
Learning
Clarion

CLARION 5

2 CLARION 5 LEARNING CLARION

COPYRIGHT 1994, 1995, 1996, 1997, 1998 by TopSpeed Corporation
All rights reserved.

This publication is protected by copyright and all rights are reserved by TopSpeed
Corporation. It may not, in whole or part, be copied, photocopied, reproduced, translated,
or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from TopSpeed Corporation.

This publication supports Clarion 5. It is possible that it may contain technical or
typographical errors. TopSpeed Corporation provides this publication “as is,” without
warranty of any kind, either expressed or implied.

TopSpeed Corporation
150 East Sample Road
Pompano Beach, Florida 33064
(954) 785-4555

Trademark Acknowledgements:
TopSpeed is a registered trademark of TopSpeed Corporation.
Clarion 4 is a trademark of TopSpeed Corporation.
Btrieve is a registered trademark of Pervasive Software.
Microsoft Windows and Visual Basic are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (0998)

TABLE OF CONTENTS 3

TABLE OF CONTENTS

INTRODUCTION 9
Welcome to Learning Clarion! 9

What You’ll Find in this Book .. 9

Documentation Conventions 10
Typeface Conventions: ... 10
Keyboard Conventions: .. 10

Anatomy of a Database 11
File Systems and File Drivers ... 12
Data Types .. 12
Sorting Data: Keys and Indexes ... 14
Ascending and Descending Sort Orders ... 15
Using Keys as Range Limits... 16
Relationships Between Files... 16
Database Summary ... 17

1 - PLANNING THE APPLICATION 19
Defining Application Tasks 19

Designing the Database 20
The Customer File .. 20
The Phones File .. 21
The Orders File ... 21
The Detail File .. 22
The Product File ... 22
Referential Integrity.. 22
The Complete Database Schematic .. 23
Application Interface .. 23
OK, What Did I Just Do?.. 24

2 - CREATING A DATA DICTIONARY 25
Tutorial Files... 25

Creating the Dictionary 26

4 CLARION 5 LEARNING CLARION

Copying Files From One Dictionary to Another 28
Copy the Customer File Definition .. 28
Copy the Phones File Definition .. 29

Relating the Files 30
Define the first side of the relationship .. 30
Define the other side of the relationship... 30
Set Referential Integrity Constraints .. 31

Pre-Defining Window Control Formats 32
Access the Field Properties dialog ... 32
Set Validity Checks ... 32
Specify a default window control ... 34
OK, What Did I Just Do?.. 34

3 - ADDING FILES AND FIELDS 35
Defining New Data Files 35

Create the Orders File ... 35
Name the Detail and Products Data Files ... 36

Defining the Fields 38
Define a Field Pool ... 38
Define the fields in the Orders File .. 40
Define the fields for the Detail File .. 43
Define the fields for the Products File .. 44
OK, What Did I Just Do?.. 46

4 - ADDING KEYS AND RELATIONS 47
Defining Keys for the Orders File 47

Create the Primary Key .. 48
Define a Foreign Key .. 49

Defining Keys for the Detail File 51
Define the First Foreign Key .. 51
Define the Second Foreign Key .. 52

Defining Keys for the Products File 53
Create the Primary Key .. 53
Define an Alphabetical Key .. 54

Defining File Relationships 55
Defining Relationships for the Orders File .. 55
Defining Relationships for the Detail File.. 57

TABLE OF CONTENTS 5

Defining Relationship-Dependent Validity Checks 59
Define the Validity Check for Order Records... 59
Define the Validity Check for Detail Records .. 60
OK, What Did I Just Do?.. 60

5 - IMPORTING EXISTING DATA 61
Data File Conversion 61

Importing a .CSV File Definition ... 61
Converting a Data File .. 63
OK, What Did I Just Do?.. 67

6 - STARTING THE APPLICATION 69
Using the Application Generator 69

Creating the .APP File .. 69
Creating the Main Procedure .. 70
Editing the Menu .. 72
Creating the SplashScreen Procedure... 76
Adding an Application Toolbar .. 76
Testing an Application under Development ... 82
Look at the Generated Source Code ... 83
OK, What Did I Just Do?.. 86

7 - CREATING A BROWSE 87
Creating a Browse Window 87

Creating the Customer Browse Window .. 87
Populating and Formatting a List Box Control .. 88
Adding the Tabs .. 93
Hiding the Buttons .. 94
Testing the Customer Browse ... 95
Setting the Sort Orders ... 96
Closing the Customer Browse .. 98
OK, What Did I Just Do?.. 98

8 - CREATING AN UPDATE FORM 99
Creating an Update Procedure 99

Add a “ToDo” procedure .. 99
Creating the Update Form Procedure ... 100
Populating the Fields .. 101
Moving and Aligning Fields ... 103

6 CLARION 5 LEARNING CLARION

Adding a BrowseBox Control Template... 107
Adding the BrowseUpdateButtons Control Template .. 110
OK, What Did I Just Do?.. 112

9 - COPYING PROCEDURES 113
The Products File Procedures 113

Copy the Procedures ... 113
Working with Embed Points ... 114
Modify the Browse ... 118
Creating the Form Procedure.. 122
OK, What Did I Just Do?.. 124

10 - CONTROL AND EXTENSION TEMPLATES 125
Creating the Procedure 125

Select the procedure type ... 125
Placing the BrowseBox Control Template ... 126
Adding the Browse Update Buttons Template ... 128
Placing the Second Browse List Box ... 129
Adding the Close Button Control Template ... 130
Make the window resizable .. 131
Set up a Reset Field ... 133
OK, What Did I Just Do?.. 133

11 - ADVANCED TOPICS 135
Set Up the UpdateOrder Form 135

Create the Orders file’s data entry Form .. 135
Placing the Detail File’s Control Templates ... 139

Making it all Work 145
Using the Formula Editor ... 145
Configuring Edit in Place ... 146
OK, What Did I Just Do?.. 157

12 - CREATING REPORTS 159
A Simple Customer List Report 159

Updating the Main Menu.. 159
Creating the Report... 160
Populating the Detail .. 162

An Invoice Report 165
Creating the Report... 165

TABLE OF CONTENTS 7

Populating the Page Form Band ... 167
Populating the Detail Band... 168
Adding Group Breaks ... 169
Populating the Group Header Band.. 171
Populating the Invoice Group Footer Band .. 174
Populating the Customer Group Footer Band .. 176
Adding a Formula ... 178
Adding a Record Filter ... 179

A Range Limited Report 181
Creating the Report... 181
Modify the new report .. 181

A Single Invoice Report 184
Creating the Report... 184
OK, What Did I Just Do?.. 187
What’s Next? .. 188

13 - CLARION LANGUAGE TUTORIAL 191
Clarion—the Programming Language 191

Event-driven Programming .. 191
Hello Windows ... 192
Hello Windows with Controls .. 197
Hello Windows with Event Handling ... 199
Adding a PROCEDURE ... 200
Adding a PROCEDURE ... 202
Moving Into the Real World—Adding a Menu .. 203
Really Moving Into the Real World—Adding a Browse and Form 205

ABC Template Generated OOP Code 220
Quick Start an application .. 220
Look at the Program Source ... 220
Where to Go From Here ... 227

INDEX 229

8 CLARION 5 LEARNING CLARION

INTRODUCTION 9

INTRODUCTION

Welcome to Learning Clarion!
The Getting Started book briefly introduced you to Clarion programming at
its highest level. Learning Clarion now teaches you how you can use all the
rest of the tools Clarion provides to create real-world applications. It
contains two tutorials, on two very different levels:

◆ An Application Generator tutorial which familiarizes you with
all the tools in the Clarion development environment.

◆ A Clarion Language tutorial which introduces the Clarion
programming language and familiarizes you with the type of
code generated for you by the development environment.

What You’ll Find in this Book

Application Generator Tutorial
Chapters One through Twelve: introduce all the main Clarion
development environment tools. It starts at the application planning
stage, walks you through creating the data dictionary with the Dictionary
Editor, then walks you through creating a complete application with the
Application Generator. By the end of this tutorial you’ll have created a
complete order-entry application.

You’ll use the Application Generator and work with Procedure, Control,
and Code templates to produce an Order Entry application. You’ll work
with the Window Formatter to design windows. You’ll work with the
Report Formatter to design reports. You’ll use the Text Editor to embed
Clarion language source code into the code generated by the templates.

Clarion Language Tutorial
Chapter Thirteen: introduces the Clarion programming language at the
hand-coding level. It starts at Hello World, then walks you through
creating simple forms of the most typical types of procedures used in
Clarion applications, all while explaining the functionality of the hand-
code you’re writing and relating it to the type of code you’ll see
generated for you by the Application Generator.

10 CLARION 5 LEARNING CLARION

Documentation Conventions

Typeface Conventions:

Italics Indicates what to type at the keyboard, such as Enter
This.

SMALL CAPS Indicates keystrokes to enter at the keyboard, such
as ENTER or ESCAPE, or to CLICK the mouse.

Boldface Indicates commands or options from a menu, or text
in a dialog window. Note: this style can also utilize a
different typeface to match the helvetica bold face
which Windows uses as the system font.

LETTER GOTHIC Used for diagrams, source code listings, to annotate
examples, and for examples of the usage of source
statements.

Keyboard Conventions:

F1 Indicates a single keystroke. In this case, press and
release the F1 key.

ALT+X Indicates a combination of keystrokes. In this case,
hold down the ALT key and press the X key, then
release both keys.

INTRODUCTION 11

Anatomy of a Database
This section briefly describes the fundamentals of database design. It is
meant only to provide an overview of the subject for those who are not
already thoroughly familiar with standard database design concepts and
issues. Experienced developers may want to move right on to the next
chapter and skip this section.

Definitions

A database is a collection of information (data) in a system of files, records,
and fields. The database is maintained by one or more computer programs or
applications.

The basic unit of data storage is a field. A field is a storage place for
information of a similar type. For example, one field might store a name and
another field might hold a telephone number.

A group of different fields that are logically related make up a record. A
record contains all the information related to one subject. For example, all
the fields containing information concerning one student (name, address,
telephone number, student number, etc.) makes up one student’s record. This
would be similar to a file folder a school might keep for each student.

A collection of logically related records make up a file. Using the same
example, a collection of all students’ records makes up the student body file.
This would be similar to the file cabinets where students’ folders are kept.

Another way of looking at this is as a table or spreadsheet:

In this format, the entire table is a file, each row is a record, and columns
represent fields.

A database is a collection of related files (tables). This is similar to a bank
of file cabinets where the entire school records are kept. One file cabinet
might hold the files with students’ personal data, another with class
enrollment information, and another with faculty information.

12 CLARION 5 LEARNING CLARION

A database is a collection of tables with defined relationships between them.
Effective database design breaks the data into related files that are joined
together through linking fields. This will be covered in detail later in this
section.

Summary:

One or more fields combine to form a record.

One or more records combine to form a file.

A collection of related files is a database.

File Systems and File Drivers

There are several data file formats used on PCs. These are the actual physical
storage formats written to disk by programs that maintain the data files.
Using TopSpeed’s file driver technology, Clarion supports many of them.
File drivers enable Clarion programs to read these different file formats.

The TopSpeed, Clarion, ASCII, BASIC, and DOS file drivers come with
Clarion’ Standard Edition. The Professional and Enterprise Editions also
include Btrieve, ODBC, Clipper, dBase III & IV, and FoxPro file drivers.
When you need to read data from another file system, you can add new file
drivers to the Professional and Enterprise Editions. Call TopSpeed’s Sales
department at (800) 354-5444 or (954) 785-4555 to inquire about the
availability of any specific file driver you need.

Each file system has its own idiosyncrasies and limitations. See the Database
Drivers Appendix in the User’s Guide for more information.

Data Types

Fields can store many different types of data, but each individual field may
hold only one type. When a field is defined, its data type is specified. This
enables it to efficiently store that type of data. For example, to store a
number from 0 to 100, using a field defined as a single BYTE takes less
space than one defined as a decimal number field (a byte can hold an
unsigned whole number between 0 and 255).

Clarion supports the following data types (all fully documented in Chapter 3
of the Language Reference):

Alphanumeric

STRING A field that holds a specific number of alphanumeric and
other ASCII characters.

INTRODUCTION 13

PSTRING A field that holds a character string with a leading length
byte containing the number of bytes in the string. This is
the data type used by the Pascal language and the
“LSTRING” data type of the Btrieve Record Manager.

CSTRING A field that holds a character string terminated by a null
character—ASCII zero (0). This is the data type used in
the “C” language and the “ZSTRING” data type of the
Btrieve Record Manager.

Integers (whole numbers)

BYTE A one-byte field that holds an unsigned (positive) integer
from 0 to 255.

SHORT A two-byte field that holds a signed integer from -32,768
to 32,767.

USHORT A two-byte field that holds unsigned (positive) integer
from 0 to 65,535.

LONG A four-byte field that holds a signed integer from
 -2,147,483,648 to 2,147,483,647.

ULONG A four-byte field that holds an unsigned (positive)
integer from 0 to 4,294,967,295.

Floating Point (Real) Numbers (numbers with fractional portion)

REAL A field that holds an eight-byte signed floating point
number with 15 significant digits.

SREAL A field that holds a four-byte signed floating point
number with 6 significant digits. An SREAL field uses
the Intel 8087 short real (single precision) format.

BFLOAT8 A variation on the REAL data type, a BFLOAT8 field
holds an eight-byte signed floating point number using
the Microsoft BASIC (double precision) format.

BFLOAT4 A variation on the SREAL data type, a BFLOAT4 field
holds a four-byte signed floating point number using the
Microsoft BASIC (single precision) format.

Packed Decimal Numbers

DECIMAL A field that holds a signed packed decimal value from
-9,999,999,999,999,999,999,999,999,999,999 to
9,999,999,999,999,999,999,999,999,999,999.

PDECIMAL A field that holds a signed decimal number in the
Btrieve and IBM/EBCDIC packed decimal type of
format. The only difference between a DECIMAL and a
PDECIMAL is the place it stores the sign.

14 CLARION 5 LEARNING CLARION

Other Data Types

DATE A four-byte field that holds a date variable in Btrieve
Record Manager format.

TIME A four-byte field that holds a time variable in Btrieve
Record Manager format.

GROUP A single logical field containing multiple component
actual data fields. For example, a GROUP field called
PhoneNumber could contain two fields: AreaCode and
Phone. A Group Field gives you the option of using the
entire group or any of its components.

PICTURE Although PICTURE is not a data type, when selected,
PICTURE declares a STRING data type with a picture
token (such as @P###P) defining the number of charac-
ters in the string. The picture token used for the field
declaration is entered in the Record Picture field. This is
useful for data fields whose storage picture and display
picture must be different.

Sorting Data: Keys and Indexes

One of the most powerful aspects of a computerized database is the ability to
sort data in many different ways. To do this manually requires multiple
copies of record forms, many file folders, and many file cabinets. It would
also require a lot of time spent filing each copy in different places for each
sort order.

Sorting computer records in a database merely requires the definition of keys
or indexes. Keys and indexes declare sort orders other than the physical order
of the records within the data file. In some file systems the keys are kept in
separate disk files, in others they are contained within the same file as the
data. TopSpeed’s file driver technology handles these differences
transparently.

Keys and indexes are functionally equivalent. The only difference is the way
they are maintained by an application.

• A key is dynamically maintained by the application. Every time
a record is added, modified, or deleted, the sort sequence is
updated, if necessary. Keys are useful for frequently used sort-
orders.

• An index is not dynamically maintained, it is only built when
needed. Indexes are useful to create sort sequences that are
infrequently used, such as month-end or year-end processes.

Using the student file example discussed earlier, suppose you wanted to sort
the students’ records two ways: by name alphabetically, and by name within
each major. This produces two alternate sorts.

INTRODUCTION 15

This example uses a one-component key on the student’s name.

The next example has two components in the key: major and student name.
A key can contain one or more fields, allowing sorts within sorts.

Ascending and Descending Sort Orders

Some file systems support both ascending and descending order for keys or
components of keys (for example, the TopSpeed file system). Other file
systems only support ascending order, which means the data can only be
sorted from lowest to highest (for example, the Clarion file system).

The next example has two components in the key: Graduation Year
(descending), and student name (ascending).

16 CLARION 5 LEARNING CLARION

Using Keys as Range Limits

Suppose you want to create a class enrollment report from a database
containing records for the past fifteen years. All you are interested in (for
purposes of this report) is the last three years. You can dramatically reduce
processing time if you use a subset of the data file that only contains the
records from the last three years. It takes two steps to accomplish this:

• First, define a key to sort the data by the date of each course.

• Next, define the range limits you are interested in. A range limit
specifies a subset of the entire file to process. Only those records
that fall within the range limits are considered.

In this example, only one-fifth of the records are processed (assuming that
each year’s course offerings are the same). Reducing the number of records
to consider by 80% reduces processing time by the same amount.

Relationships Between Files

One goal of relational database design is reducing data redundancy. The
basic rule is that data should be located in only one place. This is beneficial
in two ways. First, it reduces storage space requirements. Second, it makes
the database easier to maintain. To reach this goal, data files are broken up
into separate, related files through a process called data normalization.

The first step is to move any repeating groups into separate files. For
example, if a student could take a maximum of six classes, you could design
the student file to contain six class fields (class1, class2, class3, etc.). But not
all of these fields would be used in each record. If one student is taking six
courses, all would be used, but if another student only took one class, there
would be five empty fields in his record. For that reason, the class fields are
moved into a separate file, eliminating the need to reserve space for empty
fields. This creates a One to Many relationship (One student takes Many
classes) between the student file and the classes file.

The next step is to move redundant data into separate files. Every field in the
student file must be dependant on the primary key (Student Number). The
student’s name, address, and phone number remain in the student file. But
the student’s major description could be moved to a separate file. This
eliminates the need to repeat the Major’s Description for each student with
that Major. To do this, add a Major number field to the student file and the
Majors file. This creates a Many to One relationship (Many students have
One major) between the student file and the majors file.

Once data storage is “normalized,” related information is linked by ensuring
a field in one file is identical to a field in the other. These common fields
create the links between related files. A linking field could be a student

INTRODUCTION 17

number, a course code, or a classroom number. Any field (or group of fields)
that uniquely identifies a record in the primary file can be used as a link.

Examples of these relations can be found in a school database:

• One teacher teaches many classes (One-to-Many).

• Many students would have one major (Many-to-One).

Database Summary

• A database is a collection of information (data) in a system of
fields, records, and files.

• Fields can store many different types of data, but each individual
field is specified to hold only one type.

• Each data item should be stored in only one place.

• One or more fields makes up a record. One or more records
make up a file. A collection of related files make up a database.

• Clarion programs can access many different file systems through
the use of file drivers.

• Keys and indexes declare sort orders other than the physical
order of the records within the data file, and can contain more
than one field, allowing sorts within sorts.

• Range Limits enable you to process a subset of records, which
reduces processing time.

• Files are related through common fields containing identical
data, which allows you to eliminate redundant data.

18 CLARION 5 LEARNING CLARION

LESSON 1 PLANNING THE APPLICATION 19

1 - PLANNING THE APPLICATION

As a general rule, every minute you spend planning your application
beforehand saves you ten later. This chapter informally describes the
planning process for the application you’ll create in the subsequent chapters.
In the real world, you’ll probably create a bona fide functional specification
for your important applications. This informal description defines:

◆ The tasks the application performs.

◆ The data the application maintains, and how it stores it.

As a starting point, this Application Generator tutorial application uses the
data dictionary from the applications you created in the Getting Started
manual. It extends the concept to a simple Order/Entry system, using the
data dictionary for keeping track of customers.

Defining Application Tasks
This application will maintain the customer and billing files for a
manufacturing company. The first task in planning just what the application
will do is to assess what the company expects it to do.

For the purposes of this tutorial, the application we’ll create is a simple order
entry system. Customers typically phone in orders for one or more products
at a time. A salesperson takes the order. The billing department prints out an
invoice that night.

The application therefore must provide:

◆ Entry dialogs for taking the order, or modifying the data in it later.

◆ Access to the customer list from within the order entry dialogs.
The customer list is the one you created with the Quick Start
Wizard, stored in the Customer file.

◆ Access to the list of part numbers (items) that the company
manufactures, from the order entry dialogs.

◆ Browse windows for listing sales transactions.

◆ Procedures that will maintain the Products list and Customer
information.

◆ Printed reports.

1

20 CLARION 5 LEARNING CLARION

Designing the Database
The first task in planning the file structure is to assess what data the
application needs, and how to store it with the minimum amount of
duplication.

Good database management maintains separate data files (also called
“tables”) for each “entity” or group of discrete data elements. The data
“entities” this application maintains are:

Customer Customer name and address data that changes only
when a customer moves. Created in the Quick Start
tutorial, along with its related Phones file.

Orders Basic information needed for assembling the data
needed to print an invoice. It “looks up” information
from the other files, such as the customer name and
address. When a sales person takes a new order, they
add a record to this file.

Detail Product, price, and quantity ordered for an item on a
given invoice: the variable information for each
order. Though this duplicates price information in
the Products file, you must maintain the price at the
time of the sale here. Otherwise, when you increase
the price in the Products file, it would cause the
balance in the Detail file to change.

Products Information on the products sold by the company,
including product number, description and price.
This data changes only when a price changes or a
new product is added.

The Customer File

The Customer file stores “constant” data such as customer names and
addresses. It’s most efficient to store this data in one place, allowing for a
single update when the information changes. This also saves space by
eliminating redundant customer information in the Orders file; otherwise, if
there were 1000 orders for company XYZ, the address information would be
repeated 1000 times. Reducing storage requirements by storing the data only
once is called normalization.

The customer data requires a field to uniquely identify the customer. The
company name is unsuitable because there could be duplicates. There may
be, for example, multiple records for a customer called “Widget Depot,” if it
has multiple locations. The Quick Start application already specified that the

LESSON 1 PLANNING THE APPLICATION 21

CustNumber field is an auto-number key which automatically creates and
stores unique customer numbers.

The CustNumber field serves as the primary key for the data file. Any other
data files which are related to the Customer file must declare the
CustNumber field as a foreign key. A primary key is a field, or combination
of fields, that uniquely identifies each record in a data file. A foreign key is a
field, or combination of fields, in one file whose value must match a primary
key’s value in another related file.

Because there may be many orders for each customer number, the
relationship between the Customer file and the Orders file will be a one to
many (1:Many) relationship. We say the customer data file is the parent file,
and the Orders data file is the child file.

The Phones File

The Phones file stores telephone numbers—each customer could have
several. Each record includes a CustNumber field to relate back to the
Customer file.

The Phones file also includes a text field in which we can indicate whether
the phone number is an office, fax, mobile or home number. Using the data
dictionary, we’ll specify that the control for entering data for this field
should be a drop-down list with the choices already loaded.

The Orders File

The Orders data file gathers information for each sales transaction from all
the other data files (such as the customer data). Because much of the basic
data in this file prints in the “header” area of the invoice, this is sometimes
called the Order Header.

Every sales transaction requires one record in the Orders file. The record
relates to the customer information by referencing the unique customer
number. Because some order records may reference one product, and others
may reference ten, you’ll create a separate Detail file which relates back to a
unique order number. This creates a one to many relationship, with the
Orders file as parent and Detail as child. The actual products ordered are
identified by their product codes, in the Detail file.

The Orders record thus holds a customer number to relate back to the
customer data (the foreign key), and a unique order number to relate to the
Detail. You’ll create a multi-component primary key on the two fields, so
that you can easily create a browse sorted by customer and invoice number.

22 CLARION 5 LEARNING CLARION

The Detail File

The Detail file stores the products ordered by their product codes (a foreign
key into the Product file), their individual prices, the quantity of each, and
the tax rate. An additional field holds an invoice number, which relates back
to the Orders file in a many to one relationship.

The Detail file duplicates the price information with the fields in the product
file; this is because prices may change. It’s important to store the price field
within the detail file record because if the price increases in six months,
today’s paid in full invoice would reflect a balance due.

The Product File

The Product file stores unique product numbers, descriptions, and prices.
When the sales person looks up a product by name, the application inserts
the product number into the Detail record. The product code is the primary
key—no two items can have the same code, and every product must have a
code. An additional field contains the tax rate for the product.

Referential Integrity

Referential Integrity refers to the process of checking all updates to the key
field in a given file, to ensure that the validity of parent-child relationships is
correctly maintained. It also refers to ensuring that all child file records
always have associated parent records so that there are no “orphan” records
in the database.

Because the data for a given transaction resides across several files, this
application must enforce referential integrity. This is critical, yet many
database application development tools require you to hand code procedures
to enforce this. The Application Generator’s templates implement this
automatically in your generated source code when you select a few options
in the Data Dictionary.

It is essential that the application not allow an update to a record that leaves a
blank or duplicate value in a primary key field. For example, we need to
restrict the ability of the end user to update a record in a way that could
cause a duplicate Customer number. If two different companies shared a
duplicate Customer number, you could send a bill to the wrong company.

LESSON 1 PLANNING THE APPLICATION 23

The Complete Database Schematic

The schematic below provides an overview of the entire database. If you
look at it from the point of view of the sales agent taking a phone order, the
Orders file records who’s ordering, the Detail stores what they’re ordering,
and the Customer and Product files store constant information about the
customers and products.

Customers

CustNumber

FIrstName

LastName

Company

Address

City

State

Zip

Phone

CustNumber

Area

Phone

Description

Orders
CustNumber

OrderNumber

InvAmount

OrderDate

OrderNote

Detail

OrderNumber

ProdNumber

Quantity

ProdAmount

TaxRate

Product

ProdNumber

ProdDesc

ProdAmount

TaxRate

The item code looks up the description and price. The customer code looks
up the customer’s name and address. Other data, such as the transaction date,
fill in automatically (by looking up the system date, for example).

Finally, the tutorial will create a brand new data dictionary, and you will
copy and paste the files that Quick Start defined for you into the new
dictionary.

As for the actual application you create, because the tutorial is a teaching
tool more concerned with showing what Clarion can do for you, it won’t
create a full-scale order entry system. However, you will find that some parts
of the application will be very “showy,” so that you can quickly learn how to
do equivalent procedures in your applications.

Application Interface

The next major task before coding is to plan the user interface. For a
business application like this, it’s crucial that a salesperson quickly locate the
data they need, so that they can record the sale and move on to the next
phone call. Therefore, the application should put all the important data “up
front” by default, and no entry or maintenance dialog should be more than a
button or menu command away.

Additionally, the company uses many other Windows applications; therefore,
it’s especially important that the application have a standard windows “look
and feel.” End users learn a familiar interface more quickly.

To implement the tasks the application must execute in a consistent manner
with our guidelines, we can plan for the items listed below. Though the

24 CLARION 5 LEARNING CLARION

following is no substitute for a real program spec, it should suit us for
Tutorial purposes.

◆ Because the application will handle the maintenance for the
customer, item, and billings files on different forms, the Multiple
Document Interface (MDI) is necessary.

◆ The application should have a toolbar with buttons to load forms
and browse windows, and to control the browsing behavior.

◆ To maintain a consistent “look and feel,” the main menu choices
will be File, Edit, View, Window, and Help. The File menu
accesses the printing and exit procedures. The Toolbar buttons call
the form dialogs for editing a current record (if highlighted in a
browse) or adding/deleting records, and for browsing through the
files. The View menu calls the procedures for browsing data files.
Window and Help perform standard actions.

◆ When adding new orders, the sales people should be able to pick
customers and products from scrolling lists. Pertinent data in the
order dialog—addresses, item descriptions and prices—should
automatically “fill in” as appropriate.

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You defined the tasks the Application must accomplish.

♦ You designed the database that will allow the application to
accomplish those tasks.

♦ You specified the user interface the application will use.

Now that the application description is fairly complete, we’re ready to begin
work. The first step is to create the data dictionary.

LESSON 2 CREATING A DATA DICTIONARY 25

2 - CREATING A DATA DICTIONARY

This chapter teaches you how to:

◆ Create a new data dictionary.

◆ Copy and customize file definitions from the Quick Start data
dictionary to the new one.

◆ Relate the files and specify Referential Integrity constraints.

◆ Pre-format window controls for the fields.

This tutorial assumes that you have completed the Quick Start Tutorial
in the Getting Started manual.

Tutorial Files

We recommend that you complete the entire tutorial, especially if the
Clarion development environment is brand new to you (and even if you’ve
used previous releases of Clarion). As you’ve already seen from the Quick
Start tutorial in Getting Started, Clarion’s template-driven Application
Generator approach to programming is very different from other
development environments for 3GL and 4GL languages. If you’ll thoroughly
immerse yourself in this tutorial, you will get the most out of your new tool.

The completed tutorial files reside in the \CLARION5\EXAMPLES\TUTOR
directory. We provide these so you can see the end result of the tutorial and
compare your application. There should only be cosmetic diferences.

If you’re already an experienced Clarion programmer, you may want to just
examine the completed tutorial files rather than step through the tutorial
itself. However, we do recommend that you at least read through this tutorial,
since there are methods of working in the development environment that the
tutorial demonstrates that may not be obvious just by “plunging in” and
working with the tools—this tutorial “shows off” some features of the
development environment that may not be readily obvious at first glance.

NOTE: Wherever there are multiple ways to accomplish a single task,
this tutorial will expose you to several of them to demonstrate
the flexibility of the Clarion development environment.

2

26 CLARION 5 LEARNING CLARION

Creating the Dictionary
Whenever you create a new application, you first define the data dictionary
(.DCT file). From the data dictionary, the Application Generator obtains all
its information about the data files your application uses, their relationships
to one another, plus additional information such as predefined formatting for
controls.

As a general rule, the more forethought and work you put into designing
your data dictionary, the more Clarion’s template-driven Application
Generator can do for you. And, the more work the Application Generator
does for you, the less you have to do yourself!

When you ran the Quick Start Wizard, though you didn’t actually use the
Dictionary Editor, you just defined the data file. This chapter introduces the
Dictionary Editor.

Starting Point:
You should have the Clarion development environment open
and the Pick dialog closed.

Fill in the name of the new data dictionary

1. Choose File ➤ New from the menu.

2. CLICK on the Dictionary selection.

The New dialog appears.

Name the new dictionary file

1. Select the /CLARION5/TUTORIAL directory.

2. Type TUTORIAL in the File Name field.

LESSON 2 CREATING A DATA DICTIONARY 27

Clarion appends the file extension; TUTORIAL.DCT is the full name for
the dictionary file. You can use long filenames if you’re using a 32-bit
operating system (Windows 95 or NT). This tutorial does not use long
filenames so it is valid for all users, including those using Windows 3.x.

3. Press the Save button to create the file.

This creates an empty dictionary file. The caption bar shows the file
name.

Specify a description for the dictionary

1. Press the Dictionary Properties button.

The Dictionary Properties dialog appears.

2. Select the Comments tab then type Tutorial Dictionary in the text field.

The Comments tab allows you to write free form text notes regarding the
dictionary. It’s optional, but extremely useful for programmers who may
have to return to a project for maintenance after an interval of months.

This dialog also provides a Password button, which allows you to prevent
others from using this dictionary. There’s no need to fill it in for the
tutorial, but it’s a useful feature to keep in mind.

3. Close the Dictionary Properties dialog by pressing the OK button.

28 CLARION 5 LEARNING CLARION

Copying Files From One Dictionary to Another
You can use the standard Windows copy and paste commands to copy file
definitions from another dictionary (or to copy fields from one file to
another). In other words, once you’ve defined it once, why bother to re-
define it when you can just copy what you’ve already done!

Copy the Customer File Definition

Open the other data dictionary, select a file, and copy it

1. Choose File ➤ Pick from the menu then select the Dictionary tab.

2. Select the QWKTUTOR.DCT file from the file list, and press the Select
button.

Another Dictionary dialog opens, containing the file definitions from the
Quick Start application. Move it and you can see that both .DCT files are
open.

3. Select the Customer file from the Files list.

4. Choose Edit ➤ Copy (or press CTRL+C).

5. CLICK on the TUTORIAL.DCT Dictionary dialog.

This makes the Tutorial dictionary the active dictionary.

6. Choose Edit ➤ Paste (or press CTRL+V).

LESSON 2 CREATING A DATA DICTIONARY 29

The Edit File Properties dialog appears.

Not only does this operation copy the file definition; it copies the fields
and keys as well.

7. Press the OK button to close the Edit File Properties dialog.

Copy the Phones File Definition

Now use the copy and paste commands to copy the other file definition.

Select the file and copy it

1. CLICK on the QWKTUTOR.DCT Dictionary dialog.

2. Select the Phones file from the Files list.

3. Choose Edit ➤ Copy (or press CTRL+C).

4. Press CTRL+F6, or CLICK on the TUTORIAL.DCT Dictionary dialog.

This makes the Tutorial dictionary the active dictionary.

5. Choose Edit ➤ Paste (or press CTRL+V).

The Edit File Properties dialog appears.

6. Press the OK button to close the Edit File Properties dialog.

Close the Quick Start dictionary file

1. CLICK on the QWKTUTOR.DCT Dictionary dialog.

2. Press the Close button, or choose File ➤ Close .

30 CLARION 5 LEARNING CLARION

Relating the Files
You can copy file definitions (including their keys), but Clarion cannot copy
the file relationships from other dictionaries. Therefore, you must re-define
the relationship for these two files.

Define the first side of the relationship

We’ll define this relationship differently than we did in the Quick Start
Tutorial in Getting Started—from the Many (Child) side instead of the One
(Parent) side, just to show you that we can.

1. Highlight the Phones file then press the Add Relation button.

The New Relationship Properties dialog appears. Because the last file selected
was the Phones file, we’ll set up the relationship from its perspective.

Each Customer can have multiple phones, so Customer is the parent in a
parent-child relationship. Therefore, from Phones file’s perspective, it’s
a MANY:1 relationship.

2. Choose MANY:1 from the Type dropdown list in the Relationship for Phones
group box.

3. Choose KeyCustNumber from the Foreign Key dropdown list.

This is the key that matches a primary key in the Customers file;
therefore, it’s a foreign key.

Define the other side of the relationship

1. Choose Customer from the Related File dropdown list in the Parent group
box.

2. Choose KeyCustNumber from the Primary Key dropdown list.

In the parent-child relationship, the foreign key in the child must relate
to a primary key in the parent. See Anatomy of a Database in Chapter 4
of this book, and the Database Design article in the Programmer’s
Guide, for more information on relational database theory.

3. Press the Map by Name button to link the fields.

You can use this button because you named the linking fields the same in
both files. This is a very good practice to make a habit of, since it makes
application maintenance much easier over the long term. When you
come back to make changes to a project that you completed a while ago,
it is much easier to recognize the linking fields if they are named the
same on both sides of the releationship.

LESSON 2 CREATING A DATA DICTIONARY 31

Set Referential Integrity Constraints

By setting Referential Integrity constraints, you can specify how the
Application Generator writes the source code that handles what happens if
an end user attempts to modify a value in a primary key, or attempts to delete
a parent that has children. If you don’t set constraints, an end user can
compromise the integrity of the database by creating “orphan” records one of
two ways: by deleting a parent with children, or changing the parent’s
linking field value. In applications generated form Clarion’s Application
Builder Class templates, the actual code required to maintain your
Referential Integrity is built into Application Builder Class (ABC) library.

For the tutorial, specify that the application should update the foreign key
record, if the primary key field value is changed. Also, specify that it should
not allow the user to delete a parent with children.

1. In the Referential Integrity Constraints group box, choose Cascade from the On
Update dropdown list.

Cascading a change means that the application extends the change and
updates the foreign key (child file) field, for all the child file records
related to that one parent file record.

2. Choose Restrict from the On Delete dropdown list.

Restricting a delete means that the application does not allow deleting a
parent with children (the user must first delete all the children).

3. Press OK to close the New Relationship Properties dialog.

At this point, your Dictionary dialog looks like this:

Look at the small arrows to the left of the related file name in the Related
Files list. It indicates the nature of the relationship between the two files.
Two angle brackets (>> or <<) point to the many side from the one side. One
angle bracket (> or <) points to the one side from the many side. Therefore,
Phones <<-> Customers indicates Many phones file records can be related
to One customer file record.

Save Your Work

It is a good habit to save your work frequently while developing your
applications (power outages come without any prior notice). To do so,
choose File ➤ Save, or press the Save button on the tool bar. This writes the
dictionary file to disk.

32 CLARION 5 LEARNING CLARION

Pre-Defining Window Control Formats
Within the data dictionary, you can specify the default properties of the
window controls which will update the fields you define. You can also
specify certain Data Integrity rules by setting Validity Checks and the field’s
initial value. These options are key factors in making the Application
Generator do much of your work for you!

Access the Field Properties dialog

1. Highlight the Customer file in the Files list.

2. Press the Fields/Keys... button.

The Field/Key Definition dialog allows you to edit the properties for any field
or key in the file.

3. Select the State field, and press the Properties button.

The Edit Field Properties dialog appears, showing the options Quick Start
filled in for this field.

Set Validity Checks

1. Select the Validity Checks tab.

The Validity Checks tab allows you to set numeric ranges for number fields,
specify that a field value must match another field in a related value,
must be true or false, and in this case, that the field value must be in a list
you specify in this dialog.

2. Select the Must be in List radio button.

3. Type the following in the Choices box:

AL|MS|FL|GA|LA|SC

A vertical bar (|) must separate each choice.

LESSON 2 CREATING A DATA DICTIONARY 33

This defines the actual list of allowable choices. In this case, the
dictionary specifies that only the state abbreviations for these six
southern states of the United States is acceptable. You will specify that
the default control for this field is a drop down list.

Set a default value

1. Select the Attributes tab.

2. Type ‘FL’ in the Initial Value field (including the single-quote marks).

This specifies that anytime the control appears, its default value will be
“FL.” Initial values can be time savers for the end user; in this case, if
most customers were located in “FL,” it saves picking it from the list
each time a new customer has to be added. The single-quote marks are
necessary because you can also name a variable or function as the initial
value of a field in a data file (be aware that there are slightly different
rules for initial values of memory variables). In this case, the initial value
is a string constant, as identified by the single quote marks around it.

34 CLARION 5 LEARNING CLARION

Specify a default window control

1. Select the Window tab.

When you specify a Must be in List option, the default window control for
the field is an OPTION structure with RADIO buttons. These appear by
default in the Window Controls list.

2. Select Drop List from the Control Type list box.

The Window Controls list now updates to show only a PROMPT and a LIST
control with a DROP attribute.

3. Press the OK button to close the Edit Field Properties dialog.

4. Press the Close button to close the Field/Key Definition dialog.

5. Choose File ➤ Save, or press the Save button on the tool bar.

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You created a new, empty data dictionary (.DCT).

♦ You copied existing file definitions from one data dictionary to
another (the easy way to work—never re-invent the wheel).

♦ You defined the relationship and Referential integrity constraints
between the files.

♦ You pre-defined the window control format, data validity check,
and initial value for one of the fields in the database.

In the next chapter, you’ll learn how to add a file to the data dictionary,
starting totally “from scratch”—without using Quick Load. You’ll see just
how quick and easy it is to do even without using a wizard.

LESSON 3 ADDING FILES AND FIELDS 35

3 - ADDING FILES AND FIELDS

Defining New Data Files
After copying and modifying the two files defined in the Quick Start
application, you’re ready to add a new file from scratch.

Starting Point:
The TUTORIAL.DCT file should be open.

Create the Orders File

Specify the label, prefix, and description

1. In the Dictionary dialog, press the Add File button.

2. When the Add File dialog appears asking whether you wish to use Quick
Load, press the No button.

The New File Properties dialog appears.

The Usage radio buttons allow you to specify whether you’re creating a
data File definition, Global variable definitions, or a Pool of field definitions
from which to derive new fields (we’ll discuss deriving a little later). By
choosing the File radio button, Clarion uses the information you fill in
here for the FILE data structure declaration (see the Language
Reference).

3. Type Orders in the Name field, then press TAB.

The Name field only accepts a valid Clarion label, which uniquely
identifies the data structure. A label may only contain letters, numbers,
and the underscore(_) or colon (:) characters, and must begin with a
letter or underscore. Executable code statements use this label to refer to
the file.

3

36 CLARION 5 LEARNING CLARION

After pressing TAB, “ORD” automatically appears in the Prefix field. The
prefix is one way to uniquely identify fields of the same name in
different data files. For example, ORD:CustNumber is the CustNumber
field in the Orders file while CUS:CustNumber is the CustNumber field
in the Customers file. You can also uniquely identify fields by using
Field Qualification syntax (discussed in the Language Reference).

4. Type Order header file in the Description field.

This description appears next to the data file label in the Dictionary
dialog list. If you select the Comments tab, you can type in a long text
description. A description of what the file is for can be very helpful for
when you return to the file for maintenance programming.

Choose the file driver

1. Choose TOPSPEED from the File Driver dropdown list.

This declares the file format for the data file as the TopSpeed file format.
This is the newer of the two proprietary file formats that TopSpeed
Corporation has developed for use in Clarion (the older is “Clarion”).

The Programmer’s Guide documents all the available file drivers and
provides information about what data types each one supports, plus other
useful information such as the default file extensions for data and/or
index files. It also provides tips and tricks for choosing the right driver
for the job, such as which drivers are best when your application must
handle a very large database which is frequently updated, or which
drivers are best when the quickest query time is the foremost concern.

2. Press the OK button.

You can accept the defaults for all other options in the dialog. The dialog
box closes, and the Dictionary dialog lists the Orders file, with “Order
header file” listed next to it.

Name the Detail and Products Data Files

Create the Detail file

1. Press the Add File button in the Dictionary dialog.

Choose No when asked if you wish to use Quick Load.

2. Type Detail in the Name field.

3. Type Order detail file in the Description field.

4. Type DTL in the Prefix field.

By customizing the default prefix (changing it from “DET” TO “DTL”),
you can make your code more readable. Three characters is the
convention for file prefixes, but you are not limited to that.

LESSON 3 ADDING FILES AND FIELDS 37

5. Choose TOPSPEED from the File Driver dropdown list.

Accept the defaults for all other options in the dialog.

6. Press the OK button.

Create the Products file

1. Press the Add File button (don’t use Quick Load).

2. Type Products in the Name field.

3. Type Products for sale in the Description field.

4. Type PRD in the Prefix field.

5. Choose TOPSPEED from the File Driver dropdown list.

6. Press the OK button.

Save your work

1. Choose File ➤ Save, or press the Save button on the tool bar.

At this point, your Dictionary dialog looks about like this:

38 CLARION 5 LEARNING CLARION

Defining the Fields

Define a Field Pool

At this point, we’ll define several fields which will become the linking fields
between the files in our database. We’ll use a feature of the Data Dictionary
called a “Field Pool” to ensure that all files that need these fields always
define them exactly the same way.

1. Press the Add File button (don’t use Quick Load).

Field Pools are treated just like a file in the Data Dictionary, even though
they do not generate any code into applications. You may have as many
Field Pools in your data dictionary as you choose, but there is usually no
need for more than one.

2. Choose the Pool radio button .

3. Type FieldPool in the Name field.

4. Type POOL in the Prefix field.

5. Press the OK button.

Open the Field / Key Definition windows

1. Highlight the FieldPool “file” in the Files list.

2. Press the Fields/Keys... button.

This window displays a list of all the field and keys defined in the “file.”
Since this is a new file, there is nothing to display. We could simply start
adding fields, but instead, we’ll start by copying a field from the
Customer file.

LESSON 3 ADDING FILES AND FIELDS 39

3. CLICK and drag on the title bar of the Field / Key Definition window and move
the window so you can see the underlying Dictionary dialog.

4. Highlight the Customer file in the Files list of the Dictionary dialog.

Notice that focus changes to the Dictionary dialog.

5. Press the Fields/Keys... button.

Now another Field / Key Definition window appears containing the fields
defined for the Customer file.

Select the field and copy it

1. Select the CustNumber field from the Fields list.

2. Choose Edit ➤ Copy (or press CTRL+C).

3. Choose Window ➤ Field / Key Definition - FieldPool (or just CLICK on the open
window to give it focus).

4. Choose Edit ➤ Paste (or press CTRL+V).

The Edit Field Properties dialog appears.

5. Press the OK button to close the Edit Field Properties dialog.

This is the field that will be the linking field for the relationship between
the Customer and Orders files. Linking fields in separate files are always
defined the same, so copying the field definition is one way to get the
existing field’s definition into the Field Pool.

Derive the existing field

1. Choose Window ➤ Field / Key Definition - Customer (or just CLICK on the open
window to give it focus).

2. Highlight the CustNumber field from the Fields list and press the Properties
button.

The Edit Field Properties dialog appears.

3. Type POOL:CustNumber in the Derived From field.

40 CLARION 5 LEARNING CLARION

This means that the CUS:CustNumber field is now derived from the
POOL:CustNumber field. The term “derived from” means that the
POOL:CustNumber field’s definition is the “parent” and all “children”
fields which are “derived from” that field automatically share all the
attributes of the parent.

Deriving field definitions from existing fields gives you the ability to
make changes in only one place, then cascade those changes to all
derived fields. For example, if the definition of the CustNumber field
needs to change in all files using it, simply make one change to the
POOL:CustNumber field definition, then cascade that change to all the
derived CustNumber fields in all files. You can do this just by choosing
Edit ➤ Distribute Field after changing the POOL:CustNumber field.

4. Press the OK button to close the Edit Field Properties dialog.

Add the rest of the fields to the Field Pool

1. Choose Window ➤ Field / Key Definition - FieldPool (or just CLICK on the open
window to give it focus).

2. Press the Insert button to open the New Field Properties dialog.

Once you begin the process of defining new fields, an empty New
Properties dialog automatically appears after you add each successive
field. This speeds up the process of adding multiple fields. After adding
your last field, you just have to press the Cancel button on an empty New
Field Properties dialog to return to the Field / Key Definition dialog.

3. Type OrderNumber in the Field Name field.

This will be the linking field between the Orders and Detail files.

4. Choose SHORT from the Data Type dropdown list.

This specifies a short integer (-32,768 to 32,767).

5. Press the OK button.

6. Type ProdNumber in the Field Name field.

This will link the Detail file to the Products file.

7. Choose SHORT from the Data Type dropdown list.

8. Press the OK button.

9. Press the Cancel button.

The Field / Key Definition dialog re-appears.

10. Press the Close button.

Define the fields in the Orders File

At this point, go back to the Orders data file and prepare to define its fields.

LESSON 3 ADDING FILES AND FIELDS 41

Open the Field / Key Definition windows

1. Highlight the Orders file in the Files list.

2. Press the Fields/Keys... button.

3. Press the Insert button to open the New Field Properties dialog.

4. Type CustNumber in the Field Name field.

5. Press the ellipsis (...) button to the right of the Derived From field.

A Select window appears containing tree lists of all the fields already
defined for all the files in the dictionary. You can derive new fields from
any existing field—whether that field is in a file definition, global data,
or a field pool.

6. Highlight the CustNumber field in the FieldPool file then press the Select
button.

The new field automatically becomes a perfect copy of the field from
which it was derived—right down to the prompts and window control
type. The button with the circular arrow icon right next to the ellipsis (...)
button allows you to refresh the derived field from its parent’s definition,
if necessary (but the easier way is to choose Edit ➤ Distribute Field after
changing the parent field).

5. Press the OK button to close the New Field Properties dialog.

This is the field that will provide the link between the Orders and
Customer files.

Derive the OrderNumber field

This provides a unique identifier for each order

1. Type OrderNumber in the Field Name field.

2. Press the ellipsis (...) button to the right of the Derived From field.

3. Highlight the OrderNumber field in the FieldPool file then press the Select
button.

4. Press the OK button to close the New Field Properties dialog.

Define the InvoiceAmount field

This field stores the total amount of the order.

1. Type InvoiceAmount in the Field Name field.

2. Choose DECIMAL from the Data Type dropdown list.

3. Type 7 in the Characters field.

This specifies the total number of digits in the number (on both sides of
the decimal point).

4. Type 2 in the Places field.

42 CLARION 5 LEARNING CLARION

This specifies the number of digits to the right of the decimal point.

5. Press the OK button.

Define the OrderDate field

This field stores the date the order was placed.

1. Type OrderDate in the Field Name field.

2. Choose LONG from the Data Type dropdown list.

LONG is the preferred date storage data type in the TopSpeed driver.
This will contain a Clarion Standard Date value (see the Language
Reference for more on Clarion Standard Dates and Times).

3. Type @d1 in the Screen Picture field.

The screen picture specifies the default “character” formatting for a
field. In this case @d1 signifies MM/DD/YY format. The dialog box
displays a representation of the formatting next to the field.

4. Select the Attributes tab then type TODAY() in the Initial Value field.

The generated source code places today’s date in any control allowing a
new record entry, using the built-in TODAY() function.

LESSON 3 ADDING FILES AND FIELDS 43

5. Press the OK button.

Define the OrderNote field

This allows for a short note for special handling instructions.

1. Type OrderNote in the Field Name field.

2. Choose STRING from the Data Type dropdown list.

3. Type 80 in the Characters field.

This specifies 80 characters.

4. Press the OK button.

Close the dialogs

All the fields are defined, and a blank New Field Properties dialog should
be active at this point.

1. Press the Cancel button to close the New Field Properties dialog.

2. Press the Close button to close the Field / Key Definition dialog.

Define the fields for the Detail File

At this point, we’ll define the fields for the Detail data file.

Derive the linking field definition

1. Highlight the Detail file in the Files list then press the Insert button to open
the New Field Properties dialog.

2. Type OrderNumber in the Field Name field.

3. Press the ellipsis (...) button to the right of the Derived From field.

4. Highlight the OrderNumber field in the FieldPool file then press the Select
button.

5. Press the OK button to close the New Field Properties dialog.

This is the field that will be the link between the Orders and Detail files.

Define the ProdNumber field

This field allows you to relate this file and the Products file.

1. Type ProdNumber in the Field Name field.

2. Press the ellipsis (...) button to the right of the Derived From field.

3. Highlight the ProdNumber field in the FieldPool file then press the Select
button.

44 CLARION 5 LEARNING CLARION

4. Press the OK button to close the New Field Properties dialog.

Define the Quantity field

This stores the number of each product ordered.

1. Type Quantity in the Name field.

2. Choose SHORT from the Data Type dropdown list.

3. Press the OK button.

Define the ProdAmount field

This stores the unit cost of the product as it was at the time of the order.

1. Type ProdAmount in the Field Name field.

2. Choose DECIMAL from the Data Type dropdown list.

3. Type 5 in the Characters field.

4. Type 2 in the Places field.

5. Press the OK button.

Define the TaxRate field

1. Type TaxRate in the Field Name field.

2. Choose DECIMAL from the Data Type dropdown list.

3. Type 2 in the Characters field.

4. Type 2 in the Places field.

5. Press the OK button.

Close the dialogs

All the fields are defined, and a blank New Field Properties dialog should
be active.

1. Press the Cancel button to close the New Field Properties dialog.

2. Press the Close button to close the Field / Key Definition dialog.

Define the fields for the Products File

At this point, we’ll define the fields for the Products data file. This is the last
file.

Derive the linking field definition

1. Highlight the Products file in the Files list of the Dictionary dialog.

LESSON 3 ADDING FILES AND FIELDS 45

You may have to move some windows first to do this. Focus changes to
the Dictionary dialog.

2. Press the Fields/Keys... button.

Now another Field / Key Definition window appears containing the fields
defined for the Customer file.

3. Press the Insert button to open the New Field Properties dialog.

4. Type ProdNumber in the Field Name field.

5. Press the ellipsis (...) button to the right of the Derived From field.

6. Highlight the ProdNumber field in the FieldPool file then press the Select
button.

7. Press the OK button to close the New Field Properties dialog.

This is the field that will be the linking field for the relationship between
the Detail and Products files.

Define the ProdDesc field

This allows for a product description.

1. Type ProdDesc in the Field Name field.

2. Choose STRING from the Data Type dropdown list.

3. Type 25 in the Characters field.

4. Press the OK button.

Define the ProdAmount field

This stores the unit cost of the product.

1. Type ProdAmount in the Field Name field.

2. Choose DECIMAL from the Data Type dropdown list.

3. Type 5 in the Characters field.

4. Type 2 in the Places field.

5. Press the OK button.

Define the TaxRate field

1. Type TaxRate in the Field Name field.

2. Choose DECIMAL from the Data Type dropdown list.

3. Type 2 in the Characters field.

4. Type 2 in the Places field.

46 CLARION 5 LEARNING CLARION

5. Press the OK button.

Close the dialogs and save your work

All the fields are defined, and a blank New Field Properties dialog should
be active.

1. Press the Cancel button to close the New Field Properties dialog.

2. Press the Close button to close the Field / Key Definition dialog.

3. Choose File ➤ Save, or press the Save button on the tool bar.

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You created new data file definitions.

♦ You created a pool of field definitions from which new field
definitions can be easily derived.

♦ You created the field definitions for all the files.

Now we’ll go on to add keys and file relationships.

LESSON 4 ADDING KEYS AND RELATIONS 47

4 - ADDING KEYS AND RELATIONS

Now that all the files are defined, we can add keys then specify the file
relationships. You already have defined the keys for the two files you created
in the QwkTutor application in Getting Started. In this chapter, we’ll define
keys for the remaining files.

Starting Point:
The TUTORIAL.DCT file should be open.

Defining Keys for the Orders File
The fields in the Orders file that relate to other files in the database are the
OrderNumber and CustNumber fields.

Customers

CustNumber

FIrstName

LastName

Company

Address

City

State

Zip

Orders
CustNumber

OrderNumber

InvAmount

OrderDate

OrderNote

Detail

OrderNumber

ProdNumber

Quantity

ProdAmount

TaxRate

◆ The OrderNumber field relates to the Detail file.

There should be no duplicate or null order numbers in the Orders file;
this is a primary key.

There may be multiple Detail records for a single matching Order
Number. Therefore, this is a One to Many relationship—the Orders file
is the “Parent” of the Detail file.

◆ The CustNumber field relates to the Customer file.

There will be duplicate values in the CustNumber field that relate to
records in the Customers file. The key we define in the Orders file is a
foreign key. The Customers file key does not allow duplicates and nulls,
and was defined as the primary key for that file.

Multiple Order records can exist for each Customer, making this a Many
to One relationship—the Orders file is the “Child” of the Customers file.

4

48 CLARION 5 LEARNING CLARION

Create the Primary Key

Name the Key

1. Highlight the Orders file in the Files list.

2. Press the Field/Keys... button.

3. Select the Keys tab.

4. Press the Insert button.

The New Key Properties dialog appears.

5. Type KeyOrderNumber in the Key Name field.

As an easy naming convention, we suggest incorporating both the word
“key” and the field name in the key name (just as the Quick Start Wizard
does).

6. Select the Attributes tab, check the Require Unique Value box, then check the
Primary Key box.

This specifies the key is a primary key. The generated source code
automatically prevents the end user from inserting duplicate or null
values.

7. Check the Auto Number box.

The template-generated source code will increment the key field with
each new record.

8. Select the Fields tab.

Specify the key field

1. Press the Insert button.

The Insert Key Component dialog appears, ready for you to specify a field or
fields for the key.

2. DOUBLE-CLICK on OrderNumber.

This adds the field to the list of component fields for this key.

LESSON 4 ADDING KEYS AND RELATIONS 49

3. Press the OK button.

A blank New Key Properties dialog appears, ready for you to specify another
key.

Define a Foreign Key

Now you can define the CustNumber key. There may be duplicates within
this file. It relates to the primary key in the Customers file, so therefore, this
is a foreign key.

1. Type KeyCustNumber in the Key Name field.

2. Select the Attributes tab.

The key does allow duplicates, so leave all the default settings.

3. Select the Fields tab.

4. Press the Insert button.

The Insert Key Component dialog appears, ready for you to specify a field or
fields for the key.

5. Select CustNumber then press the Select button.

6. Press the OK button.

Each time you finish a new key, a blank New Key Properties dialog appears,
ready for the next.

7. Press the Cancel button to close the blank New Key Properties dialog.

50 CLARION 5 LEARNING CLARION

The Field/Keys Definition dialog for the Orders file now looks like this:

8. Press the Close button to close the Field/Key Definition dialog.

9. Choose File ➤ Save, or press the Save button on the tool bar.

LESSON 4 ADDING KEYS AND RELATIONS 51

Defining Keys for the Detail File
The fields in the Detail file that relate to other files in the database are the
ProdNumber and OrderNumber fields.

Orders
CustNumber

OrderNumber

InvAmount

OrderDate

OrderNote

Detail

OrderNumber

ProdNumber

Quantity

ProdAmount

TaxRate

Product

ProdNumber

ProdDesc

ProdAmount

TaxRate

◆ The OrderNumber field relates to the Orders file.

There will be duplicate values in the OrderNumber field that relate to
records in the Orders file. The key we define in the Detail file is another
foreign key. The Orders file key does not allow duplicates and nulls, and
was defined as a primary key.

There may be more than one Detail record for a single matching Order
Number. Therefore, this is a Many to One relationship, with the Detail
file the “Child” of the Orders file.

◆ The ProdNumber field relates to the Products file.

There will be duplicate values in the ProdNumber field for the records in
the Detail file. There may be more than one Detail record containing a
single Product Number. Therefore, this is another Many to One
relationship, with the Detail file the “Child” of the Product file.

Define the First Foreign Key

Define KeyProdNumber so that there may be duplicate ProdNumber values
in this file.

1. Highlight the Detail file in the Files list.

2. Press the Field/Keys... button.

3. Select the Keys tab.

4. Press the Insert button.

5. Type KeyProdNumber in the Key Name field.

6. Select the Attributes tab.

The key does allow duplicates so leave all the default settings.

52 CLARION 5 LEARNING CLARION

7. Select the Fields tab.

8. Press the Insert button.

9. Select ProdNumber then press the Select button.

10. Press the OK button.

A blank Key Properties dialog appears, ready for you to specify another
key.

Define the Second Foreign Key

1. Type KeyOrderNumber in the Key Name field.

2. Select the Fields tab.

3. Press the Insert button.

4. Select OrderNumber then press the Select button.

5. Press the OK button.

6. Press the Cancel button to close the blank New Key Properties dialog.

The Field / Key Definition dialog for the Detail file now looks like this:

7. Press the Close button to close the Field / Key Definition dialog.

8. Choose File ➤ Save, or press the Save button on the tool bar.

LESSON 4 ADDING KEYS AND RELATIONS 53

Defining Keys for the Products File
Only one field in the Products file relates to another file in the database: the
ProdNumber field.

◆ The ProdNumber field relates to the Detail file.

Detail

OrderNumber

ProdNumber

Quantity

ProdAmount

TaxRate

Product

ProdNumber

ProdDesc

ProdAmount

TaxRate

There should be no duplicate or null order numbers in the Products file; this
is a primary key.

For each ProdNumber in the record there can be many Detail records. This is
a One to Many relationship with the Products file a “Parent” to the Detail
file.

Create the Primary Key

Name the Key

1. Highlight the Products file in the Files list.

2. Press the Field/Keys... button.

3. Select the Keys tab.

4. Press the Insert button.

5. Type KeyProdNumber in the Key Name field.

6. Select the Attributes tab.

7. Check the Require Unique Value box, then check the Primary Key box.

8. Check the Auto Number box.

54 CLARION 5 LEARNING CLARION

9. Select the Fields tab.

10. Press the Insert button.

11. Select ProdNumber then press the Select button.

12. Press the OK button.

A blank Key Properties dialog appears, ready for you to specify another
key.

Define an Alphabetical Key

Users will probably want to see the list of Products in alphabetical order, so
we’ll add a key for that.

1. Type KeyProdDesc in the Key Name field.

2. Select the Fields tab.

3. Press the Insert button.

4. Select ProdDesc then press the Select button.

5. Press the OK button.

6. Press the Cancel button to close the blank Key Properties dialog.

The Field / Key Definition dialog for the Product file now looks like this:

7. Press the Close button to close the Field / Key Definition dialog.

8. Choose File ➤ Save, or press the Save button on the tool bar.

LESSON 4 ADDING KEYS AND RELATIONS 55

Defining File Relationships

Defining Relationships for the Orders File

Now that all the keys are defined, we can add the relations. Once you have
defined relationships, you can add Validity Checks for the fields that should
only contain values that exist in another file. These are the last steps to
completing the data dictionary.

◆ KeyOrderNumber relates the Orders file to the Detail file in a One to
Many relationship.

◆ KeyCustNumber relates the Orders file to the Customer file in a Many to
One relationship.

Define the first relationship

1. Highlight the Orders file in the Files list.

2. Press the Add Relation button.

The default relationship Type is 1:MANY, which you should accept.

3. Choose KeyOrderNumber from the Primary Key dropdown list.

4. Choose Detail from the Related File dropdown list.

5. Choose KeyOrderNumber from the Foreign Key dropdown list.

6. Press the Map by Name button.

This establishes the relationship by linking all the fields in the two keys
that have the same name.

Set up the Referential Integrity constraints

1. Choose Cascade from the On Update dropdown list.

This tells the templates to generate code to automatically update all
related “Child” records when the “Parent” key field value changes.

2. Choose Restrict from the On Delete dropdown list.

This does not allow the user to delete a “Parent” record that has related
“Child” records.

56 CLARION 5 LEARNING CLARION

3. Press the OK button.

Define the second relationship

1. Highlight the Orders file in the Files list.

2. Press the Add Relation button.

3. Choose MANY:1 from the Type dropdown list.

Notice that, when you chose MANY:1, the prompts for the Primary Key and
Foreign Key fields switched places. This happens because we are now
defining this relationship from the “Child” file’s viewpoint; the opposite
side of the relationship to what we did previously. A Primary Key is
always in the Parent file, while a Foreign Key is always in the Child file.

4. Choose KeyCustNumber from the Foreign Key dropdown list.

5. Choose Customer from the Related File dropdown list.

This establishes the Customer file as the “Parent” in this relationship.

6. Choose KeyCustNumber from the Primary Key dropdown list.

7. Press the Map by Name button.

Set up the Referential Integrity constraints

1. Choose Cascade from the On Update dropdown list.

Although we are defining this relationship from the “Child” file’s
viewpoint, the Referential Integrity constraints are still set on the
“Parent” file actions.

2. Choose Restrict from the On Delete dropdown list.

3. Press the OK button.

Your Dictionary dialog should now look like this:

LESSON 4 ADDING KEYS AND RELATIONS 57

4. Choose File ➤ Save, or press the Save button on the tool bar.

Defining Relationships for the Detail File

Each time you define a relationship in the Dictionary Editor, you define it for
both files at the same time. Therefore, since you have defined all the
relationships for the Orders file, there is only one relationship left to define
in this data dictionary.

The last relationship is for the Detail file.

◆ KeyOrderNumber relates the Orders file to the Detail file in a One to
Many relationship. You have already defined this.

◆ KeyProdNumber relates the Detail file to the Products file in a Many to
One relationship.

Define the relationship

1. Highlight the Detail file in the Files list.

2. Press the Add Relation button.

3. Choose MANY:1 from the Type dropdown list.

4. Choose KeyProdNumber from the Foreign Key dropdown list.

5. Choose Products from the Related File dropdown list.

6. Choose KeyProdNumber from the Primary Key dropdown list.

7. Press the Map by Name button.

Set up the Referential Integrity constraints

1. Choose Restrict from the On Update dropdown list.

We won’t allow any changes to the product numbers.

58 CLARION 5 LEARNING CLARION

2. Choose Restrict from the On Delete dropdown list.

3. Press the OK button.

Your Dictionary dialog should now look like this:

4. Choose File ➤ Save, or press the Save button on the tool bar.

LESSON 4 ADDING KEYS AND RELATIONS 59

Defining Relationship-Dependent Validity
Checks

Now that all the file relationships have been defined, we can set the Validity
Checks for two fields that we expect to put on update forms.

◆ When entering a new Orders file record, we can specify that the
CustNumber must match an existing record in the Customer file.

◆ When entering a new Detail file record, we can specify that the
ProdNumber must match an existing record in the Products file.

Define the Validity Check for Order Records

1. Highlight the Orders file in the Files list.

2. Press the Field/Keys... button.

3. Highlight CustNumber and press the Properties button.

4. Select the Validity Checks tab.

5. Select the Must Be In File radio button.

6. Choose Customer from the File Label dropdown list.

This requires that the field can only contain values verified by getting a
matching record from the Customer file. This is validated using the file
relationship information, which is why this Validity Check cannot be set
until the relationships have been defined.

7. Press the OK button.

8. Press the Close button to close the Field / Key Definition dialog.

60 CLARION 5 LEARNING CLARION

Define the Validity Check for Detail Records

1. Highlight the Detail file in the Files list.

2. Press the Field/Keys... button.

3. Highlight ProdNumber and press the Properties button.

4. Select the Validity Checks tab.

5. Select the Must Be In File radio button.

6. Choose Products from the File Label dropdown list.

7. Press the OK button.

8. Press the Close button to close the Field / Key Definition dialog.

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You created the keys for all the new file definitions.

♦ You defined the relationships between the new files.

♦ You defined two relationship-dependent validity checks to
require that foreign key field values always have related primary
key records in a parent file.

The data dictionary is now complete. In the next chapter, we will import
some existing data from another application, to show you just how simple it
is to accomplish.

LESSON 5 IMPORTING EXISTING DATA 61

5 - IMPORTING EXISTING DATA

Data File Conversion
You may have existing data from legacy applications that you want to save
and use in your Clarion applications. Therefore, this chapter shows you:

◆ How to import a file definition from an existing data file.

◆ How to browse and edit a data file using the Database Manager.

◆ How to convert data from one file format to another.

Starting Point:
The TUTORIAL.DCT file should be open.

Importing a .CSV File Definition

One easy way to convert data files is to export your old data from the
previous application to Comma Separated Values (.CSV) files. This is the file
format originally used by the Basic language—the data is contained in
double-quotes, fields are separated by commas, and records are separated by
a Carriage Return/Line Feed. Clarion’s BASIC file driver will easily read
from and write to these .CSV files.

We will import the definition of an existing .CSV file containing Customer
data, then generate a simple data file conversion program (to show you just
how easy it is to do) to place the data in a TopSpeed data file.

Import the file definition

1. Choose File ➤ Import File .

2. Select BASIC from the dropdown list then press the OK button.

The Open BASIC File dialog appears.

5

62 CLARION 5 LEARNING CLARION

3. In the Filename field, type c:\clarion5\examples\tutor\import1.csv then
press the OK button.

The Edit File Properties dialog appears.

4. Press the OK button.

Now you have the IMPORT1.CSV file’s definition. The next step will be
to look at the data in the Database Manager.

Edit the data

1. RIGHT -CLICK on the IMPORT1 file, highlight Browse IMPORT1 then CLICK

to call the Database Manager.

The Clarion Database Manager allows you to directly edit the data in
your files. This is a programmer’s tool, designed to allow you to do
whatever is necessary to change the actual data contained in your files.
This means that there are no safeguards against violating your database’s
Referential Integrity or Data Integrity rules. Therefore, you must take
care when you use this tool.

LESSON 5 IMPORTING EXISTING DATA 63

Notice that the first record contains the field names, not actual data. This
is a standard way that .CSV files are constructed. Also, these field names
are exactly the same as the field names in the Customer file definition
(this will make the data conversion much easier).

Converting a Data File

At this point, you’re looking at the .CSV file’s data in Clarion’s Database
Manager utility. Next, you need to move that data into a TopSpeed file so
your Clarion programs can use it.

Generate a file conversion program

1. Choose File ➤ Convert File (or press CTRL+V).

The File Convert dialog appears.

2. In the Target Filename field, type in Customer.TPS as the name of the new
file (eliminating all the default text that was in the field).

3. Press the ellipsis button (...) next to the Target Structure field.

4. Highlight Customer, then press the Select button.

The File Convert dialog should now appear like this:

64 CLARION 5 LEARNING CLARION

When you press the OK button, this will generate all the Clarion source
code necessary to take the data in the Source Filename , and copy it into a
new Target Filename file, using the file format specified by the Target
Structure .

The best reason to generate Clarion source code for the data conversion
is to provide you the opportunity to modify the code before you compile
and execute it to handle any special data conversion needs you may have.
This makes the file conversion process completely flexible to handle any
situation that can occur.

5. Press the OK button.

A message box appears telling you the source code has been generated.

6. Press the OK button to return to the Database Manager.

7. Press the Exit button to return to the Data Dictionary Editor.

Delete the IMPORT1 file definition

The only purpose this file definition served was to allow the Database
Manager to generate file conversion source code for you. Therefore, we can
delete it from the Data Dictionary right now.

1. With IMPORT1 still highlighted, press the Delete button.

2. Press the Yes button when asked to confirm the deletion.

3. Press the Close button to exit the Data Dictionary Editor, and press the
Yes button to save your changes as you exit.

Compile and execute the conversion program

1. Choose File ➤ Open (or press CTRL+O).

2. Select Clarion source (*.clw) from the Files of type dropdown list.

3. Select the C:\CLARION5\TUTORIAL directory.

4. Highlight the CONVERT.CLW file, then press the Open button.

LESSON 5 IMPORTING EXISTING DATA 65

Clarion’s Text Editor appears with the file loaded, ready to edit.

The Database Manager created the conversion program code in this file.
This contains all the Clarion language source code necessary to read the
data from the BASIC (.CSV) file and copy it to the TopSpeed data file.

3. Choose Project ➤ Set....

The Select Project dialog appears.

4. Select Project file (*.prj) from the Files of type dropdown list.

5. Select the C:\CLARION5\TUTORIAL directory.

6. Highlight the CONVERT.PRJ file, then press the Open button.

The Database Manager also generated the CONVERT.PRJ file for you at
the same time it created the CONVERT.CLW file.

Every Clarion program has a Project that controls the options for
compiling the source code and linking to create the resulting .EXE file.
For hand-coded programs (and file conversion programs generated by
the Database Manager), these settings are contained in a .PRJ file. There
is no .PRJ file necessary when you use the Application Generator—the
.APP file itself contains all the Project settings.

At this point, you could modify the generated source code to perform
any special data conversion you require (see the How to Convert a File—
Generate Source and How to Make a Field Assignment topics in on-line
Help for more information on customizing data file conversion code).
However, there is nothing we need to do in this project, so you simply
compile and run the program.

7. Choose Project ➤ Run (or press CTRL+R).

This compiles the program, links it into an .EXE, then runs the resulting
executable to perform the file conversion. A status window appears as
the program runs, letting you know the progress of the file conversion.
Since there are only a few records to convert in this case, you probably
won’t be able to read it (it’ll go by too fast).

8. Choose File ➤ Close to close the file and exit the Text Editor.

66 CLARION 5 LEARNING CLARION

Check it out

Now you can check the data in the new file by opening it with the Database
Manager and browsing through the records.

1. Choose File ➤ Open (or press CTRL+O).

2. Select Database file from the Files of type dropdown list, highlight the
CUSTOMER.TPS file, then press the Open button.

A dialog opens that asks for the File Driver and any password and
options required to open the file.

3. Select TOPSPEED from the Driver dropdown list, then press the OK
button.

This demonstrates another way to open the Database Manager, other
than from within the Data Dictionary Editor.

Notice that the first record contains the field names and not actual data,
just as the IMPORT1.CSV file did. You don’t need these field names in
this file, so just delete this “junk” record.

4. With the highlight bar in the first record, press DELETE, then press the Yes
button when asked to confirm the deletion.

5. Press the Yes button when asked to make a backup file.

The Database Manager always asks if you want to make a backup of the
file the first time you perform any type of editing action on the data. It is
always a good idea to let it make a backup (just in case).

6. Press the Exit button.

A message box appears asking you whether to save the changes you
made to the CUSTOMER.TPS file. This confirmation dialog provides
you an additional opportunity to “roll back” any changes you made to
the data if you decide it was a mistake to make any changes at all—Yes
saves your changes and exits, No reverts the file to the state it was in
before you entered the Database Manager and exits, and Cancel returns
you to the Database Manager.

7. Press the Yes button to save the changes you made.

LESSON 5 IMPORTING EXISTING DATA 67

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You imported a file definition from an existing .CSV file.

♦ You used Clarion’s Database Manager utility to examine the
contents of the .CSV file.

♦ You used Clarion’s Database Manager utility to generate code to
create a data file conversion program.

♦ You compiled and executed a data file conversion program to
import data from a .CSV file into a TopSpeed file.

Now you’ve converted some valuable existing data to the TopSpeed file
format so your Clarion applications can use it. In the next chapter, we will
begin building an application “from scratch” using the Application
Generator.

68 CLARION 5 LEARNING CLARION

LESSON 6 STARTING THE APPLICATION 69

6 - STARTING THE APPLICATION

Using the Application Generator
With the Data Dictionary complete, you now can use the Application
Generator to create your application. This chapter shows you:

◆ How to create the .APP file, which stores all your work for the project.

◆ How to define the first (Main) procedure to create an MDI application
frame, and how to call procedures from the application’s menu.

Starting Point:
Just the Clarion environment should be open.

Creating the .APP File

1. Choose File ➤ New ➤ Application .

2. Select Application (*.app) from the Save as type dropdown list.

3. Select the C:\CLARION5\TUTORIAL directory.

4. Type TUTORIAL in the File name field.

5. Clear the Use Quick Start box, then press the Save button.

The Application Properties dialog appears.

6. Type TUTORIAL.DCT in the Dictionary field.

7. Clear the Application Wizard check box.

This Application Generator Tutorial will not use any Wizards so that it
can demonstrate how to use all the other tools that Clarion provides.

8. Press OK to close the Application Properties dialog.

6

70 CLARION 5 LEARNING CLARION

Creating the Main Procedure

The Application Tree dialog appears. This lists all the procedures for your
application in a logical procedure call tree which provides a visual guide to
show the order by which one procedure calls another. You previously saw it
in the Quick Start tutorial.

The Main procedure is the starting point. The tutorial application will be an
MDI (Multiple Document Interface) program. Therefore the natural starting
point is to define the Main procedure using the Frame Procedure template to
create an application frame.

Select the procedure type for Main

1. With Main highlighted in the Application Tree dialog, press the Properties
button.

2. Highlight Frame in the Select Procedure Type dialog, clear the Use Procedure
Wizard check box, then press the Select button.

The Procedure Properties dialog appears. It defines the functionality and
data structures for the procedure.

3. Type SplashScreen in the Splash Procedure field.

This names the procedure containing an opening screen that will appear
for just a brief period when the user first opens the application.

LESSON 6 STARTING THE APPLICATION 71

Usually the first task when creating a procedure is to edit the main window.
You can place controls, or if the procedure template has controls already, you
can customize them.

The application frame itself never has controls. Windows doesn’t allow it.
We will, however, customize the window caption (the text that appears on its
title bar). Then we will add items to the predefined menu, which is also built
into the Frame Procedure template, and create a toolbar for the application (a
toolbar can have controls).

Edit the Main window

1. Press the Window button.

The Window Formatter appears. Here are all the tools which allow you
to visually edit the window and its controls.

2. Choose View ➤ Show Propertybox to display the Property toolbox (if it is not
already present).

You’ll notice under the View menu that there are several toolboxes
available—all of these are fully dockable and resizable. This means you
can configure your workspace as you want. Because of this
configurability, throughout the rest of this tutorial some screen shots
taken within the Window Formatter may not appear the same as on your
computer.

There is one thing to note about dockability: if the toolbox is floating
and you drag it by its title bar, it won’t dock. This is a feature, because it
allows you to float your toolboxes outside the workspace, if you choose.
To dock, you must drag the toolbox using any open space in the toolbox

72 CLARION 5 LEARNING CLARION

or the “grab handle” (the double lines along the left or top edge). When
the shadow outline you drag changes from a thick outline to a thin one
you may drop the toolbox and it will dock where you’ve placed it. To
undock a docked toolbox, just drag it with the “grab handle.”

You also have the same ability to create dockable toolboxes in your
Clarion applications (see the DOCK attribute in the Language
Reference). When you do, they will behave in this same manner.

3. CLICK on the sample window’s title bar to make sure it has focus (that is,
the red “handles” are on the whole window).

4. Type Tutorial Application in the Text field of the Property toolbox, then
press TAB.

This updates the caption bar text in the sample window. Be sure that
handles appear inside the sample application frame window when you
execute this step.

Editing the Menu

From the Window Formatter’s menu, you can call the Menu Editor, which
allows you to add or edit menu items for the application frame window. As
you add each menu item, you can select the Actions tab to name the
procedure to call when the user chooses that menu item.

For each new procedure you name for the menu to call, the Application
Generator automatically adds a “ToDo” procedure to the Application Tree.
You can then define that procedure’s functionality, just as you are now
defining the application frame procedure’s functionality.

When the Application Generator generates the source code for your
application, it automatically starts a new execution thread for each procedure
you call from the main menu (this is required for an MDI application).

Add menu items

1. From the Window Formatter menu, choose Menu ➤ Edit Menu (or just
DOUBLE-CLICK on the menu action bar in your window design).

The Menu Editor appears. It displays the menu in hierarchical form in a
list box at the left. The fields at the right allow you to name and
customize the dropdown menus and menu items.

This template already provides you with a “standard” menu. It contains
basic window commands such as an Exit command on a File menu, the
standard editing Cut , Copy , and Paste commands, and the standard window
management commands commonly found in an MDI application.

LESSON 6 STARTING THE APPLICATION 73

2. Highlight the second END statement (see the illustration above).

The Menu Editor inserts new items immediately below the currently
highlighted selection. The menu you’ll add will be called View. It will
contain three items: Products , Customers , and Orders . It will appear on the
menu bar just before the Window menu.

3. Press the New Menu button in the top-left corner (or press SHIFT+INSERT).

This inserts a new MENU statement, and its corresponding END
statement.

4. Type &View in the Menu Text field then press TAB.

This defines the text that appears on the menu to the end user. The
ampersand (&) indicates that the following character (V) has an
underlined and provides keyboard access (the user can press ALT+V to
drop down this menu).

Add the first menu item

1. Press the New Item button (or press INSERT).

This updates the list on the left side of the dialog, changing the text of
the menu you just added to “&View.” It adds a new menu ITEM—a
command on the dropdown menu—under &View, and before the END
statement that goes with the &View menu.

74 CLARION 5 LEARNING CLARION

2. Type &Customers in the Menu Text field then press TAB.

?ViewCustomers appears in the Use Variable field. This is an equate for the
menu item so code statements can reference it. The leading question
mark (?) indicates it is a field equate label (see the Language
Reference).

3. Select the Actions tab.

The prompts allow you to name a procedure to execute when the end
user selects the View ➤ Customers menu item.

4. Choose Call a Procedure from the When Pressed dropdown box.

New prompts appear to allow you to name the procedure to call and
choose options.

5. Type ViewCustomers in the Procedure Name field.

This names the “ToDo” procedure for the Application Tree.

6. Check the Initiate Thread box.

The ViewCustomers procedure will display an MDI “child” window, and
you must always start a new execution thread for any MDI window
called directly from the application frame. The Thread Stack field defaults
to the minimum recommended value.

Add the second menu item

1. Press the Item button.

This updates the list on the left side of the dialog, changing the text of
the item you just added to “&Customers.”

2. Type &Products in the Menu Text field and press TAB.

?ViewProducts appears in the Use Variable field.

LESSON 6 STARTING THE APPLICATION 75

Normally, the next step is to define the action for the menu item—what
happens when the end user executes it from the menu. We’ll skip over
this step for now, for this menu item only. Later, you’ll create a
procedure by copying it, then attaching it to this menu, just to show you
this capability of the Clarion environment.

Add the third menu item

1. Press the Item button.

2. Type &Orders in the Menu Text field and press TAB.

?ViewOrders appears in the Use Variable field.

3. Select the Actions tab.

4. Choose Call a Procedure from the When Pressed dropdown box.

5. Type ViewOrders in the Procedure Name field.

6. Check the Initiate Thread box.

Close the Menu Editor and Window Formatter and save your work

1. Press the Close button to close the Menu Editor.

This returns you to the Window Formatter.

2. Choose the Exit! menu selection and answer Yes when asked to save your
window changes.

This returns you to the Procedure Properties dialog.

3. Press the OK button to close the Procedure Properties dialog.

This returns you to the Application Tree dialog. There are now three new
procedures marked as “(ToDo)”: ViewCustomers, ViewOrders, and
SplashScreen. These were the procedures you named in the Menu Editor.

4. Choose File ➤ Save, or press the Save button on the toolbar.

76 CLARION 5 LEARNING CLARION

Creating the SplashScreen Procedure

We named a Splash procedure, and now we’ll create it.

1. Highlight the SplashScreen (ToDo) procedure and press the Properties
button.

2. Highlight Splash in the Select Procedure Type dialog, clear the Use Procedure
Wizard check box, then press the Select button.

The Procedure Properties dialog appears. There’s nothing we really have to
do to this procedure for the tutorial except accept all the defaults.

3. Press the OK button.

Adding an Application Toolbar

Call the Window Formatter and create the tool bar

1. Highlight the Main procedure.

2. RIGHT -CLICK to display the popup menu.

Notice that this popup menu contains a set of menu selections that match
the set of buttons down the right side of every Procedure Properties window.
This popup menu provides you with direct access to all the Clarion tools
that you use to modify existing procedures, so that you don’t have to go
through the Procedure Properties window every time.

LESSON 6 STARTING THE APPLICATION 77

3. Choose the Window menu item.

4. In the Window Formatter’s menu, choose Toolbar ➤ New Toolbar .

This adds the toolbar—always immediately below the menu—to the
sample window. You can add any control to your toolbar by CLICKING on a
tool icon in the floating Controls toolbox, then CLICKING in your toolbar.

Place the first button

1. CLICK on the button tool (the one that looks like an “OK” button).

2. CLICK in the sample window toolbar area, just below the upper left
corner.

3. RIGHT -CLICK the button you just placed, then choose Properties from the
popup menu.

78 CLARION 5 LEARNING CLARION

The Button Properties dialog appears.

4. Clear the Text field.

We’ll place images on these buttons, instead of text, to give the
application a modern look.

5. Type ?CustomerButton in the Use field.

This is the field equate label for referencing the button in code. We
included the word “button” for code readability.

6. Select the Extra tab.

7. Check the Flat box.

8. Drop down the Icon list, scroll to the bottom and CLICK on Select File... .

The Select Icon File dialog appears.

9. Select GIF Files from the Files of type droplist.

10. Select the C:\CLARION5\EXAMPLES\TUTOR\CUSTOMER.GIF file,
then press the Open button.

LESSON 6 STARTING THE APPLICATION 79

11. Select the Help tab.

12. Type Browse Customers into the Tip field.

This adds a tooltip to the button that will display whenever the mouse
cursor hovers over the button.

13. Select the Position tab.

14. Select the Fixed radio buttons for both Width and Height .

15. Set the Width to 16 and Height to 14.

16. Select the Actions tab.

17. Choose Call a Procedure from the When Pressed dropdown box.

18. Choose ViewCustomers from the Procedure Name dropdown box.

This is the procedure name you typed for the View ➤ Customers menu item.
Pressing the button will call the same procedure. Often, a command
button on a toolbar serves as a quick way to execute a menu command.

19. Check the Initiate Thread box.

20. Press the OK button.

Place the second button

1. CLICK on the button tool.

2. CLICK in the sample window toolbar area, right next to the first button.

A button appears, labelled “Button2.”

3. RIGHT -CLICK the button you just placed, then choose Properties from the
popup menu.

4. Clear the Text field.

5. Type ?ProductsButton in the Use field.

6. Select the Extra tab.

7. Check the Flat box.

8. Drop down the Icon list, scroll to the bottom and CLICK on Select File... .

9. Select GIF Files from the Files of type droplist.

80 CLARION 5 LEARNING CLARION

10. Select the C:\CLARION5\EXAMPLES\TUTOR\PRODUCTS.GIF file,
then press the Open button.

11. Select the Help tab.

12. Type Browse Products into the Tip field.

13. Press the OK button to close the Button Properties dialog.

Normally you attach an action to the button at this point. Skip this step
for now, for this button only. Later, we’ll copy a procedure, then call it at
the point in the generated source code which handles what to do when
the end user presses the button to demonstrate using embed points.

Place the third button

1. CLICK on the button tool.

2. CLICK in the sample window toolbar area, right next to the second button.

3. RIGHT -CLICK the button you just placed, then choose Properties from the
popup menu.

4. Clear the Text field.

5. Type ?OrdersButton in the Use field.

6. Select the Extra tab.

7. Check the Flat box.

8. Drop down the Icon list, scroll to the bottom and CLICK on Select File... .

9. Select GIF Files from the Files of type droplist.

10. Select the C:\CLARION5\EXAMPLES\TUTOR\ORDERS.GIF file, then
press the Open button.

11. Select the Help tab.

12. Type Browse Orders into the Tip field.

13. Select the Actions tab.

14. Choose Call a Procedure from the When Pressed dropdown list.

15. Choose ViewOrders from the Procedure Name dropdown list.

This is the procedure name you typed for the View ➤ Orders menu item.

16. Check the Initiate Thread box.

17. Press the OK button.

Resize and align the buttons

The Window Formatter has a set of alignment tools that easily allow you to
line up and resize your window controls.

LESSON 6 STARTING THE APPLICATION 81

1. With the Orders button still selected, CTRL+CLICK on the Customers
button.

This gives both buttons “handles” and the Customers button has the Red
handles that indicate it has focus.

CTRL+CLICK is the “multi-select” keystroke that allows you to perform
actions on several controls at once. Once multiple controls are selected,
you can move them all by DRAGGING on any one of the selected controls,
or you can use any of the Alignment menu’s tools on the entire group.

2. With both buttons still selected, CTRL +CLICK on the Products button.

Now all three buttons have “handles” and the Products button has the
Red handles that indicate it has focus and is the “key control” for the
alignment actions.

3. RIGHT -CLICK and choose Align Top from the popup menu.

When you have multiple controls selected, RIGHT-CLICK displays an
alignment popup menu instead of a single control’s popup menu. This
action aligns all three buttons with the top of the Products button.

4. RIGHT -CLICK and choose Spread Horizontally from the popup menu.

This spaces all three buttons apart equally. Make sure they’re close
together, so there’s room for what’s coming next!

Add the Browse Control buttons

1. Choose Populate ➤ Control Template... (or CLICK on the Control Template
tool—the one at the bottom-right corner of the Controls toolbox).

The Select Control Template dialog appears.

2. Highlight the FrameBrowseControl template, then press the Select
button.

3. CLICK in the sample window’s toolbar, just right of the Orders button.

The thirteen Browse control buttons appear on the toolbar. You’ve
already seen these buttons on the applications you created in the Quick
Start Tutorial chapter. These buttons can control the scrolling and update
procedure call behavior of the Browse procedures you’ll create (later in
this tutorial).

Your screen design should now look similar to this:

82 CLARION 5 LEARNING CLARION

Close the Window Formatter and save your work

1. Choose the Exit! menu selection and answer Yes when asked to save your
window changes.

This returns you directly to the Application Tree dialog. It still contains the
same two procedures marked as “(ToDo)”: ViewCustomers and
ViewOrders.

2. Choose File ➤ Save, or press the Save button on the toolbar.

Testing an Application under Development

1. With the Application Tree dialog open, choose Project ➤ Run , or press the
Run button on the tool bar.

The Application Generator generates the source code, displaying its
progress in a message window, procedure by procedure.

Next, the Make window appears, showing you the progress of the build
as the compiler and linker do their work.

LESSON 6 STARTING THE APPLICATION 83

Then your Application window appears. It should look something like
this when it first comes up with the splash screen:

2. Press one of the buttons on the toolbar, or choose one of the items on the
View menu.

The following message box appears:

This capability allows you to incrementally test your application,
whether you have designed all the procedures or not.

You’ll fill in their functionality, starting in the next chapter.

3. Press the OK button to close the message box.

4. Choose File ➤ Exit to close the Tutorial application.

Throughout the rest of this tutorial, feel free to Make and Run the
developing application whenever the tutorial instructs you to save the
file.

Look at the Generated Source Code

Let’s take a quick look at what the Application Generator has done for you.
The whole purpose of the Application Generator (and its Templates) is to
write Clarion language source code for you. There is no “magic” to what the
Clarion toolset does to create applications—it all goes back to the Clarion
programming language.

84 CLARION 5 LEARNING CLARION

1. With the Application Tree dialog open, CLICK on the Module tab.

This changes your view of the application from the logical procedure
call tree to the actual source code modules generated for the application.

2. Highlight the TUTORIAL.CLW module, RIGHT -CLICK to display the
popup menu then CLICK on Module .

This takes you right into the Text Editor, looking at the last source code
you generated (the last time you pressed the Run button). Any changes
you made since the last time you generated code will not be visible here.

TUTORIAL.CLW file is the main program module for this application,
containing the Global data declarations and code. Don’t be intimidated
looking at all this code. After you’ve finished this tutorial, you can go on
to the Introduction to the Clarion Language tutorial at the end of this
book and become more familiar with the Clarion Language (it’s actually
very straight-forward).

LESSON 6 STARTING THE APPLICATION 85

3. When you have finished looking at the code, choose File ➤ Close to exit
the Text Editor and return to the Application Generator.

Be sure NOT to choose File ➤ Exit , otherwise you’ll exit Clarion for
Windows completely.

4. Now CLICK on the Procedure tab.

This changes your view of the application back to the logical procedure
call tree.

5. Highlight the Main (Frame) procedure, RIGHT -CLICK to display the
popup menu, then CLICK on Module .

This takes you into the Text Editor again, looking at the last source code
you generated for the Main procedure. Again, any changes you made in
the Application Generator since the last time you generated code will not
show up in this code.

You may have noticed that right below the Module selection was another
called Source . Do not confuse these two, they do very different things. We
will demonstrate the Source selection later in this tutorial.

If you do make any changes to this code, you actually can compile and
run the program to see what effect the changes make, however, your
changes will be lost the next time you generate source code . Therefore, it is not a
good idea to make any changes here.

6. When you have finished looking at the code, choose File ➤ Close to exit
the Text Editor and return to the Application Generator.

86 CLARION 5 LEARNING CLARION

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You created a new .APP file—without using a wizard.

♦ You created an application Frame procedure—without using a
wizard.

♦ You created a menu in your application frame.

♦ You created a splash screen procedure for your application.

♦ You created a toolbar under your application’s main menu and
placed iconized, flat buttons on it.

♦ You used Clarion’s resize and alignment tools to adjust your
screen design.

♦ You used a Control Template to populate your toolbar with a set
of standard navigation buttons.

♦ You compiled and ran your work-in-progress to test its
functionality.

In the next lesson, we’ll add a Browse procedure to the application.

LESSON 7 CREATING A BROWSE 87

7 - CREATING A BROWSE

Creating a Browse Window
In this chapter, you’ll create a browse window similar to the one created for
you by the Quick Start Wizard. The Application Generator uses the same
templates, which generate the same basic code—but doing it this way, you’ll
have a chance to “do it from scratch.” This shows you just how much the
Wizards do for you, and how you can do it all yourself, too. You’ll start with
the Customer browse window.

Starting Point:
The TUTORIAL.APP file should be open.

Creating the Customer Browse Window

You recall that the Quick Start Wizard created a window for the Customer
file Browse procedure, that looked like this:

Now you’ll create a similar one using the Browse Procedure template:

Select the procedure type for the ViewCustomers procedure

1. DOUBLE-CLICK on ViewCustomers in the Application Tree .

2. Highlight the Browse Procedure template in the Select Procedure Type
dialog, clear the Use Procedure Wizard check box, then press the Select
button.

The Procedure Properties dialog appears.

7

88 CLARION 5 LEARNING CLARION

Make the window resizable

1. In the Procedure Properties dialog, press the Extensions button.

2. In the Extensions and Control Templates dialog, press the Insert button.

3. Highlight WindowResize in the Select Extension dialog, then press the
Select button.

This Extension template generates code to automatically handle resizing
and re-positioning all the controls in the window when the user resizes
the window, either by resizing the window frame, or by pressing the
Maximize/Restore buttons.

4. Press THE OK button to close the Extensions and Control Templates dialog.

Edit the Browse procedure

1. In the Procedure Properties dialog, press the Window button.

2. RIGHT -CLICK in the window’s title bar and choose Properties from the
popup menu.

3. In the Window Properties dialog, type Browse Customers in the Text field.

4. Select Resizable from the Frame Type drop-down list.

5. Select the Extra tab and check the Maximize Box box.

These last two steps allow the user to resize the window at runtime.

6. Press THE OK button to close the Window Properties dialog.

Populating and Formatting a List Box Control

The List Box Formatter allows you to format the data in the list.

Prepare to format the list box

1. RIGHT -CLICK on the list box in the window, then choose List Box Format...
from the popup menu.

LESSON 7 CREATING A BROWSE 89

The Select Field dialog appears. This provides access to the files defined in
the data dictionary. The Files list displays all the files selected for use in
this proceure in a hierarchical arrangement (the File Schematic), which
includes the browse list box control.

Select the file and fields to place in the browse list box control

1. Highlight the “ToDo” item below the File-Browsing List Box and press the
Insert button.

2. Highlight the Customer file in the Insert File dialog, then press the Select
button.

This adds the file to the File Schematic in the Select Field dialog, which
now lists the file and its fields.

3. Press the Edit button.

4. Highlight KeyCustNumber in the Change Access Key dialog and press the
Select button.

This is important, because it sets the display order for the records in the
list. If you don’t specify a key, the records appear in (sort of) whatever
order they were added to the file (also called “Record Order”).

5. Highlight CUS:Company in the Fields list, then press the Select button.

This brings you into the List Box Formatter with the selected field added
to the list. The tabs on the right allow you to format the appearance of
the field highlighted in the list on the left.

90 CLARION 5 LEARNING CLARION

Apply special formatting to the first field

1. On the General tab, check the Right Border and Resizeable boxes.

This adds a resizable right vertical border to the field at runtime.

2. CLICK once on the up arrow of both of the Indent spin boxes to slightly
indent the heading text and the displayed data.

Populate the second field

1. Press the New Column button.

2. Highlight CUS:FirstName in the Fields list, and press the Select button.

LESSON 7 CREATING A BROWSE 91

3. Clear the Right Border and Resizeable check boxes.

The List Box Formatter automatically “carries forward” these formatting
options from the last field you added, making it very simple to add
multiple fields with similar formatting options. In this case, clearing
these check boxes deletes the column divider between this and the next
column, which will be the LastName field.

Populate the third field

1. Press the New Column button.

2. Highlight CUS:LastName in the Fields list, then press the Select button.

3. Check the Right Border and Resizeable boxes.

This once again adds the resizable column divider between this and the
next column.

Populate the fourth field

1. Press the New Column button.

2. Highlight CUS:Address in the Fields list, then press the Select button.

Group some fields

1. Press the New Group button.

2. Press the UP ARROW to highlight the new group.

By creating a new group, in which you’ll place the address information,
you can add a group header. This appears above the field headers, and
visually links the data in the columns beneath. Notice that, as you add
fields and make changes you can see the effects of your changes in the
sample list box atthe top of the List Box Formatter dialog.

92 CLARION 5 LEARNING CLARION

3. Type Address Info in the Heading Text field.

This provides the text for the group header. Any fields appearing to the
right of this one will be included in the group, until you define another
group.

As you add fields, the List Box Formatter continually updates its sample
window (at the top) to show you how your list will appear.

4. Highlight the CUS:Address field.

Populate the fifth field

1. Press the New Column button.

2. Highlight CUS:City in the Fields list, and press the Select button.

Populate the sixth field

1. Press the New Column button.

2. Highlight CUS:State in the Fields list, and press the Select button.

Populate the seventh field, and exit the List Box Formatter

1. Press the New Column button.

2. Highlight CUS:ZipCode in the Fields list, and press the Select button.

3. Press the OK button to close the List Box Formatter.

LESSON 7 CREATING A BROWSE 93

Adding the Tabs

When the Quick Start Wizard created this procedure it had tab controls that
changed the list’s sort order depending on which tab was selected. Therefore,
we’ll add this functionality right now to show how easy it is to accomplish!

Add the Property Sheet and the first tab

1. CLICK on your window’s title bar to place the red “handles” on your
window design.

2. Place the mouse cursor directly over the middle handle on the top then
DRAG it up to create some room at the top.

3. CLICK on the Property Sheet control in the Controls toolbox (it’s the one
that looks like several file folders).

4. CLICK above and to the left of the List box to place the property sheet and
one Tab control.

5. DRAG the “red handle” at the bottom left-hand corner so that it appears
just below and to the left of the Insert button.

6. DRAG the “red handle” at the bottom right-hand corner so that it appears
just below and to the right of the Close button.

This resizes the property sheet so that it appears as though the list box
and buttons are on the tab. In fact, they are not, and we don’t want them
to be, since we want all these controls to be visible no matter which tab
the user selects. Your window should now look something like this:

94 CLARION 5 LEARNING CLARION

7. CLICK on the “Tab 1” text for the first tab in the sheet.

8. Type KeyCustNumber in the Text field of the Property toolbox, then press
TAB.

This changes the tab’s text. This tab text can be anything, but naming the
key also names the sort order it will display.

Add the rest of the tabs

1. CLICK on the Tab control in the Controls toolbox (it’s the one that looks
like a single file folder).

2. CLICK immediately to the right of the KeyCustNumber text to place the
next Tab control.

3. Type KeyCompany in the Text field of the Property toolbox, then press TAB.

4. CLICK on the Tab control in the Controls toolbox.

5. CLICK immediately to the right of the KeyCompany tab to place the next
Tab control.

6. Type KeyZipCode in the Text field of the Property toolbox, then press TAB.

Hiding the Buttons

When the Quick Start Wizard created this procedure it did not have Insert,
Change, Delete, Select, and Close buttons—at least, you didn’t see them
when you executed the resulting program! Actually, those buttons were all
there, but they were hidden so the user would just use the toolbar buttons to
update the file.

The “secret” here is that the toolbar buttons actually just tell hidden buttons
in the Browse procedure to do what they normally do. Therefore, when you
are designing a Browse procedure without using the Wizards, you do need to
have the update buttons on the screen, but the user does not have to see them
at runtime.

1. RIGHT -CLICK on the Close button in the sample window then CLICK on
Properties... from the popup menu.

2. Check the Hide box, then press the OK button.

LESSON 7 CREATING A BROWSE 95

This adds the HIDE attribute to the control so you won’t see it on screen
at runtime. Of course, you can still see it in the Window Formatter.

3. RIGHT -CLICK on the Select button then CLICK on Properties... .

4. Check the Hide box, then press the OK button.

5. RIGHT -CLICK on the Delete button then CLICK on Properties... .

6. Check the Hide box, then press the OK button.

7. RIGHT -CLICK on the Change button then CLICK on Properties... .

8. Check the Hide box, then press the OK button.

9. RIGHT -CLICK on the Insert button then CLICK on Properties... .

10. Check the Hide box, then press the OK button.

Move the buttons and resize the list

There’s no need to waste the space these buttons (which the user won’t see)
occupy on the window, so we’ll move them out of the way.

1. CLICK on the Close button then SHIFT+CLICK and DRAG the button up into
the list box.

DRAGGING a control with the SHIFT key depressed allows you to move the
control in only one direction; if you start moving it down it will only
move up and down, but if you start moving it to either side it will only
move side to side.

2. CLICK on the Select button then CTRL +CLICK on the Insert, Change, and
Delete buttons to select them all, then CLICK and DRAG the buttons up into
the list box.

DRAGGING multiple controls at once allows you to move the controls
while maintaining the relative positions of the controls within the group.
Now we’ll use the space we just gained to make the list longer.

3. CLICK on the list box then DRAG its bottom-center handle down to make
the list longer.

Testing the Customer Browse

The Window Formatter provides a test mode which allows you to preview
just how your window looks on the desktop. Since this is an MDI window, it
appears inside the Window Formatter frame.

1. Choose Preview! on the Window Formatter’s menu bar.

96 CLARION 5 LEARNING CLARION

2. Press ESC (or the X button) to return to the Window Formatter.

Setting the Sort Orders

Now that the tabs are there, we need to tell the list box what alternate sort
orders to use and when.

1. RIGHT -CLICK on the list box then choose Actions... from the popup menu.

The list box is actually a BrowseBox Control template that has been
placed in the Browse Procedure template’s default window design in the
Template Registry (see the Application Handbook for more information
on the Template Registry). This means that it has associated prompts
which tell it how to populate the list and what actions to perform.

The prompts that appear on the Actions tab come directly from the
templates (in this case, the BrowseBox Control template). This is how
you communicate to the templates exactly what code they need to
generate to give you the behavior you ask for (and nothing else). These
prompts, their meanings and uses, are all covered in the User’s Guide
and in the on-line help for each window in which they appear.

2. Select the Conditional Behavior tab.

3. Press the Insert button.

4. Type CHOICE(?Sheet1) = 2 in the Condition field.

This sets the condition under which the alternate sort order will be used.
This expression uses the Clarion language CHOICE function (see the
Language Reference) to detect when the user has selected the second tab
on the sheet. The generated code will use this expression in a conditional
statement that will change the sort order at runtime.

5. Press the ellipsis button (...) next to the Key to Use field.

6. Highlight CUS:KeyCompany then press the Select button on the Select Key
dialog.

LESSON 7 CREATING A BROWSE 97

Now, when the user selects the second tab, the BrowseBox Control
template will generate code to switch to the key on the Company field. It
doesn’t need to know what to do for the first tab, because that always
uses the Access Key we set in the File Schematic.

7. Press the OK button.

8. Press the Insert button.

9. Type CHOICE(?Sheet1) = 3 in the Condition field.

10. Press the ellipsis button (...) next to the Key to Use field.

11. Highlight CUS:KeyZipCode then press the Select button on the Select Key
dialog.

12. Press the OK button.

13. Press the OK button to close the List Properties dialog.

98 CLARION 5 LEARNING CLARION

Closing the Customer Browse

1. Choose Exit! on the Window Formatter’s menu bar, and save your
window changes when prompted to do so.

2. Press the OK button in the Procedure Properties dialog to close it.

3. Choose File ➤ Save, or press the Save button on the toolbar to save your
work.

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You created a new Browse Procedure—without using a wizard.

♦ You added an Extension Template to automatically make the
new procedure’s window resizable.

♦ You used the List Box Formatter tool to design a scrolling list of
records.

♦ You used the List Box Formatter tool to design a scrolling list of
records.

♦ You added a Property Sheet and several Tabs to your screen
design.

♦ You hid and moved buttons to provide a “cleaner” screen design.

♦ You used the Window Formatter’s Preview mode to see your
window design in action.

♦ You set dynamic sort orders for the user based on which Tab
control they select.

Now that the first Browse procedure is complete, we’ll go on and create its
associated update Form procedure.

LESSON 8 CREATING AN UPDATE FORM 99

8 - CREATING AN UPDATE FORM

Creating an Update Procedure
In the last chapter, we formatted the Customer Browse procedure’s list box
and added tab controls to change the sort order. To finish the basic
procedure, we name the Update procedure. This is the procedure that handles
the action for the Insert, Change, and Delete buttons.

Starting Point:
The TUTORIAL.APP file should be open.

Add a “ToDo” procedure

1. Highlight ViewCustomers in the Application Tree dialog, then press the
Properties button.

The Procedure Properties dialog appears. There are actually three ways to
get to this dialog (use the method that suits the way you work):

• Highlight the procedure then press the Properties button.

• DOUBLE-CLICK the procedure in the Application Tree dialog.

• RIGHT -CLICK the procedure and select Properties from the popup menu.

2. Type UpdateCustomer in the Update Procedure entry box at the bottom of
the Procedure Properties dialog.

This names the procedure to update the records displayed in the browse.
The new procedure appears in the Application Tree as a “ToDo.”

3. Press the OK button to close the Procedure Properties dialog.

8

100 CLARION 5 LEARNING CLARION

Notice that you didn’t have to start a new execution thread for the update
procedure. You want it to run on the same thread as the browse, so that
the end user can’t open a form window to change a record, then activate
the browse window again, and open another form on the same record. In
other words, you don’t want an end user trying to change the same
record twice at the same time!

Creating the Update Form Procedure

The Update Procedure should use the Form Procedure template to create a
procedure that the end user can use to maintain a record. It should provide a
prompt and entry control for each field in the record.

Select the procedure type for UpdateCustomer.

1. DOUBLE-CLICK on UpdateCustomer in the Application Tree dialog.

2. Highlight the Form Procedure template, clear the Use Procedure Wizard
check box, then press the Select button.

The Procedure Properties Window appears. Notice that this dialog looks
different than the Splash, Frame, or Browse Procedure Properties dialogs
looked, because the prompts at the left vary for each type of Procedure
template. The Application Handbook and on-line help describes the
customization options available on each Procedure Properties dialog.

3. Press the Files button to name the file the Form will update.

The File Schematic Definition dialog appears.

4. Highlight the “ToDo” item below the Update Record on Disk and press the
Insert button.

5. Highlight the Customer file in the Insert File dialog, then press the Select
button.

LESSON 8 CREATING AN UPDATE FORM 101

6. Press the OK button to return to the Procedure Properties window.

Make the window resizable

1. In the Procedure Properties dialog, press the Extensions button.

2. In the Extensions and Control Templates dialog, press the Insert button.

3. Highlight WindowResize in the Select Extension dialog, then press the
Select button.

This Extension template generates code to automatically handle resizing
and re-positioning all the controls in the window when the user resizes
the window, either by resizing the window frame, or by pressing the
Maximize/Restore buttons.

4. Press THE OK button to close the Extensions and Control Templates dialog.

Edit the Window Properties

1. In the Procedure Properties dialog, press the Window button.

2. RIGHT -CLICK in the window’s title bar, then choose Properties from the
popup menu.

3. Select Resizable from the Frame Type drop-down list.

4. Select the Extra tab and check the Maximize Box box.

These last two items allow the user to resize the window at runtime.

6. Press THE OK button to close the Window Properties dialog.

Populating the Fields

The default window design contains three fields for you already. The OK
button will close the dialog, accepting the end user’s input and writes the
Customer file record to disk. The Cancel button closes the form without
updating. The string field provides an action message to inform the end user
what action they are taking on the record.

102 CLARION 5 LEARNING CLARION

Placing the fields in a window is called populating it.

1. Choose View ➤ Show Fieldbox .

This displays a toolbox containing all the fields from all the files
specified in your procedure’s File Schematic. These fields are all ready
to populate onto your window design.

2. CLICK on CustNumber in the Populate Field toolbox then move the cursor
over the window design.

The cursor changes to a crosshair and a “little book” which indicates the
field comes from the data dictionary.

3. CLICK near the upper left corner of your window design.

This places both the data entry control and its associated prompt. These
controls default to whatever you specified in the data dictionary for the
field.

4. DOUBLE-CLICK on Company in the Populate Field toolbox.

DOUBLE-CLICK automatically places both the field and its prompt just
below the first fields you placed. You could select and place each field as
we did the first, but DOUBLE-CLICK is much faster.

5. DOUBLE-CLICK on FirstName in the Populate Field toolbox.

6. DOUBLE-CLICK on LastName in the Populate Field toolbox.

7. DOUBLE-CLICK on Address in the Populate Field toolbox.

8. DOUBLE-CLICK on City in the Populate Field toolbox.

9. DOUBLE-CLICK on State in the Populate Field toolbox.

LESSON 8 CREATING AN UPDATE FORM 103

This places the prompt and the drop list. We pre-defined this field as a
LIST control with the DROP attribute in the data dictionary. Since it has
a pre-defined set of valid entries, we don’t have to format it.

10. DOUBLE-CLICK on ZipCode in the Populate Field toolbox.

The form window now looks something like this:

Moving and Aligning Fields

For a professional look, we need to move these fields around and align the
sides and bottoms of all the fields in the screen.

Move the fields to their approximate positions.

1. CLICK on the State drop list.

2. SHIFT+DRAG the State droplist to the left, closer to its prompt.

SHIFT+DRAG “contrains” the control’s movement to the plane of it’s first
movement (either horizontal or vertical).

3. CTRL+CLICK on the State prompt.

When you CTRL+CLICK on a control, the previously selected control’s
handles turn blue while the newly selected control’s handles are red. You
now have two controls selected.

4. Move the State drop list and prompt (CLICK and DRAG on either of the
two selected controls) up and to the right of the City controls.

104 CLARION 5 LEARNING CLARION

Once multiple controls are selected, you can move them as a group the
same way you would move one individual control.

5. CLICK on the ZipCode entry box.

6. SHIFT+DRAG the ZipCode entry box to the left, closer to its prompt.

7. CTRL +CLICK on the ZipCode prompt.

8. Move the ZipCode entry box and prompt up and to the right of the City
and State controls.

You may need to make the window a little wider to accomplish this.

9. CLICK on the LastName entry box.

10. SHIFT+DRAG the LastName entry box to the left, closer to its prompt.

11. CTRL +CLICK on the LastName prompt.

12. Move the LastName entry box and prompt up and to the right of the
FirstName controls.

Now your window should appear something like this:

Align the fields to their final positions

1. Choose View ➤ Show Alignbox .

The Window Formatter has an Alignbox toolbox that contains the same set
of alignment tools that are also available through the Alignment menu.
Your Alignbox toolbox may not look exactly like the one pictured here.
That’s because you can reconfigure the shape of any of the floating
toolboxes by DRAGGING any border—the toolbox will reshape itself to fit

LESSON 8 CREATING AN UPDATE FORM 105

the new size. Try it and see how flexible it is. This allows you to
configure your workspace the way you want it. Naturally, you also recall
from previous lessons that all these toolboxes are dockable, too.

2. CLICK on the first prompt in the upper left corner.

This should be the CustNumber prompt. Its handles should appear when
you click it.

3. CTRL +CLICK on the four prompts immediately below the first.

As you CTRL+CLICK on each control in turn, the previously selected
controls’ handles turn blue while the newest selected control’s handles
are red. The control with the red handles provides the “base point” for
the alignment operation. All the other selected controls are aligned in
relation to the control with the red handles.

With all five prompts selected, it should look like this:

4. Press the Align Left button (the top left button) in the Align toolbox.

The controls all line up along their left edges, based on the position of
the last item selected (the one with the red handles).

106 CLARION 5 LEARNING CLARION

To identify the controls in the Align toolbox, simply place the mouse
cursor over the control and wait half a second for the tool tip to appear.

5. Press the Spread Vertically button in the floating Align toolbox.

The controls all evenly spread themselves between the top and bottom
controls selected.

6, CLICK on the first entry control (this should be the CustNumber entry
field).

7. CTRL +CLICK on the entry controls immediately below it to select them
all.

8. RIGHT -CLICK and choose Align Left from the popup menu that appears.

Here is yet another way to get to the alignment tools. The alignment
popup menu appears only when you have multiple controls selected.

9. RIGHT -CLICK and choose Spread Vertically from the popup menu that
appears.

This should align all the data entry controls with their respective prompts
that we already Spread Vertically .

10. CLICK on the LastName entry box.

11. CTRL +CLICK on the three controls to its left (its prompt, the FirstName
entry field and prompt).

12. Choose Align Horizontally from either the floating Align toolbox or the RIGHT -
CLICK popup alignment menu.

This aligns the controls in a neat row.

There is one more way to select multiple controls in the Window
Formatter: Lasso them.

13. Place the mouse cursor slightly above and to the left of the first control
in the bottom row (this should be City prompt).

14. CTRL +CLICK AND DRAG slightly down and to the right until the box outline
surrounds all five controls to the right (the prompts and controls for City,
State and ZipCode) then release the mouse button.

The red “handles” appear on the ZipCode entry control and the blue
“handles” on the other controls. This is the “lasso” technique.

15. Choose Align Horizontally from either the floating Align toolbox or the RIGHT -
CLICK popup alignment menu.

16. Use the Align Horizontally tool to align the CustNumber, Company, and
Address entry boxes with their respective prompts.

The window should now look something like this:

LESSON 8 CREATING AN UPDATE FORM 107

The form window is almost done. Now we will add a browse list box for
the related Phones file records.

Adding a BrowseBox Control Template

Control templates generate all the source code required to create and
maintain a specific type of control (or set of controls) on your window. All
the entry controls we just placed on this window are simple controls, not
Control templates, because they do not need any extra code to perform their
normal function. Control templates are only used when a specific control
needs extra functionality that the “bare” control itself does not provide. For
example, the OK and Cancel buttons are both Control templates—the OK
button’s Control template saves the record to disk, while the Cancel button’s
Control template has all the “cleanup” code necessary to cancel the current
operation.

Now you will place a BrowseBox Control template that displays all the
records from the Phones file that are related to the current Customer record.

Place the Control Template

1. Choose Populate ➤ Control Template , or CLICK on the Control Template tool
in the floating Controls toolbox (last tool icon on the right, bottom row).

108 CLARION 5 LEARNING CLARION

2. In the Select Control Template dialog, highlight the BrowseBox Control
template, then press the Select button.

The cursor changes to a crosshair and “little book.”

3. CLICK just below the City entry box to place the control.

The Select Field dialog appears, ready for you to choose the file this
BrowseBox will display.

4. Select the “ToDo” item below the File-Browsing List Box and press the Insert
button.

5. Highlight the Phones file in the Insert File dialog, then press the Select
button.

6. Highlight the Phones file in the Files list, then press the Edit button.

7. Highlight KeyCustNumber in the Change Access Key dialog, then press the
Select button.

Place the Phones file fields in the List Box Formatter

1. Highlight PHO:CustNumber in the Fields list, then press the Select button.

The List Box Formatter now appears, ready for you to choose the rest of
the fields to display.

LESSON 8 CREATING AN UPDATE FORM 109

2. Select Left from the Data group box’s Justification dropdown list.

This changes the data justification from the default value (which is Right
justification for numeric values).

3. Press the New Column button.

4. Highlight PHO:Area in the Fields list, then press the Select button.

5. Select Left from the Data group box’s Justification dropdown list, then press
the OK button.

6. Press the New Column button.

7. Highlight PHO:Phone in the Fields list, then press the Select button.

8. Select Left from the Data group box’s Justification dropdown list, then press
the OK button.

9. Press the New Column button.

10. Highlight PHO:Description in the Fields list, then press the Select button.

As an optional step, resize the columns in the List Box Formatter’s
sample window (at the top of the dialog) to make them wide enough for
the column headers. To resize the columns, just DRAG the left edge of the
column with the mouse.

11. Press the OK button to close the List Box Formatter.

This places the formatted List box on the window at the position we
specified. This may expand the window. If so, resize the List box by
DRAGGING its handles, then move the OK, Cancel, and Message string
controls down to the new bottom of the window.

Set up the control template’s record range limits

1. RIGHT -CLICK the list box you just placed, and select Actions from the
popup menu.

2. Press the ellipsis (...) button next to the Range Limit Field .

110 CLARION 5 LEARNING CLARION

3. Highlight the PHO:CustNumber field in the Key Components list, then
press the Select button.

4. Choose File Relationship from the Range Limit Type dropdown list.

5. Press the ellipsis (...) button next to the Related File field then select
Customer from the Select File dialog.

This identifies the Customer file as the related file. These steps limit the
records displayed in the list box to only those records related to the
currently displayed Customer file record.

6. Press OK to close the List Properties dialog.

Adding the BrowseUpdateButtons Control Template

Next we’ll add the standard Insert, Change and Delete buttons for the list box
control.

Place another type of Control Template

1. Choose Populate ➤ Control Template , or CLICK on the Control Template tool
in the Controls toolbox (last tool icon on the right, bottom row).

2. Highlight the BrowseUpdateButtons Control template, then press the
Select button.

The cursor changes to a crosshair and “little book.”

3. CLICK below the left end of the list box.

The Insert , Change , and Delete buttons appear. Remember, these are the
buttons that will allow the toolbar buttons to function, so they must be
present in the window design. They do not have to be visible to the end-
user, so you can hide them if you choose. However, since this
BrowseBox is placed on an update Form procedure, for this application
we’ll leave this set of BrowseUpdateButtons visible. This will allow the

LESSON 8 CREATING AN UPDATE FORM 111

user to use either set of buttons. The toolbar update buttons will only
function for this list when the list box has focus—not when the user is
inputting data into any other control—so keeping these buttons visible
will ensure that the user can easily maintain the Phones file records.

At this point the window should look something like this:

Specify Edit in Place for Phones Update

1. RIGHT -CLICK on the Delete button and choose Actions from the popup menu.

2. Check the Use Edit in place box.

Setting the Actions for one button sets them for all three buttons in the set,
because they all belong to the same Control Template. Since the Phones
file is a small file with just a couple of fields, there’s no need for a
separate Update Procedure.

3. Press the OK button.

4. Choose Exit! to close the Window Formatter .

5. Press the OK button to close the Procedure Properties dialog.

6. Choose File ➤ Save, or press the Save button on the tool bar.

112 CLARION 5 LEARNING CLARION

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You created a new Form Procedure—without using a wizard.

♦ You learned just how quickly you can populate data entry
controls onto a Form by using the Fieldbox toolbox.

♦ You learned to use the Window Formatter’s tools to move and
align controls.

♦ You used the List Box Formatter again and created a range
limited listbox.

♦ You learned how to implement edit-in-place for simple updates
which don’t require a Form procedure.

Now you’ve created all the procedures necessary to maintain both the
Customer and Phones data files. Next, we’ll create the procedures which will
maintain the Products data file.

LESSON 9 COPYING PROCEDURES 113

9 - COPYING PROCEDURES

The Products File Procedures
Now that we’ve created the Customer browse, we can reuse much of that
work for the next procedure by copying the procedure, then changing its
fields. In this chapter, you’ll copy the ViewCustomers procedure to create the
ViewProducts procedure.

You will also use “Embed points” to write “embedded source code” to call
the Viewproducts procedure from your application’s menu and toolbar. This
will introduce you to the numerous points at which you can add a few (or
many) lines of your own source code to add functionality to any procedure.

Starting Point:
The TUTORIAL.APP file should be open.

Copy the Procedures

As you recall, when you created your View ➤ Products menu item, and the
toolbar button labeled “Products,” you didn’t specify a procedure to call
when the end user executed them. We’ll start by creating the procedure to
call.

1. Highlight the ViewCustomers procedure in the Application Tree dialog.

This is the procedure you will copy.

2. Choose Procedure ➤ Copy... .

The New Procedure dialog appears.

3. Type ViewProducts in the entry box then press the OK button.

Because the UpdateCustomer procedure is nested under the
ViewCustomers procedure (the one you are copying), the Procedure name
clash dialog appears. This offers you options on how to handle the
clashing procedures.

9

114 CLARION 5 LEARNING CLARION

4. Press the Prompt button.

By pressing the Prompt button, you tell the Application Generator to let
you have the opportunity to rename all the clashing procedures, or not.

Another warning message box appears to inform you of a specific
duplicate procedure name.

5. Press the Rename button.

The Alternative Procedure dialog appears.

6. Type UpdateProduct in the entry box, then press the OK button.

The ViewProducts and UpdateProduct procedures appear in the
Application Tree. They look “disconnected” from the other procedures
because no other procedure calls them (yet). We’ll do that next.

Working with Embed Points

The Clarion templates allow you to add your own customized code to many
predefined points inside the standard code that the templates generate. It’s a
very efficient way to achieve maximum code reusability and flexibility. The
point at which your code is inserted is called an Embed Point. Embed points
are available at all the standard events for the window and each control, and
many other logical positions within the generated code.

LESSON 9 COPYING PROCEDURES 115

In this example, you add embedded source code—using a Code template that
will write the actual source for you—at the points where the end user
chooses the View ➤ Products menu item, and at the point where the end
user presses the Products button on the application’s toolbar.

Name the procedure to call to View the Products

1. RIGHT -CLICK on the Main procedure in the Application Tree.

There are several ways to access the embedded source code points within
a procedure. Two of them appear on the popup menu that you now see.

The first is the Embeds selection, which calls the Embedded Source dialog to
show a list of all the embed points within the procedure.

The second is the Source selection, which actually generates source code
for the procedure and calls the “Embeditor” (the Text Editor in embed
point edit mode) to allow you to directly edit all the embed points within
the context of generated source. The generated source code is “grayed
out” to indicate that you cannot edit it, and every possible embed point in
the procedure is identified by comments, following which you may type
your code.

There are advantages to each method of working in embed points, so
we’ll cover both methods during the course of this tutorial. First, we’ll
use the Embedded Source dialog.

2. Choose Embeds from the popup menu.

The Embedded Source dialog appears, allowing access to all the embed
points in the procedure. You can also get here from the Embeds button on
the Procedure Properties window, but the popup menu is quicker. This list is
either sorted alphabetically or in the order in which they appear in the
generated source, depending on whether you have the Sort Embeds
Alphabetically box checked in Setup ➤ Application Options .

116 CLARION 5 LEARNING CLARION

3. Press the Contract All button.

This will make it easier to locate the specific embed point you need.

4. Locate the Control Events folder, then CLICK on its + sign to expand its
contents.

The menu selection is a control, just as an entry box on the window is.

You’ll notice that there are some up and down buttons and a spin box at
the right side of the window which allow you to select a Priority —these
are important. The templates generate much of the code they write for
you into these same embed points. Sometimes, the code you want to
write should execute before any template-generated code, and sometimes
it should execute after, and sometimes it should execute somewhere
between various bits of generated code. The exact placement of your
code within the embed point is determined by the Priority number. This
provides you with as much flexibility in placing your embed code as
possible. The Priority numbers themselves do not matter, but the logical
position within the generated code does, and that’s why this dialog also
shows comments which identify the embed priorities. Don’t worry,
here’s more coming on this issue later that’ll help make it more clear.

5. Locate the ?ViewProducts folder, then CLICK on it to expand it.

6. Highlight Accepted then press the Insert button.

The “Accepted” event for this menu selection marks the point in the
generated code that executes when the user chooses the menu command.

The Select embed type dialog appears to list all your options for embedding
code. You may simply Call a Procedure , write your own Clarion language
Source in the Text Editor, or use a Code template to write the source code
for you. This is one advantage to editing embed points from within the
Embedded Source dialog—you can use Code templates to write the code for
you instead of writing it yourself.

7. Select the InitiateThread Code template, then press the Select button.

LESSON 9 COPYING PROCEDURES 117

A Code template usually provides just a few prompts and instructions on
its use. It gathers the information it needs from you to write its
executable code, which it then inserts into the standard generated code
produced by the Procedure template directly into this embed point. This
Code template is designed to start a new execution thread by calling the
procedure you name using the START procedure.

8. Choose ViewProducts from the Procedure Name dropdown list.

This names the procedure to call when the user chooses the menu item.
This is the name of the procedure you previously copied.

9. Press the OK button.

Name the procedure to call for the Products toolbar button

At this point, you could do the same thing to call the ViewProducts procedure
from the Product button. However, there’s an easier way to write this code
again—just Copy and Paste it from one embed point to another!

1. CLICK on the Copy button (the middle button of the button group at the left
end of the toolbar).

The Code template you just added should still be highlighted, so this will
copy it to the Windows clipboard.

2. Locate the ?ProductsButton folder (in the same Control Event Handling
folder you are already in), then CLICK on it to expand it.

3. Highlight Accepted then press the Paste button (the far right button of the
button group at the left end of the toolbar).

The Procedure name clash dialog appears again to warn you that you’ve
already called this procedure once.

118 CLARION 5 LEARNING CLARION

4. Press the Same button.

Now this embed point will generate the same code as the previous one.

5. Press the Close button.

The ViewProducts procedure now “connects” to the Main procedure.
Now you can customize the copied procedures for the Products file.

Modify the Browse

Change the file for the browse list control

1. RIGHT -CLICK the ViewProducts procedure and choose Window from the
popup menu.

2. RIGHT -CLICK the listbox control and choose List Box Format... from the
popup menu.

LESSON 9 COPYING PROCEDURES 119

3. In the List Box Formatter, press the Delete button repeatedly until all the
fields are removed.

When you’ve removed the last field, the Select Field dialog automatically
appears.

4. Highlight the Customer file in the Files list, then press the Delete button.

5. Highlight the “ToDo” which replaces the Customer file, then press the
Insert button.

6. Highlight the Products file then press the Select button.

The Select Field dialog now lists the correct file and fields for this
procedure.

7. Press the Edit button, then select KeyProdDesc from the Change Access Key
dialog.

The Select Field dialog now lists the correct file and fields.

Re-populate the fields

1. Highlight PRD:ProdNumber in the Fields list, then press the Select button.

2. Check the Right Border and Resizeable boxes, and increment both the Indent
spin boxes to one (1).

3. Press the New Column button.

4. Highlight PRD:ProdDesc in the Fields list, then press the Select button.

5. Choose Left from the Data group’s Justification droplist.

6. Press the New Column button.

7. Highlight PRD:ProdAmount in the Fields list, then press the Select button.

8. Increment the Data group’s Indent spin box to twelve (12).

Since the default Justification is Decimal, this step is required to ensure the
fractional values have room to appear.

9. Press the New Column button.

10. Highlight PRD:TaxRate in the Fields list, then press the Select button.

Notice the default Justification is Decimal, and the Data group’s Indent spin
box is still set to twelve (12) fromthe previous field.

11. Press the OK button to close the List Box Formatter.

Don’t worry about the buttons on top of the list box. Remember, these
are just the “hidden” buttons that the toolbar update buttons call.

Change the name of the window

1. CLICK on the sample window caption bar.

2. Type Browse Products in the Text field of the Property toolbox, then press
TAB.

120 CLARION 5 LEARNING CLARION

Remove all the tabs

1. CLICK immediately to the right of the KeyZipCode tab to select the entire
property sheet.

To be sure that you have CLICKED in the right place, look at the Property
toolbox and make sure that its Use field displays ?Sheet1. If it does not,
try again until it does.

2. Press DELETE on the keyboard.

All the tabs disappear.

Add an entry locator

If the list of Products to display is very long, the user can do a lot of scrolling
before finding the specific Product they want. By default, all BrowseBox
Control Templates have a “Step” record locator that allows the user to press
the first letter of the value in the sort key field to get to the first record that
begins with that letter.

Sometimes with large databases however, the user needs to enter the first
several letters to get close to the record they want. An Entry locator provides
that functionality by specifying an entry control for the user to type into—
when they then press TAB to leave the entry box, the list scrolls to the first
record matching the data the user entered. This only works with STRING
keys.

1. If it’s not already present, choose Options ➤ Show Fieldbox to display the
floating Populate Field toolbox.

LESSON 9 COPYING PROCEDURES 121

If the Populate Field toolbox still shows the Customer file’s fields, simply
close the toolbox then re-open it to refresh the toolbox with the Products
file fields.

2. DOUBLE-CLICK on ProdDesc in the Populate Field toolbox.

This automatically places both the prompt and entry box for the field
near the top left corner of the window. This is the Locator’s entry box.

3. Choose Exit! from the menu to close the Window Formatter (save your
changes as you exit).

Clean up the alternate sort orders

1. RIGHT -CLICK the ViewProducts procedure and choose Extensions from the
popup menu.

The Extension and Control Templates dialog appears. This dialog lists all the
Control templates in the procedure and their Actions prompts.

This dialog also allows you to add and maintain Extension templates to
the procedure. Extension templates are very similar to Control templates,
in that they add specific functionality to the procedure, but an Extension
template’s functionality is not directly associated with any control(s) on
the window. In other words, Extension templates add “behind the
scenes” functionality to a procedure that don’t directly affect the user
interface.

A very good example of Extension templates comes in Clarion’s Internet
Connect product. Clarion Internet Connect contains (among its other
development tools) a set of Extension templates which automatically
“translate” a Clarion Windows application into dynamic HTML pages.
This allows the Clarion application to execute across the Internet. The
user just needs to use any Java-enabled browser to access the Clarion
program. TopSpeed sales can give you more information on Internet
Connect, if you’re interested.

2. Highlight Browse on Products then press the Locator Behavior button.

3. Select Entry from the Locator droplist then press the OK button.

This completes the requirements for the Entry Locator. The key field of
the sort order (in this case PRO:ProdDesc) is the default locator control.

4. Select the Conditional Behavior tab.

122 CLARION 5 LEARNING CLARION

5. Press the Delete button twice.

This removes the two conditional expressions we entered for the
ViewCustomers procedure.

6. Press the OK button.

7. Choose File ➤ Save, or press the Save button on the toolbar.

Creating the Form Procedure

When you renamed the reference to the UpdateCustomer procedure while
copying ViewCustomer to ViewProducts, it made the UpdateProduct
procedure a “ToDo” procedure. Therefore, we need to create a form to
update the Products file.

Select the procedure type for UpdateProduct

1. Highlight UpdateProduct, then press the Properties button.

2. Highlight Form, clear the Use Procedure Wizard check box, then press the
Select button.

3. Press the Files button in the Procedure Properties dialog.

4. Highlight the “ToDo” file, then press the Insert button.

5. Highlight the Products file then press the Select button.

6. Press the OK button to return to the Procedure Properties dialog.

7. Press the Window button to design your form.

Populate the fields

1. If it’s not already present, choose View ➤ Show Fieldbox to display the
Populate Field toolbox.

LESSON 9 COPYING PROCEDURES 123

2. DOUBLE-CLICK on ProdNumber in the Populate Field toolbox.

This automatically places both the prompt and entry box for the field
near the top left corner of the window.

3. DOUBLE-CLICK on ProdDesc in the Populate Field toolbox.

This automatically places both the prompt and entry box for the field
immediately below the last field that was placed.

4. DOUBLE-CLICK on ProdAmount in the Populate Field toolbox.

5. DOUBLE-CLICK on TaxRate in the Populate Field toolbox.

The form window now looks something like this:

Change the form window caption

1. CLICK on the caption bar of the sample window.

2. Type Product Form in the Text field of the Property toolbox, then press TAB.

Exit the Window Formatter, and save your work

1. Choose Exit! on the menu to close the Window Formatter (save your
changes).

2. Press the OK button in the Procedure Properties dialog to close it.

3. Choose File ➤ Save, or press the Save button on the toolbar to save your
work.

The Products file update form window is done.

124 CLARION 5 LEARNING CLARION

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You copied an existing procedure, renaming the subsequent
procedures it called.

♦ You used a Code Template in the Embedded Source dialog to call
the new procedure from the main menu.

♦ You modified the copied procedure to display from another file.

♦ You added an Entry Locator to the Browse procedure.

♦ You created an entire Form procedure very quickly by just using
the Populate Field toolbox.

Now that you’re thoroughly familiar with Procedure Templates, we’ll go on
to use some Control and Extension Templates.

LESSON 10 CONTROL AND EXTENSION TEMPLATES 125

10 - CONTROL AND EXTENSION TEMPLATES

For the ViewOrders procedure, you’ll create a window with two
synchronized scrolling list boxes. One will display the contents of the Orders
file, and the other will display the related records in the Detail file. You’ll use
a generic Window procedure, and populate it using Control templates. The
only reason for doing it this way instead of starting with a Browse Procedure
Template is to demonstrate another way of building a procedure—using
Control templates placed in a generic Window (the same way the Browse
Procedure template itself was created).

Control templates generate all the source code for creating and maintaining a
single control or related group of controls. In this case, placing a BrowseBox
Control template allows the Application Generator to produce the code that
opens the files and puts the necessary data into the structures which hold the
data for display in the list box.

Starting Point:
The TUTORIAL.APP file should be open.

Creating the Procedure

Select the procedure type

1. Highlight ViewOrders then press the Properties button.

2. Highlight Window in the Select Procedure Type dialog then press the Select
button.

Edit the Window

1. In the Procedure Properties dialog, press the Window button.

The New Structure dialog appears. The generic window procedure is like a
blank slate in which you define your own window. Since the procedure
has no predefined window, you choose the type of window for your
starting point. In this case, you need an MDI child window.

10

126 CLARION 5 LEARNING CLARION

2. Highlight MDI Child Window, then press the OK button.

The Window Formatter appears.

3. Resize the window, making it more than twice its original size (in both
directions).

4. RIGHT -CLICK in the window’s title bar, then choose Properties from the
popup menu.

5. Type Orders in the Text field.

6. Select Resizable from the Frame Type drop-down list.

7. Select the Extra tab and check the Maximize Box box.

8. Press the OK button to close the Window Properties dialog.

Placing the BrowseBox Control Template

1. Choose Populate ➤ Control Template , or CLICK the Control Template tool in
the Controls toolbox (last tool on the right, bottom row).

The Select Control Template dialog appears.

2. Highlight the BrowseBox Control template, then press the Select button.

The cursor changes to a crosshair and “little book.”

3. CLICK near the upper left corner of the sample window.

Place the Orders file fields in the List Box Formatter

1. Highlight the “ToDo” item below the File-Browsing List Box and press the
Insert button.

2. Highlight the Orders file in the Insert File dialog, then press the Select
button.

3. Press the Edit button and select KeyOrderNumber from the Change Access
Key dialog.

4. Highlight ORD:CustNumber in the Fields list, then press the Select button.

5. Press the New Column button.

6. Highlight ORD:OrderNumber in the Fields list, then press the Select
button.

7. Press the New Column button.

8. Highlight ORD:InvoiceAmount in the Fields list, then press the Select
button.

9. Increment the Data group’s Indent spin box to twelve (12).

Since the default Justification is Decimal, this step is required to ensure the
fractional values have room to appear.

LESSON 10 CONTROL AND EXTENSION TEMPLATES 127

10. Press the New Column button.

11. Highlight ORD:OrderDate in the Fields list, then press the Select button.

12. Press the New Column button.

13. Highlight ORD:OrderNote in the Fields list, then press the Select button.

14. Choose Left from the Data group’s Justification droplist.

15. Resize the columns in the sample list box.

16. Press the OK button to close the List Box Formatter.

17. Resize the browse list box control to make it wider by dragging the
handle in the middle of the right side (almost as wide as the window).

Format the list box appearance

1. RIGHT -CLICK the list box, and select Properties from the popup menu.

2. Select the Extra tab and check the Vertical and Horizontal boxes in the List
Properties dialog.

This adds vertical and horizontal scroll bars to the list.

3. Press the Font button.

Because one field (the description field) is long, you can specify that the
list box should use a smaller font, displaying more information without
requiring the end user to scroll.

4. Choose a font (your choice), and set the size to 8 points.

See the User’s Guide for tips on topics like choosing the right fonts for
controls. In general, you want to stick with the fonts that ship with
Windows; otherwise, you can’t be sure your end user has the same font
on their system. The illustration below sets the font to Arial, which is a
font that ships with Windows.

5. Press OK to close the Select Font dialog.

6. Press OK to close the List Properties dialog.

128 CLARION 5 LEARNING CLARION

Adding the Browse Update Buttons Template

Next add the standard Insert , Change and Delete buttons for the top browse
list box control. Since there are going to be two list boxes on this window,
we’ll leave these buttons visible for the user. Later we’ll add a form
procedure for adding or editing an order.

1. Choose Populate ➤ Control Template , or CLICK on the Control Template tool
in the Controls toolbox (last tool icon on the right, bottom row).

2. In the Select Control Template dialog, highlight the BrowseUpdateButtons
Control template, then press the Select button.

3. CLICK below the left edge of the list box.

The Insert , Change , and Delete buttons all appear together.

At this point the window should look something like this:

Name the Update Procedure

1. RIGHT -CLICK on the Delete button, then choose Actions from the popup
menu.

2. Type UpdateOrder in the Update Procedure box.

This names the procedure, in the same way that you named the Update
procedure for the Customer browse in its Procedure Properties dialog.

LESSON 10 CONTROL AND EXTENSION TEMPLATES 129

Naming the Update Procedure for one button in the Control template
names it for all three.

3. Press the OK button.

Placing the Second Browse List Box

Next, place a list box with the contents of the Detail file. This will update
automatically when the end user changes the selection in the top list box.

1. Choose Populate ➤ Control Template , or CLICK on the Control Template tool
in the Controls toolbox (last tool icon on the right, bottom row).

2. Highlight the BrowseBox Control template, then press the Select button.

3. CLICK directly below the Insert button you placed before.

Place the Detail file fields in the List Box Formatter

1. Highlight the “ToDo” item below the second File-Browsing List Box and
press the Insert button.

2. Highlight the Detail file in the Insert File dialog, then press the Select
button.

3. Press the Edit button.

4. Highlight KeyOrderNumber in the Change Access Key dialog, then press
the Select button.

5. Highlight DTL:OrderNumber in the Fields list, then press the Select
button.

6. Press the New Column button.

7. Highlight DTL:ProdNumber in the Fields list, then press the Select button.

8. Press the New Column button.

9. Highlight DTL:Quantity in the Fields list, then press the Select button.

10. Press the New Column button.

11. Highlight DTL:ProdAmount in the Fields list, then press the Select button.

12. Increment the Data group’s Indent spin box to twelve (12).

13. Resize the columns in the sample list box.

14. Press the OK button to close the List Box Formatter.

15. Resize the browse list box control by dragging the handles, making it an
appropriate size for display (but leave some space to its right for a button
we’re going to place in the bottom right corner of the window).

130 CLARION 5 LEARNING CLARION

Set up the Range Limits

1. RIGHT -CLICK on the list box you just placed and select Actions from the
popup menu.

2. Press the ellipsis (...) button for the Range Limit Field .

3. Highlight the DTL:OrderNumber field in the Components list, then press
the Select button.

4. Choose File Relationship from the Range Limit Type drop down list.

5. Press the ellipsis (...) button in the Related File .

6. Highlight the Orders file in the Select File list, then press the Select button.

These last four steps limit the range of records displayed in the second
list box to only those Detail records related to the currently highlighted
record in the Orders file’s list box.

This tells the second control template to use the file relationship defined
in the data dictionary to synchronize the bottom list to the top.

Format the list box appearance

1. Select the Extra tab.

2. Check the Vertical and Horizontal boxes.

This adds horizontal and vertical scroll bars to the list box.

3. Press the Font button.

Although there are no “long” fields in this list box, it will look better if
you match the font to the same font used in the top list box.

4. Choose a font (your choice), and set the size to 8 points.

5. Press OK to close the Select Font dialog.

6. Press OK to close the List Properties dialog.

Adding the Close Button Control Template

Finally, you can add a Close button that closes the window.

1. Choose Populate ➤ Control Template , or CLICK on the Control Template tool
in the Controls toolbox (last tool icon on the right, bottom row).

2. Select the CloseButton Control template, then press the Select button.

3. CLICK in the lower right corner of the window.

At this point, your window should look something like this illustration.
It may be bigger than the sample area in the Window Formatter, but
should not be as big as the desktop:

LESSON 10 CONTROL AND EXTENSION TEMPLATES 131

4. Choose Exit! on the Window Formatter menu to close the Window
Formatter.

Make the window resizable

1. In the Procedure Properties dialog, press the Extensions button.

2. In the Extensions and Control Templates dialog, press the Insert button.

3. Highlight WindowResize in the Select Extension dialog, then press the
Select button.

We’ve used this Extension template several times already, but this time
we’ll modify its actions instead of simply taking the default behavior.

Specify the resize strategies

1. Check the Restrict Minimum Window Size box.

By checking this box and leaving the Minimum Width and Minimum Height set
to zero (0), this template ensures that users cannot make the window any
smaller than the designed size of the window.

2. Press the Override Control Strategies button.

The Override Control Strategies dialog appears. This dialog allows you to
specify the resize strategy for individual controls.

3. Press the Insert button.

4. Select ?Insert from the Window Control drop-down list.

132 CLARION 5 LEARNING CLARION

5. Choose the Fix Bottom radio button in the Vertical Positional Strategy set of
options.

This sets the resize strategy for the Insert button to keep it a fixed distance
from the bottom of the window. Now we’ll do the same for the other two
update buttons and the Details list box.

6. Press the OK button.

7. Press the Insert button, then select ?Change from the Window Control drop-
down list.

8. Choose the Fix Bottom radio button in the Vertical Positional Strategy set of
options, then press the OK button.

9. Press the Insert button, then select ?Delete from the Window Control drop-
down list.

10. Choose the Fix Bottom radio button in the Vertical Positional Strategy set of
options, then press the OK button.

11. Press the Insert button, then select ?List:2 from the Window Control drop-
down list.

12. Choose the Fix Bottom radio button in the Vertical Positional Strategy set of
options, then press the OK button.

13. Press the Insert button, then select ?List from the Window Control drop-
down list.

14. Choose the Constant Bottom Border radio button in the Vertical Resize
Strategy set of options.

This sets the resize strategy for the Orders List box to keep the bottom
border of the list a fixed distance from the bottom of the window.
Therefore, the list will stretch as needed to fill up the space as the
window becomes larger.

15. Press the OK button, then press the OK button.

LESSON 10 CONTROL AND EXTENSION TEMPLATES 133

Set up a Reset Field

1. In the Extensions and Control Templates dialog, highlight Browse on Detail .

2. Press the Reset Fields button, then press the Insert button.

3. Type ORD:InvoiceAmount in the Reset Field field, then press the OK
button.

This specifies that the Detail file’s list box should reset itself whenever
the value in the ORD:InvoiceAmount field changes. This ensures that any
changes you make to an existing order are reflected in this dialog when
you return from changing the order.

4. Press the OK button, then press the OK button to return to the Procedure
Properties dialog.

Close the Procedure Properties dialog and Save the Application

1. Press the OK button in the Procedure Properties dialog to close it.

2. Choose File ➤ Save, or press the Save button on the tool bar to save your
work.

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You created a new browse procedure, but did it using the
BrowseBox and BrowseUpdateButtons Control Templates instead
of the Browse Procedure Template.

♦ You created a second, range-limited listbox to display related child
records.

♦ You used the WindowResize Extension Template and specified
individual control resize strategies.

134 CLARION 5 LEARNING CLARION

♦ You set a Reset Field on the Detail file’s Browse list so its display
is always kept current.

Next we’ll create the UpdateOrder Form procedure to create and maintain
the Orders and Detail file records.

LESSON 11 ADVANCED TOPICS 135

11 - ADVANCED TOPICS

Set Up the UpdateOrder Form
For the Order Update form, we’ll place the fields from the Order file on an
update form, perform an automatic lookup to the Customer file, add a
BrowseBox Control template to show and edit the related detail items,
calculate each line item detail, then calculate the order total.

Starting Point:
The TUTORIAL.APP file should be open.

Create the Orders file’s data entry Form

1. Highlight UpdateOrder in the Application Tree dialog, then press the
Properties button.

2. Highlight Form in the Select Procedure Type dialog, clear the Use Procedure
Wizard check box, then press the Select button.

3. Press the Window button to open the Window Formatter.

4. Resize the window taller by DRAGGING its top middle handle (use the
Window Formatter’s vertical scroll bar to move the viewing area, if
necessary).

11

136 CLARION 5 LEARNING CLARION

Place the entry controls for the Orders file

Instead of using the Populate Field toolbox to populate the controls, this
time we’ll use the Select Field dialog to populate multiple controls.

1. Choose Populate ➤ Multiple Fields , or select the Dictionary Field tool from
the Controls toolbox.

2. In the Select Field dialog, highlight the “ToDo” item under the Update
Record on Disk , then press the Insert button.

3. Select the Orders file from the Insert File list.

4. Highlight ORD:OrderDate, then press the Select button.

5. CLICK near the top left of the window.

This places both the field and its prompt. The Select Field dialog
immediately reappears, ready for the next field, making this method of
control placement almost as fast as the Populate Field toolbox.

6. Highlight ORD:OrderNote, then press the Select button.

7. CLICK just to the right of the entry box placed for the date.

8. Highlight ORD:CustNumber, then press the Select button.

9. CLICK below the date field’s prompt.

10. Press the Cancel button in the Select Field dialog.

LESSON 11 ADVANCED TOPICS 137

Add a lookup procedure call into the customer list

1. RIGHT -CLICK on the ORD:CustNumber control and select Actions from the
popup menu.

The standard actions for any entry control allow you to perform data
entry validation against a record in another file, either when the control
is Selected (just before the user can enter data) or when the control is
Accepted (right after the user has entered data).

2. In the When the Control is Accepted group box, press the ellipsis button (...)
for the Lookup Key entry box.

3. Highlight the Orders file in the Select Key dialog, then press the Insert
button.

4. Highlight the Customer file in the Files list, and press the Select button.

These last two steps add the Customer file to the procedure’s File
Schematic as an automatic lookup from the Orders file. This will
automatically lookup the related Customer file record for you, and the
lookup is based on the file relationship set up in the data dictionary.

5. Highlight CUS:KeyCustNumber in the Select Key dialog, then press the
Select button.

This makes CUS:KeyCustNumber the key that will be used to attempt to
get a matching valid record from the Customer file for the value the user
enters into this control.

6. Press the ellipsis button (...) for the Lookup Field entry box.

7. Highlight CUS:CustNumber from the Select Component list, then press the
Select button.

This makes CUS:CustNumber the field that must contain the matching
value to the value the user enters into this control.

8. Choose the ViewCustomers procedure from the Lookup Procedure droplist.

This calls the ViewCustomers procedure when the user enters an invalid
customer number, so the end user can select from a list of customers.

138 CLARION 5 LEARNING CLARION

9. Check the Perform Lookup during Non-Stop Select and Force Window Refresh when
Accepted boxes to ensure that the data displayed on screen is always valid
and current.

10. Press the Embeds button on the Actions tab.

This displays a list of just the embed points associated with this one
control. This is the quickest way to get to a specific control’s embed
points, and it’s the second way you’ve seen so far to get to an embed
point. There is a third method that’s still to come.

11. Highlight the Selected event under Control Events then press the Insert
button.

The Selected event occurs just before the control gains input focus. This
embed point allows you to do any “setup” specific to this one control.

12. Highlight Source then press the Select button.

This calls the Text Editor to allow you to write any Clarion source code
you want. Notice that the floating Populate Field toolbox is present.
Whenever you DOUBLE-CLICK on a field in this toolbox, it places the name
of the field (including any prefix) in your code at the insertion point.
This not only helps your productivity (less typing), but also ensures you
spell them correctly (eliminating mispelled fieldname compiler errors).

13. Type the following code:
?ORD:CustNumber{PROP:Touched} = TRUE

14. Choose Exit! (and save) to return to the Embedded Source dialog.

It is “standard Windows behavior” that, if the user does not enter data
into a control and just presses TAB (or CLICKS the mouse) to go on to
another control, an Accepted event does not happen (this is very different
from the way DOS programs work). This allows users to easily TAB

through the window’s controls without triggering data-entry validation
code on each control. However, sometimes you need to override this
“Windows standard behavior” to ensure the integrity of your database.

The ?ORD:CustNumber{PROP:Touched} = TRUE statement uses the Clarion
language Property Assignment syntax (see the Language Reference). By
setting PROP:Touched to TRUE in the Selected event for this control, an
Accepted event is always generated—whether the user has entered data

LESSON 11 ADVANCED TOPICS 139

or not. This forces the lookup code generated for you into the Accepted
event for this control (from the information you entered on the Actions tab
on the previous page) to execute. This ensures that the user either enters
a valid Customer number, or the Customer list pops up to allow the user
to select a Customer for the Order.

15. Press the Close button to return to the Entry Properties dialog, then press the
OK button to close it.

Add a “display-only” control

1. Choose Control ➤ String , or CLICK on the String tool in the floating Controls
toolbox (the icon just right of the “big arrow” on the top row).

2. CLICK to the right of the customer number entry box you placed before.

3. RIGHT -CLICK the string control you just placed, and select Properties from
the popup menu.

4. Check the Variable String box.

This specifies the control will display data from a variable, not just a
string constant. The Select Field dialog automatically appears.

5. Highlight the Customer file in the Files list, then select CUS:Company
from the Fields list and press the Select button.

6. Press the OK button to close the String Properties dialog.

Placing the Detail File’s Control Templates

The next key element in this window is a browse list box control,
synchronized to the Order Number of this form. This will show all the
records in the Detail file related to the currently displayed Orders file record.

Add a Detail list

1. Choose Populate ➤ Control Template , or CLICK on the Control Template tool
in the floating Controls toolbox (last tool icon on the right, bottom row).

2. Highlight BrowseBox, then press the Select button.

3. CLICK below the customer number entry box you placed before.

4. Highlight the “ToDo” item below the File-Browsing List Box and press the
Insert button.

5. Select the Detail file from the Insert File dialog, then press the Select
button.

6. Press the Edit button.

7. Highlight KeyOrderNumber in the Change Access Key dialog, then press
the Select button.

140 CLARION 5 LEARNING CLARION

8. Highlight DTL:ProdNumber in the Fields list, then press the Select button.

9. Select Center from the Data group’s Justification droplist.

10. Press the New Column button.

11. Highlight DTL:Quantity in the Fields list, then press the Select button.

12. Select Center from the Data group’s Justification droplist.

13. Press the New Column button.

14. Highlight DTL:ProdAmount in the Fields list, then press the Select button.

15. Select Center from the Data group’s Justification droplist.

16. Press the New Column button.

17. Highlight LOCAL DATA UpdateOrder in the Files list, then press the New
button.

This New button allows you to add a local variable without going all the
way back to the Procedure Properties window and pressing the Data button.
We will use this new variable to display the total price for each line item
(the quantity multiplied by the unit price).

18. Type ItemTotal in the Name field.

19. Select DECIMAL from the Type dropdown list.

20. Type 7 in the Characters field.

21. Type 2 in the Places field then press the OK button.

22. Select Center from the Data group’s Justification droplist.

23. Press the New Column button.

24. Highlight the Detail file item below the File-Browsing List Box and press the
Insert button.

25. Select the Products file from the Insert File dialog, then press the Select
button.

LESSON 11 ADVANCED TOPICS 141

This adds the Products file to the Control template’s file schematic as a
lookup file. The related record from the Products file is automatically
retrieved for you so you can display the product description in the list.

26. Highlight PRD:ProdDesc in the Fields list, then press the Select button.

27. Select Left from the Data group’s Justification droplist.

28. Resize the columns and adjust the display formatting as you want
(you’ve done this a couple of times already).

29. Press the OK button to close the List Box Formatter.

30. Resize the list box to display all the fields you populated into it.

It should now look something like this:

Synchronize the browse list box

We want this list to only display the Details file records that are related to the
Customer file record currenly being edited. Therefore, we need to specify a
Range Limit.

142 CLARION 5 LEARNING CLARION

1. RIGHT -CLICK the list box you just placed, and select Actions from the
popup menu.

2. Press the ellipsis (...) button for the Range Limit Field .

3. Highlight the DTL:OrderNumber field in the Components list, then press
the Select button.

4. Choose File Relationship from the Range Limit Type drop down list.

5. Type Orders in the Related File field.

Add an order invoice total calculation

Now we want to calculate the order total and save it in the Orders file.

1. Press the small right arrow button just to the right of the Hot Fields tab to
scroll the tabs, then select the Totaling tab when it appears.

2. Press the Insert button.

3. Press the ellipsis (...) button for the Total Target Field .

4. Highlight the Orders file in the Files list, select ORD:InvoiceAmount from
the Fields list, then press the Select button.

This is the field that will receive the result of the total calculation.

5. Choose Sum from the Total Type drop down list.

6. Press the ellipsis (...) button for the Field to Total .

7. Highlight LOCAL DATA UpdateOrder in the Files list, select ItemTotal
from the Fields list, then press the Select button.

This is the field whose contents will be used in the total calculation. So
far we’ve only declared this field and not done anything to put any value
into it, but we’ll get to that very soon.

8. Choose Each Record Read from the Total Based On dropdown list.

LESSON 11 ADVANCED TOPICS 143

9. Press OK to close the Browse Totaling dialog.

Change the object name

Now we want to change the name of the browse object to make our code
more readable (you’ll see why a little later).

1. Select the Classes tab.

2. Type BrowseDTL in the Object Name field.

Add horizontal and vertical scroll bars

1. Select the Extra tab.

2. Check the Horizontal and Vertical boxes.

3. Press OK to close the List Properties dialog.

Add the standard file update buttons

1. Choose Populate ➤ Control Template , or CLICK on the Control Template tool
in the Controls toolbox (last tool icon on the right, bottom row).

2. In the Select Control Template dialog, select the BrowseUpdateButtons
control template, then press the Select button.

The cursor changes to a crosshair and “little book.”

3. CLICK below the list box.

The Insert , Change , and Delete buttons all appear together.

4. RIGHT -CLICK on the Delete button, then choose Actions from the popup
menu.

5. Check the Use Edit in place box.

Checking this box for one button in the Control template checks it for all
three. We will be using the Edit in Place technique to update the Details
file records instead of an update Form procedure. This will allow us to
demonstrate some fairly advanced programming techniques and show
just how easy they are to perform within the Application Generator.

6. Press the OK button.

Add a “display-only” control for the invoice total

1. Choose Control ä String , or CLICK on the String tool in the Controls toolbox.

2. CLICK below the bottom right corner of the list box.

144 CLARION 5 LEARNING CLARION

3. RIGHT -CLICK the control you just placed, and select Properties from the
popup menu.

4. Check the Variable String box.

This specifies the control will display data from a variable, not just a
string constant. The Select Field dialog automatically appears.

5. Highlight the Orders file in the Files list, then select
ORD:InvoiceAmount from the Fields list and press the Select button.

6. Press the OK button.

Change the form window caption and exit the Window Formatter

1. CLICK on the caption bar of the sample window.

2. Type Order Form in the Text field in the floating Property toolbox, then
press TAB.

3. Choose Exit! to close the Window Formatter.

LESSON 11 ADVANCED TOPICS 145

Making it all Work
There are a couple of things we need to do to make this procedure fully
functional—add a Formula, and configure the Edit in Place.

Using the Formula Editor

To make the ItemTotal calculate the correct amount for each Detail record in
the browse list box, you need to add a Formula to the procedure. This will
also allow the browse totaling to correctly place the invoice total in the
ORD:InvoiceAmount field.

1. Press the Formulas button in the Procedure Properties dialog.

The Formulas dialog appears. This dialogs lists all the formulas in the
procedure.

2. Press the New button to add a new formula.

The Formula Editor dialog appears.

3. Type Item Total Formula in the Name field.

4. Press the ellipsis (...) button in the Class Field.

5. Highlight Format Browse in the Template Classes list, then press the OK
button.

The Class field simply specifies the logical position within the generated
source code at which the formula is calculated. The Format Browse class
tells the BrowseBox Control template to perform the calculation each
time it formats a record for display in the list box.

6. Press the ellipsis (...) button in the Result Field.

7. Highlight LOCAL DATA UpdateOrder in the Files list, select ItemTotal
from the Fields list, then press the Select button.

This names the field that will receive the result of the calculation. This is
the field we defined earlier through the List Box Formatter.

8. Press the Data button in the Operands group.

9. Highlight the Detail file in the Files list, select DTL:Quantity from the
Fields list, then press the Select button.

This places DTL:Quantity into the Statement field for you. The Statement
field contains the expression being built. You can type directly into the
Statement field to build the expression, if you wish.

10. Press the * button in the Operators group.

This is the multiplication operator.

11. Press the Data button in the Operands group.

146 CLARION 5 LEARNING CLARION

12. Highlight the Detail file in the Files list, select DTL:ProdAmount from
the Fields list, then press the Select button.

13. Press the Check button to validate the expression’s syntax.

A green checkmark appears left of the statement, indicating the syntax is
correct. If a red X appears, the expression’s syntax is incorrect and the
highlighted portion of the statement is what you must change.

14. Press the OK button to close the Formula Editor.

The Formulas dialog re-appears.

15. Press the OK button to close the Formulas dialog.

Configuring Edit in Place

Now we need to configure the Edit in Place characteristics. We previously
used Edit in Place for the Phones file and simply took all the default
behaviors, because that was a fairly simple file. However, now we’re editing
a line item Detail record for an order entry system, which means we need to
do some data entry validation beyond simply ensuring the user types in a
number that fits the display picture. To do this, we’ll need to extend the
simple Edit in Place functionality provided by the Application Builder Class
(ABC) Library.

Set Column Specific Classes

1. Press the Extensions button in the Procedure Properties dialog.

2. Highlight Update a Record from Browse Box on Detail then press the
Configure Edit in place button.

The Configure Edit in place dialog apears. The options on this dialog allow
you to specify what behavior occurs while the user is editing data and
presses ENTER or an arrow key, along with several save options. We’ll
accept all the defaults.

3. Press the Column Specific button.

4. Press the Insert button.

LESSON 11 ADVANCED TOPICS 147

5. Press the ellipsis (...) button for the Field field.

6. Highlight DTL:ProdNumber, then press the Select button.

The ABC Library contains an object class called EditEntryClass that is
the default Edit in Place class. We’re going to override some of the
methods of the default class for this column so we can modify the default
behavior. Adding this field to the Column Specific list of fields is what
allows us to override the default Edit in Place methods for this one field.
We will do this so that we can perform data validation on this field when
the user enters data—we want to make sure that they can only enter a
number that refers to a valid Products file record.

7. Press the OK button.

8. Press the Insert button.

9. Press the ellipsis (...) button for the Field field.

10. Highlight DTL:Quantity, then press the Select button.

The ABC Library’s EditEntryClass defaults to using an ENTRY control,
and for this field we want to use a SPIN control so the user can just spin
to the quantity they want to order. Therefore, we need to override some
methods for this column too, to have a SPIN instead of an ENTRY
control.

15. Clear the Use Default ABC check box.

This allows you to specify the exact class from which to derive.

15. Choose EditClass from the Base Class droplist.

The EditEntryClass does too much that’s unnecessary for this, since
we’re going to override the methods anyway. Therefore, we’re going to
derive and override from the Base Class all the Edit in place classes were
derived from: EditClass.

11. Press the OK button.

12. Press the Insert button.

148 CLARION 5 LEARNING CLARION

13. Press the ellipsis (...) button for the Field field.

14. Highlight DTL:ProdAmount, then press the Select button.

15. Clear the Allow Edit in Place check box.

This turns off Edit in Place for this one column of the list box.

Only fields in the Primary file for the BrowseBox can be edited in place,
and the default is that all Primary file fields are editable. In this case, this
means all the Detail file fields can be edited and the Products file fields
cannot be edited. However, for this procedure we do NOT want the user
to be able to edit the DTL:ProdAmount field because we’re going to get
its value directly from the Products file and we don’t want the user to be
able to change it. That’s why we turned off the Allow Edit in Place box.

16. Press the OK button 5 times to return all the way back to the Application
Tree.

Using the Embeditor

1. RIGHT -CLICK on UpdateOrder and select Source from the popup menu.

The Source popup menu selection opens the “Embeditor”—the third
method of accessing embed points in a procedure. The Embeditor is the
same Text Editor you’ve already used, but opened in a special mode
which allows you to not only to edit all the embed points in your
procedure, but to edit them within the context of template-generated
code. The source code looks like this:

Notice that most of the code is on a gray background and the points
where you can write your code have a white background. There are also
identifying comments for each embed point. You can turn these
comments on and off as you choose through the Setup ➤ Application Options
dialog. Once you become familiar with them, you’ll probably want to
turn them off so you can see more of the actual code.

LESSON 11 ADVANCED TOPICS 149

You’ll notice that a message briefly appeared that said “Generating
tutorial.” The Embeditor displays all possible embed points for the
procedure within the context of all the possible code that may be
generated for the procedure. Notice the distinction here—Embeditor
does not show you the code that will be generated, but all the code
which could be generated for you, if you chose every possible option
and placed code into every available embed point. You are not likely to
ever do that. Therefore, a lot more generated code shows up in the
Embeditor than will actually be in the generated code when you compile
your application. After we finish here, we’ll go look at the generated
code to see the difference.

At the right end of the toolbar are four buttons which are very important
to know when working in the Embeditor. These are (from left to right)
the Previous Embed, Next Embed, Previous Filled Embed, and Next Filled Embed
buttons (hover your mouse over them and the tooltips appear naming the
buttons). They allow you to quickly get from one embed point to
another—particularly after you’ve written code into some of them.

Detecting Changed Orders

One of the things we want this procedure to do is to detect changes to
existing orders and make sure the changes do not result in a data mis-match
between the Orders and Detail files. This system is storing the total dollar
amount of an order in the ORD:InvoiceAmount field, so when the user
changes a Detail item in an existing Order, we want to make sure the Orders
file record is updated, too. There’s fairly simple way to do that which will
allow us to demonstrate the ABC Library’s flexible error handling.

1. CLICK on the Next embed button (about 5 times) until you get to the embed
point immediately preceding the line of code reading ThisWindow
CLASS(WindowManager) (this should be at [Priority 7500]).

Each embed point potentially has 10,000 priority levels within it. This
Embed code Priority level system is designed to allow you to embed
your code before or after any generated code—whether that code is
generated for you by Clarion’s ABC Templates or any third-party
templates you choose to use. This makes the embed system completely
flexible, allowing you to add your own code at any logical point
needed—before or after most any “chunk” of generated code.

2. Type the following code:
LocalErrGroup GROUP

USHORT(1)
USHORT(99)
BYTE(Level:Notify)
PSTRING('Save the Order!')
PSTRING('Some Item changed -- Press the OK button.')

END
SaveTotal LIKE(ORD:InvoiceAmount)

150 CLARION 5 LEARNING CLARION

Clarion’s ABC (Application Builder Class) Templates generate Object
Oriented code for you using the ABC Library. The ABC Library contains
an error handling class called ErrorClass. This bit of code declares a
LocalErrGroup GROUP (in exactly the form that the ErrorClass requires—see
the Application Handbook) containing a “custom” error number and
message that we are defining for use by the ErrorClass object in our
application. The SaveTotal declaration is a local variable which is defined
LIKE (always has the same data type) the ORD:InvoiceAmount field.
We’ll use this variable to hold the starting order total when the user is
updating an existing order.

3. Choose Search ➤➤➤➤➤ Find to bring up the Find dialog.

4. Type ThisWindow.Init into the Find what field, then press the Find next
button.

This takes you directly to the ThisWindow.Init method.

5. In the embed point immediately following the line of code reading
SELF.Errors &= GlobalErrors (this should be at [Priority 5600]), type the
following code:
SELF.Errors.AddErrors(LocalErrGroup) !Add custom error
IF SELF.Request = ChangeRecord !If Changing a record
 SaveTotal = ORD:InvoiceAmount !Save the original order total
END

This code calls the AddErrors method of the GlobalErrors object to add the
LocalErrGroup to the list of available errors that the object handles. The
GlobalErrors object is an instance of the ErrorClass which the ABC
Templates declare globally to handle all error conditions in the
application. Adding our LocalErrGroup enables the GlobalErrors object to
handle our “custom” error condition. This demonstrates the flexibility of
Clarion’s ABC Library. The IF statement detects when the user is editing
an existing order and saves the original order total.

LESSON 11 ADVANCED TOPICS 151

This embed point is in the ThisWindow.Init PROCEDURE which performs some
necessary initialization tasks. This is a virtual method of the ThisWindow
object. ThisWindow is the object which handles all the window and control
handling code.

You may not have noticed, but the ABC Templates generate exactly one
line of executable source code within the UpdateOrder PROCEDURE itself
(GlobalResponse = ThisWindow.Run) so all of the functionality of the
UpdateOrder PROCEDURE actually occurs in object methods—either virtual
methods specific to the UpdateOrder PROCEDURE itself or standard ABC
Library methods. This is true of every ABC Template generated
procedure. Generating fully Object Oriented code makes the code
generated for you very tight and efficient—only the code that actually
needs to be different for an individual procedure is handled differently.
Everything else is standard code that exists in only one place and has
been tested and debugged to ensure consistent performance.

Object Oriented Programming (OOP) in Clarion starts with the CLASS
structure. See CLASS in the Language Reference for a discussion of
OOP syntax. The Programmer’s Guide contains several articles which
discuss OOP in depth, and the Application Handbook fully documents
Clarion’s Application Builder Class (ABC) Library.

6. Type ThisWindow.Kill into the Find what field, then press the Find next
button.

7. In the embed point immediately following the line of code reading CODE
(this should be [Priority 2500]), type the following code:
SELF.Errors.RemoveErrors(LocalErrGroup) !Remove custom error

This calls the ABC Library method to remove our “custom” error. The
ThisWindow.Kill method is a “cleanup” procedure (performs necessary exit
tasks) which executes when the user is finished working in the
UpdateOrder procedure, so the error is no longer needed at that point.

152 CLARION 5 LEARNING CLARION

8. Type EVENT:CloseWindow into the Find what field, then press the Find
next button.

9. In the embed point immediately following the line of code reading OF
EVENT:CloseWindow (this should be [Priority 2500]), type the following code:
IF SELF.Request = ChangeRecord AND | !If Changing a record

SELF.Response <> RequestCompleted AND | ! and OK button not pressed
SaveTotal <> ORD:InvoiceAmount ! and detail recs changed

GlobalErrors.Throw(99) !Display custom error
SELECT(?OK) ! then select the OK button
CYCLE

END

This is the code that will detect any attempt by the user to exit the
UpdateOrder procedure without saving the Orders file record after
they’ve changed an existing order. Note the vertical bar characters (|) at
the end of the first two lines of code. These are absolutely necessary.
Vertical bar (|) is the Clarion language line continuation character. This

LESSON 11 ADVANCED TOPICS 153

means that the first three lines of this code are a single logical statement
which evaluates three separate conditions and will only execute the
GlobalErrors.Throw(99) statement if all three conditions are true.

Overriding the Edit in Place Classes

OK, now you’ve seen an example of how you can use the ABC Library in
your own embedded source code. Now we’ll show you how to override a
class to provide custom functionality that the ABC Library does not provide.
The CLASS declarations for the objects that we named through the
Configure Edit in Place dialogs are generated for you by the ABC
Templates. These CLASSes are both derived from the EditClass ABC
Library class.

1. Type EditInPlace::DTL:Quantity.CreateControl into the Find what field,
then press the Find next button.

2. In the embed point immediately following the line of code reading CODE
(this should be [Priority 2500]), type the following code:
SELF.Feq = CREATE(0,CREATE:Spin) !Create a SPIN control
ASSERT(~ERRORCODE()) !Assume no errors
RETURN !Return before PARENT call

This code simply creates the SPIN control and assumes there’ll be no
errors. The RETURN statement is required because we need to ensure
the PARENT method call does not take place.

3. Scroll to the EditInPlace::DTL:Quantity.Init method (this should immediately
follow the EditInPlace::DTL:Quantity.CreateControl method).

4. In the embed point immediately following the line of code reading
PARENT.Init(FieldNumber,Listbox,UseVar) (this should be [Priority 7500]),
type the following code:
SELF.Feq{PROP:Text} = ListBox{PROPLIST:Picture,FieldNumber}

!Set entry picture token
SELF.Feq{PROP:RangeLow} = 1 !Set RANGE values for the SPIN
SELF.Feq{PROP:RangeHigh} = 9999

154 CLARION 5 LEARNING CLARION

This code sets the data entry picture token and range of valid data for the
SPIN control.

5. Scroll to the EditInPlace::DTL:Quantity.SetAlerts method (this should
immediately follow the EditInPlace::DTL:Quantity.Kill method).

6. In the embed point immediately following the line of code reading
PARENT.SetAlerts() (this should be [Priority 7500]), type the following code:
SELF.Feq{PROP:Alrt,5} = ‘’ !Un-alert up and down arrow
SELF.Feq{PROP:Alrt,6} = ‘’

This code “un-alerts” two of the standard keystrokes the EditClass
SetAlerts method alerts by default (in the PARENT method call).
TheEditClass alerts the up and down arrow keys, and the SPIN control
uses these keys to operate its spin buttons. That’s why we need to “un-
alert” them.

If you wish to see the base class code that we’ve overridden, open the
\CLARION5\LIBSRC\ABEIP.CLW file and search for EditClass.

LESSON 11 ADVANCED TOPICS 155

7. Type EditInPlace::DTL:ProdNumber.TakeEvent into the Find what field,
then press the Find next button.

8. In the embed point immediately following the line of code reading
ReturnValue = PARENT.TakeEvent(Event) (this should be [Priority 7500]), type
the following code:

 UPDATE(SELF.Feq) !Update Q field
 IF ReturnValue AND ReturnValue <> EditAction:Cancel
 PRD:ProdNumber = BrowseDTL.Q.DTL:ProdNumber !Set for lookup
 IF Access:Products.Fetch(PRD:KeyProdNumber) !Lookup Products rec
 GlobalRequest = SelectRecord !If no rec, set for select
 ViewProducts ! then call Lookup proc
 IF GlobalResponse <> RequestCompleted !Rec selected?
 CLEAR(PRD:Record) ! if not, clear the buffer
 ReturnValue = EditAction:None ! and set the action to
 END ! stay on same entry field
 END
 BrowseDTL.Q.DTL:ProdNumber = PRD:ProdNumber !Assign Products file
 BrowseDTL.Q.DTL:ProdAmount = PRD:ProdAmount ! values to Browse QUEUE
 BrowseDTL.Q.PRD:ProdDesc = PRD:ProdDesc ! fields
 DISPLAY ! and display them
 END

This is the really interesting code. Notice that the first executable
statement (generated for you) is a call to the PARENT.TakeEvent method.
This calls the EditClass.TakeEvent method we’re overriding so it can do
what it usually does (code very similar to the TakeEvent code you
already wrote for your DTL:Quantity SPIN control).

All the rest of the code is there to give this derived class extra
functionality not present in its parent class. This is the real power of
OOP—if you want everything the parent does, plus a little bit more you
don’t have to duplicate all the code the parent executes, you just call it.
In this case, all the extra code is to perform some standard data entry
validation tasks. This code will verify whether the user typed in a valid
Product Number and if they didn’t, it will call the ViewProducts
procedure to allow them to choose from the list of products.

156 CLARION 5 LEARNING CLARION

Overriding Methods in the Embeditor

There is a very important point to understand about working in the
Embeditor when you are overriding methods: as soon as you type anything
into an embed point in an overridable method, you have overridden it. Even
a simple ! comment line makes this happen, because the Application
Generator notes that you have written some of your own code, and so
generates the proper method prototype into the local CLASS declaration for
you. To prevent you from accidentally adding a comment that causes the
method override which consequently “breaks” the functionality, the ABC
Templates automatically generate PARENT method calls and RETURN
statements for you, as appropriate.

You’ll notice that all of our overridden methods contained generated calls to
their PARENT method, and the TakeEvent method also had a generated
RETURN statement. Sometimes you want these statements to execute, and
sometimes you don’t (usually, you do). For those cases where you do not
want them to execute, simply write your code in the embed point which
comes before the PARENT method call and write your own RETURN
statement at the end of your code (as we did at the end of the code we wrote
for EditInPlace::DTL:Quantity.CreateControl method). This means that the
generated PARENT method call will never execute. Clarion’s optimizing
compiler is smart enough to recognize that these statements can never
execute and optimizes them out of compiled object code.

1. Choose Exit! to close the Embeditor.

Update the Procedure Call Tree

The EditInPlace::DTL:ProdNumber.TakeEvent method calls the
ViewProducts procedure fom within its code. Since this is just embedded
source code, the Application Generator doesn’t know you’ve called this
procedure, and needs to be told (if you don’t, you’ll get compiler errors), so
it can generate the correct MAP structure for the module containing this
procedure.

1. RIGHT -CLICK on UpdateOrder and select Procedures from the popup menu.

2. Highlight ViewProducts then press the OK button.

LESSON 11 ADVANCED TOPICS 157

3. Choose File ➤ ➤ ➤ ➤ ➤ Save, or press the Save button to save your work.

Generate code

1. Choose Project ➤ ➤ ➤ ➤ ➤ Generate to generate the source code for your
application.

2. RIGHT -CLICK on UpdateOrder and select Module from the popup menu.

The Text Editor appears containing the generated source code for your
UpdateOrder procedure. Notice that there is a lot less code here than
there was in the Embeditor. All that generated code in the Embeditor was
there to provide you with context, and to provide you with embed points
with which to override methods, should you need to. However, Clarion’s
Application Generator and ABC Templates are smart enough to only
generate the code you actually need, when you actually need it.

3. Choose Exit! to close the Text Editor.

Now might be a good time to try out your application. You’ve got all the data
entry portions completed and the only things left to do now are the reports,
which we’ll get to in the next lesson.

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You created a new Form procedure.

♦ You created a “Scrolling-Form” metaphor Edit-in-place
browsebox to update the Detail file.

♦ You created a total field to total up the order.

♦ You created a Formula to total each line item in the order.

158 CLARION 5 LEARNING CLARION

♦ You used the Embeditor to write your embedded source code
within the context of template-generated code.

♦ You used the power of OOP to extend the standard error handling
functionality of the ABC Library.

♦ You used the power of OOP to derive and override the Edit-in-
place classes to extend the standard functionality of the ABC
Library.

♦ You generated source code to compare the difference between the
code shown in the Embeditor to that which is actually generated.

We’re almost finished with this application. In the next lesson we’ll create
the application’s reports .

LESSON 12 CREATING REPORTS 159

12 - CREATING REPORTS

A Simple Customer List Report
The last item to cover in this tutorial is adding reports. First, we’ll create a
simple customer list to introduce you to the Report Formatter. Then we’ll
create an Invoice Report to demonstrate how you can easily create Relational
reports with multi-level group breaks, group totals, and page formatting.
Then we’ll copy the Invoice Report and limit the copy to print invoice for
only one customer at a time.

Starting Point:
The TUTORIAL.APP file should be open.

Updating the Main Menu

First, we need to add menu selections so the user can call the reports, and so
the Application Generator will call the appropriate “ToDo” procedures.

Add a menu item

1. RIGHT -CLICK on the Main procedure in the Application Tree dialog and
choose Window from the popup menu.

2. Choose Menu ➤ Edit Menu from the Window Formatter’s menu.

3. Highlight the P&rint Setup item in the Menu Editor list.

4. Press the Item button.

5. Type Print &Customer List in the Menu Text field then press TAB.

Specify the new item’s action

1. Select the Actions tab.

2. Choose Call a Procedure from the When Pressed drop down list.

3. Type CustReport in the Procedure Name field.

4. Check the Initiate Thread box.

Add a second menu item

1. Press the Item button.

12

160 CLARION 5 LEARNING CLARION

2. Type Print &All Invoices in the Menu Text field.

3. Select the Actions tab.

4. Choose Call a Procedure from the When Pressed drop down list.

5. Type InvoiceReport in the Procedure Name field.

6. Check the Initiate Thread box.

Add a third menu item

1. Press the Item button.

2. Type Print &One Customer’s Invoices in the Menu Text field.

3. Select the Actions tab.

4. Choose Call a Procedure from the When Pressed drop down list.

5. Type CustInvoiceReport in the Procedure Name field.

6. Check the Initiate Thread box.

7. Press the Close button to close the Menu Editor .

8. Choose Exit! to close the Window Formatter (save your work).

Creating the Report

Now you can create the first report, using the Report Formatter.

1. Highlight the CustReport procedure in the Application Tree.

2. Press the Properties button.

3. Highlight Report in the Select Procedure Type dialog, clear the Use Procedure
Wizard check box, then press the Select button.

4. Press the Report button in the Procedure Properties dialog.

The Report Formatter appears. Here you can visually edit the report and
its controls. The Report Formatter represents the four basic parts of the
REPORT data structure by showing the Page Header, Detail, Page

LESSON 12 CREATING REPORTS 161

Footer, and Form as four “bands.” Each band is a single entity that prints
all together. See the User’s Guide chapter on Using the Report Formatter
for more information on the parts of the report and how the print engine
generates them.

For this report, you’ll place page number controls in the header, then
place the fields from the Customer file in the Detail band.

Place a string constant

1. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

2. CLICK at the top of the Page Header band.

3. RIGHT -CLICK on the control, then choose Properties from the popup menu.

The String Properties dialog appears.

4. Type Page Number: in the Text field, then press the OK button.

Place a control template to print the Page Number

1. Choose Populate ➤Control Template , or pick the Control Template tool from
the Controls toolbox.

2. Highlight ReportPageNumber then press the Select button.

2. CLICK to the right of the previously placed string.

162 CLARION 5 LEARNING CLARION

Populating the Detail

The Detail band prints once for each record in the report. For this procedure,
you’ll place the fields in a block arrangement, which creates a label report at
print time.

1. Choose Populate ➤ Multiple Fields , or CLICK on the Dictionary Field tool in
the Controls tool box.

2. In the File Schematic Definition dialog, highlight the “ToDo” folder, then
press the Insert button.

3. Select the Customer file from the Insert File dialog, then press the Select
button.

4. Press the Edit button.

5. Highlight KeyCustNumber in the Change Access Key dialog, then press the
Select button.

6. Highlight CUS:Company in the Fields list and press the Select button.

7. CLICK inside the Detail band, near its top left corner.

8. Highlight CUS:FirstName in the Fields list and press the Select button.

9. CLICK inside the Detail band, just below the first control.

10. Highlight CUS:LastName in the Fields list and press the Select button.

11. CLICK inside the Detail band, to the right of the control you just placed.

12. Highlight CUS:Address in the Fields list and press the Select button.

13. CLICK inside the Detail band, below the second control you placed.

Resize the Detail band

At this point, you probably have very little room left in the Detail band, and
need to make it longer.

1. Press the Cancel button to exit multi-populate mode.

2. CLICK inside the Detail band, but not on one of the string controls.

The Detail area’s handles appear.

3. Resize the Detail band by dragging the middle handle on the bottom
down—allow for enough room for about two more lines.

Place the rest of the fields

1. Choose Populate ➤ Multiple Fields , or CLICK on the Dictionary Field tool in
the Controls tool box.

2. Highlight CUS:City in the Fields list, then press the Select button.

3. CLICK inside the Detail band, below the last control you placed.

LESSON 12 CREATING REPORTS 163

4. Highlight CUS:State in the Fields list, then press the Select button.

5. CLICK inside the Detail band, to the right of the previously placed control.

6. Highlight CUS:ZipCode in the Fields list, then press the Select button.

7. CLICK inside the Detail band, to the right of the previously placed control.

8. Press the Cancel button to exit multi-populate mode.

Notice that you have the same set of alignment tools in the Report
Formatter that you have already used in the the Window Formatter
(choose Option ➤ Show Alignbox to bring up the toolbox).

Select a base font for the Report

1. Choose Edit ➤ Report Properties to set default attributes.

2. Press the Font button.

3. Select a font, style, and size to use as the base font for the report.

If you don’t select a font, it uses the printer’s default font.

4. Press the OK button to close the Select Font dialog.

5. Press the OK button to close the Report Properties dialog.

Preview the Report

1. Choose Preview! to “visualize” how the printed page will appear.

2. Highlight Detail in the Details list then press the Add button several times.

164 CLARION 5 LEARNING CLARION

This populates the preview with some print bands to view. Because you
can have many bands of various types within a single report, you have to
select which to see before going to print preview. This way, the Report
Formatter knows what to compose on the screen.

3. Press the OK button.

4. When done “previewing,” choose Band View! .

5. Choose Exit! to return to the Procedure Properties dialog (save your work).

6. Press the OK button to close the Procedure Properties dialog.

7. Choose File ➤ Save, or press the Save button on the tool bar to save your
work.

LESSON 12 CREATING REPORTS 165

An Invoice Report
Next, we will create one of the most common types of reports. An invoice
will make use of most of the files in the data dictionary, demonstrating how
to create group breaks and totals. It will also show you how to control
pagination based on group breaks.

Creating the Report

1. Highlight the InvoiceReport procedure.

2. Press the Properties button.

3. Highlight Report in the Select Procedure Type dialog, clear the Use Procedure
Wizard check box, then press the Select button.

The Procedure Properties dialog appears.

Specify the files for the Report

1. Press the Files button in the Procedure Properties dialog.

The File Schematic Definition dialog appears.

2. Highlight the “ToDo” folder, then press the Insert button.

3. Select the Customer file from the Insert File dialog, then press the Select
button.

4. Press the Edit button.

5. Highlight CUS:KeyCustNumber in the Change Access Key dialog, then
press the Select button.

The report will process all the Customer file records in CustNumber
order.

6. Highlight the Customer file, then press the Insert button.

7. Select the Orders file from the Insert File dialog, then press the Select
button.

It will process all the Orders for each Customer.

8. Highlight the Orders file, then press the Insert button.

9. Select the Detail file from the Insert File dialog, then press the Select
button.

Each Order will print all the related Detail records.

10. Highlight the Detail file, then press the Insert button.

11. Select the Products file from the Insert File dialog, then press the Select
button.

166 CLARION 5 LEARNING CLARION

Each Detail record will lookup the related Products file record. At this
point, the File Schematic should look like this:

12. Press the OK button to return to the Procedure Properties dialog.

Set the Report defaults

1. Press the Report button.

2. Choose Edit ➤ Report Properties to set the report’s default attributes.

3. Press the Font button.

4. Select a font, style, and size to use as the base font for the report.

If you do not select a font for the report, it will print using the printer’s
default font. You should select a font that you know the user will have
(the fonts that ship with Windows are usually safe).

5. Press the OK button to close the Select Font dialog.

6. Press the OK button to close the Report Properties dialog.

LESSON 12 CREATING REPORTS 167

Populating the Page Form Band

The Page Form band prints once for each page in the report. Its content is
only composed once, when the report is opened. This makes it useful for
constant information that will always be on every page of the report.

Place a string constant

1. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

2. CLICK at the top middle of the Page Form band.

3. DOUBLE-CLICK on the control.

The String Properties dialog appears.

4. Type Invoice in the Text field.

5. Press the Font button.

6. Select a font, style, and size to use for the text (something large and bold
would be appropriate for this).

7. Press the OK button to close the Select Font dialog.

8. Press the OK button to close the String Properties dialog.

9. Resize the control so that it’s large enough to hold the text, by DRAGGING

its handles.

Place the next string constant

1. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

2. CLICK at the top of the Page Form band, just below the last string you
placed.

3. RIGHT -CLICK on the control, then choose Properties from the popup menu.

4. Type the name of your company in the Text field.

5. Press the Font button and select a font, style, and size to use for the text
(something just a little smaller than the previous field would be
appropriate for this).

6. Press the OK button to close the Select Font dialog.

7. Press the OK button to close the String Properties dialog.

8. Resize the control so that it’s large enough to hold the text, by DRAGGING

its handles.

168 CLARION 5 LEARNING CLARION

Populating the Detail Band

The Detail band will print every time new information is read from the
lowest level “Child” file in the File Schematic. For this Invoice report, the
lowest level “Child” file is the Detail file (remember that Products is a Many
to One “lookup” file from the Detail file).

1. Choose Populate ➤ Multiple Fields , or CLICK on the Dictionary Field tool in
the Controls tool box.

2. Highlight Detail in the Files list then select DTL:Quantity in the Fields list
and press the Select button.

3. CLICK inside the Detail band, near its top left corner.

4. Highlight DTL:ProdNumber in the Fields list and press the Select button.

5. CLICK inside the Detail band, directly right of the first control.

6. Highlight Products in the Files list then select PRD:ProdDesc in the
Fields list and press the Select button.

7. CLICK inside the Detail band, to the right of the control just placed.

8. Highlight Detail in the Files list then select DTL:ProdAmount in the Fields
list and press the Select button.

9. CLICK inside the Detail band, to the right of the control just placed.

10. Highlight LOCAL DATA InvoiceReport in the Files list, then press the
New button.

LESSON 12 CREATING REPORTS 169

This allows you to add a local variable without going back to the
Procedure Properties window and pressing the Data button. This variable will
be used to display the total price for each line item.

11. Type ItemTotal in the Field Name field.

12. Select DECIMAL from the Data Type dropdown list.

13. Type 7 in the Characters field.

14. Type 2 in the Places field then press the OK button.

15. CLICK inside the Detail band, to the right of the last control placed.

16. Press the Cancel button to exit multi-populate mode.

17. Move all the controls to the top of the Detail band, aligned horizontally,
then resize the band so it is just a little taller than the controls.

Adding Group Breaks

We need to print different information on the page for each Invoice.
Therefore, we need to create BREAK structures to provide the opportunity to
print something every time the Orders file information changes and every
time the Customer file information changes.

1. Choose Bands ➤ Surrounding Break , then CLICK on the Detail band.

The Break Properties dialog appears.

2. Press the ellipsis (...) button for the Variable field.

3. Highlight Customers in the Files list then select CUS:CustNumber in the
Fields list and press the Select button.

4. Type CUS:CustNumberBreak in the Label field then press the OK button.

A Break (CUS:CustNumber) band appears above the Detail band, which
appears indented, meaning it is within the Break structure.

5. Choose Bands ➤ Surrounding Break , then CLICK on the Detail band.

The Break Properties dialog appears.

6. Press the ellipsis (...) button for the Variable field.

170 CLARION 5 LEARNING CLARION

7. Highlight Orders in the Files list then select ORD:OrderNumber in the
Fields list and press the Select button.

8. Type ORD:OrderNumberBreak in the Label field then press the OK
button.

Now the report design looks something like this:

Create the group Headers and Footers

1. Choose Bands ➤ Group Header , then CLICK on the Break (ORD:OrderNumber)
band.

The Group Header (ORD:OrderNumber) band appears above the Detail band. This
band will print every time the value in the ORD:OrderNumber field
changes, at the beginning of each new group of records. We will use this
to print the company name, address, along with the invoice number and
date.

2. Choose Bands ➤ Group Footer , then CLICK on the Break (ORD:OrderNumber)
band.

The Group Footer (ORD:OrderNumber) band appears below the Detail band. This
band will print every time the value in the ORD:OrderNumber field
changes, at the end of each group of records. We will use this to print the
invoice total.

3. RIGHT -CLICK on the Group Footer (ORD:OrderNumber) band then choose
Properties from the popup menu.

The Page/Group Footer Properties dialog appears.

4. Check the Page after box.

LESSON 12 CREATING REPORTS 171

This causes the print engine to print this band, then initiate Page
Overflow. This will compose the Page Footer band, issue a form feed to the
printer, then compose the Page Header band for the next page.

5. Press the OK button.

6. Choose Bands ➤ Group Footer , then CLICK on the Break (CUS:CustNumber)
band.

The Group Footer (CUS:CustNumber) band appears below the Group Footer
(ORD:OrderNumber) band. This band will print every time the value in the
CUS:CustNumber field changes, at the end of each group of records. We
will use this to print invoice summary information for each company.

7. RIGHT -CLICK on the Group Footer (CUS:CustNumber) band then choose
Properties from the popup menu.

8. Check the Page after box.

9. Press the OK button.

Populating the Group Header Band

Place the Customer file fields

1. Choose Populate ➤ Multiple Fields , or CLICK on the Dictionary Field tool in
the Controls tool box.

2. Highlight Customer in the Files list then select CUS:Company in the
Fields list and press the Select button.

172 CLARION 5 LEARNING CLARION

3. CLICK inside the Group Header (ORD:OrderNumber) band, near its top left
corner.

4. Highlight CUS:FirstName in the Fields list and press the Select button.

5. CLICK inside the Group Header (ORD:OrderNumber) band, just below the first
control.

6. Highlight CUS:LastName in the Fields list and press the Select button.

7. CLICK inside the Group Header (ORD:OrderNumber) band, to the right of the
control you just placed.

8. Highlight CUS:Address in the Fields list and press the Select button.

9. CLICK inside the Group Header (ORD:OrderNumber) band, below the second
control you placed.

10. Highlight CUS:City in the Fields list, then press the Select button.

11. CLICK inside the Group Header (ORD:OrderNumber) band, below the last control
you placed.

12. Highlight CUS:State in the Fields list, then press the Select button.

13. CLICK inside the Group Header (ORD:OrderNumber) band, to the right of the
previously placed control.

14. Highlight CUS:ZipCode in the Fields list, then press the Select button.

15. CLICK inside the Group Header (ORD:OrderNumber) band, to the right of the
previously placed control.

Place the Orders file fields

1. Highlight Orders in the Files list then select ORD:OrderNumber in the
Fields list and press the Select button.

2. CLICK inside the Group Header (ORD:OrderNumber) band, near its top right
corner.

3. Highlight ORD:OrderDate in the Fields list, then press the Select button.

4. CLICK inside the Group Header (ORD:OrderNumber) band, below the last control
you placed.

5. Press the Cancel button to close the Select Field dialog and exit multi-
populate mode.

Place the constant text and column headings

1. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

2. CLICK inside the Group Header (ORD:OrderNumber) band, left of the
ORD:OrderNumber control you placed.

3. Type Order Number: in the Text field of the Property toolbox, then press
TAB.

LESSON 12 CREATING REPORTS 173

4. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

5. CLICK inside the Group Header (ORD:OrderNumber) band, left of the
ORD:OrderDate control you placed.

6. Type Order Date: in the Text field of the Property toolbox, then press TAB.

7. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

8. CLICK inside the Group Header (ORD:OrderNumber) band, at the left end below
the Customer file controls you placed.

9. Type Quantity in the Text field of the Property toolbox, then press TAB.

10. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

11. CLICK inside the Group Header (ORD:OrderNumber) band, to the right of the last
string you placed.

12. Type Product in the Text field of the Property toolbox, then press TAB.

13. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

14. CLICK inside the Group Header (ORD:OrderNumber) band, to the right of the last
string you placed, directly above the DTL:ProdAmount control in the
Detail band.

15. Type At: in the Text field of the Property toolbox, then press TAB.

16. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

17. CLICK inside the Group Header (ORD:OrderNumber) band, to the right of the last
string you placed, directly above the ItemTotal control in the Detail band.

18. Type Item Total in the Text field of the Property toolbox, then press TAB.

Place a thick line under the column headings

1. Choose Controls ➤ Line , or pick the Line tool from the Controls toolbox.

2. CLICK inside the Group Header (ORD:OrderNumber) band, under the Quantity
string you placed.

3. Resize the line by DRAGGING its handles until it appears to be a line all
across the report under the column headers.

4. RIGHT -CLICK and choose Properties from the popup menu.

5. Type 50 in the Line Width field.

This makes the line much thicker.

6. Press the OK button to close the Line Properties dialog.

Your Report design should now look something like this:

174 CLARION 5 LEARNING CLARION

Populating the Invoice Group Footer Band

Place the constant text and total field

1. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

2. CLICK in the middle of the Group Footer (ORD:OrderNumber) band.

3. Type Order Total: in the Text field of the Property toolbox, then press TAB.

4. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

5. CLICK inside the Group Footer (ORD:OrderNumber) band, to the right of the
string you just placed.

6. RIGHT -CLICK and choose Properties from the popup menu.

7. Check the Variable String box.

8. Press the ellipsis (...) button for the Use field.

9. Highlight LOCAL DATA InvoiceReport in the Files list, select ItemTotal
from the Fields field, then press the Select button.

10. Type @N9.2 in the Picture field.

11. Select Sum from the Total type dropdown list.

12. Select ORD:OrderNumberBreak from the Reset on dropdown list.

13. Press the OK button.

This will add up all the ItemTotal contents for the Invoice and will reset
to zero when the value in the ORD:OrderNumber field changes.

LESSON 12 CREATING REPORTS 175

Place a line above the total

1. Choose Controls ➤ Line , or pick the Line tool from the Controls toolbox.

2. CLICK inside the Group Footer (ORD:OrderNumber) band, above the controls
you just placed.

3. Resize the line by DRAGGING its handles until it appears to be above both
the controls you just placed.

4. RIGHT -CLICK and choose Properties from the popup menu.

5. Type 20 in the Line Width field.

This makes the line just a little bit thicker.

6. Press the OK button to close the Line Properties dialog.

176 CLARION 5 LEARNING CLARION

Populating the Customer Group Footer Band

Place the constant text

1. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

2. CLICK in the middle of the Group Footer (CUS:CustNumber) band.

3. Type Invoice Summary for: in the Text field of the PropertyBox toolbox,
then press TAB.

4. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

5. CLICK inside the Group Footer (CUS:CustNumber) band, below the string you
just placed.

6. Type Total Orders: in the Text field of the PropertyBox toolbox, then press
TAB.

Place the total fields

1. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

2. CLICK inside the Group Footer (CUS:CustNumber) band, just right of the string
you just placed.

3. RIGHT -CLICK and choose Properties from the popup menu.

4. Check the Variable String box.

5. Press the ellipsis (...) button for the Use field.

6. Highlight LOCAL DATA InvoiceReport in the Files list, then press the
New button.

7. Type InvoiceCount in the Name field.

This is a field that will print the number of invoices printed for an
individual company.

8. Select LONG from the Data Type dropdown list.

9. Type @N3 in the Picture field, then press the OK button.

LESSON 12 CREATING REPORTS 177

10. Select Count from the Total type dropdown list.

11. Select CUS:CustNumberBreak from the Reset on dropdown list.

This is the same type of total field that we placed in the
ORD:OrderNumber group footer, but it will only reset when the
CUS:CustNumber changes.

12. Select the Extra tab.

13. Highlight ORD:OrderNumberBreak from the Tallies list, then press the
OK button.

This total field will count the number of invoices that print for each
customer. The Tallies list allows you to select the point(s) at which the
total increments. By selecting ORD:OrderNumberBreak from the list,
the count will only increment when a new invoice begins.

14. Choose Controls ➤ String , or pick the String tool from the Controls toolbox.

15. CLICK inside the Group Footer (CUS:CustNumber) band, to the right of the
string you just placed.

16. RIGHT -CLICK and choose Properties from the popup menu.

17. Check the Variable String box.

18. Press the ellipsis (...) button for the Use field.

19. Highlight LOCAL DATA InvoiceReport in the Files list, then select
ItemTotal in the Fields list and press the Select button.

20. Select Sum from the Total type dropdown list.

21. Select CUS:CustNumberBreak from the Reset on dropdown list.

This is the same type of total field that we placed in the
ORD:OrderNumber group footer, but it will only reset when the
CUS:CustNumber changes.

22. Press the OK button.

Place the display field then exit

1. Choose Populate ➤ Multiple Fields , or CLICK on the Dictionary Field tool in
the Controls tool box.

2. Highlight Customer in the Files list then select CUS:Company in the
Fields list and press the Select button.

3. CLICK inside the Group Footer (CUS:CustNumber) band, just right of the
Invoice Summary for: string you placed.

4. Press the Cancel button to exit multi-populate mode.

Your report design is now complete.

178 CLARION 5 LEARNING CLARION

5. Choose Exit! to return to the Procedure Properties dialog (be sure to save
your report design).

Adding a Formula

To make the ItemTotal field contain the correct amount for each Detail
record in the invoice, you need to add a Formula to the procedure.

1. Press the Formulas button in the Procedure Properties dialog.

2. Press the New button in the Formulas dialog.

The Formula Editor dialog appears.

3. Type Item Total Formula in the Name field.

4. Press the ellipsis (...) button for the Class field.

5. Highlight Before Print Detail in the Template Classes list, then press the OK
button.

The Before Print Detail class tells the Report template to perform the
calculation each time it gets ready to print a Detail.

6. Press the ellipsis (...) button for the Result field.

7. Highlight LOCAL DATA InvoiceReport in the Files list, select ItemTotal
from the Fields list, then press the Select button.

8. Press the Data button in the Operands group.

9. Highlight the Detail file in the Files list, select DTL:Quantity from the
Fields list, then press the Select button.

LESSON 12 CREATING REPORTS 179

This places the DTL:Quantity field in the Statement field for you. The
Statement field contains the expression being built, and you can also type
directly into it to build the expression, if you wish.

10. Press the * button in the Operators group.

11. Press the Data button in the Operands group.

12. Highlight the Detail file in the Files list, select DTL:ProdAmount from
the Fields list, then press the Select button.

13. Press the Check button to check the expression’s syntax.

14. Press the OK button to close the Formula Editor.

15. Press the OK button to close the Formulas dialog and return to the Procedure
Properties dialog.

Adding a Record Filter

To make sure the report only prints invoices for the companies that have
orders, we’ll add a Record Filter.

1. Press the Report Properties button in the Procedure Properties dialog.

The Report Properties dialog appears.

2. Type ORD:OrderNumber <> 0 in the Record Filter field.

This will eliminate all the customers who have not ordered anything.
Internally, the Report Template generates a VIEW structure for you (see
the Language Reference). This VIEW structure, by default, performs an
“outer join” on the files you placed in the File Schematic. “Outer join” is
a standard term in Relational Database theory—it just means that the
VIEW will retrieve all Parent file records, whether there are any related
Child file records or not. If it retrieves a Parent record without a Child,

180 CLARION 5 LEARNING CLARION

the fields in the Child file are all blank or zero, while the Parent file’s
fields contain valid data. Therefore, this is the condition for which we
test.

ORD:OrderNumber <> 0 checks to see if the ORD:OrderNumber field
has any value in it other than zero. Since ORD:OrderNumber is the key
field in the Orders file that creates the link to the related Customers file
record, it must contain a value if there are existing Orders file records for
the current Customer. If ORD:OrderNumber does not contain a value
other than zero, the current Customers file record is skipped (“filtered
out”). This eliminates printing Parent records without related Children
(in this case, any Customers without Orders).

3. Press the OK button.

Change the Progress Window

1. Press the Window button in the Procedure Properties dialog.

2. Type Invoice Progress in the Text field of the Property toolobox.

3. Choose Exit! to return to the Procedure Properties dialog.

Exit and Save

1. Press the OK button in the Procedure Properties dialog to close it.

2. Choose File ä Save , or press the Save button on the toolbar.

LESSON 12 CREATING REPORTS 181

A Range Limited Report
Next, we will limit the range of records that will print.

Creating the Report

1. Highlight the InvoiceReport procedure.

2. Choose Procedure ä Copy... .

The New Procedure dialog appears.

3. Type CustInvoiceReport in the entry box, then press the OK button.

The copied procedure appears in the application tree, replacing its ToDo.

Modify the new report

1. Highlight the CustInvoiceReport procedure.

2. RIGHT -CLICK and choose Properties from the popup menu.

3. Press the Embeds button.

4. Press the Contract All button.

This will make it easier to locate the specific embed point you need.

5. Locate the Local Objects folder, then CLICK on its + sign to expand its
contents.

The ABC templates generate object-oriented code. Each procedure
instantiates a set of objects which are derived from the ABC Library. The
Local Objects folder shows you all the object and methods which you can
override for the procedure by simply embedding your own code to
enhance the ABC functionality. See the Easing Into OOP and Object
Oriented Programming articles in the Programmer’s Guide for more on
this powerful technique.

6. Locate the ThisWindow folder, then CLICK on it to expand it.

7. Locate the Init PROCEDURE(),BYTE,VIRTUAL folder, then CLICK on it to expand
it.

8. Locate the CODE folder, then CLICK on it to expand it.

9. Highlight Open Files then press the Insert button.

This embed point is at the beginning of the procedure, before the report
has begun to process. It’s important that the files for the report already be
open because we will call another procedure for the user to select a
Customer record. If the files for the report weren’t already open, the
procedure we call would open the Customer file for itself then close it

182 CLARION 5 LEARNING CLARION

again and we would lose the data that we want to have for the report.
This has to do with multithreading and the Multiple Document Interface
(MDI)—see THREAD in the Language Reference for more on this.

10. Highlight Source then press the Select button to call the Text Editor.

11. Type in the following code:
GlobalRequest = SelectRecord

This code sets up a Browse procedure to select a record (it enables the
Browse procedure’s Select button).

12. Choose Exit! to return to the Embedded Source dialog.

13. Highlight the SOURCE you just added then press the Insert button.

14. Highlight Call a procedure then press the Select button.

15. Select ViewCustomers from the dropdown list then press the OK button.

This will generate a procedure call to the ViewCustomers Browse
procedure to allow the user to select which Customer’s Invoices to print.

Notice that there are now two entries displayed under the embed point.
At each embed point you can place as many items as you want, mixing
Code Templates with your own SOURCE or PROCEDURE Calls. You
can also move the separate items around within the embed point using
the arrow buttons, changing their logical execution order (the first
displayed is the first to execute). Note well that moving them will change
the assigned Priority option setting for the moved item if you attempt to
move a higher priority item in front of another with a lower priority
setting.

16. Press the Close button to return to the Procedure Properties dialog.

LESSON 12 CREATING REPORTS 183

Set the Range Limit

1. Press the Report Properties button.

The Report Properties dialog appears. This dialog allows you to set either
Record Filters or Range Limits (along with Hot Fields and Detail
Filters—see the User’s Guide for more on these).

Record Filters and Range limits are very similar. A Record Filter is a
conditional expression to filter out unwanted records from the report,
while a Range Limit limits the records printed to only those matching
specific key field values. They can both be used to create reports on a
subset of your data files, but a Range Limit requires a key and a Record
Filter doesn’t. This makes a Record Filter completely flexible while a
Range Limit is very fast. You can use both capabilities if you want to
limit the range then filter out unneeded records from that range.

2. Select the Range Limits tab.

3. Press the ellipsis (...) button for the Range Limit Field .

4. Highlight CUS:CustNumber then press the Select button.

5. Leave Current Value as the Range Limit Type then press the OK button.

Current Value indicates that whatever value is in the field at the time the
report begins is the value on which to limit the report. Since the user will
choose a Customer record from the ViewCustomer procedure, the correct
value will be in the CUS:CustNumber field when the report begins.

Exit and Save

1. Press the OK button in the Procedure Properties dialog to close it.

2. Choose File ä Save , or press the Save button on the toolbar to save your
work.

184 CLARION 5 LEARNING CLARION

A Single Invoice Report
Next, we will print a single invoice from the Browse list of orders.

Creating the Report

1. Highlight the CustInvoiceReport procedure.

2. Choose Procedure ➤ ➤ ➤ ➤ ➤ Copy... .

The New Procedure dialog appears.

3. Type SingleInvoiceReport in the entry box, then press the OK button.

4. Press the Same button in the Procedure name clash dialog.

The copied procedure appears unattached at the bottom of the
application tree. We’ll “connect the lines” after we finish with the report.

Delete the embed code

1. Highlight the SingleInvoiceReport procedure.

2. RIGHT -CLICK and choose Properties from the popup menu.

3. Press the Embeds button.

4. Press the NextFilled button (the button at the far right end of the toolbar).

5. Press the Delete button.

6. Answer Yes to the Are you sure? question.

7. Press the Delete button again and answer Yes to the Are you sure? question.

8. Press the Close button.

Change the File Schematic

First, we need to change the order of the files in the File Schematic. We’ll
end up with all the same files, but instead of the Customer file as the Primary
file (first file in the File Schematic), we need the Orders file to be the
Primary file for the procedure so we can easily limit the range to a single
invoice.

1. Press the Files button.

2. Highlight the Customer file then press the Delete button.

This causes all the files to disappear.

3. Highlight the “ToDo” folder, then press the Insert button.

4. Select the Orders file from the Insert File dialog, then press the Select
button.

5. Press the Edit button.

LESSON 12 CREATING REPORTS 185

6. Highlight KeyOrderNumber in the Change Access Key dialog, then press
the Select button.

7. Highlight the Orders file, then press the Insert button.

8. Select the Detail file from the Insert File dialog, then press the Select
button.

9. Highlight the Detail file, then press the Insert button.

10. Select the Products file from the Insert File dialog, then press the Select
button.

11. Highlight the Orders file again, then press the Insert button.

12. Select the Customer file from the Insert File dialog, then press the Select
button.

We’ve selected all the same files, but now the Primary file is the Orders
file and the related Customer file record will be looked up. This is
important, because we need to limit this report to a single invoice and
that would be much more difficult to do if the Customer file were the
Primary. At this point, the File Schematic should look like this:

13. Press the OK button.

Set the Range Limit

1. Press the Report Properties button.

2. Select the Range Limits tab.

3. Press the ellipsis (...) button for the Range Limit Field .

4. Highlight ORD:OrderNumber then press the Select button.

5. Leave Current Value as the Range Limit Type then press the OK button.

Current Value indicates that whatever value is in the field at the time the
report begins is the value on which to limit the report. Since the user will
run this report from the ViewOrders procedure, the correct value will be
in the ORD:OrderNumber field when the report begins.

186 CLARION 5 LEARNING CLARION

Modify the new report

Now we need to change the report itself, to only print a single invoice.

1. Press the Report button.

2. RIGHT -CLICK on the Break(CUS:CustNumber) band and choose Delete from the
popup menu.

This removes not only the Group Break, but also the Group Footer that
was associated with it, leaving you a report design that looks like this:

3. Choose Exit! to return to the Procedure Properties dialog.

Exit and Save

1. Press the OK button in the Procedure Properties dialog to close it.

2. Choose File ➤➤➤➤➤ Save, or press the Save button on the toolbar to save your
work.

Connect the Lines

1. Highlight the ViewOrders procedure.

2. RIGHT -CLICK and choose Window from the popup menu.

3. Choose Populate ➤ Control Template (or CLICK on the Control Template tool
in the Controls toolbox (in the the bottom right corner).

4. Highlight BrowsePrintButton then press the Select button.

5. Highlight Browse on Orders then press the Select button.

6. CLICK to the right of the Delete button to place the new button control.

7. RIGHT -CLICK on the new button and choose Properties from the popup
menu.

8. Type &Print Invoice into the Text field.

LESSON 12 CREATING REPORTS 187

9. Type ?PrintInvoice into the Use field.

10. Choose the Actions tab.

11. Select SingleInvoiceReport from the Print Button droplist.

This Control Template is sepcifically designed to run a range-limited
report based onthe currently highlighted record in the list box we
selected (Browse onOrders). The Orders file record buffer will contain
the correct value to allow the Current Value Range Limit on the
SingleInvoiceReport to work. It also automatically adds this button’s
action to the popup menu for the browse.

12. Press the OK button.

Your screen design should look something like this:

13. Choose Exit! to return to the Application Tree .

14. Choose File ➤➤➤➤➤ Save, or press the Save button on the toolbar to save your
work.

OK, What Did I Just Do?

Here’s a quick recap of what you just accomplished:

♦ You added several menu items to your main menu.

♦ You created a simple Customer List report.

♦ You created a relational report to print all Invoices.

♦ You range-limited a report to print Invoices for a single customer.

♦ You range-limited a report to print a single Invoice from the
current record highlighted in a Browse list.

Now we’ll look at where to go next.

188 CLARION 5 LEARNING CLARION

What’s Next?

Congratulations, you made it to the end of the Application Generator
tutorial! Welcome to the growing community of Clarion developers!

While this tutorial application is by no means a “shrink-wrap” program, it
has demonstrated the normal process of using the Application Generator and
all its associated tools to create an application that actually performs some
reasonably sophisticated tasks. Along the way, you have used most of
Clarion’s high-level tool set, and seen just how much work can be done for
you without writing source code. You have also seen how just a little
embedded source can add extra functionality to the template-generated code,
and how you can easily override the default ABC Library classes.

A Short Resource Tour

You have many resources at your disposal to help you with your Clarion
programming. Here is a short tour of two of the more important ones which
you have right at your fingertips:

1. Choose Help ➤➤➤➤➤ Contents .

This is the Contents page for Clarion’s extensive on-line Help system.

2. Press the How do I ... ? button.

This opens Clarion’s on-line Help file and takes you to a section of
commonly asked questions and their answers. This list of topics is the
first place you should look whenever you ask yourself any question
about Clarion programming that starts with “How do I ... ?” These topics
answer many of the most common questions that newcomers to Clarion
have, so quite often, you’ll find the answer is here.

3. Press the Back button, then press the Guide to Examples button.

This topic provides jumps to the discussions of all the example programs
which come with Clarion. Here you’ll find the various tips, tricks, and
techniques which the examples demonstrate so you can adapt them for
use in your own programs.

4. Press the Back button, then press the Late Breaking News button.

This topic always gives you the latest, up-to-the-minute information
about the most current release of Clarion you have installed. You should
always go through this section any time you get a major upgrade or
interim release. There are generally a few last-minute details which you
will find are only documented in this section. That makes it well worth
the reading.

5. Close on-line Help then task-switch to the operating system’s file
manager utility (that’s Explorer, in Windows 95, 98, or NT).

6. Put your Clarion CD in your CD-ROM drive, then navigate to the
\DOCS subdirectory.

LESSON 12 CREATING REPORTS 189

7. DOUBLE-CLICK on the C5-UG.PDF file (you must have installed Acrobat
Reader from the Clarion CD to read this file).

This brings up the User’s Guide in Acrobat Reader. This is the entire
book, on-line and available from your CD (or hard drive, if you chose to
copy the .PDF files there). This means that, for the weight of a CD you
can have all of Clarion’s documentation available to you anywhere (and
Acrobat has full text search). Notice that on the left side you have a set
of Table of Contents jumps available to you. You also can go directly to
any individual page you choose (and we’ll show you how, right now).

9. Press the “end of document” VCR control (it looks like a right-pointing
triangle with a vertical line on its right side), then press the “previous
page” VCR control (it looks like a left-pointing triangle) a couple of
times.

You’re now looking at the Index portion of the User’s Guide.

10. Select the “zoom in” tool (a magnifying glass with a + sign in it), then
CLICK anywhere on the page (if the cursor changes to a “pointing finger”
then you’ll jump directly to the item it points at instead of zooming in).

You can zoom in to any text you choose for your reading ease using the
zoom tool. Note the page number of any item you wish.

11. CTRL +CLICK to zoom back out to the previous view.

12. Press CTRL+5 to bring up the Go To Page dialog, enter the page number of
the item you noted, then press the OK button.

Now you see how easy it is to quickly get to any place you need to.

13. Close the file and exit Acrobat Reader.

Where to next?

So where should you go from here to learn more? The best places to go next
(besides creating an application of your own design) are:

• The Application Handbook explains Clarion’s ABC Templates and ABC
Library—all the tools they provide for you in the Application Generator.

• The Clarion Language Tutorial in the next chapter is the best place to go
next to start learning the Clarion language.

• TopSpeed offers educational seminars at various locations. Call
Customer Service at (800) 354-5444 or (954) 785-4555 to enroll.

• Join (or form) a local Clarion User’s Group and participate in joint study
projects with other Clarion developers.

• Participate in TopSpeed’s forum on CompuServe (GO TOPSPEED) or
the comp.lang.clarion Internet Newsgroup to network with other Clarion
programmers from all around the world (Strongly recommended!).

Good luck and keep going—the programming power that Clarion puts at
your fingertips just keeps on growing as you learn more!

190 CLARION 5 LEARNING CLARION

LESSON 13 CLARION LANGUAGE TUTORIAL 191

13 - CLARION LANGUAGE TUTORIAL

Clarion—the Programming Language
The foundation of the Clarion application development environment is the
Clarion programming language. Clarion is a 4th Generation Language (4GL)
that is both business-oriented and general-purpose. It is business-oriented in
that it contains data structures and commands that are highly optimized for
data file maintenance and business programming needs. It is also general-
purpose because it is fully compiled (not interpreted) and has a command set
that is functionally comparable to other 3GL langauges (such as C/C++,
Modula-2, Pascal, etc.). This distinction is more fully discussed in the
Foreword—Origins of the Clarion Language in the Language Reference.

By now, you should have completed all the Application Generator tutorials in
the preceding chapters. The purpose of this language tutorial is to introduce
you to the fundamental aspects of the Clarion language—particularly as it
relates to business programming using the Windows event-driven paradigm.
Clarion language keywords are in ALL CAPS and this tutorial concentrates
on explaining the specific use of each keyword and its interaction with other
language elements only in the specific context within which it is used. You
should always refer to the Language Reference for a more complete
explanation of each individual keyword and its capabilities.

When you complete this brief tutorial, you will be familiar with:

• The basic structure of a Clarion procedural program.

• The most common event-handling code structure.

• How to compile and link hand-coded programs.

Event-driven Programming

Windows programs are event-driven. The user causes an event by CLICKING

the mouse on a screen control or pressing a key. Every such user action
causes Windows to send a message (an event) to the program which owns the
window telling it what the user has done.

Once Windows has sent the message signaling an event to the program, the
program has the opportunity to handle the event in the appropriate manner.
This basically means the Windows programming paradigm is exactly

13

192 CLARION 5 LEARNING CLARION

opposite from the DOS programming paradigm—the operating system
(Windows) tells the program what the user has done, instead of the program
telling the operating system what to do.

This is the most important concept in Windows programming—that the user
is in control (or should be) at all times. Therefore, Windows programs are
reactive rather than proactive; they always deal with what the user has done
instead of directing the user as to what to do next. The most common
example of this is the data entry dialog. In most DOS programs, the user
must follow one path from field to field to enter data. They must always
enter data in one field before they can go on to the next (and they usually can
only go on to a specific “next” entry field). This makes data validation code
simple—it simply executes immediately after the user has left the field.

In Windows programs, the user may use a mouse or an accelerator key to
move from control to control, at any given time, in no particular order,
skipping some controls entirely. Therefore, data validation code should be
called twice to ensure that it executes at least once: once when the user
leaves the entry control after entering data, and again when the user presses
OK to leave the dialog. If it isn’t executed on the OK button, required data
could be omitted. This makes Windows programs reactive rather than
proactive.

Hello Windows

Traditionally, all programming language tutorials begin by creating a “Hello
World” type of program—and so does this one.

Starting Point:
The Clarion environment should be open, and the
TUTORIAL.APP should be closed.

Create the Source file

1. Using the appropriate tool in your operating system (File Manager,
Explorer, etc.), create a new directory called Language under the Clarion5
subdirectory.

2. Return to Clarion.

3. Choose File ➤ New ➤ Source.

The New dialog appears. It’s a standard windows Open File dialog,
allowing you to change the directory and type in the filename.

4. Select the \CLARION5\LANGUAGE directory.

5. Type Hello in the File Name field.

LESSON 13 CLARION LANGUAGE TUTORIAL 193

6. Press the Save button.

This creates an empty HELLO.CLW (.CLW is the standard extension for
Clarion source code files) and places you in the Text Editor.

Create the Project file

1. Choose Project ➤ New.

The New Project dialog appears. When completely hand-coding a Clarion
program, you also need a Project file (HELLO.PRJ) to control the
compile and link process.

2. Choose the Hand Coded Project radio button.

3. Type C:\CLARION5\LANGUAGE in the Working Directory box (or use the
ellipsis button to select the directory from the Change Working Directory
dialog).

When hand-coding a program, the directory containing the Project file
(.PRJ) becomes the working directory for the project. When you select
the project, Clarion automatically makes the directory containing the
Project file the working directory.

4. Press the OK button.

The New Project File dialog appears.

5. Type Hello Windows in the Project Title box, then press TAB.

6. Type HELLO.CLW in the Main File box, then press TAB.

194 CLARION 5 LEARNING CLARION

Once you’ve named the main source module for the project, the rest of
the controls are automatically filled out for you with default values.

7. Press the OK button.

The Project Editor dialog appears. This controls the source modules the
compiler includes in the project and the libraries the linker links in to
create the executable program. When you hand-code a complete
application instead of using the Application Generator, you must update
the Project yourself to include all source code modules, file drivers,
icons, and external libraries your program uses. See the Using the
Project System chapter in the User’s Guide for complete information on
how to maintain your Project.

8. Press the OK button.

The HELLO.CLW file in the Text Editor now has focus.

Notice that the environment’s title bar text now reads: Clarion 5
(HELLO.PRJ) - (C:\CLARION5\LANGUAGE\HELLO.PRJ). This always
tells you the current project and working directory. It is important to be
aware of this when hand-coding, since simply opening a source file in
the Text Editor does not change the current Project for the compiler.

Write the Program

1. Type in the following code:

LESSON 13 CLARION LANGUAGE TUTORIAL 195

PROGRAM
MAP
END

MyWin WINDOW('Hello Windows'),SYSTEM
END

CODE
OPEN(MyWin)
ACCEPT
END

This code begins with the PROGRAM statement. This must be the first non-
comment statement in every Clarion program. Notice that the keyword
PROGRAM is indented in relation to the word MyWin . In Clarion, the only
statements that begin in column one (1) of the source code file are those with
a statement label. A label must begin in column one (1), by definition. The
PROGRAM statement begins the Global data declaration section.

Next there is an empty MAP structure. The END statement is a required
terminator of the MAP data structure. A MAP structure contains prototypes
which define parameter data types, return data types, and various other
options that tell the compiler how to deal with your procedure calls (this is
all covered later in this tutorial). A MAP structure is required when you
break up your program’s code into PROCEDUREs. We haven’t done that
yet, but we still need it because there is an OPEN statement in the executable
code.

When the compiler processes a MAP structure, it automatically includes the
prototypes in the \CLARION5\LIBSRC\BUILTINS.CLW file. This file
contains prototypes for almost all of the Clarion language built-in procedures
(including the OPEN statement). If the empty MAP structure were not in this
code, the compiler would generate an error on the OPEN statement.

MyWin is the label of the WINDOW data structure (the “M” must be in
column one). In Clarion, windows are declared as data structures, and not
dynamically built by executable code statements as in some other languages.
This is one of the aspects of Clarion that makes it a 4GL. Although Clarion
can dynamically build dialogs at runtime, it is unnecessary to do so. By using
a data structure, the compiler creates the Windows resource for each dialog,
enabling better performance at runtime.

The ('Hello Windows') parameter on the WINDOW statement defines the title
bar text for the window. The SYSTEM attribute adds a standard Windows
system menu to the window. The END statement is a required terminator of
the WINDOW data structure. In Clarion, all complex structures (both data
and executable code) must terminate with an END or a period (.). This
means the following code is functionally equivalent to the previous code:

PROGRAM
MAP.

MyWin WINDOW('Hello Windows'),SYSTEM.
CODE
OPEN(MyWin)
ACCEPT.

196 CLARION 5 LEARNING CLARION

Although functionally equivalent, this code would become much harder to
read as soon as anything is added into the MAP, WINDOW, or ACCEPT
structures. By convention, we use the END statement to terminate multi-line
complex statements, placing the END in the same column as the keyword it
is terminating while indenting everything within the structure. We only use
the period to terminate single-line structures, such as IF statements with
single THEN clauses. This convention makes the code easier to read, and any
missing structure terminators much easier to find.

The CODE statement is required to identify the beginning of the executable
code section. Data (memory variables, data files, window structures, report
structures, etc.) are declared in a data section (preceding the CODE
statement), and executable statements may only follow a CODE statement.

Since this program does not contain any PROCEDUREs (we’ll get to them
in the next chapter), it only has a Global Data section followed by three lines
of executable code. Variables declared in the Global Data section are visible
and available for use anywhere in a program.

The OPEN(MyWin) statement opens the window, but does not display it. The
window will only appear on screen when a DISPLAY or ACCEPT statement
executes. This feature allows you to dynamically change the properties of the
window, or any control on the window, before it appears on screen.

ACCEPT is the event processor. Most of the messages (events) from
Windows are automatically handled internally for you by ACCEPT. These
are the common events handled by the runtime library (screen re-draws,
etc.). Only those events that actually may require program action are passed
on by ACCEPT to your Clarion code. This makes your programming job
easier by allowing you to concentrate on the high-level aspects of your
program.

The ACCEPT statement has a terminating END statement, which means it is
a complex code structure. ACCEPT is a looping structure, “passing through”
all the events that the Clarion programmer might want to handle (none, in
this program—we’ll get back to this shortly), then looping back to handle the
next event.

An ACCEPT loop is required for each window opened in a Clarion program.
An open window “attaches” itself to the next ACCEPT loop it encounters in
the code to be its event processor.

For this program, ACCEPT internally handles everything the system menu
(placed on the window by the SYSTEM attribute) does. Therefore, when the
user uses the system menu to close the window, ACCEPT automatically
passes control to any statement immediately following its terminating END
statement. Since there is no other explicit Clarion language statement to
execute, the program ends. When any Clarion program reaches the end of the
executable code, an implicit RETURN executes, which, in this case, returns
the user to the operating system.

LESSON 13 CLARION LANGUAGE TUTORIAL 197

2. CLICK on the Run button.

The program compiles and links, then executes. The window’s title bar
displays the “Hello Windows” message, and you must close the window
with the system menu.

Hello Windows with Controls

The program you just created is the smallest program it is possible to create
in Clarion. Now we’ll expand on it a bit to demonstrate adding some controls
to the window and handling the events generated by those controls.

Change the Source code

1. Edit the code to read:
PROGRAM
MAP
END

MyWin WINDOW('Hello Windows'),AT(,,100,100),SYSTEM !Changed
STRING('Hello Windows'),AT(26,23),USE(?String1) !Added
BUTTON('OK'),AT(34,60),USE(?Ok),DEFAULT !Added

END
CODE
OPEN(MyWin)
ACCEPT
IF ACCEPTED() = ?Ok THEN BREAK. !Added

END

NOTE: The Window Formatter is available to you in the Text Editor,
just as it is in the Application Generator. To call the Window
Formatter, place the insertion point anywhere within the
WINDOW structure then press CTRL+F. The only restrictions are
that the Control Template and Dictionary Field tools are
unavailable (they are specific to the Application Generator).

The change is the addition of the STRING and BUTTON controls to the
WINDOW structure. The STRING places constant text in the window, and
the BUTTON adds a command buttton.

The only other addition is the IF ACCEPTED() = ?Ok THEN BREAK.
statement. This statement detects when the user has pressed the OK button
and BREAKs out of the ACCEPT loop, ending the program. The
ACCEPTED procedure returns the field number of the control for which
EVENT:Accepted was just generated (EVENT:Accepted is an EQUATE
contained in the \CLARION5\LIBSRC\EQUATES.CLW file, which the
compiler automatically includes in every program).

?Ok is the Field Equate Label of the BUTTON control, defined by the
control’s USE attribute (see Field Equate Labels in the Language Reference).
The compiler automatically equates ?Ok to the field number it assigns the
control (using Field Equate Labels helps make the code more readable).

198 CLARION 5 LEARNING CLARION

When the ACCEPTED procedure returns a value equal to the compiler-
assigned field number for the OK button, the BREAK statement executes
and terminates the ACCEPT loop.

2. CLICK on the Run button.

The program compiles and links, then executes. The window’s title bar
still displays the “Hello Windows” message, and now, so does the
constant text in the middle of the window. You can close the window
either with the system menu, or the OK button.

Common form Source code

There are other ways to write the code in the ACCEPT loop to accomplish
the same thing. We’ll go straight to the most common way, because this is
more similar to the style of code that the Application Generator generates for
you from the Clarion ABC Templates.

1. Edit the code to read:
PROGRAM
MAP
END

MyWin WINDOW('Hello Windows'),AT(,,100,100),SYSTEM
STRING('Hello Windows'),AT(26,23),USE(?String1)
BUTTON('OK'),AT(34,60),USE(?Ok),DEFAULT

END
CODE
OPEN(MyWin)
ACCEPT
CASE FIELD() !Added
OF ?Ok !Added
CASE EVENT() !Added
OF EVENT:Accepted !Added
BREAK !Added

END !Added
END !Added

END

In this code you have one CASE structure nested within another. A CASE
structure looks for an exact match between the expression immediately
following the keyword CASE and another expression immediately following
an OF clause (although these only show one OF clause each, a CASE
structure may have as many as necessary).

The CASE FIELD() structure determines to which control the current event
applies. When the FIELD procedure returns a value equal to the field number
of the OK button (the ?Ok Field Equate Label) it then executes the CASE
EVENT() structure.

The CASE EVENT() structure determines which event was generated. When
the EVENT procedure returns a value equal to EVENT:Accepted (an
EQUATE contained in the \CLARION5\LIBSRC\EQUATES.CLW file) it
then executes the BREAK statement.

LESSON 13 CLARION LANGUAGE TUTORIAL 199

Nesting CASE EVENT() within CASE FIELD() allows you to put all the
code associated with a single control in one place. You could just as easily
nest a CASE FIELD() structure within a CASE EVENT() structure,
reversing the code, but this would scatter the code for a single control to
multiple places,.

2. CLICK on the Run button.

Again, you can close the window either with the system menu, or the OK
buttton, just as with the previous code, but now the code is structured in
a common style.

Hello Windows with Event Handling

There are two types of events passed on to the program by ACCEPT: Field-
specific and Field-independent events.

A Field-specific event occurs when the user does anything that may require
the program to perform a specific action related to a single control. For
example, when the user presses TAB after entering data in a control, the field-
specific EVENT:Accepted generates for that control.

A Field-independent event does not relate to any one control but may
require some program action (for example, to close a window, quit the
program, or change execution threads).

Nesting two CASE structures as we just discussed is the most common
method of handling field-specific events. The most common method of
handling field-independent events is a non-nested CASE EVENT() structure,
usually placed immediately before the CASE FIELD() structure.

Change the Source code

1. Edit the code to read:
PROGRAM
MAP
END

MyWin WINDOW('Hello Windows'),AT(,,100,100),SYSTEM
STRING('Hello Windows'),AT(26,23),USE(?String1)
BUTTON('OK'),AT(34,60),USE(?Ok),DEFAULT

END
CODE
OPEN(MyWin)
ACCEPT
CASE EVENT() !Added
OF EVENT:OpenWindow !Added
MESSAGE('Opened Window') !Added

OF EVENT:GainFocus !Added
MESSAGE('Gained Focus') !Added

END !Added
CASE FIELD()
OF ?Ok

200 CLARION 5 LEARNING CLARION

CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END

The new CASE EVENT() structure handles two field-independent events:
EVENT:OpenWindow and EVENT:GainFocus. The MESSAGE procedure
used in this code is just to visually display to you at runtime that the event
was triggered. Instead of the MESSAGE procedure, you would add here any
code that your program needs to execute when these events are triggered by
the user.

This demonstrates the basic logic flow and code structure for procedural
window procedures—an ACCEPT loop containing a CASE EVENT()
structure to handle all the field-independent events, followed by a CASE
FIELD() structure with nested CASE EVENT() structures to handle all field-
specific events.

2. CLICK on the Run button.

Notice that EVENT:GainFocus and EVENT:OpenWindow both generate
when the window first displays (in that order). EVENT:GainFocus will
re-generate when you ALT+TAB to another application then ALT+TAB back
to Hello Windows.

Adding a PROCEDURE

In Hello Windows we have an example of a very simple program. Most
modern business programs are not that simple—they require the use of
Structured Programming techniques. This means you break up your program
into functional sections that each perform a single logical task. In the Clarion
language these functional sections are called PROCEDUREs.

First, we’ll add a PROCEDURE to the Hello Windows program.

Change the Source code

1. Edit the code to read:
PROGRAM
MAP

Hello PROCEDURE !Added
END
CODE !Added
Hello !Added

Hello PROCEDURE !Added
MyWin WINDOW('Hello Windows'),AT(,,100,100),SYSTEM

STRING('Hello Windows'),AT(26,23),USE(?String1)
BUTTON('OK'),AT(34,60),USE(?Ok),DEFAULT

END

LESSON 13 CLARION LANGUAGE TUTORIAL 201

CODE
OPEN(MyWin)
ACCEPT
CASE EVENT()
OF EVENT:OpenWindow
MESSAGE('Opened Window')

OF EVENT:GainFocus
MESSAGE('Gained Focus')

END
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END

The only changes are at the beginning of the program. Inside the MAP
structure we now see the Hello PROCEDURE statement which prototypes
the Hello procedure. A prototype is the declaration of the procedure for the
compiler, telling the compiler what to expect when your code calls the
procedure. This prototype indicates that the procedure takes no parameters
and does not return a value. All PROCEDUREs in your program must be
prototyped in a MAP structure. See PROCEDURE Prototypes in the
Language Reference for more on prototypes.

The keyword CODE immediately following the MAP structure terminates
the Global data section and marks the beginning of the Global executable
code section, which only contains the Hello statement—a call to execute the
Hello procedure. A PROCEDURE which does not return a value is always
called as a single executable statement in executable code.

The second Hello PROCEDURE statement terminates the Global executable
code section and marks the beginning of the code definition of the Hello
procedure.

A PROCEDURE contains a data declaration section just as a PROGRAM
does, and so, also requires the keyword CODE to define the boundary
between data declarations and executable code. This is why the rest of the
code did not change from the previous example. This is the Local data
declaration section for the PROCEDURE.

The biggest difference between Global and Local data declarations is the
scope of the declared data. Any data item declared in a Local data section is
visible only within the PROCEDURE which declares it, while any data item
declared in the Global data section is visible everywhere in the program. See
Data Declarations and Memory Allocation in the Language Reference for a
full discussion of all the differences.

2. CLICK on the Run button.

The program executes exactly as it did before. The only difference is that
the Hello PROCEDURE can now be called from anywhere within the

202 CLARION 5 LEARNING CLARION

program—even from within another PROCEDURE. This means that,
even though the program may execute the procedure many times, the
code for it exists just once.

Adding a PROCEDURE

A Clarion PROCEDURE which does not directly RETURN a value can only
be called as a separate executable statement—it cannot be used in an
expression, parameter list, or an assignment statement. A PROCEDURE
which does directly RETURN a value must always contain a RETURN
statement and may be used in expressions, parameter lists, and assignment
statements. You can call a PROCEDURE which does directly RETURN a
value as a separate statement if you do not want the value the PROCEDURE
returns, but doing this generates compiler warnings (unless the
PROCEDURE’s prototype has the PROC attribute).

Structurally, both types of PROCEDURE are equivalent—they both have
Local data sections, followed by the executable code section that begins with
the keyword CODE.

Change the Source code

1. Edit the MAP structure to read:
MAP

Hello PROCEDURE
EventString PROCEDURE(LONG PassedEvent),STRING !Added
END

This adds the prototype for the EventString PROCEDURE . EventString
receives a LONG parameter called PassedEvent that may not be omitted,
and returns a STRING. The data types of all parameters passed to a
PROCEDURE are specified inside the parentheses following PROCEDURE,
each separated by a comma (if there are multiple parameters being passed).
The data type of the return value of a PROCEDURE is specified following
the closing parenthesis of the parameter list. Both types of PROCEDUREs
may receive parameters, see the Prototype Parameter Lists section in the
Language Reference for a more complete discussion of parameter passing.

2. Add the EventString PROCEDURE definition to the end of the file:
EventString PROCEDURE(LONG PassedEvent)
ReturnString STRING(255)
CODE
CASE PassedEvent
OF EVENT:OpenWindow
ReturnString = 'Opened Window'

OF EVENT:GainFocus
ReturnString = 'Gained Focus'

ELSE
ReturnString = 'Unknown Event: ' & PassedEvent

END
RETURN(ReturnString)

LESSON 13 CLARION LANGUAGE TUTORIAL 203

The EventString label (remember, it must be in column one) on the
PROCEDURE statement names this procedure, while the parameter list
attached to the PROCEDURE keyword names the LONG parameter
PassedEvent . There must always be an equal number of parameter names
listed on the PROCEDURE statement as there are parameter data types listed
in the prototype for that PROCEDURE.

ReturnString is a local variable declared as a 255 character STRING field,
on the stack. The CODE statement terminates the procedure’s Local data
section. The CASE PassedEvent structure should look familiar, because it
is the same as a CASE EVENT() structure, but its CASE condition is the
PassedEvent instead of the EVENT() procedure. This CASE structure simply
assigns the appropriate value to the ReturnString variable for each event that
is passed to the procedure.

The interesting code here is the RETURN(ReturnString) statement. A
PROCEDURE without a return value does not require an explicit RETURN,
since it always executes an implicit RETURN when there is no more code to
execute. However, a PROCEDURE prototyped to return a value always
contains an explicit RETURN statement which specifies the value to return.
In this case, the RETURN statement returns whichever value was assigned to
the ReturnString in the CASE structure.

3. Edit the Hello procedure’s CASE EVENT() structure to read:
CASE EVENT()
OF EVENT:OpenWindow
MESSAGE(EventString(EVENT:OpenWindow)) !Changed

OF EVENT:GainFocus
MESSAGE(EventString(EVENT:GainFocus)) !Changed

END

This changes the MESSAGE procedures to display the returned value from
the EventString procedure. The event number is passed to EventString as
the event EQUATE to make the code more readable.

4. CLICK on the Run button.

The program still executes exactly as it did before.

Moving Into the Real World—Adding a Menu

Hello Windows is a nice little demonstration program, but it really doesn’t
show you much to do with real-world business programming. Therefore,
we’re now going to expand it to include some real-world functionality,
starting with a menu.

Change the Source code

1. Edit the beginning of the file to read:

204 CLARION 5 LEARNING CLARION

PROGRAM
MAP

Main PROCEDURE !Added
Hello PROCEDURE
EventString PROCEDURE(LONG PassedEvent),STRING
END
CODE
Main !Changed

This adds the Main PROCEDURE prototype to the MAP structure and
replaces the call to Hello with a call to the Main procedure.

2. Add the Main PROCEDURE definition to the end of the file:
Main PROCEDURE
AppFrame APPLICATION('Hello Windows'),AT(,,280,200),SYSTEM,RESIZE,MAX

MENUBAR
MENU('&File'),USE(?File)
ITEM('&Browse Phones'),USE(?FileBrowsePhones)
ITEM,SEPARATOR
ITEM('E&xit'),USE(?FileExit),STD(STD:Close)

END
ITEM('&About!'),USE(?About)

END
END

CODE
OPEN(AppFrame)
ACCEPT
CASE ACCEPTED()
OF ?About
Hello

END
END

The Main PROCEDURE accepts no parameters. It contains the AppFrame
APPLICATION structure. An APPLICATION structure is the key to creating
Windows Multiple Document Interface (MDI) programs. An MDI
application can contain multiple execution threads This is the MDI parent
application frame that is required to create an MDI application.

The MENUBAR structure defines the menu items available to the user. The
MENU('&File') structure creates the standard File menu that you see in most
Windows programs. The ampersand (&) preceding the “F” specifies that the
“F” is the menu’s accelerator key, and will be underlined at runtime by the
operating system.

The ITEM('&Browse Phones') creates a menu item the we will use to call a
procedure (we’ll get to that shortly). The ITEM,SEPARATOR statement
creates a dividing line in the menu following the Browse Phones selection.

The ITEM('E&xit') creates a menu item to exit the procedure (and the
program, since this procedure is the only procedure called from the Global
executable code). The STD(STD:Close) attribute specifies the standard
window close action to break out of the ACCEPT loop. This is why you
don’t see any executable code associated with this menu item in the
ACCEPT loop—the Clarion runtime library takes care of it for you
automatically.

LESSON 13 CLARION LANGUAGE TUTORIAL 205

The ITEM('&About!') statement creates a menu item on the action bar, right
next to the File menu. The trailing exclamation point (!) is a programming
convention to give end-users a visual clue that this item executes an action
and does not drop down a menu, despite the fact that it is on the action bar.

The ACCEPT loop contains only a CASE ACCEPTED() structure. The
ACCEPTED procedure returns the field number of the control with focus
when EVENT:Accepted is generated. We can use the ACCEPTED procedure
here instead of the FIELD and EVENT procedures because menu items only
generate EVENT:Accepted. The OF ?About clause simply calls the Hello
procedure.

2. CLICK on the Run button.

The program executes and only the About! and File ➤ Exit items actually do
anything. Notice, though, that File ➤ Exit does terminate the program,
despite the fact that we wrote no code to perform that action.

Really Moving Into the Real World—Adding a Browse and Form

Having a menu is nice, but now it’s time to do some real-world business
programming. Now we’re going to add a data file and the procedures to
maintain it.

Change the Global code

1. Edit the beginning of the file to read:
PROGRAM
INCLUDE('Keycodes.CLW') !Added
INCLUDE('Errors.CLW') !Added
MAP

Main PROCEDURE
BrowsePhones PROCEDURE !Added
UpdatePhones PROCEDURE(LONG Action),LONG !Added
Hello PROCEDURE
EventString PROCEDURE(LONG PassedEvent),STRING
END

Phones FILE,DRIVER('TopSpeed'),CREATE !Added
NameKey KEY(Name),DUP,NOCASE !Added
Rec RECORD !Added
Name STRING(20) !Added
Number STRING(20) !Added

END !Added
END !Added

InsertRecord EQUATE(1) !Added
ChangeRecord EQUATE(2) !Added
DeleteRecord EQUATE(3) !Added
ActionComplete EQUATE(1) !Added
ActionAborted EQUATE(2) !Added
 CODE
 Main

206 CLARION 5 LEARNING CLARION

The two new INCLUDE statements add the standard EQUATEs for keycodes
and error numbers. Using the EQUATEs instead of the numbers makes your
code more readable, and therefore, more maintainable.

The MAP structure has acquired two more procedure prototypes: the
BrowsePhones PROCEDURE and UpdatePhones PROCEDURE(LONG
Action),LONG . The BrowsePhones procedure will display a list of the
records in the file and UpdatePhones will update individual records.

In the interest of coding simplicity (you’ll see why shortly), the
BrowsePhones procedure will simply display all records in the file in a LIST
control. This is not exactly the same as a Browse procedure in template
generated code (which is page-loaded in order to handle very large files), but
will serve a similar purpose in this program.

Also in the interest of coding simplicity, UpdatePhones is a PROCEDURE
which takes a parameter. The LONG parameter indicates what file action to
take: ADD, PUT, or DELETE. The LONG return value indicates to the
calling procedure whether the user completed or aborted the action. Again,
this is not the same as a Form procedure in template generated code (which
is a PROCEDURE using Global variables to signal file action and
completion status), but will serve the same purpose in this simple program.

The Phones FILE declaration creates a simple data file using the TopSpeed
file driver. There are two data fields: Name and Number which are both
declared as STRING(20). Declaring the Number field as a STRING(20)
allows it to contain phone numbers from any country in the world (more
about that to come).

The five EQUATE statements define constant values that make the code more
readable. InsertRecord , ChangeRecord , and DeleteRecord all define file
actions to pass as the parameter to the UpdatePhones procedure. The
ActionComplete and ActionAborted EQUATEs define the two possible
return values from the UpdatePhones procedure.

2. Edit the Main procedure’s CASE ACCEPTED() code to read:
CASE ACCEPTED()
OF ?FileBrowsePhones !Added
START(BrowsePhones,25000) !Added

OF ?About
Hello

END

The START(BrowsePhones,25000) statement executes when the user
chooses the Browse Phones menu selection. The START procedure creates a
new execution thread for the BrowsePhones procedure and the second
parameter (25000) specifies the size (in bytes) of the new execution thread’s
stack. You must use the START procedure when you are calling a procedure
containing an MDI child window from the APPLICATION frame, because
each MDI child window must be on a separate execution thread from the
APPLICATION frame. If you do not START the MDI child, you get the

LESSON 13 CLARION LANGUAGE TUTORIAL 207

“Unable to open MDI window on APPLICATION’s thread” runtime error
message when you try to call the BrowsePhones procedure and the program
immediately terminates.

Once you have started a new thread, an MDI child may simply call another
MDI child on its same thread without starting a new thread. This means that,
although BrowsePhones and UpdatePhones both contain MDI windows, only
BrowsePhones must START a new thread, because it is called from the
application frame. BrowsePhones will simply call UpdatePhones without
starting a new thread.

Add the BrowsePhones PROCEDURE

1. Add the data section of the BrowsePhones PROCEDURE definition to
the end of the file:

BrowsePhones PROCEDURE
PhonesQue QUEUE
Name STRING(20)
Number STRING(20)
Position STRING(512)

END
window WINDOW('Browse Phones'),AT(,,185,156),SYSTEM,GRAY,RESIZE,MDI

LIST,AT(6,8,173,100),ALRT(MouseLeft2),USE(?List) |
,FORMAT('84L|M~Name~80L~Number~'),FROM(PhonesQue),VSCROLL

BUTTON('&Insert'),AT(20,117),KEY(InsertKey),USE(?Insert)
BUTTON('&Change'),AT(76,117,35,14),KEY(EnterKey),USE(?Change)
BUTTON('&Delete'),AT(131,117,35,14),KEY(DeleteKey),USE(?Delete)
BUTTON('Close'),AT(76,137,35,14),KEY(EscKey),USE(?Close)

END

The PhonesQue QUEUE structure defines the data structure that will
contain all the records from the the Phones FILE to display in the LIST
control. A Clarion QUEUE is similar to a data file because it has a data
buffer and allows an indeterminate number of entries, but it only exists in
memory at runtime. A QUEUE could also be likened to a dynamically
allocated array in other programming languages. See the Memory Queues
chapter in the Language Reference for more information on QUEUE
structures.

The PhonesQue QUEUE contains three fields. The Name and Number fields
duplicate the fields in the Phones FILE structure and will display in the two
columns defined in the LIST control’s FORMAT attribute. The Position
field will contain the return value from the POSITION procedure for each
record in the Phones FILE. Saving each record’s Position will allow us to
immediately re-get the record from the data file before calling UpdatePhones
to change or delete a record.

The window WINDOW structure contains one LIST control and four
BUTTON controls. The LIST control is the key to this procedure. The
ALRT(MouseLeft2) on the LIST alerts DOUBLE-CLICK so the ACCEPT
statement will pass an EVENT:AlertKey to our Clarion code. This will let us

208 CLARION 5 LEARNING CLARION

write code to bring up the UpdatePhones procedure to change the record the
user DOUBLE-CLICKS on.

The vertical bar (|) at the end of the LIST statement is the Clarion line
continuation character, meaning that the LIST control continues on the next
line with the FORMAT('84L|M~Name~80L~Number~') attribute (you can
put it all on one line if you want). The parameter to the FORMAT attribute
defines the appearance of the LIST control at runtime.

It is best to let the List Box Formatter tool in the Window Formatter write
format strings for you, since they can become very complex very quickly.
This format string defines two columns. The first column is 84 dialog units
wide (84), left justified(L), has a right border (|) that is resizable (M) and
“Name” is its heading (~Name~). The second column is 80 dialog units wide
(80), left justified(L), and “Number” is its heading (~Number~).

FROM(PhonesQue) on the LIST specifies the source QUEUE the LIST
control will display, and VSCROLL adds the vertical scroll bar. The LIST
will display the Name and Number fields of all entries in the PhonesQue
while ignoring the Position field because the FORMAT attribute only
specified two columns.

The LIST automatically handles users scrolling through the list without any
coding on our part. The LIST does this because there is no IMM (immediate)
attribute present. If there were an IMM attribute, we would have to write
code to handle scrolling records (as the page-loaded Browse procedure
template does).

The BUTTON('&Insert') statement defines a command button the user will
press to add a new record. The KEY(InsertKey) attribute specifies that the
button is automatically pressed for the user when they press INSERT on the
keyboard. Notice that the other three BUTTON controls all have similar
KEY atributes. This means you don’t have to write any special code to
handle keyboard access to the program versus mouse access.

2. Add the beginning of the executable code section of the BrowsePhones
PROCEDURE definition to the end of the file:
CODE
DO OpenFile
DO FillQue
OPEN(window)
ACCEPT
CASE EVENT()
OF EVENT:OpenWindow
DO QueRecordsCheck

OF EVENT:AlertKey
IF KEYCODE() = MouseLeft2
POST(EVENT:Accepted,?Change)

END
END

END

LESSON 13 CLARION LANGUAGE TUTORIAL 209

The beginning of the CODE section starts with the DO OpenFile statement.
DO executes a ROUTINE, in this case, the OpenFile ROUTINE, and when
the code in the ROUTINE is done executing, control returns to the next line
of code following the DO statement that called the ROUTINE.

The code defining a ROUTINE must be at the bottom of the procedure,
following all the main logic, because the ROUTINE statement itself
terminates the executable code section of a PROCEDURE.

There are two reasons to use a ROUTINE within a PROCEDURE: to write
one set of code statements that need to execute at multiple logical points
within the procedure, or to make the logic more readable by substituting a
single DO statement for a set of code statements that perform a single logical
task.

In this case, the DO OpenFile statement serves the second purpose by
moving the code that opens or creates the data file out of the main procedure
logic. Next, the DO FillQue statement executes the code that fills the
PhonesQue QUEUE structure with all the records from the data file. These
two DO statements make it very easy to follow the logic flow ofthe
procedure.

The CASE EVENT() structure’s OF EVENT:OpenWindow clause executes
DO QueRecordsCheck to call a ROUTINE that checks to see if there are
any records in PhonesQue.

Next, the OF EVENT:AlertKey clause contains the IF KEYCODE() =
MouseLeft2 structure to check for DOUBLE-CLICK on the LIST. Since the
ALRT(MouseLeft2) attribute only appears on the LIST control, we know
that the POST(EVENT:Accepted,?Change) statement will only execute
when the user DOUBLE-CLICKS on the LIST.

The POST statement tells ACCEPT to post the event in its first parameter
(EVENT:Accepted) to the control in its second parameter (?Change). The
effect of the POST(EVENT:Accepted,?Change) statement is to cause the
EVENT:Accepted code for the Change button to execute, just as if the user
had pressed the button with the mouse or keyboard.

This illustrates a very good coding practice: write specific code once and call
it from many places. This is the structured programming concept that gave us
PROCEDUREs and ROUTINEs. Even though the EVENT:Accepted code
for the change button is not sectioned off separately in a PROCEDURE or
ROUTINE, using the POST statement this way means that the one section of
code is all you need to maintain—if the desired logic changes, you’ll only
have to change it in one place.

3. Add the rest of the executable code section of the BrowsePhones
PROCEDURE definition to the end of the file:

210 CLARION 5 LEARNING CLARION

CASE FIELD()
OF ?Close
CASE EVENT()
OF EVENT:Accepted
POST(EVENT:CloseWindow)

END
OF ?Insert
CASE EVENT()
OF EVENT:Accepted
IF UpdatePhones(InsertRecord) = ActionComplete
DO AssignToQue
ADD(PhonesQue)
IF ERRORCODE() THEN STOP(ERROR()).
SORT(PhonesQue,PhonesQue.Name)
ENABLE(?Change,?Delete)

END
GET(PhonesQue,PhonesQue.Name)
SELECT(?List,POINTER(PhonesQue))

END
OF ?Change
CASE EVENT()
OF EVENT:Accepted
DO GetRecord
IF UpdatePhones(ChangeRecord) = ActionComplete
DO AssignToQue
PUT(PhonesQue)
IF ERRORCODE() THEN STOP(ERROR()).
SORT(PhonesQue,PhonesQue.Name)

END
GET(PhonesQue,PhonesQue.Name)
SELECT(?List,POINTER(PhonesQue))

END
OF ?Delete
CASE EVENT()
OF EVENT:Accepted
DO GetRecord
IF UpdatePhones(DeleteRecord) = ActionComplete
DELETE(PhonesQue)
IF ERRORCODE() THEN STOP(ERROR()).
DO QueRecordsCheck
SORT(PhonesQue,PhonesQue.Name)

END
SELECT(?List)

END
END

END
FREE(PhonesQue)
CLOSE(Phones)

Following the CASE EVENT() structure is the CASE FIELD() structure.
Notice that each OF clause contains its own CASE EVENT() structure, and
each of these only contains an OF EVENT:Accepted clause. Because of this,
we could have replaced the CASE FIELD() structure with a CASE
ACCEPTED() structure and eliminated the nested CASEs. This would
actually have given us slightly better performance—too slight to actually
notice on-screen, though. The reason we didn’t is consistency; you will more
often have occasion to trap more field-specific events than just
EVENT:Accepted, and when you do, this nested CASE structure code is the

LESSON 13 CLARION LANGUAGE TUTORIAL 211

logic to use, so it’s a good habit to make now. It also demonstrates the kind
of code structure that is generated for you by Clarion’s templates in the
Application Generator.

The OF ?Close clause executes the POST(EVENT:CloseWindow) when the
user presses the Close button. Since there’s no second parameter to the POST
statement naming a control, the event posts to the WINDOW (and should be
a field-independent event). EVENT:CloseWindow causes the ACCEPT loop
to terminate and execution control drops to the first statement following the
ACCEPT’s terminating END statement. In this case, control drops to the
FREE(PhonesQue) statement, which frees all the memory used by the
QUEUE entries (effectively closing the QUEUE). The CLOSE(Phones)
statement then closes the data file. Since there are no other statements to
execute following CLOSE(Phones) the procedure executes an implicit
RETURN and goes back to the Main procedure (where it was called from).

The OF ?Insert clause contains the IF UpdatePhones(InsertRecord) =
ActionComplete structure. This calls the UpdatePhones PROCEDURE,
passing it the InsertRecord constant value that we defined in the Global data
section, and then checks for the ActionComplete return value.

The DO AssignToQue statement executes only when the user actually adds
a record. AssignToQue is a ROUTINE that assigns data from the Phones
FILE’s record buffer to the PhonesQue QUEUE’s data buffer. Then the
ADD(PhonesQue) statement adds a new entry to PhonesQue. The IF
ERRORCODE() THEN STOP(ERROR()). statement is a standard error check
that you should execute after any FILE or QUEUE action that could possibly
return an error (another good habit to form).

The SORT(PhonesQue,PhonesQue.Name) statement sorts the PhonesQue
QUEUE entries alphabetically by the Name field. Since there is no PRE
attribute on the PhonesQue QUEUE structure, you must reference its fields
using Clarion’s Field Qualification syntax by prepending the name of the
structure containing the field (PhonesQue) to the name of the field (Name),
connecting them with a period (PhonesQue.Name). See Field Qualification
in the Language Reference for more information.

The ENABLE(?Change,?Delete) statement makes sure the Change and
delete buttons are active (if this was the first entry in the QUEUE, these
buttons were dimmed out by the QueRecordsCheck ROUTINE). The
GET(PhonesQue,PhonesQue.Name) statement re-gets the new record
from the sorted QUEUE, then SELECT(?List,POINTER(PhonesQue)) puts
the user back on the LIST control with the new record highlighted.

The code in the OF ?Change clause is almost identical to the code in the OF
?Insert clause. There is an added DO GetRecord statement that calls a
ROUTINE to put the highlighted PhonesQue entry’s related file record into
the Phones file record buffer. The only other difference is the
PUT(PhonesQue) statement that puts the user’s changes back in the
PhonesQue.

212 CLARION 5 LEARNING CLARION

The code in the OF ?Delete clause is almost identical to the code in the OF
?Change clause. The difference is the DELETE(PhonesQue) statement that
removes the entry from the PhonesQue and the call to DO
QueRecordsCheck to see if the user just deleted the last record.

4. Add the ROUTINEs called in the BrowsePhones PROCEDURE
definition to the end of the file:

AssignToQue ROUTINE
PhonesQue.Name = Phones.Rec.Name
PhonesQue.Number = Phones.Rec.Number
PhonesQue.Position = POSITION(Phones)

QueRecordsCheck ROUTINE
IF NOT RECORDS(PhonesQue)
DISABLE(?Change,?Delete)
SELECT(?Insert)

ELSE
SELECT(?List,1)

END

GetRecord ROUTINE
GET(PhonesQue,CHOICE(?List))
IF ERRORCODE() THEN STOP(ERROR()).
REGET(Phones,PhonesQue.Position)
IF ERRORCODE() THEN STOP(ERROR()).

OpenFile ROUTINE
OPEN(Phones,42h)
CASE ERRORCODE()
OF NoError
OROF IsOpenErr
EXIT

OF NoFileErr
CREATE(Phones)
IF ERRORCODE() THEN STOP(ERROR()).
OPEN(Phones,42h)
IF ERRORCODE() THEN STOP(ERROR()).

ELSE
STOP(ERROR())
RETURN

END

FillQue ROUTINE
SET(Phones.NameKey)
LOOP
NEXT(Phones)
IF ERRORCODE() THEN BREAK.
DO AssignToQue
ADD(PhonesQue)
IF ERRORCODE() THEN STOP(ERROR()).

END

As you can see, there are five ROUTINEs for this procedure. Notice that,
although these ROUTINEs look similar to a PROCEDURE, they do not
contain CODE statements. This is because a ROUTINE shares the
procedure’s Local data and does not usually have a data declaration section

LESSON 13 CLARION LANGUAGE TUTORIAL 213

of its own (a ROUTINE can have its own data section—see ROUTINE in the
Language Reference for a full discussion of this issue).

The AssignToQue ROUTINE performs three assignment statements. The
PhonesQue.Name = Phones.Rec.Name statement copies the data in the
Name field of the Phones FILE record buffer and places it in the Name field
of the PhonesQue QUEUE data buffer. Since there is no PRE attribute on the
Phones FILE structure, you must also reference its fields using Clarion’s
Field Qualification syntax by stringing together the FILE name (Phones), the
RECORD name (Rec), and the name of the field (Name), connecting them
all with a period (Phones.Rec.Name). See Field Qualification in the
Language Reference for more information.

The PhonesQue.Number = Phones.Rec.Number statement assigns the
data in the Phones file’s Number field to the PhonesQue’s Number field. The
PhonesQue.Position = POSITION(Phones) statement assigns the return
value of the POSITION procedure to the PhonesQue.Position field. This
value lets us retrieve from disk the one specific record that is currently in the
Phones file’s record buffer. The POSITION procedure does this for every
Clarion file driver, and is therefore the recommended method of specific
record retrieval across multiple file systems.

The QueRecordsCheck ROUTINE checks to see if there are any records in
the PhonesQue. The IF NOT RECORDS(PhonesQue) structure uses the
logical NOT operator against the return value from the RECORDS
procedure. If RECORDS(PhonesQue) returns zero, then the NOT makes the
condition true and the code following the IF executes (zero is always false
and the NOT makes it true). If RECORDS(PhonesQue) returns anything
other than zero, the code following the ELSE will execute (any non-zero
number is always true and the NOT makes it false). Therefore, if there are no
records in the PhonesQue, DISABLE(?Change,?Delete) executes to dim out
the Change and Delete buttons, then the SELECT(?Insert) statement places
the user on the Insert button (the next logical action). If there are records in
the PhonesQue, then the SELECT(?List) statement places the user on the
LIST.

The GetRecord ROUTINE synchronizes the Phones file’s record buffer and
PhonesQue’s data buffer with the currently highlighted entry in the LIST.
The GET(PhonesQue,CHOICE(?List)) statement uses the CHOICE
procedure to “point to” the currently highlighted entry in the LIST and GET
the related QUEUE entry into the PhonesQue’s data buffer (of course,
always checking for unexpected errors). Then the
REGET(Phones,PhonesQue.Position) statement uses the saved record
position information to retrieve the Phones FILE record into the record
buffer.

The OpenFile ROUTINE either opens or creates the Phones FILE. The
OPEN(Phones,42h) statement attempts to open the Phones file for shared
access. The second parameter (42h) is a hexadecimal number (signaled by

214 CLARION 5 LEARNING CLARION

the trailing “h”). Clarion supports the Decimal, Hexadecimal, Binary, and
Octal number systems. This number represents Read/Write, Deny None
access (fully shared) to the file (see the OPEN statement in the Language
Reference for more on file access modes). We’re requesting shared access
because this is an MDI program and the user could call multiple copies of
this procedure in the same program. However, this program does not do all
the concurrency checking required for a real multi-user application. See
Multi-User Considerations in the Programmer’s Guide for more on the
concurrency checking issue.

The CASE ERRORCODE() structure checks for any error on the OPEN. The
OF NoError OROF IsOpenErr clause (now you can see why we included
ERRORS.CLW file) executes the EXIT statement to immediately return from
the ROUTINE. It is very important not to confuse EXIT with RETURN,
since RETURN immediately terminates the PROCEDURE, while EXIT only
terminates the ROUTINE. RETURN is valid to use within a ROUTINE, just
be sure you want to terminate the PROCEDURE and not simply terminate
the ROUTINE.

The OF NoFileErr clause detects that there is no data file to open.The
CREATE(Phones) statement will then create an new empty data file for us.
You must be sure that, if you intend to use the CREATE statement that the
FILE declaration also contains the CREATE attribute, otherwise the
CREATE statement will not be able to create the file for you. The CREATE
statement does not open the file for processing, so that explains the second
OPEN(Phones,42h) statement. The code in the ELSE clause executes if any
error other than these occur. The STOP(ERROR()) statement displays the
ERROR procedure’s message to the user in a system modal window allowing
the user the opportunity to abort the program (returning to Windows) or
ignore the error. The RETURN statement then terminates the procedure if the
user chooses to ignore the error.

The FillQue ROUTINE fills the PhonesQue QUEUE with all the records in
the Phones file. The SET(Phones.NameKey) statement sets up the
processing order and starting point for the Phones file. The Phone.NameKey
parameter makes the processing order alphabetic based on the Name field.
The absence of a second parameter to the SET statement makes the starting
point the beginning (or end) of the file. The LOOP structure has no
condition, which means you must place a BREAK statement somewhere in
the LOOP or else get an infinite loop. The NEXT(Phones) statement
retrieves the next record from the Phones data file, then the IF
ERRORCODE() THEN BREAK. statement ensures that we will BREAK out
of the LOOP when all the records have been read. The DO AssignToQue
statement calls the AssignToQue ROUTINE that we’ve already discussed,
and ADD(PhonesQue) adds the new record to the QUEUE.

Add the UpdatePhones PROCEDURE

1. Add the data section of the UpdatePhones PROCEDURE definition to
the end of the file:

LESSON 13 CLARION LANGUAGE TUTORIAL 215

UpdatePhones PROCEDURE(LONG Action)
ReturnValue LONG,AUTO
window WINDOW('Update Phone'),AT(,,185,92),SYSTEM,GRAY,RESIZE,MDI,MASK

PROMPT('N&ame:'),AT(14,14),USE(?Prompt1)
ENTRY(@s20),AT(68,13),USE(Phones.Rec.Name),REQ
PROMPT('N&umber:'),AT(14,43),USE(?Prompt2)
ENTRY(@s20),AT(68,42),USE(Phones.Rec.Number)
BUTTON('OK'),AT(45,74),USE(?Ok),REQ,DEFAULT
BUTTON('Cancel'),AT(109,74,32,14),USE(?Cancel)

END

The UpdatePhones PROCEDURE(LONG Action) statement defines a
PROCEDURE that receives a single LONG data typed parameter that will be
called “Action” within the PROCEDURE (no matter what variable or
constant is passed in).

ReturnValue LONG,AUTO declares a LONG variable that remains
uninitialized by the compiler (due to the AUTO attribute). By default,
memory variables in Clarion are initialized to all blanks or zero (depending
on their data type). Specifying AUTO saves a bit of memory, but the caveat is
that you must be sure you are going to assign a value to the uninitialized
variable before you ever check its contents, otherwise you could create an
intermittently occurring bug that would be really difficult to track down.

The WINDOW structure has the MASK attribute, which means that the user’s
data entry patterns are checked as the data is input, instead of the default
Standard Windows Behavior (SWB) of “free-form” data entry.

The two PROMPT and ENTRY controls combine to provide the user’s data
entry controls. The two BUTTON controls will allow the user to complete or
abort the current file action.

The PROMPT controls define the screen prompt text and the accelerator key
to navigate to the ENTRY control following the PROMPT, The accelerator
keys are formed using ALT plus the letter following the ampersand. For
example, ('N&ame:') indicates ALT+A will give input focus to the
ENTRY(@s20),AT(68,13),USE(Phones.Rec.Name) control.

The USE attributes of the ENTRY controls name the data fields that
automatically receive the user’s input at runtime. The runtime library ensures
that the current value in the variable named in the USE attribute displays
when the control gains input focus. When the user enters data in the ENTRY
control then moves on to another control, the runtime library ensures that the
variable named in the USE attribute receives the current value displayed in
the control.

The REQ attribute on the first ENTRY control means that the user cannot
leave it blank, while the REQ attribute on the OK button checks to make sure
that the user entered data into all the ENTRY controls with the REQ
attribute. This required fields check is only done when the button with the
REQ attribute is pressed, because the user may not have even gone to the the
ENTRY with the REQ attribute.

216 CLARION 5 LEARNING CLARION

2. Add the main logic of the UpdatePhones PROCEDURE definition to the
end of the file:
CODE
OPEN(window)
DO SetupScreen
ACCEPT
CASE FIELD()
OF ?Phones:Rec:Number
CASE EVENT()
OF EVENT:Selected
DO SetupInsert

END
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
EXECUTE Action
ADD(Phones)
PUT(Phones)
DELETE(Phones)

END
IF ERRORCODE() THEN STOP(ERROR()).
ReturnValue = ActionComplete
POST(EVENT:CloseWindow)

END

OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
ReturnValue = ActionAborted
POST(EVENT:CloseWindow)

END
END

END
RETURN(ReturnValue)

The DO SetupScreen statement calls the SetupScreen ROUTINE to
perform some window initialization code. Notice that it follows the
OPEN(Window) statement. When you are going to dynamically alter the
window in a procedure, it must be opened first.

The OF ?Phones:Rec:Number clause in the CASE FIELD() structure
demonstrates two important points. The first is the Field Equate Label, itself.
The USE(Phones.Rec.Number) attribute contains periods in the field name
and periods are not valid in Clarion labels. Therefore, to construct a Field
Equate Label for Phones.Rec.Number, the compiler substitutes colons for the
periods (because colons are valid in a Clarion label).

The second important point is the OF EVENT:Selected clause in the CASE
EVENT() structure. EVENT:Selected generates when the control gains input
focus but before the user gets to input data. The DO SetupInsert statement
executes to offer the user an option then setup the display and data entry
format of the ENTRY control.

The OF EVENT:Accepted code in OF ?Ok is the code that actually writes
the record to disk. The EXECUTE Action structure executes exactly one of
the ADD(Phones) , PUT(Phones) , or DELETE(Phones) statements.

LESSON 13 CLARION LANGUAGE TUTORIAL 217

An EXECUTE structure is similar to the IF and CASE structures in that it
conditionally executes code based on the evaluation of a condition. The
EXECUTE condition must evaluate to an integer in the range of 1 to n
(where n is the number of code statements within the EXECUTE structure),
then it executes the single ordinal line of code within the structure that
corresponds to the value of the condition.

In this code, EXECUTE looks at the Action parameter then executes
ADD(Phones) if the value of Action is one (1), PUT(Phones) if Action is two
(2), or DELETE(Phones) if Action is three (3).

Generally, when you evaluate which Clarion code structure to use for an
instance of conditional code execution (IF/ELSIF, CASE, or EXECUTE) the
IF/ELSIF structure is the most flexible and least efficient, CASE is less
flexible but much more efficient than IF/ELSIF, and EXECUTE is not
flexible but highly efficient. Therefore, when the condition to evaluate can
resolve to an integer in the range of 1 to n, use EXECUTE, otherwise try to
use CASE. If CASE it is not flexible enough, then resort to IF/ELSIF.

The IF ERRORCODE() THEN STOP(ERROR()). statement will check for an
error, no matter which statement EXECUTE performed. The ReturnValue =
ActionComplete statement sets up the return to the calling procedure,
signalling that the user completed the file action, then the
POST(EVENT:CloseWindow) terminates the ACCEPT loop, dropping
control to the RETURN(ReturnValue) statement.

The OF ?Cancel code does almost the same thing, without writing anything
to disk. The ReturnValue = ActionAborted assignment statement sets up
the return to the calling procedure, signaling that the user aborted the file
action, then the POST(EVENT:CloseWindow) terminates the ACCEPT loop,
dropping control to the RETURN(ReturnValue) statement.

3. Add the ROUTINEs called in the UpdatePhones PROCEDURE
definition to the end of the file:

SetupScreen ROUTINE
CASE Action
OF InsertRecord
CLEAR(Phones.Rec)
TARGET{PROP:Text} = 'Adding New Number'

OF ChangeRecord
TARGET{PROP:Text} = 'Updating ' & CLIP(Phones.Rec.Name) |

& '''s Phone Number'
IF Phones:Rec:Number[1] <> '+'

?Phones:Rec:Number{PROP:Text} = '@P###-###-####P'
END

OF DeleteRecord
TARGET{PROP:Text} = 'Deleting ' & CLIP(Phones.Rec.Name) |

& '''s Phone Number'
DISABLE(FIRSTFIELD(),LASTFIELD())
ENABLE(?Ok,?Cancel)

END

218 CLARION 5 LEARNING CLARION

SetupInsert ROUTINE
IF Action = InsertRecord
CASE MESSAGE('International?','Format',ICON:Question, |

BUTTON:Yes+BUTTON:No,BUTTON:No,1)
OF BUTTON:Yes
TARGET{PROP:Text} = 'Adding New International Number'
?Phones:Rec:Number{PROP:Text} = '@S20'
Phones:Rec:Number[1] = '+'
DISPLAY
SELECT(?,2)

OF BUTTON:No
TARGET{PROP:Text} = 'Adding New Domestic Number'
?Phones:Rec:Number{PROP:Text} = '@P###-###-####P'

END
END

The SetupScreen ROUTINE starts by evaluating CASE Action . When the
user is adding a record (OF InsertRecord) the CLEAR(Phones.Rec)
statement clears out the record buffer by setting all the fields to blank or
zero. The TARGET{PROP:Text} = 'Adding New Number' statement uses
Clarion’s runtime property syntax to dynamically change the title bar text for
the window to “Adding New Number.” Clarion’s property syntax allows you
to dynamically change any property (attribute) of an APPLICATION,
WINDOW, or REPORT structure in executable code. See Appendix C -
Property Assignments in the Language Reference for more on properties.

TARGET is a built-in variable that always “points to” the currently open
WINDOW structure. The curly braces ({}) delimit the property itself, and
PROP:Text is an EQUATE (contained in PROPERTY.CLW, automatically
included by the compiler like EQUATES.CLW) that identifies the parameter
to the data element (in this case, the WINDOW statement).

The OF ChangeRecord code TARGET{PROP:Text} = 'Updating ' &
CLIP(Phones.Rec.Name) & '''s Phone Number' does the same thing, but
changes the title bar text to read “Updating Someone’s Phone Number.” The
ampersand (&) is the Clarion string concatenation operator and the
CLIP(Phones.Rec.Name) procedure removes trailing spaces from the name.
The IF Phones:Rec:Number[1] <> '+' structure checks for a plus sign in the
first character of the Number string field. The plus sign is used here as a
signal that the number is an international number.

Notice that Phones:Rec:Number[1] is addressing the first byte of the field as
if it were an array. But you’ll recall that there was no DIM attribute on the
declaration (the DIM attribute declares an array). All STRING, CSTRING,
and PSTRING data types in Clarion are also implicitly an array of
STRING(1),DIM(SIZE(StringField)). This means you can directly refer to
any single character in any string, whether it was declared as an array or not.

If the number is not international, the ?Phones:Rec:Number{PROP:Text} =
'@P###-###-####P' statement uses the same type of property syntax to
change the control’s entry picture token. Notice that PROP:Text is used to do
this, just as it was used previously to change the window’s title bar text. The
reason is that PROP:Text refers to whatever is the parameter of the control.

LESSON 13 CLARION LANGUAGE TUTORIAL 219

Therefore, on a WINDOW(‘title text’) it refers to the title text, and on an
ENTRY(@S20) it refers to the picture token (@S20).

The OF DeleteRecord code is similar to the ChangeRecord code. The
DISABLE(FIRSTFIELD(),LASTFIELD ()) statement uses the FIRSTFIELD()
and LASTFIELD() procedures to dim out all the controls on the window,
then ENABLE(?Ok,?Cancel) un-dims just the OK and Cancel buttons.

The SetupInsert ROUTINE executes just before the user gets to the Number
ENTRY control. The IF Action = InsertRecord checks Action and only
executes the CASE MESSAGE structure when the user is adding a new
record. The MESSAGE procedure can be used to create simple Yes/No
choices for users. In this case, the user is asked whether the new number is
International.

The OF BUTTON:Yes code executes when the user has pressed the Yes
button on the MESSAGE dialog. The TARGET{PROP:Text} = 'Adding New
International Number' statement changes the window’s title bar text, then
?Phones:Rec:Number{PROP:Text} = '@S20' changes the ENTRY
control’s picture token. The Phones:Rec:Number[1] = '+' statement places a
plus sign in the first character position, then DISPLAY displays it and
SELECT(?,2) places the user’s insertion point at the second position in the
current control.

The OF BUTTON:No code is similar, changing the window’s title bar text
and the control’s entry picture token.

Update the Project file

Since we added a FILE structure to the program, we have to add its file
driver to the Project so it can be linked into the program. If you don’t, you’ll
get an error message something like “link error: TOPSPEED is unresolved in
file hello.obj.”

1. Choose Project ➤ Edit....

The Project dialog appears.

2. Highlight Database Driver Libraries then press the Add File... button.

3. Highlight TOPSPEED then press the OK button.

4. Press the OK button to close the Project dialog.

5. CLICK on the Run button.

The program executes.

220 CLARION 5 LEARNING CLARION

ABC Template Generated OOP Code
When you examine the source code generated for you by the Application
Generator, you’ll see some fundamental differences from the code we just
wrote. The reason for that is the Application Builder Class (ABC) templates
generate code which extensively uses the ABC Library—a set of Object
Oriented Programming (OOP) classes.

The code we just finished writing is Procedural code, not OOP code. Now
we want to take a quick look at the generated OOP code to show you how
what you just learned relates to the code you’ll see generated for you. This
will be just a quick look to highlight the major differences.

Quick Start an application

1. Choose File ➤ New ➤ Application.

2. Type Phones in the File Name field and check the Quick Start box, then press
the Save button.

3. Name the file Phones, define Name and Number fields both with @S20
pictures, and make the Name field a Duplicate key, then press the OK
button.

4. Choose Project ➤ Generate to generate source code.

Look at the Program Source

Now let’s examine the source code that was generated for you.

1. Choose the Module tab and highlight Phones.clw.

2. RIGHT -CLICK and choose Module from the popup menu.

LESSON 13 CLARION LANGUAGE TUTORIAL 221

The PROGRAM Module

This is the PROGRAM module (the code should look similar to this, but may
not be exactly the same). The basic structure of a Clarion OOP program is
the same as the procedural. The first two statements are EQUATE statements
which define constant values that the ABC Library requires. Following those
are several INCLUDE statements. The INCLUDE statement tells the
compiler to place the text in the named file into the program at the exact spot
the INCLUDE statement.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABERROR.INC')
INCLUDE('ABFILE.INC')
INCLUDE('ABUTIL.INC')
INCLUDE('ABWINDOW.INC')
INCLUDE('EQUATES.CLW')
INCLUDE('ERRORS.CLW')
INCLUDE('KEYCODES.CLW')

The first four INCLUDE files (all starting with “AB” and ending with
“.INC”) contain CLASS definitions for some of the ABC Library classes.
The next three INCLUDE files (all ending with “.CLW”) contain a number
of standard EQUATE statements used by the ABC Template generated code
and ABC Library classes.

MAP
MODULE('PHONEBC.CLW')

DctInit PROCEDURE
DctKill PROCEDURE

END
!--- Application Global and Exported Procedure Definitions ------------

MODULE('PHONE001.CLW')
Main PROCEDURE !Clarion 5 Quick Application

END
END

The MAP structure contains two MODULE structures. The first declares two
procedures DctInit and DctKill that are defined in the PHONEBC.CLW file.
These two procedures are generated for you to properly initialize (and un-
initialize) your data files for use by the ABC Library. The second MODULE
structure simply names the application’s first procedure to call (in this case,
Main).

The next two lines of code are your first OOP statements:

Access:Phones &FileManager
Relate:Phones &RelationManager

The Access:Phones statement declares a reference to a FileManager
object, while the Relate:Phones statement declares a reference to a
RelationManager object. These two references are initialized for you by the
DctInit procedure, and un-initialized for you by the DctKill procedure. These
are very important statements, because they define the manner in which you
will adress the data file in your OOP code.

222 CLARION 5 LEARNING CLARION

The next two lines of code declare a GlobalErrors object and an INIMgr
object.

GlobalErrors ErrorClass
INIMgr INIClass

These objects handle all errors and your program’s .INI file (if any),
respectively. These objects are used extensively by the other ABC Library
classes, so must be present (as you will shortly see).

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD
Phones FILE,DRIVER('TOPSPEED'),PRE(PHO),CREATE,BINDABLE,THREAD
KeyName KEY(PHO:Name),DUP,NOCASE
Record RECORD,PRE()
Name STRING(20)
Number STRING(20)

END
END

Following that are three Global variable declarations which the ABC
Templates use to communicate between procedures, followed by the Phones
FILE declaration. Notice that the global variables all have the THREAD
attribute. THREAD is required since the ABC Templates generate an MDI
application by default, which makes it necessary to have separate copies of
global variables for each active thread (which is what the THREAD attribute
does).

The global CODE section only has six lines of code:

CODE
GlobalErrors.Init
INIMgr.Init('Phones.INI')
DctInit
Main
DctKill
GlobalErrors.Kill

The first two statements call Init methods (in OOP parlance, a procedure in a
class is called a “method”—see CLASS in the Language Reference and the
two OOP articles in the Programmer’s Guide for more on OOP in general).
These are the constructor methods for the GlobalErrors and INIMgr objects.
You’ll notice that the INIMgr.Init method takes a parameter. In the ABC
Library, all object constructor methods are explicitly called and are named
Init . There are several reasons for this. The Clarion language does support
automatic object constructors (and destructors) and you are perfectly
welcome to use them in any classes you write. However, automatic
constructors cannot receive parameters, and many of the ABC Library Init
methods must receive parameters. Therefore, for consistency, all ABC object
constructor methods are explicitly called and named Init . This has the added
benefit of enhanced code readability, since you can explicitly see that a
constructor is executing, whereas with autiomatic constructors you’d have to
look at the CLASS declaration to see if there is one to execute or not.

LESSON 13 CLARION LANGUAGE TUTORIAL 223

The DctInit procedure call initializes the Access:Phones and
Relate:Phones reference variables so the template generated code (and any
embed code that you write) can refer to the data file methods using
Access:Phones.Methodname or Relate:Phones.Methodname syntax.
This gives you a consistent way to reference any file in an ABC Template
generated program—each FILE will have corresponding Access: andRelate:
objects.

The call to the Main procedure begins execution of the rest of your program
for your user. Once the user returns from the Main procedure, DctKill and
GlobalErrors.Kill perform some necessary cleanup operations before the
return to the operating system.

The UpdatePhones Module

Now let’s examine the source code that was generated for you for one of
your procedures. We’ll look at the UpdatePhones procedure as a
representative, since all ABC Template generated procedures will basically
follow the same form (again, your code should look similar to this, but may
not be exactly the same).

1. Choose File ➤ Close.

2. Highlight UpdatePhones, then RIGHT -CLICK and choose Module from the
popup menu.

The first thing to notice is theMEMBER statement on the first line. This is a
required statement telling the compiler which PROGRAM module this
source file “belongs” to. It also marks the bginning of a Module Data
Section—an area of source code where you can make data declarations
which are visible to any procedure in the same source module, but not
outside that module (see Data Declaration and Memory Allocation in the
Language Reference).

MEMBER('Phones.clw') ! This is a MEMBER module
INCLUDE('ABRESIZE.INC')
INCLUDE('ABTOOLBA.INC')
INCLUDE('ABWINDOW.INC')
MAP
INCLUDE('PHONE004.INC') !Local module prodecure declarations

END

The three INCLUDE files contain CLASS definitions for some of the ABC
Library classes. Notice that the list of INCLUDE files here is different than
the list at the global level. You only need to INCLUDE the class definitions
that the compiler needs to know about to compile this single source code
module. That’s why the list of INCLUDE files will likely be a bit different
from module to module.

Notice the MAP structure. By default, the ABC Templates generate “local
MAPs” for you containing INCLUDE statements to bring in the prototypes of
the procedures defined in the module and any procedures called from the

224 CLARION 5 LEARNING CLARION

module. This allows for more efficient compilation, because you’ll only get a
global re-compile of your code when you actually change some global data
item, and not just by adding a new procedure to your application. In this
case, there are no other procedures called form this module.

The PROCEDURE statement begins the UpdatePhones procedure (which
also terminates the Module Data Section).

UpdatePhones PROCEDURE !Generated from procedure template - Window

CurrentTab STRING(80)
FilesOpened BYTE
ActionMessage CSTRING(40)
History::PHO:Record LIKE(PHO:RECORD),STATIC

Following the PROCEDURE statement are four declaration statements. The
first two are common to most ABC Template generated procedures. They
provide local flags used internally by the template generated code. The
ActionMessage and History::PHO:Record declarations are specific to a
Form procedure. They declares a user message and a “save area” for use by
the Field History Key (“ditto” key) functionality provided on the toolbar.

After the WINDOW structure comes the following object declarations:

ThisWindow CLASS(WindowManager)
Ask PROCEDURE(),VIRTUAL
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END
Toolbar ToolbarClass
ToolBarForm ToolbarUpdateClass
Resizer WindowResizeClass

The last three are simple object declarations which create the local objects
which will enable the user to use the toolbar and resize the window at
runtime. The interesting code here is the ThisWindow CLASS declaration.
This CLASS structure declares an object derived from the WindowManager
class in which the Ask , Init , and Kill methods of the parent class
(WindowManager) are overridden locally. These are all VIRTUAL methods,
which means that all the methods inherited from the WindowManager class
will be able to call the overridden methods. This is a very important concept
in OOP (see CLASS in the Language Reference and the two OOP articles in
the Programmer’s Guide for more on this).

Following that comes all of the executable code in your procedure:

 CODE
 GlobalResponse = ThisWindow.Run()

That’s right—one single, solitary statement! The call to ThisWindow.Run is
the only executable code in your entire procedure! So, you ask, “Where’s all
the code that provides all the funtionality I can obviously see happening
when I run the program?” The answer is, “In the ABC Library!” or, at least
most of it is! The good news is that all the standard code to operate any
procedure is built in to the ABC Library, which makes your application’s

LESSON 13 CLARION LANGUAGE TUTORIAL 225

“footprint” very small, since all your procedures share the same set of
common code which has been extensively debugged (and so, is not likely to
introduce any bugs into your programs).

All the functionality that must be explicit to this one single procedure is
generated for you in the overridden methods. In this procedure’s case, there
are only three methods that needed to be overridden. Depending on the
functionality you request in the procedure, the ABC Templates will override
different methods, as needed. You also have embed points available in every
method it is possible to override, so you can easily “force” the templates to
override any method for which you need slightly different functionality by
simply adding your own code into those embed points (using the Embeditor
in the Application Generator).

OK, so let’s look at the overridden methods for this procedure.

ThisWindow.Ask PROCEDURE
CODE
CASE SELF.Request
OF InsertRecord
ActionMessage = 'Adding a Phones Record'

OF ChangeRecord
ActionMessage = 'Changing a Phones Record'

END
QuickWindow{Prop:Text} = ActionMessage
PARENT.Ask

The really interesting line of code in the ThisWindow.Ask PROCEDURE is
last. The last statement, PARENT.Ask , calls the parent method that this
method has overridden to execute its standard functionality. The PARENT
keyword is very powerful, because it allows an overridden method in a
derived class to call upon the method it replaces to “do its thing” allowing
the overridden method to incrementally extend the parent method’s
functionality.

ThisWindow.Init PROCEDURE()
CODE
SELF.Request = GlobalRequest
IF PARENT.Init() THEN RETURN Level:Notify.
SELF.FirstField = ?PHO:Name:Prompt
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
SELF.AddItem(ToolBar)
SELF.AddUpdateFile(Access:Phones)
SELF.HistoryKey = 734
SELF.AddHistoryFile(PHO:Record,History::PHO:Record)
SELF.AddHistoryField(?PHO:Name,1)
SELF.AddHistoryField(?PHO:Number,2)
SELF.AddItem(?Cancel,RequestCancelled)
Relate:Phones.Open
FilesOpened = True
SELF.Primary &= Relate:Phones
SELF.OkControl = ?OK
IF SELF.PrimeUpdate() THEN RETURN Level:Notify.

226 CLARION 5 LEARNING CLARION

OPEN(QuickWindow)
SELF.Opened=True
Resizer.Init(AppStrategy:Surface,Resize:SetMinSize)
SELF.AddItem(Resizer)
Resizer.AutoTransparent=True
ToolBarForm.HelpButton=?Help
SELF.AddItem(ToolbarForm)
SELF.SetAlerts()
RETURN Level:Benign

There are several interesting lines of code in the ThisWindow.Init
PROCEDURE. This is the ThisWindow object’s constructor method, so all
the code in it performs the initialization tasks specifically required by the
UpdatePhones procedure.

The first statement, SELF.Request = GlobalRequest , retrieves the global
variable’s value and places it in the SELF.Request property. SELF is another
powerful Clarion OOP keyword, which always means “the current object” or
“me.” SELF is the object prefix which allows class methods to be written
generically to refer to whichever object instance of a class is currently
executing.

The second statement calls the PARENT.Init() method (the parent method’s
code to perform all its standard functions) before the rest of the procedure-
specific initialization code executes. Following that are a number of
statements which initialize various necessary properties. The
Relate:Phones.Open statement opens the Phones data file for processing,
and if there were any related child files needed for Referential Integrity
processing in this procedure, iyt would also open them (there aren’t, in this
case).

ThisWindow.Kill PROCEDURE()
CODE
IF PARENT.Kill() THEN RETURN Level:Notify.
IF FilesOpened
Relate:Phones.Close

END

In addition to calling the PARENT.Kill() method to perform all the standard
closedown functionality (like closing the window), ThisWindow.Kill closes
all the files opened in the procedure, then sets the GlobalResponse variable.

3. Choose File ➤ Close.

LESSON 13 CLARION LANGUAGE TUTORIAL 227

Where to Go From Here

This tutorial has been just a brief introduction to the Clarion programming
language and the ABC Template generated code. There is much more to the
Clarion language and the ABC Library than has been covered here, so there’s
a lot more to learn. So where do you go from here?

• The articles in the Programmer’s Guide. These essays cover various
aspects of programming in the Clarion language. Although they do not
take a tutorial approach, they do provide in depth information on the
specific areas they cover, and there are several articles which deal
specifically with OOP in Clarion.

• The Application Handbook fully documents the ABC Library and ABC
Templates. This is your prime resource for how to get the most out of
Clarion’s Application Generator technology.

• The Language Reference is the “Bible” of the Clarion language. Reading
the entire manual is always a good idea.

• Examine and dissect source code generated for you by the Application
Generator. After doing this tutorial, the basic structure of the code should
look familiar, even if the specific logic does not.

• The User’s Guide contains tutorials on using the Debuggers. This will
allow you to step through your Clarion code as it executes to see exactly
what effect each statement has on the operation of your program.

• Take one of the educational seminars that TopSpeed Corp. offers. Call
Customer Service at (800) 354-5444 or (954) 785-4555 to enroll.

• Join (or form) a local Clarion User’s Group and participate in joint study
projects.

• Participate in TopSpeed’s forum on CompuServe (GO TOPSPEED) or
the Internet Newsgroup (comp.lang.clarion) to network with other
Clarion programmers all around the world (Strongly recommended!).

228 CLARION 5 LEARNING CLARION

INDEX 229

INDEX

Symbols

& ... 73
.CSV files ... 61
.DCT file ... 26
.PRJ file .. 65
? ... 74
{} ... 218
4GL .. 191
4th Generation Language .. 191

A

ABC Library ... 220
accelerator key ... 204
ACCEPT .. 196
Accepted event .. 138
ACCEPTED function .. 197
Access Key .. 97
Access: .. 221
action message .. 101
Actions prompts ... 121
Actions tab ... 74
Add File .. 35
ADD() statement .. 211
adding a report .. 159
Align Horizontally ... 106
Align Left .. 105
Align Top .. 81
Alignbox toolbox ... 104
Aligning Fields ... 103
alignment tools ... 80
allow duplicates ... 51
Alphanumeric ... 12
ALRT .. 207
alternate sort orders .. 96
ampersand (&) .. 204, 218
APP file .. 69
Application Builder Class (ABC) .. 220
Application Builder Class (ABC) Library 146
APPLICATION structure .. 204
Application Toolbar ... 76
Application Tree dialog ... 70
Ascending Sort Orders .. 15
ASCII .. 12
assignment statements .. 213
AUTO attribute ... 215

Auto Number .. 48
automatic lookup .. 137
automatic object constructors .. 222

B

Band View .. 164
bands ... 161
base font .. 163
BASIC .. 12
BASIC file driver ... 61
BFLOAT4 ... 13
BFLOAT8 ... 13
Binary ... 214
Break Properties .. 169
Break Properties dialog ... 169
BREAK statement .. 214
BREAK structures .. 169
browse and edit a data file ... 61
Browse control buttons .. 81
Browse Procedure template .. 96
Browse procedure template ... 87
browse totaling ... 145
Browse Totaling dialog ... 143
Browse Update Buttons ... 143
browse window .. 87
BrowseBox Control template 96, 108, 125, 129
BrowseUpdateButtons Control template 110, 128
Btrieve .. 12

LSTRING .. 13
ZSTRING .. 13

BUTTON controls .. 197, 215
BUTTON() statement ... 208
BYTE .. 13

C

calculate ... 145
Call a Procedure .. 74
Caption .. 72
Carriage Return/Line Feed .. 61
Cascade ... 31
CASE EVENT() .. 198
CASE FIELD() ... 198
CASE structure .. 198
Change Access Key .. 89, 108, 126
CHOICE function .. 96, 213
Clarion Standard Date ... 42

230 CLARION 5 LEARNING CLARION

Clarion User’s Group .. 189, 227
Class Field ... 178
Class field .. 145
Classes tab .. 143
CLIP() function ... 218
Clipper .. 12
CLOSE ... 211
CloseButton Control template .. 130
CODE statement .. 196
Code templates .. 116
column headings .. 172
column one (1) ... 195
Comma Separated Values (.CSV) files 61
comp.lang.clarion .. 189, 227
compiler ... 82
CompuServe ... 189, 227
concatenation operator .. 218
Conditional Behavior tab .. 96
constant text .. 172, 174
constant values .. 221
constructor methods .. 222
Contract All button .. 116, 181
control pagination .. 165
Control Templates .. 121
Control templates .. 107, 125
convert data files .. 61
copy ... 29
Copy Procedure ... 113
copy the file definition .. 29
Copying a Procedure ... 113
create a toolbar .. 71
Create Application dialog .. 192, 193
CSTRING .. 13, 218
ctrl+click .. 95, 103
curly braces ({}) .. 218
Customer Service .. 189

D

data dictionary ... 25
data entry validation ... 137
Data file formats ... 12
Data Integrity ... 32
data justification ... 109
data normalization ... 16
Data type ... 12
data validation code ... 192
Database ... 11
Database Drivers ... 36
Database Manager .. 61
DATE .. 14
Date value .. 42

DBase III .. 12
DBase IV .. 12
DctInit ... 221
DctKill ... 221
DECIMAL ... 13
Decimal .. 214
default font ... 163
defining new fields ... 40
DELETE() statement .. 212
Descending Sort Orders .. 15
Detail .. 160
Detail band .. 162, 167, 168
Detail Filters ... 183
dictionary description ... 36
Dictionary Editor .. 26
Dictionary Properties dialog .. 27
DIM attribute .. 218
DISABLE .. 213
display order .. 89
display-only control .. 143
display-only control. ... 139
DO statement ... 209
Drop Box Control ... 34
duplicate procedures ... 114
duplicates ... 51

E

Edit in Place .. 146, 153
Edit in place ... 111
EditClass .. 147
educational seminars .. 189, 227
Embed Point .. 114
Embed Points ... 114
Embedded Source dialog ... 115, 116
Embeditor .. 148
Embeds button ... 138
ENABLE() statement ... 211
END statement .. 195
ENTRY control ... 147
ENTRY controls ... 215
entry locator ... 120
EQUATE statements ... 221
EQUATE statements .. 206
EQUATEs ... 206
ErrorClass .. 150
Event Handling .. 199
event-driven paradigm ... 191
Event-driven Programming .. 191
EVENT:Accepted .. 197, 209
EVENT:AlertKey .. 207
EVENT:GainFocus ... 200

INDEX 231

EVENT:OpenWindow .. 200
EVENT:Selected .. 216
execute a ROUTINE .. 209
EXECUTE structure ... 217
execution thread .. 72
execution threads ... 204
explicit RETURN .. 203
Extension and Control Templates dialog 121
Extension templates .. 121

F

Field ... 11
Field Equate Label ... 197
field equate label .. 74
field headers .. 91
Field Qualification syntax ... 36
Field to Total ... 142
Field-independent events .. 199
Field-specific events .. 199
Field. .. 11
Field/Key Definition dialog ... 32
Fieldbox ... 102
Fieldbox toolbox 120, 121, 122, 123
File ... 11
file conversion program .. 63
FILE declaration ... 206
file definitions ... 25
File Driver ... 36
File driver ... 12
file format ... 36
File Schematic .. 89, 97
File Schematic Definition ... 100
FILE structure declaration ... 35
File-Browsing List Box .. 108, 126
filtered out .. 180
FIRSTFIELD() function .. 219
Floating Point ... 13
Font .. 127
font for the Report .. 163
fonts ... 127
Footer ... 161
Force Window Refresh when Accepted 138
Foreign Key ... 30, 56
foreign key .. 21
Form ... 161
Form Procedure ... 122
Format Browse class ... 145
format strings ... 208
FORMAT() attribute .. 208
Formatting a List Box Control .. 88
Formula .. 178

Formula Editor ... 145, 146, 178, 179
Formulas .. 178
Formulas dialog ... 146
FoxPro .. 12
FREE() statement .. 211
FROM .. 208
FUNCTION definition ... 202
FUNCTION prototype .. 202
FUNCTION statement ... 203
functional specification ... 19

G

Generated Source ... 83
generic window procedure ... 125
Global data .. 84
Global data declaration section ... 195
GlobalErrors ... 222
GlobalRequest ... 182
GO TOPSPEED .. 189, 227
GROUP .. 14
Group Breaks ... 169
group breaks ... 159, 165
Group Footer ... 170, 171
Group Footer Band ... 174, 176
Group Header ... 170, 172
Group Header Band ... 171
group totals .. 159

H

Header ... 160
Heading Text .. 92
Hexadecimal .. 214
hidden buttons ... 94
HIDE attribute .. 95
horizontal scroll bars .. 127
Hot Fields ... 183
How do I ... ? .. 188
How to convert data ... 61
How to import a file definition .. 61

I

identify fields .. 36
IF ERRORCODE() THEN STOP(ERROR()). statement 211
IF/ELSIF ... 217
IMM (immediate) attribute .. 208
implicit array ... 218
implicit RETURN .. 203
import a file definition ... 61
INCLUDE statements ... 206, 221
Index .. 14

232 CLARION 5 LEARNING CLARION

INIMgr .. 222
Init .. 222
initial value ... 32
Initiate Thread ... 74, 79
InitiateThread Code template .. 116
Insert Key Component ... 48
Integers .. 13
Internet Newsgroup .. 189, 227
Introduction to the Clarion Language 84
ITEM ... 73, 204

J

Justification .. 109

K

Key ... 14
KEY() attribute ... 208
KEYCODE() ... 209
Keys and indexes ... 14

L

label ... 195
LASTFIELD() function .. 219
line above ... 175
line under ... 173
linker .. 82
linking field ... 31
List Box .. 108
List Box Control .. 88
List Box Format .. 118
List Box Formatter .. 91
LIST control .. 206, 207
Local data declarations .. 201
local MAPs ... 223
local variable ... 140, 169
locator .. 120
Logically related records .. 11
LONG .. 13, 202
Look at Generated Source .. 83
Lookup Key .. 137
lookup procedure ... 137
LOOP structure .. 214
LSTRING ... 13

M

Main procedure .. 69
main program module .. 84
Make window ... 82
Many to One ... 16, 47, 51, 55, 57

many to one ... 22
Many-to-One .. 17
MANY:1 .. 30
Map by Name .. 30
MAP structure ... 195, 221
MASK attribute ... 215
MDI .. 204
MDI application frame .. 69
MDI Child Window ... 126
MDI window ... 95
MEMBER statement .. 223
Menu Editor ... 72
MENU statement ... 73
MENU() structure ... 204
MENUBAR structure .. 204
MESSAGE function ... 200
Module Data Section ... 223
MODULE structures ... 221
Module tab ... 84
Multiple Document Interface .. 24
Multiple Document Interface (MDI) 204
multithreading .. 182
Must Be In File ... 59
Must be in List .. 32

N

New Data Files ... 35
New File Properties ... 35
New Keys dialog .. 48
New Relation dialog ... 30
New Structure dialog ... 125
New Toolbar ... 77
NEXT() statement .. 214
normalization .. 16, 20

O

Object Oriented Programming (OOP) 220
Octal ... 214
ODBC ... 12
One to Many .. 16, 47, 55, 57
one to many ... 21
One-to-Many .. 17
OOP ... 220
OPEN(MyWin) statement .. 196
Operands .. 145, 178, 179
Operators ... 145
Order Header ... 21
Order/Entry system .. 19
Outer join ... 179
override a class .. 153

INDEX 233

P

Packed Decimal ... 13
Page after .. 170
Page Footer ... 160
Page Form ... 167
Page Header .. 160
Page Header band .. 161, 167
Page Number ... 161
page number .. 161
Page/Group Footer Properties ... 170
pagination based on group breaks 165
Parameter Lists .. 202
parameters ... 202
PARENT ... 156
PARENT keyword .. 225
parent-child .. 22
parent-child relationship .. 30
Password ... 27
paste .. 29
PDECIMAL .. 13
Perform Lookup during Non-Stop Select 138
PICTURE ... 14
Populate Field toolbox 102, 123, 138
popup menu ... 76
POSITION function .. 213
POST statement .. 209
prefix .. 36
Preview .. 95
Preview a Report ... 163
Primary Key ... 56
Primary key .. 16
primary key ... 21, 47
print bands ... 164
print engine .. 161
print preview ... 164
priority levels .. 149
PROC attribute ... 202
PROCEDURE definition .. 204
Procedure name clash dialog .. 113
PROCEDURE Prototype ... 201
PROCEDURE prototype .. 204
PROCEDURE statement ... 201
PROGRAM module ... 221
program module ... 84
PROGRAM statement ... 195
Project Editor ... 194
Project file ... 193, 219
Project settings .. 65
PROMPT controls .. 215
PROP:Text ... 218
PROP:Touched .. 138

Property Access Syntax .. 138
Property Sheet ... 93
property syntax .. 218
Property toolbox .. 71, 72
PropertyBox toolbox .. 173
prototypes .. 195
PSTRING .. 13, 218
PUT() statement .. 211

Q

question mark .. 74
QUEUE structure ... 207

R

Range Limit ... 110, 183, 185
Range Limit Field 130, 142, 183, 185
Range Limit Type 130, 142, 183, 185
Range Limited Report .. 181
Range Limits .. 130
range limits .. 16
REAL .. 13
Record ... 11
Record Filter .. 179
Record Order ... 89
RECORDS function ... 213
Referential Integrity .. 22
Referential Integrity constraints ... 31
REGET() statement ... 213
Relate: .. 221
Related File .. 130
Relational database design ... 16
Relational reports .. 159
Relationship-Dependent Validity Checks 59
REPORT data structure ... 160
Report defaults .. 166
Report Formatter ... 159
Report Properties .. 163
REQ attribute ... 215
Require Unique Value .. 48
required fields .. 215
Reset on .. 177
resize window controls ... 80
Resizeable ... 90
resizing list box columns .. 109
Restrict ... 31
RETURN a value ... 202
reusability ... 113
Right Border ... 90
ROUTINE ... 209
Run button .. 82, 84

234 CLARION 5 LEARNING CLARION

S

sample window .. 77
screen picture .. 42
Select Control Template dialog .. 126
Select embed type ... 116
Select Field dialog ... 89
Select Font ... 163
Select Procedure Type dialog 87, 160, 165
Select Project ... 65
SELECT() statement .. 211
Selected event ... 138
SELF .. 226
seminars ... 189, 227
SEPARATOR .. 204
SET() statement ... 214
shared access .. 214
shift+click ... 95
shift+drag ... 103
SHORT .. 13
Show Fieldbox ... 102
Sort Orders .. 15
SORT() statement .. 211
sorting data .. 14
Source Code .. 83
Source file .. 192
source modules ... 84
SPIN control ... 147
Splash procedure ... 76
Spread Horizontally ... 81
Spread Vertically .. 106
SREAL ... 13
Standard Date .. 42
START function .. 117
START() statement .. 206
statement label .. 195
STD() attribute ... 204
Step record locator .. 120
STOP() statement .. 214
STRING .. 12, 202
string concatenation operator .. 218
STRING controls .. 197
string field .. 101
String Properties dialog .. 161, 167
Structured Programming .. 200
subset of the file ... 16
Sum .. 142
Surrounding Break ... 169
synchronized list boxes ... 125, 130
SYSTEM attribute .. 195

T

tab controls .. 93
Tallies list .. 177
TARGET ... 218
Target Filename ... 63
Template Classes ... 145, 178
Template Registry .. 96
Text Editor ... 84, 138
thick line ... 173
ThisWindow.Run .. 224
THREAD .. 182
THREAD attribute .. 222
TIME .. 14
TODAY() function ... 42
ToDo procedure .. 72, 74
toolbar button ... 113
toolbar buttons .. 94, 110
TopSpeed files ... 12
Total Based On .. 142
total calculation .. 142
total field .. 174
total fields ... 176
Total Target Field .. 142
Total Type ... 142
Total type ... 177
Totaling tab .. 142

U

ULONG .. 13
update buttons ... 94
Update procedure .. 99
USE attributes .. 215
User’s Group ... 189, 227
USHORT .. 13

V

Validity Checks .. 32, 59
vertical scroll bars .. 127
View Generated Source ... 83
VIEW structure ... 179
VSCROLL .. 208

W

When the Control is Accepted ... 137
WINDOW data structure .. 195
Window Formatter .. 71, 197
Windows standard behavior .. 138

INDEX 235

Z

ZSTRING ... 13

236 CLARION 5 LEARNING CLARION

NOTES 237

NOTES

238 CLARION 5 LEARNING CLARION

NOTES 239

240 CLARION 5 LEARNING CLARION

	Table of Contents
	Introduction
	Welcome to Learning Clarion!
	What You'll Find in this Book

	Documentation Conventions
	Typeface Conventions:
	Keyboard Conventions:

	Anatomy of a Database
	File Systems and File Drivers
	Data Types
	Sorting Data: Keys and Indexes
	Ascending and Descending Sort Orders
	Using Keys as Range Limits
	Relationships Between Files
	Database Summary

	1 - Planning the Application
	Defining Application Tasks
	Designing the Database
	The Customer File
	The Phones File
	The Orders File
	The Detail File
	The Product File
	Referential Integrity
	The Complete Database Schematic
	Application Interface
	OK, What Did I Just Do?

	2 - Creating a Data Dictionary
	Tutorial Files
	Creating the Dictionary
	Copying Files From One Dictionary to Another
	Copy the Customer File Definition
	Copy the Phones File Definition

	Relating the Files
	Define the first side of the relationship
	Define the other side of the relationship
	Set Referential Integrity Constraints

	Pre-Defining Window Control Formats
	Access the Field Properties dialog
	Set Validity Checks
	Specify a default window control
	OK, What Did I Just Do?

	3 - Adding Files and Fields
	Defining New Data Files
	Create the Orders File
	Name the Detail and Products Data Files

	Defining the Fields
	Define a Field Pool
	Define the fields in the Orders File
	Define the fields for the Detail File
	Define the fields for the Products File
	OK, What Did I Just Do?

	4 - Adding Keys and Relations
	Defining Keys for the Orders File
	Create the Primary Key
	Define a Foreign Key

	Defining Keys for the Detail File
	Define the First Foreign Key
	Define the Second Foreign Key

	Defining Keys for the Products File
	Create the Primary Key
	Define an Alphabetical Key

	Defining File Relationships
	Defining Relationships for the Orders File
	Defining Relationships for the Detail File

	Defining Relationship-Dependent Validity Checks
	Define the Validity Check for Order Records
	Define the Validity Check for Detail Records
	OK, What Did I Just Do?

	5 - Importing Existing Data
	Data File Conversion
	Importing a .CSV File Definition
	Converting a Data File
	OK, What Did I Just Do?

	6 - Starting the Application
	Using the Application Generator
	Creating the .APP File
	Creating the Main Procedure
	Editing the Menu
	Creating the SplashScreen Procedure
	Adding an Application Toolbar
	Testing an Application under Development
	Look at the Generated Source Code
	OK, What Did I Just Do?

	7 - Creating a Browse
	Creating a Browse Window
	Creating the Customer Browse Window
	Populating and Formatting a List Box Control
	Adding the Tabs
	Hiding the Buttons
	Testing the Customer Browse
	Setting the Sort Orders
	Closing the Customer Browse
	OK, What Did I Just Do?

	8 - Creating an Update Form
	Creating an Update Procedure
	Add a "ToDo" procedure
	Creating the Update Form Procedure
	Populating the Fields
	Moving and Aligning Fields
	Adding a BrowseBox Control Template
	Adding the BrowseUpdateButtons Control Template
	OK, What Did I Just Do?

	9 - Copying Procedures
	The Products File Procedures
	Copy the Procedures
	Working with Embed Points
	Modify the Browse
	Creating the Form Procedure
	OK, What Did I Just Do?

	10 - Control and Extension Templates
	Creating the Procedure
	Select the procedure type
	Placing the BrowseBox Control Template
	Adding the Browse Update Buttons Template
	Placing the Second Browse List Box
	Adding the Close Button Control Template
	Make the window resizable
	Set up a Reset Field
	OK, What Did I Just Do?

	11 - Advanced Topics
	Set Up the UpdateOrder Form
	Create the Orders file's data entry Form
	Placing the Detail File's Control Templates

	Making it all Work
	Using the Formula Editor
	Configuring Edit in Place
	OK, What Did I Just Do?

	12 - Creating Reports
	A Simple Customer List Report
	Updating the Main Menu
	Creating the Report
	Populating the Detail

	An Invoice Report
	Creating the Report
	Populating the Page Form Band
	Populating the Detail Band
	Adding Group Breaks
	Populating the Group Header Band
	Populating the Invoice Group Footer Band
	Populating the Customer Group Footer Band
	Adding a Formula
	Adding a Record Filter

	A Range Limited Report
	Creating the Report
	Modify the new report

	A Single Invoice Report
	Creating the Report
	OK, What Did I Just Do?
	What's Next?

	13 - Clarion Language Tutorial
	Clarion-the Programming Language
	Event-driven Programming
	Hello Windows
	Hello Windows with Controls
	Hello Windows with Event Handling
	Adding a PROCEDURE
	Adding a PROCEDURE
	Moving Into the Real World-Adding a Menu
	Really Moving Into the Real World-Adding a Browse and Form

	ABC Template Generated OOP Code
	Quick Start an application
	Look at the Program Source
	Where to Go From Here

	Index
	Symbols
	&
	.CSV files
	.DCT file
	.PRJ file
	?
	{}
	4GL
	4th Generation Language

	A
	ABC Library
	accelerator key
	ACCEPT
	Accepted event
	ACCEPTED function
	Access Key
	Access:
	action message
	Actions prompts
	Actions tab
	Add File
	ADD() statement
	adding a report
	Align Horizontally
	Align Left
	Align Top
	Alignbox toolbox
	Aligning Fields
	alignment tools
	allow duplicates
	Alphanumeric
	ALRT
	alternate sort orders
	ampersand (&)
	APP file
	Application Builder Class (ABC)
	Application Builder Class (ABC) Library
	APPLICATION structure
	Application Toolbar
	Application Tree dialog
	Ascending Sort Orders
	ASCII
	assignment statements
	AUTO attribute
	Auto Number
	automatic lookup
	automatic object constructors

	B
	Band View
	bands
	base font
	BASIC
	BASIC file driver
	BFLOAT4
	BFLOAT8
	Binary
	Break Properties
	Break Properties dialog
	BREAK statement
	BREAK structures
	browse and edit a data file
	Browse control buttons
	Browse Procedure template
	Browse procedure template
	browse totaling
	Browse Totaling dialog
	Browse Update Buttons
	browse window
	BrowseBox Control template
	BrowseUpdateButtons Control template
	Btrieve
	LSTRING
	ZSTRING

	BUTTON controls
	BUTTON() statement
	BYTE

	C
	calculate
	Call a Procedure
	Caption
	Carriage Return/Line Feed
	Cascade
	CASE EVENT()
	CASE FIELD()
	CASE structure
	Change Access Key
	CHOICE function
	Clarion Standard Date
	Clarion User's Group
	Class Field
	Class field
	Classes tab
	CLIP() function
	Clipper
	CLOSE
	CloseButton Control template
	CODE statement
	Code templates
	column headings
	column one (1)
	Comma Separated Values (.CSV) files
	comp.lang.clarion
	compiler
	CompuServe
	concatenation operator
	Conditional Behavior tab
	constant text
	constant values
	constructor methods
	Contract All button
	control pagination
	Control Templates
	Control templates
	convert data files
	copy
	Copy Procedure
	copy the file definition
	Copying a Procedure
	create a toolbar
	Create Application dialog
	CSTRING
	ctrl+click
	curly braces ({})
	Customer Service

	D
	data dictionary
	data entry validation
	Data file formats
	Data Integrity
	data justification
	data normalization
	Data type
	data validation code
	Database
	Database Drivers
	Database Manager
	DATE
	Date value
	DBase III
	DBase IV
	DctInit
	DctKill
	DECIMAL
	Decimal
	default font
	defining new fields
	DELETE() statement
	Descending Sort Orders
	Detail
	Detail band
	Detail Filters
	dictionary description
	Dictionary Editor
	Dictionary Properties dialog
	DIM attribute
	DISABLE
	display order
	display-only control
	display-only control.
	DO statement
	Drop Box Control
	duplicate procedures
	duplicates

	E
	Edit in Place
	Edit in place
	EditClass
	educational seminars
	Embed Point
	Embed Points
	Embedded Source dialog
	Embeditor
	Embeds button
	ENABLE() statement
	END statement
	ENTRY control
	ENTRY controls
	entry locator
	EQUATE statements
	EQUATE statements
	EQUATEs
	ErrorClass
	Event Handling
	event-driven paradigm
	Event-driven Programming
	EVENT:Accepted
	EVENT:AlertKey
	EVENT:GainFocus
	EVENT:OpenWindow
	EVENT:Selected
	execute a ROUTINE
	EXECUTE structure
	execution thread
	execution threads
	explicit RETURN
	Extension and Control Templates dialog
	Extension templates

	F
	Field
	Field Equate Label
	field equate label
	field headers
	Field Qualification syntax
	Field to Total
	Field-independent events
	Field-specific events
	Field.
	Field/Key Definition dialog
	Fieldbox
	Fieldbox toolbox
	File
	file conversion program
	FILE declaration
	file definitions
	File Driver
	File driver
	file format
	File Schematic
	File Schematic Definition
	FILE structure declaration
	File-Browsing List Box
	filtered out
	FIRSTFIELD() function
	Floating Point
	Font
	font for the Report
	fonts
	Footer
	Force Window Refresh when Accepted
	Foreign Key
	foreign key
	Form
	Form Procedure
	Format Browse class
	format strings
	FORMAT() attribute
	Formatting a List Box Control
	Formula
	Formula Editor
	Formulas
	Formulas dialog
	FoxPro
	FREE() statement
	FROM
	FUNCTION definition
	FUNCTION prototype
	FUNCTION statement
	functional specification

	G
	Generated Source
	generic window procedure
	Global data
	Global data declaration section
	GlobalErrors
	GlobalRequest
	GO TOPSPEED
	GROUP
	Group Breaks
	group breaks
	Group Footer
	Group Footer Band
	Group Header
	Group Header Band
	group totals

	H
	Header
	Heading Text
	Hexadecimal
	hidden buttons
	HIDE attribute
	horizontal scroll bars
	Hot Fields
	How do I ... ?
	How to convert data
	How to import a file definition

	I
	identify fields
	IF ERRORCODE() THEN STOP(ERROR()). statement
	IF/ELSIF
	IMM (immediate) attribute
	implicit array
	implicit RETURN
	import a file definition
	INCLUDE statements
	Index
	INIMgr
	Init
	initial value
	Initiate Thread
	InitiateThread Code template
	Insert Key Component
	Integers
	Internet Newsgroup
	Introduction to the Clarion Language
	ITEM

	J
	Justification

	K
	Key
	KEY() attribute
	KEYCODE()
	Keys and indexes

	L
	label
	LASTFIELD() function
	line above
	line under
	linker
	linking field
	List Box
	List Box Control
	List Box Format
	List Box Formatter
	LIST control
	Local data declarations
	local MAPs
	local variable
	locator
	Logically related records
	LONG
	Look at Generated Source
	Lookup Key
	lookup procedure
	LOOP structure
	LSTRING

	M
	Main procedure
	main program module
	Make window
	Many to One
	many to one
	Many-to-One
	MANY:1
	Map by Name
	MAP structure
	MASK attribute
	MDI
	MDI application frame
	MDI Child Window
	MDI window
	MEMBER statement
	Menu Editor
	MENU statement
	MENU() structure
	MENUBAR structure
	MESSAGE function
	Module Data Section
	MODULE structures
	Module tab
	Multiple Document Interface
	Multiple Document Interface (MDI)
	multithreading
	Must Be In File
	Must be in List

	N
	New Data Files
	New File Properties
	New Keys dialog
	New Relation dialog
	New Structure dialog
	New Toolbar
	NEXT() statement
	normalization

	O
	Object Oriented Programming (OOP)
	Octal
	ODBC
	One to Many
	one to many
	One-to-Many
	OOP
	OPEN(MyWin) statement
	Operands
	Operators
	Order Header
	Order/Entry system
	Outer join
	override a class

	P
	Packed Decimal
	Page after
	Page Footer
	Page Form
	Page Header
	Page Header band
	Page Number
	page number
	Page/Group Footer Properties
	pagination based on group breaks
	Parameter Lists
	parameters
	PARENT
	PARENT keyword
	parent-child
	parent-child relationship
	Password
	paste
	PDECIMAL
	Perform Lookup during Non-Stop Select
	PICTURE
	Populate Field toolbox
	popup menu
	POSITION function
	POST statement
	prefix
	Preview
	Preview a Report
	Primary Key
	Primary key
	primary key
	print bands
	print engine
	print preview
	priority levels
	PROC attribute
	PROCEDURE definition
	Procedure name clash dialog
	PROCEDURE Prototype
	PROCEDURE prototype
	PROCEDURE statement
	PROGRAM module
	program module
	PROGRAM statement
	Project Editor
	Project file
	Project settings
	PROMPT controls
	PROP:Text
	PROP:Touched
	Property Access Syntax
	Property Sheet
	property syntax
	Property toolbox
	PropertyBox toolbox
	prototypes
	PSTRING
	PUT() statement

	Q
	question mark
	QUEUE structure

	R
	Range Limit
	Range Limit Field
	Range Limit Type
	Range Limited Report
	Range Limits
	range limits
	REAL
	Record
	Record Filter
	Record Order
	RECORDS function
	Referential Integrity
	Referential Integrity constraints
	REGET() statement
	Relate:
	Related File
	Relational database design
	Relational reports
	Relationship-Dependent Validity Checks
	REPORT data structure
	Report defaults
	Report Formatter
	Report Properties
	REQ attribute
	Require Unique Value
	required fields
	Reset on
	resize window controls
	Resizeable
	resizing list box columns
	Restrict
	RETURN a value
	reusability
	Right Border
	ROUTINE
	Run button

	S
	sample window
	screen picture
	Select Control Template dialog
	Select embed type
	Select Field dialog
	Select Font
	Select Procedure Type dialog
	Select Project
	SELECT() statement
	Selected event
	SELF
	seminars
	SEPARATOR
	SET() statement
	shared access
	shift+click
	shift+drag
	SHORT
	Show Fieldbox
	Sort Orders
	SORT() statement
	sorting data
	Source Code
	Source file
	source modules
	SPIN control
	Splash procedure
	Spread Horizontally
	Spread Vertically
	SREAL
	Standard Date
	START function
	START() statement
	statement label
	STD() attribute
	Step record locator
	STOP() statement
	STRING
	string concatenation operator
	STRING controls
	string field
	String Properties dialog
	Structured Programming
	subset of the file
	Sum
	Surrounding Break
	synchronized list boxes
	SYSTEM attribute

	T
	tab controls
	Tallies list
	TARGET
	Target Filename
	Template Classes
	Template Registry
	Text Editor
	thick line
	ThisWindow.Run
	THREAD
	THREAD attribute
	TIME
	TODAY() function
	ToDo procedure
	toolbar button
	toolbar buttons
	TopSpeed files
	Total Based On
	total calculation
	total field
	total fields
	Total Target Field
	Total Type
	Total type
	Totaling tab

	U
	ULONG
	update buttons
	Update procedure
	USE attributes
	User's Group
	USHORT

	V
	Validity Checks
	vertical scroll bars
	View Generated Source
	VIEW structure
	VSCROLL

	W
	When the Control is Accepted
	WINDOW data structure
	Window Formatter
	Windows standard behavior

	Z
	ZSTRING

