s);

}
close(s);

}

1 Declares sockaddr_in structures.

2 Creates an AF_INET socket.

3 Clears the server address and sets up server variables.

4 Calls gethostbyaddr to retrieve client name.

5 Calls inet_ntoa to convert the client address to a text string.

7.6.2 Programs Using AF_INET6 Sockets
This section contains a client and a server program that use AF_INET6 sockets.

7.6.2.1 Client Program
The following is a sample client program that you can build, compile and rin on
your system. The program sends a request to and receives a response from the
system specified on the command line.

7–16 Porting Applications

Porting Applications
7.6 Sample Client/Server Programs

/*
* ***
* * *
* * Copyright 2000 Compaq Computer Corporation *
* * *
* * The software contained on this media is proprietary to *
* * and embodies the confidential technology of Compaq *
* * Computer Corporation. Possession, use, duplication or *
* * dissemination of the software and media is authorized only *
* * pursuant to a valid written license from Compaq Computer *
* * Corporation. *
* * *
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* * by the U.S. Government is subject to restrictions as set *
* * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
* * or in FAR 52.227-19, as applicable. *
* * *
* ***
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define SERVER_PORT 7639
#define CLIENT_PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv)

{
int s;
char databuf[MAXBUFSIZE];
int dcount;
struct addrinfo *server_info; 1
struct addrinfo *cur_info;
struct addrinfo hints;
struct sockaddr_in6 serveraddr;
char addrbuf[INET6_ADDRSTRLEN];
char node[MAXDNAME];
char service[MAXDNAME];
int ni;
int err;
int serveraddrlen;
const char *request = "this is the client’s request";
char *server;

if (argc < 2) {
printf("Usage: client client <server>\n");
exit(1);

}
server = argv[1];
bzero((char *) &hints, sizeof(hints)); 2
hints.ai_family = AF_INET6;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_DEFAULT;

sprintf(service, "%d", SERVER_PORT);

Porting Applications 7–17

Porting Applications
7.6 Sample Client/Server Programs

err = getaddrinfo(server, service, &hints, &server_info); 3
if (err != 0) {

if (err == EAI_SYSTEM)
perror("getaddrinfo");

else
printf("%s", gai_strerror(err0));

exit(2);
}
cur_info = server_info;

while (cur_info != NULL) {
if ((s = socket(cur_info->ai_family, cur_info->ai_socktype, 0)) < 0) { 4

perror("socket");
exit(3);

}
if (connect(s, cur_info->ai_addr, cur_info->ai_addrlen) <0 {

close(s);
cur_info = cur_info->ai_next;
continue;

}
break;

}
freeaddrinfo(server_info); 5

if (send(s, request, strlen(request), 0) < 0) { 6
perror("send");
exit(5);

}
dcount = recv(s, databuf, sizeof(databuf), 0);
if (dcount < 0) {

perror("recv");
exit(6);

}
databuf[dcount] = ’\0’;
serveraddrlen = sizeof(serveraddr);
if (getpeername(s, (struct sockaddr*) &serveraddr, &serveraddrlen) < 0 {

perror("getpeername");
exit(7);

}
printf("Response received from");
ni = getnameinfo((struct sockaddr*)&serveraddr, serveraddrlen, 7

node, sizeof(node), NULL, 0, NI_NAMEREQD);
if (ni == 0)

printf(" %s", node);
ni = getnameinfo((struct sockaddr*)&serveraddr, serveraddrlen, 8

addrbuf, sizeof(addrbuf), NULL, 0, NI_NUMERICHOST);
if (ni == 0)

printf(" (%s)", addrbuf);

printf(": %s\n", databuf);

close(s);
}

1 Declares addrinfo structures, hints structure, sockaddr_in6 structure,
address string buffer, node name string buffer, service name string buffer,
error number variable, and server address length variable.

2 Clears the hints structure and sets up hints variables.

3 Calls getaddrinfo to obtain the server address.

4 Creates an AF_INET6 socket.

5 Frees all addrinfo structures.

7–18 Porting Applications

Porting Applications
7.6 Sample Client/Server Programs

6 Sends a request to the server.

7 Calls getnameinfo to obtain the server name.

8 Calls getnameinfo to obtain the server’s numeric address and message data.

7.6.2.2 Server Program
The following is a sample server program that you can build, compile, and run on
your system. The program receives requests from and sends responses to client
programs on other systems.

/*
* ***
* * *
* * Copyright 2000 Compaq Computer Corporation *
* * *
* * The software contained on this media is proprietary to *
* * and embodies the confidential technology of Compaq *
* * Computer Corporation. Possession, use, duplication or *
* * dissemination of the software and media is authorized only *
* * pursuant to a valid written license from Compaq Computer *
* * Corporation. *
* * *
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* * by the U.S. Government is subject to restrictions as set *
* * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
* * or in FAR 52.227-19, as applicable. *
* * *
* ***
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define SERVER_PORT 7639
#define CLIENT_PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv)

{
int s;
char databuf[MAXBUFSIZE];
int dcount;
struct sockaddr_in6 serveraddr; 1
struct storage clientaddr;
char addrbuf[INET6_ADDRSTRLEN];
char node[MAXDNAME];
char port[MAXDNAME];
int err;
int ni;
int clientaddrlen;
const char *response = "this is the server’s response";

Porting Applications 7–19

Porting Applications
7.6 Sample Client/Server Programs

if ((s = socket(AF_INET6, SOCK_STREAM, 0)) < 0) { 2
perror("socket");
exit(1);

}

bzero((char *) &serveraddr, sizeof(struct sockaddr_in6)); 3
serveraddr.sin6_family = AF_INET6;
serveraddr.sin6_addr = in6addr_any;
serveraddr.sin6_port = htons(SERVER_PORT);

if (bind(s, (struct sockaddr *)&serveraddr, sizeof(serveraddr)) < 0) {
perror("bind");
exit(2);

}
if (listen(s, SOMAXCONN) < 0) {

perror("listen");
close(s);
exit(3);

}
while (1) {

int new_s;
clientaddrlen = sizeof(clientaddr);
bzero((char *)&clientaddr, clientaddrlen); 4
new_s = accept(s, (struct sockaddr*)&clientaddr, &clientaddrlen);
if (new_s < 0) {

perror("accept");
continue;

}
dcount = recv(s, databuf, sizeof(databuf), 0);
if (dcount <= 0) {

perror("recv");
close(new_s);
continue;

}
databuf[dcount] = ’\0’;

printf("Request received from");
ni = getnameinfo((struct sockaddr *)&clientaddr, 5

clientaddrlen, node, sizeof(node), NULL, 0, NI_NAMEREQD);
if (ni == 0)

printf(" %s", node);
ni = getnameinfo((struct sockaddr *)&clientaddr, 6

clientaddrlen, addrbuf, sizeof(addrbuf), port, sizeof(port),
NI_NUMERICHOST|NI_NUMERICSERV);

if (ni == 0)
printf(" (%s) port %d, addrbuf, port);

printf(" \"%s\"\n", port, databuf);

if (send(new_s, response, strlen(response), 0) < 0) {
perror("send");
close(new_s);
continue;

}
close(new_s);

}
close(s);

}

1 Declares sockaddr_in6 structures, address string buffer, and error number
variable.

2 Creates an AF_INET6 socket.

3 Clears the server address and sets up the server variables.

4 Clears the client address.

7–20 Porting Applications

Porting Applications
7.6 Sample Client/Server Programs

5 Calls getnameinfo to retrieve the client name.

6 Calls getnameinfo to obtain the client’s address, port, and message data.

7.6.3 Sample Program Output
This section contains sample output from the preceding server and client
programs. The server program makes and receives all requests on an AF_INET6
socket using sockaddr_in6. For requests received over IPv4, sockaddr_in6
contains an IPv4-mapped IPv6 address.

The following example shows a client program running on node hostb6 and
sending a request to node hosta6. The program uses an AF_INET6 socket. The
node hosta6 has the IPv6 address 3ffe:1200::a00:2bff:fe97:7be0 in the Domain
Name System (DNS).

$ client :== $client.exe
$ client hosta6
Response received from hosta6.ipv6.corp.example (3ffe:1200::a00:2bff:fe97:7be0):
this is the server’s response

On the server node, the following example shows the server program invocation
and the request received from the client node hostb6:

$ run server
Request received from hostb6.ipv6.corp.example (3ffe:1200::a00:2bff:fe2d:02b2
port 7739 "this is the client’s request"

The following example shows the client program running on node hostb and
sending a request to node hosta. The program uses an AF_INET6 socket. The
hosta node has the IPv4 address 10.10.10.13 in the DNS.

$ client :== $client.exe
$ client hosta
Response received from hosta.corp.example (::ffff:10.10.10.13): this is the
server’s response

On the server node, the following example shows the server program invocation
and the request received from the client node hostb:

$ run server
Request received from hostb.corp.example (::ffff:10.10.10.251) port 7739
"this is the client’s request"

The following example shows the client program running on node hostc and
sending a request to node hosta. The program was built and run on an IPv4-only
system using an AF_INET socket.

$ client :== $client.exe
$ client hosta
Response received from hosta.corp.example (10.10.10.13): this is the
server’s response

On the server node, the following example shows the server program invocation
and the request received from the client node hostc:

$ run server
Request received from hostc.corp.example (::ffff:10.10.10.63) port 7739
"this is the client’s request"

Porting Applications 7–21

A
Supported IPv6 RFCs

The following are supported IPV6 Request for Comments (RFCs):

• Internet Protocol Version 6 (IPv6) Specification, RFC 2460 (December 1998)

• Internet Control Message Protocol (ICMPv6) for Internet Protocol Version 6
(IPv6), RFC 2463 (December 1998)

• Neighbor Discovery for IP Version 6 (IPv6), RFC 2461 (December 1998)

• IPv6 Stateless Address Autoconfiguration, RFC 2462 (December 1998)

• Path MTU Discovery for IP Version 6, RFC 1981 (August 1996)

• Transition Mechanisms for IPv6 Hosts and Routers, RFC 1933 (April 1996)

• IP Version 6 Addressing Architecture, RFC 2373 (July 1998)

• An IPv6 Aggregatable Global Unicast Address Format, RFC 2374 (July 1998)

• IPv6 Testing Address Allocation, RFC 2471 (December 1998)

• Transmission of IPv6 Packets over Ethernet Networks, RFC 2464 (December
1998)

• Transmission of IPv6 Packets over FDDI Networks, RFC 2467 (December
1998)

• Basic Socket Interface Extensions for IPv6, RFC 2553 (April 1999)

• Advanced Sockets API for IPv6, RFC 2292 (February 1998)

• DNS Extensions to Support IP version 6, RFC 1886 (December 1995)

• Dynamic Updates in the Domain Name System (DNS UPDATE), RFC 2136
(April 1997)

• RIPng, RFC 2080 (January 1997)

Supported IPv6 RFCs A–1

B
IPv6 Extensions to Management Commands

and IPv6 Processes

B.1 IPv6 Extensions to Management Commands
The Compaq TCP/IP Services for OpenVMS Management Command Reference
decribes the basic management commands, including the UNIX commands, you
can use to manage the TCP/IP Services software. The Compaq TCP/IP Services
for OpenVMS Tuning and Troubleshooting contains more detailed information
on the UNIX management commands. The following sections describe only IPv6
extensions to those UNIX management commands.

To use UNIX management commands at the DCL prompt, execute the following
command procedure (or put it into your LOGIN.COM so that it executes each
time you log in):

$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS

Note

UNIX flags and OpenVMS interface names are case sensitive. When
entering UNIX management commands at the DCL prompt, you must
enclose uppercase UNIX flags and OpenVMS interface names in quotes to
preserve the case of the input.

B.1.1 ifconfig Command
For the AF_INET6 address family, use the following syntax:

ifconfig interface_id address_family [[ip6prefix]
address[/bitmask] [dest_address]] [parameters]

For the AF_INET6 address family, the address argument is either a host name or
the 128-bit IPv6 address, as follows:

x:x:x:x:x:x:x:x

In this format, each x is the hexadecimal value of a 16-bit piece of the address.

The ip6prefix argument specifies that the interface identifier is to be appended
to the address argument when configuring an address on the interface. The
interface identifier uniquely identifies an interface on a subnet and is typically
the interface’s link-layer address. The following are the parameters for the
ifconfig command.

IPv6 Extensions to Management Commands and IPv6 Processes B–1

IPv6 Extensions to Management Commands and IPv6 Processes
B.1 IPv6 Extensions to Management Commands

Parameters [AF_INET6 only]:

• ip6interfaceid id

Overrides the default interface ID, which depends on the underlying link type
(for example, Ethernet, FDDI), and specifies an inet6 interface ID for the
interface. For example, if your system has the Ethernet hardware address
08-00-2b-2a-1e-d3, the following command generates the inet6 link-local
address fe80::a00:2bff:fe2a:1ed3 for the interface:

$ ifconfig "WE0" ipv6

On the same system, the following command generates the inet6 interface ID
abcd:1234 for the interface:

$ ifconfig "WE0" ip6interfaceid ::abcd:1234 ipv6

• ipv6

Initializes IPv6-related data structures and assigns an IPv6 link-local address
to the interface.

• -ipv6

Removes any IPv6 configuration associated with the interface, including all
IPv6 addresses and IPv6 routes through the interface. This command is
equivalent to the ifconfig interface inet6 delete command.

• ip6dadtries value

Specifies the number of consecutive neighbor solicitation messages that your
system transmits as it performs duplicate address detection on a tentative
address.

• ip6hoplimit hops

Sets the default number of hops to be included in transmitted unicast IP
packets.

• ip6mtu mtu_value

Alters the maximum trasmission unit (MTU) for messages that your system
transmits on the link.

• ip6nonud

Disables Neighbor Unreachability Detection (NUD) on the interface.

• ip6reachabletime time

Sets the time, in milliseconds, that your system considers a neighbor is
reachable after your system receives a reachability confirmation message.

• ip6retranstimer value

Sets the time interval, in milliseconds, between neighbor solicitation messages
to a neighbor.

B.1.2 iptunnel Command
The iptunnel command creates configured tunnels for sending and receiving IPv6
or IPv4 packets that are encapsulated as the payload of an IPv4 datagram.

B–2 IPv6 Extensions to Management Commands and IPv6 Processes

IPv6 Extensions to Management Commands and IPv6 Processes
B.1 IPv6 Extensions to Management Commands

The iptunnel command can perform the following three operations:

• create

Creates a tunnel interface, which you must subsequently configure by using
the ifconfig command. The syntax of the create operation is as follows:

iptunnel create [-I int-name] [v4-dest] [v4-src]

Parameters

-I int-name

Specifies the interface unit of the tunnel to be created. This is an optional
parameter. The int-name parameter has the form iptx, where x is the
interface unit number. By default, the interface name selected for the
tunnel is iptx+1, or the value of the interface unit number of the last
tunnel created plus 1.

v4-dest

Specifies the remote endpoint to which a tunnel is to be created.

v4-src

Sets the IPv4 source address in the encapsulating header. The tunnel is
enabled (packets are sent and received on the tunnel) only if v4-src is a
valid address on the system. This is an optional parameter.

• delete

Deletes a tunnel interface. You must disable the tunnel before you can delete
it by executing the following command:

$ ifconfig tunnel name down delete abort

• show

Shows the tunnel attributes (name, tunnel endpoints, next hop for tunneled
packets).

For related information, see RFC 2003, IP Encapsulation within IP, Perkins, C.,
October 1996.

B.1.3 netstat Command
The netstat command displays network-related data in various formats.

The parameters -f address_family limit reports to the specified address family.
The address families that can be specified include the following:

• inet—Specifies reports of the AF_INET family, if present in the kernel.

• inet6—Specifies reports of the AF_INET6 family, if present in the kernel.

To display IPv6 routing entries, enter this command:

$ netstat -rnf inet6

To display active IPv6 connections, enter this command:

$ netstat -af inet6

IPv6 Extensions to Management Commands and IPv6 Processes B–3

IPv6 Extensions to Management Commands and IPv6 Processes
B.1 IPv6 Extensions to Management Commands

B.1.4 traceroute Command
The traceroute command with the host argument prints the route that packets
take to both IPv4 and IPv6 hosts.

The -G @addr1@addr2... parameters (IPv6 only) specify the source route
for packets to travel. The route consists of one or more IPv6 node names or
addresses. Use the ampersand character (&) to separate multiple addresses. You
can specify up to 10 addresses.

The -V version parameter specifies the Internet Protocol (IP) version number to
enable the resolver to return the correct address. Use the -V 4 option if you want
to issue a traceroute command to a host name (not an IP address) that has both
IPv4 and IPv6 addresses, and you want to trace the route to the IPv4 address.

Note

By default, traceroute tries to resolve destination host names as an IPv6
address. If that fails, it resolves the host name as an IPv4 address. You
can override this behavior with the -V option.

B.2 IPv6 Processes
B.2.1 TCPIP$ND6HOST

The TCPIP$ND6HOST process receives and processes IPv6 Router Advertisement
(RA) packets of the Neighbor Discovery Protocol. This enables a system to
autoconfigure itself without manual intervention.

The TCPIP$ND6HOST process performs the following functions, based on the
contents of IPv6 Router Advertisements it receives:

• Router discovery—Learns the IPv6 address of default routers and installs
default routes in the kernel routing table.

• On-link prefix discovery—Learns IPv6 on-link prefixes (ranges of IPv6
addresses that are directly reachable on a given link).

• Stateless address configuration—Automatically creates and deletes interface
addresses.

• Interface attribute configuration—Automatically configures datalink
attributes, such as hop limit, reachable time, retransmit time, and link
MTU.

Caution

Do not run the TCPIP$ND6HOST and TCPIP$IP6RTRD processes on the
same host, since this may produce unpredictable results.

B–4 IPv6 Extensions to Management Commands and IPv6 Processes

IPv6 Extensions to Management Commands and IPv6 Processes
B.2 IPv6 Processes

B.2.2 TCPIP$IP6RTRD Process
The TCPIP$IP6RTRD process sends IPv6 Router Advertisement (RA) packets
of the Neighbor Discovery Protocol. These packets enable any listening host to
autoconfigure itself without manual intervention. In addition, you can configure
TCPIP$IP6RTRD to send and process RIPng messages.

At startup, the TCPIP$IP6RTRD process reads its configuration file for startup
information.

Caution

Do not run the TCPIP$ND6HOST and TCPIP$IP6RTRD processes on the
same host, since this may produce unpredictable results.

The TCPIP$IP6RTRD.CONF file contains configuration information that is
read by the TCPIP$IP6RTRD process at initialization time. This file contains
statements that control information sent in Router Advertisements and RIPng
messages.

The TCPIP$IP6RTRD.CONF file consists of structured information for each
interface in the following format:

interface interface-name {
interface keyword-value pairs, one per line
Prefix prefix/length {

prefix keyword-value pairs, one per line
}

}

Comments begin with the pound sign (#) and continue to the end of the line.

B.2.2.1 Interface Keyword Information
Table B–1 lists the interface keywords and range of accepted values described in
RFC 2461.

Table B–1 RFC 2461 Interface Keywords and Values

Keyword Values Default

AdvSendAdvertisements YES/NO YES

MaxRtrAdvInterval 4–1800 seconds 600

MinRtrAdvInterval 3–(0.75 * MaxRtrAdvInterval) 200

AdvManagedFlag 0/1 0

AdvOtherConfigFlag 0/1 0

AdvLinkMTU Nonnegative integer 0

AdvReachableTime 0–3,600,000 milliseconds 0

AdvRetransTimer Nonnegative integer 0

AdvDefaultLifetime 0, or MaxRtrAdvInterval - 9000
seconds

1800

IPv6 Extensions to Management Commands and IPv6 Processes B–5

IPv6 Extensions to Management Commands and IPv6 Processes
B.2 IPv6 Processes

In addition, the following interface keywords are accepted:

• AdvCurHopLimit

The value to be placed in the Cur Hop Limit field in the Router Advertisement
messages sent by the router. The value 0 means unspecified (by this router).
Valid values are any nonnegative integer. The default is 0.

• AdvSendLinkLayerAddress

Sends the interface link-layer address option in outgoing router
advertisements. Valid values are YES and NO. The default is YES.

• ripng

Enables (YES) or disables (NO) participation in RIPng on the interface. If
enabled, RIPng updates are sent on the interface, and received RIPng updates
are processed as defined in RFC 2080. You cannot specify YES for automatic
tunnels (the tun0 interface). The default is YES (except for tun0).

• SplitHorizon

Enables (1) or disables (0) the Split Horizon algorithm as specified in RFC
2080. The default is 1.

• PoisonReverse

Enables (1) or disables (0) the Poisoned Reverse algorithm as specified in RFC
2080. The default is 1.

B.2.2.2 Address-Prefix Keyword Information
Each address prefix to be configured on the interface must be defined within a
prefix block that begins with the keyword Prefix followed by the prefix and length
(separated by a slash [/] and optionally followed by an additional address-prefix
information block of keyword-value pairs).

Table B–2 lists address prefix keywords and values that are described in RFC
2461.

Table B–2 RFC 2461 Prefix Keywords

Prefix Keyword Values Default

AdvValidLifetime Integer 2592000 seconds

AdvPreferredLifetime Integer 604800 seconds

AdvOnLinkFlag 0/1 1

AdvAutonomousFlag 0/1 1

Table B–3 lists address prefix keywords and values that are described in RFC
2080.

Table B–3 RFC 2080 Prefix Keywords

Prefix Keyword Values Default

RouteMetric 1–16 (inclusive) 1

RouteTag Integer 0

B–6 IPv6 Extensions to Management Commands and IPv6 Processes

IPv6 Extensions to Management Commands and IPv6 Processes
B.2 IPv6 Processes

In addition, you can specify the following address-prefix keywords:

• ConfigureThisPrefix

The TCPIP$IP6RTRD process will configure the advertised prefix on
the interface if ConfigureThisPrefix is specified and set to 1, or if
ConfigureThisPrefix is not specified and AdvAutonomousFlag is set to 1.

The prefix is not autoconfigured in all other cases. Valid values are 0 and 1.
The default value is the value of AdvAutonomousFlag.

For related information, see the following RFCs:

• RFC 2461, Neighbor Discovery for IP version 6 (IPv6), Narten, T.; Nordmark,
E., Simpson W. A., December 1998

• RFC 2462, IPv6 Stateless Address Autoconfiguration, Thompson, S.; Narten,
T., December 1998

• RFC 2080, RIPng for IPv6, Malkin, G., Minnear, R., January 1997

IPv6 Extensions to Management Commands and IPv6 Processes B–7

C
Deprecated Library Functions

This appendix describes deprecated library functions that were provided in
previous Early Adopter Kits (EAKs). Do not use these functions if you are
developing new applications. If your existing applications use these functions, see
Chapter 7 for changes you should make to your code.

The following table shows the deprecated functions and their replacements:

Deprecated Function Replacement Function

getipnodebyname getaddrinfo

getipnodebyaddr getnameinfo

freehostent freeaddrinfo

C.1 getipnodebyname Function
The getipnodebyname function has the following syntax:

#include <netdb.h>
struct hostent *getipnodebyname(

const char *name,
int addr_family,
int flags,
int *error_num);

Parameters:

• name

Specifies the official network node name, alias, or numeric node address (for
example, an IPv4 dotted-decimal address or an IPv6 hexadecimal address).

• addr_family

Specifies the address family. This can be AF_INET for IPv4 addresses or
AF_INET6 for IPv6 addresses.

• flags

Specifies the type of addresses for which to search and the types of addresses
that are returned. Table C–1 describes how the processing is affected by the
values of the af parameter and commonly used flag values.

• error_num

Specifies an error return code value if the function is not successful.

Description

The getipnodebyname() routine is an evolution of the gethostbyname() routine
that enables name lookups in address families other than AF_INET.

Deprecated Library Functions C–1

Deprecated Library Functions
C.1 getipnodebyname Function

The getipnodebyname() routine returns a pointer to a structure of type hostent.
Its members specify data obtained from the local TCPIP$ETC:IPNODES.DAT file,
TCPIP$HOSTS.DAT file or from one of the files distributed by DNS/BIND.

If multiple addresses are found, the h_addr_list field in the hostent structure
contains the addresses.

The <netdb.h> header file defines the hostent structure.

If you are using DNS/BIND, the information is obtained from a name server
as configured. When the name server is not running, the getipnodebyname()
routine searches both the local TCPIP$ETC:IPNODES.DAT name file for IPv6
and IPv4 addresses and the hosts name file for IPv4 addresses, if the addresses
not are found in the TCPIP$ETC:IPNODES.DAT file.

Table C–1 lists the flags parameters and how the processing is affected by the
value of the af parameters.

Table C–1 Node Name to Address Processing

Flag Value af Value is AF_NET af Value is AF_INET6

0 Searches for A records.

If found, returns IPv4 addresses
(h_length=4).

If not, returns a NULL pointer.

Provides backward compatibility
for existing IPv4 applications.

Searches for AAAA
records.

If found, returns IPv6
records (h_length=16).

If not, returns a NULL
pointer.

AI_V4MAPPED Ignored. Searches for AAAA
records.

If found, returns IPv6
records (h_length=16).

If not, searches for A
records.

If A records are found,
returns IPv4-mapped IPv6
addresses (h_length=16).

If no A records are found,
returns a NULL pointer.

AI_ALL | AI_
V4MAPPED

Ignored. Searches for AAAA
records.

If found, returns IPv6
addresses (h_length=16).
Then searches for A
records.

If A records are found,
returns IPv4-mapped IPv6
addresses (h_length=16).

If no A records are found,
returns a NULL pointer.

All flags can be used in any combination to achieve finer control of the translation
process. The AI_ADDRCONFIG flag is typically used in combination with other
flags to modify the search based on the source address or addresses configured
on the system. Table C–2 describes how the AI_ADDRCONFIG flag works by
itself.

C–2 Deprecated Library Functions

Deprecated Library Functions
C.1 getipnodebyname Function

Table C–2 AI_ADDRCONFIG Flag

Flag Value af Value is AF_NET af Value is AF_INET6

AI_ADDRCONFIG Searches for A records only if an
IPv4 source address is configured
on the system.

Searches for AAAA records
only if an IPv6 source
address is configured on
the system.

Searches for A records
only if an IPv4 source
address is configured on
the system.

Most applications will use a combination of the AI_ADDRCONFIG and AI_
V4MAPPED flags to control their search. To simplify this for the programmer,
the AI_DEFAULT symbol, which is a logical OR of AI_ADDRCONFIG and
AI_V4MAPPED, is defined. Table C–3 describes how AI_DEFAULT directs the
search.

Table C–3 AI_DEFAULT Flag

Flag Value af Value is AF_NET af Value is AF_INET6

AI_DEFAULT Searches for A records only if an
IPv4 source address is configured
on the system.

If found, returns IPv4 addresses
(h_length=4).

If not, returns a NULL pointer.

Searches for AAAA records
only if an IPv6 source
address is configured on
the system.

If found, returns IPv6
records (h_length=16).

If not found and if an IPv4
address is configured on
the system, searches for A
records.

If A records are found,
returns IPv4-mapped IPv6
addresses (h_length=16).

If no A records are found,
returns a NULL pointer.

The hostent structure returned by the getipnodebyname function is dynamically
allocated. You should free this structure and dynamic storage by using the
freehostent function (see Section C.3).

Errors

If the getipnodebyname() routine call fails, error_num is set to one of the
following values:

• HOST_NOT_FOUND

The name you have used is not an official node name or alias; another type of
name server request may be successful.

• NO_ADDRESS

The server recognized the request and the name, but no address is available
for the name. Another type of name server request may be successful.

• NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

Deprecated Library Functions C–3

Deprecated Library Functions
C.1 getipnodebyname Function

• TRY_AGAIN

A transient error occurred, for example, the server did not respond. A retry
at some later time may be successful.

C.2 getipnodebyaddr Function
The getipnodebyaddr function has the following syntax:

#include <netdb.h>

struct hostent *getipnodebyaddr(
const void *src,
size_t len,
int af,
int *error_num);

Parameters

• src

Specifies an Internet address in network order.

• len

Specifies the number of bytes in an Internet address.

• af

Specifies the Internet domain address format. Valid values are AF_INET and
AF_INET6.

• error_num

Specifies an error return code value if the function is not successful.

Description

The getipnodebyaddr() routine is an evolution of the gethostbyaddr() routine
that enables address lookups in address families other than AF_INET.

The getipnodebyaddr() routine returns a pointer to a structure of type hostent.
Its members specify data obtained from the local TCPIP$ETC:IPNODES.DAT file,
the TCPIP$HOSTS.DAT file, or one of the files distributed by DNS/BIND.

The getipnodebyaddr() routine searches the network host database sequentially
until a match with the src and af parameters occurs. The len parameter must
specify the number of bytes in an Internet address. The src parameter must
specify the address in network order. The af parameter can be either the constant
AF_INET or AF_INET6, which specifies the IPv4 address format or the IPv6
address format, respectively. When EOF (end-of-file) is reached without a match,
an error value is returned.

If the src parameter is either an IPv4-mapped IPv6 address or an IPv4-
compatible IPv6 address, the routine performs the following steps:

1. If the af parameter is AF_INET6, the len parameter is 16, and the src
parameter is either an IPV4-mapped IPv6 address or an IPv4-compatible
IPv6 address, the routine skips the first 12 bytes of the address, sets af to
AF_INET and len to 4.

2. If the af parameter is AF_INET, the routine queries for a PTR record in the
in-addr.arpa domain.

3. If the af parameter is AF_INET6, the routine queries for a PTR record in the
ip6.int domain.

C–4 Deprecated Library Functions

Deprecated Library Functions
C.2 getipnodebyaddr Function

4. If the routine returns success, the single address and address family
returned in the hostent structure are copies of the src parameter and the af
parameter, respectively, that were passed to the routine.

Note

The double colon (::) and ::1 IPv6 addresses are not considered IPv4-
compatible addresses.

If you are using DNS/BIND, the address is obtained from a name server as
configured. When the name server is not running, the getipnodebyaddr()
routine searches the local TCPIP$ETC:IPNODES.DAT name file for IPv6 and
IPv4 addresses and the hosts name file for IPv4 addresses, if the addresses are
not found in the TCPIP$ETC:IPNODES.DAT file.

The getipnodebyaddr() routine dynamically allocates the hostent structure.
Use the freehostent() routine to free the allocated memory. (See Section C.3.

Errors

If the getipnodebyaddr() routine call fails, error_num is set to one of the
following the values:

• HOST_NOT_FOUND

The name you have used is not an official node name or alias; another type of
name server request may be successful.

• NO_ADDRESS

The server recognized the request and the name, but no address is available
for the name. Another type of name server request may be successful.

• NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

• TRY_AGAIN

A transient error occurred, for example, the server did not respond. A retry
at some later time may be successful.

C.3 freehostent Function
The freehostrent function returns hostent structures and dynamic storage to
the system. You should use this function to free hostent structures and storage
that were returned by getipnodebyname and getipnodebyaddr.

This function has the following syntax:

void freehostent(
struct hostent *ptr);

The ptr parameter is a pointer to the hostent structure to be freed.

Note

Do not use the freehostent function with hostent structures returned by
gethostbyname and gethostbyaddr.

Deprecated Library Functions C–5

	Compaq TCP/IP Services for OpenVMS Guide to IPv6
	Contents
	Preface
	Intended Audience
	Document Structure
	Reader’s Comments
	How to Order Additional Documentation
	Conventions

	1 What Is IPv6?
	1.1 Terminology
	1.2 Introduction to IPv6 Addresses
	1.2.1 Address Text Representation
	1.2.2 Types of Addresses
	1.2.3 Address Prefixes
	1.2.4 Address Autoconfiguration
	1.2.5 Address Resolution

	1.3 Address Assignment
	1.3.1 Aggregatable Global Unicast Addresses
	1.3.2 Aggregatable Testing Addresses

	1.4 IPv6 Environment

	2 Configuring IPv6
	2.1 Preparing for Configuration
	2.2 IPv6 System Configuration Examples
	2.2.1 Simple Host-to-Host Configuration
	2.2.2 Host-to-Host with Router Configuration
	2.2.3 IPv6 Network-to-IPv6 Network with Router Configuration
	2.2.4 Multiple IPv6 Networks and Multiple Routers Configuration
	2.2.5 Host-to-Host over Tunnel Configuration
	2.2.6 Host-to-Router over Tunnel Configuration
	2.2.7 IPv6 Network to IPv6 Network over Tunnel Configuration

	2.3 Configuring IPv6 Hosts and Routers
	2.3.1 Configuring an IPv6 Host
	2.3.2 onfiguring an IPv6 Router

	2.4 Postconfiguration Tasks
	2.4.1 Connecting to the 6bone Network
	2.4.2 Initializing a New Interface for IPv6
	2.4.3 Creating a Configured Tunnel
	2.4.4 Adding an Address to an Interface
	2.4.5 Deleting an Address from an Interface
	2.4.6 Adding or Deleting a Default Router
	2.4.7 Manually Adding a Route for an On-Link Prefix
	2.4.8 Configuring a Router
	2.4.9 Editing the Router Configuration File

	3 Configuring BIND
	3.1 IPv6 Server Guidelines
	3.2 Sample BIND Configuration Files
	3.3 Enabling Dynamic Updates to the DNS Database
	3.4 Local Hosts Database TCPIP$ETC:IPNODES.DAT
	3.5 Converting from BIND 4.9*

	4 Monitoring the Network
	4.1 Testing Access to Internet Network Hosts with the ping Command
	4.2 Displaying Network Statistics with the netstat Command
	4.3 Displaying a Datagram’s Route to a Network Host with the traceroute Command
	4.4 IPv6 Process Log Files

	5 Solving IPv6 Problems
	5.1 Using the Diagnostic Suggestions
	5.2 Getting Started
	5.3 Solving IPv6 Network Problems
	5.4 Solving IPv6 Host Problems
	5.4.1 IPv6 Process Is Not Started
	5.4.2 Host Is Unknown
	5.4.3 On-Link Node Is Not Reachable
	5.4.4 Off-Link Node Is Not Reachable
	5.4.5 Your Node Is Unreachable
	5.4.6 Connection Is Not Accepted
	5.4.7 Connection Terminates

	5.5 Solving IPv6 Router Problems
	5.5.1 IPv6 Process Is Not Running
	5.5.2 Host Is Unknown
	5.5.3 On-Link Node Is Unreachable
	5.5.4 Off-Link Node Is Unreachable
	5.5.5 On-Link Node Addresses Are Not Configured
	5.5.6 Router Does Not Forward Messages
	5.5.8 Connection Is Not Accepted
	5.5.9 Connection Terminates

	6 Application Interface to Sockets
	6.1 Socket Interface
	6.2 Interface Identification
	6.2.1 if_nametoindex Function
	6.2.2 if_indextoname Function
	6.2.3 if_nameindex Function
	6.2.4 if_freenameindex Function

	6.3 IPv6 Multicast Datagrams
	6.3.1 Sending IPv6 Multicast Datagrams
	6.3.2 Receiving IPv6 Multicast Datagrams

	6.4 Socket Options
	6.5 Library Functions
	6.5.1 Node Name to Address Translation Functions
	6.5.2 Address to Node Name Translation Functions
	6.5.3 Address Conversion Functions
	6.5.4 Address-Testing Macros

	6.6 Guidelines for Compiling and Linking IPv6 Applications

	7 Porting Applications
	7.1 Using AF_INET6 Sockets
	7.2 Name Changes
	7.3 Structure Changes
	7.3.1 in_addr Structure
	7.3.2 sockaddr Structure
	7.3.3 sockaddr_in Structure
	7.3.4 hostent Structure

	7.4 Function Call Changes
	7.4.1 gethostbyaddr Function Call
	7.4.2 gethostbyname Function Call
	7.4.3 inet_ntoa Function Call
	7.4.4 inet_addr Function Call

	7.5 Other Application Changes
	7.5.1 Comparing IP Addresses
	7.5.2 Comparing an IP Address to the Wildcard Address
	7.5.3 Using int Data Types to Hold IP Addresses
	7.5.4 Using Functions that Return IP Addresses
	7.5.5 Changing Socket Options

	7.6 Sample Client/Server Programs
	7.6.1 Programs Using AF_INET Sockets
	7.6.2 Programs Using AF_INET6 Sockets
	7.6.3 Sample Program Output

	A Supported IPv6 RFCs
	B IPv6 Extensions to Management Commands and IPv6 Processes
	B.1 IPv6 Extensions to Management Commands
	B.1.1 ifconfig Command
	B.1.2 iptunnel Command
	B.1.3 netstat Command
	B.1.4 traceroute Command

	B.2 IPv6 Processes
	B.2.1 TCPIP$ND6HOST
	B.2.2 TCPIP$IP6RTRD Process

	C Deprecated Library Functions
	C.1 getipnodebyname Function
	C.2 getipnodebyaddr Function
	C.3 freehostent Function

	Examples
	Example 2–1 Sample TCPIP$IP6RTRD.CONF File
	Example 3–1 Sample IPV6.DB File
	Example 3–2 Sample IPV6.REV File
	Example 3–3 Sample TCPIP$BIND.CONF_IPV6 File

	Figures
	Figure 1–1 Unicast Addresses
	Figure 1–2 64-Bit Prefix Plus 64-Bit Interface ID
	Figure 1–3 IPv4-Compatible IPv6 Address
	Figure 1–4 IPv4-Mapped IPv6 Address
	Figure 1–5 IPv6 Link-Local Unicast Address
	Figure 1–6 IPv6 Site-Local Unicast Address
	Figure 1–7 IPv6 Multicast Address
	Figure 1–8 Aggregatable Global Unicast Address Format
	Figure 1–9 Aggregatable Testing Address Format
	Figure 1–10 Host-to-Host Configuration with No Router
	Figure 1–11 Host-to-Host Configuration with Router
	Figure 1–12 IPv6 Network to IPv6 Network with Router Configuration
	Figure 1–13 Multiple IPv6 Networks and Multiple Routers Configuration
	Figure 1–14 Host-to-Host Configuration over Tunnel
	Figure 1–15 Host-to-Router Configuration over Tunnel
	Figure 1–16 IPv6 Network-to-IPv6 Network Configuration over Tunnel
	Figure 2–1 Configuration Worksheet
	Figure 2–2 Simple Host-to-Host Configuration
	Figure 2–3 Host-to-Host with Router Configuration
	Figure 2–4 IPv6 Network-to-IPv6 Network with Router Configuration
	Figure 2–5 Multiple IPv6 Networks and Multiple Routers Configuration
	Figure 2–6 Host-to-Host over Tunnel Configuration
	Figure 2–7 Host-to-Router over Tunnel Configuration
	Figure 2–8 Router Not Advertising a Global Address Prefix
	Figure 2–9 Router Advertising a Global Address Prefix
	Figure 2–10 Router A Not Advertising a Global Prefix on the Tunnel Link
	Figure 2–11 IPv6 Network to IPv6 Network over Tunnel Configuration
	Figure 7–1 Using AF_INET Socket for IPv4 Communications
	Figure 7–2 Using AF_INET6 Socket to Send IPv4 Communications
	Figure 7–3 Using AF_INET6 Socket to Receive IPv4 Communications
	Figure 7–4 Using AF_INET6 Socket for IPv6 Communications

	Tables
	Table 1 TCP/IP Services Documentation
	Table 1–1 Well-Known Multicast Addresses
	Table 1–2 IPv6 Address Types and Prefixes
	Table 6–1 ai_flags Member Values
	Table 6–2 Flag Bits
	Table 6–3 Summary of Address-Testing Macros
	Table 7–1 Name Changes
	Table B–1 RFC 2461 Interface Keywords and Values
	Table B–2 RFC 2461 Prefix Keywords
	Table B–3 RFC 2080 Prefix Keywords
	Table C–1 Node Name to Address Processing
	Table C–2 AI_ADDRCONFIG Flag
	Table C–3 AI_DEFAULT Flag

