CLARION 5

Internet
Cconnect

COPYRIGHT 1997, 1998 by TopSpeed Corporation
All rights reserved.

This publication is protected by copyright and all rights are reserved by TopSpeed Corporatior
It may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to ar
electronic medium or machine-readable form without prior consent, in writing, from TopSpeed
Corporation.

This publication supports Clarion 5 Internet Connect. It is possible that it may contain technica
or typographical errors. TopSpeed Corporation provides this publication “as is,” without
warranty of any kind, either expressed or implied.

TopSpeed Corporation

150 East Sample Road
Pompano Beach, Florida 33064
(954) 785-4555

Trademark Acknowledgements:

TopSpeet is a registered trademark of TopSpeed Corporation.

Clarion™ is a trademark of TopSpeed Corporation.

Microsoft® Windows’,Windows 9%, Windows 98, and Windows NT are registered trademarks
of Microsoft Corporation.

All other products and company names are trademarks of their respective owners.

Printed in the United States of America (1198)

TABLE OF CONTENTS

INTRODUCTION 7
LAY <1 (o0 o 1T PSSR 7
What iS INternet CONNECTcoiiiiiiiiiiiiee e e e e e e e e eeeeeeeeee 8
Internet Connect and the Clarion Development Environmentcceeeeeennnn. 8
What YoU'll FiNd iN thiS BOOKuuuuiiiiiiieie e 10
Where to Find More INfOrmationooooiiiiiooeeceeeeeeiiir e 11
Documentation Conventions 12
Typeface CONVENTIONSooouiiiiiiiiiiieee et e e e e e e e e e e e as 12
Keyboard CONVENTIONScooiiiiiieiiieeceeeee et e e e e e e e e eees 12
Product Information 13
Registering ThiS PrOoAUCTcoooiiiiiieeie e a e 13
TeCHNICAl SUPPOIT ...t e e e e e e e e e e eeeeeeennes 13
SETUP 15
System Requirements 15
DeVvelopMENT SYSTEIM ...ttt e e e e e e e e e e eeeeeeeeenanans 15
SEIVEE SYSEEIM ...ttt ettt e e e et et e e e e e e aaa e e e e e enaa e e aeaeernans 15
(@4 1T 01 S VS (=] 1 TSRS 16
The Setup Program 17
Y= L1 0T IS T= LU U PPTPPPPUPRPP 17
Y= (0 o @] o 11 PO PPPTPPPPUPRPPI 17
Registering the Internet Builder Class (IBC) Templatesvviiiiiiiiieeenennnn. 18
THE APPLICATION BROKER 19
Running the Application Broker 20
Using the Single-connection Executable Version............ccccccooiiiiiiiiiiiiiiiiiiiiiiinns 20
Connecting to your APPIICALIONSccooiiiiiiiiiiii s 21
The ISAPI version of the Application Broker 23
Howthe Application Broker ISAPI DLLS WOIKcoooiiiiiiiiiiiiiiiiiiiee e 23
Installation and Setup for the Clarion Application Broker ISAPI DLLs.............. 24
The ISAPI Broker's Remote Setup ULIILY ... 27

Files deployed by the Clarion Application Broker installation 27

Directories

Application Broker Setup Options
Remote Access to the Application Broker
Development & Deployment CheckList

Testing LOCAlY ..o
Testing your TCP/IP ConNecCtioNccocuvviiiiiiiiiiiiiiieeeeeeiieee,

TutoriIAL—MAKING A WEB APPLICATION
Web Application Wizard

Creating a hybrid Web/Windows Applicationcccceeeeene...
Deploying the AppliCationccoovveiiiiiiiiie e
Faster is Better—Optimizing your Application.............ccccceeeeenn...
Looks are Important—Adding Graphicscccceevveieiieiieininenee.

TuTorRIAL— WEB-ENABLING AN
ExisTING APPLICATION
Using the Global Internet Application Extension Template

Porting an Application to the Webcccccoooo i,

TuTtorRIAL— ADVANCED WEB
PROGRAMMING TECHNIQUES

Using Cookies

Embedding HTML

Covering the Download with a Splash Window

Using Partial Refresh to Update Controls

Restricting Access to a Procedure

Password Prot@CHIONceeeeeeeeeeee e

Restricting Edit-In-Place

THE INTERNET BuILDER CLASS
TEMPLATES
The Global Internet Application Extension Template

Page SetliNgsooovviiiiiiiii e
WINAOW SELHNGSueiiiiiieeeeece e
HEIPD o s
(@] 0] 1o] LN RSP PPPPRTURUUPP

28
29
31
33
37
38
49
50
55
56
61
65
68
70
73
75
75

DL e 79

0 AV Z= 1 (o =T o EO SRR 80
CLASSES ...ttt e e e e e e e e e eeeeearrrraaana 81
Global Window Component Options 82
(@221 o] ({0 o TSRS 82
1= 1O PSP PP UPPPTRTPPPPN 83
o T0] | = U UURPPPPPIPPPPPPPN 84
(O[T o1 N =T RS TT 85
ClasS OVEITIAESccoiiieieeeieeit e e e e e e e e e e e e e st bbb e e e as 85
Internet Procedure Extension Template 86
Page SEHINGS . .ooeiiiiiiiiii e e e e 86
WINAOW SEEINGS ...ttt e e e e e e e e e e e e e e eeeeneesennnnn 87
[1] o PSP 87
(@] o] 110] £ 3RS 88
1Y PP PPERRRUURR 90
0 AV Z= 1 (o =T o EO SRR 90
Individual Overrides for a Control 93
D] 0] = VOSSP 93
[0 ISP 94
B NS e 95
CLASSES ...ttt a e e e e e e e aeeeeeararrnaana 96
Procedure Window Component Options 97
(@221 o] ({0 o TSRS 97
1= 1 PP TP PP T TUPPPTRRPPPPN 98
TOOIDA ... e ettt a e e e e e e e e eaeeanae 98
(O[T o1 N =T R 99
Frame Procedure MDI Options 101
APPHCALION MENU ...t 101
ApPlication TOOIDATccooiiiiie e 101
Code Templates 103
Dynamic HTML Code TEMPIALEeuuuiiiiiiiieieeeeeeeeeeeeeeei e 103
Static HTML Code TeMPIALEcooiiiieeii e 103
GetCookie Code TeMPIALEuueieiiiee e e e e eeeeaaaes 104
SetCookie Code TEMPIALEcooiiiiiiiiiiie e 104
Cookies (Persistent ClIent DAta)coooeeeeeeeiiiiiiiiiiiiiiiiiiee e 104
AddServerProperty Code TemMPIate ..o 105

GetServerProperty Code TeEMPIALEcoooeiiiiiiiiii e 105

WEB APPLICATION DESIGN

CONSIDERATIONS 107
Bandwidth Usage Considerations 107
Use Partial Refresh whenever possible ... 107
Be frugal With CONIOISooiiiieee e 108
Use graphics Sparinglyoooooooiiiiiiiiiiii e 108
Covering the Download with a Splash WINdOW ..., 109
Cosmetic Design Considerations 112
USING GIOUPS ..eiiieiiiiittiiaaa e e e e e e e e e e e et ettt ettt r e e e e e e e e e e e e e e eeeeeaaesaban e e e e e aeeaeaaaeas 112
USING IMAGES ..ottt a e e e e e e e e e e e e e aeeeeessenennnnns 113
User Interface Design Considerations 114
MDI WINAOW GCCESSoiiiiiiiiiiiiiiiiiiiiiaa e ae e e e e e e e e e e e eeeeeeeeaebsaa s s s e e e e e e aeaaeeeeeeesssnnnnns 114
Restricting Edit-IN-Place ouuiiiiiii e 114
Unsupported Windows Standard Dialogscoooviiiiiiiiiiiiiiiiiinee e eeeeeeeeeeeeeienns 115
Using Command Line Parametersccoooiiii it eeeeeeeeeeeens 116
Changing the Class for an individual controlccccoiiiiiiiiiiicii 116
APL CAIlS ... 117
Security Considerations 118
USING PASSWOITS ... e ettt e e e e e e e e e e e e e e eaeese b e e s e e e e e e e aaaeeeeeeenenes 118
Using a Secure SOCKet Layer (SSL) ...uuioiiiiii e 119
Using Embedded HTML 120
Using references to files in embedded HTML codec.coeiiiiiiiiiiiiiiiiiiieneeee, 121
Implementing Help in your Web Application 123
Using a Base Document with Mid-Page anchorsccccooiiiiiiiiiiiiiiiiccceeen, 123
Using individual help DOCUMENTSoooiiiiiiiiiiiiiic e 123
Windows Controls and their HTML Equivalents 125
Hand Coded Applications 128
ADOUL THIS SECHION ... e e e 128
HelloWeb Example Program ... 128
Hand Coded Project ConsSiderationsuuuuuieiiiiiiinneee e 130
IBC LiBRARY Quick REFERENCE 133
Classes and Their Template Generated ODJECLScoevviiiiiiiiiiiiiiiiee e, 134
QUICK RETEIENCE ... e e eeeaaaes 135
GLOSSARY 139

INDEX 143

INTRODUCTION p

Welcome!

This chapter provides:

o Anintroduction to Clarion Internet Connect.

o An overview of what you'll find in thénternet Connect User’s Guide
o Typeface and other document conventions.

o Areminder about product registration.

o A summary of our technical support programs.

Thank you for purchasing Clarion Internet Connect—TopSpeed’s one-step
Web solution!

This book containghreetutorials, on three different levels:

o A shortMaking a Web Application tutorial, which introduces the
guickest way to create a database application for the Internet/
Intranet.

o A Web-enabling an Existing Applicationtutorial, which shows
you how to port your existing Clarion applications to the Web.

o An Advanced Web Programming Techniquegutorial, which
shows some methods of extending the built-in functionality using
code templates and embedded HTML.

This book assumes you have completed the tutorials in the CGeitimg
StartedandLearning Clarionmanuals. If you have not yet done so, we urge
you to do them before starting the tutorials in this book.

It is also useful to be familiar with the way Web browsers work. Some basic
HTML knowledge is also useful, but not required.

What is Internet Connect

Clarion and Clarion Internet Connect work together to web-enable database
applications so that you can use the same application locally (i.e., under
Windows, Windows 95, Windows 98, or Windows NT) or on the Web using
any Java-enabled browser.

You can run a web-enabled application on any platform for which a Java-
enabled browser is available.

Internet Connect and the Clarion Development Environment

The development environment works on several levels and supports every
level of user/developer.

Automatic application developer for Windows or Web

When you just need a “simple” application to maintain a database, you can
literally do the job in minutes using Clarion. The key is the database
dictionary. If the Application Generator knows what files or tables you want
in the application and how they're related, it can build an application. So all
you need to do is select one or more files then indicate (when there are two
or more files) whether the files have a one to many relationship or a many to
one relationship.

The Application Wizard can then create a full-featured applicaaiotby

merely checking a box on one of the wizard’s dialogs, you can transform the
application into a Web-enabled application. The resulting application can run
locally or on the Web using the Clarion Application Broker.

Anybody can do this. It just starts with picking a data file from a list.

Visual development environment for Windows or Web

With Clarion, dropping a control in a window gives you a lot more than other
Rapid Application Development tools. These tools typically let you add a
user interface control, but then expect you to write the code to implement its
functionality. With Clarion, you addt@mplate which contains the control,
data,andexecutable code. That means you don't have to write code—one
cLick places a complete business solution: a user interface control and the
code that enables it to do its job. Moreover, each template has its own user
interface. When you view the properties for the template, you'll see an
“Actions” tab. By checking a box, choosing a dropdown list item, or filling

in an edit box, you can customize the behavior of the template so that it
meets your need=actly You'll set “Actions” for the templates at many

places in the longer tutorial in this book.

When you use the template interface to specify these behaviors, the
Application Generator writes the code (Clarion language source code) that
implements the behavior for you. Using the templates, you can do an awful
lot of custom programming without writing a single line of source code.

This paradigm extends to the web implementation of your applic&ibaof

the underlying functionality is transformed to represent your application
inside a browser. Concurrency checking and referential integrity are
automatic in your application and are enforced over the web in a similar
manner. Additional Internet Options allow you to control event handling so
that you can specify the conditions under which an event is processed on the
server.

Power users, who may not normally write programs, can easily do this.

It's a complete programming language

At its most basic level, you can completely hand-code an application. The
Clarion language is a fourth generation language. It has a high level of
abstraction, so that it's very “readable,” and a compact database grammar, so
that you can easily handle a record or sets of records. Youhdu@tto

know Clarion to create an application ... but if you do know how it works, it
helps you understand what your applications are doing, and that helps you
make better applications.

The Internet Builder Class Library is open and available to web-enable a
hand-coded project.

Professional developers will really appreciate the Clarion language. It was
designed from the ground up for business programmers. Yet for its relatively
low learning curve (as a 4GL, vs. lower level languages) you'll get blazing
performance. The TopSpeed compiler turns all of your code—whether you
wrote it or the Application Generator wrote it—into highly optimized
machine code.

No matter which level you intend to work at, you're going to work a lot
smarter if you read this book all the way through to the end.

What You'll Find in this Book

The following lists the parts of this book and summarizes its content:

Introduction
Chapter Onethe chapter you're reading now. This is an
introduction to web programming using Clarion.

Setup
Chapter Two step by step instructions tell you how to install
Clarion Internet Connect to your Clarion development
environment.

The Application Broker
Chapter Threedocuments the Clarion Application Broker,
which is the key to running web-enebled Clarion applications
across the Web.

Application Wizard Tutorial
Chapter Four a few quick steps with the Application Wizard allow
you create to a complete web applicatiofive minutes.

This chapter will show you how to use the Application Wizard and
set some of the Internet Options to create a simple application that
will run either locally or over the Web.

You'll accomplish all thisvithout writing a single line of code

Web-enabling an Existing Application
Chapter Five using the IBC templates to port Clarion applications
to the Web.

Advanced Web Programming Techniques
Chapter Six introduces the customization capabilities offered by
the IBC templates. It walks you through modifying your
application for optimal performance and functionality on the web.

Using the Internet Builder Class (IBC) Templates
Chapter Seven reference to the IBC Template interface.

Application Design Considerations
Chapter Eight:Tips and techniques on web-based application
design.

Internet Builder Class Library- A Quick Reference
Chapter NineA quick guide to the template implementation of the
objects in the Internet Builder Class (IBC) Library. This chapter
lists properties and methods commonly used in web-based
applications.

Glossary
Glossary of terms

Where to Find More Information

The first place to look for more information is tHew do | ... ?section in

the online Help. These topics answer many of the common questions that
newcomers to Clarion have. Click on tHew do | ... ?link on the Help
Contents page to get to this section.

TheApplication Broker Referend€hapter 3 of this book) is the guide to
installing, configuring, and using the Clarion Application Broker.

Thelnternet Builder Class Library Referenfen CD in .PDF format) is the
complete guide to the classes used by the IBC templates. It provides
descriptions of all the classes, methods, and properties with examples for
each.

The PDF versions of the manuals are indexed to allow fast searches across
all manuals (requires Acrobat Reader 3.x with Search; the installation
program is on the CD).

Important: if any part of the online help text conflicts with the printed
documentation, the information in online help should take precedence.
TopSpeed Corporation makes every reasonable effort to ensure the printed
documentation is up to date. However, the lead-time required by printers
may create a lag in the documentation; while we can update the online files
that ship concurrently with a product revision, printed materials must “catch
up” later.

Documentation Conventions

Typeface Conventions

Italics
SMALL CAPS

Boldface

LETTER GOTHIC

Keyboard Conventions

Indicates what to type at the keyboard, suckreer
This

Indicates keystrokes to enter at the keyboard, such
ASENTER OF ESCAPE Or tocLick the mouse.

Indicates commands or options from a pulldown
menu or text in a dialog window. Note: this style
also utilizes a different typeface to match the
helvetica bold face which Windows uses as the
system font.

Used for diagrams, source code listings, to annotate
examples, and for examples of the usage of source
statements.

F1

ALT +X

Indicates a single keystroke. In this case, press and
release thei key.

Indicates a combination of keystrokes. In this case,
hold down the..t key and press thekey, then
release both keys.

Product Information

Registering This Product

Before you begin using Clarion Internet Connect, fill out and mail in the
registration card that came in the package. This Business Reply Card makes
you eligible to receive several important benefits. Once registered, you can
use TopSpeed’s Technical Support services and you automatically receive
new product announcements and update alerts.

Technical Support

There are several venues for technical support:
Compuserve

You can receive unlimited free technical support for Clarion on CompuServe
Information Service. Once connected to CompuServe, type GO TOPSPEED.
TopSpeed employees, as well as TopSpeed Certified Support Partners
(known as Team TopSpeed), will answer your questions in a timely manner.
Additionally you can get advice and answers from other Clarion users. We
strongly recommend that our customers take advantage of this service.

Usenet Newsgroup--comp.lang.clarion

You can also participate in the Clarion Usenet Newsgroup on Internet--
comp.lang.clarion. In this newsgroup, Clarion programmers from around the
world exchange ideas and techniques (TopSpeed employees and Team
TopSpeed members also monitor and participate in the newsgroup). Log into
your News Server and subscribe to comp.lang.clarion. If your news server
does not carry the feed, you should contact your provider.

You can use any newsreader (e.g., Outlook Express, Netscape Collabra, or
FreeAgent, etc.) or you can access Usenet newsgroups through services suc
as DejaNews (http://www.dejanews.com). DejaNews archives Usenet
newsgroups and offers search capabilities.

TopSpeed's product newsgroups

TopSpeed's internal newsserver offers newsgroups for all TopSpeed
products.

News server: TSNews.Clarion.Com

Newsgroup: TopSpeed.Products.IC

14

CLARION 5 INTERNET CONNECTM UseR’s GUIDE

TopSpeed's Web Site:

You can find other Clarion resources on the Internet by visiting TopSpeed's
site on the World Wide Web:

http://www.topspeed.com

Click on theDownloadslink to see the latest patches for all of TopSpeed
products.

Click on theWhat's New link to read news and announcements.

Paid Technical Support

Paid telephone technical support is also available from TopSpeed
Corporation. Call TopSpeed Corporation customer service at (800) 354-5444
or (954) 785-4555 for more information.

SETUP

N

System Requirements

Development System

You can run the Clarion development environment on any system that meets
the minimum system requirements for Window$§,9%&indows 98 or

Windows NT. Web-enabled applications must be compiled in 32-bit, so you
must be running Windows 95, Windows 98 or Windows NT.

o Windows 95/98, 16 (or more) Megabytes of RAM recommended.
o Windows NT, 32 (or more) Megabytes of RAM recommended.

o Minimum of 7 to 13 Megabytes free hard disk space, depending on the
Setup options you select.

Server System

You can run the Application Broker and Web-enabled applications on
Windows 95/98however, westronglyrecommend using Windows NT to
host the deployment.

o Windows 95/98, 32 Megabytes of RAM recommended, static connection
to Internet/Intranet.

o Windows NT, 64 Megabytes of RAM recommended, static connection to
Internet/Intranet.

Performance depends on the speed of your server’s connection to the Interne
and the traffic you expect your application to handle. Applications can be
delivered over a 28.8 kb modem connection, but we recommend ISDN or
higher.

Client System

Clients can run under any platform for which a Java-enabled browser is
available. The applications that you develop with Clarion Internet Connect
will execute comfortably on computers that meet only the minimum
requirements for these browsers. Performance is affected by the speed of the
connection to the Internet, but most applications will perform well over a

28.8 kb modem connection.

Recommended Browsers:

Although Web-enabled applications should work under any Java-enabled
browser, the following browsers have shown the best results.

Windows 95/NT

Microsft Internet Explorer 3.0x or later (version 3.02 introduced Java Virtual
Machine enhancements which improve memory allocation).

Netscape Navigator 3.0 or later.
Netscape Communicator 4.0 or later. (version 4.04 introduced fixes that
improve performance).

Windows 3.1x

Microsft Internet Explorer 3.02x or later.
Netscape Navigator 3.0 or later.
Netscape Communicator 4.0 or later.

UNIX

There are many flavors of UNIX and some of these have browsers written
specifically for them. There are too many to list here. See Netscape’s Home
page at http://www.netscape.com for more information.

Netscape Navigator 3.01 or later.
Netscape Communicator 4.03 or later.

Apple/Macintosh

Microsft Internet Explorer 3.0x or later.
Netscape Navigator 3.0 or later.
Netscape Communicator 4.0 or later.
0S/2

Netscape Communicator 4.0 or later.

Note: The installation installs the JSL files in
compressed format (Clarion.CAB and Clarion.ZIP).
The installation also installs the .CLASS files to
support 16-bit browsers and browsers for non-
Windows platforms.

The Setup Program

Starting Setup

The Setup program decompresses and copies the Clarion files to your hard
drive. For all the target operating systems, it provides you with options for
installing the various components, such as the example files.

Setup Options

To start the Clarion Setup program in Windows 95/98 or NT:

1. Insert the installation CD into your CD-ROM drive.
2. From the Start menu, chooSettings O Control Panel .
3. ChooseAdd/Remove Programs then press thinstall button.

The Windows 95/98/NT Wizard directs you through the installation
process.

After starting Setup, you'll see a set of wizard screens displaying a number
of options.

1. Choose the Setup options offered by the wizard screens (such as the
target drive and directory), pressing tiext button to move through the
option screens.

Setup will install the components of the Clarion Internet Developer’s Kit
to the appropriate subdirectories below the target directory you specify.
The Clarion Setup program instadii its files to the target directory, and
subdirectories beneath it. It instatisfiles to any other directory, with

one exception. The ISAPI Version of the Application Broker requires
that one file (CWISAPI.DLL) be installed in the \WIinNT\System32
directory on a Windows NT machine or the \Windows\System directory
on a Windows 95/98 machine.

During the installation, progress bars display as Setup copies the files.
2. Press th®K button when Setup is done.

18 CLARION 5 INTERNET CONNECTM UseR’s GUIDE

Registering the Internet Builder Class (IBC) Templates

To use the Internet Developer's Kit's IBC Templates, register the
ICONNECT.TPlfile in the Clarion Template Registry. The file is installed in
the .\TEMPLATE subdirectory.

To register the IBC Templates:

1. ChooseSetup O Template Registry from the Clarion menu.
2. Inthe Template Registry dialog, press Register button.

3. Inthe Template File dialog, select IBONNECT.TPLfile in the
.\TEMPLATE subdirectory, then preg«.

4. Inthe Template Registry dialog, press @ese button.

THE APPLICATION BROKER)
J

This chapter covers the the Application Broker—your connection to Internet
database applications made with Internet Connect.

The Internet Developer’s Kit is made up of two parts: The Internet Builder
Class (IBC) Templates/Library and the Application Broker. The templates
Web-enable your Clarion application and the Application Broker allows
access to that application over the Web.

Using the included Clarion Application Broker—no other Web server
software required—allows end-users to manipulate Web-enabled applications
running on a Web server using a browser.

Client
n

Client ,

Client
Any Java-enabled Web

Browser

Internet/
Intranet

Application Broker
Routes traffic between
Client and Server

Workstation
(Windows, OS/2, UNIX, etc.)

Request

HTML

Web Server Server

Any Web-enabled Clarion
Application

Server 2

Server |

Web
Broker | Client
Class | Managel
object | Class
object

Web | Web
Window| Server
Class | Class
object | object

Running the Application Broker

There are two versions of the Application Broker—an executable version
(.EXE) and an ISAPI DLL version (.DLL). The executable version of the
Application Broker must be executed to start it. The ISAPI version is called
on demand by the ISAPI-compliant Web server. Bez=ISAPI version of the
Application Brokerfor more information.

1. Start the Application Broker lyousLe-cLicking on CWBrokrl.exgor
CWBroker.exéf you have the multiuser version of the Application
Broker).

When you run the Application Broker on the server machine, it defaults to
port 80. If you are running any other Web server which is using port 80, you
can specify another port (e.g., 8080) for the Application Broker in its setup
options or by creating a shortcut with the port as a command line parameter.

Note: If you specify the port number on the command line, you
cannot change it in the Broker's setup options. If you start the
Application Broker, allow it to warn you that it cannot use the
default port, then change the port setting, it saves that setting
and you will not need to specify the port the next time it
executes.

Using the Single-connection Executable Version

The Internet Developer's Kit contains a single-connection Application
Broker (CWBrokrl1.EXE). It also contains a single-connection ISAPI version
of the Application Broker. This version is designed for testing.

The single-connection Application Broker functions exactly like the
Application Broker, except that it only allows only access bingle IP
addressat a time. That means one client can run more than one copy of an
executable or run multiple executables by opening another browser window.
To allow access to another user, all applications started by the first client
must be closed.

A client must exit the application for the application to close; simply closing
the browser does not close an application. If the client does close the
browser, the application won't close until a timeout occurs. The templates set
an application's timeout to 10 minutes by default. You can modify this
timeout interval in th&lobal Internet Application Extension Template

Testing Concurrent Access

You can easily test any concurrency issues (i.e., issues in your application
concerning more than one user) with the single-connection Application

Broker by starting two instances of your browser and running a copy of the
application in each.

To start a new instance of your browser:

In Internet Explorer 3.0x:

1. ChooseFile O New Window .

In Internet Explorer 4.0x:

1. ChooseFile O New O Window .
In Netscape Navigator 3.0x:

1. ChooseFile O New Web Browser.
In Netscape Navigator 4.0x:

1. ChooseFile O New O Navigator Window .

Connecting to your Applications

To run a Web-enabled application from a browser, provide a Uniform
Resource Location (URL) in the following format:

http://nnn.nnn.nnn.nnn/appname.exe.0

whereappname.exis your application's executable file name (make sure to
add a dot zero (.0) after the executable name) and nnn.nnn.nnn.nnn is your
IP address, or

http://domain.ext/appname.exe.0

Where domain.ext is your domain name, if your IP address has a name
registered with a Domain Name Server (DNS).

If you are running the broker on a port other than port 80 (the default HTTP
port), include the port number in the URL.
Examples:

http://nnn.nnn.nnn.nnn:8080/appname.exe.0
http://domain.ext:8080/appname.exe.0

Using Hyperlinks to start an application

You can also create hyperlinks in standard HTML Web page to execute Web-
enabled applications.

For example:
Click to start app

or
Click to start app

Firewalls and alternate ports

Firewalls and proxy servers can be configured to restrict access to ports othel
than the default HTTP port (80). To facilitate access for users behind
firewalls or proxy servers, you have the following options:

1. Use the ISAPI Version of the Application Broker and run your Web
server on port 80.

2. Run the executable Application Broker on port 80.

3. Have the network administrator remove the restriction to port 8080 (or
the port you are using).

The ISAPI version of the Application Broker

Internet Connect also has an Application Broker which uses Internet Server
Application Programming Interface (ISAPI) Server Extensions. You can use
this version with Microsoft’s Internet Information Server (IIS), Personal
Web Server (PWS), or any other ISAPI compliant Web server.

This version of the Clarion Application Broker is designed to implement
security using Secure Socket Layer (SSL) encryption. This technology uses
advanced cryptography techniques to encrypt data sent and received over the
Internet. This makes it almost impossible for others to decipher intercepted
information. When you see the gold “lock” icon in the status bar of your Web
browser, you know that you are on a secure layer and the data sent and
received is private and secure.

Note: Personal Web Server does not provide SSL encryption, so no
security is provided when you use the ISAPI Application
Broker with Personal Web Server. This just allows you to
design and run your applications on a Windows 95/98 machine
and deploy it later on a Windows NT machine running IIS.
Personal Web Server is on the Windows 98 installation CD or
it can be downloaded from www.microsoft.com.

Howthe Application Broker ISAPI DLLs work

The Clarion Application Broker is implemented as an ISAPI Server
extension Dynamic Link Library (DLL). A request from a client (browser) is
made to the Web server specifying the base DLL and the Web-enabled
application to run. This loads the Application Broker into memory and it
maintains the connection between the client and the server application the
same way the executable version does.

When your Web-enabled application makes a secure request (specified in the
Internet Options for a procedure), the Application Broker accepts the request

over a secure sockets layer and remains in secure-mode while that procedure
is active and until a procedure without security enabled is called.

You should use encryption sparingl$ecure Sockets Layer (SSL) slows
performance between HTTP servers and browsers. For this reason, Internet
Connect allows you to switch between a normal and secure mode at any time
in your application. Using encryption only where you need security
dramaticallyimproves performance.

Installation and Setup for the Clarion Application Broker ISAPI DLLS

1. Install Microsoft Internet Information Server (11S) or Personal Web
Server (PWS) first.

2. Optionally, obtain a Secure Sockets Layer (PCT/SSL) Digital Certificate
and install it. You can obtain a certificate from http://www.verisign.com.
They also offer a free trial certificate for testing purposes. See the help
file for 1IS's Key Manager for details on installing a certificate.

Note: You can use the ISAPI DLLs without implementing SSL. If you
do not want to use SSL, do not enable SSL when installing the
Application Broker and skip Step 2. You can change this
setting later using the Application Broker's administrator
utility (ICCONFIG.EXE) .

3. Install the ISAPI DLL version of the Clarion Application Broker. The
installation prompts you for the following information:

Install Drive The drive to which the broker is installed.

Root directory for the install
The root directory for the install. This should not be
the root of your Web site.

The Application Broker Password
This is the password needed to access the broker
setup. You must provide a password.

Server |IP address or Domain Name
The Domain Name of the server machine or its IP
address.

Enable SSL If you intend to use SSL and have a digital
certificate, check this box. If you do not want to use
SSL or don not have digital certificate, clear this
box.

Note: PWS does not support SSL or digital certificates.

The installation creates these directories below the specified Root
Installation directory:

\scripts
\sec_scr
\secure
\public
\exec
\admin

The installation also creates a text file (CWISET.TXT) listing the
directories created and a list of the the settings you must make in your
Web Server.

4. Using the IS Internet Service Manager utility or PWS Administrator (in
Control Panel), set the access rights for the directories as listed in the
CWISET.TXT file.

For example, using C: as the Install drive and CWICWeb as the Install
Root, youmust set these rights under IIS:

Dir ectory Alias Rights
C:\CWICWeb\public /cwpub Read
C:\CWICWeb\secure /cwsec Read & SSL
C:\CWICWeb\scripts lcws Execute
C:\CWICWeb\sec_scr /cwss Execute & SSL

Note: SSL settings are only appropriate when using a digital
certificate. You can run the ISAPI version or the Application
Broker without a certificate but you cannot use SSL.

The installation also creates these directories, but no setting need be made in
IIS for them:

Dir ectory
C:\CWICWeb\exec none* none*
C:\CWICWeb\admin none* none*

5. Using NT's User Manager utility, grant WRITE and DELETE (Change)
rights to the Internet Guest account for the \Public and \Secure
directories.

Note: UsingPersonal Web Server, no User access rights need to be
set.

6. Deploy your Web-enabled applications to @&CWICWeb\Exec
directory (or a directory beneath it). You must also deploy any support
DLLs (file drivers, runtime libraries, etc.) into the same directory as the
executable.

Note: The 32-bit Clarion Runtime Library (CSRUNX.DLL, the 32-hit
DOS file driver (C5DOSx.dll) and the 32-bit ASCII file driver
(C5ASCx.DLL) are also required even if you do not use them in
your .APP (unless compiled as a Local Link executable).

7. Deploy any Icon files needed for your application to the
C:\CWICWeb\Publidirectory and th€ \CWICWeb\Securdirectory.
Icons displayed in LISTs or on BUTTONSs must be deployed to these
directories.

The \Secure directory is used when a procedure is set to use SSL. See th:
Internet Procedure Extension Templagzction in theénternet Extension
Templateshapter.

Optionally, deploy any .GIF or .JPG files your applications use to these
directories, too. A Web-enabled application will automatically extract
image files from IMAGE controls at runtime, but if they are deployed in
advance, it can skip that step. &stng Imagesn theApplication

Design Considerationshapter.

8. Optionally, create your Web page to call your applications using this
convention for the hyperlinks:

Click to start app

The ISAPI Broker's Remote Setup Utility

To run the Application Broker’s setup utility.

1. From a browser, call this URL:

http://nnn.nnn.nnn/cws/cwlaunch.d11/AppBroker/
http://domainname.com/cws/cwlaunch.d11/AppBroker/

Note: This MUST contain the trailing backslash.

The browser’s authentication dialog appears.

2. Type inCWICfor the Username and type in your password (see
Application Broker Setup Optiopghen press th@K button.

The Application Broker’s remote access page appears. This page
contains hyperlinks to control the broker remotely.

3. Click on theSetup hyperlink.

This calls the remote setup page. Reenote Access to the Application
Brokerfor details. This allows you to modify your Application Broker
settings. Check these now to make sure the entries are correct.

Files deployed by the Clarion Application Broker installation

File Name Directory

CWLAUNCH.DLL C:\CWICWeb\scripts

CWSECURE.DLL C:\CWICWeb\sec_scr

CWISAPI.DLL WINNT\System32 or \Windows\System
CLARION.ZIP C:\CWICWeb\public & C:\CWICWeb\Secure
CLARION.CAB C:\CWICWeb\public& C:\CWICWeb\Secure
*, class C:\CWICWeb\public & C:\CWICWeb\Secure

The \Secure directory is used when a procedure is set to use SSL by
checking thélransfer over a secure connectiofox in the Advanced
Options. See thimternet Procedure Extension Templaextion in the
Internet Extension Templatekapter.

Note: The installation installs the JSL files in
compressed format (Clarion.CAB and Clarion.ZIP).
The installation also installs the .CLASS files to
support 16-bit browsers and browsers for non-
Windows platforms.

Directories
EXE Version

When you run the executable version of the Application Broker, the
directory from which it is run is the virtual root directory for executables and
the \Public directory below that directory is the virtual root for any
downloadable files. For example, a link to an HTML document in the \Public
directory would be addressed as:

http://nnn.nnn.nnn.nnn/index.htm

while an executable in the same directory as the Application Broker is
referenced using a similar URL:

http://nnn.nnn.nnn.nnn/appname.exe.0

Even though these files are in different directories, the Application Broker
handles the routing and no relative directory information is required.

If you want to keep applications in different directories, you call the
application using itselative path. For example, with the executable version
of the broker running in C:\CWICWeb and an application named myapp.exe
is deployed to C:\CWICWeb\Exec\App1l. You would call it using:

http://mydomain.com/exec/appl/appname.exe.0

ISAPI Version

With the ISAPI version of the Application broker, the directories and their
aliases are specified in the Application Broker’s setup options and in the Web
server’s directory setup.

If you want to keep applications in different directories, you call the
application using itselative path. Using the ISAPI version of the broker

with C:\CWICWeb\Exec specified as the executable directory and an
application named myapp.exe is deployed to C:\CWICWeb\Exec\App1l. You
would call it using:

http://mydomain.com/cws/cwlaunch.d11/appl/appname.exe.0

Application Broker Setup Options

From the Application Broker’s Setup menu option, you can specify the

following options:

Default Home Page

Public Directory

Port Number

Use Log File

Log File Name

The document which is delivered by default if no
specific URL is specified. The defaultillex.htm

The directory where common deliverable files are
deployed (HTML files, images, etc.). This is also the
directory under which temporary directories
containing the HTML files representing an
application are created. The defaultAsiblic.

The HTTP port to which the application broker is
bound. If specified on the broker's command line,
this is disabled and cannot be modified.

When a port other than 80 (the default HTTP port) is
used, clients (or your hyperlinks) must specify the
port in the URL. For example if the broker is
attached to port 8080, you would specify:

http://nnn.nnn.nnn.nnn:8080/appname.exe.0

Checking this box enables server logging. This
generates a lodfile entry for each request made by
clients accessing the Application Broker. The logfile
contains the requester's IP address, the date and time
of the request, and the request made. Keep in mind
that the logfile will continue to grow as entries are
appended to it.

Specifies the name of the logfile.

Remote password Specify a password to enable remote access to the

Application Broker. SeRemote Access to the
Application Brokeifor more information.

Max Simultaneous Connections

This specifies the maximum number of connections
allowed. A notice is returned to users trying to
access the broker when an attempt to exceed this
number is made.

30

CLARION 5 INTERNET CONNECTM UserR’'s GUIDE

Use Debug Setup This specifies to run applications in the debugger.
You must have access to the Server machine to run
the debugger. Specify the location of the debugger
and redirection file in the entry field provided. For
example:

C:\clarion5\bin\c5dbx.exe C:\clarion5\bin\clarion5.red

CACWICWEBRNPLIBLIC
2020

Gordovia

50

Cihclariondibintcddbe exe Chclanond’

Remote Access to the Application Broker

If you provide a Remote password in the Application Broker Setup, you can
access your running broker from a remote site using a browser. This allows
you to modify settings, suspend and enable access to an application, and see
the status of the last request.

To access your broker from a browser:

1. Type the following URL in your browser's Address or Location entry
control, then press ENTER.

HTTP://domainname.ext/appbroker/
or
HTTP://nnn.nnn.nnn.nnn/appbroker/

wheredomainname.exs your server Domain Name and extension or
nnn.nnn.nnn.nnis your server IP address. You must include the trailing
slash (/).

A password dialog appeatrs.

2. Type CWIC in the Username field and the password you specified
during the installation in the broker's Remote Password field.

Note: You cannot use remote access to the Application Broker
unless you have specified a Password in the broker’s setup.

A Web page appears with hyperlinks for the following functions:

Setup Provides access to modify the setup options. You
can modify any of the setup options except the Port
Number and the Remote Password. Those settings
can only be changed on the server.

Suspend Allows you to suspend access to any Web-enabled
application deployed on the Application Broker site.
If an application is running, the session is closed
and the application is closed. Users who were
running the program receive a message informing
them that the application has been suspended for
maintenance. This allows you to deploy updated
versions of applications or data files.

To suspend access, type in the full name of the
executable file (including the extension), then press
the OK button. If the application to suspend is
deployed to a subdirectory, you need not specify
that directory here. A Web page is returned listing
the applications which are currently suspended.

Enable

Status

Allows you to re-enable access to any Web-enabled
application on the Application broker site which has
been suspended.

To re-enable access, type in the full name of the
executable file (including the extension), then press
the OK button. A Web page is returned listing the
applications which are still suspended.

This displays the current status of applications
running on your broker site including the time of
access and the IP address of the clients accessing
applications. The ISAPI broker also provides a
Terminate button for each instance of an application.

Development & Deployment CheckList

1.
2.

Create an application (or open an existing application).

Web-enable the Application by adding the Global Internet Application
Extension Template. Sé#sing the Global Internet Application
Extension Template.

Compile the application in 32-bit mode (either local or standalone).

Install and configure the Application BrokeZ\(VBroker.exer
CWBrokrl.exer the ISAPI DLL version). Remember that single user
Application Brokeiis for testing only.

If you are running the executable version, start the Application Broker on
the server (this cannot be started remotely). If you are running the ISAPI
version of the Broker, make sure your WWW Setrvice is running.

Deploy the application and any other files it needs (DLLs, data files,
image files, etc.) to the directory from which the Application Broker will
run (or a subdirectory).

Note: The 32-bit Clarion Runtime Library (C5SRUNx.DLL, the 32-bit
DOS file driver (C5DOSx.dll) and the 32-bit ASCII file driver
(C5ASCx.DLL) are also required even if you do not use them in
your .APP (unless compiled as a Local Link executable).

Executables and their support files must be in the same directory as the
application, in a directory in the PATH (Windows 95/98) or in the
Internet Guest Account’s system path (Windows NT). In other words,
supporting DLLs must be visible when the server application runs. Data
files should be in the same directory as the executable, or if your
application is created to use data files in a different directory or drive,
this location must be visible to the application.

The install creates a subdirectory below the broker directory named
\Public and a directory named \Secure. These directories are used to
deliver files (such as the Java Classes from the Java Support Library,
graphics or other HTML files) by the Application Broker.

The \Secure directory is used when a procedure is set to use SSL by
checking thélransfer over a secure connectiofox in the Advanced
Options. See thimternet Procedure Extension Templaextion in the
Internet Extension Templatekapter.

The Application Broker will not deliver any files from its executable
directory. This prevents downloading data files or executables from your
site. Your application creates HTML files at runtime and automatically
places them in a temporary subdirectory below either the \Public or
\Secure directory.

Note: The installation installs the JSL files in compressed format
(Clarion.CAB and Clarion.ZIP) and in uncompressed format to
support 16-bit browsers and browsers on non-Windows
platforms.

At runtime, a temporary directory is created for each client connection.
These directories are automatically deleted when the connection
terminates. Graphics in IMAGE controls are automatically extracted to
this directory when they are not found in the /Public directory. Icons
displayed in LISTs or on BUTTONS are not automatically extracted and
must be deployed to the /Public directory and the /Secure directory.

8. Run the Application Broker on the server machine. It defaults to port 80.
If you are running any other Web server which is using port 80, you can
specify another port (e.g., 8080) for the Application Broker by creating a
shortcut with the port as a command line parameter. You can also modify
the port to which it is bound by using the Application Broker's Setup
option.

Note: If you specify the port number on the command line, you
cannot change it in the Broker's setup options. If you start the
Application Broker, allow it to warn you that it cannot use the
default port, then change the port setting, it saves that setting
and you will not need to specify the port the next time it
executes.

9. Provide users who want to access the application a URL in the following
format:

http://nnn.nnn.nnn.nnn/appname.exe.0
or
http://domain.ext/appname.exe.0
appname.exe is your application's executable file name. Make sure the
user adds a dot zero (.0) after the executable name.
If you are running the broker on a port other than 80 (the default HTTP
port), users must include the port number in the URL. For example,
http://nnn.nnn.nnn.nnn:8080/appname.exe.0
If your application has any command line parameters, add a question mark
and the command line parameter.
For example:
http://nnn.nnn.nnn.nnn/appname.exe.0?myargument

See Also:Application Design Considerations: Using Command Line
Parameters, Testing Locally, Testing your TCP/IP Connection

Testing Locally

Although for true deployment of a Web-enabled application you will use a
persistent IP address, you can use an IP address that is dynamically assignec
when you connect using Dial-up Networking. This is useful to provide a
one-time demo over the Internet. To find your dynamic IP address, you can
run an applet included in your operating system.

To test locally (with the broker and browser on the same machine), you can
use the localhost loopback IP address: 127.0.0.1.

In Windows 95, ruiWinipcfg.exdin the Windows directory). It will show
you your address as shown below. If you have TCP/IP bound to a network
adapter and a modem, use the drop down to select the modem.

IP Configuration M=

— Ethernet Adapter Information

FPP Adapter.
Adapter Address IW
Paddess [pono
Subnet Mask IT
Default Gateway ,—

0k I Release | Fenew |

Release Al | Renew All | Hore Info >» |

In Windows NT, use the Dial Up Networking Manager to see your IP
address. After dialing up and connecting to your provider, click on the icon
in the System Tray.

Testing your TCP/IP Connection

There are several methods to test your TCP/IP Connection.

1. From a DOS Prompt, type

PING 127.0.0.1

This tests the TCP/IP connection on your local machine and returns the
time it took to respond.

2 Start your Web browser, type the following URL to the server machine
and target test page:

http://server.domain.com/index.htm
where server.domain.com is the IP address of your server.

If you assigned a different port to your Web server (other than the default
port 80), you must also include the port number in the URL, as shown
here:

http://server.domain.com:XX/index.htm

where XX is the port number assigned to your Web server.

If you don't have a TCP/IP connection or you want to test the connection
from your local machine, you can use the following URL convention:
http://Tocalhost/index.htm

or

http://127.0.0.1/index.htm

This is the internal local loopback address.

TuTOorRIAL—MAKING A WEB APPLICATION J
e

In Clarion, you can create an application from a data dictionary—with no
coding required. All you need to do is create the Data Dictionary then use
the Application Wizard to make a complete Windows application—in
minutes! With Internet Connect, the Application Wizard has an additional
checkbox that lets you Web-enable the application you are creating. This
allows you to create a Web application with only one additional click of your
mouse!

In this chapter, you will:

o Use theApplication Wizard to create a hybrid Web/Windows
application from a Clarion Data Dictionary, then run the program using
your browser.

o Compile and deploy the application, then run it in a browser.

o Optimize that application for the Web using the template interface,
recompile, deploy it, and run it again.

o Modify the appearance of the application for the Web, recompile, deploy
it, and run it again.

This should all take about thirty minutes—withoutany“coding” on your
part. By the end of this chapter, you'll have a complete application for a
simple order entry system.

Let’s get started!

Web Application Wizard
Creating a hybrid Web/Windows Application

Starting Point:
You should have the Clarion development environment open.

This tutorial assumes that you installed Clarion in C:\Clarion5 and the
Application broker in C:\CWICWEB. If you used different directories, you
will have to modify the instructions accordingly. This tutorial also assumes
that you have completed the tutorials in the ClaGatting Startednd
Learning Clarionmanuals and have a basic familiarity with the Clarion
development environment.

Create your first Clarion Web application

1. On thePick dialog, select thdpplicationtab, then press theew...
button

This opens thalew dialog.
2. SelectC:\Clarion5\Examples\WebTutdrom the Directories list.
3. TypeWebOrderin theFile Name field.

4. Make sure th&se Quick Start Wizard box is not checked, then press
the Save button.

This opens th@pplication Properties dialog.
5. Press the elipsis (...) button to the right of Ditionary File entry box.
This opens th&elect Dictionary dialog.

6. Highlight theWebOrder.dc{in the C:\Clarion5\Examples\WebTutor\
directory) file then press th@pen button.

Run the Application Wizard

1. Check theApplication Wizard box, then press theK button.

This wizard will help you quickly create a new Application.

To begin creating your new Application, click Nest

<Biack

Eirrsh Cancel

CHAPTER 4 TuTORIAL—MAKING A WEB APPLICATION 39

2. Press thé&lext button.

4. Application Wizard - File Usage

3. Press thé&lext button.

4. Application Wizard - Control Model

5. Check theCreate an Internet enabled application box, then press the
Next button.

This step makes two changes to the application the Application Wizard
creates: 1) it makes it 32-bit and 2) it adds the Internet extension
templates to the application.

40

CLARION 5 INTERNET CONNECTM User’s GUIDE

If you are creating new procedures with names that alieady exist in pour
application, the old procedures can be overwritten or the new procedures
can be suppressed.

[Dwenwrite existing procedures

The procedure specified as your First Procedure will always be
averwitten by the application wizard!

Reports can be generated for every file in the dictionary. You map choose
whether or not ko generate these reports.

I ien

<Back | il=es | FEinish I Cancel |

6. Uncheck thesenerate Reports for each file box, then press thenish
button.

The Application Wizard creates the application.

+ Clarion 5 [weborder. app]

El BrowseCustomer (Browse)] - Browse the Customer File
=1-E UpdateCustomer [Form] - Update the Customer File

El SelectState [Browse] - Select a State Recard

EI El UpdateDrders (Farm) - Update the Orders File

El SelectState (Browse] - Select a State Record
EI El Updateltems [Form] - Update the Items File
El SelectProduct (Browse] - Select a Product Recaord
=-E BrowseProduct (Browse) - Brawse the Product File
EI El UpdatePraduct [Fom)] - Update the Product File
EI El Updateltems [Form) - Update the Items File
El SelectProduct [Browse] - Select a Product Becord

Make the Application

1. ChooseProject O Make (or press thdakebutton on the toolbar).
Congratulations!Your first Web application is ready to deploy and run.
2. Press th®K button on the compile results window.

Deploying the Application

The last step creatétlebOrder.exeSince it is a Web-enabled application, it
can now run under Windows as a standard Windows executable or over the
Web through the Application Broker using a browser. Next we will deploy
the application and the files it needs to execute. Note that we are deploying
this to a different directory on the same machine, but the process would be
the same to deploy the program to a server machine.

1. Open Windows Explorer (or Windows NT Explorer).

2. CopyWebOrder.exérom theC:\Clarion5\Examples\Webtutatirectory
to theC:\CWICWEB\EXEC\WebTutdlirectory.

Keep in mind that merely dragging files in Explorer creates a shortcut to
executable files. If you use the drag-and-drop method, you should right-
drag and select copy from the popup menu.

Note: We have provided sample data files in both directories. If you
had local data files, you would need to deploy them, also.

3. Copy the files listed below from tl@&\Clarion5\BINdirectory to the
C\CWICWEB\EXEC\WebTutdlirectory.

C5RUNx.DLL
C5TPSx.DLL
C5ASCx.DLL
C5DOSx.DLL

These are the support DLLs your application uses, including the runtime
library and database drivers.

This step is included here even though it may not be necessary under
Windows 95 (on your development machine) because these files are in
your PATH. However, NT server behaves differently. Each user has a
PATH and deploying the DLLs with the .EXE ensures that the user
accessing the application through a browser has the support files
available. This is explained in detaileploying Applications

4. Start the Application Broker byousLe-cLicking on CWBrokrl.exgor
CWBroker.exéf you have the full version of the Application Broker) in
the C:\CWICWEBirectory.

Note: For this tutorial, we will use the executable version of the
Application Broker. The ISAPI version works in a similar
manner, with a few differences. These are discussed in the
Application Broker chapter.

5. Start your favorite browser.

Next, test the Application Broker and your TCP/IP setup using the
Localhost loopback method:

6. On the Browser’s URL line, type:

http://Tocalhost/btest.htm
or
http://127.0.0.1/btest.htm

then pressnTer.

Note: If you have the broker set to a port other that port 80, you must
add that to the domain portion of the URL. For example:

http://localhost:8080/btest.htm
or
http://127.0.0.1:8080/btest.htm

n Broker Test - Microsoft Intemnet Explorer _ (O] x|
File Edit Wiew Go Favaites Help |

Address I@ hitp:/4127.0.0.1/cwpub/btest htm 'I

I
I
Jc=.=>.°]
I

Back Fanyard Stop Refresh Home Seaich Favortes History Channels | Fullscreen Mail

Links ATﬂpspeedHnme AEIarmnDnhne @\caTips EWSuperF’age ‘E SCMetwork Incunahula

I[=] ‘ ’7’7’7@ Interet zone o

If the test Web page displays correctly, you have the application broker
installed and running correctly. If not, you should return to the previous
chapter and reconfigure your setup.

Note: When using the ISAPI version of the broker, you would use
this URL to start the test page:

http://localhost/cwpub/btest.htm
or

http:/fyourdomain.com/cwpub/btest.htm

Next, start the application in the browser:
7. Onthe Browser’'s URL line, type:

http://Tocalhost/exec/webtutor/weborder.exe.0
or
http://127.0.0.1/exec/webtutor/weborder.exe.0,

then pressnTer.

Note: If you have the broker set to a port other that port 80, you must
add that to the domain portion of the URL. For example:

http://localhost:8080/exec/WebTutor/WebOrder.exe.0

Congratulations! Your first Web application is running.

Now you can explore this new application and compare it to the manner in
which it runs under Windows. You will notice that there are some minor
differences between the two, because of the platform, but it will look and

J File Edit “iew Go Favortes Help |
JAddress I@ hittp: /4jim200/ cws/cwlaunch, dIPEEF 20054 EBORDER . htm j
J 0 | @ Hm o3
Back e Stop Fiefrezh Home Search Fawortes Histoy Channels | Fullscree
JLlnks ATopspeedHome AEIanonDnIlne @IceTlps .EW'SuperF'age ﬂSCNetwork Incunabula
=
Application
File
Exit
Browse

Browse Customer Information File

Browse Product Information File

x|

Jud|
| [2 iterns remel ’_l_’_ 25 Local intranet zone A

feel very much the same.

8.

The rest of this chapter walks you through techniques for optimizing your
application for the Web platform. This will not only demonstrate some
features in the IBC templates, but will also show you how much power you

When you are finished, click on tBit hyperlink.

This closes the application. Notice the browser now displays a blue Web
page with a hyperlink to restart the application. This page is created by
the application broker automatically unless you specify a page to return

to on exit in the Global Internet Application Extension template.

Leave your browser open with the restart page displayed. You will use

this page to restart your application.

have when you finally do write your own code to provide some “non-
standard” functionality.

Continue on! You've only just skimmed the surface of Clarion Internet

Connectand there’s a lot more!

Faster is Better—Optimizing your Application

The Web introduces one additional programming challenge—bandwidth
conservation. It is important to utilize all the methods available to reduce the
amount of data transmitted over the network. Many users connect to the Web
using a modem and telephone lines, which is a relatively slow network
connection.

Internet Connect is Designed to Conserve Bandwidth

Clarion Internet Connect was designed to conserve bandwidth. The Java
controls it creates most often update dynamically on the client browser
without the need to refresh the entire page. This form of “dynamic HTML”
requires only a small amount of data to be transmitted. This is known as a
Partial Refresh. When a page is partially refreshed, only the controls which
are enabled to accept updated data redisplay. Entry Controls, Java String
controls, Java Image controls, and Java Listboxes are usually enabled to
update dynamically.

For the same reason (bandwidth conservation) many controls trigger a
Partial Refresh. For example, selecting a new record in a listbox triggers a
Partial Refresh, allowing most controls to redisplay current data.

Partial Refresh versus Full Refresh

There are some instances, however, where a Partial Refresh is appropriate
but is not the default. Changing events to trigger a Partial Refresh instead of
a Full Refresh, where appropriate, is one of the best ways to optimize your
Web applications.

There are many cases when a Partial Refresh is appropriate but a Full
Refresh is the default. This is because the templates cannot anticipate every
possibility and must favor the safer Full Refresh instead of the faster Partial
Refresh.

For example, a multi-sorted list which has no additional controls populated
on the Tabs performs better if you use Individual Control Overrides to
specify a Partial Refresh when a new tab is selected. This will only change
the data in the listbox instead of replacing the entire page.

Let's look at the application we just created.

1. Task-switch back to your browser.
2. cLick on the restart hyperlink.

The WebOrder application appears inside the browser.
3. cLick on the Browse Customer Information File hyperlink.

The Browse the Customer File “window” appears in the browser. Notice
that the window contains a listbox and two tabs. Clicking on a tab
changes the sort order of the list.

cLick on each of the tabs and notice the behavior of the Web page.

You should have noticed that the entire page was replaced to redisplay
the list. This is the default behavior of sheets and tabs. In the next section
we will override this default behavior.

cLick on the blue X button at the right end of the toolbar to close the
Browse window, then click on tHexit hyperlink to exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Internet Procedure Extension Template

In this section, we will override the SHEET control’s default action to
optimize it for performance over the Web.

6.
7.

Starting Point:
You should have the weborder.app open in the Clarion
development environment .

In the Application Tree, select tkategory tab.

This sorts the procedures by category. Notice there are four procedures
with category—Browse

Highlight theBrowseCustomeprocedure, then press thmperties
button.

This opens th@rocedure properties window.
Press thénternet Options button.
Select theControls Tab.

Highlight the Sheet controPCurrentTab)n thelndividual Control
Options list.

Press th@roperties button, then select thevents tab.
Highlight theAcceptedevent, then press tiReoperties button.

Override the Default Full Refresh with Partial Refresh

1.

Check theOverride default action box, then seled®artial page refresh
from the drop-down list.

46

CLARION 5 INTERNET CONNECTM User’s GUIDE

Press th®©K buttons on all the windows until you return to the
application tree (4 times).

Repeat these steps for the three other Browse procedures.
ChooseProject OO Make (or press thdlakebutton on the toolbar).
Your Web application is ready to deploy once again.

Open Windows Explorer (or Windows NT Explorer).

Copy Weborder.exe from tt@\Clarion5\Examples\WebTutalirectory
to theC\CWICWEB\EXEC\WebTutdatirectory.

This time you need only deploy the application, the DLLs have not
changed.

Let's run the application to see how the changes we made affect its behavior.

See the difference

1.

2.
3.
4

Task-switch back to your browser.

Start the application in the browser by clicking on the Restart hyperlink.
cLick on theBrowse Customer Information File hyperlink.

cLick on each of the tabs and notice the behavior of the Web page.

You should notice that the list now re-displays data without sending an
entire page.

Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Looks are Important—Adding Graphics

The Web has produced a colorful, enjoyable medium for computer users.
Many Web sites are designed to provide both content and an attractive
interface. Clarion Internet Connect has support for the most commonly used
methods of employing graphics and colors in Web pages.

In this section we will add a background image to the pages in which the
application’s windows appear. This provides a back-drop for the running
program and helps to visually indicate the portion that is the application and
the portion that is not.

This section of the tutorial is not intended to teach you page design or artistic
methods. Ths section is designed to show you how to use the template
interface to create the look-and-feel you want.

Internet Application Extension Template

First, we will add a background image:

Starting Point:
You should have the weborder.app open in the Clarion
development environment .

1. Inthe Application Tree, press ttiobal button.

This opens th&lobal Properties window.
2. Press th&xtensions button.

This opens th&xtensions and Control Templates ~ window.
3. HighlightInternet Application Extension.

4. InthePage area, press the ellipsis (...) button nex@#okground
Image.

This opens the standard Windows file dialog.
5. SelectCrumpled.gif then press theK button.

This adds a tiled image to the Web page background. The image is of a
crumpled piece of grey paper. Keep in mind that this image file will need
to be deployed.

6. IntheWindow area, press the ellipsis (...) button nex#okground
Color .

This opens the standard Windows color dialog.
7. Select the&ilvercolor, then press thek button.

This adds a background color attribute to the HTML representation of
the application’s window. In addition to adding the color, this also
prevents the background image from showing through.

E] Extension and Control Templates _ O] x|

Hws| Internet Application Extension |

Window |Qontr0| | MOl IAdganc:edI Cl_assesl ik

rPage
F’s Center window on page

Background colar: |CULDF|:NDNE J
Background image: ICHUMPLED.GIF J
rwfindow

Background colar: I COLOR:Silwer J

Background image: J

Window border width: 2 E

Hel
rpEnabIe help for internet applications
[Helpids are links within a baze documert

URL of help documents: I
Help windaw style I

window Components... |

Insert | Delete

Help | Ok | Cancel I Apply I

8. Press th@®K button on the&Extensions and Control Templates and the
Global Properties window.

Make, Deploy, and Run the Application

1. ChooseProject O Make (or press thdMakebutton on the toolbar).
Your Web application is ready to deploy once again.
2. Open Windows Explorer (or Windows NT Explorer).

3. CopyWeborder.exérom theC:\Clarion5\Examples\WebTutalirectory
to theC:\CWICWEB\EXEC\WebTutalirectory.

4. CopyCrumpled.giffrom theC:\Clarion5\Examples\WebTutalirectory
to theC:\CWICWEB\Publidirectory.

5. Task-switch to your browser and restart the application. Notice the new
look.

In this chapter we learned how to make a new application and make some
basic changes to optimize it for performance and appearance when running
over the Web. In the next chapter, we will Web-enable an existing
application, so you can learn to publish any of your applications on the
Web.

TuTORIAL— WEB-ENABLING AN
EXISTING APPLICATION

1

Porting an existing Clarion application to the Web is just as easy as creating
a new Web application.

In this chapter we will use WebTree. APP.

In this chapter, you will:

o Use the IBC templates to port an existing Clarion application to the
Web.

o Compile and deploy the application, then run it in a browser.
o Learn about using Tree controls on the Web and deploying icons.

o Optimize the Tree display using techniques similar to those used in the
first tutorial.

This should all take about fifteen minutesBy the end of this chapter,

you’'ll have a complete application for a simple order entry system using a
different interface than the application used in the first tutorial.

Let’s get started!

Using the Global Internet Application
Extension Template

Porting an Application to the Web

Starting Point:
You should have the Clarion development environment open.

This tutorial assumes that you installed Clarion in C:\Clarion5 and the
Application broker in C\CWICWEB. If you used a different directory, you
will have to modify the instructions accordingly.

Web-enabling a Clarion application

1.

On thePick dialog, press th@pen... button
This opens th®pen dialog.
Select théApplicationtab.

Select theC:\Clarion5\Examples\WebTutalirectory from the
Directories list, seledVebTree.apphen press th@pen button.

This opens th@pplication Tree dialog.

In the Application Tree, press tkeobal button.

This opens th&lobal Properties window.

Press th&xtensions button.

This opens th&xtensions and Control Templates ~ window.

Press thénsert button.

Highlight Internet Application Extensiothen press th8elect button.

This adds thénternet Application Extensiotemplate which
automatically adds thiaternet Procedure Extensidgemplate to each
procedure in the application.

Press th©K button on thé&Extensions and Control Templates and the
Global Properties windows.

Change to 32-bit

1.

In the Application Tree, press tReoject button.
This opens th@roject Editor window.

Press th@roperties button.

This opens th&lobal Options dialog.

In theTarget OS field, selectWindows - 32-bit

Web-enabled applications must be 32-bit.

4. Global Dptions

Global |Debug| Dptimi;el Defines | Link |

Title: I Generato

Target Type: IEXE LI
Target 05: fiwindowss - 32-bi |
Mermam Model: IEIarion LI
Run-Time Librany: ILocaI ;I

¥ Build Belease System

Cancel | Help |

Press th®K button on thaslobal Options and theProject Editor
windows.

That's all it takes to Web-enable an existing application!

Make and Deploy

1.

ChooseProject O Make (or press thdakebutton on the toolbar).
Your Web application is ready to deploy.

Press th©K button on the compile results window.

Open Windows Explorer (or Windows NT Explorer).

CopyWebTree.exéom theC:\Clarion5\Examples\WebTutalirectory to
the C:A\CWICWEB\EXEC\WebTutalirectory.

Copy all the icon files (*.ICO) from th&:\Clarion5\Examples\WebTutor
directory to theC:\CWICWEB\Publidirectory.

These icons are used on the Toolbar buttons and in the Tree control. They
must be deployed to the \PUBLIC directory in order for the browser to
display them. The icons in the Standard toolbar which the earlier tutorial
application used are compiled into the Java classes and need not be
deployed.

Run the application

1.

2.

Start the Application Broker hyousLe-cLicking on CWBrokrl.exdor
CWBroker.exéf you have the full version of the Application Broker) in
the C:\CWICWEB\ directory.

Note: Asin the first tutorial, we will use the executable version of the
Application Broker. The ISAPI version works in a similar
manner, with a only few differences. These are discussed in the
Application Broker chapter.

Start your browser.

3.

Next, start the WebTree.exe application in the browser.
(http://localhost/exec/webtutor/webtree.exe.0)

Examine the application

You should notice that this application looks a little different than the
previous application. It uses a toolbar but no menu. This is a common
interface in Web applications, so this technique bears demonstration here.

1.

cLick on theOrders button.

TheBrowse Customer Orders‘window” appears in the browser.
Notice that the window contains a Tree control and two buttons to
Expand All andContract All .

cLick on theExpand All andContract All buttons and notice the
behavior.

Notice that expanding and contracting the tree refreshes the entire page.
We will use the same partial refresh technique you learned in the first
tutorial to optimize this behavior.

Exit the application (by pressing the blue X).

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Overriding the default action

In this section, we will override the BUTTON control’s default action to
optimize it for performance over the Web.

Starting Point:
You should have the WebTree.APP open in the Clarion
development environment.

Highlight theBrowseCustomeprocedure, then press theperties
button.

This opens th@rocedure properties window.
Press thénternet Options button.
Select theControls Tab.

Highlight the Button controldExpand)in theindividual Control
Options list.

Press th@roperties button, then select thevents tab.
Highlight theAcceptedevent, then press tiReoperties button.

Check theOverride default action box, then seled®artial page refresh
from the drop-down list.

Press th®K buttons on th&vents andindividual Overrides windows.

9. Highlight the Button control3Contract)in thelIndividual Control
Options list.

10. Press th@roperties button, then select thgvents tab.
11. Highlight theAcceptecdevent, then press tifeoperties button.

12. Check thedverride default action box, then seled®artial page refresh
from the drop-down list.

13. Press th®K buttons on all the windows until you return to the
application tree (4 times).

Make and Deploy

1. ChooseProject O Make (or press thdMakebutton on the toolbar).
Your Web application is ready to deploy once again.

2. Press th®K button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy Weborder.exe from th&\Clarion5\Examples\WebTutalirectory
to theC:\CWICWEB\EXEC\WebTutalirectory.

This time you need only deploy the application, the icons have not
changed.

Let's run the application to see how the changes we made affect its behavior.

See the difference

1. Task-switch back to your browser.

2. Start the application in the browser by clicking on the Restart hyperlink.
3. cuick on theOrders button again.
4

cLick on theExpand All andContract All buttons and notice the
behavior now.

You should notice that the tree now re-displays the Tree data without
sending an entire page.

CLARION 5 INTERNET CONNECTM UserR’'s GUIDE

[} Browse Customer Drders - Microsoft Intemnet Explorer

02 (B0ES)
48 Copper Tubing 172 " per Ft (48 @0 26)$12.48
D Sclvert (neral Spirz) § Gal, (1 @ 33,49 53399
Sahvert (foetone) 1 Gal 12/Case (2 @ 86.78) §173.50

D Turpentine 1 0 12MCase (2 @ 12.56)§25.12
0

€ (0 (@ 0.00) 0.0
[Order 003 (373085)
[] Order 004 (373186)
£ Alied Sign, Inc. (0001)
B[Bamett Management Partners (0002)
Cami

5. Exit the application.

Congratulations. You are well on your way to developing Web applications.
In the next chapter, we will discuss some advanced options you have at your
disposal with Internet Connect.

TUTORIAL— ADVANCED WEB ro
PROGRAMMING TECHNIQUES 0

Now that you have learned how to create a Web application and how to port
an existing Clarion application to the Web, you have all the skills you need
to publish database applications on the Internet.

But, there is more you can do with Internet Connect. This chapter will show
you some of the advanced techniques you can use in your Web Applications.

For the rest of the tutorial, we will continue to use the WebTree example that
you used in the previous chapter.

In this chapter, you will:

0

Add a Login window and use Cookies to “remember” a user’s login
name the next time the app is started.

Use a Code Template to Embed Static HTML.

Use a Code Template to Embed Dynamic HTML using a variable.
Use an Internet Embed point to write conditional HTML Code.
Password protect a procedure.

Add a Web Splash window to inform first time users that the Java
Support Library is downloading.

Use Embedded HTML to align an Image on the Web.

Use Individual Control Options to ensure embedded source code is
executed over the web.

Use embedded source code to restrict Edit-In-Place when running over
the web.

This should all take about thirty minutes. By the end of this chapter,
you'll learn most of the methods available to customize of your Web
applications.

Let's continue!

Using Cookies

In this section, we will add a login window to allow users to identify
themselves. The application will use cookies to store that name and
“remember” the login name. The next time the user starts the application, the
prompt will not appear.

Starting Point:
You should have the WebTree.app open in the Clarion
development environment.

This tutorial assumes that you installed Clarion in C:\Clarion5 and the
Application broker in CACWICWEB. If you used a different directory, you
will have to modify the instructions accordingly.

Add a login procedure

1. Inthe Application Tree, highlight thdain procedure, then press the
Properties button.

This opens th@rocedure Properties window.
2. Press th&mbeds button.

This opens th&mbedded Source window.
3. Highlight the embed point as shown below:

7 Local Dbjects

: igwfindow [windowk anager] Window Manager
Irit FROCEDURE(LEYTE MIRTLAL

& DATA

; [E] PROCEDURE Loginfindow

El Shap-shot GlobalRequest

This point ensure that theginWindowis called before the window
opens.

4. Press thénsert button.
This opens th&elect Embed Type window.
5. Highlight Call a Procedurethen press thgelect button.

6. IntheProcedure to call field, typeLoginWindow then press theK
button.

7. Press th€lose button on th&Eambedded Source window and theéOK
button on thé°rocedure Properties window.

This adds th&oginWindowprocedure as @Doitem.

Add the login window

1. Inthe Application Tree, highlight tHeoginWindowprocedure, then press
the Properties button.

This opens th&elect Procedure Type window.

2. Highlight theWindow-Generic Window Handlethen press th8elect
button.

This opens th@€rocedure Properties window.
3. Press th&vindow button.
This opens thélew Structure window.
4. Highlight Window then press theK button.
This opens th&indow Formatter .

Design the login window

1. SelectPopulate O Field.
This opens th€ile Schematic dialog.

2. InthefFiles list on the left, highlighGlobal Datg then in theFields list
on the right, seledtoginNamethen press th8elect button.

This variable was created for you in the example application.
3. cuck on the window to populate the Prompt and Entry control.
4. SelectPopulate OO Control Template .
This opens th&elect Control Template window.
5. Highlight CancelButtorthen press th8elect button.
cLick on the window to populate the Cancel button control.
SelectPopulate O Control Template .
This opens th&elect Control Template window.
8. Highlight CloseButtorthen press thselect button.
9. cuick on the window to populate the Close button control.
10. Change the text of the the Close button contr@ko

2 Window Formatter _ O] x|
Extl Edi Contiol Alignment Menu Toolbar Populate Yiew Preview!
v x =& alas s s @ a
[Insrew b HE@m e e M EERE- BT W
|
Login Name:
||
Cancel oK
n -
1] I LI_I
[WINDOW(Caption] AT[..260,100) GRAY [Multi Select CTRL+eft click or CTRL+diag

11. Reposition the controls on the window as you see fit.
Add the “Cookie” code to save the LoginName

1. pousLE-cLIick on theOK button control to access tEebedded Source
points for the control.

2. Highlight theControl Events, ?Close, Accepted, Genertated Code
embed point then press tmsert button.

This inserts the codafter any generated code for the control.
3. Select thesetCookieode template then press Bmect button.
4. In theCookie name field, typeLoginName.

5. IntheNew Value field, typeLoginNamgor select thé.oginName
global variable from the File schematic using the ellipsis button).

Embedded Source _ O] x|
Exit Edit “iew MNavigate

B E=E GRS

I Inzert |
—@ Control Events

= “Cloze
-#] Accepted

>E| Generated Code
-#] Selected

2 Prompts for SetCookie

SetCookie('Logint ame' Logint ame]

=0
& —5et Cookie
- Thiz code template stores a cookie onto the client
Cookie name: LoginMame
Mew value: | Logint ame J
i |

6. Press th®K button
7. Press th€lose button on the&Embedded Source window.

Add the “Cookie” code to get the LoginName

1.

2.

© N o o

DOUBLE-CLICK ONn the window to access tBenbedded Source points for
the window.

Highlight the embed point as shown below then prestkslee button.

Local Objects

Thiswindow [Windowh anager] Window Manager
@8 TakeEvent PROCEDURE().EBYTEMIRTUAL

-#] DaTa

230 CODE

= &) SOURCE (IF EVENT(] = Event:MewPage)

i [l Topof CYCLE/EREAK support

= 2l Parent Call

i [l Battom of CYCLE/BREAK support

Highlight Sourcethen press thselect button.
Type in the source code below:

IF EVENT() = Event:NewPage IIf the Web page new
LoginName = Broker.Http.GetCookie('LoginName') !Get the cookie
DISPLAY

END

IF LoginName I If value was set
POST(Event:CloseWindow) I close the window

END

This code “gets” a cookie when the window is active. If it sucessfully
retrieves a cookie and sets the LoginName variable, it closes the window
(before the user sees it).

This means a user only needs to login once, then the server “recognizes”
the user the next time around.

Exit the Source editor and save the changes.

Press th&€lose button on th&Embedded Source window.
Exit the Window Formatter and save the changes.
Press th®©K button on thé°rocedure Properties window.

Make and Deploy

1.

ChooseProject O Make (or press thdakebutton on the toolbar).
Your Web application is ready to deploy.

Press th®©K button on the compiler window.

Open Windows Explorer (or Windows NT Explorer).

CopyWebTree.exérom theC:\Clarion5\Examples\WebTutalirectory
to theC\CWICWEB\EXEC\WebTutatirectory.

Run the application

1. Start the Application Broker byousLe-cLicking on CWBrokrl.exgor
CWBroker.exéf you have the full version of the Application Broker) in
the C:\CWICWEB\ directory.

Note: As in the first tutorial, we will use the executable version of the
Application Broker. The ISAPI version works in a similar
manner, with a only few differences. These are discussed in
the Application Broker chapter.

2. Start your browser.

3. Start the WebTree application in the browser
(http://localhost/exec/webtutor/webtree.exe.0).

Examine the application

The first time you run the application. You are prompted to provide a login
name. The next time you run it, you are not prompted, because the system
reads your cookie and the value of the global variable is set to the value in
the cookie.

1. Type in a name when the Login screen appears then@kess
2. Exit the application
3. Restart the WebTree application in the browser.

Notice that the second time, you are not prompted to log in.
4. Exit the application

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Let's make another change to the application to display the user’s
LoginName using th®ynamic HTMLcode template.

Embedding HTML

One of the most powerful features of the Internet Developer's Kit is the
ability to embed HTML code in the HTML pages which are output by the
Web-enabled application.

When you embed HTML code (using the special embed points added by the
Global Internet Application Extension template), it is inserted at the
specified location in the HTML returned to the browser which executed the
application.

Starting Point:
You should have the Clarion development environment open
and open the WebTree.app application.

Adding Dynamic HTML using a variable

We have written the code needed to set and retrieve a user’s login name and
store it in a global variable. Now we will display that name on the Web page
below the HTML representation of the window.

1. Inthe Application Tree, highlight tHdain procedure, then press the
Properties button.

This opens th@rocedure Properties window.
2. Press th&mbeds button.
This opens th€mbedded Source window.

3. Highlight thelnternet-Before the Closing </BODY> tagnbed point,
then press thimsert button.

This opens th8elect Embed Type window.
4. Highlight Dynamic HTML then press th8elect button.

5. In theDynamic Text field, type the following:
‘<<P>’ & CLIP(LoginName) & ‘ is logged in <</P>’

Prompts for DynamicHTML
Thiz termplate allows you to add dynamic HTML oK
Dynamic Text: "¢ P> "RCLIP[LaginM am

Cancel
Help

6. Press th®©K button on the code template window.

7. Press th€lose button on th&Embedded Source window and theéOK
button on thé°rocedure Properties window.

Make and Deploy

1. ChooseProject O Make (or press thdlakebutton on the toolbar).
Your Web application is ready to deploy.

2. Press the ® button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. CopyWebTree.exom theC:\Clarion5\Examples\WebTutalirectory
to theC:\CWICWEB\EXEC\WebTutalirectory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

If you have already run the application on this machine, you will not be
prompted to Log In. Instead, the server reads your “cookie” and sets the
LoginName global variable to that value. The LoginName variable now
displays on the Web page below the toolbar buttons.

2. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Let's make some more changes to the application using Embedded HTML.

Adding Static HTML

In the last section, we added HTML code that was constructed using a
combination of text and variables. In this section we will use the Static
HTML code template to add HTML code that will remain static.

We will use this to add a link at the bottom of the page that will allow users
to Email the Webmaster with comments or questions about the application.

1. Inthe Application Tree, highlight thdain procedure, then press the
Properties button.

This opens th@rocedure Properties window.
2. Press th&mbeds button.
This opens th&mbedded Source window.

3. Highlight thelnternet-Before the Closing </BODY> tagnbed point
and press thmsert button.

This opens th&elect Embed Type window.
4. Highlight Static HTML then press th8elect button.

5. IntheHTML to Insert box, typethe following:
<P>Comments?</P>

6. Press th®K button on the code template window.

7. Press th€lose button on th&Embedded Source window and theDK
button on thé°rocedure Properties window.

Make and Deploy

1. ChooseProject O Make (or press thiMakebutton on the toolbar).
Your Web application is ready to deploy.

2. Press th®K button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. CopyWebTree.ex&rom theC:\Clarion5\Examples\WebTutalirectory
to theC\CWICWEB\EXEC\WebTutatirectory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

You will notice the new link. If you click on the link, your browser
opens your Email client with a new preaddressed message.

2. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Adding conditional HTML in Clarion Source Code

A third method of inserting embedded HTML into your Web pages is by
using therarget.writeLn method in embedded source code. This allows you
to use Clarion code to write the HTML code. One benefit of using Clarion
code is the ability to control the HTML code you want to write. In other
words, you can utilize the logical structures in the Clarion language to
control what is written. You can write one line or another using an

IF. THEN..ELSE clause, or a CASE structure.

We will use this technique to display a random advertisement on the bottom
of the page using an EXECUTE structure.

1. Inthe Application Tree, highlight thdain procedure, then press the
Properties button.

This opens th€rocedure Properties window.
2. Press th&mbeds button.
This opens th&mbedded Source window.

3. Highlight thelnternet-Before the Closing </BODY> tagnbed point
then press thimsert button.

This opens th&elect Embed Type window.

4. Highlight Sourcethen press th8elect button.

5.

In theEmbedded Source editor, typethe following source code:

Strl"™ = "<<A HREF="http://www."'
Str2" = '.com"><<IMG SRC=""'
Str3" = """ BORDER=0><"

EXECUTE RANDOM(1,5)

Target.WriteLn(CLIP(Strl”
Target.WriteLn(CLIP(Strl"
Target.WriteLn(CLIP(Strl"
Target.WriteLn(CLIP(Strl"
Target.WriteLn(CLIP(Strl"

END

'topspeed’' & CLIP(Str2™) & SELF.Files.GetAlias('l.GIF') & Str3")
'icetips’ & CLIP(Str2") & SELF.Files.GetAlias('2.GIF') & Str3")
'finatics' & CLIP(Str2") & SELF.Files.GetAlias('3.GIF') & Str3")
'flpanthers' & CLIP(Str2") & SELF.Files.GetAlias('4.GIF') & Str3")
‘flamarlins' & CLIP(Str2") & SELF.Files.GetAlias('5.GIF") & Str3")

NN N NN
R0 o o o o

Note: You can copy and paste this text from chap4.txt in the
\webtutor directory.

Exit the Source editor and save the changes.

Press th€lose button on the&Embedded Source window and thedK
button on thé°rocedure Properties window.

Make and Deploy

1.

ChooseProject O Make (or press thdakebutton on the toolbar).
Your Web application is ready to deploy.

Press th®©K button on the compiler window.

Open Windows Explorer (or Windows NT Explorer).

CopyWebTree.exérom theC:\Clarion5\Examples\WebTutalirectory
to theC\CWICWEB\EXEC\WebTutatirectory.

Copy the GIF files (*.gif) from th€:\Clarion5\Examples\WebTutor
directory to theC:\CWICWEB\Publidirectory.

Examine the application

1.

Restart the WebTree application in the browser (click on the Restart
hyperlink).

You will notice the new image and link. Each time you start the
application, a random ad appears.

Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Covering the Download with a Splash Window

In order for a browser to “run” a Web-enabled application, the Java Support
Library (JSL) must be available to the client browser. First-time users must
download either Clarion.CAB (for Microsoft Internet Explorer) or
Clarion.ZIP (for Netscape). In most browsers, the JSL is only downloaded
once and remains cached (until the user clears that cache). Although the JSL
is very compact for the degree of functionality it provides, it can still take
several minutes to download over a 28.8 modem. With that in mind, we will
use a “splash screen” window to alert first-time users that the download is in
progress. By placing a Java Button on that window, we can prevent users
from continuing until the JSL is downloaded and the Java button is
initialized.

1. Inthe Application Tree, highlight thdain procedure, then press the
Properties button.

This opens th€rocedure Properties window.
2. Press th&mbeds button.

This opens th€mbedded Source window.
3. Highlight the embed point as shown below:

-1 Local Objects
—-E8 Thiswindow [WindowManager) Windaw Manager
—@ Init PROCEDURE().BYTE WIRTUAL
© - Data
) N
. B PROCEDURE Loginwindow
=E| Snhap-shot GlobalFequest
=E| Parent Call

4. Press thénsert button.
This opens th&elect Embed Type window.
5. Highlight Sourcethen press thg8elect button.

6. IntheEmbedded Source editor, type the following source code:
IF WebServer.Active THEN Splash.

This makes sure that ti$plashprocedures only called when the
application is running over the Web.

7. Make sure this embed is listed before the call td_tggnWindow
procedure using the up or down button.

--[E@ Local Objects

S Thiswindow [Windowh anager] Window Manager
Irit FROCEDURE().BYTE VIRTUAL
@] DATA
#] CODE
[SOURCE [IF W/
:-[E PROCEDURE Logirwindaw
-] Snap-shat GlobalR equest
2o Parent Call

active THEM Splash.|

This ensures that ttgplashproceduras called before any other window
opens.

8. Press th&€lose button on th&Embedded Source window.
9. Press th@rocedures button.

This opens th€rocedure window.
10. Highlight Splash then press theK button.

This connects th8plashprocedure to th#ain procedure in the
Application Tree. This is necessary if your application is using Local
MAPs.

Changing the BUTTON to a Java Button

The Splashwindow contains some text, a button, and an IMAGE control.

The BUTTON was populated as a CloseButton control template with the text
changed t@€ontinue. Since the button is created as an HTML button by
default, you will specify otherwise. We want it to be a Java button so that it
will not be available to the end user until the JSL has downloaded.

1. Inthe Application Tree, highlight tHgplashprocedure, then press the
Properties button.

2. Press thénternet Options button.
3. Select theControls tab.

4. Highlight ?Closein theindividual Control Options list, then press the
Properties button.

5. Select theClasses tab.

6. Check theOverride default Class box, then select
theWebJavaButtonClagsom theClass Name drop-down list.

I ido fo £
Display | Html | Events Classes I
Cla Cancel
‘ehl avabBl Class

¥ Override default class
Class Name:

Header file:

Implementation file: I J

7.

Press th®K button.

Leave thenternet Options window open. We will use it in the next section.

Centering the Image on the Splash window

The Splashwindow’s IMAGE control is positioned so that is is centered
horizontally in the window. This portion of the tutorial will add some HTML
code to ensure that the IMAGE remains centered when running over the

Web.
1. Highlight ?Imagelin thelndividual Control Overrides list, then press
theProperties button.
2. Select thedTML tab.
This window allows you to enter HTML code before and after a control.
This HTML code only affects the control when running over the Web.
3. IntheHTML before control box, type:
<CENTER>
4. IntheHTML after control box, type:
</CENTER>
5. Press th®©K buttons on all the windows until you return to the

Application Tree (3 times).

Make and Deploy

1.

ChooseProject O Make (or press thdakebutton on the toolbar).
Your Web application is ready to deploy.

Press th®K button on the compiler window.

Open Windows Explorer (or Windows NT Explorer).

CopyWebTree.ex&rom theC:\Clarion5\Examples\WebTutalirectory
to theC:\CWICWEB\EXEC\WebTutatirectory.

Examine the application

1.

Restart the WebTree application in the browser (click on the Restart
hyperlink).

You will notice theSplashwindow now appears before any other
window.

Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Using Partial Refresh to Update Controls

In Windows applications, programmers often embed code to update one
control when the value of another control changes. For example, you might
embed code to change the total of a line item when the quantity of items
changes. The Webtree application has code like this idghateltems

procedure. The embedded code is tied to the EVENT:Accepted on each
control. In other words, when the user changes the value in a control and tabs
off it or selects another control with a mouse click, the code is executed.

When an application runs over the Web, ENTRY controls are processed on
the browser by default. In other words, there is no interaction between the
browser and the server application—unless you change the event handling
options for that control. In this section, you will change the action for three
controls to ensure that embedded code is executed on the server for an
Event:Accepted for these controls.

1. Inthe Application Tree, highlight tHépdateltemsprocedure, then press
theProperties button.

This opens th€rocedure Properties window.
2. Press thénternet Options button.
3. Select theControls tab.

4. Highlight ?ITEM:ProdCodein thelndividual Control Options list, then
press théProperties button.

5. Select the&vents tab.
6. Highlight Accepted,then press theroperties button.

7. Check theverride default action box, then select tii#artial page
refreshfrom theAction on Event drop-down list.

4 Individual Overmide for 2ITEM:ProdCode

Display [Html Events |C|_asses| oK |

Cancel

Accepted - Update:Partial

Help |

4 Events

4
Action on event: IF'artiaI page refresh vl
Cancel |

Help |
I I

8. Press th®K buttons on all the windows until you return to thiernet
Options window (twice).

9. Repeat the last 5 steps fITEM:Quantityand?ITEM:Price.

10. Press th®K buttons on all the windows until you return to the
Application Tree (twice).

Make and Deploy

1. ChooseProject O Make (or press thiMakebutton on the toolbar).
Your Web application is ready to deploy.

2. Press th©K button on the compile results window.

3. Open Windows Explorer (or Windows NT Explorer).

4. CopyWebTree.ex&rom theC:\Clarion5\Examples\WebTutalirectory
to theC\CWICWEB\EXEC\WebTutatirectory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

Press th®rdersbutton.

Press the Expand All button.

Highlight one of the line itens (the green lines).
Press th€hange button

o0k wDbN

Change the amount in the Quantity Field, then press

Notice the Extended Total changes. If you change the Price field or
Product Code, the Extended Total also changes.

7. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Restricting Access to a Procedure

For the next part of the tutorial we will restrict access to a procedure using
the browser’s built-in authentication support and the Internet Procedure
Extension template’s password protection capabilities. When a password
protected procedure is called, the browser's authentication window displays.
You do not need to create a window to collect login information. Password
protection is based on an area, a username and a password. The “area” is the
protected procedure.

The browser prompts the user for a user name, and a password. These are
then sent to the program for validation. If the program accepts the password
(i.e., it RETURNS TRUE from theebwindow.validatePassword method), the

new page is displayed, otherwise the browser prompts again. After three
attempts the browser displays a message informing the user that access is
denied. This page automatically returns the user to the last active place in the
program after a few seconds.

Note: If the page has already been visited in the current session the
browser will normally supply the user name and the password
without prompting the user. This feature is built-in to most
browsers.

There are a few methods of password protectionseey Passwords the
Web Application Design Consideratiocisapter). We will use the more
advanced method—to override th®window.validatePassword method.

Starting Point:

You should have the Clarion development environment open
and open the WebTree.app application.

Password Protection

To implement password protection that is validated against a data file, you
must add the validation file to the file schematic, add the password challenge
in the Procedure Extension template, and override the
WebWindow.ValidatePassword method with your validation code.

Add the Validation File

1. Inthe Application Tree, highlight tHépdateProductgrocedure, then
press théroperties button.

This opens th€rocedure Properties window.
2. Press thé&iles button.
This opens th€&ile Schematic window.

3. Highlight theOther Filesthen press thmsert button.
This opens th&elect File window.

4. HighlightUserlist,then press th8elect button.

5. Press th®K button on thé~ile Schematic window.

Add the Password Challenge

1. Press thénternet Options button.
2. Select thddvanced Tab.
3. Check theRrestrict access to this procedure box.

Intemnet Dptions...
window |Qontr0|s |L"|D| Advanced | =]
Formatting Cancel
[T Oweride global settings
= Help
= =

Security
[Transfer over a secure connection

W Restrict access ta this procedure

Override the pazsword validation - or uze the fallawing
Prassword:

[T Case senzitive

Window refresh
[Enable windaw refresh an timer
o
B

4. Press th®K button.
5. Press th&mbeds button.
This opens th&mbedded Source window.

6. Highlight thelnternet- Password Validation Code Sect@mbed point
then press thimsert button.

This opens th&elect Embed Type window.

By entering code into thimternet- Password Validation Code Section

embed point you are overriding the default method for password
validation.

This embed point generates inside a method with two parameters:
UserName and Password, which it receives from the browser. The
method should return TRUE if the password is valid, and FALSE if it is
not valid. This allows you to look up the information in a file, or use any
other method you choose to validate the password.

7. Highlight Sourcethen press thgelect button.

8. In theEmbedded Source editor type the following source code:

USE:UserID = UserName

IF Access:UserList.Fetch(USE:KeyUserID) !Tookup UserName in file
RETURN(False)

END

IF USE:UserPassword = Password ICheck the password
RETURN(True)

ELSE
RETURN(False)

END

9. Exit the Source editor and save the changes.

10. Press th€lose button on th&Embedded Source window and theK
button on thé>rocedure Properties window.

Make and Deploy

1. ChooseProject O Make (or press thiMakebutton on the toolbar).
Your Web application is ready to deploy.

2. Press th®K button on the compile results window.

3. Open Windows Explorer (or Windows NT Explorer).

4. CopyWebTree.ex&om theC:\Clarion5\Examples\WebTutalirectory
to theC\CWICWEB\EXEC\WebTutatirectory.

Examine the application

1. Restart the WebTree application in the browsecK on the Restart link).
2. Press th@roducts button.
3. Press thénsert button to add a new product.
The Browser's authentication window appears.
4. In the UserName field, typered.
5. In the Password field, typ#&filma.

The values you entered are in the Userlist file. This file was precreated
with two users. Note that there is no procedure in this application to edit
this file. This is a common method of handling user password files

where only a system administrator has permission to add users. Feel free
to create procedures to update this file as you see fit.

6. Exit the application.

Restricting Edit-In-Place

The ABC Templates in Clarion allow you to enable Edit-In-Place with a

single checkbox. This feature, however, is not supported when running over
the Web. Over the Web, you must have a separate Form for updates. There is
a simple method to alternate between edit-in-place when running locally in
Windows and calling a form when running over the Web.

If you enable Edit-In-Placend specify an update procedure with the
BrowseBox control template, you have two-thirds of your work done. The
template generated code either calls a separate update procedure or does
edit-in-place depending on the value of k@ . AskProcedure property. Set
theBrun.AskProcedure property to O (zero) and you have Edit-in-Place; Set it
to 1 (One) and you call the update procedure.

To use Edit-in-place for local Windows and a form when running over the
Web:

1. Select thdBrowseProductprocedure, then press the Properties button.

2. Inthe UpdateButton section of tReocedure Properties window,
check thdJse Editin Place box.

Notice that an update procedure is already specified. Make sure to leave
that procedure named.

Next, embed the code to set the update action to call Edit-in-Place when
running in Windows and call the form when running over the Web.

3. Press th&€mbeds button.
This opens th&mbedded Source window.
4. Highlight the embed point as shown below then prestmsee button.

= Local Objects

=@ Thiswindow [windowManager) “Window Manager
& Init PROCEDURE() BTYTEMIRTUAL
DaTa

-

5. Highlight Sourcethen press thgelect button.

6. IntheEmbedded Source editor, type the following source code:

IF WebServer.Active
BRW1:AskProcedure =1
END

7. Exit the Source editor and save the changes.

8. Press th€lose button on th&Embedded Source window and theéOK
button on thé°rocedure Properties window.

Make and Deploy

1.

ChooseProject 0 Make (or press thélakebutton on the toolbar).
Your Web application is ready to deploy.

Press th©K button on the compile results window.

Open Windows Explorer (or Windows NT Explorer).

CopyWebTree.exérom theC:\Clarion5\Examples\WebTutalirectory
to theC:\CWICWEB\EXEC\WebTutalirectory.

Examine the application

1.

2.
3.

© N o o

9.

Restart the WebTree application in the browser (click on the Restart
hyperlink).

Press th@roducts button.

Press thénsert button to add a new product.
The Browser’s authentication window appears.
In the UserName field, typgéred. In the Password field, typ&ilma.
Notice that the Update Products form appears.
Exit the application.

Run the application under Windows.

Press th@roducts button.

Press thénsert button to add a new product.
Notice that Edit-In-Place is now enabled.

Exit the application.

Congratulations! You have sucessfully completed the tutorial portion of this
manual. You should have enough experience now to create robust Web
database applications.

The rest of the book explains the IBC Templates, the IBC Library, and
application design tips and techniques. Read on.

THE INTERNET BUILDER CLASS =
TEMPLATES /

This chapter covers the Internet Builder Class (IBC) Templates in the
Internet Developer’s Kit. These templates are designed to work with both of
the template chains included in Clarion (ABC and Clarion). For the most
part, the IBC Templates work in the same manner when used with either
template chain. The differences are noted in the section where those
differences appear.

The IBC Templates are made up of a single Global Application extension
template, a procedure template, and several code templates.

The Global Internet Application Extension template automatically adds the
Procedure extension template to every procedure in the application. This
allows you to Web-enable an entire application in a single step.

The combination of global and procedure level settings provides
customization capabilities at either level. To make a setting application-
wide, you set a Global option. To specify an option for a single procedure,
you make the setting for that procedure. Many of the Global and Procedure
settings are the same; the only difference istiogpeof the setting.

The Global Internet Application Extension
Template

The Global Internet Application Extension Web-enables a Clarion
application. It adds the functionality of generating dynamic HTML when the
application is accessed through the Application Broker. This template allows
you to specify the options to use when generating an HTML representation
of your windows and reports.

In addition, it automatically adds the Internet Procedure Extension to every
procedure in your application and any procedures subsequently added to the
application. The Procedure extension allows you to override many of the
global options for a specific procedure.

This template allows you to customize the appearance and behavior of your
application when it is executed over the Web. The settings you specify here
are global in nature; that is, they affect every procedure in your application.

Page Settings

You can override most of these settings on a procedure level using the
Internet Procedure Extension’s settings. In addition, some options can be
specified on a control-by-control basis. The combination of these three levels
of customization provides you with complete flexibility of design.

Note: None of these settings affect your application when running
locally as a Windows executable.

Window Settings

When run over the Web, an application’s current window is displayed inside
an HTML page (a Web page). The page settings allow you to specify a
background color or background image for the HTML page. The template
generated code calls th@window.SetPageBackground method to set these
properties.

Center Window on Page
Check this box to center the HTML representation of your
window inside the Web page. This addsiTer></CENTER>
HTML tags to the Web page.

Background color
You can specify the color to use for the Web page. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is no color (the equate is COLOR:NONE). This means
that the browser's default page color is used.

Background image
You can specify an image to display as the background for the
Web page. Specify an image filename or select a file from a

FILEDIALOG by pressing the ellipsis (...) button. The default is
no image.

When run over the Web, an application’s current window is represented by
an HTML <TABLE>. This allows you to set <TABLE> properties such as
background color and border width. The prompts on this tab allow you to
specify the appearance of the “window” (<TABLE>) portion of the HTML
page. The template generated code callgdhendow.setBackground method

to set these properties.

Background color
You can specify the color to use for your application’s window.
Specify a Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is no color (the equate is COLOR:NONE). This means
that the background color of the application’s window is used.

Help

Tip: You can also set colors for discrete parts of the window, such
as the toolbar. See Window Component Options .

Background image
You can specify an image to display as the background for your
application’s window. Specify an image filename or select a file
from a FILEDIALOG by pressing the ellipsis (...) button. The
default is no image.

Tip: Abackgr ound image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s window. Provide a small image that tiles to save
bandwidth.

Window border width
Specify the border width for your application’s window. The
default is 2, which makes a thin border. Specify a 0 border
width to display no border. The template generated code calls
thewebwindow.SetBorderwidth method to set the property.

Enable Help for internet applications
Check this box to enable links from Help buttons in your
application. (A Help button is a BUTTON with the STD:Hlp
attribute). If Help is enabled, a Help button will call a Web page
based on the Help ID of the current window. This document is
opened in a Browser window named “_HELP” which will cause
a new browser window to open or if a frame already has that
name, it displays the Help document inside that frame. The
template generated code useswdb@indow. SetHelpDocument
method or th@ebwindow.SetHe1purL Method to set the properties
you specify. You are responsible for creating the corresponding
HTML pages. Seémplementing Help in your Web Application.

URL of Help documents
The base location of the HTML files for your Help. For
example, your HTML Help files are located in a separate
subdirectory.

Help Window Style
You can optionally supply a style for your Help window.

Help Ids are links within a base document
If your Help is designed as a single document with mid-page
anchors, check this box. If not checked, the Help buttons
reference individual HTML pages.

Control

Help Document
The base document containing the mid-page anchors. This field
is enabled only when the Help Ids are links within a base
document box is checked.

Window Components

Press this button to specify the appearance of the window’s components
(e.g., TOOLBAR, MENU, and Caption areas). S¢iedow Component
Options

The prompts on this tab allow you to set the defaults for generating the
HTML code that represents each of your application’s controls.

Tip: In ad dition to the settings here, you can set control options for
individual controls in the procedure template’s Internet
Options. See Individual Overrides for a Control

General

If control disabled
Specifies what to display on the browser when a window control
is disabled. This option is provided because most HTML
controls do not support disabling. This sets the
WebWindow.DisabledAction property.The choices are:

Hide
Hides any disabled controls (the default).

Hide if cannot disable
Hides any disabled control when it cannot be
disabled on the Web page. Most HTML controls
cannot be disabled.

Show Displays any disabled controls. It appears normally
(i.e., it will appear to be enabled), but changes made
to the control will not affect the underlying
application.

Drop listboxes

Replace with Java non-drop list
Allows you to replace a drop-down list with a page-loaded Java
Listbox. If your drop-down lists need to display more than one
column, use this option.

Sheets

MDI

Border width
Specify the border width for SHEET controls. The default is 2,
which makes a thin border. Specify a 0 border width to display
no border. This sets thiebwindow.SheetBorderWwidth property.

Options

Border width
Specify the border width for OPTION controls. This only
applies to OPTIONs with the BOXED attribute. The default is
2, which makes a thin border. Specify a 0 border width to
display no border. This sets ti@window.0ptionBorderWidth

property.
Groups

Border width
Specify the border width for GROUP controls. This only applies
to GROUPs with the BOXED attribute. The default is 2, which
makes a thin border. Specify a 0 border width to display no
border. This sets th@bwindow.GroupBorderiidth property.

This section determines the manner in which Application Menus and
Toolbars are handled.

Tip: For control over specific Menu or Toolbar items, set the MDI
overrides in the Frame Procedure’s Internet Options.

Frame Menu

This section determines the manner in which Application Menus are
handled. This allows you to specify which global menu options are displayed
on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Menu ItemsAll menu choices appear on child windows.

No Menu ItemdNo menu choices appear on child windows.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any code in the Application Frame’s
ACCEPT loop for menu items. If not checked, any embedded
code implemented in the Frame’s ACCEPT loop is automatically
implemented in the child procedure.

Frame Toolbar

This section determines the manner in which Application Toolbar controls
are handled. This allows you to specify which global Toolbar controls are
displayed on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Toolbar Items
All Toolbar items appear on child windows.

Standard Toolbar Only
Only the Standard Toolbar items appear on child
windows. These are the buttons added by the
FrameBrowseControl template.

No Toolbar Items
No Toolbar items appear on child windows.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any code in the Application Frame’s
ACCEPT loop for toolbar items. If not checked, any embedded
code implemented in the Frame’s ACCEPT loop is automatically
implemented in the child procedure.

Advanced

Horizontal Pixels per Char
The number of pixels to consider for a character’s width when
calculating the size to create Java applets and Images.

Vertical Pixels per Char
The number of pixels to consider for a character’s height when
calculating the size to create Java applets and Images.

Note: The numbers specified affect the overall appearance of the
generated HTML page. For example, increasing the value of
Vertical Pixels per Char will make the HTML Table cells taller.

Delta for grid snapping
The number of pixels to consider before repositioning a control.
Specify a value for X and a value for Y. Any time a control is
within this range, it is not repositioned.

Page to return to on exit
Optionally, specify the HTML page to return to when the
program ends. The template generated code calls the
WebServer.Init method to set th@bserver.PagetoReturnTo

property.

Classes

Time out (secondsT his specifies the maximum amount of idle time
(measured in seconds) before an application closes. The default
is 600 seconds (10 minutes). The template generated code calls
thewebserver.Init method to set th@bserver.Timeout property.

Sub directory for pages
The directory in which the application creates temporary
directories (a temporary directory is made for each active
connection) to write the dynamic HTML and graphic files. This
is also the directory in which to deploy graphic files. If you
provide a graphic in this directory, it is not extracted and written
to the temporary directory. This defaults to /PUBLIC. The
template generated code calls itbgi1esManager. 1nit method
to set the property. It is not appropriate to set this property at
runtime.

Classes Local to Application Broker
This specifies that the Java Support Library files are located in
the /PUBLIC directory below the broker directory. If you are
using multiple servers, you may want a single source from which
these files are to be retrieved. In that case, you would clear the
checkbox and designate the URL for the Java Support Library
files. This sets th@ebserver.JavaClassPath property.

Use Long Filenames
Check this box to allow long filnames to be created on the Web
server.

The Classes Tab lets you specify which classes (objects) the Templates use t
accomplish various tasks, and the source modules that contain the class
definitions. This approach gives you the capability to use as much of the IBC
Library as you want and as much of your own classes as you want.

To change the class for an item or override the class, highlight it in the list,
then press the Properties button.

Thelnternet Builder Class Library Referenfen CD in .PDF format) is a
complete guide to the classes used by the IBC templates. It provides
descriptions of all the classes, methods, and properties with examples for
each.

See AlsoClass Overrides, Global Window Component Options

Global Window Component Options

Caption

This is the area at the top of the “window” in the HTML page. This is the
portion representing the title bar.

Include caption

Check this box to display the Caption. If not checked, the
caption is not used. This sets tlewindow.CreateCaption

property.

Background color

You can specify the color to use for the Caption area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is Navy Blue (the equate is COLOR:Navy). If no color is
specified here and you specified a Window background color in
Window settings above, that color is used. If neither is specified
and the application’s WINDOW has a COLOR attribute, that
color is displayed in the browser. The template generated code
calls thewebcaption.setBackground method to set this property.

Background image

You can specify an image to display as the background for the
Caption area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebCaption.SetBackground Method to set this property.

Tip: Abackground image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s window caption area. Provide a small image that
tiles to save bandwidth.

Alignment

You can control the alignment of the text in the caption area. The
choices are Left, Center, or Right justification. The default is
Center. This sets thebcaption.ATignment property.

Font family name

This allows you to specify the typeface to display. Keep in mind
that the browser can only display fonts which are installed on the
client's machine. However most operating systems support font
substitution and will display the closest matching font. The
default is none which uses the browser’s default font. The
template generated code calls ihgaption.setFont method to

set this property.

Font size

Optionally, specify the point size for the Font displayed in the

caption area. The default is none which uses the browser’s
default font size. The template generated code calls the
WebCaption.SetFont Method to set this property.

Font color
You can specify the Font’s color for the Caption area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is white (the equate is COLOR:White).

Menu

This is the menu area at the top or side of the “window” in the HTML page.

Background color
You can specify the color to use for the Menu area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. If no color
is specified here and you specified a Window background color
in Window settings above, that color is used. If neither is
specified and the application’'s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template
generated code calls th@Menubar.setBackground method to set
this property.

Background image
You can specify an image to display as the background for the
Menu area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebMenubar.SetBackground Mmethod to set this property.

Tip: Abackgr ound image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s menu area. Provide a small image that tiles to
save bandwidth.

Alignment
You can control the position of the menu. The choices are Above
Toolbar (the default), Left of Window, or below the Toolbar.
When you use Above Toolbar, the menu is spread horizontally
across the top of the HTML page. When you use Below the
Toolbar, the menu is spread horizontally across the the HTML
page under the Toolbar area. When you use Left of Window, the
menu is spread Vertically to the left of the <TABLE>
representing the application’s window.

ToolBar

This is the toolbar area at the top of the “window” in the HTML page (below
the caption area).

Background color
You can specify the color to use for the Toolbar area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. If no color
is specified here and you specified a Window background color
in Window settings above, that color is used. If neither is
specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template
generated code calls th@Too1bar.SetBackground method to set
this property.

Background image
You can specify an image to display as the background for the
Toolbar area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebToolbar.SetBackground Method to set this property.

Create extra close button
Specifies when to provide a Close button for a window. This
button is in addition to any other buttons on the window. It is
provided to replace the System Close button automatically
provided by Windows but not automatically provided by a
browser. If your windows all have close buttons, you do not need
to provide an extra one. The choices are:

Never Never creates an extra Close button.

If window has system menu and no visible buttons
Creates a Close button only when the WINDOW has
a SYSTEM attribute and no other BUTTONS.

If window has system menu
Creates a Close button only when the WINDOW has
a SYSTEM attribute

Always Always creates a Close button.

Image for close
Specifies the icon to display for the Close button. Specify an
icon filename or select a file from a FILEDIALOG by pressing
the ellipsis (...) button. The defaultBXIT.ICO a small blue X,
(distributed with Clarion).

Client Area

Class Overrides

This is the area of the “window” in the HTML page representing the
application’s client area.

Background color

You can specify the color to use for your application’s client
area. Specify a Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. If no color
is specified here and you specified a Window background color
in Window settings above, that color is used. If neither is
specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template
generated code calls theciientArea.SetBackground method to

set this property.

Background image

Tip:

You can specify an image to display as the background for your
application’s client area. Specify an image filename or select a
file from a FILEDIALOG by pressing the ellipsis (...) button.

The default is no image. The template generated code calls the
WebClientArea.SetBackground method to set this property.

A backgr ound image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s client area. Provide a small image that tiles to
save bandwidth.

Override default class

To override the IBC class, check this box and specify the Class
Name, Header file (.INC), and Implementation file (.CLW) in
the fields below.

Class Name

Specify the name of the class to use or the default class name if
you wish to override the default class.

Header file

Specify a header file (the file containing the Class declarations)
or select a file from a FILEDIALOG by pressing the ellipsis (...)
button.

Implementation file

Specify an implementation file (the file containing the Class
definitions or or source code) or select a file from a
FILEDIALOG by pressing the ellipsis (...) button.

Internet Procedure Extension Template

This template allows you to customize the appearance and behavior of a
procedure when it is executed over the Web. The settings you specify here
are local in nature, that is they affect only this procedure. To change Global
Settings: press the Global Button on the Application Generator, then press
the Extensions button, and modify the settings for the Internet Application
Extension.

To modify the settings, press the Internet Options button on the Procedure
Properties window.

Note: None of these settings affect the way your application works
when running locally as a Windows executable.

Page Settings

When run over the Web, an application’s window is displayed inside an
HTML page (a Web page). The page settings allow you to specify a
background color or background image for the HTML page. The template
generated code calls th@window.SetPageBackground method to set these
properties.

Override Global settings
Check this box to override the Page settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Center Window on Page
Check this box to center the HTML representation of your
window inside the Web page. This adds <CENTER></
CENTER> HTML tags to the Web page.

Background color
You can specify the color to use for the Web page. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is no color (the equate is COLOR:NONE). This means
that the browser's default page color is used.

Background image
You can specify an image to display as the background for the
Web page. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image.

Window Settings

Help

When run over the Web, an application’s window is represented by an
HTML <TABLE>. The prompts on this tab allow you to specify the
appearance of the “window” portion of the HTML page which displays when
running the application over the Web.

Override Global settings
Check this box to override the Window settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Background color
You can specify the color to use for your application’s window.
Specify a Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is no color (the equate is COLOR:NONE), this means
that the background color of the application’s window is used.
The template generated code callswédy@indow.SetBackground
method to set this property.

Background image
You can specify an image to display as the background for your
application’s window. Specify an image filename or select a file
from a FILEDIALOG by pressing the ellipsis (...) button. The
default is no image. The template generated code calls the
WebWindow.SetBackground method to set this property.

Tip: Abac kground image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s window. Provide a small image that tiles to save
bandwidth.

Window border width
Specify the border width for your application’s window. The
default is 2, which makes a thin border. Specify a 0 border width
to display no border.

Override Global settings
Check this box to override the Help settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

URL of Help documents
The base location of the HTML files for your Help. For
example, your HTML Help files are located in a separate
subdirectory.

Help Window Style
You can optionally supply a style for your Help window

Help Ids are links within a base document
If your Help is designed as a single document with mid-page
anchors, check this box. If not checked, the Help buttons
reference individual HTML pages.

Help Document
The base document containing the mid-page anchors. This field
is enabled only when thdelp Ids are links within a base
document box is checked.

Window Components

Press this button to specify settings to specify the appearance of the
window’'s components (e.g., TOOLBAR, MENU, and Caption areas). These
settings override any corresponding Global settingsP8s=edure Window
Component Options.

Return if launched from browser
Closes the procedure when executed over the Web. This
effectively disables Web access to the procedure.

Controls

To Override Global settings:
Check the box to the left of an option to override the control
settings in the Internet Application Global Extension template.
Checking this box enables the prompt for that option.

General

If control disabled
Specifies what to display on the browser when a window control
is disabled. This option is provided because most HTML
controls do not support disabling. This sets the
WebWindow.DisabledAction property.The choices are:

Hide Hides any disabled controls (the default).

Hide if cannot disable
Hides any disabled control when it cannot be
disabled on the Web page. Most HTML controls
cannot be disbled.

Show Displays any disabled controls. It appears normally
(i.e., it will appear to be enabled), but changes made
to the control will not affect the underlying
application.

To override the
Global setting, check
the box

AN

Internet Options. ..

‘window Eantrals |Advanced| [FE]
General Cancel |
Lr If contral disabled: IHide contral v I
/ Cirop listboxe: Help |
/PI' Feplace with J ava non-drop list |

Sheet

/l; ™ Barder width: Iﬁ ‘
Optioh:

,{ Eorder width [bored): |2 = ‘
Group

~F T Border widh [bored): |2 =] ‘

rIndividual contraol optioh:

Propertiez |

Drop listboxes

Replace with Java non-drop list
This allows you to replace a drop-down list with a page-loaded
Java Listbox. If your drop-down lists need to display more than
one column, use this option.

Sheets

Border width
Specify the border width for SHEET controls. The default is 2,

which makes a thin border. Specify a 0 border width to display
no border. This sets thebwindow.SheetBorderWidth Property.

Options

Border width
Specify the border width for OPTION controls. This only
applies to OPTIONs with the BOXED attribute. The default is 2
for a thin border. Specify a 0 border width to display no border.
This sets th@ebwWindow.0ptionBorderWidth property.

Groups

Border width
Specify the border width for GROUP controls. This only applies
to GROUPs with the BOXED attribute. The default is 2, which
makes a thin border. Specify a 0 border width to display no
border. This sets th@bwindow.GroupBorderWidth property.

Individual Control Overrides

This section allows you to override the appearance or behavior of individual

controls in the window. Highlight the control to modify and press the
Properties button. Séedividual Overrides for a Control.

MDI
This section determines the manner in which Application Menus and
Toolbars are handled.
Tip: For control over specific Menu or Toolbar items, set the MDI
overrides in the Frame Procedure’s Internet Options.
Merge Frame Menu
Check this box to Merge the Frame’s Menu when running this
procedure.
Merge Frame Toolbar
Check this box to Merge the Frame’s Toolbar when running this
procedure.
For a Frame Procedure, you have additional optionsFisese Procedure
MDI Options
Advanced
Formatting

Override Global settings
Check this box to override the formatting settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Horizontal Pixels per Char
The number of pixels to consider for a character’s width when
calculating the size to create Java applets and Images.

Vertical Pixels per Char
The number of pixels to consider for a character’s height when
calculating the size to create Java applets and Images.

Delta for grid snapping
The number of pixels to consider before repositioning a control.
Specify a value for X and a value for Y. Any time a control is
within this range, it is not repositioned.

Note: The numbers specified affect the overall appearance of the
generated HTML page. For example, increasing the value of
Vertical Pixels per Char will make the HTML Table cells taller.

Security

Transfer over a secure connection
If checked, data is transmitted using a Secure Socket Layer
(SSL). This allows secure transactions on a procedure level.
Keep in mind that encryption has a marked effect on
performance. You should only enable security for procedures
which transmit sensitive data.

Note: This feature requires installation of the secure version of the
Application Broker. See the Application Broker chapter.

Restrict Access to this procedure
Check this box to password protect the procedure and enable the
two fields below.

Password
Specify a password or select a variable from the file schematic
by pressing the ellipsis (...) button. A static password provides
simple protection. For more information, 4g¢ging Passwords

Case Sensitive
Check this box to enforce case sensitive validation of the
password. If the box is not checked, case is ignored.

Window refresh

Show progress window
This controls the window associated with a Report or Process
procedure. It is not available for other procedure types. Check
this box to display the window associated with the Report
Procedure when running over the Web. If not checked, the
window is ignored. If the window in a Report Procedure
contains a Pause Button control template, the box is checked and
cannot be changed. In a Process procedure, the box is checked
and cannot be changed. This makes sure the window displays.

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached.
The choices are:

Partial Page refresh
Redisplays Java controls and HTML entry controls
to reflect current data.

Submit page Sends data to server application and redraws page
as instructed by the server application

Complete Page refresh
Redraws the entire page.

Enable Refresh on timer
Check this box to refresh the entire page or only the page data
based on a timer. A TIMER attribute on a WINDOW is
independant of this setting. This setting is used on the Web and
the TIMER attribute is used when the application runs under
Windows.

Tip: This feature should be used sparingly to ensure minimal
network traffic.

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached.

The choices are:

Partial Page refresh
Redisplays Java controls and HTML entry controls

to reflect current data.

Submit page Sends data to server application and redraws page
as instructed by the server application

Complete Page refresh
Redraws the entire page.

Individual Overrides for a Control

The prompts for individual control overrides change based on the type of
control and its attributes. Every possible override is listed here with the
conditional options noted.

Override Global settings
Check the box to the left of an option to override the control
settings in the Internet Application Global Extension template.
Checking this box enables the other prompts.

Display

If control disabled
Specifies what to display on the browser when a window control
is disabled. This option is provided because most HTML
controls do not support disabling. This sets the
IC:CurControl.DisabledAction property.The choices are:

Hide Hides any disabled controls (the default).

Hide if cannot disable
Hides any disabled control when it cannot be
disabled on the Web page. Most HTML controls
cannot be disbled.

Show Displays any disabled controls. It appears normally
(i.e., it will appear to be enabled), but changes made
to the control will not affect the underlying
application.

Hide if launched from browser
Check this box to hide the control when the application is run
over the Web. This allows you to disable display of some data or
remove some functionality for the Web version of your
application without removing it from the Windows version.

Autospot Hyperlinks
This option is available for LIST and STRING controls. If
checked, any data displayed which contains a valid hyperlink
(i.e., those beginning with http:, https:, ftp:, mailto:, news:,
telnet:, wais:, or gopher:) is made into a hyperlink jump.

Allow dynamic updates
This option is available for STRING controls. If checked, the
string control is created on the HTML page as a Java string
control which updates whenever a partial page update occurs.

HTML

Note: STRING controls with a variable as the USE attribute
automatically become Java String controls and do not need
this override option. This is only appropriate for a static
STRING which changes by a property assignment (e.g.,
?String1{PROP:Text} = ‘New Text').

Image Options

Update Image dynamically
This option is available for IMAGE controls. If checked, the
control is created on the HTML page as a Java Image control
which updates whenever a partial page update occurs.

Note: IMAGE contr ols with a variable as the USE attribute
automatically become Java Image controls and do not need
this override option. This is only appropriate for a static IMAGE
which changes by a property assignment (e.g.,
?Imagel{PROP:Text} = ‘New.gif").

Alternative text
Optionally provide alternative text to display while the image is
loading. This is added to the HTML IMG ALT= tag. Alternative
text displays while the graphic file is transferred to browser
(before the image displays) or instead of the image if the user
disables image display in the browser’s preferences.

Border width
This option is available for SHEET, OPTION (if boxed) and
GROUP (if boxed) controls. Specify the border width for the
control. The default is 2, which makes a thin border. Specify a 0
border width to display no border.

One of the most powerful features of the IBC Templates is the ability to
embed HTML code in the HTML pages which are output by the Web-
enabled application. This feature allows you to add any HTML code at
points before or after any control on the resulting Web page. This code does
not affect the application when it is running as a Windows executable.

Using Embedded HTML, you can write any HTML code supported by the
browser. You can insert your own custom JavaScript, Java applets, ActiveX
controls, Shockwave files, or other objects.

Optionally, you can check tHieRemove Default HTML generationbox to
supress generation of HTML for the control.

See alsoEmbedding HTML.

Events

This tab allows you to override the default event handling for a control. This
tab is only available for controls which generate events.

Every control has a default action. This determines how its events are
processed. For example, a command button’s default action is to submit the
page to the server application and return a fresh Web page.

The ability to override the default event handling when the application is
executed in a browser allows you to optimize the application for the Web
environment and ensure that all of your embedded code is executed at the
time you expect it to. For example, an entry control’'s events are processed on
the browser by default. This means that any code on the Event:Accepted for
an entry control is not executed until the page is submitted by a command
button or other control that submits a page. Using Individual control
overrides, you can specify a partial refresh on an Entry Control's Accepted
event and embedded code executes as it would when running locally (under
Windows).

By default, most controls which allow data entry have their events
processed on the browser. This means your embedded code would not
execute at the expected time (e.g., code in the Event:Accepted embed point
for a control would not execute until the OK button submitted the page). This
section allows you to override the Browser’s event handling.

To override a control’s event handling, highlight the event and press the
Properties button.

Override default action
Check this to override the default action for the control event.
Checking this box enables the other prompts.

Action on Event
Select the action to perform when the event occurs. The choices
are:

Process on Browser
Allows event handling to be handled locally on the
browser.

Partial page refresh
Specifies that all Java Controls and HTML Entry
controls should receive and display updated data.

Complete page refresh
Replaces the entire page.

Classes

The Classes Tab lets you specify which classes (objects) the Templates use t
accomplish various tasks, and the source modules that contain the class
definitions. This approach gives you the capability to use as much of the IBC
Library as you want and as much of your own classes as you want.

To change the class for an item or override the class, highlight it in the list,
then press the Properties button.

Override default class
To override the IBC class, check this box and specify the Class
Name, Header file, and Implementation file in the fields below.

Class Name
Specify the name of the class to use or the default class name if
you wish to override the default class.

If you choose another class from the IBC Library, you do nto
need to specify a Header or Implementation file.

Header file
Specify a header file (the file containing the Class declarations)
or select a file from a FILEDIALOG by pressing the ellipsis (...)
button.

Implementation file
Specify an implementation file (the file containing the Class
definitions or or source code) or select a file from a
FILEDIALOG by pressing the ellipsis (...) button.

Procedure Window Component Options

Caption

This is the area at the top of the “window” in the HTML page.

Override Global settings

Check this box to override the Caption settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Include caption

Check this box to display the Caption. If not checked, the
Caption is not used.

Background color

You can specify the color to use for the Caption area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is Navy Blue color (the equate is COLOR:Navy). If no
color is specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template
generated code calls thécaption.SetBackground method to set
this property.

Background image

You can specify an image to display as the background for the
Caption. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebCaption.SetBackground method to set this property.

Tip: Abac kground image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s window caption area. Provide a small image that
tiles to save bandwidth.

Alignment

You can control the alignment of the text in the caption area. The
choices aré.eft, Center or Rightjustification. The default is
Center

Font family name

This allows you to specify the typeface to display. Keep in mind
that the browser can only display fonts which are installed on the
client’s machine.

Font size

Optionally, specify the point size for the Font displayed in the

caption Area. The default is no size specified, which uses the
browser’s default font size.

Font color
You can specify the Font’s color for the Caption area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button.

Menu

This is the menu area at the top or side of the “window” in the HTML page.

Override Global settings
Check this box to override the Menu settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Background color
You can specify the color to use for the Menu area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
template generated code calls itB@enubar.SetBackground
method to set this property.

Background image
You can specify an image to display as the background for the
Menu area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebMenubar.SetBackground Method to set this property.

Tip: Abac kground image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s menu area. Provide a small image that tiles to
save bandwidth.

Alignment
You can control the position of the menu alignment. The choices
are Above Toolbar (the default) or Left of Window.

Toolbar

This is the toolbar area at the top of the “window” in the HTML page (below
the caption area).

Override Global settings
Check this box to override the Toolbar settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Client Area

Background color

You can specify the color to use for the Toolbar area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
template generated code calls throoibar. SetBackground

method to set this property.

Background image

Tip:

You can specify an image to display as the background for the
Toolbar area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebToolbar.SetBackground Method to set this property.

A backgr ound image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s toolbar area. Provide a small image that tiles to
save bandwidth.

Close button

Override Global settings

Check this box to override the Close button settings in the
Internet Application Global Extension template. Checking this
box enables the other prompts.

Create extra close button

Specifies when to provide a Close button for a window.

Image for close

Specify the icon to display for the Close button. Specify an icon
filename or select a file from a FILEDIALOG by pressing the
ellipsis (...) button. The default is exit.ico (distributed with
Clarion for Windows).

This is the area of the “window” in the HTML page representing the
application’s client area.

Override Global settings

Check this box to override the Client Area settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Background color

You can specify the color to use for the application’s client area.
Specify a Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
template generated code calls b 1ientArea.SetBackground
method to set this property.

100

CLARION 5 INTERNET CONNECTM UseR’s GUIDE

Background image

Tip:

You can specify an image to display as the background for your
application’s client area. Specify an image filename or select a
file from a FILEDIALOG by pressing the ellipsis (...) button.

The default is no image. The template generated code calls the
WebClientArea.SetBackground method to set this property.

A backgr ound image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s client area. Provide a small image that tiles to
save bandwidth.

Frame Procedure MDI Options

Application Menu

Override Global settings
Check this box to override the Menu MDI settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting Menu choices appear on child windows as specified
in the Global options.

All Menu ItemsAll menu choices appear on child windows.
No Menu ItemdNo menu choices appear on child windows.
Selected Menu Items

Allows you to select individual menu options from
the list below.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any embedded code in the Application
Frame’'s ACCEPT loop for menu items.

Application Toolbar

This section determines the manner in which Application Toolbar controls
are handled. This allows you to specify which global Toolbar controls are
displayed on “child” windows.

Override Global settings
Check this box to override the Toolbar MDI settings in the
Internet Application Global Extension template. Checking this
box enables the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting Toolbar controls appear on child windows as
specified in the Global options.

All Toolbar Items
All Toolbar items appear on child windows.

102 CLARION 5 INTERNET CONNECTM UseR’s GUIDE

Standard Toolbar Only
Only the Standard Toolbar items appear on child
windows.

No Toolbar Items
No Toolbar items appear on child windows.

Selected Toolbar Items
Allows you to select individual Toolbar items from
the list below.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any embedded code in the Application
Frame’s ACCEPT loop for toolbar items.

Code Templates

Dynamic HTML Code Template

This code template allows you to insert dynamic HTML code in any of the
Internet embed points. This template is only available for Embed points
which can write to the delivered HTML page at runtime.

You can specify any valid Clarion expression in the entry box. Any variables
used in the expression will use the current value at the time the HTML code
is written.
Note: When creatingy our expression to write HTML code, you must
handle special characters, such as <, by using two characters
in succession.

This template uses therget.writeLn method to write the value of the
expression to the delivered HTML page.

See alsoEmbedding HTML

Static HTML Code Template

This code template allows you to insert static HTML code in any of the
Internet embed points. This template is only available for Embed points
which can write to the delivered HTML page at runtime.

You can specify any valid HTML code in the entry box.

This template uses therget.uriteLn method to write the HTML code to the
delivered HTML page.

Note: If you use the Static HTML Code Template, special characters
are handled automatically.

See alsoEmbedding HTML

GetCookie Code Template

This template allows you to retrieve a cookie from the client's machine.

Cookie Name
Provide a name for the cookie. This is the name used in the
SetCookie Code template to write the cookie. If the cookie does
not exist, a null value is assigned to the Variable to Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the cookie is assigned to the variable.

See alsoSetCookie Code Template, Cookies (Persistent Client Data)

SetCookie Code Template

This template allows you to set a cookie on the client’s machine for later
retrieval.

Cookie Name
Provide a name for the cookie. This is the name to use in the
GetCookie Code template to retrieve the cookie. If a cookie of
the same name exists, it is overwritten.

New Value
Specify a value or select a variable from the file schematic by
pressing the ellipsis (...) button. This value is assigned to the
cookie.

See alsoGetCookie Code Template, Cookies (Persistent Client Data)

Cookies (Persistent Client Data)

Cookies are a method for Web servers to both store and retrieve information
on the client side of the connection. This allows a server to store data on the
client's machine and retrieve it later.

A server can send a piece of data to the client (browser) which the client
stores locally. This is known as a cookie (the name has no known origin).
Cookies contain a range of URLSs for which it is valid. Later, when the client
returns to a URL within that range, the server can query the cookie and use
that data. A server cannot retrieve information from other servers (i.e., a
server cannot query a cookie that is out of its domain range).

This mechanism is similar to the INI file storage and retrieval paradigm in
Windows (GETINI and PUTINI) and provides a method for identifying user

preferences, and other data. For example, an application which requires a
user to provide their name before entering can use a cookie to avoid the
Login process after the first visit.

Note: Cookies are machine specific so a client who accesses a site
from more than one machine will need to provide the cookie
information once for each machine so a cookie is stored on
the machine. In addition, cookies are browser specific, so a
client who uses more than one browser, will need to set and
get cookies for each browser.

Your Web-enabled applications can use cookies to store user preferences
such as the default city and state for new records. These settings can be
retrieved the next time the user runs the application over the Web.

See alsoGetCookie Code Template, SetCookie Code Template

AddServerProperty Code Template

This template allows you to set the value of the specified outgoing http item
in the HTTP header.

Property Name
Provide the property name to set.

Property Value
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the variable is assigned to the property.

See Also : GetServerProperty Code Template

GetServerProperty Code Template

This template allows you to get the value of the specified http item in the
HTTP header.

Property Name
Provide a name for the HTTP property. If the HTTP field does
not exist, a null value is assigned to the Variable to Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the property is assigned to the variable.

See Also : SetServerProperty Code Template

106 CLARION 5 INTERNET CONNECTM UserR’'s GUIDE

WEB APPLICATION DESIGN
CONSIDERATIONS

Q

Most common Windows application design rules apply to Web application
design. It is equally important to provide a consistent, understandable
interface under either platform.

Keep in mind that the Web “platform” is not Windows. Your interface should
be intuitive for users on all supported platforms. The Java controls in the
Java Support Library are intuitive, but you may want to provide a brief
explanation of how they work in your application to facilitate their use.

Bandwidth Usage Considerations

The web introduces one additional programming challenge—bandwidth
conservation. It is important to keep your windows simple and utilize all the
methods available to reduce the amount of network traffic. This section
provides some pointers, but is by no means complete. It is intended to give
you food for thought while designing applications.

Use Partial Refresh whenever possible

The use of a Partial Refresh, where appropriate, is the best way to optimize
your Web applications.

There are many times when a partial refresh is appropriate but a full refresh
is the default. This is necessary because the templates cannot anticipate evel
possibility. For example, a multi-sorted list which has no controls populated
on the Tabs performs better if you use Individual Control Overrides to

specify a Partial refresh when a tab is selected. This will only change the
data in the listbox instead of replacing the entire page.

To override a SHEETSs behavior for the example above, follow these steps:

1. From theProcedure Properties window, press thinternet Option
button.

2. Select theControls Tab.

3. Highlight the Sheet control in thedividual Control Options list
(the wizard generated SHEETS are usually called ?CurrentTab).

4. Press th@roperties button, then select tHevents tab.
5. Highlight theAcceptedevent, then press tiiroperties button.

6. Check the Override default action box, then sdbactial page refresh
from the drop-down list.

7. Press th®©K buttons on all the windows to save and exit.

One other aspect of Partial Refresh is its use to Update Controls over the
Web. In Windows applications, programmers often embed code to update
one control when the value of another control changes. For example, you
might embed code to change the total of a line item when the quantity of
items changes. The Webtree tutorial application has code like this in the
Updateltemgrocedure. The embedded code is tied to the EVENT:Accepted
on each control. In other words, when the user changes the value in a control
and tabs off it or selects another control with a mouse click, the code is
executed.

When an application runs over the Web, ENTRY controls are processed on
the browser by default. In other words, there is no interaction between the
browser and the server application—unless you change the event handling
options for that control. If you want to update controls over the Web, change
the action for controls to ensure that embedded code is executed on the
Event:Accepted.

Be frugal with controls

Populate as few controls as necessary on a window. This is good practice in
Windows application design and is even more important in a browser/server
implementation

When using listboxes, populate as few controls in the list as needed to
uniquely identify a record for a user. This reduces the amount of data sent to
fill the list. If you want to display more data for each record, you can
populate hotfields next to the listbox and they will update as the user scrolls.

Use graphics sparingly

This is a common rule for web design. You should limit the number of
graphics to ensure rapid page loading. In addition, you should reduce the file
size as much as possible to further save bandwidth usage. Many graphics
utilities have tools to adjust graphics files for web usage.

Covering the Download with a Splash Window

In order for a browser to “run” a Web-enabled application, the Java Support
Library (JSL) must be available to the client browser. First-time users must
download either Clarion.CAB (for Microsoft Internet Explorer) or

Clarion.ZIP (for Netscape). In most browsers, the JSL is only downloaded
once and remains cached (until the user clears that cache). Although the JSL
is very compact for the degree of functionality it provides, it can still take
several minutes to download over a 28.8 modem. With that in mind, you may
want to use a “splash screen” window to alert first-time users that the
download is in progress. By placing a Java Button on that window, you can
prevent users from continuing until the JSL is downloaded and the Java
button is initialized.

Create the Window and Change the BUTTON to a Java Button

Create a procedure using the Window Procedure template. These instructions
assume you have named your procedypsh.This window should

contains some text and a Close Button control template. You can change the
text on the BUTTON tc&ontinue. Since the button is created as an HTML
button by default, you should specify that you want it to be a Java button so
that it will not be available until the JSL has downloaded.

1. Inthe Application Tree, highlight the new procedure, then press the
Properties button.

2. Press thénternet Options button.
3. Select theControls tab.

4. Highlight the close button control template (the default narffi€lisse)
in thelndividual Control Options list, then press theroperties button.

5. Select theClasses tab.

6. Check theverride default Class box, then select
theWebJavaButtonClagsom theClass Name drop-down list.

Display | Hml |Evenls Classes I 0K

Cla Cancel
b |

¥ Overide default class

Class Name: I
Header file: ey

Implementation file: I J

7. Press th®K button.

Call the procedure before opening the Application Frame

1. Inthe Application Tree, highlight tidain procedure, then press the
Properties button.

This opens th@rocedure Properties window.
2. Press th&mbeds button.

This opens th€mbedded Source window.
3. Highlight the embed point as shown below:

- Local Objects
@@ Thiswindow [WindowManager) Window Manager

@@ Irit PROCEDURE(EYTE MIRTUAL
-8 DATA
3R CODE

: -E PROCEDURE Logirwindow
- Snap-shot GlobalFequest
[Parent Cal

4. Press thénsert button.
This opens th&elect Embed Type window.
5. Highlight Sourcethen press th8elect button.

6. IntheEmbedded Source editor, type the following source code:
IF WebServer.Active THEN Splash.

This makes sure that ti$plashprocedurds only called when the
application is running over the Web.

7. Make sure this embed is listed before the call to any other procedure
using the up or down button.

CHAPTER 8 WEB APPLICATION DESIGN CONSIDERATIONS 111

This ensures that tHgplashprocedurds called before any other
window opens.

--[E Local Objects

: higwindow (Windowt anager] Window Manager

@ Irit FROCEDURE().BYTE VIRTUAL

#] DATA

#] CODE

p=F SOURCE (IF weh clive THEM Splash |
[E] PROCEDLRE Lagiriw/indow

+- 2 Snap-shot GlobalR equest

2o Parent Call

8. Press th€lose button on th&Embedded Source window and theéOK
button on théProcedure Properties window.

9. Press th@rocedures button.
This opens th€rocedure window.
10. Highlight Splash then press theK button.

This connects th8plashprocedure to th#ain procedure in the
Application Tree. This is necessary if your application is using Local
MAPSs.

Cosmetic Design Considerations

Using Groups

When you populate a GROUP on a WINDOW, control declaration
statements do not necessarily end up inside the GROUP structure. This may
cause an HTML representation that does not look like the original window.
Make sure the controls you want inside the GROUP are actually inside the
GROUP structure.

In the first example below (Badwind), the control declaration statements are
all outside the GROUP structure. This window displays fine in Windows
because the AT attribute values control the position and size of the GROUP
box. When running over the Web, the GROUP box is an HTML <TABLE>
cell and is controlled by its contents.

Badwind WINDOW('Caption"),AT(,,260,120),GRAY
GROUP('Customer Info'),AT(5,9,205,102),USE(?Groupl),BOXED
END
PROMPT('Customer:'),AT(11,28),USE(?CUST:Name:Prompt)
ENTRY(@s30),AT(61,26)USE(CUST:Name),LEFT,REQ
PROMPT("Address:"'),AT(15,47),USE(?CUST:Address:Prompt)
ENTRY(@s30),AT(61,45),USE(CUST:Address),LEFT
PROMPT('City:'),AT(29,69),USE(?CUST:City:Prompt)
ENTRY(@s20),AT(61,67),USE(CUST:City),INS
PROMPT('State:"'),AT(25,88),USE(?CUST:State:Prompt)
ENTRY(@s2),AT(61,86),USE(CUST:State),LEFT,UPR

END

In the second example (Goodwind), the control declaration statements are
within the GROUP structure (i.e., between the GROUP and END statements)
and will display as expected when run over the Web.

Goodwind WINDOW('Caption'),AT(,,260,120),GRAY

GROUP('Customer Info'),AT(5,9,205,102),USE(?Groupl),BOXED
PROMPT('Customer:"'),AT(11,28),USE(?CUST:Name:Prompt)
ENTRY (@s30),AT(61,26)USE(CUST:Name),LEFT,REQ
PROMPT ("Address:"'),AT(15,47),USE(?CUST:Address:Prompt)
ENTRY(@s30),AT(61,45),USE(CUST:Address),LEFT
PROMPT('City:"'),AT(29,69),USE(?CUST:City:Prompt)
ENTRY(@s20),AT(61,67),USE(CUST:City),INS
PROMPT('State:"'),AT(25,88),USE(?CUST:State:Prompt)
ENTRY(@s2),AT(61,86),USE(CUST:State),LEFT,UPR

END

END

Using Images

Java Image controls update automatically when the value of its source
variable changes (i.e., whenever a partial page update occurs). To use this
feature for an IMAGE which changes by a property assignment (e.g.,
?Imagel{PROP:Text} = ‘New.qgif’), use Individual Control Overrides for the
Image Control and specify to update dynamically.

Graphic files used by IMAGE controls are extracted to the temporary
runtime directory for the connection unless they are found in the /PUBLIC
directory. The runtime library will extract files of various types, but most
browsers only support GIF and JPG formats. Therefore, you should limit the
graphic formats of IMAGE controls in a web-enabled application to those
two types. You could also choose to hide an IMAGE which uses a format not
supported by browsers using Individual Control Overrides. If an IMAGE is
based on a file that is not linked in, you should deploy the image file to the
application's directory.

You should provide alternative text for images (in Individual Control
Overrides). This is added to the HTML tag. Alternative text
displays while the graphic file is transferred to browser (before the image
displays) or instead of the image if the user disables image display in the
browsers preferences.

Icons used in LIST controls or on BUTTONS are not automatically extracted
and should be deployed to the /PUBLIC directory.

If you are referencing an image in HTML code, you must indicate the
location of the image file. If you are deploying under the EXE version of the
Application Broker you can prefix the filename with a leading forward slash
and deploy the image to the /PUBLIC directory. For exarpke src-"/
Loco.aIF">. If you are using the ISAPI DLL version of the Application

Broker, you must use thseLr.FILES.GETATias method to determine the virtual
path to the file. For example:

Target.WriteLN('<<KIMG SRC="' & SELF.Files.GetAlias('mygif.gif')& '">")

would find the myagif.gif file in any directory exposed to the server
application.

User Interface Design Considerations

MDI window access

Windows applications often use a Multiple Document Interface (MDI). This
allows several instances of an MDI child window to open. Each of these
Child windows is available and can receive focus using several navigation
methods (e.g., the Window menu). This is very convenient, but has some
implications when porting the application to the Web platform. A web page

in a browser is a single document, however, the underlying server application
can be an MDI application and allow multiple windows. Many windows

could be open on the server application, but the browser only displays the
current window. You should keep this in mind when designing your
application.

In a Web-enabled application, you can allow all menu and toolbar command
to be visible on child windows. This can be useful to allow a user to enter
different areas of the application without closing a child window to get to the
main menu or toolbar. This also has the potential pitfall of allowing a user to
open multiple instances of a procedure. Although only one will be visible at

a time, there could be several windows open. If there are two or more of the
same window open, it may appear to the user that the procedure did not close
when the Close button was pressed. For this reason, you should either restric
access to the Global Menu/toolbar or limit each MDI procedure to a single
instance using Thread limiting code. One technique of limiting threads is
demonstrated in one of the standard Clarion Examples—EventMgr.APP.

Restricting Edit-In-Place

The ABC Templates in Clarion allow you to enable Edit-In-Place with a

single checkbox. This feature, however, is not supported when running over
the Web. Over the Web, you must have a separate Form for updates. There is
a simple method to alternate between edit-in-place when running locally in
Windows and calling a form when running over the Web.

If you enable Edit-In-Placand specify an update procedure with the
BrowseBox control template, you have two-thirds of your work done. The
template generated code either calls a separate update procedure or does
edit-in-place depending on the value of the:. AskProcedure property. Set
thesrwn.AskProcedure property to O (zero) and you have Edit-in-Place; Set it
to 1 (One) and you call the update procedure.

To use Edit-in-place for local Windows and a form when running over the
Web:

1. Select the Browse procedure, then press the Properties button.

2. Inthe UpdateButton section of tReocedure Properties window,
check thdJse Edit in Place box.

Notice that an update procedure is already specified. Make sure to leave
that procedure named.

Next, embed the code to set the update action to call Edit-in-Place when
running in Windows and call the form when running over the Web.

3. Press th&mbeds button.
This opens th€mbedded Source window.

4. Highlight the embed point as shown below then presmsee button.
- Local Objects

@@ Thiswindow [WindowManager) Window Manager

@@ Inik FROCEDURE(BYTE MIRTUAL
©fE DaTA

5. Highlight Sourcethen press thg8elect button.

6. IntheEmbedded Source editor, type the following source code:

IF WebServer.Active
BRW1:AskProcedure =1
END

7. Press th€lose button on th&Embedded Source window

Unsupported Windows Standard Dialogs

There are certain Windows standard dialogs which are not appropriate for an
application running over the Web. Calling any of these will display a Not
Supported Message:

COLORDIALOG
FILEDIALOG
FONTDIALOG
PRINTERDIALOG

If you are calling any of these with a BUTTON control, use the Individual
Control Options to "Hide if launched from Browser." (Internet Options
Controls).

If you are calling the function in source code, enclose the function call inside
a conditional structure. For example:

IF NOT WebServer.Active ! Check if running over the web
retval=COLORDIALOG() ! if not, call the colordialog
END

Using Command Line Parameters

If your application needs to receive command line parameters, you can pass
them on the browser's command line or via a hyperlink.

On the browser's location (URL) entry, specify the URL followed by the
executable name, followed by the dot zero (.0) followed by a question mark
and the parameter. For example,

HTTP://mydomain.com/myapp.exe.0?MyParameter

To handle the parameter in your application, you must interrogate the
WebServer.CommandLine property. If you are creating a hybrid application and
want to receive command line parameters from either Windows or the Web,
use code similar to the example below:

IF WebServer.Active ICheck if running over the web
PRE:MyField = WebServer.CommandLine lassign value to variable

ELSE Iif it is running Tocally
PRE:MyField = COMMAND('") lassign value to variable

END

Note: If you are passing multiple parameters, you must parse the
string to access the individual parameters.

Changing the Class for an individual control

At times, you may want to change a single control to use a different class
than the default. For example, a STRING control that displays a variable
defaults to a Java String control and you may want it to be plain HTML text.
You can change this on a control-by-control basis on the Individual Control
Overrides Classes Tab. In this example, you are not actually overriding the
class, but merely specifying a different class to use for the control.

1. From theProcedure Properties window, press thenternet Options
button.

2. Select theControls tab.

3. Highlight the control in théndividual Control Options list, then press
theProperties button.

4. Select theClasses tab, and check th®verride Default Class box.

5. Select the class to use from the drop-down list (in this example it is the
WebHtmIStringClass). You do not need to provide the Header File and
Implementation files.

You can use the same technique to change a JavalmageControl to an HTML
 control.

API calls

Windows API calls are tied to the machine on which an application is
running. Web-enabled applications are actually running on the server
machine and a representation is sent to the client in the form of HTML
pages. Therefore, any API calls in your application execute on the server
machine.

In many cases, this will not be appropriate. For example, playing a sound file
on a server is generally not a good idea and the user running the application
won't hear it. In those cases, you should inhibit the call when the application
is running over the web.

If you are making the call with a BUTTON control, use the Individual
Control Options to "Hide if launched from Browser." (Internet Options
Controls).

If you are making the call in source code, enclose the function call inside a
conditional structure. For example:

IF NOT WebServer.Active I Check if running over the web
SoundFile='fanfare.wav'
sndPTaySound(SoundFile, 1)

END

In other cases, it will be appropriate to make the call on the server. For
example, a procedure which uses MAPI to send email from the server based
on an event. In those cases, you should make sure the call works properly on
the server. It should behave the same way when executed over the web.

In a similar manner, reports without Print Preview enabled will print on the
server. This may be appropriate in some cases, but it is important to
understand its behavior.

Security Considerations
There are several method of implementing security in your web applications.

O Implementing security into the underlying application.

O Restricting access (Password protecting) a procedure when it is
started over the Web.

0 Transmitting over a (SSL) secure connection.

The first method—implementing security into the original application—
requires no additional consideration in your Web application. The original
security enforcement in the Windows version should work the same way in
your Web application.

The second method—restricting access when running over the Web—uses
the browser’s built-in authentication.

The third method—transmitting over a secure connection—serves a different
purpose. It is not intended to restrict access to a user. It is intended to restrict
interception of data during transmission. This security measure can be used
alone or in conjunction with either of the other two security measures.

Using Passwords

The Internet Procedure Extension template’s Password protection uses the
browser's built-in HTTP authentication support. When a password protected
procedure is called, the browser's authentication window displays. You do
not need to create a window to collect login information. Password
protection is based on an area, a username and a password. The area is the
protected procedure.

When a browser requests a password protected area, it gets a response back
requesting the username and password for the area. By default, the area
name is created from the title of the window, and the name of the procedure.
This is stored in th@ebwindow. AuthorizeArea Property. The browser prompts

the user for a user name, and a password. These are then sent to the progra
for validation. If the program accepts the password (i.e., it RETURNs TRUE
from thewebwindow.validatePassword method), the new page is displayed,
otherwise the browser prompts again. After three attempts the browser
displays a message informing the user that access is denied. This page
automatically returns the user to the last active place in the program.

Note: If the page has already been visited in the current session the
browser will normally supply the user name and the password
without prompting the user. This feature is built-in to most
browsers.

Two levels of password support are built into the procedure template. The
simplest method is to select restricted access and specify a single password
or a variable. This is automatically checked by the template, and ignores the
username. If you use a variable, it compares the password entered with the
variable’s current value.

The more advanced method is to overridewtigindow.validatePassword

method by entering code into theernet- Password Validation Code
Sectionembed point. This embed point is inside a method with two
parameters: UserName and Password, which it receives from the browser.
You should return TRUE if the password is valid, and FALSE if it is not
valid. This allows you to look up the information in a file, or use any other
method you choose to validate the password.

Example:

USE:UserID = UserName

IF Access:UserList.Fetch(USE:UserIDKEY)
RETURN(False)

END

IF USE:UserPassword = Password
RETURN(True)

Else
RETURN(False)

END

Optionally, you can change the message displayed on the browser’s
password dialog by assigning a valu@deNindow.AuthorizeArea in the
Internet-After Initializing the window objeetnbed point.

Using a Secure Socket Layer (SSL)

This security measure requires that you run the ISAPI version of the
Application Broker under an ISAPI-compliant Web Server and have a
Digital Certificate installed. Seehe Application Brokechapter. The

Internet Procedure Extension template’s SSL support uses the ISAPI SSL
encryption for the duration of the procedure. When a procedure with SSL
enabled is called, the Application Broker switches into SSL mode. When the
procedure terminates, normal access is restored. This allows secure
transactions on a procedure level. Keep in mind that encryption has a
marked effect on performance. You should only enable security for
procedures which transmit sensitive data. Allowing you to encrypt only
those procedures which need secure transmission improves performance on
both the client and server side by utilizing encryption only when it is needed.

To enable SSL for a procedure:

1. From theProcedure Properties window, pressnternet Options .
2. Select théddvanced tab

3. Check theTransfer over a secure connection box.

Using Embedded HTML

One of the most powerful features of the IBC Templates is the ability to
embed HTML code in the HTML pages which are output by the web-
enabled application running via the Application Broker. When you embed
HTML code (using the special embed points added by the templates), it is
inserted at the specified location in the HTML file returned to the browser
which executed the application.

There are two methods for embedding HTML:

1. Inthe Internet Procedure Extension Template, Individual Control
Overrides. This provides two text entry controls into which you write
HTML code.

2. Using the Dynamic HTML Code Template or the Static HTML Code
Template in one of the Internet embed points. These templates use the
virtual methodrarget.uriteln to write to the delivered HTML file at
runtime. The Static HTML code template allows you to embed HTML
code exactly as written. The Dynamic HTML template allows you to
combine HTML code with variables from your application.

Optionally, you can use therget.uriteLn method yourself in embedded
source code in any of the appropriate embed points.

These Embed points are identifiedIbD ERNETat the beginning of the
description. Using thearget.uriteLn method in one of these embed points
allows you to add any HTML code at various points in the HTML document
delivered to the user at runtime. This code does not affect the application
when it is running as a Windows program.

For example, if you want a block of text to appear on the bottom of the page
delivered by the Application Broker for a procedure in your application, you
would insert the Static HTML Code Template atltiiternet, before the

closing </BODY> tagembed point in the Application Generator and specify
the HTML code. This HTML code is added to the resulting HTML page
delivered to a browser client.

You can use the virtual methoghget.uriteLn in any the embed points
where the Dynamic HTML Code Template and the Static HTML Code
Template are available.

Example:
Insert this code in thimternet, before the closing </BODY> tagmbed:

Target.WriteLn('<<p>Copyright 1997, TopSpeed™ Corporation, All
Rights Reserved.<</p>")

Note: When hand-coding Clarion source to write HTML code,
remember to handle special characters, such as <, by using
two characters in succession. If you use the Static HTML Code
Template, this is handled automatically.

One benefit of using Clarion code in these embed points is the ability to
control the HTML code you want to write. The example below shows a
simple method of displaying a random hyperlink:

EXECUTE RANDOM(1,5)
Target.WritelLn('<Visit Topspeed<")
Target.WriteLn('<Visit ClarionOnline<")
Target.WriteLn('<Visit IceTips<")
Target.WriteLn('<Visit the Finatics<")
Target.WriteLn('<TopSpeed News<")
END

Using references to files in embedded HTML code

When using references to files in embedded HTML code, remember that
each session has its own temporary directory. Therefore, /PUBLIC is never
the current directory for delivered web pages. This means that you must
reference the location of files. There are two ways to do this.

If you are referencing an image in HTML code, you must indicate the
location of the image file. If you are deploying under the EXE version of the
Application Broker you can prefix the filename with a leading forward slash
and deploy the image to the /PUBLIC directory. For exarpke src-"/
LOGO.GIF">.

If you are using the ISAPI DLL version of the Application Broker, you must
use the SELF.FILES.GetAlias() method to determine the virtual path to the
file.

For example:

Target.WriteLN('<")
would find the mygif.qgif file in any directory exposed to the server
application.

Note: The preferred method is to use the SELF.Files.GetAlias()
method because it works under both the ISAPI DLL and the
EXE version of the application broker.

To use your own Java Applet class files, use the CODEBASE= tag as shown
below.

If you are deploying under the EXE version of the Application Broker you
can reference the <CODEBASE> as a leading forward slash and deploy the

.CLASS file to the /PUBLIC directory. If you are using the ISAPI DLL
version of the Application Broker, you must usethe .F1LES.GetATias()
method to determine the virtual path to use for the <CODEBASE>.

Embedded HTML Examples:
! HTML code

<applet codebase="/” code="TickerTape.class” width="500" height="32">
</applet>

! Embedded Source Examples (in any Internet Embed Point)

Target.WriteLN(‘<*)
Target.Writeln(‘<<applet *)

Target.Writeln(‘Codebase = “* & SELF.FILES.GETAlias() & **“)
Target.Writeln(‘code="TickerTape.class”>")
Target.Writeln(‘<</applet>’)

Note: Inan APPLET HTMLtag, the CODEBASE attribute must
precede the code attribute. This is listed in the wrong order in
some HTML references. HTML code with the attributes in the
wrong order can cause the applet to fail (due to a "Not Found"
error).

Implementing Help in your Web Application

References are made to HTML pages based on the current window’s Help
ID. This is constructed in one of two ways: Using a Base Document with
Mid-Page anchors, or Using individual help Documents. This is specified in
the Global Application Extension Template or in the Procedure Extension
template’s Internet Options.

Using a Base Document with Mid-Page anchors

This method uses a single web page with mid-page bookmarks or anchors.
The call to the page is constructed by appending the Help ID to the base
page name with a # symbol between them (e.g., HELP.HTM#IDNAME).
Clicking on the Help button causes the page to open and scroll to the
appropriate anchor. In the example below, the first window has a HelpID of
~FirstWindowID. This means that the Help button will call
HelpFile.HTM#FirstWindowlID.

Example:

<html>

<head>

<title>Example Help Document</title>

</head>

<body background="bgrnd.gif” bgcolor="#FFFFFF”>
<hl align="center”>Program Help </hl>
Introductory Text......

Introductory Text......

Introductory Text......

Introductory Text......

<h2 align="center”>Help For First Window</h2>
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works

<h2 align="center”>Help For Second Window</
h2>

Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works

</body>

</html>

Using individual help Documents

This method uses a single web page for each window. The call to the page is
constructed by prepending the Help ID to .HTM extension. Clicking on the
Help button causes the page to open.

124 CLARION 5 INTERNET CONNECTM UseR’s GUIDE

Both methods open the page in a new browser window named “_HELP”. If
you open your application inside a frame set where one of the frames is
named “_HELP”, the help page opens in that frame.

A web-enabled application executed by the Application Broker creates
HTML files in the /PUBLIC directory. These pages are sent to the browser
which started the application and refreshed and re-sent when the client
interacts with the application.

Windows Controls and their HTML Equivalents

A web-enabled application executed by the Application Broker delivers
HTML to the browser which started the application and refreshed and re-sent
as the user interacts with the Web page representing the application.

Certain controls translate easily to HTML, while others are created as JAVA
classes using the Clarion Java Support Library. Certain windows controls
have not been fully implemented in this release.

The list below shows the standard windows controls supported by Clarion
and the equivalent created by an Internet Connect web-enabled application.

STRING (a variable string)
Displays as a Java String Control, which updates
dynamically.

STRING (a text string)
Displays as text by default. By setting individual
control overrides, it can display as a Java String
Control, which updates dynamically. If you are
updating the STRING in your application using a
property assignment, you should specify that the
string update dynamically.

IMAGE A static image displays as an HTML image
with its source specified as the graphic file in your
application. By setting individual control overrides,
it can display as a Java Image Control, which
updates dynamically. For more information see
Images.

REGION Partial support. A REGION that covers an IMAGE
control and has functionality implemented in its
EVENT:Accepted creates the HTML image as an
image map (USEMAP=) with the functionality of
the region associated with that portion of the image.

LINE Not supported--use Embedded HTML to display a
Horizontal Rule <HR> or an image .

BOX Not supported--use Embedded HTML to display an

image .

ELLIPSE Not supported--use Embedded HTML to display an
image .

ENTRY

BUTTON

PROMPT
OPTION

CHECK

GROUP

LIST

Tree

Created as an HTML entry field <INPUT
TYPE=TEXT VALUE = value in field >. Entry
patterns are not supported.

Created as an <INPUT TYPE=SUBMIT > unless it
has an ICON, then a Java button is created which
displays the Icon. Icons displayed on Java buttons
must be deployed to the /PUBLIC directory.

Displays as text.

Created as an HTML <OPTION>. If an OPTION
has the BOXED attribute, then it is implemented in
HTML as a <TABLE> with the border specified in
the Global or Procedure options for OPTIONS.

Created as an HTML checkbox <INPUT
TYPE=CHECKBOX VALUE = value in field >

If a GROUP has the BOXED attribute, then it is
implemented in HTML as a <TABLE> with the
border specified in the Global or Procedure options
for GROUPs.

Creates a Java Listbox which supports most of the
LIST attributes, including conditional colors and
icons. Icons must be deployed to the /PUBLIC
directory. When the Java Listbox has focus in the
browser, the navigation keys are supported (arrow-
up, page-up, etc.). If the LIST has a locator, the Java
Listbox supports it when it has focus. Double-click
handling is also supported. Drag-and-drop, edit-in-
place, and right-click popups are not supported.

Creates a Java Tree Listbox. Supports all attributes,
including conditional colors and icons. Icons must
be deployed to the /PUBLIC directory.

FileDropCombo

DropList

Created as an HTML drop-down (<SELECT>
structure) with the values from the file created as
Options. This does not support multiple columns.
Optionally, you can create as a Java Non-drop list
which supports multiple columns.

Created as an HTML drop-down (<SELECT>
structure). This does not support multiple columns.
Optionally, you can create as a Java Non-drop list
which supports multiple columns.

DropCombo Created as an HTML entry field <INPUT

COMBO

SPIN

TEXT

TYPE=TEXT VALUE = value in field >

Created as an HTML entry field <INPUT
TYPE=TEXT VALUE = value in field >.

Created as an HTML entry field <INPUT
TYPE=TEXT VALUE = value in field >.

Created as an HTML Text field <TEXTAREA >.

CUSTOM (.VBX) Not supported.

MENU

ITEM

RADIO
APPLICATION
WINDOW
REPORT

Creates a list of hyperlinks which display across the
top of the HTML page or to the left of the window,
as specified in the Global Internet Options.

See MENU.

Creates an HTML Radio button.

HTML <TABLE >inside an HTML page.

HTML <TABLE inside an HTML page.

If Print Preview is enabled, this creates a series of
HTML pages with Java navigation buttons (Next

page, Previous page, etc.). If Preview is not enabled,
the report will print on the server.

HEADER, FOOTER, BREAK, FORM , DETAIL

OLE

PROGRESS

SHEET

TAB

PANEL

TOOLBAR

See REPORT.

Not Supported (except via embedding an ActiveX in
Embedded HTML).

Not supported.

Created as JAVA Tab controls.

Created as JAVA Tab controls.

Not supported. You may use a GROUP with the
appropriate borderwithd to provide a similar
appearance.

Created as a row in an HTML <TABLE>. Controls

on the toolbar are placed as specified in the Global
or procedure Internet Options.

Hand Coded Applications

About This Section

The Internet Connect Templates generate the code necessary to Web-enable
Clarion applications. However, you do not have to use the Internet Connect
Templates to Web-enable your programs.

That is, you can use the IBC Library to Web-enable your hand coded
programs. This chapter presents a minimal “Hello Web” hand coded program
that uses the IBC Library. This chapter also discusses the IBC Library’s
project system requirements.

The easiest way to learn to use the IBC Library within hand coded programs
is to Web-enable an application with the Internet Connect Templates, then
study the template generated code.

HelloWeb Example Program

The following hybrid Web/Windows program displays a single window or
Web page with a “Hello Web” message and a “Goodbye Web” button to shut
down the program.

HelloWeb PROGRAM

LinkBaseClasses EQUATE(1) 'Enable LINK on CLASS declarations
! so linker can find implementation
I (.clw) files

BaseClassD11Mode EQUATE(O0) IActivate DLL on CLASS declarations
I for required 32-bit dereference
INCLUDE("ICBROKER.INC") IDeclare BrokerClass
INCLUDE('ICWINDOW.INC") IDeclare WebWindowClass
INCLUDE("ICSTD.EQU") IDeclare IC standard EQUATEs
MAP
Hello IPrototype Hello procedure
WebControlFactory(SIGNED),*WebControlClass IPrototype WebControlFactory
MODULEC('")
SetWebActiveFrame(<*WebFrameClass>) IPrototype SetWebActiveFrame
END
END
Broker BrokerClass !Declare Broker object
Htm1Manager Htm1Class !Declare HtmlManager object
JavaEvents JslEventsClass IDeclare JavaEvents object
WebServer WebServerClass !Declare WebServer object
WebFilesManager WebFilesClass !Declare WebFilesManager object
ICServerWin WINDOW,AT(-1,-1,0,0) !Declare “invisible” server window
END
CODE
SetWebActiveFrame() ITell IBC objects (WebWindow) there
! is no active APPLICATION frame
WebFilesManager.Init(l, '") IInitialize WebFilesManager
JavaEvents.Init IInitialize JavaEvents

Broker.Init('HelloWeb', WebFilesManager) !Initialize Broker

Htm1Manager.Init(WebFilesManager)
WebServer.Init(Broker,"'',600,"'"',WebFilesManager)
IF (WebServer.GetInternetEnabled())
OPEN(ICServerWin)
ACCEPT
IF (EVENT() = EVENT:OpenWindow)
WebServer.Connect
Hello
BREAK
END
END
ELSE
Hello
END
WebServer.Kill
HtmTManager.Kill
Broker.Kil1()
JavaEvents.Kill
WebFilesManager.Kill
Hello PROCEDURE

Window WINDOW,AT(,,139,59),GRAY,DOUBLE

STRING('Hello Web!'),AT(51,14),USE(?Hel10)
BUTTON('Goodbye Web!'),AT(39,31),USE(?Bye)

END
WebWindow WebWindowClass

CODE
OPEN(window)
WebWindow.Init(WebServer,HtmIManager)

ACCEPT
IF WebWindow.TakeEvent() THEN BREAK.

IF EVENT() = EVENT:Accepted
POST(Event:CloseWindow)
END
END
CLOSE(window)
WebWindow.KiT1l
RETURN
WebControlFactory PROCEDURE(SIGNED Type)
NewControl &WebControlClass
CODE
CASE (Type)
OF CREATE:ClientArea
NewControl &= NEW WebClientAreaClass
OF CREATE:String
NewControl &= NEW WebHtm1StringClass
OF CREATE:TextButton
NewControl &= NEW WebHtmlButtonClass
END
IF (~NewControl &= NULL)
NewControl.IsDynamic = TRUE
END
RETURN NewControl

IInitialize HtmIManager

!Tnitialize WebServer

I'Tf Taunched by Application Broker
! open “invisible” window on server

IEstablish channel to App Broker
1Call Hello (Web mode)

ITf not Taunched by App Broker
! call Hello (Windows mode)

IShut down WebServer object

I1Shut down HtmlManager object
IShut down Broker object

IShut down JavaEvents object
IShut down WebFilesManager object

!decTare window
! with Hello Web string
! and Goodbye Web button

IDeclare WebWindow object

10pen the window

IInitialize WebWindow object by
! gathering info about window

I and its controls

IWeb event handling:

! handles all events necessary
! to respond to Client request
! e.g. generate new HTML page
!Usual Windows event handling
IClose window on ?Bye button

IClose the window
1Shut down WebWindow object

IInstantiate WebControl objects
! requested by WebWindow object

Hand Coded Project Considerations

The IBC Library requires several components in order to successfully
compile and link. Specify the following components with Bingject Editor
dialog. Seélhe Project Systein theUser’s Guidefor more information.

ICSTD.CLW

ICSTD.CLW contains a variety of procedures that are shared by several
different IBC objects. These procedures are prototyped in ICSTD.INC.
These procedures are not methods of a CLASS, and therefore cannot be
identified to the linker by the LINK attribute like the IBC methods are. To
locate these procedures for the linker, you must add the ICSTD.CLW file to
theExternal source files branch of the project tree. ICSTD.CLW is

installed by default to the Clarion LIBSRC\ directory.

DOS Database Driver

The IBC Library objects use the DOS Database Driver to write the HTML
code and JSL data requested by Client browsers. You must add the DOS
driver to theDatabase driver libraries branch of the Project tree to resolve
IBC references to DOS driver procedures.

ASCII| Database Driver

The IBC Library objects use the ASCII Database Driver to process reports.
You must add the ASCII driver to tiatabase driver libraries branch of
the Project tree to resolve IBC references to ASCII driver procedures.

C5HTMx.LIB

C5HTMXx.LIB contains a variety of compiled objects that are shared by
several different IBC objects. These executable objects are prototyped in
ICSTD.INC. To locate these executables for the linker, you must add the
C4HTMX.LIB file to theLibrary, object, and resource files branch of the
project tree.

Web-enabled Programs Must be 32-bit

To have any practical benefits, web-enabled programs must be 32-bit. This is
because, in an internet environment, multiple clients may request the
application at the same time; therefore, the program must support multiple
instances on the web server. Unlike 16-bit programs, 32-bit programs allow
multiple instances.

CHAPTER 8 WEB APPLICATION DESIGN CONSIDERATIONS

L Z CACLARIONSAEXAMPLES\CWICAHELLOWEB\Helloweb.pri [MI[w] 3

Project: Hello webl
Projects to inchude
Application icon
Generated source filez
External source files
-3 helloweb.chy
- icstd.che

D atabase driver libraries
- D05 [Binary)

-E ASCH [Text)

Library, object, and resource files
B3 CBhtmelib

Target file
-3 helloweb.exe

Programs to e:

132 CLARION 5 INTERNET CONNECTM UserR’'s GUIDE

IBC LIBRARY QUICK REFERENCE

The Internet Connect Templates rely heavily on the Internet Builder Class
(IBC) Library to accomplish the tasks necessary to create a hybrid Web/
Windows application. This chapteriefly documents the IBC Library
methods and properties referenced by the Internet Connect Templates, as
well as other IBC Library methods and properties you are likely to use
during the course of developing your hybrid Web/Windows application.

For complete documentation of these items and many more, d8€the
Library ReferenceAll the IBC Library methods and properties are fully
documented in thBBC Library ReferenceThelBC Library Referencés
available in electronic .PDF format on the Internet Connect installation CD.

Classes and Their Template Generated Objects

The Internet Connect templates instantiate objects from the IBC Library. The
object names are usually similar to the corresponding class names, but they
are not exactly the same. As a result, your Web-enabled application’s
generated code may contain statements similar to these:

Broker.Init

MainFrame.TakeEvent

IC:CurFrame.CopyControlsToWindow
WebWindow.OptionBorderWidth = 2

IC:CurControl.Init

IC:CurControl.DisabledAction = DISABLE:Show
WebMenubar.SetBackground(16711680, '')
Html1Preview.Init(WebServer, HtmIManager, PrintPreviewQueue)

The various IBC classes and their template instantiations are listed below so
you can more easily identify IBC objects in your application’s generated

code. The template generated objects are also listed beside the class nhame ir
the Quick Referenceection of this chapter.

Inter net Builder Class Template Genemted Object

BrokerClass Broker

HtmlIClass HtmIManager

JslEventsClass JavaEvents

TextOutputClass Target

HttpClass Broker.Http

WebFilesClass WebFilesManager, Broker.Files,

HtmIManager.Files,
Broker.Http.Files,
JavaEvents.Files, WebServer.Files,
WebWindow.Files, andTarget.Files

WebServerClass WebServer
WebClientManagerClass Broker.CurClient
WebFramecClass MainFranaedIC:CurFrame
WebWindowClass WebWindow
WebControlClass IC:CurControl
WebCaptionClass WebCaption
WebClientAreaClass WebClientArea
WebMenubarClass WebMenubar
WebToolbarClass WebToolbar

WebReportClass HtmIPreview

Quick Reference

BrokerClass (Broker)

Init (initialize the BrokerClass object)
Kill (shut down the BrokerClass object)
ServerName (server identifier)

WebClientManagerClass (Broker.CurClient)

IP (client IP address)

HtmlClass (HtmIManager)

Init (initialize the HtmlIClass object)
Kill (shut down the HtmlIClass object)

JslEventsClass (JavaEvents)

Init (initialize the JslEventsClass object)
Kill (shut down the JslEventsClass object)

TextOutputClass (HtmIManager or Target)

Writeln (write one line of text)

HttpClass (Broker.Http)

GetCookie (get cookie from client)
SetCookie (get cookie from client)
SetProcName (set protected area name)
SetProgName (set server name)

WebFilesClass (WebFilesManager or Files)

GetAlias (return HTML alias for file)

Init (initialize the WebFilesClass object)

Kill (shut down the WebFilesClass object)
SelectTarget (set public or secure channel)

WebServerClass (WebServer)

Active (Web mode or Windows mode)

CommandLine (command line parameters)

Connect (open communication channel to Broker)
Init (initialize the WebServerClass object)
JavalibraryPath (Java Support Library location)

Kill (shut down the WebServerClass object)
PageToReturnTo (return URL)

ProgramName (Server pathname)

Quit (shut down the server program)
SetSendWholePage (force full page refresh)
SetNewPageDisable (suppress outgoing Web pages)
TimeOut (period of inactivity after which to shut down)

WebFrameClass (MainFrame or IC:CurFrame)

CopyControlsTowWindow (merge global controls to local window)
FrameWindow (reference to APPLICATION)
TakeEvent (handle browser and ACCEPT loop events)

WebWindowBaseClass (WebWindow)

AllowJava (generate or suppress JavaScript)
BorderWidth (Web page border width)

Closelmage (close button graphic)

CreateCaption (include a titlebar on the Web page)
CreateClose (include a close button on the Web page)
DisabledAction (default HTML for disabled controls)
FormatBorderWidth (HTML table cell border width)
GroupBorderWidth (group box border width)
MenubarType (menu placement)
OptionBorderWidth (option box border width)
SheetBorderWidth (sheet border width)

WebWindowClass (WebWindow)

AuthorizeArea (name of password protected Web page)
HelpDocument (HTML help document)

HelpEnabled (HTML help enabled flag)

HelpRelative (remote or local help document)

IsSecure (public or secure channel)

AddControl (add control information)

CreateHtmlIPage (generate HTML for a window)
GetControlinfo (return control reference)
GetToolbarMode (return toolbar entity)

Init (initialize the WebWindowClass object)

Kill (shut down the WebWindowClass object)
MenubarType (menu placement)

SetBackground (set Web page background)
SetFormatOptions (set Web page scale and alignment)
SetHelpDocument (enable single document Web page help)
SetHelpURL (enable multiple document Web page help)
SetPageBackground (set Web page background)
SetPassword (require password)

SetSplash (make this a splash window)

SetTimer (set Web page timer and action)
SuppressControl (omit control from Web page)
TakeEvent (handle browser and ACCEPT loop events)
ValidatePassword (verify password)

WebControlClass (IC:CurControl)

DisabledAction (HTML for disabled control)
CreateHtml (write HTML for control and its attributes)
Feq (control number)

ParentFeq (parent control number)

Init (initialize the WebControlClass object)

Kill (shut down the WebControlClass object)
SetBorderWidth (set BorderWidth)

WebJavaStringClass (IC:CurControl)

SetAutoSpotLink (set live hypertext links)

WebHtmlimageClass (IC:CurControl)

SetDescription (set alternative text for Web image)

WebJavalistClass (IC:CurControl)

ResetFromQueue (record changes to Server LIST queue)
SetAutoSpotLink (set live hypertext links)

SetEventAction (associate browser action with control event)
SetQueue (set the data source queue)

WebCaptionClass (WebCaption)

Alignment (text justification)
SetBackground (set Web page caption background)
SetFont (set Web page caption font)

WebClientAreaClass (WebClientArea)

SetBackground (set Web page client area background)

WebMenubarClass (WebMenuBar)

SetBackground (set Web page menu area background)

WebToolbarClass (WebToolbar)

SetBackground (set Web page toolbar area background)

WebReportClass (HtmIPreview)

Init (initialize the WebReportClass object)
Kill (shut down the WebReportClass object)
Preview (generate HTML to represent the report)

GLOSSARY

All definitions are general terms, except where otherwise indicated. The context for definitions
marked (Clarion) pertain specifically to the Clarion language or the Clarion development
environment.

applet

A small, single purpose application; applets are not necessarily stand alone executable programs.
Small programs written in Java are commonly called applets. In HTML, the <APPLET> tag
indicates a Java applet.

Application Broker

(Clarion) An Application Broker is required to run Clarion hybrid Web/Windows applications. The
Application Broker launches a hybrid Web/Windows application on the Internet server and
refreshes the Clarion Java Support Library (JSL) on the browser. The Application Broker then
organizes the message traffic into a remote computing session, routing events produced by the
Java Support Library to the hybrid Web/Windows application and routing HTML scripts produced
by the application to the browser.

Broker

(Clarion) See Application Broker.

Client

(Clarion) An internet browser that launches a hybrid Web/Windows application with the
Application Broker.

cookie

Information stored on a client machine at the request of a server.

default button

A command button which is activated by default when the user presses the enter button.

disabled

A window, menu, or control visible but prevented from gaining focus.

encryption

The representation of data in scrambled or encrypted form, such that an unauthorized user may not
access the data in an intelligible format.

font

The family name of related type face files. For example, “Times New Roman” is the font name,
and “Times New Roman plain,” “Times New Roman ltalic,” “Times New Roman Bold,” and
“Times New Roman Bold Italic” are the styles, which are stored in separate files.

font style

Character formatting applied to a font face, such as bold, italic, or bold italic.

GIF image

global toolbar

hide

HTML

HTTP

Hybrid Web/Windows

Application

icon

include file

Internet Developer’s Kit

Java Support Library

JPG image

JSL data

Graphics Interchange File (GIF) format; an image format popularized by CompuServe. Generally
acknowledged to offer the best compression ration for 256 color or less images. Attention: should
you utilize the word “GIF” anywhere within an application or program, you must add a trademark

notice: “GIF (Graphics Interchange Format) is a trademark of CompuServe Information Services.”

A horizontal or vertically arranged group of command buttons, and/or other controls, generally
remaining accessible the entire time a program executes.

Prevent a control or window from displaying on screen; the control exists but is not seen by the
end user.

Hyper-Text Markup Language—the language internet browsers use to format and display Web
pages.

Hyper-Text Transfer Protocol—the symbols that internet browsers and servers use to transmit and
receive HTML.

Hybrid Web/Windows Applications look like standard Windows applications when launched under
Windows, but work as Internet servers when launched by the Clarion Application Broker. Hybrid
Web/Windows applications can then be manipulated from any Java enabled browser such as
Microsoft Internet Explorer or Netscape Navigator.

A graphical representation of a physical object in the system, such as a printer. Also, any small
image representing an action, concept or program, as when an icon appears on a command button.
The normal icon file format carries the .ICO extension; one of its main features is built-in support

for transparency. This enables you to display a small picture without obliterating the background.

An external source file read and preprocessed at compile time. In Clarion, the Equates and other
files in the LIBSRC subdirectory are the default include files.

(Clarion) The Internet Developer’s Kit is an accessory product that can be used with the Clarion
Standard, Professional, or Enterprise Editions to develop new hybrid Web/Windows Applications
or to Web-enable existing Clarion applications. A single-connect version of the Application Broker
is included with the Internet Developer’s Kit.

(Clarion) The Java Support Library (JSL) is a small set of Java classes (less than 200k) that
implement a wide variey of Windows-like controls in an Internet Browser. The JSL generates
events from the internet browser and processes messages from the internet server.

A true-color graphics file format featuring 24-bit color storage. It usually provides for adjustable
loss compression, which allows for greater compression but loss of some resolution.

The protocol and data a hybrid Web/Windows application sends to the internet browser for
processing by the Java Support Library (JSL). The hybrid Web/Windows application sends JSL
data to the internet browser to accomplish very fast partial Web page updates.

Remote Computing
Session

Reusable Client

Server

Session Router

timer

Ultra-thin Reusable
Client

(Clarion) The Clarion Application Broker organizes events produced by the Java Support Library
(JSL) and HTML pages produced by hybrid Web/Windows applications into a remote computing
session by maintaining the status of the dialog between the browser and server.

(Clarion) The Java Support Library (JSL) is a small set of Java classes (less than 200K) that
generates events from the internet browser and processes messages from the internet server. This
thin client is reused by every Clarion hybrid Web/Windows application, thereby minimizing

connect time and local browser resource requirements (disk space and RAM).

(Clarion) A hybrid Web/Windows application launched by the Application Broker at the request of
an internet browser.

(Clarion) The Session Router distributes remote computing sessions to multiple Application
Brokers over the Internet, when high popularity or demand requires the deployment of additional
Internet servers. The Session Router is available separately.

A Windows resource which can automatically send a message to an application at pre-defined
intervals.

(Clarion) The Java Support Library (JSL) is a small set of Java classes (less than 200K) that
generates events from the internet browser and processes messages from the internet server. This
thin client is reused by every Clarion hybrid Web/Windows application, thereby minimizing

connect time and local browser resource requirements (disk space and RAM).

142 CLARION 5 INTERNET CONNECTM User’s GUIDE

INDEX

Symbols
*.class
\admin
\exec
\public
ASCHIPES oottt 24
ASEE_SCI vttt 24
\secure
127.0.0.1 oo e 35
A
ACCEPLE ..ot 68
ACHON 0N EVENE ..o 95
Active

WEDSEIVEICIASS ... 136
AddControl

WEDWINAOWCIASS ..o 137
AddServerProperty Code Templatecccccveererereenennnes 105
AlIGNMENE ..o .

WebCaptionClasscccveereerereenieinereseereeeesenene 138
Allow dynamic UPAALEScveerrrerereerireieirereeseieieeseseeseeeenes 93
AllowJava

WebWIndowBaSeCIass ... 136
ALT o 94
applet ..o . 139
Application TOOIDAFcoverererieeririreeree s 101
Application Broker 19, 139
Application BroKer SEtUPccoveereereeereeeneeireseeseeeeeens 29
Application Broker's Setup ULIlityccooeerieeercnienienceninns 27
APPlICAtIoN MENU ..o s 101
AuthorizeArea

WEDWINAOWCIASS ..o 137
Autospot HYperlinks ... 93
B

Background color .. 76, 82, 83, 84, 85, 86, 87, 97, 98, 99
Background image

76, 77, 82, 83, 84, 85, 86, 87, 97, 98, 99, 100
BorderWidth

Broker.Http.GetCOOKIEcuoveeeeeeeerireinireieeseieieeseseireeenas
Broker.Http. SEtCOOKIEcvvveeeericinieirieinicesereisee s
Broker.Http.SetProcName
Broker.Http.SetProgName ..o 135
BFOKELINIE ..o

BrokerKill...................
Broker.ServerName ...
BrOKErCIassccoeurieremerieineinieinee e

C

CAPLON .ot 82, 97
CRNLEL et 76
Center Window 0N Pageccveerierincinreeneinncineeneens 76, 86
centering an IMAGE
CLARION.CAB ..ottt
CLARION.ZIP ..ottt
Class Overrides .
Classes Local to Application Brokerccoereeereerereenennnne 81
ClENL ottt reeees
Client Area
Close button
Closelmage

WebWindowBaseCIassccccovvvvevveeveereieirercreseenans 136
CommandLine

WEDSEIVEICIASS ...t 136
Complete page refresh ... 95
CONCUITEINCY .vvveesciiieieise e 20
Connect

WEDSEIVEICIASS ...ttt 136
CONTON 1.ttt ettt bbb bbb 78
CONLIOl OPLIONS ...t 88

CONLTOl OVEITIAES ..v.vevevevveveveveveretee e rerereeeseees 93
COOKI€ ...cocvvevree. ... 139
(0100 (TR 104
CopyControlsToWindow

WEDFrameCIassccccevevereveeveeeeeeeeee s 136
Create Application dialogcc.eveeeereerreerenneenieeneens 38, 50
Create extra CloSe DULONccccevevevereecccecceereeeeeenes 84
CreateCaption

WebWindowBaseCIasscccovvvevveeveerereierereseenans 136
CreateClose

WebWindowBaseCIasscccovvvvevveeneereieincncreseenens 136
CreateHtm|

WeDbCOoNLroICIASScccvviiiieeeiece s 137
CreateHtmlPage

WeEDWINAOWCIASScocvvvevercvcrctcreeeeeeeeeeeee s 137
CurClient
CWBIOKEE.EXE ...ttt benenis 20
CWBIOKILEXE ...ttt 20
CWISAPI.DLL

CWISET.TXT
CWLAUNCH.DLL ..o 27
CWSECURE.DLL ..ot 27

D
default BULON ..o 139
Default HOme Pagecoeeirecerierisreeeeeeseeeeens 29
Delta for grid snapping .
AEPIOY e 31
Digital CErtifICAeeveveeereerereereeirerreeeee e 24
Directories
AISADIE ...
DisabledAction

WeDCONTOICIASSvevceieiiieireicee e 137

WebWindowBaseCIasscouueerieerieeneeseneinineiseneens 136
Downloading the Java Support Library ..
Drop lIStDOXES ..ot
Dynamic HTML Code Templateccoveveereneenieencnincininne
AYNAMIC UPAALES ..o
E
Edit-IN-PIACEcoereeierercireeece e 73
ENADIE ... 32
Enable Help for internet applicationsccccoeveenenercuncnas 77
Enable Refresh on timer ... 92
ENCIYPHON ..cvvereeeirciecenes .23, 139
Event Handlingcoveeeiericenienncneneecseeeseseeeieeeinenas 68
E
Feq

WeDCONTOICIASSveeeeieeriieieieeee e 137
FIFBWANIS ...t 22

Font family Namecoceerercrcreeeee e 82, 97
Font size
font style
FormatBorderWidth
WebWindowBaseClass
Formattingcccoveevveerieene.
fourth generation language
Frame MENUc.cuciiiicieeccceee e
Frame TOOIDATccceveveeeeecccee e
FrameWindow
WEDFrameCIasscccoeeveveveeveeceeeeee s 136

G

GetAlias

WEDFIIESCIASSoveveviieeeeeeeeee s 135
GetControlinfo

WEDWINAOWCIASScocveveveveverercrcececeeeeeeeee s 137
GetCookie

HUPCIASS .o 135

GetCookie Code TeMPIAteccocereereererierireeriereieereeeeeens 104
GETINI

GetServerProperty Code Templatecoeeveeereerreenineene 105
GetToolbarMode

WEDWINAOWCIBSS ... 137
GIF IMAJE ettt eees 140
Global Internet Application EXtENSIONccooeereerereereceneens 75
Group Border Widthcocenirienirnineneneeeeseeneieas 79
GroupBorderWidth

WebWIndowBaseCIass ... 136
H

Help WINdow Sty ..o 77, 88
HelpDocument

WebWindowBaseClass Propertiesc.oererneenenne 137
HelpEnabled

WebWindowBaseClass Propertiesc.ccererneenenne 137
HelpRelative

WebWindowBaseClass Propertiesc.cocurerneenenne 137
REAE ..o s 140
Horizontal Pixels per Charcccvenrncnneneeneens 80, 90
HTML

HEIMICIASS ...ttt

HIMIMANAGET ...t
HtmlManager. nit .
HMIMANAGEr.Kill ..o
HtMIPreviewcccevevevevnnee.

HtmlPreview.Init .. 138
HtmlPreview.Kill 138
HtmlPreview.Preview . 138
HTTP oottt ettt 140
HTTP RBAGET.vvveveeetcrceccteeete ettt 105
Hybrid Web/Windows Application ..
HYPEITINKS ... 22, 93
|

[BC tEMPIALES ...t
[C:CUICONTIO ...ttt
IC:CurControl.CreateHtml

IC:CurControl.DisabledACtioncccoeeveverevereererererererenens 137
[C:CUrCONIOLFEQ ..ot 137
IC:CurControl.ParentFeq 137
IC:CurControl.ReSetFromQUEUEccovvveverierceerriiereirinens 138
IC:CurControl.SetAutoSpotLink 137, 138
IC:CurControl.SetBorderWidthcccocvvvvvvveeriiiiens 137

IC:CurControl.SetDeSCrPLoNcccveerereereeererreeereereeene
IC:CurControl.SetEventAction ...
IC:CurControl.SEtQUEUEcoceurrereeeirrrceeesreersess e
[C:CUMFTAME ..ottt
IC:CurFrame.CopyControlsToWindow
IC:CurFrame.FrameWindowcccceeveeeeveeceereeeeesennne
IC:CurFrame.TakeEVENLcceevereeeeeeeeeeeeceee e

IS Internet Service Managerccooeeveeereerereenerneneeneeeneneens 25
IMAGE fOF ClOSE ... 84
Implementation file ..
INCIUAE CAPLION ...coveee s 97
INCIUAE FIlE ..o 140
Individual Overrides for a Controlcccveeeeeveercrevennnnn. 93
Init
BIOKEICIASSvcvcvvevevevcecveveteeerererereee e 135
HtmiClass........... ... 135
JslEventsClass...... ... 135
WebControlClass 137
WEDFIIESCIASSvvvvvvceeccerctete et 135
WEDREPOICIASS ... 138
WebServerClass 136
WEDWINAOWCIASScecvvvevereieicreveeeeceeeeeeee e 137
Internet Builder Class Templatesccocverreneencnincenennes 75
Internet Developer's Kit .
Internet INformation SEIVENc.cccevvvevveviieeeeeeeeeeens 23
Internet Server Application Programming Interface 23
[SAPL .ottt 20
IsSecure
WEDWINAOWCIASScocveveeerevercrcreeeeeeeeeeeeee s 137
J
Java Support Library (JSL)ccovvereienenreneneeeseeinees 140
JAVAEVENESoovveeeeeeeeeee e 134. See JslEventsClass
JAVAEVENES.INIE.....cevveeeeeeee s 135
JAVAEVENES.KIll......ocvcvvececececcccrcveeece s 135
JavalibraryPath
WEDSEIVEICIASScooveeeeieeee et 136
IS et eaees 140
JSLAAA ..ottt 140
JSIEVENESCIASSvvvcvvvcvcececercterevee et 135
K
Kill
BIOKEICIASSvcvevvvevrecvcicereeeveteveeee e 135
HtmiClass........... .. 135
JSIEVENESCIASS ..ot 135

WeDbCOoNLroICIASScccvveeiiieeecece s 137
WebFilesClass

WEDREPOICIASSovreieeeieireeesee s 138
WEDSEIVEICIASS ...t 136
WeEDWINAOWCIASScocvvveveicrercrcreececeeeeee s 137
L
[0CAINOSE ...ttt 35
LOG File NAME ..o 29
M
MAINFTAME ... 134
MainFrame.CopyControlSTOWINOWcccocerrcerenienineenes 136
MainFrame.FrameWindow.................. ... 136
MainFrame.TakeEvent 136
Max Simultaneous CONNECLIONSccccevevevevevererererererererenenns 29

MDI et 79, 90
MENU et 98
MenubarType

WebWindowBaseCIasscccovvvvveeeeeereieivereeeseenans 136

WeEDWINAOWCIASScocvvveverevercrcvceceeeeeeeeee e 137
O
Option Border Witthccoceerirnininerienssseeseeeseeeeees 79
OptionBorderWidth

WebWindowBaseCIassccccovvvevveeneereiienereseenans 136
Override Global SEtiNGScorveereeereieerereeneereineens 86, 87
Overrides for a Control............ceevevevevrerviiceeeeeeeeeee s 93
P
Page SEMtiNGScvveeeeerireeriieireeieeseie et
Page to return to on exit
PageToReturnTo

WEDSEIVEICIASS ... 136
ParentFeq

WeDCONLrOICIASScvveireieecece s 137
Partial page refreSh ..o 95
Partial Refresh

Updating CONtrolScooeeeeeerieeriieineirieeseieseeeeeeseeeeseees 68
PASSWOIT ..ot 29, 91
Personal Weh SEIVEr ..o 23
PING oo 36
POM B0 oot s 20
POrt NUMDBET c...vvecccvctcceeeee e 29
Preview

WEDREPOICIASS ...
Process on Browser ...
Product registrationccocreeeereeeereeneseereeneneeseeeseeeeseenenas

Programming laNQUAGEccceeeeereureeereeerersereeseseeseseeeeeeseens 9

ProgramName

WEDSEIVEICIASS ... 136
PIOXY SEIVETS ...oveirieeiseriseieisineseie st 22
PUBIIC DIFECIONY ..ottt 29
PUTINT oo 104

Q

Quit
WEDSEIVEICIASS ... 136

R

Refresh on timer ..o 92
Remote Access to the Application Brokerc.cccovevneenenee 31
Remote Computing Sessionccccc..... .. 141
REMOLE PASSWOIT ... 29
ResetFromQueue

WebJavaLiStCIasScovveeriereeerieirereisee e 138
Restrict Access to this procedure....
Return if launched from BrOWSETcccocveveereeininreinenne
ReUSADIE ClIENt.........covieericereree e

S

Secure SOCKEt LAYercoveeevcericereieincieieiseieeseesiseenenes
Secure Sockets Layer
SECUMLY oottt
SelectTarget

WEDFIIESCIASS ..o 135
SeIver ..,
Session Router
SetAutoSpotLink

WebJavaLiStCIasscoeurirreeereeinereinee e 138

WebJavaStringClassccooeerrriereneinenenereineeiseneeneens 137
SetBackground

WebCaptionClasscocveeriereeenieineireiseereeeeesenene

WebClientAreaClass .

WebMenubarClasscerienneenieenenseseeseeeeeene

WeDTOOIDAICIASScveeeeeieinieeeieeeisee e

WeDWINAOWCIASScovmeeiieirieirieee e
SetBorderWidth

WeDCONTOICIASSveeceieeriiireieeice e 137
SetCookie

HUPCIASS .o 135
SetCookie Code TeMPIALEccoeeveveercerierirreeerieereens 104
SetDescription

WebHtMIIMAgeCIass ..o 137
SetEventAction

WebJavaLiStCIasscoveriereeericireeinee e 138
SetFont

WebCaptionClasscocveeriereneerieenerereeeeseeeseeens 138

SetFormatOptions

WEDWINAOWCIASScocveverevercrcrevcecececeeeeeree s 137
SetNewPageDisable

WEDSEIVEICIASS ...t 136
SetPageBackground

WeEDWINAOWCIASScocvevevevcvcicrerceceeeceeeeeee s 137
SetPassword

WEDWINAOWCIASScocvevevevcreicrcvcececeeeeeeeee s 137
SetProcName

HUPCIASS .o 135
SetProgName

HUPCIASS .o 135
SetQueue

WebJavaListCIassccocveveviverererereeeeeeeeen s 138
SetSendWholePage

WEDSEIVEICIASS ...t 136
SetSplash

WeEDWINAOWCIASSocvvveveveveicrcrcececeeeeeeeee s 137
SetTimer

WebWindowClass

SheetBorderWidth
WebWIndowBaseCIass ... 136
single-connection Application Brokerccooenivncninenes 20
SSL e s
Static HTML Code Template
STALUS <.
Sub directory for PAgESccererieerierereeresereiee e
SuppressControl
WebWindowClass
SUSPENG ...ttt

T

TakeEvent
WEDFrameCIasscccoeverevevereeeeeeeeeee s 136
WEDWINAOWCIASScoovvverereverercrcececeeeeeeeee s 137

Target

Target.GELANIAS ...c.vueeereeceeicereere e 135

Target.WIILEIN ... 135

test locally

TEXtOULPULCIASS ...t 135

THME OUL et 81

TimeOut
WebServerClass

U

URL of help doCUMENLSc.overeiericirrrceisereereeeins 77, 87
Use Debug Setup
Use Log File.............
Use Long Filenames

Vv

ValidatePassword

WEDWINAOWCIASScocvevereecveicrcrceceeeeceeeeee s 137
Vertical Pixels per Char ... 80, 90
VIFUAL TOOT .ottt 28

W

Web-enable a Clarion applicationcccouerereeneninennnns 75
Web/Windows Applicationcereeneneenenenenieenees 140
WEDCAPLON ...
WebCaption.Alignment
WebCaption.SetBackgroundcccoereenereencnineinenns 138
WebCaption.SetFont ... 138
WebCaptionClass
WEDCHENAIEA ... 134, 138
WebClientArea.SetBackground ...
WeDClIENtArEACIASScvuevieieereeireiereree s 138
WeDbClientManagerClassccereneereeenernineeneeineeeins 135
WebControlClass
WEDFIIES ..ot
WEDFIIESCIASSevrceereicrieeietseeee e
WebFilesManager
WebFilesManager.GetAliasccorereeineeneeeneeninns
WebFilesManager.Initocoenerienenneneeneeeseees
WebFilesManagerKill
WebFilesManager.SelectTarget
WEDFrameccoocvvevencnincinenns .
WEDFTameCIassc.oceeviereierieirieirie e
WebHIMIIMAGECIASS ..o
WebJavaListClass
WEDMENUDAT ..o
WebMenubar.SetBackgroundccocvevinininencsineenens 138
WebMenubarClass
WEDREPOICIASSovveeieieiriieiseiseeese s
WEDSEIVEN ...
WebServer.Active

WebServer.CommandLine .
WebServer.Connect................ ... 136
WEDSEIVELINIE ... 136

WebServer.JavalLibraryPathccccoinrnnnennenenn. 136
WebServer.Kill

WebServer.PageTOREIUMNTOc.oveveereeeieirieesereieisereenees 136
WebServer.ProgramNameccocvererrenenneeseneeees 136
WebServer.Quit
WebServer.SetNewPageDisablec.cccoverencnneinnnee 136
WebServer.SetSendWholePagecocoovevrenicinceinennn. 136
WebServer. TIMEOUL ..o 136
WEDTOOIDA ..o 134, 138
WebToolbar.SetBackgroundocooeverenenincenieeneens
WeDTOOIDAICIASScovveieeieieereereesee e
WEDWINAOW ...
WebWindow.AddControl

WebWindow.AlIOWJAVA. ..o

WebWindow.AuthorizeArea
WebWindow.BorderWidth
WebWindow.Closelmage

WebWindow.CreateCaptioncocveereerereenenceneneeneeinenns 136
WebWindow.CreateClose 136
WebWindow.CreateHtmlPage 137
WebWindow.DisabledAction 136
WebWindow.FormatBorderWidthcccoevvvvvvvevvvereverennnn, 136
WebWindow.GetControllnfocccceveeeereverereeeeerecveeene,
WebWindow.GetToolbarMode
WebWindow.GroupBorderWidthccccooverencnncneenns 136
WebWINAOW.INIEcovvieeeeeeeeeee s
WebWindow.IsSecure
WeEBWINAOW.KIll ...t

WebWindow.MenubarTypecococvevneerneenireninins
WebWindow.OptionBorderWidth ...
WebWindow.SetBackground
WebWindow.SetFormatOptions
WebWindow.SetPageBackgroundccccooereeerceinceninees
WebWindow.SetPasswordcoeercnereeneeenceeneenens
WebWindow.SetSplash
WebWindow.SEtTIMENc.ovieireeireeree s
WebWindow.SheetBorderWidthc.ccooeveninicninnnee
WebWindow.SuppressControl
WebWindow.TAKEEVENcoovierieirierienee e
WebWindow.ValidatePasswordccccoereniencnineenens
WebWIiNdowBaSECIASScoveeeeereeericerieesereeneieeseieeeenenas
WebWindowBaseClass Properties

HelpDocument

HelpENabled ..o

HEIPREIALVE ...
WebWindowClass
Window border Width ... 717, 87
WINAOW SELHNGS ...vovrvveeceeieirereereieeeeseieeeese e 76, 87
WINIPCTG.EXE oo 35
Writeln

TEXtOULPULCIASS ..ot 135

148 CLARION 5 INTERNET CONNECTM UserR’'s GUIDE

	Introduction
	Welcome!
	What is Internet Connect
	Internet Connect and the Clarion Development Environment
	What You'll Find in this Book
	Where to Find More Information
	Documentation Conventions
	Typeface Conventions
	Keyboard Conventions

	Product Information
	Registering This Product
	Technical Support

	Setup
	System Requirements
	Development System
	Server System
	Client System

	The Setup Program
	Starting Setup
	Setup Options
	Registering the Internet Builder Class (IBC) Templates

	The Application Broker
	Running the Application Broker
	Using the Single-connection Executable Version
	Connecting to your Applications

	The ISAPI version of the Application Broker
	Howthe Application Broker ISAPI DLLs work
	Installation and Setup for the Clarion Application Broker ISAPI DLLs
	The ISAPI Broker's Remote Setup Utility
	Files deployed by the Clarion Application Broker installation

	Directories
	Application Broker Setup Options
	Remote Access to the Application Broker
	Development & Deployment CheckList
	Testing Locally
	Testing your TCP/IP Connection

	Tutorial-Making a Web Application
	Web Application Wizard
	Creating a hybrid Web/Windows Application
	Deploying the Application
	Faster is Better-Optimizing your Application
	Looks are Important-Adding Graphics

	Tutorial- Web-enabling an Existing Application
	Using the Global Internet Application Extension Template
	Porting an Application to the Web

	Tutorial- Advanced Web Programming Techniques
	Using Cookies
	Embedding HTML
	Covering the Download with a Splash Window
	Using Partial Refresh to Update Controls
	Restricting Access to a Procedure
	Password Protection

	Restricting Edit-In-Place

	The Internet Builder Class Templates
	The Global Internet Application Extension Template
	Page Settings
	Window Settings
	Help
	Control
	MDI
	Advanced
	Classes

	Global Window Component Options
	Caption
	Menu
	ToolBar
	Client Area
	Class Overrides

	Internet Procedure Extension Template
	Page Settings
	Window Settings
	Help
	Controls
	MDI
	Advanced

	Individual Overrides for a Control
	Display
	HTML
	Events
	Classes

	Procedure Window Component Options
	Caption
	Menu
	Toolbar
	Client Area

	Frame Procedure MDI Options
	Application Menu
	Application Toolbar

	Code Templates
	Dynamic HTML Code Template
	Static HTML Code Template
	GetCookie Code Template
	SetCookie Code Template
	Cookies (Persistent Client Data)
	AddServerProperty Code Template
	GetServerProperty Code Template

	Web Application Design Considerations
	Bandwidth Usage Considerations
	Use Partial Refresh whenever possible
	Be frugal with controls
	Use graphics sparingly
	Covering the Download with a Splash Window

	Cosmetic Design Considerations
	Using Groups
	Using Images

	User Interface Design Considerations
	MDI window access
	Restricting Edit-In-Place
	Unsupported Windows Standard Dialogs
	Using Command Line Parameters
	Changing the Class for an individual control
	API calls

	Security Considerations
	Using Passwords
	Using a Secure Socket Layer (SSL)

	Using Embedded HTML
	Using references to files in embedded HTML code

	Implementing Help in your Web Application
	Using a Base Document with Mid-Page anchors
	Using individual help Documents

	Windows Controls and their HTML Equivalents
	Hand Coded Applications
	About This Section
	HelloWeb Example Program
	Hand Coded Project Considerations

	IBC Library Quick Reference
	Classes and Their Template Generated Objects
	Quick Reference

	Glossary
	Index

