
OpenVMS Utility Routines
Manual
Order Number: AA–PV6EE–TK

April 2001

This manual describes the OpenVMS utility routines, a set of routines
that provides a programming interface to various OpenVMS utilities.

Revision/Update Information: This manual supersedes the OpenVMS
Utility Routines Manual, OpenVMS
Version 7.2.

Software Version: OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS is a trademark of Compaq Information Technologies Group, L.P. in the United States and
other countries.

All other product names mentioned herein may be the trademarks or registered trademarks of their
respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK4493

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xv

1 Introduction to Utility Routines

2 Access Control List (ACL) Editor Routine

2.1 Introduction to the ACL Editor Routine . ACL–1
2.2 Using the ACL Editor Routine: An Example . ACL–1
2.3 ACL Editor Routine . ACL–2

ACLEDIT$EDIT . ACL–3

3 Backup (BACKUP) Routine

3.1 Introduction to the Backup API . BCK–1
3.2 Using the Backup API: An Example . BCK–2
3.3 Backup API . BCK–3

BACKUP$START . BCK–4

4 Command Language Interface (CLI) Routines

4.1 Introduction to CLI Routines . CLI–1
4.2 Using the CLI Routines: An Example . CLI–2
4.3 CLI Routines . CLI–4

CLI$DCL_PARSE . CLI–5
CLI$DISPATCH . CLI–8
CLI$GET_VALUE . CLI–9
CLI$PRESENT . CLI–12

5 Common File Qualifier Routines

5.1 Introduction to the Common File Qualifier Routines CQUAL–1
5.2 Using the Common File Qualifier Routines . CQUAL–1
5.2.1 Calling UTIL$CQUAL_FILE_PARSE . CQUAL–2
5.2.1.1 Specifying Times . CQUAL–3
5.2.1.2 Specifying Exclude Pattern Strings . CQUAL–3
5.2.2 Calling UTIL$CQUAL_FILE_MATCH . CQUAL–3
5.2.2.1 Specifying Prompts . CQUAL–4
5.2.2.2 Ignoring Qualifiers . CQUAL–4
5.2.3 Calling UTIL$CQUAL_FILE_END . CQUAL–5
5.2.4 Calling UTIL$CQUAL_CONFIRM_ACT . CQUAL–5
5.2.5 Creating a Command Language Definition File CQUAL–6

iii

5.3 UTIL$CQUAL Routines . CQUAL–10
UTIL$CQUAL_FILE_PARSE . CQUAL–11
UTIL$CQUAL_FILE_MATCH . CQUAL–13
UTIL$CQUAL_FILE_END . CQUAL–17
UTIL$CQUAL_CONFIRM_ACT . CQUAL–18

6 Convert (CONVERT) Routines

6.1 Introduction to CONVERT Routines . CONV–1
6.2 Using the CONVERT Routines: Examples . CONV–1
6.3 CONVERT Routines . CONV–7

CONV$CONVERT . CONV–8
CONV$PASS_FILES . CONV–12
CONV$PASS_OPTIONS . CONV–15
CONV$RECLAIM . CONV–20

7 Data Compression/Expansion (DCX) Routines

7.1 Introduction to DCX Routines . DCX–1
7.1.1 Compression Routines . DCX–1
7.1.2 Expansion Routines . DCX–3
7.2 Using the DCX Routines: Examples . DCX–3
7.3 DCX Routines . DCX–11

DCX$ANALYZE_DATA . DCX–12
DCX$ANALYZE_DONE . DCX–14
DCX$ANALYZE_INIT . DCX–15
DCX$COMPRESS_DATA . DCX–18
DCX$COMPRESS_DONE . DCX–20
DCX$COMPRESS_INIT . DCX–21
DCX$EXPAND_DATA . DCX–23
DCX$EXPAND_DONE . DCX–25
DCX$EXPAND_INIT . DCX–26
DCX$MAKE_MAP . DCX–28

8 DEC Text Processing Utility (DECTPU) Routines

8.1 Introduction to DECTPU Routines . DECTPU–1
8.1.1 Interfaces to Callable DECTPU . DECTPU–2
8.1.1.1 Simplified Callable Interface . DECTPU–2
8.1.1.2 Full Callable Interface . DECTPU–2
8.1.2 The DECTPU Shareable Image . DECTPU–3
8.1.3 Passing Parameters to Callable DECTPU Routines DECTPU–3
8.1.4 Error Handling . DECTPU–3
8.1.5 Return Values . DECTPU–4
8.2 Simplified Callable Interface . DECTPU–4
8.3 Full Callable Interface . DECTPU–5
8.3.1 Main Callable DECTPU Utility Routines . DECTPU–6
8.3.2 Other DECTPU Utility Routines . DECTPU–6
8.3.3 User-Written Routines . DECTPU–7
8.4 Using the DECTPU Routines: Examples . DECTPU–7
8.5 Creating and Calling a USER Routine . DECTPU–22

iv

8.5.1 The CALL_USER Code . DECTPU–23
8.5.2 Linking the CALL_USER Image . DECTPU–25
8.6 Accessing the USER Routine from DECTPU . DECTPU–26
8.7 DECTPU Routines . DECTPU–27

TPU$CLEANUP . DECTPU–28
TPU$CLIPARSE . DECTPU–32
TPU$CLOSE_TERMINAL . DECTPU–34
TPU$CONTROL . DECTPU–35
TPU$EDIT . DECTPU–37
TPU$EXECUTE_COMMAND . DECTPU–39
TPU$EXECUTE_INIFILE . DECTPU–40
TPU$FILEIO . DECTPU–42
TPU$FILE_PARSE . DECTPU–46
TPU$FILE_SEARCH . DECTPU–49
TPU$HANDLER . DECTPU–52
TPU$INITIALIZE . DECTPU–54
TPU$MESSAGE . DECTPU–61
TPU$PARSEINFO . DECTPU–62
TPU$SIGNAL . DECTPU–63
TPU$SPECIFY_ASYNC_ACTION . DECTPU–64
TPU$TPU . DECTPU–66
TPU$TRIGGER_ASYNC_ACTION . DECTPU–67
FILEIO . DECTPU–68
FILE_PARSE . DECTPU–70
FILE_SEARCH . DECTPU–72
HANDLER . DECTPU–75
INITIALIZE . DECTPU–76
USER . DECTPU–77

9 EDT Routines

9.1 Introduction to EDT Routines . EDT–1
9.2 Using the EDT Routines: An Example . EDT–1
9.3 EDT Routines . EDT–2

EDT$EDIT . EDT–3
FILEIO . EDT–7
WORKIO . EDT–11
XLATE . EDT–13

10 File Definition Language (FDL) Routines

10.1 Introduction to FDL Routines . FDL–1
10.2 Using the FDL Routines: Examples . FDL–2
10.3 FDL Routines . FDL–6

FDL$CREATE . FDL–7
FDL$GENERATE . FDL–13
FDL$PARSE . FDL–16
FDL$RELEASE . FDL–19

v

11 Librarian (LBR) Routines

11.1 Introduction to LBR Routines . LBR–1
11.1.1 Types of Libraries . LBR–1
11.1.2 Structure of Libraries . LBR–2
11.1.2.1 Library Headers . LBR–2
11.1.2.2 Modules . LBR–2
11.1.2.3 Indexes and Keys . LBR–2
11.1.3 Summary of LBR Routines . LBR–5
11.2 Using the LBR Routines: Examples . LBR–6
11.2.1 Creating, Opening, and Closing a Text Library LBR–8
11.2.2 Inserting a Module . LBR–10
11.2.3 Extracting a Module . LBR–14
11.2.4 Deleting a Module . LBR–16
11.2.5 Using Multiple Keys and Multiple Indexes . LBR–19
11.2.6 Accessing Module Headers . LBR–22
11.2.7 Reading Library Headers . LBR–23
11.2.8 Displaying Help Text . LBR–25
11.2.9 Listing and Processing Index Entries . LBR–26
11.3 LBR Routines . LBR–27

LBR$CLOSE . LBR–28
LBR$DELETE_DATA . LBR–29
LBR$DELETE_KEY . LBR–31
LBR$FIND . LBR–33
LBR$FLUSH . LBR–35
LBR$GET_HEADER . LBR–37
LBR$GET_HELP . LBR–39
LBR$GET_HISTORY . LBR–42
LBR$GET_INDEX . LBR–44
LBR$GET_RECORD . LBR–46
LBR$INI_CONTROL . LBR–48
LBR$INSERT_KEY . LBR–50
LBR$LOOKUP_KEY . LBR–52
LBR$OPEN . LBR–54
LBR$OUTPUT_HELP . LBR–58
LBR$PUT_END . LBR–62
LBR$PUT_HISTORY . LBR–63
LBR$PUT_RECORD . LBR–65
LBR$REPLACE_KEY . LBR–67
LBR$RET_RMSSTV . LBR–69
LBR$SEARCH . LBR–70
LBR$SET_INDEX . LBR–72
LBR$SET_LOCATE . LBR–74
LBR$SET_MODULE . LBR–75
LBR$SET_MOVE . LBR–77

vi

12 Lightweight Directory Access Protocol (LDAP) Routines

12.1 Introduction . LDAP–1
12.1.1 Overview of the LDAP Model . LDAP–1
12.1.2 Overview of LDAP API Use . LDAP–2
12.1.3 LDAP API Use on OpenVMS Systems . LDAP–2
12.1.4 64-bit Addressing Support . LDAP–3
12.1.4.1 Background . LDAP–3
12.1.4.2 Implementation . LDAP–4
12.1.4.2.1 Library Symbol Names . LDAP–4
12.1.4.2.2 LDAP Data Structures . LDAP–4
12.1.4.3 Mixing Pointer Sizes . LDAP–6
12.1.5 Multithreading Support . LDAP–6
12.2 Common Data Structures and Memory Handling LDAP–7
12.3 LDAP Error Codes . LDAP–8
12.4 Initializing an LDAP Session . LDAP–9
12.5 LDAP Session Handle Options . LDAP–10
12.6 Working with Controls . LDAP–13
12.7 Authenticating to the Directory . LDAP–14
12.8 Closing the Session . LDAP–15
12.9 Searching . LDAP–16
12.9.1 Reading and Listing the Children of an Entry LDAP–18
12.10 Comparing a Value Against an Entry . LDAP–19
12.11 Modifying an Entry . LDAP–20
12.12 Modifying the Name of an Entry . LDAP–22
12.13 Adding an Entry . LDAP–23
12.14 Deleting an Entry . LDAP–24
12.15 Extended Operations . LDAP–25
12.16 Abandoning an Operation . LDAP–27
12.17 Obtaining Results and Looking Inside LDAP Messages LDAP–27
12.18 Handling Errors and Parsing Results . LDAP–29
12.18.1 Stepping Through a List of Results . LDAP–31
12.19 Parsing Search Results . LDAP–31
12.19.1 Stepping Through a List of Entries . LDAP–31
12.19.2 Stepping Through the Attributes of an Entry LDAP–32
12.19.3 Retrieving the Values of an Attribute . LDAP–33
12.19.4 Retrieving the Name of an Entry . LDAP–34
12.19.5 Retrieving Controls from an Entry . LDAP–34
12.19.6 Parsing References . LDAP–35
12.20 Encoded ASN.1 Value Manipulation . LDAP–35
12.20.1 Encoding . LDAP–37
12.20.1.1 Encoding Example . LDAP–38
12.20.2 Decoding . LDAP–39
12.20.2.1 Decoding Example . LDAP–41
12.21 Sample LDAP API Code . LDAP–43

13 LOGINOUT (LGI) Routines

13.1 Introduction to LOGINOUT . LGI–1
13.1.1 The LOGINOUT Process . LGI–1
13.1.2 Using LOGINOUT with External Authentication LGI–2
13.1.3 The LOGINOUT Data Flow . LGI–2
13.2 LOGINOUT Callouts . LGI–3
13.2.1 LOGINOUT Callout Routines . LGI–3
13.2.2 LOGINOUT Callback Routines . LGI–3

vii

13.3 Using Callout Routines . LGI–4
13.3.1 Calling Environment . LGI–4
13.3.2 Callout Organization . LGI–5
13.3.3 Activating the Callout Routines . LGI–6
13.3.4 Callout Interface . LGI–7
13.3.5 Sample Program . LGI–10
13.4 LOGINOUT Callout Routines . LGI–14

LGI$ICR_AUTHENTICATE . LGI–15
LGI$ICR_CHKRESTRICT . LGI–18
LGI$ICR_DECWINIT . LGI–20
LGI$ICR_FINISH . LGI–22
LGI$ICR_IACT_START . LGI–24
LGI$ICR_IDENTIFY . LGI–26
LGI$ICR_INIT . LGI–28
LGI$ICR_JOBSTEP . LGI–30
LGI$ICR_LOGOUT . LGI–32

13.5 LOGINOUT Callback Routines . LGI–34
LGI$ICB_ACCTEXPIRED . LGI–35
LGI$ICB_AUTOLOGIN . LGI–36
LGI$ICB_CHECK_PASS . LGI–37
LGI$ICB_DISUSER . LGI–38
LGI$ICB_GET_INPUT . LGI–39
LGI$ICB_GET_SYSPWD . LGI–40
LGI$ICB_MODALHOURS . LGI–41
LGI$ICB_PASSWORD . LGI–42
LGI$ICB_PWDEXPIRED . LGI–44
LGI$ICB_USERPARSE . LGI–45
LGI$ICB_USERPROMPT . LGI–46
LGI$ICB_VALIDATE . LGI–47

14 Mail Utility (MAIL) Routines

14.1 Messages . MAIL–1
14.2 Folders . MAIL–2
14.3 Mail Files . MAIL–3
14.4 User Profile Database . MAIL–3
14.5 Mail Utility Processing Contexts . MAIL–3
14.5.1 Callable Mail Utility Routines . MAIL–4
14.5.2 Single and Multiple Threads . MAIL–5
14.6 Programming Considerations . MAIL–5
14.6.1 Condition Handling . MAIL–6
14.6.2 Item Lists and Item Descriptors . MAIL–6
14.6.2.1 Structure of an Item Descriptor . MAIL–6
14.6.2.2 Null Item Lists . MAIL–7
14.6.2.3 Declaring Item Lists and Item Descriptors MAIL–7
14.6.2.4 Terminating an Item List . MAIL–7
14.6.3 Action Routines . MAIL–7
14.7 Managing Mail Files . MAIL–8
14.7.1 Opening and Closing Mail Files . MAIL–9
14.7.1.1 Using the Default Specification for Mail Files MAIL–9
14.7.1.2 Specifying an Alternate Mail File Specification MAIL–10

viii

14.7.2 Displaying Folder Names . MAIL–11
14.7.3 Purging Mail Files Using the Wastebasket Folder MAIL–11
14.7.3.1 Reclaiming Disk Space . MAIL–11
14.7.3.2 Compressing Mail Files . MAIL–11
14.8 Message Context . MAIL–11
14.8.1 Selecting Messages . MAIL–12
14.8.2 Reading and Printing Messages . MAIL–13
14.8.3 Modifying Messages . MAIL–13
14.8.4 Copying and Moving Messages . MAIL–13
14.8.4.1 Creating Folders . MAIL–14
14.8.4.2 Deleting Folders . MAIL–14
14.8.4.3 Creating Mail Files . MAIL–14
14.8.5 Deleting Messages . MAIL–14
14.9 Send Context . MAIL–14
14.9.1 Sending New Messages . MAIL–15
14.9.1.1 Creating a Message . MAIL–15
14.9.1.1.1 Constructing the Message Header . MAIL–15
14.9.1.1.2 Constructing the Body of the Message MAIL–15
14.9.1.2 Creating an Address List . MAIL–16
14.9.2 Sending Existing Messages . MAIL–16
14.9.3 Send Action Routines . MAIL–16
14.9.3.1 Success Action Routines . MAIL–16
14.9.3.2 Error Handling Routines . MAIL–16
14.9.3.3 Aborting a Send Operation . MAIL–17
14.10 User Profile Context . MAIL–17
14.10.1 User Profile Entries . MAIL–17
14.10.1.1 Adding Entries to the User Profile Database MAIL–18
14.10.1.2 Modifying or Deleting User Profile Entries MAIL–18
14.11 Input Item Codes . MAIL–18
14.12 Output Item Codes . MAIL–21
14.13 Using the MAIL Routines: Examples . MAIL–23
14.14 MAIL Routines . MAIL–31

MAIL$MAILFILE_BEGIN . MAIL–32
MAIL$MAILFILE_CLOSE . MAIL–34
MAIL$MAILFILE_COMPRESS . MAIL–36
MAIL$MAILFILE_END . MAIL–39
MAIL$MAILFILE_INFO_FILE . MAIL–41
MAIL$MAILFILE_MODIFY . MAIL–44
MAIL$MAILFILE_OPEN . MAIL–47
MAIL$MAILFILE_PURGE_WASTE . MAIL–50
MAIL$MESSAGE_BEGIN . MAIL–53
MAIL$MESSAGE_COPY . MAIL–55
MAIL$MESSAGE_DELETE . MAIL–59
MAIL$MESSAGE_END . MAIL–61
MAIL$MESSAGE_GET . MAIL–63
MAIL$MESSAGE_INFO . MAIL–68
MAIL$MESSAGE_MODIFY . MAIL–72
MAIL$MESSAGE_SELECT . MAIL–75
MAIL$SEND_ABORT . MAIL–78
MAIL$SEND_ADD_ADDRESS . MAIL–80
MAIL$SEND_ADD_ATTRIBUTE . MAIL–82

ix

MAIL$SEND_ADD_BODYPART . MAIL–85
MAIL$SEND_BEGIN . MAIL–88
MAIL$SEND_END . MAIL–91
MAIL$SEND_MESSAGE . MAIL–93
MAIL$USER_BEGIN . MAIL–95
MAIL$USER_DELETE_INFO . MAIL–98
MAIL$USER_END . MAIL–100
MAIL$USER_GET_INFO . MAIL–102
MAIL$USER_SET_INFO . MAIL–106

15 National Character Set (NCS) Utility Routines

15.1 Introduction to NCS Routines . NCS–1
15.1.1 List of NCS Routines . NCS–1
15.1.2 Sample Application Process . NCS–2
15.2 Using the NCS Utility Routines: Examples . NCS–2
15.3 NCS Routines . NCS–7

NCS$COMPARE . NCS–8
NCS$CONVERT . NCS–10
NCS$END_CF . NCS–12
NCS$END_CS . NCS–13
NCS$GET_CF . NCS–14
NCS$GET_CS . NCS–16
NCS$RESTORE_CF . NCS–18
NCS$RESTORE_CS . NCS–20
NCS$SAVE_CF . NCS–22
NCS$SAVE_CS . NCS–24

16 Print Symbiont Modification (PSM) Routines

16.1 Introduction to PSM Routines . PSM–1
16.2 Print Symbiont Overview . PSM–2
16.2.1 Components of the Print Symbiont . PSM–2
16.2.2 Creation of the Print Symbiont Process . PSM–2
16.2.3 Symbiont Streams . PSM–3
16.2.4 Symbiont and Job Controller Functions . PSM–3
16.2.5 Print Symbiont Internal Logic . PSM–4
16.3 Symbiont Modification Procedure . PSM–6
16.3.1 Guidelines and Restrictions . PSM–7
16.3.2 Writing an Input Routine . PSM–9
16.3.2.1 Internal Logic of the Symbiont’s Main Input Routine PSM–9
16.3.2.2 Symbiont Processing of Carriage Control . PSM–10
16.3.3 Writing a Format Routine . PSM–11
16.3.3.1 Internal Logic of the Symbiont’s Main Format Routine PSM–12
16.3.4 Writing an Output Routine . PSM–12
16.3.4.1 Internal Logic of the Symbiont’s Main Output Routine PSM–13
16.3.5 Other Function Codes . PSM–13
16.3.6 Writing a Symbiont Initialization Routine . PSM–14
16.3.7 Integrating a Modified Symbiont . PSM–15
16.4 Using the PSM Routines: An Example . PSM–16

x

16.5 PSM Routines . PSM–20
PSM$PRINT . PSM–21
PSM$READ_ITEM_DX . PSM–23
PSM$REPLACE . PSM–25
PSM$REPORT . PSM–30
USER-FORMAT-ROUTINE . PSM–33
USER-INPUT-ROUTINE . PSM–37
USER-OUTPUT-ROUTINE . PSM–43

17 Symbiont/Job Controller Interface (SMB) Routines

17.1 Introduction to SMB Routines . SMB–1
17.1.1 Types of Symbiont . SMB–1
17.1.2 Symbionts Supplied with the Operating System SMB–1
17.1.3 Symbiont Behavior in the OpenVMS Environment SMB–2
17.1.4 Writing a Symbiont . SMB–3
17.1.5 Guidelines for Writing a Symbiont . SMB–3
17.1.6 The Symbiont/Job Controller Interface Routines SMB–4
17.1.7 Choosing the Symbiont Environment . SMB–5
17.1.7.1 Synchronous Versus Asynchronous Delivery of Requests SMB–5
17.1.7.2 Single-Streaming Versus Multistreaming . SMB–9
17.1.8 Reading Job Controller Requests . SMB–10
17.1.9 Processing Job Controller Requests . SMB–10
17.1.10 Responding to Job Controller Requests . SMB–13
17.2 SMB Routines . SMB–13

SMB$CHECK_FOR_MESSAGE . SMB–14
SMB$INITIALIZE . SMB–15
SMB$READ_MESSAGE . SMB–17
SMB$READ_MESSAGE_ITEM . SMB–20
SMB$SEND_TO_JOBCTL . SMB–30

18 Sort/Merge (SOR) Routines

18.1 High-Performance Sort/Merge (Alpha Only) . SOR–1
18.1.1 High-Performance SOR Routine Behavior . SOR–2
18.1.2 Using Threads with High-Performance Sort/Merge SOR–3
18.2 Introduction to SOR Routines . SOR–4
18.2.1 Arguments to SOR Routines . SOR–4
18.2.2 Interfaces to SOR Routines . SOR–5
18.2.2.1 Sort Operation Using File Interface . SOR–5
18.2.2.2 Sort Operation Using Record Interface . SOR–6
18.2.2.3 Merge Operation Using File Interface . SOR–6
18.2.2.4 Merge Operation Using Record Interface . SOR–6
18.2.3 Reentrancy . SOR–6
18.3 Using the SOR Routines: Examples . SOR–8
18.4 SOR Routines . SOR–28

SOR$BEGIN_MERGE . SOR–29
SOR$BEGIN_SORT . SOR–36
SOR$DTYPE . SOR–42
SOR$END_SORT . SOR–45
SOR$PASS_FILES . SOR–47

xi

SOR$RELEASE_REC . SOR–52
SOR$RETURN_REC . SOR–54
SOR$SORT_MERGE . SOR–56
SOR$SPEC_FILE . SOR–59
SOR$STAT . SOR–61

Index

Examples

2–1 Calling the ACL Editor with a VAX BLISS Program ACL–2
3–1 Calling the Backup API with a VAX C Program BCK–2
4–1 Using the CLI Routines to Retrieve Information About Command

Lines in a Fortran Program . CLI–2
5–1 Using UTIL$CQUAL Routines to Process Files CQUAL–7
6–1 Using the CONVERT Routines in a Fortran Program CONV–1
6–2 Using the CONVERT Routines in a C Program CONV–3
6–3 Using the CONV$RECLAIM Routine in a Fortran Program CONV–5
6–4 Using the CONV$RECLAIM Routine in a C Program CONV–6
7–1 Compressing a File in a Compaq Fortran Program DCX–4
7–2 Expanding a Compressed File in a Compaq Fortran Program DCX–8
8–1 Sample VAX BLISS Template for Callable DECTPU DECTPU–7
8–2 Normal DECTPU Setup in Compaq Fortran . DECTPU–12
8–3 Building a Callback Item List with Compaq Fortran DECTPU–14
8–4 Specifying a User-Written File I/O Routine in VAX C DECTPU–17
9–1 Using the EDT Routines in a VAX BASIC Program EDT–1
10–1 Using FDL$CREATE in a Fortran Program . FDL–3
10–2 Using FDL$PARSE and FDL$RELEASE in a C Program FDL–3
10–3 Using FDL$PARSE and FDL$GENERATE in a Compaq Pascal

Program . FDL–5
11–1 Creating a New Library Using Compaq Pascal LBR–8
11–2 Inserting a Module into a Library Using Compaq Pascal LBR–11
11–3 Extracting a Module from a Library Using Compaq Pascal LBR–14
11–4 Deleting a Module from a Library Using Compaq Pascal LBR–17
11–5 Associating Keys with Modules . LBR–19
11–6 Listing Keys Associated with a Module . LBR–21
11–7 Displaying the Module Header . LBR–22
11–8 Reading Library Headers . LBR–24
11–9 Displaying Text from a Help Library . LBR–25
11–10 Displaying Index Entries . LBR–27
14–1 Sending a File . MAIL–24
14–2 Displaying Folders . MAIL–26
14–3 Displaying User Profile Information . MAIL–28
15–1 Using NCS Routines in a Compaq Fortran for OpenVMS Program . . . NCS–3
15–2 Using NCS Routines in a Compaq C for OpenVMS VAX Program NCS–5
16–1 Using PSM Routines to Supply a Page Header Routine in a VAX

MACRO Program . PSM–16

xii

18–1 Using SOR Routines to Perform a Merge Using Record Interface in a
Compaq Fortran Program . SOR–9

18–2 Using SOR Routines to Sort Using Mixed Interface in a Compaq
Fortran Program . SOR–13

18–3 Using SOR Routines to Merge Three Input Files in a Compaq Pascal
Program . SOR–16

18–4 Using SOR Routines to Sort Records from Two Input Files in a
Compaq Pascal Program . SOR–20

18–5 Using SOR Routines to Sort Records Using the STABLE Option and
Two Text Keys in a Compaq C Program . SOR–24

Figures

11–1 Structure of a Macro, Text, or Help Library . LBR–3
11–2 Structure of an Object or Shareable Image Library LBR–4
11–3 Structure of a User-Developed Library . LBR–5
13–1 LOGINOUT Callout Routines Data Flow . LGI–3
13–2 Callout Organization . LGI–6
14–1 Standard Message Format . MAIL–1
14–2 Item Descriptor . MAIL–6
16–1 Multithreaded Symbiont . PSM–3
16–2 Symbiont Execution Sequence or Flow of Control PSM–5
17–1 Symbionts in the OpenVMS Environment . SMB–2
17–2 Flowchart for a Single-Threaded, Synchronous Symbiont SMB–6
17–3 Flowchart for a Single-Threaded, Asynchronous Symbiont (MAIN

Routine) . SMB–8
17–4 Flowchart for a Single-Threaded, Asynchronous Symbiont (AST

Routine) . SMB–9

Tables

3–1 Backup API Language Definition Files . BCK–2
3–2 BACKUP Option Structure Types . BCK–4
3–3 bckEvent Format . BCK–19
3–4 Event Callback Buffer Formats . BCK–19
3–5 Control Event Subtypes . BCK–22
3–6 bckControl Format . BCK–23
5–1 UTIL$CQUAL Routines . CQUAL–1
5–2 UTIL$CQUAL_FILE_PARSE Command Line Qualifiers CQUAL–2
5–3 UTIL$CQUAL_FILE_PARSE Flags and Masks CQUAL–11
5–4 Prompting Form Values . CQUAL–19
5–5 Prompt Responses . CQUAL–20
6–1 Conversion Statistics Array . CONV–9
6–2 CONVERT Qualifiers . CONV–16
6–3 Bucket Reclamation Statistics Array . CONV–21
8–1 Valid Masks for the TPU$K_OPTIONS Item Code DECTPU–58
11–1 LBR Routines . LBR–5
13–1 LOGINOUT Callouts . LGI–3

xiii

13–2 LOGINOUT Callback Routines . LGI–4
13–3 Useful LOGINOUT Internal Variables . LGI–8
14–1 Default Mail Folders . MAIL–2
14–2 User Profile Information . MAIL–3
14–3 Levels of Mail Utility Processing . MAIL–4
14–4 Callable Mail Utility Routines . MAIL–4
14–5 Types of Action Routines . MAIL–8
14–6 Mail File Routines . MAIL–8
14–7 Message Routines . MAIL–11
14–8 Send Routines . MAIL–15
14–9 User Profile Context Routines . MAIL–17
14–10 Input Item Codes . MAIL–19
14–11 Output Item Codes . MAIL–22
15–1 NCS Routines . NCS–1
16–1 Routine Codes for Specification to PSM$REPLACE PSM–14
17–1 Job Controller Functions . SMB–10
18–1 High-Performance Sort/Merge: Differences in SOR$ Routine

Behavior . SOR–2

xiv

Preface

Intended Audience
This manual is intended for programmers who want to invoke and use the
functions provided by OpenVMS utilities.

Document Structure
Chapter 1 introduces the utility routines and lists the documentation format used
to describe each set of utility routines, as well as the individual routines in each
set. Each subsequent chapter contains an introduction to a set of utility routines,
a programming example to illustrate the use of the routines in the set, and a
detailed description of each routine.

This manual presents the utility routine sets as follows:

• Access Control List (ACL) editor routine

• Backup (BACKUP) routine

• Command Language Interface (CLI) routines

• Common File Qualifier routines

• Convert (CONVERT) routines

• Data Compression/Expansion (DCX) routines

• DEC Text Processing Utility (DECTPU) routines

• EDT routines

• File Definition Language (FDL) routines

• Librarian (LBR) routines

• Lightweight Directory Access Protocol (LDAP) routines

Note

Because the LDAP routines are a C language interface, this chapter is
formatted differently than the other chapters.

• LOGINOUT (LGI) routines

• Mail utility (MAIL) routines

• National character set (NCS) utility routines

• Print Symbiont Modification (PSM) routines

• Symbiont/Job Controller Interface (SMB) routines

xv

• Sort/Merge (SOR) routines

Related Documents
For additional information about OpenVMS products and services, access the
following World Wide Web address:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

xvi

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

bold text Bold text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xvii

1
Introduction to Utility Routines

A set of utility routines performs a particular task or set of tasks. For example,
you can use the Print Symbiont Modification (PSM) routines to modify the print
symbiont and the EDT routines to invoke the EDT editor from a program.

Some of the tasks performed by utility routines can also be performed at the
Digital Command Language (DCL) level (for example, the DCL command EDIT
invokes the EVE editor). While DCL commands invoke utilities that let you
perform tasks at your terminal, you can perform some of these tasks at the
programming level through the use of the utility routines.

When using a set of utility routines that performs the same tasks as the related
utility, you should read the documentation for that utility; doing so will provide
additional information about the tasks the routines can perform as a set. The
following table lists utilities and their corresponding routines:

Utility or Editor Utility Routines

Access control list editor ACL editor routine

Backup application programming
interface (API)

Backup API routine

Command Definition Utility CLI routines

Common File Qualifier routines UTIL$CQUAL routines

Convert and Convert/Reclaim utilities CONVERT routines

EDT editor EDT routines

DEC Text Processing Utility DECTPU routines

File Definition Language facility FDL routines

LOGINOUT callouts LGI routines

Librarian utility LBR routines

Mail utility MAIL routines

National character set utility NCS routines

Sort/Merge utility SOR routines

When a set of utility routines performs functions that you cannot perform
by invoking a utility, the functions provided by that set of routines is termed
a facility. The following facilities have no other user interface except the
programming interface provided by the utility routines described in this manual:

Introduction to Utility Routines 1–1

Introduction to Utility Routines

Facility Utility Routines

Data Compression/Expansion facility DCX routines

Print Symbiont Modification facility PSM routines

Symbiont/Job Controller Interface facility SMB routines

Like all other system routines in the OpenVMS environment, the utility routines
described in this manual conform to the OpenVMS Calling Standard. Note that
for stylistic purposes, the calling syntax illustrated for routines documented
in this manual is consistent. However, you should consult your programming
language documentation to determine the appropriate syntax for calling these
routines.

Each chapter of this book documents one set of utility routines. Each chapter has
the following major components, documented as a major heading:

• An introduction to the set of utility routines. This component discusses the
utility routines as a group and explains how to use them.

• One or more programming examples that illustrate how the utility routines
are used.

• A series of descriptions of each utility routine in the set.

1–2 Introduction to Utility Routines

2
Access Control List (ACL) Editor Routine

This chapter describes the access control list editor (ACL editor) routine,
ACLEDIT$EDIT. User-written applications can use this callable interface of the
ACL editor to manipulate access control lists (ACLs).

2.1 Introduction to the ACL Editor Routine
The ACL editor is a utility that lets you create and maintain access control lists.
Using ACLs, you can limit access to the following protected objects available to
system users:

• Devices

• Files

• Group global sections

• Logical name tables

• System global sections

• Capabilities (VAX only)

• Common event flag clusters

• Queues

• Resource domains

• Security classes

• Volumes

The ACL editor provides one callable interface that allows the application
program to define an object for editing.

Note that the application program should declare referenced constants and return
status symbols as external symbols; these symbols will be resolved upon linking
with the utility shareable image.

See the OpenVMS Programming Concepts Manual for fundamental conceptual
information on the creation, translation, and maintenance of access control
entries (ACEs).

2.2 Using the ACL Editor Routine: An Example
Example 2–1 shows a VAX BLISS program that calls the ACL editor routine.

Access Control List (ACL) Editor Routine ACL–1

Access Control List (ACL) Editor Routine
2.2 Using the ACL Editor Routine: An Example

Example 2–1 Calling the ACL Editor with a VAX BLISS Program

MODULE MAIN (LANGUAGE (BLISS32), MAIN = STARTUP) =

BEGIN

LIBRARY ’SYS$LIBRARY:LIB’;

ROUTINE STARTUP =

BEGIN

LOCAL
STATUS, ! Routine return status
ITMLST : BLOCKVECTOR [6, ITM$S_ITEM, BYTE];

! ACL editor item list

EXTERNAL LITERAL
ACLEDIT$V_JOURNAL,
ACLEDIT$V_PROMPT_MODE,

ACLEDIT$C_OBJNAM,
ACLEDIT$C_OBJTYP,
ACLEDIT$C_OPTIONS;

EXTERNAL ROUTINE
ACLEDIT$EDIT : ADDRESSING_MODE (GENERAL), ! Main routine

CLI$GET_VALUE, ! Get qualifier value
CLI$PRESENT, ! See if qualifier present
LIB$PUT_OUTPUT, ! General output routine
STR$COPY_DX; ! Copy string by descriptor

! Set up the item list to pass back to TPU so it can figure out what to do.

CH$FILL (0, 6*ITM$S_ITEM, ITMLST);
ITMLST[0, ITM$W_ITMCOD] = ACLEDIT$C_OBJNAM;
ITMLST[0, ITM$W_BUFSIZ] = %CHARCOUNT (’YOUR_OBJECT_NAME’);
ITMLST[0, ITM$L_BUFADR] = $DESCRIPTOR (’YOUR_OBJECT_NAME’);
ITMLST[1, ITM$W_ITMCOD] = ACLEDIT$C_OBJTYP;
ITMLST[1, ITM$W_BUFSIZ] = 4;
ITMLST[1, ITM$L_BUFADR] = UPLIT (ACL$C_FILE);
ITMLST[2, ITM$W_ITMCOD] = ACLEDIT$C_OPTIONS;
ITMLST[2, ITM$W_BUFSIZ] = 4;
ITMLST[2, ITM$L_BUFADR] = UPLIT (1 ^ ACLEDIT$V_PROMPT_MODE OR

1 ^ ACLEDIT$V_JOURNAL);

RETURN ACLEDIT$EDIT (ITMLST);
END; ! End of routine STARTUP

END
ELUDOM

2.3 ACL Editor Routine
This section describes the ACL editor routine.

ACL–2 Access Control List (ACL) Editor Routine

Access Control List (ACL) Editor Routine
ACLEDIT$EDIT

ACLEDIT$EDIT—Edit Access Control List

The ACLEDIT$EDIT routine creates and modifies an access control list (ACL)
associated with any protected object.

Format

ACLEDIT$EDIT item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

item_list
OpenVMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by descriptor

Item list used by the callable ACL editor. The item_list argument is the address
of one or more descriptors of arrays, routines, or longword bit masks that control
various aspects of the editing session.

Each entry in an item list is in the standard format shown in the following figure:

ZK−5012−GE

Return length address

Buffer address

Item code Buffer length

Access Control List (ACL) Editor Routine ACL–3

Access Control List (ACL) Editor Routine
ACLEDIT$EDIT

The following table provides a detailed description of each item list entry:

Item Identifier Description

ACLEDIT$C_OBJNAM Specifies the name of the object whose ACL is being edited.
ACLEDIT$C_OBJTYP A longword value that specifies the object type code for the type

or class of the object whose ACL is being edited. These type
codes are defined in $ACLDEF. The default object type is FILE
(ACL$C_FILE).

ACLEDIT$C_OPTIONS Represents a longword bit mask of the various options available
to control the editing session.

Flag Function

ACLEDIT$V_JOURNAL Indicates that the editing session is to
be journaled.

ACLEDIT$V_RECOVER Indicates that the editing session is to
be recovered from an existing journal
file.

ACLEDIT$V_KEEP_
RECOVER

Indicates that the journal file used to
recover the editing session is not to be
deleted when the recovery is complete.

ACLEDIT$V_KEEP_
JOURNAL

Indicates that the journal file used for
the editing session is not to be deleted
when the session ends.

ACLEDIT$V_PROMPT_
MODE

Indicates that the session is to use
automatic text insertion (prompting)
to build new access control list entries
(ACEs).

ACLEDIT$C_BIT_TABLE Specifies a vector of 32 quadword string descriptors of strings that
define the names of the bits present in the access mask. (The first
descriptor defines the name of bit 0; the last descriptor defines
the name of bit 31.) These descriptors are used in parsing or
formatting an ACE. The buffer address field of the item descriptor
contains the address of this vector.

ACL–4 Access Control List (ACL) Editor Routine

Access Control List (ACL) Editor Routine
ACLEDIT$EDIT

Item Identifier Description

ACLEDIT$C_CLSNAM A string descriptor that points to the class name of the object
whose ACL is being modified. The following are valid class
names:

• CAPABILITY†

• COMMON_EVENT_FLAG_CLUSTER

• DEVICE

• FILE

• GROUP_GLOBAL_SECTION

• LOGICAL_NAME_TABLE

• QUEUE

• RESOURCE_DOMAIN

• SECURITY_CLASS

• SYSTEM_GLOBAL_SECTION

• VOLUME

If both OBJTYP and CLSNAM are omitted, the object is assumed
to belong to the FILE class.

†VAX specific.

Description

Use the ACLEDIT$EDIT routine to create and modify an ACL associated with
any security object.

Under normal circumstances, the application calls the ACL editor to modify an
object’s ACL, and control is returned to the application when you finish or abort
the editing session.

If you also want to use a customized version of the ACL editor section file, the
logical name ACLEDT$SECTION should be defined. See the OpenVMS System
Management Utilities Reference Manual for more information.

Condition Values Returned

SS$_NORMAL Normal successful completion.
RMS$_xxx See the OpenVMS Record Management Services

Reference Manual for a description of OpenVMS
RMS status codes.

TPU$_xxx See Chapter 8 for a description of the TPU-
specific condition values that may be returned by
ACLEDIT$EDIT.

Access Control List (ACL) Editor Routine ACL–5

3
Backup (BACKUP) Routine

This chapter describes the Backup application programming interface (API).
User-written applications can use the Backup API to perform BACKUP
operations.

3.1 Introduction to the Backup API
The Backup API allows application programs to save individual files or the
contents of entire disk volume sets. The Backup API also allows application
programs to get information about files or disk and tape volumes.

In general, the Backup API gives application programs access to (relevant)
BACKUP functions that are available to an interactive user via the DCL
command BACKUP. The application program calls routine BACKUP$START
with an argument that points to a variable-length array, which consists of
option structures to specify the required BACKUP operation. The call to
BACKUP$START in combination with the option structures in the variable-
length array form the equivalent of a BACKUP command at DCL level.

Each relevant BACKUP qualifier is represented by an option structure or
combination of option structures. Each option structure consists of a longword
that contains the option structure identifier, followed by a value field of 1 to
7 longwords. Each option structure must be quadword-aligned within the
variable-length array. There are six option structure types:

Option Definition

bck_opt_struct_adr 32-bit address

bck_opt_struct_dsc Static string descriptor

bck_opt_struct_dsc64 Reserved for use by Compaq

bck_opt_struct_dt Date/Time quadword (ADT)

bck_opt_struct_flag Logical bit flags

bck_opt_struct_int 32-bit integer

The option structure types are defined in the language definition files. Table 3–1
lists the language definition files.

Backup (BACKUP) Routine BCK–1

Backup (BACKUP) Routine
3.1 Introduction to the Backup API

Table 3–1 Backup API Language Definition Files

Language API Definitions

Media Format
(Save Set)
Definitions

Backup Utility Data
Structures

BASIC BAPIDEF.BAS BACKDEF.BAS BACKSTRUC.BAS

BLISS BAPIDEF.R32 BACKDEF.R32 BACKSTRUC.R32

C BAPIDEF.H BACKDEF.H BACKSTRUC.H

Fortran BAPIDEF.FOR BACKDEF.FOR BACKSTRUC.FOR

MACRO BAPIDEF.MAR BACKDEF.MAR BACKSTRUC.MAR

See the OpenVMS System Management Utilities Reference Manual: A–L for
detailed definitions of the DCL command BACKUP qualifiers. See the OpenVMS
System Manager’s Manual, Volume 1: Essentials for detailed information about
using BACKUP. You can also use the Help facility for more information about the
Backup command and its qualifiers.

3.2 Using the Backup API: An Example
Example 3–1 shows a VAX C program that calls the Backup API. This program
produces the same result as the following DCL command:

$ BACKUP [.WRK]*.* A.BCK/SAVE

Example 3–1 Calling the Backup API with a VAX C Program

#include <stdio.h>
#include <stdlib.h>
#include <ssdef.h>
#include <descrip.h>
#include "sys$examples:bapidef.h"

typedef struct _buf_arg
{
bck_opt_struct_dsc arg1;
bck_opt_struct_dsc arg2;
bck_opt_struct_flag arg3;
bck_opt_struct_flag arg4;
bck_opt_struct_flag arg5;

} buf_arg;
struct dsc$descriptor

input_dsc,
output_dsc,
event_type_dsc;

buf_arg myarg_buff;
unsigned int status;

extern unsigned int backup$start(buf_arg *myarg_buff);
unsigned int subtest(void *);

static char input_str[] = "[.wrk]";
static char output_str[] = "a.bck";

(continued on next page)

BCK–2 Backup (BACKUP) Routine

Backup (BACKUP) Routine
3.2 Using the Backup API: An Example

Example 3–1 (Cont.) Calling the Backup API with a VAX C Program

main()
{

input_dsc.dsc$b_dtype =
output_dsc.dsc$b_dtype = DSC$K_DTYPE_T;

input_dsc.dsc$b_class =
output_dsc.dsc$b_class = DSC$K_CLASS_S;

input_dsc.dsc$w_length = sizeof(input_str);
output_dsc.dsc$w_length = sizeof(output_str);

input_dsc.dsc$a_pointer = input_str;
output_dsc.dsc$a_pointer = output_str;

myarg_buff.arg1.opt_dsc_type = BCK_OPT_K_INPUT;
myarg_buff.arg1.opt_dsc = input_dsc;

myarg_buff.arg2.opt_dsc_type = BCK_OPT_K_OUTPUT;
myarg_buff.arg2.opt_dsc = output_dsc;

myarg_buff.arg3.option_type = BCK_OPT_K_SAVE_SET_OUT;
myarg_buff.arg3.opt_flag_value = TRUE;

myarg_buff.arg4.option_type = BCK_OPT_K_OPERATION_TYPE;
myarg_buff.arg4.opt_flag_value = BCK_OP_K_SAVE ;

myarg_buff.arg5.option_type = BCK_OPT_K_END_OPT;
myarg_buff.arg5.opt_flag_value = FALSE;

status = backup$start(&myarg_buff);

exit (status);
}

3.3 Backup API
This section describes the Backup API.

Backup (BACKUP) Routine BCK–3

Backup API
BACKUP$START

BACKUP$START—Call BACKUP Utility

BACKUP$START is the entry point through which applications invoke the
OpenVMS Backup utility.

Format

BACKUP$START argument-buffer

Returns

OpenVMS usage: COND_VALUE
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Condition values that this routine can return are
listed under Condition Values Returned.

Argument

argument-buffer
OpenVMS usage: user-defined array
type: longword (unsigned)
access: read only
mechanism: by reference

Arguments that specify the BACKUP operation to be performed. The
argument-buffer argument is the address of a variable-length array of one
or more Backup API option structures that define the attributes of the requested
BACKUP operation. The variable-length array is terminated by an option
structure of 16 bytes that contains all zeros. Table 3–2 describes the option
structures.

Note

The length of the terminating option structure is 2 longwords (16 bytes).
The first longword identifies the option structure and has a value of 0. It
is recommended that the second longword contain a value of 0.

Table 3–2 BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_END_OPT Flag that contains all zeros to denote the end of
argument-buffer. This option structure consists
of 2 longwords. The first longword, with a value
of 0, identifies the BCK_OPT_K_END_OPT
option structure. The second longword is ignored
by BACKUP. However it is recommended that the
second longword contain all zeros.

(continued on next page)

BCK–4 Backup (BACKUP) Routine

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_ALIAS Flag that specifies whether to maintain the
previous behavior of multiple processing of alias
and primary file entries.
Values are TRUE (default) or FALSE. (See the
BACKUP qualifier /ALIAS.)
Note: Use of BCK_OPT_K_ALIAS and BCK_
OPT_K_PHYSICAL in the same call results in a
fatal error.

BCK_OPT_K_ASSIST Flag that specifies whether to allow operator
or user intervention if a request to mount a
magnetic tape fails during a BACKUP operation.
Values are TRUE (default) or FALSE.
(See the BACKUP qualifier /ASSIST.)

BCK_OPT_K_BACKUP Flag that specifies whether to select files
according to the BACKUP date written in the
file header record.
Values are TRUE or FALSE. Use this
flag to set the corresponding logical bit
flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.
(See the BACKUP qualifiers /BEFORE, /SINCE,
and /BACKUP.)

BCK_OPT_K_BEFORE_TYPE Logical bit flags that qualify the date specified
in the BCK_OPT_K_BEFORE_VALUE option
structure. Type can be one of the following:
BCK_OPTYP_BEFORE_K_BACKUP

Selects files last saved or copied by BACKUP
before the date specified. Also selects files
with no BACKUP date.

BCK_OPTYP_BEFORE_K_CREATED
Selects files created before the date specified.

BCK_OPTYP_BEFORE_K_EXPIRED
Selects files that have expired as of the date
specified.

BCK_OPTYP_BEFORE_K_MODIFIED
(Default) Selects files last modified before the
date specified.

BCK_OPTYP_BEFORE_K_SPECIFIED
Reserved for use by Compaq.

(See the BACKUP qualifiers /BEFORE,
/BACKUP, /CREATED, /EXPIRED, and
/MODIFIED.)

(continued on next page)

Backup (BACKUP) Routine BCK–5

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_BEFORE_VALUE Date-Time Quadword that specifies the date
qualified by BCK_OPT_K_BEFORE_TYPE. You
cannot use delta time.
(See the BACKUP qualifier /BEFORE.)

BCK_OPT_K_BLOCK Integer that specifies the block size in bytes for
data records in the BACKUP save set.
The default block size for magnetic tape is 8,192
bytes. The default block size for disk is 32,256
bytes.
(See the BACKUP qualifier /BLOCK_SIZE.)

BCK_OPT_K_CARTRIDGE_MEDIA_IN1 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_
MEDIA_IN and BCK_OPT_K_CARTRIDGE_
NAME_IN or any of the BCK_OPT_K_
SCRATCH_* option structures in the same call
results in a fatal error.

BCK_OPT_K_CARTRIDGE_NAME_IN1 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_
NAME_IN and BCK_OPT_K_CARTRIDGE_
MEDIA_IN or any of the BCK_OPT_K_
SCRATCH_* option structures in the same call
results in a fatal error.

BCK_OPT_K_CARTRIDGE_SIDE_IN1 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_SIDE_
IN without BCK_OPT_K_CARTRIDGE_NAME_
IN in the same call results in a fatal error.
Note: Use of BCK_OPT_K_CARTRIDGE_SIDE_
IN with any of the BCK_OPT_K_SCRATCH_*
option structures in the same call results in a
fatal error.

BCK_OPT_K_CARTRIDGE_MEDIA_OUT1 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_
MEDIA_OUT and BCK_OPT_K_CARTRIDGE_
NAME_OUT or any of the BCK_OPT_K_
SCRATCH_* option structures in the same call
results in a fatal error.

BCK_OPT_K_CARTRIDGE_NAME_OUT1 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_
NAME_OUT and BCK_OPT_K_CARTRIDGE_
MEDIA_OUT or any of the BCK_OPT_K_
SCRATCH_* option structures in the same call
results in a fatal error.

1Reserved for use by Media Management Extension (MME) layered products.

(continued on next page)

BCK–6 Backup (BACKUP) Routine

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_CARTRIDGE_SIDE_OUT1 32-bit descriptor.
Note: Use of BCK_OPT_K_CARTRIDGE_
SIDE_OUT without BCK_OPT_K_CARTRIDGE_
NAME_OUT in the same call results in a fatal
error.
Note: Use of BCK_OPT_K_CARTRIDGE_SIDE_
OUT with any of the BCK_OPT_K_SCRATCH_*
option structures in the same call results in a
fatal error.

BCK_OPT_K_COMMAND Reserved for use by Compaq.
BCK_OPT_K_COMMENT 32-bit descriptor that specifies a comment string

to be placed in the output save set.
(See the BACKUP qualifier /COMMENT.)

BCK_OPT_K_COMPARE Flag that specifies whether to compare the entity
specified by BCK_OPT_K_INPUT with the entity
specified by BCK_OPT_K_OUTPUT. Values are
TRUE and FALSE (default).
(See the BACKUP qualifier /COMPARE.)

BCK_OPT_K_CONFIRM Flag that specifies whether to prompt for
confirmation before processing each file.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /CONFIRM.)

BCK_OPT_K_CRC Flag that specifies whether the software cyclic
redundancy check (CRC) is to be performed.
Values are TRUE (default) and FALSE.
(See the BACKUP qualifier /CRC.)

BCK_OPT_K_CREATED Flag that specifies whether to select files
according to the creation date written in the
file header record.
Values are TRUE or FALSE.
Use this flag to set the corresponding logical
bit flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.
(See the BACKUP qualifiers /BEFORE, /SINCE,
and /CREATED.)

BCK_OPT_K_DCL_INTERFACE Reserved for use by Compaq.
BCK_OPT_K_DELETE Flag that specifies whether a copy or backup

operation is to delete the input files from the
input volume when the operation is complete.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /DELETE.)

1Reserved for use by Media Management Extension (MME) layered products.

(continued on next page)

Backup (BACKUP) Routine BCK–7

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_DENSITY Integer that specifies the recording density of the
output magnetic tape in bits per inch (bits/in).
The density specified must be supported by the
magnetic tape hardware. The default density is
the current density on the output tape drive. (See
the BACKUP qualifier /DENSITY.)
Note: Use of BCK_OPT_K_DENSITY and BCK_
OPT_K_MEDIA_FORMAT in the same call
results in a fatal error.

BCK_OPT_K_DISMOUNT Reserved for use by Compaq.
BCK_OPT_K_DISPOSITION1 Logical bit flags. Values are the following:

BCK_OPTYP_DISP_K_KEEP
BCK_OPTYP_DISP_K_RELEASE

BCK_OPT_K_DRIVE_CLASS_IN1 32-bit descriptor.
BCK_OPT_K_DRIVE_CLASS_OUT1 32-bit descriptor.
BCK_OPT_K_ENCRYPT2 Flag.
BCK_OPT_K_ENCRYPT_USERALG2 32-bit descriptor.
BCK_OPT_K_ENCRYPT_USERKEY2 32-bit descriptor.

Note: Use of BCK_OPT_K_ENCRYPT_
USERKEY and BCK_OPT_K_ENCRYPT_KEY_
VALUE in the same call results in a fatal error.

BCK_OPT_K_ENCRYPT_KEY_VALUE2 32-bit descriptor.
Note: Use of BCK_OPT_K_ENCRYPT_KEY_
VALUE and BCK_OPT_K_ENCRYPT_USERKEY
in the same call results in a fatal error.

BCK_OPT_K_EVENT_CALLBACK Address of a routine in the calling application
to be called to process BACKUP events. See the
Description section for detailed information about
event callbacks.

BCK_OPT_K_EXACT_ORDER Flag that specifies whether a BACKUP operation
is to accept an exact order of tape volume labels,
preserve an existing volume label, and prevent
previous volumes of a multivolume save operation
from being overwritten.
Values are TRUE (default) and FALSE.
(See the BACKUP qualifier /EXACT_ORDER.)

1Reserved for use by Media Management Extension (MME) layered products.
2Reserved for future use by a security utility or layered product.

(continued on next page)

BCK–8 Backup (BACKUP) Routine

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_EXCLUDE 32-bit descriptor that specifies the name of
an input file to be excluded from the current
BACKUP save or copy operation. Wildcards
are permitted. Each file specification, whether
wildcarded or not, requires its own BCK_OPT_
K_EXCLUDE option structure (lists are not
supported).
(See the BACKUP qualifier /EXCLUDE.)

BCK_OPT_K_EXPIRED Flag that specifies whether to select files
according to the expiration date written in the file
header record.
Values are TRUE or FALSE.
Use this flag to set the corresponding logical
bit flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.
(See the BACKUP qualifiers /BEFORE, /SINCE,
and /EXPIRED.)

BCK_OPT_K_FAST Flag that specifies whether to reduce processing
time by performing a fast file scan of the input
specifier.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /FAST.)

BCK_OPT_K_FILE_CALLBACK Reserved for use by Compaq.
BCK_OPT_K_FILEMERGE Reserved for use by Compaq.
BCK_OPT_K_FULL Flag that specifies whether to display information

produced by a BCK_OPT_K_LIST value of TRUE
in a format similar to that produced by the DCL
command DIRECTORY/FULL.
Values are TRUE and FALSE (default).
(See the BACKUP qualifiers /LIST and /FULL.)

BCK_OPT_K_GROUP Integer that specifies the number of backup
blocks or backup buffers BACKUP places in each
redundancy group.
The default is 10 blocks.
(See the BACKUP qualifier /GROUP_SIZE.)

BCK_OPT_K_HANDLE Reserved for use by Compaq.

(continued on next page)

Backup (BACKUP) Routine BCK–9

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_IGNORE_TYPES Logical bit flags that override tape labeling
checks or restrictions placed on files. Values are
one of the following:
BCK_OPTYP_IGNORE_K_ACCESS

Processes files on a tape that is protected by
a volume accessibility character, or a tape
created by HSC Backup. Applies to all tapes
in the save set.

BCK_OPTYP_IGNORE_K_INTERLOCK
Processes files otherwise inaccessible because
of file access conflicts.

BCK_OPTYP_IGNORE_K_LABELS
Ignores the contents of the volume header
record. You cannot use this flag if the
BCK_OPTYP_K_EXACT_ORDER option
structure flag value is TRUE.

BCK_OPTYP_IGNORE_K_NOBACKUP
Processes both the file header and
the contents of files marked with the
NOBACKUP option.

(See the BACKUP qualifier /IGNORE.)
BCK_OPT_K_IMAGE Flag that directs that an entire volume or volume

set be processed.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /IMAGE.)

BCK_OPT_K_INCREMENTAL Flag that specifies whether to restore an
incremental save set.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /INCREMENTAL.)

BCK_OPT_K_INITIALIZE Flag that specifies whether to initialize an entire
output volume, thereby making its previous
contents inaccessible.
Values are TRUE and FALSE (default, except for
image restore and copy operations).
(See the BACKUP qualifier /INITIALIZE.)

BCK_OPT_K_INPUT 32-bit descriptor that specifies a single input-
specifier. You can use wildcards. You must use a
separate BCK_OPT_K_INPUT option structure
for each specification.
(See the BACKUP Format description.)

(continued on next page)

BCK–10 Backup (BACKUP) Routine

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_INTERCHANGE Flag that specifies whether to process files in a
manner suitable for data interchange.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /INTERCHANGE.)

BCK_OPT_K_JOURNAL Flag that specifies whether a BACKUP journal
file is to be processed. You can specify a journal
file name other than BACKUP.BJL (the default)
with the BCK_OPT_K_JOURNAL_FILE option
structure.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /JOURNAL.)

BCK_OPT_K_JOURNAL_FILE 32-bit descriptor that specifies the name of a
BACKUP journal file to be processed.
(See the BACKUP qualifier /JOURNAL.)

BCK_OPT_K_LABEL 32-bit descriptor that specifies the volume label
to be written. To specify more than one label,
use additional BCK_OPT_K_LABEL option
structures.
(See the BACKUP qualifier /LABEL.)
Note: Use of BCK_OPT_K_LABEL with any
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_LIST Flag that specifies whether to process a
BACKUP list file. You can specify a list output
destination other than TTY: (the default) with the
BCK_OPT_K_LIST_FILE option structure.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /LIST.)

BCK_OPT_K_LIST_FILE 32-bit descriptor that specifies the name of a file
of a BACKUP journal file to be processed.
(See the BACKUP qualifier /LIST.)

BCK_OPT_K_LOG Flag that specifies whether to display the file
specification of each file processed. The display is
to SYS$OUTPUT.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /LOG.)

(continued on next page)

Backup (BACKUP) Routine BCK–11

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_MEDIA_FORMAT Logical bit flags that specify whether data
records are automatically compacted and
blocked together. The tape drive must support
compaction.
Values are one of the following:

BCK_OPTYP_MEDIA_K_COMPACTION
BCK_OPTYP_MEDIA_K_NO_COMPACTION
(default)

(See the BACKUP qualifier /MEDIA_FORMAT.)

Note: Use of BCK_OPT_K_MEDIA_FORMAT
and BCK_OPT_K_DENSITY in the same call
results in a fatal error.

BCK_OPT_K_MODIFIED Flag that specifies whether to select files
according to the modification date written in
the file header record.
Values are TRUE and FALSE.
Use this flag to set the corresponding logical
bit flag for BCK_OPT_K_BEFORE_TYPE and
BCK_OPT_K_SINCE_TYPE.
(See the BACKUP qualifiers /BEFORE, /SINCE,
and /MODIFIED.)

BCK_OPT_K_NEW_VERSION Flag that specifies whether to create a new
version of a file if a file with an identical file
specification already exists at the location to
which the file is being copied or restored.
Values are TRUE and FALSE (default).
Because this qualifier causes version numbers to
change, using it with the BCK_OPT_K_VERIFY
flag set to TRUE can cause unpredictable results.
Compaq recommends that you not use these two
options in combination.
(See the BACKUP qualifier /NEW_VERSION.)

BCK_OPT_K_OPERATION_TYPE Logical bit flags that specify the type of BACKUP
operation to be performed.
Values are one of the following:

BCK_OP_K_SAVE (default)
BCK_OP_K_RESTORE
BCK_OP_K_COPY
BCK_OPT_K_LIST
BCK_OPT_K_COMPARE

(continued on next page)

BCK–12 Backup (BACKUP) Routine

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_OUTPUT 32-bit descriptor that specifies the name of a
single output-specifier. You can use wildcards.
Each file specification requires a separate
BCK_OPT_K_OUTPUT option structure. Lists
are not supported.
(See BACKUP Format description.)

BCK_OPT_K_OVERLAY Flag that specifies whether to overlay (at the
same physical location) an existing file with a file
specification identical to that of the file that is
being copied or restored.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /OVERLAY.)

BCK_OPT_K_OWNER_IN_VALUE Integer that specifies the user identification code
(UIC) of the files to be processed by a BACKUP
input operation. The default is the UIC of the
current process. If you do not include this option
structure, BACKUP processes all files specified
by BCK_OPT_K_INPUT.
(See the BACKUP qualifier /BY_OWNER.)

BCK_OPT_K_OWNER_OUT_TYPE Logical bit flags to specify the user identification
code (UIC) of restored files.
Values are one of the following:
BCK_OPTYP_OWN_OUT_K_DEFAULT

Sets the owner UIC to the UIC of the current
process (default unless BCK_OPT_K_IMAGE
or BCK_OPT_K_INCREMENTAL is TRUE).

BCK_OPTYP_OWN_OUT_K_ORIGINAL
Retains the owner UIC of the file being
restored (default if BCK_OPT_K_IMAGE or
BCK_OPT_K_INCREMENTAL is TRUE).

BCK_OPTYP_OWN_OUT_K_PARENT
Sets the owner UIC to the owner UIC of the
directory to which the file is being written.
The current process must have the SYSPRV
user privilege, or be the owner of the output
volume, or must have the parent UIC.

(See the BACKUP qualifier /BY_OWNER.)

(continued on next page)

Backup (BACKUP) Routine BCK–13

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_OWNER_OUT_VALUE Integer that redefines the UIC of the files written
by a BACKUP restore or copy operation, or
specifies the UIC of an output save set.
If BCK_OPT_K_OUTPUT specifies a save set,
the default is the UIC of the current process. To
specify the UIC of a Files-11 save set, the current
process must have the SYSPRV user privilege, or
must have the UIC specified.
If BCK_OPT_K_OUTPUT specifies files, the UIC
of the output files is set to the UIC specified. To
specify the UIC, the UIC must be that of the
current process, or must have the SYSPRV user
privilege, or the current process must be the
owner of the output device.
(See the BACKUP qualifier /BY_OWNER.)

BCK_OPT_K_PHYSICAL Flag that specifies that a BACKUP operation is
to ignore any file structure on the input volume
and instead process the volume in terms of logical
blocks.
Values are TRUE and FALSE (default). Note
that output operations on a save set must be
performed with the same physical option as that
used to create the save set. (See the BACKUP
qualifier /PHYSICAL.)
Note: Use of BCK_OPT_K_PHYSICAL and
BCK_OPT_K_UNSHELVE or BCK_OPT_K_
ALIAS in the same call results in a fatal error.

BCK_OPT_K_PROTECTION Logical bit flags that specify file protection. Bits 0
to 15 of the option structure value field are in the
format of the RMS field XAB$W_PRO. See the
OpenVMS Record Management Services Reference
Manual for information about the format of this
field.
(Also see BACKUP utility qualifier
/PROTECTION.)

BCK_OPT_K_RECORD Flag that specifies whether to record the current
date and time in the BACKUP date field in each
file header once a file is successfully saved or
copied.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /RECORD.)

(continued on next page)

BCK–14 Backup (BACKUP) Routine

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_RELEASE_TAPE Flag that specifies whether to dismount and
unload a tape after a BACKUP save operation
has either reached the end of the tape or has
written and verified the save set.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /RELEASE_TAPE.)

BCK_OPT_K_REPLACE Flag that specifies whether to replace (at a
different physical location), with an identical
version number, an existing file with a file
specification identical to that of the file that
is being copied or restored.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /REPLACE.)

BCK_OPT_K_REWIND Flag. Reserved for use by Compaq.
BCK_OPT_K_REWIND_IN Flag that specifies whether the input device is

a tape drive, and that it is to be rewound to the
beginning-of-tape marker before beginning the
BACKUP operation.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /REWIND.)

BCK_OPT_K_REWIND_OUT Flag that specifies whether the output device is
a tape drive, and that it is to be rewound to the
beginning-of-tape marker and initialized before
beginning the BACKUP operation.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /REWIND.)
Note: Use of BCK_OPT_K_REWIND_OUT with
any BCK_OPT_K_SCRATCH_* option structure
in the same call results in a fatal error.

BCK_OPT_K_SAVE_SET_IN Flag that indicates whether the input specifier is
a BACKUP save-set file.
Values are TRUE and FALSE (default; indicates
that the input specifier refers to a Files-11 file).
(See the BACKUP qualifier /SAVE_SET.)

BCK_OPT_K_SAVE_SET_OUT Flag that indicates whether the output specifier
specifies a BACKUP save-set file.
Values are TRUE and FALSE (default; indicates
that the output specifier refers to a Files-11 file).
(See the BACKUP qualifier /SAVE_SET.)

(continued on next page)

Backup (BACKUP) Routine BCK–15

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_SCRATCH_ASGN_TYPE 1 Logical bit flags.
Note: Use of BCK_OPT_K_SCRATCH_ASGN_
TYPE with BCK_OPT_K_LABEL, BCK_OPT_
K_REWIND_OUT, any of the BCK_OPT_K_
CARTRIDGE_* option structures, or any other
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_SCRATCH_COLLECTION 1 32-bit descriptor.
Note: Use of BCK_OPT_K_SCRATCH_
COLLECTION with BCK_OPT_K_LABEL, BCK_
OPT_K_REWIND_OUT, any of the BCK_OPT_K_
CARTRIDGE_* option structures, or any other
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_SCRATCH_LOCATION 1 32-bit descriptor.
Note: Use of BCK_OPT_K_SCRATCH_
LOCATION with BCK_OPT_K_LABEL, BCK_
OPT_K_REWIND_OUT, any of the BCK_OPT_K_
CARTRIDGE_* option structures, or any other
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_SCRATCH_MEDIA_NAME 1 32-bit descriptor.
Note: Use of BCK_OPT_K_SCRATCH_MEDIA_
NAME with BCK_OPT_K_LABEL, BCK_OPT_
K_REWIND_OUT, any of the BCK_OPT_K_
CARTRIDGE_* option structures, or any other
BCK_OPT_K_SCRATCH_* option structure in
the same call results in a fatal error.

BCK_OPT_K_SELECT 32-bit descriptor that references the file
specification of a file or files from the input save
set to be processed by the current BACKUP save
or copy operation. Wildcards are permitted. Each
file specification, whether wildcards are used
or not, requires its own BCK_OPT_K_SELECT
option structure (lists are not supported).
(See the BACKUP qualifier /SELECT.)

1Reserved for use by Media Management Extension (MME) layered products.

(continued on next page)

BCK–16 Backup (BACKUP) Routine

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_SINCE_TYPE Logical bit flags that qualify the date specified
in the BCK_OPT_K_SINCE_VALUE option
structure.
Type can be one of the following:
BCK_OPTYP_SINCE_K_BACKUP

Selects files last saved or copied by BACKUP
on or after the date specified. Also selects
files with no BACKUP date.

BCK_OPTYP_SINCE_K_CREATED
Selects files created on or after the date
specified.

BCK_OPTYP_SINCE_K_EXPIRED
Selects files that have expired since the date
specified.

BCK_OPTYP_SINCE_K_MODIFIED
Selects files last modified on or after the date
specified (default).

BCK_OPTYP_SINCE_K_SPECIFIED
Reserved for use by Compaq.

(See the BACKUP qualifiers /SINCE, /BACKUP,
/CREATED, /EXPIRED, and /MODIFIED.)

BCK_OPT_K_SINCE_VALUE Date-Time Quadword that specifies the date
qualified by BCK_OPTYP_K_SINCE_TYPE. You
cannot use delta time.
(See the BACKUP qualifier /SINCE.)

BCK_OPT_K_STORAGE_MANAGEMENT 1 32-bit descriptor.
BCK_OPT_K_TAPE_EXPIRATION ADT (Date-Time) that specifies when the tape

expires.
(See the BACKUP qualifier /TAPE_
EXPIRATION.)

BCK_OPT_K_TRUNCATE Flag that specifies whether a copy or restore
operation truncates a sequential output file at the
end-of-file (EOF) when creating it.
Values are TRUE and FALSE (default; the size of
the output file is determined by the allocation of
the input file).
(See the BACKUP qualifier /TRUNCATE.)

1Reserved for use by Media Management Extension (MME) layered products.

(continued on next page)

Backup (BACKUP) Routine BCK–17

Backup API
BACKUP$START

Table 3–2 (Cont.) BACKUP Option Structure Types

Option Structure Description

BCK_OPT_K_UNSHELVE Flag that is reserved for use with file-shelving
layered products.
Values are TRUE and FALSE.
Note: Use of BCK_OPT_K_UNSHELVE and
BCK_OPT_K_PHYSICAL in the same call results
in a fatal error.

BCK_OPT_K_VALIDATE_PARAMETERS Reserved for use by Compaq.
BCK_OPT_K_VERIFY Flag that specifies whether the contents of the

output specifier be compared with the contents of
the input specifier after a save, restore, or copy
operation has been completed.
Values are TRUE and FALSE (default).
(See the BACKUP qualifier /VERIFY.)

BCK_OPT_K_VOLUME Integer that specifies the specific disk volume in a
disk volume set to be processed (valid only when
BCK_OPT_K_IMAGE is TRUE).
(See the BACKUP qualifier /VOLUME.)

Description

Application programs call the Backup API to invoke the OpenVMS Backup utility
via a call to the BACKUP$START routine. There is only one parameter, the
address of an argument buffer that contains a number of option structures that
together define the operation requested of the Backup utility. Most of these option
structures are equivalent, singly or in combination, to the qualifiers available
when invoking the BACKUP utility with the DCL command BACKUP; the call
to the API is analogous to a user entering an interactive command to the Backup
utility.

The call to BACKUP$START is synchronous; that is, it does not return until the
operation is complete or is terminated by a fatal error. In the case of a fatal error,
the call is aborted.

BACKUP Event Callbacks

An application can request that the BACKUP API notify the application whenever
specific events occur. The application can specify different callback routines to
handle different types of BACKUP events, or one routine to handle all events. To
do so, the application registers the callback routine by including option structure
BCK_OPTYP_K_EVENT_CALLBACK in the call to BACKUP$START. This
option structure specifies an event type (or all events) and the address of a
routine to be called when the event occurs. The application must include one
such option structure for each requested event type. To specify all events, use
BCK_EVENT_K_ALL. Table 3–4 lists the specific event types and identifiers.

A callback routine:

• Is called with one argument; a pointer to a bckEvent data structure that
contains information to enable the application to process the event

BCK–18 Backup (BACKUP) Routine

Backup API
BACKUP$START

• Returns an unsigned integer status value (of any valid OpenVMS message) in
R0 to enable the API to perform proper logging of the event

Note

The API does not currently process the return status of the callback
routine. However, Compaq strongly recommends that the callback routine
provide the appropriate status in R0 when returning control to the API.

The bckEvent structure contains information about the type of event, and also
contains a descriptor of a data structure that contains information to be used to
process the event. The bckEvent structure may point to a bckControl structure
that specifies control aspects of an event that may require user or operator action.

Table 3–3 describes the format of the bckEvent data structure. Table 3–6
describes the format of the bckControl data structure.

Table 3–3 bckEvent Format

Data Type Element Name Description

struct dsc$descriptor bckevt_r_event_buffer Pointer to event data
unsigned int bckevt_l_event_type Event type
unsigned int bckevt_l_event_subtype Event subtype (if any)
unsigned int bckevt_q_event_ctx [2] Reserved for use by Compaq
unsigned int bckevt_l_event_handle Reserved for use by Compaq

Table 3–4 describes the values returned in the bckEvent data structure.

Table 3–4 Event Callback Buffer Formats

Type/Subtype Format Value Returned

BCK_EVENT_K_CONTROL bckControl See Table 3–5.
BCK_EVENT_K_ERROR_MSG

(no subtype) bckMsgVect Message vector (use $PUTMSG to
output message to user).

BCK_EVENT_K_JOURNAL_OPEN
(no subtype) dsc$descriptor String descriptor (name of file to

create).
BCK_EVENT_K_JOURNAL_CLOSE

(no subtype) dsc$descriptor String descriptor (name of file to
close).

BCK_EVENT_K_JOURNAL_WRITE
(no subtype) 512-byte block File descriptor of journal buffer

(condensed journal records, refer to
the BJLDEF structure definition in
the BAPIDEF files).

(continued on next page)

Backup (BACKUP) Routine BCK–19

Backup API
BACKUP$START

Table 3–4 (Cont.) Event Callback Buffer Formats

Type/Subtype Format Value Returned

BCK_EVENT_K_LIST_CLOSE
(no subtype) Array of 2

longwords
LIST_TOTFILE: Total files listed.
LIST_TOTSIZE: Total blocks listed.
Note: The application should close
the list file.

BCK_EVENT_K_LIST_OPEN
TRUE dsc$descriptor File specification of list file to open

(TRUE = 1, indicates /FULL listing).
FALSE dsc$descriptor (FALSE = 0).

BCK_EVENT_K_LIST_WRITE
BRH$K_SUMMARY BSRBLK List BACKUP save set - save set

summary record.
BRH$K_VOLUME BSRBLK List BACKUP save set - volume

summary record.
BRH$K_PHYSVOL PVABLK List BACKUP save set - physical

volume record.
BRH$K_FILE FARBLK List BACKUP save set - file record.

BCK_EVENT_K_LISTJOUR_WRITE Subtype is a condition value that
indicates the type of action that
occurred for the specified file/item.
Obtain message text with the
$GETMSG system service.

TRUE bckLisJourblk Journal file listing information (TRUE
= 1, indicates a change of volume or
save set).

FALSE dsc$descriptor Journal file listing of file/item
specification string (descriptor)
(FALSE = 0).

BCK_EVENT_K_LOG
BACKUP$_AECREATED dsc$descriptor String descriptor (file logging).
BACKUP$_COMPARED dsc$descriptor String descriptor (file logging).
BACKUP$_COPIED dsc$descriptor String descriptor (file logging).
BACKUP$_CREATED dsc$descriptor String descriptor (file logging).
BACKUP$_CREDIR dsc$descriptor String descriptor (file logging).
BACKUP$_HEADCOPIED dsc$descriptor String descriptor (file logging).
BACKUP$_INCDELETE dsc$descriptor String descriptor (file logging).
BACKUP$_NEWSAVSET dsc$descriptor String descriptor (file logging).

BCK_EVENT_K_OP_PHASE
BACKUP$_STARTVERIFY Condition Value Start of verify operation (obtain

message text with $GETMSG).
(continued on next page)

BCK–20 Backup (BACKUP) Routine

Backup API
BACKUP$START

Table 3–4 (Cont.) Event Callback Buffer Formats

Type/Subtype Format Value Returned

BACKUP$_STARTDELETE Condition Value Start of delete operation (obtain
message text with $GETMSG).

BACKUP$_STARTRECORD Condition Value Start of record operation (obtain
message text with $GETMSG).

BCK_EVENT_K_SAVESET_CLOSE
(no subtype) RMS FOB A BACKUP save set must be closed.

BCK_EVENT_K_SAVESET_OPEN
(no subtype) RMS FOB A BACKUP save set must be opened

or created.
BCK_EVENT_K_SAVESET_READ

(no subtype) BACKUP Buffer
Control Block
(BCBBLK)

A BACKUP save set block/buffer has
been read from the input save set.

BCK_EVENT_K_SAVESET_WRITE
(no subtype) BACKUP Buffer

Control Block
(BCBBLK)

A BACKUP save set block/buffer is
ready to be written to the output save
set.

BCK_EVENT_K_STATISTICS
(no subtype) bckMsgVect Statistics message; one of the

following message condition values
(use $PUTMSG to output message to
user):

BACKUP$_STAT_PHYSICAL
BACKUP$_STAT_SAVCOP_ACT
BACKUP$_STAT_INACTIVE
BACKUP$_STAT_COMPARE
BACKUP$_STAT_RESTORE

BCK_EVENT_K_USER_MSG
(no subtype) bckMsgVect Message vector (use $PUTMSG to

output message to user).

Backup (BACKUP) Routine BCK–21

Backup API
BACKUP$START

Table 3–5 describes the control event subtypes of the BCK_EVENT_K_CONTROL
event callback. Table 3–6 describes the format of the bckControl data structure.

Table 3–5 Control Event Subtypes

Format

Subtype Field Description

BCKEVTST_K_CONFIRM_EVENT
Confirmation is required for compare or copy
operation.

bckCntrl_l_event BCKCNTRL_K_CONFIRM_EVENT
bckCntrl_l_function Backup operation type (integer value)
bckCntrl_a_outmsgvect Confirmation message (bckMsgVect,

BACKUP$_CNTRL_CONFCOMP or
BACKUP$_CNTRL_CONFCOPY)

bckCntrl_v_response_required TRUE (response is required)
bckCntrl_r_response_buffer dsc$descriptor ("Yes/No" string descriptor)

BCKEVTST_K_ASSIST_EVENT
Operator or user assistance is required to
determine continuation/actions.

bckCntrl_l_event BCKCNTRL_K_USER_ASSIST_EVENT or
BCKCNTRL_K_OPER_ASSIST_EVENT

bckCntrl_l_function Backup operation type (integer value)
bckCntrl_a_outmsgvect bckMsgVect (assist and other messages)
bckCntrl_v_response_required TRUE or FALSE (TRUE = 1, if response is

required)
bckCntrl_r_response_buffer dsc$descriptor (response string descriptor)

BCKCNTRL_K_RESTART_EVENT BACKUP operation restart is initiated.

bckCntrl_l_event BCKCNTRL_K_RESTART_EVENT
bckCntrl_l_function Backup operation type (integer value)
bckCntrl_a_outmsgvect bckMsgVect (operation restart message vector)
bckCntrl_v_response_required FALSE (= 0, no response is required)
bckCntrl_r_response_buffer dsc$descriptor ("Yes/No" string descriptor)

BCK–22 Backup (BACKUP) Routine

Backup API
BACKUP$START

Control events are described by the Control event subtype, via the bckevt_l_
event_subtype field in the bckEvent structure. Table 3–6 describes the format of
the bckControl data structure.

Table 3–6 bckControl Format

Data Type Element Name Description

unsigned int bckCntrl_l_event Control event type.
unsigned int bckCntrl_l_function Backup operation type.
bckMsgVect *bckCntrl_a_outmsgvect Output messages and

parameters.
union {

unsigned int bckCntrl_l_ctlflags Flags.
struct {

unsigned bckCntrl_v_response_required
: 1

Response required = 1.

unsigned bckCntrl_v_fill_5 : 7 Filler.
}

}
struct dsc$descriptor bckCntrl_r_response_buffer Descriptor for buffer to which

response text is to be written.
unsigned int bckCntrl_l_response_status Reserved for use by Compaq.
unsigned int bckCntrl_l_control_options Reserved for use by Compaq.

Error Messages
Where possible, the Backup API emulates the behavior of the interactive
BACKUP utility if you pass a call that contains conflicting qualifiers by:

1. Making a best guess as to your intentions

2. Ignoring the least likely of the conflicting qualifiers

3. Issuing a message that warns of the conflicting qualifiers

4. Processing the BACKUP request

See the OpenVMS System Management Utilities Reference Manual: A–L for a
table of valid combinations of BACKUP qualifiers.

Condition Values Returned

SS$_NORMAL Normal successful completion.
BACKUP$_BADOPTDSC Invalid callable interface option descriptor.
BACKUP$_BADOPTTYP Invalid callable interface option type.
BACKUP$_BADOPTVAL Invalid callable interface option value.
BACKUP$_BADOPTVALQ Invalid callable interface option value.
BACKUP$_DUPOPT Previously specified callable interface option type

invalid.
BACKUP$_NOAPIARGS Callable interface required parameter not

specified or invalid.

Any condition value returned by the OpenVMS Backup utility.

Backup (BACKUP) Routine BCK–23

Backup API
BACKUP$START

Example

The following C example program demonstrates calling the Backup API to
perform the following DCL commands:

$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1_IN:*.*;* -
_$ APITEST1_OUT:A.BCK/SAVE_SET

$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1_OUT:A.BCK/SAVE_SET -
_$ APITEST2_OUT:*.*;*

#include <stdio.h>
#include <stdlib.h>
#include <ssdef.h>
#include <descrip.h>
#include "sys$examples:bapidef.h"

/*
** Define a fixed size (simple) structure for specifying the
** BACKUP operation.
*/
typedef struct _buf_arg

{
bck_opt_struct_flag arg1;
bck_opt_struct_flag arg2;
bck_opt_struct_flag arg3;
bck_opt_struct_flag arg4;
bck_opt_struct_dsc arg5;
bck_opt_struct_dsc arg6;
bck_opt_struct_flag arg7;
bck_opt_struct_flag arg8;
bck_opt_struct_adr arg9;
bck_opt_struct_adr arg10;
bck_opt_struct_adr arg11;
bck_opt_struct_flag arg12;
bck_opt_struct_flag arg13;
} buf_arg;

struct dsc$descriptor
input_dsc,
output_dsc,
event_type_dsc;

buf_arg myarg_buff;
unsigned int status;

extern unsigned int backup$start(buf_arg *myarg_buff);
unsigned int subtest(bckEvent *param);

static char input_str[] = "APITEST1_IN:";
static char output_str1[] = "APITEST1_OUT:a.bck";
static char output_str2[] = "APITEST2_OUT:";

main()
{
myarg_buff.arg1.option_type = BCK_OPT_K_ALIAS;
myarg_buff.arg1.opt_flag_value = TRUE;

myarg_buff.arg2.option_type = BCK_OPT_K_VERIFY;
myarg_buff.arg2.opt_flag_value = TRUE;

myarg_buff.arg3.option_type = BCK_OPT_K_CRC;
myarg_buff.arg3.opt_flag_value = TRUE;

BCK–24 Backup (BACKUP) Routine

Backup API
BACKUP$START

myarg_buff.arg4.option_type = BCK_OPT_K_LOG;
myarg_buff.arg4.opt_flag_value = TRUE;

myarg_buff.arg5.opt_dsc_type = BCK_OPT_K_INPUT;
myarg_buff.arg5.opt_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
myarg_buff.arg5.opt_dsc.dsc$b_class = DSC$K_CLASS_S;
myarg_buff.arg5.opt_dsc.dsc$w_length = sizeof(input_str) - 1;
myarg_buff.arg5.opt_dsc.dsc$a_pointer = input_str;

myarg_buff.arg6.opt_dsc_type = BCK_OPT_K_OUTPUT;
myarg_buff.arg6.opt_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
myarg_buff.arg6.opt_dsc.dsc$b_class = DSC$K_CLASS_S;
myarg_buff.arg6.opt_dsc.dsc$w_length = sizeof(output_str1) - 1;
myarg_buff.arg6.opt_dsc.dsc$a_pointer = output_str1;

myarg_buff.arg7.option_type = BCK_OPT_K_SAVE_SET_OUT;
myarg_buff.arg7.opt_flag_value = TRUE;

myarg_buff.arg8.option_type = BCK_OPT_K_OPERATION_TYPE;
myarg_buff.arg8.opt_flag_value = BCK_OP_K_SAVE ;

myarg_buff.arg9.opt_adr_type = BCK_OPT_K_EVENT_CALLBACK;
myarg_buff.arg9.opt_adr_attributes = BCK_EVENT_K_LOG;
myarg_buff.arg9.opt_adr_value[0] = (int *)subtest;
myarg_buff.arg9.opt_adr_value[1] = 0;

/*
** Specify that this application will handle user-visible messages.
** (The operation phase, and user/file-logging messages.)
*/
myarg_buff.arg10.opt_adr_type = BCK_OPT_K_EVENT_CALLBACK;
myarg_buff.arg10.opt_adr_attributes = BCK_EVENT_K_OP_PHASE;
myarg_buff.arg10.opt_adr_value[0] = (int *)subtest;
myarg_buff.arg10.opt_adr_value[1] = 0;

myarg_buff.arg11.opt_adr_type = BCK_OPT_K_EVENT_CALLBACK;
myarg_buff.arg11.opt_adr_attributes = BCK_EVENT_K_USER_MSG;
myarg_buff.arg11.opt_adr_value[0] = (int *)subtest;
myarg_buff.arg11.opt_adr_value[1] = 0;

/*
** Indicate the end of options that specify the BACKUP operation
** to be performed.
*/
myarg_buff.arg12.option_type = BCK_OPT_K_END_OPT;
myarg_buff.arg12.opt_flag_value = FALSE;

/*
** Notes:
** An extra option structure (# 13) was allocated for testing.
**
** The DCL command analogous to the following BACKUP API call
** is illustrated below.
**
** "$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1_IN:*.*;* -"
** "_$ APITEST1_OUT:a.bck/SAVE_SET "
*/

status = backup$start(&myarg_buff);

if (! (status & 1))
{

exit (status); /* EXIT if the first part of the test failed. */
}

/*
** Now use the resultant saveset to perform a restore operation.
*/

Backup (BACKUP) Routine BCK–25

Backup API
BACKUP$START

/*
** Change the input string to specify the saveset, ("output_str1").
*/
myarg_buff.arg5.opt_dsc.dsc$w_length = sizeof(output_str1) - 1;
myarg_buff.arg5.opt_dsc.dsc$a_pointer = output_str1;

/*
** Change the output string to specify the output device/directory).
*/
myarg_buff.arg6.opt_dsc.dsc$w_length = sizeof(output_str2) - 1;
myarg_buff.arg6.opt_dsc.dsc$a_pointer = output_str2;

/*
** Change the option to denote it is now an input saveset,
** (not an output saveset).
*/
myarg_buff.arg7.option_type = BCK_OPT_K_SAVE_SET_IN;

/*
** Change the option to specify a restore operation,
** (not a save operation).
*/
myarg_buff.arg8.opt_flag_value = BCK_OP_K_RESTORE;

/*
** The DCL command analogous to the following BACKUP API call
** is illustrated below.
**
** "$ BACKUP/LOG/VERIFY/CRC/ALIAS APITEST1_OUT:a.bck/SAVE_SET -"
** "_$ APITEST2_OUT:*.*;*"
*/

status = backup$start(&myarg_buff);

exit (status);
}

unsigned int subtest(bckEvent *param)
{

printf("\n BACKUP API Event Type = %d,\n",param->bckevt_l_event_type);
printf(" Subtype = %d\n",param->bckevt_l_event_subtype);

if (param->bckevt_l_event_type == BCK_EVENT_K_LOG)
{

printf(" BACKUP API LOG Event item:\n %.*s\n",
param->bckevt_r_event_buffer.dsc$w_length,
param->bckevt_r_event_buffer.dsc$a_pointer);

}

if (param->bckevt_l_event_type == BCK_EVENT_K_OP_PHASE)
{

printf(" BACKUP API Operation Phase Event\n %.*s\n",
param->bckevt_r_event_buffer.dsc$w_length,
param->bckevt_r_event_buffer.dsc$a_pointer);

}

fflush(stdout);

return (1);
}

BCK–26 Backup (BACKUP) Routine

4
Command Language Interface (CLI) Routines

The command language interface (CLI) routines process command strings
using information from a command table. A command table contains command
definitions that describe the allowable formats for commands. To create or modify
a command table, you must write a command definition file and then process this
file with the Command Definition Utility (the SET COMMAND command). For
information about how to use the Command Definition Utility, see the OpenVMS
Command Definition, Librarian, and Message Utilities Manual.

4.1 Introduction to CLI Routines
The CLI routines include the following:

• CLI$DCL_PARSE

• CLI$DISPATCH

• CLI$GET_VALUE

• CLI$PRESENT

When you use the Command Definition Utility to add a new command to your
process command table or to the DCL command table, use the CLI$PRESENT
and CLI$GET_VALUE routines in the program invoked by the new command.
These routines retrieve information about the command string that invokes the
program.

When you use the Command Definition Utility to create an object module
containing a command table and you link this module with a program, you must
use all four CLI routines. First, use CLI$DCL_PARSE and CLI$DISPATCH
to parse command strings and invoke routines. Then, use CLI$PRESENT and
CLI$GET_VALUE within the routines that execute each command.

Note that the application program should declare referenced constants and return
status symbols as external symbols; these symbols are resolved upon linking with
a utility shareable image.

A CLI must be present in order to use the CLI routines. If your application can
be run from a detached process, the application should first verify that a CLI
exists. For information about how to verify that a CLI exists for a process, see
the description of the $GETJPI system service in the OpenVMS System Services
Reference Manual.

Note

Do not use the CLI routines to obtain values from foreign commands.
Using a foreign command to activate an image (instead of the SET
COMMAND command) disrupts the building of the DCL parse tables.

Command Language Interface (CLI) Routines CLI–1

Command Language Interface (CLI) Routines
4.2 Using the CLI Routines: An Example

4.2 Using the CLI Routines: An Example
Example 4–1 contains a command definition file (SUBCOMMANDS.CLD) and a
Fortran program (INCOME.FOR). INCOME.FOR uses the command definitions
in SUBCOMMANDS.CLD to process commands. To execute the example, enter
the following commands:

$ SET COMMAND SUBCOMMANDS/OBJECT=SUBCOMMANDS
$ FORTRAN INCOME
$ LINK INCOME,SUBCOMMANDS
$ RUN INCOME

INCOME.FOR accepts a command string and parses it using CLI$DCL_PARSE.
If the command string is valid, the program uses CLI$DISPATCH to execute the
command. Each routine uses CLI$PRESENT and CLI$GET_VALUE to obtain
information about the command string.

Example 4–1 Using the CLI Routines to Retrieve Information About Command
Lines in a Fortran Program

**
SUBCOMMANDS.CLD

**

MODULE INCOME_SUBCOMMANDS

DEFINE VERB ENTER
ROUTINE ENTER

DEFINE VERB FIX
ROUTINE FIX
QUALIFIER HOUSE_NUMBERS, VALUE (LIST)

DEFINE VERB REPORT
ROUTINE REPORT
QUALIFIER OUTPUT, VALUE (TYPE = $FILE,

DEFAULT = "INCOME.RPT")
DEFAULT

**
INCOME.FOR

**
PROGRAM INCOME
INTEGER STATUS,
2 CLI$DCL_PARSE,
2 CLI$DISPATCH
INCLUDE ’($RMSDEF)’
INCLUDE ’($STSDEF)’
EXTERNAL INCOME_SUBCOMMANDS,
2 LIB$GET_INPUT

(continued on next page)

CLI–2 Command Language Interface (CLI) Routines

Command Language Interface (CLI) Routines
4.2 Using the CLI Routines: An Example

Example 4–1 (Cont.) Using the CLI Routines to Retrieve Information About
Command Lines in a Fortran Program

! Write explanatory text
STATUS = LIB$PUT_OUTPUT
2 (’Subcommands: ENTER - FIX - REPORT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$PUT_OUTPUT
2 (’Press Ctrl/Z to exit’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get first subcommand
STATUS = CLI$DCL_PARSE (%VAL (0),
2 INCOME_SUBCOMMANDS, ! CLD module
2 LIB$GET_INPUT, ! Parameter routine
2 LIB$GET_INPUT, ! Command routine
2 ’INCOME> ’) ! Command prompt
! Do it until user presses Ctrl/Z
DO WHILE (STATUS .NE. RMS$_EOF)
! If no error on dcl_parse
IF (STATUS) THEN
! Dispatch depending on subcommand
STATUS = CLI$DISPATCH ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Do not signal warning again
ELSE IF (IBITS (STATUS, 0, 3) .NE. STS$K_WARNING) THEN
CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Get another subcommand
STATUS = CLI$DCL_PARSE (%VAL (0),
2 INCOME_SUBCOMMANDS, ! CLD module
2 LIB$GET_INPUT, ! Parameter routine
2 LIB$GET_INPUT, ! Command routine
2 ’INCOME> ’) ! Command prompt
END DO
END

INTEGER FUNCTION ENTER ()
INCLUDE ’($SSDEF)’
TYPE *, ’ENTER invoked’
ENTER = SS$_NORMAL
END

INTEGER FUNCTION FIX ()
INTEGER STATUS,
2 CLI$PRESENT,
2 CLI$GET_VALUE
CHARACTER*15 HOUSE_NUMBER
INTEGER*2 HN_SIZE
INCLUDE ’($SSDEF)’
EXTERNAL CLI$_ABSENT
TYPE *, ’FIX invoked’
! If user types /house_numbers=(n,...)
IF (CLI$PRESENT (’HOUSE_NUMBERS’)) THEN
! Get first value for /house_numbers
STATUS = CLI$GET_VALUE (’HOUSE_NUMBERS’,
2 HOUSE_NUMBER,
2 HN_SIZE)

(continued on next page)

Command Language Interface (CLI) Routines CLI–3

Command Language Interface (CLI) Routines
4.2 Using the CLI Routines: An Example

Example 4–1 (Cont.) Using the CLI Routines to Retrieve Information About
Command Lines in a Fortran Program

! Do it until the list is depleted
DO WHILE (STATUS)
TYPE *, ’House number = ’, HOUSE_NUMBER (1:HN_SIZE)
STATUS = CLI$GET_VALUE (’HOUSE_NUMBERS’,
2 HOUSE_NUMBER,
2 HN_SIZE)
END DO
! Make sure termination status was correct
IF (STATUS .NE. %LOC (CLI$_ABSENT)) THEN
CALL LIB$SIGNAL (%VAL (STATUS))
END IF
END IF
FIX = SS$_NORMAL
END

INTEGER FUNCTION REPORT ()
INTEGER STATUS,
2 CLI$GET_VALUE
CHARACTER*255 FILENAME
INTEGER*2 FN_SIZE
INCLUDE ’($SSDEF)’
TYPE *, ’REPORT entered’
! Get value for /output
STATUS = CLI$GET_VALUE (’OUTPUT’,
2 FILENAME,
2 FN_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, ’Output file: ’, FILENAME (1:FN_SIZE)
REPORT = SS$_NORMAL
END

4.3 CLI Routines
This section describes the individual CLI routines.

CLI–4 Command Language Interface (CLI) Routines

Command Language (CLI) Routines
CLI$DCL_PARSE

CLI$DCL_PARSE—Parse DCL Command String

The CLI$DCL_PARSE routine supplies a command string to DCL for parsing.
DCL separates the command string into its individual elements according to the
syntax specified in the command table.

Format

CLI$DCL_PARSE [command_string] ,table [,param_routine] [,prompt_routine]
[,prompt_string]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

command_string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor—fixed length

Character string containing the command to be parsed. The command_string
argument is the address of a descriptor specifying the command string to be
parsed. If the command string includes a comment (delimited by an exclamation
mark), DCL ignores the comment.

If the command string contains a hyphen to indicate that the string is being
continued, DCL uses the routine specified in the prompt_routine argument to
obtain the rest of the string. The command string is limited to 256 characters.
However, if the string is continued with a hyphen, CLI$DCL_PARSE can prompt
for additional input until the total number of characters is 1024.

If you specify the command_string argument as zero and specify a prompt
routine, then DCL prompts for the entire command string. However, if you
specify the command_string argument as zero and also specify the prompt_
routine argument as zero, DCL restores the parse state of the command string
that originally invoked the image.

CLI$DCL_PARSE does not perform DCL-style symbol substitution on the
command string.

table
OpenVMS usage: address
type: address
access: read only
mechanism: by value

Command Language Interface (CLI) Routines CLI–5

Command Language (CLI) Routines
CLI$DCL_PARSE

Address of the compiled command tables to be used for command parsing. The
command tables are compiled separately by the Command Definition Utility
using the DCL command SET COMMAND/OBJECT and are then linked with
your program. A global symbol is defined by the Command Definition Utility that
provides the address of the tables. The global symbol’s name is taken from the
module name given on the MODULE statement in the command definition file, or
from the file name if no MODULE statement is present.

param_routine
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Name of a routine to obtain a required parameter not supplied in the command
text. The param_routine argument is the address of a routine containing a
required parameter that was not specified in the command_string argument.

To specify the parameter routine, use the address of LIB$GET_INPUT or the
address of a routine of your own that has the same three-argument calling
format as LIB$GET_INPUT. See the description of LIB$GET_INPUT in the
OpenVMS RTL Library (LIB$) Manual for information about the calling format.
If LIB$GET_INPUT returns error status, CLI$DCL_PARSE propagates the error
status outward or signals RMS$_EOF in the cases listed in the Description
section.

You can obtain the prompt string for a required parameter from the command
table specified in the table argument.

prompt_routine
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Name of a routine to obtain all or part of the text of a command. The prompt_
routine argument is the address of a routine to obtain the text or the remaining
text of the command depending on the command_string argument. If you
specify a zero in the command_string argument, DCL uses this routine to
obtain an entire command line. DCL uses this routine to obtain a continued
command line if the command string (obtained from the command_string
argument) contains a hyphen to indicate that the string is being continued.

To specify the prompt routine, use the address of LIB$GET_INPUT or the
address of a routine of your own that has the same three-argument calling format
as LIB$GET_INPUT. See the description of LIB$GET_INPUT in the OpenVMS
RTL Library (LIB$) Manual for information about the calling format.

If LIB$GET_INPUT returns error status, CLI$DCL_PARSE propagates the error
status outward or signals RMS$_EOF in the cases listed in the Description
section.

prompt_string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

CLI–6 Command Language Interface (CLI) Routines

Command Language (CLI) Routines
CLI$DCL_PARSE

Character string containing a prompt. The prompt_string argument is the
address of a string descriptor pointing to the prompt string to be passed as the
second argument to the prompt_routine argument.

If DCL is using the prompt routine to obtain a continuation line, DCL inserts
an underscore character before the first character of the prompt string to create
the continuation prompt. If DCL is using the prompt routine to obtain an entire
command line (that is, a zero was specified as the command_string argument),
DCL uses the prompt string exactly as specified.

The prompt string is limited to 32 characters. The string COMMAND> is the
default prompt string.

Description

The CLI$DCL_PARSE routine supplies a command string to DCL for parsing.
DCL parses the command string according to the syntax in the command table
specified in the table argument.

The CLI$DCL_PARSE routine can prompt for required parameters if you specify
a parameter routine in the routine call. In addition, the CLI$DCL_PARSE
routine can prompt for entire or continued command lines if you supply the
address of a prompt routine.

If you do not specify a command string to parse and the user enters a null
string in response to the DCL prompt for a command string, CLI$DCL_PARSE
immediately terminates and returns the status CLI$_NOCOMD.

If DCL prompts for a required parameter and the user presses Ctrl/Z, CLI$DCL_
PARSE immediately terminates and returns the status CLI$_NOCOMD,
regardless of whether you specify or do not specify a command string to parse. If
DCL prompts for a parameter that is not required and the user presses Ctrl/Z,
CLI$DCL_PARSE returns the status CLI$_NORMAL.

Whenever CLI$DCL_PARSE encounters an error, it both signals and returns the
error.

Condition Values Returned

CLI$_INVREQTYP Calling process did not have a CLI to perform
this function, or the CLI did not support the
request.

CLI$_IVVERB Invalid or missing verb.
CLI$_NOCOMD Routine terminated. You entered a null string in

response to a prompt from the prompt_routine
argument, causing the CLI$DCL_PARSE routine
to terminate.

CLI$_NORMAL Normal successful completion.
RMS$_EOF Routine terminated. You pressed Ctrl/Z in

response to a prompt, causing the CLI$DCL_
PARSE routine to terminate.

Command Language Interface (CLI) Routines CLI–7

Command Language (CLI) Routines
CLI$DISPATCH

CLI$DISPATCH—Dispatch to Action Routine

The CLI$DISPATCH routine invokes the subroutine associated with the verb
most recently parsed by a CLI$DCL_PARSE routine call.

Format

CLI$DISPATCH [userarg]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Values
Returned.

Argument

userarg
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Data to be passed to the action routine. The userarg argument is a longword
that contains the data to be passed to the action routine. This data can be used
in any way you want.

Description

The CLI$DISPATCH routine invokes the subroutine associated with the verb
most recently parsed by a CLI$DCL_PARSE routine call. If the routine is
successfully invoked, the return status is the status returned by the action
routine. Otherwise, a status of CLI$_INVROUT is returned.

Condition Values Returned

CLI$_INVREQTYP Calling process did not have a CLI to perform
this function or the CLI did not support the
request.

CLI$_INVROUT CLI$DISPATCH unable to invoke the routine.
An invalid routine is specified in the command
table, or no routine is specified.

CLI–8 Command Language Interface (CLI) Routines

Command Language (CLI) Routines
CLI$GET_VALUE

CLI$GET_VALUE—Get Value of Entity in Command String

The CLI$GET_VALUE routine retrieves a value associated with a specified
qualifier, parameter, keyword, or keyword path from the parsed command string.

Format

CLI$GET_VALUE entity_desc ,retdesc [,retlength]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

entity_desc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string containing the label (or name if no label is defined) of the entity.
The entity_desc argument is the address of a string descriptor that points to an
entity that may appear on a command line. The entity_desc argument can be
expressed as one of the following:

• A parameter, qualifier, keyword name, or label

• A keyword path

The entity_desc argument can contain qualifiers, parameters, keyword names,
or labels that were assigned with the LABEL clause in the command definition
file. If you used the LABEL clause to assign a label to an entity, you must specify
the label in the entity_desc argument. Otherwise, use the name of the entity.

Use a keyword path to reference keywords used as values of parameters,
qualifiers, or other keywords. A keyword path contains a list of entity names
or labels separated by periods. If the LABEL clause was used to assign a label to
an entity, you must specify the label in the keyword path. Otherwise, you must
use the name of the entity.

The following command string illustrates a situation where keyword paths
are needed to uniquely identify keywords. In this command string, you can
use the same keywords with more than one qualifier. (This is defined in the
command definition file by having two qualifiers refer to the same DEFINE TYPE
statement.)

$ NEWCOMMAND/QUAL1=(START=5,END=10)/QUAL2=(START=2,END=5)

Command Language Interface (CLI) Routines CLI–9

Command Language (CLI) Routines
CLI$GET_VALUE

The keyword path QUAL1.START identifies the START keyword when it is
used with QUAL1; the keyword path QUAL2.START identifies the keyword
START when it is used with QUAL2. Because the name START is an ambiguous
reference if used alone, the keywords QUAL1 and QUAL2 are needed to resolve
the ambiguity.

You can omit keywords from the beginning of a keyword path if they are not
needed to unambiguously resolve a keyword reference. A keyword path can be no
more than eight names long.

If you use an ambiguous keyword reference, DCL resolves the reference by
checking, in the following order:

1. The parameters in your command definition file, in the order they are listed

2. The qualifiers in your command definition file, in the order they are listed

3. The keyword paths for each parameter, in the order the parameters are listed

4. The keyword paths for each qualifier, in the order the qualifiers are listed

DCL uses the first occurrence of the entity as the keyword path. Note that DCL
does not issue an error message if you provide an ambiguous keyword. However,
because the keyword search order may change in future releases of OpenVMS,
you should never use ambiguous keyword references.

If the entity_desc argument does not exist in the command table, CLI$GET_
VALUE signals a syntax error (by means of the signaling mechanism described in
the OpenVMS Programming Concepts Manual).

retdesc
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Character string containing the value retrieved by CLI$GET_VALUE. The
retdesc argument is the address of a string descriptor pointing to the buffer to
receive the string value retrieved by CLI$GET_VALUE. The string is returned
using the STR$COPY_DX Run-Time Library routine.

If there are errors in the specification of the return descriptor or in copying the
results using that descriptor, the STR$COPY_DX routine will signal the errors.
For a list of these errors, see the OpenVMS RTL String Manipulation (STR$)
Manual.

retlength
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Word containing the number of characters DCL returns to retdesc. The
retlength argument is the address of the word containing the length of the
retrieved value.

CLI–10 Command Language Interface (CLI) Routines

Command Language (CLI) Routines
CLI$GET_VALUE

Description

The CLI$GET_VALUE routine retrieves a value associated with a specified
qualifier, parameter, keyword, or keyword path from the parsed command string.

Note

Only use the CLI$GET_VALUE routine to retrieve values from parsed
command strings (through DCL or CLI$DCL_PARSE). When you use
a foreign command to activate an image, the DCL parsing process is
interrupted. As a result, CLI$GET_VALUE returns either values from
the previously parsed command string or a status of CLI$_ABSENT if it
is the first command string parsed.

You can use the following label names with CLI$GET_VALUE to retrieve special
strings:

$VERB Describes the verb in the command string (the first four letters of the
spelling as defined in the command table, instead of the string that
was actually typed).

$LINE Describes the entire command string as stored internally by DCL.
In the internal representation of the command string, multiple
spaces and tabs are removed, alphabetic characters are converted
to uppercase, and comments are stripped. Integers are converted
to decimal. If dates and times are specified in the command string,
DCL fills in any defaulted fields. Also, if date-time strings (such as
YESTERDAY) are used, DCL substitutes the corresponding absolute
time value.

To obtain the values for a list of entities, call CLI$GET_VALUE repeatedly until
all values have been returned. After each CLI$GET_VALUE call, the returned
condition value indicates whether there are more values to be obtained. Call
CLI$GET_VALUE until you receive a condition value of CLI$_ABSENT.

When you are using CLI$GET_VALUE to obtain a list of qualifier or keyword
values, get all values in the list before starting to parse the next entity.

Condition Values Returned

SS$_NORMAL Returned value terminated by a blank or an
end-of-line. This shows that the value is the last,
or only, value in the list.

CLI$_ABSENT No value returned. The value is not present, or
the last value in the list was already returned.

CLI$_COMMA Returned value terminated by a comma. This
shows there are additional values in the list.

CLI$_CONCAT Returned value concatenated to the next value
with a plus sign. This shows there are additional
values in the list.

CLI$_INVREQTYP Calling process did not have a CLI to perform
this function or the CLI did not support the
request.

Command Language Interface (CLI) Routines CLI–11

Command Language (CLI) Routines
CLI$PRESENT

CLI$PRESENT—Determine Presence of Entity in Command String

The CLI$PRESENT routine examines the parsed command string to determine
whether the entity referred to by the entity_desc argument is present.

Format

CLI$PRESENT entity_desc

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Conditon Values
Returned.

Argument

entity_desc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string containing the label (or name if no label is defined) of the entity.
The entity_desc argument is the address of a string descriptor that points to an
entity that may appear on a command line. An entity can be expressed as one of
the following:

• A parameter, qualifier, or keyword name or label

• A keyword path

A keyword path is used to reference keywords that are accepted by parameters,
qualifiers, or other keywords. A keyword path contains a list of entity names
separated by periods. See the description of the entity_desc argument in the
CLI$GET_VALUE routine for more information about specifying keyword paths
as arguments for CLI routines.

The entity_desc argument can contain parameter, qualifier, or keyword names,
or can contain labels that were assigned with the LABEL clause in the command
definition file. If the LABEL clause was used to assign a label to a qualifier,
parameter, or keyword, you must specify the label in the entity_desc argument.
Otherwise, you must use the actual name of the qualifier, parameter, or keyword.

If the entity_desc argument does not exist in the command table,
CLI$PRESENT signals a syntax error (by means of the signaling mechanism
described in the OpenVMS Programming Concepts Manual).

CLI–12 Command Language Interface (CLI) Routines

Command Language (CLI) Routines
CLI$PRESENT

Description

The CLI$PRESENT routine examines the parsed command string to determine
whether the entity referred to by the entity_desc argument is present.

When CLI$PRESENT tests whether a qualifier is present, the condition value
indicates whether the qualifier is used globally or locally. You can use a global
qualifier anywhere in the command line; you use a local qualifier only after
a parameter. A global qualifier is defined in the command definition file with
PLACEMENT=GLOBAL; a local qualifier is defined with PLACEMENT=LOCAL.

When you test for the presence of a global qualifier, CLI$PRESENT determines
if the qualifier is present anywhere in the command string. If the qualifier
is present in its positive form, CLI$PRESENT returns CLI$_PRESENT; if
the qualifier is present in its negative form, CLI$PRESENT returns CLI$_
NEGATED.

You can test for the presence of a local qualifier when you are parsing parameters
that can be followed by qualifiers. After you call CLI$GET_VALUE to fetch the
parameter value, call CLI$PRESENT to determine whether the local qualifier
is present. If the local qualifier is present in its positive form, CLI$PRESENT
returns CLI$_LOCPRES; if the local qualifier is present in its negative form,
CLI$PRESENT returns CLI$_LOCNEG.

A positional qualifier affects the entire command line if it appears after the verb
but before the first parameter. A positional qualifier affects a single parameter
if it appears after a parameter. A positional qualifier is defined in the command
definition file with the PLACEMENT=POSITIONAL clause.

To determine whether a positional qualifier is used globally, call CLI$PRESENT
to test for the qualifier before you call CLI$GET_VALUE to fetch any parameter
values. If the positional qualifier is used globally, CLI$PRESENT returns either
CLI$_PRESENT or CLI$_NEGATED.

To determine whether a positional qualifier is used locally, call CLI$PRESENT
immediately after a parameter value has been fetched by CLI$GET_VALUE. The
most recent CLI$GET_VALUE call to fetch a parameter defines the context for a
qualifier search. Therefore, CLI$PRESENT tests whether a positional qualifier
was specified after the parameter that was fetched by the most recent CLI$GET_
VALUE call. If the positional qualifier is used locally, CLI$PRESENT returns
either CLI$_LOCPRES or CLI$_LOCNEG.

Condition Values Returned

CLI$_ABSENT Specified entity not present, and it is not present
by default.

CLI$_DEFAULTED Specified entity not present, but it is present by
default.

CLI$_INVREQTYP Calling process did not have a CLI to perform
this function, or the CLI did not support the
request.

CLI$_LOCNEG Specified qualifier present in negated form (with
/NO) and used as a local qualifier.

Command Language Interface (CLI) Routines CLI–13

Command Language (CLI) Routines
CLI$PRESENT

CLI$_LOCPRES Specified qualifier present and used as a local
qualifier.

CLI$_NEGATED Specified qualifier present in negated form (with
/NO) and used as a global qualifier.

CLI$_PRESENT Specified entity present in the command string.
This status is returned for all entities except
local qualifiers and positional qualifiers that are
used locally.

CLI–14 Command Language Interface (CLI) Routines

5
Common File Qualifier Routines

This chapter describes the common file qualifier (UTIL$CQUAL) routines. The
UTIL$CQUAL routines allow you to parse the command line for qualifiers
related to certain file attributes, and to match files you are processing against the
selected criteria retrieved from the command line.

5.1 Introduction to the Common File Qualifier Routines
The common file qualifier routines begin with the characters UTIL$CQUAL.
Your program calls these routines using the OpenVMS Calling Standard. When
you call a UTIL$CQUAL routine, you must provide all the required arguments.
Upon completion, the routine returns its completion status as a condition value.
Section 5.3 provides detailed descriptions of the routines.

The following table lists the common file qualifier routines.

Table 5–1 UTIL$CQUAL Routines

Routine Name Description

UTIL$CQUAL_FILE_PARSE Parses the command line for the file qualifiers
listed in Table 5–2, and obtains associated values.
Returns a context value that is used when calling
the matching and ending routines.

UTIL$CQUAL_FILE_MATCH Compares the routine file input to the command line
data obtained from the parse routine call.

UTIL$CQUAL_FILE_END Deletes all virtual memory allocated during the
command line parse routine call.

UTIL$CQUAL_CONFIRM_ACT Prompts a user for a response from
SYS$COMMAND.

5.2 Using the Common File Qualifier Routines
Follow these steps to use the common file qualifier routines:

1. Call UTIL$CQUAL_FILE_PARSE to parse the command line for the common
file qualifiers. (See Table 5–2 for a list of the qualifiers.)

2. Call UTIL$CQUAL_FILE_MATCH for each checked file. UTIL$CQUAL_
FILE_MATCH returns an indication that the file is, or is not, to be processed.

3. Call UTIL$CQUAL_FILE_END to release the virtual memory held by the
common file qualifier package.

You may optionally call UTIL$CQUAL_CONFIRM_ACT to ask for user
confirmation without calling the other common qualifier routines.

Common File Qualifier Routines CQUAL–1

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

5.2.1 Calling UTIL$CQUAL_FILE_PARSE
When you call UTIL$CQUAL_FILE_PARSE, specify the qualifiers listed in
Table 5–2 that you want to parse by setting bits in a flags longword and passing
the longword address as the first parameter.

Table 5–2 UTIL$CQUAL_FILE_PARSE Command Line Qualifiers

Qualifier Description

BEFORE= Selects a file before the specified time.

CONFIRM Prompts the user for confirmation.

SINCE= Selects a file on or after the specified time.

MODIFIED Specifies that the file’s revision time (time of last
modification) is used for comparison with the time
specified in either the /BEFORE or /SINCE qualifier.

CREATED (default) Specifies that the file’s creation time is used for
comparison with the time specified in either the
/BEFORE or /SINCE qualifier.

BACKUP Specifies that the file’s most recent backup time is used
for comparison with the time specified in either the
/BEFORE or /SINCE qualifier.

EXPIRED Specifies that the file’s expiration date is used for
comparison with the time specified in either the
/BEFORE or /SINCE qualifier.

BY_OWNER= Selects a file based on the file owner’s user identification
code. The default is the UIC of the current process.

EXCLUDE= Selects a file only if it does not match the specification
or list of specifications given with this qualifier.

The following segment from a sample C program shows the flags longword set to
search for the common file qualifiers supported by this package:

input_flags = UTIL$M_CQF_CONFIRM | UTIL$M_CQF_EXCLUDE |
UTIL$M_CQF_BEFORE | UTIL$M_CQF_SINCE |
UTIL$M_CQF_CREATED | UTIL$M_CQF_MODIFIED |
UTIL$M_CQF_EXPIRED | UTIL$M_CQF_BACKUP |
UTIL$M_CQF_BYOWNER;

Optionally, you can provide the flags longword address for UTIL$CQUAL_FILE_
PARSE to return an indication of what common file qualifiers were present on
the command line. For example, if /CONFIRM is enabled and was found on the
command line, the application can determine if confirmation prompts need to be
built. The following is an example call in C:

status = UTIL$CQUAL_FILE_PARSE (&input_flags,
&context,
&output_flags);

The context variable contains the address of the common file qualifier value
which is used in other common file qualifier routine calls.

CQUAL–2 Common File Qualifier Routines

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

5.2.1.1 Specifying Times
The times specified with the /SINCE= and /BEFORE= qualifiers must be in
either absolute or combination time format. When DCL gathers these times from
the command line, it converts truncated time values, combination time values,
and keywords (such as BOOT, LOGIN, TODAY, TOMORROW, or YESTERDAY)
into absolute time format. Files are selected based on the times entered on
the command line, and are compared to the time of the file’s backup date,
creation date (default), expiration date, or last modification date as indicated
by the modifier qualifiers /BACKUP, /CREATED, /EXPIRED, and /MODIFIED
respectively.

For complete information on specifying time values, see the OpenVMS User’s
Manual or the topic DCL_TIPS Date_Time in online help.

5.2.1.2 Specifying Exclude Pattern Strings
Pattern strings are used to exclude specific files from being processed. The
pattern strings may contain a combination of a directory specification, filename,
filetype, and version number. Node names and device names are not permitted.
Relative directory specifications are allowed (such as [.subdirectory] or [-]),
but relative version numbers have no meaning as a pattern string component.
UTIL$CQUAL_FILE_PARSE assumes relative version numbers are a wildcard,
and matches all versions. An FID or DID specification is also not allowed.

To exclude more than one specification, use a comma-separated list enclosed
within parentheses.

5.2.2 Calling UTIL$CQUAL_FILE_MATCH
When calling UTIL$CQUAL_FILE_MATCH, specify a file that you want checked
against criteria in the common file qualifier context. The context address was
returned as the first parameter in a prior call to UTIL$CQUAL_FILE_PARSE,
and is the first parameter for UTIL$CQUAL_FILE_MATCH.

To specify a file, provide either a string descriptor containing the specification or
an RMS FAB. The FAB must contain an NAM block that has been filled in by
RMS, so that comparisons with excluded file specifications can occur. If the FAB
indicates that the file is open, and any of the /BEFORE, /SINCE or /BY_OWNER
qualifiers are to be evaluated, then the appropriate XAB blocks must be in the
XAB chain (XABDAT and XABPRO). The XAB blocks must be filled in by RMS
during the file open.

Note

The files passed in with a DID or an FID specification may cause the
common qualifier package to stop processing if that portion of the file
specification needs to be matched against a pattern string from the
/EXCLUDE qualifier.

Common File Qualifier Routines CQUAL–3

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

5.2.2.1 Specifying Prompts
You can provide one or two prompts when specifying prompts as confirmation
messages. If confirmation is active, at least one prompt string must be
specified. When providing two prompts, use the shorter prompt as the prompt_
string_1 parameter. Table 5–5 lists the valid confirmation prompt responses.
CONDENSED and EXPANDED are used when switching between prompts.

The user responding CONDENSED (or just C) displays the prompt_string_1
string. For a more descriptive or detailed prompt, use prompt_string_2 in your
call. For example, the OpenVMS utilities construct prompts from the short and
long fields of an RMS NAML block. The prompt from the short field is passed
through prompt_string_1, and the prompt from the long field is passed through
prompt_string_2.

You have the option of specifying a prompt routine. The first parameter for the
prompt routine will contain a string descriptor of the prompt to be displayed.
The second parameter will contain the address of a buffer for the user’s response.
You must modify the response buffer to reflect the length of the user’s response.
Table 5–5 lists the valid prompt routine responses. All other responses display an
invalid response warning, and call the prompt routine again.

When two prompts are supplied to UTIL$CQUAL_FILE_MATCH, the optional
parameter current_form can be used to determine which prompt string is
displayed first. Table 5–4 lists the valid current_form values.

If the value stored in current_form is not in the values listed, then UTIL$K_
CQF_SHORT is assumed. If the value is UTIL$K_CQF_UNSPECIFIED, or
this parameter is absent from the call, then the form stored in the common file
qualifier database is used. The value currently stored in the common file qualifier
database is the final form active when UTIL$CQUAL_FILE_MATCH returned
from the previous call with the current database context. If there was no previous
call, UTIL$K_CQF_SHORT is stored in the database.

If the current_form parameter can be written to, the final active form is stored
before UTIL$CQUAL_FILE_MATCH returns.

Note

If only one prompt string is provided to UTIL$CQUAL_FILE_MATCH,
the final form will be the form corresponding to that prompt string even
if the user requests the alternate form. For example, if only the short
prompt string is provided and the user requests the long prompt, the user
receives the short prompt. UTIL$K_CQF_SHORT is returned through the
current_form parameter if that parameter is writable.

5.2.2.2 Ignoring Qualifiers
The final parameter, which is also optional, is a flags longword used to ignore
certain qualifier processing when calling UTIL$CQUAL_FILE_MATCH. The
modifier qualifiers for date comparisons (/CREATED, /MODIFIED, /BACKUP,
and /EXPIRED) cannot be ignored. If either the /SINCE or /BEFORE modifier
qualifiers are active, then the date comparison modifier qualifiers must be active
to determine which dates to compare. For example, to operate on the top two
versions of a file set when confirmation is active, an application can keep track
of the first two instances and prompt the user. Once the application reaches that

CQUAL–4 Common File Qualifier Routines

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

number, it sets the UTIL$M_CQF_CONFIRM bit in the disable parameter flags
longword, and the user is not prompted for confirmation during that call. The
following is an example call in C:

status = UTIL$CQUAL_FILE_MATCH (&context,
0,
&result_desc,
&short_prompt,
&long_prompt,
0,
&prompt_form,
&ignore_flags);

5.2.3 Calling UTIL$CQUAL_FILE_END
When calling UTIL$CQUAL_FILE_END, specify the context variable that
contains the common file qualifier database context to be terminated. The
database location was returned in a prior call to UTIL$CQUAL_FILE_PARSE.
The UTIL$CQUAL_FILE_END call deallocates all virtual memory held by the
common file qualifier value in the context parameter. The context variable is
zeroed before this routine returns. The following is an example call in C:

status = UTIL$CQUAL_FILE_END (&context);

5.2.4 Calling UTIL$CQUAL_CONFIRM_ACT
Similar to UTIL$CQUAL_FILE_MATCH, the parameter list used when calling
UTIL$CQUAL_CONFIRM_ACT is a subset of the UTIL$CQUAL_FILE_MATCH
parameter list.

When specifying prompts as confirmation messages, you can provide one or two
prompts. At least one prompt string must be specified. When providing two
prompts, use the shorter of the two prompts as the prompt_string_1 parameter.
Table 5–5 lists valid responses to a confirmation prompt, and lists CONDENSED
and EXPANDED to switch between prompts.

The user responding CONDENSED (or just C) causes the prompt_string_1
string to be displayed. To give the user a more descriptive or detailed prompt,
use prompt_string_2 in your call. For example, the OpenVMS utilities construct
prompts from the short and long fields of an RMS NAML block. The prompt from
the short field is passed through prompt_string_1, and the prompt from the long
field is passed through prompt_string_2.

You have the option of specifying a prompt routine. The first parameter for the
prompt routine is a string descriptor of the prompt to be displayed. The second
parameter contains the address of a buffer for the user’s response. You must
modify the response buffer to reflect the length of the user’s response. Table 5–5
lists valid prompt routine responses. All other responses display an invalid
response warning, and call the prompt routine again.

When two prompts are supplied to UTIL$CQUAL_CONFIRM_ACT, the optional
parameter current_form can be used to determine which prompt string is
displayed first. The valid values are listed in Table 5–4. If the value stored is
other than the values listed, UTIL$K_CQF_SHORT is assumed. If the value is
UTIL$K_CQF_UNSPECIFIED or this parameter is absent from the call, then
UTIL$K_CQF_SHORT is used.

Common File Qualifier Routines CQUAL–5

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

If the current_form parameter can be written to, the final active form is stored
before UTIL$CQUAL_CONFIRM_ACT returns.

Note

If only one prompt string is passed into the UTIL$CQUAL_CONFIRM_
ACT call, the final form will be the form corresponding to that prompt
string even if the user requests the alternate form. For example, if
only the short prompt string is provided and the user requests the long
prompt, the user receives the short prompt again. UTIL$K_CQF_SHORT
is returned through the current_form parameter if that parameter is
writable.

The following is an example call in C:

status = UTIL$CQUAL_CONFIRM_ACT (&short_prompt,
&long_prompt,
0,
&prompt_form);

5.2.5 Creating a Command Language Definition File
For UTIL$CQUAL_FILE_PARSE to function properly, you need the following
Command Language Definition (CLD) file template in the command tables being
examined:

define verb foo
image foo
parameter p1,prompt="File",value(list,impcat,required,type=$infile)
qualifier confirm
qualifier exclude,value(required,list)
qualifier before,value(default=today,type=$datetime)
qualifier since,value(default=today,type=$datetime)
qualifier created
qualifier modified
qualifier expired
qualifier backup
qualifier by_owner,value(type=$uic)

For example, if the line qualifier expired was omitted, a call to UTIL$CQUAL_
FILE_PARSE would result in:

$ foo *.c
%CLI-F-SYNTAX, error parsing ’EXPIRED’
-CLI-E-ENTNF, specified entity not found in command tables
%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs

...

Note

A default value for the /SINCE= and /BEFORE= qualifiers is provided in
the CLD file. If you do not require a value, specify a default or you may
not get the desired result.

CQUAL–6 Common File Qualifier Routines

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

The following example shows a C program that retrieves files from the command
line, and lists which ones will be processed, if processing is required.

Example 5–1 Using UTIL$CQUAL Routines to Process Files

$ create foo.c
#include <stdio.h>
#include <string.h>

#include <rms.h>
#include <starlet.h>
#include <descrip.h>
#include <lib$routines.h>
#include <libfildef.h>
#include <cli$routines.h>

#include <cqualdef.h>
#include <util$routines.h>

#ifdef NAML$C_BID /* determine if HFS support is here */
#define HFS_Support 1
#else
#define HFS_Support 0
#endif

#if !HFS_Support /* compensate for lack of HFS support */
#define naml$l_rsa nam$l_rsa
#define naml$b_rsl nam$b_rsl
#define naml$l_long_result nam$l_rsa
#define naml$l_long_result_size nam$b_rsl
#define NAML$C_MAXRSS NAM$C_MAXRSS
#define LIB$M_FIL_LONG_NAMES 0
#endif

unsigned int input_flags;
unsigned int output_flags;
unsigned int ignore_flags = 0;
unsigned int *context;
char get_value[NAM$C_MAXRSS];
char *prompt_string = "Confirmation for ";
char *prompt_end = " [N] ? ";
char *process = " Will process ";
char *noprocess = " Will not process ";
char short_string[NAM$C_MAXRSS+80];
unsigned int prompt_form = 0;
unsigned int status;
struct fabdef *find_file_context;
unsigned int find_file_flags;
unsigned short ret_length;
$DESCRIPTOR(parm_1, "P1");
$DESCRIPTOR(get_val_desc, get_value);
$DESCRIPTOR(short_prompt, short_string);
$DESCRIPTOR(result_desc, "");
char long_string[NAML$C_MAXRSS+80];
char outstring[NAML$C_MAXRSS+80];
$DESCRIPTOR(long_prompt, long_string);

#if HFS_Support
struct namldef *nam_block;
#else
struct namdef *nam_block;
#endif

(continued on next page)

Common File Qualifier Routines CQUAL–7

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

Example 5–1 (Cont.) Using UTIL$CQUAL Routines to Process Files

extern UTIL$_QUICONACT; /* external literal */
extern UTIL$_QUIPRO; /* external literal */

int main(void) {

input_flags = UTIL$M_CQF_CONFIRM | UTIL$M_CQF_EXCLUDE |
UTIL$M_CQF_BEFORE | UTIL$M_CQF_SINCE |
UTIL$M_CQF_CREATED | UTIL$M_CQF_MODIFIED |
UTIL$M_CQF_EXPIRED | UTIL$M_CQF_BACKUP |
UTIL$M_CQF_BYOWNER;

if (!(status = UTIL$CQUAL_FILE_PARSE (&input_flags,
&context,
&output_flags) & 1)) {

return status;
};

find_file_flags = LIB$M_FIL_MULTIPLE | LIB$M_FIL_LONG_NAMES;

get_val_desc.dsc$w_length = sizeof(get_value);
status = cli$get_value(&parm_1, &get_val_desc, &ret_length);

result_desc.dsc$b_class = DSC$K_CLASS_D;
result_desc.dsc$a_pointer = 0;

while (status & 1) {
get_val_desc.dsc$w_length = ret_length;
while ((status != (int)&UTIL$_QUIPRO) && /* treat as external literal*/

(LIB$FIND_FILE(&get_val_desc, &result_desc,
&find_file_context, 0, 0, 0,
&find_file_flags) & 1)) {

#if HFS_Support
nam_block = find_file_context->fab$l_naml;

#else
nam_block = find_file_context->fab$l_nam;

#endif
if ((output_flags && UTIL$M_CQF_CONFIRM) != 0) {

strcpy(short_string, prompt_string);
strncat(short_string, nam_block->naml$l_rsa,

(int)nam_block->naml$b_rsl);
strcat(short_string, prompt_end);
short_prompt.dsc$w_length = strlen(short_string);
strcpy(long_string, prompt_string);
strncat(long_string, nam_block->naml$l_long_result,

(int)nam_block->naml$l_long_result_size);
strcat(long_string, prompt_end);
long_prompt.dsc$w_length = strlen(long_string);
}

else {
short_prompt.dsc$w_length = 0;

long_prompt.dsc$w_length = 0;
};

if ((status = UTIL$CQUAL_FILE_MATCH(&context,
0,
&result_desc,
&short_prompt,
&long_prompt,
0,
&prompt_form,
&ignore_flags)) & 1) {

strcpy(outstring, process);
}

(continued on next page)

CQUAL–8 Common File Qualifier Routines

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

Example 5–1 (Cont.) Using UTIL$CQUAL Routines to Process Files
else {

strcpy(outstring, noprocess);
};

if (prompt_form == UTIL$K_CQF_SHORT) {
strncat(outstring, nam_block->naml$l_rsa,

(int)nam_block->naml$b_rsl);
}

else {
strncat(outstring, nam_block->naml$l_long_result,

(int)nam_block->naml$l_long_result_size);

};
printf("%s\n", outstring);
if (status == (int)&UTIL$_QUICONACT) { /* treat as external literal*/

output_flags &= ~UTIL$M_CQF_CONFIRM;
};

};
if (status != (int)&UTIL$_QUIPRO) {

get_val_desc.dsc$w_length = sizeof(get_value);
status = cli$get_value(&parm_1, &get_val_desc, &ret_length);
};

};
status = UTIL$CQUAL_FILE_END (&context);
return status;
}
$ cc/list foo.c
$ link foo.c
$ set command foo.cld
$ define foo sys$disk:[]foo.exe
$ directory/noexclude

Directory MDA2000:[main]

EDTINI.EDT;1 FOO.BAR;1 FOO.C;2
FOO.C;1 FOO.CLD;2 FOO.CLD;1
FOO.EXE;3 FOO.EXE;2 FOO.EXE;1
FOO.LIS;1 FOO.OBJ;1 LAST.COM;1
LOGIN.COM;1 MAIL.MAI;1 MDA0.DAT;1
NOTE.DAT;1 QUEUE.COM;1 TPUINI.TPU;1

(continued on next page)

Common File Qualifier Routines CQUAL–9

Common File Qualifier Routines
5.2 Using the Common File Qualifier Routines

Example 5–1 (Cont.) Using UTIL$CQUAL Routines to Process Files

Total of 18 files.
$ foo/exclude=*.c *.*;*

Will process MDA2000:[main]EDTINI.EDT;1
Will process MDA2000:[main]FOO.BAR;1
Will not process MDA2000:[main]FOO.C;2
Will not process MDA2000:[main]FOO.C;1
Will process MDA2000:[main]FOO.CLD;2
Will process MDA2000:[main]FOO.CLD;1
Will process MDA2000:[main]FOO.EXE;3
Will process MDA2000:[main]FOO.EXE;2
Will process MDA2000:[main]FOO.EXE;1
Will process MDA2000:[main]FOO.LIS;1
Will process MDA2000:[main]FOO.OBJ;1
Will process MDA2000:[main]LAST.COM;1
Will process MDA2000:[main]LOGIN.COM;1
Will process MDA2000:[main]MAIL.MAI;1
Will process MDA2000:[main]MDA0.DAT;1
Will process MDA2000:[main]NOTE.DAT;1
Will process MDA2000:[main]QUEUE.COM;1
Will process MDA2000:[main]subdir.DIR;1
Will process MDA2000:[main]TPUINI.TPU;1

$ foo/confirm *.*
Confirmation for MDA2000:[main]EDTINI.EDT;1 [N] ? n

Will not process MDA2000:[main]EDTINI.EDT;1
Confirmation for MDA2000:[main]FOO.BAR;1 [N] ? n

Will not process MDA2000:[main]FOO.BAR;1
Confirmation for MDA2000:[main]FOO.C;2 [N] ? y

Will process MDA2000:[main]FOO.C;2
Confirmation for MDA2000:[main]FOO.CLD;2 [N] ? q

Will not process MDA2000:[main]FOO.CLD;2
$ foo/since=yesterday/modified/exclude=(*.*;2,l*) foo.*;*,*.com;*

Will process MDA2000:[main]FOO.BAR;1
Will not process MDA2000:[main]FOO.C;2
Will process MDA2000:[main]FOO.C;1
Will not process MDA2000:[main]FOO.CLD;2
Will process MDA2000:[main]FOO.CLD;1
Will process MDA2000:[main]FOO.EXE;3
Will not process MDA2000:[main]FOO.EXE;2
Will process MDA2000:[main]FOO.EXE;1
Will process MDA2000:[main]FOO.LIS;1
Will process MDA2000:[main]FOO.OBJ;1
Will not process MDA2000:[main]LAST.COM;1
Will not process MDA2000:[main]LOGIN.COM;1
Will process MDA2000:[main]QUEUE.COM;1

$ _

5.3 UTIL$CQUAL Routines
This section describes the UTIL$CQUAL routines.

CQUAL–10 Common File Qualifier Routines

Common File Qualifier Routines
UTIL$CQUAL_FILE_PARSE

UTIL$CQUAL_FILE_PARSE—Parse the Command Line

The UTIL$CQUAL_FILE_PARSE routine parses the command line for the
common file qualifiers.

Format

UTIL$CQUAL_FILE_PARSE flags ,context [,found_flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition Values Returned lists condition values that this routine returns.

Arguments

flags
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword of bit flags. UTIL$CQUAL_FILE_PARSE scans the command line for
the qualifiers whose associated bit is set in the flags longword. The following
table lists the allowed mask and field specifier values.

Table 5–3 UTIL$CQUAL_FILE_PARSE Flags and Masks

Qualifier Mask Value Field Specifier

/CONFIRM UTIL$M_CQF_CONFIRM UTIL$V_CQF_CONFIRM
/EXCLUDE UTIL$M_CQF_EXCLUDE UTIL$V_CQF_EXCLUDE
/BEFORE UTIL$M_CQF_BEFORE UTIL$V_CQF_BEFORE
/SINCE UTIL$M_CQF_SINCE UTIL$V_CQF_SINCE
/CREATED UTIL$M_CQF_CREATED UTIL$V_CQF_CREATED
/MODIFIED UTIL$M_CQF_MODIFIED UTIL$V_CQF_MODIFIED
/EXPIRED UTIL$M_CQF_EXPIRED UTIL$V_CQF_EXPIRED
/BACKUP UTIL$M_CQF_BACKUP UTIL$V_CQF_BACKUP
/BY_OWNER UTIL$M_CQF_BYOWNER UTIL$V_CQF_BYOWNER

context
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword that receives the common file qualifier database
address. The address of the context variable must be passed to the

Common File Qualifier Routines CQUAL–11

Common File Qualifier Routines
UTIL$CQUAL_FILE_PARSE

UTIL$CQUAL_FILE_MATCH and UTIL$CQUAL_FILE_END routines when
they are called.

found_flags
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword of bit flags. This optional parameter is the longword address of the
value that indicates which common file qualifiers were present on the command
line. The mask and field specifier values are the same values as the flags
parameter, and are listed in Table 5–3.

Description

Using the CLI$PRESENT and CLI$GET_VALUE routines, the UTIL$CQUAL_
FILE_PARSE routine searches the command line for the qualifiers specified
in the flags longword. When command line parsing finishes, UTIL$CQUAL_
FILE_PARSE returns a pointer to the common file qualifier value in the context
parameter.

The context parameter must be used when calling either the UTIL$CQUAL_
FILE_MATCH or UTIL$CQUAL_FILE_END routines. If a third parameter is
specified, UTIL$CQUAL_FILE_PARSE returns a longword of flags indicating
which qualifiers were found during the command line parse. The mask and field
specifiers are listed in Table 5–3.

Condition Values Returned

SS$_NORMAL Normal successful completion.
LIB$_INVARG Invalid argument. A bit in the flags parameter

was set without an associated qualifier.
CLI$_INVQUAVAL An unusable value was given on the command

line for any of the following qualifiers:
/EXCLUDE, /BEFORE, /SINCE, or /BY_OWNER
(for example, /BEFORE=mintchip).

SS$_CONFQUAL More than one of the following appeared on the
command line at the same time: /CREATED,
/MODIFIED, /EXPIRED, /BACKUP.

Any unsuccessful return from LIB$GET_VM.

CQUAL–12 Common File Qualifier Routines

Common File Qualifier Routines
UTIL$CQUAL_FILE_MATCH

UTIL$CQUAL_FILE_MATCH—Match a File with Selection Criteria

The UTIL$CQUAL_FILE_MATCH routine matches a file with the selection
criteria.

Format

UTIL$CQUAL_FILE_MATCH context [,user_fab] [,file_name] [,prompt_string_1]
[,prompt_string_2] [,prompt_rtn] [,current_form]
[,disable]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition Values Returned lists condition values that this routine returns.

Arguments

context
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The longword address that received the common file qualifier database address
from a prior call to UTIL$CQUAL_FILE_PARSE.

user_fab
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The FAB address of the file to be evaluated. This FAB must point to a valid NAM
or NAML block. If the file is open and the file header criteria are to be evaluated,
the appropriate XABs (XABPRO or XABDAT) must be chained to the FAB and
properly filled in by RMS. If the file is not open when this routine is called, then
the XAB chain is not necessary, but may be present. This argument is optional.
If it is not present, the file_name parameter must be present. Both arguments
may not be present at the same time.

file_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The file name descriptor address of the file to be processed. This parameter can
be used instead of the user_fab argument. Both arguments may not be present
at the same time.

Common File Qualifier Routines CQUAL–13

Common File Qualifier Routines
UTIL$CQUAL_FILE_MATCH

prompt_string_1
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword address of a prompt string descriptor. This prompt is used when
prompting to a terminal device and the current prompt form is UTIL$K_CQF_
SHORT.

prompt_string_2
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. This prompt is used when
prompting to a terminal device and the current prompt form is UTIL$K_CQF_
LONG.

prompt_rtn
OpenVMS usage: procedure
type: longword (unsigned)
access: function call
mechanism: by value

User-supplied longword routine address used for prompting and accepting input
from the user. The user routine is responsible for end-of-file processing and must
return RMS$_EOF when appropriate.

current_form
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read write
mechanism: by reference

This optional parameter supplies the initial prompt form displayed to the user. If
it contains the value UTIL$K_CQF_UNSPECIFIED, then the form last requested
by the user is used if that form is available. If there was no previous call to
UTIL$CQUAL_FILE_MATCH, and the current_form is unspecified, UTIL$K_
CQF_SHORT is assumed.

When exiting UTIL$CQUAL_FILE_MATCH, the current_form parameter
contains the last user requested prompt form. If a previous call to UTIL$CQUAL_
FILE_MATCH requested quit processing or quit confirmation prompting, then
this parameter is not modified.

disable
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword of bit flags. This optional parameter specifies which common file
qualifiers are ignored in the current call to UTIL$CQUAL_FILE_MATCH.
Qualifiers that cannot be ignored are /CREATED, /MODIFIED, /EXPIRED, and
/BACKUP).

CQUAL–14 Common File Qualifier Routines

Common File Qualifier Routines
UTIL$CQUAL_FILE_MATCH

Description

UTIL$CQUAL_FILE_MATCH compares the file named in either the user_fab
or file_name parameter (only one can be specified) against criteria specified by
the common file qualifier database pointed to by the context and the disable
parameter flags. UTIL$CQUAL_FILE_MATCH returns a status as to whether
the file does or does not match the criteria.

If a failure occurs during processing, such as those listed in the Abnormal
Completion Codes, the routine quits processing files for the context under
which the failure occurred. A processing failure is the same as receiving a quit
processing response from a user prompt. Any additional calls to this routine with
the context that incurred the processing failure will return UTIL$_QIOPRO. This
applies even if the user responded ALL to a previous confirmation prompt.

For a description of the /CONFIRM prompting, see UTIL$CQUAL_CONFIRM_
ACT.

Note

The UTIL$CQUAL_FILE_MATCH current_form parameter is
different from the same parameter in UTIL$CQUAL_CONFIRM_ACT.
UTIL$CQUAL_FILE_MATCH retains the user’s last requested form
between calls.

Condition Values Returned

Normal Completion Codes:

SS$_NORMAL File matches the criteria and can be processed.
UTIL$_QUICONACT User requests that confirmation prompting cease,

but that other common file qualifier criteria be
applied on subsequent file specifications.

UTIL$_FILFAIMAT File failed the evaluation, and should not be
processed.

UTIL$QUIPRO User requests that processing stops.
Abnormal Completion Codes:

LIB$INVARG Incorrect parameter list.
SS$_ACCVIO Unable to access one or more of the parameters

(such as the common file database or user_fab).
UTIL$_FILFID File specification contains an FID. Due to file

specification aliases, converting an FID to a file
specification is inappropriate for /EXCLUDE
processing.

UTIL$_FILDID File specification contains a DID. Due to
directory specification aliases, converting a
DID to a directory patch is inappropriate for
/EXCLUDE processing when the directory patch
needs to be compared.

Common File Qualifier Routines CQUAL–15

Common File Qualifier Routines
UTIL$CQUAL_FILE_MATCH

LIB$_INVXAB Invalid XAB chain. A necessary XAB (XABPRO
or XABDAT) is missing from the opened file’s
XAB chain.

Any unsuccessful code from RMS, LIB$GET_VM, or any unsuccessful return
status from the user-supplied routine (other than RMS$_EOF).

CQUAL–16 Common File Qualifier Routines

Common File Qualifier Routines
UTIL$CQUAL_FILE_END

UTIL$CQUAL_FILE_END—End Processing

The UTIL$CQUAL_FILE_END routine returns all allocated virtual memory from
the call to UTIL$CQUAL_FILE_PARSE.

Format

UTIL$CQUAL_FILE_END context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition Values Returned lists condition values that this routine returns.

Arguments

context
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read write
mechanism: by reference

The longword address that received the common file qualifier database address
from a prior call to UTIL$CQUAL_FILE_PARSE.

Description

UTIL$CQUAL_FILE_END deallocates the virtual memory obtained by the
common file qualifier package during the call to UTIL$CQUAL_FILE_PARSE.
The virtual memory held information for calls to UTIL$CQUAL_FILE_MATCH.

Condition Values Returned

SS$_NORMAL Normal successful completion.

Any unsuccessful code from LIB$FREE_VM.

Common File Qualifier Routines CQUAL–17

Common File Qualifier Routines
UTIL$CQUAL_CONFIRM_ACT

UTIL$CQUAL_CONFIRM_ACT—Ask User for Confirmation

The UTIL$CQUAL_CONFIRM_ACT routine prompts the user for confirmation,
using the optional prompt routine if present, and returns an indication of the
user’s response.

Format

UTIL$CQUAL_CONFIRM_ACT [prompt_string_1] [,prompt_string_2] [,prompt_rtn]
[,current_form]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition Values Returned lists condition values that this routine returns.

Arguments

prompt_string_1
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. The prompt is used when
prompting to a terminal device, and the current prompt form is UTIL$K_CQF_
SHORT.

prompt_string_2
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword address of a prompt string descriptor. The prompt is used when
prompting to a terminal device, and the current prompt form is UTIL$K_CQF_
LONG.

prompt_rtn
OpenVMS usage: procedure
type: longword (unsigned)
access: function call
mechanism: by value

Longword address of a user-supplied routine for prompting and accepting user
input. The user routine is responsible for end-of-file processing and must return
RMS$_EOF when appropriate.

CQUAL–18 Common File Qualifier Routines

Common File Qualifier Routines
UTIL$CQUAL_CONFIRM_ACT

current_form
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read write
mechanism: by reference

This optional parameter supplies the initial prompt form to be displayed to the
user. If present, this parameter receives the form of the last prompt displayed.
The following table shows the valid prompting form values:

Table 5–4 Prompting Form Values

Value Description

UTIL$K_CQF_SHORT Use prompt_string_1.
UTIL$K_CQF_LONG Use prompt_string_2.
UTIL$K_CQF_UNSPECIFIED None specified; use default.

Description

UTIL$CQUAL_CONFIRM_ACT prompts the user for confirmation. You must
supply at least one prompt string to this routine. If you supply both strings, you
should have an expanded and condensed form of the prompt. The condensed form
should be supplied through the prompt_string_1 parameter; the expanded form
through prompt_string_2. The prompt string supplied by prompt_string_1 is
initially used if the prompt_string_1 is present, does not have a length of zero,
and either:

• The current_form parameter is not specified

• The current_form parameter is specified and contains:

UTIL$K_CQF_SHORT

UTIL$K_CQF_UNSPECIFIED

A value greater than UTIL$K_CQF_MAX_FORM

The prompt string supplied by prompt_string_2 is used initially if prompt_
string_2 is present, does not have a length of zero, and either:

• prompt_string_1 is not present or has a length of zero

• The current_form parameter is specified and contains the value UTIL$K_
CQF_LONG

Once the initial form is displayed, the user can switch between the two forms by
responding to the prompt with either CONDENSED or EXPANDED. The user
can only switch to another form if there was a prompt string provided for that
form. Responding with either CONDENSED or EXPANDED causes a reprompt
to occur, even if the current display form was not switched.

If a prompt routine is provided, the routine is called with the address of the
prompt string descriptor in the first parameter, and the string descriptor address
to receive the user’s response in the second parameter. The routine returns a
success status or RMS$_EOF.

Common File Qualifier Routines CQUAL–19

Common File Qualifier Routines
UTIL$CQUAL_CONFIRM_ACT

If an unsuccessful status other than RMS$_EOF is received, then UTIL$CQUAL_
CONFIRM_ACT exits without processing any response in the response buffer
(the second parameter that was passed to the prompt routine). UTIL$CQUAL_
CONFIRM_ACT returns the status received from the user prompt routine. The
prompt routine is responsible for end-of-file processing, and must return RMS$_
EOF when appropriate. If an optional prompt routine is provided, it should be
provided for all calls to UTIL$CQUAL_CONFIRM_ACT. Not doing so can cause
unpredictable end-of-file processing.

When the user is prompted, they may respond with the following:

Table 5–5 Prompt Responses

Positive
Response

Negative
Response

Stop
Processing

Stop
Prompting

Switch
Prompts

YES NO QUIT ALL CONDENSED
TRUE FALSE Ctrl/Z EXPANDED
1 0

<Return>

Note

Entering ALL assumes that subsequent files are a positive response from
the user, and no further prompting occurs. The routine UTIL$CQUAL_
FILE_MATCH properly handles this response. Since UTIL$CQUAL_
CONFIRM_ACT does not contain context from a previous call, callers
of this routine should not call UTIL$CQUAL_CONFIRM_ACT if the
user has previously responded ALL unless the application needs explicit
confirmation on certain items.

The user can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for example,
T, TR, or TRU for TRUE), but these abbreviations must be unique.

After a valid response is received from the user, the procedure returns the
current_form parameter. The current_form parameter contains the last form
presented to the user if it was specified and write access is permitted.

Condition Values Returned

SS$_NORMAL Positive answer.
LIB$_NEGANS Negative answer.
UTIL$_QUIPRO Quit processing.
UTIL$_QUICONACT Continue processing, but cease prompting.
LIB$_INVARG Invalid argument list (no prompt strings).
SS$_ACCVIO Access violation (on user routine address).

Any unsuccessful return from RMS, SYS$ASSIGN, $QIOW, or from the user-
supplied routine (other than RMS$_EOF).

CQUAL–20 Common File Qualifier Routines

6
Convert (CONVERT) Routines

This chapter describes the CONVERT routines. These routines perform the
functions of both the Convert and Convert/Reclaim utilities.

6.1 Introduction to CONVERT Routines
The Convert utility copies records from one or more files to an output file,
changing the record format and file organization to that of the output file. You
can invoke the functions of the Convert utility from within a program by calling
the following series of three routines, in this order:

1. CONV$PASS_FILES

2. CONV$PASS_OPTIONS

3. CONV$CONVERT

Note that the application program should declare referenced constants and return
status symbols as external symbols; these symbols are resolved upon linking with
the utility shareable image. Also note that File Definition Language (FDL) errors
may be returned to the calling program where applicable.

The Convert/Reclaim utility reclaims empty buckets in Prolog 3 indexed files
so new records can be written in them. You can invoke the functions of the
Convert/Reclaim utility from within a program by calling the CONV$RECLAIM
routine.

These routines cannot be called from the asynchronous system trap (AST) level.
In addition, in order to function properly, these routines require ASTs to remain
enabled.

6.2 Using the CONVERT Routines: Examples
Example 6–1 shows how to use the CONVERT routines in a Fortran program.

Example 6–1 Using the CONVERT Routines in a Fortran Program

* This program calls the routines that perform the
* functions of the Convert Utility. It creates an
* indexed output file named CUSTDATA.DAT from the
* specifications in an FDL file named INDEXED.FDL.
* The program then loads CUSTDATA.DAT with records
* from the sequential file SEQ.DAT. No exception
* file is created. This program also returns the
* "BRIEF" CONVERT statistics.

* Program declarations

IMPLICIT INTEGER*4 (A - Z)

(continued on next page)

Convert (CONVERT) Routines CONV–1

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6–1 (Cont.) Using the CONVERT Routines in a Fortran Program

* Set up parameter list: number of options, CREATE,
* NOSHARE, FAST_LOAD, MERGE, APPEND, SORT, WORK_FILES,
* KEY=0, NOPAD, PAD CHARACTER, NOTRUNCATE,
* NOEXIT, NOFIXED_CONTROL, FILL_BUCKETS, NOREAD_CHECK,
* NOWRITE_CHECK, FDL, and NOEXCEPTION.
*

INTEGER*4 OPTIONS(19)
1 /18,1,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,1,0/

* Set up statistics list. Pass an array with the
* number of statistics that you want. There are four
* --- number of files, number of records, exception
* records, and good records, in that order.

INTEGER*4 STATSBLK(5) /4,0,0,0,0/

* Declare the file names.

CHARACTER IN_FILE*7 /’SEQ.DAT’/,
1 OUT_FILE*12 /’CUSTDATA.DAT’/,
1 FDL_FILE*11 /’INDEXED.FDL’/

* Call the routines in their required order.

STATUS = CONV$PASS_FILES (IN_FILE, OUT_FILE, FDL_FILE)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

STATUS = CONV$PASS_OPTIONS (OPTIONS)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

STATUS = CONV$CONVERT (STATSBLK)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

* Display the statistics information.

WRITE (6,1000) (STATSBLK(I),I=2,5)
1000 FORMAT (1X,’Number of files processed: ’,I5/,

1 1X,’Number of records: ’,I5/,
1 1X,’Number of exception records: ’,I5/,
1 1X,’Number of valid records: ’,I5)

END

Example 6–2 shows how to use the advanced features of the CONVERT routines
in a C program.

CONV–2 Convert (CONVERT) Routines

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6–2 Using the CONVERT Routines in a C Program

/*
** This module calls the routines that perform the functions
** of the Convert utility. It creates an indexed output file
** named CUSTDATA.DAT from the specifications in an FDL file
** named INDEXED.FDL, and loads CUSTDATA.DAT with records from
** the sequential file SEQ.DAT. No exception file is created.
** This module also returns the CONVERT and SORT statistics
** for each key that is loaded by utilizing the new callback
** feature that is available through the CONV$CONVERT call.
*/

#include <stdio>
#include <descrip>
#include <lib$routines>
#include <conv$routines>
#include <convdef>
#include <starlet>
/*

** Allocate a statistics block structure using the template provided by
** <convdef.h>. This structure will be passed to the CONV$CONVERT routine
** to receive both the basic and extended statistics from CONVERT. The
** fields returned to the structure from CONVERT are listed in table 5-1.
**
** The number of statistics to be returned is passed as the first element
** in the array. The value CONV$K_MAX_STATISTICS will return the set of
** basic statistics, while the value CONV$K_EXT_STATISTICS will return all
** statistics.
*/
struct conv$statistics stats;

/*
** Main program (CONVSTAT) starts here
*/
int CONVSTAT (void)

{
$DESCRIPTOR (input_file, "SEQ.DAT");
$DESCRIPTOR (output_file, "CUSTDATA.DAT");
$DESCRIPTOR (fdl_file, "INDEXED.FDL");

void callback();

int stat;

/*
** Allocate an options block structure using the template provided by
** <convdef.h>. This structure will be passed to the CONV$PASS_OPTIONS
** routine to indicate what options are to be used for the file convert.
** The fields passed to the structure are listed in table 5-2.
*/
struct conv$options param_list;

(continued on next page)

Convert (CONVERT) Routines CONV–3

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6–2 (Cont.) Using the CONVERT Routines in a C Program

param_list.conv$l_options_count = CONV$K_MAX_OPTIONS;
param_list.conv$l_create = 1;
param_list.conv$l_share = 0;
param_list.conv$l_fast = 1;
param_list.conv$l_merge = 0;
param_list.conv$l_append = 0;
param_list.conv$l_sort = 1;
param_list.conv$l_work_files = 2;
param_list.conv$l_key = 0;
param_list.conv$l_pad = 0;
param_list.conv$l_pad_character = 0;
param_list.conv$l_truncate = 0;
param_list.conv$l_exit = 0;
param_list.conv$l_fixed_control = 0;
param_list.conv$l_fill_buckets = 0;
param_list.conv$l_read_check = 0;
param_list.conv$l_write_check = 0;
param_list.conv$l_fdl = 1;
param_list.conv$l_exception = 0;
param_list.conv$l_prologue = 0;
param_list.conv$l_ignore_prologue = 1;
param_list.conv$l_secondary = 1;

/*
** Init the number of statistics to be returned
*/
stats.conv$l_statistics_count = CONV$K_EXT_STATISTICS;

LIB$INIT_TIMER(); /* Start a timer */

/*
** First call to pass all the file names
*/
stat = CONV$PASS_FILES (&input_file, &output_file, &fdl_file);
if (!(stat & 1)) return stat;

/*
** Second call to pass particular options chosen as indicated in array.
*/
stat = CONV$PASS_OPTIONS (¶m_list);
if (!(stat & 1)) return stat;

/*
** Final call to perform actual convert, passing statistics block and
** callback routine address.
*/
stat = CONV$CONVERT (&stats, 0, &callback);
if (stat & 1)
{
/*
** Successful Convert! Print out counters from statistics.
*/
printf ("Number of files processed : %d\n", stats.conv$l_file_count);
printf ("Number of records : %d\n", stats.conv$l_record_count);
printf ("Number of exception records : %d\n", stats.conv$l_except_count);
printf ("Number of valid records : %d\n", stats.conv$l_valid_count);
LIB$SHOW_TIMER();
}
return stat; /* success or failure */

}

(continued on next page)

CONV–4 Convert (CONVERT) Routines

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6–2 (Cont.) Using the CONVERT Routines in a C Program

void callback ()
{

int status, SYS$ASCTIM();
int cvtflg = 1;
static char date[15];
$DESCRIPTOR(out_date, date);

printf ("Statistics for Key : %d\n", stats.conv$l_key_number);
printf (" Records Sorted : %d\n", stats.conv$l_rec_out);
printf (" Sort Nodes : %d\n", stats.conv$l_nodes);
printf (" Work file allocation : %d\n", stats.conv$l_wrk_alq);
printf (" Initial Sort Runs : %d\n", stats.conv$l_ini_runs);
printf (" Merge Order : %d\n", stats.conv$l_mrg_order);
printf (" Merge Passes : %d\n", stats.conv$l_mrg_passes);
printf (" Sort Direct IO : %d\n", stats.conv$l_sort_dio_count);
printf (" Sort Buffered IO : %d\n", stats.conv$l_sort_bio_count);
status = SYS$ASCTIM (0, &out_date, &stats.conv$q_sort_elapsed_time, cvtflg);
if (!(status & 1)) LIB$STOP (status);
printf (" Sort Elapsed Time : %s\n", date);
status = SYS$ASCTIM (0, &out_date, &stats.conv$q_sort_cpu_time, cvtflg);
if (!(status & 1)) LIB$STOP (status);
printf (" Sort Cpu Time : %s\n", date);
printf (" Sort Page Faults : %d\n\n", stats.conv$l_sort_pf_count);

printf (" Load Direct IO : %d\n", stats.conv$l_load_dio_count);
printf (" Load Buffered IO : %d\n", stats.conv$l_load_bio_count);
status = SYS$ASCTIM (0, &out_date, &stats.conv$q_load_elapsed_time, cvtflg);
if (!(status & 1)) LIB$STOP (status);
printf (" Load Elapsed Time : %s\n", date);
status = SYS$ASCTIM (0, &out_date, &stats.conv$q_load_cpu_time, cvtflg);
if (!(status & 1)) LIB$STOP (status);
printf (" Load Cpu Time : %s\n", date);
printf (" Load Page Faults : %d\n\n", stats.conv$l_load_pf_count);

return;
}

Example 6–3 shows how to use the CONV$RECLAIM routine in a Fortran
program.

Example 6–3 Using the CONV$RECLAIM Routine in a Fortran Program

* This program calls the routine that performs the
* function of the Convert/Reclaim utility. It
* reclaims empty buckets from an indexed file named
* PROL3.DAT. It also returns all the CONVERT/RECLAIM
* statistics.
* Program declarations

IMPLICIT INTEGER*4 (A - Z)

* Set up a statistics block. There are four -- data
* buckets scanned, data buckets reclaimed, index
* buckets reclaimed, total buckets reclaimed.

INTEGER*4 OUTSTATS(5) /4,0,0,0,0/

* Declare the input file.

CHARACTER IN_FILE*9 /’PROL3.DAT’/

(continued on next page)

Convert (CONVERT) Routines CONV–5

Convert (CONVERT) Routines
6.2 Using the CONVERT Routines: Examples

Example 6–3 (Cont.) Using the CONV$RECLAIM Routine in a Fortran Program

* Call the routine.

STATUS = CONV$RECLAIM (IN_FILE, OUTSTATS)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

* Display the statistics.

WRITE (6,1000) (OUTSTATS(I),I=2,5)
1000 FORMAT (1X,’Number of data buckets scanned: ’,I5/,

1 1X,’Number of data buckets reclaimed: ’,I5/,
1 1X,’Number of index buckets reclaimed: ’,I5/,
1 1X,’Total buckets reclaimed: ’,I5)

END

Example 6–4 shows how to use the CONV$RECLAIM routine in a C program.

Example 6–4 Using the CONV$RECLAIM Routine in a C Program

/*
** This module calls the routine that performs the
** function of the CONVERT/RECLAIM utility. It reclaims
** empty buckets from an indexed file named PROL3.DAT.
**
** This module also returns and prints all of the
** CONVERT/RECLAIM statistics.
*/

#include <stdio>
#include <descrip>

CONVREC ()
{
$DESCRIPTOR (filename, "PROL3.DAT");/* Provide your file name */
struct { int statistics_count, /* must precede actual statistics */

scanned_buckets,
data_buckets_reclaimed,
index_buckets_reclaimed,
total_buckets_reclaimed; } stats = 4 /* 4 statistic arguments */;

int stat;
/*
** Perform actual operation.
*/
stat = CONV$RECLAIM (&filename, &stats);
if (stat & 1)

{
/*
** Successful RECLAIM. Now format and print the counts.
*/
printf ("Data buckets scanned : %d\n", stats.scanned_buckets);
printf ("Data buckets reclaimed : %d\n", stats.data_buckets_reclaimed);
printf ("Index buckets reclaimed : %d\n", stats.index_buckets_reclaimed);
printf ("Total buckets reclaimed : %d\n", stats.total_buckets_reclaimed);
}

return stat /* succes or failure */;
}

CONV–6 Convert (CONVERT) Routines

Convert (CONVERT) Routines
6.3 CONVERT Routines

6.3 CONVERT Routines
This section describes the individual CONVERT routines.

Convert (CONVERT) Routines CONV–7

Convert (CONVERT) Routines
CONV$CONVERT

CONV$CONVERT—Initiate Conversion

The CONV$CONVERT routine uses the Convert utility to perform the actual
conversion begun with CONV$PASS_FILES and CONV$PASS_OPTIONS.
Optionally, the routine can return statistics about the conversion.

Note that the CONV$CONVERT routine may return appropriate File Definition
Language (FDL) error messages to the calling program, where applicable.

Format

CONV$CONVERT [status_block_address] [,flags] [,callback_routine]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

status_block_address
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The conversion statistics. The status_block_address argument is the address of
a variable-length array of longwords that receives statistics about the conversion.

You can request conversion statistics using zero-based, symbolic offsets
(CONV$K_) into the variable-length array of longwords that contains the
statistics. The array is defined as a structure (CONV$STATISTICS) of named
longwords (CONV$L_) to support access by high-level progamming languages.

Table 6–1 lists the array elements by number and by symbol. The first element
specifies the number of statistics to return by array order. For example, if you
assign the symbol CONV$L_STATISTICS_COUNT the value 2, the routine
returns the statistics from the first two statistics elements:

• Number of files converted

• Number of records converted

CONV–8 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$CONVERT

Table 6–1 Conversion Statistics Array

Array
Element Field Name Description

0 CONV$L_STATISTICS_COUNT Number of statistics
specified

1 CONV$L_FILE_COUNT Number of files
2 CONV$L_RECORD_COUNT Number of records
3 CONV$L_EXCEPT_COUNT Number of exception

record
4 CONV$L_VALID_COUNT Number of valid

records
5 CONV$L_KEY_NUMBER Most recent key

processed
6 CONV$L_REC_OUT Number of records

sorted
7 CONV$L_NODES Nodes in sort tree
8 CONV$L_WRK_ALQ Work file allocation
9 CONV$L_INI_RUNS Initial dispersion runs
10 CONV$L_MRG_ORDER Maximum merge order
11 CONV$L_MRG_PASSES Number of merge

passes
12 CONV$L_SORT_DIO_COUNT Sort direct IO
13 CONV$L_SORT_BIO_COUNT Sort buffered IO
14 CONV$Q_SORT_ELAPSED_TIME Sort elapsed time
15 CONV$Q_SORT_CPU_TIME Sort CPU time
16 CONV$L_SORT_PF_COUNT Number of page faults

for sort
17 CONV$L_LOAD_DIO_COUNT Load direct IO
18 CONV$L_LOAD_BIO_COUNT Load buffered IO
19 CONV$Q_LOAD_ELAPSED_TIME Load elapsed time
20 CONV$Q_LOAD_CPU_TIME Load CPU time
21 CONV$L_LOAD_PF_COUNT Number of page faults

for load

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the CONV$PASS_FILES fdl_filespec
argument is interpreted and how errors are signaled. The flags argument is
the address of a longword containing control flags (or a mask). If you omit
the flags argument or specify it as zero, no flags are set. The flags and their
meanings are described in the following table:

Convert (CONVERT) Routines CONV–9

Convert (CONVERT) Routines
CONV$CONVERT

Flag Function

CONV$V_FDL_STRING Interprets the fdl_filespec argument supplied
in the call to CONV$PASS_FILES as an FDL
specification in string form. By default, this
argument is interpreted as the file name of an
FDL file.

CONV$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

callback_routine
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Name of a user-supplied routine to process the statistics information. The
callback_routine argument is the address of the procedure value of a user-
supplied routine to call at the completion of each key load.

Condition Values Returned

SS$_NORMAL Normal successful completion.
CONV$_BADBLK Invalid option block.
CONV$_BADLOGIC Internal logic error detected.
CONV$_BADSORT Error trying to sort input file.
CONV$_CLOSEIN Error closing file specification as input.
CONV$_CLOSEOUT Error closing file specification as output.
CONV$_CONFQUAL Conflicting qualifiers.
CONV$_CREA_ERR Error creating output file.
CONV$_CREATEDSTM File specification has been created in stream

format.
CONV$_DELPRI Cannot delete primary key.
CONV$_DUP Duplicate key encountered.
CONV$_EXTN_ERR Unable to extend output file.
CONV$_FATALEXC Fatal exception encountered.
CONV$_FILLIM Exceeded open file limit.
CONV$_IDX_LIM Exceeded maximum index level.
CONV$_ILL_KEY Illegal key or value out of range.
CONV$_ILL_VALUE Illegal parameter value.
CONV$_INP_FILES Too many input files.
CONV$_INSVIRMEM Insufficient virtual memory.
CONV$_KEY Invalid record key.
CONV$_LOADIDX Error loading secondary index n.
CONV$_NARG Wrong number of arguments.

CONV–10 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$CONVERT

CONV$_NOKEY No such key.
CONV$_NOTIDX File is not an indexed file.
CONV$_NOTSEQ Output file is not a sequential file.
CONV$_NOWILD No wildcard permitted.
CONV$_OPENEXC Error opening exception file specification.
CONV$_OPENIN Error opening file specification as input.
CONV$_OPENOUT Error opening file specification as output.
CONV$_ORDER Routine called out of order.
CONV$_PAD Packet Assembly/Disassembly (PAD) option

ignored; output record format not fixed.
CONV$_PLV Unsupported prolog version.
CONV$_PROERR Error reading prolog.
CONV$_PROL_WRT Prolog write error.
CONV$_READERR Error reading file specification.
CONV$_REX Record already exists.
CONV$_RMS Record caused RMS severe error.
CONV$_RSK Record shorter than primary key.
CONV$_RSZ Record does not fit in block/bucket.
CONV$_RTL Record longer than maximum record length.
CONV$_RTS Record too short for fixed record format file.
CONV$_SEQ Record not in order.
CONV$_UDF_BKS Cannot convert UDF records into spanned file.
CONV$_UDF_BLK Cannot fit UDF records into single block bucket.
CONV$_VALERR Specified value is out of legal range.
CONV$_VFC Record too short to fill fixed part of VFC record.
CONV$_WRITEERR Error writing file specification.

Convert (CONVERT) Routines CONV–11

Convert (CONVERT) Routines
CONV$PASS_FILES

CONV$PASS_FILES—Specify Conversion Files

The CONV$PASS_FILES routine specifies a file to be converted using the
CONV$CONVERT routine.

Format

CONV$PASS_FILES input_filespec ,output_filespec [,fdl_filespec]
[,exception_filespec] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

input_filespec
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file to be converted. The input_filespec argument is the
address of a string descriptor pointing to the name of the file to be converted.

output_filespec
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file that receives the records from the input file. The output_
filespec argument is the address of a string descriptor pointing to the name of
the file that receives the records from the input file.

fdl_filespec
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the FDL file that defines the output file. The fdl_filespec argument
is the address of a string descriptor pointing to the name of the FDL file.

CONV–12 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$PASS_FILES

exception_filespec
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The name of the file that receives copies of records that cannot be written to
the output file. The exception_filespec argument is the address of a string
descriptor pointing to this name.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument is interpreted
and how errors are signaled. The flags argument is the address of a longword
containing the control flags (or mask). If you omit this argument or specify it as
zero, no flags are set. If you specify a flag, it remains in effect until you explicitly
reset it in a subsequent call to a CONVERT routine.

The flags and their meanings are described in the following table:

Flag Function

CONV$V_FDL_STRING Interprets the fdl_filespec argument as an FDL
specification in string form. By default, this
argument is interpreted as a file name of an FDL
file.

CONV$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

Description

The CONV$PASS_FILES routine specifies a file to be converted using the
CONV$CONVERT routine. A single call to CONV$PASS_FILES allows you to
specify an input file, an output file, an FDL file, and an exception file. If you
have multiple input files, you must call CONV$PASS_FILES once for each file.
You need to specify only the input_filespec argument for the additional files, as
follows:

status = CONV$PASS_FILES (input_filespec)

The additional calls must immediately follow the original call that specified the
output file specification.

Wildcard characters are not allowed in the file specifications passed to the
CONVERT routines.

Convert (CONVERT) Routines CONV–13

Convert (CONVERT) Routines
CONV$PASS_FILES

Condition Values Returned

SS$_NORMAL Normal successful completion.
CONV$_INP_FILES Too many input files.
CONV$_INSVIRMEM Insufficient virtual memory.
CONV$_NARG Wrong number of arguments.
CONV$_ORDER Routine called out of order.

CONV–14 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

CONV$PASS_OPTIONS—Specify Processing Options

The CONV$PASS_OPTIONS routine specifies which qualifiers are to be used by
the Convert utility (CONVERT).

Format

CONV$PASS_OPTIONS [parameter_list_address] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

parameter_list_address
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a variable-length array of longwords used to specify the CONVERT
qualifiers. The array is symbolically defined as a structure (CONV$OPTIONS)
that you can access in one of the following ways:

• As an array of named longwords using zero-based symbols (CONV$L_ . . .)

• As an array using zero-based offsets (CONV$K_ . . .)

The first longword in the array (CONV$L_OPTIONS_COUNT) specifies the
number of elements in the array, and each remaining element is associated with
a CONVERT qualifier, as shown in Table 6–2. You can use the first element
to assign values to the first n CONVERT qualifiers—where n is the value
of CONV$L_OPTIONS_COUNT—and take default values for the remaining
qualifiers. For example, to assign values to only the first three qualifiers and to
take the default value for the remaining qualifiers, specify CONV$L_OPTIONS_
COUNT=3. This effectively changes the size of the array to include only the first
three elements, as follows, which have values you specify:

• /CREATE

• /SHARE

• /FAST_LOAD

The remaining qualifiers take the default values depicted in Table 6–2.

To assign individual values to the CONVERT qualifiers, access the array and
specify the desired value (1 or 0). See the OpenVMS Record Management Utilities
Reference Manual for detailed descriptions of the CONVERT qualifiers.

Convert (CONVERT) Routines CONV–15

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

If you do not specify parameter_list_address, your program effectively sends
the routine all of the default values listed in Table 6–2.

Table 6–2 CONVERT Qualifiers

Element
Number

Symbolic
Value

Longword
Default
Value

Qualifier
Default Value

0 CONV$L_OPTIONS_COUNT None Not applicable
1 CONV$L_CREATE 1 /CREATE
2 CONV$L_SHARE 0 /NOSHARE
3 CONV$L_FAST 1 /FAST_LOAD
4 CONV$L_MERGE 0 /NOMERGE
5 CONV$L_APPEND 0 /NOAPPEND
6 CONV$L_SORT 1 /SORT
7 CONV$L_WORK_FILES 2 /WORK_FILES=2
8 CONV$L_KEY 0 /KEY=0
9 CONV$L_PAD 0 /NOPAD

10 CONV$L_PAD_CHARACTER 01 Pad character=0
11 CONV$L_TRUNCATE 0 /NOTRUNCATE
12 CONV$L_EXIT 0 /NOEXIT
13 CONV$L_FIXED_CONTROL 0 /NOFIXED_CONTROL
14 CONV$L_FILL_BUCKETS 0 /NOFILL_BUCKETS
15 CONV$L_READ_CHECK 0 /NOREAD_CHECK
16 CONV$L_WRITE_CHECK 0 /NOWRITE_CHECK
17 CONV$L_FDL 0 /NOFDL
18 CONV$L_EXCEPTION 0 /NOEXCEPTION
19 CONV$L_PROLOGUE None /PROLOGUE=n2

20 CONV$L_IGNORE_
PROLOGUE

0 Not applicable

21 CONV$L_SECONDARY 1 SECONDARY=1

1Null character. To specify non-null pad character, insert ASCII value of desired pad character.
2System or process default setting.

If you specify /EXIT and the utility encounters an exception record, CONVERT
returns with a fatal exception status.

If you specify an FDL file specification in the CONV$PASS_FILES routine,
you must place a 1 in the FDL longword. If you also specify an exceptions file
specification in the CONV$PASS_FILES routine, you must place a 1 in the
EXCEPTION longword. You may specify either, both, or neither of these files,
but the values in the CONV$PASS_FILES call must match the values in the
parameter list. If they do not, the routine returns an error.

The PROLOG longword overrides the KEY PROLOG attribute supplied by the
FDL file. If you use the PROLOG longword, enter one of the following values:

• The value 0 (default) specifies the system or process prolog type.

CONV–16 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

• The value 2 specifies a Prolog 1 or 2 file in all instances, even when
circumstances would allow you to create a Prolog 3 file.

• The value 3 specifies a Prolog 3 file. If a Prolog 3 file is not allowed, you want
the conversion to fail.

If the size of the options block that you pass to CONV$PASS_OPTIONS
includes the SECONDARY longword value, then you must specify a value for
the IGNORE_PROLOGUE field.

This field is used in conjunction with the PROLOGUE offset to determine if the
prologue version of the output file is to be taken from a passed FDL, the input
file, the process default or system default, or from the options block itself.

A value of 0 (zero) for the IGNORE_PROLOGUE field indicates that the prologue
version of the output file is to be taken from the PROLOGUE value specified in
the options block.

If the PROLOGUE value in the options block contains a 0 (zero), the process
default or system default prologue version will be used. This will override the
prologue version specified in an FDL file or in the input file’s characteristics.

A value of 1 (one) for the IGNORE_PROLOGUE field implies that the prologue
version of the output file will come from the FDL file (if specified) or from the
input file’s characteristics.

Convert (CONVERT) Routines CONV–17

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument, used in calls to the
CONV$PASS_FILES routine, is interpreted and how errors are signaled. The
flags argument is the address of a longword containing the control flags (or a
mask). If you omit this argument or specify it as zero, no flags are set. If you
specify a flag, it remains in effect until you explicitly reset it in a subsequent call
to a CONVERT routine.

The flags and their meanings are described in the following table:

Flag Function

CONV$V_FDL_STRING Interprets the fdl_filespec argument supplied
in the call to CONV$PASS_FILES as an FDL
specification in string form. By default, this
argument is interpreted as the file name of an
FDL file.

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

Description

You can use an options array to generate programmatic CONVERT commands.
For example, you can generate the following programmatic CONVERT command
by configuring the options array described by the pseudocode that follows the
example command line:

$ CONVERT/FAST_LOAD/SORT/WORK_FILES=6/EXIT

OPTIONS ARRAY [12] {Allocate a 13-cell array}
OPTIONS[0] = 12 {Number of options]
OPTIONS[1] = 1 {Specifies the /CREATE option}
OPTIONS[2] = 0 {Specifies the /NOSHARE option}
OPTIONS[3] = 1 {Specifies the /FAST_LOAD option}
OPTIONS[4] = 0 {Specifies the /NOMERGE option}
OPTIONS[5] = 0 {Specifies the /NOAPPEND option}
OPTIONS[6] = 1 {Specifies the /SORT option}
OPTIONS[7] = 6 {Specifies the /WORK_FILES=6 option}
OPTIONS[8] = 0 {Specifies the /KEY=0 option}
OPTIONS[9] = 0 {Specifies the /NOPAD option}
OPTIONS[10] = 0 {Specifies the null pad character}
OPTIONS[11] = 0 {Specifies the /NOTRUNCATE option}
OPTIONS[12] = 1 {Specifies the /EXIT option}

CONV–18 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$PASS_OPTIONS

Condition Values Returned

SS$_NORMAL Normal successful completion.
CONV$_BADBLK Invalid option block.
CONV$_CONFQUAL Conflicting qualifiers.
CONV$_INSVIRMEM Insufficient virtual memory.
CONV$_NARG Wrong number of arguments.
CONV$_OPENEXC Error opening exception file file specification.
CONV$_ORDER Routine called out of order.

Convert (CONVERT) Routines CONV–19

Convert (CONVERT) Routines
CONV$RECLAIM

CONV$RECLAIM—Invoke Convert/Reclaim Utility

The CONV$RECLAIM routine invokes the functions of the Convert/Reclaim
utility.

Format

CONV$RECLAIM input_filespec [,statistics_blk] [,flags] [key_number]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

input_filespec
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the Prolog 3 indexed file to be reclaimed. The input_filespec argument
is the address of a string descriptor pointing to the name of the Prolog 3 indexed
file.

statistics_blk
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

Bucket reclamation statistics. The statistics_blk argument is the address
of a variable-length array of longwords that receives statistics on the bucket
reclamation. You can choose which statistics you want returned by specifying a
number in the first element of the array. This number determines how many of
the four possible statistics the routine returns.

You can request bucket reclamation statistics using symbolic names or numeric
offsets into the variable-length array of longwords that contains the statistics.
The array is defined as a structure of named longwords (RECL$STATISTICS) to
support access by high-level progamming languages.

CONV–20 Convert (CONVERT) Routines

Convert (CONVERT) Routines
CONV$RECLAIM

Table 6–3 lists the array elements by number and by symbol. The first element
specifies one or more statistics by array order. For example, if you assign the
symbol RECL$L_STATISTICS_COUNT the value 3, the routine returns the
statistics from the first three statistics elements:

• Data buckets scanned

• Data buckets reclaimed

• Index buckets reclaimed

Table 6–3 Bucket Reclamation Statistics Array

Array
Element Field Name Description

0 RECL$L_STATISTICS_COUNT Number of statistics specified
1 RECL$L_SCAN_COUNT Data buckets scanned
2 RECL$L_DATA_COUNT Data buckets reclaimed
3 RECL$L_INDEX_COUNT Index buckets reclaimed
4 RECL$L_TOTAL_COUNT Total buckets reclaimed

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_filespec argument, used in calls to the
CONV$PASS_FILES routine, is interpreted and how errors are signaled. The
flags argument is the address of a longword containing control flags (or a mask).
If you omit the flags argument or specify it as zero, no flags are set. The flag is
defined as follows:

CONV$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

key_number
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

The optional key_number argument permits the calling program to selectively
reclaim buckets by key number. If the calling program omits this argument or
passes a NULL value in the argument, all buckets are reclaimed, without regard
to key designation. If the calling program passes a valid key number as the value
for this argument, the routine reclaims only the buckets for the specified key.

Convert (CONVERT) Routines CONV–21

Convert (CONVERT) Routines
CONV$RECLAIM

Condition Values Returned

SS$_NORMAL Normal successful completion.
CONV$_BADLOGIC Internal logic error detected.
CONV$_INSVIRMEM Insufficient virtual memory.
CONV$_INVBKT Invalid bucket at VBN n.
CONV$_NOTIDX File is not an indexed file.
CONV$_NOWILD No wildcard permitted.
CONV$_OPENIN Error opening file specification as input.
CONV$_PLV Unsupported prolog version.
CONV$_PROERR Error reading prolog.
CONV$_PROL_WRT Prolog write error.
CONV$_READERR Error reading file specification.
CONV$_WRITEERR Error writing output file.

CONV–22 Convert (CONVERT) Routines

7
Data Compression/Expansion (DCX) Routines

The set of routines described in this chapter comprises the Data
Compression/Expansion (DCX) facility. There is no DCL-level interface to
this facility, nor is there a DCX utility.

7.1 Introduction to DCX Routines
Using the DCX routines described in this chapter, you can decrease the size of
text, binary data, images, and any other type of data. Compressed data uses less
space, but there is a trade-off in terms of access time to the data. Compressed
data must first be expanded to its original state before it is usable. Thus,
infrequently accessed data makes a good candidate for data compression.

The DCX facility provides routines that analyze and compress data records
and expand the compressed records to their original state. In this process, no
information is lost. A data record that has been compressed and then expanded
is in the same state as it was before it was compressed.

Most collections of data can be reduced in size by DCX. However, there is no
guarantee that the size of an individual data record will always be smaller after
compression; in fact, some may grow larger.

The DCX facility allows for the independent analysis, compression, and expansion
of more than one stream of data records at the same time. This capability is
provided by means of a ‘‘context variable,’’ which is an argument in each DCX
routine. Most applications have no need for this capability; for these applications,
there is a single context variable.

Some of the DCX routines make calls to various Run-Time Library (RTL)
routines, for example, LIB$GET_VM. If any of these RTL routines fails, a return
status code indicating the cause of the failure is returned. In such a case, you
must refer to the documentation of the appropriate RTL routine to determine the
cause of the failure. The status codes documented in this chapter are primarily
DCX status codes.

Note also that the application program should declare referenced constants and
return status symbols as external symbols; these symbols are resolved upon
linking with the utility shareable image.

7.1.1 Compression Routines
Compressing a file with the DCX routines involves the following steps:

1. Initialize an analysis work area—Use the DCX$ANALYZE_INIT routine to
initialize a work area for analyzing the records. The first (and, typically, the
only) argument passed to DCX$ANALYZE_INIT is an integer variable for
storing the context value. The DCX facility assigns a value to the context
variable and associates the value with the created work area. Each time you
want to analyze a record in that area, specify the associated context variable.
You can analyze two or more files at once by creating a different work area

Data Compression/Expansion (DCX) Routines DCX–1

Data Compression/Expansion (DCX) Routines
7.1 Introduction to DCX Routines

for each file, giving each area a different context variable, and analyzing the
records of each file in the appropriate work area.

2. Analyze the records in the file—Use the DCX$ANALYZE_DATA routine to
pass each record in the file to an analysis work area. During analysis, the
DCX facility gathers information that DCX$MAKE_MAP uses to create the
compression/expansion function for the file. To ensure that the first byte of
each record is passed to the DCX facility rather than being interpreted as a
carriage control, specify CARRIAGECONTROL = NONE when you open the
file to be compressed.

3. Create the compression/expansion function—Use the DCX$MAKE_MAP
routine to create the compression/expansion function. You pass DCX$MAKE_
MAP a context variable, and DCX$MAKE_MAP uses the information stored
in the associated work area to compute a compression/expansion function for
the records being compressed. If DCX$MAKE_MAP returns a status value of
DCX$_AGAIN, repeat Steps 2 and 3 until DCX$MAKE_MAP returns a status
of DCX$_NORMAL, indicating that a compression/expansion function has
been created.

In Example 7–1, the integer function GET_MAP analyzes each record in
the file to be compressed and invokes DCX$MAKE_MAP to create the
compression/expansion function. The function value of GET_MAP is the
return status of DCX$MAKE_MAP, and the address and length of the
compression/expansion function are returned in the GET_MAP argument list.
The main program, COMPRESS_FILES, invokes the GET_MAP function,
examines its function value, and, if necessary, invokes the GET_MAP function
again (see the ANALYZE DATA program section).

4. Clean up the analysis work area—Use the DCX$ANALYZE_DONE routine
to delete a work area. Identify the work area to be deleted by passing
DCX$ANALYZE_DONE routine a context variable.

5. Save the compression/expansion function—You cannot expand compressed
records without the compression/expansion function. Therefore, before
compressing the records, write the compression/expansion function to the file
that will contain the compressed records.

If your programming language cannot use an address directly, pass
the address of the compression/expansion function to a subprogram
(WRITE_MAP in Example 7–1). Pass the subprogram the length of the
compression/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the
function address as a one-dimensional, adjustable, byte array. Declare the
dummy argument corresponding to the function length as an integer, and use
it to dimension the adjustable array. Write the function length and the array
containing the function to the file that is to contain the compressed records.
(The length must be stored so that you can read the function from the file
using unformatted I/O; see Section 7.1.2.)

6. Compress each record—Use the DCX$COMPRESS_INIT routine to initialize
a compression work area. Specify a context variable for the compression area
just as for the analysis area.

Use the DCX$COMPRESS_DATA routine to compress each record. As you
compress each record, use unformatted I/O to write the compressed record
to the file containing the compression/expansion function. For each record,
write the length of the record and the substring containing the record. See
the COMPRESS DATA section in Example 7–1. (The length is stored with

DCX–2 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.1 Introduction to DCX Routines

the substring so that you can read the compressed record from the file using
unformatted I/O; see Section 7.1.2.)

7. Use DCX$COMPRESS_DONE to delete the work area created by
DCX$COMPRESS_INIT. Identify the work area to be deleted by passing
DCX$COMPRESS_DATA a context variable. Use LIB$FREE_VM to free the
virtual memory that DCX$MAKE_MAP used for the compression/expansion
function.

7.1.2 Expansion Routines
Expanding a file with the DCX routines involves the following steps:

1. Read the compression/expansion function—When reading the
compression/expansion function from the compressed file, do not make
any assumptions about the function’s size. The best practice is to read
the length of the function from the compressed file and then invoke the
LIB$GET_VM routine to get the necessary amount of storage for the function.
The LIB$GET_VM routine returns the address of the first byte of the storage
area.

If your programming language cannot use an address directly, pass the
address of the storage area to a subprogram. Pass the subprogram the length
of the compression/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the
storage address as a one-dimensional, adjustable, byte array. Declare the
dummy argument corresponding to the function length as an integer and
use it to dimension the adjustable array. Read the compression/expansion
function from the compressed file into the dummy array. Because the
compression/expansion function is stored in the subprogram, do not return to
the main program until you have expanded all of the compressed records.

2. Initialize an expansion work area—Use the DCX$EXPAND_INIT routine to
initialize a work area for expanding the records. The first argument passed
to DCX$EXPAND_INIT is an integer variable to contain a context value
(see step 1 in Section 7.1.1). The second argument is the address of the
compression/expansion function.

3. Expand the records—Use the DCX$EXPAND_DATA routine to expand each
record.

4. Clean up the work area—Use the DCX$EXPAND_DONE routine to delete
an expansion work area. Identify the work area to be deleted by passing
DCX$EXPAND_DONE a context variable.

7.2 Using the DCX Routines: Examples
Example 7–1 shows how to use the callable DCX routines to compress a file in a
Compaq Fortran program.

Example 7–2 expands a compressed file. The first record of the compressed file is
an integer containing the number of bytes in the compression/expansion function.
The second record is the compression/expansion function. The remainder of the
file contains the compressed records. Each compressed record is stored as two
records: an integer containing the length of the record and a substring containing
the record.

Data Compression/Expansion (DCX) Routines DCX–3

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7–1 Compressing a File in a Compaq Fortran Program

PROGRAM COMPRESS_FILES
! COMPRESSION OF FILES

! status variable
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK
PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE ’($FORDEF)’
EXTERNAL DCX$_AGAIN

! context variable
INTEGER CONTEXT
! compression/expansion function
INTEGER MAP,
2 MAP_LEN

! normal file name, length, and logical unit number
CHARACTER*256 NORM_NAME
INTEGER*2 NORM_LEN
INTEGER NORM_LUN
! compressed file name, length, and logical unit number
CHARACTER*256 COMP_NAME
INTEGER*2 COMP_LEN
INTEGER COMP_LUN

! Logical end-of-file
LOGICAL EOF
! record buffers; 32764 is maximum record size
CHARACTER*32764 RECORD,
2 RECORD2
INTEGER RECORD_LEN,
2 RECORD2_LEN

! user routine
INTEGER GET_MAP,
2 WRITE_MAP

! Library procedures
INTEGER DCX$ANALYZE_INIT,
2 DCX$ANALYZE_DONE,
2 DCX$COMPRESS_INIT,
2 DCX$COMPRESS_DATA,
2 DCX$COMPRESS_DONE,
2 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 LIB$FREE_VM

! get name of file to be compressed and open it
STATUS = LIB$GET_INPUT (NORM_NAME,
2 ’File to compress: ’,
2 NORM_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_LUN (NORM_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = NORM_LUN,
2 FILE = NORM_NAME(1:NORM_LEN),
2 CARRIAGECONTROL = ’NONE’,
2 STATUS = ’OLD’)

(continued on next page)

DCX–4 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7–1 (Cont.) Compressing a File in a Compaq Fortran Program

! ************
! ANALYZE DATA
! ************
! initialize work area
STATUS = DCX$ANALYZE_INIT (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! get compression/expansion function (map)
STATUS = GET_MAP (NORM_LUN,
2 CONTEXT,
2 MAP,
2 MAP_LEN)
DO WHILE (STATUS .EQ. %LOC(DCX$_AGAIN))
! go back to beginning of file
REWIND (UNIT = NORM_LUN)
! try map again
STATUS = GET_MAP (NORM_LUN,

2 CONTEXT,
2 MAP,
2 MAP_LEN)
END DO

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! clean up work area
STATUS = DCX$ANALYZE_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! *************
! COMPRESS DATA
! *************
! go back to beginning of file to be compressed
REWIND (UNIT = NORM_LUN)
! open file to hold compressed records
STATUS = LIB$GET_LUN (COMP_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (COMP_NAME,
2 ’File for compressed records: ’,
2 COMP_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = COMP_LUN,
2 FILE = COMP_NAME(1:COMP_LEN),
2 STATUS = ’NEW’,
2 FORM = ’UNFORMATTED’)

! initialize work area
STATUS = DCX$COMPRESS_INIT (CONTEXT,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! write compression/expansion function to new file
CALL WRITE_MAP (COMP_LUN,
2 %VAL(MAP),
2 MAP_LEN)

(continued on next page)

Data Compression/Expansion (DCX) Routines DCX–5

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7–1 (Cont.) Compressing a File in a Compaq Fortran Program

! read record from file to be compressed
EOF = .FALSE.
READ (UNIT = NORM_LUN,
2 FMT = ’(Q,A)’,
2 IOSTAT = IOSTAT) RECORD_LEN,
2 RECORD(1:RECORD_LEN)
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF

END IF

DO WHILE (.NOT. EOF)
! compress the record
STATUS = DCX$COMPRESS_DATA (CONTEXT,

2 RECORD(1:RECORD_LEN),
2 RECORD2,
2 RECORD2_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! write compressed record to new file
WRITE (UNIT = COMP_LUN) RECORD2_LEN
WRITE (UNIT = COMP_LUN) RECORD2 (1:RECORD2_LEN)
! read from file to be compressed
READ (UNIT = NORM_LUN,

2 FMT = ’(Q,A)’,
2 IOSTAT = IOSTAT) RECORD_LEN,
2 RECORD (1:RECORD_LEN)
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF

END IF
END DO

! close files and clean up work area
CLOSE (NORM_LUN)
CLOSE (COMP_LUN)
STATUS = LIB$FREE_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = DCX$COMPRESS_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

INTEGER FUNCTION GET_MAP (LUN, ! passed
2 CONTEXT, ! passed
2 MAP, ! returned
2 MAP_LEN) ! returned
! Analyzes records in file opened on logical
! unit LUN and then attempts to create a
! compression/expansion function using
! DCX$MAKE_MAP.

(continued on next page)

DCX–6 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7–1 (Cont.) Compressing a File in a Compaq Fortran Program

! dummy arguments
! context variable
INTEGER CONTEXT
! logical unit number
INTEGER LUN
! compression/expansion function
INTEGER MAP,
2 MAP_LEN

! status variable
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK
PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE ’($FORDEF)’

! Logical end-of-file
LOGICAL EOF
! record buffer; 32764 is the maximum record size
CHARACTER*32764 RECORD
INTEGER RECORD_LEN

! library procedures
INTEGER DCX$ANALYZE_DATA,
2 DCX$MAKE_MAP

! analyze records
EOF = .FALSE.
READ (UNIT = LUN,
2 FMT = ’(Q,A)’,
2 IOSTAT = IOSTAT) RECORD_LEN,RECORD
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF

END IF

DO WHILE (.NOT. EOF)
STATUS = DCX$ANALYZE_DATA (CONTEXT,

2 RECORD(1:RECORD_LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
READ (UNIT = LUN,

2 FMT = ’(Q,A)’,
2 IOSTAT = IOSTAT) RECORD_LEN,RECORD
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF

END IF
END DO

(continued on next page)

Data Compression/Expansion (DCX) Routines DCX–7

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7–1 (Cont.) Compressing a File in a Compaq Fortran Program

STATUS = DCX$MAKE_MAP (CONTEXT,
2 MAP,
2 MAP_LEN)
GET_MAP = STATUS

END

SUBROUTINE WRITE_MAP (LUN, ! passed
2 MAP, ! passed
2 MAP_LEN) ! passed
IMPLICIT INTEGER(A-Z)
! write compression/expansion function
! to file of compressed data

! dummy arguments
INTEGER LUN, ! logical unit of file
2 MAP_LEN ! length of function
BYTE MAP (MAP_LEN) ! compression/expansion function

! write map length
WRITE (UNIT = LUN) MAP_LEN
! write map
WRITE (UNIT = LUN) MAP

END

Example 7–2 shows how to expand a compressed file in a Compaq Fortran
program.

Example 7–2 Expanding a Compressed File in a Compaq Fortran Program

PROGRAM EXPAND_FILES
IMPLICIT INTEGER(A-Z)
! EXPANSION OF COMPRESSED FILES

! file names, lengths, and logical unit numbers
CHARACTER*256 OLD_FILE,
2 NEW_FILE
INTEGER*2 OLD_LEN,
2 NEW_LEN
INTEGER OLD_LUN,
2 NEW_LUN

! length of compression/expansion function
INTEGER MAP,
2 MAP_LEN

! user routine
EXTERNAL EXPAND_DATA

! library procedures
INTEGER LIB$GET_LUN,
2 LIB$GET_INPUT,
2 LIB$GET_VM,
2 LIB$FREE_VM

(continued on next page)

DCX–8 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7–2 (Cont.) Expanding a Compressed File in a Compaq Fortran
Program

! open file to expand
STATUS = LIB$GET_LUN (OLD_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (OLD_FILE,
2 ’File to expand: ’,
2 OLD_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = OLD_LUN,
2 STATUS = ’OLD’,
2 FILE = OLD_FILE(1:OLD_LEN),
2 FORM = ’UNFORMATTED’)
! open file to hold expanded data
STATUS = LIB$GET_LUN (NEW_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (NEW_FILE,
2 ’File to hold expanded data: ’,
2 NEW_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = NEW_LUN,
2 STATUS = ’NEW’,
2 CARRIAGECONTROL = ’LIST’,
2 FILE = NEW_FILE(1:NEW_LEN))

! expand file
! get length of compression/expansion function
READ (UNIT = OLD_LUN) MAP_LEN
STATUS = LIB$GET_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! expand records
CALL EXPAND_DATA (%VAL(MAP),
2 MAP_LEN, ! length of function
2 OLD_LUN, ! compressed data file
2 NEW_LUN) ! expanded data file
! delete virtual memory used for function
STATUS = LIB$FREE_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
END

SUBROUTINE EXPAND_DATA (MAP, ! passed
2 MAP_LEN, ! passed
2 OLD_LUN, ! passed
2 NEW_LUN) ! passed
! expand data program

! dummy arguments
INTEGER MAP_LEN, ! length of expansion function
2 OLD_LUN, ! logical unit of compressed file
2 NEW_LUN ! logical unit of expanded file
BYTE MAP(MAP_LEN) ! array containing the function

! status variables
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK
PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE ’($FORDEF)’

(continued on next page)

Data Compression/Expansion (DCX) Routines DCX–9

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7–2 (Cont.) Expanding a Compressed File in a Compaq Fortran
Program

! context variable
INTEGER CONTEXT

! logical end_of_file
LOGICAL EOF
! record buffers
CHARACTER*32764 RECORD,
2 RECORD2
INTEGER RECORD_LEN,
2 RECORD2_LEN

! library procedures
INTEGER DCX$EXPAND_INIT,
2 DCX$EXPAND_DATA,
2 DCX$EXPAND_DONE

! read data compression/expansion function
READ (UNIT = OLD_LUN) MAP
! initialize work area
STATUS = DCX$EXPAND_INIT (CONTEXT,
2 %LOC(MAP(1)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! expand records
EOF = .FALSE.
! read length of compressed record
READ (UNIT = OLD_LUN,
2 IOSTAT = IOSTAT) RECORD_LEN
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN
CALL LIB$SIGNAL (%VAL(STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF

END IF
DO WHILE (.NOT. EOF)
! read compressed record
READ (UNIT = OLD_LUN) RECORD (1:RECORD_LEN)
! expand record
STATUS = DCX$EXPAND_DATA (CONTEXT,

2 RECORD(1:RECORD_LEN),
2 RECORD2,
2 RECORD2_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! write expanded record to new file
WRITE (UNIT = NEW_LUN,

2 FMT = ’(A)’) RECORD2(1:RECORD2_LEN)
! read length of compressed record
READ (UNIT = OLD_LUN,

2 IOSTAT = IOSTAT) RECORD_LEN
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN
CALL LIB$SIGNAL (%VAL(STATUS))
ELSE
EOF = .TRUE.
STATUS = STATUS_OK
END IF

END IF

(continued on next page)

DCX–10 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
7.2 Using the DCX Routines: Examples

Example 7–2 (Cont.) Expanding a Compressed File in a Compaq Fortran
Program

END DO
! clean up work area
STATUS = DCX$EXPAND_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
END

7.3 DCX Routines
This section describes the individual DCX routines.

Data Compression/Expansion (DCX) Routines DCX–11

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DATA

DCX$ANALYZE_DATA—Perform Statistical Analysis on a Data
Record

The DCX$ANALYZE_DATA routine performs statistical analysis on a data record.
The results of the analysis are accumulated internally in the context area and are
used by the DCX$MAKE_MAP routine to compute the mapping function.

Format

DCX$ANALYZE_DATA context ,record

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_DATA analyzes.
The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT initializes this value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

record
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record to be analyzed. DCX$ANALYZE_DATA reads the record argument,
which is the address of a descriptor for the record string. The maximum length of
the record string is 65,535 characters.

DCX–12 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DATA

Description

The DCX$ANALYZE_DATA routine performs statistical analysis on a single data
record. This routine is called once for each data record to be analyzed.

During analysis, the DCX facility gathers information that DCX$MAKE_MAP
uses to create the compression/expansion function for the file. After the data
records have been analyzed, call the DCX$MAKE_MAP routine. Upon receiving
the DCX$_AGAIN status code from DCX$MAKE_MAP, you must again analyze
the same data records (in the same order) using DCX$ANALYZE_DATA and
then call DCX$MAKE_MAP again. On the second iteration, DCX$MAKE_MAP
returns the DCX$_NORMAL status code, and the data analysis is complete.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$ANALYZE_
SDESC_R2.

Data Compression/Expansion (DCX) Routines DCX–13

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_DONE

DCX$ANALYZE_DONE—Specify Analysis Completed

The DCX$ANALYZE_DONE routine deletes the context area and sets the context
variable to zero, undoing the work of the DCX$ANALYZE_INIT routine.

Call DCX$ANALYZE_DONE after data records have been analyzed and the
DCX$MAKE_MAP routine has created the map.

Format

DCX$ANALYZE_DONE context

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

context
OpenVMS usage: context
type: longword
access: modify
mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_DONE deletes.
The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT initializes this value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$FREE_VM.

DCX–14 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_INIT

DCX$ANALYZE_INIT—Initialize Analysis Context

The DCX$ANALYZE_INIT routine initializes the context area for a statistical
analysis of the data records to be compressed.

Format

DCX$ANALYZE_INIT context [,item_code ,item_value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$ANALYZE_INIT initializes.
The context argument is the address of a longword containing this value.
DCX$ANALYZE_INIT writes this context into the context argument; you should
not modify its value. You can define multiple context arguments to identify
multiple data streams that are processed simultaneously.

item_code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying information that you want DCX$ANALYZE_INIT to use
in its analysis of data records and in its computation of the mapping function.
DCX$ANALYZE_INIT reads this item_code argument, which is the address of
the longword contained in the item code.

For each item_code argument specified in the call, you must also specify a
corresponding item_value argument. The item_value argument contains the
interpretation of the item_code argument.

The following symbolic names are the five legal values of the item_code
argument:

DCX$C_BOUNDED
DCX$C_EST_BYTES
DCX$C_EST_RECORDS
DCX$C_LIST
DCX$C_ONE_PASS

Data Compression/Expansion (DCX) Routines DCX–15

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_INIT

item_value
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Value of the corresponding item_code argument. DCX$ANALYZE_INIT reads
the item_value argument, which is the address of a longword containing the
item value.

The item_code and item_value arguments always occur as a pair, and together
they specify one piece of ‘‘advice’’ for the DCX routines to use in computing the
map function. Note that, unless stated otherwise in the list of item codes and
item values, no piece of ‘‘advice’’ is binding on DCX; that is, DCX is free to follow
or not to follow the ‘‘advice.’’

The following table shows, for each item_code argument, the possible values for
the corresponding item_value argument:

Item Code Corresponding Item Value

DCX$C_BOUNDED A Boolean variable. If bit <0> is true (equals 1),
you are stating your intention to submit for analysis
all data records that will be compressed; doing so
often enables DCX to compute a better compression
algorithm. If bit <0> is false (equals 0) or if the
DCX$C_BOUNDED item code is not specified, DCX
computes a compression algorithm without regard
for whether all records to be compressed will also be
submitted for analysis.

DCX$C_EST_BYTES A longword value containing your estimate of the
total number of data bytes that will be submitted
for compression. This estimate is useful in those
cases where fewer than the total number of bytes
are presented for analysis. If you do not specify the
DCX$C_EST_BYTES item code, DCX submits for
compression the same number of bytes that was
presented for analysis. Note that you may specify
DCX$C_EST_RECORDS or DCX$C_EST_BYTES,
or both.

DCX$C_EST_RECORDS A longword value containing your estimate of the
total number of data records that will be submitted
for compression. This estimate is useful in those
cases where fewer than the total number of records
are presented for analysis. If you do not specify the
DCX$C_EST_RECORDS item code, DCX submits
for compression the same number of bytes that was
presented for analysis.

DCX–16 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$ANALYZE_INIT

Item Code Corresponding Item Value

DCX$C_LIST Address of an array of 2*n+1 longwords. The
first longword in the array contains the value
2*n+1. The remaining longwords are paired; there
are n pairs. The first member of the pair is an
item code, and the second member of the pair is
the address of its corresponding item value. The
DCX$C_LIST item code allows you to construct an
array of item-code and item-value pairs and then
to pass the entire array to DCX$ANALYZE_INIT.
This is useful when your language has difficulty
interpreting variable-length argument lists. Note
that the DCX$C_LIST item code may be specified,
in a single call, alone or together with any of the
other item-code and item-value pairs.

DCX$C_ONE_PASS A Boolean variable. If bit <0> is true (equals 1), you
make a binding request that DCX make only one
pass over the data to be analyzed. If bit <0> is false
(equals 0) or if the DCX$C_ONE_PASS item code is
not specified, DCX may make multiple passes over
the data, as required. Typically, DCX makes one
pass.

Description

The DCX$ANALYZE_INIT routine initializes the context area for a statistical
analysis of the data records to be compressed. The first (and typically the only)
argument passed to DCX$ANALYZE_INIT is an integer variable to contain the
context value. The DCX facility assigns a value to the context variable and
associates the value with the created work area. Each time you want a record
analyzed in that area, specify the associated context variable. You can analyze
two or more files at once by creating a different work area for each file, giving
each area a different context variable, and analyzing the records of each file in
the appropriate work area.

Condition Values Returned

DCX$_INVITEM Error; invalid item code. The number of
arguments specified in the call was incorrect
(this number should be odd), or an unknown item
code was specified.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM.

Data Compression/Expansion (DCX) Routines DCX–17

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_DATA

DCX$COMPRESS_DATA—Compress a Data Record

The DCX$COMPRESS_DATA routine compresses a data record. Call this routine
for each data record to be compressed.

Format

DCX$COMPRESS_DATA context ,in_rec ,out_rec [,out_length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_DATA compresses.
The context argument is the address of a longword containing this value.
DCX$COMPRESS_INIT initializes the value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

in_rec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data record to be compressed. The in_rec argument is the address of the
descriptor of the data record string.

out_rec
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Data record that has been compressed. The out_rec argument is the address of
the descriptor of the compressed record that DCX$COMPRESS_DATA returns.

DCX–18 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_DATA

out_length
OpenVMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Length (in bytes) of the compressed data record. The out_length argument is
the address of a word into which DCX$COMPRESS_DATA returns the length of
the compressed data record.

Description

The DCX$COMPRESS_DATA routine compresses a data record. Call this routine
for each data record to be compressed. As you compress each record, write the
compressed record to the file containing the compression/expansion map. For
each record, write the length of the record and substring string containing the
record to the same file. See the COMPRESS DATA section in Example 7–1.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_INVDATA Error. You specified the item value DCX$C_
BOUNDED in the DCX$ANALYZE_INIT routine
and attempted to compress a data record (using
DCX$COMPRESS_DATA) that was not presented
for analysis (using DCX$ANALYZE_DATA).
Specifying the DCX$C_BOUNDED item value
means that you must analyze all data records
that are to be compressed.

DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly in the DCX$ANALYZE_INIT
routine or the context area is invalid.

DCX$_NORMAL Normal successful completion.
DCX$_TRUNC Error. The compressed data record has been

truncated because the out_rec descriptor did
not specify enough memory to accommodate the
record.

This routine also returns any condition values returned by LIB$ANALYZE_
SDESC_R2 and LIB$SCOPY_R_DX.

Data Compression/Expansion (DCX) Routines DCX–19

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_DONE

DCX$COMPRESS_DONE—Specify Compression Complete

The DCX$COMPRESS_DONE routine deletes the context area and sets the
context variable to zero.

Format

DCX$COMPRESS_DONE context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

context
OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_DONE deletes.
The context argument is the address of a longword containing this value.
DCX$COMPRESS_INIT writes the value into the context argument; you should
not modify its value. You can define multiple context arguments to identify
multiple data streams that are processed simultaneously.

Description

The DCX$COMPRESS_DONE routine deletes the context area and sets the
context variable to zero, undoing the work of the DCX$COMPRESS_INIT routine.
Call DCX$COMPRESS_DONE when all data records have been compressed
(using DCX$COMPRESS_DATA). After calling DCX$COMPRESS_DONE, call
LIB$FREE_VM to free the virtual memory that DCX$MAKE_MAP used for the
compression/expansion function.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$FREE_VM.

DCX–20 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_INIT

DCX$COMPRESS_INIT—Initialize Compression Context

The DCX$COMPRESS_INIT routine initializes the context area for the
compression of data records.

Format

DCX$COMPRESS_INIT context ,map

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$COMPRESS_INIT initializes. The
context argument is the address of a longword containing this value. You should
not modify the context value after DCX$COMPRESS_INIT initializes it. You
can define multiple context arguments to identify multiple data streams that are
processed simultaneously.

map
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

The function created by DCX$MAKE_MAP. The map argument is the address of
the compression/expansion function’s virtual address.

The map argument must remain at this address until data compression is
completed and the context is deleted by means of a call to DCX$COMPRESS_
DONE.

Description

The DCX$COMPRESS_INIT routine initializes the context area for the
compression of data records.

Call the DCX$COMPRESS_INIT routine after calling the DCX$ANALYZE_DONE
routine.

Data Compression/Expansion (DCX) Routines DCX–21

Data Compression/Expansion (DCX) Routines
DCX$COMPRESS_INIT

Condition Values Returned

DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly, or the context area is invalid.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM and
LIB$FREE_VM.

DCX–22 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DATA

DCX$EXPAND_DATA—Expand a Compressed Data Record

The DCX$EXPAND_DATA routine expands (or restores) a compressed data record
to its original state.

Format

DCX$EXPAND_DATA context ,in_rec ,out_rec [,out_length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_DATA expands.
The context argument is the address of a longword containing this value.
DCX$EXPAND_INIT initializes this value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

in_rec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data record to be expanded. The in_rec argument is the address of the descriptor
of the data record string.

out_rec
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Data record that has been expanded. The out_rec argument is the address of the
descriptor of the expanded record returned by DCX$EXPAND_DATA.

Data Compression/Expansion (DCX) Routines DCX–23

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DATA

out_length
OpenVMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Length (in bytes) of the expanded data record. The out_length argument is the
address of a word into which DCX$EXPAND_DATA returns the length of the
expanded data record.

Description

The DCX$EXPAND_DATA routine expands (or restores) a compressed data record
to its original state. Call this routine for each data record to be expanded.

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_INVDATA Error. A compressed data record is invalid
(probably truncated) and therefore cannot be
expanded.

DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly, or the context area is invalid.

DCX$_NORMAL Normal successful completion.
DCX$_TRUNC Warning. The expanded data record has been

truncated because the out_rec descriptor did
not specify enough memory to accommodate the
record.

This routine also returns any condition values returned by LIB$ANALYZE_
SDESC_R2 and LIB$SCOPY_R_DX.

DCX–24 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_DONE

DCX$EXPAND_DONE—Specify Expansion Complete

The DCX$EXPAND_DONE routine deletes the context area and sets the context
variable to zero.

Format

DCX$EXPAND_DONE context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

context
OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_DONE deletes. The
context argument is the address of a longword containing this value.
DCX$EXPAND_INIT initializes this value; you should not modify it. You can
define multiple context arguments to identify multiple data streams that are
processed simultaneously.

Description

The DCX$EXPAND_DONE routine deletes the context area and sets the context
variable to zero, thus undoing the work of the DCX$EXPAND_INIT routine.
Call DCX$EXPAND_DONE when all data records have been expanded (using
DCX$EXPAND_DATA).

Condition Values Returned

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$FREE_VM.

Data Compression/Expansion (DCX) Routines DCX–25

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_INIT

DCX$EXPAND_INIT—Initialize Expansion Context

The DCX$EXPAND_INIT routine initializes the context area for the expansion of
data records.

Format

DCX$EXPAND_INIT context ,map

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$EXPAND_INIT initializes. The
context argument is the address of a longword containing this value. After
DCX$EXPAND_INIT initializes this context value, you should not modify it. You
can define multiple context arguments to identify multiple data streams that are
processed simultaneously.

map
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Compression/expansion function (created by DCX$MAKE_MAP). The map
argument is the address of the compression/expansion function’s virtual address.

The map argument must remain at this address until data expansion is
completed and context is deleted by means of a call to DCX$EXPAND_DONE.

Description

The DCX$EXPAND_INIT routine initializes the context area for the expansion of
data records.

Call the DCX$EXPAND_INIT routine as the first step in the expansion (or
restoration) of compressed data records to their original state.

Before you call DCX$EXPAND_INIT, read the length of the compressed file from
the compression/expansion function (the map). Invoke LIB$GET_VM to get the
necessary amount of storage for the function. LIB$GET_VM returns the address
of the first byte of the storage area.

DCX–26 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$EXPAND_INIT

Condition Values Returned

DCX$_INVMAP Error; invalid map. The map argument was not
specified correctly, or the context area is invalid.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM.

Data Compression/Expansion (DCX) Routines DCX–27

Data Compression/Expansion (DCX) Routines
DCX$MAKE_MAP

DCX$MAKE_MAP—Compute the Compression/Expansion Function

The DCX$MAKE_MAP routine uses the statistical information gathered by
DCX$ANALYZE_DATA to compute the compression/expansion function.

Format

DCX$MAKE_MAP context ,map_addr [,map_size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value identifying the data stream that DCX$MAKE_MAP maps. The context
argument is the address of a longword containing this value. DCX$ANALYZE_
INIT initializes this value; you should not modify it. You can define multiple
context arguments to identify multiple data streams that are processed
simultaneously.

map_addr
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Starting address of the compression/expansion function. The map_addr
argument is the address of a longword into which DCX$MAKE_MAP stores
the virtual address of the compression/expansion function.

map_size
OpenVMS usage: longword_signed
type: longword (unsigned)
access: write only
mechanism: by reference

Length of the compression/expansion function. The map_size argument is the
address of the longword into which DCX$MAKE_MAP writes the length of the
compression/expansion function.

DCX–28 Data Compression/Expansion (DCX) Routines

Data Compression/Expansion (DCX) Routines
DCX$MAKE_MAP

Description

The DCX$MAKE_MAP routine uses the statistical information gathered by
DCX$ANALYZE_DATA to compute the compression/expansion function. In
essence, this map is the algorithm used to shorten (or compress) the original data
records as well as to expand the compressed records to their original form.

The map must be available in memory when any data compression or
expansion takes place; the address of the map is passed as an argument to
the DCX$COMPRESS_INIT and DCX$EXPAND_INIT routines, which initialize
the data compression and expansion procedures, respectively.

The map is stored with the compressed data records, because the compressed
data records are indecipherable without the map. When compressed data records
have been expanded to their original state and no further compression is desired,
you should delete the map using the LIB$FREE_VM routine.

DCX requires that you submit data records for analysis and then call the
DCX$MAKE_MAP routine. Upon receiving the DCX$_AGAIN status code,
you must again submit data records for analysis (in the same order) and call
DCX$MAKE_MAP again; on the second iteration, DCX$MAKE_MAP returns the
DCX$_NORMAL status code.

Condition Values Returned

DCX$_AGAIN Informational. The map has not been created
and the map_addr and map_size arguments
have not been written because further analysis is
required. The data records must be analyzed
(using DCX$ANALYZE_DATA) again, and
DCX$MAKE_MAP must be called again before
DCX$MAKE_MAP will create the map and
return the DCX$_NORMAL status code.

DCX$_INVCTX Error. The context variable is invalid, or the
context area is invalid or corrupted. This may
be caused by a failure to call the appropriate
routine to initialize the context variable or by an
application program error.

DCX$_NORMAL Normal successful completion.

This routine also returns any condition values returned by LIB$GET_VM and
LIB$FREE_VM.

Data Compression/Expansion (DCX) Routines DCX–29

8
DEC Text Processing Utility (DECTPU)

Routines

This chapter describes callable DEC Text Processing Utility (DECTPU) routines.
It describes the purpose of the DECTPU callable routines, the parameters for the
routine call, and the primary status returns. The parameter in the call syntax
represents the object that you pass to a DECTPU routine. Each parameter
description lists the data type and the passing mechanism for the object. The
data types are standard OpenVMS data types. The passing mechanism indicates
how the parameter list is interpreted.

This chapter is written for system programmers who are familiar with the:

• OpenVMS Calling Standard

• OpenVMS Run-Time Library

• Precise manner in which data types are represented on a VAX processor or an
Alpha processor

• Method for calling routines written in a language other than the one you are
using for the main program

8.1 Introduction to DECTPU Routines
Callable DECTPU routines make DECTPU accessible from within other
languages and applications supported by OpenVMS. DECTPU can be called
from a program written in any language that generates calls using the OpenVMS
Calling Standard. You can also call DECTPU from OpenVMS utilities, for
example, the Mail utility. Callable DECTPU lets you perform text-processing
functions within your program.

Callable DECTPU consists of a set of callable routines that resides in the
DECTPU shareable images. You access callable DECTPU by linking against
the shareable images, which include the callable interface routine names and
constants. As with the DCL-level DECTPU interface, you can use files for input
to and output from callable DECTPU. You can also write your own routines for
processing file input, output, and messages.

The calling program must ensure that parameters passed to a called procedure,
in this case DECTPU, are of the type and form that the DECTPU procedure
accepts.

The DECTPU routines described in this chapter return condition values
indicating the routine’s completion status. When comparing a returned condition
value with a test value, you should use the LIB$MATCH routine from the
Run-Time Library. Do not test the condition value as if it were a simple integer.

DEC Text Processing Utility (DECTPU) Routines DECTPU–1

DEC Text Processing Utility (DECTPU) Routines
8.1 Introduction to DECTPU Routines

8.1.1 Interfaces to Callable DECTPU
There are two interfaces you can use to access callable DECTPU: the simplified
callable interface and the full callable interface.

8.1.1.1 Simplified Callable Interface
The easiest way to use callable DECTPU is to use the simplified callable interface.
DECTPU provides two alternative routines in its simplified callable interface.
These routines in turn call additional routines that do the following:

• Initialize the editor

• Provide the editor with the parameters necessary for its operation

• Control the editing session

• Perform error handling

When using the simplified callable interface, you can use the TPU$TPU routine
to specify a command line for DECTPU, or you can call the TPU$EDIT routine
to specify an input file and an output file. TPU$EDIT builds a command string
that is then passed to the TPU$TPU routine. These two routines are described in
detail in Section 8.2.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls the simplified callable interface. You must
do this because the simplified callable interface destroys all parse information
obtained and stored before the simplified callable interface was called.

8.1.1.2 Full Callable Interface
To use the full callable interface, have your program access the main callable
DECTPU routines directly. These routines do the following:

• Initialize the editor (TPU$INTIALIZE)

• Execute DECTPU procedures (TPU$EXECUTE_INIFILE and
TPU$EXECUTE_COMMAND)

• Give control to the editor (TPU$CONTROL)

• Terminate the editing session (TPU$CLEANUP)

When using the full callable interface, you must provide values for certain
parameters. In some cases, the values you supply are actually addresses for
additional routines. For example, when you call TPU$INITIALIZE, you must
include the address of a routine that specifies initialization options. Depending
on your particular application, you might also have to write additional routines.
For example, you might need to write routines for performing file operations,
handling errors, and otherwise controlling the editing session. Callable DECTPU
provides utility routines that can perform some of these tasks for you. These
utility routines can do the following:

• Parse the command line and build the item list used for initializing the editor

• Handle file operations

• Output error messages

• Handle conditions

If your application calls the DECwindows version of DECTPU, the application
can call TPU$INITIALIZE only once.

DECTPU–2 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.1 Introduction to DECTPU Routines

Various topics relating to the full callable interface are discussed in the following
sections:

• Section 8.3 begins by briefly describing the interface. However, most of this
section describes the main callable DECTPU routines (TPU$INITIALIZE,
TPU$EXECUTE_INIFILE, TPU$CONTROL, TPU$EXECUTE_COMMAND,
and TPU$CLEANUP).

• Section 8.3.2 discusses additional routines that DECTPU provides for use
with the full callable interface.

• Section 8.3.3 defines the requirements for routines that you can write for use
with the full callable interface.

The full callable interface consists of the main callable DECTPU routines and the
DECTPU utility routines.

8.1.2 The DECTPU Shareable Image
Whether you use the simplified callable interface or the full callable interface,
you access callable DECTPU by linking against the DECTPU shareable image.
This image contains the routine names and constants available for use by an
application. In addition, the shareable image provides the following symbols:

• TPU$GL_VERSION—The version of the shareable image

• TPU$GL_UPDATE—The update number of the shareable image

• TPU$_FACILITY—The DECTPU facility code

For more information about how to link to the shareable image TPUSHR.EXE,
refer to the OpenVMS Programming Environment Manual.1

8.1.3 Passing Parameters to Callable DECTPU Routines
Parameters are passed to callable DECTPU routines by reference or by descriptor.
When the parameter is a routine, the parameter is passed by descriptor as a
bound procedure value (BPV) data type.

A bound procedure value is a two-longword entity in which the first longword
contains a procedure value and the second longword is the environment value (see
the following figure). The environment value is determined in a language-specific
manner when the original bound procedure value is generated. When the bound
procedure is called, the calling program loads the second longword into R1.

ZK−4046−GE

Environment

Name of your routine

8.1.4 Error Handling
When you use the simplified callable interface, DECTPU establishes its own
condition handler, TPU$HANDLER, to handle all errors. When you use the full
callable interface, there are two ways to handle errors:

• You can use the DECTPU default condition handler, TPU$HANDLER.

1 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

DEC Text Processing Utility (DECTPU) Routines DECTPU–3

DEC Text Processing Utility (DECTPU) Routines
8.1 Introduction to DECTPU Routines

• You can write your own condition handler to process some of the errors and
call TPU$HANDLER to process the rest.

The default condition handler, TPU$HANDLER, is described in Section 8.7.
Information about writing your own condition handler can be found in the
OpenVMS Programming Concepts Manual.

8.1.5 Return Values
All DECTPU condition codes are declared as universal symbols. Therefore, you
automatically have access to these symbols when you link your program to the
shareable image. The condition code values are returned in R0. Return codes
for DECTPU can be found in the DEC Text Processing Utility Reference Manual.
DECTPU return codes and their messages are accessible from the Help/Message
facility.

Additional information about condition codes is provided in the descriptions of
callable DECTPU routines found in subsequent sections. This information is
provided under the heading Condition Values Returned and indicates the values
that are returned when the default condition handler is established.

8.2 Simplified Callable Interface
The DECTPU simplified callable interface consists of two routines: TPU$TPU
and TPU$EDIT. These entry points to DECTPU are useful for the following kinds
of applications:

• Those able to specify all the editing parameters on a single command line

• Those that need to specify only an input file and an output file

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls the simplified callable interface. You must
do this because the simplified callable interface destroys all parse information
obtained and stored before the simplified callable interface was called.

The following example calls TPU$EDIT to edit text in the file INFILE.DAT and
writes the result to OUTFILE.DAT. Note that the parameters to TPU$EDIT must
be passed by descriptor.

/*
Sample C program that calls DECTPU. This program uses TPU$EDIT to
provide the names of the input and output files

*/

#include descrip

int return_status;

static $DESCRIPTOR (input_file, "infile.dat");
static $DESCRIPTOR (output_file, "outfile.dat");

main (argc, argv)
int argc;
char *argv[];

{
/*

Call DECTPU to edit text in "infile.dat" and write the result
to "outfile.dat". Return the condition code from DECTPU as the
status of this program.

*/

DECTPU–4 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.2 Simplified Callable Interface

return_status = TPU$EDIT (&input_file, &output_file);
exit (return_status);
}

The next example performs the same task as the previous example. This time,
the TPU$TPU entry point is used. TPU$TPU accepts a single argument which is
a command string starting with the verb TPU. The command string can contain
all of the qualifiers that are accepted by the EDIT/TPU command.

/*
Sample C program that calls DECTPU. This program uses TPU$TPU and
specifies a command string

*/

#include descrip

int return_status;

static $DESCRIPTOR (command_prefix, "TPU/NOJOURNAL/NOCOMMAND/OUTPUT=");
static $DESCRIPTOR (input_file, "infile.dat");
static $DESCRIPTOR (output_file, "outfile.dat");
static $DESCRIPTOR (space_desc, " ");

char command_line [100];
static $DESCRIPTOR (command_desc, command_line);

main (argc, argv)
int argc;
char *argv[];

{
/*

Build the command line for DECTPU. Note that the command verb
is TPU instead of EDIT/TPU. The string we construct in the
buffer command_line will be
"TPU/NOJOURNAL/NOCOMMAND/OUTPUT=outfile.dat infile.dat"

*/

return_status = STR$CONCAT (&command_desc,
&command_prefix,
&output_file,
&space_desc,
&input_file);

if (! return_status)
exit (return_status);

/*
Now call DECTPU to edit the file

*/
return_status = TPU$TPU (&command_desc);
exit (return_status);
}

The following section contains detailed information about the routines in the full
DECTPU callable interface. If you use the simplified interface, that interface
calls these routines for you. If you use the full interface, your code calls these
routines directly.

8.3 Full Callable Interface
The DECTPU full callable interface consists of a set of routines that you can use
to perform the following tasks:

• Specify initialization parameters

• Control file input/output

• Specify commands to be executed by the editor

DEC Text Processing Utility (DECTPU) Routines DECTPU–5

DEC Text Processing Utility (DECTPU) Routines
8.3 Full Callable Interface

• Control how conditions are handled

When you use the simplified callable interface, these operations are performed
automatically. The individual DECTPU routines that perform these functions
can be called from a user-written program and are known as the DECTPU full
callable interface. This interface has two sets of routines: the main DECTPU
callable routines and the DECTPU utility routines. These DECTPU routines, as
well as your own routines that pass parameters to the DECTPU routines, are the
mechanism that your application uses to control DECTPU.

The following sections describe the main callable routines, how parameters are
passed to these routines, the DECTPU utility routines, and the requirements of
user-written routines.

8.3.1 Main Callable DECTPU Utility Routines
The following callable DECTPU routines are described in this chapter:

• TPU$INITIALIZE

• TPU$EXECUTE_INIFILE

• TPU$CONTROL

• TPU$EXECUTE_COMMAND

• TPU$CLEANUP

Note

Before calling any of these routines, you must establish TPU$HANDLER
or provide your own condition handler. See the routine description of
TPU$HANDLER in this chapter and the OpenVMS Calling Standard for
information about establishing a condition handler.

8.3.2 Other DECTPU Utility Routines
The full callable interface includes several utility routines for which you can
provide parameters. Depending on your application, you might be able to use
these routines rather than write your own routines. These DECTPU utility
routines and their descriptions follow:

• TPU$CLIPARSE—Parses a command line and builds the item list for
TPU$INITIALIZE

• TPU$PARSEINFO—Parses a command and builds an item list for
TPU$INITIALIZE

• TPU$FILEIO—The default file I/O routine

• TPU$MESSAGE—Writes error messages and strings using the built-in
procedure MESSAGE

• TPU$HANDLER—The default condition handler

• TPU$CLOSE_TERMINAL—Closes the DECTPU channel to the terminal (and
its associated mailbox) for the duration of a CALL_USER routine

• TPU$SPECIFY_ASYNC_ACTION—Specifies an asynchronous event for
interrupting the TPU$CONTROL routine

DECTPU–6 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.3 Full Callable Interface

• TPU$TRIGGER_ASYNC_ACTION—Interrupts the TPU$CONTROL routine
on a specified asynchronous event

Note that TPU$CLIPARSE and TPU$PARSEINFO destroy the context
maintained by the CLI$ routines for parsing commands.

8.3.3 User-Written Routines
This section defines the requirements for user-written routines. When these
routines are passed to DECTPU, they must be passed as bound procedure values.
(See Section 8.1.3 for a description of bound procedure values.) Depending on
your application, you might have to write one or all of the following routines:

• Routine for initialization callback—This is a routine that TPU$INITIALIZE
calls to obtain values for initialization parameters. The initialization
parameters are returned as an item list.

• Routine for file I/O—This is a routine that handles file operations. Instead
of writing your own file I/O routine, you can use the TPU$FILEIO utility
routine. DECTPU does not use this routine for journal file operations or for
operations performed by the built-in procedure SAVE.

• Routine for condition handling—This is a routine that handles error
conditions. Instead of writing your own condition handler, you can use
the default condition handler, TPU$HANDLER.

• Routine for the built-in procedure CALL_USER—This is a routine that is
called by the built-in procedure CALL_USER. You can use this mechanism to
cause your program to get control during an editing session.

8.4 Using the DECTPU Routines: Examples
Example 8–1, Example 8–2, Example 8–3, and Example 8–4 use callable
DECTPU. These examples are included here for illustrative purposes only;
Compaq does not assume responsibility for supporting these examples.

Example 8–1 Sample VAX BLISS Template for Callable DECTPU

MODULE file_io_example (MAIN = top_level,
ADDRESSING_MODE (EXTERNAL = GENERAL)) =

BEGIN

FORWARD ROUTINE
top_level, ! Main routine of this example
tpu_init, ! Initialize TPU
tpu_io; ! File I/O routine for TPU

!
! Declare the stream data structure passed to the file I/O routine
!
MACRO

stream_file_id = 0, 0, 32, 0 % , ! File ID
stream_rat = 6, 0, 8, 0 % , ! Record attributes
stream_rfm = 7, 0, 8, 0 % , ! Record format
stream_file_nm = 8, 0, 0, 0 % ; ! File name descriptor

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU–7

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU
!
! Declare the routines that would actually do the I/O. These must be supplied
! in another module
!
EXTERNAL ROUTINE

my_io_open, ! Routine to open a file
my_io_close, ! Routine to close a file
my_io_get_record, ! Routine to read a record
my_io_put_record; ! Routine to write a record

!
! Declare the DECTPU routines
!
EXTERNAL ROUTINE

tpu$fileio, ! DECTPU’s internal file I/O routine
tpu$handler, ! DECTPU’s condition handler
tpu$initialize, ! Initialize DECTPU
tpu$execute_inifile, ! Execute the initial procedures
tpu$execute_command, ! Execute a DECTPU statement
tpu$control, ! Let user interact with DECTPU
tpu$cleanup; ! Have DECTPU cleanup after itself

!
! Declare the DECTPU literals
!
EXTERNAL LITERAL

tpu$k_close, ! File I/O operation codes
tpu$k_close_delete,
tpu$k_open,
tpu$k_get,
tpu$k_put,

tpu$k_access, ! File access codes
tpu$k_io,
tpu$k_input,
tpu$k_output,

tpu$_calluser, ! Item list entry codes
tpu$_fileio,
tpu$_outputfile,
tpu$_sectionfile,
tpu$_commandfile,
tpu$_filename,
tpu$_journalfile,
tpu$_options,

tpu$m_recover, ! Mask for values in options bitmask
tpu$m_journal,
tpu$m_read,
tpu$m_command,
tpu$m_create,
tpu$m_section,
tpu$m_display,
tpu$m_output,

tpu$m_reset_terminal, ! Masks for cleanup bitmask
tpu$m_kill_processes,
tpu$m_delete_exith,
tpu$m_last_time,

(continued on next page)

DECTPU–8 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

tpu$_nofileaccess, ! DECTPU status codes
tpu$_openin,
tpu$_inviocode,
tpu$_failure,
tpu$_closein,
tpu$_closeout,
tpu$_readerr,
tpu$_writeerr,
tpu$_success;

ROUTINE top_level =

BEGIN
!++
! Main entry point of your program
!--
! Your_initialization_routine must be declared as a BPV

LOCAL
initialize_bpv: VECTOR [2],
status,
cleanup_flags;

!
! First establish the condition handler
!
ENABLE

tpu$handler ();
!
! Initialize the editing session, passing TPU$INITIALIZE the address of
! the bound procedure value which defines the routine which DECTPU is
! to call to return the initialization item list
!
initialize_bpv [0] = tpu_init;
initialize_bpv [1] = 0;
tpu$initialize (initialize_bpv);
!
! Call DECTPU to execute the contents of the command file, the debug file
! or the TPU$INIT_PROCEDURE from the section file.
!
tpu$execute_inifile();
!
! Let DECTPU take over.
!
tpu$control();
!
! Have DECTPU cleanup after itself
!
cleanup_flags = tpu$m_reset_terminal OR ! Reset the terminal

tpu$m_kill_processes OR ! Delete Subprocesses
tpu$m_delete_exith OR ! Delete the exit handler
tpu$m_last_time; ! Last time calling the editor

tpu$cleanup (cleanup_flags);

RETURN tpu$_success;

END;

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU–9

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

ROUTINE tpu_init =

BEGIN

!
! Allocate the storage block needed to pass the file I/O routine as a
! bound procedure variable as well as the bitmask for the initialization
! options
!
OWN

file_io_bpv: VECTOR [2, LONG]
INITIAL (TPU_IO, 0),

options;
!
! These macros define the file names passed to DECTPU
!
MACRO

out_file = ’OUTPUT.TPU’ % ,
com_file = ’TPU$COMMAND’ % ,
sec_file = ’TPU$SECTION’ % ,
inp_file = ’FILE.TPU’ % ;

!
! Create the item list to pass to DECTPU. Each item list entry consists of
! two words which specify the size of the item and its code, the address of
! the buffer containing the data, and a longword to receive a result (always
! zero, since DECTPU does not return any result values in the item list)
!
! +--------------------------------+
! | Item Code | Item Length |
! +----------------+---------------+
! | Buffer Address |
! +--------------------------------+
! | Return Address (always 0) |
! +--------------------------------+
!
! Remember that the item list is always terminated with a longword containing
! a zero
!
BIND

item_list = UPLIT BYTE (
WORD (4), ! Options bitmask
WORD (tpu$_options),
LONG (options),
LONG (0),

WORD (4), ! File I/O routine
WORD (tpu$_fileio),
LONG (file_io_bpv),
LONG (0),

WORD (%CHARCOUNT (out_file)), ! Output file
WORD (tpu$_outputfile),
LONG (UPLIT (%ASCII out_file)),
LONG (0),

WORD (%CHARCOUNT (com_file)), ! Command file
WORD (tpu$_commandfile),
LONG (UPLIT (%ASCII com_file)),
LONG (0),

(continued on next page)

DECTPU–10 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

WORD (%CHARCOUNT (sec_file)), ! Section file
WORD (tpu$_sectionfile),
LONG (UPLIT (%ASCII sec_file)),
LONG (0),

WORD (%CHARCOUNT (inp_file)), ! Input file
WORD (tpu$_filename),
LONG (UPLIT (%ASCII inp_file)),
LONG (0),

LONG (0)); ! Terminating longword of 0
!
! Initialize the options bitmask
!
options = tpu$m_display OR ! We have a display

tpu$m_section OR ! We have a section file
tpu$m_create OR ! Create a new file if one does not

! exist
tpu$m_command OR ! We have a section file
tpu$m_output; ! We supplied an output file spec

!
! Return the item list as the value of this routine for DECTPU to interpret
!
RETURN item_list;

END; ! End of routine tpu_init
ROUTINE tpu_io (p_opcode, stream: REF BLOCK [,byte], data) =
!
! This routine determines how to process a TPU I/O request
!

BEGIN

LOCAL
status;

!
! Is this one of ours, or do we pass it to TPU’s file I/O routines?
!

IF (..p_opcode NEQ tpu$k_open) AND (.stream [stream_file_id] GTR 511)
THEN

RETURN tpu$fileio (.p_opcode, .stream, .data);

!
! Either we’re opening the file, or we know it’s one of ours
! Call the appropriate routine (not shown in this example)
!

SELECTONE ..p_opcode OF
SET

[tpu$k_open]:
status = my_io_open (.stream, .data);

[tpuk_close, tpuk_close_delete]:
status = my_io_close (.stream, .data);

[tpu$k_get]:
status = my_io_get_record (.stream, .data);

[tpu$k_put]:
status = my_io_put_record (.stream, .data);

[OTHERWISE]:
status = tpu$_failure;

TES;

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU–11

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

RETURN .status;

END; ! End of routine TPU_IO

END ! End Module file_io_example

ELUDOM

Example 8–2 shows normal DECTPU setup in Compaq Fortran.

Example 8–2 Normal DECTPU Setup in Compaq Fortran

C A sample Fortran program that calls DECTPU to act
C normally, using the programmable interface.
C
C IMPLICIT NONE

INTEGER*4 CLEAN_OPT !options for clean up routine
INTEGER*4 STATUS !return status from DECTPU routines
INTEGER*4 BPV_PARSE(2) !set up a bound procedure value
INTEGER*4 LOC_PARSE !a local function call

C declare the DECTPU functions

INTEGER*4 TPU$CONTROL
INTEGER*4 TPU$CLEANUP
INTEGER*4 TPU$EXECUTE_INIFILE
INTEGER*4 TPU$INITIALIZE
INTEGER*4 TPU$CLIPARSE

C declare a local copy to hold the values of DECTPU cleanup variables

INTEGER*4 RESET_TERMINAL
INTEGER*4 DELETE_JOURNAL
INTEGER*4 DELETE_BUFFERS,DELETE_WINDOWS
INTEGER*4 DELETE_EXITH,EXECUTE_PROC
INTEGER*4 PRUNE_CACHE,KILL_PROCESSES
INTEGER*4 CLOSE_SECTION

C declare the DECTPU functions used as external

EXTERNAL TPU$HANDLER
EXTERNAL TPU$CLIPARSE

EXTERNAL TPU$_SUCCESS !external error message

EXTERNAL LOC_PARSE !user supplied routine to
C call TPUCLIPARSE and setup
C declare the DECTPU cleanup variables as external these are the
C external literals that hold the value of the options

EXTERNAL TPU$M_RESET_TERMINAL
EXTERNAL TPU$M_DELETE_JOURNAL
EXTERNAL TPU$M_DELETE_BUFFERS,TPU$M_DELETE_WINDOWS
EXTERNAL TPUM_DELETE_EXITH,TPUM_EXECUTE_PROC
EXTERNAL TPUM_PRUNE_CACHE,TPUM_KILL_PROCESSES

100 CALL LIB$ESTABLISH (TPU$HANDLER) !establish the condition handler
C set up the bound procedure value for the call to TPU$INITIALIZE

BPV_PARSE(1) = %LOC(LOC_PARSE)
BPV_PARSE(2) = 0

(continued on next page)

DECTPU–12 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–2 (Cont.) Normal DECTPU Setup in Compaq Fortran
C call the DECTPU initialization routine to do some set up work

STATUS = TPU$INITIALIZE (BPV_PARSE)

C Check the status if it is not a success then signal the error

IF (STATUS .NE. %LOC (TPU$_SUCCESS)) THEN

CALL LIB$SIGNAL(%VAL(STATUS))
GOTO 9999

ENDIF
C execute the TPU$_ init files and also a command file if it
C was specified in the command line call to DECTPU

STATUS = TPU$EXECUTE_INIFILE ()

IF (STATUS .NE. %LOC (TPU$_SUCCESS)) THEN !make sure everything is ok

CALL LIB$SIGNAL(%VAL(STATUS))
GOTO 9999

ENDIF
C invoke the editor as it normally would appear

STATUS = TPU$CONTROL () !call the DECTPU editor

IF (STATUS .NE. %LOC (TPU$_SUCCESS)) THEN !make sure everything is ok

CALL LIB$SIGNAL(%VAL(STATUS))
C GOTO 9999

ENDIF
C Get the value of the option from the external literals. In Fortran you
C cannot use external literals directly so you must first get the value
C of the literal from its external location. Here we are getting the
C values of the options that we want to use in the call to TPU$CLEANUP.

DELETE_JOURNAL = %LOC (TPU$M_DELETE_JOURNAL)
DELETE_EXITH = %LOC (TPU$M_DELETE_EXITH)
DELETE_BUFFERS = %LOC (TPU$M_DELETE_BUFFERS)
DELETE_WINDOWS = %LOC (TPU$M_DELETE_WINDOWS)
EXECUTE_PROC = %LOC (TPU$M_EXECUTE_PROC)
RESET_TERMINAL = %LOC (TPU$M_RESET_TERMINAL)
KILL_PROCESSES = %LOC (TPU$M_KILL_PROCESSES)
CLOSE_SECTION = %LOC (TPU$M_CLOSE_SECTION)

C Now that we have the local copies of the variables we can do the
C logical OR to set the multiple options that we need.

CLEAN_OPT = DELETE_JOURNAL .OR. DELETE_EXITH .OR.
1 DELETE_BUFFERS .OR. DELETE_WINDOWS .OR. EXECUTE_PROC
1 .OR. RESET_TERMINAL .OR. KILL_PROCESSES .OR. CLOSE_SECTION

C do the necessary clean up
C TPU$CLEANUP wants the address of the flags as the parameter so
C pass the %LOC of CLEAN_OPT which is the address of the variable

STATUS = TPU$CLEANUP (%LOC (CLEAN_OPT))

IF (STATUS .NE. %LOC (TPU$_SUCCESS)) THEN

CALL LIB$SIGNAL(%VAL(STATUS))

ENDIF

9999 CALL LIB$REVERT !go back to normal processing -- handlers

STOP
END

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU–13

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–2 (Cont.) Normal DECTPU Setup in Compaq Fortran

C
C

INTEGER*4 FUNCTION LOC_PARSE

INTEGER*4 BPV(2) !A local bound procedure value

CHARACTER*12 EDIT_COMM !A command line to send to TPU$CLIPARSE
C Declare the DECTPU functions used

INTEGER*4 TPU$FILEIO
INTEGER*4 TPU$CLIPARSE

C Declare this routine as external because it is never called directly and
C we need to tell Fortran that it is a function and not a variable

EXTERNAL TPU$FILEIO

BPV(1) = %LOC(TPU$FILEIO) !set up the bound procedure value
BPV(2) = 0

EDIT_COMM(1:12) = ’TPU TEST.TXT’
C parse the command line and build the item list for TPU$INITIALIZE
9999 LOC_PARSE = TPU$CLIPARSE (EDIT_COMM, BPV , 0)

RETURN
END

Example 8–3 shows how to build a callback item list with Compaq Fortran.

Example 8–3 Building a Callback Item List with Compaq Fortran

PROGRAM TEST_TPU
C

IMPLICIT NONE
C
C Define the expected DECTPU return statuses
C

EXTERNAL TPU$_SUCCESS
EXTERNAL TPU$_QUITTING
EXTERNAL TPU$_EXITING

C
C Declare the DECTPU routines and symbols used
C

EXTERNAL TPU$M_DELETE_CONTEXT
EXTERNAL TPU$HANDLER
INTEGER*4 TPU$M_DELETE_CONTEXT
INTEGER*4 TPU$INITIALIZE
INTEGER*4 TPU$EXECUTE_INIFILE
INTEGER*4 TPU$CONTROL
INTEGER*4 TPU$CLEANUP

C
C Use LIB$MATCH_COND to compare condition codes
C

INTEGER*4 LIB$MATCH_COND
C
C Declare the external callback routine
C

EXTERNAL TPU_STARTUP ! the DECTPU set-up function
INTEGER*4 TPU_STARTUP

INTEGER*4 BPV(2) ! Set up a bound procedure value

(continued on next page)

DECTPU–14 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–3 (Cont.) Building a Callback Item List with Compaq Fortran
C
C Declare the functions used for working with the condition handler
C

INTEGER*4 LIB$ESTABLISH
INTEGER*4 LIB$REVERT

C
C Local Flags and Indices
C

INTEGER*4 CLEANUP_FLAG ! flag(s) for DECTPU cleanup
INTEGER*4 RET_STATUS
INTEGER*4 MATCH_STATUS

C
C Initializations
C

RET_STATUS = 0
CLEANUP_FLAG = %LOC(TPU$M_DELETE_CONTEXT)

C
C Establish the default DECTPU condition handler
C

CALL LIB$ESTABLISH(%REF(TPU$HANDLER))
C
C Set up the bound procedure value for the initialization callback
C

BPV(1) = %LOC (TPU_STARTUP)
BPV(2) = 0

C
C Call the DECTPU procedure for initialization
C

RET_STATUS = TPU$INITIALIZE(BPV)

IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
CALL LIB$SIGNAL (%VAL(RET_STATUS))
ENDIF

C
C Execute the DECTPU initialization file
C

RET_STATUS = TPU$EXECUTE_INIFILE()

IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
CALL LIB$SIGNAL (%VAL(RET_STATUS))
ENDIF

C
C Pass control to DECTPU
C

RET_STATUS = TPU$CONTROL()
C
C Test for valid exit condition codes. You must use LIB$MATCH_COND
C because the severity of TPU$_QUITTING can be set by the TPU
C application
C

MATCH_STATUS = LIB$MATCH_COND (RET_STATUS, %LOC (TPU$_QUITTING),
1 %LOC (TPU$_EXITING))
IF (MATCH_STATUS .EQ. 0) THEN
CALL LIB$SIGNAL (%VAL(RET_STATUS))
ENDIF

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU–15

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–3 (Cont.) Building a Callback Item List with Compaq Fortran

C
C Clean up after processing
C

RET_STATUS = TPU$CLEANUP(%REF(CLEANUP_FLAG))

IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
CALL LIB$SIGNAL (%VAL(RET_STATUS))
ENDIF

C
C Set the condition handler back to the default
C

RET_STATUS = LIB$REVERT()

END

INTEGER*4 FUNCTION TPU_STARTUP

IMPLICIT NONE

INTEGER*4 OPTION_MASK ! temporary variable for DECTPU
CHARACTER*44 SECTION_NAME ! temporary variable for DECTPU

C
C External DECTPU routines and symbols
C

EXTERNAL TPU$K_OPTIONS
EXTERNAL TPU$M_READ
EXTERNAL TPU$M_SECTION
EXTERNAL TPU$M_DISPLAY
EXTERNAL TPU$K_SECTIONFILE
EXTERNAL TPU$K_FILEIO
EXTERNAL TPU$FILEIO
INTEGER*4 TPU$FILEIO

C
C The bound procedure value used for setting up the file I/O routine
C

INTEGER*4 BPV(2)

C
C Define the structure of the item list defined for the callback
C

STRUCTURE /CALLBACK/
INTEGER*2 BUFFER_LENGTH
INTEGER*2 ITEM_CODE
INTEGER*4 BUFFER_ADDRESS
INTEGER*4 RETURN_ADDRESS
END STRUCTURE

C
C There are a total of four items in the item list
C

RECORD /CALLBACK/ CALLBACK (4)
C
C Make sure it is not optimized!
C

VOLATILE /CALLBACK/
C
C Define the options we want to use in the DECTPU session
C

OPTION_MASK = %LOC(TPU$M_SECTION) .OR. %LOC(TPU$M_READ)
1 .OR. %LOC(TPU$M_DISPLAY)

(continued on next page)

DECTPU–16 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–3 (Cont.) Building a Callback Item List with Compaq Fortran
C
C Define the name of the initialization section file
C

SECTION_NAME = ’TPU$SECTION’
C
C Set up the required I/O routine. Use the DECTPU default.
C

BPV(1) = %LOC(TPU$FILEIO)
BPV(2) = 0

C
C Build the callback item list
C
C Set up the edit session options
C

CALLBACK(1).ITEM_CODE = %LOC(TPU$K_OPTIONS)
CALLBACK(1).BUFFER_ADDRESS = %LOC(OPTION_MASK)
CALLBACK(1).BUFFER_LENGTH = 4
CALLBACK(1).RETURN_ADDRESS = 0

C
C Identify the section file to be used
C

CALLBACK(2).ITEM_CODE = %LOC(TPU$K_SECTIONFILE)
CALLBACK(2).BUFFER_ADDRESS = %LOC(SECTION_NAME)
CALLBACK(2).BUFFER_LENGTH = LEN(SECTION_NAME)
CALLBACK(2).RETURN_ADDRESS = 0

C
C Set up the I/O handler
C

CALLBACK(3).ITEM_CODE = %LOC(TPU$K_FILEIO)
CALLBACK(3).BUFFER_ADDRESS = %LOC(BPV)
CALLBACK(3).BUFFER_LENGTH = 4
CALLBACK(3).RETURN_ADDRESS = 0

C
C End the item list with zeros to indicate we are finished
C

CALLBACK(4).ITEM_CODE = 0
CALLBACK(4).BUFFER_ADDRESS = 0
CALLBACK(4).BUFFER_LENGTH = 0
CALLBACK(4).RETURN_ADDRESS = 0

C
C Return the address of the item list
C

TPU_STARTUP = %LOC(CALLBACK)

RETURN
END

Example 8–4 shows how to specify a user-written file I/O routine in VAX C.

Example 8–4 Specifying a User-Written File I/O Routine in VAX C

/*
Segment of a simple VAX C program to invoke DECTPU. This program provides its
own FILEIO routine instead of using the one provided by DECTPU. This program
will run correctly if you write the routines it calls.
*/

/*
** To compile this example use the command:
$ CC <file-name>

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU–17

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–4 (Cont.) Specifying a User-Written File I/O Routine in VAX C

** To link this example after a successful compilation:

$ LINK <file-name>,sys$input/
SYS$LIBRARY:VAXCRTL/SHARE
<PRESS-Ctrl/Z>

The TPUSHR shareable image is found by the linker in IMAGELIB.OLB.

*/
#include descrip
#include stdio

/* data structures needed */

struct bpv_arg /* bound procedure value */
{
int *routine_add ; /* pointer to routine */
int env ; /* environment pointer */
} ;

struct item_list_entry /* item list data structure */
{
short int buffer_length; /* buffer length */
short int item_code; /* item code */
int *buffer_add; /* buffer address */
int *return_len_add; /* return address */
} ;

struct stream_type
{
int ident; /* stream id */
short int alloc; /* file size */
short int flags; /* file record attributes/format */
short int length; /* resultant file name length */
short int stuff; /* file name descriptor class & type */
int nam_add; /* file name descriptor text pointer */
} ;

globalvalue tpu$_success; /* TPU Success code */
globalvalue tpu$_quitting; /* Exit code defined by TPU */

globalvalue /* Cleanup codes defined by TPU */
tpu$m_delete_journal, tpu$m_delete_exith,
tpu$m_delete_buffers, tpu$m_delete_windows, tpu$m_delete_cache,
tpum_prune_cache, tpum_execute_file, tpu$m_execute_proc,
tpu$m_delete_context, tpu$m_reset_terminal, tpu$m_kill_processes,
tpu$m_close_section, tpu$m_delete_others, tpu$m_last_time;

globalvalue /* Item codes for item list entries */
tpuk_fileio, tpuk_options, tpu$k_sectionfile,
tpu$k_commandfile ;

globalvalue /* Option codes for option item */
tpu$m_display, tpu$m_section, tpu$m_command, tpu$m_create ;

globalvalue /* Possible item codes in item list */
tpuk_access, tpuk_filename, tpu$k_defaultfile,
tpu$k_relatedfile, tpu$k_record_attr, tpu$k_maximize_ver,
tpuk_flush, tpuk_filesize;

globalvalue /* Possible access types for tpu$k_access */
tpuk_io, tpuk_input, tpu$k_output;

globalvalue /* OpenVMS RMS File Not Found message code */
rms$_fnf;

(continued on next page)

DECTPU–18 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–4 (Cont.) Specifying a User-Written File I/O Routine in VAX C
globalvalue /* FILEIO routine functions */

tpuk_open, tpuk_close, tpu$k_close_delete,
tpuk_get, tpuk_put;

int lib$establish (); /* RTL routine to establish an event handler */
int tpu$cleanup (); /* TPU routine to free resources used */
int tpu$control (); /* TPU routine to invoke the editor */
int tpu$execute_inifile (); /* TPU routine to execute initialization code */
int tpu$handler (); /* TPU signal handling routine */
int tpu$initialize (); /* TPU routine to initialize the editor */

/*
This function opens a file for either read or write access, based upon
the itemlist passed as the data parameter. Note that a full implementation
of the file open routine would have to handle the default file, related
file, record attribute, maximize version, flush and file size item code
properly.

*/
open_file (data, stream)

int *data;
struct stream_type *stream;

{
struct item_list_entry *item;
char *access; /* File access type */
char filename[256]; /* Max file specification size */

FILE *fopen();

/* Process the item list */

item = data;
while (item->item_code != 0 && item->buffer_length != 0)

{
if (item->item_code == tpu$k_access)

{
if (item->buffer_add == tpu$k_io) access = "r+";
else if (item->buffer_add == tpu$k_input) access = "r";
else if (item->buffer_add == tpu$k_output) access = "w";
}

else if (item->item_code == tpu$k_filename)
{
strncpy (filename, item->buffer_add, item->buffer_length);
filename [item->buffer_length] = 0;
lib$scopy_r_dx (&item->buffer_length, item->buffer_add,

&stream->length);
}

else if (item->item_code == tpu$k_defaultfile)
{ /* Add code to handle default file */
} /* spec here */

else if (item->item_code == tpu$k_relatedfile)
{ /* Add code to handle related */
} /* file spec here */

else if (item->item_code == tpu$k_record_attr)
{ /* Add code to handle record */
} /* attributes for creating files */

else if (item->item_code == tpu$k_maximize_ver)
{ /* Add code to maximize version */
} /* number with existing file here */

else if (item->item_code == tpu$k_flush)
{ /* Add code to cause each record */
} /* to be flushed to disk as written */

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU–19

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–4 (Cont.) Specifying a User-Written File I/O Routine in VAX C
else if (item->item_code == tpu$k_filesize)

{ /* Add code to handle specification */
} /* of initial file allocation here */

++item; /* get next item */
}

stream->ident = fopen(filename,access);
if (stream->ident != 0)

return tpu$_success;
else

return rms$_fnf;
}
/*
This procedure closes a file

*/
close_file (data,stream)
struct stream_type *stream;

{
close(stream->ident);
return tpu$_success;

}
/*
This procedure reads a line from a file

*/
read_line(data,stream)
struct dsc$descriptor *data;
struct stream_type *stream;

{
char textline[984]; /* max line size for TPU records */
int len;

globalvalue rms$_eof; /* RMS End-Of-File code */

if (fgets(textline,984,stream->ident) == NULL)
return rms$_eof;

else
{
len = strlen(textline);
if (len > 0)

len = len - 1;
return lib$scopy_r_dx (&len, textline, data);
}

}
/*
This procedure writes a line to a file

*/
write_line(data,stream)
struct dsc$descriptor *data;
struct stream_type *stream;

{
char textline[984]; /* max line size for TPU records */

strncpy (textline, data->dsc$a_pointer, data->dsc$w_length);
textline [data->dsc$w_length] = 0;
fputs(textline,stream->ident);
fputs("\n",stream->ident);
return tpu$_success;

}

(continued on next page)

DECTPU–20 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–4 (Cont.) Specifying a User-Written File I/O Routine in VAX C
/*

This procedure will handle I/O for TPU
*/
fileio(code,stream,data)
int *code;
int *stream;
int *data;

{
int status;

/* Dispatch based on code type. Note that a full implementation of the */
/* file I/O routines would have to handle the close and delete code properly */
/* instead of simply closing the file */

if (*code == tpu$k_open) /* Initial access to file */
status = open_file (data,stream);

else if (*code == tpu$k_close) /* End access to file */
status = close_file (data,stream);

else if (*code == tpu$k_close_delete) /* Treat same as close */
status = close_file (data,stream);

else if (*code == tpu$k_get) /* Read a record from a file */
status = read_line (data,stream);

else if (*code == tpu$k_put) /* Write a record to a file */
status = write_line (data,stream);

else
{ /* Who knows what we have? */
status = tpu$_success;
printf ("Bad FILEIO I/O function requested");
}

return status;
}
/*

This procedure formats the initialization item list and returns it as
its return value.

*/
callrout()
{

static struct bpv_arg add_block =
{ fileio, 0 } ; /* BPV for fileio routine */

int options ;
char *section_name = "TPU$SECTION";
static struct item_list_entry arg[] =

{/* length code buffer add return add */
{ 4,tpu$k_fileio, 0, 0 },
{ 4,tpu$k_options, 0, 0 },
{ 0,tpu$k_sectionfile,0, 0 },
{ 0,0, 0, 0 }

};

/* Setup file I/O routine item entry */
arg[0].buffer_add = &add_block;

/* Setup options item entry. Leave journaling off. */
options = tpu$m_display | tpu$m_section;
arg[1].buffer_add = &options;

/* Setup section file name */
arg[2].buffer_length = strlen(section_name);
arg[2].buffer_add = section_name;

return arg;
}

(continued on next page)

DEC Text Processing Utility (DECTPU) Routines DECTPU–21

DEC Text Processing Utility (DECTPU) Routines
8.4 Using the DECTPU Routines: Examples

Example 8–4 (Cont.) Specifying a User-Written File I/O Routine in VAX C

/*
Main program. Initializes TPU, then passes control to it.

*/
main()
{

int return_status ;
int cleanup_options;
struct bpv_arg add_block;

/* Establish as condition handler the normal DECTPU handler */

lib$establish(tpu$handler);

/* Setup a BPV to point to the callback routine */

add_block.routine_add = callrout ;
add_block.env = 0;

/* Do the initialize of DECTPU */

return_status = tpu$initialize(&add_block);
if (!return_status)

exit(return_status);

/* Have TPU execute the procedure TPU$INIT_PROCEDURE from the section file */
/* and then compile and execute the code from the command file */

return_status = tpu$execute_inifile();
if (!return_status)

exit (return_status);

/* Turn control over to DECTPU */

return_status = tpu$control ();
if (!return_status)

exit(return_status);

/* Now clean up. */

cleanup_options = tpu$m_last_time | tpu$m_delete_context;
return_status = tpu$cleanup (&cleanup_options);
exit (return_status);

printf("Experiment complete");
}

8.5 Creating and Calling a USER Routine
This section describes the steps involved in creating an executable image for the
USER routine and how to call the routine from a C program in the DECTPU
environment. The following list describes the steps in creating the executable
image:

1. Write a program in the appropriate high-level language; in the supporting
example, the language is C. The program must contain a global routine
named TPU$CALLUSER.

2. Compile the program.

3. Link the program with an options file to create a shareable image.

4. Define the logical name TPU$CALLUSER to point to the file containing the
USER routine.

5. Invoke DECTPU.

DECTPU–22 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.5 Creating and Calling a USER Routine

6. From within a DECTPU session, call the high-level program to perform
its function by specifying the built-in procedure CALL_USER with the
appropriate parameters. The built-in procedure passes the specified
parameters to the appropriate routine.

8.5.1 The CALL_USER Code
This is an example of a USER routine written in the VAX C programming
language. The comments in the code explain the various routine functions.

/* call_user.c */
/*
A sample of a TPU CALL_USER routine written in VAX C.
The routine is compiled and linked as a shareable image and then the
DCL logical TPU$CALLUSER is defined to point at the image.

From within TPU, when the built-in CALL_USER is called, this image
will be activated and the tpu$call_user routine will be called.

This example is for VAX C but can be updated to work with DEC C with little
effort.

*/
#include <descrip.h>

extern int lib$sget1_dd(),
vaxc$crtl_init();

globalvalue
tpu$_success;

/*
Because we know we are being called from a non-C based routine, call
the CRTL initialization routine once

*/

static int
rtl_inited = 0;

extern int tpu$calluser (
int *int_param,
struct dsc$descriptor *str_param,
struct dsc$descriptor *result_param)
/*

A sample TPU CALL_USER routine that checks access to the file specified
in the str_param descriptor.

Return (in result_param):
ACCESS - specified access is allowed

NOACCESS - specified access is not allowed
ERROR - Either invalid param or the file does not exist
PARAM_ERROR - Invalid param passed
MEMORY_ERROR - An error occured allocating memory

An example from TPU code would be:

file_access := CALL_USER (0, "SYS$LOGIN:LOGIN.COM");
!
! Only look at the return value of ACCESS,
!
IF file_access = "ACCESS"
THEN

file_exists := 1;
ELSE

file_exists := 0;
ENDIF;

DEC Text Processing Utility (DECTPU) Routines DECTPU–23

DEC Text Processing Utility (DECTPU) Routines
8.5 Creating and Calling a USER Routine

See the description of the CALL_USER built-in for more information on how to
use the built-in.

*/
{

static char
*error_str = "ERROR",
*param_error_str = "PARAM_ERROR",
*memory_error_str = "MEMORY_ERROR",
*access_str = "ACCESS",
*noaccess_str = "NOACCESS";

char
*result_str_ptr;

int
result_str_length;

/*
If this is the first time in, call the VAXCRTL routine to init things

*/
if (rtl_inited == 0) {

vaxc$crtl_init();
rtl_inited = 1;

}
/*

The integer must be between 0 and 7 for the
call to the C RTL routine ACCESS

*/
if ((*int_param < 0) || (*int_param > 7)) {

result_str_length = strlen (param_error_str);
result_str_ptr = param_error_str;

}
else {

/*
If we were passed a null string,
set the param_error return value

*/
if (str_param->dsc$w_length == 0) {

result_str_length = strlen (param_error_str);
result_str_ptr = param_error_str;

}
else {

/*
Because there is NO way of knowing if the descriptor we have

been passed ends with a \0, we need to create a valid string
pass to the rtl routine "access"

*/
char

*str_ptr;
/*

Allocate memory enough for the string plus the null character
*/
str_ptr = (char *) malloc (str_param->dsc$w_length + 1);
/*

Make sure the memory allocation worked...
*/
if (str_ptr == 0) {

result_str_length = strlen (memory_error_str);
result_str_ptr = memory_error_str;

}

DECTPU–24 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.5 Creating and Calling a USER Routine

else {
/*

Move the bytes from the descriptor into the memory
pointed to by str_ptr, and end it with a \0
Then call the access routine, free the memory

*/
sprintf (str_ptr, "%.*s\0", str_param->dsc$w_length,
str_param->dsc$a_pointer);
if (access (str_ptr, *int_param) == 0) {

result_str_length = strlen (access_str);
result_str_ptr = access_str;

}
else {

result_str_length = strlen (noaccess_str);
result_str_ptr = noaccess_str;

}
free (str_ptr);

}
}

}
/* Setup the return descriptor */
lib$sget1_dd (&result_str_length, result_param);
/*

Copy the result bytes into the descriptor’s dynamic
memory

*/
memcpy (result_param->dsc$a_pointer, result_str_ptr,

result_str_length);

return tpu$_success;
}

Use the following command to compile the routine with the VAX C compiler:

$ CC/LIST call_user.c

8.5.2 Linking the CALL_USER Image
To link the CALL_USER image as a shareable image requires a linker option file
similar to the one that follows:

! CALL_USER.OPT
call_user.obj
UNIVERSAL=TPU$CALLUSER
SYS$LIBRARY:VAXCRTL/SHARE

After you create the linker option file, use the following command to link the
shareable image:

$ LINK CALL_USER/OPT/SHARE/MAP/FULL

This command produces a shareable image named CALL_USER.EXE.

The description of the DECTPU built-in CALL_USER states that you must define
the logical name TPU$CALLUSER to point to the image that contains the USER
procedure. Use the following command to define the logical name:

$ DEFINE TPU$CALLUSER SYS$DISK:[]CALL_USER.EXE

If you move the image to another device and directory, you must appropriately
revise the pointer.

DEC Text Processing Utility (DECTPU) Routines DECTPU–25

DEC Text Processing Utility (DECTPU) Routines
8.6 Accessing the USER Routine from DECTPU

8.6 Accessing the USER Routine from DECTPU
To access the USER routine from DECTPU, your code must call the CALL_USER
built-in procedure. The CALL_USER built-in procedure activates the shareable
image pointed to by the logical name TPU$CALLUSER and calls the USER
routine within that image. The following is an example of DECTPU code that can
be used with the USER example routine in Section 8.5.1.

! Module: CALL_USER.TPU - the access routine
!
! Constants used with the call to this procedure (or directly to the call_user
! routine).
!
CONSTANT

ACCESS_FILE_EXISTS := 0,
ACCESS_FILE_EXECUTE := 1,
ACCESS_FILE_WRITE := 2,
ACCESS_FILE_DELETE := 2,
ACCESS_FILE_READ := 4,
ACCESS_FILE_EXE_DEL := ACCESS_FILE_EXECUTE + ACCESS_FILE_DELETE,
ACCESS_FILE_EXE_WRITE := ACCESS_FILE_EXE_DEL,
ACCESS_FILE_DEL_READ := ACCESS_FILE_DELETE + ACCESS_FILE_READ,
ACCESS_FILE_DEL_WRITE := ACCESS_FILE_DEL_READ,
ACCESS_FILE_EXE_READ := ACCESS_FILE_EXECUTE + ACCESS_FILE_READ;

PROCEDURE access (val, the_file)
!
! Call the CRTL function ACCESS via the TPU CALL_USER built-in
!
! 0 = exists
! 1 = execute
! 2 = write (& delete)
! 4 = read
! (add them for combinations)
! Return Values:
! 1 = requested access is allowed
! 0 = requested access is NOT allowed
! -1 = an error occured with the built-in
! Side Effects:
! A message may end up in the message buffer if there is an error
!
LOCAL

ret_val;
! Handle the call_user errors
ON_ERROR

[TPU$_BADUSERDESC] :
MESSAGE (ERROR_TEXT);
RETURN -1;

[TPU$_NOCALLUSER] :
MESSAGE ("Could not find access call_user routine - check logicals");
RETURN -1;

[TPU$_CALLUSERFAIL] :
MESSAGE ("Something is wrong in the access call_user routine");
MESSAGE (ERROR_TEXT);
RETURN -1

[OTHERWISE] :
MESSAGE (ERROR_TEXT);
RETURN -1;
ENDON_ERROR;

DECTPU–26 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
8.6 Accessing the USER Routine from DECTPU

ret_val := CALL_USER (val, the_file);
CASE ret_val

["ACCESS"] :
RETURN 1;

["NOACCESS"] :
RETURN 0;

[OUTRANGE] :
MESSAGE ("Error with call to access routine: " + ret_val);
ENDCASE;
RETURN -1;
ENDPROCEDURE;

You can extend the EVE editor using the DECTPU code described at the
beginning of this section. Copy the code to a file named CALL_USER.TPU in the
current working directory and then execute the following commands:

GET FILE CALL_USER.TPU
EXTEND ALL

To use the DECTPU routine ACCESS from EVE, write a DECTPU procedure
EVE_EXISTS, coded as follows:

PROCEDURE eve_exists (the_file)
IF access (ACCESS_FILE_EXISTS, the_file) = 1
THEN

MESSAGE ("File " + the_file + " exists");
ELSE

MESSAGE ("No such file " + the_file);
ENDIF;
ENDPROCEDURE;

This enables calls from the command line such as:

Command: exists sys$login:login.com

This command directs that the message window indicate whether the file
SYS$LOGIN:LOGIN.COM exists.

8.7 DECTPU Routines
This section describes the individual DECTPU routines.

DEC Text Processing Utility (DECTPU) Routines DECTPU–27

DEC Text Processing Utility (DECTPU) Routines
TPU$CLEANUP

TPU$CLEANUP—Free System Resources Used During DECTPU
Session

The TPU$CLEANUP routine cleans up internal data structures, frees memory,
and restores terminals to their initial state.

This is the final routine called in each interaction with DECTPU.

Format

TPU$CLEANUP flags

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Value
Returned.

Argument

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or mask) defining the cleanup options. The flags argument is the address
of a longword bit mask defining the cleanup options or the address of a 32-bit
mask defining the cleanup options. This mask is the logical OR of the flag bits
you want to set. Following are the various cleanup options:

Flag1 Function

TPU$M_DELETE_JOURNAL Closes and deletes the journal file if it is open.
TPU$M_DELETE_EXITH Deletes the DECTPU exit handler.
TPU$M_DELETE_BUFFERS Deletes all text buffers. If this is not the

last time you are calling DECTPU, then all
variables referring to these data structures
are reset, as if by the built-in procedure
DELETE. If a buffer is deleted, then all
ranges and markers within that buffer, and
any subprocesses using that buffer, are also
deleted.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field
in which the bit is set. TPU$V_ is a bit number.

DECTPU–28 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$CLEANUP

Flag1 Function

TPU$M_DELETE_WINDOWS Deletes all windows. If this is not the last
time you are calling DECTPU, then all
variables referring to these data structures
are reset, as if by the built-in procedure
DELETE.

TPU$M_DELETE_CACHE Deletes the virtual file manager’s data
structures and caches. If this deletion is
requested, then all buffers are also deleted. If
the cache is deleted, the initialization routine
has to reinitialize the virtual file manager the
next time it is called.

TPU$M_PRUNE_CACHE Frees up any virtual file manager caches that
have no pages allocated to buffers. This frees
up any caches that may have been created
during the session but are no longer needed.

TPU$M_EXECUTE_FILE Reexecutes the command file if
TPU$EXECUTE_INIFILE is called again.
You must set this bit if you plan to specify
a new file name for the command file. This
option is used in conjunction with the option
bit passed to TPU$INITIALIZE indicating the
presence of the /COMMAND qualifier.

TPU$M_EXECUTE_PROC Looks up TPU$INIT_PROCEDURE and
executes it the next time TPU$EXECUTE_
INIFILE is called.

TPU$M_DELETE_CONTEXT Deletes the entire context of DECTPU. If this
option is specified, then all other options are
implied, except for executing the initialization
file and initialization procedure.

TPU$M_RESET_TERMINAL Resets the terminal to the state it was in
upon entry to DECTPU. The terminal mailbox
and all windows are deleted. If the terminal
is reset, then it is reinitialized the next time
TPU$INITIALIZE is called.

TPU$M_KILL_PROCESSES Deletes all subprocesses created during the
session.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field
in which the bit is set. TPU$V_ is a bit number.

DEC Text Processing Utility (DECTPU) Routines DECTPU–29

DEC Text Processing Utility (DECTPU) Routines
TPU$CLEANUP

Flag1 Function

TPU$M_CLOSE_SECTION2 Closes the section file and releases the
associated memory. All buffers, windows,
and processes are deleted. The cache is
purged and the flags are set for reexecution
of the initialization file and initialization
procedure. If the section is closed and if
the option bit indicates the presence of the
SECTION qualifier, then the next call to
TPU$INITIALIZE attempts a new restore
operation.

TPU$M_DELETE_OTHERS Deletes all miscellaneous preallocated data
structures. Memory for these data structures
is reallocated the next time TPU$INITIALIZE
is called.

TPU$M_LAST_TIME This bit should be set only when you are
calling DECTPU for the last time. Note that
if you set this bit and then recall DECTPU,
the results are unpredictable.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field
in which the bit is set. TPU$V_ is a bit number.
2Using the simplified callable interface does not set TPU$_CLOSE_SECTION. This feature allows you
to make multiple calls to TPU$TPU without requiring you to open and close the section file on each
call.

Description

The cleanup routine is the final routine called in each interaction with DECTPU.
It tells DECTPU to clean up its internal data structures and prepare for
additional invocations. You can control what is reset by this routine by setting or
clearing the flags described previously.

When you finish with DECTPU, call this routine to free the memory and restore
the characteristics of the terminal to their original settings.

If you intend to exit after calling TPU$CLEANUP, do not delete the data
structures; the operating system does this automatically. Allowing the operating
system to delete the structures improves the performance of your program.

Notes

1. When you use the simplified interface, DECTPU automatically sets the
following flags:

• TPU$V_RESET_TERMINAL

• TPU$V_DELETE_BUFFERS

• TPU$V_DELETE_JOURNAL

• TPU$V_DELETE_WINDOWS

• TPU$V_DELETE_EXITH

DECTPU–30 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$CLEANUP

• TPU$V_EXECUTE_PROC

• TPU$V_EXECUTE_FILE

• TPU$V_PRUNE_CACHE

• TPU$V_KILL_PROCESSES

2. If this routine does not return a success status, no other calls to the editor
should be made.

Condition Value Returned

TPU$_SUCCESS Normal successful completion.

DEC Text Processing Utility (DECTPU) Routines DECTPU–31

DEC Text Processing Utility (DECTPU) Routines
TPU$CLIPARSE

TPU$CLIPARSE—Parse a Command Line

The TPU$CLIPARSE routine parses a command line and builds the item list for
TPU$INITIALIZE.

Format

TPU$CLIPARSE string ,fileio ,call_user

Returns

OpenVMS usage: item_list
type: longword (unsigned)
access: read only
mechanism: by reference

This routine returns the address of an item list.

Arguments

string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Command line. The string argument is the address of a descriptor of a DECTPU
command.

fileio
OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

File I/O routine. The fileio argument is the address of a descriptor of a file I/O
routine.

call_user
OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

Call-user routine. The call_user argument is the address of a descriptor of a
call-user routine.

DECTPU–32 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$CLIPARSE

Description

This routine calls CLI$DCL_PARSE to establish a command table and a
command to parse. It then calls TPU$PARSEINFO to build an item list for
TPU$INITIALIZE.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls TPU$CLIPARSE. You must do this
because TPU$CLIPARSE destroys all parse information obtained and stored
before TPU$CLIPARSE was called.

DEC Text Processing Utility (DECTPU) Routines DECTPU–33

DEC Text Processing Utility (DECTPU) Routines
TPU$CLOSE_TERMINAL

TPU$CLOSE_TERMINAL—Close Channel to Terminal

The TPU$CLOSE_TERMINAL routine closes the DECTPU channel to the
terminal.

Format

TPU$CLOSE_TERMINAL

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Value
Returned.

Arguments

None.

Description

This routine is used with the built-in procedure CALL_USER and its associated
call-user routine to control the DECTPU access to the terminal. When a call-user
routine invokes TPU$CLOSE_TERMINAL, DECTPU closes its channel to the
terminal and the channel of the DECTPU associated mailbox.

When the call-user routine returns control to it, DECTPU automatically reopens
a channel to the terminal and redisplays the visible windows.

A call-user routine can use TPU$CLOSE_TERMINAL at any point in the
program and as many times as necessary. If the terminal is already closed to
DECTPU when TPU$CLOSE_TERMINAL is used, the call is ignored.

Condition Value Returned

TPU$_SUCCESS Normal successful completion.

DECTPU–34 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$CONTROL

TPU$CONTROL—Pass Control to DECTPU

The TPU$CONTROL routine is the main processing routine of the DECTPU
editor. It is responsible for reading the text and commands and executing them.
When you call this routine (after calling TPU$INITIALIZE), control is turned
over to DECTPU.

Format

TPU$CONTROL [integer]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

integer
OpenVMS usage: integer
type: longword (unsigned)
access: read only
mechanism: by reference

Prevents DECTPU from displaying the message ‘‘Editing session is not being
journaled’’ when the calling program gives control to DECTPU. Specify a true
(odd) integer to preserve compatibility in future releases. If you omit the
parameter, DECTPU displays the message if journaling is not enabled.

Description

This routine controls the editing session. It is responsible for reading the text
and commands and for executing them. Windows on the screen are updated
to reflect the edits made. Your program can regain control by interrupting
DECTPU using the TPU$SPECIFY_ASYNC_ACTION routine, together with the
TPU$TRIGGER_ASYNC_ACTION routine.

Note

Control is also returned to your program if an error occurs or when you
enter either the built-in procedure QUIT or the built-in procedure EXIT.

DEC Text Processing Utility (DECTPU) Routines DECTPU–35

DEC Text Processing Utility (DECTPU) Routines
TPU$CONTROL

Condition Values Returned

TPU$_EXITING A result of EXIT (when the default condition
handler is established).

TPU$_NONANSICRT A result of operation termination — results when
you call DECTPU with TPU$DISPLAYFILE
set to nodisplay and you attempt to execute
screen-oriented commands.

TPU$_QUITTING A result of QUIT (when the default condition
handler is established).

TPU$_RECOVERFAIL A recovery operation was terminated abnormally.

DECTPU–36 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$EDIT

TPU$EDIT—Edit a File

The TPU$EDIT routine builds a command string from its parameters and passes
it to the TPU$TPU routine.

TPU$EDIT is another entry point to the DECTPU simplified callable interface.

Format

TPU$EDIT input ,output

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

input
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input file name. The input argument is the address for a descriptor of a file
specification.

output
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Output file name. The output argument is the address for a descriptor of an
output file specification. It is used with the /OUTPUT command qualifier.

DEC Text Processing Utility (DECTPU) Routines DECTPU–37

DEC Text Processing Utility (DECTPU) Routines
TPU$EDIT

Description

This routine builds a command string and passes it to TPU$TPU. If the length
of the output descriptor is nonzero, then the /OUTPUT qualifier is added to
the command string. The /OUTPUT qualifier causes a file to be written to the
specified file even if no modifications are made to the input file. If the QUIT
built-in procedure is called, it prompts the user as if changes had been made
to the buffer. This allows applications to check for the existence of the output
file to see if the editing session was terminated, which is consistent with other
OpenVMS callable editors.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls TPU$EDIT. Your application must do this
because TPU$EDIT destroys all parse information obtained and stored before
TPU$EDIT is called.

Condition Values Returned

This routine returns the same values as TPU$TPU.

DECTPU–38 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$EXECUTE_COMMAND

TPU$EXECUTE_COMMAND—Execute One or More DECTPU
Statements

The TPU$EXECUTE_COMMAND routine allows your program to execute
DECTPU statements.

Format

TPU$EXECUTE_COMMAND string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by value

DECTPU statement. The string argument is the address of a descriptor of a
character string denoting one or more DECTPU statements.

Description

This routine performs the same function as the built-in procedure EXECUTE
described in the DEC Text Processing Utility Reference Manual.

Condition Values Returned

TPU$_SUCCESS Normal successful completion.
TPU$_EXECUTEFAIL Execution aborted. This could be because of

execution errors or compilation errors.
TPU$_EXITING EXIT built-in procedure was invoked.
TPU$_QUITTING QUIT built-in procedure was invoked.

DEC Text Processing Utility (DECTPU) Routines DECTPU–39

DEC Text Processing Utility (DECTPU) Routines
TPU$EXECUTE_INIFILE

TPU$EXECUTE_INIFILE—Execute Initialization Files

The TPU$EXECUTE_INIFILE routine allows you to execute a user-written
initialization file.

This routine must be executed after the editor is initialized and before any other
commands are processed.

Format

TPU$EXECUTE_INIFILE

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

None.

Description

Calling the TPU$EXECUTE_INIFILE routine causes DECTPU to perform the
following steps:

1. The command file is read into a buffer. The default is TPU$COMMAND.TPU.
If you specified a file on the command line that cannot be found, an error
message is displayed and the routine is aborted.

2. If you specified the /DEBUG qualifier on the command line, the DEBUG file
is read into a buffer. The default is SYS$SHARE:TPU$DEBUG.TPU.

3. The DEBUG file is compiled and executed (if available).

4. TPU$INIT_PROCEDURE is executed (if available).

5. The Command buffer is compiled and executed (if available).

6. TPU$INIT_POSTPROCEDURE is executed (if available).

Note

If you call this routine after calling TPU$CLEANUP, you must set
the flags TPU$_EXECUTEPROCEDURE and TPU$_EXECUTEFILE.
Otherwise, the initialization file does not execute.

DECTPU–40 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$EXECUTE_INIFILE

Condition Values Returned

TPU$_SUCCESS Normal successful completion.
TPU$_COMPILEFAIL The compilation of the initialization file was

unsuccessful.
TPU$_EXECUTEFAIL The execution of the statements in the

initialization file was unsuccessful.
TPU$_EXITING A result of EXIT. If the default condition handler

is being used, the session is terminated.
TPU$_FAILURE General code for all other errors.
TPU$_QUITTING A result of QUIT. If the default condition handler

is being used, the session is terminated.

DEC Text Processing Utility (DECTPU) Routines DECTPU–41

DEC Text Processing Utility (DECTPU) Routines
TPU$FILEIO

TPU$FILEIO—Perform File Operations

The TPU$FILEIO routine handles all DECTPU file operations. Your own file
I/O routine can call this routine to perform some operations for it. However, the
routine that opens the file must perform all operations for that file. For example,
if TPU$FILEIO opens the file, it must also close it.

Format

TPU$FILEIO code ,stream ,data

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying a DECTPU function. The code argument is the address of a
longword containing an item code from DECTPU specifying a function to perform.
Following are the item codes that you can specify in the file I/O routine:

• TPU$K_OPEN—This item code specifies that the data parameter is the
address of an item list. This item list contains the information necessary
to open the file. The stream parameter should be filled in with a unique
identifying value to be used for all future references to this file. The resultant
file name should also be copied with a dynamic string descriptor.

• TPU$K_CLOSE—The file specified by the stream argument is to be closed.
All memory being used by its structures can be released.

• TPU$K_CLOSE_DELETE—The file specified by the stream argument is
to be closed and deleted. All memory being used by its structures can be
released.

• TPU$K_GET—The data parameter is the address of a dynamic string
descriptor to be filled with the next record from the file specified by the
stream argument. The routine should use the routines provided by the Run-
Time Library to copy text into this descriptor. DECTPU frees the memory
allocated for the data read when the file I/O routine indicates that the end of
the file has been reached.

• TPU$K_PUT—The data parameter is the address of a descriptor for the data
to be written to the file specified by the stream argument.

DECTPU–42 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$FILEIO

stream
OpenVMS usage: unspecified
type: longword (unsigned)
access: modify
mechanism: by reference

File description. The stream argument is the address of a data structure
consisting of four longwords. This data structure describes the file to be
manipulated.

This data structure is used to refer to all files. It is written to when an open file
request is made. All other requests use information in this structure to determine
which file is being referenced.

The following figure shows the stream data structure:

ZK−4045−GE

Class

RFM

File Identifier

Allocation

Type Length

Address of name

The first longword holds a unique identifier for each file. The user-written file I/O
routine is restricted to values between 0 and 511. Thus, you can have up to 512
files open simultaneously.

The second longword is divided into three fields. The low word is used to store
the allocation quantity, that is, the number of blocks allocated to this file from
the FAB (FAB$L_ALQ). This value is used later to calculate the output file size
for preallocation of disk space. The low-order byte of the second word is used
to store the record attribute byte (FAB$B_RAT) when an existing file is opened.
The high-order byte is used to store the record format byte (FAB$B_RFM) when
an existing file is opened. The values in the low word and the low-order and
high-order bytes of the second word are used for creating the output file in the
same format as the input file. These three fields are to be filled in by the routine
opening the file.

The last two longwords are used as a descriptor for the resultant or the expanded
file name. This name is used later when DECTPU processes EXIT commands.
This descriptor is to be filled in with the file name after an open operation. It
should be allocated with either the routine LIB$SCOPY_R_DX or the routine
LIB$SCOPY_DX from the Run-Time Library. This space is freed by DECTPU
when it is no longer needed.

data
OpenVMS usage: item_list_3
type: longword (unsigned)
access: modify
mechanism: by reference

Stream data. The data argument is either the address of an item list or the
address of a descriptor.

DEC Text Processing Utility (DECTPU) Routines DECTPU–43

DEC Text Processing Utility (DECTPU) Routines
TPU$FILEIO

Note

The meaning of this parameter depends on the item code specified in the
code field.

When the TPU$K_OPEN item code is issued, the data parameter is the address
of an item list containing information about the open request. The following
DECTPU item codes are available for specifying information about the open
request:

• TPU$K_ACCESS item code lets you specify one of three item codes in the
buffer address field, as follows:

– TPU$K_IO

– TPU$K_INPUT

– TPU$K_OUTPUT

• TPU$K_FILENAME item code is used for specifying the address of a string
to use as the name of the file you are opening. The length field contains the
length of this string, and the address field contains the address.

• TPU$K_DEFAULTFILE item code is used for assigning a default file name
to the file being opened. The buffer length field contains the length, and the
buffer address field contains the address of the default file name.

• TPU$K_RELATEDFILE item code is used for specifying a related file name
for the file being opened. The buffer length field contains the length, and the
buffer address field contains the address of a string to use as the related file
name.

• TPU$K_RECORD_ATTR item code specifies that the buffer address field
contains the value for the record attribute byte in the FAB (FAB$B_RAT)
used for file creation.

• TPU$K_RECORD_FORM item code specifies that the buffer address field
contains the value for the record format byte in the FAB (FAB$B_RFM) used
for file creation.

• TPU$K_MAXIMIZE_VER item code specifies that the version number of the
output file should be one higher than the highest existing version number.

• TPU$K_FLUSH item code specifies that the file should have every record
flushed after it is written.

• TPU$K_FILESIZE item code is used for specifying a value to be used as the
allocation quantity when creating the file. The value is specified in the buffer
address field.

DECTPU–44 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$FILEIO

Description

By default, TPU$FILEIO creates variable-length files with carriage-return record
attributes (FAB$B_RFM = VAR, FAB$B_RAT = CR). If you pass to it the TPU$K_
RECORD_ATTR or TPU$K_RECORD_FORM item, that item is used instead.

The following combinations of formats and attributes are acceptable:

Format Attributes

STM,STMLF,STMCR 0,BLK,CR,BLK+CR
VAR 0,BLK,FTN,CR,BLK+FTN,BLK+CR

All other combinations are converted to VAR format with CR attributes.

This routine always puts values greater than 511 in the first longword of the
stream data structure. Because a user-written file I/O routine is restricted to the
values 0 through 511, you can easily distinguish the file control blocks (FCB) this
routine fills in from the ones you created.

Note

DECTPU uses TPU$FILEIO by default when you use the simplified
callable interface. When you use the full callable interface, you must
explicitly invoke TPU$FILEIO or provide your own file I/O routine.

Condition Values Returned

The TPU$FILEIO routine returns an OpenVMS RMS status code to DECTPU.
The file I/O routine is responsible for signaling all errors if any messages are
desired.

DEC Text Processing Utility (DECTPU) Routines DECTPU–45

DEC Text Processing Utility (DECTPU) Routines
TPU$FILE_PARSE

TPU$FILE_PARSE— Parse the Given File Specification

The TPU$FILE_PARSE routine provides a simplified interface to the $PARSE
system service. DECTPU calls this routine when the built-in procedure FILE_
PARSE is executed from TPU code.

Format

TPU$FILE_PARSE result-string ,flags ,filespec ,default-spec ,related-spec

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
See Condition Values Returned.

Arguments

result-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Includes the components of the file specification specified by the flags argument.
The memory for the return string is allocated via the Run-Time Library routine
LIB$SGET1_DD. Use the Run-Time Library routine LIB$SFREE1_DD to
deallocate the memory for the return string.

flags
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Determine what file specification components should be returned. The following
table shows the valid values for the flags argument:

Flag Bit1 Description

TPU$M_NODE Returns the node component of the file
specification.

TPU$M_DEV Returns the device component of the file
specification.

TPU$M_DIR Returns the directory component of the file
specification.

TPU$M_NAME Returns the name component of the file
specification.

1TPU$M . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

DECTPU–46 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$FILE_PARSE

Flag Bit1 Description

TPU$M_TYPE Returns the type component of the file
specification.

TPU$M_VER Returns the version component of the file
specification.

TPU$M_HEAD Returns NODE, DEVICE and DIRECTORY
components of the file specification. If the
TPUM_NODE, TPUM_DEV or TPU$M_DIR
bits are set while TPU$M_HEAD is set, the
routine signals the error TPU$_INCKWDCOM
and returns control to the caller.

TPU$M_TAIL Returns NAME, TYPE and VERSION components
of the file specification. If the TPU$M_NAME,
TPU$M_TYPE or TPU$M_VER bits are set while
TPU$M_TAIL is set, the routine signals the error
TPU$_INCKWDCOM and returns control to the
caller.

1TPU$M . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The object file specification.

default-spec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contains the default file specification. The default file specification fields are used
in the result string as substitutes for fields omitted in the filespec argument.
You can also make substitutions in the result string using the related-spec
argument.

Use the value 0 when no default-spec is to be applied to the file specification.

related-spec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contains the related file specification. The fields in the related file specification
are substituted in the result-string if a particular field is missing from both the
filespec and default-spec arguments.

Use the value 0 when no default-spec is to be applied to the file specification.

DEC Text Processing Utility (DECTPU) Routines DECTPU–47

DEC Text Processing Utility (DECTPU) Routines
TPU$FILE_PARSE

Description

The TPU$FILE_PARSE routine returns a string containing the fields requested
of the file specified. The file is not required to exist when the parse is done.
The intention of the TPU$FILE_PARSE routine is to construct a valid file
specification from the information passed in through the file specification, the
default file specification, and the related file specification.

The routine uses the $PARSE system service to return the requested information.

The TPU$FILE_PARSE routine is also called by DECTPU when the TPU built-in
procedure FILE_PARSE is executed from TPU code. The return value of the
built-in procedure is the string returned in the result-string argument.

Condition Values Returned

TPU$_SUCCESS Normal successful completion. If the return
string contains a null-string, then the last match
of the search operations has occurred.

TPU$_INCKWDCOM The flags argument had an illegal combination
of values.

TPU$_PARSEFAIL The parse failed.

DECTPU–48 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$FILE_SEARCH

TPU$FILE_SEARCH—Search File System for Specified File

The TPU$FILE_SEARCH routine provides a simplified interface to the $SEARCH
system service. DECTPU call this routine when TPU code executes the FILE_
SEARCH built-in procedure.

Format

TPU$FILE_SEARCH result-string ,flags ,filespec ,default-spec ,related-spec

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
See Condition Values Returned.

Arguments

result-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Includes the components of the file specification passed by the flags argument.
The memory for the return string is allocated via the Run-Time Library routine
LIB$SGET1_DD. To deallocate memory for the string, use the Run-Time Library
routine LIB$SFREE1_DD.

flags
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Determines what file specification components should be returned. The following
table lists the valid flag values:

Flag1 Function

TPU$M_NODE Returns the node component of the file
specification.

TPU$M_DEV Returns the device component of the file
specification.

TPU$M_DIR Returns the directory component of the file
specification.

TPU$M_NAME Returns the name component of the file
specification.

1TPU$M . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

DEC Text Processing Utility (DECTPU) Routines DECTPU–49

DEC Text Processing Utility (DECTPU) Routines
TPU$FILE_SEARCH

Flag1 Function

TPU$M_TYPE Returns the type component of the file
specification.

TPU$M_VER Returns the version component of the file
specification.

TPU$M_REPARSE Reparses the file specification before processing.
This is intended to be used to reset the file search.

TPU$M_HEAD Returns NODE, DEVICE, and DIRECTORY
components of the file specification. If the
TPUM_NODE, TPUM_DEV or TPU$M_DIR bits
are set while TPU$M_HEAD is set, the routine
will signal the error TPU$_INCKWDCOM and
return.

TPU$M_TAIL Returns NAME, TYPE and VERSION components
of the file specification. If the TPU$M_NAME,
TPU$M_TYPE or TPU$M_VER bits are set while
TPU$M_TAIL is set, the routine will signal the
error TPU$_INCKWDCOM and return.

1TPU$M . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Object file specification.

default-spec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The default file specification. The default file specification fields are used to fill
in the result-string when fields are omitted in the filespec argument. Use the
related-spec argument to specify other substitutions.

Use the value 0 when no default-spec is to be applied to the file specification.

related-spec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contains the related file specification. The fields in the related file specification
are used in the result-string for fields omitted in the filespec and default-spec
arguments.

Use the value 0 when no default-spec is to be applied to the file specification.

DECTPU–50 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$FILE_SEARCH

Description

This routine allows an application to verify the existence of, and return
components of, a file specification. Wildcard operations are permitted. The
routine uses the $PARSE and $SEARCH system services to seek the file
specification.

If no wildcards are included in the file specification string and the result-string
returns a zero (0) length string, no file was found. If wildcard characters were
present in the file specification and the result-string returns a zero (0) length
string, there are no more files that match the wildcards.

To find all the files that match a wildcard specification, repeatedly call this
routine, passing the same arguments, until the routine returns a zero-length
result string.

The TPU$FILE_SEARCH routine is called by DECTPU when the TPU built-in
procedure FILE_SEARCH is executed from TPU code. The return value of the
built-in procedure is the string returned in the result-string argument.

Condition Values Returned

TPU$_SUCCESS Normal successful completion. If the return
string contains a null string, the final match
operation was detected.

TPU$_INCKWDCOM The flags argument had an illegal combination
of values.

TPU$_PARSEFAIL The requested repeat parse failed.
TPU$_SEARCHFAIL An error occurred during the search operation.

DEC Text Processing Utility (DECTPU) Routines DECTPU–51

DEC Text Processing Utility (DECTPU) Routines
TPU$HANDLER

TPU$HANDLER—DECTPU Condition Handler

The TPU$HANDLER routine is the DECTPU condition handler.

The DECTPU condition handler invokes the $PUTMSG system service, passing it
the address of TPU$MESSAGE.

Format

TPU$HANDLER signal_vector ,mechanism_vector

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
See Condition Values Returned.

Arguments

signal_vector
OpenVMS usage: arg_list
type: longword (unsigned)
access: modify
mechanism: by reference

Signal vector. See the OpenVMS System Services Reference Manual for
information about the signal vector passed to a condition handler.

mechanism_vector
OpenVMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference

Mechanism vector. See the OpenVMS System Services Reference Manual for
information about the mechanism vector passed to a condition handler.

Description

The TPU$MESSAGE routine performs the actual output of the message. The
$PUTMSG system service only formats the message. It gets the settings for the
message flags and facility name from the variables described in Section 8.1.2.
Those values can be modified only by the DECTPU built-in procedure SET.

If the condition value received by the handler has a FATAL status or does not
have the DECTPU facility code, the condition is resignaled.

If the condition is TPU$_QUITTING, TPU$_EXITING, or TPU$_RECOVERFAIL,
a request to UNWIND is made to the establisher of the condition handler.

After handling the message, the condition handler returns with a continue
status. DECTPU error message requests are made by signaling a condition to
indicate which message should be written out. The arguments in the signal
array are a correctly formatted message argument vector. This vector sometimes

DECTPU–52 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$HANDLER

contains multiple conditions and formatted ASCII output (FAO) arguments for
the associated messages. For example, if the editor attempts to open a file that
does not exist, the DECTPU message TPU$_NOFILEACCESS is signaled. The
FAO argument to this message is a string for the name of the file. This condition
has an error status, followed by the OpenVMS RMS status field (STS) and status
value field (STV). Because this condition does not have a fatal severity, the editor
continues after handling the error.

The editor does not automatically return from TPU$CONTROL. If you call the
TPU$CONTROL routine, you must explicitly establish a way to regain control
(for example, using the built-in procedure CALL_USER). If you establish your
own condition handler but call the DECTPU handler for certain conditions,
the default condition handler must be established at the point in your program
where you want to return control. You can also interrupt TPU$CONTROL
by having your program specify and then trigger an asynchronous routine via
the TPU$SPECIFY_ASNYC_ACTION and TPU$TRIGGER_ASYNC_ACTION
routines.

See the OpenVMS Calling Standard for details on writing a condition handler.

DEC Text Processing Utility (DECTPU) Routines DECTPU–53

DEC Text Processing Utility (DECTPU) Routines
TPU$INITIALIZE

TPU$INITIALIZE—Initialize DECTPU for Processing

The TPU$INITIALIZE routine initializes DECTPU for text processing. This
routine allocates global data structures, initializes global variables, and calls
the appropriate setup routines for each of the major components of the editor,
including the Screen Manager and the I/O subsystem.

Format

TPU$INITIALIZE callback [,user_arg]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

callback
OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

Callback routine. The callback argument is the address of a user-written routine
that returns the address of an item list containing initialization parameters or
a routine for handling file I/O operations. This callback routine must call a
command line parsing routine, which can be TPU$CLIPARSE or a user-written
parsing routine.

Callable DECTPU defines item codes that you can use to specify initialization
parameters. The following rules must be followed when building the item list:

• If you use the TPU$_OTHER_FILENAMES item code, it must follow the
TPU$_FILENAME item code.

• If you use either the TPU$_CHAIN item code or the TPU$_ENDLIST code, it
must be the last item code in the list.

The following figure shows the general format of an item descriptor. For
information about how to build an item list, refer to the programmer’s manual
associated with the language you are using. Any reference to command line
qualifiers refer to those command line qualifiers that you use with the EDIT/TPU
command.

DECTPU–54 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$INITIALIZE

ZK−4044−GE

Return address

Buffer address

Item code Buffer length

The return address in an item descriptor is usually 0.

The following item codes are available:

Item Code Description

TPU$_OPTIONS Enables the command qualifiers. The bits in the bit mask
specified by the buffer address field correspond to the various
DECTPU command qualifiers.

TPU$_JOURNALFILE Passes the string specified with the /JOURNAL qualifier. The
buffer length field is the length of the string, and the buffer
address field is the address of the string. This string is available
with GET_INFO (COMMAND_LINE,‘‘JOURNAL_FILE’’). This
string can be a null string.

TPU$_SECTIONFILE Passes the string that is the name of the binary initialization file
(section file) to be mapped in. The buffer length field is the length
of the string, and the buffer address field is the address of the
string. If the TPU$V_SECTION bit is set, this item code must be
specified.

TPU$_OUTPUTFILE Passes the string specified with the /OUTPUT qualifier. The
buffer length field is the length of the string, and the buffer
address field specifies the address of the string. This string is
returned by the built-in procedure GET_INFO (COMMAND_
LINE, ‘‘OUTPUT_FILE’’). The string can be a null string.

TPU$_DISPLAYFILE Passes the string specified with the /DISPLAY qualifier. The
buffer length field defines the length of the string, and the buffer
address field defines the string address. The interface between
the TPUSHR image and the display file image is not documented.
Applications should only use this option with documented display
files such as TPU$CCTSHR or TPU$MOTIFSHR.

TPU$_COMMANDFILE Passes the string specified with the /COMMAND qualifier.
The buffer length field is the length of the string, and the
buffer address field is the address of the string. This string is
returned by the built-in procedure GET_INFO (COMMAND_
LINE, ‘‘COMMAND_FILE’’). The string can be a null string.

TPU$_FILENAME Passes the string that is the name of the first input file specified
on the command line. The buffer length field specifies the length
of this string, and the buffer address field specifies its address.
This string is returned by the built-in procedure GET_INFO
(COMMAND_LINE, ‘‘FIRST_FILE_NAME’’). This file name can
be a null string.

DEC Text Processing Utility (DECTPU) Routines DECTPU–55

DEC Text Processing Utility (DECTPU) Routines
TPU$INITIALIZE

Item Code Description

TPU$_OTHER_
FILENAMES

Passes a string that contains the name of an input file that
follows the first input file on the command line. The buffer length
field specifies the length of this string, and the buffer address
field specifies its address. Each additional file specified on the
command line requires its own TPU$_OTHER_FILENAMES
item entry. These strings are returned by the GET_INFO
(COMMAND_LINE,‘‘NEXT_FILE_NAME’’) built-in procedure
in the order they appear in the item list. This item code must
appear after the TPU$_FILENAME item in the item list.

TPU$_FILEIO Passes the bound procedure value of a routine to be used for
handling file operations. You can provide your own file I/O
routine, or you can call TPU$FILEIO, the utility routine provided
by DECTPU for handling file operations. The buffer address field
specifies the address of a two-longword vector. The first longword
of the vector contains the address of the routine. The second
longword specifies the environment value that DECTPU loads
into R1 before calling the routine.

TPU$_CALLUSER Passes the bound procedure value of the user-written routine that
the built-in procedure CALL_USER is to call. The buffer address
field specifies the address of a two-longword vector. The first
longword of the vector contains the address of the routine. The
second longword specifies the environment value that DECTPU
loads into R1 before calling the routine.

TPU$_INIT_FILE Passes the string specified with the /INITIALIZATION qualifier.
The buffer length field is the length of the string, and the buffer
address field is the address of the string. This string is returned
by the built-in procedure GET_INFO (COMMAND_LINE,‘‘INIT_
FILE’’).

TPU$_START_LINE Passes the starting line number for the edit. The buffer address
field contains the first of the two integer values you specified as
part of the /START_POSITION command qualifier. The value is
available using the built-in procedure GET_INFO (COMMAND_
LINE,‘‘LINE’’). Usually an initialization procedure uses this
information to set the starting position in the main editing buffer.
The first line in the buffer is line 1.

TPU$_START_CHAR Passes the starting column position for the edit. The buffer
address field contains the second of the two integer values you
specified as part of the /START_POSITION command qualifier.
The value is available using the built-in procedure GET_INFO
(COMMAND_LINE, ‘‘CHARACTER’’). Usually an initialization
procedure uses this information to set the starting position in the
main editing buffer. The first column on a line to character 1.

TPU$_CHARACTERSET Passes the string specified with the /CHARACTER_SET qualifier.
The buffer length field specifies the string length and the buffer
address field specifies the string address. Valid strings are ‘‘DEC_
MCS’’ (the default value), ‘‘ISO_LATIN1’’, and ‘‘GENERAL’’. If the
application tries to pass any other string, the routine signals an
error and passes the default string (DEC_MCS).

DECTPU–56 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$INITIALIZE

Item Code Description

TPU$_WORKFILE Passes the string specified with the /WORK qualifier. The buffer
length field specifies the string length and the buffer address
specifies the string address. This string is available with GET_
INFO (COMMAND_LINE, ‘‘WORK_FILE’’).

TPU$_CHAIN Passes the address of the next item list to the process specified by
the buffer address field.

TPU$_ENDLIST Signals the end of the item list.
TPU$_PARENT_WIDGET Passes the appropriate parent widget when invoking the

DECwindows version of the editor. This routine is not specified by
the application; DECTPU invokes its own application shell. The
widget address is passed in the buffer address field. This item
code is only valid when using the DECwindows interface.

TPU$_APPLICATION_
CONTEXT

Passes the application context to use with the TPU$_PARENT_
WIDGET. DECTPU defaults to its own application context. The
buffer address field specifies the application context address. This
item code is only valid when using the DECwindows interface.

TPU$_DEFAULTSFILE Specifies which file DECTPU uses to initialize the X defaults
database. The buffer length field specifies the string length and
the buffer address field specifies the string address. This item
code is only valid when using the DECwindows interface.

TPU$_CTRL_C_ROUTINE Passes the bound procedure value of a routine to be used for
handling Ctrl/C asynchronous system traps (ASTs). DECTPU
calls the routine when a Ctrl/C AST occurs. If the routine returns
a FALSE value, DECTPU assumes that the Ctrl/C has been
handled. If the routine returns a TRUE value, DECTPU aborts
any currently executing DECTPU procedure. The buffer address
field specifies the address of a two-longword vector. The first
longword of the vector contains the address of the routine. The
second longword specifies the environment value that DECTPU
loads into R1 before calling the routine.

TPU$_DEBUGFILE Passes the string specified with the /DEBUG command qualifier.
The buffer length field is the length of the string, and the buffer
address field is the address of the string.

TPU$_FILE_SEARCH Passes the bound procedure value of a routine to be used to
replace the TPU$FILE_SEARCH routine which is called when the
built-in procedure FILE_SEARCH is called from TPU code. See
the description of the TPU$FILE_SEARCH and the user routine
FILE_SEARCH for more information.

TPU$_FILE_PARSE Passes the bound procedure value of a routine to be used to
replace the TPU$FILE_PARSE routine which is called when the
built-in procedure FILE_PARSE is called from TPU code. See
the description of the TPU$FILE_PARSE and the user routine
FILE_PARSE for more information.

Table 8–1 lists the bits and corresponding masks enabled by the item code
TPU$K_OPTIONS and shows how each bit affects TPU$INITIALIZE operation.
Several bits in the TPU$_OPTIONS mask require additional item code entries
in the item list. An example of this is TPU$M_COMMAND which requires a
TPU$_COMMANDFILE entry in the item list.

DEC Text Processing Utility (DECTPU) Routines DECTPU–57

DEC Text Processing Utility (DECTPU) Routines
TPU$INITIALIZE

Table 8–1 Valid Masks for the TPU$K_OPTIONS Item Code

Mask1
GET_INFO
Request String2 Description

TPU$M_COMMAND COMMAND If DECTPU senses the presence of the TPU$_
COMMANDFILE item, it tries to read, compile
and execute the unbound TPU code.

TPU$M_COMMAND_
DFLTED

Not applicable Specifies that DECTPU should use the default
command file name of TPU$COMMAND.TPU
when reading in the command file. No error is
reported if the default command file is not found.
TPU$INITIALIZE fails when the TPU$M_
COMMAND_DFLTED bit is set to 0 and no file
is specified in the item list.

TPU$M_CREATE CREATE The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

TPU$M_DEBUG Not applicable If DECTPU senses the presence of the TPU$_
DEBUGFILE item, it tries to read the file,
and then proceeds to compile and execute its
contents as TPU statements.

TPU$M_DEFAULTS Not applicable If DECTPU senses the presence of the TPU$_
DEFAULTSFILE item, it uses the specified
DECwindows X resource file to initialize the
DECwindows X resource database.

TPU$M_DISPLAY DISPLAY If DECTPU senses the presence of the TPU$_
DISPLAYFILE item, it tries to image activate
the specified image as its screen manager.
When the bit is 0, DECTPU uses SYS$OUTPUT
for display and only the READ_LINE built-in
procedure may be used for input.

TPU$M_INIT INITIALIZATION If DECTPU senses the presence of the TPU$_
INIT_FILE item, it returns the specified string
through the built-in procedure GET_INFO
(COMMAND_LINE, ‘‘INITIALIZATION_FILE’’).
Processing of the initialization file is left to the
application.

TPU$M_JOURNAL JOURNAL If DECTPU senses the presence of the TPU$_
JOURNALFILE item, it outputs the keystrokes
entered during the editing session to the
specified file.
Note: Compaq recommends the use of buffer
change journaling in new applications.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field in which the bit is
set. TPU$V_ is a bit number.
2Most bits in the mask have a corresponding GET_INFO (COMMAND_LINE) request string.

(continued on next page)

DECTPU–58 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$INITIALIZE

Table 8–1 (Cont.) Valid Masks for the TPU$K_OPTIONS Item Code

Mask1
GET_INFO
Request String2 Description

TPU$M_MODIFY MODIFY The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

TPU$M_
NODEFAULTS

Not applicable DECTPU initializes the DECwindows X resource
database only with resource files that the
DECwindows toolkit routine XtApplInitialize
loads into the database.

TPU$M_NOMODIFY NOMODIFY The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

TPU$M_OUTPUT OUTPUT The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

TPU$M_READ READ_ONLY The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

TPU$M_RECOVER RECOVER The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

TPU$M_SECTION SECTION If DECTPU senses the presence of the TPU$_
SECTIONFILE item, it tries to read the
specified file as a binary initialization file.
TPU$INITIALIZE fails if this bit is set to 1 and
the TPU$_SECTIONFILE item is not present in
the item list.

TPU$M_SEC_LNM_
MODE

Not applicable If DECTPU senses the presence of the TPU$M_
SEC_LNM_MODE item, it looks only at
executive mode logical names when attempting
to read in a section file.

TPU$M_WORK WORK If DECTPU senses the presence of the TPU$_
WORKFILE item, it uses the specifed file for
memory management. If no item list entry is
present, and this bit is set to 1, a file is created
in SYS$LOGIN:.TPU$WORK.

TPU$M_WRITE WRITE The behavior of DECTPU is not affected by this
bit. Its interpretation is left to the application
layered on DECTPU.

1The prefix can be TPU$M_ or TPU$V_. TPU$M_ denotes a mask corresponding to the specific field in which the bit is
set. TPU$V_ is a bit number.
2Most bits in the mask have a corresponding GET_INFO (COMMAND_LINE) request string.

To create the bits, start with the value 0, then use the OR operator on the mask
(TPU$M . . .) of each item you want to set. Another way to create the bits is to
treat the 32 bits as a bit vector and set the bit (TPU$V . . .) corresponding to the
item you want.

DEC Text Processing Utility (DECTPU) Routines DECTPU–59

DEC Text Processing Utility (DECTPU) Routines
TPU$INITIALIZE

user_arg
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

User argument. The user_arg argument is passed to the user-written
initialization routine INITIALIZE.

The user_arg parameter is provided to allow an application to pass information
through TPU$INITIALIZE to the user-written initialization routine. DECTPU
does not interpret this data in any way.

Description

This is the first routine that must be called after establishing a condition handler.

This routine initializes the editor according to the information received from
the callback routine. The initialization routine defaults all file specifications to
the null string and all options to off. However, it does not default the file I/O or
call-user routine addresses.

Condition Values Returned

TPU$_SUCCESS Initialization was completed successfully.
TPU$_FAILURE General code for all other errors during

initialization.
TPU$_INSVIRMEM Insufficient virtual memory exists for the editor

to initialize.
TPU$_NOFILEROUTINE No routine has been established to perform file

operations.
TPU$_NONANSICRT The input device (SYS$INPUT) is not a

supported terminal.
TPU$_RESTOREFAIL An error occurred during the restore operation.
TPU$_SYSERROR A system service did not work correctly.

DECTPU–60 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$MESSAGE

TPU$MESSAGE—Write Message String

The TPU$MESSAGE routine writes error messages and strings using the built-in
procedure, MESSAGE.

Call this routine to have messages written and handled in a manner consistent
with DECTPU. This routine should be used only after TPU$EXECUTE_INIFILE.

Format

TPU$MESSAGE string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value.

Note

The return status should be ignored because it is intended for use by the
$PUTMSG system service.

Argument

string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Formatted message. The string argument is the address of a descriptor of text
to be written. It must be completely formatted. This routine does not append
the message prefixes. However, the text is appended to the message buffer if one
exists. In addition, if the buffer is mapped to a window, the window is updated.

DEC Text Processing Utility (DECTPU) Routines DECTPU–61

DEC Text Processing Utility (DECTPU) Routines
TPU$PARSEINFO

TPU$PARSEINFO—Parse Command Line and Build Item List

The TPU$PARSEINFO routine parses a command and builds the item list for
TPU$INITIALIZE.

Format

TPU$PARSEINFO fileio ,call_user

Returns

OpenVMS usage: item_list
type: longword (unsigned)
access: read only
mechanism: by reference

The routine returns the address of an item list.

Arguments

fileio
OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

File I/O routine. The fileio argument is the address for a descriptor of a file I/O
routine.

call_user
OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

Call-user routine. The call_user argument is the address for a descriptor of a
call-user routine.

Description

The TPU$PARSEINFO routine parses a command and builds the item list for
TPU$INITIALIZE.

This routine uses the command language (CLI) routines to parse the current
command. It makes queries about the command parameters and qualifiers that
DECTPU expects. The results of these queries are used to set up the proper
information in an item list. The addresses of the user routines are used for those
items in the list. The address of this list is the return value of the routine.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls the TPU$PARSEINFO interface. This is
because TPU$PARSEINFO destroys all parse information obtained and stored
before TPU$PARSEINFO was called.

DECTPU–62 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$SIGNAL

TPU$SIGNAL—Signal a TPU Status

The TPU$SIGNAL routine allows applications and user-written TPU routines
such as FILEIO to easily signal error messages in order for TPU error handlers
to perform correctly.

Format

TPU$SIGNAL condition-code

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. In most cases, the routine returns either the same
signal passed to it in the condition value argument, or the return value of
LIB$SIGNAL. If the routine fails, it signals TPU$_FAILURE and returns control
to the caller.

Argument

condition-code
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

The condition-code is an unsigned longword that contains the condition code to be
signaled. In most cases, this argument is a TPU message code.

Description

TPU$SIGNAL performs the same function as the Run-Time Library routine
LIB$SIGNAL, but it also processes TPU facility messages to allow TPU language
ON_ERROR handlers to be called.

For example, assume that a user-written file input/output routine is designed
to signal the error TPU$_OPENIN when it fails to open a file. Calling the
TPU$SIGNAL routine and passing the value TPU$_OPENIN allows a case-style
TPU ON_ERROR handler to receive the error, thus preserving the documented
return values for TPU built-in procedures such as READ_FILE.

Note

You must call TPU$INITIALIZE before you call the TPU$SIGNAL
routine.

If TPU$_QUITTING, TPU$_EXITING, or TPU$_RECOVERFAIL are passed to
the routine, it calls the Run-Time Library routine LIB$SIGNAL.

If facility messages other than TPU messages are passed to the TPU$SIGNAL
routine, it calls the LIB$SIGNAL routine and passes the appropriate condition
value.

DEC Text Processing Utility (DECTPU) Routines DECTPU–63

DEC Text Processing Utility (DECTPU) Routines
TPU$SPECIFY_ASYNC_ACTION

TPU$SPECIFY_ASYNC_ACTION—Register an Asynchronous Action

The TPU$SPECIFY_ASYNC_ACTION routine allows applications using the
DECTPU full callable interface to register asynchronous actions with DECTPU.

Format

TPU$SPECIFY_ASYNC_ACTION facility_index [,tpu_statement]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

facility_index
OpenVMS usage: longword_unsigned
type: longword (signed)
access: read only
mechanism: by reference

Represents an index of the asynchronous action. This index is used with the
TPU$TRIGGER_ASYNC_ACTION routine to let DECTPU know what action to
perform. It may also be used to delete an action routine (by omitting the tpu_
statement). You may register several asynchronous actions depending on your
application’s needs. This facility index number may be any positive integer.

tpu_statement
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The DECTPU statement you want executed when you call the TPU$TRIGGER_
ASYNC_ACTION routine. The statement is compiled and then stored internally.
If you omit the parameter, DECTPU removes the action from its list of
asynchronous events.

Description

The TPU$SPECIFY_ASYNC_ACTION routine, along with TPU$TRIGGER_
ASYNC_ACTION, allow applications to interrupt DECTPU after calling
TPU$CONTROL. The specified DECTPU statement is compiled and saved.

This routine must be called after TPU$INITIALIZE. It will not complete
successfully if keystroke journaling is enabled.

DECTPU–64 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$SPECIFY_ASYNC_ACTION

Condition Values Returned

TPU$_SUCCESS Normal successful completion.
TPU$_COMPILEFAIL The code specified in tpu_statement did not

compile successfully.
TPU$_INVPARM An invalid parameter was passed.
TPU$_JNLACTIVE Keystroke journaling is active. This routine

requires that either journaling be turned off or
that buffer change journaling be used.

DEC Text Processing Utility (DECTPU) Routines DECTPU–65

DEC Text Processing Utility (DECTPU) Routines
TPU$TPU

TPU$TPU—Invoke DECTPU

The TPU$TPU routine invokes DECTPU and is equivalent to the DCL command
EDIT/TPU.

Format

TPU$TPU command

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

command
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Command string. Note that the verb is TPU instead of EDIT/TPU. The
command argument is the address for a descriptor of a command line.

Description

This routine takes the command string specified and passes it to the editor.
DECTPU uses the information from this command string for initialization
purposes, just as though you had entered the command at the DCL level.

Using the simplified callable interface does not set TPU$CLOSE_SECTION. This
feature lets you make multiple calls to TPU$TPU without requiring you to open
and close the section file on each call.

If your application parses information that is not related to the operation of
DECTPU, make sure the application obtains and uses all non-DECTPU parse
information before the application calls TPU$TPU. This is because TPU$TPU
destroys all parse information obtained and stored before TPU$TPU was called.

Condition Values Returned

This routine returns any condition value returned by TPU$INITIALIZE,
TPU$EXECUTE_INIFILE, TPU$CONTROL, and TPU$CLEANUP.

DECTPU–66 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
TPU$TRIGGER_ASYNC_ACTION

TPU$TRIGGER_ASYNC_ACTION—Execute DECTPU Command at
Asynchronous Level

The TPU$TRIGGER_ASYNC_ACTION routine allows applications using the
DECTPU full callable interface to interrupt the DECTPU TPU$CONTROL loop
at an asynchronous level.

Format

TPU$TRIGGER_ASYNC_ACTION facility_index

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

facility_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The facility_index argument represents the asynchronous action to be taken.
This is the same index passed to the TPU$SPECIFY_ASYNC_ACTION routine
registering what DECTPU statements to execute.

Description

The TPU$TRIGGER_ASYNC_ACTION routine, along with TPU$SPECIFY_
ASYNC_ACTION routine allow applications to interrupt DECTPU after calling
TPU$CONTROL. The command that was specified for this facility_index is
put on the DECTPU queue of work items and is handled as soon as no other
work items are present. This allows DECTPU to complete and stabilize its
environment before executing the command. This routine must be called after
control has been passed to DECTPU via the TPU$CONTROL routine.

Condition Values Returned

TPU$_SUCCESS Normal successful completion.
TPU$_UNKFACILITY The facility_index passed to this routine

does not match any facility index passed to
TPU$SPECIFY_ASYNC_ACTION.

DEC Text Processing Utility (DECTPU) Routines DECTPU–67

DEC Text Processing Utility (DECTPU) Routines
FILEIO

FILEIO—User-Written Routine to Perform File Operations

The user-written FILEIO routine is used to handle DECTPU file operations. The
name of this routine can be either your own file I/O routine or the name of the
DECTPU file I/O routine (TPU$FILEIO).

Format

FILEIO code ,stream ,data

Returns

OpenVMS usage: cond_value
type: longword (usigned)
access: write only
mechanism: by reference

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code specifying a DECTPU function. The code argument is the address of
a longword containing an item code from DECTPU, which specifies a function to
perform.

stream
OpenVMS usage: unspecified
type: longword (unsigned)
access: modify
mechanism: by reference

File description. The stream argument is the address of a data structure
containing four longwords. This data structure is used to describe the file to be
manipulated.

data
OpenVMS usage: item_list_3
type: longword (unsigned)
access: modify
mechanism: by reference

Stream data. The data argument is either the address of an item list or the
address of a descriptor.

Note

The value of this parameter depends on which item code you specify.

DECTPU–68 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
FILEIO

Description

The bound procedure value of this routine is specified in the item list built by
the callback routine. This routine is called to perform file operations. Instead
of using your own file I/O routine, you can call TPU$FILEIO and pass it the
parameters for any file operation you do not want to handle. Note, however, that
TPU$FILEIO must handle all I/O requests for any file it opens. Also, if it does
not open the file, it cannot handle any I/O requests for the file. In other words,
you cannot mix the file operations between your own file I/O routine and the one
supplied by DECTPU.

Condition Values Returned

The condition values returned are determined by the user and should indicate
success or failure of the operation.

DEC Text Processing Utility (DECTPU) Routines DECTPU–69

DEC Text Processing Utility (DECTPU) Routines
FILE_PARSE

FILE_PARSE—User-Written Routine to Perform File Parse
Operations

This is a user-written routine that can be used in place of the TPU$FILE_PARSE
routine.

Format

FILE_PARSE result-string ,flags ,filespec ,default-spec ,related-spec

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. The return value is ignored by DECTPU. User-written
FILE_PARSE routines should include calls to the TPU$SIGNAL routine to ensure
proper error handling.

Arguments

result-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Return value for the built-in procedure FILE_PARSE. The calling program should
fill in this descriptor with a dynamic string allocated by the string routines, such
as the Run-Time Library routine LIB$SGET1_DD. DECTPU frees this string
when necessary.

flags
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The following table lists the valid flag values used to request file specification
components:

Flag1 Function

TPU$M_NODE Requests for the node component of the file
specification.

TPU$M_DEV Requests for the device component of the file
specification.

TPU$M_DIR Requests for the directory component of the file
specification.

1TPU$M . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

DECTPU–70 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
FILE_PARSE

Flag1 Function

TPU$M_NAME Requests for the name component of the file
specification.

TPU$M_TYPE Requests for the type component of the file
specification.

TPU$M_VER Requests for the version component of the file
specification.

TPU$M_HEAD Requests for the NODE, DEVICE, and
DIRECTORY components of the file specification.

TPU$M_TAIL Requests for NAME, TYPE, and VERSION
components of the file specification.

1TPU$M . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The object file specification.

default-spec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contains the default file specification. The value 0 is passed if there is no
default-spec argument.

related-spec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The related-spec argument contains the related file specification. The value 0 is
passed if there is no related-spec.

Description

This routine allows an application to replace the TPU$FILE_PARSE routine
with its own file-parsing routine. The calling program passes the address of the
file-parsing routine to TPU$INITIALIZE using the TPU$_FILE_PARSE item
code.

When the DECTPU built-in procedure FILE_PARSE is called from TPU
code, DECTPU calls either the user-written routine (if one was passed to
TPU$INITIALIZE) or the TPU$FILE_PARSE routine. The return value of
the built-in procedure is the string returned in the result-string argument.

To ensure proper operation of the user’s ON_ERROR error handlers, errors should
be signaled using the TPU$SIGNAL routine.

DEC Text Processing Utility (DECTPU) Routines DECTPU–71

DEC Text Processing Utility (DECTPU) Routines
FILE_SEARCH

FILE_SEARCH—User-Written Routine to Perform File Search
Operations

This is a user-written routine that is used in place of the TPU$FILE_SEARCH
routine.

Format

FILE_SEARCH result-string ,flags ,filespec ,default-spec ,related-spec

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. If an odd numeric value is returned, the next call to
the built-in procedure FILE_SEARCH automatically sets the TPU$M_REPARSE
bit in the flags longword. TPU$M_REPARSE is also set if the result-string has
a length of 0.

Arguments

result-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Return value for the built-in procedure FILE_SEARCH. Your program should fill
in this descriptor with a dynamic string allocated by the string routines such as
the Run-Time Library routine LIB$SGET1_DD. DECTPU frees this string when
necessary.

The TPU$M_REPARSE bit is set in the flags longword if the result-string has a
length of zero. The bit is intended to reset the file search when wildcard searches
are performed.

flags
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The following table shows the flags used for specifying the file components:

Flag1 Function

TPU$M_NODE Requests for the node component of the file
specification.

TPU$M_DEV Requests for the device component of the file
specification.

1TPU$M . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

DECTPU–72 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
FILE_SEARCH

Flag1 Function

TPU$M_DIR Requests for the directory component of the file
specification.

TPU$M_NAME Requests for the name component of the file
specification.

TPU$M_TYPE Requests for the type component of the file
specification.

TPU$M_VER Requests for the version component of the file
specification.

TPU$M_REPARSE Reparses the file specification before processing.
This is intended as a way to restart the file search.
This flag will automatically be set by DECTPU
if on a previous call to the FILE_SEARCH user
routine the result-string has a zero length or the
routine returns a odd (noneven) status.

TPU$M_HEAD Requests for the NODE, DEVICE, and
DIRECTORY components of the file specification.

TPU$M_TAIL Requests for the NAME, TYPE, and VERSION
component of the file specification.

1TPU$M . . . indicates a mask. There is a corresponding value for each mask in the form TPU$V

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The object file specification.

default-spec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The default-spec argument contains the default file specification.

The value 0 is passed if there is no default-spec.

related-spec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The related-spec argument contains the related file specification.

The value 0 is passed if there is no related-spec.

DEC Text Processing Utility (DECTPU) Routines DECTPU–73

DEC Text Processing Utility (DECTPU) Routines
FILE_SEARCH

Description

The FILE_SEARCH user routine allows an application to replace the TPU$FILE_
SEARCH routine with its own file-searching routine. The calling program passes
the address of the routine to the TPU$INITIALIZE routine using the TPU$_
FILE_SEARCH item code.

When the DECTPU built-in procedure FILE_SEARCH is called from TPU code,
DECTPU calls either the user-written FILE_SEARCH routine (if one was passed
to TPU$INITIALIZE) or the TPU$FILE_SEARCH routine. The return value of
the built-in procedure is the string returned in the result-string argument.

To ensure proper operation of the user’s ON_ERROR handlers, errors in the
user-written FILE_PARSE routine should be signaled using the TPU$SIGNAL
routine.

DECTPU–74 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
HANDLER

HANDLER—User-Written Condition Handling Routine

The user-written HANDLER routine performs condition handling.

Format

HANDLER signal_vector ,mechanism_vector

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value.

Arguments

signal_vector
OpenVMS usage: arg_list
type: longword (unsigned)
access: modify
mechanism: by reference

Signal vector. See the OpenVMS System Services Reference Manual for
information about the signal vector passed to a condition handler.

mechanism_vector
OpenVMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference

Mechanism vector. See the OpenVMS System Services Reference Manual for
information about the mechanism vector passed to a condition handler.

Description

If you need more information about writing condition handlers and programming
concepts, refer to OpenVMS Programming Interfaces: Calling a System Routine.

Instead of writing your own condition handler, you can use the default condition
handler, TPU$HANDLER. If you want to write your own routine, you must call
TPU$HANDLER with the same parameters that your routine received to handle
DECTPU internal signals.

DEC Text Processing Utility (DECTPU) Routines DECTPU–75

DEC Text Processing Utility (DECTPU) Routines
INITIALIZE

INITIALIZE—User-Written Initialization Routine

The user-written initialization callback routine is passed to TPU$INITIALIZE
as a bound procedure value and called to supply information needed to initialize
DECTPU.

Format

INITIALIZE [user_arg]

Returns

OpenVMS usage: item_list
type: longword (unsigned)
access: read only
mechanism: by reference

This routine returns the address of an item list.

Arguments

user_arg
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

User argument.

Description

The user-written initialization callback routine is passed to TPU$INITIALIZE
as a bound procedure value and called to supply information needed to initialize
DECTPU.

If the user_arg parameter was specified in the call to TPU$INITIALIZE, the
initialization callback routine is called with only that parameter. If user_arg
was not specified in the call to TPU$INITIALIZE, the initialization callback
routine is called with no parameters.

The user_arg parameter is provided to allow an application to pass information
through TPU$INITIALIZE to the user-written initialization routine. DECTPU
does not interpret this data in any way.

The user-written callback routine is expected to return the address of an item
list containing initialization parameters. Because the item list is used outside
the scope of the initialization callback routine, it should be allocated in static
memory.

The item list entries are discussed in the section on TPU$INITIALIZE. Most of
the initialization parameters have a default value; strings default to the null
string, and flags default to false. The only required initialization parameter is the
address of a routine for file I/O. If an entry for the file I/O routine address is not
present in the item list, TPU$INITIALIZE returns with a failure status.

DECTPU–76 DEC Text Processing Utility (DECTPU) Routines

DEC Text Processing Utility (DECTPU) Routines
USER

USER—User-Written Routine Called from a DECTPU Editing Session

The user-written USER routine allows your program to take control during
a DECTPU editing session (for example, to leave the editor temporarily and
perform a calculation).

Format

USER integer ,stringin ,stringout

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value.

Arguments

integer
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

First parameter to the built-in procedure CALL_USER. This is an input-only
parameter and must not be modified.

stringin
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second parameter to the built-in procedure CALL_USER. This is an input-only
parameter and must not be modified.

stringout
OpenVMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Return value for the built-in procedure CALL_USER. Your program should fill
in this descriptor with a dynamic string allocated by the string routines (such as
LIB$SGET1_DD) provided by the Run-Time Library. The DECTPU editor frees
this string when necessary.

DEC Text Processing Utility (DECTPU) Routines DECTPU–77

DEC Text Processing Utility (DECTPU) Routines
USER

Description

This user-written routine is invoked by the DECTPU built-in procedure CALL_
USER. The built-in procedure CALL_USER passes three parameters to this
routine. These parameters are then passed to the appropriate part of your
application to be used as specified. (For example, they can be used as operands
in a calculation within a Fortran program.) Using the string routines provided
by the Run-Time Library, your application fills in the stringout parameter in
the call-user routine, which returns the stringout value to the built-in procedure
CALL_USER.

The description of the built-in procedure CALL_USER in the DEC Text Processing
Utility Reference Manual shows an example of a BASIC program that is a
call-user routine.

See Section 8.5 for a description of how to create an executeable image for the
USER routine and how to call the routine from a C program in the DECTPU
environment.

DECTPU–78 DEC Text Processing Utility (DECTPU) Routines

9
EDT Routines

On OpenVMS operating systems, the EDT editor can be called from a program
written in any language that generates calls using the OpenVMS Calling
Standard.

You can set up your call to EDT so the program handles all the editing work, or
you can make EDT run interactively so you can edit a file while the program is
running.

This chapter on callable EDT assumes that you know how to call an external
facility from the language you are using. Callable EDT is a shareable image,
which means that you save physical memory and disk space by having all
processes access a single copy of the image.

9.1 Introduction to EDT Routines
You must include a statement in your program accessing the EDT entry point.
This reference statement is similar to a library procedure reference statement.
The EDT entry point is referenced as EDT$EDIT. You can pass arguments
to EDT$EDIT; for example, you can pass EDT$FILEIO or your own routine.
When you refer to the routines you pass, call them FILEIO, WORKIO, and
XLATE. Therefore, FILEIO can be either a routine provided by EDT (named
EDT$FILEIO) or a routine that you write.

9.2 Using the EDT Routines: An Example
Example 9–1 shows a VAX BASIC program that calls EDT. All three routines
(FILEIO, WORKIO, and XLATE) are called. Note the reference to the entry point
EDT$EDIT in line number 500.

Example 9–1 Using the EDT Routines in a VAX BASIC Program

100 EXTERNAL INTEGER EDT$FILEIO !
200 EXTERNAL INTEGER EDT$WORKIO
250 EXTERNAL INTEGER AXLATE
300 EXTERNAL INTEGER FUNCTION EDT$EDIT
400 DECLARE INTEGER RESULT

450 DIM INTEGER PASSFILE(1%) "
460 DIM INTEGER PASSWORK(1%)
465 DIM INTEGER PASSXLATE(1%)
470 PASSFILE(0%) = LOC(EDT$FILEIO)
480 PASSWORK(0%) = LOC(EDT$WORKIO)
485 PASSXLATE(0%) = LOC(AXLATE)

(continued on next page)

EDT Routines EDT–1

EDT Routines
9.2 Using the EDT Routines: An Example

Example 9–1 (Cont.) Using the EDT Routines in a VAX BASIC Program

500 RESULT = EDT$EDIT(’FILE.BAS’,’’,’EDTINI’,’’,0%, #
PASSFILE(0%)BY REF, PASSWORK(0%) BY REF, $
PASSXLATE(0%) BY REF) %

600 IF (RESULT AND 1%) = 0%
THEN

PRINT "SOMETHING WRONG"
CALL LIB$STOP(RESULT BY VALUE)

900 PRINT "EVERYTHING O.K."
1000 END

! The external entry points EDT$FILEIO, EDT$WORKIO, and AXLATE are
defined so they can be passed to callable EDT.

" Arrays are used to construct the two-longword structure needed for data type
BPV.

Here is the call to EDT. The input file is FILE.BAS, the output and journal
files are defaulted, and the command file is EDTINI. A 0 is passed for the
options word to get the default EDT options.

$ The array PASSFILE points to the entry point for all file I/O, which is set
up in this example to be the EDT-supplied routine with the entry point
EDT$FILEIO. Similarly, the array PASSWORK points to the entry point
for all work I/O, which is the EDT-supplied routine with the entry point
EDT$WORKIO.

% PASSXLATE points to the entry point that EDT will use for all XLATE
processing. PASSXLATE points to a user-supplied routine with the entry
point AXLATE.

9.3 EDT Routines
This section describes the individual EDT routines.

EDT–2 EDT Routines

EDT Routines
EDT$EDIT

EDT$EDIT—Edit a File

The EDT$EDIT routine invokes the EDT editor.

Format

EDT$EDIT in_file [,out_file] [,com_file] [,jou_file] [,options] [,fileio] [,workio] [,xlate]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

in_file
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

File specification of the input file that EDT$EDIT is to edit. The in_file argument
is the address of a descriptor pointing to this file specification. The string that
you enter in this calling sequence is passed to the FILEIO routine to open the
primary input file. This is the only required argument.

out_file
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

File specification of the output file that EDT$EDIT creates. The out_file
argument is the address of a descriptor pointing to this file specification. The
default is that the input file specification is passed to the FILEIO routine to open
the output file for the EXIT command.

com_file
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

File specification of the startup command file to be executed when EDT is
invoked. The com_file argument is the address of a descriptor pointing to this
file specification. The com_file string is passed to the FILEIO routine to open
the command file. The default is the same as that for EDT command file defaults.

EDT Routines EDT–3

EDT Routines
EDT$EDIT

jou_file
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

File specification of the journal file to be opened when EDT is invoked. The
jou_file argument is the address of a descriptor pointing to this file specification.
The jou_file string is passed to the FILEIO routine to open the journal file. The
default is to use the same file name as in_file.

options
OpenVMS usage: mask_longword
type: aligned bit string
access: read only
mechanism: by reference

Bit vector specifying options for the edit operation. The options argument is the
address of an aligned bit string containing this bit vector. Only bits <5:0> are
currently defined; all others must be 0. The default options have all bits set to 0.
This is the same as the default setting when you invoke EDT to edit a file from
DCL.

Symbols and their descriptions follow:

Symbol Description

EDT$M_RECOVER If set, bit <0> causes EDT to read the journal file
and execute the commands in it, except for the
EXIT or QUIT commands, which are ignored. After
the journal file commands are processed, editing
continues normally. If bit <0> is set, the FILEIO
routine is asked to open the journal file for both input
and output; otherwise FILEIO is asked only to open
the journal file for output. Bit <0> corresponds to the
/RECOVER qualifier on the EDT command line.

EDT$M_COMMAND If set, bit <1> causes EDT to signal if the startup
command file cannot be opened. When bit <1>
is 0, EDT intercepts the signal from the FILEIO
routine indicating that the startup command file
could not be opened. Then, EDT proceeds with
the editing session without reading any startup
command file. If no command file name is supplied
with the call to the EDT$EDIT routine, EDT tries
to open SYS$LIBRARY:EDTSYS.EDT or, if that
fails, EDTINI.EDT. Bit <1> corresponds to the
/COMMAND qualifier on the EDT command line.
If EDT$M_NOCOMMAND (bit <4>) is set, bit <1> is
overridden because bit <4> prevents EDT from trying
to open a command file.

EDT$M_NOJOURNAL If set, bit <2> prevents EDT from opening the journal
file. Bit <2> corresponds to the /NOJOURNAL or
/READ_ONLY qualifier on the EDT command line.

EDT–4 EDT Routines

EDT Routines
EDT$EDIT

Symbol Description

EDT$M_NOOUTPUT If set, bit <3> prevents EDT from using the input
file name as the default output file name. Bit <3>
corresponds to the /NOOUTPUT or /READ_ONLY
qualifier on the EDT command line.

EDT$M_NOCOMMAND If set, bit <4> prevents EDT from opening a
startup command file. Bit <4> corresponds to the
/NOCOMMAND qualifier on the EDT command line.

EDT$M_NOCREATE If set, bit <5> causes EDT to return to the caller if
the input file is not found. The status returned is the
error code EDT$_INPFILNEX.

fileio
OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call
mechanism: by reference

User-supplied routine called by EDT to perform file I/O functions. The fileio
argument is the address of a bound procedure value containing the user-supplied
routine. When you do not need to intercept any file I/O, either use the entry point
EDT$FILEIO for this argument or omit it. When you only need to intercept some
amount of file I/O, call the EDT$FILEIO routine for the other cases.

To avoid confusion, note that EDT$FILEIO is a routine provided by EDT whereas
FILEIO is a routine that you provide.

In order to accommodate routines written in high-level languages that do up-level
addressing, this argument must have a data type of BPV (bound procedure value).
BPV is a two-longword entity in which the first longword contains the address
of a procedure value and the second longword is the environment value. When
the bound procedure is called, EDT loads the second longword into R1. If you use
EDT$FILEIO for this argument, set the second longword to <0>. You can pass a
<0> for the argument, and EDT will set up EDT$FILEIO as the default and set
the environment word to 0.

workio
OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call
mechanism: by reference

User-supplied routine called by EDT to perform I/O between the work file and
EDT. The workio argument is the address of a bound procedure value containing
the user-supplied routine. Work file records are addressed only by number and
are always 512 bytes long. If you do not need to intercept work file I/O, you can
either use the entry point EDT$WORKIO for this argument or omit it.

In order to accommodate routines written in high-level languages that do up-level
addressing, this argument must have a data type of BPV (bound procedure value).
This means that EDT loads R1 with the second longword addressed before calling
it. If EDT$WORKIO is used for this argument, set the second longword to 0.
You can pass a 0 for this argument, and EDT will set up EDT$WORKIO as the
default and set the environment word to 0.

EDT Routines EDT–5

EDT Routines
EDT$EDIT

xlate
OpenVMS usage: vector_longword_unsigned
type: bound procedure value
access: function call
mechanism: by reference

User-supplied routine that EDT calls when it encounters the nokeypad command
XLATE. The xlate argument is the address of a bound procedure value containing
the user-supplied routine. The XLATE routine allows you to gain control of your
EDT session. If you do not need control of EDT during the editing session, you
can either use the entry point EDT$XLATE for this argument or omit it.

In order to accommodate routines written in high-level languages that do up-level
addressing, this argument must have a data type of BPV (bound procedure value).
This means that EDT loads R1 with the second longword addressed before calling
it. If EDT$XLATE is used for this argument, set the second longword to 0. You
can pass a 0 for this argument, and EDT will set up EDT$XLATE as the default
and set the environment word to 0.

Description

If the EDT session is terminated by EXIT or QUIT, the status will be a successful
value (bit <0> = 1). If the session is terminated because the file was not
found and if the /NOCREATE qualifier was in effect, the failure code EDT$_
INPFILNEX is returned. In an unsuccessful termination caused by an EDT error,
a failure code corresponding to that error is returned. Each error status from the
FILEIO and WORKIO routines is explained separately.

Three of the arguments to the EDT$EDIT routine, fileio, workio, and xlate are
the entry point names of user-supplied routines.

Condition Values Returned

SS$_NORMAL Normal successful completion.
EDT$_INPFILNEX /NOCREATE specified and input file does not

exist.

This routine also returns any condition values returned by user-supplied
routines.

EDT–6 EDT Routines

EDT Routines
FILEIO

FILEIO

The user-supplied FILEIO routine performs file I/O functions. Call it by
specifying it as an argument in the EDT$EDIT routine. It cannot be called
independently.

Format

FILEIO code ,stream ,record ,rhb

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

A status code that your FILEIO routine returns to EDT$EDIT. The fileio
argument is a longword containing the status code. The only failure code that
is normally returned is RMS$_EOF from a GET call. All other OpenVMS RMS
errors are signaled, not returned. The RMS signal should include the file name
and both longwords of the RMS status. Any errors detected with the FILEIO
routine can be indicated by setting status to an error code. That special error
code will be returned to the program by the EDT$EDIT routine. There is a
special status value EDT$_NONSTDFIL for nonstandard file opening.

Condition values are returned in R0.

Arguments

code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A code from EDT that specifies what function the FILEIO routine is to perform.
The code argument is the address of a longword integer containing this code.
Following are the valid function codes:

Function Code Description

EDT$K_OPEN_INPUT The record argument names a file to be
opened for input. The rhb argument is
the default file name.

EDT$K_OPEN_OUTPUT_SEQ The record argument names a file to
be opened for output as a sequenced file.
The rhb argument is the default file
name.

EDT$K_OPEN_OUTPUT_NOSEQ The record argument names a file to be
opened for output. The rhb argument is
the default file name.

EDT Routines EDT–7

EDT Routines
FILEIO

Function Code Description

EDT$K_OPEN_IN_OUT The record argument names a file to be
opened for both input and output. The
rhb argument is the default file name.

EDT$K_GET The record argument is to be filled with
data from the next record of the file. If
the file has record prefixes, rhb is filled
with the record prefix. If the file has no
record prefixes, rhb is not written. When
you attempt to read past the end of file,
status is set to RMS$_EOF.

EDT$K_PUT The data in the record argument is to
be written to the file as its next record.
If the file has record prefixes, the record
prefix is taken from the rhb argument.
For a file opened for both input and
output, EDT$K_PUT is valid only at the
end of the file, indicating that the record
is to be appended to the file.

EDT$K_CLOSE_DEL The file is to be closed and then deleted.
The record and rhb arguments are not
used in the call.

EDT$K_CLOSE The file is to be closed. The record and
rhb arguments are not used in the call.

stream
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A code from EDT that indicates which file is being used. The stream argument
is the address of a longword integer containing the code. Following are the valid
codes:

Function Code Description

EDT$K_COMMAND_FILE The command file.
EDT$K_INPUT_FILE The primary input file.
EDT$K_INCLUDE_FILE The secondary input file. Such a file is opened

in response to an INCLUDE command. It is
closed when the INCLUDE command is complete
and will be reused for subsequent INCLUDE
commands.

EDT–8 EDT Routines

EDT Routines
FILEIO

Function Code Description

EDT$K_JOURNAL_FILE The journal file. If bit 0 of the options is set, it
is opened for both input and output and is read
completely. Otherwise, it is opened for output
only. After it is read or opened for output only, it
is used for writing. On a successful termination
of the editing session, the journal file is closed
and deleted. EXIT/SAVE and QUIT/SAVE close
the journal file without deleting it.

EDT$K_OUTPUT_FILE The primary output file. It is not opened until
you enter the EXIT command.

EDT$K_WRITE_FILE The secondary output file. Such a file is opened
in response to a WRITE or PRINT command.
It is closed when the command is complete and
will be reused for subsequent WRITE or PRINT
commands.

record
OpenVMS usage: char_string
type: character-coded text string
access: modify
mechanism: by descriptor

Text record passed by descriptor from EDT to the user-supplied FILEIO routine;
the code argument determines how the record argument is used. The record
argument is the address of a descriptor pointing to this argument. When the
code argument starts with EDT$K_OPEN, the record is a file name. When the
code argument is EDT$K_GET, the record is a place to store the record that
was read from the file. For code argument EDT$K_PUT, the record is a place
to find the record to be written to the file. This argument is not used if the code
argument starts with EDT$K_CLOSE.

Note that for EDT$K_GET, EDT uses a dynamic or varying string descriptor;
otherwise, EDT has no way of knowing the length of the record being read. EDT
uses only string descriptors that can be handled by the Run-Time Library routine
STR$COPY_DX.

rhb
OpenVMS usage: char_string
type: character-coded text string
access: modify
mechanism: by descriptor

Text record passed by descriptor from EDT to the user-supplied FILEIO routine;
the code argument determines how the rhb argument is used. When the code
argument starts with EDT$K_OPEN, the rhb argument is the default file name.
When the code is EDT$K_GET and the file has record prefixes, the prefixes are
put in this argument. When the code is EDT$K_PUT and the file has record
prefixes, the prefixes are taken from this argument. Like the record argument,
EDT uses a dynamic or varying string descriptor for EDT$K_GET and uses
only string descriptors that can be handled by the Run-Time Library routine
STR$COPY_DX.

EDT Routines EDT–9

EDT Routines
FILEIO

Description

If you do not need to intercept any file I/O, you can use the entry point
EDT$FILEIO for this argument or you can omit it. If you need to intercept
only some file I/O, call the EDT$FILEIO routine for the other cases.

When you use EDT$FILEIO as a value for the fileio argument, files are opened
as follows:

• The record argument is always the RMS file name.

• The rhb argument is always the RMS default file name.

• There is no related name for the input file.

• The related name for the output file is the input file with OFP (output file
parse). EDT passes the input file name, the output file name, or the name
from the EXIT command in the record argument.

• The related name for the journal file is the input file name with the OFP
RMS bit set.

• The related name for the INCLUDE file is the input file name with the OFP
set. This is unusual because the file is being opened for input.

EDT contains support for VFC files. Normally, EDT will zero the length of the
RHB field if the file is not a VFC file. However, when the user supplies the
FILEIO routines, they are responsible for performing this operation.

EDT checks for a VFC file with the following algorithm:

IF FAB$B_RFM = FAB$C_VFC
AND FAB$B_RAT <> FAB$M_PRN
THEN

VFC file
ELSE

not VFC file, zero out RHB descriptor length field.

Condition Values Returned

SS$_NORMAL Normal successful completion.
EDT$_NONSTDFIL File is not in standard text format.
RMS$_EOF End of file on a GET.

EDT–10 EDT Routines

EDT Routines
WORKIO

WORKIO

The user-supplied WORKIO routine is called by EDT when it needs temporary
storage for the file being edited. Call it by specifying it as an argument in the
EDT$EDIT routine. It cannot be called independently.

Format

WORKIO code ,recordno ,record

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by immediate value

Longword value returned as a status code. It is generally a success code, because
all OpenVMS RMS errors should be signaled. The signal should include the file
name and both longwords of the RMS status. Any errors detected within work
I/O can be indicated by setting status to an error code, which will be returned by
the EDT$EDIT routine.

The condition value is returned in R0.

Arguments

code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A code from EDT that specifies the operation to be performed. The code
argument is the address of a longword integer containing this argument. The
valid function codes are as follows:

Function Code Description

EDT$K_OPEN_IN_OUT Open the work file for both input and output.
Neither the record nor recordno argument is
used.

EDT$K_GET Read a record. The recordno argument is the
number of the record to be read. The record
argument gives the location where the record is to
be stored.

EDT$K_PUT Write a record. The recordno argument is the
number of the record to be written. The record
argument tells the location of the record to be
written.

EDT$K_CLOSE_DEL Close the work file. After a successful close, the
file is deleted. Neither the record nor recordno
argument is used.

EDT Routines EDT–11

EDT Routines
WORKIO

recordno
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of the record to be read or written. The recordno argument is the
address of a longword integer containing this argument. EDT always writes a
record before reading that record. This argument is not used for open or close
calls.

record
OpenVMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Location of the record to be read or written. This argument always refers to a
512-byte string during GET and PUT calls. This argument is not used for open
or close calls.

Description

Work file records are addressed only by number and are always 512 bytes
long. If you do not need to intercept work file I/O, you can use the entry point
EDT$WORKIO for this argument or you can omit it.

Condition Value Returned

SS$_NORMAL Normal successful completion.

EDT–12 EDT Routines

EDT Routines
XLATE

XLATE

The user-supplied XLATE routine is called by EDT when it encounters the
nokeypad command XLATE. You cause it to be called by specifying it as an
argument in the EDT$EDIT routine. It cannot be called independently.

Format

XLATE string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword value returned as a status code. It is generally a success code. If the
XLATE routine cannot process the passed string for some reason, it sets status
to an error code. Returning an error code from the XLATE routine aborts the
current key execution and displays the appropriate error message.

The condition value is returned in R0.

Argument

string
OpenVMS usage: char_string
type: character-coded text string
access: modify
mechanism: by descriptor

Text string passed to the nokeypad command XLATE. You can use the nokeypad
command XLATE by defining a key to include the following command in its
definition:

XLATEtext^Z

The text is passed by the string argument. The string argument can be handled
by the Run-Time Library routine STR$COPY_DX.

This argument is also a text string returned to EDT. The string is made up of
nokeypad commands that EDT is to execute.

Description

The nokeypad command XLATE allows you to gain control of the EDT session.
(See the OpenVMS EDT Reference Manual1 for more information about the
XLATE command.) If you do not need to gain control of EDT during the editing
session, you can use the entry point EDT$XLATE for this argument or you can
omit it.

1 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

EDT Routines EDT–13

EDT Routines
XLATE

Condition Value Returned

SS$_NORMAL Normal successful completion.

EDT–14 EDT Routines

10
File Definition Language (FDL) Routines

This chapter describes the File Definition Language (FDL) routines. These
routines perform many of the functions of the File Definition Language that
define file characteristics. Typically, you use FDL to perform the following
operations:

• Specify file characteristics otherwise unavailable from your language.

• Examine or modify the file characteristics of an existing data file to improve
program or system interaction with that file.

10.1 Introduction to FDL Routines
You specify FDL attributes for a data file when you use FDL to create the data
file, set the desired file characteristics, and close the file. You can then use the
appropriate language statement to reopen the file. Because the data file is closed
between the time the FDL attributes are set and the time your program accesses
the file, you cannot use FDL to specify run-time attributes (attributes that are
ignored or deleted when the associated data file is closed).

The FDL$CREATE routine is the one most likely to be called from a high-level
language. It creates a file from an FDL specification and then closes the file.
The following Compaq Fortran program segment creates an empty data file
named INCOME93.DAT using the file characteristics specified by the FDL file
INCOME.FDL. The STATEMENT variable contains the number of the last FDL
statement processed by FDL$CREATE; this argument is useful for debugging an
FDL file.

INTEGER STATEMENT
INTEGER STATUS,
2 FDL$CREATE

STATUS = FDL$CREATE (’INCOME.FDL’,
2 ’INCOME93.DAT’,
2 ,,,,
2 STATEMENT,
2 ,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

.

.

.

File Definition Language (FDL) Routines FDL–1

File Definition Language (FDL) Routines
10.1 Introduction to FDL Routines

The following three FDL routines provide a way to specify all the options
OpenVMS RMS allows when it executes create, open, or connect operations. They
also allow you to specify special processing options required for your applications.

• The FDL$GENERATE routine produces an FDL specification by interpreting
a set of RMS control blocks in an existing data file. It then writes the
FDL specification either to an FDL file or to a character string. If
your programming language does not provide language statements that
access RMS control blocks (for example, Compaq Fortran), you must use
FDL$GENERATE from within the context of a user-open routine to generate
an FDL file.

• The FDL$PARSE routine parses an FDL specification, allocates RMS control
blocks, and fills in the relevant fields.

• The FDL$RELEASE routine deallocates the virtual memory used by the RMS
control blocks created by FDL$PARSE.

These routines cannot be called from asynchronous system trap (AST) level. In
addition, in order to function properly, these routines require ASTs to remain
enabled.

An FDL specification can be in either a file or a character string. When specifying
an FDL specification in a character string, use semicolons to delimit the
statements of the FDL specification.

10.2 Using the FDL Routines: Examples
This section provides examples that demonstrate the use of the FDL routines in
various programming scenarios.

• Example 10–1 shows how to use the FDL$CREATE routine in a Fortran
program.

• Example 10–2 shows how to use the FDL$PARSE and FDL$RELEASE
routines in a C program.

• Example 10–3 shows a Compaq Pascal program that uses the FDL$PARSE
routine to fill in the RMS control blocks in a data file. The program then uses
the FDL$GENERATE routine to create an FDL file using the information in
the control blocks.

FDL–2 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
10.2 Using the FDL Routines: Examples

Example 10–1 Using FDL$CREATE in a Fortran Program

* This program calls the FDL$CREATE routine. It
* creates an indexed output file named NEW_MASTER.DAT
* from the specifications in the FDL file named
* INDEXED.FDL. You can also supply a default filename
* and a result name (that receives the name of the
* created file). The program also returns all the
* statistics.
*

IMPLICIT INTEGER*4 (A - Z)
EXTERNAL LIBGET_LUN, FDLCREATE
CHARACTER IN_FILE*11 /’INDEXED.FDL’/,
1 OUT_FILE*14 /’NEW_MASTER.DAT’/,
1 DEF_FILE*11 /’DEFAULT.FDL’/,
1 RES_FILE*50
INTEGER*4 FIDBLK(3) /0,0,0/
I = 1
STATUS = FDL$CREATE (IN_FILE,OUT_FILE,

DEF_FILE,RES_FILE,FIDBLK,,)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

STATUS=LIB$GET_LUN(LOG_UNIT)
OPEN (UNIT=LOG_UNIT,FILE=RES_FILE,STATUS=’OLD’)
CLOSE (UNIT=LOG_UNIT, STATUS=’KEEP’)

WRITE (6,1000) (RES_FILE)
WRITE (6,2000) (FIDBLK (I), I=1,3)

1000 FORMAT (1X,’The result filename is: ’,A50)

2000 FORMAT (/1X,’FID-NUM: ’,I5/,
1 1X,’FID-SEQ: ’,I5/,
1 1X,’FID-RVN: ’,I5)

END

Example 10–2 shows how to use the FDL$PARSE and FDL$RELEASE routines in a C
program.

Example 10–2 Using FDL$PARSE and FDL$RELEASE in a C Program

/* FDLEXAM.C
** This program calls the FDL utility routines FDL$PARSE and
** FDL$RELEASE. First, FDL$PARSE parses the FDL specification
** PART.FDL. Then the data file named in PART.FDL is accessed
** using the primary key. Last, the control blocks allocated
** by FDL$PARSE are released by FDL$RELEASE.
** Note; to try this program use the following command on any
** file with textual data: $ANALYZE/RMS/FDL/OUT=PART.FDL
*/

#include <descrip>
#include <rms>
#define REC_SIZE 80 /* as appropriate for files used */

FDLEXAM ()
{

struct FAB *fab_ptr; /* variable to hold pointer to FAB structure */
struct RAB *rab_ptr; /* variable to hold pointer to RAB structure */
$DESCRIPTOR (fdl_file, "PART.FDL"); /* free choice of name */
char record_buffer[REC_SIZE+1]; /* allow for null terminator */
int stat;

(continued on next page)

File Definition Language (FDL) Routines FDL–3

File Definition Language (FDL) Routines
10.2 Using the FDL Routines: Examples

Example 10–2 (Cont.) Using FDL$PARSE and FDL$RELEASE in a C Program

/*
** Read and parse FDL file allocating and initializing RAB and
** and FAB accordingly, returning pointers to the FAB & RAB.
*/
stat = FDL$PARSE (&fdl_file, &fab_ptr, &rab_ptr);
if (!(stat & 1)) LIB$STOP (stat);

/*
** Try to open file as described by information in the FAB.
** Signal open errors. Note the usage of STAT, instead of
** FAB_PTR->FAB$L_STS because just in case the FAB is invalid,
** the only status returned is STAT.
*/
stat = SYS$OPEN (fab_ptr);
if (!(stat & 1)) LIB$STOP (stat, fab_ptr->fab$l_stv);

stat = SYS$CONNECT (rab_ptr);
if (!(stat & 1)) LIB$STOP (stat, rab_ptr->rab$l_stv);

/*
** Opened the file and connect some internal buffers.
** Fill in the record output buffer information which is the only
** missing information in the RAB that was created for us by FDL.
** Print a header recod and perform the initial $GET.
*/
rab_ptr->rab$w_usz = REC_SIZE;
rab_ptr->rab$l_ubf = record_buffer;
printf ("------------------- start of records -------------- \n");
stat = SYS$GET (rab_ptr);
while (stat & 1) /* As long as the $GET is successful */

{
record_buffer[rab_ptr->rab$w_rsz] = 0; /* Terminate for printf */
printf ("%s\n", record_buffer); /* Current record */
stat = SYS$GET (rab_ptr); /* Try to get next one */
}

/*
** At this point in the execution, the status should be EOF indicating
** Successfully read the file to end. If not, signal real error.
*/
if (stat != RMS$_EOF) LIB$STOP (rab_ptr->rab$l_sts, rab_ptr->rab$l_stv);

printf ("-------------------- end of records --------------- \n");
stat = SYS$CLOSE (fab_ptr); /* implicit $DISCONNECT */
if (!(stat & 1)) LIB$STOP (fab_ptr->fab$l_sts, fab_ptr->fab$l_stv);

/*
** Allow FDL to release the FAB and RAB structures and any other
** structures (XAB) that it allocated on behalf of the program.
** Return with its status as final status (success or failure).
*/
return FDL$RELEASE (&fab_ptr, &rab_ptr);
}

FDL–4 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
10.2 Using the FDL Routines: Examples

Example 10–3 shows a Compaq Pascal program that uses the FDL$PARSE routine to fill in the
RMS control blocks in a data file, and then uses the FDL$GENERATE routine to create an FDL
file.

Example 10–3 Using FDL$PARSE and FDL$GENERATE in a Compaq Pascal
Program

[INHERIT (’SYS$LIBRARY:STARLET’)]
PROGRAM FDLexample (input,output,order_master);

(* This program fills in its own FAB, RAB, and *)
(* XABs by calling FDL$PARSE and then generates *)
(* an FDL specification describing them. *)
(* It requires an existing input FDL file *)
(* (TESTING.FDL) for FDL$PARSE to parse. *)
TYPE
(*+ *)
(* FDL CALL INTERFACE CONTROL FLAGS *)
(*- *)

$BIT1 = [BIT(1),UNSAFE] BOOLEAN;

FDL2$TYPE = RECORD CASE INTEGER OF
1: (FDL$_FDLDEF_BITS : [BYTE(1)] RECORD END;

);
2: (FDL$V_SIGNAL : [POS(0)] $BIT1;

(* Signal errors; don’t return *)
FDL$V_FDL_STRING : [POS(1)] $BIT1;
(* Main FDL spec is a char string *)

FDL$V_DEFAULT_STRING : [POS(2)] $BIT1;
(* Default FDL spec is a char string *)

FDL$V_FULL_OUTPUT : [POS(3)] $BIT1;
(* Produce a complete FDL spec *)

FDL$V_$CALLBACK : [POS(4)] $BIT1;
(* Used by EDIT/FDL on input (DEC only) *)

)
END;

mail_order = RECORD
order_num : [KEY(0)] INTEGER;
name : PACKED ARRAY[1..20] OF CHAR;
address : PACKED ARRAY[1..20] OF CHAR;
city : PACKED ARRAY[1..19] OF CHAR;
state : PACKED ARRAY[1..2] OF CHAR;
zip_code : [KEY(1)] PACKED ARRAY[1..5]

OF CHAR;
item_num : [KEY(2)] INTEGER;
shipping : REAL;
END;

order_file = [UNSAFE] FILE OF mail_order;
ptr_to_FAB = ^FAB$TYPE;
ptr_to_RAB = ^RAB$TYPE;
byte = 0..255;

VAR
order_master : order_file;
flags : FDL2$TYPE;
order_rec : mail_order;
temp_FAB : ptr_to_FAB;
temp_RAB : ptr_to_RAB;
status : integer;

(continued on next page)

File Definition Language (FDL) Routines FDL–5

File Definition Language (FDL) Routines
10.2 Using the FDL Routines: Examples

Example 10–3 (Cont.) Using FDL$PARSE and FDL$GENERATE in a Compaq
Pascal Program

FUNCTION FDL$PARSE
(%STDESCR FDL_FILE : PACKED ARRAY [L..U:INTEGER]

OF CHAR;
VAR FAB_PTR : PTR_TO_FAB;
VAR RAB_PTR : PTR_TO_RAB) : INTEGER; EXTERN;

FUNCTION FDL$GENERATE
(%REF FLAGS : FDL2$TYPE;
FAB_PTR : PTR_TO_FAB;
RAB_PTR : PTR_TO_RAB;
%STDESCR FDL_FILE_DST : PACKED ARRAY [L..U:INTEGER]

OF CHAR) : INTEGER;
EXTERN;

BEGIN

status := FDL$PARSE (’TESTING’,TEMP_FAB,TEMP_RAB);
flags::byte := 0;
status := FDL$GENERATE (flags,

temp_FAB,
temp_RAB,
’SYS$OUTPUT:’);

END.

10.3 FDL Routines
This section describes the individual FDL routines.

Note that the fdl_desc and the default_fdl_desc arguments that are used as
part of these routine calls are character strings that can be either of the following:

• A string descriptor pointing to a file that contains a specification

• A character string that is the actual specification

For additional details, see the descriptions of the individual routine calls.

FDL–6 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$CREATE

FDL$CREATE—Create a File from an FDL Specification and Close
the File

The FDL$CREATE routine creates a file from an FDL specification and then
closes the file.

Format

FDL$CREATE fdl_desc [,filename] [,default_name] [,result_name] [,fid_block] [,flags]
[,stmnt_num] [,retlen] [,sts] [,stv] [,default_fdl_desc]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

fdl_desc
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The fdl_desc argument is one of the following:

• A character string descriptor pointing to a file containing the FDL
specification to be parsed

• A character string containing the actual FDL specification

The choice depends on the application making the call. For example, if the
application wants to create data files that are compatible with a PC application,
it might create the following FDL file and name it TRANSFER.FDL:

FILE
ORGANIZATION sequential

RECORD
FORMAT stream_lf

The application could then include the address of the FDL file as the fdl_desc
argument to the FDL$PARSE call:

call fdl$parse transfer.fdl , . . .

Optionally, the application might code the FDL specification itself into the call
using a quoted character string as the fdl_desc argument:

call fdl$parse "FILE; ORG SEQ; FORMAT STREAM_LF;" , . . .

Note that directly including the FDL specification into the call requires you to do
the following:

• Enclose the fdl_desc argument in quotation marks

File Definition Language (FDL) Routines FDL–7

File Definition Language (FDL) Routines
FDL$CREATE

• Use a semicolon to delimit statements within the fdl_desc argument

• Assign the symbol FDL$M_FDL_STRING as the flags mask value

filename
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the OpenVMS RMS file to be created using the FDL specification. The
filename argument is the address of a character string descriptor pointing to the
RMS file name. This name overrides the default_name parameter given in the
FDL specification.

default_name
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Default name of the file to be created using the FDL specification. The default_
name argument is the address of a character string descriptor pointing to the
default file name. This name overrides any name given in the FDL specification.

result_name
OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor—fixed-length string descriptor

Resultant name of the file created by FDL$CREATE. The result_name argument
is the address of a character string descriptor that receives the resultant file
name.

fid_block
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

File identification of the RMS file created by FDL$CREATE. The fid_block
argument is the address of an array of longwords that receives the RMS file
identification information. The first longword contains the FID_NUM, the second
contains the FID_SEQ, and the third contains the FID_RVN. They have the
following definitions:

FID_NUM The location of the file on the disk. Its value can range from 1 up
to the number of files the disk can hold.

FID_SEQ The file sequence number, which is the number of times the file
number has been used.

FID_RVN The relative volume number, which is the volume number of the
volume on which the file is stored. If the file is not stored on a
volume set, the relative volume number is 0.

FDL–8 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$CREATE

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_desc argument is interpreted and how
errors are signaled. The flags argument is the address of a longword containing
the control flags (or a mask). If you omit this argument or specify it as 0, no flags
are set. The following table shows the flags and their meanings:

Flag Function

FDL$V_FDL_STRING Interprets the fdl_desc argument as an FDL
specification in string form. By default, the fdl_
desc argument is interpreted as the file name of an
FDL file.

FDL$V_LONG_NAMES Returns the RESULT_NAME using the long result
name from a long name access block (NAML). By
default, the RESULT_NAME is returned from the
short fields of a name access block (NAM) and thus
may have a generated specification.
This flag is valid for OpenVMS Alpha only.

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

stmnt_num
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

FDL statement number. The stmnt_num argument is the address of a longword
that receives the FDL statement number. If the routine finishes successfully,
the stmnt_num argument is the number of statements in the FDL specification.
If the routine does not finish successfully, the stmnt_num argument receives
the number of the statement that caused the error. Note that line numbers and
statement numbers are not the same and that an FDL specification in string form
has no ‘‘lines.’’

retlen
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Number of characters returned in the result_name argument. The retlen
argument is the address of a longword that receives this number.

sts
OpenVMS usage: longword_unsigned
type: longword_unsigned
access: write only
mechanism: by reference

File Definition Language (FDL) Routines FDL–9

File Definition Language (FDL) Routines
FDL$CREATE

RMS status value FAB$L_STS. The sts argument is the address of a longword
that receives the status value FAB$L_STS from the $CREATE system service.

stv
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

RMS status value FAB$L_STV. The stv argument is the address of a longword
that receives the status value FAB$L_STV from the $CREATE system service.

default_fdl_desc
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The default_fdl_desc argument is one of the following:

• A character string descriptor pointing to a file containing the default FDL
specification to be parsed

• A character string containing the actual default FDL specification

See the description of the fdl_desc argument for details.

This argument allows you to specify default FDL attributes. In other words,
FDL$CREATE processes the attributes specified in this argument unless you
override them with the attributes you specify in the fdl_desc argument.

You can code the FDL defaults directly into your program, typically with an FDL
specification in string form.

Description

FDL$CREATE calls the FDL$PARSE routine to parse the FDL specification. The
FDL specification can be in a file or a character string.

Source of FDL
Specification Advantages Disadvantages

FDL file Variability; for example, if
the specification changes
regularly, you can revise
the file without revising the
calling program.

File must be in default directory.
Slower.

Character
string

You do not have to be
concerned with locating a
file.

Program must be recoded to
change FDL specification.

Faster access.

If the FDL specification is relatively simple and is not going to change, put the
FDL specification in a character string as the fdl_desc argument to the call.

FDL$CREATE opens (creates) the specified RMS file and then closes it without
putting any data in it.

FDL–10 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$CREATE

FDL$CREATE does not create the output file if an error status is either returned
or signaled.

Condition Values Returned

SS$_NORMAL Normal successful completion.
FDL$_ABKW Ambiguous keyword in statement

number<CRLF>reference-text.
FDL$_ABPRIKW Ambiguous primary keyword in statement

number<CRLF>reference-text.
FDL$_BADLOGIC Internal logic error detected.
FDL$_CLOSEIN Error closing filename as input.
FDL$_CLOSEOUT Error closing filename as output.
FDL$_CREATE Error creating filename.
FDL$_CREATED Filename created.
FDL$_CREATED_STM Filename created in stream format.
FDL$_FDLERROR Error parsing FDL file.
FDL$_ILL_ARG Wrong number of arguments.
FDL$_INSVIREM Insufficient virtual memory.
FDL$_INVBLK Invalid RMS control block at virtual address

’hex-offset’.
FDL$_MULPRI Multiple primary definition in statement number.
FDL$_OPENFDL Error opening filename.
FDL$_OPENIN Error opening filename as input.
FDL$_OPENOUT Error opening filename as output.
FDL$_OUTORDER Key or area primary defined out of order in

statement number.
FDL$_READERR Error reading filename.
FDL$_RFLOC Unable to locate related file.
FDL$_SYNTAX Syntax error in statement number reference-text.
FDL$_UNPRIKW Unrecognized primary keyword in statement

number<CRLF> reference-text.
FDL$_UNQUAKW Unrecognized qualifier keyword in statement

number<CRLF> reference-text.
FDL$_UNSECKW Unrecognized secondary keyword in statement

number<CRLF> reference-text.
FDL$_VALERR Specified value is out of legal range.
FDL$_VALPRI Value required on primary in statement number.
FDL$_WARNING Parsed with warnings.
FDL$_WRITEERR Error writing filename.
RMS$_ACT File activity precludes operation.
RMS$_CRE Ancillary control process (ACP) file create failed.
RMS$_CREATED File was created, not opened.
RMS$_DNF Directory not found.

File Definition Language (FDL) Routines FDL–11

File Definition Language (FDL) Routines
FDL$CREATE

RMS$_DNR Device not ready or not mounted.
RMS$_EXP File expiration date not yet reached.
RMS$_FEX File already exists, not superseded.
RMS$_FLK File currently locked by another user.
RMS$_PRV Insufficient privilege or file protection violation.
RMS$_SUPERSEDE Created file superseded existing version.
RMS$_WLK Device currently write locked.

FDL–12 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$GENERATE

FDL$GENERATE—Generate an FDL Specification

The FDL$GENERATE routine produces an FDL specification and writes it to
either an FDL file or a character string.

Format

FDL$GENERATE flags ,fab_pointer ,rab_pointer [,fdl_file_dst] [,fdl_file_resnam]
[,fdl_str_dst] [,bad_blk_addr] [,retlen]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the fdl_str_dst argument is interpreted
and how errors are signaled. The flags argument is the address of a longword
containing the control flags (or a mask). If you omit this argument or specify it as
zero, no flags are set. The flags and their meanings are as follows:

Flag Function

FDL$V_FDL_STRING Interprets the fdl_str_dst argument as an FDL
specification in string form. By default, the fdl_str_
dst argument is interpreted as the file name of an
FDL file.

FDL$V_FULL_OUTPUT Includes the FDL attributes to describe all the bits
and fields in the OpenVMS RMS control blocks,
including run-time options. If this flag is set, every
field is inspected before being written. By default,
only the FDL attributes that describe permanent file
attributes are included (producing a much shorter
FDL specification).

FDL$V_LONG_NAMES Returns the FDL_FILE_RESNAME using the long
result name from a long name access block (NAML).
By default, the FDL_FILE_RESNAM is returned
from the short fields of a name access block (NAM)
and thus may have a generated specification.
This flag is valid for OpenVMS Alpha only.

File Definition Language (FDL) Routines FDL–13

File Definition Language (FDL) Routines
FDL$GENERATE

Flag Function

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

fab_pointer
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

RMS file access block (FAB). The fab_pointer argument is the address of a
longword containing the address of a FAB.

rab_pointer
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

RMS record access block (RAB). The rab_pointer argument is the address of a
longword containing the address of a RAB.

fdl_file_dst
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the FDL file to be created. The fdl_file_dst argument is the address of a
character-string descriptor containing the file name of the FDL file to be created.
If the FDL$V_FDL_STRING flag is set in the flags argument, this argument
is ignored; otherwise, it is required. The FDL specification is written to the file
named in this argument.

fdl_file_resnam
OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor—fixed-length string descriptor

Resultant name of the FDL file created. The fdl_file_resnam argument is the
address of a variable character-string descriptor that receives the resultant name
of the FDL file created (if FDL$GENERATE is directed to create an FDL file).

fdl_str_dst
OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor—fixed-length string descriptor

FDL specification. The fdl_str_dst argument is the address of a variable
character string descriptor that receives the FDL specification created. If the
FDL$V_FDL_STRING bit is set in the flags argument, this argument is required;
otherwise, it is ignored.

FDL–14 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$GENERATE

bad_blk_addr
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an invalid RMS control block. The bad_blk_addr argument is the
address of a longword that receives the address of an invalid control block (a
fatal error). If an invalid control block is detected, this argument is returned;
otherwise, it is ignored.

retlen
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Number of characters received in either the fdl_file_resnam or the fdl_str_dst
argument. The retlen argument is the address of a longword that receives this
number.

Condition Values Returned

SS$_NORMAL Normal successful completion.
FDL$_INVBLK Invalid block.
RMS$_ACT File activity precludes operation.
RMS$_CONTROLC Operation completed under Ctrl/C.
RMS$_CONTROLO Output completed under Ctrl/O.
RMS$_CONTROLY Operation completed under Ctrl/Y.
RMS$_DNR Device not ready or mounted.
RMS$_EXT ACP file extend failed.
RMS$_OK_ALK Record already locked.
RMS$_OK_DUP Record inserted had duplicate key.
RMS$_OK_IDX Index update error occurred.
RMS$_PENDING Asynchronous operation pending completion.
RMS$_PRV Insufficient privilege or file protection violation.
RMS$_REX Record already exists.
RMS$_RLK Target record currently locked by another

stream.
RMS$_RSA Record stream currently active.
RMS$_WLK Device currently write locked.
SS$_ACCVIO Access violation.
STR$_FATINERR Fatal internal error in run-time library.
STR$_ILLSTRCLA Illegal string class.
STR$_INSVIRMEM Insufficient virtual memory.

File Definition Language (FDL) Routines FDL–15

File Definition Language (FDL) Routines
FDL$PARSE

FDL$PARSE—Parse an FDL Specification

The FDL$PARSE routine parses an FDL specification, allocates OpenVMS RMS
control blocks (FABs, RABs, or XABs), and fills in the relevant fields.

Format

FDL$PARSE fdl_desc ,fdl_fab_pointer ,fdl_rab_pointer [,flags] [,default_fdl_desc]
[,stmnt_num]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

fdl_desc
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

Name of the FDL file or the actual FDL specification to be parsed. See the
description of the fdl_desc argument in the section on FDL$CREATE for details.

fdl_fab_pointer
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an RMS file access block (FAB). The fdl_fab_pointer argument is the
address of a longword that receives the address of the FAB. FDL$PARSE both
allocates the FAB and fills in its relevant fields.

fdl_rab_pointer
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an RMS record access block (for VAX, this is the RAB; for Alpha, it is
the RAB64). The fdl_rab_pointer argument is the address of a longword that
receives the address of the RAB or RAB64. FDL$PARSE both allocates the RAB
or RAB64 and fills in any fields designated in the FDL specification.

For Alpha, the 64-bit record access block (RAB64) consists of the traditional
32-bit RAB followed by some 64-bit fields. The RAB64 is automatically allocated
for Alpha users, who can either use it as a RAB64 or overlay it with the 32-bit
RAB definition and use it as a traditional 32-bit RAB.

FDL–16 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$PARSE

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags (or masks) that control how the default_fdl_desc argument is interpreted
and how errors are signaled. The flags argument is the address of a longword
containing the control flags. If you omit this argument or specify it as zero, no
flags are set. The flags and their meanings are as follows:

Flag Function

FDL$V_DEFAULT_STRING Interprets the default_fdl_desc argument as
an FDL specification in string form. By default,
the default_fdl_desc argument is interpreted
as the file name of an FDL file.

FDL$V_FDL_STRING Interprets the fdl_desc argument as an FDL
specification in string form. By default, the
fdl_desc argument is interpreted as the file
name of an FDL file.

FDL$V_LONG_NAMES Allocates and returns a long name access block
(NAML) linked to the returned RMS file access
block (FAB). The appropriate values are set in
the NAML and FAB blocks so that the long file
name fields of the NAML block will be used.
By default, a name block is not allocated and
the file name fields of FAB are used.
If the FDL$V_LONG_NAMES flag is set, then
the FDL$V_LONG_NAMES bit must also be set
in the flags argument to the FDL$RELEASE
routine to ensure that memory allocated for the
NAML block is deallocated properly.
This flag is valid for OpenVMS Alpha only.

FDL$V_SIGNAL Signals any error. By default, the status code is
returned to the calling image.

By default, an error status is returned rather than signaled.

default_fdl_desc
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor—fixed-length string descriptor

The default_fdl_desc argument is the address of a character-string descriptor
pointing to either the default FDL file or the default FDL specification. See the
description of the fdl_desc argument in the section on FDL$CREATE for details.

This argument allows you to specify default FDL attributes. In other words,
FDL$PARSE processes the attributes specified in this argument unless you
override them with the attributes you specify in the fdl_desc argument.

You can code the FDL defaults directly into your program, typically with an FDL
specification in string form.

File Definition Language (FDL) Routines FDL–17

File Definition Language (FDL) Routines
FDL$PARSE

stmnt_num
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

FDL statement number. The stmnt_num argument is the address of a longword
that receives the FDL statement number. If the routine finishes successfully,
the stmnt_num argument is the number of statements in the FDL specification.
If the routine does not finish successfully, the stmnt_num argument receives
the number of the statement that caused the error. Note that line numbers and
statement numbers are not the same and that an FDL specification in string form
has no ‘‘lines.’’

By default, an error status is returned rather than signaled.

Condition Values Returned

SS$_NORMAL Normal successful completion.
LIB$_BADBLOADR Bad block address.
LIB$_BADBLOSIZ Bad block size.
LIB$_INSVIRMEM Insufficient virtual memory.
RMS$_DNF Directory not found.
RMS$_DNR Device not ready or not mounted.
RMS$_WCC Invalid wildcard context (WCC) value.

FDL–18 File Definition Language (FDL) Routines

File Definition Language (FDL) Routines
FDL$RELEASE

FDL$RELEASE—Free Virtual Memory Obtained By FDL$PARSE

The FDL$RELEASE routine deallocates the virtual memory used by the
OpenVMS RMS control blocks created by FDL$PARSE. You must use
FDL$PARSE to populate the control blocks if you plan to deallocate memory
later with FDL$RELEASE.

Format

FDL$RELEASE [fab_pointer] [,rab_pointer] [,flags] [,badblk_addr]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

fab_pointer
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

File access block (FAB) to be deallocated using the LIB$FREE_VM routine. The
fab_pointer argument is the address of a longword containing the address of the
FAB. The FAB must be the same one returned by the FDL$PARSE routine. Any
name blocks (NAMs) and extended attribute blocks (XABs) connected to the FAB
are also released.

If you omit this argument or specify it as zero, the FAB (and any associated
NAMs and XABs) is not released.

rab_pointer
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Record access block (RAB) to be deallocated using the LIB$FREE_VM system
service. The rab_pointer argument is the address of a longword containing the
address of the RAB. The address of the RAB must be the same one returned by
the FDL$PARSE routine. Any XABs connected to the RAB are also released.

If you omit this argument or specify it as zero, the RAB (and any associated
XABs) is not released.

File Definition Language (FDL) Routines FDL–19

File Definition Language (FDL) Routines
FDL$RELEASE

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flag (or mask) that controls how errors are signaled. The flags argument is the
address of a longword containing the control flag (or a mask). If you omit this
argument or specify it as zero, no flag is set. The flag is defined as follows:

FDL$V_SIGNAL Signals any error. By default, the status code is returned to
the calling image.

FDL$V_LONG_
NAMES

Deallocates any virtual memory used for a long name access
block (NAML) created by the FDL$PARSE routine.
This flag is valid for OpenVMS Alpha only.

badblk_addr
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of an invalid RMS control block. The badblk_addr argument is the
address of a longword that receives the address of an invalid control block. If
an invalid control block (a fatal error) is detected, this argument is returned;
otherwise, it is ignored.

Condition Values Returned

SS$_NORMAL Normal successful completion.
FDL$_INVBLK Invalid RMS control block at virtual address

’hex-offset’.
LIB$_BADBLOADR Bad block address.
RMS$_ACT File activity precludes operation.
RMS$_RNL Record not locked.
RMS$_RSA Record stream currently active.
SS$_ACCVIO Access violation.

FDL–20 File Definition Language (FDL) Routines

11
Librarian (LBR) Routines

The Librarian (LBR) routines let you create and maintain libraries and their
modules, and use the data stored in library modules. You can also create and
maintain libraries at the DCL level, using the DCL command LIBRARY. For
details, see the OpenVMS DCL Dictionary.

11.1 Introduction to LBR Routines
This section briefly describes the types of libraries you can create and maintain
using LBR routines and how the libraries are structured. This section also lists
and briefly describes the LBR routines. Section 11.2 provides sample programs
showing how to use various LBR routines. Section 11.3 is a reference section that
provides details about each of the LBR routines.

11.1.1 Types of Libraries
You can use the LBR routines to maintain the following types of libraries:

• Object libraries, including Alpha object libraries, which contain the object
modules of frequently called routines. The Linker utility searches specified
object module libraries when it encounters a reference it cannot resolve in one
of its input files. For more information about how the linker uses libraries,
see the description of the Linker utility in the OpenVMS Linker Utility
Manual.

An object library has a default file type of .OLB and defaults the file type of
input files to .OBJ.

• Macro libraries, which contain macro definitions used as input to the
assembler. The assembler searches specified macro libraries when it
encounters a macro that is not defined in the input file. See the VAX MACRO
and Instruction Set Reference Manual for information about defining macros.

A macro library has a default file type of .MLB and defaults the file type of
input files to .MAR.

• Help libraries, which contain modules of help messages that provide user
information about a program. You can retrieve help messages at the DCL
level by executing the DCL command HELP, or in your program by calling
the appropriate LBR routines. For information about creating help modules
for insertion into help libraries, see the description of the Librarian utility in
the OpenVMS Command Definition, Librarian, and Message Utilities Manual.

A help library has a default file type of .HLB and defaults the file type of
input files to .HLP.

• Text libraries, which contain any sequential record files that you want to
retrieve as data for a program. For example, some compilers can retrieve
program source code from text libraries. Each text file inserted into the
library corresponds to one library module. Your programs can retrieve text
from text libraries by calling the appropriate LBR routines.

Librarian (LBR) Routines LBR–1

Librarian (LBR) Routines
11.1 Introduction to LBR Routines

A text library has a default file type of .TLB and defaults the file type of input
files to .TXT.

• Shareable image libraries and Alpha shareable symbol table libraries which
contain the symbol tables of shareable images used as input to the linker.
For information about how to create a shareable image library, see the
descriptions of the Librarian and Linker utilities in the OpenVMS Command
Definition, Librarian, and Message Utilities Manual and the OpenVMS Linker
Utility Manual.

A shareable image library has a default type of .OLB and defaults the file
type of input files to .EXE.

• National character set (NCS) libraries, which contain definition modules that
define collating sequences and conversion functions. NCS libraries have the
default file type .NLB. For information about how to create an NCS library,
see the OpenVMS National Character Set Utility Manual.1

• User-developed libraries, which have characteristics specified when you call
the LBR$OPEN routine to create a new library. User-developed libraries
allow you to use the LBR routines to create and maintain libraries that are
not structured in the form assigned by default to the other library types. Note
that you cannot use the DCL command LIBRARY to access user-developed
libraries.

11.1.2 Structure of Libraries
You create libraries by executing the DCL command LIBRARY or by calling the
LBR$OPEN routine. When object, macro, text, help, or shareable image libraries
are created, the Librarian utility structures them as described in Figure 11–1 and
Figure 11–2. You can create user-developed libraries only by calling LBR$OPEN;
they are structured as described in Figure 11–3.

11.1.2.1 Library Headers
Every library contains a library header that describes the contents of the library,
for example, its type, size, version number, creation date, and number of indexes.
You can retrieve data from a library’s header by calling the LBR$GET_HEADER
routine.

11.1.2.2 Modules
Each library module consists of a header and data. The data is the information
you inserted into the library; the header associated with the data is created by
the LBR routine and provides information about the module, including its type,
attributes, and date of insertion into the library. You can read and update a
module’s header by calling the LBR$SET_MODULE routine.

11.1.2.3 Indexes and Keys
Libraries contain one or more indexes, which can be thought of as directories of
the library’s modules. The entries in each index are keys, and each key consists
of a key name and a module reference. The module reference is a pointer to the
module’s header record and is called that record’s file address (RFA). Macro, text,
and help libraries (see Figure 11–1) contain only one index, called the module
name table. The names of the keys in the index are the names of the modules in
the library.

1 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

LBR–2 Librarian (LBR) Routines

Librarian (LBR) Routines
11.1 Introduction to LBR Routines

Object and shareable image libraries (see Figure 11–2) contain two indexes: the
module name table and a global symbol table. The global symbol table consists of
all the global symbols defined in the modules in the library. Each global symbol
is a key in the index and points to the module in which it was defined.

If you need to point to the same module with several keys, you should create
a user-developed library, which can have up to eight indexes (see Figure 11–3).
Each index consists of keys that point to the library’s modules.

The LBR routines differentiate library indexes by numbering them, starting with
1. For all but user-developed libraries, the module name table is index number
1 and the global symbol table, if present, is index number 2. You number the
indexes in user-developed libraries. When you access libraries that contain more
than one index, you may have to call LBR$SET_INDEX to tell the LBR routines
which index to use.

Figure 11–1 Structure of a Macro, Text, or Help Library

Header

Data

Header

Data

Header

Data

Header

Data

Modules

ZK−1871−GE

Key−1 Key−2 Key−3 Key−n

Each key in the index points to a module.

Index (Module Name Table)

Library Header

Librarian (LBR) Routines LBR–3

Librarian (LBR) Routines
11.1 Introduction to LBR Routines

Figure 11–2 Structure of an Object or Shareable Image Library

Key−1 Key−2 Key−3 Key−n

Index (Module Name Table)

Each key in the index points to a module.

Each global symbol is a key in the index, and points to the module in
which it was defined.

Index (Global Symbol Table)

Symbol
Global

Symbol
Global

Symbol
Global

Symbol
Global

Symbol
Global

ZK−1872−GE

Library Header

Header

Data

Header

Data

Header

Data

Header

Data

Modules

LBR–4 Librarian (LBR) Routines

Librarian (LBR) Routines
11.1 Introduction to LBR Routines

Figure 11–3 Structure of a User-Developed Library

Key Key Key Key KeyKey Key

Index

Can have up to
8 indexes.

Key Key Key Key Key Key Key

Key Key Key Key Key Key Key

Each key in an index points to one module. More than one key (from
the same or a different index) may point to the same module.

Index

ZK−1873−GE

Header

Data

Header

Data

Header

Data

Header

Data

Modules

Library Header

11.1.3 Summary of LBR Routines
All the LBR routines begin with the characters LBR$. Your programs can call
these routines by using the OpenVMS Calling Standard. When you call an LBR
routine, you must provide all required arguments. Upon completion, the routine
returns its completion status as a condition value. In addition to the listed
condition values, some routines may return the success code SS$_NORMAL as
well as various OpenVMS RMS or system status (SS) error codes.

When you link programs that contain calls to LBR routines, the linker locates the
routines during its default search of SYS$SHARE:LBRSHR. Table 11–1 lists the
routines and summarizes their functions.

Table 11–1 LBR Routines

Routine Name Function

LBR$CLOSE Closes an open library.

LBR$DELETE_DATA Deletes a specified module’s header and data.

(continued on next page)

Librarian (LBR) Routines LBR–5

Librarian (LBR) Routines
11.1 Introduction to LBR Routines

Table 11–1 (Cont.) LBR Routines

Routine Name Function

LBR$DELETE_KEY Deletes a key from a library index.

LBR$FIND Finds a module by using an address returned by a preceding
call to LBR$LOOKUP_KEY.

LBR$FLUSH Writes the contents of modified blocks to the library file and
returns the virtual memory that contained those blocks.

LBR$GET_HEADER Retrieves information from the library header.

LBR$GET_HELP Retrieves help text from a specified library.

LBR$GET_HISTORY Retrieves library update history records and calls a user-
supplied routine with each record returned.

LBR$GET_INDEX Calls a routine to process modules associated with some or
all of the keys in an index.

LBR$GET_RECORD Reads a data record from the module associated with a
specified key.

LBR$INI_CONTROL Initializes a control index that the Librarian uses to identify
a library.

LBR$INSERT_KEY Inserts a new key in the current library index.

LBR$LOOKUP_KEY Looks up a key in the current index.

LBR$OPEN Opens an existing library or creates a new one.

LBR$OUTPUT_HELP Retrieves help text from an explicitly named library or from
user-supplied default libraries, and optionally prompts you
for additional help queries.

LBR$PUT_END Terminates the writing of a sequence of records to a module
using the LBR$PUT_RECORD routine.

LBR$PUT_HISTORY Inserts a library update history record.

LBR$PUT_RECORD Writes a data record to the module associated with the
specified key.

LBR$REPLACE_KEY Replaces an existing key in the current library index.

LBR$RET_RMSSTV Returns the last RMS status value.

LBR$SEARCH Finds index keys that point to specified data.

LBR$SET_INDEX Sets the index number to be used during processing of the
library.

LBR$SET_LOCATE Sets Librarian subroutine record access to locate mode.

LBR$SET_MODULE Reads and optionally updates a module header.

LBR$SET_MOVE Sets Librarian subroutine record access to move mode.

11.2 Using the LBR Routines: Examples
This section provides programming examples that call LBR routines. Although
the examples do not illustrate all the LBR routines, they do provide an
introduction to the various data structures and the calling syntax.

The program examples are written in Compaq Pascal and the subroutine
examples are written in Compaq Fortran. The listing of each program example
contains comments and is followed by notes about the program. The highlighted
numbers in the notes are keyed to the highlighted numbers in the examples.

LBR–6 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Each sample program calls the LBR$INI_CONTROL routine and the LBR$OPEN
routine before calling any other routine.

Note

The one exception is that when you call the LBR$OUTPUT_HELP
routine, you need not call the LBR$INI_CONTROL routine and the
LBR$OPEN routine.

The sample programs require access to various symbols derived from definition
macros. Use the INHERIT attribute to access these symbols from definition
macros in SYS$LIBRARY:STARLET.PEN.

The LBR$INI_CONTROL routine sets up a control index; do not confuse this
with a library index. The control index is used in subsequent LBR routine calls
to identify the applicable library (because you may want your program to work
with more than one library at a time).

Note

Do not alter the control index value.

LBR$INI_CONTROL specifies the library function, which can be to either create
and update a new library (LIB$C_CREATE), modify an existing library (LIB$C_
UPDATE), or read an existing library without updating it (LIB$C_READ).

Upon completion of the LBR$INI_CONTROL routine, call the LBR$OPEN
routine to open the library. Open an existing library, or create and open a new
library, in either the UPDATE or READ mode, checking for an error status value
of RMS$_FNF. If this error occurs, open the library in CREATE mode.

When you open the library, specify the library type and pass the file specification
or partial file specification of the library file.

If you are creating a new library, pass the create options array. The CRE symbols
identify the significant longwords of the array by their byte offsets into the array.
Convert these values to subscripts for an array of integers (longwords) by dividing
by 4 and adding 1. If you do not load the significant longwords before calling
LBR$INI_CONTROL, the library may be corrupted upon creation.

Finally, pass any defaults for the file specification. If you omit the device and
directory parts of the file specification, the current default device and directory
are used.

When you finish working with a library, call LBR$CLOSE to close the library
by providing the control index value. You must close a library explicitly before
updates can be posted. Remember to call LBR$INI_CONTROL again if you want
to reopen the library. LBR$CLOSE deallocates all the memory associated with
the library, including the control index.

The order in which you call the routines between LBR$OPEN and LBR$CLOSE
depends upon the library operations you need to perform. You may want to call
LBR$LOOKUP_KEY or LBR$GET_INDEX to find a key, then perform some
operation on the module associated with the key. You can think of a module as
being both the module itself and its associated keys. To access a module, you first
need to access a key that points to it; to delete a module, you first need to delete
any keys that point to it.

Librarian (LBR) Routines LBR–7

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Note

Do not use LBR$INI_CONTROL, LBR$OPEN, and LBR$CLOSE
for writing help text with LBR$OUTPUT_HELP. Simply invoke
LBR$OUTPUT_HELP.

11.2.1 Creating, Opening, and Closing a Text Library
Example 11–1 is a sample Compaq Pascal program that creates, opens, and then
closes a text library. The program is summarized in the following steps:

1. Initialize the library—Call LBR$INI_CONTROL to initialize the library.

2. Open the library—Call LBR$OPEN to open the library.

3. Close the library—Call LBR$CLOSE to close the library.

Example 11–1 Creating a New Library Using Compaq Pascal

PROGRAM createlib(INPUT,OUTPUT);
(*This program creates a text library*)

TYPE (*Data type of*)
Create_Array = ARRAY [1..20] OF INTEGER; (*create options array*)

VAR (*Constants and return status error
codes for LBR$_OPEN & LBR$INI_CONTROL.
These are defined in $LBRDEF macro*)

LBRC_CREATE,LBRC_TYP_TXT,LBR$_ILLCREOPT,LBR$_ILLCTL, !
LBR$_ILLFMT,LBR$_NOFILNAM,LBR$_OLDMISMCH,LBR$_TYPMISMCH :

[EXTERNAL] INTEGER;
(*Create options array codes. These
are defined in $CREDEF macro*)

CREL_TYPE,CREL_KEYLEN,CREL_ALLOC,CREL_IDXMAX,CRE$L_ENTALL,
CREL_LUHMAX,CREL_VERTYP,CREL_IDXOPT,CREC_MACTXTCAS,
CRE$C_VMSV3 : [EXTERNAL]INTEGER;
Lib_Name : VARYING [128] OF CHAR; (*Name of library to create*)
Options : Create_Array; (*Create options array*)
File_Type : PACKED ARRAY [1..4] (*Character string that is default*)

OF CHAR := ’.TLB’; (*file type of created lib file*)
lib_index_ptr : UNSIGNED; (*Value returned in library init*)
status : UNSIGNED; (*Return Status for function calls*)

(*-*-*-*-Function and Procedure Definitions-*-*-*-*)
(*Function that returns library
control index used by Librarian*)

FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED; "
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[l..u:INTEGER]

OF INTEGER := %IMMED 0):
INTEGER; EXTERN;

(*Function that creates/opens library*)
FUNCTION LBR$OPEN (library_index: UNSIGNED;

fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create_options: Create_Array;
dns: [CLASS_S] PACKED ARRAY [l3..u3:INTEGER] OF CHAR;
rlfna: ARRAY [l4..u4:INTEGER] OF INTEGER := %IMMED 0;
rns: [CLASS_S] PACKED ARRAY [l5..u5:INTEGER] OF CHAR :=

%IMMED 0;
VAR rnslen: INTEGER := %IMMED 0):

INTEGER; EXTERN;

(continued on next page)

LBR–8 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–1 (Cont.) Creating a New Library Using Compaq Pascal

(*Function that closes library*)
FUNCTION LBR$CLOSE (library_index: UNSIGNED):

INTEGER; EXTERN;
(*Error handler to check error codes
if open/create not successful*)

PROCEDURE Open_Error; #
BEGIN

WRITELN(’Open Not Successful’); (*Now check specific error codes*)
IF status = IADDRESS(LBR$_ILLCREOPT) THEN

WRITELN(’ Create Options Not Valid Or Not Supplied’);
IF status = IADDRESS(LBR$_ILLCTL) THEN

WRITELN(’ Invalid Library Index’);
IF status = IADDRESS(LBR$_ILLFMT) THEN

WRITELN(’ Library Not In Correct Format’);
IF status = IADDRESS(LBR$_NOFILNAM) THEN

WRITELN(’ Library Name Not Supplied’);
IF status = IADDRESS(LBR$_OLDMISMCH) THEN

WRITELN(’ Old Library Conflict’);
IF status = IADDRESS(LBR$_TYPMISMCH) THEN

WRITELN(’ Library Type Mismatch’)
END; (*of procedure Open_Error*)

BEGIN (* *************** DECLARATIONS COMPLETE *************************
*************** MAIN PROGRAM BEGINS HERE ********************** *)

(*Prompt for Library Name*)
WRITE(’Library Name: ’); READLN(Lib_Name);

(*Fill Create Options Array. Divide
by 4 and add 1 to get proper subscript*)

Options[IADDRESS(CRE$L_TYPE) DIV 4 + 1] := IADDRESS(LBR$C_TYP_TXT);
Options[IADDRESS(CRE$L_KEYLEN) DIV 4 + 1] := 31; $
Options[IADDRESS(CRE$L_ALLOC) DIV 4 + 1] := 8;
Options[IADDRESS(CRE$L_IDXMAX) DIV 4 + 1] := 1;
Options[IADDRESS(CRE$L_ENTALL) DIV 4 + 1] := 96;
Options[IADDRESS(CRE$L_LUHMAX) DIV 4 + 1] := 20;
Options[IADDRESS(CRE$L_VERTYP) DIV 4 + 1] := IADDRESS(CRE$C_VMSV3);
Options[IADDRESS(CRE$L_IDXOPT) DIV 4 + 1] := IADDRESS(CRE$C_MACTXTCAS);

(*Initialize library control index*)
status := LBR$INI_CONTROL (lib_index_ptr, %

IADDRESS(LBR$C_CREATE), (*Create access*)
IADDRESS(LBR$C_TYP_TXT)); (*Text library*)

IF NOT ODD(status) THEN (*Check return status*)
WRITELN(’Initialization Failed’)

ELSE (*Initialization was successful*)
BEGIN (*Create and open the library*)

status := LBR$OPEN (lib_index_ptr,
Lib_Name,
Options, &
File_Type);

IF NOT ODD(status) THEN (*Check return status*)
Open_Error (*Call error handler*) ’

ELSE (*Open/create was successful*)
BEGIN (*Close the library*)

status := LBR$CLOSE(lib_index_ptr);
IF NOT ODD(status) THEN (*Check return status*)

WRITELN(’Close Not Successful’)
END

END
END. (*of program creatlib*)

Librarian (LBR) Routines LBR–9

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Each item in the following list corresponds to a number highlighted in
Example 11–1:

! Use the INHERIT attribute to access the LBR and CRE symbols from
SYS$LIBRARY:STARLET.PEN.

" Start the declarations of the LBR routines that are used by the program.
Each argument to be passed to the Librarian is specified on a separate line
and includes the name (which just acts as a placeholder) and data type (for
example: UNSIGNED, which means an unsigned integer value, and PACKED
ARRAY OF CHAR, which means a character string). If the argument is
preceded by VAR, then a value for that argument is returned by the LBR to
the program.

Declare the procedure Open_Error, which is called in the executable section
if the Librarian returns an error when LBR$OPEN is called. Open_Error
checks the Librarian’s return status value to determine the specific cause
of the error. The return status values for each routine are listed in the
descriptions of the routines.

$ Initialize the array called Options with the values the Librarian needs to
create the library.

% Call LBR$INI_CONTROL, specifying that the function to be performed is
create and that the library type is text.

& Call LBR$OPEN to create and open the library; pass the Options array
initialized in item 5 to the Librarian.

’ If the call to LBR$OPEN was unsuccessful, call the procedure Open_Error
(see item 4) to determine the cause of the error.

11.2.2 Inserting a Module
Example 11–2 illustrates the insertion of a module into a library from a Compaq
Pascal program. The program is summarized in the following steps:

1. Ensure that the module does not already exist by calling LBR$LOOKUP_
KEY. The return status should be LBR$_KEYNOTFND. This step is optional.

2. Construct the module by calling LBR$PUT_RECORD once for each record
going into the module. Pass the contents of the record as the second
argument. LBR$PUT_RECORD returns the record file address (RFA) in
the library file as the third argument on the first call. On subsequent calls,
you pass the RFA as the third argument, so do not alter its value between
calls.

3. Call LBR$PUT_END after the last call to LBR$PUT_RECORD.

4. Call LBR$INSERT_KEY to catalog the records you have just put in the
library. The second argument is the name of the module.

To replace an existing module, save the RFA of the module header returned by
LBR$LOOKUP_KEY in Step 1 in one variable and the new RFA returned by the
first call to LBR$PUT_RECORD (Step 2) in another variable. In Step 4, invoke
LBR$REPLACE_KEY instead of LBR$INSERT_KEY, pass the old RFA as the
third argument, and the new RFA as the fourth argument.

LBR–10 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–2 Inserting a Module into a Library Using Compaq Pascal

PROGRAM insertmod(INPUT,OUTPUT);
(*This program inserts a module into a library*)

TYPE
Rfa_Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module*)

VAR
LBR$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
LBR$C_TYP_TXT, (*Defined in $LBRDEF macro*)
LBR$_KEYNOTFND : [EXTERNAL] INTEGER;(*Error code for LBR$LOOKUP_KEY*)
Lib_Name : VARYING [128] OF CHAR; (*Name of library receiving module*)
Module_Name : VARYING [31] OF CHAR; (*Name of module to insert*)
Text_Data_Record : VARYING [255] OF CHAR; (*Record in new module*)
Textin : FILE OF VARYING [255] OF CHAR; (*File containing new module*)
lib_index_ptr : UNSIGNED; (*Value returned in library init*)
status : UNSIGNED; (*Return status for function calls*)
txtrfa_ptr : Rfa_Ptr; (*For key lookup and insertion*)
Key_Not_Found : BOOLEAN := FALSE; (*True if new mod not already in lib*)

(*-*-*-*-Function Definitions-*-*-*-*)
(*Function that returns library
control index used by Librarian*)

FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[l..u:INTEGER]

OF INTEGER := %IMMED 0):
INTEGER; EXTERN;

(*Function that creates/opens library*)
FUNCTION LBR$OPEN (library_index: UNSIGNED;

fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create_options: ARRAY [l2..u2:INTEGER] OF INTEGER :=

%IMMED 0;
dns: [CLASS_S] PACKED ARRAY [l3..u3:INTEGER] OF CHAR

:= %IMMED 0;
rlfna: ARRAY [l4..u4:INTEGER] OF INTEGER := %IMMED 0;
rns: [CLASS_S] PACKED ARRAY [l5..u5:INTEGER] OF CHAR :=

%IMMED 0;
VAR rnslen: INTEGER := %IMMED 0):

INTEGER; EXTERN;
(*Function that finds a key in index*)

FUNCTION LBR$LOOKUP_KEY (library_index: UNSIGNED;
key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF

CHAR;
VAR txtrfa: Rfa_Ptr):

INTEGER; EXTERN;
(*Function that inserts key in index*)

FUNCTION LBR$INSERT_KEY (library_index: UNSIGNED;
key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF

CHAR;
txtrfa: Rfa_Ptr):

INTEGER; EXTERN;
(*Function that writes data records*)

(continued on next page)

Librarian (LBR) Routines LBR–11

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–2 (Cont.) Inserting a Module into a Library Using Compaq Pascal

FUNCTION LBR$PUT_RECORD (library_index: UNSIGNED; (*to modules*)
textline:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF

CHAR;
txtrfa: Rfa_Ptr):

INTEGER; EXTERN;
(*Function that marks end of a module*)

FUNCTION LBR$PUT_END (library_index: UNSIGNED):
INTEGER; EXTERN;

(*Function that closes library*)
FUNCTION LBR$CLOSE (library_index: UNSIGNED):

INTEGER; EXTERN;
BEGIN (* *************** DECLARATIONS COMPLETE *************************

*************** MAIN PROGRAM BEGINS HERE ********************** *)
(*Prompt for library name and
module to insert*)

WRITE(’Library Name: ’); READLN(Lib_Name);
WRITE(’Module Name: ’); READLN(Module_Name);

(*Initialize lib for update access*)
status := LBR$INI_CONTROL (lib_index_ptr, !

IADDRESS(LBR$C_UPDATE), (*Update access*)
IADDRESS(LBR$C_TYP_TXT)); (*Text library*)

IF NOT ODD(status) THEN (*Check error status*)
WRITELN(’Initialization Failed’)

ELSE (*Initialization was successful*)
BEGIN

status := LBR$OPEN (lib_index_ptr, (*Open the library*)
Lib_Name);

IF NOT ODD(status) THEN (*Check error status*)
WRITELN(’Open Not Successful’)

ELSE (*Open was successful*)
BEGIN (*Is module already in the library?*)

status := LBR$LOOKUP_KEY (lib_index_ptr, "
Module_Name,
txtrfa_ptr);

IF ODD(status) THEN (*Check status. Should not be odd*)
WRITELN(’Lookup key was successful.’,

’The module is already in the library.’)
ELSE (*Did lookup key fail because key not found?*)

IF status = IADDRESS(LBR$_KEYNOTFND) THEN #
Key_Not_Found := TRUE

END
END;

(continued on next page)

LBR–12 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–2 (Cont.) Inserting a Module into a Library Using Compaq Pascal

(******If LBR$LOOKUP_KEY failed because the key was not found
(as expected), we can open the file containing the new module,
and write the module’s records to the library file*******)

IF Key_Not_Found THEN
BEGIN

OPEN(Textin,Module_Name,old);
RESET(Textin);
WHILE NOT EOF(Textin) DO (*Repeat until end of file*)

BEGIN $
READ(Textin,Text_Data_Record); (*Read record from

external file*)
status := LBR$PUT_RECORD (lib_index_ptr, (*Write*)

Text_Data_Record, (*record to*)
txtrfa_ptr); (*library*)

IF NOT ODD(status) THEN
WRITELN(’Put Record Routine Not Successful’)

END; (*of WHILE statement*)
IF ODD(status) THEN (*True if all the records have been

successfully written into the library*)
BEGIN

status := LBR$PUT_END (lib_index_ptr); (*Write end of
module record*)

IF NOT ODD(status) THEN
WRITELN(’Put End Routine Not Successful’)

ELSE (*Insert key for new module*)
BEGIN %

status := LBR$INSERT_KEY (lib_index_ptr,
Module_Name,
txtrfa_ptr);

IF NOT ODD(status) THEN
WRITELN(’Insert Key Not Successful’)

END
END

END;
status := LBR$CLOSE(lib_index_ptr);
IF NOT ODD(status) THEN

WRITELN(’Close Not Successful’)
END. (*of program insertmod*)

Each item in the following list corresponds to a number highlighted in
Example 11–2:

! Call LBR$INI_CONTROL, specifying that the function to be performed is
update and that the library type is text.

" Call LBR$LOOKUP_KEY to see whether the module to be inserted is already
in the library.

Call LBR$LOOKUP_KEY to see whether the lookup key failed because the
key was not found. (In this case, the status value is LBR$_KEYNOTFND.)

$ Read a record from the input file, then use LBR$PUT_RECORD to write the
record to the library. When all the records have been written to the library,
use LBR$PUT_END to write an end-of-module record.

% Use LBR$INSERT_KEY to insert a key for the module into the current index.

Librarian (LBR) Routines LBR–13

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

11.2.3 Extracting a Module
Example 11–3 illustrates the extraction of a library module from a Compaq
Pascal program. The program is summarized in the following steps:

1. Call LBR$LOOKUP_KEY to locate the module. Specify the name of the
module as the second argument. LBR$LOOKUP_KEY returns the RFA of the
module as the third argument; do not alter this value.

2. Call LBR$GET_RECORD once for each record in the module. Specify a
character string to receive the extracted record as the second argument.
LBR$GET_RECORD returns a status value of RMS$_EOF after the last
record in the module is extracted.

Example 11–3 Extracting a Module from a Library Using Compaq Pascal

PROGRAM extractmod(INPUT,OUTPUT,Textout);
(*This program extracts a module from a library*)

TYPE
Rfa_Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module*)

VAR
LBR$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
LBR$C_TYP_TXT, (*Defined in $LBRDEF macro*)
RMS$_EOF : [EXTERNAL] INTEGER; (*RMS return status; defined in

$RMSDEF macro*)
Lib_Name : VARYING [128] OF CHAR; (*Name of library receiving module*)
Module_Name : VARYING [31] OF CHAR; (*Name of module to insert*)
Extracted_File : VARYING [31] OF CHAR; (*Name of file to hold

extracted module*)
Outtext : PACKED ARRAY [1..255] OF CHAR; (*Extracted mod put here,*)
Outtext2 : VARYING [255] OF CHAR; (* then moved to here*)
i : INTEGER; (*For loop control*)
Textout : FILE OF VARYING [255] OF CHAR; (*File containing extracted

module*)
nullstring : CHAR; (*nullstring, pos, and len used to*)
pos, len : INTEGER; (*find string in extracted file recd*)
lib_index_ptr : UNSIGNED; (*Value returned in library init*)
status : UNSIGNED; (*Return status for function calls*)
txtrfa_ptr : Rfa_Ptr; (*For key lookup and insertion*)

(*-*-*-*-Function Definitions-*-*-*-*)
(*Function that returns library
control index used by Librarian*)

FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[l..u:INTEGER]

OF INTEGER := %IMMED 0):
INTEGER; EXTERN;

(*Function that creates/opens library*)
FUNCTION LBR$OPEN (library_index: UNSIGNED;

fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create_options: ARRAY [l2..u2:INTEGER] OF INTEGER :=

%IMMED 0;
dns: [CLASS_S] PACKED ARRAY [l3..u3:INTEGER] OF CHAR

:= %IMMED 0;
rlfna: ARRAY [l4..u4:INTEGER] OF INTEGER := %IMMED 0;
rns: [CLASS_S] PACKED ARRAY [l5..u5:INTEGER] OF CHAR :=

%IMMED 0;
VAR rnslen: INTEGER := %IMMED 0):

INTEGER; EXTERN;

(continued on next page)

LBR–14 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–3 (Cont.) Extracting a Module from a Library Using Compaq
Pascal

(*Function that finds a key in an index*)
FUNCTION LBR$LOOKUP_KEY (library_index: UNSIGNED;

key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
CHAR;

VAR txtrfa: Rfa_Ptr):
INTEGER; EXTERN;

(*Function that retrieves records from modules*)
FUNCTION LBR$GET_RECORD (library_index: UNSIGNED;

var textline:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF
CHAR):

INTEGER;
EXTERN;

(*Function that closes library*)
FUNCTION LBR$CLOSE (library_index: UNSIGNED):

INTEGER; EXTERN;
BEGIN (* *************** DECLARATIONS COMPLETE *************************

*************** MAIN PROGRAM BEGINS HERE ********************** *)
(* Get Library Name, Module To Extract, And File To Hold Extracted Module *)

WRITE(’Library Name: ’); READLN(Lib_Name);
WRITE(’Module Name: ’); READLN(Module_Name);
WRITE(’Extract Into File: ’); READLN(Extracted_File);

status := LBR$INI_CONTROL (lib_index_ptr, !
IADDRESS(LBR$C_UPDATE),
IADDRESS(LBR$C_TYP_TXT));

IF NOT ODD(status) THEN
WRITELN(’Initialization Failed’)

ELSE
BEGIN

status := LBR$OPEN (lib_index_ptr,
Lib_Name);

IF NOT ODD(status) THEN
WRITELN(’Open Not Successful’)

ELSE
BEGIN "

status := LBR$LOOKUP_KEY (lib_index_ptr,
Module_Name,
txtrfa_ptr);

IF NOT ODD(status) THEN
WRITELN(’Lookup Key Not Successful’)

ELSE
BEGIN #

OPEN(Textout,Extracted_File,new);
REWRITE(Textout)

END
END

END;
WHILE ODD(status) DO

BEGIN
nullstring := ’’(0);
FOR i := 1 TO 255 DO $

Outtext[i] := nullstring;
status := LBR$GET_RECORD (lib_index_ptr,

Outtext);
IF NOT ODD(status) THEN

BEGIN %
IF status = IADDRESS(RMS$_EOF) THEN

WRITELN(’ RMS end of file’)
END

(continued on next page)

Librarian (LBR) Routines LBR–15

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–3 (Cont.) Extracting a Module from a Library Using Compaq
Pascal

ELSE
BEGIN &

pos := INDEX(Outtext, nullstring); (*find first null
in Outtext*)

len := pos - 1; (*length of Outtext to first null*)
IF len >= 1 THEN

BEGIN
Outtext2 := SUBSTR(Outtext,1,LEN);
WRITE(Textout,Outtext2)

END
END

END; (*of WHILE*)
status := LBR$CLOSE(lib_index_ptr);
IF NOT ODD(status) THEN

WRITELN(’Close Not Successful’)
END. (*of program extractmod*)

Each item in the following list corresponds to a number highlighted in
Example 11–3:

! Call LBR$INI_CONTROL, specifying that the function to be performed is
update and that the library type is text.

" Call LBR$LOOKUP_KEY to find the key that points to the module you want
to extract.

Open an output file to receive the extracted module.

$ Initialize the variable that is to receive the extracted records to null
characters.

% Call LBR$GET_RECORD to see if there are more records in the file (module).
A failure indicates that the end of the file has been reached.

& Write the extracted record data to the output file. This record should consist
only of the data up to the first null character.

11.2.4 Deleting a Module
Example 11–4 illustrates the deletion of library module from a Compaq Pascal
program. The program is summarized in the following steps:

1. Call LBR$LOOKUP_KEY, and specify the name of the module as the second
argument. LBR$LOOKUP_KEY returns the RFA of the module as the third
argument; do not alter this value.

2. Call LBR$DELETE_KEY to delete the module key. Specify the name of the
module as the second argument.

3. Call LBR$DELETE_DATA to delete the module itself. Specify the RFA of the
module obtained in Step 1 as the second argument.

LBR–16 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–4 Deleting a Module from a Library Using Compaq Pascal

PROGRAM deletemod(INPUT,OUTPUT);
(*This program deletes a module from a library*)

TYPE
Rfa_Ptr = ARRAY [0..1] OF INTEGER; (*Data type of RFA of module*)

VAR
LBR$C_UPDATE, (*Constants for LBR$INI_CONTROL*)
LBR$C_TYP_TXT, (*Defined in $LBRDEF macro*)
LBR$_KEYNOTFND : [EXTERNAL] INTEGER;(*Error code for LBR$LOOKUP_KEY*)
Lib_Name : VARYING [128] OF CHAR; (*Name of library receiving module*)
Module_Name : VARYING [31] OF CHAR; (*Name of module to insert*)
Text_Data_Record : VARYING [255] OF CHAR; (*Record in new module*)
Textin : FILE OF VARYING [255] OF CHAR; (*File containing new module*)
lib_index_ptr : UNSIGNED; (*Value returned in library init*)
status : UNSIGNED; (*Return status for function calls*)
txtrfa_ptr : Rfa_Ptr; (*For key lookup and insertion*)
Key_Not_Found : BOOLEAN := FALSE; (*True if new mod not already in lib*)

(*-*-*-*-Function Definitions-*-*-*-*)
(*Function that returns library
control index used by Librarian*)

FUNCTION LBR$INI_CONTROL (VAR library_index: UNSIGNED;
func: UNSIGNED;
typ: UNSIGNED;
VAR namblk: ARRAY[l..u:INTEGER]

OF INTEGER := %IMMED 0):
INTEGER; EXTERN;

(*Function that creates/opens library*)
FUNCTION LBR$OPEN (library_index: UNSIGNED;

fns: [class_s]PACKED ARRAY[l..u:INTEGER] OF CHAR;
create_options: ARRAY [l2..u2:INTEGER] OF INTEGER :=

%IMMED 0;
dns: [CLASS_S] PACKED ARRAY [l3..u3:INTEGER] OF CHAR

:= %IMMED 0;
rlfna: ARRAY [l4..u4:INTEGER] OF INTEGER := %IMMED 0;
rns: [CLASS_S] PACKED ARRAY [l5..u5:INTEGER] OF CHAR :=

%IMMED 0;
VAR rnslen: INTEGER := %IMMED 0):

INTEGER; EXTERN;
(*Function that finds a key in index*)

FUNCTION LBR$LOOKUP_KEY (library_index: UNSIGNED;
key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF

CHAR;
VAR txtrfa: Rfa_Ptr):

INTEGER; EXTERN;
(*Function that removes a key from an index*)

FUNCTION LBR$DELETE_KEY (library_index: UNSIGNED;
key_name:[CLASS_S] PACKED ARRAY [l..u:INTEGER] OF

CHAR):
INTEGER;

EXTERN;

(*Function that deletes all the records
associated with a module*)

FUNCTION LBR$DELETE_DATA (library_index: UNSIGNED;
txtrfa: Rfa_Ptr):
INTEGER;

EXTERN;
(*Function that closes library*)

FUNCTION LBR$CLOSE (library_index: UNSIGNED):
INTEGER; EXTERN;

(continued on next page)

Librarian (LBR) Routines LBR–17

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–4 (Cont.) Deleting a Module from a Library Using Compaq Pascal

BEGIN (* *************** DECLARATIONS COMPLETE *************************
*************** MAIN PROGRAM BEGINS HERE ********************** *)

(* Get Library Name and Module to Delete *)
WRITE(’Library Name: ’); READLN(Lib_Name);
WRITE(’Module Name: ’); READLN(Module_Name);

(*Initialize lib for update access*)
status := LBR$INI_CONTROL (lib_index_ptr, !

IADDRESS(LBR$C_UPDATE), (*Update access*)
IADDRESS(LBR$C_TYP_TXT)); (*Text library*)

IF NOT ODD(status) THEN (*Check error status*)
WRITELN(’Initialization Failed’)

ELSE (*Initialization was successful*)
BEGIN

status := LBR$OPEN (lib_index_ptr, (*Open the library*)
Lib_Name);

IF NOT ODD(status) THEN (*Check error status*)
WRITELN(’Open Not Successful’)

ELSE (*Open was successful*)
BEGIN " (*Is module in the library?*)

status := LBR$LOOKUP_KEY (lib_index_ptr,
Module_Name,
txtrfa_ptr);

IF NOT ODD(status) THEN (*Check status*)
WRITELN(’Lookup Key Not Successful’)

END
END;

IF ODD(status) THEN (*Key was found; delete it*)
BEGIN

status := LBR$DELETE_KEY (lib_index_ptr, #
Module_Name);

IF NOT ODD(status) THEN
WRITELN(’Delete Key Routine Not Successful’)

ELSE (*Delete key was successful*)
BEGIN (*Now delete module’s data records*)

status := LBR$DELETE_DATA (lib_index_ptr, $
txtrfa_ptr);

IF NOT ODD(status) THEN
WRITELN(’Delete Data Routine Not Successful’)

END
END;

status := LBR$CLOSE(lib_index_ptr); (*Close the library*)
IF NOT ODD(status) THEN

WRITELN(’Close Not Successful’);
END. (*of program deletemod*)

Each item in the following list corresponds to a number highlighted in
Example 11–4:

! Call LBR$INI_CONTROL, specifying that the function to be performed is
update and the library type is text.

" Call LBR$LOOKUP_KEY to find the key associated with the module you
want to delete.

Call LBR$DELETE_KEY to delete the key associated with the module you
want to delete. If more than one key points to the module, you need to call
LBR$LOOKUP_KEY and LBR$DELETE_KEY for each key.

$ Call LBR$DELETE_DATA to delete the module (the module header and data)
from the library.

LBR–18 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

11.2.5 Using Multiple Keys and Multiple Indexes
You can point to the same module with more than one key. The keys can be in
the primary index (index 1) or alternate indexes (indexes 2 through 10). The
best method is to reserve the primary index for module names. In system-defined
object libraries, index 2 contains the global symbols defined by the various
modules.

Example 11–5 illustrates the way that keys can be associated with modules.

Example 11–5 Associating Keys with Modules

SUBROUTINE ALIAS (INDEX)
! Catalogs modules by alias

INTEGER STATUS, ! Return status
INDEX, ! Library index
TXTRFA (2) ! RFA of module

CHARACTER*31 MODNAME, ! Name of module
ALIASNAME ! Name of alias

INTEGER MODNAME_LEN ! Length of module name
INTEGER ALIASNAME_LEN ! Length of alias name
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,

LBR$SET_INDEX,
LBR$INSERT_KEY,
LIB$GET_INPUT,
LIB$GET_VALUE
LIB$LOCC

! Return codes
EXTERNAL LBR$_KEYNOTFND, ! Key not found

LBR$_DUPKEY, ! Duplicate key
RMS$_EOF, ! End of text in module
DOLIB_NOMOD ! No such module

! Get module name from /ALIAS on command line
CALL CLI$GET_VALUE (’ALIAS’, MODNAME)
! Calculate length of module name
MODNAME_LEN = LIB$LOCC (’ ’, MODNAME) - 1
! Look up module name in library index
STATUS = LBR$LOOKUP_KEY (INDEX,

MODNAME (1:MODNAME_LEN),
TXTRFA)

END IF

(continued on next page)

Librarian (LBR) Routines LBR–19

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–5 (Cont.) Associating Keys with Modules

! Insert aliases if module exists
IF (STATUS) THEN
! Set to index 2
STATUS = LBR$SET_INDEX (INDEX, 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get alias name from /ALIAS on command line
STATUS = CLI$GET_VALUE (’ALIAS’, ALIASNAME)
! Insert aliases in index 2 until bad return status
! which indicates end of qualifier values
DO WHILE (STATUS)
! Calculate length of alias name
ALIASNAME_LEN = LIB$LOCC (’ ’, ALIASNAME) - 1
! Put alias name in index
STATUS = LBR$INSERT_KEY (INDEX,

ALIASNAME (1:ALIASNAME_LEN),
TXTRFA)

IF ((.NOT. STATUS) .AND.
(STATUS .NE. %LOC (LBR$_DUPKEY)) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Get another alias
STATUS = CLI$GET_VALUE (’ALIAS’, ALIASNAME)

END DO

! Issue warning if module does not exist
ELSE IF (STATUS .EQ. %LOC (LBR$_KEYNOTFND)) THEN
CALL LIB$SIGNAL (DOLIB_NOMOD,

%VAL (1),
MODNAME (1:MODNAME_LEN))

ELSE
CALL LIB$SIGNAL (%VAL (STATUS))

END IF

! Exit
END

You can look up a module using any of the keys associated with it. The following
code fragment checks index 2 for a key if the lookup in the primary index fails:

STATUS = LBR$SET_INDEX (INDEX, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LBR$LOOKUP_KEY (INDEX,

MODNAME (1:MODNAME_LEN),
TXTRFA)

IF (STATUS .EQ. %LOC (LBR$_KEYNOTFND)) THEN
STATUS = LBR$SET_INDEX (INDEX, 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LBR$LOOKUP_KEY (INDEX,

MODNAME (1:MODNAME_LEN),
TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END IF

There are two ways to identify the keys associated with a module:

• Use the LBR$LOOKUP_KEY routine to look up the module using one of the
keys.

• Use LBR$SEARCH to search applicable indexes for the keys. LBR$SEARCH
calls a user-written routine each time it retrieves a key. The routine must be
an integer function defined as external that returns a success (odd number)

LBR–20 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

or failure (even number) status. LBR$SEARCH stops processing on a return
status of failure.

The subroutine in Example 11–6 lists the names of keys in index 2 (the aliases)
that point to a module identified on the command line by the module’s name in
the primary index.

Example 11–6 Listing Keys Associated with a Module
.
.
.

SUBROUTINE SHOWAL (INDEX)
! Lists aliases for a module

INTEGER STATUS, ! Return status
INDEX, ! Library index
TXTRFA (2) ! RFA for module text

CHARACTER*31 MODNAME ! Name of module
INTEGER MODNAME_LEN ! Length of module name
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,

LBR$SEARCH,
LIB$LOCC

! Return codes
EXTERNAL LBR$_KEYNOTFND, ! Key not found

DOLIB_NOMOD ! No such module
! Search routine
EXTERNAL SEARCH
INTEGER SEARCH
! Get module name and calculate length
CALL CLI$GET_VALUE (’SHOWALIAS’, MODNAME)
MODNAME_LEN = LIB$LOCC (’ ’, MODNAME) - 1
! Look up module in index 1
STATUS = LBR$LOOKUP_KEY (INDEX,

MODNAME (1:MODNAME_LEN),
TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Search for alias names in index 2
STATUS = LBR$SEARCH (INDEX,

2,
TXTRFA,
SEARCH)

END
INTEGER FUNCTION SEARCH (ALIASNAME, RFA)
! Function called for each alias name pointing to MODNAME
! Displays the alias name
INTEGER STATUS_OK, ! Good return status

RFA (2) ! RFA of module
PARAMETER (STATUS_OK = 1) ! Odd number
CHARACTER*(*) ALIASNAME ! Name of module
! Display module name
TYPE *, MODNAME

! Exit
SEARCH = STATUS_OK
END

Librarian (LBR) Routines LBR–21

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

11.2.6 Accessing Module Headers
You can store user information in the header of each module up to the total size
of the header specified at library creation time in the CRE$L_UHDMAX option.
The total size of each header in bytes is the value of MHD$B_USRDAT plus the
value assigned to the CRE$L_UHDMAX option. The value of MHD$B_USRDAT
is defined by the macro $MHDDEF; the default value is 16 bytes.

To put user data into a module header, first locate the module with
LBR$LOOKUP_KEY; then move the data to the module header by invoking
LBR$SET_MODULE, specifying the first argument (index value returned by
LBR$INI_CONTROL), the second argument (RFA returned by LBR$LOOKUP_
KEY), and the fifth argument (character string containing the user data).

To read user data from a module header, first locate the module with
LBR$LOOKUP_KEY; then, retrieve the entire module header by invoking
LBR$SET_MODULE, specifying the first, second, third (character string to
receive the contents of the module header), and fourth (length of the module
header) arguments. The user data starts at the byte offset defined by MHD$B_
USRDAT. Convert this value to a character string subscript by adding 1.

Example 11–7 displays the user data portion of module headers on SYS$OUTPUT
and applies updates from SYS$INPUT.

Example 11–7 Displaying the Module Header
.
.
.

SUBROUTINE MODHEAD (INDEX)
! Modifies module headers

INTEGER STATUS, ! Return status
INDEX, ! Library index
TXTRFA (2) ! RFA of module

CHARACTER*31 MODNAME ! Name of module
INTEGER MODNAME_LEN ! Length of module name
CHARACTER*80 HEADER ! Module header
INTEGER HEADER_LEN ! Length of module header
INTEGER USER_START ! Start of user data in header
CHARACTER*64 USERDATA ! User data part of header
INTEGER*2 USERDATA_LEN ! Length of user data
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,

LBR$SET_MODULE,
LIB$GET_INPUT,
LIB$PUT_OUTPUT,
CLI$GET_VALUE,
LIB$LOCC

! Offset to user data --- defined in $MHDDEF
EXTERNAL MHD$B_USRDAT
! Return codes
EXTERNAL LBR$_KEYNOTFND, ! Key not found

DOLIB_NOMOD ! No such module
! Calculate start of user data in header
USER_START = %LOC (MHD$B_USRDAT) + 1
! Get module name from /MODHEAD on command line
STATUS = CLI$GET_VALUE (’MODHEAD’, MODNAME)

(continued on next page)

LBR–22 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–7 (Cont.) Displaying the Module Header

! Get module headers until bad return status
! which indicates end of qualifier values
DO WHILE (STATUS)

! Calculate length of module name
MODNAME_LEN = LIB$LOCC (’ ’, MODNAME) - 1
! Look up module name in library index
STATUS = LBR$LOOKUP_KEY (INDEX,

MODNAME (1:MODNAME_LEN),
TXTRFA)

! Get header if module exists
IF (STATUS) THEN
STATUS = LBR$SET_MODULE (INDEX,

TXTRFA,
HEADER,
HEADER_LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Display header and solicit replacement
STATUS = LIB$PUT_OUTPUT
(’User data for module ’//MODNAME (1:MODNAME_LEN)//’:’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$PUT_OUTPUT
(HEADER (USER_START:HEADER_LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$PUT_OUTPUT
(’Enter replacement text below or just hit return:’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$GET_INPUT (USERDATA,, USERDATA_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Replace user data
IF (USERDATA_LEN .GT. 0) THEN
STATUS = LBR$SET_MODULE (INDEX,

TXTRFA,,,
USERDATA (1:USERDATA_LEN))

END IF

! Issue warning if module does not exist
ELSE IF (STATUS .EQ. %LOC (LBR$_KEYNOTFND)) THEN
CALL LIB$SIGNAL (DOLIB_NOMOD,

%VAL (1),
MODNAME (1:MODNAME_LEN))

ELSE
CALL LIB$SIGNAL (%VAL (STATUS))

END IF

! Get another module name
STATUS = CLI$GET_VALUE (’MODHEAD’, MODNAME)

END DO

! Exit
END

11.2.7 Reading Library Headers
Call LBR$GET_HEADER to obtain general information concerning the library.
Pass the value returned by LBR$INI_CONTROL as the first argument.
LBR$GET_HEADER returns the information to the second argument, which
must be an array of 128 longwords. The LHI symbols identify the significant
longwords of the array by their byte offsets into the array. Convert these values
to subscripts by dividing by 4 and adding 1.

Librarian (LBR) Routines LBR–23

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–8 reads the library header and displays some information from it.

Example 11–8 Reading Library Headers
.
.
.

SUBROUTINE TYPEINFO (INDEX)
! Types the type, major ID, and minor ID
! of a library to SYS$OUTPUT

INTEGER STATUS ! Return status
INDEX, ! Library index
HEADER (128), ! Structure for header information
TYPE, ! Subscripts for header structure
MAJOR_ID,
MINOR_ID

CHARACTER*8 MAJOR_ID_TEXT, ! Display info in character format
MINOR_ID_TEXT

! VMS library procedures
INTEGER LBR$GET_HEADER,

LIB$PUT_OUTPUT
! Offsets for header --- defined in $LHIDEF
EXTERNAL LHI$L_TYPE,

LHI$L_MAJORID,
LHI$L_MINORID

! Library type values --- defined in $LBRDEF
EXTERNAL LBR$C_TYP_OBJ,

LBR$C_TYP_MLB,
LBR$C_TYP_HLP,
LBR$C_TYP_TXT

! Get header information
STATUS = LBR$GET_HEADER (INDEX, HEADER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Calculate subscripts for header structure
TYPE = %LOC (LHI$L_TYPE) / 4 + 1
MAJOR_ID = %LOC (LHI$L_MAJORID) / 4 + 1
MINOR_ID = %LOC (LHI$L_MINORID) / 4 + 1
! Display library type
IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP_OBJ)) THEN
STATUS = LIB$PUT_OUTPUT (’Library type: object’)

ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP_MLB)) THEN
STATUS = LIB$PUT_OUTPUT (’Library type: macro’)

ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP_HLP)) THEN
STATUS = LIB$PUT_OUTPUT (’Library type: help’)

ELSE IF (HEADER (TYPE) .EQ. %LOC (LBR$C_TYP_TXT)) THEN
STATUS = LIB$PUT_OUTPUT (’Library type: text’)

ELSE
STATUS = LIB$PUT_OUTPUT (’Library type: unknown’)

END IF
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert and display major ID
WRITE (UNIT=MAJOR_ID_TEXT,

FMT=’(I)’) HEADER (MAJOR_ID)
STATUS = LIB$PUT_OUTPUT (’Major ID: ’//MAJOR_ID_TEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert and display minor ID
WRITE (UNIT=MINOR_ID_TEXT,

FMT=’(I)’) HEADER (MINOR_ID)
STATUS = LIB$PUT_OUTPUT (’Minor ID: ’//MINOR_ID_TEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

LBR–24 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–8 (Cont.) Reading Library Headers

! Exit
END

11.2.8 Displaying Help Text
You can display text from a help library by calling the LBR$OUTPUT_HELP
routine and specifying the output routine, the keywords, and the name of the
library. You must also specify the input routine if the prompting mode flag is set
or if the flags argument is omitted.

Note

If you specify subprograms in an argument list, they must be declared as
external.

You can use the LIB$PUT_OUTPUT and LIB$GET_INPUT routines to specify
the output routine and the input routine. (If you use your own routines,
make sure the argument lists are the same as for LIB$PUT_OUTPUT and
LIB$GET_INPUT.) Do not call LBR$INI_CONTROL and LBR$OPEN before
calling LBR$OUTPUT_HELP.

Example 11–9 solicits keywords from SYS$INPUT and displays the text
associated with those keywords on SYS$OUTPUT, thus inhibiting the prompting
facility.

Example 11–9 Displaying Text from a Help Library

PROGRAM GET_HELP

! Prints help text from a help library
CHARACTER*31 LIBSPEC ! Library name
CHARACTER*15 KEYWORD ! Keyword in help library
INTEGER*2 LIBSPEC_LEN, ! Length of name

KEYWORD_LEN ! Length of keyword
INTEGER FLAGS, ! Help flags

STATUS ! Return status
! VMS library procedures
INTEGER LBR$OUTPUT_HELP,

LIB$GET_INPUT,
LIB$PUT_OUTPUT

EXTERNAL LIB$GET_INPUT,
LIB$PUT_OUTPUT

! Error codes
EXTERNAL RMS$_EOF, ! End-of-file

LIB$_INPSTRTRU ! Input string truncated
! Flag values --- defined in $HLPDEF
EXTERNAL HLP$M_PROMPT,

HLP$M_PROCESS,
HLP$M_GROUP,
HLP$M_SYSTEM,
HLP$M_LIBLIST,
HLP$M_HELP

(continued on next page)

Librarian (LBR) Routines LBR–25

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–9 (Cont.) Displaying Text from a Help Library
! Get library name
STATUS = LIB$GET_INPUT (LIBSPEC,

’Library: ’,
LIBSPEC_LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (LIBSPEC_LEN .EQ. 0) THEN
LIBSPEC = ’HELPLIB’
LIBSPEC_LEN = 7

END IF
! Set flags for no prompting
FLAGS = %LOC (HLP$_PROCESS) +

%LOC (HLP$_GROUP) +
%LOC (HLP$_SYSTEM)

! Get first keyword
STATUS = LIB$GET_INPUT (KEYWORD,

’Keyword or Ctrl/Z: ’,
KEYWORD_LEN)

IF ((.NOT. STATUS) .AND.
(STATUS .NE. %LOC (LIB$_INPSTRTRU)) .AND.
(STATUS .NE. %LOC (RMS$_EOF))) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Display text until end-of-file
DO WHILE (STATUS .NE. %LOC (RMS$_EOF))
STATUS = LBR$OUTPUT_HELP (LIB$PUT_OUTPUT,,

KEYWORD (1:KEYWORD_LEN),
LIBSPEC (1:LIBSPEC_LEN),
FLAGS,
LIB$GET_INPUT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get another keyword
STATUS = LIB$GET_INPUT (KEYWORD,

’Keyword or Ctrl/Z: ’,
KEYWORD_LEN)

IF ((.NOT. STATUS) .AND.
(STATUS .NE. %LOC (LIB$_INPSTRTRU)) .AND.
(STATUS .NE. %LOC (RMS$_EOF))) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

END DO

! Exit
END

11.2.9 Listing and Processing Index Entries
You can process index entries an entry at a time by invoking LBR$GET_INDEX.
The fourth argument specifies a match name for the entry or entries in the index
to be processed: you can include the asterisk (*) and percent (%) characters in
the match name for generic processing. For example, MOD* means all entries
whose names begin with MOD; and MOD% means all entries whose names are
four characters and begin with MOD.

The third argument names a user-written routine that is executed once for each
index entry specified by the fourth argument. The routine must be a function
declared as external that returns a success (odd number) or failure (even number)
status. LBR$GET_INDEX processing stops on a return status of failure. Declare
the first argument passed to the function as a passed-length character argument;
this argument contains the name of the index entry. Declare the second argument
as an integer array of two elements.

LBR–26 Librarian (LBR) Routines

Librarian (LBR) Routines
11.2 Using the LBR Routines: Examples

Example 11–10 obtains a match name from the command line and displays the
names of the matching entries from index 1 (the index containing the names of
the modules).

Example 11–10 Displaying Index Entries

SUBROUTINE LIST (INDEX)
! Lists modules in the library

INTEGER STATUS, ! Return status
INDEX, ! Library index

CHARACTER*31 MATCHNAME ! Name of module to list
INTEGER MATCHNAME_LEN ! Length of match name
! VMS library procedures
INTEGER address LBR$GET_INDEX,

LIB$LOCC
! Match routine
INTEGER MATCH
EXTERNAL MATCH
! Get module name and calculate length
CALL CLI$GET_VALUE (’LIST’, MATCHNAME)
MATCHNAME_LEN = LIB$LOCC (’ ’, MATCHNAME) - 1
! Call routine to display module names
STATUS = LBR$GET_INDEX (INDEX,

1, ! Primary index
MATCH,
MATCHNAME (1:MATCHNAME_LEN))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Exit
END
INTEGER FUNCTION MATCH (MODNAME, RFA)
! Function called for each module matched by MATCHNAME
! Displays the module name
INTEGER STATUS_OK, ! Good return status

RFA (2) ! RFA of module name in index
PARAMETER (STATUS_OK = 1) ! Odd value
CHARACTER*(*) MODNAME ! Name of module
! Display the name
TYPE *, MODNAME ! Display module name

! Exit
MATCH = STATUS_OK
END

11.3 LBR Routines
This section describes the individual LBR routines.

Librarian (LBR) Routines LBR–27

Librarian (LBR) Routines
LBR$CLOSE

LBR$CLOSE—Close a Library

The LBR$CLOSE routine closes an open library.

Format

LBR$CLOSE library_index

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

Description

When you are finished working with a library, you should call LBR$CLOSE to
close it. Upon successful completion, LBR$CLOSE closes the open library and
deallocates all of the memory used for processing it.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR–28 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$DELETE_DATA

LBR$DELETE_DATA—Delete a Module’s Data

The LBR$DELETE_DATA routine deletes the module header and data associated
with the specified module.

Format

LBR$DELETE_DATA library_index ,txtrfa

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Record’s file address (RFA) of the module header for the module you want to
delete. The txtrfa argument is the address of the 2-longword array that contains
the RFA. You can obtain the RFA of a module header by calling LBR$LOOKUP_
exit KEY or LBR$PUT_RECORD.

Description

If you want to delete a library module, you must first call LBR$DELETE_KEY
to delete any keys that point to it. If no library index keys are pointing to the
module header, LBR$DELETE_DATA deletes the module header and associated
data records; otherwise, this routine returns the error LBR$_STILLKEYS.

Note that other LBR routines may reuse data blocks that contain no data.

Librarian (LBR) Routines LBR–29

Librarian (LBR) Routines
LBR$DELETE_DATA

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_STILLKEYS Keys in other indexes still point at the module

header. Therefore, the specified module was not
deleted.

LBR–30 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$DELETE_KEY

LBR$DELETE_KEY—Delete a Key

The LBR$DELETE_KEY routine deletes a key from a library index.

Format

LBR$DELETE_KEY library_index ,key_name

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of a longword containing the index.

key_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Key to be deleted from the library index. For libraries with binary keys, the
key_name argument is the address of an unsigned longword containing the key
number.

For libraries with ASCII keys, the key_name argument is the address of the
string descriptor pointing to the key with the following argument characteristics:

Argument Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

Librarian (LBR) Routines LBR–31

Librarian (LBR) Routines
LBR$DELETE_KEY

Description

If LBR$DELETE_KEY finds the key specified by key_name in the current
index, it deletes the key. Note that, if you want to delete a library module, you
should first use LBR$DELETE_KEY to delete any keys that point to it, then use
LBR$DELETE_DATA to delete the module’s header and associated data.

You cannot call LBR$DELETE_KEY from within the user-supplied routine
specified in LBR$SEARCH or LBR$GET_INDEX.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_KEYNOTFND Specified key not found.
LBR$_LIBNOTOPN Specified library not open.
LBR$_UPDURTRAV Specified index update not valid in a user-

supplied routine specified in LBR$SEARCH
or LBR$GET_INDEX.

LBR–32 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$FIND

LBR$FIND—Look Up a Module by Its RFA

The LBR$FIND routine sets the current internal read context for the library to
the library module specified.

Format

LBR$FIND library_index ,txtrfa

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Record’s file address (RFA) of the module header for the module you want to
access. The txtrfa argument is the address of a 2-longword array containing the
RFA. You can obtain the RFA of a module header by calling LBR$LOOKUP_KEY
or LBR$PUT_RECORD.

Description

Use the LBR$FIND routine to access a module that you had accessed earlier in
your program. For example, if you look up several keys with LBR$LOOKUP_
KEY, you can save the RFAs returned by LBR$LOOKUP_KEY and later use
LBR$FIND to reaccess the modules. Thus, you do not have to look up the module
header’s key every time you want to access the module. If the specified RFA is
valid, LBR$FIND initializes internal tables so you can read the associated data.

Librarian (LBR) Routines LBR–33

Librarian (LBR) Routines
LBR$FIND

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR–34 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$FLUSH

LBR$FLUSH—Recover Virtual Memory

The LBR$FLUSH routine writes modified blocks back to the library file and frees
the virtual memory the blocks had been using.

Format

LBR$FLUSH library_index ,block_type

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

block_type
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Extent of the flush operation. The block_type argument contains the longword
value that indicates how the flush operation proceeds. If you specify LBR$C_
FLUSHDATA, the data blocks are flushed. If you specify LBR$C_FLUSHALL,
first the data blocks and then the current library index are flushed.

Each programming language provides an appropriate mechanism for accessing
these symbols.

Description

LBR$FLUSH cannot be called from other LBR routines that reference cache
addresses or by routines called by LBR routines.

Librarian (LBR) Routines LBR–35

Librarian (LBR) Routines
LBR$FLUSH

Condition Values Returned

LBR$_NORMAL Operation completed successfully.
LBR$_BADPARAM Error. A value passed to the LBR$FLUSH

routine was either out of range or an illegal
value.

LBR$_WRITERR Error. An error occurred during the writing of
the cached update blocks to the library file.

LBR–36 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_HEADER

LBR$GET_HEADER—Retrieve Library Header Information

The LBR$GET_HEADER routine returns information from the library’s header to
the caller.

Format

LBR$GET_HEADER library_index ,retary

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

retary
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Array of 128 longwords that receives the library header. The retary argument is
the address of the array that contains the header information. The information
returned in the array is listed in the following table. Each programming language
provides an appropriate mechanism for accessing this information.

Offset in
Longwords Symbolic Name Contents

0 LHI$L_TYPE Library type (see LBR$OPEN for
possible values)

1 LHI$L_NINDEX Number of indexes
2 LHI$L_MAJORID Library format major identification
3 LHI$L_MINORID Library format minor identification
4 LHI$T_LBRVER ASCIC version of Librarian

12 LHI$L_CREDAT Creation date/time
14 LHI$L_UPDTIM Date/time of last update

Librarian (LBR) Routines LBR–37

Librarian (LBR) Routines
LBR$GET_HEADER

Offset in
Longwords Symbolic Name Contents

16 LHI$L_UPDHIS Virtual block number (VBN) of start of
update history

17 LHI$L_FREEVBN First logically deleted block
18 LHI$L_FREEBLK Number of deleted blocks
19 LHI$B_NEXTRFA Record’s file address (RFA) of end of

library
21 LHI$L_NEXTVBN Next VBN to allocate at end of file
22 LHI$L_FREIDXBLK Number of free preallocated index

blocks
23 LHI$L_FREEIDX List head for preallocated index blocks
24 LHI$L_HIPREAL VBN of highest preallocated block
25 LHI$L_IDXBLKS Number of index blocks in use
26 LHI$L_IDXCNT Number of index entries (total)
27 LHI$L_MODCNT Number of entries in index 1 (module

names)
28 LHI$L_MHDUSZ Number of bytes of additional

information reserved in module header
29 LHI$L_MAXLUHREC Maximum number of library update

history records maintained
30 LHI$L_NUMLUHREC Number of library update history

records in history
31 LHI$L_LIBSTATUS Library status (false if there was an

error closing the library)
32-128 Reserved by Compaq

Description

On successful completion, LBR$GET_HEADER places the library header
information into the array of 128 longwords.

Note that the offset is the byte offset of the value into the header structure. You
can convert the offset to a longword subscript by dividing the offset by 4 and
adding 1 (assuming that subscripts in your programming language begin with 1).

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR–38 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_HELP

LBR$GET_HELP—Retrieve Help Text

The LBR$GET_HELP routine retrieves help text from a help library, displaying
it on SYS$OUTPUT or calling your routine for each record returned.

Format

LBR$GET_HELP library_index [,line_width] [,routine] [,data] [,key_1]
[,key_2 . . . ,key_10]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

line_width
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Width of the help text line. The line_width argument is the address of a
longword containing the width of the listing line. If you do not supply a line
width or if you specify 0, the line width defaults to 80 characters per line.

routine
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Routine called for each line of text you want output. The routine argument is
the address of the procedure value for this user-written routine.

If you do not supply a routine argument, LBR$GET_HELP calls the Run-Time
Library procedure LIB$PUT_OUTPUT to send the help text lines to the current
output device (SYS$OUTPUT). However, if you want SYS$OUTPUT for your
program to be a disk file rather than the terminal, you should supply a routine to
output the text.

Librarian (LBR) Routines LBR–39

Librarian (LBR) Routines
LBR$GET_HELP

If the user-written routine returns an error status with low bit clear, the
LBR$GET_HELP routine passes this status to the caller. If the user-written
routine returns a success status with low bit set, the LBR$GET_HELP routine
returns 1 to the caller.

The routine you specify is called with an argument list of four longwords:

1. The first argument is the address of a string descriptor for the output line.

2. The second argument is the address of an unsigned longword containing flag
bits that describe the contents of the text being passed. The possible flags are
as follows:

HLP$M_NOHLPTXT Specified help text cannot be found.
HLP$M_KEYNAMLIN Text contains key names of the printed text.
HLP$M_OTHERINFO Text is part of the information provided on

additional help available.

Each programming language provides an appropriate mechanism for
accessing these flags. Note that, if no flag bit is set, help text is passed.

3. The third argument is the address stipulated in the data argument specified
in the call to LBR$GET_HELP (or the address of a 0 constant if the data
argument is zero or was omitted).

4. The fourth argument is a longword containing the address of the current key
level.

The routine you specify must return with success or failure status. A failure
status (low bit = 0) terminates the current call to LBR$GET_HELP.

data
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Data passed to the routine specified in the routine argument. The data
argument is the address of data for the routine. The address is passed to the
routine specified in the routine argument. If you omit this argument or specify
it as zero, then the argument passed in your routine will be the address of a zero
constant.

key_1,key_2, . . . ,key_10
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by descriptor

Level of the help text to be output. Each key_1,key_2, . . . ,key_10 argument is
the address of a descriptor pointing to the key for that level.

If the key_1 descriptor is 0 or if it is not present, LBR$GET_HELP assumes
that the key_1 name is HELP, and it ignores all the other keys. For key_2
through key_10, a descriptor address of 0, or a length of 0, or a string address of
0 terminates the list.

LBR–40 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_HELP

The key argument may contain any of the following special character strings:

String Meaning

* Return all level 1 help text in the library.
KEY . . . Return all help text associated with the specified key and its subkeys

(valid for level 1 keys only).
* . . . Return all help text in the library.

Description

LBR$GET_HELP returns all help text in the same format as the output returned
by the DCL command HELP; that is, it indents two spaces for every key level
of text displayed. (Because of this formatting, you may want to make your help
messages shorter than 80 characters, so they fit on one line on terminal screens
with the width set to 80.) If you do not want the help text indented to the
appropriate help level, you must supply your own routine to change the format.

Note that most application programs use LBR$OUTPUT_HELP instead of
LBR$GET_HELP.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_NOTHLPLIB Specified library not a help library.

Librarian (LBR) Routines LBR–41

Librarian (LBR) Routines
LBR$GET_HISTORY

LBR$GET_HISTORY—Retrieve a Library Update History Record

The LBR$GET_HISTORY routine returns each library update history record to a
user-specified action routine.

Format

LBR$GET_HISTORY library_index ,action_routine

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

action_routine
OpenVMS usage: procedure
type: procedure value
access: modify
mechanism: by reference

User-supplied routine for processing library update history records. The action_
routine argument is the address of the procedure value of this user-supplied
routine. The routine is invoked once for each update history record in the library.
One argument is passed to the routine, namely, the address of a descriptor
pointing to a history record.

Description

This routine retrieves the library update history records written by the routine
LBR$PUT_HISTORY.

LBR–42 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_HISTORY

Condition Values Returned

LBR$_NORMAL Normal exit from the routine.
LBR$_EMPTYHIST History empty. This is an informational code, not

an error code.
LBR$_INTRNLERR Internal Librarian routine error occurred.
LBR$_NOHISTORY No update history. This is an informational code,

not an error code.

Librarian (LBR) Routines LBR–43

Librarian (LBR) Routines
LBR$GET_INDEX

LBR$GET_INDEX—Call a Routine for Selected Index Keys

The LBR$GET_INDEX routine calls a user-supplied routine for selected keys in
an index.

Format

LBR$GET_INDEX library_index ,index_number ,routine_name [,match_desc]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

index_number
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of the library index. The index_number argument is the address of a
longword containing the index number. This is the index number associated
with the keys you want to use as input to the user-supplied routine (see
Section 11.1.2.3).

routine_name
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

User-supplied routine called for each of the specified index keys. The routine_
name argument is the address of the procedure value for this user-supplied
routine.

LBR–44 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_INDEX

LBR$GET_INDEX passes two arguments to the routine:

• A key name.

– For libraries with ASCII keys, the key_name argument is the address of
a string descriptor pointing to the key. Note that the string and the string
descriptor passed to the routine are valid only for the duration of that
call. The string must be copied privately if you need it again for more
processing.

– For libraries with binary keys, the key_name argument is the address of
an unsigned longword containing the key number.

• The record’s file address (RFA) of the module’s header for this key name. The
RFA argument is the address of a 2-longword array that contains the RFA.

The routine must return a value to indicate success or failure. If the routine
returns a false value (low bit = 0), LBR$GET_INDEX stops searching the index
and returns the status value of the user-specified routine to the calling program.

The routine cannot contain calls to either LBR$DELETE_KEY or LBR$INSERT_
KEY.

match_desc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Key matching identifier. The match_desc argument is the address of a string
descriptor pointing to a string used to identify which keys result in calls to the
user-supplied routine. Wildcard characters are allowed in this string. If you omit
this argument, the routine is called for every key in the index. The match_desc
argument is valid only for libraries that have ASCII keys.

Description

LBR$GET_INDEX searches through the specified index for a key that matches
the argument match_desc. Each time it finds a match, it calls the routine
specified by the routine_name argument. If you do not specify the match_desc
argument, it calls the routine for every key in the index.

For example, if you call LBR$GET_INDEX with match_desc equal to TR* and
index_number set to 1 (module name table), then LBR$GET_INDEX calls
routine_name for each module whose name begins with TR.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_ILLIDXNUM Specified index number not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_NULIDX Specified library empty.

Librarian (LBR) Routines LBR–45

Librarian (LBR) Routines
LBR$GET_RECORD

LBR$GET_RECORD—Read a Data Record

The LBR$GET_RECORD routine returns the next data record in the module
associated with a specified key.

Format

LBR$GET_RECORD library_index [,inbufdes] [,outbufdes]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index. The
library must be open and LBR$LOOKUP_KEY or LBR$FIND must have been
called to find the key associated with the module whose records you want to read.

inbufdes
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

User buffer to receive the record. The inbufdes argument is the address
of a string descriptor that points to the buffer that receives the record from
LBR$GET_RECORD. This argument is required when the Librarian subroutine
record access is set to move mode (which is the default). This argument is not
used if the record access mode is set to locate mode. The Description section
contains more information about the locate and move modes.

outbufdes
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String descriptor that receives the actual length and address of the data for the
record returned. The outbufdes argument is the address of the string descriptor
for the returned record. The length and address fields of the string descriptor are
filled in by the LBR$GET_RECORD routine. This parameter must be specified

LBR–46 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$GET_RECORD

when Librarian subroutine record access is set to locate mode. This parameter
is optional if record access mode is set to move mode. The Description section
contains more information about the locate and move modes.

Description

Before calling LBR$GET_RECORD, you must first call LBR$LOOKUP_KEY or
LBR$FIND to set the internal library read context to the record’s file address
(RFA) of the module header of the module whose records you want to read.

LBR$GET_RECORD uses two record access modes: locate mode and move
mode. Move mode is the default. The LBR$SET_LOCATE and LBR$SET_MOVE
subroutines set these modes. The record access modes are mutually exclusive;
that is, when one is set, the other is turned off. If move mode is set, LBR$GET_
RECORD copies the record to the user-specified buffer described by inbufdes. If
you have optionally specified the output buffer string descriptor, outbufdes, the
Librarian fills it with the actual length and address of the data. If locate mode
is set, LBR$GET_RECORD returns the record by way of an internal subroutine
buffer, pointing the outbufdes descriptor to the internal buffer. The second
parameter, inbufdes, is not used when locate mode is set.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_LKPNOTDON Requested key lookup not done.
RMS$_EOF Error. An attempt has been made to read past

the logical end of the data in the module.

Librarian (LBR) Routines LBR–47

Librarian (LBR) Routines
LBR$INI_CONTROL

LBR$INI_CONTROL—Initialize a Library Control Structure

The LBR$INI_CONTROL routine initializes a control structure, called a library
control index, to identify the library for use by other LBR routines.

Format

LBR$INI_CONTROL library_index ,func [,type] [,namblk]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of a longword that is to receive the index.

func
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library function to be performed. The func argument is the address of the
longword that contains the library function. Valid functions are LBR$C_CREATE,
LBR$C_READ, and LBR$C_UPDATE. Each programming language provides an
appropriate mechanism for accessing these symbols.

type
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library type. The type argument is the address of the longword containing the
library type. Valid library types include the following:

• LBR$C_TYP_OBJ (VAX object)

• LBR$C_TYP_SHSTB (VAX shareable image)

• LBR$C_TYP_EOBJ (Alpha object)

• LBR$C_TYP_ESHSTB (Alpha shareable image)

LBR–48 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$INI_CONTROL

• LBR$C_TYP_MLB (macro)

• LBR$C_TYP_HLP (help)

• LBR$C_TYP_TXT (text)

• LBR$C_TYP_UNK (unknown)

• LBR$C_TYP_NCS (NCS library)

• For user-developed libraries, a type in the range of LBR$C_TYP_USRLW
through LBR$C_TYP_USRHI.

namblk
OpenVMS usage: nam
type: longword (unsigned)
access: read only
mechanism: by reference

OpenVMS RMS name block (NAM). The namblk argument is the address of a
variable-length data structure containing an RMS NAM block. The LBR$OPEN
routine fills in the information in the NAM block so it can be used later to open
the library. If the NAM block has this file identification in it from previous use,
the LBR$OPEN routine uses the open-by-NAM block option. This argument is
optional and should be used if the library will be opened many times during a
single run of the program. For a detailed description of RMS NAM blocks, see the
OpenVMS Record Management Services Reference Manual.

Description

Except for the LBR$OUTPUT_HELP routine, you must call LBR$INI_CONTROL
before calling any other LBR routine. After you initialize the library control
index, you must open the library or create a new one using the LBR$OPEN
routine. You can then call other LBR routines that you need. After you finish
working with a library, close it with the LBR$CLOSE routine.

LBR$INI_CONTROL initializes a library by filling the longword referenced by the
library_index argument with the control index of the library. Upon completion
of the call, the index can be used to refer to the current library in all future
routine calls. Therefore, your program must not alter this value.

You can have up to 16 libraries open simultaneously in your program.

Condition Values Returned

LBR$_NORMAL Library control index initialized successfully.
LBR$_ILLFUNC Requested function not valid.
LBR$_ILLTYP Specified library type not valid.
LBR$_TOOMNYLIB Error. An attempt was made to allocate more

than 16 control indexes.

Librarian (LBR) Routines LBR–49

Librarian (LBR) Routines
LBR$INSERT_KEY

LBR$INSERT_KEY—Insert a New Key

The LBR$INSERT_KEY routine inserts a new key in the current library index.

Format

LBR$INSERT_KEY library_index ,key_name ,txtrfa

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Name of the new key you are inserting.

If the library uses binary keys, the key_name argument is the address of an
unsigned longword containing the value of the key.

If the library uses ASCII keys, the key_name argument is the address of a string
descriptor of the key with the following argument characteristics:

Argument
Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

LBR–50 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$INSERT_KEY

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

The record’s file address (RFA) of the module associated with the new key you are
inserting. The txtrfa argument is the address of a 2-longword array containing
the RFA. You can use the RFA returned by the first call to LBR$PUT_RECORD.

Description

You cannot call LBR$INSERT_KEY within the user-supplied routine specified in
LBR$SEARCH or LBR$GET_INDEX.

Condition Values Returned

LBR$_DUPKEY Index already contains the specified key.
LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA does not point to valid data.
LBR$_LIBNOTOPN Specified library not open.
LBR$_UPDURTRAV LBR$INSERT_KEY was called by the user-

defined routine specified in LBR$SEARCH or
LBR$GET_INDEX.

Librarian (LBR) Routines LBR–51

Librarian (LBR) Routines
LBR$LOOKUP_KEY

LBR$LOOKUP_KEY—Look Up a Library Key

The LBR$LOOKUP_KEY routine looks up a key in the library’s current index
and prepares to access the data in the module associated with the key.

Format

LBR$LOOKUP_KEY library_index ,key_name ,txtrfa

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Name of the library key. If the library uses binary keys, the key_name argument
is the address of the unsigned longword value of the key.

If the library uses ASCII keys, the key_name argument is the address of a string
descriptor for the key with the following argument characteristics:

Argument Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

LBR–52 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$LOOKUP_KEY

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The record’s file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array that receives the RFA of the
module header.

Description

If LBR$LOOKUP_KEY finds the specified key, it initializes internal tables so you
can access the associated data.

This routine returns the RFA (consisting of the virtual block number (VBN) and
the byte offset) to the 2-longword array referenced by txtrfa. Note that the RFA
is only 6 bytes long.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA RFA obtained not valid.
LBR$_KEYNOTFND Specified key not found.
LBR$_LIBNOTOPN Specified library not open.

Librarian (LBR) Routines LBR–53

Librarian (LBR) Routines
LBR$OPEN

LBR$OPEN—Open or Create a Library

The LBR$OPEN routine opens an existing library or creates a new one.

Format

LBR$OPEN library_index [,fns] [,create_options] [,dns] [,rlfna] [,rns] [,rnslen]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of a longword containing the index.

fns
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification of the library. The fns argument is the address of a string
descriptor pointing to the file specification. Unless the OpenVMS RMS NAM
block address was previously supplied in the LBR$INI_CONTROL routine and
contained a file specification, this argument must be included. Otherwise, the
Librarian returns an error (LBR$_NOFILNAM).

create_options
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library characteristics. The create_options argument is the address of an array
of 20 longwords that define the characteristics of the library you are creating. If
you are creating a library with LBR$C_CREATE, you must include the create_
options argument. The following table shows the entries that the array must
contain. Each programming language provides an appropriate mechanism for
accessing the listed symbols.

LBR–54 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$OPEN

Offset in
Longwords Symbolic Name Contents

0 CRE$L_TYPE Library type:
LBR$C_TYP_UNK (0) Unknown/unspecified
LBR$C_TYP_OBJ (1) VAX object
LBR$C_TYP_MLB (2) Macro
LBR$C_TYP_HLP (3) Help
LBR$C_TYP_TXT (4) Text
LBR$C_TYP_SHSTB (5) VAX shareable image
LBR$C_TYP_NCS (6) NCS
LBR$C_TYP_EOBJ (7) Alpha object
LBR$C_TYP_ESHSTB (8) Alpha shareable image
(9–127) Reserved by Compaq
LBR$C_TYP_USRLW (128) User library types — low

end of range
LBR$C_TYP_USRHI (255) User library types — high

end of range
1 CRE$L_KEYLEN Maximum length of ASCII

keys or, if 0, indicates 32-bit
unsigned keys (binary keys)

2 CRE$L_ALLOC Initial library file allocation
3 CRE$L_IDXMAX Number of library indexes

(maximum of eight)
4 CRE$L_UHDMAX Number of additional bytes

to reserve in module header
5 CRE$L_ENTALL Number of index entries to

preallocate
6 CRE$L_LUHMAX Maximum number of library

update history records to
maintain

7 CRE$L_VERTYP Format of library to create:
CRE$C_VMSV2 VMS Version 2.0
CRE$C_VMSV3 VMS Version 3.0

8 CRE$L_IDXOPT Index key casing option:
CRE$C_HLPCASING Treat character case as it is

for help libraries
CRE$C_OBJCASING Treat character case as it is

for object libraries
CRE$C_MACTXTCAS Treat character case as it is

for macro and text libraries
9–19 Reserved by Compaq

The input of uppercase and lowercase characters is treated differently for help,
object, macro, and text libraries. For details, see the OpenVMS Command
Definition, Librarian, and Message Utilities Manual.

Librarian (LBR) Routines LBR–55

Librarian (LBR) Routines
LBR$OPEN

dns
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification. The dns argument is the address of the string
descriptor that points to the default file specification. See the OpenVMS Record
Management Services Reference Manual for details about how defaults are
processed.

rlfna
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Related file name. The rlfna argument is the address of an RMS NAM block
pointing to the related file name. You must specify rlfna for related file name
processing to occur. If a related file name is specified, only the file name,
type, and version fields of the NAM block are used for related name block
processing. The device and directory fields are not used. See the OpenVMS
Record Management Services Reference Manual for details on processing related
file names.

rns
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Resultant file specification returned. The rns argument is the address of a string
descriptor pointing to a buffer that is to receive the resultant file specification
string. If an error occurs during an attempt to open the library, the expanded
name string is returned instead.

rnslen
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Length of the resultant or expanded file name. The rnslen argument is the
address of a longword receiving the length of the resultant file specification string
(or the length of the expanded name string if there was an error in opening the
library).

Description

You can call this routine only after you call LBR$INI_CONTROL and before you
call any other LBR routine except LBR$OUTPUT_HELP.

When the library is successfully opened, the LBR routine reads the library header
into memory and sets the default index to 1.

If the library cannot be opened because it is already open for a write operation,
LBR$OPEN retries the open operation every second for a maximum of 30 seconds
before returning the RMS error, RMS$_FLK, to the caller.

LBR–56 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$OPEN

Condition Values Returned

LBR$_ERRCLOSE Error. When the library was last modified while
opened for write access, the write operation
was interrupted. This left the library in an
inconsistent state.

LBR$_ILLCREOPT Requested create options not valid or not
supplied.

LBR$_ILLCTL Specified library control index not valid.
LBR$_ILLFMT Specified library format not valid.
LBR$_ILLFUNC Specified library function not valid.
LBR$_LIBOPN Specified library already open.
LBR$_NOFILNAM Error. The fns argument was not supplied or the

RMS NAM block was not filled in.
LBR$_OLDLIBRARY Success. The specified library has been opened;

the library was created with an old library
format.

LBR$_OLDMISMCH Requested library function conflicts with old
library type specified.

LBR$_TYPMISMCH Library type does not match the requested type.

Librarian (LBR) Routines LBR–57

Librarian (LBR) Routines
LBR$OUTPUT_HELP

LBR$OUTPUT_HELP—Output Help Messages

The LBR$OUTPUT_HELP routine outputs help text to a user-supplied output
routine. The text is obtained from an explicitly named help library or, optionally,
from user-specified default help libraries. An optional prompting mode is
available that enables LBR$OUTPUT_HELP to interact with you and continue to
provide help information after the initial help request has been satisfied.

Format

LBR$OUTPUT_HELP output_routine [,output_width] [,line_desc] [,library_name]
[,flags] [,input_routine]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

output_routine
OpenVMS usage: procedure
type: procedure value
access: write only
mechanism: by reference

Name of a routine that writes help text a line at a time. The output_routine
argument is the address of the procedure value of the routine to call. You should
specify either the address of LIB$PUT_OUTPUT or a routine of your own that
has the same calling format as LIB$PUT_OUTPUT.

output_width
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Width of the help-text line to be passed to the user-supplied output routine. The
output_width argument is the address of a longword containing the width of the
text line to be passed to the user-supplied output routine. If you omit output_
width or specify it as 0, the default output width is 80 characters per line.

line_desc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Contents of the help request line. The line_desc argument is the address of
a string descriptor pointing to a character string containing one or more help

LBR–58 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$OUTPUT_HELP

keys defining the help requested, for example, the HELP command line minus
the HELP command and HELP command qualifiers. The default is a string
descriptor for an empty string.

library_name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the main library. The library_name argument is the address of a string
descriptor pointing to the main library file specification string. The default is a
null string, which means you should use the default help libraries. If you omit
the device and directory specifications, the default is SYS$HELP. The default file
type is .HLB.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags specifying help output options. Each programming language provides an
appropriate mechanism for accessing these flags. The flags argument is the
address of an unsigned longword that contains the following flags, when set:

Flag Description

HLP$M_PROMPT Interactive help prompting is in effect.
HLP$M_PROCESS The process logical name table is searched for default help

libraries.
HLP$M_GROUP The group logical name table is searched for group default

help libraries.
HLP$M_SYSTEM The system logical name table is searched for system

default help libraries.
HLP$M_LIBLIST The list of default libraries available is output with the

list of topics available.
HLP$M_HELP The list of topics available in a help library is preceded by

the major portion of the text on help.

If you omit this longword, the default is for prompting and all default library
searching to be enabled, but no library list is generated and no help text precedes
the list of topics.

input_routine
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Routine used for prompting. The input_routine argument is the address of the
procedure value of the prompting routine. You should specify either the address
of LIB$GET_INPUT or a routine of your own that has the same calling format as
LIB$GET_INPUT. This argument must be supplied when the HELP command is
run in prompting mode (that is, HLP$M_PROMPT is set or defaulted).

Librarian (LBR) Routines LBR–59

Librarian (LBR) Routines
LBR$OUTPUT_HELP

Description

The LBR$OUTPUT_HELP routine provides a simple, one-call method to
initiate an interactive help session. Help library bookkeeping functions,
such as LBR$INI_CONTROL and LBR$OPEN, are handled internally. You
should not call LBR$INI_CONTROL or LBR$OPEN before you issue a call to
LBR$OUTPUT_HELP.

LBR$OUTPUT_HELP accepts help keys in the same format as LBR$GET_HELP,
with the following qualifications:

• If the keyword HELP is supplied, help text on HELP is output, followed by a
list of HELP subtopics available.

If no help keys are provided or if the line_desc argument is 0, a list of topics
available in the root library is output.

• If the line_desc argument contains a list of help keys, then each key must be
separated from its predecessor by a slash (/) or by one or more spaces.

• The first key can specify a library to replace the main library as the root
library (the first library searched) in which LBR$OUTPUT_HELP searches
for help. A key used for this purpose must have the form <@filespec>, where
filespec is subject to the same restrictions as the library_name argument. If
the specified library is an enabled user-defined default library, then filespec
can be abbreviated as any unique substring of that default library’s logical
name translation.

In default library searches, you can define one or more default libraries for
LBR$OUTPUT_HELP to search for help information not contained in the root
library. Do this by equating logical names (HLP$LIBRARY, HLP$LIBRARY_
1, . . . ,HLP$LIBRARY_999) to the file specifications of the default help libraries.
You can define these logical names in the process, group, or system logical name
table.

If default library searching is enabled by the flags argument, LBR$OUTPUT_
HELP uses those flags to determine which logical name tables are enabled and
then automatically searches any user default libraries that have been defined
in those logical name tables. The library search order proceeds as follows:
root library, main library (if specified and different from the root library),
process libraries (if enabled), group libraries (if enabled), system libraries (if
enabled). If the requested help information is not found in any of these libraries,
LBR$OUTPUT_HELP returns to the root library and issues a ‘‘help not found’’
message.

To enter an interactive help session (after your initial request for help has been
satisfied), you must set the HLP$M_PROMPT bit in the flags argument.

You can encounter four different types of prompt in an interactive help session.
Each type represents a different level in the hierarchy of help available to you.

1. If the root library is the main library and you are not currently examining
HELP for a particular topic, the prompt Topic? is output.

2. If the root library is a library other than the main library and if you are
not currently examining HELP for a particular topic, a prompt of the form
@<library-spec>Topic? is output.

3. If you are currently examining HELP for a particular topic (and subtopics), a
prompt of the form <keyword...>subtopic? is output.

LBR–60 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$OUTPUT_HELP

4. A combination of 2 and 3.

When you encounter one of these prompt messages, you can respond in any one
of several ways. Each type of response and its effect on LBR$OUTPUT_HELP in
each prompting situation is described in the following table:

Response Action in the Current Prompt Environment1

keyword [. . .] (1,2) Search all enabled libraries for these keys.
(3,4) Search additional help for the current topic
(and subtopic) for these keys.

@filespec [keyword[. . .]] (1,2) Same as above, except that the root library
is the library specified by filespec. If the specified
library does not exist, treat @filespec as a normal
key.
(3,4) Same as above; treat @filespec as a normal
key.

? (1,2) Display a list of topics available in the root
library.
(3,4) Display a list of subtopics of the current
topic (and subtopics) for which help exists.

Carriage Return (1) Exit from LBR$OUTPUT_HELP.
(2) Change root library to main library.
(3,4) Strip the last keyword from a list of
keys defining the current topic (and subtopic)
environment.

Ctrl/Z (1,2,3,4) Exit from LBR$OUTPUT_HELP.

1Keyed to the prompt in the preceding list.

Condition Values Returned

LBR$_ILLINROU Input routine improperly specified or omitted.
LBR$_ILLOUTROU Output routine improperly specified or omitted.
LBR$_NOHLPLIS Error. No default help libraries can be opened.
LBR$_TOOMNYARG Error. Too many arguments were specified.
LBR$_USRINPERR Error. An error status was returned by the

user-supplied input routine.

Librarian (LBR) Routines LBR–61

Librarian (LBR) Routines
LBR$PUT_END

LBR$PUT_END—Write an End-of-Module Record

The LBR$PUT_END routine marks the end of a sequence of records written to a
library by the LBR$PUT_RECORD routine.

Format

LBR$PUT_END library_index

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of a longword containing the index.

Description

Call LBR$PUT_END after you write data records to the library with the
LBR$PUT_RECORD routine. LBR$PUT_END terminates a module by attaching
a 3-byte logical end-of-file record (hexadecimal 77,00,77) to the data.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR–62 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$PUT_HISTORY

LBR$PUT_HISTORY—Write an Update History Record

The LBR$PUT_HISTORY routine adds an update history record to the end of the
update history list.

Format

LBR$PUT_HISTORY library_index ,record_desc

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

record_desc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Library history record. The record_desc argument is the address of a string
descriptor pointing to the record to be added to the library update history.

Description

LBR$PUT_HISTORY writes a new update history record. If the library already
contains the maximum number of history records (as specified at creation time
by CRE$L_LUHMAX; see LBR$OPEN for details), the oldest history record is
deleted before the new record is added.

Librarian (LBR) Routines LBR–63

Librarian (LBR) Routines
LBR$PUT_HISTORY

Condition Values Returned

LBR$_NORMAL Normal exit from the routine.
LBR$_INTRNLERR Internal Librarian error.
LBR$_NOHISTORY No update history. This is an informational code,

not an error code.
LBR$_RECLNG Record length greater than that specified by

LBR$C_MAXRECSIZ. The record was not
inserted or truncated.

LBR–64 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$PUT_RECORD

LBR$PUT_RECORD—Write a Data Record

The LBR$PUT_RECORD routine writes a data record beginning at the next free
location in the library.

Format

LBR$PUT_RECORD library_index ,bufdes ,txtrfa

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

bufdes
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record to be written to the library. The bufdes argument is the address of
a string descriptor pointing to the buffer containing the output record. The
maximum record size for VAX libraries is symbolically defined as LBR$C_
MAXRECSIZ; for Alpha libraries, the symbolic maximum record size is ELBR$_
MAXRECSIZ.

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Record’s file address (RFA) of the module header. The txtrfa argument is the
address of a 2-longword array receiving the RFA of the newly created module
header upon the first call to LBR$PUT_RECORD.

Librarian (LBR) Routines LBR–65

Librarian (LBR) Routines
LBR$PUT_RECORD

Description

If this is the first call to LBR$PUT_RECORD, this routine first writes a module
header and returns its RFA to the 2-longword array pointed to by txtrfa.
LBR$PUT_RECORD then writes the supplied data record to the library. On
subsequent calls to LBR$PUT_RECORD, this routine writes the data record
beginning at the next free location in the library (after the previous record). The
last record written for the module should be followed by a call to LBR$PUT_END.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR–66 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$REPLACE_KEY

LBR$REPLACE_KEY—Replace a Library Key

The LBR$REPLACE_KEY routine inserts a key in an index by changing the
pointer associated with an existing key or by inserting a new key.

Format

LBR$REPLACE_KEY library_index ,key_name ,oldrfa ,newrfa

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key_name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Library key (for libraries with ASCII keys). The key_name argument is the
address of a string descriptor for the key.

key_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library key (for libraries with binary keys). The key_name argument is the
address of an unsigned longword value for the key.

Librarian (LBR) Routines LBR–67

Librarian (LBR) Routines
LBR$REPLACE_KEY

oldrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Old record file address (RFA). The oldrfa argument is the address of a 2-
longword array containing the original RFA (returned by LBR$LOOKUP_KEY) of
the module header associated with the key you are replacing.

newrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New RFA. The newrfa argument is the address of a 2-longword array containing
the RFA (returned by LBR$PUT_RECORD) of the module header associated with
the new key.

Description

If LBR$REPLACE_KEY does not find the key in the current index, it calls the
LBR$INSERT_KEY routine to insert the key. If LBR$REPLACE_KEY does find
the key, it modifies the key entry in the index so that it points to the new module
header.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR–68 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$RET_RMSSTV

LBR$RET_RMSSTV—Return OpenVMS RMS Status Value

The LBR$RET_RMSSTV routine returns the status value of the last OpenVMS
RMS function performed by any LBR subroutine.

Format

LBR$RET_RMSSTV

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

None.

Description

The LBR$RET_RMSSTV routine returns, as the status value, the status of the
last RMS operation performed by the Librarian. Each programming language
provides an appropriate mechanism for accessing RMS status values.

Condition Values Returned

This routine returns any condition values returned by RMS routines.

Librarian (LBR) Routines LBR–69

Librarian (LBR) Routines
LBR$SEARCH

LBR$SEARCH—Search an Index

The LBR$SEARCH routine finds index keys that point to specified data.

Format

LBR$SEARCH library_index ,index_number ,rfa_to_find ,routine_name

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

index_number
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library index number. The index_number argument is the address of a
longword containing the number of the index you want to search. Refer to
Section 11.1.2.3.

rfa_to_find
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Record’s file address (RFA) of the module whose keys you are searching for. The
rfa_to_find argument is the address of a 2-longword array containing the RFA
(returned earlier by LBR$LOOKUP_KEY or LBR$PUT_RECORD) of the module
header.

LBR–70 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$SEARCH

routine_name
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Name of a user-supplied routine to process the keys. The routine_name
argument is the address of the procedure value of a user-supplied routine to call
for each key entry containing the RFA (in other words, for each key that points to
the same module header).

This user-supplied routine cannot contain any calls to LBR$DELETE_KEY or
LBR$INSERT_KEY.

Description

Use LBR$SEARCH to find index keys that point to the same module header.
Generally, in index number 1 (the module name table), just one key points to
any particular module; thus, you would probably use this routine only to search
library indexes where more than one key points to a module. For example, you
might call LBR$SEARCH to find all the global symbols associated with an object
module in an object library.

If LBR$SEARCH finds an index key associated with the specified RFA, it calls a
user-supplied routine with two arguments:

• The key argument, which is the address of either of the following:

– A string descriptor for the key name (libraries with ASCII key names)

– An unsigned longword for the key value (libraries with binary keys)

• The RFA argument, which is the address of a 2-longword array containing the
RFA of the module header

The routine must return a value to indicate success or failure. If the specified
routine returns a false value (low bit = 0), then the index search terminates.

Note that the key found by LBR$SEARCH is valid only during the call to the
user-supplied routine. If you want to use the key later, you must copy it.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_ILLIDXNUM Specified library index number not valid.
LBR$_KEYNOTFND Librarian did not find any keys with the specified

RFA.
LBR$_LIBNOTOPN Specified library not open.

Librarian (LBR) Routines LBR–71

Librarian (LBR) Routines
LBR$SET_INDEX

LBR$SET_INDEX—Set the Current Index Number

The LBR$SET_INDEX routine sets the index number to use when processing
libraries that have more than one index.

Format

LBR$SET_INDEX library_index ,index_number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

index_number
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Index number you want to establish as the current index number. The index_
number argument is the address of the longword that contains the number of
the index you want to establish as the current index. Refer to Section 11.1.2.3.

Description

When you call LBR$INI_CONTROL, the Librarian sets the current library index
to 1 (the module name table, unless the library is a user-developed library). If
you need to process another library index, you must use LBR$SET_INDEX to
change the current library index.

Note that macro, help, and text libraries contain only one index; therefore, you
do not need to call LBR$SET_INDEX. Object libraries contain two indexes. If
you want to access the global symbol table, you must call the LBR$SET_INDEX
routine to set the index number. User-developed libraries can contain more than
one index; therefore, you may need to call LBR$SET_INDEX to set the index
number.

Upon successful completion, LBR$SET_INDEX sets the current library index to
the requested index number. LBR routines number indexes starting with 1.

LBR–72 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$SET_INDEX

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_ILLIDXNUM Library index number specified not valid.
LBR$_LIBNOTOPN Specified library not open.

Librarian (LBR) Routines LBR–73

Librarian (LBR) Routines
LBR$SET_LOCATE

LBR$SET_LOCATE—Set Record Access to Locate Mode

The LBR$SET_LOCATE routine sets the record access of LBR subroutines to
locate mode.

Format

LBR$SET_LOCATE library_index

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

Description

Librarian record access may be set to move mode (the default set by LBR$SET_
MOVE) or locate mode. The setting affects the operation of the LBR$GET_
RECORD routine.

If move mode is set (the default), LBR$GET_RECORD copies the requested
record to the specified user buffer. If locate mode is set, the record is not copied.
Instead, the outbufdes descriptor is set to reference the internal LBR subroutine
buffer that contains the record.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

LBR–74 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$SET_MODULE

LBR$SET_MODULE—Read or Update a Module Header

The LBR$SET_MODULE routine reads, and optionally updates, the module
header associated with a given record’s file address (RFA).

Format

LBR$SET_MODULE library_index ,rfa [,bufdesc] [,buflen] [,updatedesc]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

rfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Record’s file address (RFA) associated with the module header. The rfa argument
is the address of a 2-longword array containing the RFA returned by LBR$PUT_
RECORD or LBR$LOOKUP_KEY.

bufdesc
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Buffer that receives the module header. The bufdesc argument is the address
of a string descriptor pointing to the buffer that receives the module header.
The buffer must be the size specified by the symbol MHD$B_USRDAT plus the
value of the CRE$L_UHDMAX create option. The MHD$ and CRE$ symbols
are defined in the modules $MHDDEF and $CREDEF, which are stored in
SYS$LIBRARY:STARLET.MLB.

Librarian (LBR) Routines LBR–75

Librarian (LBR) Routines
LBR$SET_MODULE

buflen
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Length of the module header. The buflen argument is the address of a longword
receiving the length of the returned module header.

updatedesc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Additional information to be stored with the module header. The updatedesc
argument is the address of a string descriptor pointing to additional data that
the Librarian stores with the module header. If you include this argument, the
Librarian updates the module header with the additional information.

Description

If you specify bufdesc, the LBR routine returns the module header into the
buffer. If you specify buflen, the routine also returns the buffer’s length. If you
specify updatedesc, the routine updates the header information.

You define the maximum length of the update information (by specifying a value
for CRE$L_UHDMAX) when you create the library. The Librarian zero-fills the
information if it is less than the maximum length or truncates it if it exceeds the
maximum length.

Condition Values Returned

LBR$_HDRTRUNC Buffer supplied to hold the module header was
too small.

LBR$_ILLCTL Specified library control index not valid.
LBR$_ILLOP Error. The updatedesc argument was supplied

and the library was a Version 1.0 library or the
library was opened only for read access.

LBR$_INVRFA Specified RFA does not point to a valid module
header.

LBR$_LIBNOTOPN Specified library not open.

LBR–76 Librarian (LBR) Routines

Librarian (LBR) Routines
LBR$SET_MOVE

LBR$SET_MOVE—Set Record Access to Move Mode

The LBR$SET_MOVE routine sets the record access of LBR subroutines to move
mode.

Format

LBR$SET_MOVE library_index

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

Description

Librarian record access may be set to move mode (the default, set by LBR$SET_
MOVE) or locate mode. The setting affects the operation of the LBR$GET_
RECORD routine. If move mode is set, LBR$GET_RECORD copies the requested
record to the specified user buffer. For details, see the description of LBR$GET_
RECORD.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

Librarian (LBR) Routines LBR–77

12
Lightweight Directory Access Protocol (LDAP)

Routines

12.1 Introduction
This chapter describes the C language application programming interface (API) to
the Lightweight Directory Access Protocol (LDAP). This API supports Version 3 of
the LDAP API (LDAPv3), and includes support for controls, information hiding,
and thread safety. The LDAP API is available on OpenVMS Alpha only.

The C LDAP API is designed to be powerful, yet simple to use. It defines
compatible synchronous and asynchronous interfaces to LDAP to support a
wide variety of applications. This chapter gives a brief overview of the LDAP
model, and describes how the application program uses the API to obtain LDAP
information. The API calls are described in detail, followed by a section that
provides some example code demonstrating the use of the API.

12.1.1 Overview of the LDAP Model
LDAP is the lightweight directory access protocol, which is based on a client-
server model. In this model, a client makes a TCP connection to an LDAP server,
over which it sends requests and receives responses.

The LDAP information model is based on the entry, which contains information
about some object (for example, a person). Entries are composed of attributes,
which have a type and one or more values. Each attribute has a syntax that
determines what kinds of values are allowed in the attribute (for example, ASCII
characters or a jpeg photograph) and how those values behave during directory
operations (for example, whether case is significant during comparisons).

Entries may be organized in a tree structure, usually based on political,
geographical, or organizational boundaries. Each entry is uniquely named
relative to its sibling entries by its relative distinguished name (RDN) consisting
of one or more distinguished attribute values from the entry. At most, one value
from each attribute may be used in the RDN. For example, the entry for the
person Babs Jensen might be named with the Barbara Jensen value from the
commonName attribute.

A globally unique name for an entry, called a distinguished name or DN, is
constructed by concatenating the sequence of RDNs from the entry up to the root
of the tree. For example, if Babs worked for the University of Michigan, the DN
of her U-M entry might be the following:

cn=Barbara Jensen, o=University of Michigan, c=US

Operations are provided to authenticate, search for and retrieve information,
modify information, and add and delete entries from the tree. The next sections
give an overview of how the API is used and provide detailed descriptions of the
LDAP API calls that implement all of these functions.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–1

Lightweight Directory Access Protocol (LDAP) Routines
12.1 Introduction

12.1.2 Overview of LDAP API Use
An application generally uses the C LDAP API in four simple steps.

• Initialize an LDAP session with a primary LDAP server. The ldap_init()
function returns a handle to the session, allowing multiple connections to be
open at once.

• Authenticate to the LDAP server. The ldap_bind() function supports a
variety of authentication methods.

• Perform some LDAP operations and obtain some results. The ldap_search()
function returns results that can be parsed by ldap_parse_result(),
ldap_first_entry(), and ldap_next_entry().

• Close the session. The ldap_unbind() function closes the connection.

Operations can be performed either synchronously or asynchronously. The names
of the synchronous functions end in _s. For example, a synchronous search can be
completed by calling ldap_search_s(). An asynchronous search can be initiated
by calling ldap_search(). All synchronous functions return an indication of the
outcome of the operation (for example, the constant LDAP_SUCCESS or some
other error code). The asynchronous functions make available to the caller the
message id of the operation initiated. This id can be used in subsequent calls
to ldap_result() to obtain the result(s) of the operation. An asynchronous
operation can be abandoned by calling ldap_abandon() or ldap_abandon_ext().

Results and errors are returned in an opaque structure called LDAPMessage.
Functions are provided to parse this structure, step through entries and
attributes returned. Functions are also provided to interpret errors. Later
sections of this chapter describe these functions in more detail.

LDAPv3 servers may return referrals to other servers. By default,
implementations of this API will attempt to follow referrals automatically for the
application. This behavior can be disabled globally (using the ldap_set_option()
call) or on a per-request basis through the use of a server control.

As in the LDAPv3 protocol, all DNs and string values that are passed into or
produced by the C LDAP API are represented as UTF-8 characters. Conversion
functions are described in Section 12.20.

For compatibility with existing applications, implementations of this API will,
by default, use Version 2 of the LDAP protocol. Applications that intend to take
advantage of LDAPv3 features will need to use the ldap_set_option() call with
a LDAP_OPT_PROTOCOL_VERSION switch set to Version 3.

The file LDAP_EXAMPLE.C in SYS$EXAMPLES contains an example program
that demonstrates how to use the LDAP API on OpenVMS.

12.1.3 LDAP API Use on OpenVMS Systems
This release of the LDAP API provides support for client applications written in
C or C++.

In order to use the LDAP API, a program must use an include statement of the
form:

#include <ldap.h>

The LDAP.H header file includes prototypes and data structures for all of the
functions that are available in the LDAP API.

LDAP–2 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.1 Introduction

The shareable image LDAP$SHR.EXE includes run-time support for LDAP
applications. This shareable image resides in SYS$LIBRARY and should be
included in the library IMAGELIB.OLB, which means that no special action is
necessary to link or run your programs. For example:

$ type myprog.c

/* A not very useful program */
#include <stdio.h>
#include <ldap.h>
void main(int argc, char *argv[])
{
LDAP *ld;
if (argc != 2) {
printf("usage: %s <hostname>\n",argv[0]);
return;

}
ld = ldap_init(argv[1],LDAP_PORT);
if (ld != NULL) {
printf("ldap_init returned 0x%p\n",ld);

} else {
printf("ldap_init failed\n");

}
}

$ cc myprog
$ link myprog
$ myprog :== $mydisk:[mydir]myprog.exe
$ myprog fred
ldap_init returned 0xA6748
$

12.1.4 64-bit Addressing Support
This section describes the LDAP 64-bit addressing support.

12.1.4.1 Background
OpenVMS Alpha provides support for 64-bit virtual memory addressing.
Applications that are built using a suitable compiler may take advantage of
the 64-bit virtual address space to map and access large amounts of data.

The OpenVMS LDAP API supports both 32- and 64-bit client applications. In
order to allow this, separate entry points are provided in the library for those
functions that are sensitive to pointer size.

When a user module is compiled, the header file LDAP.H determines the pointer
size in effect and uses the C preprocessor to map the function names into
the appropriate library entry point. This mapping is transparent to the user
application and is effected by setting the /POINTER_SIZE qualifier at compilation
time.

For LDAP API users, switching between different pointer sizes should need only
a recompilation—no code changes are necessary.

This means that programs using the specification for the C LDAP API, as
described in the Internet Engineering Task Force (IETF) documentation, can
be built on OpenVMS with either 32-bit or 64-bit pointer size, without having to
change the source code.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–3

Lightweight Directory Access Protocol (LDAP) Routines
12.1 Introduction

12.1.4.2 Implementation
The OpenVMS LDAP library uses 64-bit pointers internally and is capable of
dealing with data structures allocated by the caller from 64-bit address space.

Applications that use 32-bit pointers will use the 32-bit function entry points
in the library. This means they can pass arguments that are based on 32-bit
pointers and can assume that any pointers returned by the library will be 32-bit
safe.

While the mapping performed by LDAP.H is designed to be transparent, there
may be occasions where it is useful (for example in debugging) to understand the
consequences of having both 32- and 64-bit support in the same library.

12.1.4.2.1 Library Symbol Names The symbols exported by the LDAP$SHR
OpenVMS run-time library differ from those specified in the IETF C LDAP API
specification.

The header file LDAP.H maps user references to LDAP API function names to
the appropriate LDAP$SHR symbol name. Therefore, any application wishing to
use the OpenVMS LDAP API must include the version of LDAP.H that ships with
OpenVMS.

All of the functions in the OpenVMS LDAP library are prefixed with the facility
code "LDAP$".

For those functions where the caller’s pointer size is significant, the name of the
64-bit entry point will have a "_64" suffix, while the name of the 32-bit jacket
will have a "_32" suffix. Functions that are not sensitive to pointer size have no
special suffix.

For example, the function ldap_modify() is sensitive to the caller’s pointer size
(because one of its arguments is an array of pointers). Therefore, the library
exports symbols for LDAP$LDAP_MODIFY_64 and LDAP$LDAP_MODIFY_
32. For the function ldap_simple_bind(), which is not sensitive to the caller’s
pointer size, a single entry point, LDAP$LDAP_SIMPLE_BIND, exists in the
library.

Because OpenVMS imposes a 31-character limit on the length of symbol
names, certain functions in the library have names which are abbreviated
versions of the public API name. For example, in the case of the function
ldap_parse_sasl_bind_result(), the library provides two entry points, namely
LDAP$LDAP_PRS_SASL_BIND_RES_32 and LDAP$LDAP_PRS_SASL_BIND_
RES_64.

12.1.4.2.2 LDAP Data Structures The LDAP API defines various data
structures which are used to pass information to and from a client application.
Some of these structures are opaque; that is, their internal layout is not visible
to a client application. In such cases, the API may return a pointer to such
a structure, but the only use of such a pointer to a client application is as a
parameter to subsequent library calls.

Some structures are public. Their contents are defined by the API, and client
applications may allocate and manipulate such structures or use them as
parameters to LDAP functions.

All data structures used by the API are defined with "natural" alignment; that
is, each member of a data structure will be aligned on an address boundary
appropriate to its type.

LDAP–4 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.1 Introduction

Opaque Data Structures
The following data structures are opaque. Applications should not make any
assumptions about the contents or size of such data structures.

typedef struct ldap
LDAP;

typedef struct ldapmsg
LDAPMessage;

typedef struct berelement
BerElement;

Public Data Structures
The following data structures are described in the IETF documents relating to
the LDAP API, and definitions are provided for them in LDAP.H. Applications
may allocate and manipulate such structures, as well as use them in calls to the
LDAP API.

typedef struct berval { .. }
BerValue;

typedef struct ldapapiinfo { .. }
LDAPAPIInfo;

typedef struct ldap_apifeature_info { .. }
LDAPAPIFeatureInfo;

typedef struct ldapcontrol { .. }
LDAPControl;

typedef struct ldapmod { .. }
LDAPMod;

Note that the pointer size in effect at compilation time determines the layout of
data structures, which themselves contain pointer fields. Since all of the public
data structures listed here contain one or more pointers, their size and layout will
differ depending on the pointer size.

For example, in the case of the structure berval, the API provides the following
definition:

struct berval {
ber_len_t bv_len;
char *bv_val;

} BerValue;

(where ber_len_t is equivalent on OpenVMS to an unsigned 32-bit integer). For a
module compiled using 32-bit pointer size, the layout of a BerValue at address A
would look like this:

bv_len

bv_val : A+4

: A

VM-0729A-AI

In the case of a 64-bit compilation, the layout would be:

Lightweight Directory Access Protocol (LDAP) Routines LDAP–5

Lightweight Directory Access Protocol (LDAP) Routines
12.1 Introduction

*** unused ***

bv_val

bv_len : A

: A+8

VM-0730A-AI

The following code would therefore work correctly regardless of pointer size:

#include <ldap.h>
.
.
.

char *buff;
BerValue val;

.

.

.
buff = (char *)malloc(255);

.

.

.
val.bv_len = 255;
val.bv_val = buff;

.

.

.

12.1.4.3 Mixing Pointer Sizes
Two modules that include LDAP.H can be compiled with different pointer sizes
and linked together. While each module may use the LDAP API on its own, it
may not be possible for both modules to share LDAP-related data.

None of the public LDAP data structures is directly compatible between 32- and
64-bit modules. For example, a BerValue that has been allocated by a 32-bit
module does not have the same layout as a BerValue which a 64-bit module
expects to see, and consequently cannot be exchanged between two such modules
without some sort of data conversion taking place.

Opaque data structures (such as LDAP *) have only a single structure definition
inside the library, and so pointers to such structures may be exchanged between
32- and 64-bit callers. Note that these structures are allocated only by the library
itself, and, in the case of a 64-bit caller, these structures may be allocated in 64-
bit space. So while the LDAP handle returned to a 32-bit caller of ldap_init()
could safely be used by a 64-bit module, the reverse may not be true.

12.1.5 Multithreading Support
The OpenVMS LDAP API may be used by a multi-threaded application. Two of
the functions in the library, ldap_perror() and ldap_result2error(), are not
thread-safe.

LDAP–6 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.2 Common Data Structures and Memory Handling

12.2 Common Data Structures and Memory Handling
The following are definitions of some data structures that are common to several
LDAP API functions.

typedef struct ldap LDAP;

typedef struct berelement BerElement;

typedef struct ldapmsg LDAPMessage;

typedef struct berval {
ber_len_t bv_len;
char *bv_val;

} BerValue;

struct timeval;

The LDAP structure is an opaque data type that represents an LDAP session.
Typically, this corresponds to a connection to a single server, but it may
encompass several server connections in LDAPv3 referrals.

The LDAPMessage structure is an opaque data type that is used to return
entry, reference, result, and error information. An LDAPMessage structure may
represent the beginning of a list or a chain of messages that contain a series of
entries, references, and result messages that are returned by LDAP operations,
such as search. LDAP API functions, such as ldap_parse_result(), that operate
on message chains which may contain more than one result message, always
operate on the first result message in the chain. See Section 12.17 for more
information.

The BerElement structure is an opaque data type that is used to hold data and
state information about encoded data.

The berval structure is used to represent arbitrary binary data, and its fields
have the following meanings:

bv_len Length of data in bytes.

bv_val A pointer to the data itself.

The timeval structure is used to represent an interval of time, and its fields have
the following meanings:

tv_sec Seconds component of time interval.

tv_usec Microseconds component of time interval.

All memory that is allocated by a function in this C LDAP API and returned to
the caller should be disposed of by calling the appropriate free function provided
by this API. The correct free function to call is documented in each section of this
chapter where a function that allocates memory is described.

Memory that is allocated outside of the C LDAP API must not be disposed of
using a function provided by this API.

The following is a complete list of free functions that are used to dispose of
allocated memory:

Lightweight Directory Access Protocol (LDAP) Routines LDAP–7

Lightweight Directory Access Protocol (LDAP) Routines
12.2 Common Data Structures and Memory Handling

ber_bvecfree()

ber_bvfree()

ber_free()

ldap_control_free()

ldap_controls_free()

ldap_memfree()

ldap_msgfree()

ldap_value_free()

ldap_value_free_len()

12.3 LDAP Error Codes
Many of the LDAP API functions return LDAP error codes, some of which
indicate local errors and some of which may be returned by servers. All of the
LDAP error codes returned will be positive integers; those between 0x00 and
0x50 are returned from the LDAP server, those above 0x50 are generated by the
API itself. Supported error codes are as follows (hexadecimal values are given in
parentheses after the constant):

LDAP_SUCCESS (0x00)

LDAP_OPERATIONS_ERROR (0x01)

LDAP_PROTOCOL_ERROR (0x02)

LDAP_TIMELIMIT_EXCEEDED (0x03)

LDAP_SIZELIMIT_EXCEEDED (0x04)

LDAP_COMPARE_FALSE (0x05)

LDAP_COMPARE_TRUE (0x06)

LDAP_STRONG_AUTH_NOT_SUPPORTED (0x07)

LDAP_STRONG_AUTH_REQUIRED (0x08)

LDAP_REFERRAL (0x0a) -- new in LDAPv3

LDAP_ADMINLIMIT_EXCEEDED (0x0b) -- new in LDAPv3

LDAP_UNAVAILABLE_CRITICAL_EXTENSION (0x0c) -- new in LDAPv3

LDAP_CONFIDENTIALITY_REQUIRED (0x0d) -- new in LDAPv3

LDAP_SASL_BIND_IN_PROGRESS (0x0e) -- new in LDAPv3

LDAP_NO_SUCH_ATTRIBUTE (0x10)

LDAP_UNDEFINED_TYPE (0x11)

LDAP_INAPPROPRIATE_MATCHING (0x12)

LDAP_CONSTRAINT_VIOLATION (0x13)

LDAP_TYPE_OR_VALUE_EXISTS (0x14)

LDAP_INVALID_SYNTAX (0x15)

LDAP_NO_SUCH_OBJECT (0x20)

LDAP_ALIAS_PROBLEM (0x21)

LDAP_INVALID_DN_SYNTAX (0x22)

LDAP_IS_LEAF (0x23) -- not used in LDAPv3

LDAP_ALIAS_DEREF_PROBLEM (0x24)

LDAP–8 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.3 LDAP Error Codes

LDAP_INAPPROPRIATE_AUTH (0x30)

LDAP_INVALID_CREDENTIALS (0x31)

LDAP_INSUFFICIENT_ACCESS (0x32)

LDAP_BUSY (0x33)

LDAP_UNAVAILABLE (0x34)

LDAP_UNWILLING_TO_PERFORM (0x35)

LDAP_LOOP_DETECT (0x36)

LDAP_NAMING_VIOLATION (0x40)

LDAP_OBJECT_CLASS_VIOLATION (0x41)

LDAP_NOT_ALLOWED_ON_NONLEAF (0x42)

LDAP_NOT_ALLOWED_ON_RDN (0x43)

LDAP_ALREADY_EXISTS (0x44)

LDAP_NO_OBJECT_CLASS_MODS (0x45)

LDAP_RESULTS_TOO_LARGE (0x46) -- reserved for CLDA

LDAP_AFFECTS_MULTIPLE_DSAS (0x47) -- new in LDAPv3

LDAP_OTHER (0x50)

LDAP_SERVER_DOWN (0x51)

LDAP_LOCAL_ERROR (0x52)

LDAP_ENCODING_ERROR (0x53)

LDAP_DECODING_ERROR (0x54)

LDAP_TIMEOUT (0x55)

LDAP_AUTH_UNKNOWN (0x56)

LDAP_FILTER_ERROR (0x57)

LDAP_USER_CANCELLED (0x58)

LDAP_PARAM_ERROR (0x59)

LDAP_NO_MEMORY (0x5a)

LDAP_CONNECT_ERROR (0x5b)

LDAP_NOT_SUPPORTED (0x5c)

LDAP_CONTROL_NOT_FOUND (0x5d)

LDAP_NO_RESULTS_RETURNED (0x5e)

LDAP_MORE_RESULTS_TO_RETURN (0x5f)

LDAP_CLIENT_LOOP (0x60)

LDAP_REFERRAL_LIMIT_EXCEEDED (0x61)

12.4 Initializing an LDAP Session
The ldap_init() function initializes a session with an LDAP server. The server
is not actually contacted until an operation is performed that requires it, allowing
various options to be set after initialization.

LDAP *ldap_init(
const char *hostname,
int portno);

Lightweight Directory Access Protocol (LDAP) Routines LDAP–9

Lightweight Directory Access Protocol (LDAP) Routines
12.4 Initializing an LDAP Session

Use of the following function is deprecated.

LDAP *ldap_open(
const char *hostname,
int portno);

Unlike ldap_init(), the ldap_open() function attempts to make a server
connection before returning to the caller. A more complete description can be
found in RFC 1823.

Parameters are as follows:

hostname Contains a space-separated list of hostnames or dotted strings
representing the IP address of hosts running an LDAP server to
connect to. Each hostname in the list can include an optional port
number which is separated from the host itself with a colon (:)
character. The hosts are tried in the order listed, stopping with the
first one to which a successful connection is made. Note that only
ldap_open() attempts to make the connection before returning to the
caller. ldap_init() does not connect to the LDAP server.

portno Contains the TCP port number to connect to. The default LDAP port of
389 can be obtained by supplying the constant LDAP_PORT. If a host
includes a port number, then this parameter is ignored.

The ldap_init() and ldap_open() functions both return a session handle,
a pointer to an opaque structure that should be passed to subsequent calls
pertaining to the session. These functions return NULL if the session cannot be
initialized, in which case the operating system error reporting mechanism can be
checked to see why the call failed.

Note that if you connect to an LDAP Version 2 server, one of the ldap_bind()
calls must be completed before other operations can be performed on the session.
LDAPv3 does not require that a bind operation be completed before other
operations can be performed.

The calling program can set various attributes of the session by calling the
functions described in the next section.

12.5 LDAP Session Handle Options
The LDAP session handle returned by ldap_init() is a pointer to an opaque
data type representing an LDAP session. Formerly, this data type was a structure
exposed to the caller, and various fields in the structure could be set to control
aspects of the session, such as size and time limits on searches.

To insulate callers from inevitable changes to this structure, these aspects of the
session are now accessed through a pair of accessor functions.

The ldap_get_option() function is used to access the current value of various
session-wide parameters. The ldap_set_option() function is used to set the
value of these parameters. Note that some options are READ-ONLY and cannot
be set; it is an error to call ldap_set_option() and attempt to set a READ-ONLY
option.

int ldap_get_option(
LDAP *ld,
int option,
void *outvalue

);

LDAP–10 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.5 LDAP Session Handle Options

int ldap_set_option(
LDAP *ld,
int option,
const void *invalue

);

Parameters are as follows:

ld The session handle. If this is NULL, a set of global defaults is accessed. New
LDAP session handles created with ldap_init() or ldap_open() inherit
their characteristics from these global defaults.

option The name of the option being accessed or set. This parameter should be one of
the following constants, which have the indicated meanings. After the constant,
the actual hexadecimal value of the constant is listed in parentheses.

LDAP_OPT_DESC (0x01) Type for invalue parameter: not applicable
(option is read-only).
Type for outvalue parameter: int *

Description: The underlying socket
descriptor corresponding to the primary
LDAP connection. This option is read-only
and cannot be set.

LDAP_OPT_DEREF (0x02) Type for invalue parameter: int *
Type for outvalue parameter: int *

Description: Determines how aliases
are handled during search. It can have
one of the following values: LDAP_
DEREF_NEVER (0x00), LDAP_DEREF_
SEARCHING (0x01), LDAP_DEREF_
FINDING (0x02), or LDAP_DEREF_
ALWAYS (0x03). The LDAP_DEREF_
SEARCHING value means aliases should
be dereferenced during the search but
not when locating the base object of the
search.The LDAP_DEREF_FINDING value
means aliases should be dereferenced when
locating the base object but not during the
search.

LDAP_OPT_SIZELIMIT (0x03) Type for invalue parameter: int *
Type for outvalue parameter: int *

Description: A limit on the number of
entries to return from a search. A value of
LDAP_NO_LIMIT (0) means no limit.

LDAP_OPT_TIMELIMIT (0x04) Type for invalue parameter: int *
Type for outvalue parameter: int *

Description: A limit on the number of
seconds to spend on a search. A value of
LDAP_NO_LIMIT (0) means no limit.

LDAP_OPT_REFERRALS (0x08) Type for invalue parameter: int (LDAP_
OPT_ON or LDAP_OPT_OFF)
Type for outvalue parameter: int *

Description: Determines whether the
LDAP library automatically follows
referrals returned by LDAP servers. It
can be set to one of the constants LDAP_
OPT_ON (1) or LDAP_OPT_OFF (0).

Lightweight Directory Access Protocol (LDAP) Routines LDAP–11

Lightweight Directory Access Protocol (LDAP) Routines
12.5 LDAP Session Handle Options

LDAP_OPT_RESTART (0x09) Type for invalue parameter: int (LDAP_
OPT_ON or LDAP_OPT_OFF)
Type for outvalue parameter: int *

Description: Determines whether LDAP
I/O operations should automatically be
restarted if they abort prematurely. It
should be set to one of the constants
LDAP_OPT_ON or LDAP_OPT_OFF. This
option is useful if an LDAP I/O operation is
interrupted prematurely, (for example, by a
timer going off) or other interrupt.

LDAP_OPT_PROTOCOL_
VERSION (0x11)

Type for invalue parameter: int *
Type for outvalue parameter: int *

Description: This option indicates the
version of the LDAP protocol used when
communicating with the primary LDAP
server. It must be one of the constants
LDAP_VERSION2 (2) or LDAP_VERSION3
(3). If no version is set, the default is
LDAP_VERSION2 (2).

LDAP_OPT_SERVER_
CONTROLS (0x12)

Type for invalue parameter: LDAPControl
**
Type for outvalue parameter: LDAPControl

Description: A default list of LDAP server
controls to be sent with each request. See
Section 12.6 for more information.

LDAP_OPT_CLIENT_
CONTROLS (0x13)

Type for invalue parameter: LDAPControl
**
Type for outvalue parameter: LDAPControl

Description: A default list of client
controls that affect the LDAP session.
See Section 12.6 for more information.

LDAP_OPT_HOST_NAME
(0x30)

Type for invalue parameter: char *
Type for outvalue parameter: char **

Description: The host name (or list of host)
for the primary LDAP server.

LDAP_OPT_ERROR_NUMBER
(0x31)

Type for invalue parameter: int *
Type for outvalue parameter: int *

Description: The code of the most recent
LDAP error that occurred for this session.

LDAP_OPT_ERROR_STRING
(0x32)

Type for invalue parameter: char *
Type for outvalue parameter: char **

Description: The message returned with
the most recent LDAP error that occurred
for this session.

outvalue The address of a place to put the value of the option. The actual type of this
parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPControl **, a pointer to data that is associated with the
LDAP session ld is returned; callers should dispose of the memory by calling
ldap_memfree() or ldap_controls_free().

LDAP–12 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.5 LDAP Session Handle Options

invalue A pointer to the value the option is to be given. The actual type of this
parameter depends on the setting of the option parameter. The constants
LDAP_OPT_ON and LDAP_OPT_OFF can be given for options that have on or
off settings.

Both ldap_get_option() and ldap_set_option() return 0 if successful
and -1 if an error occurs.

12.6 Working with Controls
LDAPv3 operations can be extended through the use of controls. Controls may be
sent to a server or returned to the client with any LDAP message. These controls
are referred to as server controls.

The LDAP API also supports a client-side extension mechanism through the use
of client controls. These controls affect the behavior of the LDAP API only and
are never sent to a server. A common data structure is used to represent both
types of controls:

typedef struct ldapcontrol {
char *ldctl_oid;
struct berval ldctl_value;
char ldctl_iscritical;

} LDAPControl, *PLDAPControl;

The fields in the ldapcontrol structure have the following meanings:

ldctl_oid The control type, represented as a string.

ldctl_value The data associated with the control (if any). To specify a zero-length
value, set ldctl_value.bv_len to zero and ldctl_value.bv_val to a zero-
length string. To indicate that no data is associated with the control,
set ldctl_value.bv_val to NULL.

ldctl_iscritical Indicates whether the control is critical or not. If this field is non-zero,
the operation will only be carried out if the control is recognized by the
server and/or client.

Some LDAP API calls allocate an ldapcontrol structure or a NULL-terminated
array of ldapcontrol structures. The following functions can be used to dispose of
a single control or an array of controls:

void ldap_control_free(LDAPControl *ctrl);

void ldap_controls_free(LDAPControl **ctrls);

A set of controls that affect the entire session can be set using the
ldap_set_option() function. A list of controls can also be passed directly
to some LDAP API calls, such as ldap_search_ext(), in which case any controls
set for the session through the use of ldap_set_option() are ignored. Control
lists are represented as a NULL-terminated array of pointers to ldapcontrol
structures.

Server controls are defined by LDAPv3 protocol extension documents; for
example, a control has been proposed to support paging of search results. No
client controls are currently implemented in this version of the API.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–13

Lightweight Directory Access Protocol (LDAP) Routines
12.7 Authenticating to the Directory

12.7 Authenticating to the Directory
The following functions are used to authenticate an LDAP client to an LDAP
directory server.

The ldap_sasl_bind() and ldap_sasl_bind_s() functions can be used to do
general and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The functions both take the DN to bind as,
the method to use, as a dotted-string representation of an OID identifying the
method, and a struct berval holding the credentials. The special constant value
LDAP_SASL_SIMPLE (NULL) can be passed to request simple authentication, or
the simplified functions ldap_simple_bind() or ldap_simple_bind_s() can be
used.

int ldap_sasl_bind(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_sasl_bind_s(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp

);

int ldap_simple_bind(
LDAP *ld,
const char *dn,
const char *passwd

);

int ldap_simple_bind_s(
LDAP *ld,
const char *dn,
const char *passwd

);

The use of the following functions is deprecated:

int ldap_bind(LDAP *ld, char *dn, char *cred, int method);

int ldap_bind_s(LDAP *ld, char *dn, char *cred, int method);

Parameters are as follows:

ld The session handle.

dn The name of the entry to bind as.

mechanism Either LDAP_SASL_SIMPLE (NULL) to get simple authentication, or
a text string identifying the SASL method.

cred The credentials with which to authenticate. Arbitrary credentials
can be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

LDAP–14 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.7 Authenticating to the Directory

passwd For ldap_simple_bind(), the password to compare to the entry’s
userPassword attribute.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the
ldap_sasl_bind() call succeeds.

servercredp This result parameter will be filled in with the credentials passed back
by the server for mutual authentication, if given. An allocated berval
structure is returned that should be disposed of by calling ber_bvfree().
NULL may be passed to ignore this field.

Additional parameters for the deprecated functions are not described. See the
RFC 1823 documentation for more information.

The ldap_sasl_bind() function initiates an asynchronous bind operation and
returns the constant LDAP_SUCCESS if the request was successfully sent or
another LDAP error code if not. See Section 12.18 for more information about
possible errors and how to interpret them. If successful, ldap_sasl_bind() places
the message id of the request in *msgidp. A subsequent call to ldap_result()
can be used to obtain the result of the bind.

The ldap_simple_bind() function initiates a simple asynchronous bind operation
and returns the message id of the operation initiated. A subsequent call to
ldap_result() can be used to obtain the result of the bind. In case of error,
ldap_simple_bind() will return -1, setting the session error parameters in the
LDAP structure appropriately.

The synchronous ldap_sasl_bind_s() and ldap_simple_bind_s() functions
both return the result of the operation, either the constant LDAP_SUCCESS
if the operation was successful, or another LDAP error code if it was not. See
Section 12.18 for more information about possible errors and how to interpret
them.

Note that if an LDAP Version 2 server is contacted, no other operations over the
connection should be attempted before a bind call has successfully completed.

Subsequent bind calls can be used to reauthenticate over the same connection,
and multistep SASL sequences can be accomplished through a sequence of calls
to ldap_sasl_bind() or ldap_sasl_bind_s().

12.8 Closing the Session
The following functions are used to unbind from the directory, close the
connection, and dispose of the session handle.

int ldap_unbind(LDAP *ld);
int ldap_unbind_s(LDAP *ld);

Parameter is as follows:

ld The session handle.

The ldap_unbind() and ldap_unbind_s() functions both work synchronously,
unbinding from the directory, closing the connection, and freeing up the ld
structure before returning. There is no server response to an unbind operation.
The ldap_unbind() function returns LDAP_SUCCESS (or another LDAP
error code if the request cannot be sent to the LDAP server). After a call to
ldap_unbind() or ldap_unbind_s(), the session handle ld is invalid and it is
illegal to make any further LDAP API calls using ld.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–15

Lightweight Directory Access Protocol (LDAP) Routines
12.9 Searching

12.9 Searching
The following functions are used to search the LDAP directory, returning a
requested set of attributes for each entry matched. There are five variations.

int ldap_search_ext(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
int *msgidp

);

int ldap_search_ext_s(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
LDAPMessage **res

);

int ldap_search(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly

);

int ldap_search_s(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPMessage **res

);

int ldap_search_st(
LDAP *ld,
char *base,
int scope,
char *filter,
char **attrs,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res

);

LDAP–16 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.9 Searching

Parameters are as follows:

ld The session handle.

base The dn of the entry at which to start the search.

scope One of LDAP_SCOPE_BASE (0x00), LDAP_SCOPE_ONELEVEL
(0x01), or LDAP_SCOPE_SUBTREE (0x02), indicating the scope of the
search.

filter A character string representing the search filter. The value NULL can
be passed to indicate that the filter (objectclass=*) that matches all
entries should be used.

attrs A NULL-terminated array of strings indicating which attributes to
return for each matching entry. Passing NULL for this parameter
causes all available user attributes to be retrieved. The special
constant string LDAP_NO_ATTRS (1.1) can be used as the only
element in the array to indicate that no attribute types should be
returned by the server. The special constant string LDAP_ALL_USER_
ATTRS (*), can be used in the attrs array along with the names of some
operational attributes to indicate that all user attributes plus the listed
operational attributes should be returned.

attrsonly A boolean value that should be either zero if both attribute types and
values are to be returned or non-zero if only types are wanted.

timeout For the ldap_search_st() function, this specifies the local search
timeout value (if it is NULL, the timeout is infinite). For the
ldap_search_ext() and ldap_search_ext_s() functions, this
specifies both the local search timeout value and the operation time
limit that is sent to the server within the search request. For the
ldap_search_ext() and ldap_search_ext_s() functions, passing
a NULL value for timeout causes the global default timeout stored in
the LDAP session handle to be used (set using ldap_set_option()
with the LDAP_OPT_TIMELIMIT parameter).

sizelimit For the ldap_search_ext() and ldap_search_ext_s() calls, this
is a limit on the number of entries to return from the search. A value
of LDAP_NO_LIMIT (0) means no limit.

res For the synchronous calls, this is a result parameter which will contain
the results of the search upon completion of the call.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the
ldap_search_ext() call succeeds.

There are three options in the session handle ld that potentially affect how the
search is performed. They are as follows:

LDAP_OPT_SIZELIMIT A limit on the number of entries to return from the
search. A value of LDAP_NO_LIMIT (0) means no
limit. Note that the value from the session handle
is ignored when using the ldap_search_ext() or
ldap_search_ext_s() functions.

LDAP_OPT_TIMELIMIT A limit on the number of seconds to spend on the
search. A value of LDAP_NO_LIMIT (0) means no
limit. Note that the value from the session handle
is ignored when using the ldap_search_ext() or
ldap_search_ext_s() functions.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–17

Lightweight Directory Access Protocol (LDAP) Routines
12.9 Searching

LDAP_OPT_DEREF One of LDAP_DEREF_NEVER(0x00), LDAP_DEREF_
SEARCHING(0x01), LDAP_DEREF_FINDING (0x02), or
LDAP_DEREF_ALWAYS (0x03), specifying how aliases
should be handled during the search. The LDAP_DEREF_
SEARCHING value means aliases should be dereferenced
during the search but not when locating the base object
of the search. The LDAP_DEREF_FINDING value means
aliases should be dereferenced when locating the base
object but not during the search.

The ldap_search_ext() function initiates an asynchronous search operation and
returns either the constant LDAP_SUCCESS if the request was successfully sent
or another LDAP error code if not. See Section 12.18 for more information about
possible errors and how to interpret them. If successful, ldap_search_ext()
places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the results from the search. These results
can be parsed using the result parsing functions described in Section 12.18.

Similar to ldap_search_ext(), the ldap_search() function initiates an
asynchronous search operation and returns the message id of the operation
initiated. As for ldap_search_ext(), a subsequent call to ldap_result() can be
used to obtain the result of the bind. In case of error, ldap_search() will return
-1, setting the session error parameters in the LDAP structure appropriately.

The synchronous ldap_search_ext_s(), ldap_search_s(), and
ldap_search_st() functions all return the result of the operation, either
the constant LDAP_SUCCESS if the operation was successful or another LDAP
error code if it was not. See Section 12.18 for more information about possible
errors and how to interpret them. Entries returned from the search (if any) are
contained in the res parameter. This parameter is opaque to the caller. Entries,
attributes, and values should be extracted by calling the parsing functions.
The results contained in res should be freed when no longer in use by calling
ldap_msgfree().

The ldap_search_ext() and ldap_search_ext_s() functions support LDAPv3
server controls, client controls, and allow varying size and time limits to be easily
specified for each search operation. The ldap_search_st() function is identical
to ldap_search_s() except that it takes an additional parameter specifying a
local timeout for the search. The local search timeout is used to limit the amount
of time the API implementation will wait for a search to complete. After the local
search timeout the search operation will return LDAP_TIMEOUT if the search
result has not been removed.

12.9.1 Reading and Listing the Children of an Entry
LDAP does not support a read operation directly. Instead, this operation is
emulated by a search with base set to the DN of the entry to read, scope set
to LDAP_SCOPE_BASE, and filter set to "(objectclass=*)" or NULL. The attrs
parameter contains the list of attributes to return.

LDAP does not support a list operation directly. Instead, this operation is
emulated by a search with base set to the DN of the entry to list, scope set to
LDAP_SCOPE_ONELEVEL, and filter set to "(objectclass=*)" or NULL. The attrs
parameter contains the list of attributes to return for each child entry.

LDAP–18 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.10 Comparing a Value Against an Entry

12.10 Comparing a Value Against an Entry
The following functions are used to compare a given attribute value assertion
against an LDAP entry. There are four variations.

int ldap_compare_ext(
LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_compare_ext_s(
LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_compare(
LDAP *ld,
const char *dn,
const char *attr,
const char *value

);

int ldap_compare_s(
LDAP *ld,
const char *dn,
const char *attr,
const char *value

);

Parameters are as follows:

ld The session handle.

dn The name of the entry to compare against.

attr The attribute to compare against.

bvalue The attribute value to compare against those found in the given entry.
This parameter is used in the extended functions and is a pointer to a
struct berval so it is possible to compare binary values.

value A string attribute value to compare against, used by the
ldap_compare() and ldap_compare_s() functions. Use
ldap_compare_ext() or ldap_compare_ext_s() if you need to
compare binary values.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–19

Lightweight Directory Access Protocol (LDAP) Routines
12.10 Comparing a Value Against an Entry

msgidp This result parameter will be set to the message id of the request if
the ldap_compare_ext() call succeeds. The ldap_compare_ext()
function initiates an asynchronous compare operation and returns
either the constant LDAP_SUCCESS if the request was successfully
sent, or another LDAP error code if not. See Section 12.18 for more
information about possible errors and how to interpret them. If
successful, ldap_compare_ext() places the message id of the request
in *msgidp. A subsequent call to ldap_result() can be used to
obtain the result of the compare.

Similar to ldap_compare_ext(), the ldap_compare() function initiates an
asynchronous compare operation and returns the message id of the operation
initiated. As for ldap_compare_ext(), a subsequent call to ldap_result() can be
used to obtain the result of the bind. In case of error, ldap_compare() will return
-1, setting the session error parameters in the LDAP structure appropriately.

The synchronous ldap_compare_ext_s() and ldap_compare_s() functions both
return the result of the operation, either the constants LDAP_COMPARE_TRUE
or LDAP_COMPARE_FALSE if the operation was successful, or another LDAP
error code if it was not. See Section 12.18 for more information about possible
errors and how to interpret them.

The ldap_compare_ext() and ldap_compare_ext_s() functions support LDAPv3
server controls and client controls.

12.11 Modifying an Entry
The following functions are used to modify an existing LDAP entry. There are
four variations.

typedef struct ldapmod {
int mod_op;
char *mod_type;
union {

char **modv_strvals;
struct berval **modv_bvals;
} mod_vals;

} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify_ext(
LDAP *ld,
const char *dn,
LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_modify_ext_s(
LDAP *ld,
const char *dn,
LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_modify(
LDAP *ld,
const char *dn,
LDAPMod **mods

);

LDAP–20 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.11 Modifying an Entry

int ldap_modify_s(
LDAP *ld,
const char *dn,
LDAPMod **mods

);

Parameters are as follows:

ld The session handle.

dn The name of the entry to modify.

mods A NULL-terminated array of modifications to make to the entry.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the
ldap_modify_ext() call succeeds.

The fields in the LDAPMod structure have the following meanings:

mod_op The modification operation to perform. It should be one of LDAP_
MOD_ADD(0x00), LDAP_MOD_DELETE (0x01), or LDAP_MOD_
REPLACE(0x02). This field also indicates the type of values included
in the mod_vals union. It is logically ORed with LDAP_MOD_
BVALUES (0x80) to select the mod_bvalues form. Otherwise, the
mod_values form is used.

mod_type The type of the attribute to modify.

mod_vals The values (if any) to add, delete, or replace. Only one of the mod_
values or mod_bvalues variants should be used, selected by ORing
the mod_op field with the constant LDAP_MOD_BVALUES. The mod_
values field is a NULL-terminated array of zero-terminated strings and
mod_bvalues is a NULL- terminated array of berval structures that
can be used to pass binary values such as images.

For LDAP_MOD_ADD modifications, the given values are added to the entry,
creating the attribute if necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the
entry, removing the attribute if no values remain. If the entire attribute is to be
deleted, the mod_vals field should be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed
values after the modification, having been created if necessary, or removed if the
mod_vals field is NULL. All modifications are performed in the order in which
they are listed.

The ldap_modify_ext() function initiates an asynchronous modify operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. See Section 12.18 for more information about
possible errors and how to interpret them. If successful, ldap_modify_ext()
places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the modify.

Similar to ldap_modify_ext(), the ldap_modify() function initiates an
asynchronous modify operation and returns the message id of the operation
initiated. As for ldap_modify_ext(), a subsequent call to ldap_result() can
be used to obtain the result of the modify. In case of error, ldap_modify()
will return -1, setting the session error parameters in the LDAP structure
appropriately.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–21

Lightweight Directory Access Protocol (LDAP) Routines
12.11 Modifying an Entry

The synchronous ldap_modify_ext_s() and ldap_modify_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

See Section 12.18 for more information about possible errors and how to interpret
them.

The ldap_modify_ext() and ldap_modify_ext_s() functions support LDAPv3
server controls and client controls.

12.12 Modifying the Name of an Entry
In LDAP Version 2, the ldap_modrdn() and ldap_modrdn_s() functions were
used to change the name of an LDAP entry. They could only be used to change
the least significant component of a name (the RDN or relative distinguished
name). LDAPv3 provides the Modify DN protocol operation that allows more
general name change access. The ldap_rename() and ldap_rename_s() functions
are used to change the name of an entry, and the use of the ldap_modrdn() and
ldap_modrdn_s() functions is deprecated.

int ldap_rename(
LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_rename_s(
LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

Use of the following functions is deprecated.

int ldap_modrdn(
LDAP *ld,
char *dn,
char *newrdn,
int deleteoldrdn

);

int ldap_modrdn_s(
LDAP *ld,
char *dn,
char *newrdn,
int deleteoldrdn

);

Parameters are as follows:

ld The session handle.

dn The name of the entry whose DN is to be changed.

newrdn The new RDN to give the entry.

LDAP–22 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.12 Modifying the Name of an Entry

newparent The new parent, or superior entry. If this parameter is NULL, only
the RDN of the entry is changed. The root DN may be specified by
passing a zero length string, "". The newparent parameter should
always be NULL when using Version 2 of the LDAP protocol; otherwise
the server’s behavior is undefined.

deleteoldrdn This parameter only has meaning on the rename functions if newrdn
is different than the old RDN. It is a boolean value. If it is non-zero,
it indicates that the old RDN value(s) should be removed. If it is
zero, it indicates that the old RDN value(s) should be retained as
non-distinguished values of the entry.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the
ldap_rename() call succeeds.

The ldap_rename() function initiates an asynchronous modify DN operation
and returns the constant LDAP_SUCCESS if the request was successfully sent,
or another LDAP error code if not. See Section 12.18 for more information
about possible errors and how to interpret them. If successful, ldap_rename()
places the DN message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the rename.

The synchronous ldap_rename_s() returns the result of the operation, either the
constant LDAP_SUCCESS if the operation was successful, or another LDAP error
code if it was not. See Section 12.18 for more information about possible errors
and how to interpret them.

The ldap_rename() and ldap_rename_s() functions both support LDAPv3 server
controls and client controls.

12.13 Adding an Entry
The following functions are used to add entries to the LDAP directory. There are
four variations.

int ldap_add_ext(
LDAP *ld,
const char *dn,
LDAPMod **attrs,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_add_ext_s(
LDAP *ld,
const char *dn,
LDAPMod **attrs,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_add(
LDAP *ld,
const char *dn,
LDAPMod **attrs

);

Lightweight Directory Access Protocol (LDAP) Routines LDAP–23

Lightweight Directory Access Protocol (LDAP) Routines
12.13 Adding an Entry

int ldap_add_s(
LDAP *ld,
const char *dn,
LDAPMod **attrs

);

Parameters are as follows:

ld The session handle.

dn The name of the entry to add.

attrs The entry’s attributes, specified using the LDAPMod structure defined
for ldap_modify(). The mod_type and mod_vals fields should be
filled in. The mod_op field is ignored unless ORed with the constant
LDAP_MOD_BVALUES, used to select the mod_bvalues case of the
mod_vals union.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the
ldap_add_ext() call succeeds.

Note that the parent of the entry being added must already exist or the parent
must be empty (that is, equal to the root DN) for an add to succeed.

The ldap_add_ext() function initiates an asynchronous add operation and
returns either the constant LDAP_SUCCESS if the request was successfully sent
or another LDAP error code if not. See Section 12.18 for more information about
possible errors and how to interpret them. If successful, ldap_add_ext() places
the message id of the request in *msgidp. A subsequent call to ldap_result()
can be used to obtain the result of the add.

Similar to ldap_add_ext(), the ldap_add() function initiates an asynchronous
add operation and returns the message id of the operation initiated. As for
ldap_add_ext(), a subsequent call to ldap_result() can be used to obtain the
result of the add. In case of error, ldap_add() will return -1, setting the session
error parameters in the LDAP structure appropriately.

The synchronous ldap_add_ext_s() and ldap_add_s() functions both return the
result of the operation, either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if it was not. See Section 12.18 for more
information about possible errors and how to interpret them.

The ldap_add_ext() and ldap_add_ext_s() functions support LDAPv3 server
controls and client controls.

12.14 Deleting an Entry
The following functions are used to delete a leaf entry from the LDAP directory.
There are four variations.

int ldap_delete_ext(
LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

LDAP–24 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.14 Deleting an Entry

int ldap_delete_ext_s(
LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_delete(
LDAP *ld,
const char *dn

);

int ldap_delete_s(
LDAP *ld,
const char *dn

);

Parameters are as follows:

ld The session handle.

dn The name of the entry to delete.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the
ldap_delete_ext() call succeeds.

Note that the entry to delete must be a leaf entry (that is, it must have no
children). Deletion of entire subtrees in a single operation is not supported by
LDAP.

The ldap_delete_ext() function initiates an asynchronous delete operation and
returns either the constant LDAP_SUCCESS if the request was successfully sent
or another LDAP error code if not. See Section 12.18 for more information about
possible errors and how to interpret them. If successful, ldap_delete_ext()
places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the delete.

Similar to ldap_delete_ext(), the ldap_delete() function initiates an
asynchronous delete operation and returns the message id of the operation
initiated. As for ldap_delete_ext(), a subsequent call to ldap_result() can be
used to obtain the result of the delete. In case of error, ldap_delete() will return
-1, setting the session error parameters in the LDAP structure appropriately.

The synchronous ldap_delete_ext_s() and ldap_delete_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if
the operation was successful or another LDAP error code if it was not. See
Section 12.18 for more information about possible errors and how to interpret
them.

The ldap_delete_ext() and ldap_delete_ext_s() functions support LDAPv3
server controls and client controls.

12.15 Extended Operations
The ldap_extended_operation() and ldap_extended_operation_s() functions
allow extended LDAP operations to be passed to the server, providing a general
protocol extensibility mechanism.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–25

Lightweight Directory Access Protocol (LDAP) Routines
12.15 Extended Operations

int ldap_extended_operation(
LDAP *ld,
const char *requestoid,
const struct berval *request data,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

);

int ldap_extended_operation_s(
LDAP *ld,
const char *requestoid,
const struct berval *request data,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
char **retoidp,
struct berval **retdatap

);

Parameters are as follows:

ld The session handle.

requestoid The dotted-OID text string naming the request.

requestdata The arbitrary data required by the operation (if NULL, no data is sent
to the server).

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the
ldap_extended_operation() call succeeds.

retoidp Pointer to a character string that will be set to an allocated, dotted-
OID text string returned by the server. This string should be disposed
of using the ldap_memfree() function. If no OID was returned,
*retoidp is set to NULL.

retdatap Pointer to a berval structure pointer that will be set to an allocated
copy of the data returned by the server. This struct berval should be
disposed of using ber_bvfree(). If no data is returned, *retdatap is set
to NULL.

The ldap_extended_operation() function initiates an asynchronous extended
operation and returns either the constant LDAP_SUCCESS if the request was
successfully sent or another LDAP error code if not. See Section 12.18 for more
information about possible errors and how to interpret them. If successful,
ldap_extended_operation() places the message id of the request in *msgidp.
A subsequent call to ldap_result() can be used to obtain the result of the
extended operation which can be passed to ldap_parse_extended_result() to
obtain the OID and data contained in the response.

The synchronous ldap_extended_operation_s() function returns the result
of the operation, either the constant LDAP_SUCCESS if the operation was
successful or another LDAP error code if it was not. See Section 12.18 for more
information about possible errors and how to interpret them. The retoid and
retdata parameters are filled in with the OID and data from the response. If no
OID or data was returned, these parameters are set to NULL.

The ldap_extended_operation() and ldap_extended_operation_s() functions
both support LDAPv3 server controls and client controls.

LDAP–26 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.16 Abandoning an Operation

12.16 Abandoning an Operation
The following calls are used to abandon an operation in progress:

int ldap_abandon_ext(
LDAP *ld,
int msgid,
LDAPControl **serverctrls,
LDAPControl **clientctrls

);

int ldap_abandon(
LDAP *ld,
int msgid

);

Parameters are as follows:

ld The session handle.

msgid The message id of the request to be abandoned.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

The ldap_abandon_ext() function abandons the operation with message id msgid
and returns either the constant LDAP_SUCCESS if the abandon was successful
or another LDAP error code if not. See Section 12.18 for more information about
possible errors and how to interpret them.

The ldap_abandon() function is identical to ldap_abandon_ext() except that it
does not accept client or server controls and it returns zero if the abandon was
successful, -1 otherwise and does not support LDAPv3 server controls or client
controls.

After a successful call to ldap_abandon() or ldap_abandon_ext(), results
with the given message id are never returned from a subsequent call to
ldap_result(). There is no server response to LDAP abandon operations.

12.17 Obtaining Results and Looking Inside LDAP Messages
The ldap_result() function is used to obtain the result of a previous
asynchronously initiated operation. Note that depending on how it is called,
ldap_result() may actually return a list or "chain" of result messages. Once
a chain of messages has been returned to the caller, it is no longer tied in any
caller-visible way to the LDAP request that produced it. Therefore, a chain
of messages returned by calling ldap_result() or by calling a synchronous
search function will never be affected by subsequent LDAP API calls (except for
ldap_msgfree(), which is used to dispose of a chain of messages).

The ldap_msgfree() function frees the result messages (possibly an entire chain
of messages) obtained from a previous call to ldap_result() or from a call to a
synchronous search function.

The ldap_msgtype() function returns the type of an LDAP message. The
ldap_msgid() function returns the message ID of an LDAP message.

int ldap_result(
LDAP *ld,
int msgid,
int all,
struct timeval *timeout,
LDAPMessage **res

);

Lightweight Directory Access Protocol (LDAP) Routines LDAP–27

Lightweight Directory Access Protocol (LDAP) Routines
12.17 Obtaining Results and Looking Inside LDAP Messages

int ldap_msgfree(LDAPMessage *res);

int ldap_msgtype(LDAPMessage *res);

int ldap_msgid(LDAPMessage *res);

Parameters are as follows:

ld The session handle.

msgid The message id of the operation whose results are to be returned, or
the constant LDAP_RES_ANY (-1) if any result is desired.

all Specifies how many messages will be retrieved in a single call to
ldap_result(). This parameter only has meaning for search results.
Pass the constant LDAP_MSG_ONE (0x00) to retrieve one message at
a time. Pass LDAP_MSG_ALL (0x01) to request that all results of a
search be received before returning all results in a single chain. Pass
LDAP_MSG_RECEIVED (0x02) to indicate that all results retrieved so
far should be returned in the result chain.

timeout A timeout specifying how long to wait for results to be returned.
A NULL value causes ldap_result() to block until results are
available. A timeout value of zero seconds specifies a polling behavior.

res For ldap_result(), a result parameter that will contain the result(s)
of the operation. For ldap_msgfree(), the result chain to be freed,
obtained from a previous call to ldap_result(), ldap_search_s(),
or ldap_search_st().

Upon successful completion, ldap_result() returns the type of the first result
returned in the res parameter. This will be one of the following constants.

LDAP_RES_BIND (0x61)

LDAP_RES_SEARCH_ENTRY (0x64)

LDAP_RES_SEARCH_REFERENCE (0x73) -- new in LDAPv3

LDAP_RES_SEARCH_RESULT (0x65)

LDAP_RES_MODIFY (0x67)

LDAP_RES_ADD (0x69)

LDAP_RES_DELETE (0x6B)

LDAP_RES_MODDN (0x6D)

LDAP_RES_COMPARE (0x6F)

LDAP_RES_EXTENDED (0x78) -- new in LDAPv3

The ldap_result() function returns 0 if the timeout expired and -1 if an error
occurs, in which case the error parameters of the LDAP session handle will be set
accordingly.

The ldap_msgfree() function frees the result structure pointed to by res and
returns the type of the message it freed.

The ldap_msgtype() function returns the type of the LDAP message it is passed
as a parameter. The type will be one of the types listed above, or -1 on error.

The ldap_msgid() function returns the message ID associated with the LDAP
message passed as a parameter.

LDAP–28 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.18 Handling Errors and Parsing Results

12.18 Handling Errors and Parsing Results
The following calls are used to extract information from results and
handle errors returned by other LDAP API functions. Note that
ldap_parse_sasl_bind_result() and ldap_parse_extended_result() must
typically be used in addition to ldap_parse_result() to retrieve all the result
information from SASL bind and extended operations, respectively.

int ldap_parse_result(
LDAP *ld,
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit

);

int ldap_parse_sasl_bind_result(
LDAP *ld,
LDAPMessage *res,
struct berval **servercredp,
int freeit

);

int ldap_parse_extended_result(
LDAP *ld,
LDAPMessage *res,
char **resultoidp,
struct berval **resultdata,
int freeit

);

char *ldap_err2string(int err);

The use of the following functions is deprecated.

int ldap_result2error(
LDAP *ld,
LDAPMessage *res,
int freeit

);

void ldap_perror(LDAP *ld, const char *msg);

Parameters are as follows:

ld The session handle.

res The result of an LDAP operation as returned by ldap_result() or
one of the synchronous API operation calls.

errcodep This result parameter will be filled in with the LDAP error code field
from the LDAPMessage result. This is the indication from the server of
the outcome of the operation. NULL may be passed to ignore this field.

matcheddnp In the case of a return of LDAP_NO_SUCH_OBJECT, this result
parameter will be filled in with a DN indicating how much of the
name in the request was recognized. NULL may be passed to
ignore this field. The matched DN string should be freed by calling
ldap_memfree().

Lightweight Directory Access Protocol (LDAP) Routines LDAP–29

Lightweight Directory Access Protocol (LDAP) Routines
12.18 Handling Errors and Parsing Results

errmsgp This result parameter will be filled in with the contents of the error
message field from the LDAPMessage result. The error message string
should be freed by calling ldap_memfree(). NULL may be passed to
ignore this field.

referralsp This result parameter will be filled in with the contents of the referrals
field from the LDAPMessage result, indicating zero or more alternate
LDAP servers where the request should be retried. The referrals array
should be freed by calling ldap_value_free(). NULL may be passed
to ignore this field.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of the LDAPMessage result. The control array
should be freed by calling ldap_controls_free().

freeit A boolean that determines whether the res parameter is disposed
of or not. Pass any non-zero value to have these functions free res
after extracting the requested information. This is provided as a
convenience; you can also use ldap_msgfree() to free the result
later. If freeit is non-zero, the entire chain of messages represented by
res is disposed of.

servercredp For SASL bind results, this result parameter will be filled in with
the credentials passed back by the server for mutual authentication,
if given. An allocated berval structure is returned that should be
disposed of by calling ber_bvfree(). NULL may be passed to ignore this
field.

resultoidp For extended results, this result parameter will be filled in with
the dotted-OID text representation of the name of the extended
operation response. This string should be disposed of by calling
ldap_memfree(). NULL may be passed to ignore this field.

resultdatap For extended results, this result parameter will be filled in with a
pointer to a struct berval containing the data in the extended operation
response. It should be disposed of by calling ber_bvfree(). NULL may
be passed to ignore this field.

err For ldap_err2string(), an LDAP error code, as returned by
ldap_parse_result() or another LDAP API call.

Additional parameters for the deprecated functions are not described. See RFC
1823 for more information.

All three of the ldap_parse_*_result() functions skip over messages of
type LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE
when looking for a result message to parse. They return either the constant
LDAP_SUCCESS if the result was successfully parsed or another LDAP error
code if not. Note that the LDAP error code that indicates the outcome of the
operation performed by the server is placed in the errcodep ldap_parse_result()
parameter. If a chain of messages that contains more than one result message is
passed to these functions, they always operate on the first result in the chain.

The ldap_err2string() function is used to convert a numeric LDAP error code,
as returned by either one of the three ldap_parse_*_result() functions or one
of the synchronous API operation calls, into an informative zero-terminated
character string message describing the error. It returns a pointer to static data.

LDAP–30 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.18 Handling Errors and Parsing Results

12.18.1 Stepping Through a List of Results
The ldap_first_message() and ldap_next_message() functions are used to step
through the list of messages in a result chain returned by ldap_result(). For
search operations, the result chain may actually include referral messages, entry
messages, and result messages. The ldap_count_messages() function is used to
count the number of messages returned. The ldap_msgtype() function can be
used to distinguish between the different message types.

LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_message (LDAP *ld, LDAPMesage *msg);
int ldap_count_messages(LDAP *ld, LDAPMessage *res);

Parameters are as follows:

ld The session handle.

res The result chain, as obtained by a call to one of the synchronous search
functions or ldap_result().

msg The message returned by a previous call to ldap_first_message() or
ldap_next_message().

The ldap_first_message() and ldap_next_message() functions will return
NULL when no more messages exist in the result set to be returned. NULL is
also returned if an error occurs while stepping through the entries, in which case
the error parameters in the session handle ld will be set to indicate the error.

The ldap_count_messages() function returns the number of messages contained
in a chain of results. It can also be used to count the number of messages
that remain in a chain if called with a message, entry, or reference returned
by ldap_first_message(), ldap_next_message(), ldap_first_entry(),
ldap_next_entry(), ldap_first_reference(), ldap_next_reference().

12.19 Parsing Search Results
The following calls are used to parse the entries and references returned by
ldap_search(). These results are returned in an opaque structure that should
only be accessed by calling the functions. Functions are provided to step through
the entries and references returned, step through the attributes of an entry,
retrieve the name of an entry, and retrieve the values associated with a given
attribute in an entry.

12.19.1 Stepping Through a List of Entries
The ldap_first_entry() and ldap_next_entry() functions are used to step
through and retrieve the list of entries from a search result chain. The
ldap_first_reference() and ldap_next_reference() functions are used to
step through and retrieve the list of continuation references from a search result
chain. The ldap_count_entries() function is used to count the number of
entries returned. The ldap_count_references() function is used to count the
number of references returned.

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry);

LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *ref);

int ldap_count_entries(LDAP *ld, LDAPMessage *res);

int ldap_count_references(LDAP *ld, LDAPMessage *res);

Lightweight Directory Access Protocol (LDAP) Routines LDAP–31

Lightweight Directory Access Protocol (LDAP) Routines
12.19 Parsing Search Results

Parameters are as follows:

ld The session handle.

res The search result, as obtained by a call to one of the synchronous search
functions or ldap_result().

entry The entry returned by a previous call to ldap_first_entry() or
ldap_next_entry().

The ldap_first_entry() and ldap_next_entry() functions will return NULL
when no more entries or references exist in the result set to be returned. NULL
is also returned if an error occurs while stepping through the entries, in which
case the error parameters in the session handle ld will be set to indicate the error.

The ldap_count_entries() function returns the number of entries contained
in a chain of entries. It can also be used to count the number of entries
that remain in a chain if called with a message, entry or reference returned
by ldap_first_message(), ldap_next_message(), ldap_first_entry(),
ldap_next_entry(), ldap_first_reference(), ldap_next_reference().

The ldap_count_references() function returns the number of references
contained in a chain of search results. It can also be used to count the number of
references that remain in a chain.

12.19.2 Stepping Through the Attributes of an Entry
The ldap_first_attribute() and ldap_next_attribute() calls are used to step
through the list of attribute types returned with an entry.

char *ldap_first_attribute(
LDAP *ld,
LDAPMessage *entry,
BerElement **ptr

);

char *ldap_next_attribute(
LDAP *ld,
LDAPMessage *entry,
BerElement *ptr

);

void ldap_memfree(char *mem);

Parameters are as follows:

ld The session handle.

entry The entry whose attributes are to be stepped through, as returned by
ldap_first_entry() or ldap_next_entry().

ptr In ldap_first_attribute(), the address of a pointer used internally to keep
track of the current position in the entry. In ldap_next_attribute(), the
pointer returned by a previous call to ldap_first_attribute().

mem A pointer to memory allocated by the LDAP library, such as the
attribute type names returned by ldap_first_attribute() and
ldap_next_attribute(), or the DN returned by ldap_get_dn().

The ldap_first_attribute() and ldap_next_attribute() functions will return
NULL when the end of the attributes is reached, or if there is an error, in which
case the error parameters in the session handle ld will be set to indicate the error.

Both functions return a pointer to an allocated buffer containing the current
attribute name. This should be freed when no longer in use by calling
ldap_memfree().

LDAP–32 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.19 Parsing Search Results

The ldap_first_attribute() function will allocate and return in ptr a pointer
to a BerElement used to keep track of the current position. This pointer should
be passed in subsequent calls to ldap_next_attribute() to step through
the entry’s attributes. After a set of calls to ldap_first_attribute() and
ldap_next_attribute(), if ptr is non-NULL, it should be freed by calling
ber_free(ptr, 0). Note that it is very important to pass the second parameter
as 0 (zero) in this call, since the buffer associated with the BerElement does not
point to separately allocated memory.

The attribute type names returned are suitable for passing in a call to
ldap_get_values() to retrieve the associated values.

12.19.3 Retrieving the Values of an Attribute
The ldap_get_values() and ldap_get_values_len() functions are used to
retrieve the values of a given attribute from an entry. The ldap_count_values()
and ldap_count_values_len() functions are used to count the returned values.
The ldap_value_free() and ldap_value_free_len() functions are used to free
the values.

char **ldap_get_values(
LDAP *ld,
LDAPMessage *entry,
char *attr

);

struct berval **ldap_get_values_len(
LDAP *ld,
LDAPMessage *entry,
char *attr

);

int ldap_count_values(char **vals)

int ldap_count_values_len(struct berval **vals);

void ldap_value_free(char **vals);

void ldap_value_free_len(struct berval **vals);

Parameters are as follows:

ld The session handle.

entry The entry from which to retrieve values, as returned by ldap_first_entry()
or ldap_next_entry().

attr The attribute whose values are to be retrieved, as returned by
ldap_first_attribute() or ldap_next_attribute(), or a caller-
supplied string (for example, "mail").

vals The values returned by a previous call to ldap_get_values() or
ldap_get_values_len().

Two forms of the various calls are provided. The first form is only suitable for
use with non-binary character string data. The second _len form is used with any
kind of data.

The ldap_get_values() and ldap_get_values_len() functions return NULL if
no values are found for attr or if an error occurs.

The ldap_count_values() and ldap_count_values_len() functions return -1 if
an error occurs such as the vals parameter being invalid.

Note that the values returned are dynamically allocated and should be freed by
calling either ldap_value_free() or ldap_value_free_len() when no longer in
use.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–33

Lightweight Directory Access Protocol (LDAP) Routines
12.19 Parsing Search Results

12.19.4 Retrieving the Name of an Entry
The ldap_get_dn() function is used to retrieve the name of an entry. The
ldap_explode_dn() and ldap_explode_rdn() functions are used to break up a
name into its component parts. The ldap_dn2ufn() function is used to convert
the name into a more user-friendly format.

char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);

char **ldap_explode_dn(const char *dn, int notypes);

char **ldap_explode_rdn(const char *rdn, int notypes);

char *ldap_dn2ufn(const char *dn);

Parameters are as follows:

ld The session handle.

entry The entry whose name is to be retrieved, as returned by
ldap_first_entry() or ldap_next_entry().

dn The dn to explode, such as returned by ldap_get_dn().

rdn The rdn to explode, such as returned in the components of the array
returned by ldap_explode_dn().

notypes A boolean parameter, if non-zero indicating that the DN or RDN
components should have their type information stripped off (i.e.,
"cn=Babs" would become "Babs").

The ldap_get_dn() function will return NULL if there is some error parsing
the dn, setting error parameters in the session handle ld to indicate the error. It
returns a pointer to newly allocated space that the caller should free by calling
ldap_memfree() when it is no longer in use.

The ldap_explode_dn() function returns a NULL-terminated char * array
containing the RDN components of the DN supplied, with or without types as
indicated by the notypes parameter. The components are returned in the order
they appear in the dn. The array returned should be freed when it is no longer in
use by calling ldap_value_free().

The ldap_explode_rdn() function returns a NULL-terminated char * array
containing the components of the RDN supplied, with or without types as
indicated by the notypes parameter. The components are returned in the order
they appear in the rdn. The array returned should be freed when it is no longer
in use by calling ldap_value_free().

The ldap_dn2ufn() function converts the DN into the user friendly format.
The UFN returned is newly allocated space that should be freed by a call to
ldap_memfree() when no longer in use.

12.19.5 Retrieving Controls from an Entry
The ldap_get_entry_controls() function is used to extract LDAP controls from
an entry.

int ldap_get_entry_controls(
LDAP *ld,
LDAPMessage *entry,
LDAPControl ***serverctrlsp

);

LDAP–34 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.19 Parsing Search Results

Parameters are as follows:

ld The session handle.

entry The entry to extract controls from, as returned by
ldap_first_entry() or ldap_next_entry().

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of entry. The control array should be freed by
calling ldap_controls_free(). If serverctrlsp is NULL, no controls
are returned.

The ldap_get_entry_controls() function returns an LDAP error code that
indicates whether the reference could be successfully parsed (LDAP_SUCCESS if
all goes well).

12.19.6 Parsing References
The ldap_parse_reference() function is used to extract referrals and controls
from a SearchResultReference message.

int ldap_parse_reference(
LDAP *ld,
LDAPMessage *ref,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit

);

Parameters are as follows:

ld The session handle.

ref The reference to parse, as returned by ldap_result(),
ldap_first_reference(), or ldap_next_reference().

referralsp This result parameter will be filled in with an allocated array of
character strings. The elements of the array are the referrals (typically
LDAP URLs) contained in ref. The array should be freed when no
longer in used by calling ldap_value_free(). If referralsp is NULL,
the referral URLs are not returned.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of ref. The control array should be freed by calling
ldap_controls_free(). If serverctrlsp is NULL, no controls are
returned.

freeit A boolean that determines whether the ref parameter is disposed
of or not. Pass any non-zero value to have these functions free res
after extracting the requested information. This is provided as a
convenience; you can also use ldap_msgfree() to free the result
later.

The ldap_parse_reference() function returns an LDAP error code that indicates
whether the reference could be successfully parsed (LDAP_SUCCESS if all goes
well).

12.20 Encoded ASN.1 Value Manipulation
This section describes functions that may be used to encode and decode BER-
encoded ASN.1 values, which are often used inside of control and extension
values.

The following additional integral types are defined for use in manipulation of
BER encoded ASN.1 values:

Lightweight Directory Access Protocol (LDAP) Routines LDAP–35

Lightweight Directory Access Protocol (LDAP) Routines
12.20 Encoded ASN.1 Value Manipulation

typedef unsigned long ber_tag_t; /* for BER tags */

typedef long ber_int_t; /* for BER ints, enums, and Booleans */

With the exceptions of two new functions, ber_flatten() and ber_init(),
these functions are compatible with the University of Michigan LDAP 3.3
implementation of BER.

typedef struct berval {
ber_len_t bv_len;
char *bv_val;

} BerValue;

A struct berval contains a sequence of bytes and an indication of its length. The
bv_val is not null terminated. A bv_len must always be a nonnegative number.
Applications may allocate their own berval structures.

typedef struct berelement {
/* opaque */

} BerElement;

The BerElement structure contains not only a copy of the encoded value, but
also state information used in encoding or decoding. Applications cannot allocate
their own BerElement structures. The internal state is neither thread-specific
nor locked, so two threads should not manipulate the same BerElement value
simultaneously.

A single BerElement value cannot be used for both encoding and decoding.

void ber_bvfree(struct berval *bv);

The ber_bvfree() function frees a berval returned from this API. Both the
bv->bv_val string and the berval itself are freed. Applications should not use
ber_bvfree() with bervals which the application has allocated.

void ber_bvecfree (struct berval **bv);

The ber_bvecfree() function frees an array of bervals returned from this API.
Each of the bervals in the array are freed using ber_bvfree(), then the array
itself is freed.

struct berval *ber_bvdup (struct berval *bv);

The ber_bvdup() function returns a copy of a berval. The bv_val field in the
returned berval points to a different area of memory as the bv_val field in the
argument berval. The null pointer is returned on error (for example, out of
memory).

void ber_free (BerElement *ber, int fbuf);

The ber_free() function frees a BerElement which is returned from the API
calls ber_alloc_t() or ber_init(). Each BerElement must be freed by the
caller. The second argument fbuf should always be set to 1 to ensure that the
internal buffer used by the BER functions is freed as well as the BerElement
container itself.

LDAP–36 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.20 Encoded ASN.1 Value Manipulation

12.20.1 Encoding
The following is an example of encoding:

BerElement *ber_alloc_t(int options);

The ber_alloc_t() function constructs and returns BerElement. The null
pointer is returned on error. The options field contains a bitwise-or of options
which are to be used when generating the encoding of this BerElement. One
option is defined and must always be supplied:

#define LBER_USE_DER 0x01

When this option is present, lengths will always be encoded in the minimum
number of octets. Note that this option does not cause values of sets and
sequences to be rearranged in tag and byte order, so these functions are not
sufficient for generating DER output as defined in X.509 and X.680. If the caller
takes responsibility for ordering values of sets and sequences correctly, DER
output as defined in X.509 and X.680 can be produced.

Unrecognized option bits are ignored.

The BerElement returned by ber_alloc_t() is initially empty. Calls to
ber_printf() will append bytes to the end of the BerElement.

int ber_printf(BerElement *ber, char *fmt, ...)

The ber_printf() function is used to encode a BER element in much the same
way that sprintf() works. One important difference, though, is that state
information is kept in the BER argument so that multiple calls can be made
to ber_printf() to append to the end of the BER element. BER must be a
pointer to a BerElement returned by ber_alloc_t(). The ber_printf() function
interprets and formats its arguments according to the format string fmt. The
ber_printf() function returns -1 if there is an error during encoding and a
positive number if successful. As with sprintf(), each character in fmt refers to
an argument to ber_printf().

The format string can contain the following format characters:

t Tag. The next argument is a ber_tag_t specifying the tag to override the
next element to be written to the ber. This works across calls. The value must
contain the tag class, constructed bit, and tag value. The tag value must fit
in a single octet (tag value is less than 32). For example, a tag of "[3]" for a
constructed type is 0xA3.

b Boolean. The next argument is a ber_int_t, containing either 0 for FALSE
or 0xff for TRUE. A boolean element is output. If this format character is not
preceded by the ’t’ format modifier, the tag 0x01 is used for the element.

e Enumerated. The next argument is a ber_int_t, containing the enumerated
value in the host’s byte order. An enumerated element is output. If this format
character is not preceded by the ’t’ format modifier, the tag 0x0A is used for the
element.

i Integer. The next argument is a ber_int_t, containing the integer in the
host’s byte order. An integer element is output. If this format character is not
preceded by the ’t’ format modifier, the tag 0x02 is used for the element.

B Bitstring. The next two arguments are a char * pointer to the start of the
bitstring, followed by a ber_len_t containing the number of bits in the
bitstring. A bitstring element is output, in primitive form. If this format
character is not preceded by the ’t’ format modifier, the tag 0x03 is used for the
element.

Lightweight Directory Access Protocol (LDAP) Routines LDAP–37

Lightweight Directory Access Protocol (LDAP) Routines
12.20 Encoded ASN.1 Value Manipulation

n Null. No argument is required. An ASN.1 NULL element is output. If this
format character is not preceded by the ’t’ format modifier, the tag 0x05 is used
for the element.

o Octet string. The next two arguments are a char *, followed by a ber_len_t
with the length of the string. The string may contain null bytes and need not
by zero-terminated. An octet string element is output, in primitive form. If this
format character is not preceded by the ’t’ format modifier, the tag 0x04 is used
for the element.

s Octet string. The next argument is a char * pointing to a zero-terminated
string. An octet string element in primitive form is output, which does not
include the trailing ’\0’ byte. If this format character is not preceded by the ’t’
format modifier, the tag 0x04 is used for the element.

v Several octet strings. The next argument is a char **, an array of char *
pointers to zero-terminated strings. The last element in the array must be a
null pointer. The octet strings do not include the leading SEQUENCE OF octet
strings. The ’t’ format modifier cannot be used with this format character.

V Several octet strings. A NULL-terminated array of struct berval *’s is supplied.
Note that a construct like ’{V}’ is required to get an actual SEQUENCE OF
octet strings. The ’t’ format modifier cannot be used with this format character.

{ Begin sequence. No argument is required. If this format character is not
preceded by the ’t’ format modifier, the tag 0x30 is used.

} End sequence. No argument is required. The ’t’ format modifier cannot be used
with this format character.

[Begin set. No argument is required. If this format character is not preceded by
the ’t’ format modifier, the tag 0x31 is used.

] End set. No argument is required. The ’t’ format modifier cannot be used with
this format character.

Each use of a ’{’ format character must be matched by a ’}’ character, either later
in the format string, or in the format string of a subsequent call to ber_printf()
for that BerElement. The same applies to the ’[’ and ’]’.

Sequences and sets nest, and implementations of this API must maintain internal
state to be able to properly calculate the lengths.

int ber_flatten (BerElement *ber, struct berval **bvPtr);

The ber_flatten() function allocates a struct berval whose contents are a BER
encoding taken from the ber argument. The bvPtr pointer points to the returned
berval, which must be freed using ber_bvfree(). This function returns 0 on
success and -1 on error.

The ber_flatten() API call is not present in U-M LDAP 3.3.

The use of ber_flatten() on a BerElement in which all ’{’ and ’}’ format
modifiers have not been properly matched is an error (that is, -1 will be returned
by ber_flatten() if this situation is exists).

12.20.1.1 Encoding Example
The following is an example of encoding the following ASN.1 data type:

Example1Request ::= SEQUENCE {
s OCTET STRING, -- must be printable
val1 INTEGER,
val2 [0] INTEGER DEFAULT 0

}

int encode_example1(char *s,ber_int_t val1,ber_int_t val2,
struct berval **bvPtr)

LDAP–38 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.20 Encoded ASN.1 Value Manipulation

{
BerElement *ber;
int rc;

ber = ber_alloc_t(LBER_USE_DER);

if (ber == NULL) return -1;

if (ber_printf(ber,"{si",s,val1) == -1) {
ber_free(ber,1);
return -1;

}

if (val2 != 0) {
if (ber_printf(ber,"ti",(ber_tag_t)0x80,val2) == -1) {

ber_free(ber,1);
return -1;
}

}

if (ber_printf(ber,"}") == -1) {
ber_free(ber,1);
return -1;

}

rc = ber_flatten(ber,bvPtr);
ber_free(ber,1);
return rc;
}

12.20.2 Decoding
The following two symbols are available to applications.

#define LBER_ERROR 0xffffffffL
#define LBER_DEFAULT 0xffffffffL

BerElement *ber_init (struct berval *bv);

The ber_init() function constructs a BerElement and returns a new BerElement
containing a copy of the data in the bv argument. The ber_init() function
returns the null pointer on error.

ber_tag_t ber_scanf (BerElement *ber, char *fmt, ...);

The ber_scanf() function is used to decode a BER element in much the same
way that sscanf() works. One important difference, though, is that some state
information is kept with the ber argument so that multiple calls can be made
to ber_scanf() to sequentially read from the BER element. The ber argument
must be a pointer to a BerElement returned by ber_init(). The ber_scanf()
function interprets function the bytes according to the format string fmt, and
stores the results in its additional arguments. The ber_scanf() function returns
LBER_ERROR on error, and a different value on success.

The format string contains conversion specifications which are used to direct the
interpretation of the BER element. The format string can contain the following
characters:

Lightweight Directory Access Protocol (LDAP) Routines LDAP–39

Lightweight Directory Access Protocol (LDAP) Routines
12.20 Encoded ASN.1 Value Manipulation

a Octet string. A char ** argument should be supplied. Memory is allocated,
filled with the contents of the octet string, null- terminated, and the pointer to
the string is stored in the argument. The returned value must be freed using
ldap_memfree(). The tag of the element must indicate the primitive form
(constructed strings are not supported) but is otherwise ignored and discarded
during the decoding. This format cannot be used with octet strings which could
contain null bytes.

O Octet string. A struct berval ** argument should be supplied, which upon
return points to a allocated struct berval containing the octet string and its
length. The ber_bvfree() function must be called to free the allocated
memory. The tag of the element must indicate the primitive form (constructed
strings are not supported) but is otherwise ignored during the decoding.

b Boolean. A pointer to a ber_int_t should be supplied. The value stored will
be 0 for FALSE or nonzero for TRUE. The tag of the element must indicate the
primitive form but is otherwise ignored during the decoding.

e Enumerated value stored will be in host byte order. The tag of the element
must indicate the primitive form but is otherwise ignored during the decoding.
The ber_scanf() function will return an error if the enumerated value cannot
be stored in a ber_int_t.

i Integer. A pointer to a ber_int_t should be supplied. The value stored will
be in host byte order. The tag of the element must indicate the primitive form
but is otherwise ignored during the decoding. The ber_scanf() function will
return an error if the integer cannot be stored in a ber_int_t.

B Bitstring. A char ** argument should be supplied which will point to the
allocated bits, followed by a ber_len_t * argument, which will point to the
length (in bits) of the bit-string returned. The ldap_memfree() function
must be called to free the bit-string. The tag of the element must indicate
the primitive form (constructed bitstrings are not supported) but is otherwise
ignored during the decoding.

n Null. No argument is required. The element is simply skipped if it is
recognized as a zero-length element. The tag is ignored.

v Several octet strings. A char *** argument should be supplied, which upon
return points to a allocated null-terminated array of char *’s containing the
octet strings. NULL is stored if the sequence is empty. The ldap_memfree()
function must be called to free each element of the array and the array itself.
The tag of the sequence and of the octet strings are ignored.

V Several octet strings (which could contain null bytes). A struct berval ***
should be supplied, which upon return points to a allocated null-terminated
array of struct berval *’s containing the octet strings and their lengths. NULL
is stored if the sequence is empty. The ber_bvecfree() function can be called
to free the allocated memory. The tag of the sequence and of the octet strings
are ignored.

x Skip element. The next element is skipped. No argument is required.

{ Begin sequence. No argument is required. The initial sequence tag and length
are skipped.

} End sequence. No argument is required.

[Begin set. No argument is required. The initial set tag and length are skipped.

] End set. No argument is required.

ber_tag_t ber_peek_tag (BerElement *ber, ber_len_t *lenPtr);

The ber_peek_tag() function returns the tag of the next element to be parsed
in the BerElement argument. The length of this element is stored in the *lenPtr
argument. LBER_DEFAULT is returned if there is no further data to be read.
The ber argument is not modified.

ber_tag_t ber_skip_tag (BerElement *ber, ber_len_t *lenPtr);

LDAP–40 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.20 Encoded ASN.1 Value Manipulation

The ber_skip_tag() function is similar to ber_peek_tag(), except that the state
pointer in the BerElement argument is advanced past the first tag and length,
and is pointed to the value part of the next element. This function should only be
used with constructed types and situations when a BER encoding is used as the
value of an OCTET STRING. The length of the value is stored in *lenPtr.

ber_tag_t ber_first_element(BerElement *ber,
ber_len_t *lenPtr, char **opaquePtr);

ber_tag_t ber_next_element (BerElement *ber,
ber_len_t *lenPtr, char *opaque);

The ber_first_element() and ber_next_element() functions are used to
traverse a SET, SET OF, SEQUENCE or SEQUENCE OF data value. The
ber_first_element() function calls ber_skip_tag(), stores internal information
in *lenPtr and *opaquePtr, and calls ber_peek_tag() for the first element inside
the constructed value. LBER_DEFAULT is returned if the constructed value is
empty. The ber_next_element() function positions the state at the start of the
next element in the constructed type. LBER_DEFAULT is returned if there are
no further values.

The len and opaque values should not be used by applications other than as
arguments to ber_next_element(), as shown in the following example:

12.20.2.1 Decoding Example
The following is an example of decoding an ASN.1 data type:

Example2Request ::= SEQUENCE {
dn OCTET STRING, -- must be printable
scope ENUMERATED { b (0), s (1), w (2) },
ali ENUMERATED { n (0), s (1), f (2), a (3) },
size INTEGER,
time INTEGER,
tonly BOOLEAN,
attrs SEQUENCE OF OCTET STRING, -- must be printable
[0] SEQUENCE OF SEQUENCE {

type OCTET STRING -- must be printable,
crit BOOLEAN DEFAULT FALSE,
value OCTET STRING

} OPTIONAL }

#define TAG_CONTROL_LIST 0xA0U /* context specific cons 0 */

int decode_example2(struct berval *bv)
{

BerElement *ber;
ber_len_t len;
ber_tag_t res;
ber_int_t scope, ali, size, time, tonly;
char *dn = NULL, **attrs = NULL;
int i,rc = 0;
ber = ber_init(bv);
if (ber == NULL) {

fputs("ERROR ber_init failed\n", stderr);
return -1;

}

res = ber_scanf(ber,"{aiiiib{v}",&dn,&scope,&ali,
&size,&time,&tonly,&attrs);

if (res == LBER_ERROR) {
fputs("ERROR ber_scanf failed\n", stderr);
ber_free(ber,1);
return -1;

}

Lightweight Directory Access Protocol (LDAP) Routines LDAP–41

Lightweight Directory Access Protocol (LDAP) Routines
12.20 Encoded ASN.1 Value Manipulation

/* *** use dn */
ldap_memfree(dn);

for (i = 0; attrs != NULL && attrs[i] != NULL; i++) {
/* *** use attrs[i] */
ldap_memfree(attrs[i]);

}
ldap_memfree(attrs);

if (ber_peek_tag(ber,&len) == TAG_CONTROL_LIST) {
char *opaque;
ber_tag_t tag;

for (tag = ber_first_element(ber,&len,&opaque);
tag != LBER_DEFAULT;
tag = ber_next_element (ber,&len,opaque)) {

ber_len_t tlen;
ber_tag_t ttag;
char *type;
ber_int_t crit;
struct berval *value;

if (ber_scanf(ber,"{a",&type) == LBER_ERROR) {
fputs("ERROR cannot parse type\n",
stderr);
break;

}
/* *** use type */
ldap_memfree(type);

ttag = ber_peek_tag(ber,&tlen);
if (ttag == 0x01U) { /* boolean */

if (ber_scanf(ber,"b",
&crit) == LBER_ERROR){

fputs("ERROR cannot parse crit\n",
stderr);

rc = -1;
break;

}

} else if (ttag == 0x04U) { /* octet string */
crit = 0;

} else {
fputs("ERROR extra field in controls\n",

stderr);
break;

}

if (ber_scanf(ber,"O}",&value) == LBER_ERROR) {
fputs("ERROR cannot parse value\n",
stderr);
rc = -1;
break;

}
/* *** use value */
ber_bvfree(value);

}
}

if (rc == 0) { /* no errors so far */
if (ber_scanf(ber,"}") == LBER_ERROR) {

rc = -1;
}

}

ber_free(ber,1);

return rc;

LDAP–42 Lightweight Directory Access Protocol (LDAP) Routines

Lightweight Directory Access Protocol (LDAP) Routines
12.20 Encoded ASN.1 Value Manipulation

}

12.21 Sample LDAP API Code

#include <ldap.h>

main()
{

LDAP *ld;
LDAPMessage *res, *e;
int i, rc;
char *a, *dn;
BerElement *ptr;
char **vals;

/* open an LDAP session */
if ((ld = ldap_init("dotted.host.name", ldap_PORT)) == NULL)

exit(1);

/* authenticate as nobody */
if ((rc = ldap_simple_bind_s(ld, NULL, NULL)) != ldap_SUCCESS) {

fprintf(stderr, "ldap_simple_bind_s: %s\n",
ldap_err2string(rc));

exit(1);
}

/* search for entries with cn of "Babs Jensen", return all attrs */
if ((rc = ldap_search_s(ld, "o=University of Michigan, c=US",

ldap_SCOPE_SUBTREE, "(cn=Babs Jensen)", NULL, 0, &res))
!= ldap_SUCCESS) {

fprintf(stderr, "ldap_search_s: %s\n",
ldap_err2string(rc));

exit(1);
}

/* step through each entry returned */
for (e = ldap_first_entry(ld, res); e != NULL;

e = ldap_next_entry(ld, e)) {
/* print its name */
dn = ldap_get_dn(ld, e);
printf("dn: %s\n", dn);
ldap_memfree(dn);

/* print each attribute */
for (a = ldap_first_attribute(ld, e, &ptr); a != NULL;

a = ldap_next_attribute(ld, e, ptr)) {
printf("attribute: %s\n", a);

/* print each value */
vals = ldap_get_values(ld, e, a);
for (i = 0; vals[i] != NULL; i++) {

printf("value: %s\n", vals[i]);
}
ldap_value_free(vals);
ldap_memfree(a);

}
if (ptr != NULL) {

ber_free(ptr, 0);
}

}

/* free the search results */
ldap_msgfree(res);

Lightweight Directory Access Protocol (LDAP) Routines LDAP–43

Lightweight Directory Access Protocol (LDAP) Routines
12.21 Sample LDAP API Code

/* close and free connection resources */
ldap_unbind(ld);

}

LDAP–44 Lightweight Directory Access Protocol (LDAP) Routines

13
LOGINOUT (LGI) Routines

The information in this chapter is intended for programmers implementing the
requirements of site security administrators or third-party security software
producers.

This chapter differs from other parts of this book because it does not deal
strictly with callable routines that are internal to the OpenVMS system. The
LOGINOUT callout routines are designed by site security administrators. The
callback routines are invoked by the callout routines.

13.1 Introduction to LOGINOUT
The OpenVMS login security program (LOGINOUT.EXE) supports calls to
site-specific routines (LOGINOUT callout routines). These callout routines
support custom login security programs such as smart card programs, pocket
authenticator programs, and other alternative identification and authentication
programs. The callout routines permit sites to combine portions of the
LOGINOUT security policy functions with site login security functions to
establish a customized login security environment.

13.1.1 The LOGINOUT Process
The site security administrator provides LOGINOUT with the following:

• One or more shareable images comprised of modules that include callout
routines

• A list of the shareable images

As login events occur, LOGINOUT invokes the applicable callout, thus enabling
the site to replace or augment each event using site-specific modifications.

The site may provide multiple callout images. The images are invoked in
the order in which they are declared to the system. Each image contains an
independently developed set of policy routines.

Each callout routine may do one of the following:

• Enforce site-specific policy functions

• Defer to subsequent routines

• Use elements of the standard OpenVMS policy functions

Each callout routine may access LOGINOUT’s internal state and callback
routines using a vector of entry points. The callback routines allow the callout
routines to communicate with the user and to incorporate elements of the
standard OpenVMS policy functions in a modular fashion.

LOGINOUT (LGI) Routines LGI–1

LOGINOUT (LGI) Routines
13.1 Introduction to LOGINOUT

13.1.2 Using LOGINOUT with External Authentication
The following sections describe LOGINOUT’s interaction with the external
authentication policy supported by OpenVMS. For more information about single
sign-on and user authentication, see the OpenVMS Guide to System Security.

Note

The use of LOGINOUT callouts disables external authentication, making
only the standard OpenVMS authentication policy available.

Overview of External Authentication
At sites using external authentication, all authentication decisions for users are
actually made by the LAN manager rather than OpenVMS; however, OpenVMS
account restrictions and quota checks remain in effect.

To access the system, users must provide their LAN manager user ID and
password at the login prompt. If local password synchronization is required,
one of the following messages is displayed indicating the outcome of the
synchronization attempt:

OpenVMS password has been synchronized with network password

Not able to synchronize OpenVMS password with network password

These messages can be suppressed on a per-user basis by setting the DISREPORT
flag.

Specifying Local Authentication
The login command line supports the /LOCAL_PASSWORD qualifier. This
qualifier indicates to LOGINOUT that the user intends to override external
authentication by using their OpenVMS user name and password. This is
considered a temporary means for logging in to the system when the external
authentication service is unavailable. To use this qualifier, you must have
SYSPRV privilege.

When a user has logged in locally, the following message is displayed:

Local logon successful; network logon service not used

Locally authenticated users are not subject to OpenVMS password policy,
since the system manager specified that these users are subject to external
authentication policy only.

13.1.3 The LOGINOUT Data Flow
Figure 13–1 provides an overview of the data flow between LOGINOUT, the
callout routines, and site-specific shareable images that can include one or more
callout modules.

LGI–2 LOGINOUT (LGI) Routines

LOGINOUT (LGI) Routines
13.1 Introduction to LOGINOUT

Figure 13–1 LOGINOUT Callout Routines Data Flow

LOGINOUT

Callback
Routines

Callouts

ZK−6763A−GE

Site−Specific Shareable Images

Callout
Module

Callout
Routines

13.2 LOGINOUT Callouts
This section introduces the callouts that LOGINOUT uses to interface with the
site-specific callout modules in the shareable images. The section also describes
a set of callback routines that the callout routines can use to invoke services
provided within LOGINOUT.

13.2.1 LOGINOUT Callout Routines
LOGINOUT calls a different site-provided callout routine at each important
step in its execution. Table 13–1 briefly describes the LOGINOUT callouts. See
Section 13.4 for detailed descriptions of these routines.

Table 13–1 LOGINOUT Callouts

Callout Description

LGI$ICR_AUTHENTICATE Authenticates the user account at login

LGI$ICR_CHKRESTRICT Checks additional security restrictions

LGI$ICR_DECWINIT Prepares for interactive contact with DECwindows users

LGI$ICR_FINISH Gives site-specific code final control of the login process

LGI$ICR_IACT_START Prepares for interactive contact with users who are not
using the DECwindows interface

LGI$ICR_IDENTIFY Identifies the user at login

LGI$ICR_INIT Initializes context variable

LGI$ICR_JOBSTEP Indicates the start of each step in a batch job

LGI$ICR_LOGOUT Prepares for logout

13.2.2 LOGINOUT Callback Routines
The callback routines enable the site’s callout routines to communicate
interactively with the user or to invoke other services provided by LOGINOUT.
Table 13–2 briefly describes the LOGINOUT callback routines. See Section 13.5
for detailed descriptions of these routines.

LOGINOUT (LGI) Routines LGI–3

LOGINOUT (LGI) Routines
13.2 LOGINOUT Callouts

Table 13–2 LOGINOUT Callback Routines

Routine Description

LGI$ICB_ACCTEXPIRED Checks for account expiration

LGI$ICB_AUTOLOGIN Verifies that standard rules for autologin apply

LGI$ICB_CHECK_PASS Checks the entered password against the user
authorization file (UAF) record

LGI$ICB_DISUSER Checks for DISUSER flag

LGI$ICB_GET_INPUT Enables interaction with the user

LGI$ICB_GET_SYSPWD Checks system password for character-cell interactive
logins

LGI$ICB_MODALHOURS Checks for restrictions on access modes and access hours

LGI$ICB_PASSWORD Generates prompts, reads input, and optionally
validates input against system user authorization file
(SYSUAF.DAT)

LGI$ICB_PWDEXPIRED Checks for password expiration

LGI$ICB_USERPROMPT Prompts for and reads input for character-cell interactive
logins

LGI$ICB_USERPARSE Parses input buffer data for character-cell interactive
logins

LGI$ICB_VALIDATE Validates the user name and password against the system
user authorization file (SYSUAF.DAT)

13.3 Using Callout Routines
This section describes:

• The calling environment

• The callout routines and how they are organized and activated

• The callout routines interface

Section 13.3.5 contains a sample LOGINOUT program.

13.3.1 Calling Environment
The general form for invoking the callout routines is as follows:

return-status = routine (standard_arguments_vector, context, routine_specific_args)

The call elements include the following:

• Standard argument vector: contains pointers to LOGINOUT data structures
and callback routines for communicating with the user

• Context: a longword that the site-specific program may use to store a pointer
to local context

• Routine-specific arguments: arguments directly related to the specific routine

The callout routine’s return status must be one of the following:

LGI–4 LOGINOUT (LGI) Routines

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

Return Status Interpretation

SS$_NORMAL Access permitted; continue policy checks. Execute next policy
image or OpenVMS policy function associated with this callout,
if applicable.

LGI$_SKIPRELATED Access permitted; discontinue checks. Continue with the login
without further processing of login policy functions associated
with this callout, including relevant OpenVMS policy functions
built into LOGINOUT.

Other Disallow the login:

• Perform break-in detection and intrusion evasion, if
appropriate.

• Perform security audit.

• Allow additional login attempts up to system-specified
repeat limit, if appropriate.

Note

When a fatal error occurs, the policy module may terminate the login by
signaling a severe error using the BLISS built-in SIGNAL_STOP or by
calling LIB$SIGNAL. (See the OpenVMS RTL Library (LIB$) Manual for
a description of the LIB$SIGNAL routine.) LOGINOUT will do a security
audit, but it will not perform break-in detection or intrusion evasion.

Avoid using a severe error termination unless the LOGINOUT process
state is in jeopardy. LOGINOUT should terminate with a clean exit and a
disallowed login whenever possible.

13.3.2 Callout Organization
A site may use several callout modules. For example, assume that the site is
working with another program that uses logins or the site involves logins for
various devices or logins at various security levels.

LOGINOUT invokes the callout routines using a vector of entry points rather
than the routine name. Each vector entry point corresponds to a policy function,
and the first vector entry contains a count of the entry points in the vector, thus
making the vector extendable. Figure 13–2 shows how a callout routine vector is
organized.

LOGINOUT (LGI) Routines LGI–5

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

Figure 13–2 Callout Organization

Number of Entry Points

Callout Routine 1

Callout Routine 2

Callout Routine n

ZK−6764A−GE

Note that entry points may be accessed randomly. When a site-provided callout
module does not provide a routine for a particular callout, the site must enter a 0
value as a placeholder into the corresponding vector location.

Callout modules may modify the vector during execution so that following events
invoke different routines. For example, one of the initialization callout routines
could modify the vector in anticipation of a following call to a different terminal
or different job type, or it might zero the number of entry points to disable further
calls to callout routines contained in the current callout module.

13.3.3 Activating the Callout Routines
A site activates the LOGINOUT callouts by identifying its callout images using
the system executive-mode logical name LGI$LOGINOUT_CALLOUTS. The
logical name may contain one value or a list of values that identify the callout
images using either the:

• File name of a module located in SYS$SHARE:*.EXE

• Name of an executive-mode system logical name representing a full file
specification

Note

LOGINOUT is installed with privileges. Therefore, any image containing
LOGINOUT callout routines must be installed.

If the identifying logical is a list of several images, the images are sequentially
activated in the listed order. If a specified image is not activated, the login fails.

To protect against intrusion, the site uses the system parameter LGI_CALLOUTS
to specify the number of callout images. If this value is nonzero and the supplied
number of callout images does not correspond to the value, the login fails.

Sites that want to control their job creation process and authenticate each
network login by implementing LOGINOUT callouts must set the NET_
CALLOUTS system parameter to 255. This ensures that LOGINOUT is called for
every network login — bypassing any existing server processes.

The default value of NET_CALLOUTS (0) could bypass the LOGINOUT callouts
and allow NET$ACP to perform its own proxy and login authentication. See the
file SYS$SYSTEM:NETSERVER.COM for an example of how NET$ACP performs
its own authentication and management of server processes.

LGI–6 LOGINOUT (LGI) Routines

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

Parameter values 1 to 254 are reserved by Compaq for future use.

Note

Callouts are not invoked when LOGINOUT initiates the STARTUP
process during system bootstrap.

For the logical name LGI$LOGINOUT_CALLOUTS, a clusterwide logical
name cannot be used. The number of names in the system logical name
LGI$LOGINOUT_CALLOUTS must always match the value of the system
parameter LGI_CALLOUTS. LGI$LOGINOUT_CALLOUTS must be in
the regular system logical name table and not in a clusterwide logical
name table.

When applications that support LGI_CALLOUTS are starting and
stopping, they manipulate LGI$LOGINOUT_CALLOUTS as well as
LGI_CALLOUTS. A clusterwide logical name would be incorrect since not
all nodes in a cluster would have the same LGI_CALLOUTS at the same
time. Nodes where the values did not match would experience login and
logout failures.

13.3.4 Callout Interface
Each image containing LOGINOUT callouts must define a universal symbol
LGI$LOGINOUT_CALLOUTS. This symbol represents a vector of longwords
that points to the entry points for the various callout routines, as shown in the
following illustration:

ZK−6765A−GE

LGI$L_ICR_ENTRY_COUNT

LGI$ICR_INIT

LGI$ICR_IACT_START

LGI$ICR_DECWINIT

LGI$ICR_IDENTIFY

LGI$ICR_AUTHENTICATE

LGI$ICR_CHKRESTRICT

LGI$ICR_FINISH

LGI$ICR_LOGOUT

LGI$ICR_JOBSTEP

The vector is headed by a longword count that delimits the number of callout
routines supported by the callout module. Unused vector entries are identified by
a 0 value.

Each callout routine has access to a vector of LOGINOUT internal variables,
including the addresses of callback routines and other useful information. The
vector entries are defined as offsets from the beginning of the vector. The vector
has the following format:

LOGINOUT (LGI) Routines LGI–7

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

ZK−6766A−GE

LGI$A_ICR_CREPRC_FLAGS

LGI$A_ICR_JOB_TYPE

LGI$A_ICR_SUBPROCESS

LGI$A_ICR_TERMINAL_DEV

LGI$A_ICR_TT_PHYDEVNAM

LGI$A_ICR_TT_ACCPORNAM

LGI$A_ICR_CLINAME

LGI$A_ICR_CLITABLES

LGI$A_ICR_NCB

LGI$A_ICR_LOGLINK

LGI$A_ICR_REM_NODE_NAM

LGI$A_ICR_REM_ID

LGI$A_ICR_UAF_RECORD

LGI$A_ICR_INPUT_RAB

LGI$A_ICR_AUTOLOGIN

LGI$A_ICR_USERNAME

LGI$A_ICR_PWD1

LGI$A_ICR_PWD2

LGI$A_ICR_PWDCOUNT

LGI$A_ICR_NETFLAGS

Internal
Variables

LGI$ICB_GET_INPUT

LGI$ICB_DECW_IDENT

LGI$ICB_DECW_AUTH

LGI$ICB_GET_SYSPWD

LGI$ICB_USERPROMPT

LGI$ICB_USERPARSE

LGI$ICB_AUTOLOGIN

LGI$ICB_PASSWORD

LGI$ICB_CHECK_PASS

LGI$ICB_VALIDATE

LGI$ICB_ACCTEXPIRED

LGI$ICB_PWDEXPIRED

LGI$ICB_DISUSER

LGI$ICB_MODALHOURS

Callback
Routines

Symbols of the form LGI$ICB_x are the addresses of the callback routines that
the callout routines use to communicate with the user (see Table 13–2). Other
offsets are addresses of useful variable information internal to LOGINOUT. These
are described in Table 13–3.

Table 13–3 Useful LOGINOUT Internal Variables

Symbols Definition

LGI$A_ICR_CREPRC_FLAGS PPD_CREPRC_FLAGS controls program flow based
on the major job types of PRCV_BATCH, PRCV_
NETWRK, PRC$V_INTER, and other values such
as PRC$V_NOPASSWORD (used for interactive
jobs created on logged-in terminals).

(continued on next page)

LGI–8 LOGINOUT (LGI) Routines

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

Table 13–3 (Cont.) Useful LOGINOUT Internal Variables

Symbols Definition

LGI$A_ICR_JOB_TYPE The job type from the JIB (byte). LOGINOUT does
the following:

• Retrieves the job type with a GETJPI during
initialization.

• Modifies it during execution. (Its value may
change between the LGI$ICR_INIT and later
callouts.)

• Writes it back into the JIB before exiting.

For interactive jobs, this flag indicates JIB$C_
LOCAL, JIB$C_REMOTE, or JIB$C_DIALUP.

LGI$A_ICR_SUBPROCESS The subprocess flag (byte) indicates whether a
subprocess is being logged in.

LGI$A_ICR_TERMINAL_DEV The terminal device flag (byte).

LGI$A_ICR_TT_PHYDEVNAM A descriptor containing the terminal’s physical
device name (null if input is not from a terminal).

LGI$A_ICR_TT_ACCPORNAM A descriptor containing the terminal’s access port
name (null if input is not from a terminal or is
from a terminal without an associated access port).

LGI$A_ICR_CLINAME A descriptor containing the command language
interpreter (CLI) name, parsed from the user name
qualifiers. Valid only for interactive jobs.

LGI$A_ICR_CLITABLES A descriptor containing the CLI tables, parsed from
the user name qualifiers. Valid only for interactive
jobs.

LGI$A_ICR_NCB A descriptor containing the network control block.
Valid only for network jobs.

LGI$A_ICR_LOGLINK A longword containing the local link number. Valid
only for network jobs and when doing a SET HOST
command from a DECnet-Plus remote terminal.

LGI$A_ICR_REM_NODE_NAM A descriptor containing the remote node name or
a printable representation of its node number if
the name is not available. Valid only for network
jobs and when doing a SET HOST command from a
DECnet-Plus remote terminal.

LGI$A_ICR_REM_ID A descriptor containing the remote ID. This may
be the user ID on the remote system if the source
operating system sends the user name. Otherwise,
it is as defined for the source system. Valid only
for network jobs and when doing a SET HOST
command from a DECnet-Plus remote terminal.

LGI$A_ICR_UAF_RECORD Address of the LOGINOUT internal variable
containing the address of the user authorization
file (UAF) record.

Note that because the record will be written back to
the UAF record, callout routines must not modify
the contents of the UAF record.

(continued on next page)

LOGINOUT (LGI) Routines LGI–9

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

Table 13–3 (Cont.) Useful LOGINOUT Internal Variables

Symbols Definition

LGI$A_ICR_INPUT_RAB A RAB (record access block) that may be used to
communicate with an interactive user.

LGI$A_ICR_AUTOLOGIN A flag (byte) indicating whether an autologin is
being used for this interactive job.

LGI$A_ICR_USERNAME A descriptor for handling the user name.

LGI$A_ICR_PWD1 A descriptor for handling the primary password.

LGI$A_ICR_PWD2 A descriptor for handling the secondary password.

LGI$A_ICR_PWDCOUNT A longword containing the count of passwords
expected for this user. Valid only for interactive
jobs.

LGI$A_ICR_NETFLAGS A flag (word) containing authorization information.
Valid only for network jobs. The bits that have
been defined are:

• NET_PROXY: A proxy request.

• NET_PREAUTH: DECnet-Plus has
preauthorized the login.

• NET_DEFAULT_USER: The session or object
database has a default user and no password
checking is required.

• NET_PROXY_OK: The requested proxy has
been allowed by either LOGINOUT or the
site-provided callout routines.

13.3.5 Sample Program
The following C program illustrates the use of LOGINOUT callouts. The sample
program changes the user name and password prompts to ‘‘Who are you?’’ and
‘‘Prove it.’’ The program also adds the message ‘‘Goodbye.’’ at logout.

#module LGI$CALLOUT_EXAMPLE "TOY LOGINOUT callout example"
/*
**++
** FACILITY:
**
** System help
**

** This program can be compiled with the following command
**
** $ CC/STANDARD=VAXC/LIST/PREFIX_LIBRARY_ENTRIES=ALL LGI$CALLOUT_EXAMPLE.C
**
** This program can be linked with the following example command procedure
**
** $ LINK/SHARE=LGI$CALLOUT_EXAMPLE SYS$INPUT/OPT
** LGI$CALLOUT_EXAMPLE.OBJ

LGI–10 LOGINOUT (LGI) Routines

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

** SYMBOL_VECTOR=(LGI$LOGINOUT_CALLOUTS=DATA)
**
** The following steps are used to install the program:
**
** $ DEFINE/SYSTEM/EXEC LGI$LOGINOUT_CALLOUTS LGI$CALLOUT_EXAMPLE
**
** If the program is not located in SYS$SHARE, define it as follows:
**
** $ DEFINE/SYSTEM/EXEC LGI$CALLOUT_EXAMPLE filespec
**
** [Remember that, without SYSNAM privilege, the /EXEC qualifier is ignored.]
**
** $ INSTALL ADD LGI$CALLOUT_EXAMPLE
** $ RUN SYS$SYSTEM:SYSGEN
** SYSGEN> USE ACTIVE
** SYSGEN> SET LGI_CALLOUTS 1
** SYSGEN> WRITE ACTIVE
**
** The value of LGI_CALLOUTS is the number of separate callout images
** (of which this example is one) that are to be invoked. If there is
** more than one image, the logical LGI$LOGINOUT_CALLOUTS must have a
** list of equivalence names, one for each separate callout image.
**
*/

/*
**
** INCLUDE FILES
**
*/

#include descrip
#include rms
#include stsdef
#include ssdef
#include prcdef

/* Declare structures for the callout vector and the callout arguments vector */

struct LGI$CALLOUT_VECTOR {
long int LGI$L_ICR_ENTRY_COUNT;
int (*LGI$ICR_INIT) ();
int (*LGI$ICR_IACT_START) ();
int (*LGI$ICR_DECWINIT) ();
int (*LGI$ICR_IDENTIFY) ();
int (*LGI$ICR_AUTHENTICATE) ();
int (*LGI$ICR_CHKRESTRICT) ();
int (*LGI$ICR_FINISH) ();
int (*LGI$ICR_LOGOUT) ();
int (*LGI$ICR_JOBSTEP) ();
};

struct LGI$ARG_VECTOR {
int (*LGI$ICB_GET_INPUT) ();

LOGINOUT (LGI) Routines LGI–11

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

int (*reserved1) ();
int (*reserved2) ();
void (*LGI$ICB_GET_SYSPWD) ();
int (*LGI$ICB_USERPROMPT) ();
int (*LGI$ICB_USERPARSE) ();
int (*LGI$ICB_AUTOLOGIN) ();
int (*LGI$ICB_PASSWORD) ();
int (*LGI$ICB_CHECK_PASS) ();
int (*LGI$ICB_VALIDATE) ();
void (*LGI$ICB_ACCTEXPIRED) ();
void (*LGI$ICB_PWDEXPIRED) ();
int (*LGI$ICB_DISUSER) ();
void (*LGI$ICB_MODALHOURS) ();
short *LGI$A_ICR_CREPRC_FLAGS;
char *LGI$A_ICR_JOB_TYPE;
char *LGI$A_ICR_SUBPROCESS;
char *LGI$A_ICR_TERMINAL_DEV;
struct dsc$descriptor_s *LGI$A_ICR_TT_PHYDEVNAM;
struct dsc$descriptor_s *LGI$A_ICR_TT_ACCPORNAM;
struct dsc$descriptor_s *LGI$A_ICR_CLINAME;
struct dsc$descriptor_s *LGI$A_ICR_CLITABLES;
struct dsc$descriptor_s *LGI$A_ICR_NCB;
int *LGI$A_ICR_LOGLINK;
struct dsc$descriptor_s *LGI$A_ICR_REM_NODE_NAM;
struct dsc$descriptor_s *LGI$A_ICR_REM_ID;
unsigned char *LGI$A_ICR_UAF_RECORD;
struct RAB *LGI$A_ICR_INPUT_RAB;
char *LGI$A_ICR_AUTOLOGIN;
struct dsc$descriptor_s *LGI$A_ICR_USERNAME;
struct dsc$descriptor_s *LGI$A_ICR_PWD1;
struct dsc$descriptor_s *LGI$A_ICR_PWD2;
int *LGI$A_ICR_PWDCOUNT;
short int *LGI$A_ICR_NETFLAGS;
};

globalvalue int LGI$_SKIPRELATED, /* callout’s return status */
LGI$_DISUSER,
LGI$_INVPWD,
LGI$_NOSUCHUSER,
LGI$_NOTVALID,
LGI$_INVINPUT,
LGI$_CMDINPUT,
LGI$_FILEACC;

static int callout_logout();
static int callout_decwinit();
static int callout_identify();
static int callout_authenticate();

globaldef struct LGI$CALLOUT_VECTOR LGI$LOGINOUT_CALLOUTS =
{
9,
0, /* init */
0, /* iact_start */
callout_decwinit, /* decwinit */
callout_identify, /* identify */
callout_authenticate, /* authenticate */
0, /* chkrestrict */
0, /* finish */
callout_logout, /* logout */
0, /* jobstep */
};

/* DECwindows initialization */

LGI–12 LOGINOUT (LGI) Routines

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

static int callout_decwinit()
{

/* Disable any further calls */
LGI$LOGINOUT_CALLOUTS.LGI$L_ICR_ENTRY_COUNT = 0;
/* Return and do standard DECwindows processing */
return (SS$_NORMAL);

}

/* Identification */

static int callout_identify(struct LGI$ARG_VECTOR *arg_vector)
{

int status;
$DESCRIPTOR(wru,"\r\nWho are you? ");

/* This example deals only with interactive jobs */
if (!(*arg_vector->LGI$A_ICR_CREPRC_FLAGS & PRC$M_INTER))

return(SS$_NORMAL); /* Not interactive, do normal processing */
if (*arg_vector->LGI$A_ICR_CREPRC_FLAGS & PRC$M_NOPASSWORD)

return(SS$_NORMAL); /* Invoked as logged in, don’t prompt */
if (*arg_vector->LGI$A_ICR_SUBPROCESS != 0)

return(SS$_NORMAL); /* Don’t prompt on subprocesses */

/* Check for autologin */

if ($VMS_STATUS_SUCCESS(arg_vector->LGI$ICB_AUTOLOGIN()))
return (LGI$_SKIPRELATED); /* Yes, it’s an autologin */

if (!$VMS_STATUS_SUCCESS(status = arg_vector->LGI$ICB_USERPROMPT(&wru)))
return (status); /* On error, return error status */

/* Successful prompt and parse; skip OpenVMS policy */

return(LGI$_SKIPRELATED);
}

/* Authentication */

static int callout_authenticate(struct LGI$ARG_VECTOR *arg_vector)
{

int status;
$DESCRIPTOR(proveit,"\r\nProve it: ");

/* This example deals only with interactive jobs */
if (!(*arg_vector->LGI$A_ICR_CREPRC_FLAGS & PRC$M_INTER))

return(SS$_NORMAL); /* Not interactive, do normal processing */
if (*arg_vector->LGI$A_ICR_CREPRC_FLAGS & PRC$M_NOPASSWORD)

return(SS$_NORMAL); /* Invoked as logged in, don’t prompt */
if (*arg_vector->LGI$A_ICR_SUBPROCESS != 0)

return(SS$_NORMAL); /* Don’t prompt on subprocesses */

if (*arg_vector->LGI$A_ICR_PWDCOUNT != 0)
/* This account has at least one password */
if (!$VMS_STATUS_SUCCESS(status =

arg_vector->LGI$ICB_PASSWORD(0,&proveit)))
return (status); /* On error, return error status */

if (*arg_vector->LGI$A_ICR_PWDCOUNT == 2)
/* This account has two passwords */
if (!$VMS_STATUS_SUCCESS(status =

arg_vector->LGI$ICB_PASSWORD(1,&proveit)))
return (status); /* On error, return error status */

/* Successful prompt and password validation; skip OpenVMS policy */

return(LGI$_SKIPRELATED);
}

/* LOGOUT command */

LOGINOUT (LGI) Routines LGI–13

LOGINOUT (LGI) Routines
13.3 Using Callout Routines

static int callout_logout(username, procname, creprc_flags, write_fao)
struct dsc$descriptor_s *username, *procname;
short *creprc_flags;
void (*write_fao) ();
{

char *Goodbye = " Goodbye."; /* This will become an ASCIC */
if ((int) write_fao != 0) /* If output is permitted... */
{

Goodbye[0]=strlen(Goodbye)-1; /* Fill in ASCIC count */
write_fao(Goodbye); /* and write it */

}
return(SS$_NORMAL);

}

13.4 LOGINOUT Callout Routines
The following sections describe the individual callout routines. Each description
includes the following:

• The format of the call command

• The anticipated information returned by the called routine

• The arguments presented to the called routine

• A general description of the routine

• Typical condition values that indicate the return status

• Associated OpenVMS policy function, that is, the standard LOGINOUT policy
functions developed for OpenVMS compared with the site-provided policy
functions

The Typical Condition Values and the Associated OpenVMS Policy Function
headings are unique to the LOGINOUT callout routines.

LGI–14 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_AUTHENTICATE

LGI$ICR_AUTHENTICATE—Authenticate the Password

The LGI$ICR_AUTHENTICATE callout routine authenticates passwords.

Format

LGI$ICR_AUTHENTICATE arg_vector ,context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Arguments

arg_vector
OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site’s local context.

Description

All logins involving a password invoke the LGI$ICR_AUTHENTICATE callout
routine. The routine is not called for subprocesses, network jobs invoked by proxy
logins, or logged-in DECterm sessions.

The following pointers are used in password authentication:

• Longword LGI$A_ICR_PWDCOUNT points to a location that contains
the number of OpenVMS passwords for a particular account. Nonexistent
accounts are assigned a password count of 1 to avoid revealing them by the
absence of a password prompt.

• For DECwindows logins only, longword LGI$A_ICR_PWD1 points to a
location that contains the user’s primary password.

• For DECwindows logins only, longword LGI$A_ICR_PWD2 points to a
location that contains the user’s secondary password, if applicable.

LOGINOUT (LGI) Routines LGI–15

LOGINOUT Routines
LGI$ICR_AUTHENTICATE

For all logins except DECwindows logins, the LGI$ICR_AUTHENTICATE callout
routine may use the following callback routine sequence:

• Call LGI$ICB_PASSWORD for standard password prompting with an
optional nonstandard prompt and the option of checking or just returning the
password or other information obtained.

• Call LGI$ICB_GET_INPUT for completely customized prompting for each
required piece of authentication information.

For DECwindows logins, neither the LGI$ICB_PASSWORD callback routine nor
the LGI$ICB_GET_INPUT callback routine needs to be called. The user enters
the password using the DECwindows login dialog box before LOGINOUT issues
the LGI$ICR_AUTHENTICATE callout.

For a complete description of the DECwindows flow of control, see the description
of the LGI$ICR_DECWINIT callout routine.

All logins involving a password may invoke the LGI$ICB_VALIDATE callback
routine. This routine validates against SYSUAF.DAT passwords obtained by
customized prompting using descriptors for the user name and passwords.
Optionally, the login may call the LGI$_ICB_CHECK_PASS callback routine to
validate passwords.
For interactive jobs, the LGI$ICR_AUTHENTICATE routine should check the
DISUSER flag using the LGI$ICB_DISUSER callback routine to preserve the
consistency of the ‘‘invalid user’’ behavior for disabled accounts. For other types
of jobs, use the LGI$ICR_CHKRESTRICT callout routine to check the DISUSER
flag.

Note

LOGINOUT checks the DISUSER flag as part of the authentication
process because, if it is checked later, an intruder could determine that
the correct user name and password had been entered and that the
account is disabled. This is deliberately hidden by keeping the user in the
retry loop for a disabled account.

If the DISUSER flag is checked with other access restrictions in the
authorization portion, this causes an immediate exit from LOGINOUT.

Break-in detection, intrusion evasion, and security auditing are done in the case
of any failure return from LGI$ICR_AUTHENTICATE.

If this routine returns LGI$_SKIPRELATED, the user is fully authenticated,
and no further authentication is done by either the site or OpenVMS. If
this routine returns an error for an interactive job, the system retries the
identification and authentication portions of LOGINOUT. For character-cell
terminals, this consists of calling the LGI$ICR_IDENTIFY and LGI$ICR_
AUTHENTICATE callout routines; for DECwindows terminals, this consists of
calling the LGI$ICR_DECWINIT routine. The number of retries is specified by
the SYSGEN parameter LGI_RETRY_LIM.

LGI–16 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_AUTHENTICATE

Typical Condition Values

SS$_NORMAL Access permitted; continue policy checks.
LGI$_SKIPRELATED Access permitted; omit calls to the LGI$ICR_

AUTHENTICATE callout routine in subsequent
images and calls to the associated OpenVMS
policy function.

Other Disallow the login; perform break-in detection,
intrusion evasion, and security auditing. For
interactive logins, retry identification and
authentication portions of LOGINOUT, up to
the number specified in the SYSGEN parameter
LGI_RETRY_LIM.

Associated OpenVMS Policy Function

Perform standard password prompting and validation.

LOGINOUT (LGI) Routines LGI–17

LOGINOUT Routines
LGI$ICR_CHKRESTRICT

LGI$ICR_CHKRESTRICT—Check Access Restrictions

The LGI$ICR_CHKRESTRICT callout routine may be used to check site-specific
access restrictions that are not usually included in the OpenVMS login.

Format

LGI$ICR_CHKRESTRICT arg_vector ,context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Arguments

arg_vector
OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site’s local context.

Description

All logins call this routine after the password is authenticated to allow the site
to check other access restrictions. The site may check its own access restrictions
and any of the following OpenVMS access restrictions:

Access Restriction Callback Routine Used to Check Restriction

Account expiration LGI$ICB_ACCTEXPIRED
Password expiration LGI$ICB_PWDEXPIRED
Account disabled LGI$ICB_DISUSER
Access modes and times LGI$ICB_MODALHOURS

LGI–18 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_CHKRESTRICT

Typical Condition Values

SS$_NORMAL Access permitted; continue policy checks,
including all of the normal OpenVMS policy
functions associated with the callback routines
used to check restrictions.

LGI$_SKIPRELATED Access permitted; omit calls to the LGI$ICR_
CHKRESTRICT callout routine in subsequent
images and calls to the associated OpenVMS
policy functions.

Other Disallow the login.

Associated OpenVMS Policy Functions

Check password expiration, check DISUSER flag, check account expiration, and
check restrictions on access time.

LOGINOUT (LGI) Routines LGI–19

LOGINOUT Routines
LGI$ICR_DECWINIT

LGI$ICR_DECWINIT—DECwindows Initialization

The LGI$ICR_DECWINIT callout routine enables site-specific initialization
functions for logins from the DECwindows session manager.

Format

LGI$ICR_DECWINIT arg_vector ,context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Arguments

arg_vector
OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing site-specified callbacks and login information.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site’s local context.

Description

LOGINOUT invokes the LGI$ICR_DECWINIT callout routine at the start of a
DECwindows session login. This callout routine does not support a return status
of LGI$_SKIPRELATED. Returning LGI$_SKIPRELATED for this callout causes
unpredictable results. Use the LGI$ICR_DECWINIT callout routine only to
prepare other callout routines for a DECwindows login.

After issuing the LGI$ICR_DECWINIT callout, LOGINOUT performs the
following tasks:

• Creates the DECwindows login dialog box and reads the user name and
password entered by the user

• Calls the LGI$ICR_IDENTIFY callout

• Obtains the user authorization file (UAF) record

If the UAF record specifies two passwords, the DECwindows login dialog
box is amended to prompt for the second password, and the listed tasks are
repeated.

• Issues the LGI$ICR_AUTHENTICATE callout

LGI–20 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_DECWINIT

• If the LGI$ICR_AUTHENTICATE callout routine did not return LGI$_
SKIPRELATED, validates the passwords against the UAF record

The LGI$ICR_IDENTIFY and LGI$ICR_AUTHENTICATE callouts may create
additional DECwindows dialog boxes to communicate with the user, but the
initial dialog box must be created by LOGINOUT.

Typical Condition Values

SS$_NORMAL Access permitted; continue policy checks.
LGI$_SKIPRELATED Not supported. Returning this status will cause

unpredictable behavior.
Other Disallow the login.

Associated OpenVMS Policy Function

Create dialog box, read user name and password, and call the identification and
authentication routines.

LOGINOUT (LGI) Routines LGI–21

LOGINOUT Routines
LGI$ICR_FINISH

LGI$ICR_FINISH—Final Site Action

The LGI$ICR_FINISH callout routine permits the site program to take final local
action before exiting from LOGINOUT.

Format

LGI$ICR_FINISH arg_vector ,context ,user_cond_value

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Arguments

arg_vector
OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site’s local context.

user_cond_value
OpenVMS usage: cond_value
type: longword_unsigned
access: read only
mechanism: by value

SS$_NORMAL for successful login; otherwise, reason for failure.

Description

The site program calls this routine immediately before exiting to take any final
local actions relative to the login process. There is no OpenVMS login security
policy associated with LGI$ICR_FINISH.

LGI$ICR_FINISH does not affect login completions because the login is audited
before the routine is invoked. The routine has no effect on error recovery when a
login fails, and it cannot cause a successful login to fail.

LGI–22 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_FINISH

Typical site action may include the following:

• Override job quotas

• Stack CLI command procedures by examining and modifying the logicals
PROC1 through PROC9

Caution

For DECwindows session manager logins, be careful modifying the
command procedure stack to avoid adversely affecting the command file
that invokes the session manager.

• Other postlogin processing

Typical Condition Values

LGI$_SKIPRELATED Access permitted; omit calls to the LGI$ICR_
FINISH callout routine in subsequent images.

Associated OpenVMS Policy Function

None.

LOGINOUT (LGI) Routines LGI–23

LOGINOUT Routines
LGI$ICR_IACT_START

LGI$ICR_IACT_START—Character-Cell Initialization

The LGI$ICR_IACT_START callout routine may perform initialization functions
for logins from interactive character-cell terminals.

Format

LGI$ICR_IACT_START arg_vector ,context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Arguments

arg_vector
OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site’s local context.

Description

This routine makes the first contact for all interactive logins from other than
DECwindows terminals after opening the input and output files but before any
other dialogue with the user.

At this point, the site should be preparing to augment or replace the OpenVMS
system password routine. The callback routine LGI$ICB_GET_SYSPWD provides
access to the system password routine. However, because LGI$ICB_GET_
SYSPWD returns only on success, the site design should consider what action to
take in case LGI$ICB_GET_SYSPWD does not return control to LGI$ICR_IACT_
START.

The LGI$ICR_IACT_START routine can use the LGI$ICB_GET_INPUT callback
routine to:

• Get input from the user

• Use an OpenVMS RMS record access block (RAB) to establish appropriate
terminal mode settings

LGI–24 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_IACT_START

Typical Condition Values

SS$_NORMAL Access permitted; continue OpenVMS system
password routine.

LGI$_SKIPRELATED Access permitted; omit calls to the LGI$ICR_
IACT_START callout routine in subsequent
images and calls to the associated OpenVMS
policy function.

Other Exit quietly to preserve the illusion of an inactive
line.

Associated OpenVMS Policy Function

Get the system password.

LOGINOUT (LGI) Routines LGI–25

LOGINOUT Routines
LGI$ICR_IDENTIFY

LGI$ICR_IDENTIFY—Identify the User

The LGI$ICR_IDENTIFY callout routine identifies the user from the user name
input.

Format

LGI$ICR_IDENTIFY arg_vector ,context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Arguments

arg_vector
OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and useful login information.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site’s local context.

Description

The LGI$ICR_IDENTIFY callout routine is invoked for all types of login
procedures. If the site uses the standard OpenVMS DECwindows dialogue,
the identification routine may be called more than once for accounts with two
passwords.

If you plan to replace the standard OpenVMS identification processing, consider
the following:

• For logins from character-cell terminals, obtain the user name using one of
the following:

A dialogue with the user. The site can access OpenVMS user name
processing to obtain the standard prompt or a specialized prompt by
invoking the LGI$ICB_USERPROMPT callback routine. Alternatively,
the site may invoke the LGI$ICB_GET_INPUT callback routine to
communicate with the user.

Site-specific equipment, for example, a card reader or some other
authentication device.

LGI–26 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_IDENTIFY

Autologins. The site may do the identification portion of the standard
OpenVMS autologin by invoking the LGI$ICB_AUTOLOGIN callback
routine.

• For logins from the DECwindows Session Manager, LOGINOUT invokes the
callout module’s LGI$ICR_IDENTIFY callout routine after obtaining the user
name and putting it in LGI$A_ICR_USERNAME. The LGI$ICR_IDENTIFY
callout routine can provide any additional checking of the user name that
may be required.

• For batch jobs, network jobs, logged-in DECterm sessions, and subprocesses,
the site may use the LGI$ICR_IDENTIFY routine to verify information
without a user dialogue.

Calls to LGI$ICR_IDENTIFY are always followed by validation of the presence of
the user name in the system authorization file, unless the routine is invoked for a
subprocess.

Typical Condition Values

SS$_NORMAL Access permitted; continue policy checks.
LGI$_SKIPRELATED Access permitted; omit calls to the LGI$ICR_

IDENTIFY callout routine in subsequent images
and calls to the associated OpenVMS policy
function.

Other Disallow the login.

Associated OpenVMS Policy Function

Perform standard OpenVMS user name prompting and parsing.

LOGINOUT (LGI) Routines LGI–27

LOGINOUT Routines
LGI$ICR_INIT

LGI$ICR_INIT—Initialization Callout Routine

The LGI$ICR_INIT callout routine may perform any required initialization
functions.

Format

LGI$ICR_INIT arg_vector ,context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns status indicating whether and how to proceed with the login.

Arguments

arg_vector
OpenVMS usage: vector
type: vector_longword_unsigned
access: modify
mechanism: by reference

Vector containing callbacks and login information.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site’s local context.

Description

This routine is called for all job types before opening input and output files.
If desired, the callout routine may initialize the context argument, which
LOGINOUT subsequently passes to each callout routine with the address of local
storage specific to the callout image.

Typical Condition Values

SS$_NORMAL Access permitted; continue policy checks.
LGI$_SKIPRELATED Access permitted; omit calls to the LGI$ICR_

INIT callout routine in subsequent images.
Other Disallow the login.

LGI–28 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_INIT

Associated OpenVMS Policy Function

None.

LOGINOUT (LGI) Routines LGI–29

LOGINOUT Routines
LGI$ICR_JOBSTEP

LGI$ICR_JOBSTEP—Batch Job Step

The LGI$ICR_JOBSTEP callout routine signals the start of each batch job step.

Format

LGI$ICR_JOBSTEP input_file_name ,context ,write_fao

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Not applicable.

Arguments

input_file_name
OpenVMS usage: descriptor
type: character string
access: read
mechanism: by reference

The name of the input file.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to site’s local context.

write_fao (fao_string[,arg1[,arg2][,...]]])
OpenVMS usage: routine
type: procedure
access: read
mechanism: by reference

Address of a routine that may be called to format and display output. The
routine has fao_string as its first argument, followed by a variable number of
arguments. (See the $FAO system directive in the OpenVMS System Services
Reference Manual for more information.)

Description

The LGI$ICR_JOBSTEP routine alerts the site of each job step in a batch job.
The routine is invoked as LOGINOUT processes each job step. For the first job
step, the LGI$ICR_JOBSTEP callout routine is invoked immediately following
the LGI$ICR_IDENTIFY callout routine. For all other job steps, it is the only
callout routine that is invoked.

LGI–30 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_JOBSTEP

The routine is provided with the input file name, but the input file is not open
when the routine is called. For the first job step, the LGI$ICR_INIT callout
routine may provide the batch job step routine with context. For other job steps,
the context argument is a null.

For all job steps except the first, the output file is open, and the routine specified
by the write_fao argument is available.

There is no OpenVMS policy associated with LGI$ICR_JOBSTEP.

Typical Condition Values

LGI$_SKIPRELATED or any
error value

Access permitted; omit calls to the LGI$ICR_
JOBSTEP callout routine in subsequent images.

Associated OpenVMS Policy Function

None.

LOGINOUT (LGI) Routines LGI–31

LOGINOUT Routines
LGI$ICR_LOGOUT

LGI$ICR_LOGOUT—Installation Logout

The LGI$ICR_LOGOUT callout routine permits the site callout images to respond
to the DCL command LOGOUT.

Note

This routine is not called if the calling process is deleted with
STOP/PROCESS ($DELPRC). If the calling terminal is disconnected
when logout occurs, this routine must not produce output.

Format

LGI$ICR_LOGOUT username ,processname ,creprc_flags ,write_fao

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Returns logout status from the site program.

Arguments

username
OpenVMS usage: descriptor
type: character string
access: read
mechanism: by reference

User name.

processname
OpenVMS usage: descriptor
type: character string
access: read
mechanism: by reference

Process name.

creprc_flags
OpenVMS usage: mask_longword
type: longword_unsigned
access: read
mechanism: by reference

Process creation status flags.

LGI–32 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICR_LOGOUT

write_fao (fao_string[,arg1[,arg2][,...]]])
OpenVMS usage: routine
type: procedure
access: read
mechanism: by reference

Procedure for writing data. The value is 0 if output is not permitted.

Address of a routine that may be called to format and display output. The
routine has fao_string as its first argument, followed by a variable number of
arguments. (See the $FAO system directive in the OpenVMS System Services
Reference Manual for more information.)

Description

The LGI$ICR_LOGOUT routine is invoked after auditing is completed and
immediately before LOGOUT prints the logout message. This routine cannot
prevent the logout from finishing, but it may prevent display of the standard
logout message.

Typical Condition Values

LGI$_SKIPRELATED or any
error value

Access permitted; omit calls to the LGI$ICR_
LOGOUT callout routine in subsequent images.

Associated OpenVMS Policy Function

None.

LOGINOUT (LGI) Routines LGI–33

LOGINOUT Routines
13.5 LOGINOUT Callback Routines

13.5 LOGINOUT Callback Routines

LOGINOUT callout routines use callback routines to interact with the user or to
access other LOGINOUT services. This section describes the individual callback
routines. The description of each routine includes the following:

• The format of the call command

• The anticipated information returned by the called routine

• The arguments presented to the called routine

• A general description of the routine

• Condition values that indicate the return status of the routine, success or
failure

LGI–34 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICB_ACCTEXPIRED

LGI$ICB_ACCTEXPIRED—Account Expiration

The LGI$ICB_ACCTEXPIRED callback routine checks for account expiration.

Format

LGI$ICB_ACCTEXPIRED

Returns

No value. Does not return on failure.

Arguments

None.

Description

The site can use this callback routine to determine if the specified account is
expired. If the account is expired, the LGI$ICB_ACCTEXPIRED callback routine:

• Writes its standard error message to the user terminal, if a terminal exists

• Does not return control to the caller

Condition Values Returned

None.

LOGINOUT (LGI) Routines LGI–35

LOGINOUT Routines
LGI$ICB_AUTOLOGIN

LGI$ICB_AUTOLOGIN—Check for Autologin

The site may use the LGI$ICB_AUTOLOGIN callback routine to determine
whether the standard OpenVMS autologin functionality applies for this terminal.

Format

LGI$ICB_AUTOLOGIN

Returns

OpenVMS usage: value
type: longword (unsigned)
access: write only
mechanism: by value

True (logical 1) if autologin enabled; 0 otherwise.

Arguments

None.

Description

If the standard OpenVMS autologin functionality applies, the callback routine
returns the user name to the site program using the standard argument vector so
that the autologin process may continue.

The autologin determination is made before the site prompts for the user
passwords. The callback routine is applicable only for interactive character-cell
logins.

Note

Standard OpenVMS policy uses autologin only on directly connected
or LAT connected character-cell terminals. The LGI$ICB_
AUTOLOGIN callback routine checks the automatic login file (ALF)
SYS$SYSTEM:SYSALF.DAT to make the determination.

A DECwindows callout can include a method for doing a DECwindows
autologin. In that case, the callout routine should set the autologin flag to
true before returning control to LOGINOUT.

Condition Values Returned

None.

LGI–36 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICB_CHECK_PASS

LGI$ICB_CHECK_PASS—Check Password

The LGI$ICB_CHECK_PASS callback routine checks a password against the user
authorization file (UAF) record.

Format

LGI$ICB_CHECK_PASS password ,uaf_record ,pwd_number

Returns

OpenVMS usage: value
type: longword (unsigned)
access: write only
mechanism: by value

The value 1 for a valid password. The value –4 for an invalid password.

Arguments

password
OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

User-supplied password to be validated.

uaf_record
OpenVMS usage: buffer
type: vector_byte (unsigned)
access: read only
mechanism: by reference

Address of buffer containing UAF record.

pwd_number
OpenVMS usage: value
type: longword (unsigned)
access: read only
mechanism: by value

Password number, 0 (primary) or 1 (secondary).

Description

The site uses this callback routine to check the user-supplied password against
the UAF record provided as the second argument. If the password is valid, the
routine returns a 1 in R0; if the password is invalid, the routine returns a –4 in
R0.

Condition Values Returned

None.

LOGINOUT (LGI) Routines LGI–37

LOGINOUT Routines
LGI$ICB_DISUSER

LGI$ICB_DISUSER—Check for Disabled User Account

The LGI$ICB_DISUSER callback routine checks the disabled user account flag.

Format

LGI$ICB_DISUSER action

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Argument

action
OpenVMS usage: value
type: longword (unsigned)
access: read only
mechanism: by value

This argument can take two values:

If Value of Action Is... Then...

LGI$_DISUSER_STOP Do not return on error.
LGI$_DISUSER_RETURN Return LGI$_DISUSER or SS$_NORMAL.

Description

The site can use this callback routine to establish the standard OpenVMS action
if the DISUSER flag is set.

Condition Values Returned

LGI$_DISUSER
SS$_NORMAL

LGI–38 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICB_GET_INPUT

LGI$ICB_GET_INPUT—Get User Input

The LGI$ICB_GET_INPUT callback routine enables interaction with the user.

Format

LGI$ICB_GET_INPUT rab ,flags

Returns

No value. Does not return on failure.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

Data structure used to set up a read-with-prompt OpenVMS RMS operation.
Normally you pass the RAB address in LGI$A_ICR_INPUT_RAB.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

A data structure that determines the error response as follows:

Flags
Value Response

0 Normal error message.
1 LOGINOUT exits quietly.
2 Normal error message; however, the callback routine returns control to

the caller rather than exiting on timeout (timeout status is in RAB).

Description

The LGI$ICB_GET_INPUT callback routine invokes the LOGINOUT input
routine to enable interaction with character-cell terminal users. The read
operation provides a timeout to ensure that the UAF record does not remain
locked if the user presses Ctrl/S.

Condition Values Returned

No return value. Examine status in RAB to determine the results of the read
operation.

LOGINOUT (LGI) Routines LGI–39

LOGINOUT Routines
LGI$ICB_GET_SYSPWD

LGI$ICB_GET_SYSPWD—Get System Password

The LGI$ICB_GET_SYSPWD callback routine validates the system password.

Format

LGI$ICB_GET_SYSPWD

Returns

No value. Does not return on failure.

Arguments

None.

Description

This callback routine performs standard system password-checking for interactive
logins on character-cell terminals only.

If the system password is validated, this callback routine returns control to the
caller. If the system password is not validated, the LOGINOUT image exits, and
the login is terminated.

Condition Values Returned

None.

LGI–40 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICB_MODALHOURS

LGI$ICB_MODALHOURS—Perform Access Checks

The LGI$ICB_MODALHOURS callback routine checks for restrictions on access
modes and access hours.

Format

LGI$ICB_MODALHOURS

Returns

No value. Does not return on failure.

Arguments

None.

Description

The site uses this callback routine to establish the access modes and access hours
available to the user. If the user is not authorized to access the system from this
login class (batch, dialup, local, remote, network) at this time (as specified in the
UAF), the callback routine:

• Writes its standard error message to the user terminal, if there is a terminal

• Does not return control to the caller

Condition Values Returned

None.

LOGINOUT (LGI) Routines LGI–41

LOGINOUT Routines
LGI$ICB_PASSWORD

LGI$ICB_PASSWORD—Produce Password Prompt

The LGI$ICB_PASSWORD callback routine produces the specified password
prompt and then processes the input.

Format

LGI$ICB_PASSWORD password_number ,prompt ,buffer

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Arguments

password_number
OpenVMS usage: value
type: longword (unsigned)
access: read only
mechanism: by value

A numeric value indicating which password to prompt for and what action to take
on it:

Value Prompt for

0 Primary password and validate it
1 Secondary password and validate it
–1 Primary password but do not validate it
–2 Secondary password but do not validate it
–3 Arbitrary 32-character value returned to buffer specified in buffer

If the value is –3, you must specify the prompt argument and the buffer
argument.

prompt
OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

String that must begin with ‘‘cr,lf’’. If this argument is not supplied, the standard
prompt is used.

LGI–42 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICB_PASSWORD

buffer
OpenVMS usage: character string
type: string descriptor
access: modify
mechanism: by reference

Buffer having at least 32 bytes available to store password when password_
number argument value is –3.

Description

The site can use this callback routine to interactively prompt for passwords.
The routine uses either the standard OpenVMS password prompt or a prompt
provided by the caller in the second argument.

The password is returned in one of the following locations, depending on the
value of the password_number argument:

Value of Password_Number Argument Location

0 or –1 LGI$A_ICR_PWD1
1 or –2 LGI$A_ICR_PWD2
–3 buffer argument

Note

This routine will do overstriking, if necessary, to support echo local
terminals. See the OpenVMS Programming Concepts Manual for more
information about echo terminals.

Condition Values Returned

SS$_NORMAL Success.
LGI$_INVPWD Password check failed.
LGI$_NOSUCHUSER No UAF record found.

LOGINOUT (LGI) Routines LGI–43

LOGINOUT Routines
LGI$ICB_PWDEXPIRED

LGI$ICB_PWDEXPIRED—Password Expiration

The LGI$ICB_PWDEXPIRED callback routine checks for password expiration.

Format

LGI$ICB_PWDEXPIRED

Returns

No value. Does not return on failure.

Arguments

None.

Description

Use this callback routine to determine whether the account password has expired.
If the password is expired, the callback routine:

• Writes its standard error message to the user terminal, if there is a terminal

• Does not return control to the caller

Condition Values Returned

None.

LGI–44 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICB_USERPARSE

LGI$ICB_USERPARSE—Parse Username

The LGI$ICB_USERPARSE callback routine parses the user name input.

Format

LGI$ICB_USERPARSE input_buffer

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Argument

input_buffer
OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

The input buffer must contain the characters LOGIN in the first five character
locations, followed by an ASCII space character and then the user name and
applicable site-specified qualifiers.

Description

The site can use this callback routine to parse input for interactive logins on
character-cell and DECwindows terminals.

Upon completion of this routine, the user name is accessible at the LGI$A_
USERNAME entry in the standard arguments vector.

Condition Values Returned

True (1) if successful; otherwise, any condition code returned by CLI$PARSE.

LOGINOUT (LGI) Routines LGI–45

LOGINOUT Routines
LGI$ICB_USERPROMPT

LGI$ICB_USERPROMPT—Prompt for Username

The LGI$ICB_USERPROMPT callback routine prompts for the user name.

Format

LGI$ICB_USERPROMPT prompt

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Argument

prompt
OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

A string that must begin with ‘‘cr,lf’’. For example, to produce the standard user
name prompt, use your language equivalent of the following BLISS value:

UPLIT(12,UPLIT BYTE(CR,LF,’Username: ’))

Declare the string in C using the following statement:

$DESCRIPTOR(<variable_name>, "lrlnUsername:")

You then pass the descriptor using the variable name.

This routine also produces the standard user name prompt if you pass the value
0 for this argument.

Description

Use this callback routine to interactively prompt for the user name on a
character-cell terminal. The callback routine reads the response to the prompt
and does standard DCL parsing for the user name and any qualifiers provided.
Upon completion of this routine, the user name is accessible at the LGI$A_
USERNAME entry in the standard arguments vector.

Condition Values Returned

SS$_NORMAL Success.
LGI$_NOTVALID Retry count exceeded for user input.

LGI–46 LOGINOUT (LGI) Routines

LOGINOUT Routines
LGI$ICB_VALIDATE

LGI$ICB_VALIDATE—Validate User Name and Passwords

The LGI$ICB_VALIDATE callback routine validates the user name and
passwords against the system authorization file.

Format

LGI$ICB_VALIDATE username ,pwd1 ,pwd2

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Condition value in R0.

Arguments

username
OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

User name.

pwd1
OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

Primary password.

pwd2
OpenVMS usage: character string
type: string descriptor
access: read only
mechanism: by reference

Secondary password.

Description

The site can use this callback routine to validate the user name and the
user’s primary and secondary passwords against the system authorization
file (SYSUAF.DAT). The routine also:

• Updates the user authorization (UAF) record with information about login
failures

• Performs security auditing

• Performs break-in detection and intrusion evasion

LOGINOUT (LGI) Routines LGI–47

LOGINOUT Routines
LGI$ICB_VALIDATE

Condition Values Returned

Success, or an error indicating the reason for the failure.

LGI–48 LOGINOUT (LGI) Routines

14
Mail Utility (MAIL) Routines

The callable interface of the Mail utility (MAIL) lets you send messages to users
on your system or on any other computer connected to your system with DECnet.
This chapter describes how application programs using callable MAIL routines
can perform the following functions:

• Create and access mail files

• Access and manipulate a message or group of messages

• Create and send messages to a user or group of users

• Access and manipulate the user profile database

For information about the DCL interface to the Mail utility, see the OpenVMS
User’s Manual.

14.1 Messages
Messages are files that contain information you want to send to other users.
Messages having one or two blocks are part of a mail file, while messages having
more than two blocks are external sequential files.

External files reside in the same directory as the mail file that points to them.

Structure of a Message
A message consists of header information and the bodypart. The message
bodypart consists of text records that contain information you want to send to
another user.

Figure 14–1 illustrates the format of a mail message.

Figure 14–1 Standard Message Format

From: MYNODE::USER "The Celestial Navigator" !
To: NODE::J_DOE "

CC: USER #
Subj: Perseids ... $

(continued on next page)

Mail Utility (MAIL) Routines MAIL–1

Mail Utility (MAIL) Routines
14.1 Messages

Figure 14–1 (Cont.) Standard Message Format

Get ready. Tuesday of this week (August 12th), one %
of the most abundant meteor showers of the year will occur.
The Perseids, also known as the St. Laurence’s Tears, stream
across earth’s orbit at 319.3 degrees. Radiant 3h4m +58 degrees.
Fine for photography with an average magnitude of 2.27.
There will be some fireballs, fainter white or yellow
meteors, and brighter green or orange or red ones. About one
third of the meteors, including all the brightest, leave
yellowish trains, which may be spectacular, up to 2
degrees wide and lasting up to 100 seconds. Brighter
meteors often end in flares or bursts. &

The parts of a message are as follows:

• Header information

! From: field specifies the sender and an optional personal name string

" To: field specifies the direct addressee

CC: field specifies the carbon copy addressee

$ Subj: field specifies the topic of the message

• Bodypart

% First line of the bodypart

& Last line of the bodypart

External Message Identification Number
In addition, the file name of an external message uses the following format:

MAIL$nnnnnnnnnnnnnnnn.MAI

where n . . . n is the external message identification number.

14.2 Folders
The Mail utility organizes messages by date and time received and, secondarily,
by folder name. All messages are associated with a folder name—either default
folders or user-specified folders. The Mail utility associates mail messages with
one of three default mail folder names. Table 14–1 describes the three default
mail folders.

Table 14–1 Default Mail Folders

Folder Contents

NEWMAIL Newly received, unread messages

MAIL Messages that have been read and not deleted

WASTEBASKET Messages designated for deletion

You can also place messages in any user-defined mail folder and file.

MAIL–2 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.3 Mail Files

14.3 Mail Files
A mail file is an indexed file that contains the following types of data:

• Header information for all messages

• Text of short messages

• Pointers to long messages

In addition, you can select messages from mail files as well as copy or move
messages to or from mail files.

Mail File Format
The indexed mail file format offers two advantages: use of folders and faster
access time than sequential access. Indexed mail files use two keys to locate
messages—a primary key denoting the date and time received and a secondary
key using the folder name.

14.4 User Profile Database
The Mail utility maintains an indexed data file VMSMAIL_PROFILE.DATA
that serves as a systemwide database of user profile entries. A user profile
entry is a record that contains data describing a Mail user’s default processing
characteristics and whose primary key is the user name. Table 14–2 summarizes
information contained in a user profile entry.

Table 14–2 User Profile Information

Field Function

Directory Default MAIL subdirectory

Form Default print form

Forwarding address Forwarding address

Personal name string User-specified character string included in the message
header

Queue name Default print queue name

Flags
Automatic purge
CC: prompt
Copy self forward
Copy self reply
Copy self send

Purging of the wastebasket folder on exiting
Carbon copy prompt
Copy to self when forwarding a message
Copy to self when replying to a message
Copy to self when sending a message

Signature file Text file that is automatically appended to the end of
the body of a mail message

Both the callable interface and the user interface access the user profile database
to determine default processing characteristics.

14.5 Mail Utility Processing Contexts
The Mail utility defines four discrete levels of processing, or contexts for
manipulating mail files, messages, folders, and the user profile database as
shown in Table 14–3.

Mail Utility (MAIL) Routines MAIL–3

Mail Utility (MAIL) Routines
14.5 Mail Utility Processing Contexts

Table 14–3 Levels of Mail Utility Processing

Context Entity

Mail file Mail files and folders

Message Mail files, folders, and messages

Send Messages

User User profile database

Within each context, your application processes specific entities in certain ways
using callable MAIL routines as described in the sections that follow.

Initiating a MAIL Context
You must explicitly begin and end each MAIL context. Each group of routines
contains a pair of context-initiating and terminating routines.

When you begin processing in any context, the Mail utility performs the following
functions:

1. Allocates sufficient virtual memory to manage context information

2. Initializes context variables and internal structures

Terminating a MAIL Context
Terminating a MAIL processing context deallocates virtual memory. You must
explicitly terminate processing in any context by calling a context-terminating
routine.

14.5.1 Callable Mail Utility Routines
There are four types of callable Mail utility routines, each corresponding to the
context within which they execute. A prefix identifies each functional group:

• MAIL$MAILFILE_

• MAIL$MESSAGE_

• MAIL$SEND_

• MAIL$USER_

Table 14–4 lists Mail utility routines according to context.

Table 14–4 Callable Mail Utility Routines

Context Routine

Mail file MAIL$MAILFILE_BEGIN
MAIL$MAILFILE_CLOSE
MAIL$MAILFILE_COMPRESS
MAIL$MAILFILE_END
MAIL$MAILFILE_INFO_FILE
MAIL$MAILFILE_MODIFY
MAIL$MAILFILE_OPEN
MAIL$MAILFILE_PURGE_WASTE

(continued on next page)

MAIL–4 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.5 Mail Utility Processing Contexts

Table 14–4 (Cont.) Callable Mail Utility Routines

Context Routine

Message MAIL$MESSAGE_BEGIN
MAIL$MESSAGE_COPY
MAIL$MESSAGE_DELETE
MAIL$MESSAGE_END
MAIL$MESSAGE_GET
MAIL$MESSAGE_INFO
MAIL$MESSAGE_MODIFY
MAIL$MESSAGE_SELECT

Send MAIL$SEND_ABORT
MAIL$SEND_ADD_ADDRESS
MAIL$SEND_ADD_ATTRIBUTE
MAIL$SEND_ADD_BODYPART
MAIL$SEND_BEGIN
MAIL$SEND_END
MAIL$SEND_MESSAGE

User MAIL$USER_BEGIN
MAIL$USER_DELETE_INFO
MAIL$USER_END
MAIL$USER_GET_INFO
MAIL$USER_SET_INFO

14.5.2 Single and Multiple Threads
Once you have successfully initiated MAIL processing in a context, you have
created a thread. A thread is a series of calls to MAIL routines that uses the
same context information. Applications can contain one or more threads.

Single Threads
For example, consider an application that begins mail file processing; opens,
compresses, and closes a mail file; and ends mail file context processing. This
application executes a single thread of procedures that reference the same context
variable names and pass the same context information.

Multiple Threads
You can create up to 31 concurrent threads. Applications that contain more than
one thread must maintain unique context variables for each thread in order to
pass thread-specific context information.

The Mail utility returns the condition value MAIL$_NOMORECTX when your
process attempts to exceed the maximum number of allowable threads.

14.6 Programming Considerations
The calling sequence for all MAIL routines consists of a status variable, an entry
point name, and an argument list. All arguments within the argument list are
required. All callable MAIL routines use the same arguments in their calling
sequences as described in the following example:

STATUS=MAIL$MAILFILE_BEGIN(CONTEXT, IN_ITEM_LIST, OUT_ITEM_LIST)

The variable status receives the condition value, and the argument context
receives the context information. The arguments in_item_list and out_item_list
are input and output item lists that contain one or more input or output item
descriptors.

Mail Utility (MAIL) Routines MAIL–5

Mail Utility (MAIL) Routines
14.6 Programming Considerations

14.6.1 Condition Handling
At run time, a hardware- or software-related event can occur that determines
whether or not the application executes successfully. The Mail utility processes
such an event, or condition in the following ways:

• Signals the condition value

• Returns the error code

You can establish your own condition handler or allow the program to signal the
default condition handler.

Returning Condition Values
You can disable signaling for any call by specifying the item code MAIL$_
NOSIGNAL as an item in the input item list.

14.6.2 Item Lists and Item Descriptors
Your application passes data to callable MAIL routines and receives data from
routines through data structures called item lists defined in your program.

14.6.2.1 Structure of an Item Descriptor
An input or output item list is a data structure that consists of one or more input
or output item descriptors.

The following table summarizes the characteristics of item lists:

Item Descriptor Characteristics

Input Each descriptor points to a buffer or file from which Mail reads
data.

Output Each descriptor points to a buffer or file to which Mail writes
data.

An item descriptor is a data structure consisting of three longwords as described
in Figure 14–2.

Figure 14–2 Item Descriptor

ZK−1705−GE

Return length address

Buffer address

Item code Buffer length

31 015

MAIL–6 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.6 Programming Considerations

Item descriptor fields are described as follows:

Field Function

Item code Specifies an action the routine is to perform.

Buffer length Specifies the length in bytes of an input or output
buffer.

Buffer address Specifies the address of the input or output buffer.

Return length address Depends on the type of item code specified:

Item
Code Use

Input Not used; specify 0.

Output Address of a longword that receives
the length of the result.

Note

You can specify item descriptors in any order within an item list.

Item Codes
The item code defines an action that the routine is to perform. Input and output
item codes are specified in input and output item descriptors, respectively.

Boolean input and output item codes request an operation but do not pass data to
the called routine. For example, the item code MAIL$_USER_SET_CC_PROMPT
sets the CC prompt flag enabling use of CC: field text.

For a complete list of input and output item codes, see Tables 14–10 and 14–11.

14.6.2.2 Null Item Lists
Both the input and output item list arguments in the MAIL routine calling
sequence are required. However, there might be situations when you do not want
to request an operation or no input or output item codes are listed for the routine.
In such cases, you must pass the value 0 in the function call.

14.6.2.3 Declaring Item Lists and Item Descriptors
Depending on the programming language you are using, refer to the appropriate
language reference manual for more information about declaring data structures
and creating variables.

14.6.2.4 Terminating an Item List
Terminate an item list with a null item descriptor. Assign the value 0 to each
field in the item descriptor.

14.6.3 Action Routines
Certain callable MAIL routines allow you to specify an action routine. An
action routine transfers control to a user-written subroutine that performs
specific tasks.

Mail Utility (MAIL) Routines MAIL–7

Mail Utility (MAIL) Routines
14.6 Programming Considerations

The mail file, message, and send contexts permit the use of action routines for
specific reasons. Table 14–5 summarizes the types of action routines and the
contexts in which they are used.

Table 14–5 Types of Action Routines

Context Routine Action Routine

Mail file MAIL$MAILFILE_INFO_FILE Provides information about
folder and mail files.

Message MAIL$MESSAGE_COPY Copies messages between
files and folders.

Send MAIL$SEND_MESSAGE Success and error results;
sends a text file to an
existing address list.

The preceding table summarizes typical uses of action routines. However, an
action routine can perform any task you specify. See the Guide to Creating
OpenVMS Modular Procedures for more information about action routines.

Mail File and Folder Action Routine Calling Sequence
The main portion of the application calls the action routine and passes values to
it using parameters. The calling sequence of a mail file or folder action routine is
as follows:

entry-point-name(userdata,foldername)

The argument userdata is the address of a required longword that contains
user-specified data, and the argument foldername is the address of a descriptor
of the foldername.

Send Action Routine Calling Sequence
The calling sequence of a send action routine is as follows:

entry-point-name(username,signal-array,userdata)

The argument username is the address of a descriptor of the user name to
which the application successfully sent a message; signal-array is the address
of a signal array containing the success message; userdata is the address of an
optional longword that contains user-specified data.

14.7 Managing Mail Files
Using mail files involves opening and closing both default mail files and user-
created mail files, displaying folder names, and purging and compressing mail
files. Table 14–6 summarizes each mail file routine and its function.

Table 14–6 Mail File Routines

Routine Description

MAIL$MAILFILE_BEGIN Initiates mail file processing

MAIL$MAILFILE_CLOSE Closes a mail file

MAIL$MAILFILE_COMPRESS Compresses a mail file

(continued on next page)

MAIL–8 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.7 Managing Mail Files

Table 14–6 (Cont.) Mail File Routines

Routine Description

MAIL$MAILFILE_END Terminates mail file processing

MAIL$MAILFILE_INFO_FILE Obtains information about the mail file

MAIL$MAILFILE_MODIFY Changes the wastebasket folder name and the
default mail file name

MAIL$MAILFILE_OPEN Opens a mail file

MAIL$MAILFILE_PURGE_WASTE Purges a mail file

Mail file context processing involves accessing and manipulating one or more mail
files.

Initiating the Mail File Context
Your application must call MAIL$MAILFILE_BEGIN to perform mail file context
processing.

When you call MAIL$MAILFILE_BEGIN successfully and begin processing in the
mail file context, you have created a thread. You must specify the same context
variable name in routine calls within the same thread.

Terminating the Mail File Context
Terminate processing in the mail file context calling MAIL routines in the
following order:

1. Terminate message context processing (if applicable) using MAIL$MESSAGE_
END.

2. Close the currently open mail file using MAIL$MAILFILE_CLOSE.

3. Terminate mail file context processing using MAIL$MAILFILE_END.

The following sections describe these actions in more detail.

14.7.1 Opening and Closing Mail Files
Before you perform any activities on existing messages, folders, and mail files,
you must first open a mail file. Whenever you open a mail file, you must do so
explicitly using MAIL$MAILFILE_OPEN. You can open only one mail file per
mail file thread.

Note that each routine references the same context variable. An open mail file
must be explicitly closed with a call to MAIL$MAILFILE_CLOSE.

14.7.1.1 Using the Default Specification for Mail Files
To open a mail file, Mail must first locate it using either a default or a user-
specified mail file specification. A mail file specification consists of the following
components: disk and directory, file name, and file type.

Mail Utility (MAIL) Routines MAIL–9

Mail Utility (MAIL) Routines
14.7 Managing Mail Files

If you use the default file specification, the Mail utility locates and opens the
default mail file using the following information:

Component Source

User’s disk and directory Retrieved from the user authorization file (UAF)

MAIL subdirectory Retrieved from the user profile entry

Mail file name and type MAIL.MAI

14.7.1.2 Specifying an Alternate Mail File Specification
You can use the default specification for mail files or specify all or part of an
alternate mail file specification.

When to Specify an Alternate Mail File Specification
The following mail file routines accept alternate mail file specifications when you
use the item codes MAIL$_MAILFILE_DEFAULT_NAME or MAIL$_MAILFILE_
NAME or both:

• MAIL$MAILFILE_COMPRESS

• MAIL$MAILFILE_INFO_FILE

• MAIL$MAILFILE_MODIFY

• MAIL$MAILFILE_OPEN

How the Mail Utility Creates an Alternate Mail File Specification
The Mail utility constructs an alternate mail file specification by using program-
supplied mail file specifications to modify the default specification for mail files in
the following order of importance:

1. Program-supplied file specification (MAIL$_MAILFILE_NAME)

• Program-supplied disk and directory

• Program-supplied file name and type

2. Program-supplied default file specification (MAIL$_MAILFILE_DEFAULT_
NAME)

• Program-supplied disk and directory

• Program-supplied file name and type

3. Default specification

If you are using MAIL$_MAILFILE_DEFAULT_NAME and you specify 0 as the
buffer size and address, the Mail utility uses the current device and directory.

The default specification for mail files applies unless overridden by your program-
supplied mail file specifications. Mail file specifications defined with MAIL$_
MAILFILE_NAME override those defined with MAIL$_MAILFILE_DEFAULT_
NAME.

For example, an application can override the default specification
$DISK0:[USER]MAIL.MAIL by defining an alternate device type $DISK99:
using MAIL$_MAILFILE_NAME. The result is $DISK99:[USER]MAIL.MAI. The
application can further modify the specification by defining a different mail file
MYMAILFILE.MAI using MAIL$_MAILFILE_DEFAULT_NAME. The new mail
file specification is $DISK99:[USER]MYMAILFILE.MAI.

MAIL–10 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.7 Managing Mail Files

14.7.2 Displaying Folder Names
As the size of your mail files increases with messages and folders, you might
want to display your folder names. A user-written folder action routine lets you
do this.

In the mail file context, MAIL$MAILFILE_INFO_FILE can be used to invoke
a folder action routine that displays folder names in a mail file. If you specify
the item code MAIL$_MAILFILE_FOLDER_ROUTINE, MAIL$MAILFILE_INFO
passes a descriptor of a folder name to the action routine repeatedly until it
encounters no more folder names and passes a null descriptor.

14.7.3 Purging Mail Files Using the Wastebasket Folder
The Mail utility associates messages designated for deletion with a wastebasket
folder. Purging mail files of messages in the wastebasket folder that are
designated for deletion is one way to conserve disk space. You can also use
the Mail utility to conserve disk space by reclaiming disk space and compressing
mail files, as described in the sections that follow.

Note that purging the wastebasket folder removes the messages from the
wastebasket folder but might not reclaim disk space.

14.7.3.1 Reclaiming Disk Space
Simply deleting the messages does not mean you will automatically reclaim the
disk space. The Mail utility uses a system-defined threshold of bytes designated
for deletion to determine when to reclaim disk space. When the total number of
total bytes designated for deletion exceeds the threshold, the Mail utility performs
a reclaim operation.

You can override the deleted bytes threshold and request a reclaim operation
using MAIL$MAILFILE_PURGE_WASTE with the input item code MAIL$_
MAILFILE_RECLAIM.

14.7.3.2 Compressing Mail Files
Compressing mail files is a way of conserving disk space. Mail file compression
provides faster access to the folders and messages within the mail file. When
you call MAIL$MAILFILE_COMPRESS, Mail removes unused space within the
specified mail file.

14.8 Message Context
Message context processing involves manipulating existing messages as well as
creating and deleting folders and mail files. Table 14–7 summarizes routines
used in the message context.

Table 14–7 Message Routines

Routine Description

MAIL$MESSAGE_BEGIN Initiates message processing

MAIL$MESSAGE_COPY Copies messages

MAIL$MESSAGE_DELETE Deletes messages

MAIL$MESSAGE_END Terminates message processing

(continued on next page)

Mail Utility (MAIL) Routines MAIL–11

Mail Utility (MAIL) Routines
14.8 Message Context

Table 14–7 (Cont.) Message Routines

Routine Description

MAIL$MESSAGE_GET Retrieves a message

MAIL$MESSAGE_INFO Obtains information about a specified message

MAIL$MESSAGE_MODIFY Identifies a message as replied, new, or marked

MAIL$MESSAGE_SELECT Selects a message or messages from the currently open
mail file

Initiating the Message Context
Message context processing can begin only after a mail file has been opened. Your
application must explicitly call MAIL$MESSAGE_BEGIN in order to execute
message context processing.

The Mail utility passes mail file context information to the message context when
you call MAIL$MESSAGE_BEGIN with the input item code MAIL$_MESSAGE_
FILE_CTX.

Terminating the Message Context
To terminate message-level processing for a specific thread, you must call
MAIL$MESSAGE_END to deallocate memory.

14.8.1 Selecting Messages
Applications select messages using MAIL$MESSAGE_SELECT to copy and move
messages between folders as well as to read, modify, or delete messages. You
must select messages before you can use them. You must specify a folder name
when you select messages.

You can select messages based on the following criteria: matching character
strings, message arrival date and time, and message characteristics.

Matching Character Strings
You can select a message or set of messages from a mail file by specifying one or
more character substrings that you want to match with a character substring in
the header information of a message or group of messages. You must specify the
specific bodypart in the message header where the substring is located.

• From: line

• To: line

• CC: line

• Subject: line

The Mail utility searches the specified folder for message headers that contain
the matching character substring. This method of selection is useful when you
want to select and use messages from or to a particular user that are associated
with many folder names.

When you specify more than one character substring, the Mail utility performs a
logical AND operation to find the messages that contain the correct substring.

MAIL–12 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.8 Message Context

Message Arrival Date and Time
You can also select a message or group of messages based on their arrival time,
that is, when you received them. Applications select messages according to two
criteria as follows:

• Messages received before a specified date or time or both

• Messages received on or after a specified date or time or both

The Mail utility searches the mail file and selects messages whose primary key
(date and time) matches the date and time specified in your application.

Message Characteristics
You can select messages based on Mail system flag values that indicate the
following message characteristics:

• New

• Marked

• Replied

For example, you can select unread messages in order to display them or to
display a message you have marked.

14.8.2 Reading and Printing Messages
After a message is selected, an application iteratively retrieves the contents
of the bodypart record by record. The message can be retrieved using
MAIL$MESSAGE_GET and can then be stored in a buffer or file.

Displaying a Message
To display a message on the terminal screen, you should store the message in a
buffer and use the host programming language command that directs data to the
screen.

Printing a Message
To print a message on a print queue on your system, you should write the
message to an external file and use the $SNDJBC system service to manage
print jobs and define queue characteristics.

14.8.3 Modifying Messages
Message modification using MAIL$MESSAGE_MODIFY involves setting flags
that identify a message or group of messages as having certain characteristics.
The following table summarizes bit offsets that modify flag settings:

Symbol Meaning

MAIL$V_replied Flagged as answered

MAIL$V_marked Flagged for display purposes

14.8.4 Copying and Moving Messages
You can copy messages between folders within a mail file or between folders in
different mail files using MAIL$MESSAGE_COPY. The Mail utility copies the
message from the source folder to the destination folder leaving the original
message intact.

Mail Utility (MAIL) Routines MAIL–13

Mail Utility (MAIL) Routines
14.8 Message Context

Similarly, you can move messages between folders within a mail file or between
folders in different mail files using MAIL$MESSAGE_COPY with the item code
MAIL$_MESSAGE_DELETE. The Mail utility moves a message by copying the
message from the source folder to the destination folder. You must specify a folder
name.

When you move a message to another folder within the same mail file, you are
changing the message’s secondary key—its folder name.

14.8.4.1 Creating Folders
You can create a folder in a specified mail file whenever you attempt to copy
or move a message to a nonexistent folder. When you create a folder, you are
assigning a previously nonexistent folder name to a message as its secondary key.

Your application can include a user-written folder action routine that notifies you
that the folder does not exist and accepts input to create the folder.

14.8.4.2 Deleting Folders
You can delete a folder by moving all of the messages within the source folder
to another folder in the same mail file or to a folder in another mail file. In this
case, the Mail utility associates messages that are moved with a new folder name.

You can also delete a folder by deleting all of the messages in a folder. The Mail
utility associates messages designated for deletion with the wastebasket folder
name.

In either case, the original folder name—the secondary key—no longer exists.

14.8.4.3 Creating Mail Files
Similarly, you can create a mail file whenever you attempt to copy or move a
message to a nonexistent mail file.

Your application can include a user-written mail file action routine that notifies
you that the mail file does not exist and accepts input to create the mail file.

Mail file creation involves creating the mail file and then copying or moving the
message to the new mail file. If the message is shorter than 3 blocks, the Mail
utility stores the message in the mail file. Otherwise, the Mail utility places a
pointer to the message in the newly created mail file.

14.8.5 Deleting Messages
To delete a message, you need to know its message identification number.
Applications can retrieve the message identification number by specifying the
item code MAIL$_MESSAGE_ID when selecting a message or group of messages
with MAIL$MESSAGE_SELECT.

When you delete all messages with the same secondary key (folder name) using
MAIL$MESSAGE_DELETE and specifying the item code MAIL$_MESSAGE_ID,
you have deleted the folder.

14.9 Send Context
Send context processing involves creating and sending new and existing
messages. Table 14–8 summarizes send routines.

MAIL–14 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.9 Send Context

Table 14–8 Send Routines

Routine Description

MAIL$SEND_ABORT Aborts a send operation

MAIL$SEND_ADD_ADDRESS Adds an addressee to the address list

MAIL$SEND_ADD_ATTRIBUTE Constructs the message header

MAIL$SEND_ADD_BODYPART Constructs the body of the message

MAIL$SEND_BEGIN Initiates send processing

MAIL$SEND_END Terminates send processing

MAIL$SEND_MESSAGE Sends a message

Initiating the Send Context
You can invoke the send context directly if you are creating a new message.
Otherwise, to access an existing message, you must open the mail file that
contains the message, select the message, and retrieve it.

Terminating the Send Context
You must terminate the send context explicitly using MAIL$SEND_END.

14.9.1 Sending New Messages
You can send new or existing messages to yourself and other users.

14.9.1.1 Creating a Message
You create new messages using send context routines. If you want to create and
send a new message, you do not need to initiate any other context. As mentioned
earlier, a message consists of two parts—the message header and the message
bodypart.

Constructing a message involves building each part of the message separately
using the following routines:

• MAIL$SEND_ADD_ATTRIBUTE

• MAIL$SEND_ADD_BODYPART

14.9.1.1.1 Constructing the Message Header Each field of the message header
is a message attribute. You can specify one or more attributes for inclusion in
the message header using MAIL$SEND_ADD_ATTRIBUTE. During successive
calls to MAIL$SEND_ADD_ATTRIBUTE, an application specifies the specific
message attribute to be constructed.

If you do not specify the From: or To: fields, the Mail utility provides this
information from the address list.

14.9.1.1.2 Constructing the Body of the Message To construct a message, an
application must specify a series of calls to MAIL$SEND_ADD_BODYPART to
build a message from successive text records contained in a buffer or file.

If the body of the message is located in a file, you can build the bodypart with one
call to MAIL$SEND_ADD_BODYPART by specifying its file name.

Mail Utility (MAIL) Routines MAIL–15

Mail Utility (MAIL) Routines
14.9 Send Context

14.9.1.2 Creating an Address List
You must create an address list in order to send a message. The address list is
a file or buffer of addressees to whom you want to send the message. Each entry
in the address list is a valid user name on your system or on another system
connected to your system by DECnet.

Adding User Names to the Address List
User names are added one at a time to the address list using one or more calls to
MAIL$SEND_ADD_ADDRESS.

User Name Types
There are two types of user names—direct and carbon copy addressees. Direct
and carbon copy addressees correspond to user names in the To: and CC: fields of
the message header.

14.9.2 Sending Existing Messages
Sending an existing message involves many tasks as well as initiating the mail
file context and message context. The following table summarizes the tasks and
routines involved in sending an existing message:

Task Routine

Open a mail file. MAIL$MAILFILE_OPEN

Select the message. MAIL$MESSAGE_SELECT

Retrieve the message. MAIL$MESSAGE_GET

Construct the message.
Construct the message
header.
Construct the message
bodypart.

MAIL$SEND_ADD_ATTRIBUTE

MAIL$SEND_ADD_BODYPART

Create an address list. MAIL$SEND_ADD_ADDRESS

Send the message. MAIL$SEND_MESSAGE

14.9.3 Send Action Routines
Once you have created an address list and constructed a message, you can send
the message using MAIL$SEND_MESSAGE. Optional success and error action
routines handle signaled success and error events in a synchronous manner.

For example, If DECnet returns messages indicating that it might not be possible
to complete a send operation to some users in your address list, a user-specified
send action routine might prompt the sender for permission to continue the send
operation.

14.9.3.1 Success Action Routines
A success action routine performs a task upon successful completion of a send
operation.

14.9.3.2 Error Handling Routines
An error action routine is a user-written error handler that signals error
conditions during a send operation.

MAIL–16 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.9 Send Context

14.9.3.3 Aborting a Send Operation
Under certain circumstances, you might want to terminate a send operation
in progress using MAIL$SEND_ABORT. In this instance, you can use an
asynchronous system trap (AST) routine that contains a call to MAIL$SEND_
ABORT to abort the send operation whenever the user presses Ctrl/C.

14.10 User Profile Context
The user profile processing context functions as a system management tool
for customizing the programming and interactive mail environments. It lets
individual users modify their default processing characteristics.

The user profile database VMSMAIL_PROFILE.DATA contains information that
application programs and the Mail utility use for processing in any context.

Table 14–9 summarizes the user context routines.

Table 14–9 User Profile Context Routines

Routine Description

MAIL$USER_BEGIN Initiates user profile context

MAIL$USER_DELETE_INFO Deletes a user profile entry

MAIL$USER_END Terminates user profile context

MAIL$USER_GET_INFO Retrieves information about a user from the user
profile

MAIL$USER_SET_INFO Adds or modifies a user profile entry

Initiating the User Context
You can invoke the user context directly.

Terminating the User Context
You must terminate the user context with MAIL$USER_END. Terminating the
user context deallocates virtual memory.

14.10.1 User Profile Entries
A user profile entry is a dynamic record. The Mail utility creates a user profile
entry automatically for the calling process if it does not exist. The callable and
user interfaces of the Mail utility use the data contained in the user profile entry.
The user profile consists of fields as described in the sections that follow.

MAIL Subdirectory
A MAIL subdirectory is the location—that is, the disk and directory
specification—of your mail files. When you define a MAIL subdirectory, you are
creating a subdirectory in which the specified mail file and associated external
messages are to reside. For example:

$DISK5:[MAILUSER.COMMON.MAIL]

The subdirectory [.common.mail] represents the MAIL subdirectory specification
defined in the user profile entry. This subdirectory contains the mail file (for
example, MAIL.MAI) and any external messages associated with the mail file.
The disk and directory specification $DISK5:[MAILUSER] is defined in the user
authorization file (UAF).

Mail Utility (MAIL) Routines MAIL–17

Mail Utility (MAIL) Routines
14.10 User Profile Context

Flags
User profile flags can be set to enable or disable automatic purging of deleted
mail, automatic self-copy when forwarding, replying, or sending messages, and
use of the CC prompt.

Form
The form field of the user profile entry defines the default print form to be used
by print batch jobs. The string you specify as the default form must match a valid
print form in use on your system.

Forwarding Address
A forwarding address lets you receive messages to your account on another
system or to have your messages sent to another user either on your system or
another system. You must specify valid node names and user names.

Personal Name
A personal name is a user-specified character string. For example, a personal
name might include your entire name and phone number. Any phrase beginning
with alphabetic characters up to a maximum of 127 alphanumeric characters is
valid. However, consecutive embedded spaces should not be used.

Queue Name
The queue name field defines the default print queue on your system where your
print jobs are sent.

14.10.1.1 Adding Entries to the User Profile Database
Ordinarily, the Mail utility creates a user profile entry for the calling process
if one does not already exist. A system management application might create
entries for other users. When you specify the item code MAIL$_USER_CREATE_
IF using MAIL$USER_SET_INFO, the Mail utility creates a user profile entry if
it does not already exist.

14.10.1.2 Modifying or Deleting User Profile Entries
The calling process can modify, delete, or retrieve its own user profile entry
without privileges.

The following table summarizes the privileges required to modify or delete user
profile entries that do not belong to the calling process:

Procedure Privilege Function

MAIL$USER_SET_INFO SYSPRV Modifies another user’s
profile entry

MAIL$USER_GET_INFO SYSNAM or SYSPRV Retrieves information about
another user

14.11 Input Item Codes
Input item codes direct the called routine to read data from a buffer or file and
perform a task. Table 14–10 summarizes input item codes.

MAIL–18 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.11 Input Item Codes

Table 14–10 Input Item Codes

Item Code Function

Mail File Context

MAIL$_MAILFILE_DEFAULT_NAME Specifies the location (disk and directory) of the default
mail file MAIL.MAI.

MAIL$_MAILFILE_FOLDER_ROUTINE Displays folder names within a specified mail file.

MAIL$_MAILFILE_FULL_CLOSE Requests that the wastebasket folder be purged and
that a convert/reclaim operation be performed, if
necessary.

MAIL$_MAILFILE_NAME Specifies the name of a mail file to be opened.

MAIL$_MAILFILE_RECLAIM Overrides the deleted bytes threshold and requests a
reclaim operation.

MAIL$_MAILFILE_USER_DATA Passes a longword of user context data to an action
routine.

MAIL$_MAILFILE_WASTEBASKET_NAME Specifies a new name for the wastebasket in a specified
mail file.

Message Context

MAIL$_MESSAGE_AUTO_NEWMAIL Places newly read messages in the Mail folder
automatically.

MAIL$_MESSAGE_BACK Returns the first record of the preceding message.

MAIL$_MESSAGE_BEFORE Selects a message before a specified date.

MAIL$_MESSAGE_CC_SUBSTRING Specifies a character string that must match a node or
user name substring in the CC: field of the specified
message.

MAIL$_MESSAGE_CONTINUE Returns the next text record of the current message.

MAIL$_MESSAGE_DEFAULT_NAME Specifies the default mail file specification.

MAIL$_MESSAGE_DELETE Deletes a message in the current folder after the
message has been copied to a new folder.

MAIL$_MESSAGE_FILE_ACTION Specifies a user-written routine that is called if a mail
file is to be created.

MAIL$_MESSAGE_FILE_CTX Specifies mail file context received from
MAIL$MAILFILE_BEGIN.

MAIL$_MESSAGE_FILENAME Specifies the name of a mail file to which the message
is to be moved.

MAIL$_MESSAGE_FOLDER_ACTION Specifies a user-written routine that is called if a folder
is to be created.

MAIL$_MESSAGE_FLAGS Specifies MAIL system flags to use when selecting
messages.

MAIL$_MESSAGE_FLAGS_MBZ Specifies MAIL system flags that must be zero.

MAIL$_MESSAGE_FOLDER Specifies the name of the target folder for moving
messages.

MAIL$_MESSAGE_FROM_SUBSTRING Specifies a character string that must match a node or
user name substring in the From: field of the specified
message.

(continued on next page)

Mail Utility (MAIL) Routines MAIL–19

Mail Utility (MAIL) Routines
14.11 Input Item Codes

Table 14–10 (Cont.) Input Item Codes

Item Code Function

Message Context

MAIL$_MESSAGE_ID Specifies the message identification number of the
message on which an operation is to be performed.

MAIL$_MESSAGE_NEXT Returns the first record of the message following the
current message.

MAIL$_MESSAGE_SINCE Selects a message received on or after a specified date.

MAIL$_MESSAGE_SUBJ_SUBSTRING Specifies a character string that must match a node
or user name substring in the Subject: field of the
specified message.

MAIL$_MESSAGE_TO_SUBSTRING Specifies a character string that must match a
substring in the To: field of the specified message.

MAIL$_MESSAGE_USER_DATA Specifies a longword to be passed to the folder and mail
file action routines.

Send Context

MAIL$_SEND_CC_LINE Specifies the CC: field text.

MAIL$_SEND_DEFAULT_NAME Specifies the default file specification of a text file to be
opened.

MAIL$_SEND_ERROR_ENTRY Specifies a user-written routine to process errors that
occur during a send operation.

MAIL$_SEND_FID Specifies the file identifier.

MAIL$_SEND_FILENAME Specifies the input file specification of a text file to be
opened.

MAIL$_SEND_FROM_LINE Specifies the From: field text.

MAIL$_SEND_PERS_NAME
MAIL$_SEND_NO_PERS_NAME

Specifies the personal name string.
Specifies that no personal string be used.

MAIL$_SEND_RECORD Specifies the descriptor of a text record to be added to
the body of a message.

MAIL$_SEND_SIGFILE Specifies a full OpenVMS file specification of the
signature file to be used in the message.

MAIL$_SEND_NO_SIGFILE Specifies that no signature file be used.

MAIL$_SEND_SUBJECT Specifies the Subject: field text.

MAIL$_SEND_SUCCESS_ENTRY Specifies a user-written routine to process successfully
completed events during a send operation.

MAIL$_SEND_TO_LINE Specifies the To: field text.

MAIL$_SEND_USER_DATA Specifies a longword passed to the send action routines.

MAIL$_SEND_USERNAME Adds a specified user name to the address list.

MAIL$_SEND_USERNAME_TYPE Specifies the type of user name added to the address
list.

(continued on next page)

MAIL–20 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.11 Input Item Codes

Table 14–10 (Cont.) Input Item Codes

Item Code Function

User Context

MAIL$_USER_CREATE_IF Creates a user profile entry.

MAIL$_USER_FIRST Returns information about the first user in the user
profile database.

MAIL$_USER_NEXT Returns information about the next user in the user
profile database.

MAIL$_USER_SET_AUTO_PURGE
MAIL$_USER_SET_NO_AUTO_PURGE

Sets the automatic purge flag.
Clears the automatic purge flag.

MAIL$_USER_SET_CC_PROMPT
MAIL$_USER_SET_NO_CC_PROMPT

Sets the CC prompt flag.
Clears the CC prompt flag.

MAIL$_USER_SET_COPY_FORWARD
MAIL$_USER_SET_NO_COPY_FORWARD

Sets the copy self forward flag.
Clears the copy self forward flag.

MAIL$_USER_SET_COPY_REPLY
MAIL$_USER_SET_NO_COPY_REPLY

Sets the copy self reply flag.
Clears the copy self reply flag.

MAIL$_USER_SET_COPY_SEND
MAIL$_USER_SET_NO_COPY_SEND

Sets the copy self send flag.
Clears the copy self send flag.

MAIL$_USER_SET_EDITOR
MAIL$_USER_SET_NO_EDITOR

Specifies the default editor.
Clears the default editor field.

MAIL$_USER_SET_FORM
MAIL$_USER_SET_NO_FORM

Specifies the default print form string.
Clears the default print form field.

MAIL$_USER_SET_FORWARDING
MAIL$_USER_SET_NO_FORWARDING

Specifies the forwarding address string.
Clears the forwarding address field.

MAIL$_USER_SET_NEW_MESSAGES Specifies the new messages count.

MAIL$_USER_SET_PERSONAL_NAME
MAIL$_USER_SET_NO_PERSONAL_NAME

Specifies the personal name string.
Clears the personal name field.

MAIL$_USER_SET_QUEUE
MAIL$_USER_SET_NO_QUEUE

Specifies the default print queue name string.
Clears the default print queue name field.

MAIL$_USER_SET_SIGFILE Specifies a signature file specification for the specified
user.

MAIL$_USER_SET_NO_SIGFILE Clears a signature file field for the specified user.

MAIL$_USER_SET_SUB_DIRECTORY
MAIL$_USER_SET_NO_SUB_DIRECTORY

Specifies a MAIL subdirectory.
Clears the MAIL subdirectory field.

MAIL$_USER_USERNAME Points to the user name string to specify the user
profile entry to be modified.

14.12 Output Item Codes
Output item codes direct the called routine to return data to a buffer or file which
is then available for use by the application. Table 14–11 summarizes output item
codes.

Mail Utility (MAIL) Routines MAIL–21

Mail Utility (MAIL) Routines
14.12 Output Item Codes

Table 14–11 Output Item Codes

Item Code Function

Mail File Context

MAIL$_MAILFILE_INDEXED Determines whether the mail file format is indexed.

MAIL$_MAILFILE_DIRECTORY Returns the mail file subdirectory specification to the
caller.

MAIL$_MAILFILE_RESULTSPEC Returns the result mail file specification.

MAIL$_MAILFILE_WASTEBASKET Returns the wastebasket folder name for the specified
file.

MAIL$_MAILFILE_DELETED_BYTES Returns the number of deleted bytes in a specified mail
file.

MAIL$_MAILFILE_MESSAGES_DELETED Returns the number of deleted messages.

MAIL$_MAILFILE_DATA_RECLAIM Returns the number of data buckets reclaimed.

MAIL$_MAILFILE_DATA_SCAN Returns the number of data buckets scanned.

MAIL$_MAILFILE_INDEX_RECLAIM Returns the number of index buckets reclaimed.

MAIL$_MAILFILE_TOTAL_RECLAIM Returns the total number of bytes reclaimed.

Message Context

MAIL$_MESSAGE_BINARY_DATE Returns the date and time received as a binary value.

MAIL$_MESSAGE_CC Returns the text in the CC: field of the current
message.

MAIL$_MESSAGE_CURRENT_ID Returns the message identification number of the
current message.

MAIL$_MESSAGE_DATE Returns the message creation date string.

MAIL$_MESSAGE_EXTID Returns the external message identification number of
the current message.

MAIL$_MESSAGE_FILE_CREATED Returns the value of the mail file created flag.

MAIL$_MESSAGE_FOLDER_CREATED Returns the value of the folder created flag.

MAIL$_MESSAGE_FROM Returns the text in the From: field of the current
messsage.

MAIL$_MESSAGE_RECORD Returns a record from the current message.

MAIL$_MESSAGE_RECORD_TYPE Returns the record type.

MAIL$_MESSAGE_REPLY_PATH Returns the reply path.

MAIL$_MESSAGE_RESULTSPEC Returns the resultant mail file specification.

MAIL$_MESSAGE_RETURN_FLAGS Returns the MAIL system flag value of the current
message.

MAIL$_MESSAGE_SELECTED Returns the number of selected messages.

MAIL$_MESSAGE_SENDER Returns the name of the sender of the current message.

MAIL$_MESSAGE_SIZE Returns the size in records of the current message.

(continued on next page)

MAIL–22 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.12 Output Item Codes

Table 14–11 (Cont.) Output Item Codes

Item Code Function

Message Context

MAIL$_MESSAGE_SUBJECT Returns the text in the Subject: field of the specified
message.

MAIL$_MESSAGE_TO Returns the text in the To: field of the specified
message.

Send Context

MAIL$_SEND_COPY_FORWARD Returns the value of the caller’s copy forward flag.

MAIL$_SEND_COPY_REPLY Returns the value of the caller’s copy reply flag.

MAIL$_SEND_COPY_SEND Returns the value of the caller’s copy send flag.

MAIL$_SEND_RESULTSPEC Returns the resultant file specification of the file to be
sent.

MAIL$_SEND_USER Returns the process owner’s user name.

User Context

MAIL$_USER_AUTO_PURGE Returns the value of the automatic purge mail flag.

MAIL$_USER_CAPTIVE Returns the value of the UAF captive flag.

MAIL$_USER_CC_PROMPT Returns the value of the CC prompt flag.

MAIL$_USER_COPY_FORWARD Returns the value of the copy self forward flag.

MAIL$_USER_COPY_REPLY Returns the value of the copy self reply flag.

MAIL$_USER_COPY_SEND Returns the value of the copy self send flag.

MAIL$_USER_EDITOR Returns the name of the default editor.

MAIL$_USER_FORM Returns the default print form string.

MAIL$_USER_FORWARDING Returns the forwarding address string.

MAIL$_USER_FULL_DIRECTORY Returns the complete directory path of the mail file
subdirectory.

MAIL$_USER_NEW_MESSAGES Returns the new message count.

MAIL$_USER_PERSONAL_NAME Returns the personal name string.

MAIL$_USER_QUEUE Returns the default queue name string.

MAIL$_USER_RETURN_USERNAME Returns the user name string.

MAIL$_USER_SIGFILE Returns the default signature file specification.

MAIL$_USER_SUB_DIRECTORY Returns the subdirectory specification.

14.13 Using the MAIL Routines: Examples
This section provides examples of using the MAIL routines in various
programming scenarios including the following:

• Example 14–1 is a C program that sends a Mail message to another user.

• Example 14–2 is a C program that displays a user’s folders and returns how
many messages are in each folder.

• Example 14–3 is a C program that displays fields in the user’s Mail profile.

Mail Utility (MAIL) Routines MAIL–23

Mail Utility (MAIL) Routines
14.13 Using the MAIL Routines: Examples

Example 14–1 Sending a File

/* send_message.c */

#include <stdio>
#include <descrip>
#include <ssdef>
#include <maildef>
#include <nam>

typedef struct itmlst
{
short buffer_length;
short item_code;
long buffer_address;
long return_length_address;

} ITMLST;
int

send_context = 0
;

ITMLST
nulllist[] = { {0,0,0,0} };

int
getline(char *line, int max)

{
if (fgets(line, max, stdin) == NULL)
return 0;

else
return strlen(line);

}
int

main (int argc, char *argv[])

{
char

to_user[NAM$C_MAXRSS],
subject_line[NAM$C_MAXRSS],
file[NAM$C_MAXRSS],
resultspec[NAM$C_MAXRSS]
;

long resultspeclen;

int
status = SS$_NORMAL,
file_len = 0,
subject_line_len = 0,
to_user_len = 0
;

(continued on next page)

MAIL–24 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.13 Using the MAIL Routines: Examples

Example 14–1 (Cont.) Sending a File

ITMLST
address_itmlst[] = {
{sizeof(to_user), MAIL$_SEND_USERNAME, to_user, &to_user_len},
{0,0,0,0}},

bodypart_itmlst[] = {
{sizeof(file), MAIL$_SEND_FILENAME, file, &file_len},
{0,0,0,0}},

out_bodypart_itmlst[] = {
{sizeof(resultspec), MAIL$_SEND_RESULTSPEC, resultspec, &resultspeclen},
{0,0,0,0}},

attribute_itmlst[] = {
{sizeof(to_user), MAIL$_SEND_TO_LINE, to_user, &to_user_len},
{sizeof(subject_line), MAIL$_SEND_SUBJECT, subject_line, &subject_line_len},
{0,0,0,0}}

;

status = mail$send_begin(&send_context, &nulllist, &nulllist);
if (status != SS$_NORMAL)
exit(status);

/* Get the destination and add it to the message */
printf("To: ");
to_user[getline(to_user, NAM$C_MAXRSS) - 1] = ’\0’;

address_itmlst[0].buffer_length = strlen(to_user);
address_itmlst[0].buffer_address = to_user;

status = mail$send_add_address(&send_context, address_itmlst, &nulllist);
if (status != SS$_NORMAL)
return(status);

/* Get the subject line and add it to the message header */
printf("Subject: ");
subject_line[getline(subject_line, NAM$C_MAXRSS) - 1] = ’\0’;

/* Displayed TO: line */
attribute_itmlst[0].buffer_length = strlen(to_user);
attribute_itmlst[0].buffer_address = to_user;

/* Subject: line */
attribute_itmlst[1].buffer_length = strlen(subject_line);
attribute_itmlst[1].buffer_address = subject_line;

status = mail$send_add_attribute(&send_context, attribute_itmlst, &nulllist);
if (status != SS$_NORMAL)
return(status);

/* Get the file to send and add it to the bodypart of the message */
printf("File: ");
file[getline(file, NAM$C_MAXRSS) - 1] = ’\0’;

bodypart_itmlst[0].buffer_length = strlen(file);
bodypart_itmlst[0].buffer_address = file;

status = mail$send_add_bodypart(&send_context, bodypart_itmlst, out_bodypart_itmlst);
if (status != SS$_NORMAL)
return(status);

resultspec[resultspeclen] = ’\0’;
printf("Full file spec actually sent: [%s]\n", resultspec);

(continued on next page)

Mail Utility (MAIL) Routines MAIL–25

Mail Utility (MAIL) Routines
14.13 Using the MAIL Routines: Examples

Example 14–1 (Cont.) Sending a File

/* Send the message */
status = mail$send_message(&send_context, nulllist, nulllist);
if (status != SS$_NORMAL)
return(status);

/* Done processing witht the SEND context */
status = mail$send_end(&send_context, nulllist, nulllist);
if (status != SS$_NORMAL)
return(status);

return (status);
}

Example 14–2 shows a C program that displays folders.

Example 14–2 Displaying Folders

/* show_folders.c */

#include <stdio>
#include <descrip>
#include <ctype>
#include <ssdef>
#include <maildef>

typedef struct itmlst
{
short buffer_length;
short item_code;
long buffer_address;
long return_length_address;

} ITMLST;

struct node
{
struct node *next; /* Next folder name node */
char *folder_name; /* Zero terminated folder name */

};
int

folder_routine(struct node *list, struct dsc$descriptor *name)
{
if (name->dsc$w_length)
{
while (list->next)
list = list->next;

list->next = malloc(sizeof(struct node));
list = list->next;
list->next = 0;
list->folder_name = malloc(name->dsc$w_length + 1);
strncpy(list->folder_name,name->dsc$a_pointer,name->dsc$w_length);
list->folder_name[name->dsc$w_length] = ’\0’;

}
return(SS$_NORMAL);

}

(continued on next page)

MAIL–26 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.13 Using the MAIL Routines: Examples

Example 14–2 (Cont.) Displaying Folders

main (int argc, char *argv[])
{
struct node list = {0,0};

int
message_context = 0,
file_context = 0,
messages_selected = 0,
total_folders = 0,
total_messages = 0
;

ITMLST
nulllist[] = {{0,0,0,0}},
message_in_itmlst[] = {
{sizeof(file_context),MAIL$_MESSAGE_FILE_CTX,&file_context,0},
{0,0,0,0}},

mailfile_info_itmlst[] = {
{4,MAIL$_MAILFILE_FOLDER_ROUTINE,folder_routine,0},
{4,MAIL$_MAILFILE_USER_DATA,&list,0},
{0,0,0,0}},

message_select_in_itmlst[] = {
{0,MAIL$_MESSAGE_FOLDER,0,0},
{0,0,0,0}},

message_select_out_itmlst[] = {
{sizeof(messages_selected),MAIL$_MESSAGE_SELECTED,&messages_selected,0},
{0,0,0,0}};

if (mail$mailfile_begin(&file_context, nulllist, nulllist) == SS$_NORMAL) {
if (mail$mailfile_open(&file_context, nulllist, nulllist) == SS$_NORMAL) {
if (mail$mailfile_info_file(&file_context,
mailfile_info_itmlst,
nulllist) == SS$_NORMAL) {

if (mail$message_begin(&message_context,
message_in_itmlst,
nulllist) == SS$_NORMAL) {

struct node *tmp = &list;

while(tmp->next) {
tmp = tmp->next;
message_select_in_itmlst[0].buffer_address = tmp->folder_name;
message_select_in_itmlst[0].buffer_length = strlen(tmp->folder_name);
if (mail$message_select(&message_context,

message_select_in_itmlst,
message_select_out_itmlst) == SS$_NORMAL) {
printf("Folder %s has %d messages\n",
tmp->folder_name, messages_selected);
total_messages += messages_selected;
total_folders++;

}
}

Mail Utility (MAIL) Routines MAIL–27

Mail Utility (MAIL) Routines
14.13 Using the MAIL Routines: Examples

printf("Total of %d messages in %d folders\n",total_messages, total_folders);
}
mail$message_end(&message_context, nulllist, nulllist);

}
mail$mailfile_close(&file_context, nulllist, nulllist);

}
mail$mailfile_end(&file_context, nulllist, nulllist);

}
}

Example 14–3 shows a C program that displays user profile information.

Example 14–3 Displaying User Profile Information

/* show_profile.c */

#include <stdio>
#include <ssdef>
#include <jpidef>
#include <maildef>
#include <stsdef>
#include <ctype>
#include <nam>

struct itmlst
{

short buffer_length;
short item_code;
long buffer_address;
long return_length_address;

};

int
user_context = 0
;

struct
itmlst nulllist[] = { {0,0,0,0} };

int
main (int argc, char *argv[])

{
int

userlen = 0,

/* return length of strings */

editor_len = 0,
form_len = 0,
forwarding_len = 0,
full_directory_len = 0,
personal_name_len = 0,
queue_len = 0,

/* Flags */

auto_purge = 0,
cc_prompt = 0,
copy_forward = 0,
copy_reply = 0,
copy_send = 0
;

(continued on next page)

MAIL–28 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.13 Using the MAIL Routines: Examples

Example 14–3 (Cont.) Displaying User Profile Information

char
user[13],
editor[NAM$C_MAXRSS],
form[NAM$C_MAXRSS],
forwarding[NAM$C_MAXRSS],
full_directory[NAM$C_MAXRSS],
personal_name[NAM$C_MAXRSS],
queue[NAM$C_MAXRSS]
;

short
new_messages = 0
;

struct itmlst
jpi_list[] = {
{sizeof(user) - 1, JPI$_USERNAME, user, &userlen},
{0,0,0,0}},

user_itmlst[] = {
{0, MAIL$_USER_USERNAME, 0, 0},
{0,0,0,0}},

out_itmlst[] = {
/* Full directory spec */

{sizeof(full_directory),MAIL$_USER_FULL_DIRECTORY,full_directory,&full_directory_len},
/* New message count */

{sizeof(new_messages), MAIL$_USER_NEW_MESSAGES, &new_messages, 0},
/* Forwarding field */

{sizeof(forwarding), MAIL$_USER_FORWARDING, forwarding, &forwarding_len},
/* Personal name field */

{sizeof(personal_name), MAIL$_USER_PERSONAL_NAME, personal_name, &personal_name_len},
/* Editor field */

{sizeof(editor), MAIL$_USER_EDITOR, editor, &editor_len},
/* CC prompting flag */

{sizeof(cc_prompt), MAIL$_USER_CC_PROMPT, &cc_prompt, 0},
/* Copy send flag */

{sizeof(copy_send), MAIL$_USER_COPY_SEND, ©_send, 0},
/* Copy reply flag */

{sizeof(copy_reply), MAIL$_USER_COPY_REPLY, ©_reply, 0},
/* Copy forward flag */

{sizeof(copy_forward), MAIL$_USER_COPY_FORWARD, ©_forward, 0},
/* Auto purge flag */

{sizeof(auto_purge), MAIL$_USER_AUTO_PURGE, &auto_purge, 0},
/* Queue field */

{sizeof(queue), MAIL$_USER_QUEUE, queue, &queue_len},
/* Form field */

{sizeof(form), MAIL$_USER_FORM, form, &form_len},

{0,0,0,0}};
int

status = SS$_NORMAL
;

/* Get a mail user context */
status = MAIL$USER_BEGIN(&user_context,

&nulllist,
&nulllist);

if (status != SS$_NORMAL)
return(status);

if (argc > 1) {
strcpy(user,argv[1]);

}
else

{
sys$getjpiw(0,0,0,jpi_list,0,0,0);
user[userlen] = ’\0’;

};

(continued on next page)

Mail Utility (MAIL) Routines MAIL–29

Mail Utility (MAIL) Routines
14.13 Using the MAIL Routines: Examples

Example 14–3 (Cont.) Displaying User Profile Information

while(isspace(user[--userlen]))
user[userlen] = ’\0’;

user_itmlst[0].buffer_length = strlen(user);
user_itmlst[0].buffer_address = user;

status = MAIL$USER_GET_INFO(&user_context, user_itmlst, out_itmlst);
if (status != SS$_NORMAL)
return (status);

/* Release the mail USER context */
status = MAIL$USER_END(&user_context, &nulllist, &nulllist);
if (status != SS$_NORMAL)
return(status);

/* display the information just gathered */

full_directory[full_directory_len] = ’\0’;
printf("Your mail file directory is %s.\n", full_directory);
printf("You have %d new messages.\n", new_messages);

forwarding[forwarding_len] = ’\0’;
if (strlen(forwarding) == 0)
printf("You have not set a forwarding address.\n");

else
printf("Your mail is being forwarded to %s.\n", forwarding);

personal_name[personal_name_len] = ’\0’;
printf("Your personal name is \"%s\"\n", personal_name);

editor[editor_len] = ’\0’;
if (strlen(editor) == 0)
printf("You have not specified an editor.\n");

else
printf("Your editor is %s\n", editor);

printf("CC prompting is %s.\n", (cc_prompt == TRUE) ? "disabled" : "enabled");

printf("Automatic copy to yourself on");
if (copy_send == TRUE)
printf(" SEND");

if (copy_reply == TRUE) {
if (copy_send == TRUE)
printf(",");

printf(" REPLY");
}
if (copy_forward == TRUE) {
if ((copy_reply == TRUE) || (copy_send == TRUE))
printf(",");

printf(" FORWARD");
}
if ((copy_reply == FALSE) && (copy_send == FALSE) && (copy_forward == FALSE))
printf(" Nothing");

printf("\n");

printf("Automatic deleted message purge is %s.\n", (auto_purge == TRUE) ? "disabled" : "enabled");

queue[queue_len] = ’\0’;
if (strlen(queue) == 0)
printf("You have not specified a default queue.\n");

else
printf("Your default print queue is %s.\n", queue);

form[form_len] = ’\0’;
if (strlen(form) == 0)
printf("You have not specified a default print form.\n");

else
printf("Your default print form is %s.\n", form);

}

MAIL–30 Mail Utility (MAIL) Routines

Mail Utility (MAIL) Routines
14.14 MAIL Routines

14.14 MAIL Routines
This section describes the individual MAIL routines. Input and output item
list arguments use item descriptor fields structured as shown in the following
diagram:

ZK−1705−GE

Return length address

Buffer address

Item code Buffer length

31 015

Item Descriptor Fields
buffer length
For input item lists, this word specifies the length (in bytes) of the buffer that
supplies the information needed by the routine to process the specified item code.

For output item lists, this word contains a user-supplied integer specifying the
length (in bytes) of the buffer in which the routine is to write the information.

The required length of the buffer depends on the item code specified in the item
code field of the item descriptor. If the value of buffer length is too small, the
routine truncates the data.

item code
For input item lists, a word containing a user-supplied symbolic code that
specifies an option for the Mail utility operation. For output item lists, a word
containing a user-supplied symbolic code specifying the item of information that
the routine is to return. Each programming language provides an appropriate
mechanism for defining this information.

buffer address
For input item lists, a longword containing the address of the buffer that supplies
information to the routine. For output item lists, a longword containing the user-
supplied address of the buffer in which the routine is to write the information.

return length address
This field is not used for input item lists. For output item lists, this field contains
a longword specifying the user-supplied address of a longword in which the
routine writes the actual length in bytes of the information it returns.

Mail Utility (MAIL) Routines MAIL–31

Mail Utility Routines
MAIL$MAILFILE_BEGIN

MAIL$MAILFILE_BEGIN—Start Mail File Processing

Initiates mail file processing.

Format

MAIL$MAILFILE_BEGIN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to other mail file routines. The context
argument is the address of a longword that contains mail file context information.

You should specify the value of this argument as 0 in the first of a sequence of
calls to mail file routines. In the following calls, you should specify the mail file
context value returned by this routine.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by a longword value of 0.

For this routine, there are no input item codes.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

MAIL–32 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_BEGIN

The only output item code for this routine is the MAIL$_MAILFILE_MAIL_
DIRECTORY item code. When you specify MAIL$_MAILFILE_MAIL_
DIRECTORY, MAIL$MAILFILE_BEGIN returns the mail directory specification
to the caller. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$MAILFILE_BEGIN creates and initiates a mail file context for calls to
other mail file routines.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.
Any condition value returned by LIB$GET_VM, $GETJPIW, and $GETSYI.

Mail Utility (MAIL) Routines MAIL–33

Mail Utility Routines
MAIL$MAILFILE_CLOSE

MAIL$MAILFILE_CLOSE—Close the Current Mail File

Closes the currently open mail file.

Format

MAIL$MAILFILE_CLOSE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context
argument is the address of a longword that contains mail file context information
returned by MAIL$MAILFILE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MAILFILE_FULL_CLOSE
The Boolean item code MAIL$_MAILFILE_FULL_CLOSE specifies that
MAIL$MAILFILE_CLOSE should purge the wastebasket folder when it closes
the mail file. If the number of bytes deleted by the purge operation exceeds a
system-defined threshold, the Mail utility reclaims the deleted space from the
mail file.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

The system-defined threshold is reserved by Compaq.

MAIL–34 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_CLOSE

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

MAIL$_MAILFILE_DATA_RECLAIM
When you specify MAIL$_MAILFILE_DATA_RECLAIM, MAIL$MAILFILE_
CLOSE returns the number of data buckets reclaimed during the reclaim
operation as a longword value.

MAIL$_MAILFILE_DATA_SCAN
When you specify MAIL$_MAILFILE_DATA_SCAN, MAIL$MAILFILE_CLOSE
returns the number of data buckets scanned during the reclaim operation as a
longword value.

MAIL$_MAILFILE_INDEX_RECLAIM
When you specify MAIL$_MAILFILE_INDEX_RECLAIM, MAIL$MAILFILE_
CLOSE returns the number of index buckets reclaimed during a reclaim operation
as a longword value.

MAIL$_MAILFILE_MESSAGES_DELETED
When you specify MAIL$_MAILFILE_MESSAGES_DELETED,
MAIL$MAILFILE_CLOSE returns the number of messages deleted as a longword
value.

MAIL$_MAILFILE_TOTAL_RECLAIM
When you specify MAIL$_MAILFILE_TOTAL_RECLAIM, MAIL$MAILFILE_
CLOSE returns the number of bytes reclaimed during a reclaim operation as a
longword value.

Description

If you specify the input item code MAIL$_MAILFILE_FULL_CLOSE, this
procedure purges the wastebasket folder automatically before it closes the file. If
the number of bytes deleted by this procedure exceeds the deleted byte threshold,
the system performs a convert/reclaim operation on the file.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOFILEOPEN No mail file is open.
SS$_ACCVIO Access violation.

Mail Utility (MAIL) Routines MAIL–35

Mail Utility Routines
MAIL$MAILFILE_COMPRESS

MAIL$MAILFILE_COMPRESS—Compress Mail File

Compresses a mail file.

Format

MAIL$MAILFILE_COMPRESS context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to various mail file routines. The
context argument is the address of a longword that contains mail file context
information returned by MAIL$MAILFILE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MAILFILE_DEFAULT_NAME
MAIL$_MAILFILE_DEFAULT_NAME specifies the default file specification the
Mail utility should use when opening a mail file. The buffer address field
points to a character string 0 to 255 characters long that defines the default file
specification.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you specify the value 0 in buffer length field of the item descriptor,
MAIL$MAILFILE_COMPRESS uses the current default directory as the default
mail file specification.

MAIL–36 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_COMPRESS

If you do not specify MAIL$_MAILFILE_DEFAULT_NAME, MAIL$MAILFILE_
COMPRESS creates the default mail file specification from the following sources:

• Disk and directory defined in the caller’s user authorization file (UAF)

• Subdirectory defined in the Mail user profile

• Default file type of .MAI

MAIL$_MAILFILE_FULL_CLOSE
The Boolean item code MAIL$_MAILFILE_FULL_CLOSE requests that the
wastebasket folder be purged and that convert and reclaim operations be
performed, if necessary.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_MAILFILE_NAME
MAIL$_MAILFILE_NAME specifies the name of a mail file to be opened. The
buffer that the buffer address field points to contains a character string of 0 to
255 characters.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you do not specify MAIL$_MAILFILE_NAME, the default mail file name is
MAIL.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Code

MAIL$_MAILFILE_RESULTSPEC
When you specify MAIL$_MAILFILE_RESULTSPEC, the Mail utility returns the
resultant mail file specification. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description

If you do not specify an input file, the MAIL$MAILFILE_COMPRESS routine
compresses the currently open Mail file. The MAIL$MAILFILE_COMPRESS
routine signals informational messages concerning the phase of the compression.

Mail Utility (MAIL) Routines MAIL–37

Mail Utility Routines
MAIL$MAILFILE_COMPRESS

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOTISAM The message file is not an indexed file.
RMS$_FNF The specified file cannot be found.
RMS$_SHR The specified file is not shareable.
SS$_ACCVIO Access violation.
SS$_IVDEVNAM The specified device name is invalid.
Any condition value returned by LIB$FIND_IMAGE_SYMBOL, LIB$RENAME_
FILE, $CREATE, $OPEN, $PARSE, and $SEARCH.

MAIL–38 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_END

MAIL$MAILFILE_END—End Mail File Processing

Terminates mail file processing.

Format

MAIL$MAILFILE_END context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context
argument is the address of a longword that contains MAILFILE context
information returned by MAIL$MAILFILE_BEGIN.

If mail file processing is terminated successfully, the Mail utility sets the value of
the argument context to 0.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MAILFILE_FULL_CLOSE
The Boolean item code MAIL$_MAILFILE_FULL_CLOSE requests that the
wastebasket folder be purged and that convert and reclaim operations be
performed, if necessary.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Mail Utility (MAIL) Routines MAIL–39

Mail Utility Routines
MAIL$MAILFILE_END

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

None.

Description

The MAIL$MAILFILE_END routine deallocates the mail file context created by
MAIL$MAILFILE_BEGIN as well as any dynamic memory allocated by other
mail file processing routines.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.
Any condition value returned by LIB$FREE_VM.

MAIL–40 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_INFO_FILE

MAIL$MAILFILE_INFO_FILE—Get Information About a Mail File

Obtains information about a specified mail file.

Format

MAIL$MAILFILE_INFO_FILE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context
argument is the address of a longword that contains mail file context information
returned by MAIL$MAILFILE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MAILFILE_DEFAULT_NAME
MAIL$_MAILFILE_DEFAULT_NAME specifies the default mail file specification
MAIL$MAILFILE_INFO_FILE should use when opening a mail file. The buffer
address field of the item descriptor points to a character string of 0 to 255
characters that defines the default mail file specification.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you specify the value 0 in buffer length field of the item descriptor,
MAIL$MAILFILE_INFO_FILE uses the current default directory as the default
mail file specification.

Mail Utility (MAIL) Routines MAIL–41

Mail Utility Routines
MAIL$MAILFILE_INFO_FILE

If you do not specify MAIL$_MAILFILE_DEFAULT_NAME, MAIL$MAILFILE_
INFO_FILE creates the default mail file specification from the following sources:

• Disk and directory defined in the caller’s user authorization file (UAF)

• Subdirectory defined in the Mail user profile

• Default file type of .MAI

MAIL$_MAILFILE_FOLDER_ROUTINE
MAIL$_MAILFILE_FOLDER_ROUTINE specifies an entry point longword
address of a user-written routine that MAIL$MAILFILE_INFO_FILE should use
to display folder names. MAIL$MAILFILE_INFO_FILE calls the user-written
routine for each folder in the mail file.

MAIL$_MAILFILE_NAME
MAIL$_MAILFILE_NAME specifies the name of the mail file to be opened. The
buffer address field points to a buffer that contains a character string 0 to 255
characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you do not specify MAIL$_MAILFILE_NAME, the default mail file name is
MAIL.

MAIL$_MAILFILE_USER_DATA
MAIL$_MAILFILE_USER_DATA specifies a longword that MAIL$MAILFILE_
INFO_FILE should pass to the user-defined folder name action routine.

This item code is valid only when used with the item code MAIL$_MAILFILE_
FOLDER_ROUTINE.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

MAIL$_MAILFILE_DELETED_BYTES
When you specify MAIL$_MAILFILE_DELETED_BYTES, MAIL$MAILFILE_
INFO_FILE returns the number of deleted bytes in a specified mail file as
longword value.

MAIL$_MAILFILE_RESULTSPEC
When you specify MAIL$_MAILFILE_RESULTSPEC, MAIL$MAILFILE_INFO_
FILE returns the resultant mail file specification. The buffer address field of
the item descriptor points to a buffer that receives a character string 0 to 255
characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL–42 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_INFO_FILE

MAIL$_MAILFILE_WASTEBASKET
When you specify MAIL$_MAILFILE_WASTEBASKET, MAIL$MAILFILE_
INFO_FILE returns the name of the wastebasket folder of the specified mail file.
The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 39 characters long.

Specify a value from 0 to 39 in the buffer length field of the item descriptor.

Description

If you do not specify an input file, the MAIL$MAILFILE_INFO_FILE returns
information about the currently open mail file.

Folder Action Routines
If you use the item code MAIL$_MAILFILE_FOLDER_ROUTINE to specify a
folder name routine, MAIL$MAILFILE_INFO_FILE passes control to a user-
specified routine. For example, the folder action routine could display folder
names. The user routine must return a 32-bit integer code. If the return code
indicates success, the interaction between the user’s routine and the callable
routine can continue.

The folder action routine passes a pointer to the descriptor of a folder name
as well as the user data longword. A descriptor of zero length indicates that
the MAIL$MAILFILE_INFO_FILE routine has displayed all folder names.
If you do not specify the item code MAIL$_MAILFILE_FOLDER_ROUTINE,
MAIL$MAILFILE_INFO_FILE does not call any folder action routines.

Condition Values Returned

MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOFILEOPEN The mail file is not open.
MAIL$_NOTISAM The message file is not an indexed file.
MAIL$_OPENIN Mail cannot open the file as input.
SS$_ACCVIO Access violation.
Any condition value returned by $CLOSE, $OPEN, $PARSE, and $SEARCH.

Mail Utility (MAIL) Routines MAIL–43

Mail Utility Routines
MAIL$MAILFILE_MODIFY

MAIL$MAILFILE_MODIFY—Modify Record of an Indexed File

Modifies the informational record of an indexed mail file, including the mail file
name, the default mail file name, and the wastebasket name.

Format

MAIL$MAILFILE_MODIFY context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context
argument is the address of a longword that contains mail file context information
returned by MAIL$MAILFILE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MAILFILE_DEFAULT_NAME
MAIL$_MAILFILE_DEFAULT_NAME specifies the default file specification that
the Mail utility should use when opening a mail file. The buffer address field
points to a buffer that contains a character string of 0 to 255 characters that
defines the default mail file specification.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you specify the value 0 in the buffer length field of the item descriptor,
MAIL$MAILFILE_MODIFY uses the current default directory as the default
mail file specification.

MAIL–44 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_MODIFY

If you do not specify MAIL$_MAILFILE_DEFAULT_NAME, MAIL$MAILFILE_
MODIFY creates the default mail file specification from the following sources:

• Disk and directory defined in the caller’s user authorization file (UAF)

• Subdirectory defined in the Mail user profile

• Default file type of .MAI

MAIL$_MAILFILE_NAME
MAIL$_MAILFILE_NAME specifies the name of the mail file that the Mail
utility should open. The buffer address field points to a buffer that contains a
character string of 0 to 255 characters.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you do not specify MAIL$_MAILFILE_NAME, the default mail file name is
MAIL.

MAIL$_MAILFILE_WASTEBASKET_NAME
MAILFILE_WASTEBASKET_NAME specifies a new folder name for the
wastebasket in the specified mail file. The buffer address field points to a
buffer that contains a character string of 1 to 39 characters.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Code

MAIL$_MAILFILE_RESULTSPEC
When you specify MAIL$_MAILFILE_RESULTSPEC, the Mail utility returns the
resultant mail file specification. The buffer address field points to a buffer that
receives a character string from 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description

If a mail file is not specified, the currently open mail file is used.

Mail Utility (MAIL) Routines MAIL–45

Mail Utility Routines
MAIL$MAILFILE_MODIFY

Condition Values Returned

MAIL$_ILLFOLNAM The specified folder name is illegal.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOTISAM The message file is not an indexed file.
MAIL$_OPENIN Mail cannot open the file as input.
SS$_ACCVIO Access violation.
Any condition value returned by $CLOSE, $FIND, $PUT, and $UPDATE.

MAIL–46 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_OPEN

MAIL$MAILFILE_OPEN—Open a Mail File for Processing

Opens a specified mail file for processing. You must use this routine to open a
mail file before you can do either of the following:

• Call any mail file routines to manipulate mail files

• Call message routines to read messages from the specified mail file

Format

MAIL$MAILFILE_OPEN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to mail file routines. The context
argument is the address of a longword that contains mail file context information
returned by MAIL$MAILFILE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MAILFILE_DEFAULT_NAME
MAIL$_MAILFILE_DEFAULT_NAME specifies the default file specification
MAIL$MAILFILE_OPEN should use when opening a mail file. The buffer
address field points to a character string of 0 to 255 characters that defines the
default file specification.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Mail Utility (MAIL) Routines MAIL–47

Mail Utility Routines
MAIL$MAILFILE_OPEN

If you specify the value 0 in the buffer length field of the item descriptor,
MAIL$MAILFILE_OPEN uses the current default directory as the default mail
file specification.

If you do not specify MAIL$_MAILFILE_DEFAULT_NAME, MAIL$MAILFILE_
OPEN creates the default mail file specification from the following sources:

• Disk and directory defined in the caller’s user authorization file (UAF)

• Subdirectory defined in the Mail user profile

• Default file type of .MAI

MAIL$_MAILFILE_NAME
MAIL$_MAILFILE_NAME specifies the name of the mail file MAIL$MAILFILE_
OPEN should open. The buffer address field points to a buffer that contains a
character string of 0 to 255 characters.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

If you do not MAIL$_MAILFILE_NAME, the default mail file name is MAIL.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

MAIL$_MAILFILE_DELETED_BYTES
When you specify MAIL$_MAILFILE_DELETED_BYTES, MAIL$MAILFILE_
OPEN returns the number of deleted bytes in the specified mail file as a longword
value.

MAIL$_MAILFILE_INDEXED
When you specify MAIL$_MAILFILE_INDEXED, MAIL$MAILFILE_OPEN
returns a Boolean TRUE when you open an indexed file. The buffer length field
points to a longword that receives the Boolean value.

MAIL$_MAILFILE_RESULTSPEC
When you specify MAIL$_MAILFILE_RESULTSPEC, MAIL$MAILFILE_OPEN
returns the resultant mail file specification. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MAILFILE_WASTEBASKET
When you specify MAIL$_MAILFILE_WASTEBASKET, MAIL$MAILFILE_OPEN
returns the name of the wastebasket for the specified mail file. The buffer
address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL–48 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_OPEN

Description

The default mail file specification is MAIL.MAI in the MAIL subdirectory.

Condition Values Returned

MAIL$_FILEOPEN The mail file is already open.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOMSGS No messages are available.
SS$_ACCVIO Access violation.
Any condition value returned by LIB$GET_VM, $CONNECT, and $OPEN.

Mail Utility (MAIL) Routines MAIL–49

Mail Utility Routines
MAIL$MAILFILE_PURGE_WASTE

MAIL$MAILFILE_PURGE_WASTE—Delete Wastebasket Messages

Deletes messages contained in the wastebasket folder of the currently open mail
file.

Format

MAIL$MAILFILE_PURGE_WASTE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Mail file context information to be passed to other mail file routines. The context
argument is the address of a longword that contains mail file context information.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MAILFILE_RECLAIM
The Boolean item code MAIL$_MAILFILE_RECLAIM specifies that
MAIL$MAILFILE_PURGE_WASTE purge the wastebasket folder and reclaim
deleted space in the mail file.

Specify the value 0 in the buffer length field of the item descriptor.

MAIL$_MAILFILE_RECLAIM explicitly requests a reclaim operation and
overrides the deleted byte’s threshold regardless of the number of bytes deleted
during a mail file purge operation.

MAIL–50 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MAILFILE_PURGE_WASTE

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

MAIL$_MAILFILE_DATA_RECLAIM
When you specify MAIL$_MAILFILE_DATA_RECLAIM, MAIL$MAILFILE_
PURGE_WASTE returns the number of data buckets reclaimed during the
reclaim operation as a longword value.

MAIL$_MAILFILE_DATA_SCAN
When you specify MAIL$_MAILFILE_DATA_SCAN, MAIL$MAILFILE_PURGE_
WASTE returns the number of data buckets scanned during the reclaim operation
as a longword value.

MAIL$_MAILFILE_INDEX_RECLAIM
When you specify MAIL$_MAILFILE_INDEX_RECLAIM, the Mail utility returns
the number of index buckets reclaimed during a reclaim operation as a longword
value.

MAIL$_MAILFILE_DELETED_BYTES
When you specify MAIL$_MAILFILE_DELETED_BYTES, MAIL$MAILFILE_
PURGE_WASTE returns the number of bytes deleted from the mail file as a
longword value.

MAIL$_MAILFILE_MESSAGES_DELETED
When you specify MAIL$_MAILFILE_MESSAGES_DELETED,
MAIL$MAILFILE_PURGE_WASTE returns the number of deleted messages
as a longword value.

MAIL$_MAILFILE_TOTAL_RECLAIM
When you specify MAIL$_MAILFILE_TOTAL_RECLAIM, MAIL$MAILFILE_
PURGE_WASTE returns the number of bytes reclaimed due to a reclaim
operation as a longword value.

Description

If you specify the MAIL$_MAILFILE_RECLAIM item descriptor, all the bytes
deleted from the mail file by this routine are reclaimed.

Mail Utility (MAIL) Routines MAIL–51

Mail Utility Routines
MAIL$MAILFILE_PURGE_WASTE

Condition Values Returned

MAIL$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOFILEOPEN No mail file is currently open.
MAIL$_NOTISAM The message file is not an indexed file.
SS$_ACCVIO Access violation.

MAIL–52 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_BEGIN

MAIL$MESSAGE_BEGIN—Start Message Processing

Begins message processing. You must call this routine before calling any other
message routines.

Format

MAIL$MESSAGE_BEGIN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to various message routines. The
context argument is the address of a longword that contains message context
information.

You should specify the value of this argument as 0 in the first of a sequence of
calls to message routines. In the following calls, you should specify the message
context value returned by this routine.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MESSAGE_FILE_CTX
MAIL$_MESSAGE_FILE_CTX specifies the mail file context received from
MAIL$MAILFILE_BEGIN to be passed to the message routines. The buffer
address field of the item descriptor points to a longword that contains mail file
context information.

The item code MAIL$_MESSAGE_FILE_CTX is required.

Mail Utility (MAIL) Routines MAIL–53

Mail Utility Routines
MAIL$MESSAGE_BEGIN

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Code

MAIL$_MESSAGE_SELECTED
When you specify MAIL$_MESSAGE_SELECTED, MAIL$MESSAGE_BEGIN
returns the number of messages selected as a longword value.

Description

MAIL$MESSAGE_BEGIN creates and initializes a message context for
subsequent calls to message routines.

Condition Values Returned

MAIL$_ILLCTXADR The context block address is illegal.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOFILEOPEN The mail file is not open.
MAIL$_WRONGCTX The context block is incorrect.
MAIL$_WRONGFILE The specified file is incorrect in this context.
SS$_ACCVIO Access violation.
Any condition value returned by $GET and LIB$GET_VM.

MAIL–54 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_COPY

MAIL$MESSAGE_COPY—Copy Messages to Another File or Folder

Copies messages between files or folders.

Format

MAIL$MESSAGE_COPY context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context
argument is the address of a longword that contains message context information
returned by MAIL$MESSAGE_BEGIN.

You should specify this argument as 0 in the first of a sequence of calls to
message routines. In the following calls, you should specify the message context
value returned by the previous routine.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MESSAGE_BACK
When you specify the Boolean item code MAIL$_MESSAGE_BACK,
MAIL$MESSAGE_COPY copies the message preceding the current message.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL$_
MESSAGE_NEXT in the same call to MAIL$MESSAGE_COPY.

Mail Utility (MAIL) Routines MAIL–55

Mail Utility Routines
MAIL$MESSAGE_COPY

MAIL$_MESSAGE_DEFAULT_NAME
MAIL$_MESSAGE_DEFAULT_NAME specifies the default file specification of a
mail file to open in order to copy a message. The buffer address field of the item
descriptor points to a buffer that contains a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_DELETE
When you specify the Boolean item code MAIL$_MESSAGE_DELETE,
MAIL$MESSAGE_COPY deletes the message in the current folder after the
message has been copied to a destination folder.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Specify MAIL$_MESSAGE_DELETE to emulate the operation of MAIL MOVE or
FILE command.

MAIL$_MESSAGE_FILE_ACTION
MAIL$_MESSAGE_FILE_ACTION specifies the address of the mail file action
routine called if a mail file is to be created. Two parameters are passed as follows:

• User data longword

• Address of the descriptor of the file name to be created

The buffer address field of the item descriptor points to a longword that denotes
a procedure value.

MAIL$_MESSAGE_FILENAME
MAIL$_MESSAGE_FILENAME specifies the name of the mail file to which the
current message will be moved. The buffer address field of the item descriptor
points to a buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_FOLDER
MAIL$_MESSAGE_FOLDER specifies the name of the target folder for moving
mail messages. The buffer address field of the item descriptor points to a buffer
that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The item code MAIL$_MESSAGE_FOLDER is required.

MAIL$_MESSAGE_FOLDER_ACTION
MAIL$_MESSAGE_FOLDER_ACTION specifies the entry point address of the
folder action routine called if a folder is to be created. Two parameters are passed
as follows:

• User data longword

• Address of a descriptor of the folder name to be created.

The buffer address field of the item descriptor points to a longword that
specifies a procedure value.

MAIL–56 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_COPY

MAIL$_MESSAGE_ID
MAIL$_MESSAGE_ID specifies the message identification number of the message
on which the operation is to be performed. The buffer address field of the item
descriptor points to a longword that contains the message identification number.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL$_
MESSAGE_NEXT in the same call to MAIL$MESSAGE_COPY.

MAIL$_MESSAGE_NEXT
When you specify the Boolean item code MAIL$_MESSAGE_NEXT, the Mail
utility copies the message following the current message.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL$_
MESSAGE_NEXT in the same call to MAIL$MESSAGE_COPY.

MAIL$_MESSAGE_USER_DATA
MAIL$_MESSAGE_USER_DATA specifies data passed to the folder action and
mail file action routines. The buffer address field of the item descriptor points
to a user data longword.

Specify MAIL$_MESSAGE_USER_DATA with the item codes MAIL$_MESSAGE_
FILE_ACTION and MAIL$_MESSAGE_FOLDER_ACTION only.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

MAIL$_MESSAGE_FILE_CREATED
When you specify the Boolean item code MAIL$_MESSAGE_FILE_CREATED,
MAIL$MESSAGE_COPY returns the value of the file created flag as longword
value.

MAIL$_MESSAGE_FOLDER_CREATED
When you specify the Boolean item code MAIL$_MESSAGE_FOLDER_
CREATED, MAIL$MESSAGE_COPY returns the value of the folder created
flag as a longword value.

MAIL$_MESSAGE_RESULTSPEC
When you specify MAIL$_MESSAGE_RESULTSPEC, MAIL$MESSAGE_COPY
returns the mail file resultant file specification. The buffer address field of
the item descriptor points to a buffer that receives a character string 0 to 255
characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Mail Utility (MAIL) Routines MAIL–57

Mail Utility Routines
MAIL$MESSAGE_COPY

Description

If you do not specify a file name, the routine copies the message to another folder
in the currently open mail file. The target mail file must be an indexed file.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_BADVALUE The specified keyword value is invalid.
MAIL$_CONITMCOD The specified item codes define conflicting

operations.
MAIL$_DATIMUSED The date and time is currently used in the

specified file.
MAIL$_DELMSG The message is deleted.
MAIL$_ILLCTXADR The context block address is illegal.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_MSGINFO Informational records are successfully returned.
MAIL$_MSGTEXT Text record is successfully returned.
MAIL$_NOFILEOPEN The mail file is not open.
MAIL$_NOMOREREC No more records can be found.
MAIL$_NOTREADIN The operation is invalid; you are not reading a

message.
MAIL$_RECTOBIG The record is too large for the MAIL buffer.
MAIL$_WRONGCTX The context block is incorrect.
MAIL$_WRONGFILE The specified file is incorrect in this context.
SS$_IVDEVNAM The device name is invalid.
SS$_ACCVIO Access violation.
Any condition value returned by $CONNECT, $CREATE, $OPEN, $WRITE,
$READ, and $PUT.

MAIL–58 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_DELETE

MAIL$MESSAGE_DELETE—Delete Message From Current Folder

Deletes a specified message from the currently selected folder.

Format

MAIL$MESSAGE_DELETE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context
argument is the address of a longword that contains message context information.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MESSAGE_ID
MAIL$_MESSAGE_ID specifies the message identification number of the message
on which the operation is to be performed. The buffer address field points to a
longword that contains the message identification number.

The item code MAIL$_MESSAGE_ID is required.

Mail Utility (MAIL) Routines MAIL–59

Mail Utility Routines
MAIL$MESSAGE_DELETE

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

None.

Description

When you delete a message from a selected folder, it is moved to the wastebasket
folder. You cannot delete a message from the wastebasket folder. You must use
the MAIL$MAILFILE_PURGE_WASTE routine to empty the wastebasket folder.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_ILLCTXADR The context block address is illegal.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOFILEOPEN The mail file is not open.
MAIL$_WRONGCTX The context block is incorrect.
MAIL$_WRONGFILE The specified file is incorrect in this context.
SS$_ACCVIO Access violation.

MAIL–60 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_END

MAIL$MESSAGE_END—End Message Processing

Ends message processing.

Format

MAIL$MESSAGE_END context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context
argument is the address of a longword that contains message context information
returned by MAIL$MESSAGE_BEGIN. If message processing ends successfully,
the argument context is changed to 0.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_
item_list argument.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. This routine
does not use the out_item_list argument.

Description

The MAIL$MESSAGE_END routine deallocates the message context created by
MAIL$MESSAGE_BEGIN as well as any dynamic memory allocated by other
message routines.

Mail Utility (MAIL) Routines MAIL–61

Mail Utility Routines
MAIL$MESSAGE_END

Condition Values Returned

MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.
Any condition value returned by LIB$FREE_VM.

MAIL–62 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_GET

MAIL$MESSAGE_GET—Get Message From a Set of Messages

Retrieves a message from the set of currently selected messages.

Format

MAIL$MESSAGE_GET context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context
argument is the address of a longword that contains message context information
returned by MAIL$MESSAGE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MESSAGE_AUTO_NEWMAIL
When you specify the Boolean item code MAIL$_MESSAGE_AUTO_NEWMAIL,
MAIL$MESSAGE_GET automatically places a new message in the mail folder
as it is read. MAIL$_MESSAGE_AUTO_NEWMAIL is valid only when specified
with the item code MAIL$_MESSAGE_CONTINUE.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Mail Utility (MAIL) Routines MAIL–63

Mail Utility Routines
MAIL$MESSAGE_GET

MAIL$_MESSAGE_BACK
When you specify the Boolean item code MAIL$_MESSAGE_BACK,
MAIL$MESSAGE_GET reads the message identification number of a specified
message to return the first record of the preceding message.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_
CONTINUE, MAIL$_MESSAGE_ID, and MAIL$_MESSAGE_NEXT in the same
call to MAIL$MESSAGE_GET.

MAIL$_MESSAGE_CONTINUE
When you specify the Boolean item code MAIL$_MESSAGE_CONTINUE,
MAIL$MESSAGE_GET reads the message identification number of a specified
message to return the next text record of the current message.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_
CONTINUE, MAIL$_MESSAGE_ID, and MAIL$_MESSAGE_NEXT in the same
call to MAIL$MESSAGE_GET.

MAIL$_MESSAGE_ID
MAIL$_MESSAGE_ID specifies the message identification number of a message
on which an operation is to be performed. The buffer address field of the item
descriptor points to a longword that contains the message identification number.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_
CONTINUE, MAIL$_MESSAGE_ID, and MAIL$_MESSAGE_NEXT in the same
call to MAIL$MESSAGE_GET.

MAIL$_MESSAGE_NEXT
When you specify the Boolean item code MAIL$_MESSAGE_NEXT,
MAIL$MESSAGE_GET reads the message identification number of a specified
message to return the first record of the message following the current message.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_
CONTINUE, MAIL$_MESSAGE_ID, and MAIL$_MESSAGE_NEXT in the same
call to MAIL$MESSAGE_GET.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

MAIL–64 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_GET

Output Item Codes

MAIL$_MESSAGE_BINARY_DATE
When you specify MAIL$_MESSAGE_BINARY_DATE, MAIL$MESSAGE_GET
returns the message arrival date as a quadword binary value.

MAIL$_MESSAGE_CC
When you specify MAIL$_MESSAGE_CC, MAIL$MESSAGE_GET returns the
CC: field of the current message. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_CURRENT_ID
When you specify MAIL$_MESSAGE_CURRENT_ID, MAIL$MESSAGE_GET
returns the message identification number of the current message. The buffer
address field of the item descriptor points to a longword that receives the
message identifier number.

MAIL$_MESSAGE_DATE
When you specify MAIL$_MESSAGE_DATE, MAIL$MESSAGE_GET returns the
message creation date string. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_EXTID
MAIL$_MESSAGE_EXTID specifies the external message identification number
of the current message. The buffer address field of the item descriptor points to
a buffer that contains a character string 0 to 255 characters long.

MAIL$_MESSAGE_FROM
When you specify MAIL$_MESSAGE_FROM, MAIL$MESSAGE_GET returns
the From: field of the specified message. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_RECORD
When you specify MAIL$_MESSAGE_RECORD, MAIL$MESSAGE_GET returns
a record of the message. The buffer address field of the item descriptor points
to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_RECORD is valid only when specified with the item code
MAIL$_MESSAGE_CONTINUE.

Do not specify MAIL$_MESSAGE_RECORD with the following item codes:

• MAIL$_MESSAGE_BACK

• MAIL$_MESSAGE_ID

• MAIL$_MESSAGE_NEXT

Mail Utility (MAIL) Routines MAIL–65

Mail Utility Routines
MAIL$MESSAGE_GET

MAIL$_MESSAGE_RECORD_TYPE
When you specify MAIL$_MESSAGE_RECORD_TYPE, MAIL$MESSAGE_GET
returns the record type. A record may be either header information (MAIL$_
MESSAGE_HEADER) or text (MAIL$_MESSAGE_TEXT). The buffer address
field of the item descriptor points to a word that receives the record type.

MAIL$_MESSAGE_RETURN_FLAGS
When you specify MAIL$_MESSAGE_RETURN_FLAGS, MAIL$MESSAGE_GET
returns the Mail system flag for the current message as a 2-byte bit mask value.

MAIL$_MESSAGE_SENDER
When you specify MAIL$_MESSAGE_SENDER, MAIL$MESSAGE_GET returns
the name of the sender of the current message. The buffer address field of
the item descriptor points to a buffer that receives a character string 0 to 255
characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_SIZE
When you specify MAIL$_MESSAGE_SIZE, MAIL$MESSAGE_GET returns the
size in records of the current message as a longword value.

MAIL$_MESSAGE_SUBJECT
When you specify MAIL$_MESSAGE_SUBJECT, MAIL$MESSAGE_GET returns
the Subject: field of the specified message. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_TO
When you specify MAIL$_MESSAGE_TO, MAIL$MESSAGE_GET returns the To:
field of the specified message. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description

The first time the MAIL$MESSAGE_GET routine is called, the message
information is returned for the first requested message, and the status returned
is MAIL$_MSGINFO. Subsequent calls to MAIL$MESSAGE_GET with the
MAIL$_MESSAGE_CONTINUE item code return the message text records with
the status MAIL$_MSGTEXT, until no more records are left, when MAIL$_
NOMOREREC is returned.

Condition Values Returned

MAIL$_MSGINFO Informational records are successfully returned.
MAIL$_MSGTEXT Text record is successfully returned.
MAIL$_ILLCTXADR The context block address is illegal.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.

MAIL–66 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_GET

MAIL$_NOFILEOPEN The mail file is not open.
MAIL$_NOMOREREC No more records can be found.
MAIL$_NOTREADIN The operation is invalid; you are not reading a

message.
MAIL$_RECTOBIG The record is too large for the mail buffer.
MAIL$_WRONGCTX The context block is incorrect.
MAIL$_WRONGFILE The specified file is incorrect in this context.
SS$_ACCVIO Access violation.
Any condition value returned by $FIND and $UPDATE.

Mail Utility (MAIL) Routines MAIL–67

Mail Utility Routines
MAIL$MESSAGE_INFO

MAIL$MESSAGE_INFO—Get Information About a Message

Obtains information about a specified message contained in the set of currently
selected messages.

Format

MAIL$MESSAGE_INFO context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context
argument is the address of a longword that contains message context information
returned by MAIL$MESSAGE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MESSAGE_BACK
When you specify Boolean item code MAIL$_MESSAGE_BACK,
MAIL$MESSAGE_INFO reads the identification number of the current message
and returns the preceding message.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL$_
MESSAGE_NEXT in the same call to MAIL$MESSAGE_INFO.

MAIL–68 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_INFO

MAIL$_MESSAGE_ID
MAIL$_MESSAGE_ID specifies the message identification number of the message
on which the operation is to be performed. The buffer address field of the item
descriptor points to a longword that contains the message identification number.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL$_
MESSAGE_NEXT in the same call to MAIL$MESSAGE_INFO.

MAIL$_MESSAGE_NEXT
When you specify the Boolean item code MAIL$_MESSAGE_NEXT,
MAIL$MESSAGE_INFO reads the message identification number of the current
message and returns the message that follows it.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID, and MAIL$_
MESSAGE_NEXT in the same call to MAIL$MESSAGE_INFO.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

MAIL$_MESSAGE_BINARY_DATE
When you specify MAIL$_MESSAGE_BINARY_DATE, MAIL$MESSAGE_INFO
returns the message arrival date as a quadword binary value.

MAIL$_MESSAGE_CC
When you specify MAIL$_MESSAGE_CC, MAIL$MESSAGE_INFO returns the
CC: field of the current message. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_CURRENT_ID
When you specify MAIL$_MESSAGE_ID, MAIL$MESSAGE_INFO returns the
message identification number of the current message. The buffer address
field of the item descriptor points to a longword that receives the message
identification number of the current message.

MAIL$_MESSAGE_DATE
When you specify MAIL$_MESSAGE_DATE, MAIL$MESSAGE_INFO returns
the message creation date string. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Mail Utility (MAIL) Routines MAIL–69

Mail Utility Routines
MAIL$MESSAGE_INFO

MAIL$_MESSAGE_EXTID
When you specify MAIL$_MESSAGE_EXTID, MAIL$MESSAGE_INFO returns
the external identification number of the current message as a string. The buffer
address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_FROM
When you specify MAIL$_MESSAGE_FROM, MAIL$MESSAGE_INFO returns
the From: field of the specified message. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_REPLY_PATH
When you specify MAIL$_MESSAGE_REPLY_PATH, MAIL$MESSAGE_INFO
returns the reply path of the specified message. The buffer address field of
the item descriptor points to a buffer that receives a character string 0 to 255
characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_RETURN_FLAGS
When you specify MAIL$_MESSAGE_RETURN_FLAGS, MAIL$MESSAGE_
INFO returns the Mail system flag values for the current message as a 2-byte bit
mask value.

MAIL$_MESSAGE_SENDER
When you specify MAIL$_MESSAGE_SENDER, MAIL$MESSAGE_INFO returns
the name of the sender of the current message. The buffer address field of
the item descriptor points to a buffer that receives a character string 0 to 255
characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_SIZE
When you specify MAIL$_MESSAGE_SIZE, MAIL$MESSAGE_INFO returns the
size of the current message in records as a longword value.

MAIL$_MESSAGE_SUBJECT
When you specify MAIL$_MESSAGE_SUBJECT, MAIL$MESSAGE_INFO
returns the Subject: field of the specified message. The buffer address field of
the item descriptor points to a buffer that receives a character string 0 to 255
characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_TO
When you specify MAIL$_MESSAGE_TO, MAIL$MESSAGE_INFO returns the
To: field of the specified message. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL–70 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_INFO

Description

MAIL$MESSAGE_INFO obtains information about a particular message.
MAIL$MESSAGE_GET retrieves a message from the set of currently selected
messages.

The first call to MAIL$MESSAGE_GET passes control to MAIL$MESSAGE_
INFO. Subsequent calls that include the MAIL$_MESSAGE_CONTINUE item
code return text records.

Condition Values Returned

MAIL$_CONITMCOD The specified item codes define conflicting
operations.

MAIL$_DELMSG The message is deleted.
MAIL$_ILLCTXADR The context block address is illegal.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOFILEOPEN The mail file is not open.
MAIL$_NOMOREMSG No more messages.
MAIL$_WRONGCTX The context block is incorrect.
MAIL$_WRONGFILE The specified file is incorrect in this context.
SS$_ACCVIO Access violation.
Any condition value returned by LIB$GET_VM.

Mail Utility (MAIL) Routines MAIL–71

Mail Utility Routines
MAIL$MESSAGE_MODIFY

MAIL$MESSAGE_MODIFY—Modify Header Information

Modifies information in the message header.

Format

MAIL$MESSAGE_MODIFY context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context
argument is the address of a longword that contains message context information
returned by MAIL$MESSAGE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MESSAGE_BACK
When you specify the Boolean item code MAIL$_MESSAGE_BACK,
MAIL$MESSAGE_MODIFY reads the identification number of the specified
message in order to return the first record in the preceding message.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID,
and MAIL$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_MODIFY.

MAIL–72 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_MODIFY

MAIL$_MESSAGE_FLAGS
MAIL$_MESSAGE_FLAGS specifies system flags for new mail. The buffer
address field of the item descriptor points to a word that contains bit mask
offsets. The following offsets can be used to modify the 2-byte bit mask:

• MAIL$V_replied

• MAIL$V_marked

MAIL$_MESSAGE_ID
MAIL$_MESSAGE_ID specifies the message identification number of the message
on which an operation is to be performed. The buffer address field of the item
descriptor points to a longword that contains the message identification number.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID,
and MAIL$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_MODIFY.

MAIL$_MESSAGE_NEXT
When you specify the Boolean item code MAIL$_MESSAGE_NEXT,
MAIL$MESSAGE_MODIFY reads the message identification number of a
message and returns the first record in the message following the current
message.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify the item codes MAIL$_MESSAGE_BACK, MAIL$_MESSAGE_ID,
and MAIL$_MESSAGE_NEXT in the same call to MAIL$MESSAGE_MODIFY.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Code

MAIL$_MESSAGE_CURRENT_ID
When you specify MAIL$_MESSAGE_CURRENT_ID, MAIL$MESSAGE_
MODIFY returns the message identification number of the current message.
The buffer address field of the item descriptor points to a longword that
receives the message identification number.

Condition Values Returned

MAIL$_CONITMCOD The specified item codes define conflicting
operations.

MAIL$_DELMSG The message is deleted.
MAIL$_ILLCTXADR The context block address is illegal.
MAIL$_INVITMCOD The specified item code is invalid.

Mail Utility (MAIL) Routines MAIL–73

Mail Utility Routines
MAIL$MESSAGE_MODIFY

MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOFILEOPEN The mail file is not open.
MAIL$_NOMOREMSG No more messages.
MAIL$_WRONGCTX The context block is incorrect.
MAIL$_WRONGFILE The specified file is incorrect in this context.
SS$_ACCVIO Access violation.
Any condition value returned by $FIND and $UPDATE.

MAIL–74 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_SELECT

MAIL$MESSAGE_SELECT—Select Message from Current Mail File

Selects a message or messages from the currently open mail file. Before you
attempt to read a message, you must select it.

Format

MAIL$MESSAGE_SELECT context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Message context information to be passed to message routines. The context
argument is the address of a longword that contains message context information
returned by MAIL$MESSAGE_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_MESSAGE_BEFORE
When you specify MAIL$_MESSAGE_BEFORE, MAIL$MESSAGE_SELECT
selects a message received before a specified date and time. The buffer address
field of the item descriptor points to a buffer that contains a character string 0 to
255 characters long in absolute time.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Mail Utility (MAIL) Routines MAIL–75

Mail Utility Routines
MAIL$MESSAGE_SELECT

MAIL$_MESSAGE_CC_SUBSTRING
MAIL$_MESSAGE_CC_SUBSTRING specifies a character string that must
match a substring contained in the CC: field of the specified message. If the
strings match, the message is selected. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_FLAGS
MAIL$_MESSAGE_FLAGS specifies bit masks that must be initialized to 1.

MAIL$_MESSAGE_FLAGS_MBZ
MAIL$_MESSAGE_FLAGS_MBZ specifies Mail system flags that must be set to
0.

MAIL$_MESSAGE_FOLDER
MAIL$_MESSAGE_FOLDER specifies the name of the folder that contains
messages to be selected.

The buffer address field of the item descriptor points to a buffer that contains a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

This item code is required.

MAIL$_MESSAGE_FROM_SUBSTRING
MAIL$_MESSAGE_FROM_SUBSTRING specifies a user-specified character
string that must match the substring contained in the From: field of a specified
message. If the strings match, the message is selected.

The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_SINCE
When you specify MAIL$_MESSAGE_SINCE, the Mail utility selects a message
received on or after a specified date and time.

The buffer address field of the item descriptor points to a buffer that contains a
character string 0 to 255 characters long in absolute time.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_TO_SUBSTRING
MAIL$_MESSAGE_TO_SUBSTRING specifies a user-specified character string
that must match a substring contained in the To: field of a specified message. If
the strings match, the message is selected.

The buffer address field of the item descriptor points to a buffer that contains a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_MESSAGE_SUBJ_SUBSTRING
MAIL$_MESSAGE_SUBJ_SUBSTRING specifies a user-specified character
string that must match a substring contained in the Subject: field of a specified
message. If the strings match, the message is selected.

MAIL–76 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$MESSAGE_SELECT

The buffer address field of the item descriptor points to a buffer that contains a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Code

MAIL$_MESSAGE_SELECTED
When you specify MAIL$_MESSAGE_SELECTED, MAIL$MESSAGE_SELECT
returns the number of selected messages as a longword value.

Description

MAIL$MESSAGE_SELECT deselects previously selected messages whether or
not you request a valid selection.

Condition Values Returned

MAIL$_ILLCTXADR The context block address is illegal.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_INVQUAVAL The specified qualifier is invalid
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOFILEOPEN The mail file is not open.
MAIL$_NOTEXIST The specified folder does not exist.
MAIL$_NOTISAM The operation applies only to indexed files.
MAIL$_WRONGCTX The context block is incorrect.
MAIL$_WRONGFILE The specified file is incorrect in this context.
SS$_ACCVIO Access violation.
Any condition value returned by LIB$GET_VM.

Mail Utility (MAIL) Routines MAIL–77

Mail Utility Routines
MAIL$SEND_ABORT

MAIL$SEND_ABORT—Cancel Send Operation

Cancels a currently executing send operation.

Format

MAIL$SEND_ABORT context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Value Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument
is the address of a longword that contains send context information returned by
MAIL$SEND_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_
item_list argument.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. This routine
does not use the out_item_list argument.

MAIL–78 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$SEND_ABORT

Description

MAIL$SEND_ABORT is useful when, for example, the user presses Ctrl/C during
the execution of MAIL$SEND_MESSSAGE.

Condition Value Returned

SS$_NORMAL Normal successful completion.

Mail Utility (MAIL) Routines MAIL–79

Mail Utility Routines
MAIL$SEND_ADD_ADDRESS

MAIL$SEND_ADD_ADDRESS—Add Address to List

Adds an address to the address list. If an address list does not exist,
MAIL$SEND_ADD_ADDRESS creates one.

Format

MAIL$SEND_ADD_ADDRESS context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument
is the address of a longword that contains send context information returned by
MAIL$SEND_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_SEND_USERNAME
MAIL$_SEND_USERNAME specifies that the Mail utility add a specified user
name to the address list. The buffer address field of the item descriptor points
to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The item code MAIL$_SEND_USERNAME is required.

MAIL–80 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$SEND_ADD_ADDRESS

MAIL$_SEND_USERNAME_TYPE
MAIL$_SEND_USERNAME_TYPE specifies the type of user name added to the
address list. The buffer address field of the item descriptor points to a word
that contains the user name type.

There are two types of user names, as follows:

• User name specified as a To: address (default)

• User name specified as a CC: address

Note

Currently, the symbols MAIL$_TO and MAIL$_CC define user name
types.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

None.

Description

If you do not specify a MAIL$_SEND_USERNAME_TYPE, MAIL$SEND_ADD_
ADDRESS uses MAIL$_TO. You can specify only one user name per call to
MAIL$SEND_ADD_ADDRESS.

Condition Values Returned

MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.
Any condition values returned by LIB$TPARSE.

Mail Utility (MAIL) Routines MAIL–81

Mail Utility Routines
MAIL$SEND_ADD_ATTRIBUTE

MAIL$SEND_ADD_ATTRIBUTE—Add Attribute to the Current
Message

Adds an attribute, such as Subject or To, to the message you are currently
constructing.

Format

MAIL$SEND_ADD_ATTRIBUTE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument
is the address of a longword that contains send context information returned by
MAIL$SEND_BEGIN.

You should specify this argument as 0 in the first of a sequence of calls to MAIL
routines. In following calls, you should specify the Send context value returned
by the previous routine.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_SEND_CC_LINE
MAIL$_SEND_CC_LINE specifies a descriptor of the CC: field text. The buffer
address field of the item descriptor points to a buffer that contains a character
string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL–82 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$SEND_ADD_ATTRIBUTE

MAIL$_SEND_FROM_LINE
MAIL$_SEND_FROM_LINE specifies a descriptor of the From: field text of the
message to be sent. The buffer address field of the item descriptor points to a
buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Calls to MAIL$SEND_ADD_ATTRIBUTE using this input item code should be
made before any calls to MAIL$SEND_ADD_ADDRESS.

The SYSPRV privilege is required to alter the From: of a message.

MAIL$_SEND_SUBJECT
MAIL$_SEND_SUBJECT specifies a descriptor of the Subject: field text of a
message to be sent. The buffer address field of the item descriptor points to a
buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_SEND_TO_LINE
MAIL$_SEND_TO_LINE specifies a descriptor of the To: field text of the
message. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

None.

Description

If you do not specify a To: line, the Mail utility supplies a To: line composed of
user names on the To: address list. If you do not specify a CC: line, the Mail
utility supplies a CC: line composed of user names on the CC: address list. In
either of the above cases, commas separate the user names.

To add a message’s From: field, you must have the SYSPRV privilege, and the
Mail DECnet object must have the SYSPRV privilege on OUTGOING CONNECT
(users can set the DECnet object privileges at their discretion).

Mail Utility (MAIL) Routines MAIL–83

Mail Utility Routines
MAIL$SEND_ADD_ATTRIBUTE

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.

MAIL–84 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$SEND_ADD_BODYPART

MAIL$SEND_ADD_BODYPART—Build Message Body

Builds the body of a message.

Format

MAIL$SEND_ADD_BODYPART context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument
is the address of a longword that contains send context information returned by
MAIL$SEND_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

See MAIL$SEND_BEGIN for a description of an input item descriptor.

Input Item Codes

MAIL$_SEND_DEFAULT_NAME
MAIL$_SEND_DEFAULT_NAME specifies the default file specification of a text
file to be opened. The buffer address field of the item descriptor points to a
buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_SEND_FID
MAIL$_SEND_FID specifies the file identifier of the text file to be opened. The
buffer address field of the item descriptor points to a buffer that contains the
file identifier. To identify a file using a file identifier, you must also specify the

Mail Utility (MAIL) Routines MAIL–85

Mail Utility Routines
MAIL$SEND_ADD_BODYPART

device identifier for the file. Specify the device identifier using the MAIL$_
SEND_DEFAULT_NAME item code. More information about using a file ID for
specifying files can be found in OpenVMS Record Management Services Reference
Manual. Note that the MAIL$_SEND_FID item code and the MAIL$_SEND_
FILENAME item code are mutually exclusive.

MAIL$_SEND_FILENAME
MAIL$_SEND_FILENAME specifies the input file specification of the text file
to be opened. The buffer address field of the item descriptor points to a buffer
that receives a character string 0 to 255 characters long. Note that the MAIL$_
SEND_FILENAME item code and the MAIL$_SEND_FID item code are mutually
exclusive.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_SEND_RECORD
MAIL$_SEND_RECORD specifies a descriptor of a text record to be added to the
body of the message. The buffer address field of the item descriptor points to a
buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

When creating a message, do not specify MAIL$_SEND_RECORD in the same
call (or series of calls) to MAIL$SEND_ADD_BODYPART with the following item
codes:

• MAIL$_SEND_FID

• MAIL$_SEND_FILENAME

Note

Do not use the MAIL$_SEND_RECORD item code with the MAIL$SEND_
ADD_BODYPART routine called from a detached process. The routine
creates a temporary file in SYS$SCRATCH that is inaccessible to the
detached process.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Code

MAIL$_SEND_RESULTSPEC
When you specify MAIL$_SEND_RESULTSPEC, MAIL$SEND_ADD_BODYPART
returns the resultant file specification identified with MAIL$_SEND_FILENAME.
The buffer address field of the item descriptor points to a buffer that receives a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL–86 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$SEND_ADD_BODYPART

Description

You can use MAIL$SEND_ADD_BODYPART to specify a file that contains the
entire message or to add a single record to a message. If the message is contained
in a file, you call MAIL$SEND_ADD_BODYPART once, specifying the file name.
If you want to add to the message record-by-record, you can call MAIL$SEND_
ADD_BODYPART repeatedly, specifying a different record each time until you
complete the message.

You cannot specify both a file name and a record for the same message. You can
specify either MAIL$_SEND_FILENAME or MAIL$_SEND_FID once, or you can
specify MAIL$_SEND_RECORD one or more times.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_CONITMCOD The specified item codes define conflicting

operations.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_OPENIN The required file is missing.
SS$_ACCVIO Access violation.

Mail Utility (MAIL) Routines MAIL–87

Mail Utility Routines
MAIL$SEND_BEGIN

MAIL$SEND_BEGIN—Start Sending Message

Initiates processing to send a message to the users on the address list. You must
call MAIL$SEND_BEGIN before you call any other send routine.

Format

MAIL$SEND_BEGIN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to other send routines. The context
argument is the address of a longword that contains send context information.

You should specify the value of this argument as 0 in the first of a sequence of
calls to send routines. In subsequent calls, you should specify the send context
value returned by this routine.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_SEND_PERS_NAME
MAIL$_SEND_NO_PERS_NAME
Note that you must specify only one of these item codes. An error is generated if
you specify both item codes. MAIL$_SEND_PERS_NAME specifies the personal
name text to be used in the message header. The buffer address field of the
item descriptor points to a buffer that contains a character string 0 to 127
characters long.

Specify a value from 0 to 127 in the buffer length field of the item descriptor.

MAIL–88 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$SEND_BEGIN

The Boolean item code MAIL$_SEND_NO_PERS_NAME specifies that no
personal name string be used during message construction.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_SEND_SIGFILE
MAIL$_SEND_NO_SIGFILE
Note that you must specify only one of these item codes. An error is generated if
you specify both item codes. MAIL$_SEND_SIGFILE specifies the full OpenVMS
file specification of the signature file to be used in the message. The default file
specification used for a signature file is the user mail directory specification and
.SIG as the file type. The buffer address field of the item descriptor points to a
buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_SEND_NO_SIGFILE specifies that no signature
file be used during message construction.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

MAIL$_SEND_COPY_FORWARD
When you specify the Boolean item code MAIL$_SEND_COPY_FORWARD,
MAIL$SEND_BEGIN returns the value of the caller’s copy forward flag as a
longword value.

MAIL$_SEND_COPY_SEND
When you specify the Boolean item code MAIL$_SEND_COPY_SEND,
MAIL$SEND_BEGIN returns the value of the caller’s copy send flag as a
longword value.

MAIL$_SEND_COPY_REPLY
When you specify the Boolean item code MAIL$_SEND_COPY_REPLY,
MAIL$SEND_BEGIN returns the value of the caller’s copy reply flag as a
longword value.

MAIL$_SEND_USER
When you specify MAIL$_SEND_USER, MAIL$SEND_BEGIN returns the
process owner’s user name. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Mail Utility (MAIL) Routines MAIL–89

Mail Utility Routines
MAIL$SEND_BEGIN

Description

MAIL$SEND_BEGIN creates and initializes a send context for subsequent calls
to send routines.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_CODERR Internal system error.
MAIL$_CONITMCOD The specified item codes perform conflicting

operations.
MAIL$_ILLPERNAME The specified personal name string is illegal.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.
Any condition values returned by $GETJPIW, LIB$FREE_VM, and LIB$GET_
VM.

MAIL–90 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$SEND_END

MAIL$SEND_END—End Sending Message

Terminates send processing.

Format

MAIL$SEND_END context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument
is the address of a longword that contains send context information returned by
MAIL$SEND_BEGIN.

If send processing is successfully terminated, the value of the context argument
is changed to 0.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_
item_list argument.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. This routine
does not use the out_item_list argument.

Mail Utility (MAIL) Routines MAIL–91

Mail Utility Routines
MAIL$SEND_END

Description

The MAIL$SEND_END routine deallocates the send context as well as any
dynamic memory allocated by previous send routine calls.

Condition Values Returned

SS$_NORMAL Normal successful completion
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.
Any condition value returned by LIB$FREE_VM.

MAIL–92 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$SEND_MESSAGE

MAIL$SEND_MESSAGE

Begins the actual sending of the message after the message has been constructed.

Format

MAIL$SEND_MESSAGE context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Send context information to be passed to send routines. The context argument
is the address of a longword that contains send context information returned by
MAIL$SEND_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list is terminated by longword value of 0.

Input Item Codes

MAIL$_SEND_ERROR_ENTRY
MAIL$_SEND_ERROR_ENTRY specifies the longword address of an entry point
to process errors during a send operation. The descriptor of the recipient that
failed, the address of the signal array, and the user-specified data are passed
as input to the routine. Refer to the OpenVMS Programming Concepts Manual
for more information about the signal array and its use by condition-handling
routines.

MAIL$_SEND_SUCCESS_ENTRY
MAIL$_SEND_SUCCESS_ENTRY specifies the longword address of an entry
point to process successes during a send operation. The descriptor of the recipient
that succeeded, the address of the signal array, and the user-specified data

Mail Utility (MAIL) Routines MAIL–93

Mail Utility Routines
MAIL$SEND_MESSAGE

are passed as input to the routine. Refer to the OpenVMS Programming
Concepts Manual for more information about the signal array and its use by
condition-handling routines.

MAIL$_SEND_USER_DATA
MAIL$_SEND_USER_DATA specifies a longword that MAIL$SEND_MESSAGE
passes to the SEND action routines.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

None.

Description

The MAIL$SEND_MESSAGE routine sends a message built with the
MAIL$SEND_ADD_BODYPART routine to every user on the address list. If
you have not used MAIL$SEND_ADD_BODYPART to construct a message,
MAIL$SEND_MESSAGE sends only a message header.

If MAIL$SEND_MESSAGE encounters errors sending to an addressee, it calls
the routine specified by MAIL$_SEND_ERROR_ENTRY. Otherwise, it calls the
routine specified by MAIL$_SEND_SUCCESS_ENTRY.

If either routine is not specified, MAIL$SEND_MESSAGE calls no other routines.

Condition Values Returned

MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.
Any condition value returned by $CONNECT.

MAIL–94 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$USER_BEGIN

MAIL$USER_BEGIN—Access the User Profile Database

Initiates access to the Mail common user database. You must call MAIL$USER_
BEGIN before you call any other user routines.

Format

MAIL$USER_BEGIN context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to other user routines. The context
argument is the address of a longword that contains user context information.

You should specify the value of this argument as 0 in the first of a sequence of
calls to MAIL routines. In following calls, you should specify the user context
value returned by the previous routine.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_
item_list argument.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Mail Utility (MAIL) Routines MAIL–95

Mail Utility Routines
MAIL$USER_BEGIN

Output Item Codes

MAIL$_USER_AUTO_PURGE
When you specify the Boolean item code MAIL$_USER_AUTO_PURGE,
MAIL$USER_BEGIN returns the value of the automatic purge mail flag as a
longword value.

MAIL$_USER_CAPTIVE
When you specify the Boolean item code MAIL$_USER_CAPTIVE, MAIL$USER_
BEGIN returns the value of the UAF CAPTIVE flag as a longword value.

MAIL$_USER_CC_PROMPT
When you specify the Boolean item code MAIL$_USER_CC_PROMPT,
MAIL$USER_BEGIN returns the value of the cc prompt flag as a longword
value.

MAIL$_USER_COPY_FORWARD
When you specify the Boolean item code MAIL$_USER_COPY_FORWARD,
MAIL$USER_BEGIN returns the value of the copy self forward flag as a
longword value.

MAIL$_USER_COPY_REPLY
When you specify the Boolean item code MAIL$_USER_COPY_REPLY,
MAIL$USER_BEGIN returns the value of the copy self reply flag as a longword
value.

MAIL$_USER_COPY_SEND
When you specify the Boolean item code MAIL$_USER_COPY_SEND,
MAIL$USER_BEGIN returns the value of the copy self send flag as a longword
value.

MAIL$_USER_FORWARDING
When you specify MAIL$_USER_FORWARDING, MAIL$USER_BEGIN returns
the forwarding address string. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_FORM
When you specify MAIL$_USER_FORM, MAIL$USER_BEGIN returns the
default print form string. The buffer address field of the item descriptor points
to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_FULL_DIRECTORY
When you specify MAIL$_USER_FULL_DIRECTORY, MAIL$USER_BEGIN
returns complete directory path of the MAIL subdirectory. The buffer address
field of the item descriptor points to a buffer that receives a character string 0 to
255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_NEW_MESSAGES
When you specify MAIL$_USER_NEW_MESSAGES, MAIL$USER_BEGIN
returns the new message count. The buffer address field of the item descriptor
points to a word that receives the new message count.

MAIL–96 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$USER_BEGIN

MAIL$_USER_PERSONAL_NAME
When you specify MAIL$_USER_PERSONAL_NAME, MAIL$USER_BEGIN
returns the personal name string. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 127 characters
long.

Specify a value from 0 to 127 in the buffer length field of the item descriptor.

MAIL$_USER_QUEUE
When you specify MAIL$_USER_QUEUE, MAIL$USER_BEGIN returns the
default print queue name. The buffer address field of the item descriptor points
to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_RETURN_USERNAME
When you specify MAIL$_USER_RETURN_USERNAME, MAIL$USER_BEGIN
returns the user name string. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_SIGFILE
When you specify MAIL$_USER_SIGFILE, MAIL$USER_BEGIN returns
the default signature file specification. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_SUB_DIRECTORY
When you specify MAIL$_USER_SUB_DIRECTORY, MAIL$USER_BEGIN
returns the subdirectory specification. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description

MAIL$USER_BEGIN creates and initializes a user database context for
subsequent calls to other user routines.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.

Mail Utility (MAIL) Routines MAIL–97

Mail Utility Routines
MAIL$USER_DELETE_INFO

MAIL$USER_DELETE_INFO—Delete Database Record

Removes a record from the user profile database.

Format

MAIL$USER_DELETE_INFO context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to send routines. The context argument
is the address of a longword that contains user context information returned by
MAIL$USER_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list must include at least one device item descriptor. The item list is
terminated by longword value of 0.

Input Item Codes

MAIL$_USER_USERNAME
MAIL$_USER_USERNAME specifies the record to be deleted from the user
profile database. The buffer address field of the item descriptor points to a
buffer that contains the user name string encoded in a character string 0 to 31
characters long.

Specify a value from 0 to 31 in the buffer length field of the item descriptor.

The item code MAIL$_USER_USERNAME is required.

MAIL–98 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$USER_DELETE_INFO

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

None.

Description

To delete a record from the user profile database, you must have SYSPRV
privilege.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOSUCHUSR The specified user name is not valid.
MAIL$_NOSYSPRV The operation requires the SYSPRV privilege.
SS$_ACCVIO Access violation.

Mail Utility (MAIL) Routines MAIL–99

Mail Utility Routines
MAIL$USER_END

MAIL$USER_END—End Access to the User Profile Database

Terminates access to the user profile database.

Format

MAIL$USER_END context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to user routines. The context argument is
the address of a longword that contains user context information.

If the Mail utility terminates access to the user profile database successfully, the
value of the argument context is changed to 0.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. This routine does not use the in_
item_list argument.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. This routine
does not use the out_item_list argument.

Description

The MAIL$USER_END routine deallocates the user database context created by
MAIL$USER_BEGIN as well as all dynamic memory allocated by previous user
routines.

MAIL–100 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$USER_END

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
SS$_ACCVIO Access violation.
Any condition value returned by LIB$FREE_VM.

Mail Utility (MAIL) Routines MAIL–101

Mail Utility Routines
MAIL$USER_GET_INFO

MAIL$USER_GET_INFO—Get User Profile Information

Obtains information about a user from the user profile database.

Format

MAIL$USER_GET_INFO context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to user routines. The context argument
is the address of a longword that contains user context information returned by
MAIL$USER_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list must include at least one device item descriptor. The item list is
terminated by longword value of 0.

Input Item Codes

MAIL$_USER_FIRST
The Boolean item code MAIL$_USER_FIRST specifies that MAIL$USER_GET_
INFO return information in the user profile about the first entry in the user
profile database.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify MAIL$_USER_FIRST, MAIL$_USER_NEXT or MAIL$_USER_
USERNAME in the same call to MAIL$USER_GET_INFO.

MAIL–102 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$USER_GET_INFO

MAIL$_USER_NEXT
The Boolean item code MAIL$_USER_NEXT specifies that MAIL$USER_GET_
INFO return information in the user profile about the next user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Do not specify MAIL$_USER_FIRST, MAIL$_USER_NEXT or MAIL$_USER_
USERNAME in the same call to MAIL$USER_GET_INFO.

MAIL$_USER_USERNAME
The item code MAIL$_USER_USERNAME points to the username string.

Specify the address of the username string in the buffer address field and
specify the length of the username string in the buffer length field of the item
descriptor.

Do not specify MAIL$_USER_FIRST, MAIL$_USER_NEXT and MAIL$_USER_
USERNAME in the same call to MAIL$USER_GET_INFO.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

MAIL$_USER_AUTO_PURGE
When you specify the Boolean item code MAIL$_USER_AUTO_PURGE,
MAIL$USER_GET_INFO returns the value of the automatic purge mail flag
as a longword value.

MAIL$_USER_CC_PROMPT
When you specify the Boolean item code MAIL$_USER_CC_PROMPT,
MAIL$USER_GET_INFO returns the value of the cc prompt flag as a longword
value.

MAIL$_USER_COPY_FORWARD
When you specify the Boolean item code MAIL$_USER_COPY_FORWARD,
MAIL$USER_GET_INFO returns the value of the copy self forward mail flag as a
longword value.

MAIL$_USER_COPY_REPLY
When you specify the Boolean item code MAIL$_USER_COPY_REPLY,
MAIL$USER_GET_INFO returns the value of the copy self reply mail flag
as a longword value.

MAIL$_USER_COPY_SEND
When you specify the Boolean item code MAIL$_USER_COPY_SEND,
MAIL$USER_GET_INFO returns the value of the copy self send mail flag as
a longword value.

Mail Utility (MAIL) Routines MAIL–103

Mail Utility Routines
MAIL$USER_GET_INFO

MAIL$_USER_EDITOR
When you specify MAIL$_USER_EDITOR, MAIL$USER_GET_INFO returns the
name of the default editor. The buffer address field of the item descriptor points
to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_FORWARDING
When you specify MAIL$_USER_FORWARDING, MAIL$USER_GET_INFO
returns the forwarding address. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_FORM
When you specify MAIL$_USER_FORM, MAIL$USER_GET_INFO returns the
default print form string. The buffer address field of the item descriptor points
to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_FULL_DIRECTORY
When you specify MAIL$_USER_FULL_DIRECTORY, MAIL$USER_GET_INFO
returns the complete directory path of the MAIL subdirectory string. The buffer
address field of the item descriptor points to a buffer that receives a character
string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_NEW_MESSAGES
When you specify MAIL$_USER_NEW_MESSAGES, MAIL$USER_GET_INFO
returns the new messages count. The buffer address field of the item descriptor
points to a word that receives the new message count as a word value.

MAIL$_USER_PERSONAL_NAME
When you specify MAIL$_USER_PERSONAL_NAME, MAIL$USER_GET_
INFO returns the personal name string. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 127 characters
long.

Specify a value from 0 to 127 in the buffer length field of the item descriptor.

MAIL$_USER_QUEUE
When you specify MAIL$_USER_QUEUE, MAIL$USER_GET_INFO returns the
default print queue name string. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_RETURN_USERNAME
When you specify MAIL$_USER_RETURN_USERNAME, MAIL$USER_GET_
INFO returns the user name. The buffer address field of the item descriptor
points to a buffer that receives a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL–104 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$USER_GET_INFO

MAIL$_USER_SIGFILE
When you specify MAIL$_USER_SIGFILE, MAIL$USER_GET_INFO returns
the default signature file specification. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

MAIL$_USER_SUB_DIRECTORY
When you specify MAIL$_USER_SUB_DIRECTORY, MAIL$USER_GET_INFO
returns the MAIL subdirectory specification string. The buffer address field of
the item descriptor points to a buffer that receives a character string 0 to 255
characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

Description

The MAIL$USER_GET_INFO routine returns information about specified entries
in the user profile database. If you do not specify a user name, MAIL$USER_
GET_INFO returns information about the user name associated with the calling
process. To obtain information about a user name other than that associated with
the calling process, you need the SYSNAM privilege.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_CONITMCOD The specified item codes perform conflicting

operations.
MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NOSUCHUSR The specified user name is invalid.
MAIL$_NOSYSPRV The specified operation requires the SYSPRV

privilege.
SS$_ACCVIO Access violation.

Mail Utility (MAIL) Routines MAIL–105

Mail Utility Routines
MAIL$USER_SET_INFO

MAIL$USER_SET_INFO—Add User Profile Information

Adds or modifies a specified user record in the user profile database.

Format

MAIL$USER_SET_INFO context ,in_item_list ,out_item_list

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All utility routines return a condition value in R0.
Condition values that can be returned by this routine are listed under Condition
Values Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context information to be passed to user routines. The context argument
is the address of a longword that contains user context information returned by
MAIL$USER_BEGIN.

in_item_list
OpenVMS usage: itmlst_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the routine. The in_item_list argument is the
address of a list of item descriptors, each of which specifies an option and provides
the information needed to perform the operation.

The item list must include at least one device item descriptor. The item list is
terminated by longword value of 0.

Input Item Codes

MAIL$_USER_CREATE_IF
The Boolean item code MAIL$_USER_CREATE_IF specifies that MAIL$USER_
SET_INFO should create the record for the specified user if it does not already
exist.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL–106 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$USER_SET_INFO

MAIL$_USER_SET_AUTO_PURGE
MAIL$_USER_SET_NO_AUTO_PURGE
The Boolean item codes MAIL$_USER_SET_AUTO_PURGE and MAIL$_USER_
SET_NO_AUTO_PURGE set and clear the auto purge flag for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_CC_PROMPT
MAIL$_USER_SET_NO_CC_PROMPT
The Boolean item codes MAIL$_USER_SET_CC_PROMPT and MAIL$_USER_
SET_NO_CC_PROMPT set and clear the cc prompt flag for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_COPY_FORWARD
MAIL$_USER_SET_NO_COPY_FORWARD
The Boolean item codes MAIL$_USER_SET_COPY_FORWARD and MAIL$_
USER_SET_NO_COPY_FORWARD set and clear the copy self forward flag for
the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_COPY_REPLY
MAIL$_USER_SET_NO_COPY_REPLY
The Boolean item codes MAIL$_USER_SET_COPY_REPLY and MAIL$_USER_
SET_NO_COPY_REPLY set and clear the copy self reply flag for the specified
user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_COPY_SEND
MAIL$_USER_SET_NO_COPY_SEND
The Boolean item codes MAIL$_USER_SET_COPY_SEND and MAIL$_USER_
SET_NO_COPY_SEND set and clear the copy self send flag for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_EDITOR
MAIL$_USER_SET_NO_EDITOR
MAIL$_USER_SET_EDITOR specifies the name of a default editor to be used by
the specified user. The buffer address field of the item descriptor points to a
buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_EDITOR clears the default editor
field for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

Mail Utility (MAIL) Routines MAIL–107

Mail Utility Routines
MAIL$USER_SET_INFO

MAIL$_USER_SET_FORM
MAIL$_USER_SET_NO_FORM
MAIL$_USER_SET_FORM specifies the default print form string for the specified
user. The buffer address field of the item descriptor points to a buffer that
contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_FORM clears the default print
form field for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_FORWARDING
MAIL$_USER_SET_NO_FORWARDING
MAIL$_USER_SET_FORWARDING specifies a forwarding address string for the
specified user. The buffer address field of the item descriptor points to a buffer
that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_FORWARDING clears the
forwarding address field for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_NEW_MESSAGES
MAIL$_USER_SET_NEW_MESSAGES specifies the new message count for the
specified user. The buffer address field of the item descriptor points to a word
that contains the new number of new messages.

MAIL$_USER_SET_PERSONAL_NAME
MAIL$_USER_SET_NO_PERSONAL_NAME
MAIL$_USER_SET_PERSONAL_NAME specifies a personal name string for the
specified user. The buffer address field of the item descriptor points to a buffer
that contains a character string 0 to 127 characters long.

Specify a value from 0 to 127 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_PERSONAL_NAME clears the
personal field for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_QUEUE
MAIL$_USER_SET_NO_QUEUE
MAIL$_USER_SET_QUEUE specifies a default print queue name string for the
specified user. The buffer address field of the item descriptor points to a buffer
that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_QUEUE clears the default print
queue field for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL–108 Mail Utility (MAIL) Routines

Mail Utility Routines
MAIL$USER_SET_INFO

MAIL$_USER_SET_SIGFILE
MAIL$_USER_SET_NO_SIGFILE
MAIL$_USER_SET_SIGFILE specifies a signature file specification for the
specified user. The buffer address field of the item descriptor points to a buffer
that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_SIGFILE clears the signature file
field for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_SET_SUB_DIRECTORY
MAIL$_USER_SET_NO_SUB_DIRECTORY
MAIL$_USER_SET_SUB_DIRECTORY specifies a MAIL subdirectory. The
buffer address field of the item descriptor points to a buffer that contains a
character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_SUB_DIRECTORY disables the
use of a MAIL subdirectory for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

MAIL$_USER_USERNAME
MAIL$_USER_USERNAME specifies the record to be modified in the user
profile database and points to the user name string. The buffer address field
of the item descriptor points to a buffer that contains a character string 0 to 31
characters long.

Specify a value from 0 to 31 in the buffer length field of the item descriptor.

out_item_list
OpenVMS usage: itmlst_3
type: longword
access: write only
mechanism: by reference

Item list specifying the information you want the routine to return. The out_
item_list argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
longword value of 0.

Output Item Codes

None.

Mail Utility (MAIL) Routines MAIL–109

Mail Utility Routines
MAIL$USER_SET_INFO

Description

The MAIL$USER_SET_INFO routine modifies specified records in the user
profile database. If you do not specify a user name, the routine modifies the user
record associated with the calling process.

To modify any user record other than that associated with the calling process,
you must have SYSPRV privilege. However, if you want to add or modify only the
forwarding address of another user, SYSNAM privilege is sufficient.

Condition Values Returned

SS$_NORMAL Normal successful completion.
MAIL$_CONITMCOD The specified item codes perform conflicting

operations.
MAIL$_ILLCHAR Unacceptable character in personal name. Utility

returns three formatted ASCII output (FAO)
arguments including the illegal character, the
length of the string, and the string address.

MAIL$_ILLPERNAM Personal name formatted improperly. Returns
an FAO argument containing the improperly
formatted personal name.

MAIL$_ILLSUBDIR Illegal subdirectory specification. Returns an
FAO argument containing the subdirectory
string.

MAIL$_INVITMCOD The specified item code is invalid.
MAIL$_INVITMLEN The specified item length is invalid.
MAIL$_MISREQITEM The required item is missing.
MAIL$_NAMTOOBIG Specified name exceeds 255-character limit.
MAIL$_NOTSUBDIR No such subdirectory. Returns an FAO argument

containing the subdirectory string.
MAIL$_NOSUCHUSR No such user. Returns the name of the unfound

user.
MAIL$_NOSYSNAM Caller needs SYSNAM privileges.
MAIL$_NOSYSPRV Caller needs system privileges.
SS$_ACCVIO Access violation.

MAIL–110 Mail Utility (MAIL) Routines

15
National Character Set (NCS) Utility Routines

This chapter describes the National character set (NCS) utility routines. The
NCS utility provides a common facility for defining and accessing collating
sequences and conversion functions. Collating sequences are used to compare
strings for sorting purposes. Conversion functions are used to derive an altered
form of an input string based on an appropriate conversion algorithm.

15.1 Introduction to NCS Routines
Using NCS, you can formulate collating sequences and conversion functions and
register them in an NCS library. The NCS routines provide a programming
interface to NCS that lets you access the collating sequences and conversion
functions from an NCS library for doing string comparisons.

Typically, NCS collating sequences are selective subsets of the multinational
character set. They are used extensively in programming applications involving
various national character sets. For example, a program might use the Spanish
collating sequence to assign appropriate collating weight to characters from the
Spanish national character set. Another program might use the French collating
sequence to assign appropriate collating weight to characters in the French
national character set.

In addition to providing program access to collating sequences and conversion
functions in an NCS library, the NCS routines provide a means for saving
definitions in a local file for subsequent use by the comparison and conversion
routines.

15.1.1 List of NCS Routines
Table 15–1 lists the individual NCS routines.

Table 15–1 NCS Routines

Routine Description

NCS$COMPARE Compares two strings using a specified collating sequence as
comparison basis.

NCS$CONVERT Converts a string using the specified conversion function.

NCS$END_CF Terminates the use of a conversion function by the calling
program.

NCS$END_CS Terminates the use of a collating sequence by the calling
program.

NCS$GET_CF Retrieves the definition of the named conversion function
from the NCS library.

(continued on next page)

National Character Set (NCS) Utility Routines NCS–1

National Character Set (NCS) Utility Routines
15.1 Introduction to NCS Routines

Table 15–1 (Cont.) NCS Routines

Routine Description

NCS$GET_CS Retrieves the definition of the named collating sequence from
the NCS library.

NCS$RESTORE_CF Permits the calling program to restore the definition of a
‘‘saved’’ conversion function from a database or an OpenVMS
RMS file.

NCS$RESTORE_CS Permits the calling program to restore the definition of a
‘‘saved’’ collating sequence from a database or an RMS file.

NCS$SAVE_CF Provides the calling program with information that permits
the application to store the definition of a conversion function
in a local database or an RMS file.

NCS$SAVE_CS Provides the calling program with information that permits
the application to store the definition of a collating sequence
in a local database or an RMS file.

15.1.2 Sample Application Process
In a typical application, the program does the following:

1. Prepares a string for comparison.

2. Makes a call to the NCS$GET routine, specifying the appropriate collating
sequence.

3. Makes one or more calls to the NCS$COMPARE routine, which does the
actual comparison.

4. Terminates the comparison with a call to the NCS$END routine.

The program can also include the use of conversion functions in preparation for
the comparison routines.

15.2 Using the NCS Utility Routines: Examples
This section includes two examples of how to use NCS utility routines in program
applications:

Example 15–1 illustrates the use of NCS utility routines in a Compaq Fortran for
OpenVMS program.

NCS–2 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
15.2 Using the NCS Utility Routines: Examples

Example 15–1 Using NCS Routines in a Compaq Fortran for OpenVMS
Program

PROGRAM NCS_EXAMPLE

CHARACTER*80 CSSTRING,STRING1,STRING2
INTEGER*4 CSLENGTH,LENGTH1,LENGTH2,CSID,STATUS,RESULT
INTEGER*4 NCSGET_CS,NCSCOMPARE,NCS$END_CS

CHARACTER*1 CMP(3)

CMP(1) = ’<’
CMP(2) = ’=’
CMP(3) = ’>’

C
C Read the name of the collating sequence..
C

WRITE (6,30)
READ (5,15,END=999) CSLENGTH,CSSTRING

30 FORMAT(’ Collating Sequence: ’)
C
C Get the collating sequence from the NCS library
C

CSID = 0
STATUS = NCS$GET_CS (CSID, CSSTRING(1:CSLENGTH))
IF ((STATUS .AND. 1) .NE. 1) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ENDIF

C
C Read two strings to be compared according to the collating sequence
C
100 WRITE (6,10)

READ (5,15,END=999) LENGTH1,STRING1
WRITE (6,20)
READ (5,15,END=999) LENGTH2,STRING2

IF (LENGTH1 .EQ. 0 .AND. LENGTH2 .EQ. 0) THEN
GOTO 200
ENDIF

10 FORMAT(’ String1: ’)
20 FORMAT(’ String2: ’)
15 FORMAT (q,a80)
C
C Compare the strings
C

result = ncs$compare (csid, string1(1:length1), string2(1:length2))
C
C Display the results of the comparison
C

WRITE (6,40) STRING1(1:LENGTH1), CMP(RESULT+2), STRING2(1:LENGTH2)
40 FORMAT(’ ’,A,’ ’,A,’ ’,A)

GOTO 100
C
C Come here if both inputs are blank -- we are done.
C Call NCS$END_CS to free any storage used to hold the CS.
C
200 STATUS = NCS$END_CS (CSID)

IF ((STATUS .AND. 1) .NE. 1) THEN
CALL LIB$SIGNAL (%VAL(STATUS))
ENDIF

CALL EXIT

(continued on next page)

National Character Set (NCS) Utility Routines NCS–3

National Character Set (NCS) Utility Routines
15.2 Using the NCS Utility Routines: Examples

Example 15–1 (Cont.) Using NCS Routines in a Compaq Fortran for OpenVMS
Program

999 CONTINUE
END

Example 15–2 illustrates the use of NCS routines in a Compaq C for OpenVMS
VAX program.

Note

Each programming language provides an appropriate mechanism for
defining symbols, status codes, completion codes, and other relevant
information.

NCS–4 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
15.2 Using the NCS Utility Routines: Examples

Example 15–2 Using NCS Routines in a Compaq C for OpenVMS VAX Program

/*
** ==
**
** NCS_EXAMPLE.C
**
** NCS conversion function example using the VAX C programming language
**
** ==
*/

/*
** --
** Header files
*/
include "sys$library:descrip.h" /* Descriptor macros */
include "sys$library:rms.h" /* RMS structure definitions */
include "sys$library:rmsdef.h" /* RMS completion codes */
include "sys$share:ssdef.h" /* System service completion */

/* codes */
include "sys$library:stdio.h" /* Standard I/O definitions */
/*
** --
** Data definitions
*/
#define SIZE 1024 /* Maximum record size */

unsigned long int
cfid, /* Address of conversion */

/* function */
expected_status, /* Expected return status */
rms_status, /* RMS return status */
status; /* Function return status */

unsigned short int
return_length; /* Length of returned string in */

/* bytes */

char
file[NAM$C_MAXRSS], /* File name */
inrec[SIZE], /* Input record */
outrec[SIZE]; /* Output record */

$DESCRIPTOR(cfname_d,"EDT_VT2xx"); /* Conversion function name */
/* descriptor */

$DESCRIPTOR(prompt_d,"_File: "); /* Prompt string descriptor */
$DESCRIPTOR(file_d,file); /* File name descriptor */
$DESCRIPTOR(inrec_d,inrec); /* Input record descriptor */
$DESCRIPTOR(outrec_d,outrec); /* Output record descriptor */

struct FAB infab; /* Input file access block */
struct RAB inrab; /* Input record access block */
/*
** --
** Function prototypes
*/
void status_check();
/*
** ==
*/
main ()
{

(continued on next page)

National Character Set (NCS) Utility Routines NCS–5

National Character Set (NCS) Utility Routines
15.2 Using the NCS Utility Routines: Examples

Example 15–2 (Cont.) Using NCS Routines in a Compaq C for OpenVMS VAX
Program

/*
** --
** Initialize RMS user structures for the file.
*/
infab = cc$rms_fab; /* Initialize to default FAB */

/* values */

infab.fab$l_fna = file; /* Now supply our specific */
/* values */

infab.fab$b_fns = NAM$C_MAXRSS;

inrab = cc$rms_rab; /* Initialize to default RAB */
/* values */

inrab.rab$l_fab = &infab; /* Now supply our specific */
/* values */

inrab.rab$l_ubf = inrec;
inrab.rab$w_usz = SIZE;
/*
** --
** Get the EDT_VT2xx conversion function from the default NCS library
*/
cfid = 0; /* Initialize ID */
status = ncs$get_cf(&cfid,&cfname_d,0);
status_check(status,SS$_NORMAL);
/*
** --
** Get the file to be converted and set the length of the returned file
** name
*/
status = lib$get_input(&file_d,&prompt_d,&return_length);
status_check(status,SS$_NORMAL);
file_d.dsc$w_length = return_length;
/*
** --
** Open the input file to be converted and connect to the RAB
*/
rms_status = sys$open(&infab,0,0);
status_check(rms_status,RMS$_NORMAL);

rms_status = sys$connect(&inrab,0,0);
status_check(rms_status,RMS$_NORMAL);
/*
** --
** Read each record from the file, convert the input string to EDT
** fallback, and write the result to the output
*/
while(TRUE)
{

/*
** --
** Read each record
*/
rms_status = sys$get(&inrab,0,0);
if (rms_status == RMS$_EOF) /* Reached end of file */

break;
else

status_check(rms_status,RMS$_NORMAL); /* Read a record */

(continued on next page)

NCS–6 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
15.2 Using the NCS Utility Routines: Examples

Example 15–2 (Cont.) Using NCS Routines in a Compaq C for OpenVMS VAX
Program

/*
** --
** Call NCS$CONVERT to convert the input string to EDT fallback
**
** e.g. Convert form feed to <FF>, escape to <ESC>, et cetera
*/
inrec_d.dsc$w_length = inrab.rab$w_rsz;
status = ncs$convert(&cfid,&inrec_d,&outrec_d,&return_length);
status_check(status,SS$_NORMAL);
outrec_d.dsc$w_length = return_length;
/*
** --
** Write the result to the output, SYS$OUTPUT in this case
*/
status = lib$put_output(&outrec_d);
status_check(status,SS$_NORMAL);
outrec_d.dsc$w_length = SIZE;

}
/*
** --
** Close the input file.
*/
rms_status = sys$close(&infab,0,0);
status_check(rms_status,RMS$_NORMAL);
/*
** --
** Free any storage used to hold the conversion function.
*/
status = ncs$end_cf(&cfid);
status_check(status,SS$_NORMAL);

}

void status_check(status,expected_status)
/*
** ==
**
** Checks the function return status against the one expected, and exits upon
** error. Otherwise, return to the main program.
**
** ==
*/

{
if (status != expected_status)

sys$exit(status);
else

return;
}

15.3 NCS Routines
This section describes the NCS routines.

Note that several routines contain the heading Condition Value Signaled to
indicate that the condition value originates in another utility.

National Character Set (NCS) Utility Routines NCS–7

National Character Set (NCS) Utility Routines
NCS$COMPARE

NCS$COMPARE—Compare Strings

The NCS$COMPARE routine compares two strings using a specified collating
sequence as a comparison basis.

Format

NCS$COMPARE cs_id ,string_1 ,string_2

Returns

OpenVMS usage: integer
type: longword integer (signed)
access: write only
mechanism: by value

Longword condition value. Most routines return a condition value in R0, but
the NCS$COMPARE routine uses R0 to return the result of the comparison, as
shown in the following table:

Returned Value Comparison Result

–1 string_1 is less than string_2
0 string_1 is equal to string_2
1 string_1 is greater than string_2

The NCS$COMPARE routine uses the Signaling Mechanism to indicate
completion status as described under Condition Value Signaled.

Arguments

cs_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: read only
mechanism: by reference

Address of a longword that NCS uses to identify a collating sequence. The cs_id
argument is required and can be obtained by a call to the NCS$GET_CS routine.

All calls to the NCS$COMPARE routine and the call to the NCS$END_CS
routine that terminates the comparison must pass this longword identifier. Upon
completion, the NCS$END_CS routine releases the memory used to store the
collating sequence and sets the value of the longword identifier to 0.

string_1
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Descriptor (length and address) of the first string.

NCS–8 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$COMPARE

string_2
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Descriptor of the second string.

Description

The NCS$COMPARE routine compares two strings using the specified collating
sequence as the comparison basis. The routine indicates whether the value of the
first string is greater than, less than, or equal to the value of the second string.

Condition Value Signaled

STR$_ILLSTRCLA Illegal string class. Severe error. The descriptor
of string_1 or string_2, or both, contains a class
code not supported by the OpenVMS Calling
Standard.

National Character Set (NCS) Utility Routines NCS–9

National Character Set (NCS) Utility Routines
NCS$CONVERT

NCS$CONVERT—Convert String

The NCS$CONVERT routine converts a string using the specified conversion
function.

Format

NCS$CONVERT cf_id ,source ,dest [,ret_length] [,not_cvt]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

cf_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: read only
mechanism: by reference

Address of a longword that NCS uses to identify a conversion function. The cf_id
argument is required and can be obtained by a call to the NCS$GET_CF routine.

All calls to the NCS$CONVERT routine and the call to the NCS$END_CF
routine that terminates the conversion must pass this longword identifier. Upon
completion, the NCS$END_CF routine releases the memory used to store the
conversion function and sets the value of the longword identifier to 0.

source
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Descriptor of source string.

dest
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Descriptor of destination string.

NCS–10 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$CONVERT

ret_length
OpenVMS usage: word unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of converted string.

not_cvt
OpenVMS usage: word unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters in the source string that were not fully converted.

Description

Using the specified conversion function, the NCS$CONVERT routine converts the
source string and stores the result in the specified destination. Optionally, the
calling program can request that the routine return the length of the converted
string as well as the number of characters that were not fully converted.

Condition Values Returned

SS$_NORMAL Normal successful completion.
NCS$_NOT_CF Name of identifier does not refer to a conversion

function.
STR$_TRU Successful completion. However, the resultant

string was truncated because the storage
allocation for the destination string was
inadequate.

Condition Values Signaled

LBR messages (prefaced by an NCS message) might signal errors detected while
the process is accessing the NCS library.
Any value signaled by STR$COPY_DX or STR$ANALYZE_SDESC.

National Character Set (NCS) Utility Routines NCS–11

National Character Set (NCS) Utility Routines
NCS$END_CF

NCS$END_CF—End Conversion Function

The NCS$END_CF routine terminates a conversion function.

Format

NCS$END_CF cf_id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

cf_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: modify
mechanism: by reference

Address of a longword that NCS uses to store a nonzero value identifying a
conversion function.

The cf_id argument is required.

Description

The NCS$END_CF routine indicates to NCS that the calling program no longer
needs the conversion function. NCS releases the memory space allocated for the
coversion function and sets the value of the longword identifier to 0.

Condition Values Returned

NCS$_NORMAL Normal successful completion. The longword
identifier value is set to 0.

NCS$_NOT_CF Name of identifier does not refer to a conversion
function.

NCS–12 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$END_CS

NCS$END_CS—End Collating Sequence

The NCS$END_CS routine terminates a collating sequence.

Format

NCS$END_CS cs_id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

cs_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: modify
mechanism: by reference

Address of a longword that NCS uses to store a nonzero value identifying a
collating sequence.

The cs_id argument is required.

Description

The NCS$END_CS routine indicates to NCS that the calling program no longer
needs the collating sequence. NCS releases the memory space allocated for the
collating sequence and sets the value of the longword identifier to 0.

Condition Values Returned

NCS$_NORMAL Normal successful completion. The longword
identifier value is set to 0.

NCS$_NOT_CS Name of identifier does not refer to a collating
sequence.

National Character Set (NCS) Utility Routines NCS–13

National Character Set (NCS) Utility Routines
NCS$GET_CF

NCS$GET_CF—Get Conversion Function

The NCS$GET_CF routine retrieves the definition of the named conversion
function from the NCS library.

Format

NCS$GET_CF cf_id [,cfname] [,librar]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

cf_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: modify
mechanism: by reference

Address of a longword used by NCS to identify a conversion function. The
calling program must ensure that the longword contains 0 before invoking
the NCS$GET_CF routine because the routine stores a nonzero value in the
longword. The nonzero value identifies the conversion function. All subsequent
calls to the NCS$CONVERT routine and the call to the NCS$END_CF routine to
terminate the conversion function pass the longword identifier. When it completes
the conversion, the NCS$END_CF routine releases the memory used to store the
conversion function and sets the value of the longword identifier to 0.

The conversion function identifier enhances modular programming and permits
concurrent use of multiple conversion functions within a program.

The calling program should not attempt to interpret the contents of the longword
identifier.

The cf_id argument is required.

cfname
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the conversion function being retrieved.

NCS–14 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$GET_CF

librar
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the library where the conversion function is stored.

Description

The NCS$GET_CF routine extracts the named conversion function from the
specified NCS library.

If the calling program omits the cfname argument, an ‘‘identity’’ conversion
function padded with NUL characters (hex 0) is provided. The identity conversion
function effectively leaves each character unchanged by converting each character
to itself. For example, A becomes A, B becomes B, C becomes C, and so forth.

If the calling program omits the librar argument, NCS accesses the default NCS
library.

Condition Values Returned

NCS$_DIAG Operation completed with signaled diagnostics.
NCS$_NOT_CF Name of identifier does not refer to a conversion

function.
NCS$_NOT_FOUND Name of identifier not found in the NCS library.

Condition Values Signaled

LBR messages (prefaced by an NCS message) might signal errors detected while
the process is accessing the NCS library.

National Character Set (NCS) Utility Routines NCS–15

National Character Set (NCS) Utility Routines
NCS$GET_CS

NCS$GET_CS—Get Collating Sequence

The NCS$GET_CS routine retrieves the definition of the named collating
sequence from the NCS library.

Format

NCS$GET_CS cs_id [,csname] [,librar]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

cs_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: modify
mechanism: by reference

Address of a longword that NCS uses to store a nonzero value identifying a
collating sequence. The calling program must ensure that the longword identifier
contains 0 before invoking the NCS$GET_CS routine.

All subsequent calls to the NCS$COMPARE routine and the call to the
NCS$END_CS routine that terminates the use of the collating sequence
must pass this longword identifier. Upon completion of the comparisons, the
NCS$END_CS routine releases the memory used to store the collating sequence
and sets the value of the longword identifier to 0.

The collating sequence identifier enhances modular programming and permits
concurrent use of multiple collating sequences within a program.

The calling program should not attempt to interpret the contents of the longword
identifier.

The cs_id argument is required.

csname
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the collating sequence being retrieved.

NCS–16 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$GET_CS

librar
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification of the library where the collating sequence is stored.

Description

The NCS$GET_CS routine extracts the named collating sequence from the
specified NCS library. If the calling program omits the csname argument, NCS
creates a collating sequence that uses the ‘‘native’’ collating sequence as a basis
for the comparisons. This collating sequence is padded with NUL characters (hex
0).

If the calling program omits the librar argument, NCS accesses the default NCS
library.

Condition Values Returned

NCS$_DIAG Operation completed with signaled diagnostics.
NCS$_NOT_CS Name of identifier does not refer to a collating

sequence.
NCS$_NOT_FOUND Name of identifier not found in the NCS library.

Condition Values Signaled

LBR messages (prefaced by an NCS message) might signal errors detected while
the process is accessing the NCS library.

National Character Set (NCS) Utility Routines NCS–17

National Character Set (NCS) Utility Routines
NCS$RESTORE_CF

NCS$RESTORE_CF—Restore Conversion Function

The NCS$RESTORE_CF routine permits the calling program to restore the
definition of a saved conversion function from a database or a file.

Format

NCS$RESTORE_CF cf_id [,length] [,address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Value
Returned.

Arguments

cf_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: write only
mechanism: by reference

Address of a longword that NCS uses to identify a conversion function.

The cf_id argument is required.

length
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword that the calling program uses to indicate the length of the conversion
function being restored.

address
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword that the calling program uses as a pointer to the conversion function
being restored.

NCS–18 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$RESTORE_CF

Description

The NCS$RESTORE_CF routine, used in conjunction with the NCS$SAVE_CF
routine, permits the application program to keep a local copy of the conversion
function. The NCS$SAVE_CF routine obtains the length and location of the
conversion function and returns it to the application program. The application
program subsequently provides this information to the NCS$RESTORE_CF
routine, which uses it to access the conversion function.

This routine also does some integrity checking on the conversion function as it is
being processed.

Condition Value Returned

NCS$_NOT_CF Name of identifier does not refer to a conversion
function.

Condition Values Signaled

LBR messages (prefaced by an NCS message) might signal errors detected while
the process is accessing the NCS library.

National Character Set (NCS) Utility Routines NCS–19

National Character Set (NCS) Utility Routines
NCS$RESTORE_CS

NCS$RESTORE_CS—Restore Collating Sequence

The NCS$RESTORE_CS routine permits the calling program to restore the
definition of a ‘‘saved’’ collating sequence from a database or a file.

Format

NCS$RESTORE_CS cs_id [,length] [,address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Value
Returned.

Arguments

cs_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: write only
mechanism: by reference

Address of a longword that NCS uses to identify a collating sequence.

The cs_id argument is required.

length
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword that the calling program uses to indicate the length of the collating
sequence being restored.

address
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword that the calling program uses as a pointer to the collating sequence
being restored.

NCS–20 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$RESTORE_CS

Description

The NCS$RESTORE_CS routine, used in conjunction with the NCS$SAVE_CS
routine, permits the application program to keep a local copy of the collating
sequence. The NCS$SAVE_CS routine obtains the length and location of the
collating sequence and returns it to the application program. The application
program subsequently provides this information to the NCS$RESTORE_CS
routine, which uses it to access the collating sequence.

This routine also does some integrity checking on the collating sequence as it is
being processed.

Condition Value Returned

NCS$_NOT_CS Name of identifier does not refer to a collating
sequence.

Condition Values Signaled

LBR messages (prefaced by an NCS message) might signal errors detected while
the process is accessing the NCS library.

National Character Set (NCS) Utility Routines NCS–21

National Character Set (NCS) Utility Routines
NCS$SAVE_CF

NCS$SAVE_CF—Save Conversion Function

The NCS$SAVE_CF routine provides the calling program with information that
permits the application to store the definition of a conversion function in a local
database or a file rather than in the NCS library.

Format

NCS$SAVE_CF cf_id [,length] [,address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Value
Returned.

Arguments

cf_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: read only
mechanism: by reference

Address of a longword that NCS uses to identify a conversion function.

The cf_id argument is required.

length
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword used to store the length of the specified conversion function.

address
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword used to store the address of the specified conversion function.

NCS–22 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$SAVE_CF

Description

The NCS$SAVE_CF routine, used in conjunction with the NCS$RESTORE_CF
routine, permits the application program to store a conversion function definition
in a local file or in a database. When the calling program specifies the conversion
function identifier, NCS returns the location of the definition and its length in
bytes, permitting the calling program to store the definition locally, rather than
in an NCS library. Subsequently, the application supplies this information to the
NCS$RESTORE_CF routine, which restores the conversion function to a form
that can be used by the NCS$CONVERT routine.

This routine also does some integrity checking on the conversion function as it is
being processed.

Condition Value Returned

NCS$_NOT_CF Name of identifier does not refer to a conversion
function.

Condition Values Signaled

LBR messages (prefaced by an NCS message) might signal errors detected while
the process is accessing the NCS library.

National Character Set (NCS) Utility Routines NCS–23

National Character Set (NCS) Utility Routines
NCS$SAVE_CS

NCS$SAVE_CS—Save Collating Sequence

The NCS$SAVE_CS routine provides the calling program with information that
permits the application program to store the definition of a collating sequence in
a database or a file rather than in the NCS library.

Format

NCS$SAVE_CS cs_id [,length] [,address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Value
Returned.

Arguments

cs_id
OpenVMS usage: identifier
type: longword integer (unsigned)
access: read only
mechanism: by reference

Address of a longword that NCS uses to identify a collating sequence.

The cs_id argument is required.

length
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword that NCS uses to indicate the length of the specified collating sequence
to the calling program.

address
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Longword that NCS uses to indicate the address of the specified collating
sequence to the calling program.

NCS–24 National Character Set (NCS) Utility Routines

National Character Set (NCS) Utility Routines
NCS$SAVE_CS

Description

The NCS$SAVE_CS routine, used in conjunction with the NCS$RESTORE_CS
routine, permits the application program to store a collating sequence definition
in a local file or in a database. When the calling program specifies the collating
sequence identifier, NCS returns the location of the definition sequence and its
length in bytes, permitting the calling program to store the definition locally,
rather than in a library. Subsequently, the application supplies this information
to the NCS$RESTORE_CS routine, which restores the collating sequence to a
form that can be used by the NCS$COMPARE routine.

This routine also does some integrity checking on the collating sequence as it is
being processed.

Condition Value Returned

NCS$_NOT_CS Name of identifier does not refer to a collating
sequence.

Condition Values Signaled

LBR messages (prefaced by an NCS message) might signal errors detected while
the process is accessing the NCS library.

National Character Set (NCS) Utility Routines NCS–25

16
Print Symbiont Modification (PSM) Routines

The print symbiont modification (PSM) routines allow you to modify the behavior
of the print symbiont supplied with the operating system.

16.1 Introduction to PSM Routines
The print symbiont processes data for output to standard line printers and
printing terminals by performing the following functions:

• Reading the data from disk

• Formatting the data

• Sending the data to the printing device

• Composing separation pages (flag, burst, and trailer pages) and inserting
them into the data stream for printing

Some of the reasons for modifying the print symbiont include the following:

• To include additional information on the separation pages (flag, burst, and
trailer) or to format them differently

• To filter and modify the data stream sent to the printer

• To change some of the ways that the symbiont controls the printing device

You might not always be able to modify the print symbiont to suit your needs.
For example, you cannot modify the:

• Symbiont’s control logic or the sequence in which the symbiont calls routines

• Interface between the symbiont and the job controller

If you cannot modify the print symbiont to suit your needs, you can write
your own symbiont. However, Compaq recommends that you modify the print
symbiont rather than write your own.

The rest of this chapter contains the following information about PSM routines:

• Section 16.2 contains an overview of the print symbiont and of symbionts
in general. It explains concepts such as ‘‘symbiont streams’’; describes the
relationship between a symbiont, a device driver, and the job controller; and
gives an overview of the print symbiont’s internal logic.

This section is recommended for those who want to either modify the print
symbiont or write a new symbiont.

• Section 16.3 details the procedure for modifying the print symbiont.
It includes an overview of the entire procedure, followed by a detailed
description of each step.

• Section 16.4 contains an example of a simple modification to the print
symbiont.

Print Symbiont Modification (PSM) Routines PSM–1

Print Symbiont Modification (PSM) Routines
16.1 Introduction to PSM Routines

• Section 16.5 describes each PSM routine and the interface used by the
routines you substitute for the standard PSM routines.

16.2 Print Symbiont Overview
The operating system supplies two symbionts: a print symbiont, which is an
output symbiont, and a card reader, which is an input symbiont. An output
symbiont receives tasks from the job controller, whereas an input symbiont sends
jobs to the job controller. The card reader symbiont cannot be modified. You can
modify the print symbiont, described in this section, using PSM routines.

There are two types of output symbiont: device and server. A device symbiont
processes data for output to a device, for example, a printer. A server symbiont
also processes data but not necessarily for output to a device, for example, a
symbiont that copies files across a network. The operating system supplies no
server symbionts.

16.2.1 Components of the Print Symbiont
The print symbiont includes the following major components:

• PSM routines that are used to modify the print symbiont

• Routines that implement input, format, and output services in the print
symbiont

• Routines that implement the internal logic of the print symbiont

The print symbiont is implemented using the Symbiont Services facility. This
facility provides communication and control between the job controller and
symbionts through a set of Symbiont/Job Controller Interface routines (SMB
routines), which are documented in Chapter 17.

All of these routines are contained in a shareable image with the file specification
SYS$SHARE:SMBSRVSHR.EXE.

16.2.2 Creation of the Print Symbiont Process
The print symbiont is a device symbiont, receiving tasks from the job controller
and processing them for output to a printing device. In the operating system,
the existence of a print symbiont process is linked to the existence of at least one
print execution queue that is started.

The job controller creates the print symbiont process by calling the $CREPRC
system service; it does this whenever either of the following conditions occurs:

• A print execution queue is started (from the stopped state) and no symbiont
process is running the image specified with the START/QUEUE command.

A print execution queue is started by means of the DCL command
START/QUEUE. Use the /PROCESSOR qualifier with the START/QUEUE
command to specify the name of the symbiont image that is to service an
execution queue; if you omit /PROCESSOR, then the default symbiont image
is PRTSMB.

• Currently existing symbiont processes suited to a print execution queue
cannot accept additional devices; that is, the symbionts have no more
available streams. In such a case, the job controller creates another print
symbiont process. The next section discusses symbiont streams.

The print symbiont process runs as a detached process.

PSM–2 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.2 Print Symbiont Overview

16.2.3 Symbiont Streams
A stream is a logical link between a print execution queue and a printing device.
When the queue is started (by means of START/QUEUE), the job controller
creates a stream linking the queue with a symbiont process. Because each
print execution queue has a single associated printing device (specified with the
/ON=device qualifier in the INITIALIZE/QUEUE or START/QUEUE command),
each stream created by the job controller links a print execution queue, a
symbiont process, and the queue’s associated printer.

A symbiont that can support multiple streams simultaneously (that is, multiple
print execution queues and multiple devices) is termed a multithreaded symbiont.
The job controller enforces an upper limit of 16 on the number of streams that
any symbiont can service simultaneously.

Therefore, in the operating system environment, only one print symbiont process
is needed as long as the number of print execution queues (and associated
printers) does not exceed 16. If there are more than 16 print execution queues,
the job controller creates another print symbiont process.

The print symbiont is, therefore, a multithreaded symbiont that can service as
many as 16 queues and devices, and you can modify it to service any number of
queues and devices as long as the number is less than or equal to 16.

A symbiont stream is ‘‘active’’ when a queue is started on that stream. The print
symbiont maintains a count of active streams. It increments this count each
time a queue is started and decrements it when a queue is stopped with the DCL
command STOP/QUEUE/NEXT or STOP/QUEUE/RESET. When the count falls
to zero, the symbiont process exits. The symbiont does not decrement the count
when the queue is paused by STOP/QUEUE.

Figure 16–1 shows the relationship of generic print queues, execution print
queues, the job controller, the print symbiont, printer device drivers, and printers.
The lines connecting the boxes denote streams.

Figure 16–1 Multithreaded Symbiont

ZK−2007−GE

Printer
Driver 1

Printer
Driver 3

Printer
Driver 2

Execution
Queue

Execution
Queue

Execution
Queue

Generic
Queue

Job
Controller

Print
Symbiont

Printer
2

Printer
1

Printer
3

16.2.4 Symbiont and Job Controller Functions
This section compares the roles of the symbiont and job controller in the execution
of print requests. You issue print requests using the PRINT command.

Print Symbiont Modification (PSM) Routines PSM–3

Print Symbiont Modification (PSM) Routines
16.2 Print Symbiont Overview

The job controller uses the information specified on the PRINT command line to
determine the following:

• Which queue to place the job in (/QUEUE, /REMOTE, /LOWERCASE, and
/DEVICE)

• How many copies to print (/COPIES and /JOB_COUNT)

• Scheduling constraints for the job (/PRIORITY, /AFTER, /HOLD, /FORM,
/CHARACTERISTICS, and /RESTART)

• How and whether to display the status of jobs and queues (/NOTIFY,
/OPERATOR, and /IDENTIFY)

The print symbiont, on the other hand, interprets the information supplied with
the qualifiers that specify this information:

• Whether to print file separation pages (/BURST, /FLAG, and /TRAILER)

• Information to include when printing the separation pages (/NAME and
/NOTE)

• Which pages to print (/PAGES)

• How to format the print job (/FEED, /SPACE, and /PASSALL)

• How to set up the job (/SETUP)

The print symbiont, not the job controller, performs all necessary device-related
functions. It communicates with the printing device driver. For example, when a
print execution queue is started (by means of START/QUEUE/ON=device) and the
stream is established between the queue and the symbiont, the symbiont parses
the device name specified by the /ON qualifier in the START/QUEUE command,
allocates the device, assigns a channel to it, obtains the device characteristics,
and determines the device class. In versions of the operating system prior to
Version 4.0, the job controller performed these functions.

The print symbiont’s output routine returns an error to the job controller if the
device class is neither printer nor terminal.

16.2.5 Print Symbiont Internal Logic
The job controller deals with units of work called jobs, while the print symbiont
deals with units of work called tasks. A print job can consist of several print
tasks. Thus, in the processing of a print job, the job controller’s role is to divide
a print job into one or more print tasks, which the symbiont can process. The
symbiont reports the completion of each task to the job controller, but the
symbiont contains no logic to determine that the print job as a whole is complete.

In the processing of a print task, the symbiont performs three basic functions:
input, format, and output. The symbiont performs these functions by calling
routines to perform each function.

The following steps describe the action taken by the symbiont in processing a
task:

1. The symbiont receives the print request from the job controller and stores it
in a message buffer.

2. The symbiont searches its list of input routines and selects the first input
routine that is applicable to the print task.

PSM–4 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.2 Print Symbiont Overview

3. The input routine returns a data record to the symbiont’s input buffer or in a
buffer supplied by the input routine.

4. Data in the input buffer is moved to the symbiont’s output buffer by the
formatting routines, which format it in the process.

5. Data in the output buffer is sent to the printing device by the output routine.

6. When an input routine completes execution, that is, when it has no more
input data to process, the symbiont selects another applicable input routine.
Steps 3, 4, and 5 are repeated until all applicable input routines have
executed.

7. The symbiont informs the job controller that the task is complete.

Figure 16–2 illustrates the steps taken by the symbiont in the processing of a
print task.

Figure 16–2 Symbiont Execution Sequence or Flow of Control

1 2 3 4 5 6 7 8 ...and so on

ZK−2008−GE

Input
Buffer

Printing
Device

Output
Routine

Output
Buffer

Input
Routines

Formatting
Routine

As Figure 16–2 shows, most of the input routines execute in a specified sequence.
This sequence is defined by the symbiont’s main control routine. You cannot
modify this main control routine; thus, you cannot modify the sequence in which
symbiont routines are called.

The input routines that do not execute in sequence are called ‘‘demand input
routines.’’ These routines are called whenever the service they provide is required
and include the page header, page setup, and library module input routines.

The symbiont can perform input, formatting, and output functions
asynchronously; that is, the order in which the symbiont calls the input,
formatting, and output routines can vary. For example, the symbiont can
call an input routine, which returns a record to the input buffer; it can then call
the format routine, which moves that record to the output buffer; and then it can
call the output routine to move that data to the printing device. This sequence
results in the movement of a single data record from disk to printing device.

On the other hand, the symbiont can call the input and formatting routines
several times before calling the output routine for a single buffer. The buffer
can contain one or more formatted input records. In some cases an output buffer
might contain only a portion of an input record.

Print Symbiont Modification (PSM) Routines PSM–5

Print Symbiont Modification (PSM) Routines
16.2 Print Symbiont Overview

In this way the symbiont can store input records; then call the format routine,
which moves one of those records to the output buffer; and finally call the output
routine, which moves that data to the printing device. Note, however, that the
formatting routine must be called once for each input record.

Similarly, the symbiont can store several formatted records before calling the
output routine to move them to the printing device.

The symbiont requires this flexibility in altering the sequence in which input,
format, and output routines are called for reasons of efficiency (high rate of
throughput) and adaptability to various system parameters and system events.

The value specified with the call to PSM$PRINT determines the maximum size of
the symbiont’s output buffer, which cannot be larger than the value of the system
parameter MAXBUF. If the buffer is very small, the symbiont might need to call
its output routine one or more times for each record formatted. If the buffer is
large, the symbiont stores several formatted records before calling the output
routine to move them to the printing device.

16.3 Symbiont Modification Procedure
To modify the print symbiont, perform the following steps. These steps are
described in more detail in the sections that follow.

1. Determine the modification needed. The modification might involve changing
the way the symbiont performs a certain function, or it might involve adding
a new function.

2. Determine where to make the modification. This involves selecting a function
and determining where that function is performed within the symbiont’s
execution sequence. You specify a function by calling the PSM$REPLACE
routine and specifying the code that identifies the function.

Some codes correspond to symbiont-supplied routines. When you specify one
of these codes, you replace that routine with your routine. Other codes do
not correspond to symbiont-supplied routines. When you specify one of these
codes, you add your routine to the set of routines the symbiont executes.
Table 16–1 lists these codes.

3. Write the routine. Because the symbiont calls your routine, your routine must
have one of three call interfaces, depending on whether it is an input, format,
or output routine. See the descriptions of the USER-INPUT-ROUTINE,
USER-FORMAT-ROUTINE, and USER-OUTPUT-ROUTINE routines, which
follow the descriptions of the PSM routines.

4. Write the symbiont-initialization routine. This routine executes when the
symbiont is first activated by the job controller. It initializes the symbiont’s
internal database; specifies, by calling PSM$REPLACE, the routines you have
supplied; activates the symbiont by calling PSM$PRINT; and performs any
necessary cleanup operations when PSM$PRINT completes.

5. Construct the modified symbiont. This involves compiling your routines, then
linking them.

6. Integrate the modified symbiont with the system. This involves placing the
executable image in SYS$SYSTEM, identifying the symbiont image to the job
controller, and debugging the symbiont.

PSM–6 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

As mentioned previously, you identify each routine you write for the symbiont
by calling the PSM$REPLACE routine. The code argument for this routine
specifies the point within the symbiont’s execution sequence at which you want
your routine to execute. You should know which code you will use to identify
your routine before you begin to write the routine. Section 16.3.6 provides more
information about these codes.

16.3.1 Guidelines and Restrictions
The following guidelines and restrictions apply to the writing of any symbiont
routine:

• Do not use the process-permanent files identified by the logical names
SYS$INPUT, SYS$OUTPUT, SYS$ERROR, and SYS$COMMAND.

• The symbiont code should be linked against SMBSRVSHR.EXE in order to
define the following status codes:

PSM$_FLUSH

PSM$_FUNNOTSUP

PSM$_PENDING

PSM$_SUSPEND

PSM$_EOF

PSM$_BUFFEROVF

PSM$_NEWPAGE

PSM$_ESCAPE

PSM$_INVVMSOSC

PSM$_MODNOTFND

PSM$_NOFILEID

PSM$_OSCTOOLON

PSM$_TOOMANYLEV

PSM$_INVITMCOD

PSM$_LATSYM

• Do not use the system services $HIBER and $WAKE.

• The job completion (PSM$K_JOB_COMPLETION) and output (PSM$K_
OUTPUT) routines are not replaceable when using the LAT protocol option.

• Use the following two OpenVMS Run-Time Library routines for allocation and
deallocation of memory: LIB$GET_VM and LIB$FREE_VM.

• Minimize the amount of time that your routine spends executing at AST level.
The job controller sends messages to the symbiont by means of user-mode
ASTs; the symbiont cannot receive these ASTs while your user routine is
executing at AST level.

• The symbiont can call your routines at either AST level or non-AST level.

Print Symbiont Modification (PSM) Routines PSM–7

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

• If your routine returns any error-condition value (low bit clear), the symbiont
aborts the current task and notifies the job controller. Note that, by default,
an error-condition value returned during the processing of a task causes
the job controller to abort the entire job. However, this default behavior
can be overridden. See the description of the /RETAIN qualifier of the DCL
commands START/QUEUE, INITIALIZE/QUEUE, and SET QUEUE in the
OpenVMS DCL Dictionary.

The symbiont stores the first error-condition value (low bit clear) returned
during the processing of a task. The symbiont’s file-errors routine, an input
routine (code PSM$K_FILE_ERRORS), places the message text associated
with this condition value in the symbiont’s input stream. The symbiont prints
this text at the end of the listing, immediately before the trailer pages.

The symbiont sends this error-condition value to the job controller; the job
controller then stores this condition value with the job record in the job
controller’s queue file. The job controller also writes this condition value in
the accounting record for the job.

If you choose to return a condition value when an error occurs, you should
choose one from the system message file. This lets system programs access
the message text associated with the condition value. Specifically, the
Accounting and SHOW/QUEUE utilities and the job controller will be able to
translate the condition value to its corresponding message text and to display
this message text as appropriate.

This guideline applies to input, input-filter, and output-filter routines, and to
the symbiont’s use of dynamic string descriptors in these routines.

The simplest way for an input routine to pass the data record to the symbiont
is for it to use a Run-Time Library string-handling routine (for example,
STR$COPY_R). These routines use dynamic string descriptors to point to the
record they have handled and to copy that record from your input buffer to
the symbiont-supplied buffer specified in the funcdesc argument.

By default, the symbiont initializes a dynamic string descriptor that your
input routine can use to describe the data record it returns. Specifically, the
symbiont initializes the DSC$B_DTYPE field of the string descriptor with
the value DSC$K_DTYPE_T (which indicates that the data to which the
descriptor points is a string of characters) and initializes the DSC$B_CLASS
field with the value DSC$K_CLASS_D (which indicates that the descriptor is
dynamic).

Alternatively, the input routine can pass a data record to the symbiont by
providing its own buffer and passing a static string descriptor that describes
the buffer. To do this, you must redefine the fields of the descriptor to which
the funcdesc argument points, as follows:

1. Initialize the field DSC$B_CLASS with the value DSC$K_CLASS_
S (which indicates that the descriptor points to a scalar value or a
fixed-length string).

2. Initialize the field DSC$A_POINTER with the address of the buffer that
contains the data record.

3. Initialize the field DSC$W_LENGTH with the length, in bytes, of the data
record.

PSM–8 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

Each time the symbiont calls the routine to read some data, the symbiont
reinitializes the descriptor to make it a dynamic descriptor. Consequently, if
you want to use the descriptor as a static descriptor, your input routine must
initialize the descriptor each time it is called to perform a reading operation.

Input-filter routines and output-filter routines return a data record to the
symbiont by means of the func_desc_2 argument. The symbiont initializes a
descriptor for this argument the same way it does for descriptors used by the
input routine. Thus, the guidelines described for the input routine apply to
the input-filter routine and output-filter routine.

16.3.2 Writing an Input Routine
This section provides an overview of the logic used in the print symbiont’s main
input routine, and it discusses the way in which the print symbiont handles
carriage-control effectors.

The print symbiont calls your input routine, supplying it with arguments. Your
routine must return arguments and condition values to the print symbiont. For
this reason, your input routine must use the interface described in the description
of the USER-INPUT-ROUTINE.

When the print symbiont calls your routine, it specifies a particular request in
the func argument. Each function has a corresponding code.

Your routine must provide the functions identified by the codes PSM$K_OPEN,
PSM$K_READ, and PSM$K_CLOSE. Your routine need not respond to the other
function codes, but it can if you want it to. If your routine does not provide a
function that the symbiont requests, it must return the condition value PSM$_
FUNNOTSUP to the symbiont.

The description of the func argument of the USER-INPUT-ROUTINE describes
the codes that the symbiont can send to an input routine.

See Section 16.3.5 for additional information about other function codes used in
the user-written input routine.

For each task that the symbiont processes, it calls some input routines only once,
and some more than once; it always calls some routines and calls others only
when needed.

Table 16–1 lists the codes that you can specify when you call the PSM$REPLACE
routine to identify your input routine to the symbiont. The description of the
PSM$REPLACE routine describes these routines.

16.3.2.1 Internal Logic of the Symbiont’s Main Input Routine
The internal logic of the symbiont’s main input routine, as described in this
section, is subject to change without notice. This logic is summarized here. This
summary is not intended as a tutorial on the writing of a symbiont’s main input
routine, although it does provide insight into such a task.

A main input routine is one that the symbiont calls to read data from the file that
is to be printed. A main input routine must perform three sets of tasks: one set
when the symbiont calls the routine with an OPEN request, one set when the
symbiont calls with a READ request, and one set when the symbiont calls with a
CLOSE request.

Print Symbiont Modification (PSM) Routines PSM–9

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

The following table lists the codes that identify each of these three requests and
describes the tasks that the symbiont’s main input routine performs for each
request:

Code Action Taken by the Input Routine

PSM$K_OPEN An OPEN request. When the main input routine receives this
request code, it does the following:

1. Opens the input file.

2. Stores information about the input file.

3. Returns the type of carriage control used in the input file. If
this routine cannot open the file, it returns an error.

Note that the print symbiont’s main input routine performs these
tasks when it receives the PSM$K_START_TASK function code,
rather than the PSM$K_OPEN function code.

This atypical behavior occurs because some of the information
stored by the main input routine must be available for other input
routines that execute before the main input routine. For example,
information about file attributes and record formats is needed
by the symbiont’s separation-page routines, which print flag and
burst pages.

Consequently, if you supply your own main input routine, some
of the information about the file being printed that appears on
the standard separation pages is not available, and the symbiont
prints a message on the separation page stating so.

The symbiont receives the file-identification number from the job
controller in the SMBMSG$K_FILE_IDENTIFICATION item of
the requesting message and uses this value rather than the file
specification to open the main input file.

PSM$K_READ A READ request. When the main input routine receives this
request, it returns the next record from the file. In addition, when
the carriage control used by the data file is PSM$K_CC_PRINT,
the main input routine returns the associated record header.

PSM$K_CLOSE A CLOSE request. When the main input routine receives this
request, it closes the input file.

16.3.2.2 Symbiont Processing of Carriage Control
Each input record can be thought of as consisting of three parts: leading carriage
control, data, and trailing carriage control. Taken together, these three parts are
called the composite data record.

Leading and trailing carriage control are determined by the type of carriage
control used in the file and explicit carriage-control information returned with
each record. For embedded carriage control, however, leading and trailing
carriage control is always null.

The type of carriage control returned by the main input routine on the PSM$K_
OPEN request code determines, for that invocation of the input routine, how
the symbiont applies carriage control to each record that the main input routine
returns on the PSM$K_READ request code.

Note that, for all four carriage control types, the first character returned on the
first PSM$K_READ call to an input routine receives special processing. If that
character is a line feed or a form feed and if the symbiont is currently at line 1,

PSM–10 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

column 1 of the current page, then the symbiont discards that line feed or form
feed.

The Four Types of Carriage Control
The following table briefly describes each type of carriage control and how the
symbiont’s main input routine processes it. For a detailed explanation of each
type of carriage control, refer to the description of the FAB$B_RAT field of the
FAB block in the OpenVMS Record Management Services Reference Manual.

Type of Carriage Control Symbiont Processing

Embedded Leading and trailing carriage control are embedded
in the data portion of the input record. Therefore,
the symbiont supplies no special carriage control
processing; it assumes that leading and trailing
carriage control are null.

Fortran The first byte of each data record contains a Fortran
carriage-control character. This character specifies
both the leading and trailing carriage control for the
data record. The symbiont extracts the first byte of
each data record and interprets that byte as a Fortran
carriage-control character. If the data record is empty,
the symbiont generates a leading carriage control of
line feed and a trailing carriage control of carriage
return.

PRN Each data record contains a 2-byte header that
contains the carriage-control specifier. The first
byte specifies the carriage control to apply before
printing the data portion of the record. The second
byte specifies the carriage control to apply after
printing the data portion. The abbreviation PRN
stands for print-file format.

Unlike other types of carriage control, PRN carriage
control information is returned through the funcarg
argument of the main input routine; this occurs with
the PSM$K_READ request. The funcarg argument
specifies a longword; your routine writes the 2-byte
PRN carriage control specifier into the first two bytes
of this longword.

Implied The symbiont provides a leading line feed and a
trailing carriage return. But if the data record consists
of a single form feed, the symbiont sets to null the
leading and trailing carriage control for that record,
and the leading carriage control for the record that
follows it.

16.3.3 Writing a Format Routine
To write a format routine, follow the modification procedure described in
Section 16.3. Do not replace the symbiont’s main format routine. Instead,
modify its action by writing input and output filter routines. These execute
immediately before and after the main format routine, respectively. The main
formatting routine uses an undocumented and nonpublic interface; you cannot
replace the main formatting routine. The DCL command PRINT/PASSALL
bypasses the main format routine of the print symbiont.

See Section 16.3.5 for additional information about other function codes used in
the user-written formatting routine.

Print Symbiont Modification (PSM) Routines PSM–11

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

16.3.3.1 Internal Logic of the Symbiont’s Main Format Routine
The main format routine contains all the logic necessary to convert composite
data records to a data stream for output. Actions taken by the format routine
include the following:

• Tracking the current column and line

• Implementing the special processing of the first character of the first record

• Implementing the alignment data mask specified by the DCL command
START/QUEUE/ALIGN=MASK

• Handling margins as specified by the forms definition

• Initiating processing of page headers when specified by the DCL command
PRINT/HEADER

• Expanding leading and trailing carriage control

• Handling line overflow

• Handling page overflow

• Expanding tab characters to spaces for some devices

• Handling escape sequences

• Accumulating accounting information

• Implementing double-spacing when specified by the DCL command
PRINT/SPACE

• Implementing automatic page ejection when specified by the DCL command
PRINT/FEED

The symbiont’s main format routine uses a special rule when processing the
first character of the first composite data record returned by an input routine.
(A composite data record is the input data record and a longword that contains
carriage-control information for the input data record.) This rule is that if the
first character is a vertical format effector (form feed or line feed) and if the
symbiont has processed no printable characters on the current page (that is,
the current position is column 1, line 1), then that vertical format effector is
discarded.

16.3.4 Writing an Output Routine
To write an output routine, follow the modification procedure described in
Section 16.3.

The print symbiont calls your output routine. Input arguments are supplied by
the print symbiont; output arguments and status values are returned by your
routine to the print symbiont. For this reason, your output routine must have the
call interface that is described in the USER-OUTPUT-ROUTINE routine.

When the print symbiont calls your routine, it specifies in one of the input
arguments—the func argument—the reason for the call. Each reason has a
corresponding function code.

There are several function codes that the print symbiont can supply when it
calls your output routine. Your routine must contain the logic to respond to the
following function codes: PSMK_OPEN, PSMK_WRITE, PSM$K_WRITE_
NOFORMAT, and PSM$K_CLOSE.

PSM–12 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

It is not required that your output routine contain the logic to respond to the
other function codes, but you can provide this logic if you want to.

A complete list and description of all relevant function codes for output routines
is provided in the description of the func argument of the USER-OUTPUT-
ROUTINE routine.

See Section 16.3.5 for additional information about other function codes.

16.3.4.1 Internal Logic of the Symbiont’s Main Output Routine
When the symbiont calls the main output routine with the PSM$K_OPEN
function code, the main output routine takes the following steps:

1. Allocates the print device

2. Assigns a channel to the device

3. Obtains the device characteristics

4. Returns the device-status longword in the funcarg argument (for more
information, see the description of the SMBMSG$K_DEVICE_STATUS
message item in Chapter 17)

5. Returns an error if the device is not a terminal or a printer

When this routine receives a PSM$K_WRITE service request code, it sends the
contents of the symbiont output buffer to the device for printing.

When this routine receives a PSM$K_WRITE_NOFORMAT service request code,
it sends the contents of the symbiont output buffer to the device for printing and
suppresses device drive formatting as appropriate for the device in use.

When this routine receives a PSM$K_CANCEL service request code, it requests
the device driver to cancel any outstanding output operations.

When this routine receives a PSM$K_CLOSE service request code, it deassigns
the channel to the device and deallocates the device.

16.3.5 Other Function Codes
A status PSM$_PENDING might not be returned whenever the symbiont notifies
user-written input, output, and format routines using the following message
function codes:

Function Code Description

PSM$K_START_STREAM Job controller sends a message to the symbiont to start
a queue

PSM$K_START_TASK Symbiont parses a message from job controller
directing it to start a queue

PSM$K_PAUSE_TASK Job controller sends a message to the symbiont to
suspend processing of the current task

PSM$K_STOP_STREAM Job controller sends a message to the symbiont to stop
the queue

PSM$K_STOP_TASK Job controller sends a message to the symbiont to stop
the task

PSM$K_RESUME_TASK Job controller sends a message to the symbiont to
resume processing of the current task

PSM$K_RESET_STREAM Same as PSM$K_STOP_STREAM

Print Symbiont Modification (PSM) Routines PSM–13

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

16.3.6 Writing a Symbiont Initialization Routine
Writing a symbiont initialization routine involves writing a program that calls
the following:

1. PSM$REPLACE once for each routine (input, output, or format) that you
have written. PSM$REPLACE identifies your routines to the symbiont.

2. PSM$PRINT exactly once after you have identified all your service routines
using PSM$REPLACE.

Table 16–1 lists all routine codes that you can specify in the PSM$REPLACE
routine. Choosing the correct routine code is important because the code specifies
when the symbiont will call your routine. The functions of these routines are
described further in the description of the PSM$REPLACE routine.

For those input routines that execute in a predefined sequence, the second column
contains a number showing the order in which that input routine is called relative
to the other input routines for a single file job. If the routine does not execute in
a predefined sequence, the second column contains the character x.

Column three specifies whether the routine is an input, format, or output routine;
this information directs you to the section describing how to write a routine of
that type.

Column four specifies whether there is a symbiont-supplied routine corresponding
to that routine code. The codes for the input-filter and output-filter routines,
which have no corresponding routines in the symbiont, allow you to specify new
routines for inclusion in the symbiont.

Table 16–1 Routine Codes for Specification to PSM$REPLACE

Routine Code Sequence Function Supplied

PSM$K_JOB_SETUP 1 Input Yes

PSM$K_FORM_SETUP 2 Input Yes

PSM$K_JOB_FLAG 3 Input Yes

PSM$K_JOB_BURST 4 Input Yes

PSM$K_FILE_SETUP 5 Input Yes

PSM$K_FILE_FLAG 6 Input Yes

PSM$K_FILE_BURST 7 Input Yes

PSM$K_FILE_SETUP_2 8 Input Yes

PSM$K_MAIN_INPUT 9 Input Yes

PSM$K_FILE_INFORMATION 10 Input Yes

PSM$K_FILE_ERRORS 11 Input Yes

PSM$K_FILE_TRAILER 12 Input Yes

PSM$K_JOB_RESET 13 Input Yes

PSM$K_JOB_TRAILER 14 Input Yes

PSM$K_JOB_COMPLETION1 15 Input Yes

PSM$K_PAGE_SETUP x Input Yes

1The job completion (PSM$K_JOB_COMPLETION) and output (PSM$K_OUTPUT) routines are not
replaceable when using the LAT protocol option.

(continued on next page)

PSM–14 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

Table 16–1 (Cont.) Routine Codes for Specification to PSM$REPLACE

Routine Code Sequence Function Supplied

PSM$K_PAGE_HEADER x Input Yes

PSM$K_LIBRARY_INPUT x Input Yes

PSM$K_INPUT_FILTER x Formatting No

PSM$K_MAIN_FORMAT x Formatting Yes

PSM$K_OUTPUT_FILTER x Formatting No

PSM$K_OUTPUT1 x Output Yes

1The job completion (PSM$K_JOB_COMPLETION) and output (PSM$K_OUTPUT) routines are not
replaceable when using the LAT protocol option.

16.3.7 Integrating a Modified Symbiont
To integrate your user routine and the symbiont initialization routine, perform
the following steps; note that the sequence of steps described here assumes that
you will be debugging the modified symbiont:

1. Compile or assemble the user routine and the symbiont initialization routine
into an object module.

2. Enter the following DCL command:

$ LINK/DEBUG your-symbiont

The file name your-symbiont is the object module built in Step 1. Symbols
necessary for this link operation are located in the shareable images
SYS$SHARE:SMBSRVSHR.EXE and SYS$LIBRARY:IMAGELIB.EXE.
The linker automatically searches these shareable images and extracts the
necessary information.

3. Place the resulting executable symbiont image in SYS$SYSTEM.

4. Locate two unallocated terminals: one at which to issue DCL commands and
one at which to debug the symbiont image.

5. Log in on one of the terminals under UIC [1,4], which is the system manager’s
account. This terminal is the one at which you enter DCL commands. Do not
log in at the other terminal.

6. Enter the following DCL command:

$ SET TERMINAL/NODISCONNECT/PERMANENT _TTcu:

The variable _TTcu: is the physical terminal name of the terminal at which
you want to debug (the terminal at which you are not logged in). You must
specify the underscore (_) and colon (:) characters.

7. Enter the following DCL commands:

$ DEFINE/GROUP DBG$INPUT _TTcu:
$ DEFINE/GROUP DBG$OUTPUT _TTcu:

The variable _TTcu: specifies the physical terminal name of the terminal at
which you will be debugging. Note that other users having a UIC with group
number 1 should not use the debugger at the same time.

8. Initialize the queue by entering the following DCL command:

$ INITIALIZE/QUEUE/PROCESSOR= your-symbiont /ON= printer_name

Print Symbiont Modification (PSM) Routines PSM–15

Print Symbiont Modification (PSM) Routines
16.3 Symbiont Modification Procedure

The symbiont image specified by the file name your-symbiont must reside in
SYS$SYSTEM. Note too that the /PROCESSOR qualifier accepts only a file
name; the device, directory, and file type default to SYS$SYSTEM:.EXE.

The /ON qualifier specifies the device that will be served by the symbiont
while you debug the symbiont.

9. Enter the following DCL command to execute the modified symbiont routine:

$ PRINT/HEADER/QUEUE=queue-id

Enter the following DCL command to start the queue and invoke the
debugger:

$ START/QUEUE queue-name

10. After you debug your symbiont, relink the symbiont by entering the following
DCL command:

$ LINK/NOTRACEBACK/NODEBUG your-symbiont

11. Deassign the logical names DBG$INPUT and DBG$OUTPUT so that they
will not interfere with other users in UIC group 1.

16.4 Using the PSM Routines: An Example
Example 16–1 shows how to use PSM routines to supply a page header routine in
a VAX MACRO program.

Example 16–1 Using PSM Routines to Supply a Page Header Routine in a VAX MACRO
Program

.TITLE EXAMPLE - Example user modified symbiont

.IDENT ’V03-000’

;++
; THIS PROGRAM SUPPLIES A USER WRITTEN PAGE HEADER
; ROUTINE TO THE STANDARD SYMBIONT. THE PAGE HEADER
; INCLUDES THE SUBMITTER’S ACCOUNT NAME AND USER NAME,
; THE FULL FILE SPECIFICATION, AND THE PAGE NUMBER.
; THE HEADER LINE IS UNDERLINED BY A ROW OF DASHES
; PRINTED ON A SECOND HEADER LINE.
;--

.LIBRARY /SYS$LIBRARY:LIB.MLB/
;
; System definitions
;

$PSMDEF ; Symbiont definitions
$SMBDEF ; Message item definitions
$DSCDEF ; Descriptor definitions

;
; Define argument offsets for user supplied services called by symbiont
;

CONTEXT = 04 ; symbiont context
WORK_AREA = 08 ; user context
FUNC = 12 ; function code
FUNC_DESC = 16 ; function dependent descriptor
FUNC_ARG = 20 ; function dependent argument

(continued on next page)

PSM–16 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.4 Using the PSM Routines: An Example

Example 16–1 (Cont.) Using PSM Routines to Supply a Page Header Routine in a VAX
MACRO Program

;
; Macro to create dynamic descriptors
;

.MACRO D_DESC
.WORD 0 ; DSC$W_LENGTH = 0
.BYTE DSC$K_DTYPE_T ; DSC$B_DTYPE = STRING
.BYTE DSC$K_CLASS_D ; DSC$B_CLASS = DYNAMIC
.LONG 0 ; DSC$A_POINTER = 0

.ENDM

;
; Storage for page header information
;

FILE: D_DESC ; file name descriptor
USER: D_DESC ; user name descriptor
ACCOUNT: D_DESC ; account name descriptor

PAGE: .LONG 0 ; page number
LINE: .LONG 0 ; line number

;
; FAO control string and work buffer. Header format:
; "[account,name] filename Page 9999"
;

FAO_Ctrl: .ASCID /!71<[!AS, !AS] !AS!>Page 9999/
FAO_Ctrl_2: .ASCID /!4UL/
FAO_DESC: .LONG 80 ; work buffer descriptor

.ADDRESS FAO_BUFF
FAO_BUFF: .BLKB 80 ; work buffer

;
; Own storage for values passed by reference
;

CODE: .LONG 0 ; service or item code
STREAMS: .LONG 1 ; number of simultaneous streams
BUFSIZ: .LONG 2048 ; output buffer size
LINSIZ: .WORD 81 ; line size for underlines

;
; Main routine -- invoked at image startup
;
START: .WORD 0 ; save nothing because this routine uses only R0 and R1

;
; Supply private page header routine
;

MOVZBL #PSM$K_PAGE_HEADER,CODE ; set the service code
PUSHAL HEADER ; address of modified routine
PUSHAL CODE ; address of service code
CALLS #2,G^PSM$REPLACE ; replace the routine
BLBC R0,10$; exit if any errors

;
; Transfer control to the standard symbiont
;

PUSHAL BUFSIZ ; address of output buffer size
PUSHAL STREAMS ; address of number of streams
CALLS #2,G^PSM$PRINT ; invoke standard symbiont

10$: RET

(continued on next page)

Print Symbiont Modification (PSM) Routines PSM–17

Print Symbiont Modification (PSM) Routines
16.4 Using the PSM Routines: An Example

Example 16–1 (Cont.) Using PSM Routines to Supply a Page Header Routine in a VAX
MACRO Program

;
; Page header routine
;
HEADER: .WORD 0 ; save nothing

;
; Check function code
;

CMPL #PSM$K_START_TASK,@FUNC(AP) ; new task?
BEQL 20$; branch if so
CMPL #PSM$K_READ,@FUNC(AP) ; READ function?
BNEQ 15$
BRW 50$; branch if so

15$: CMPL #PSM$K_OPEN, @FUNC(AP) ; OPEN function?
BNEQ 16$
BRW 66$; branch if so

16$: MOVL #PSM$_FUNNOTSUP,R0 ; unsupported function
RET ; return to symbiont

;
; Starting a new file
;
20$:

CLRL PAGE ; reset the page number
MOVZBL #2,LINE ; and the line number

;
; Get the account name
;

MOVZBL #SMBMSG$K_ACCOUNT_NAME,CODE ; set item code
PUSHAL ACCOUNT ; address of descriptor
PUSHAL CODE ; address of item code
PUSHAL @CONTEXT(AP) ; address of symbiont ctx value
CALLS #3,G^PSM$READ_ITEM_DX ; read it
BLBC R0,40$; branch if any errors

;
; Get the file name
;

MOVZBL #SMBMSG$K_FILE_SPECIFICATION,CODE ; set item code
PUSHAL FILE ; address of descriptor
PUSHAL CODE ; address of item code
PUSHAL @CONTEXT(AP) ; address of symbiont ctx value
CALLS #3,G^PSM$READ_ITEM_DX ; read it
BLBC R0,40$; branch if any errors

;
; Get the user name
;

MOVZBL #SMBMSG$K_USER_NAME,CODE ; set item code
PUSHAL USER ; address of descriptor
PUSHAL CODE ; address of item code
PUSHAL @CONTEXT(AP) ; address of symbiont ctx value
CALLS #3,G^PSM$READ_ITEM_DX ; read it
BLBC R0,40$; branch if any errors

(continued on next page)

PSM–18 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
16.4 Using the PSM Routines: An Example

Example 16–1 (Cont.) Using PSM Routines to Supply a Page Header Routine in a VAX
MACRO Program

;
; Set up the static header information that is constant for the task
;

$FAO_S CTRSTR = FAO_Ctrl, - ; FAO control string desc
OUTBUF = FAO_DESC, - ; output buffer descriptor
P1 = #ACCOUNT, - ; account name descriptor
P2 = #USER, - ; user name descriptor
P3 = #FILE ; file name descriptor

BLBC R0,40$; branch if any errors
MOVL #PSM$_FUNNOTSUP,R0 ; unsupported function

40$: RET ; return usupported status or error
;
; Read a page header
;
50$:

DECL LINE ; decrement the line number
BEQL 60$; branch if second read
BLSS 70$; branch if third read

;
; Insert the page number into the header
;

INCL PAGE ; increment the page number
MOVAB FAO_BUFF+76,FAO_DESC+4 ; point to page number buffer
$FAO_S CTRSTR = FAO_Ctrl_2, - ; FAO control string desc

OUTBUF = FAO_DESC, - ; output buffer descriptor
P1 = PAGE ; page number

MOVAB FAO_BUFF,FAO_DESC+4 ; point to work buffer
BLBC R0,55$; return if error

;
; Copy the line to the symbiont’s buffer
;

PUSHAB FAO_DESC ; work buffer descriptor
PUSHL FUNC_DESC(AP) ; symbiont descriptor
CALLS #2,G^STR$COPY_DX ; copy to symbiont buffer

55$: RET ; return success or any error

;
; Second line -- underline header
;
60$:

PUSHL FUNC_DESC(AP) ; symbiont descriptor
PUSHAL LINSIZ ; number of bytes to reserve
CALLS #2,G^STR$GET1_DX ; reserve the space
BLBC R0,67$; exit if error
MOVL FUNC_DESC(AP),R1 ; get address of descriptor
MOVL 4(R1),R1 ; get address of buffer
MOVAB 80(R1),R0 ; set up transfer limit

65$: MOVB #^A/-/,(R1)+ ; fill with dashes
CMPL R0,R1 ; reached limit?
BGTRU 65$; branch if not
MOVB #10,(R1)+ ; extra line feed

66$: MOVZBL #SS$_NORMAL,R0 ; set success
67$: RET ; return

(continued on next page)

Print Symbiont Modification (PSM) Routines PSM–19

Print Symbiont Modification (PSM) Routines
16.4 Using the PSM Routines: An Example

Example 16–1 (Cont.) Using PSM Routines to Supply a Page Header Routine in a VAX
MACRO Program

;
; Done with this page header
;
70$:

MOVL #PSM$_EOF,R0 ; return end of input
MOVZBL #2,LINE ; reset line counter
RET ; return

.END START

16.5 PSM Routines
This section describes the individual PSM routines.

PSM–20 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
PSM$PRINT

PSM$PRINT—Invoke OpenVMS-Supplied Print Symbiont

The PSM$PRINT routine invokes the OpenVMS-supplied print symbiont.

PSM$PRINT must be called exactly once after all user service routines have been
specified using PSM$REPLACE.

Format

PSM$PRINT [streams] [,bufsiz] [,worksiz] [,maxqios] [,options]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

streams
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Maximum number of streams that the symbiont is to support. The streams
argument is the address of a longword containing this number, which must be in
the range of 1 to 16. If you do not specify streams, a default value of 1 is used.
Thus, by default, a user-modified symbiont supports one stream, which is to say
that it is a single-threaded symbiont.

A stream (or thread) is a logical link between a print execution queue and a
printing device. When a symbiont process can accept simultaneous links to more
than one queue, that is, when it can service multiple queues simultaneously, the
symbiont is said to be multithreaded.

bufsiz
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Maximum buffer size in bytes that the print symbiont is to use for output
operations. The bufsiz argument is the address of a longword containing the
specified number of bytes.

The print symbiont actually uses a buffer size that is the smaller of: (1) the
value specified by bufsiz or (2) the system parameter MAXBUF. If you do not
specify bufsiz, the print symbiont uses the value of MAXBUF.

The print symbiont uses this size limit only for output operations. Output
operations involve the placing of processed or formatted pages into a buffer that
will be passed to the output routine.

Print Symbiont Modification (PSM) Routines PSM–21

Print Symbiont Modification (PSM) Routines
PSM$PRINT

The print symbiont uses the value specified by bufsiz only as an upper limit;
most buffers that it writes will be smaller than this value.

worksiz
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Size in bytes of a work area to be allocated for the use of user routines. The
worksiz argument is the address of a longword containing this size in bytes. If
you do not specify worksiz, no work area is allocated.

A separate area of the specified size is allocated for each active symbiont stream.

maxqios
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the maximum number of outstanding $QIOs that a print symbiont
stream using the LAT protocol may generate. Set symbiont process quotas large
enough to handle the maximum number of QIOs multiplied by the number of
streams, using a number between 2 and 32. For normal printing capabilities, the
suggested quota is 10; for high-speed printing, use a larger number.

options
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Longword bit vector that specifies the LAT protocal option using the PSM$M_
LAT_PROTOCOL symbolic value. Note that using the LAT_PROTOCOL option
carries the following restrictions:

• Replacement of the output and job completion routines will be overridden

• Output device must be a LAT device

Description

The PSM$PRINT routine must be called exactly once after all user routines
have been specified to the print symbiont. Each user routine is specified to the
symbiont in a call to the PSM$REPLACE routine.

The PSM$PRINT routine allows you to specify whether the print symbiont is to
be single-threaded or multithreaded, and if multithreaded, how many streams or
threads it can have. In addition, this routine allows you to control the maximum
size of the output buffer.

Condition Values Returned

SS$_NORMAL Normal successful completion.

This routine also returns any condition values returned by the $SETPRV,
$GETSYI, $PURGWS, and $DCLAST system services, as well as any condition
values returned by the SMB$INITIALIZE routine documented in Chapter 17.

PSM–22 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
PSM$READ_ITEM_DX

PSM$READ_ITEM_DX—Obtain Value of Message Items

The PSM$READ_ITEM_DX routine obtains the value of message items that are
sent by the job controller and stored by the symbiont.

Format

PSM$READ_ITEM_DX request_id ,item ,buffer

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

request_id
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier supplied by the symbiont to the user routine currently calling
PSM$READ_ITEM_DX. The symbiont always supplies a request identifier when
it calls a user routine with a service request. The request_id argument is the
address of a longword containing this request identifier value.

Your user routine must copy the request identifier value that the symbiont
supplies (in the request_id argument) when it calls your user routine. Then,
when your user routine calls PSM$READ_ITEM_DX, it must supply (in the
request_id argument) the address of the request identifier value that it copied.

item
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Item code that identifies the message item that PSM$READ_ITEM_DX is to
return. The item argument is the address of a longword that specifies the item’s
code.

For a complete list and description of each item code, refer to the documentation
of the item argument in the SMB$READ_MESSAGE_ITEM routine in
Chapter 17.

Print Symbiont Modification (PSM) Routines PSM–23

Print Symbiont Modification (PSM) Routines
PSM$READ_ITEM_DX

buffer
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Buffer into which PSM$READ_ITEM_DX returns the specified informational
item. The buffer argument is the address of a descriptor pointing to this buffer.

The PSM$READ_ITEM_DX routine returns the specified informational item
by copying that item to the buffer using one of the STR$COPY_xx routines
documented in the OpenVMS RTL String Manipulation (STR$) Manual.

Description

The PSM$READ_ITEM_DX routine obtains the value of message items that are
sent by the job controller and stored by the symbiont. Use PSM$READ_ITEM_
DX to obtain information about the task currently being processed, for example,
the name of the file being printed (SMBMSG$K_FILE_SPECIFICATION) or the
name of the user who submitted the job (SMBMSG$K_USER_NAME).

Condition Values Returned

SS$_NORMAL Normal successful completion.
PSM$_INVITMCOD Invalid item code specified in the item argument.

This routine also returns any condition values returned by any of the
STR$COPY_xx routines documented in the OpenVMS RTL String Manipulation
(STR$) Manual.

PSM–24 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
PSM$REPLACE

PSM$REPLACE—Declare User Service Routine

The PSM$REPLACE routine substitutes a user service routine for a symbiont
routine or adds a user service routine to the set of symbiont routines.

You must call PSM$REPLACE once for each routine that you replace or add.

Format

PSM$REPLACE code ,routine

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Value
Returned.

Arguments

code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Routine code that identifies the symbiont routine to be replaced by a user service
routine. The code argument is the address of a longword containing the routine
code.

Some routine codes identify routines that are supplied with the symbiont; when
you specify such a routine code, you replace the symbiont-supplied routine with
your service routine.

Two routine codes identify routines that are not supplied with the symbiont;
when you specify such a routine code, your service routine is added to the set of
symbiont routines.

Table 16–1 lists each routine code in the order in which it is called within the
symbiont execution stream; this table also specifies whether a routine code
identifies an input, formatting, or output routine and whether the routine is
supplied with the symbiont.

Each programming language provides an appropriate mechanism for defining
these routine codes. The following pages list each routine code in alphabetical
order; the description of each code includes the following information about its
corresponding routine:

• Whether the routine is supplied by the symbiont

• Whether the routine is an input, formatting, or output routine

• Under what conditions the routine is called

• What task the routine performs

Print Symbiont Modification (PSM) Routines PSM–25

Print Symbiont Modification (PSM) Routines
PSM$REPLACE

Routine Codes

PSM$K_FILE_BURST
This code identifies a symbiont-supplied input routine; it is called whenever a file
burst page is requested. This routine obtains information about the job, formats
the file burst page, and returns the contents of the page to the input buffer. A file
burst page follows a file flag page and precedes the contents of the file.

PSM$K_FILE_ERRORS
This code identifies a symbiont-supplied input routine; it is called when errors
have occurred during the job. This routine places the error message text in the
input buffer.

PSM$K_FILE_FLAG
This code identifies a symbiont-supplied input routine; it is called whenever a file
flag page is requested. This routine obtains information about the job, formats
the file flag page, and returns the contents of the page to the input buffer. A flag
page follows the job burst page (if any) and precedes the file burst page (if any).
It contains such information as the file specification of the file and the name of
the user issuing the print request.

PSM$K_FILE_INFORMATION
This code identifies a symbiont-supplied input routine; it is called when the file
information item has been specified by the job controller. This routine expands
the file information item to text and returns it to the input buffer.

PSM$K_FILE_SETUP
This code identifies a symbiont-supplied input routine; it is always called. This
routine queues any specified file-setup modules for insertion in the input stream
when the PSM$K_FILE_SETUP routine closes.

PSM$K_FILE_SETUP_2
This code identifies a symbiont-supplied input routine; it is always called. This
routine returns a form feed to ensure that printing of the file begins at the top of
the page. This routine is called just before the main input routine.

PSM$K_FILE_TRAILER
This code identifies a symbiont-supplied input routine; it is called whenever a file
trailer page is requested. This routine obtains information about the job, formats
the file trailer page, and returns the contents of the page to the input buffer. A
trailer page follows the last page of the file contents.

PSM$K_MAIN_FORMAT
This code identifies the symbiont-supplied formatting routine; it is always called.
This routine performs numerous formatting functions. You cannot replace this
routine.

PSM$K_FORM_SETUP
This code identifies a symbiont-supplied input routine; it is always called. This
routine queues any specified form-setup modules for insertion in the input stream
when the PSM$K_FORM_SETUP routine closes.

PSM$K_INPUT_FILTER
This code identifies a format routine that is not supplied by the symbiont. If
the routine is supplied by the user, it is always called immediately prior to the
symbiont-supplied formatting routine (routine code PSM$K_MAIN_FORMAT). An

PSM–26 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
PSM$REPLACE

input-filter service routine is useful for modifying input data records and their
carriage control before they are formatted by the symbiont.

PSM$K_JOB_BURST
This code identifies a symbiont-supplied input routine; it is called whenever a job
burst page is requested. This routine obtains information about the job, formats
the job burst page, and returns the contents of the page to the input buffer. A job
burst page follows the job flag page and precedes the file flag page (if any) of the
first file in the job. It is similar to a file burst page except that it appears only
once per job and only at the beginning of the job.

PSM$K_JOB_COMPLETION
This code identifies a symbiont-supplied input routine that returns a form feed,
which causes any output stored by the device to be printed. The routine is always
called. It cannot be replaced when using the LAT protocol option.

PSM$K_JOB_FLAG
This code identifies a symbiont-supplied input routine; it is called whenever a job
flag page is requested. This routine obtains information about the job, formats
the job flag page, and returns the contents of the page to the input buffer. A job
flag page is similar to a file flag page except that it appears only once per job,
preceding the job burst page (if any).

PSM$K_JOB_RESET
This code identifies a symbiont-supplied input routine; it is always called. This
routine queues any specified job-reset modules for insertion in the input stream
when the PSM$K_JOB_RESET routine closes.

PSM$K_JOB_SETUP
This code identifies a symbiont-supplied input routine; it is always called. This
routine checks to see if this is the first job to be printed on the device, and if so,
it issues a form feed and then performs a job reset. See the description of the
PSM$K_JOB_RESET routine for information about job reset.

PSM$K_JOB_TRAILER
This code identifies a symbiont-supplied input routine; it is called whenever a job
trailer page is requested. This routine obtains information about the job, formats
the job trailer page, and returns the contents of the page to the input buffer. A
job trailer page is similar to a file trailer page except that it appears only once
per job, as the last page in the job.

PSM$K_MAIN_INPUT
This code identifies a symbiont-supplied input routine; it is always called. This
routine opens the file to be printed, returns input records to the input buffer, and
closes the file.

PSM$K_LIBRARY_INPUT
This code identifies a symbiont-supplied input routine; it is called when an input
routine closes and when modules have been requested for insertion in the input
stream. This routine returns the contents of the specified modules, one record per
call. You cannot replace this routine.

PSM$K_OUTPUT_FILTER
This code identifies a formatting routine that is not supplied by the symbiont. If
the routine is supplied by the user, it is always called. This routine executes prior
to the symbiont output routine (routine code PSM$K_OUTPUT). An output-filter

Print Symbiont Modification (PSM) Routines PSM–27

Print Symbiont Modification (PSM) Routines
PSM$REPLACE

service routine is useful for modifying output data buffers before they are passed
to the output routine.

At the point where the output-filter routine executes within the symbiont
execution stream, the input data is no longer in record format; instead, the data
exists as a stream of characters. The carriage control, for example, is embedded
in the data stream. Thus, the output buffer might contain what was once a
complete record, part of a record, or several records.

PSM$K_PAGE_HEADER
This code identifies a symbiont-supplied input routine; it is called once at the
beginning of each page if page headers are requested. This routine returns to the
input buffer one or more lines containing information about the file being printed
and the current page number. This routine is called only while the main input
routine is open.

PSM$K_PAGE_SETUP
This code identifies a symbiont-supplied routine; it is called at the beginning of
each page if page-setup modules were specified. This routine queues any specified
page-setup modules for insertion in the input stream when the PSM$K_PAGE_
SETUP routine closes. This routine is called only while the main input routine is
open.

PSM$K_OUTPUT
This code identifies the symbiont-supplied output routine that writes the contents
of the output buffer to the printing device, together with many other functions.
This routine is always called. It cannot be replaced when using the LAT protocol
option.

routine
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

User service routine that is to replace a symbiont routine or to be included. The
routine argument is the address of the user routine entry point.

Description

The PSM$REPLACE routine must be called each time a user service routine
replaces a symbiont routine or is added to a set of symbiont routines.

The code argument specifies the symbiont routine to be replaced. The routine
codes that can be specified in the code argument are of two types: those that
identify existing print symbiont routines and those that do not. All the routine
codes are similar, however, in the sense that each supplies a location within the
print symbiont execution stream where your routine can execute.

By selecting a routine code that identifies an existing symbiont routine, you
effectively disable that symbiont routine. The service routine that you specify
might or might not perform the function that the disabled symbiont routine
performs. If it does not, the net effect of the replacement is to eliminate that
function from the list of functions performed by the print symbiont. Exactly what
your service routine does is up to you.

PSM–28 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
PSM$REPLACE

By selecting a routine code that does not identify an existing symbiont routine
(those that identify the input-filter and output-filter routines), your service
routine has a chance to execute at the location signified by the routine code.
Because the service routine you specify to execute at this location does not
replace another symbiont routine, your service routine is an addition to the set of
symbiont routines.

As mentioned, each routine code identifies a location in the symbiont execution
stream, whether or not it identifies a symbiont routine. Table 16–1 lists each
routine code in the order in which the location it identifies is reached within the
symbiont execution stream.

Condition Value Returned

SS$_NORMAL Normal successful completion.

Print Symbiont Modification (PSM) Routines PSM–29

Print Symbiont Modification (PSM) Routines
PSM$REPORT

PSM$REPORT—Report Completion Status

The PSM$REPORT routine reports to the print symbiont the completion status of
an asynchronous operation initiated by a user routine.

Such a user routine must return the completion status PSM$_PENDING.
PSM$REPORT must be called exactly once for each time a user routine returns
the status PSM$_PENDING.

Format

PSM$REPORT request_id [,status]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
The condition value that this routine can return is listed under Condition Value
Returned.

Arguments

request_id
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier supplied by the symbiont to the user routine at the time the
symbiont called the user routine with the service request. The user routine must
return the completion status PSM$_PENDING on the call for this service request.
The request_id argument is the address of a longword containing the request
identifier value.

The symbiont calls the user routine with a request code that specifies the function
that the symbiont expects the user routine to perform. In the call, the symbiont
also supplies a request identifier, which serves to identify the request. If the
user routine initiates an asynchronous operation, a mechanism is required for
notifying the symbiont that the asynchronous operation has completed and for
providing the completion status of the operation.

The PSM$REPORT routine conveys the above two pieces of information. In
addition, PSM$REPORT returns to the symbiont (in the request_id argument)
the same request identifier value as that supplied by the symbiont to the user
routine that initiated the operation. In this way, the symbiont synchronizes the
completion status of an asynchronous operation with that invocation of the user
routine that initiated the operation.

Any user routine that initiates an asynchronous operation must, therefore,
copy the request identifier value that the symbiont supplies (in the request_id
argument) when it calls the user routine. The user routine will later need to
supply this value to PSM$REPORT.

PSM–30 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
PSM$REPORT

In addition, when the user routine returns, which it does before the asynchronous
operation has completed, the user routine must return the status PSM$_
PENDING.

status
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Completion status of the asynchronous operation that has completed. The status
argument is the address of a longword containing this completion status. The
status argument is optional; if it is not specified, the symbiont assumes the
completion status SS$_NORMAL.

The user routine that initiates the asynchronous operation must test for the
completion of the operation and must supply the operation’s completion status
as the status argument to the PSM$REPORT routine. The Description section
describes this procedure in greater detail.

If the completion status specified by status has the low bit clear, the symbiont
aborts the task.

Description

An asynchronous operation is an operation that, once initiated, executes ‘‘off
to the side’’ and need not be completed before other operations can begin to
execute. Asynchronous operations are common in symbiont applications because
a symbiont, if it is multithreaded, must handle concurrent I/O operations.

One example of a user routine that performs an asynchronous operation is
an output routine that calls the $QIO system service to write a record to the
printing device. When the user output routine completes execution, the I/O
request queued by $QIO might not have completed. In order to synchronize this
I/O request, that is, to associate the I/O request with the service request that
initiated it, you should use the following mechanism:

1. In making the call to $QIO, specify the astadr and iosb arguments. The
astadr argument specifies an AST routine to execute when the queued output
request has completed, and the iosb argument specifies an I/O status block
to receive the completion status of the I/O operation. Step 3 describes some
functions that your AST routine will need to do.

2. Have the user output routine return the status PSM$_PENDING.

3. Write the AST routine to perform the following functions:

a. Copy the completion status word from the I/O status block to a longword
location that you will specify as the status argument in the call to
PSM$REPORT.

b. Call PSM$REPORT. Specify as the request_id argument the request
identifier that was supplied by the print symbiont in the original call to
the user output routine.

Print Symbiont Modification (PSM) Routines PSM–31

Print Symbiont Modification (PSM) Routines
PSM$REPORT

Condition Value Returned

SS$_NORMAL Normal successful completion.

PSM–32 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
USER-FORMAT-ROUTINE

USER-FORMAT-ROUTINE—Invoke User-Written Format Routine

The user-written USER-FORMAT-ROUTINE performs format operations. The
symbiont’s control logic routine calls your format routine at one of two possible
points within the symbiont’s execution stream. You select this point by specifying
one of two routine codes when you call the PSM$REPLACE routine.

A user format routine can be an input filter routine (routine code PSM$K_
INPUT_FILTER) or an output filter routine (routine code PSM$K_OUTPUT_
FILTER). The main format routine (routine code PSM$K_MAIN_FORMAT)
cannot be replaced.

A user format routine must use the call interface described here.

Format

USER-FORMAT-ROUTINE request_id ,work_area ,func ,func_desc_1 ,func_arg_1
,func_desc_2 ,func_arg_2

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

request_id
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier supplied by the symbiont when it calls your format routine.
The request_id argument is the address of a longword containing this request
identifier value.

work_area
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Work area supplied by the symbiont for the use of your format routine. The
symbiont supplies the address of this area when it calls your routine. The work_
area argument is a longword containing the address of the work area. The work
area is a section of memory that your format routine can use for buffering and
other internal operations.

The size of the work area allocated is specified by the work_size argument in the
PSM$PRINT routine. If you do not specify work_size in the call to PSM$PRINT,
no work area is allocated.

Print Symbiont Modification (PSM) Routines PSM–33

Print Symbiont Modification (PSM) Routines
USER-FORMAT-ROUTINE

In a multithreaded symbiont, a separate work area is allocated for each thread.
This work area is shared by all user routines. The work area is initialized to zero
when the symbiont is first started.

func
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

Function code specifying the service that the symbiont expects your format
routine to perform. The func argument is the address of a longword into which
the symbiont writes this function code.

The function code specifies the reason the symbiont is calling your format routine
or, in other words, the service that the symbiont expects your routine to perform
at this time.

The PSM$K_FORMAT function code is the only one to which your format routine
must respond. When the symbiont calls your format routine with this function
code, your routine must move a record from the input buffer to the output buffer.

The symbiont can call your format routine with other function codes. Your routine
should return the status PSM$_FUNNOTSUP (function not supported) when it
is called with any of the following function codes or with any undocumented
function code. When the status PSM$_FUNNOTSUP is returned, the symbiont
performs its normal action as if no format routine were supplied. To suppress the
symbiont’s normal action, you should return SS$_NORMAL.

PSM$K_START_STREAM PSM$K_STOP_STREAM
PSM$K_START_TASK PSM$K_PAUSE_TASK
PSM$K_RESUME_TASK PSM$K_STOP_TASK
PSM$K_RESET_STREAM

These function codes correspond to message items, which are discussed in more
detail in Section 16.3.5, sent by the job controller to the symbiont.

Other function codes correspond to internal symbiont mechanisms that are not
part of the public interface to the print symbiont.

Your format routine should return the status PSM$_FUNNOTSUP or SS$_
NORMAL when it is called with a message function code or with a private
function code.

func_desc_1
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Descriptor supplying an input record to be processed by the format routine.
The func_desc_1 argument is the address of a string descriptor. By using this
argument, the symbiont supplies the input record that your format routine
is to process. Because this descriptor can be of any valid string type, your
format routine should use the Run-Time Library string routines to analyze this
descriptor and to manipulate the input record.

PSM–34 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
USER-FORMAT-ROUTINE

func_arg_1
OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Carriage control for the input record supplied by func_desc_1. The func_arg_1
argument is the address of a 4-byte vector that specifies the carriage control for
the input record. The following diagram depicts the format of this 4-byte vector:

7 0

Character Count

ZK−2009−GE

Character Count

31 23 15

Trailing Carriage−Control
Information

Leading Carriage−Control
Information

Bytes 0 and 1 describe the leading carriage control to apply to the input data
record; bytes 2 and 3 describe the trailing carriage control.

Byte 0 is a number specifying the number of times the carriage control specifier
in byte 1 is to be repeated preceding the input data record. Byte 2 is a number
specifying the number of times the carriage control specifier in byte 3 is to be
repeated following the input data record.

For values of the carriage control specifier from 1 to 255, the specifier is the
ASCII character to be used as carriage control. Value 0 represents the ASCII
‘‘newline’’ sequence. Newline consists of a carriage return followed by a linefeed.

The func_arg_1 argument is not used if your format routine is an output filter
routine (routine code PSM$K_OUTPUT_FILTER). See the Description section for
more information.

func_desc_2
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by reference

Descriptor of a buffer to which your format routine writes the formatted output
record. The func_desc_2 argument is the address of a string descriptor.

Your format routine must return the formatted data record by using the func_
desc_2 argument.

Your format routine should use the Run-Time Library string routines to write
into the buffer specified by this descriptor.

func_arg_2
OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Carriage control for the output record returned in func_desc_2. The func_arg_2
argument is the address of a 4-byte vector that specifies the carriage control for
the output record. See the description of func_arg_1 for the contents and format
of this 4-byte vector.

Print Symbiont Modification (PSM) Routines PSM–35

Print Symbiont Modification (PSM) Routines
USER-FORMAT-ROUTINE

If you do not process the carriage-control information supplied in func_arg_1,
then you should copy that value into func_arg_2. Otherwise, the carriage-control
information will be lost.

The func_arg_2 argument is not used if your format routine is an output filter
routine (routine code PSM$K_OUTPUT_FILTER). See the Description section for
more information.

Description

When used, the func_arg_1 argument describes carriage-control information for
the input data record, and the func_arg_2 argument describes carriage-control
information for the output data record.

The input data record is passed to the format routine (input filter or output filter)
for processing, and the output data record is returned by the format routine
(input filter or output filter).

One of the tasks performed by the main format routine (routine code PSM$K_
MAIN_FORMAT) is that of embedding the carriage-control information (specified
by func_arg_1) into the data record (specified by func_desc_1). Thus, the output
data (specified by func_desc_2) contains embedded carriage control and is thus
no longer in record format; it is, therefore, properly referred to as an output data
stream rather than an output data record.

Similarly, the output filter routine (routine code PSM$K_OUTPUT_FILTER),
which executes after the main format routine, uses neither the func_arg_1 nor
func_arg_2 argument; the data it receives (via func_desc_1) and the data it
returns (via func_desc_2) are data streams, not data records.

However, the input filter routine (routine code PSM$K_INPUT_FILTER), which
executes before the main format routine, uses both func_arg_1 and func_arg_2.
This is so because the main format routine has not yet executed, and so the
carriage control information has not yet been embedded in the data record.

Condition Values Returned

SS$_NORMAL Successful completion. The user format routine
has completed the function that the symbiont
requested.

PSM$_FUNNOTSUP Function not supported. The user format routine
does not support or does not recognize the
function code supplied by the symbiont. To
ensure future compatibility, your format routine
should return this status for any unrecognized
status codes.

This routine also returns any error condition values that you have coded your
format routine to return. Refer to Section 16.3.1 for more information about error
condition values.

PSM–36 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
USER-INPUT-ROUTINE

USER-INPUT-ROUTINE—Invoke User-Written Input Routine

The user-written USER-INPUT-ROUTINE performs input operations. The
symbiont calls your routine at a specified point in its execution stream; you
specify this point using the PSM$REPLACE routine.

Format

USER-INPUT-ROUTINE request_id ,work_area ,func ,funcdesc ,funcarg

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

request_id
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier value supplied by the symbiont when it calls your input
routine. The request_id argument is the address of a longword containing this
request identifier value.

If your input routine initiates an asynchronous operation (for example, a call to
the $QIO system service), your input routine must copy the request identifier
value specified by request_id because this value must later be passed to the
PSM$REPORT routine. See the description of the PSM$REPORT routine for
more information.

work_area
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Work area supplied by the symbiont for the use of your input routine. The
symbiont supplies the address of this area when it calls your routine. The work_
area argument is a longword into which the symbiont writes the address of the
work area. The work area is a section of memory that your input routine can use
for buffering and for other internal operations.

The size of the work area allocated is specified by the work_size argument in the
PSM$PRINT routine. If you do not specify work_size in the call to PSM$PRINT,
no work area is allocated.

Print Symbiont Modification (PSM) Routines PSM–37

Print Symbiont Modification (PSM) Routines
USER-INPUT-ROUTINE

In a multithreaded symbiont, a separate work area is allocated for each thread.
This work area is shared by all user routines. The work area is initialized to zero
when the symbiont is first started.

func
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

Function code supplied by the symbiont when it calls your input routine. The
func argument is the address of a longword containing this code.

The function code specifies the reason the symbiont is calling your input routine
or, in other words, the function that the symbiont expects your routine to perform
at this time.

Most function codes require or allow additional information to be passed in the
call by means of the funcdesc and funcarg arguments. The description of each
input function code, therefore, includes a description of how these two arguments
are used with that function code.

Following is a list of all the function codes that the symbiont can specify when
it calls your input routine (function codes applicable only to format and output
routines are explained in the descriptions of the USER-FORMAT-ROUTINE and
USER-OUTPUT-ROUTINE, respectively); all function codes are defined by the
$PSMDEF macro.

Function Codes for Input Routines

PSM$K_CLOSE
When the symbiont calls your routine with this function code, your routine must
terminate processing by releasing any resources it might have allocated.

The symbiont calls your routine with PSM$K_CLOSE when (1) your routine
returns from a PSM$K_READ function call with the status PSM$_EOF (end of
input) or with any error condition, or (2) the symbiont receives a task-abortion
request from the job controller.

In any event, the symbiont always calls your input routine with PSM$K_CLOSE
if your routine returns successfully from a PSM$K_OPEN function call. This
guaranteed behavior ensures that any resources your routine might have
allocated on the OPEN will be released on the CLOSE.

PSM$K_GET_KEY
Typically, the use of both the PSM$K_GET_KEY and PSMK$K_POSITION_TO_
KEY function codes is appropriate only for a main input routine (routine code
PSM$K_MAIN_INPUT).

When the symbiont calls your routine with this function code, your routine can
do one of two things: (1) return PSM$_FUNNOTSUP (function not supported) or
(2) return an input marker string to the symbiont.

If your routine returns PSM$_FUNNOTSUP to this function code, then your
routine must also return PSM$_FUNNOTSUP if the symbiont subsequently calls
your routine with the PSM$K_POSITION_TO_KEY function code. By returning
PSM$_FUNNOTSUP, your routine is choosing not to respond to the symbiont
request.

PSM–38 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
USER-INPUT-ROUTINE

If your routine chooses to respond to the PSM$K_GET_KEY function code, your
routine must return an input marker string to the symbiont; this input marker
string identifies the input record that your input routine most recently returned
to the symbiont. Subsequently, when the symbiont calls your input routine with
the PSM$K_POSITION_TO_KEY function code, the symbiont passes your input
routine one of the input marker strings that your input routine has returned on
a previous PSM$K_GET_KEY function call. Using this marker string, your input
routine must position itself so that, on the next PSM$K_READ call from the
symbiont, your input routine will return (or reread) the input record identified by
the marker string.

Coding your input routine to respond to PSM$K_GET_KEY and
PSM$K_POSITION_TO_KEY allows the modified symbiont to
perform the file-positioning functions specified by the DCL commands
START/QUEUE/FORWARD, START/QUEUE/ALIGN, START/QUEUE/TOP_OF_
FILE, START/QUEUE/SEARCH, and START/QUEUE/BACKWARD. These file
positioning functions also depend on the job controller’s checkpointing capability
for print jobs.

Note that your input routine might be called with a marker string that was
originally returned in a different process context from the current one. This can
occur because marker strings are sometimes stored in the queue-data file across
system shutdowns or different invocations of your symbiont.

The funcdesc argument specifies the address of a string descriptor. Your routine
must return the marker string by way of this argument. Compaq recommends
that you use one of the Run-Time Library string routines to copy the marker
string to the descriptor.

The symbiont periodically calls your input routine with the PSM$K_GET_KEY
function code when the symbiont wants to save a marker to a particular input
record.

PSM$K_OPEN
When the symbiont calls your routine with this function code, your routine should
prepare for input operations by performing such tasks as allocating necessary
resources, initializing storage areas, opening an input file, and so on. Typically,
the next time the symbiont calls your input routine, the symbiont will specify the
PSM$K_READ function code. Note, however, that under some circumstances the
symbiont might follow an OPEN call immediately with a CLOSE call.

The funcdesc argument points to the name of the file to be opened. Your routine
can use this file specification or the file identification to open the file.

The funcarg argument specifies the address of a longword. Your input routine
must return, in this longword, the carriage control type that is to be applied to
the input records that your input routine will provide.

The symbiont formatting routine requires this information to determine where to
apply leading and trailing carriage control characters to the input records that
your input routine will provide.

Print Symbiont Modification (PSM) Routines PSM–39

Print Symbiont Modification (PSM) Routines
USER-INPUT-ROUTINE

The $PSMDEF macro defines the following four carriage control types:

Carriage Control Type Description

PSM$K_CC_IMPLIED Implied carriage control. For this type, the
symbiont inserts a leading line feed (LF) and
trailing carriage return (CR) in each input record.
This is the default carriage control type; it is used
if your routine does not supply a carriage control
type in the funcarg argument in response to the
PSM$K_OPEN function call.

PSM$K_CC_FORTRAN Fortran carriage control. For this type, the
symbiont extracts the first byte of each input record
and interprets the byte as a Fortran carriage control
character, which it then applies to the input record.

PSM$K_CC_PRINT PRN carriage control. For this type, the symbiont
generates carriage control from a 2-byte record
header that your input routine supplies, with each
READ call, in the funcarg argument. The funcarg
argument specifies the address of a longword to
receive this 2-byte header record, which appears
only in PRN print files.

PSM$K_CC_INTERNAL Embedded carriage control. For this type, the
symbiont supplies no carriage control to input
records. Carriage control is assumed to be
embedded in the input records.

PSM$K_POSITION_TO_KEY
When the symbiont calls your routine with this function code, your routine must
locate the point in the input stream designated by the marker string that your
routine returned to the symbiont on the PSM$K_GET_KEY function call.

The next time the symbiont calls your routine, the symbiont specifies the PSM$K_
READ function call, expecting to receive the next sequential input record. After
rereading this record, subsequent READ calls proceed from this new position of
the file. This is not a one-time rereading of a single record but a repositioning
of the file. The symbiont calls your routine with this function code when the job
controller receives a request to resume printing at a particular page.

Refer to the description of the PSM$K_GET_KEY for more information.

PSM$K_READ
When the symbiont calls your routine with this function code, your routine must
return an input record. The symbiont repeatedly calls your input routine with
the PSM$K_READ function code until: (1) your routine indicates end of input by
returning the status PSM$_EOF, (2) your routine or another routine returns an
error status, or (3) the symbiont receives an asynchronous task-abortion request
from the job controller.

The funcdesc argument specifies the address of a string descriptor. Your routine
must return the input record by using this argument. Compaq recommends that
you use one of the Run-Time Library string routines to copy the input record to
the descriptor.

PSM–40 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
USER-INPUT-ROUTINE

The funcarg argument specifies the address of a longword. This argument is
used only if the carriage control type returned by your input routine on the
PSM$K_OPEN function call was PSM$K_CC_PRINT. In this case, your input
routine must supply, in the funcarg argument, the 2-byte record header found at
the beginning of each input record.

PSM$K_REWIND
When the symbiont calls your routine with this function code, your routine must
do one of two things: (1) return PSM$_FUNNOTSUP (function not supported) or
(2) locate the point in the input stream designated as the beginning of the file.

If your routine returns PSM$_FUNNOTSUP to this function code, then
the symbiont subsequently calls your input routine with a PSM$K_CLOSE
function call followed by a PSM$K_OPEN function call. By returning PSM$_
FUNNOTSUP, your routine is choosing not to support the repositioning of the
input service to the beginning of the file. The symbiont, therefore, performs the
desired function by closing and then reopening the input routine.

You cannot use the funcdesc and the funcarg arguments with this function
code.

This function call allows the modified symbiont to perform the file-
positioning functions specified by the DCL commands START/QUEUE/TOP_
OF_FILE, START/QUEUE/FORWARD, START/QUEUE/BACKWARD,
START/QUEUE/SEARCH, and START/QUEUE/ALIGN. This is a required
repositioning of the file.

Other Input Function Codes
The symbiont can call your input routine with other function codes. Your routine
must return the status PSM$_FUNNOTSUP (function not supported) when it
is called with any of the following function codes or with any undocumented
function code. When the status PSM$_FUNNOTSUP is returned, the symbiont
performs its normal action as if no input routine were supplied. To suppress the
symbiont’s normal action, you should return SS$_NORMAL.

PSM$K_START_STREAM PSM$K_STOP_STREAM
PSM$K_START_TASK PSM$K_PAUSE_TASK
PSM$K_RESUME_TASK PSM$K_STOP_TASK
PSM$K_RESET_STREAM

These function codes correspond to message items, which are discussed in detail
in Section 16.3.5, sent by the job controller to the symbiont.

Other function codes correspond to internal symbiont mechanisms that are not
part of the public interface to the print symbiont.

Your input routine should return the status PSM$_FUNNOTSUP or SS$_
NORMAL when it is called with a message function code or with a private
function code.

funcdesc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Function descriptor supplying information related to the function specified by the
func argument. The funcdesc argument is the address of this descriptor.

Print Symbiont Modification (PSM) Routines PSM–41

Print Symbiont Modification (PSM) Routines
USER-INPUT-ROUTINE

The contents of the function descriptor can vary for each function. Refer to
the description of each function code to determine the contents of the function
descriptor. In some cases, the function descriptor is not used at all.

funcarg
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Function argument supplying information related to the function specified by the
func argument. The funcarg argument is the address of a longword containing
this function argument. This argument can be an input or an output argument,
depending on the function request, but is usually used as an output argument.

Condition Values Returned

SS$_NORMAL Successful completion. The user input routine
has completed the function that the symbiont
requested.

PSM$_FLUSH Flush output stream. The user input routine
can return this status only when called with the
PSM$K_READ function code. When this status
is returned to the symbiont, the symbiont stops
calling the input routine with the PSM$K_READ
function code until all outstanding format and
output operations have completed.

PSM$_FUNNOTSUP Function not supported. The user input routine
does not support or does not recognize the
function code supplied by the symbiont. To
ensure future compatibility, your input routine
should return this status for any unrecognized
status codes.

PSM$_PENDING Requested function accepted but not completed.
Your input routine can return this status only
with the PSM$K_READ function call. Further, if
your routine returns PSM$_PENDING, your
routine must eventually signal completion
via the PSM$REPORT routine. Refer to the
description of the PSM$REPORT routine for
more information about asynchronous operations
and the PSM$_PENDING condition value.

This routine also returns any error condition values that you have coded your
format routine to return. Refer to Section 16.3.1 for more information about error
condition values.

PSM–42 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
USER-OUTPUT-ROUTINE

USER-OUTPUT-ROUTINE—Invoke User-Written Output Routine

The user-written USER-OUTPUT-ROUTINE performs output operations. You
supply a user output routine by calling the PSM$REPLACE routine with the
routine code PSM$K_OUTPUT.

Format

USER-OUTPUT-ROUTINE request_id ,work_area ,func ,funcdesc ,funcarg

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

request_id
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Request identifier value supplied by the symbiont when it calls your output
routine. The request_id argument is the address of a longword containing this
value.

If your output routine initiates an asynchronous operation (for example, a
call to the $QIO system service), you must save the request_id argument
because you will need to store the request identifier value for later use with the
PSM$REPORT routine. See the description of the PSM$REPORT routine for
more information.

work_area
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Work area supplied by the symbiont for the use of your format routine. The
symbiont supplies the address of this area when it calls your routine. The work_
area argument is a longword containing the address of the work area. The work
area is a section of memory that your format routine can use for buffering and
other internal operations.

The size of the work area allocated is specified by the work_size argument in the
PSM$PRINT routine. If you do not specify work_size in the call to PSM$PRINT,
no work area is allocated.

Print Symbiont Modification (PSM) Routines PSM–43

Print Symbiont Modification (PSM) Routines
USER-OUTPUT-ROUTINE

In a multithreaded symbiont, a separate work area is allocated for each thread.
This work area is shared by all user routines. The work area is initialized to zero
when the symbiont is first started.

func
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

Function code supplied by the symbiont when it calls your output routine. The
func argument is the address of a longword containing this code.

The function code specifies the reason the symbiont is calling your output routine
or, in other words, the function that the symbiont expects your routine to perform
at this time.

Most function codes require or allow additional information to be passed in the
call via the funcdesc and funcarg arguments. The description of each output
function code, therefore, includes a description of how these two arguments are
used for that function code.

The following list describes all the function codes that the symbiont might supply
when it calls your output routine (function codes applicable only to input and
formatting routines are explained in the descriptions of the user input routine
and user formatting routine, respectively). Each programming language provides
an appropriate mechanism for defining these function codes.

Function Codes for Output Routines

PSM$K_OPEN
When the symbiont calls your output routine with this function code, your routine
should prepare to move data to the device by performing such tasks as allocating
the device, assigning a channel to the device, and so on. The next time the
symbiont calls your output routine, the symbiont specifies one of the WRITE
function codes (PSM$K_WRITE or PSM$K_WRITE_NOFORMAT).

The symbiont calls your output routine with the PSM$K_OPEN function code
when the symbiont receives the SMBMSG$K_START_STREAM message from the
job controller.

If your output routine returns an error condition value (low bit clear) to the
PSM$K_OPEN function call, the job controller stops processing on the stream
and reports the error to whomever entered the DCL command START/QUEUE.

The funcdesc argument is the address of a descriptor that identifies the name of
the device to which the output routine is to write. This device name is established
by the DCL command INITIALIZE/QUEUE/ON=device.

The funcarg argument is the address of a longword into which the user output
routine returns the device status longword. Your output routine sets bits in the
device status longword to indicate to the job controller whether the device falls
into one of the following categories:

• Can print lowercase letters

• Is a terminal

• Is connected to the CPU by means of a modem (remote)

PSM–44 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
USER-OUTPUT-ROUTINE

If your output routine does not set any of these bits in the device status longword,
the job controller assumes, by default, that the device is a line printer that prints
only uppercase letters.

PSM$K_WRITE
When the symbiont calls your routine with this function code, your routine must
write data to the device. The symbiont supplies the data to be written in the
funcdesc argument. Compaq recommends that you use one of the Run-Time
Library string routines to access the data in the buffer described by the funcdesc
argument.

PSM$K_WRITE_NOFORMAT
When the symbiont calls your routine with this function code, your routine must
write data to the device and must indicate to the device driver that the data is
not to be formatted.

The symbiont calls your routine with this function code when: (1) the print
request specifies the PASSALL option or (2) data is introduced by the ANSI DCS
(device control string) escape sequence.

The symbiont supplies the data to be written in the funcdesc argument. Compaq
recommends that you use one of the Run-Time Library string routines to move
the data from the descriptor to the device.

The output routine of the symbiont informs the device driver not to format the
data in the following way:

• When the device is a line printer, the symbiont’s output routine specifies the
IO$_WRITEPBLK function code when it calls the $QIO system service.

• When the device is a terminal, the symbiont’s output routine specifies the
IO$M_NOFORMAT function modifier when it calls the $QIO system serivce.

PSM$K_CANCEL
When the symbiont calls your routine with this function code, your routine must
abort any outstanding asynchronous I/O requests.

The output routine supplied by the symbiont aborts outstanding I/O requests by
calling the $CANCEL system service with the IO$_CANCEL function code.

If your output routine returned the condition value PSM$_PENDING to one or
more previous write requests that are still outstanding (that is, PSM$REPORT
has not yet been called to report completion), then your output routine must
call PSM$REPORT one time for each outstanding write request that is canceled
with this call. That is, canceling an asynchronous write request does not relieve
the user output routine of the requirement to call PSM$REPORT once for each
asynchronous write request.

You cannot use the funcdesc and funcarg arguments with this function code.

PSM$K_CLOSE
When the symbiont calls your routine with this function code, your output routine
must terminate processing and release any resources it allocated (for example,
channels assigned to the device).

You cannot use the funcdesc and funcarg arguments with this function code.

Print Symbiont Modification (PSM) Routines PSM–45

Print Symbiont Modification (PSM) Routines
USER-OUTPUT-ROUTINE

Other Output Function Codes
The symbiont can call your output routine with other function codes. Your routine
should return the status PSM$_FUNNOTSUP (function not supported) when it
is called with any of the following function codes or with any undocumented
function code. When the status PSM$_FUNNOTSUP is returned, the symbiont
performs its normal action as if no output routine were supplied. To suppress the
symbiont’s normal action, you should return SS$_NORMAL.

PSM$K_START_STREAM PSM$K_STOP_STREAM
PSM$K_START_TASK PSM$K_PAUSE_TASK
PSM$K_RESUME_TASK PSM$K_STOP_TASK
PSM$K_RESET_STREAM

These function codes correspond to message items, which are discussed in more
detail in Section 17.1.6, sent by the job controller to the symbiont.

Other function codes correspond to internal symbiont mechanisms that are not
part of the public interface to the print symbiont.

Your output routine should return the status PSM$_FUNNOTSUP or SS$_
NORMAL when it is called with a message function code or with a private
function code.

funcdesc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Function descriptor supplying information related to the function specified by the
func argument. The funcdesc argument is the address of this descriptor.

The contents of the function descriptor can vary for each function. Refer to
the description of each function code to determine the contents of the function
descriptor. In some cases, the function descriptor is not used at all.

funcarg
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

Function argument supplying information related to the function specified by the
func argument. The funcarg argument is the address of a longword containing
this function argument.

The contents of the function argument can vary for each function. Refer to
the description of each function code to determine the contents of the function
argument. In some cases, the function argument is not used.

PSM–46 Print Symbiont Modification (PSM) Routines

Print Symbiont Modification (PSM) Routines
USER-OUTPUT-ROUTINE

Condition Values Returned

SS$_NORMAL Normal successful completion. The user output
routine has completed the function that the
symbiont requested.

PSM$_FUNNOTSUP Function not supported. The user output routine
does not support or does not recognize the
function code supplied by the symbiont. To
ensure future compatibility, your output routine
should return this status for any unrecognized
status codes.

PSM$_PENDING Requested function accepted but not completed.
Your output routine can return this status only
with PSM$K_WRITE and PSM$K_WRITE_
NOFORMAT function calls. Further, if your
routine returns PSM$_PENDING, your routine
must eventually signal completion by way
of the PSM$REPORT routine. Refer to the
description of the PSM$REPORT routine for
more information about asynchronous write
operations and the PSM$_PENDING condition
value.

This routine also returns any error condition values that you have coded your
output routine to return. Refer to Section 16.3.1 for more information about error
condition values.

Print Symbiont Modification (PSM) Routines PSM–47

17
Symbiont/Job Controller Interface (SMB)

Routines

The Symbiont/Job Controller Interface (SMB) routines provide the interface
between the job controller and symbiont processes. A user-written symbiont must
use these routines to communicate with the job controller.

17.1 Introduction to SMB Routines
Always use the SMB interface routines or the $SNDJBC or $GETQUI system
services to communicate with the job controller. You need not and should not
attempt to communicate directly with the job controller.

To write your own symbiont, you need to understand how symbionts work and, in
particular, how the standard print symbiont behaves.

17.1.1 Types of Symbiont
There are two types of symbiont:

• Device symbiont, either an input symbiont or an output symbiont. An input
symbiont is one that transfers data from a slow device to a fast device, for
example, from a card reader to a disk. A card-reader symbiont is an input
symbiont. An output symbiont is one that transfers data from a fast device
to a slow device, for example, from a disk to a printer or terminal. A print
symbiont is an output symbiont.

• Server symbiont, a symbiont that processes or transfers data but is not
associated with a particular device; one example is a symbiont that transfers
files across a network.

The operating system does not supply any server symbionts.

17.1.2 Symbionts Supplied with the Operating System
The operating system supplies two symbionts:

• SYS$SYSTEM:PRTSMB.EXE (PRTSMB for short), an output symbiont for
use with printers and printing terminals

PRTSMB performs such functions as inserting flag, burst, and trailer pages
into the output stream; reading and formatting input files; and writing
formatted pages to the printing device.

You can modify PRTSMB using the Print Symbiont Modification (PSM)
routines.

• SYS$SYSTEM:INPSMB.EXE (INPSMB for short), an input symbiont for use
with card readers

Symbiont/Job Controller Interface (SMB) Routines SMB–1

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

This symbiont handles the transferring of data from a card reader to a disk
file. You cannot modify INPSMB, nor can you write an input symbiont using
the SMB routines.

17.1.3 Symbiont Behavior in the OpenVMS Environment
In the OpenVMS environment, a symbiont is a process under the control of the
job controller that transfers or processes data.

Figure 17–1 depicts the components that take part in the handling of user
requests that involve symbionts. This figure shows two symbionts: (1) the print
symbiont supplied by the operating system, PRTSMB, and (2) a user-written
symbiont, GRAPHICS.EXE, which services a graphics plotter. The numbers in
the figure correspond to the numbers in the list that follows.

This list does not reflect the activities that must be performed by the hypothetical,
user-written symbiont, GRAPHICS.EXE. This symbiont is represented in the
figure to illustrate the correspondence between a user-written symbiont and the
print symbiont supplied by the operating system.

Although SMB routines can be used for a different kind of symbiont, many
of their arguments and associated symbols have names related to the print
symbiont. The print symbiont is presented here as an example of a typical
symbiont and illustrates points that are generally true for symbionts.

Figure 17–1 Symbionts in the OpenVMS Environment

ZK−2010−GE

PRTSMB.EXEGRAPHICS.EXE

User’s Print Request

Job Controller/Symbiont
Interface

Disk
File

Disk
File

Graphics
Device
Driver

Printer
Device
Driver

Graphics
Plotter

Standard
Printer

Job
Controller Queue File

6

7

4

5

3

2

1

! You request a printing job with the DCL command PRINT. DCL calls the
$SNDJBC system service, passing the name of the file to be printed to the

SMB–2 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

job controller, along with any other information specified by qualifiers for the
PRINT command.

" The job controller places the print request in the appropriate queue and
assigns the request a job number.

The job controller breaks the print job into a number of tasks (for example,
printing three copies of the same file is three separate tasks). The job
controller makes a separate request to the symbiont for each task.

Each request that the job controller makes consists of a message. Each
message consists of a code that indicates what the symbiont is to do and a
number of items of information that the symbiont needs to carry out the task
(the name of the file, the name of the user, and so on).

$ PRTSMB interprets the information it receives from the job controller.

% PRTSMB locates and opens the file it is to print by using the file-identification
number the job controller specified in the start-task message.

& PRTSMB sends the data from the file to the printer’s driver.

’ The device driver sends the data to the printer.

17.1.4 Writing a Symbiont
Writing your own symbiont permits you to use the queuing mechanisms and
control functions of the job controller. You might want to do this if you need a
symbiont for a device that cannot be served by PRTSMB (or a modified form
of PRTSMB) or if you need a server symbiont. The interface between the job
controller and the symbiont permits the symbiont you write to use the many
features of the job controller.

For example, when you use the DCL command PRINT, the job controller sends
a message to the print symbiont telling it to print the file. However, when a
user-written symbiont receives the same message (caused by entering a PRINT
command), it might interpret it to mean something quite different. A robot
symbiont, for example, might interpret the message as a command for movement
and the file specification (specified with the PRINT command) might be a file
describing the directions in which the robot is to move.

Note

Modifying PRTSMB is easier than writing your own symbiont; choose
this option if possible. The Print Symbiont Modification (PSM) routines
describe how to modify PRTSMB to suit your needs.

17.1.5 Guidelines for Writing a Symbiont
Although you can write a symbiont to use the queuing mechanisms and other
features of the job controller in whatever way you want, you must follow these
guidelines to ensure that your symbiont works correctly:

• The symbiont must not use any of the process-permanent channels, which are
assigned to the following logical names:

– SYS$INPUT

– SYS$OUTPUT

– SYS$ERROR

Symbiont/Job Controller Interface (SMB) Routines SMB–3

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

– SYS$COMMAND

• The symbiont must allocate and deallocate memory using the Run-Time
Library (RTL) routines LIB$GET_VM and LIB$FREE_VM.

• To be compatible with future releases of the operating system, you should
write the symbiont to ignore unknown message-item codes and unknown
message-request codes. (See the SMB$READ_ITEM_MESSAGE routine.)

• The symbiont must communicate with the job controller by using the SMB
routines, the $SNDJBC system service, and the $GETQUI system service.

• The symbiont should not perform lengthy operations within the context of an
AST routine. The symbiont can only receive messages from the job controller
when it is not executing within the context of an AST routine.

• The symbiont code should be linked against SMBSRVSHR.EXE in order to
define the SMB routine address and the following status codes:

SMB$_INVSTMNBR

SMB$_INVSTRLEV

SMB$_NOMOREITEMS

• To assign a symbiont to a queue after it is compiled and linked, the executable
image of the symbiont must reside in SYS$SYSTEM, and you must enter
either of the following commands:

INITIALIZE/QUEUE/PROCESSOR=symbiont_filename

START/QUEUE/PROCESSOR=symbiont_filename

You should specify only the file name in the command. The disk and directory
default to SYS$SYSTEM, and all fields except the file name are ignored.

• To help debug symbionts, you should define the logical names DBG$INPUT
and DBG$OUTPUT in the LNM$GROUP_000001 logical name table to point
to your debugging terminal.

17.1.6 The Symbiont/Job Controller Interface Routines
The five SMB routines form a public interface to the job controller. The job
controller delivers requests to symbionts by means of this interface, and the
symbionts communicate their responses to those requests through this interface.
A user-written symbiont uses the following routines to exchange messages with
the job controller:

SMB–4 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

Routine Description

SMB$INITIALIZE Initializes the SMB facility’s internal database,
establishes the interface to the job controller, and
defines whether:

• Messages from the job controller are to be
delivered to the symbiont synchronously or
asynchronously with respect to execution of
the symbiont.

• The symbiont is to be single-threaded or
multithreaded; these concepts are described
in the sections that follow.

SMB$CHECK_FOR_MESSAGE Checks to see if a message from the job
controller to the symbiont has arrived (used
with synchronous symbionts)

SMB$READ_MESSAGE Reads the job controller’s message into a buffer

SMB$READ_MESSAGE_ITEM Returns one item of information from the job
controller’s message (which can have several
informational items)

SMB$SEND_TO_JOBCTL Sends a message from the symbiont to the job
controller

The following sections discuss how to use the SMB routines when writing your
symbiont.

17.1.7 Choosing the Symbiont Environment
The first SMB routine that a symbiont must call is the SMB$INITIALIZE routine.
In addition to allocating and initializing the SMB facility’s internal database, it
offers you two options for your symbiont environment: (1) synchronous or
asynchonous delivery of messages from the job controller, and (2) single streaming
or multistreaming the symbiont.

17.1.7.1 Synchronous Versus Asynchronous Delivery of Requests
When you initialize your symbiont/job controller interface, the symbiont
has the option of accepting requests from the job controller sychronously or
asynchronously.

Synchronous Environment
The address of an AST routine is an optional argument to the SMB$INITIALIZE
routine; if it is not specified, the symbiont receives messages from the job
controller synchronously. A symbiont that receives messages synchronously
must call SMB$CHECK_FOR_MESSAGE periodically during the processing of
tasks in order to ensure the timely delivery of STOP_TASK, PAUSE_TASK, and
RESET_STREAM requests.

SMB$CHECK_FOR_MESSAGE checks to see if a message from the job controller
is waiting. If a message is waiting, SMB$CHECK_FOR_MESSAGE returns
a success code. The caller of SMB$CHECK_FOR_MESSAGE can then call
SMB$READ_MESSAGE to read the message and take the appropriate action.

If no message is waiting, SMB$CHECK_FOR_MESSAGE returns a zero in R0.
The caller of SMB$CHECK_FOR_MESSAGE can continue to process the task at
hand.

Symbiont/Job Controller Interface (SMB) Routines SMB–5

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

Figure 17–2 is a flowchart for a synchronous, single-threaded symbiont. The
flowchart does not show all the details of the logic the symbiont needs and does
not show how the symbiont handles PAUSE_TASK, RESUME_TASK, or RESET_
STREAM requests.

Figure 17–2 Flowchart for a Single-Threaded, Synchronous Symbiont

ZK−2020−GE

SMB$READ_MESSAGE

N

Call

Y

N

N

Stream?
Start

Stream?
Stop

N

N

Y

N

Y
Task?
Start

Task?
Stop

SMBMSG$K_TASK_COMPLETE
with

SMB$SEND_TO_JOBCTL
Call

Y

Message?

Y

N

Y

Y

Y

SMBMSG$K_STOP_STREAM
with

SMB$SEND_TO_JOBCTL
Call

$EXIT
Call

$ASSIGN

$DEASSIGN

Input File
Close

SMBMSG$K_STOP_TASK
with

SMB$SEND_TO_JOBCTL
Call

SMBMSG$K_START_STREAM
with

SMB$SEND_TO_JOBCTL
Call

Requests
Other Types of

Process

Input File
Close

Input File
Open

SMB$_NOMOREITEMS

Message−Item
Process

SMB$READ_MESSAGE_ITEM
Call

MAIN Routine

Message?

SMB$INITIALIZE
Call

SMB$CHECK_FOR_MESSAGE
Call

$TIMEDWAIT

SMBMSG$K_START_TASK
with

SMB$SEND_TO_JOBCTL
Call

Record
Read

Write Record
Format,

EOF?

N

SMB$CHECK_FOR_MESSAGE
Call

Asynchronous Environment
To receive messages asynchronously, a symbiont specifies a message-handling
AST routine as the second argument to the SMB$INITIALIZE routine. In this
scheme, whenever the job controller sends messages to the symbiont, the AST
routine is called.

The AST routine is called with no arguments and returns no value. You have
the option of having the AST routine read the message within the context of its
execution or of having the AST routine wake a suspended process to read the
message outside the context of the execution of the AST routine.

SMB–6 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

Be aware that an AST can be delivered only while the symbiont is not executing
within the context of an AST routine. Thus, in order to ensure delivery of
messages from the job controller, the symbiont should not perform lengthy
operations at the AST level.

This is particularly important to the execution of STOP_TASK, PAUSE_TASK,
and RESET_STREAM requests. If a STOP_TASK request cannot be delivered
during the processing of a task, for example, it is useless.

One technique that ensures delivery of STOP and PAUSE requests in an
asynchronous environment is to have the AST routine set a flag if it reads a
PAUSE_TASK, STOP_TASK, or a RESET_STREAM request and to have the
symbiont’s main routine periodically check the flag.

Figure 17–3 and Figure 17–4 show flowcharts for a single-threaded, asynchronous
symbiont. The figures do not show many details that your symbiont might
include, such as a call to the $QIO system service.

Note that the broken lines in Figure 17–3 that connect the calls to $HIBER with
the AST routine’s calls to $WAKE show that the next action to take place is the
call to $WAKE. They do not accurately represent the flow of control within the
symbiont but represent the action of the job controller in causing the AST routine
to execute.

Symbiont/Job Controller Interface (SMB) Routines SMB–7

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

Figure 17–3 Flowchart for a Single-Threaded, Asynchronous Symbiont (MAIN Routine)

N

Y

Record
Format, Write

N

N

ZK−2019−1−GE

Y
Flag?

Stop−Task

N

Y

SMBMSG$K_RESUME_TASK
with

SMB$SEND_TO_JOBCTL
Call

Messages

 Process?
to

Reset Messages
to be Processed

Messages

 Process?
to

Y

Reset Messages
to Process

N

Y

Reset Messages
to Process

Received

Call to
$WAKE

$HIBER
Call

Call
SMB$INITIALIZE

SMBMSG$K_STOP_TASK
with

SMB$SEND_TO_JOBCTL
Call

Read Record

for Input
Open File

SMBMSG$K_START_TASK
with

SMB$SEND_TO_JOBCTL
Call

EOF? Input File
Close

Pause−Task Flags
Stop−Task and

Clear

Y

Flag?
Pause−Task

$HIBER
Call

Received

Call to
$WAKE

Pause−Task Flag
Clear

SMBMSG$K_PAUSE_TASK
with

SMB$SEND_TO_JOBCTL
Call

MAIN Routine

SMBMSG$K_TASK_COMPLETE
with

SMB$SEND_TO_JOBCTL
Call

SMB–8 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

Figure 17–4 Flowchart for a Single-Threaded, Asynchronous Symbiont (AST Routine)

Task?
Stop

Task?
Start

?
SMB$_NOMOREITEMS

Y

N

Y

Y

N

SMB$READ_MESSAGE
Call

N

Y

Flag Set?
Pause−Task

N

N

N

YY

N

N

N N

ZK−2019−2−GE

Y

Y

Y

Open?
File

Stream?
Reset

Stream?
Stop

Task?
Resume

Task?
Pause

Start
Stream?

Y

Pause−Task Flag
Set

Outstanding I/O
Cancel

$ASSIGN
Device

Call
SMB$SEND_TO_JOBCTL

with
SMBMSG$K_RESUME_TASK

SMBMSG$K_START_STREAM
with

SMB$SEND_TO_JOBCTL
Call

SMBMSG$K_STOP_STREAM
with

SMB$SEND_TO _JOBCTL
Call

with

Call

SMBMSG$K_RESET_STREAM

SMB$SEND_TO_JOBCTL

$DEASSIGN
Device

$WAKE
Call

$WAKE
CallMessages to

Indicate

be Processed

RETURNMessages to
Indicate

be Processed

File
Close

$EXIT

Stop−Task Flag
Set

$DEASSIGN
Call

BUGCHECK

SMB$READ_MESSAGE_ITEM
Call

Message−Item
Process

AST Routine

17.1.7.2 Single-Streaming Versus Multistreaming
A single-stream (or thread) is a logical link between a queue and a symbiont
process. When a symbiont process is linked to more than one queue and serves
those queues simultaneously, it is called a multithreaded symbiont.

The argument to the SMB$READ_MESSAGE routine provides a way for
a multithreaded symbiont to keep track of the stream referred to by a
request. Writing your own multithreaded symbiont, however, can be a complex
undertaking.

Symbiont/Job Controller Interface (SMB) Routines SMB–9

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

17.1.8 Reading Job Controller Requests
Table 17–1 lists the seven general functions the job controller can request of the
symbiont.

Table 17–1 Job Controller Functions

SMBMSG$K_START_STREAM SMBMSG$K_STOP_STREAM

SMBMSG$K_START_TASK SMBMSG$K_PAUSE_TASK

SMBMSG$K_RESUME_TASK SMBMSG$K_STOP_TASK

SMBMSG$K_RESET_STREAM

The job controller passes these requests to the symbiont in a structure that
contains: (1) a code that identifies the requested function and (2) optional items
of information that the symbiont might need to perform the requested function.

By calling SMB$READ_MESSAGE, the symbiont reads the function code and
writes the associated items of information, if any, into a buffer. The symbiont
then parses the message items stored in the buffer by calling the SMB$READ_
MESSAGE_ITEM routine. SMB$READ_MESSAGE_ITEM reads one message
item each time it is called.

Each message item consists of a code that identifies the type of information the
item contains, and the information itself. For example, the SMBMSG$K_JOB_
NAME code tells the symbiont that the item contains a string, which is the name
of a job.

The number of message items in a request message varies with each type of
request. Therefore, to ensure that all message items are read, SMB$READ_
MESSAGE_ITEM must be called repeatedly for each request. SMB$READ_
MESSAGE_ITEM returns status SMB$_NOMOREITEMS after it has read the
last message item in a given request.

Typically, a symbiont checks the code of a message item against a case table and
stores the message string in an appropriate variable until all the message items
are read and the processing of the request can begin.

See the description of the SMB$READ_MESSAGE_ITEM routine for a table that
shows the message items that make up each type of request.

17.1.9 Processing Job Controller Requests
After a request is read, it must be processed. The way a request is processed
depends on the type of request. The following section lists, for each request that
the job controller sends to the print symbiont, the actions that the standard
symbiont (PRTSMB) takes when the message is received. These actions are
oriented toward print symbionts in particular but can serve as a guideline for
other kinds of symbionts as well.

The symbiont you write can respond to requests in a similar way or in a different
way appropriate to the function of your symbiont. Compaq suggests that your
routines follow the guidelines described in this document. (Note that the behavior
of the standard symbiont is subject to change without notice in future versions of
the operating system.)

SMB–10 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

SMBMSG$K_START_STREAM

• Reset all stream-specific information that might have been altered by previous
START_STREAM requests on this stream (for multithreaded symbionts).

• Read and store the message items associated with the request.

• Allocate the device specified by the SMBMSG$K_DEVICE_NAME item.

• Assign a channel to the device.

• Obtain the device characteristics.

• If the device is neither a terminal nor a printer, then abort processing and
return an error to the job controller by means of the SMB$SEND_TO_
JOBCTL routine. Note that, even though an error has occurred, the stream
is still considered started. The job controller detects the error and sends a
STOP_STREAM request to the symbiont.

• Set temporary device characteristics suited to the way the symbiont will use
the device.

• For remote devices (devices connected to the system by means of a modem),
establish an AST to report loss of the carrier signal.

• Report to the job controller that the request has been completed and that the
stream is started, by specifying SMBMSG$K_START_STREAM in the call to
SMB$SEND_TO_JOBCTL.

SMBMSG$K_START_TASK

• Reset all task-specific information that might have been altered by previous
START_TASK requests on this stream number.

• Read and store the message items associated with the request.

• Open the main input file.

• Report to the job controller that the task has been started by specifying
SMBMSG$K_START_TASK in the call to the SMB$SEND_TO_JOBCTL
routine.

• Begin processing the task.

• When the task is complete, notify the job controller by specifying
SMBMSG$K_TASK_COMPLETE in the call to the SMB$SEND_TO_JOBCTL
routine.

SMBMSG$K_PAUSE_TASK

• Read and store the message items associated with the request.

• Set a flag that will cause the main processing routine to pause at the
beginning of the next output page.

• When the main routine pauses, notify the job controller by specifying
SMBMSG$K_PAUSE_TASK in the call to the SMB$SEND_TO_JOBCTL
routine.

Symbiont/Job Controller Interface (SMB) Routines SMB–11

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

SMBMSG$K_RESUME_TASK

• Read and store the message items associated with the request.

• Perform any positioning functions specified by the message items.

• Clear the flag that causes the main input routine to pause, and resume
processing the task.

• Notify the job controller that the task has been resumed by specifying
SMBMSG$K_RESUME_TASK in the call to the SMB$SEND_TO_JOBCTL
routine.

SMBMSG$K_STOP_TASK

• Read and store the message items associated with the request.

• If processing of the current task has paused, then resume it.

• Cancel any outstanding I/O operations.

• Close the input file.

• If the job controller specified, in the START_TASK message, that a trailer
page should be printed when the task is stopped or if it specified that the
device should be reset when the task is stopped, then perform those functions.

• Notify the job controller that the task has been stopped abnormally by
specifying SMBMSG$K_STOP_TASK and by specifying an error vector in
the call to SMB$SEND_TO_JOBCTL. PRTSMB specifies the value passed by
the job controller in the SMBMSG$K_STOP_CONDITION item as the error
condition in the error vector.

SMBMSG$K_STOP_STREAM

• Read and store the message items associated with the request.

• Release any stream-specific resources: (1) deassign the channel to the device,
and (2) deallocate the device.

• Notify the job controller that the stream has been stopped by specifying
SMBMSG$K_STOP_STREAM in the call to SMB$SEND_TO_JOBCTL.

• If this is a single-threaded symbiont or if this is a multithreaded symbiont but
all other streams are currently stopped, then call the $EXIT system service
with the condition code SS$_NORMAL.

SMBMSG$K_RESET_STREAM

• Read and store the message items associated with the request.

• Abort any task in progress—you do not need to notify the job controller that
the task has been aborted, but you may do so if you want.

• If the job controller specified, in the START_TASK message, that a trailer
page should be printed when the task is stopped or if it specified that
the device should be reset when the task is stopped, then suppress those
functions.

The job controller sends the symbiont a RESET_STREAM request to regain
control of a queue or a device that has failed to respond to a STOP_TASK
request. The RESET_STREAM request should avoid any further I/O activity
if possible. The printer might be disabled, for example, and requests for
output on that device will never be completed.

SMB–12 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
17.1 Introduction to SMB Routines

• Continue as if this were a STOP_STREAM request.

Note

A STOP_STREAM request and a RESET_STREAM request each stop the
queue; but a RESET_STREAM request is an emergency stop and is used,
for example, when the device has failed. A RESET_STREAM request
should prevent any further I/O activity because the printer might not be
able to complete it.

17.1.10 Responding to Job Controller Requests
The symbiont uses the SMB$SEND_TO_JOBCTL routine to send messages to the
job controller.

Most messages that the symbiont sends to the job controller are responses to
requests made by the job controller. Such messages inform the job controller
that the request has been completed successfully or unsuccessfully. The function
code that the symbiont returns to the controller in the call to SMB$SEND_TO_
JOBCTL indicates what request has been completed.

For example, if the job controller sends a START_TASK request using the
SMBMSG$K_START_TASK code, the symbiont responds by calling SMB$SEND_
TO_JOBCTL using SMBMSG$K_START_TASK as the request argument to
indicate that task processing has begun. Until the symbiont responds, the DCL
command SHOW QUEUE indicates that the queue is starting.

The responses to some requests use additional arguments to send more
information than just the request code. See the SMB$SEND_TO_JOBCTL
routine for a table showing the additional arguments allowed in response to each
request.

In addition to sending messages in response to requests, the symbiont can send
other messages to the job controller. In these messages the symbiont sends either
the SMBMSG$K_TASK_COMPLETE code, indicating that it has completed a
task, or SMBMSG$K_TASK_STATUS, indicating that the message contains
information on the status of a task.

Note that, when a START_TASK request is delivered, the symbiont responds with
a SMB$SEND_TO_JOBCTL message with the SMBMSG$K_START_TASK code.
This response means the task has been started. It does not mean the task has
been completed. When the symbiont completes the task, it calls SMB$SEND_TO_
JOBCTL with the SMBMSG$K_TASK_COMPLETE code.

17.2 SMB Routines
This section describes the individual SMB routines.

Symbiont/Job Controller Interface (SMB) Routines SMB–13

Symbiont/Job Controller Interface (SMB) Routines
SMB$CHECK_FOR_MESSAGE

SMB$CHECK_FOR_MESSAGE—Check for Message from Job
Controller

The SMB$CHECK_FOR_MESSAGE routine determines whether a message sent
from the job controller to the symbiont is waiting to be read.

Format

SMB$CHECK_FOR_MESSAGE

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

None.

Description

When your symbiont calls the SMB$INITIALIZE routine to initialize the interface
between the symbiont and the job controller, you can choose to have requests from
the job controller delivered by means of an AST. If you choose not to use ASTs,
your symbiont must call SMB$CHECK_FOR_MESSAGE during the processing of
tasks in order to see if a message from the job controller is waiting to be read. If
a message is waiting, SMB$CHECK_FOR_MESSAGE returns a success code; if
not, it returns a zero.

If a message is waiting, the symbiont should call SMB$READ_MESSAGE to read
it to determine if immediate action should be taken (as in the case of STOP_
TASK, RESET_STREAM or PAUSE_TASK).

If a message is not waiting, SMB$CHECK_MESSAGE returns a zero. If this
condition is detected, the symbiont should continue processing the request at
hand.

Condition Values Returned

SS$_NORMAL One or more messages waiting.
0 No messages waiting.

SMB–14 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$INITIALIZE

SMB$INITIALIZE—Initialize User-Written Symbiont

The SMB$INITIALIZE routine initializes the user-written symbiont and the
interface between the symbiont and the job controller. It allocates and initializes
the internal databases of the interface and sets up the mechanism that is to wake
up the symbiont when a message is received.

Format

SMB$INITIALIZE structure_level [,ast_routine] [,streams]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

structure_level
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Version of the symbiont/job controller interface. The structure_level argument
is the address of a longword containing the version of the symbiont/job controller
interface used when the symbiont was compiled. Always place the value of the
symbol SMBMSG$K_STRUCTURE_LEVEL in the longword addressed by this
argument. Each programming language provides an appropriate mechanism for
defining symbols.

ast_routine
OpenVMS usage: ast_procedure
type: procedure value
access: read only
mechanism: by reference

Message-handling routine called at AST level. The ast_routine argument is the
address of the entry point of the message-handling routine to be called at AST
level when the symbiont receives a message from the job controller. The AST
routine is called with no parameters and returns no value. If an AST routine is
specified, the routine is called once each time the symbiont receives a message
from the job controller.

The AST routine typically reads the message and determines if immediate action
must be taken. Be aware that an AST can be delivered only while the symbiont
is operating at non-AST level. Thus, to ensure delivery of messages from the job
controller, the symbiont should not perform lengthy operations at AST level.

If you do not specify the ast_routine argument, the symbiont must call the
SMB$CHECK_FOR_MESSAGE routine to check for waiting messages.

Symbiont/Job Controller Interface (SMB) Routines SMB–15

Symbiont/Job Controller Interface (SMB) Routines
SMB$INITIALIZE

streams
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Maximum number of streams the symbiont is to support. The streams argument
is the address of a longword containing the number of streams that the symbiont
is to support. The number must be in the range of 1 to 32.

If you do not specify this argument, a default value of 1 is used. Thus, by default,
a symbiont supports one stream. Such a symbiont is called a single-threaded
symbiont.

A stream (or thread) is a logical link between a queue and a symbiont.
When a symbiont is linked to more than one queue, and serves those queues
simultaneously, it is called a multithreaded symbiont.

Description

Your symbiont must call SMB$INITIALIZE before calling any other SMB
routines. It calls SMB$INITIALIZE in order to do the following:

• Allocate and initialize the SMB facility’s internal database.

• Establish the interface between the job controller and the symbiont.

• Determine the threading scheme of the symbiont.

• Set up the mechanism to wake your symbiont when a message is received.

After the symbiont calls SMB$INITIALIZE, it can communicate with the job
controller using the other SMB routines.

Condition Values Returned

SS$_NORMAL Normal successful completion.
SMB$_INVSTRLEV Invalid structure level.

This routine also returns any codes returned by $ASSIGN and LIB$GET_VM.

SMB–16 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE

SMB$READ_MESSAGE—Obtain Message Sent by Job Controller

The SMB$READ_MESSAGE routine copies a message that the job controller has
sent into the caller’s specified buffer.

Format

SMB$READ_MESSAGE stream ,buffer ,request

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

stream
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Stream number specifying the stream to which the message refers. The stream
argument is the address of a longword into which the job controller writes the
number of the stream referred to by the message. In single-threaded symbionts,
the stream number is always 0.

buffer
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Address of the descriptor that points to the buffer into which the job controller
writes the message. SMB$READ_MESSAGE uses the Run-Time Library string-
handling (STR$) routines to copy the message into the buffer you supply. The
buffer should be specified by a dynamic string descriptor.

request
OpenVMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Code that identifies the request. The request argument is the address of a
longword into which SMB$READ_MESSAGE writes the code that identifies the
request.

Symbiont/Job Controller Interface (SMB) Routines SMB–17

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE

There are seven request codes. Each code is interpreted as a message by the
symbiont. The codes and their descriptions follow:

SMBMSG$K_START_STREAM Initiates processing on an inactive symbiont
stream. The job controller sends this
message when a START/QUEUE or an
INITIALIZE/QUEUE/START command is
issued on a stopped queue.

SMBMSG$K_STOP_STREAM Stops processing on a started queue. The
job controller sends this message when a
STOP/QUEUE/NEXT command is issued,
after the symbiont completes any currently
active task.

SMBMSG$K_RESET_STREAM Aborts all processing on a started stream
and requeues the current job. The job
controller sends this message when a
STOP/QUEUE/RESET command is issued.

SMBMSG$K_START_TASK Requests that the symbiont begin processing
a task. The job controller sends this message
when a file is pending on an idle, started
queue.

SMBMSG$K_STOP_TASK Requests that the symbiont abort the
processing of a task. The job controller sends
this message when a STOP/QUEUE/ABORT
or STOP/QUEUE/REQUEUE command
is issued. The item SMBMSG$K_STOP_
CONDITION identifies whether this is an
abort or a requeue request.

SMBMSG$K_PAUSE_TASK Requests that the symbiont pause in the
processing of a task but retain the resources
necessary to continue. The job controller
sends this message when a STOP/QUEUE
command is issued without the /ABORT,
/ENTRY, /REQUEUE, or /NEXT qualifier for
a queue that is currently printing a job.

SMBMSG$K_RESUME_TASK Requests that the symbiont continue
processing a task that has been stopped
with a PAUSE_TASK request. This message
is sent when a START/QUEUE command is
issued for a queue served by a symbiont that
has paused in processing the current task.

Description

Your symbiont calls SMB$READ_MESSAGE to read a message that the job
controller has sent to the symbiont.

Each message from the job controller consists of a code identifying the function
the symbiont is to perform and a number of message items. There are seven
codes. Message items are pieces of information that the symbiont needs to carry
out the requested function.

For example, when you enter the DCL command PRINT, the job controller sends
a message containing a START_TASK code and a message item containing the
specification of the file to be printed.

SMB–18 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE

SMB$READ_MESSAGE writes the code into a longword (specified by the
request argument) and writes the accompanying message items, if any, into a
buffer (specified by the buffer argument).

See the description of the SMB$READ_MESSAGE_ITEM routine for information
about processing the individual message items.

Condition Values Returned

SS$_NORMAL Normal successful completion.
LIB$_INVARG Routine completed unsuccessfully because of an

invalid argument.

This routine also returns any of the condition codes returned by the Run-Time
Library string-handling (STR$) routines.

Symbiont/Job Controller Interface (SMB) Routines SMB–19

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

SMB$READ_MESSAGE_ITEM—Parse Next Item from Message
Buffer

The SMB$READ_MESSAGE_ITEM routine reads a buffer that was filled in by
the SMB$READ_MESSAGE routine, parses one message item from the buffer,
writes the item’s code into a longword, and writes the item into a buffer.

Format

SMB$READ_MESSAGE_ITEM message ,context ,item_code ,buffer [,size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

message
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Message items that SMB$READ_MESSAGE_ITEM is to read. The message
argument is the address of a descriptor of a buffer. The buffer is the one that
contains the message items that SMB$READ_MESSAGE_ITEM is to read. The
buffer specified here must be the same as that specified with the call to the
SMB$READ_MESSAGE routine, which fills the buffer with the contents of the
message.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value initialized to 0 specifying the first message item in the buffer to be read.
The context argument is the address of a longword that the SMB$READ_
MESSAGE_ITEM routine uses to determine the next message item to be
returned. When this value is 0, it indicates that SMB$READ_MESSAGE_
ITEM is to return the first message item.

The SMB$READ_MESSAGE_ITEM routine updates this value each time it reads
a message item. SMB$READ_MESSAGE_ITEM sets the value to 0 when it has
returned all the message items in the buffer.

SMB–20 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

item_code
OpenVMS usage: smb_item
type: longword (unsigned)
access: write only
mechanism: by reference

Item code specified in the message item that identifies its type. The item_code
argument is the address of a longword into which SMB$READ_MESSAGE_ITEM
writes the code that identifies which item it is returning.

The codes that identify message items are defined at the end of the Description
section for this routine.

buffer
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Message item. The buffer argument is the address of a descriptor of a buffer.
The buffer is the one in which the SMB$READ_MESSAGE_ITEM routine is to
place the message item data. SMB$READ_MESSAGE_ITEM uses the Run-Time
Library string-handling (STR$) routines to copy the message item data into the
buffer.

size
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Size of the message item. The size argument is the address of a word in which
the SMB$READ_MESSAGE_ITEM is to place the size, in bytes, of the item’s
data.

Description

The job controller can request seven functions from the symbiont. They are
identified by the following codes:

SMBMSG$K_START_STREAM SMBMSG$K_STOP_STREAM
SMBMSG$K_START_TASK SMBMSG$K_PAUSE_TASK
SMBMSG$K_RESUME_TASK SMBMSG$K_STOP_TASK
SMBMSG$K_RESET_STREAM

The job controller passes the symbiont a request containing a code and, optionally,
a number of message items containing information the symbiont might need to
perform the function. The code specifies what function the request is for, and
the message items contain information that the symbiont needs to carry out the
function.

By calling SMB$READ_MESSAGE, the symbiont reads the request and writes
the message items into the specified buffer. The symbiont then obtains the
individual message items by calling the SMB$READ_MESSAGE_ITEM routine.

Each message item consists of a code that identifies the information the item
represents, and the item itself. For example, the SMB$K_JOB_NAME code tells
the symbiont that the item specifies a job’s name.

Symbiont/Job Controller Interface (SMB) Routines SMB–21

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

The number of items in a request varies with each type of request. Therefore,
you must call SMB$READ_MESSAGE_ITEM repeatedly for each request to
ensure that all message items are read. Each time SMB$READ_MESSAGE_
ITEM reads a message item, it updates the value in the longword specified by
the context argument. SMB$READ_MESSAGE_ITEM returns the code SMB$_
NOMOREITEMS after it has read the last message item.

The following table shows the message items that can be delivered with each
request:

Request Message Item

SMBMSG$K_START_TASK SMBMSG$K_ACCOUNT_NAME
SMBMSG$K_AFTER_TIME
SMBMSG$K_BOTTOM_MARGIN
SMBMSG$K_CHARACTERISTICS
SMBMSG$K_CHECKPOINT_DATA
SMBMSG$K_ENTRY_NUMBER
SMBMSG$K_FILE_COPIES
SMBMSG$K_FILE_COUNT
SMBMSG$K_FILE_IDENTIFICATION
SMBMSG$K_FILE_SETUP_MODULES
SMBMSG$K_FILE_SPECIFICATION
SMBMSG$K_FIRST_PAGE
SMBMSG$K_FORM_LENGTH
SMBMSG$K_FORM_NAME
SMBMSG$K_FORM_SETUP_MODULES
SMBMSG$K_FORM_WIDTH
SMBMSG$K_JOB_COPIES
SMBMSG$K_JOB_COUNT
SMBMSG$K_JOB_NAME
SMBMSG$K_JOB_RESET_MODULES
SMBMSG$K_LAST_PAGE
SMBMSG$K_LEFT_MARGIN
SMBMSG$K_MESSAGE_VECTOR
SMBMSG$K_NOTE
SMBMSG$K_PAGE_SETUP_MODULES
SMBMSG$K_PARAMETER_1

.

.

.
SMBMSG$K_PARAMETER_8
SMBMSG$K_PRINT_CONTROL
SMBMSG$K_SEPARATION_CONTROL
SMBMSG$K_REQUEST_CONTROL

SMB–22 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

Request Message Item

SMBMSG$K_PRIORITY
SMBMSG$K_QUEUE
SMBMSG$K_RIGHT_MARGIN
SMBMSG$K_TIME_QUEUED
SMBMSG$K_TOP_MARGIN
SMBMSG$K_UIC
SMBMSG$K_USER_NAME

SMBMSG$K_STOP_TASK SMBMSG$K_STOP_CONDITION
SMBMSG$K_PAUSE_TASK None
SMBMSG$K_RESUME_TASK SMBMSG$K_ALIGNMENT_PAGES

SMBMSG$K_RELATIVE_PAGE
SMBMSG$K_REQUEST_CONTROL
SMBMSG$K_SEARCH_STRING

SMBMSG$K_START_STREAM SMBMSG$K_DEVICE_NAME
SMBMSG$K_EXECUTOR_QUEUE
SMBMSG$K_JOB_RESET_MODULES
SMBMSG$K_LIBRARY_SPECIFICATION

SMBMSG$K_STOP_STREAM None
SMBMSG$K_RESET_STREAM None

The following list describes each item code. For each code, the list describes
the contents of the message item identified by the code and whether the code
identifies an item sent from the job controller to the symbiont or from the
symbiont to the job controller.

Many of the codes described are specifically oriented toward print symbionts. The
symbiont you implement, which might not print files or serve an output device,
need not recognize all these codes. In addition, it need not respond in the same
way as the print symbiont to the codes it recognizes. The descriptions in the list
describe how the standard print symbiont (PRTSMB.EXE) processes these items.

Note

Because new codes might be added in the future, you should write your
symbiont so that it ignores codes it does not recognize.

Codes for Message Items

SMBMSG$K_ACCOUNT_NAME
This code identifies a string containing the name of the account to be charged for
the job, that is, the account of the process that submitted the print job.

SMBMSG$K_AFTER_TIME
This code identifies a 64-bit, absolute-time value specifying the system time after
which the job controller can process this job.

Symbiont/Job Controller Interface (SMB) Routines SMB–23

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

SMBMSG$K_ALIGNMENT_PAGES
This code identifies a longword specifying the number of alignment pages that the
symbiont is to print.

SMBMSG$K_BOTTOM_MARGIN
This code identifies a longword containing the number of lines to be left blank at
the bottom of a page.

The symbiont inserts a form feed character into the output stream if it determines
that all of the following conditions are true:

• The number of lines left at the bottom of the page is equal to the value in
SMBMSG$K_BOTTOM_MARGIN.

• Sending more data to the printer to be output on this page would cause
characters to be printed within this bottom margin of the page.

• The /FEED qualifier was specified with the PRINT command that caused the
symbiont to perform this task.

(Line feed, form feed, carriage-return, and vertical-tab characters in the output
stream are collectively known as embedded carriage control.)

SMBMSG$K_CHARACTERISTICS
This code identifies a 16-byte structure specifying characteristics of the job. A
detailed description of the format of this structure is contained in the description
of the QUI$_CHARACTERISTICS code in the $GETQUI system service in the
OpenVMS System Services Reference Manual.

SMBMSG$K_DEVICE_NAME
This code identifies a string that is the name of the device to which the symbiont
is to send data. The symbiont interprets this information. The name need not
be the name of a physical device, and the symbiont can interpret this string as
something other than the name of a device.

SMBMSG$K_ENTRY_NUMBER
This code identifies a longword containing the number that the job controller
assigned to the job.

SMBMSG$K_EXECUTOR_QUEUE
This code identifies a string that is the name of the queue on which the symbiont
stream is to be started.

SMBMSG$K_FILE_COPIES
This code identifies a longword containing the number of copies of the file that
were requested.

SMBMSG$K_FILE_COUNT
This code identifies a longword that specifies, out of the number of copies
requested for this job (SMBMSG$K_FILE_COPIES), the number of the copy of
the file currently printing.

SMBMSG$K_FILE_IDENTIFICATION
This code identifies a 28-byte structure identifying the file to be processed. This
structure consists of the following three file-identification fields in the OpenVMS
RMS NAM block:

1. The 16-byte NAM$T_DVI field

SMB–24 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

2. The 6-byte NAM$W_FID field

3. The 6-byte NAM$W_DID field

These fields occur consecutively in the NAM block in the order listed.

SMBMSG$K_FILE_SETUP_MODULES
This code identifies a string specifying the names (separated by commas) of one or
more text modules that the symbiont should copy from the library into the output
stream before processing the file.

SMBMSG$K_FILE_SPECIFICATION
This code identifies a string specifying the name of the file that the symbiont is to
process. This file name is formatted as a standard RMS file specification.

SMBMSG$K_FIRST_PAGE
This code identifies a longword containing the number of the page at which
the symbiont should begin printing. The job controller sends this item to the
symbiont. When not specified, the symbiont begins processing at page 1.

SMBMSG$K_FORM_LENGTH
This code identifies a longword value specifying the length (in lines) of the
physical form (the paper).

SMBMSG$K_FORM_NAME
This code identifies a string specifying the name of the form.

SMBMSG$K_FORM_SETUP_MODULES
This code identifies a string consisting of the names (separated by commas) of one
or more modules that the symbiont should copy from the device-control library
before processing the file.

SMBMSG$K_FORM_WIDTH
This code identifies a longword specifying the width (in characters) of the print
area on the physical form (the paper).

SMBMSG$K_JOB_COPIES
This code identifies a longword specifying the requested number of copies of the
job.

SMBMSG$K_JOB_COUNT
This code identifies a longword specifying, out of the number of copies requested
(SMBMSG$K_JOB_COPIES), the number of the copy of the job currently
printing.

SMBMSG$K_JOB_NAME
This code identifies a string specifying the name of the job.

SMBMSG$K_JOB_RESET_MODULES
This code identifies a string specifying a list of one or more module names
(separated by commas) that the symbiont should copy from the device-
control library after processing the task. These modules can be used to reset
programmable devices to a known state.

Symbiont/Job Controller Interface (SMB) Routines SMB–25

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

SMBMSG$K_LAST_PAGE
This code identifies a longword specifying the number of the last page that the
symbiont is to print. When not specified, the symbiont attempts to print all the
pages in the file.

SMBMSG$K_LEFT_MARGIN
This code identifies a longword specifying the number of spaces to be inserted at
the beginning of each line.

SMBMSG$K_LIBRARY_SPECIFICATION
This code identifies a string specifying the name of the device-control library.

SMBMSG$K_MESSAGE_VECTOR
This code identifies a vector of longword condition codes, each of which contains
information about the job to be printed.

When LOGINOUT cannot open a log file for a batch job, a code in the message
vector specifies the reason for the failure. The job controller does not send the
SMBMSG$K_FILE_IDENTIFICATION item if it has detected such a failure
but instead sends the message vector, which the symbiont prints, along with a
message stating that there is no file to print.

SMBMSG$K_NOTE
This code identifies a user-supplied string that the symbiont is to print on the job
flag page and on the file flag page.

SMBMSG$K_PAGE_SETUP_MODULES
This code identifies a string consisting of the names (separated by commas) of one
or more modules that the symbiont should copy from the device-control library
before printing each page.

SMBMSG$K_PARAMETER_1 through SMBMSG$K_PARAMETER_8
Each of these eight codes identifies a user-supplied string. Both the semantics
and syntax of each string are determined by the user-defined symbiont. The
OpenVMS-supplied symbiont makes no use of these eight items.

SMBMSG$K_PRINT_CONTROL
This code identifies a longword bit vector, each bit of which supplies information
that the symbiont is to use in controlling the printing of the file.

Symbol Description

SMBMSG$V_DOUBLE_SPACE The symbiont uses a double-spaced
format; it skips a line after each line
it prints.

SMBMSG$V_NO_INITIAL_FF The symbiont suppresses the initial
form feed if this bit is turned on.

SMBMSG$V_NORECORD_BLOCKING The symbiont performs single record
output, issuing a single output record
for each input record.

SMBMSG$V_PAGE_HEADER The symbiont prints a page header
at the top of each page.

SMB–26 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

Symbol Description

SMBMSG$V_PAGINATE The symbiont inserts a form feed
character when it detects an attempt
to print in the bottom margin of the
current form.

SMBMSG$V_PASSALL The symbiont prints the file
without formatting and bypasses
all formatting normally performed.
Furthermore, the symbiont outputs
the file without formatting, by
causing the output QIO to suppress
formatting by the driver.

SMBMSG$V_RECORD_BLOCKING The symbiont performs record
blocking, buffering output to the
device.

SMBMSG$V_SEQUENCED This bit is reserved by Compaq.
SMBMSG$V_SHEET_FEED The symbiont pauses the queue after

each page it prints.
SMBMSG$V_TRUNCATE The symbiont truncates input lines

that exceed the right margin of the
current form.

SMBMSG$V_WRAP The symbiont wraps input lines that
exceed the right margin, printing the
additional characters on a new line.

SMBMSG$K_PRIORITY
This code identifies a longword specifying the priority this job has in the queue in
which it is entered.

SMBMSG$K_QUEUE
This code identifies a string specifying the name of the queue in which this job
is entered. When generic queues are used, this item specifies the name of the
generic queue, and the SMBMSG$K_EXECUTOR item specifies the name of the
device queue or the server queue.

SMBMSG$K_RELATIVE_PAGE
This code identifies a signed, longword value specifying the number of pages that
the symbiont is to move forward (positive value) or backward (negative value)
from the current position in the file.

SMBMSG$K_REQUEST_CONTROL
This code identifies a longword bit vector, each bit of which specifies information
that the symbiont is to use in processing the request that the job controller is
making.

Symbiont/Job Controller Interface (SMB) Routines SMB–27

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

Symbol Description

SMBMSG$V_ALIGNMENT_MASK The symbiont is to replace all
alphabetic characters with the letter
X, and all numeric characters with
the number 9. Other characters
(punctuation, carriage control,
and so on) are left unchanged.
This bit is ordinarily specified in
connection with the SMBMSG$K_
ALIGNMENT_PAGES item.

SMBMSG$V_PAUSE_COMPLETE The symbiont is to pause when it
completes the current request.

SMBMSG$V_RESTARTING Indicates that this job was previously
interrupted and requeued, and is
now restarting.

SMBMSG$V_TOP_OF_FILE The symbiont is to rewind the input
file before it resumes printing.

SMBMSG$K_RIGHT_MARGIN
This code identifies a longword specifying the number of character positions to
be left empty at the end of each line. When the right margin is exceeded, the
symbiont truncates the line, wraps the line, or continues processing, depending
on the settings of the WRAP and TRUNCATE bits in the SMBMSG$K_PRINT_
CONTROL item.

SMBMSG$K_SEARCH_STRING
This code identifies a string containing the value specified in the
START/QUEUE/SEARCH command. This string identifies the page at which
to restart the current printing task on a paused queue.

SMBMSG$K_SEPARATION_CONTROL
This code identifies a longword bit vector, each bit of which specifies an operation
that the symbiont is to perform between jobs or between files within a job. The
$SMBDEF macro defines the following symbols for each bit:

Symbol Description

SMBMSG$V_FILE_BURST The symbiont is to print a file burst
page.

SMBMSG$V_FILE_FLAG The symbiont is to print a file flag
page.

SMBMSG$V_FILE_TRAILER The symbiont is to print a file trailer
page.

SMBMSG$V_FILE_TRAILER_ABORT The symbiont is to print a file
trailer page when a task completes
abnormally.

SMBMSG$V_FIRST_FILE_OF_JOB The current file is the first file
of the job. When specified with
SMBMSG$V_LAST_FILE_OF_JOB,
the current job contains a single file.

SMB–28 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$READ_MESSAGE_ITEM

Symbol Description

SMBMSG$V_JOB_FLAG The symbiont is to print a job flag
page.

SMBMSG$V_JOB_BURST The symbiont is to print a job burst
page.

SMBMSG$V_JOB_RESET The symbiont is to execute a job reset
sequence when the task completes.

SMBMSG$V_JOB_RESET_ABORT The symbiont is to execute a job reset
sequence when a task completes
abnormally.

SMBMSG$V_JOB_TRAILER The symbiont is to print a job trailer
page.

SMBMSG$V_JOB_TRAILER_ABORT The symbiont is to print a job
trailer page when a task completes
abnormally.

SMBMSG$V_LAST_FILE_OF_JOB The current file is the last file
of the job. When specified with
SMBMSG$V_FIRST_FILE_OF_JOB,
the current job contains a single job.

SMBMSG$K_STOP_CONDITION
This code identifies a longword containing a condition specifying the reason the
job controller issued a STOP_TASK request.

SMBMSG$K_TIME_QUEUED
This code identifies a quadword specifying the time the file was entered into the
queue. The time is expressed as 64-bit, absolute time.

SMBMSG$K_TOP_MARGIN
This code identifies a longword specifying the number of lines that the symbiont
is to leave blank at the top of each page. PRTSMB inserts line feeds into the
output stream after every form feed until the margin is cleared.

SMBMSG$K_UIC
This code identifies a longword specifying the user identification code (UIC) of the
user who submitted the job.

SMBMSG$K_USER_NAME
This code identifies a string specifying the name of the user who submitted the
job.

Condition Values Returned

SS$_NORMAL Normal successful completion.
SMB$_NOMOREITEMS End of item list reached.

This routine also returns any condition code returned by the Run-Time Library
string-handling (STR$) routines.

Symbiont/Job Controller Interface (SMB) Routines SMB–29

Symbiont/Job Controller Interface (SMB) Routines
SMB$SEND_TO_JOBCTL

SMB$SEND_TO_JOBCTL—Send Message to Job Controller

The SMB$SEND_TO_JOBCTL routine is used by your symbiont to send messages
to the job controller. Three types of messages can be sent: request-completion
messages, task-completion messages, and task-status messages.

Format

SMB$SEND_TO_JOBCTL stream [,request] [,accounting] [,checkpoint]
[,device_status] [,error]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

stream
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Stream number specifying the stream to which the message refers. The stream
argument is the address of a longword containing the number of the stream to
which the message refers.

request
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Request code identifying the request being completed. The request argument is
the address of a longword containing the code that identifies the request that has
been completed.

The code usually corresponds to the code the job controller passed to the symbiont
by means of a call to SMB$READ_MESSAGE. But the symbiont can also initiate
task-completion and task-status messages that are not in response to a request.
(See the Description section.)

SMB–30 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$SEND_TO_JOBCTL

accounting
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Accounting information about a task. The accounting argument is the address
of a descriptor pointing to the accounting information about a task. Note that
this structure is passed by descriptor and not by reference.

The job controller accumulates task statistics into a job-accounting record, which
it writes to the accounting file when the job is completed.

The following diagram depicts the contents of the 16-byte structure:

0

Number of Pages Printed for the Job

Number of Reads from Disk or Tape

Number of Writes to the Printing Device

Unused

ZK−2012−GE

31

checkpoint
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Checkpoint data about the currently executing task. The checkpoint argument
is the address of the descriptor that points to checkpointing information that
relates to the status of a task. When the symbiont sends this information to
the job controller, the job controller saves it in the queue database. When a
restart-from-checkpoint request is executed for the queue, the job controller
retrieves the checkpointing information from the queue database and sends it to
the symbiont in the SMBMSG$K_CHECKPOINT_DATA item that accompanies a
SMBMSG$K_START_TASK request.

Print symbionts can use the checkpointing information to reposition the input
file to the point corresponding to the page being output when the last checkpoint
was taken. Other symbionts might use checkpoint information to specify restart
information for partially completed tasks.

Note

Because each checkpoint causes information to be written into the
job controller’s queue database, taking a checkpoint incurs significant
overhead. Use caution in regard to the size and frequency of checkpoints.
When determining how often to checkpoint, weigh processor and file-
system overhead against the convenience of restarting.

Symbiont/Job Controller Interface (SMB) Routines SMB–31

Symbiont/Job Controller Interface (SMB) Routines
SMB$SEND_TO_JOBCTL

device_status
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Status of the device served by the symbiont. The device_status argument is the
address of a longword passed to the job controller, which contains the status of
the device to which the symbiont is connected.

This longword contains a longword bit vector, each bit of which specifies device-
status information. Each programming language provides an appropriate
mechanism for defining these device-status bits. The following table describes
each bit:

Device Status Bit Description

SMBMSG$V_LOWERCASE The device to which the symbiont is connected
supports lowercase characters.

SMBMSG$V_PAUSE_TASK The symbiont sends this message to inform
the job controller that the symbiont has
paused on its own initiative.

SMBMSG$V_REMOTE The device is connected to the symbiont by
means of a modem.

SMBMSG$V_SERVER The symbiont is not connected to a device.
SMBMSG$V_STALLED Symbiont processing is temporarily stalled.
SMBMSG$V_STOP_STREAM The symbiont requests that the job controller

stop the queue.
SMBMSG$V_TERMINAL The symbiont is connected to a terminal.
SMBMSG$V_UNAVAILABLE The device to which the symbiont is connected

is not available.

error
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Condition codes returned by the requested task. The error argument is the
address of a vector of longword condition codes. The first longword contains the
number of longwords following it.

If the low bit of the first condition code is clear, the job controller aborts
further processing of the job. Output of any remaining files, copies of files, or
copies of the job is canceled. In addition, the job controller saves up to three
condition values in the queue database. The first condition value is included
in the job-accounting record that is written to the system’s accounting file
(SYS$MANAGER:ACCOUNTNG.DAT).

SMB–32 Symbiont/Job Controller Interface (SMB) Routines

Symbiont/Job Controller Interface (SMB) Routines
SMB$SEND_TO_JOBCTL

Description

The symbiont uses the SMB$SEND_TO_JOBCTL routine to send messages to the
job controller.

Most messages the symbiont sends to the job controller are responses to requests
made by the job controller. These responses inform the job controller that the
request has been completed, either successfully or with an error. When the
symbiont sends the message, it usually indicates that the request has been
completed.

In such messages, the request argument corresponds to the function code of
the request that has been completed. Thus, if the job controller sends a request
using the SMBMSG$K_START_TASK code, the symbiont responds by sending
a SMB$SEND_TO_JOBCTL message using SMBMSG$K_START_TASK as the
request argument.

The responses to some requests use additional arguments to send more
information in addition to the request code. The following table shows which
additional arguments are allowed in response to each different request:

Request Arguments

SMBMSG$K_START_STREAM request
device_status
error

SMBMSG$K_STOP_STREAM request
SMBMSG$K_RESET_STREAM request
SMBMSG$K_START_TASK request
SMBMSG$K_PAUSE_TASK request
SMBMSG$K_RESUME_TASK request
SMBMSG$K_STOP_TASK request

error1

1This is usually the value specified in the SMBMSG$K_STOP_CONDITION item that was sent by the
job controller with the SMBMSG$K_STOP_TASK request.

In addition to responding to requests from the job controller, the symbiont can
send other messages to the job controller. If the symbiont sends a message that is
not a response to a request, it uses either the SMBMSG$K_TASK_COMPLETE or
SMBMSG$K_TASK_STATUS code. Following are the additional arguments that
you can use with the messages identified by these codes:

Code Arguments

SMBMSG$K_TASK_COMPLETE request
accounting
error

SMBMSG$K_TASK_STATUS request
checkpoint
device_status

Symbiont/Job Controller Interface (SMB) Routines SMB–33

Symbiont/Job Controller Interface (SMB) Routines
SMB$SEND_TO_JOBCTL

The symbiont uses the SMBMSG$K_TASK_STATUS message to update the
job controller on the status of a task during the processing of that task. The
checkpoint information passed to the job controller with this message permits
the job controller to restart an interrupted task from an appropriate point. The
device-status information permits the symbiont to report changes in device’s
status (device stalled, for example).

The symbiont can use the SMBMSG$K_TASK_STATUS message to request
that the job controller send a stop-stream request. It does this by setting the
stop-stream bit in the device-status argument.

The symbiont can also use the SMBMSG$K_TASK_STATUS message to notify
the job controller that the symbiont has paused in processing a task. It does so
by setting the pause-task bit in the device-status argument.

The symbiont uses the SMBMSG$K_TASK_COMPLETE message to signal the
completion of a task. Note that, when the symbiont receives a START_TASK
request, it responds by sending a SMB$SEND_TO_JOBCTL message with
SMBSMG$K_START_TASK as the request argument. This response means that
the symbiont has started the task; it does not mean the task has been completed.
When the symbiont has completed a task, it sends a SMB$SEND_TO_JOBCTL
message with SMBMSG$K_TASK_COMPLETE as the request argument.

Optionally, the symbiont can specify accounting information when sending a
task-completion message. The accounting statistics accumulate to give a total for
the job when the job is completed.

Also, if the symbiont is aborting the task because of a symbiont-detected error,
you can specify up to three condition values in the error argument. Aborting a
task causes the remainder of the job to be aborted.

Condition Values Returned

SS$_NORMAL Normal successful completion.

This routine also returns any condition value returned by the $QIO system
service and the LIB$GET_VM routine.

SMB–34 Symbiont/Job Controller Interface (SMB) Routines

18
Sort/Merge (SOR) Routines

The Sort/Merge (SOR) routines allow you to integrate a sort or merge operation
into a program application. Using these callable routines, you can process
records, sort or merge them, and then process them again.

18.1 High-Performance Sort/Merge (Alpha Only)
You can also choose the high-performance Sort/Merge utility. This utility takes
advantage of the Alpha architecture to provide better performance for most sort
and merge operations.

In addition, the high-performance Sort/Merge utility can increase performance
by using threads to take advantage of multiple processors on an SMP configured
system. Refer to Section 18.1.2 for further information about using threads.

The high-performance Sort/Merge utility supports a subset of the SOR routines.
Any differences between the high-performance Sort/Merge utility and Sort/Merge
utility (SORT/MERGE) are noted within this chapter.

Note

Memory allocation differences may limit the high-performance Sort/Merge
utility’s ability to perform the same number of concurrent sort operations
as the Sort/Merge utility can perform in the same amount of virtual
memory.

If this situation occurs, you can either increase the amount of virtual
memory that is available to the process, or reduce the working set extent.
For information on using system parameters to change the amount of
virtual memory or reduce the working set extent, refer to the OpenVMS
System Management Utilities Reference Manual.

.

Use the SORTSHR logical name to select the high-performance Sort/Merge
utility. Define SORTSHR to point to the high-performance sort executable in
SYS$LIBRARY as follows:

$ define sortshr sys$library:hypersort.exe

To return to SORT/MERGE, deassign SORTSHR. The Sort/Merge utility is the
default if SORTSHR is not defined.

Sort/Merge (SOR) Routines SOR–1

Sort/Merge (SOR) Routines
18.1 High-Performance Sort/Merge (Alpha Only)

18.1.1 High-Performance SOR Routine Behavior
The behavior of the SOR routines for the high-performance Sort/Merge utility is
the same as for SORT/MERGE except as shown in Table 18–1.

If you attempt to use an unsupported capability, the high-performance Sort/Merge
utility generates an error. The high-performance Sort/Merge utility adds the
following condition value to those listed for SORT/MERGE:

SOR$_NYI Attempt to use a feature that is not yet implemented.

Table 18–1 High-Performance Sort/Merge: Differences in SOR$ Routine
Behavior

Feature High-Performance Sort/Merge Behavior

Work files Permissible values of the SOR$BEGIN_SORT work_
files argument range from 1 through 255. By default,
the high-performance Sort/Merge utility creates two
temporary work files.

Input file size If you do not specify an input file size in the
SOR$BEGIN_SORT file_alloc argument, the high-
performance Sort/Merge utility determines a default
based on the size of the input file, or if input is not
from files, on available memory.

Specification files The SOR$SPEC_FILE routine is not supported.
(Implementation of this feature is deferred to a future
OpenVMS Alpha release.)

Key data types DSCK_DTYPE_O, DSCK_DTYPE_OU, DSC$K_
DTYPE_H, and DSC$K_DTYPE_NZ are not valid
key data types in the SOR$BEGIN_MERGE
or SOR$BEGIN_SORT key_buffer argument.
(Implementation of this feature is deferred to a future
OpenVMS Alpha release.)

Key data types not normally
supported by SORT/MERGE

The SOR$DTYPE routine is not supported.
(Implementation of this feature is deferred to a future
OpenVMS Alpha release.) Data types that would
otherwise be specified using SOR$DTYPE include
extended data types and the National Character Set
(NCS) collating sequences.

Internal sorting processes Only the record sort process is supported. You
can specify the SOR$BEGIN_SORT routine sort_
process argument as SOR$GK_RECORD or omit the
argument. The SORGK_TAG, SORGK_ADDRESS,
and SOR$GK_INDEX values are not supported for
the sort_process argument. (Implementation of
this feature is deferred to a future OpenVMS Alpha
release.)

(continued on next page)

SOR–2 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.1 High-Performance Sort/Merge (Alpha Only)

Table 18–1 (Cont.) High-Performance Sort/Merge: Differences in SOR$ Routine
Behavior

Feature High-Performance Sort/Merge Behavior

Statistical summary information The following statistics are currently supported:

Records read/input (SOR$K_REC_INP)
Records sorted (SOR$K_REC_SOR)
Records output (SOR$K_REC_OUT)
Input record length (SOR$K_LRL_INP)

The following statistics are currently unavailable:

Internal length
Output record length
Sort tree size
Number of initial runs
Maximum merge order
Number of merge passes
Work file allocation

Full implementation of this feature is deferred to a
future OpenVMS Alpha release.

User-supplied action routines The following user-supplied action routines are
not supported for either SOR$BEGIN_MERGE or
SOR$BEGIN_SORT. (Implementation of this feature
is deferred to a future OpenVMS Alpha release.) You
must provide a placeholder comma (,) in the argument
list if other arguments follow the customary position of
the user_compare or user_equal argument.

user_compare Compares records to determine
their sort or merge order.

user_equal Resolves the sort or merge order
when records have duplicate keys.

18.1.2 Using Threads with High-Performance Sort/Merge
The high-performance Sort/Merge utility can take advantage of multiple
processors on an SMP configured system by using threads to gain additional
performance. Threads use is optimized under the following conditions:

• the SYSGEN parameter MULTITHREAD is set to the number of CPUs on
the system

• the base image of the application using the high-performance Sort/Merge
utility is linked with the /THREADS_ENABLE qualifier

When linking an executable image that uses the high-performance Sort/Merge
utility, the executable should be linked with the /THREADS_ENABLE linker
qualifier. Either /THREADS_ENABLE or /THREADS_ENABLE=(MULTIPLE_
KERNEL_THREADS,UPCALLS) qualifiers may be used. (Refer to the Guide to
DECthreads manual in the OpenVMS documentation set for more information on
this linker qualifier.)

The high-performance Sort/Merge utility will not utilize multiple processors,
and therefore won’t run at peak performance, if the /THREADS_ENABLE linker
qualifier is omitted, explicitly disabled (by the /NOTHREADS_ENABLED),
or partially enabled (by the /THREADS_ENABLE=UPCALLS or /THREADS_
ENABLE=MULTIPLE_KERNEL_THREADS). However, the high-performance
Sort/Merge utility will still run and produce correct results.

Sort/Merge (SOR) Routines SOR–3

Sort/Merge (SOR) Routines
18.2 Introduction to SOR Routines

18.2 Introduction to SOR Routines
The following SOR routines are available for use in a sort or merge operation:

Routine Description

SOR$BEGIN_MERGE Sets up key arguments and performs the merge. This is the
only routine unique to MERGE.

SOR$BEGIN_SORT Initializes the sort operation by passing key information and
sort options. This is the only routine unique to SORT.

SOR$DTYPE Defines a key data-type that is not normally supported by
SORT/MERGE. (This feature is not currently supported by
the high-performance Sort/Merge utility.)

SOR$END_SORT Performs cleanup functions, such as closing files and
releasing memory.

SOR$PASS_FILES Passes names of input and output files to SORT or MERGE;
must be repeated for each input file.

SOR$RELEASE_REC Passes one input record to SORT or MERGE; must be called
once for each record.

SOR$RETURN_REC Returns one sorted or merged record to a program; must be
called once for each record.

SOR$SORT_MERGE Sorts the records.

SOR$SPEC_FILE Passes a specification file or specification text. A call
to this routine must precede all other calls to the SOR
routines. (This feature is not currently supported by the
high-performance Sort/Merge utility.)

SOR$STAT Returns a statistic about the sort or merge operation. (This
feature is partially supported by the high-performance
Sort/Merge utility.)

You can call these SOR routines from any language that supports the OpenVMS
calling standard. Note that the application program should declare referenced
constants and return status symbols as external symbols; these symbols will be
resolved upon linking with the utility shareable image.

After being called, each of these routines performs its function and returns control
to a program. It also returns a 32-bit condition code value indicating success or
error, which a program can test to determine success or failure conditions.

18.2.1 Arguments to SOR Routines
For a sort operation, the arguments to the SOR routines provide SORT with file
specifications, key information, and instructions about the sorting process. For a
merge operation, the arguments to the SOR routines provide MERGE with the
number of input files, input and output file specifications, record information,
key information, and input routine information. To perform sort or merge
operations, you must pass key information (key_buffer argument) to either
the SOR$BEGIN_SORT or SOR$BEGIN_MERGE routine. The key_buffer
argument is passed as an array of words. The first word of the array contains the
number of keys to be used in the sort or merge. Each block of four words that
follows describes one key (multiple keys are listed in order of their priority):

• The first word of each block describes the key data type.

• The second word determines the sort or merge order (0 for ascending, 1 for
descending).

SOR–4 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.2 Introduction to SOR Routines

• The third word describes the relative offset of the key (beginning at position
0).

• The fourth word describes the length of the key in bytes.

There are both mandatory and optional arguments. The mandatory arguments
appear first in the argument list. You must specify all arguments in the order in
which they are positioned in the argument list, separating each with a comma.
Pass a zero by value to specify any optional arguments that you are omitting
from within the list. You can end the argument list any time after specifying all
the mandatory and desired optional arguments.

18.2.2 Interfaces to SOR Routines
You can submit data to the SOR routines as complete files or as single records.
When your program submits one or more files to SORT or MERGE, which then
creates one sorted or merged output file, you are using the file interface. When
your program submits records one at a time and then receives the ordered records
one at a time, you are using the record interface.

You can combine the file interface with the record interface by submitting files
on input and receiving the ordered records on output or by releasing records on
input and writing the ordered records to a file on output. Combining the two
interfaces provides greater flexibility. If you use the record interface on input,
you can process the records before they are sorted; if you use the record interface
on output, you can process the records after they are sorted.

The SOR routines used and the order in which they are called depend on the type
of interface used in a sorting or merging operation. The following sections detail
the calling sequence for each of the interfaces.

18.2.2.1 Sort Operation Using File Interface
For a sort operation using the file interface, pass the input and output file
specifications to SORT by calling SOR$PASS_FILES. You must call SOR$PASS_
FILES for each input file specification. Pass the output file specification in the
first call. If no input files are specified before the call to SOR$BEGIN_SORT, the
record interface is used for input; if no output file is specified, the record interface
is used for output.

Next, call SOR$BEGIN_SORT to pass instructions about keys and sort options.
At this point, you must indicate whether you want to use your own key
comparison routine. (This feature is not currently supported by the high-
performance Sort/Merge utility.) SORT automatically generates a key comparison
routine that is efficient for key data types; however, you might want to provide
your own comparison routine to handle special sorting requirements. (For
example, you might want names beginning with ‘‘Mc’’ and ‘‘Mac’’ to be placed
together.) If you use your own key comparison routine, you must pass its address
with the user_compare argument.

Call SOR$SORT_MERGE to execute the sort and direct the sorted records to the
output file. Finally, call SOR$END_SORT to end the sort and release resources.
The SOR$END_SORT routine can be called at any time to abort a sort or to
merge and release all resources allocated to the sort or merge process.

Sort/Merge (SOR) Routines SOR–5

Sort/Merge (SOR) Routines
18.2 Introduction to SOR Routines

18.2.2.2 Sort Operation Using Record Interface
For a sort operation using the record interface, first call SOR$BEGIN_SORT. As
in the file interface, this routine sets up work areas and passes arguments that
define keys and sort options. Note that, if you use the record interface, you must
use a record-sorting process (not a tag, address, or index process).

Next, call SOR$RELEASE_REC to release a record to SORT. Call
SOR$RELEASE_REC once for each record to be released. After all records
have been passed to SORT, call SOR$SORT_MERGE to perform the sorting.

After the sort has been performed, call SOR$RETURN_REC to return a record
from the sort operation. Call this routine once for each record to be returned.
Finally, call the last routine, SOR$END_SORT, to complete the sort operation
and release resources.

18.2.2.3 Merge Operation Using File Interface
For a merge operation using the file interface, pass the input and output file
specifications to MERGE by calling SOR$PASS_FILES. You can merge up to
10 input files. (The high-performance Sort/Merge utility allows you to merge
up to 12 input files.) by calling SOR$PASS_FILES once for each file. Pass the
file specification for the merged output file in the first call. If no input files are
specified before the call to SOR$BEGIN_MERGE, the record interface is used for
input; if no output file is specified, the record interface is used for output.

Next, to execute the merge, call SOR$BEGIN_MERGE to pass key information
and merge options. At this point, you must indicate whether you want to use your
own key comparison routine tailored to your data. (This feature is not currently
supported by the high-performance Sort/Merge utility.) Finally, call SOR$END_
SORT to release resources.

18.2.2.4 Merge Operation Using Record Interface
For a merge operation using the record interface, first call SOR$BEGIN_MERGE.
As in the file interface, this routine passes arguments that define keys and merge
options. It also issues the first call to the input routine, which you must create,
to begin releasing records to the merge.

Next, call SOR$RETURN_REC to return the merged records to your program.
You must call this routine once for each record to be returned. SOR$RETURN_
REC continues to call the input routine. MERGE, unlike SORT, does not need
to hold all the records before it can begin returning them in the desired order.
Releasing, merging, and returning records all take place in this phase of the
merge.

Finally, after all the records have been returned, call the last routine, SOR$END_
SORT, to clean up and release resources.

18.2.3 Reentrancy
The SOR routines are reentrant; that is, a number of sort or merge operations
can be active at the same time. Thus, a program does not need to finish one sort
or merge operation before beginning another. For example, reentrancy lets you
perform multiple sorts on a file such as a mailing list and to create several output
files, one with the records sorted by name, another sorted by state, another sorted
by zip code, and so on.

SOR–6 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.2 Introduction to SOR Routines

The context argument, which can optionally be passed with any of the SOR
routines, distinguishes among multiple sort or merge operations. When using
multiple sort or merge operations, the context argument is required. On the
first call, the context longword must be zero. It is then set (by SORT/MERGE) to
a value identifying the sort or merge operation. Additional calls to the same sort
or merge operation must pass the same context longword. The SOR$END_SORT
routine clears the context longword.

Sort/Merge (SOR) Routines SOR–7

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

18.3 Using the SOR Routines: Examples
This section provides examples of using the SOR routines for various operations
including the following:

• Example 18–1 is a Compaq Fortran program that demonstrates a merge
operation using a record interface.

• Example 18–2 is a Compaq Fortran program that demonstrates a sort
operation using a file interface on input and a record interface on output.

• Example 18–3 is a Compaq Pascal program that demonstrates a merge
operation using a file interface.

• Example 18–4 is a Compaq Pascal program that demonstrates a sort
operation using a record interface.

• Example 18–5 is a Compaq C program that demonstrates a sort operation
using the STABLE option and two text keys.

SOR–8 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–1 Using SOR Routines to Perform a Merge Using Record Interface in a Compaq
Fortran Program

Fortran Program
C...
C... This program demonstrates the Fortran calling sequences
C... for the merge record interface.
C...
C
C THE INPUT FILES ARE LISTED BELOW.
C
C INFILE1.DAT
C
C 1 BBBBBBBBBB REST OF DATA IN RECORD................................END OF RECORD
C 2 UUUUUUUUUU REST OF DATA IN RECORD................................END OF RECORD
C
C INFILE2.DAT
C
C 1 AAAAAAAAAA REST OF DATA IN RECORD................................END OF RECORD
C 2 TTTTTTTTTT REST OF DATA IN RECORD................................END OF RECORD
C
C INFILE3.DAT
C
C 1 TTTTTTTTTT REST OF DATA IN RECORD................................END OF RECORD
C 2 BBBBBBBBBB REST OF DATA IN RECORD................................END OF RECORD
C
C FOROUT.DAT
C
C 1 AAAAAAAAAA REST OF DATA IN RECORD................................END OF RECORD
C 1 BBBBBBBBBB REST OF DATA IN RECORD................................END OF RECORD
C 1 TTTTTTTTTT REST OF DATA IN RECORD................................END OF RECORD
C 2 BBBBBBBBBB REST OF DATA IN RECORD................................END OF RECORD
C 2 TTTTTTTTTT REST OF DATA IN RECORD................................END OF RECORD
C 2 UUUUUUUUUU REST OF DATA IN RECORD................................END OF RECORD
C
C
C...
C
C

IMPLICIT INTEGER (A-Z)

CHARACTER*80 REC ! A record.

EXTERNAL READ_REC ! Routine to read a record.
EXTERNAL KOMPAR ! Routine to compare records.
EXTERNAL SS$_ENDOFFILE ! System end-of-file value

INTEGER*4 SOR$BEGIN_MERGE ! SORT/MERGE function names
INTEGER*4 SOR$RETURN_REC
INTEGER*4 SOR$END_SORT
INTEGER*4 ISTAT ! storage for SORT/MERGE function value
INTEGER*4 LENGTH ! length of the returned record
INTEGER*2 LRL ! Longest Record Length (LRL)

LOGICAL*1 ORDER ! #files to merge (merge order)

DATA ORDER,LRL/3,80/ ! Order of the merge=3,LRL=80

(continued on next page)

Sort/Merge (SOR) Routines SOR–9

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–1 (Cont.) Using SOR Routines to Perform a Merge Using Record Interface in a
Compaq Fortran Program

C...
C... First open all the input files.
C...

OPEN (UNIT=10, FILE=’INFILE1.DAT’,TYPE=’OLD’,READONLY,
* FORM=’FORMATTED’)

OPEN (UNIT=11, FILE=’INFILE2.DAT’,TYPE=’OLD’,READONLY,
* FORM=’FORMATTED’)

OPEN (UNIT=12, FILE=’INFILE3.DAT’,TYPE=’OLD’,READONLY,
* FORM=’FORMATTED’)

C
C... Open the output file.
C

OPEN (UNIT=8, FILE=’TEMP.TMP’, TYPE=’NEW’)
C...
C... Initialize the merge. Pass the merge order, the largest
C... record length, the compare routine address, and the
C... input routine address.
C...

ISTAT = SOR$BEGIN_MERGE (,LRL,,ORDER,
* KOMPAR,,READ_REC)

IF (.NOT. ISTAT) GOTO 10 ! Check for error.

C...
C... Now loop getting merged records. SOR$RETURN_REC will
C... call READ_REC when it needs input.
C...
5 ISTAT = SOR$RETURN_REC (REC, LENGTH)

IF (ISTAT .EQ. %LOC(SS$_ENDOFFILE)) GO TO 30 ! Check for end of file.
IF (.NOT. ISTAT) GO TO 10 ! Check for error.

WRITE(8,200) REC ! Output the record.
200 FORMAT(’ ’,A)

GOTO 5 ! And loop back.
C...
C... Now tell SORT that we are all done.
C...

30 ISTAT = SOR$END_SORT()
IF (.NOT. ISTAT) GOTO 10 ! Check for error.
CALL EXIT

C...
C... Here if an error occurred. Write out the error status
C... and exit.
C...
10 WRITE(8,201)ISTAT
201 FORMAT(’ ?ERROR CODE’, I20)

CALL EXIT
END

FUNCTION READ_REC (RECX, FILE, SIZE)
C...
C... This routine reads a record from one of the input files
C... for merging. It will be called by SOR$BEGIN_MERGE and by
C... SOR$RETURN_REC.
C... Parameters:
C...
C... RECX.wcp.ds character buffer to hold the record after
C... it is read in.
C...

(continued on next page)

SOR–10 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–1 (Cont.) Using SOR Routines to Perform a Merge Using Record Interface in a
Compaq Fortran Program

C... FILE.rl.r indicates which file the record is
C... to be read from. 1 specifies the
C... first file, 2 specifies the second
C... etc.
C...
C... LENGTH.wl.r is the actual number of bytes in
C... the record. This is set by READ_REC.
C...

IMPLICIT INTEGER (A-Z)

PARAMETER MAXFIL=10 ! Max number of files.

EXTERNAL SS$_ENDOFFILE ! End of file status code.
EXTERNAL SS$_NORMAL ! Success status code.

LOGICAL*1 FILTAB(MAXFIL)
CHARACTER*(80) RECX ! MAX LRL =80

DATA FILTAB/10,11,12,13,14,15,16,17,18,19/ ! Table of I/O unit numbers.

READ_REC = %LOC(SS$_ENDOFFILE) ! Give end of file return
IF (FILE .LT. 1 .OR. FILE .GT. MAXFIL) RETURN ! if illegal call.

READ (FILTAB(FILE), 100, ERR=75, END=50) RECX ! Read the record.
100 FORMAT(A)

READ_REC = %LOC(SS$_NORMAL) ! Return success code.
SIZE = LEN (RECX) ! Return size of record.
RETURN

C... Here if end of file.
50 READ_REC = %LOC(SS$_ENDOFFILE) ! Return "end of file" code.

RETURN

C... Here if error while reading
75 READ_REC = 0

SIZE = 0
RETURN
END

FUNCTION KOMPAR (REC1,REC2)
C...
C... This routine compares two records. It returns -1
C... if the first record is smaller than the second,
C... 0 if the records are equal, and 1 if the first record
C... is larger than the second.
C...

PARAMETER KEYSIZ=10

IMPLICIT INTEGER (A-Z)

LOGICAL*1 REC1(KEYSIZ),REC2(KEYSIZ)

(continued on next page)

Sort/Merge (SOR) Routines SOR–11

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–1 (Cont.) Using SOR Routines to Perform a Merge Using Record Interface in a
Compaq Fortran Program

DO 20 I=1,KEYSIZ
KOMPAR = REC1(I) - REC2(I)
IF (KOMPAR .NE. 0) GOTO 50

20 CONTINUE

RETURN

50 KOMPAR = ISIGN (1, KOMPAR)
RETURN
END

SOR–12 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–2 is a Compaq Fortran program that demonstrates a sort operation using a file
interface on input and a record interface on output.

Example 18–2 Using SOR Routines to Sort Using Mixed Interface in a Compaq Fortran
Program

Program

PROGRAM CALLSORT
C
C
C This is a sample Fortran program that calls the SOR
C routines using the file interface for input and the
C record interface for output. This program requests
C a record sort of the file ’R010SQ.DAT’ and writes
C the records to SYS$OUTPUT. The key is an 80-byte
C character ascending key starting in position 1 of
C each record.
C
C A short version of the input and output files follows:
C
C Input file R010SQ.DAT
C 1 BBBBBBBBBB REST OF DATA IN RECORD................................END OF RECORD
C 2 UUUUUUUUUU REST OF DATA IN RECORD................................END OF RECORD
C 1 AAAAAAAAAA REST OF DATA IN RECORD................................END OF RECORD
C 2 TTTTTTTTTT REST OF DATA IN RECORD................................END OF RECORD
C 1 TTTTTTTTTT REST OF DATA IN RECORD................................END OF RECORD
C 2 BBBBBBBBBB REST OF DATA IN RECORD................................END OF RECORD
C 1 QQQQQQQQQQ REST OF DATA IN RECORD................................END OF RECORD
C 2 AAAAAAAAAA REST OF DATA IN RECORD................................END OF RECORD
C 1 UUUUUUUUUU REST OF DATA IN RECORD................................END OF RECORD
C 2 QQQQQQQQQQ REST OF DATA IN RECORD................................END OF RECORD
C
C Output file SYS$OUTPUT
C
C 1 AAAAAAAAAA REST OF DATA IN RECORD...............................END OF RECORD
C 1 BBBBBBBBBB REST OF DATA IN RECORD...............................END OF RECORD
C 1 QQQQQQQQQQ REST OF DATA IN RECORD...............................END OF RECORD
C 1 TTTTTTTTTT REST OF DATA IN RECORD...............................END OF RECORD
C 1 UUUUUUUUUU REST OF DATA IN RECORD...............................END OF RECORD
C 2 AAAAAAAAAA REST OF DATA IN RECORD...............................END OF RECORD
C 2 BBBBBBBBBB REST OF DATA IN RECORD...............................END OF RECORD
C 2 QQQQQQQQQQ REST OF DATA IN RECORD...............................END OF RECORD
C 2 TTTTTTTTTT REST OF DATA IN RECORD...............................END OF RECORD
C 2 UUUUUUUUUU REST OF DATA IN RECORD...............................END OF RECORD
C
C---
C

(continued on next page)

Sort/Merge (SOR) Routines SOR–13

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–2 (Cont.) Using SOR Routines to Sort Using Mixed Interface in a Compaq Fortran
Program

C Define external functions and data.
C

CHARACTER*80 RECBUF
CHARACTER*10 INPUTNAME !Input file name
INTEGER*2 KEYBUF(5) !Key definition buffer
INTEGER*4 SOR$PASS_FILES !SORT function names
INTEGER*4 SOR$BEGIN_SORT
INTEGER*4 SOR$SORT_MERGE
INTEGER*4 SOR$RETURN_REC
INTEGER*4 SOR$END_SORT
INTEGER*4 ISTATUS !Storage for SORT function value
EXTERNAL SS$_ENDOFFILE
EXTERNAL DSC$K_DTYPE_T
EXTERNAL SOR$GK_RECORD
INTEGER*4 SRTTYPE

C
C Initialize data -- first the file names, then the key buffer for
C one 80-byte character key starting in position 1, 3 work files,
C and a record sort process.
C

DATA INPUTNAME/’R010SQ.DAT’/
KEYBUF(1) = 1
KEYBUF(2) = %LOC(DSC$K_DTYPE_T)
KEYBUF(3) = 0
KEYBUF(4) = 0
KEYBUF(5) = 80
SRTTYPE = %LOC(SOR$GK_RECORD)

C
C Call the SORT -- each call is a function.
C
C
C Pass SORT the file names.
C

ISTATUS = SOR$PASS_FILES(INPUTNAME)
IF (.NOT. ISTATUS) GOTO 10

C
C Initialize the work areas and keys.
C

ISTATUS = SOR$BEGIN_SORT(KEYBUF,,,,,,SRTTYPE,%REF(3))
IF (.NOT. ISTATUS) GOTO 10

C
C Sort the records.
C

ISTATUS = SOR$SORT_MERGE()
IF (.NOT. ISTATUS) GOTO 10

(continued on next page)

SOR–14 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–2 (Cont.) Using SOR Routines to Sort Using Mixed Interface in a Compaq Fortran
Program

C
C Now retrieve the individual records and display them.
C
5 ISTATUS = SOR$RETURN_REC(RECBUF)

IF (.NOT. ISTATUS) GOTO 6
ISTATUS = LIB$PUT_OUTPUT(RECBUF)
GOTO 5

6 IF (ISTATUS .EQ. %LOC(SS$_ENDOFFILE)) GOTO 7
GOTO 10

C
C Clean up the work areas and files.
C
7 ISTATUS = SOR$END_SORT()

IF (.NOT. ISTATUS) GOTO 10
STOP ’SORT SUCCESSFUL’

10 STOP ’SORT UNSUCCESSFUL’
END

Sort/Merge (SOR) Routines SOR–15

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–3 is a Compaq Pascal program that demonstrates a merge operation using a file
interface.

Example 18–3 Using SOR Routines to Merge Three Input Files in a Compaq Pascal Program

Program

(* This program merges three input files, (IN_FILE.DAT,
IN_FILE2.DAT IN_FILE3.DAT), and creates one merged output file. *)

program mergerecs(output, in_file1, in_file2, in_file3, out_file);

CONST
SS$_NORMAL = 1;
SS$_ENDOFFILE = %X870;
SOR$GK_RECORD = 1;
SOR$M_STABLE = 1;
SOR$M_SEQ_CHECK = 4;
SOR$M_SIGNAL = 8;
DSC$K_DTYPE_T = 14;

TYPE
$UBYTE = [BYTE] 0..255;
$UWORD = [WORD] 0..65535;

const
num_of_keys = 1;
merge_order = 3;
lrl = 131;

ascending = 0;
descending = 1;

type
key_buffer_block=

packed record
key_type: $uword;
key_order: $uword;
key_offset: $uword;
key_length: $uword;
end;

key_buffer_type=
packed record
key_count: $uword;
blocks: packed array[1..num_of_keys] of key_buffer_block;
end;

record_buffer = packed array[1..lrl] of char;

record_buffer_descr =
packed record
length: $uword;
dummy: $uword;
addr: ^record_buffer;
end;

(continued on next page)

SOR–16 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–3 (Cont.) Using SOR Routines to Merge Three Input Files in a Compaq Pascal
Program

var
in_file1,
in_file2,
in_file3,
out_file: text;
key_buffer: key_buffer_type;
rec_buffer: record_buffer;
rec_length: $uword;
status: integer;
i: integer;

function sor$begin_merge(
var buffer: key_buffer_type;
lrl: $uword;
mrg_options: integer;
merge_order: $ubyte;
%immed cmp_rtn: integer := 0;
%immed eql_rtn: integer := 0;
%immed [unbound] function

read_record(
var rec: record_buffer_descr;
var filenumber: integer;
var recordsize: $uword): integer

): integer; extern;

function sor$return_rec(
%stdescr rec: record_buffer;
var rec_size: $uword
): integer; extern;

function sor$end_sort: integer; extern;

procedure sys$exit(%immed status : integer); extern;

function read_record(
var rec: record_buffer_descr;
var filenumber: integer;
var recordsize: $uword
): integer;

procedure readone(var filename: text);
begin
recordsize := 0;
if eof(filename)
then

read_record := ss$_endoffile
else

begin
while not eoln(filename) and (recordsize < rec.length) do

begin
recordsize := recordsize + 1;
read(filename,rec.addr^[recordsize]);
end;

readln(filename);
end;

end;

(continued on next page)

Sort/Merge (SOR) Routines SOR–17

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–3 (Cont.) Using SOR Routines to Merge Three Input Files in a Compaq Pascal
Program

begin
read_record := ss$_normal;
case filenumber of

1: readone(in_file1);
2: readone(in_file2);
3: readone(in_file3);
otherwise

read_record := ss$_endoffile;
end;

end;

procedure initfiles;
begin
open(in_file1, ’infile1.dat’, old);
open(in_file2, ’infile2.dat’, old);
open(in_file3, ’infile3.dat’, old);
open(out_file, ’temp.tmp’);
reset(in_file1);
reset(in_file2);
reset(in_file3);
rewrite(out_file);
end;

procedure error(status : integer);
begin
writeln(’merge unsuccessful. status=%x’, status:8 hex);
sys$exit(status);
end;
begin

with key_buffer do
begin
key_count := 1;
with blocks[1] do

begin
key_type := dsc$k_dtype_t;
key_order := ascending;
key_offset := 0;
key_length := 5;
end;

end;

initfiles;

status := sor$begin_merge(key_buffer, lrl,
sor$m_seq_check + sor$m_signal,
merge_order, 0, 0, read_record);

repeat
begin
rec_length := 0;
status := sor$return_rec(rec_buffer, rec_length);
if odd(status)
then

begin
for i := 1 to rec_length do write(out_file, rec_buffer[i]);
writeln(out_file);
end;

end
until not odd(status);

if status <> ss$_endoffile then error(status);

(continued on next page)

SOR–18 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–3 (Cont.) Using SOR Routines to Merge Three Input Files in a Compaq Pascal
Program

status := sor$end_sort;
if not odd(status) then error(status);

writeln(’merge successful.’);

end.

Sort/Merge (SOR) Routines SOR–19

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–4 is a Compaq Pascal program that demonstrates a sort operation using a record
interface.

Example 18–4 Using SOR Routines to Sort Records from Two Input Files in a Compaq Pascal
Program

Pascal Program

PROGRAM FILETORECORDSORT (OUTPUT,SORTOUT);

(* This program calls SOR routines to read and sort records from
two input files, (PASINPUT1.DAT and PASINPUT2.DAT) and to return
sorted records to this program to be written to the output file,
(TEMP.TMP). *)

(* Declarations for external status codes, and data structures, such as
the types $UBYTE (an unsigned byte) and $UWORD (an unsigned word). *)

CONST
SS$_NORMAL = 1;
SS$_ENDOFFILE = %X870;
SOR$GK_RECORD = 1;
SOR$M_STABLE = 1;
SOR$M_SEQ_CHECK = 4;
SOR$M_SIGNAL = 8;
DSC$K_DTYPE_T = 14;

TYPE
$UBYTE = [BYTE] 0..255;
$UWORD = [WORD] 0..65535;

CONST
Numberofkeys = 1 ; (* Number of keys for this sort *)
LRL = 131 ; (* Longest Record Length for output records *)

(* Key orders *)

Ascending = 0 ;
Descending = 1 ;

TYPE
Keybufferblock= packed record

Keytype : $UWORD ;
Keyorder : $UWORD ;
Keyoffset : $UWORD ;
Keylength : $UWORD
end ;

(* The keybuffer. Note that the field buffer is a one-component array in
this program. This type definition would allow a multikeyed sort. *)

Keybuffer= packed record
Numkeys : $UWORD ;
Blocks : packed array[1..Numberofkeys] OF Keybufferblock
end ;

(* The record buffer. This buffer will be used to hold the returned
records from SORT. *)

Recordbuffer = packed array[1..LRL] of char ;

(* Name type for input and output files. A necessary fudge for %stdescr
mechanism. *)

nametype= packed array[1..13] of char ;

(continued on next page)

SOR–20 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–4 (Cont.) Using SOR Routines to Sort Records from Two Input Files in a Compaq
Pascal Program

VAR
Sortout : text ; (* the output file *)
Buffer : Keybuffer ; (* the actual keybuffer *)
Sortoptions : integer ; (* flag for sorting options *)
Sorttype : $UBYTE ; (* sorting process *)
Numworkfiles : $UBYTE ; (* number of work files *)
Status : integer ; (* function return status code *)
Rec : Recordbuffer ; (* a record buffer *)
Recordlength : $UWORD ; (* the returned record length *)
Inputname: nametype ; (* input file name *)
i : integer ; (* loop control variable *)

(* function and procedure declarations *)

(* Declarations of SORT functions *)
(* Note that the following SORT routine declarations

do not use all of the possible routine parameters. *)
(* The parameters used MUST have all preceding parameters specified,

however. *)

FUNCTION SOR$PASS_FILES
(%STDESCR Inname : nametype)
: INTEGER ; EXTERN ;

FUNCTION SOR$BEGIN_SORT(
VAR Buffer : Keybuffer ;
Lrlen : $UWORD ;
VAR Sortoptions : INTEGER ;
%IMMED Filesize : INTEGER ;
%IMMED Usercompare : INTEGER ;
%IMMED Userequal : INTEGER ;
VAR Sorttype : $UBYTE ;
VAR Numworkfiles : $UBYTE)
: INTEGER ; EXTERN ;

FUNCTION SOR$SORT_MERGE
: INTEGER ; EXTERN ;

FUNCTION SOR$RETURN_REC(
%STDESCR Rec : Recordbuffer ;
VAR Recordsize : $UWORD)
: INTEGER ; EXTERN ;

FUNCTION SOR$END_SORT
: INTEGER ; EXTERN ;

(* End of the SORT function declarations *)

(* The CHECKSTATUS routine checks the return status for errors. *)
(* If there is an error, write an error message and exit via sys$exit *)
PROCEDURE CHECKSTATUS(var status : integer) ;

procedure sys$exit(status : integer) ; extern ;

begin (* begin checkstatus *)
if odd(status) then

begin
writeln(’ SORT unsuccessful. Error status = ’, status:8 hex) ;
SYS$EXIT(status) ;
end ;

end ; (* end checkstatus *)

(continued on next page)

Sort/Merge (SOR) Routines SOR–21

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–4 (Cont.) Using SOR Routines to Sort Records from Two Input Files in a Compaq
Pascal Program

(* end function and routine declarations *)

BEGIN (* begin the main routine *)

(* Initialize data for one 8-byte character key, starting at record
offset 0, 3 work files, and the record sorting process *)

Inputname := ’PASINPUT1.DAT’ ;
WITH Buffer DO

BEGIN
Numkeys := 1;
WITH Blocks[1] DO

BEGIN
Keytype := DSC$K_DTYPE_T ; (* Use OpenVMS descriptor data types to

define SORT data types. *)
Keyorder := Ascending ;
Keyoffset := 0 ;
Keylength := 8 ;
END;

END;

Sorttype := SOR$GK_RECORD ; (* Use the global SORT constant to
define the sort process. *)

Sortoptions := SOR$M_STABLE ; (* Use the global SORT constant to
define the stable sort option. *)

Numworkfiles := 3 ;

(* call the sort routines as a series of functions *)

(* pass the first filename to SORT *)
Status := SOR$PASS_FILES(Inputname) ;

(* Check status for error. *)
CHECKSTATUS(Status) ;

(* pass the second filename to SORT *)
Inputname := ’PASINPUT2.DAT’ ;

Status := SOR$PASS_FILES(Inputname) ;

(* Check status for error. *)
CHECKSTATUS(Status) ;

(* initialize work areas and keys *)
Status := SOR$BEGIN_SORT(Buffer, 0, Sortoptions, 0, 0, 0,

Sorttype, Numworkfiles) ;

(* Check status for error. *)
CHECKSTATUS(Status) ;

(* sort the records *)
Status := SOR$SORT_MERGE ;

(* Check status for error. *)
CHECKSTATUS(Status) ;

(* Ready output file for writing returned records from SORT. *)
OPEN(SORTOUT, ’TEMP.TMP’) ;
REWRITE(SORTOUT) ;

(* Now get the sorted records from SORT. *)
Recordlength := 0 ;
REPEAT

Status := SOR$RETURN_REC(Rec, Recordlength) ;

(continued on next page)

SOR–22 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–4 (Cont.) Using SOR Routines to Sort Records from Two Input Files in a Compaq
Pascal Program

if odd(Status)
then (* if successful, write record to output file. *)

begin
for i := 1 to Recordlength do

write(sortout, Rec[i]) ; (* write each character *)
writeln (sortout) ; (* end output line *)
end;

UNTIL not odd(Status) ;

(* If there was just no more data to be returned (eof) continue, otherwise
exit with an error. *)

if Status <> SS$_ENDOFFILE then
CHECKSTATUS(Status) ;

(* The sort has been successful to this point. *)

(* Close the output file *)
CLOSE(sortout) ;

(* clean up work areas and files *)
Status := SOR$END_SORT ;

(* Check status for error. *)
CHECKSTATUS(Status);

WRITELN (’SORT SUCCESSFUL’) ;

END.

Sort/Merge (SOR) Routines SOR–23

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–5 is a Compaq C program that demonstrates a sort operation using the STABLE
option and two test keys.

Example 18–5 Using SOR Routines to Sort Records Using the STABLE Option and Two Text
Keys in a Compaq C Program

/*

C Program Example

This program demonstrates the use of the STABLE option
with 2 ascending text keys to sort a file of names.
The names are sorted by the first 6 characters of the last
name and the first 6 characters of the first name.
The contents of the input file and resulting output file
are listed below. The associated C program code listing follows.

...

Input file: example.in

JONES DAVID
WARNER LIZZY
SMITTS JAMES
SMITH RANDY
BROWN TONY
GRANT JOSEPH
BROWN JAMES
JONES DAVID
BAKER PAMELA
SMART SHERYL
RUSSO JOSEPH
JONES DONALD
BROWN GORDON

...

Output file: example.out

BAKER PAMELA
BROWN GORDON
BROWN JAMES
BROWN TONY
GRANT JOSEPH
JONES DAVID
JONES DAVID
JONES DONALD
RUSSO JOSEPH
SMART SHERYL
SMITH RANDY
SMITTS JAMES
WARNER LIZZY

...
*/

(continued on next page)

SOR–24 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–5 (Cont.) Using SOR Routines to Sort Records Using the STABLE Option and
Two Text Keys in a Compaq C Program

/*
**===
**
** EXAMPLE.C code:
**
** Abstract: Example of using sort with the STABLE option and
** 2 text keys (both ascending).
**
**
** Input file: example.in
** Output file: example.out
**
**===
*/
/* --
** Include files:
*/
include <stdlib.h>
include <stdio.h>
include <string.h>
include <descrip.h>
include <ssdef.h>
include <sor$routines.h>

/* --
** Local macro definitions:
*/
define MAX_REC_LEN 150
define MAX_NUM_KEYS 10

/* --
** Local structure definitions.
*/

/* Define the description for each key. */
typedef struct {

unsigned short type; /* Data type of key */
unsigned short order; /* Order of key */
unsigned short offset; /* Offset of key */
unsigned short len; /* Length of key */

} key_info;

struct {
unsigned short num; /* number of keys */
key_info key[MAX_NUM_KEYS];

} key_buffer;

/* --
** External literals.
*/
globalvalue

int
SOR$M_STABLE;

(continued on next page)

Sort/Merge (SOR) Routines SOR–25

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–5 (Cont.) Using SOR Routines to Sort Records Using the STABLE Option and
Two Text Keys in a Compaq C Program

/* --
** Main entry point.
*/
main (int argc, char *argv[])
{

int i;
unsigned int options; /* Sort options */
unsigned int num_records_in;
unsigned int num_records_out;
unsigned int lrl; /* longest record length */
unsigned short size; /* record size from return_rec */
unsigned int status;
unsigned long int return_status;
FILE *infile; /* input file */
FILE *outfile; /* output file */
char record [MAX_REC_LEN];
$DESCRIPTOR (record_desc, record);

lrl = sizeof(record);
key_buffer.num = 2;
key_buffer.key[0].type = DSC$K_DTYPE_T;
key_buffer.key[0].order = 0; /* ascending */
key_buffer.key[0].offset = 0;
key_buffer.key[0].len = 6;

key_buffer.key[1].type = DSC$K_DTYPE_T;
key_buffer.key[1].order = 0; /* ascending */
key_buffer.key[1].offset = 7;
key_buffer.key[1].len = 6;

/* Open input and output files. */

if (argc != 3)
{

printf("Usage: example inputfile outputfile\n");
exit(-1);

}

infile = fopen(argv[1], "r");
if (infile == (FILE *) NULL)
{

printf("Can’t open input file %s\n",argv[1]);
exit(-1);

}

outfile = fopen(argv[2], "w");
if (outfile == (FILE *) NULL)
{

printf("Can’t create output file %s\n",argv[2]);
exit(-1);

}

(continued on next page)

SOR–26 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–5 (Cont.) Using SOR Routines to Sort Records Using the STABLE Option and
Two Text Keys in a Compaq C Program

/* Specify options. Initialize the sort and check for errors. */

options = SOR$M_STABLE;
return_status = SOR$BEGIN_SORT(&key_buffer, &lrl, &options, 0,0,0,0,0,0);
if (return_status != SS$_NORMAL)
{

printf ("Status from SOR$BEGIN_SORT: 0x%x\n", return_status);
exit(return_status);

}

/* Within a loop, get all the records from the input file. */
/* Exit if an error occurs. */

num_records_in = 0;
while (fgets(record, lrl, infile) != NULL)
{

record_desc.dsc$w_length = strlen(record)-1;
num_records_in++;
return_status = SOR$RELEASE_REC(&record_desc,0);
if (return_status != SS$_NORMAL)
{

printf ("Status from SOR$RELEASE_REC: 0x%x\n", return_status);
exit(return_status);

}
}

/* Sort all of the input records. */
/* Exit if an error occurs. */

return_status = SOR$SORT_MERGE(0);
if (return_status != SS$_NORMAL)
{

printf ("Status from SOR$SORT_MERGE: 0x%x\n", return_status);
exit(return_status);

}

/* Within a loop, write the sorted records to the output file. */
/* Exit if an error occurs, other than end-of-file. */

record_desc.dsc$w_length = lrl;
num_records_out = 0;
do
{

return_status = SOR$RETURN_REC(&record_desc,&size,0);
if (return_status == SS$_NORMAL)
{

num_records_out++;
status = fprintf (outfile,"%.*s\n", size, record);
if (status < 0)
{

printf ("Error writing to output file, status = %d\n", status);
exit(status);

}
}
else

if (return_status != SS$_ENDOFFILE)
{

printf ("Status from SOR$RETURN_REC: 0x%x\n", return_status);
exit(return_status);

};

} while (return_status != SS$_ENDOFFILE);

(continued on next page)

Sort/Merge (SOR) Routines SOR–27

Sort/Merge (SOR) Routines
18.3 Using the SOR Routines: Examples

Example 18–5 (Cont.) Using SOR Routines to Sort Records Using the STABLE Option and
Two Text Keys in a Compaq C Program

/* Sanity check - assure number of input and output records match. */

if (num_records_out != num_records_in)
{

printf("Number of records out is not correct. # in = %d, # out = %d\n",
num_records_out, num_records_in);

exit(status);
}

/* Successful completion. Close input and output files. End program. */

return_status = SOR$END_SORT(0);
if (return_status != SS$_NORMAL)
{

printf ("Status from SOR$END_SORT: 0x%x\n", return_status);
exit(return_status);

}

fclose (infile);
fclose (outfile);
}

18.4 SOR Routines
This section describes the individual SOR routines.

SOR–28 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$BEGIN_MERGE

SOR$BEGIN_MERGE—Initialize a Merge Operation

The SOR$BEGIN_MERGE routine initializes the merge operation by opening
the input and output files and by providing the number of input files, the key
specifications, and the merge options.

Format

SOR$BEGIN_MERGE [key-buffer] [,lrl] [,options] [,merge_order] [,user_compare]
[,user_equal] [,user_input] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most Sort/Merge utility routines return a condition
value in R0. Condition values that this routine can return are listed under
Condition Values Returned.

Arguments

key_buffer
OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Array of words describing the keys on which you plan to merge. The key_buffer
argument is the address of an array containing the key descriptions.

The first word of this array contains the number of keys described (up to 255).
Following the first word, each key is described (in order of priority) in blocks of
four words. The four words specify the key’s data type, order, offset, and length,
respectively.

The first word of the block specifies the key’s data type. The following data types
are accepted:

DSC$K_DTYPE_Z Unspecified (uninfluenced by collating sequence)
DSC$K_DTYPE_B Byte integer (signed)
DSC$K_DTYPE_BU Byte (unsigned)
DSC$K_DTYPE_W Word integer (signed)
DSC$K_DTYPE_WU Word (unsigned)
DSC$K_DTYPE_L Longword integer (signed)
DSC$K_DTYPE_LU Longword (unsigned)
DSC$K_DTYPE_Q Quadword integer (signed)
DSC$K_DTYPE_QU Quadword (unsigned)
DSC$K_DTYPE_O† Octaword integer (signed)

†Not currently supported by the high-performance Sort/Merge utility.

Sort/Merge (SOR) Routines SOR–29

Sort/Merge (SOR) Routines
SOR$BEGIN_MERGE

DSC$K_DTYPE_OU† Octaword (unsigned)
DSC$K_DTYPE_F Single-precision floating
DSC$K_DTYPE_D Double-precision floating
DSC$K_DTYPE_G G-format floating
DSC$K_DTYPE_H† H-format floating
DSC$K_DTYPE_FS‡ IEEE single-precision S floating
DSC$K_DTYPE_FT‡ IEEE double-precision T floating
DSC$K_DTYPE_T Text (may be influenced by collating sequence)
DSC$K_DTYPE_NU Numeric string, unsigned
DSC$K_DTYPE_NL Numeric string, left separate sign
DSC$K_DTYPE_NLO Numeric string, left overpunched sign
DSC$K_DTYPE_NR Numeric string, right separate sign
DSC$K_DTYPE_NRO Numeric string, right overpunched sign
DSC$K_DTYPE_NZ† Numeric string, zoned sign
DSC$K_DTYPE_P Packed decimal string

†Not currently supported by the high-performance Sort/Merge utility.
‡Alpha specific.

The OpenVMS Programming Interfaces: Calling a System Routine manual
describes each of these data types.

The second word of the block specifies the key order: 0 for ascending order, 1 for
descending order. The third word of the block specifies the relative offset of the
key in the record. (Note that the first byte in the record is at position 0.) The
fourth word of the block specifies the key length in bytes (in digits for packed
decimal—DSC$K_DTYPE_P).

If you do not specify the key_buffer argument, you must pass either a key
comparison routine or use a specification file to define the key.

lrl
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the longest record that will be released for merging. The lrl (longest
record length) argument is the address of a word containing the length. If the
input file is on a disk, this argument is not required. It is required when you use
the record interface. For Vertical Format Control (VFC) records, this length must
include the length of the fixed-length portion of the record.

options
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags that identify merge options. The options argument is the address of a
longword bit mask whose settings determine the merge options selected.

SOR–30 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$BEGIN_MERGE

The following table lists and describes the bit mask values available:

Flag Description

SOR$M_STABLE Keeps records with equal keys in the same order as
they appeared on input.

SOR$M_EBCDIC Orders ASCII character keys according to EBCDIC
collating sequence. No translation takes place.

SOR$M_MULTI Orders character keys according to the multinational
collating sequence, which collates the international
character set.

SOR$M_NOSIGNAL Returns a status code instead of signaling errors.
SOR$M_NODUPS Omits records with duplicate keys. You cannot use this

option if you specify your own equal-key routine.
SOR$M_SEQ_CHECK Requests an ‘‘out of order’’ error return if an input file

is not already in sequence. By default, this check is
not done. You must request sequence checking if you
specify an equal-key routine.

All other bits in the longword are reserved and must be zero.

merge_order
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of input streams to be merged. The merge_order argument is the
address of a byte containing the number of files (1 through 10) to be merged.
(The high-performance Sort/Merge utility allows you to specify 1 through 12 files.)
When you use the record interface on input, this argument is required.

user_compare
OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

Routine that compares records to determine their merge order. (This routine is
not currently supported by the high-performance Sort/Merge utility.) The user_
compare argument is the address of the procedure value for this user-written
routine. If you do not specify the key_buffer argument or if you define key
information in a specification file, this argument is required.

MERGE calls the comparison routine with five reference arguments—ADRS1,
ADRS2, LENG1, LENG2, CNTX—corresponding to the addresses of the two
records to be compared, the lengths of these two records, and the context
longword.

The comparison routine must return a 32-bit integer value:

• –1 if the first record collates before the second

• 0 if the records collate as equal

• 1 if the first record collates after the second

Sort/Merge (SOR) Routines SOR–31

Sort/Merge (SOR) Routines
SOR$BEGIN_MERGE

user_equal
OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

Routine that resolves the merge order when records have duplicate keys. (This
routine is not currently supported by the high-performance Sort/Merge utility.)
The user_equal argument is the address of the procedure value for this user-
written routine. If you specify SOR$M_STABLE or SOR$M_NODUPS in the
options argument, do not use this argument.

MERGE calls the duplicate key routine with five reference arguments—ADRS1,
ADRS2, LENG1, LENG2, CNTX—corresponding to the addresses of the two
records that compare equally, the lengths of the two records that compare equally,
and the context longword.

The routine must return one of the following 32-bit condition codes:

Code Description

SOR$_DELETE1 Delete the first record from the merge.
SOR$_DELETE2 Delete the second record from the merge.
SOR$_DELBOTH Delete both records from the merge.
SS$_NORMAL Keep both records in the merge.

Any other failure value causes the error to be signaled or returned. Any other
success value causes an undefined result.

user_input
OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

Routine that releases records to the merge operation. The user_input argument
is the address of the procedure value for this user-written routine. SOR$BEGIN_
MERGE and SOR$RETURN_REC call this routine until all records have been
passed.

This input routine must read (or construct) a record, place it in a record buffer,
store its length in an output argument, and then return control to MERGE.

The input routine must accept the following four arguments:

• A descriptor of the buffer where the routine must place the record

• A longword, passed by reference, containing the stream number from which
to input a record (the first file is 1, the second 2, and so on)

• A word, passed by reference, where the routine must return the actual length
of the record

• The context longword, passed by reference

The input routine must also return one of the following status values:

• SS$_NORMAL or any other success status causes the merge operation to
continue.

SOR–32 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$BEGIN_MERGE

• SS$_ENDOFFILE indicates that no more records are in the file. The contents
of the buffer are ignored.

• Any other error status terminates the merge operation and passes the status
value back to the caller of SOR$BEGIN_MERGE or SOR$RETURN_REC.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value that was supplied by SORT/MERGE.

Description

The SOR$BEGIN_MERGE routine initializes the merge process by passing
arguments that provide the number of input streams, the key specifications, and
any merge options.

You must define the key by passing either the key buffer address argument
or your own comparison routine address. (You can also define the key in a
specification file and call the SOR$SPEC_FILE routine.)

The SOR$BEGIN_MERGE routine initializes the merge process in the file,
record, and mixed interfaces. For record interface on input, you must also pass
the merge order, the input routine address, and the longest record length. For
files not on disk, you must pass the longest record length.

Some of the following condition values are used with different severities,
depending on whether SORT/MERGE can recover. Thus, you should use
LIB$MATCH_COND if you want to check for a specific status.

Condition Values Returned

SS$_NORMAL Success.
SOR$_BADDTYPE Invalid or unsupported CDD data type.
SOR$_BADLENOFF Length and offset must be multiples of 8 bits.
SOR$_BADLOGIC Internal logic error detected.
SOR$_BADOCCURS Invalid OCCURS clause.
SOR$_BADOVRLAY Invalid overlay structure.
SOR$_BADPROTCL Node is an invalid CDD object.
SOR$_BAD_KEY Invalid key specification.
SOR$_BAD_LRL Record length n greater than specified longest

record length.

Sort/Merge (SOR) Routines SOR–33

Sort/Merge (SOR) Routines
SOR$BEGIN_MERGE

SOR$_BAD_MERGE Number of input files must be between 0 and 10.
(For the high-performance Sort/Merge utility, the
maximum number is 12.)

SOR$_BAD_ORDER Merge input is out of order.
SOR$_BAD_SRL Record length n is too short to contain keys.
SOR$_BAD_TYPE Invalid sort process specified.
SOR$_CDDERROR CDD error at node name.
SOR$_CLOSEIN Error closing file as input.
SOR$_CLOSEOUT Error closing file.
SOR$_COL_CHAR Invalid character definition.
SOR$_COL_CMPLX Collating sequence is too complex.
SOR$_COL_PAD Invalid pad character.
SOR$_COL_THREE Cannot define 3-byte collating values.
SOR$_ENDDIAGS Completed with diagnostics.
SOR$_ILLBASE Nondecimal base is invalid.
SOR$_ILLLITERL Record containing symbolic literals is

unsupported.
SOR$_ILLSCALE Nonzero scale invalid for floating-point data item.
SOR$_INCDIGITS Number of digits is not consistent with the type

or length of item.
SOR$_INCNODATA Include specification references no data, at line

n.
SOR$_INCNOKEY Include specification references no keys, at line

n.
SOR$_IND_OVR Indexed output file must already exist.
SOR$_KEYAMBINC Key specification is ambiguous or inconsistent.
SOR$_KEYED Mismatch between SORT/MERGE keys and

primary file key.
SOR$_KEY_LEN Invalid key length, key number n, length n.
SOR$_LRL_MISS Longest record length must be specified.
SOR$_MISLENOFF Length and offset required.
SOR$_MISS_PARAM A required subroutine argument is missing.
SOR$_MULTIDIM Invalid multidimensional OCCURS.
SOR$_NODUPEXC Equal-key routine and no-duplicates option

cannot both be specified.
SOR$_NOTRECORD Node name is a name, not a record definition.
SOR$_NUM_KEY Too many keys specified.
SOR$_NYI Not yet implemented.
SOR$_OPENIN Error opening file as input.
SOR$_OPENOUT Error opening file as output.
SOR$_READERR Error reading file.
SOR$_RTNERROR Unexpected error status from user-written

routine.

SOR–34 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$BEGIN_MERGE

SOR$_SIGNCOMPQ Absolute Date and Time data type represented in
1-second units.

SOR$_SORT_ON Sort or merge routines called in incorrect order.
SOR$_SPCIVC Invalid collating sequence specification at line n.
SOR$_SPCIVD Invalid data type at line n.
SOR$_SPCIVF Invalid field specification at line n.
SOR$_SPCIVI Invalid include or omit specification at line n.
SOR$_SPCIVK Invalid key or data specification at line n.
SOR$_SPCIVP Invalid sort process at line n.
SOR$_SPCIVS Invalid specification at line n.
SOR$_SPCIVX Invalid condition specification at line n.
SOR$_SPCMIS Invalid merge specification at line n.
SOR$_SPCOVR Overridden specification at line n.
SOR$_SPCSIS Invalid sort specification at line n.
SOR$_SRTIWA Insufficient space. The specification file is too

complex.
SOR$_STABLEEX Equal-key routine and stable option cannot both

be specified.
SOR$_SYSERROR System service error.
SOR$_UNDOPTION Undefined option flag was set.
SOR$_UNSUPLEVL Unsupported core level for record name.
SOR$_WRITEERR Error writing file.

Sort/Merge (SOR) Routines SOR–35

Sort/Merge (SOR) Routines
SOR$BEGIN_SORT

SOR$BEGIN_SORT—Begin a Sort Operation

The SOR$BEGIN_SORT routine initializes a sort operation by opening input and
output files and by passing the key information and any sort options.

Format

SOR$BEGIN_SORT [key_buffer] [,lrl] [,options] [,file_alloc] [,user_compare]
[,user_equal] [,sort_process] [,work_files] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

key_buffer
OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Array of words describing the keys on which you plan to sort. The key_buffer
argument is the address of an array containing the key descriptions.

The first word of this array contains the number of keys described (up to 255).
Following the first word, each key is described (in order of priority) in blocks of
four words. The four words specify the key’s data type, order, offset, and length,
respectively.

The first word of the block specifies the data type of the key. The following data
types are accepted:

DSC$K_DTYPE_Z Unspecified (uninfluenced by collating sequence)
DSC$K_DTYPE_B Byte integer (signed)
DSC$K_DTYPE_BU Byte (unsigned)
DSC$K_DTYPE_W Word integer (signed)
DSC$K_DTYPE_WU Word (unsigned)
DSC$K_DTYPE_L Longword integer (signed)
DSC$K_DTYPE_LU Longword (unsigned)
DSC$K_DTYPE_Q Quadword integer (signed)
DSC$K_DTYPE_QU Quadword (unsigned)
DSC$K_DTYPE_O† Octaword integer (signed)
DSC$K_DTYPE_OU† Octaword (unsigned)

†Not currently supported by the high-performance Sort/Merge utility.

SOR–36 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$BEGIN_SORT

DSC$K_DTYPE_F Single-precision floating
DSC$K_DTYPE_D Double-precision floating
DSC$K_DTYPE_G G-format floating
DSC$K_DTYPE_H† H-format floating
DSC$K_DTYPE_FS‡ IEEE single-precision S floating
DSC$K_DTYPE_FT‡ IEEE double-precision T floating
DSC$K_DTYPE_T Text (may be influenced by collating sequence)
DSC$K_DTYPE_NU Numeric string, unsigned
DSC$K_DTYPE_NL Numeric string, left separate sign
DSC$K_DTYPE_NLO Numeric string, left overpunched sign
DSC$K_DTYPE_NR Numeric string, right separate sign
DSC$K_DTYPE_NRO Numeric string, right overpunched sign
DSC$K_DTYPE_NZ† Numeric string, zoned sign
DSC$K_DTYPE_P Packed decimal string

†Not currently supported by the high-performance Sort/Merge utility.
‡Alpha specific.

The OpenVMS Programming Interfaces: Calling a System Routine describes each
of these data types.

The second word of the block specifies the key order: 0 for ascending order, 1
for descending order. The third word of the block specifies the relative offset of
the key in the record. Note that the first byte in the record is at position 0. The
fourth word of the block specifies the key length in bytes (in digits for packed
decimal—DSC$K_DTYPE_P).

The key_buffer argument specifies the address of the key buffer in the data
area. If you do not specify this argument, you must either pass a key comparison
routine or use a specification file to define the key.

lrl
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the longest record that will be released for sorting. The lrl argument
is the address of a word containing the length. This argument is not required if
the input files are on disk but is required when you use the record interface. For
VFC records, this length must include the length of the fixed-length portion of the
record.

options
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags that identify sort options. The options argument is the address of a
longword bit mask whose settings determine the merge options selected. The
following table lists and describes the bit mask values available.

Sort/Merge (SOR) Routines SOR–37

Sort/Merge (SOR) Routines
SOR$BEGIN_SORT

Flags Description

SOR$M_STABLE Keeps records with equal keys in the same order in
which they appeared on input. With multiple input files
that have records that collate as equal, records from the
first input file are placed before the records from the
second input file, and so on.

SOR$M_EBCDIC Orders ASCII character keys according to EBCDIC
collating sequence. No translation takes place.

SOR$M_MULTI Orders character keys according to the multinational
collating sequence, which collates the international
character set.

SOR$M_NOSIGNAL Returns a status code instead of signaling errors.
SOR$M_NODUPS Omits records with duplicate keys. You cannot use this

option if you specify your own equal-key routine.

All other bits in the longword are reserved and must be zero.

file_alloc
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Input file size in blocks. The file_alloc argument is the address of a longword
containing the size of the input file. This argument is optional because, by
default, SORT uses the allocation of the input files. If you are using the record
interface, or if the input files are not on disk, the default is 1000 blocks.(The
high-performance Sort/Merge utility determines the default based on the size
of the input file, or if input is not from files, on available memory.) When you
specify the input size with this argument, it overrides the default size.

This optional argument is useful when you are using the record interface and you
have a good idea of the total input size. You can use this argument to improve
the efficiency of the sort by adjusting the amount of resources the sort process
allocates to match the input size.

user_compare
OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

User-written routine that compares records to determine their sort order. (This
argument is not currently supported by the high-performance Sort/Merge utility.)
The user_compare argument is the address of the procedure value for this
user-written routine. If you do not specify the key_buffer argument or if you
define key information in a specification file, this argument is required.

SORT/MERGE calls the comparison routine with five reference arguments—
ADRS1, ADRS2, LENG1, LENG2, CNTX—corresponding to the addresses of the
two records to be compared, the lengths of these two records, and the context
longword. The LENG1 and LENG2 arguments are addresses that point to 16-bit
word structures that contain the length information.

SOR–38 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$BEGIN_SORT

The comparison routine must return a 32-bit integer value:

• –1 if the first record collates before the second

• 0 if the records collate as equal

• 1 if the first record collates after the second

user_equal
OpenVMS usage: procedure
type: procedure value
access: function call
mechanism: by reference

User-written routine that resolves the sort order when records have duplicate
keys. (This argument is not currently supported by the high-performance
Sort/Merge utility.) The user_equal argument is the address of the procedure
value for this user-written routine. If you specify SOR$M_STABLE or SOR$M_
NODUPS in the options argument, do not use this argument.

SORT/MERGE calls the duplicate key routine with five reference arguments—
ADRS1, ADRS2, LENG1, LENG2, CNTX—corresponding to the addresses
of the two records that compare equally, the lengths of the two records that
compare equally, and the context longword. The LENG1 and LENG2 arguments
are addresses that point to 16-bit word structures that contain the length
information.

The routine must return one of the following 32-bit integer condition codes:

Code Description

SOR$_DELETE1 Delete the first record from the sort.
SOR$_DELETE2 Delete the second record from the sort.
SOR$_DELBOTH Delete both records from the sort.
SS$_NORMAL Keep both records in the sort.

Any other failure value causes the error to be signaled or returned. Any other
success value causes an undefined result.

sort_process
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Code indicating the type of sort process. The sort_process argument is the
address of a byte whose value indicates whether the sort type is record, tag,
index, or address. (The high-performance Sort/Merge utility supports only the
record process. Implementation of the tag, address, and index processes is
deferred to a future OpenVMS Alpha release.) The default is record. If you select
the record interface on input, you can use only a record sort process.

To specify a byte containing the value for the type of sort process you want, enter
one of the following:

• SOR$GK_RECORD (record sort)

• SOR$GK_TAG (tag sort)

Sort/Merge (SOR) Routines SOR–39

Sort/Merge (SOR) Routines
SOR$BEGIN_SORT

• SOR$GK_ADDRESS (address sort)

• SOR$GK_INDEX (index sort)

work_files
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of work files to be used in the sorting process. The work_files argument
is the address of a byte containing the number of work files; permissible values
for SORT range from 0 through 10. (For the high-performance Sort/Merge utility,
you can specify from 1 through 255 work files. The default is 2.)

By default, SORT creates two temporary work files when it needs them and
determines their size from the size of your input files. By increasing the number
of work files, you can reduce their individual size so that each fits into less disk
space. You can also assign each of them to different disk-structured devices
(highly recommended).

context
OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

Description

The SOR$BEGIN_SORT routine initializes the sort process by setting up sort
work areas and provides key specification and sort options.

Specify the key information with the key_buffer argument, with the user_
compare argument, or in a specification file. If no key information is specified,
the default (character for the entire record) is used.

You must use the SOR$BEGIN_SORT routine to initialize the sort process for the
file, record, and mixed interfaces. For record interface on input, you must use the
lrl (longest record length) argument.

Some of the following condition values are used with different severities,
depending on whether SORT/MERGE can recover. Thus, if you want to check for
a specific status, you should use LIB$MATCH_COND.

SOR–40 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$BEGIN_SORT

Condition Values Returned

SS$_NORMAL Normal successful completion.
SOR$_BADLOGIC Internal logic error detected.
SOR$_BAD_KEY Invalid key specification.
SOR$_BAD_LRL Record length n greater than specified longest

record length.
SOR$_BAD_MERGE Number of work files must be between 0 and 10.

(For the high-performance Sort/Merge utility, the
maximum number is 255.)

SOR$_BAD_TYPE Invalid sort process specified.
SOR$_ENDDIAGS Completed with diagnostics.
SOR$_INSVIRMEM Insufficient virtual memory.
SOR$_KEYAMBINC Key specification is ambiguous or inconsistent.
SOR$_KEY_LEN Invalid key length, key number n, length n.
SOR$_LRL_MISS Longest record length must be specified.
SOR$_NODUPEXC Equal-key routine and no-duplicates option

cannot both be specified.
SOR$_NUM_KEY Too many keys specified.
SOR$_NYI Not yet implemented.
SOR$_RTNERROR Unexpected error status from user-written

routine.
SOR$_SORT_ON Sort or merge routine called in incorrect order.
SOR$_STABLEEXC Equal-key routine and stable option cannot both

be specified.
SOR$_SYSERROR System service error.
SOR$_UNDOPTION Undefined option flag was set.

Sort/Merge (SOR) Routines SOR–41

Sort/Merge (SOR) Routines
SOR$DTYPE

SOR$DTYPE—Define Data Type

The SOR$DTYPE routine defines a key data type that is not normally supported
by SORT/MERGE. (This routine is not currently supported by the high-
performance Sort/Merge utility.) This routine returns a key data type code that
can be used in the key_buffer argument to SOR$BEGIN_SORT or SOR$BEGIN_
MERGE to describe special key data types (such as extended data types and
National character set (NCS) collating sequences).

Format

SOR$DTYPE [context] ,dtype_code ,usage ,p1

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

dtype_code
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Returned key data type code. The dtype_code argument is the address of a word
into which SORT/MERGE writes the key data type code that can be used in the
key_buffer argument to SOR$BEGIN_SORT or SOR$BEGIN_MERGE.

SOR–42 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$DTYPE

usage
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a longword containing a code that indicates the interpretation of the
p1 argument. The following table lists and describes the valid usage codes:

Flag Description

SOR$K_ROUTINE The p1 argument should be interpreted as the
address of the procedure value of a routine
that SORT/MERGE will call to compare keys
described by the dtype_code returned by the
call to SOR$DTYPE.

SOR$K_NCS_TABLE The p1 argument should be interpreted as the
address of a collating sequence identification
returned by a call to NCS$GET_CS. SORT/MERGE
will use this collating sequence to compare keys
described by the dtype_code returned by the call to
SOR$DTYPE.

If SOR$K_ROUTINE is returned, SORT/MERGE will call this routine with five
reference arguments—ADRS1, ADRS2, LENG1, LENG2, CNTX—corresponding
to the addresses of the two keys to be compared, the lengths of the two keys, and
the context longword.

The comparison routine must return a 32-bit integer value:

• –1 if the first key collates before the second

• 0 if the keys collate as equal

• +1 if the first key collates after the second

p1
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the procedure value of a routine or the address of a collating sequence
identification, depending on the usage argument.

Description

Call SOR$DTYPE to define a key data type not normally supported by
SORT/MERGE.

If your SORT/MERGE application needs to compare dates (for example) that are
stored in text form and that is the only key in the records, then use the user_
compare argument to SOR$BEGIN_SORT or SOR$BEGIN_MERGE. However, if
the records contain several keys besides the dates in text form, it may be easier
to call SOR$DTYPE to allocate a key data type code that can then be used in the
the key_buffer argument to SOR$BEGIN_SORT or SOR$BEGIN_MERGE.

Sort/Merge (SOR) Routines SOR–43

Sort/Merge (SOR) Routines
SOR$DTYPE

If your SORT/MERGE application has a string key that should be collated by a
collating sequence defined by the NCS utility, the NCS$GET_CS routine can be
used to fetch the collating sequence definition, and SOR$DTYPE can be called
to allocate a key data type code for the collating sequence. This key data type
code can then be used to describe keys that should be compared by this collating
sequence.

Condition Values Returned

SS$_NORMAL Normal successful completion.
SOR$_NYI Not yet implemented.
SOR$_SORT_ON Sort or merge routine called in incorrect order.

SOR–44 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$END_SORT

SOR$END_SORT—End a Sort Operation

The SOR$END_SORT routine performs cleanup functions, such as closing files
and releasing memory.

Format

SOR$END_SORT [context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

context
OpenVMS usage: context
type: longword
access: write only
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

Description

The SOR$END_SORT routine ends a sort or merge operation, either at the end
of a successful process or between calls because of an error. If an error status is
returned, you must call SOR$END_SORT to release all allocated resources. In
addition, this routine can be called at any time to close files and release memory.

The value of the optional context argument is cleared when the SOR$END_SORT
routine completes its operation.

Some of the following condition values are used with different severities,
depending on whether SORT/MERGE can recover. Thus, if you want to check for
a specific status, you should use LIB$MATCH_COND.

Sort/Merge (SOR) Routines SOR–45

Sort/Merge (SOR) Routines
SOR$END_SORT

Condition Values Returned

SS$_NORMAL Normal successful completion.
SOR$_CLOSEIN Error closing file as input.
SOR$_CLOSEOUT Error closing file as output.
SOR$_ENDDIAGS Completed with diagnostics.
SOR$_END_SORT SORT/MERGE terminated, context = context.
SOR$_SYSERROR System service error.

SOR–46 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$PASS_FILES

SOR$PASS_FILES—Pass File Name

The SOR$PASS_FILES routine passes the names of input and output files and
output file characteristics to SORT or MERGE.

Format

SOR$PASS_FILES [inp_desc] [,out_desc] [,org] [,rfm] [,bks] [,bls] [,mrs] [,alq] [,fop]
[,fsz] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

inp_desc
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Input file specification. The inp_desc argument is the address of a descriptor
pointing to the file specification. In the file interface, you must call SOR$PASS_
FILES to pass SORT the input file specifications. For multiple input files, call
SOR$PASS_FILES once for each input file, passing one input file specification
descriptor each time.

In the mixed interface, if you are using the record interface on input, pass only
the output file specification; do not pass any input file specifications. If you are
using the record interface on output, pass only the input file specifications; do not
pass an output file specification or any of the optional output file arguments.

out_desc
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Output file specification. The out_desc argument is the address of a descriptor
pointing to the file specification. In the file interface, when you call SOR$PASS_
FILES, you must pass the output file specification. Specify the output file
specification and characteristics only once, as part of the first call, as in the
following:

Call SOR$PASS_FILES(Input1,Output)
Call SOR$PASS_FILES(Input2)
Call SOR$PASS_FILES(Input3)

Sort/Merge (SOR) Routines SOR–47

Sort/Merge (SOR) Routines
SOR$PASS_FILES

In the mixed interface, if you are using the record interface on input, pass only
the output file specification; do not pass any input file specifications. If you are
using the record interface on output, pass only the input file specifications; do not
pass an output file specification or any of the optional output file arguments.

org
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

File organization of the output file, if different from the input file. The org
argument is the address of a byte whose value specifies the organization of the
output file; permissible values include the following:

FAB$C_SEQ
FAB$C_REL
FAB$C_IDX

For the record interface on input, the default value is sequential. For the file
interface, the default value is the file organization of the first input file for record
or tag sort and sequential for address and index sort.

For more information about OpenVMS RMS file organizations, see the OpenVMS
Record Management Services Reference Manual.

rfm
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Record format of the output file, if different from the input file. The rfm
argument is the address of a byte whose value specifies the record format of
the output file; permissible values include the following:

FAB$C_FIX
FAB$C_VAR
FAB$C_VFC

For the record interface on input, the default value is variable. For the file
interface, the default value is the record format of the first input file for record or
tag sort and fixed format for address or index sort. For the mixed interface with
record interface on input, the default value is variable format.

For more information about OpenVMS RMS record formats, see the OpenVMS
Record Management Services Reference Manual.

bks
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Bucket size of the output file, if different from the first input file. The bks
argument is the address of a byte containing this size. Use this argument with
relative and indexed-sequential files only. If the bucket size of the output file is
to differ from that of the first input file, specify a byte to indicate the bucket size.
Acceptable values are from 1 to 32. If you do not pass this argument—and the
output file organization is the same as that of the first input file—the bucket size

SOR–48 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$PASS_FILES

defaults to the value of the first input file. If the file organizations differ or if the
record interface is used on input, the default value is 1 block.

bls
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Block size of a magnetic tape output file. The bls argument is the address
of a word containing this size. Use this argument with magnetic tapes only.
Permissible values range from 20 to 65,532. However, to ensure compatibility
with non-Digital systems, ANSI standards require that the block size be less than
or equal to 2048.

The block size defaults to the block size of the input file magnetic tape. If the
input file is not on magnetic tape, the output file block size defaults to the size
used when the magnetic tape was mounted.

mrs
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum record size for the output file. The mrs argument is the address of a
word specifying this size. Following are acceptable values for each type of file:

File Organization Acceptable Value

Sequential 0 to 32,767
Relative 0 to 16,383
Indexed sequential 0 to 16,362

If you omit this argument or if you specify a value of 0, SORT does not check
maximum record size.

If you do not specify this argument, the default is based on the output file
organization and format, unless the organization is relative or the format is fixed.
The longest output record length is based on the longest calculated input record
length, the type of sort, and the record format.

alq
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of preallocated output file blocks. The alq argument is the address of a
longword specifying the number of blocks you want to preallocate to the output
file. Acceptable values range from 1 to 4,294,967,295.

Pass this argument if you know your output file allocation will be larger or
smaller than that of your input files. The default value is the total allocation of
all the input files. If the allocation cannot be obtained for any of the input files or
if the record interface is used on input, the file allocation defaults to 1000 blocks.

Sort/Merge (SOR) Routines SOR–49

Sort/Merge (SOR) Routines
SOR$PASS_FILES

fop
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

File-handling options. The fop argument is the address of a longword whose bit
settings determine the options selected. For a list of valid file-handling options,
see the description of the FAB$L_FOP field in the OpenVMS Record Management
Services Reference Manual. By default, only the DFW (deferred write) option is
set. If your output file is indexed, you should set the CIF (create if) option.

fsz
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the fixed portion of VFC records. The fsz argument is the address of a
byte containing this size. If you do not pass this argument, the default is the size
of the fixed portion of the first input file. If you specify the VFC size as 0, RMS
defaults the value to 2 bytes.

context
OpenVMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Value that distinguishes between multiple concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

Description

The SOR$PASS_FILES routine passes input and output file specifications to
SORT. The SOR$PASS_FILES routine must be repeated for multiple input files.
The output file name string and characteristics should be specified only in the
first call to SOR$PASS_FILES.

This routine also accepts optional arguments that specify characteristics for the
output file. By default, the output file characteristics are the same as the first
input file; specified output file characteristics are used to change these defaults.

Some of the following condition values are used with different severities,
depending on whether SORT/MERGE can recover. Thus, if you want to check for
a specific status, you should use LIB$MATCH_COND.

SOR–50 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$PASS_FILES

Condition Values Returned

SS$_NORMAL Normal successful completion.
SOR$_DUP_OUTPUT Output file has already been specified.
SOR$_ENDDIAGS Completed with diagnostics.
SOR$_INP_FILES Too many input files specified.
SOR$_NYI Not yet implemented.
SOR$_SORT_ON Sort or merge routine called in incorrect order.
SOR$_SYSERROR System service error.

Sort/Merge (SOR) Routines SOR–51

Sort/Merge (SOR) Routines
SOR$RELEASE_REC

SOR$RELEASE_REC—Pass One Record to Sort

The SOR$RELEASE_REC routine is used with the record interface to pass one
input record to SORT or MERGE.

Format

SOR$RELEASE_REC desc [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

desc
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Input record buffer. The desc argument is the address of a descriptor pointing to
the buffer containing the record to be sorted. If you use the record interface, this
argument is required.

context
OpenVMS usage: context
type: longword
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

Description

Call SOR$RELEASE_REC to pass records to SORT or MERGE with the record
interface. SOR$RELEASE_REC must be called once for each record to be sorted.

Some of the following condition values are used with different severities,
depending on whether SORT/MERGE can recover. Thus, if you want to check for
a specific status, you should use LIB$MATCH_COND.

SOR–52 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$RELEASE_REC

Condition Values Returned

SS$_NORMAL Normal successful completion.
SOR$_BADLOGIC Internal logic error detected.
SOR$_BAD_LRL Record length n greater than longest specified

record length.
SOR$_BAD_SRL Record length n too short to contain keys.
SOR$_ENDDIAGS Completed with diagnostics.
SOR$_EXTEND Unable to extend work file for needed space.
SOR$_MISS_PARAM The desc argument is missing.
SOR$_NO_WRK Work files required; cannot do sort in memory as

requested.
SOR$_OPENOUT Error opening file as output.
SOR$_OPERFAIL Error requesting operator service.
SOR$_READERR Error reading file.
SOR$_REQ_ALT Specify alternate name file (or nothing to try

again).
SOR$_RTNERROR Unexpected error status from user-written

routine.
SOR$_SORT_ON Sort or merge routines called in incorrect order.
SOR$_SYSERROR System service error.
SOR$_USE_ALT Using alternate file name.
SOR$_WORK_DEV Work file name must be on random access local

device.

Sort/Merge (SOR) Routines SOR–53

Sort/Merge (SOR) Routines
SOR$RETURN_REC

SOR$RETURN_REC—Return One Sorted Record

The SOR$RETURN_REC routine is used with the record interface to return one
sorted or merged record to a program.

Format

SOR$RETURN_REC desc [,length] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

desc
OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor

Output record buffer. The desc argument is the address of a descriptor pointing
to the buffer that receives the sorted or merged record.

length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output record. The length argument is the address of a word
receiving the length of the record returned from SORT/MERGE.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

SOR–54 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$RETURN_REC

Description

Call the SOR$RETURN_REC routine to release the sorted or merged records to a
program. Call this routine once for each record to be returned.

SOR$RETURN_REC places the record into a record buffer that you set up in the
program’s data area. After SORT has successfully returned all the records to the
program, it returns the status code SS$_ENDOFFILE, which indicates that there
are no more records to return.

Some of the following condition values are used with different severities,
depending on whether SORT/MERGE can recover. Thus, if you want to check for
a specific status, you should use LIB$MATCH_COND.

Condition Values Returned

SS$_NORMAL Normal successful completion.
SOR$_BADLOGIC Internal logic error detected.
SOR$_ENDDIAGS Completed with diagnostics.
SOR$_EXTEND Unable to extend work file for needed space.
SOR$_MISS_PARAM A required subroutine argument is missing.
SOR$_OPERFAIL Error requesting operator service.
SOR$_READERR Error reading file.
SOR$_REQ_ALT Specify alternate name file (or specify nothing to

simply try again).
SOR$_RTNERROR Unexpected error status from user-written

routine.
SOR$_SORT_ON Sort or merge routines called in incorrect order.
SOR$_SYSERROR System service error.
SOR$_USE_ALT Using alternate file name.
SOR$_WORK_DEV Work file name must be on random access local

device.

Sort/Merge (SOR) Routines SOR–55

Sort/Merge (SOR) Routines
SOR$SORT_MERGE

SOR$SORT_MERGE—Sort

The SOR$SORT_MERGE routine sorts the input records.

Format

SOR$SORT_MERGE [context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Argument

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

Description

After you have passed either the file names or the records to SORT, call the
SOR$SORT_MERGE routine to sort the records. For file interface on input,
the input files are opened and the records are released to the sort. For the
record interface on input, the record must have already been released (by calls
to SOR$RELEASE_REC). For file interface on output, the output records are
reformatted and directed to the output file. For the record interface on output,
SOR$RETURN_REC must be called to get the sorted records.

Some of the return values are used with different severities depending on
whether SORT/MERGE can recover. Thus, if you want to check for a specific
status, you should use LIB$MATCH_COND.

SOR–56 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$SORT_MERGE

Condition Values Returned

SS$_NORMAL Normal successful completion.
SOR$_BADDTYPE Invalid or unsupported CDD data type.
SOR$_BADLENOFF Length and offset must be multiples of 8 bits.
SOR$_BADLOGIC Internal logic error detected.
SOR$_BADOCCURS Invalid OCCURS clause.
SOR$_BADOVRLAY Invalid overlay structure.
SOR$_BADPROTCL Node is an invalid CDD object.
SOR$_BAD_LRL Record length n greater than longest specified

record length.
SOR$_BAD_TYPE Invalid sort process specified.
SOR$_CDDERROR CDD error at node name.
SOR$_CLOSEIN Error closing file as input.
SOR$_CLOSEOUT Error closing file as output.
SOR$_COL_CHAR Invalid character definition.
SOR$_COL_CMPLX Collating sequence is too complex.
SOR$_COL_PAD Invalid pad character.
SOR$_COL_THREE Cannot define 3-byte collating values.
SOR$_ENDDIAGS Completed with diagnostics.
SOR$_EXTEND Unable to extend work file for needed space.
SOR$_ILLBASE Nondecimal base is invalid.
SOR$_ILLLITERL Record containing symbolic literals is

unsupported.
SOR$_ILLSCALE Nonzero scale invalid for floating-point data item.
SOR$_INCDIGITS Number of digits is inconsistent with the type or

length of item.
SOR$_INCNODATA Include specification references no data keyword,

at line n.
SOR$_INCNOKEY Include specification references no keys keyword,

at line n.
SOR$_IND_OVR Indexed output file must already exist.
SOR$_KEYED Mismatch between SORT/MERGE keys and

primary file key.
SOR$_LRL_MISS Longest record length must be specified.
SOR$_MISLENOFF Length and offset required.
SOR$_MULTIDIM Invalid multidimensional OCCURS.
SOR$_NOTRECORD Node name is a name, not a record definition.
SOR$_NO_WRK Work files required, cannot do sort in memory as

requested.
SOR$_OPENIN Error opening file as input.
SOR$_OPENOUT Error opening file as output.
SOR$_OPERFAIL Error requesting operator service.

Sort/Merge (SOR) Routines SOR–57

Sort/Merge (SOR) Routines
SOR$SORT_MERGE

SOR$_READERR Error reading file.
SOR$_REQ_ALT Specify alternate name file (or nothing to try

again).
SOR$_RTNERROR Unexpected error status from user-written

routine.
SOR$_SIGNCOMPQ Absolute Date and Time data type represented in

1-second units.
SOR$_SORT_ON Sort or merge routines called in incorrect order.
SOR$_SPCIVC Invalid collating sequence specification, at line n.
SOR$_SPCIVD Invalid data type, at line n.
SOR$_SPCIVF Invalid field specification, at line n.
SOR$_SPCIVI Invalid include or omit specification, at line n.
SOR$_SPCIVK Invalid key or data specification, at line n.
SOR$_SPCIVP Invalid sort process, at line n.
SOR$_SPCIVS Invalid specification, at line n.
SOR$_SPCIVX Invalid condition specification, at line n.
SOR$_SPCMIS Invalid merge specification, at line n.
SOR$_SPCOVR Overridden specification, at line n.
SOR$_SPCSIS Invalid sort specification, at line n.
SOR$_SRTIWA Insufficient space. Specification file is too

complex.
SOR$_SYSERROR System service error.
SOR$_UNSUPLEVL Unsupported core level for record name.
SOR$_USE_ALT Using alternate file name.
SOR$_WORK_DEV Work file name must be on random access local

device.
SOR$_WRITEERR Error writing file.

SOR–58 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$SPEC_FILE

SOR$SPEC_FILE—Pass a Specification File Name

The SOR$SPEC_FILE routine is used to pass a specification file or specification
text to a sort or merge operation. (This routine is not currently supported by the
high-performance Sort/Merge utility.)

Format

SOR$SPEC_FILE [spec_file] [,spec_buffer] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

spec_file
OpenVMS usage: char_string
type: character-coded text string
access: read-only
mechanism: by descriptor

Specification file name. The spec_file argument is the address of a descriptor
pointing to the name of a file that contains the text of the options requested for
the sort or merge. The specification file name string and the specification file
buffer arguments are mutually exclusive.

spec_buffer
OpenVMS usage: char_string
type: character-coded text string
access: read-only
mechanism: by descriptor

Specification text buffer. The spec_buffer argument is the address of a
descriptor pointing to a buffer containing specification text. This text has the
same format as the text within the specification file. The specification file name
string and the specification file buffer arguments are mutually exclusive.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just

Sort/Merge (SOR) Routines SOR–59

Sort/Merge (SOR) Routines
SOR$SPEC_FILE

initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

Description

Call SOR$SPEC_FILE to pass a specification file name or a buffer with
specification text to a sort or merge operation. Through the use of a specification
file, you can selectively omit or include particular records from the sort or merge
operation and specify the reformatting of the output records. (See the Sort Utility
in the OpenVMS User’s Manual for a complete description of specification files.)

If you call the SOR$SPEC_FILE routine, you must do so before you call any other
routines. You must pass either the spec_file or spec_buffer argument, but not
both.

Some of the return condition values are used with different severities, depending
on whether SORT/MERGE can recover. Thus, if you want to check for a specific
status, you should use LIB$MATCH_COND.

Condition Values Returned

SOR$_ENDDIAGS Completed with diagnostics.
SOR$_NYI Not yet implemented.
SOR$_SORT_ON Sort or merge routine called in incorrect order.
SOR$_SYSERROR System service error.

SOR–60 Sort/Merge (SOR) Routines

Sort/Merge (SOR) Routines
SOR$STAT

SOR$STAT—Obtain a Statistic

The SOR$STAT routine returns one statistic about the sort or merge operation to
the user program.

Format

SOR$STAT code ,result [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

SORT/MERGE statistic code. The code argument is the address of a longword
containing the code that identifies the statistic you want returned in the result
argument. The following table describes the values that are accepted.

Note: The high-performance Sort/Merge utility currently supports only the
following subset of these values: SORK_REC_INP, SORK_REC_SOR, SOR$K_
REC_OUT, SOR$K_LRL_INP.

Code Description

SOR$K_IDENT Address of ASCII string for version number
SOR$K_REC_INP Number of records input
SOR$K_REC_SOR Records sorted
SOR$K_REC_OUT Records output
SOR$K_LRL_INP Longest record length (LRL) for input
SOR$K_LRL_INT Internal LRL
SOR$K_LRL_OUT LRL for output
SOR$K_NODES Nodes in sort tree
SOR$K_INI_RUNS Initial dispersion runs
SOR$K_MRG_ORDER Maximum merge order
SOR$K_MRG_PASSES Number of merge passes
SOR$K_WRK_ALQ Work file allocation

Sort/Merge (SOR) Routines SOR–61

Sort/Merge (SOR) Routines
SOR$STAT

Code Description

SOR$K_MBC_INP Multiblock count for input
SOR$K_MBC_OUT Multiblock count for output
SOR$K_MBF_INP Multibuffer count for input
SOR$K_MBF_OUT Multibuffer count for output

Note that performance statistics (such as direct I/O, buffered I/O, and elapsed
and CPU times) are not available because user-written routines may affect those
values. However, they are available if you call LIB$GETJPI.

result
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

SORT/MERGE statistic value. The result argument is the address of a longword
into which SORT/MERGE writes the value of the statistic identified by the code
argument.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Value that distinguishes between multiple, concurrent SORT/MERGE operations.
The context argument is the address of a longword containing the context
value. When your program makes its first call to a SORT/MERGE routine for
a particular sort or merge operation, the context longword must equal zero.
SORT/MERGE then stores a value in the longword to identify the operation just
initiated. When you make subsequent routine calls for the same operation, you
must pass the context value supplied by SORT/MERGE.

Description

The SOR$STAT routine returns one statistic about the sort or merge operation to
your program. You can call the SOR$STAT routine at any time while the sort or
merge is active.

Some of the following condition values are used with different severities,
depending on whether SORT/MERGE can recover. Thus, if you want to check for
a specific status, you should use LIB$MATCH_COND.

Condition Values Returned

SOR$_ENDDIAGS Completed with diagnostics.
SOR$_MISS_PARAM A required subroutine argument is missing.
SOR$_NYI Functionality is not yet implemented.
SOR$_SYSERROR System service error.

SOR–62 Sort/Merge (SOR) Routines

Index

A
Access control list editor routines

See ACL editor routines
ACLEDIT$EDIT routine, ACL–3
ACL editor routines

editing, ACL–3
example of BLISS program, ACL–1
manipulating, ACL–1
options available, ACL–4

ACLEDT$SECTION logical name, ACL–5
ACLs (access control lists)

See ACL editor routines

B
BACKUP$START, BCK–4
Backup API, BCK–1

example of C program, BCK–2
Binary data, compression of, DCX–1
Buckets

reclaiming with CONV$RECLAIM routine,
CONV–20

reclamation statistics, CONV–21

C
Callable interface of DECTPU routines,

DECTPU–1
CLI$DCL_PARSE routine, CLI–5
CLI$DISPATCH routine, CLI–8
CLI$GET_VALUE routine, CLI–9
CLI$PRESENT routine, CLI–12
CLI routines, CLI–1

See also Command strings
example in a Fortran program, CLI–2
list of, CLI–1
when to use, CLI–1

Command language definition file
template for UTIL$CQUAL_FILE_PARSE,

CQUAL–6
Command language interface routines

See CLI routines
Command line qualifiers, CQUAL–2

Command strings
See also CLI routines
checking for presence of, CLI–12
dispatching to action routine, CLI–8
obtaining values, CLI–9
parsing a DCL command string, CLI–5
positional qualifiers, CLI–13
processing with CLI routines, CLI–1
prompting for input, CLI–6

Command tables
using with CLI routines, CLI–1, CLI–6

Common file qualifier routines, CQUAL–1
Context variables, with DCX routines, DCX–17
CONV$CONVERT routine, CONV–8
CONV$PASS_FILES routine, CONV–12
CONV$PASS_OPTIONS routine, CONV–15
CONV$RECLAIM routine, CONV–20
CONVERT command

list of qualifiers, CONV–16
passing options, CONV–15, CONV–18
setting qualifiers, CONV–15

CONVERT routines, CONV–1
examples, CONV–1 to CONV–6
list of, CONV–1
using wildcard characters in, CONV–13

Convert utility (CONVERT)
conversion statistics, CONV–8

Convert utility routines
See CONVERT routines

D
Databases

compressing, DCX–1
expanding, DCX–3

Data compression
See also DCX routines
algorithm for submitting all data records,

DCX–16
analysis preceding compression, DCX–14
size of data after compression, DCX–1

Data Compression facility routines
See DCX routines

Data expansion, DCX–23
See also DCX routines
initializing, DCX–26

Index–1

Data Expansion facility routines
See DCX routines

Data records
analysis, DCX–13
compression, DCX–1
conversion, CONV–1
expansion, DCX–1

DCL command strings
See Command strings

DCX$ANALYZE_DATA routine, DCX–12
DCX$ANALYZE_DONE routine, DCX–14
DCX$ANALYZE_INIT routine, DCX–15
DCX$COMPRESS_DATA routine, DCX–18
DCX$COMPRESS_DONE routine, DCX–20
DCX$COMPRESS_INIT routine, DCX–21
DCX$EXPAND_DATA routine, DCX–23
DCX$EXPAND_DONE routine, DCX–25
DCX$EXPAND_INIT routine, DCX–26
DCX$MAKE_MAP routine, DCX–28
DCX routines, DCX–1

examples, DCX–11 to DCX–29
DEC Text Processing Utility routines

See DECTPU routines
DECTPU callable interface

See DECTPU routines
DECTPU routines, DECTPU–1

bound procedure parameter value, DECTPU–3
callable DECTPU, DECTPU–1 to DECTPU–5
condition handler, DECTPU–3 to DECTPU–4
examples, DECTPU–4, DECTPU–7 to

DECTPU–27
list of, DECTPU–6
shareable image, DECTPU–1, DECTPU–3
user-written

FILEIO, DECTPU–68
FILE_PARSE, DECTPU–70
FILE_SEARCH, DECTPU–72
HANDLER, DECTPU–75
INITIALIZE, DECTPU–76
requirements, DECTPU–7
USER, DECTPU–77

Device access, controlling through access control
lists, ACL–1

E
EDT$EDIT routine, EDT–3
EDT routines, EDT–1

examples, EDT–1, EDT–2
user-written

FILEIO, EDT–7
WORKIO, EDT–11
XLATE, EDT–13

F
FDL$CREATE routine, FDL–7
FDL$GENERATE routine, FDL–13
FDL$PARSE routine, FDL–16
FDL$RELEASE routine, FDL–19
FDL routines, FDL–1

See also FDL specifications
examples, FDL–3 to FDL–6

FDL specifications
See also FDL routines
creating, FDL–7
default attributes, FDL–10, FDL–17
generating, FDL–13
in character string, FDL–2, FDL–9
parsing, FDL–16
semicolons as delimiters, FDL–2
with CONVERT routines, CONV–16

File access, controlling through access control lists,
ACL–1

File Definition Language routines
See FDL routines

File organization, changing with CONVERT
routines, CONV–1

Files
compressing, DCX–1
expanding, DCX–3
Prolog 3 indexed files, CONV–1, CONV–20

File specifications, using with CONVERT routines,
CONV–13

Full callable interface of DECTPU routines,
DECTPU–2, DECTPU–5

G
Global sections, controlling access through access

control lists, ACL–1

H
Headers

library, LBR–23
library module, LBR–22

Help libraries, displaying text, LBR–25

I
Images, compression of, DCX–1
Item lists

with ACL editor routine, ACL–3
with DECTPU routines, DECTPU–62

Index–2

J
Job controllers

function, PSM–3
request to symbiont, SMB–5

K
Keys (in records)

See Sort/Merge utility
Keyword paths

obtaining values of command string keywords,
CLI–9

referencing command string keywords, CLI–12

L
LBR$CLOSE routine, LBR–7, LBR–8, LBR–28
LBR$DELETE_DATA routine, LBR–16, LBR–29
LBR$DELETE_KEY routine, LBR–16, LBR–31
LBR$FIND routine, LBR–33
LBR$FLUSH routine, LBR–35
LBR$GET_HEADER routine, LBR–23, LBR–37
LBR$GET_HELP routine, LBR–39
LBR$GET_HISTORY routine, LBR–42
LBR$GET_INDEX routine, LBR–26, LBR–44
LBR$GET_RECORD routine, LBR–14, LBR–46
LBR$INI_CONTROL routine, LBR–8, LBR–48
LBR$INSERT_KEY routine, LBR–10, LBR–50
LBR$LOOKUP_KEY routine, LBR–10, LBR–14,

LBR–16, LBR–22, LBR–52
LBR$OPEN routine, LBR–7, LBR–8, LBR–54
LBR$OUTPUT_HELP routine, LBR–25, LBR–58
LBR$PUT_END routine, LBR–10, LBR–62
LBR$PUT_HISTORY routine, LBR–63
LBR$PUT_RECORD routine, LBR–10, LBR–65
LBR$REPLACE_KEY routine, LBR–10, LBR–67
LBR$RET_RMSSTV routine, LBR–69
LBR$SEARCH routine, LBR–70
LBR$SET_INDEX routine, LBR–72
LBR$SET_LOCATE routine, LBR–74
LBR$SET_MODULE routine, LBR–22, LBR–75
LBR$SET_MOVE routine, LBR–77
LBR routines, LBR–1

control index, LBR–6
data records

reading, LBR–46
writing, LBR–65

end-of-module record, writing, LBR–62
examples, LBR–6 to LBR–18

creating a new library, LBR–8
deleting a module from a library, LBR–16

to LBR–18
inserting a module into a library, LBR–10

to LBR–13
header, LBR–2
help text

LBR routines
help text (cont’d)

outputting, LBR–58
retrieving, LBR–39

index, LBR–2
index searching, LBR–70
library

closing, LBR–28
creating, LBR–54
opening, LBR–54
structure, LBR–2 to LBR–5
types, LBR–1

library file, flushing, LBR–35
library header information, LBR–37
library index

getting contents, LBR–44
initializing, LBR–48
searching for key, LBR–44

library key, LBR–2
creating ASCII or binary, LBR–55
deleting, LBR–31
finding, LBR–33
inserting, LBR–50
looking up, LBR–52
replacing, LBR–67

library update history record, retrieving,
LBR–42

locate mode, setting record access mode to,
LBR–74

module, LBR–2
accessing with RFA, LBR–33
deleting data records, LBR–29
deleting header, LBR–29
headers, LBR–75

move mode, setting record access to, LBR–77
RMS status value, returning, LBR–69
setting current index number, LBR–72
summary, LBR–6
update history records, writing, LBR–63
virtual memory, recovering, LBR–35

LDAP, LDAP–1
LGI$ICB_ACCTEXPIRED callback routine,

LGI–35
LGI$ICB_AUTOLOGIN callback routine, LGI–36
LGI$ICB_CHECK_PASS callback routine, LGI–37
LGI$ICB_DISUSER callback routine, LGI–38
LGI$ICB_GET_INPUT callback routine, LGI–39
LGI$ICB_GET_SYSPWD callback routine,

LGI–40
LGI$ICB_MODALHOURS callback routine,

LGI–41
LGI$ICB_PASSWORD callback routine, LGI–42
LGI$ICB_PWDEXPIRED callback routine,

LGI–44
LGI$ICB_USERPARSE callback routine, LGI–45

Index–3

LGI$ICB_USERPROMPT callback routine,
LGI–46

LGI$ICB_VALIDATE callback routine, LGI–47
LGI$ICR_AUTHENTICATE callout routine,

LGI–15
LGI$ICR_CHKRESTRICT callout routine,

LGI–18
LGI$ICR_DECWINIT callout routine, LGI–20
LGI$ICR_FINISH callout routine, LGI–22
LGI$ICR_IACT_START callout routine, LGI–24
LGI$ICR_IDENTIFY callout routine, LGI–26
LGI$ICR_INIT routine, LGI–28
LGI$ICR_JOBSTEP callout routine, LGI–30
LGI$ICR_LOGOUT callout routine, LGI–32
LGI callouts, LGI–3
LIB$INSERT_KEY routine, LBR–19
LIB$SET_INDEX routine, LBR–19
Librarian utility routines

See LBR routines
Libraries

closing, LBR–7, LBR–8
deleting module, LBR–16
initializing, LBR–8
inserting module, LBR–10
listing index entries, LBR–26
module header, LBR–22
multiple indexes, LBR–19
multiple keys, LBR–19
opening, LBR–7, LBR–8
processing index entry, LBR–26
replacing module, LBR–10

Lightweight Directory Access Protocol (LDAP),
LDAP–1

LOGINOUT callback routines, LGI–34 to LGI–48
LOGINOUT callout routines, LGI–14 to LGI–33
LOGINOUT callouts

See LGI callouts
LOGINOUT sample program, LGI–10

M
MAIL$MAILFILE_BEGIN routine, MAIL–32
MAIL$MAILFILE_CLOSE routine, MAIL–34
MAIL$MAILFILE_COMPRESS routine, MAIL–36
MAIL$MAILFILE_END routine, MAIL–39
MAIL$MAILFILE_INFO_FILE routine, MAIL–41
MAIL$MAILFILE_MODIFY routine, MAIL–44
MAIL$MAILFILE_OPEN routine, MAIL–47
MAIL$MAILFILE_PURGE_WASTE routine,

MAIL–50
MAIL$MESSAGE_BEGIN routine, MAIL–53
MAIL$MESSAGE_COPY routine, MAIL–55
MAIL$MESSAGE_DELETE routine, MAIL–59
MAIL$MESSAGE_END routine, MAIL–61
MAIL$MESSAGE_GET routine, MAIL–63

MAIL$MESSAGE_INFO routine, MAIL–68
MAIL$MESSAGE_MODIFY routine, MAIL–72
MAIL$MESSAGE_SELECT routine, MAIL–75
MAIL$SEND_ABORT routine, MAIL–78
MAIL$SEND_ADD_ADDRESS routine, MAIL–80
MAIL$SEND_ADD_ATTRIBUTE routine,

MAIL–82
MAIL$SEND_ADD_BODYPART routine,

MAIL–85
MAIL$SEND_BEGIN routine, MAIL–88
MAIL$SEND_END routine, MAIL–91
MAIL$SEND_MESSAGE routine, MAIL–93
MAIL$USER_BEGIN routine, MAIL–95
MAIL$USER_DELETE_INFO routine, MAIL–98
MAIL$USER_END routine, MAIL–100
MAIL$USER_GET_INFO routine, MAIL–102
MAIL$USER_SET_INFO routine, MAIL–106
Mailboxes, controlling access through access

control lists, ACL–1
Mail utility (MAIL), MAIL–1

action routine, MAIL–7
calling sequence, MAIL–8
folder, MAIL–11, MAIL–14
mail file, MAIL–14
send, MAIL–16

address list, MAIL–16
creating, MAIL–16
user name type, MAIL–16

bodypart, creating, MAIL–15
condition handling, MAIL–6
context, MAIL–3

initiating, MAIL–4
mail file, MAIL–9
message, MAIL–11
send, MAIL–14
terminating, MAIL–4
user profile, MAIL–17

deleted bytes threshold, MAIL–11
disk space, reclaiming, MAIL–11
folder, MAIL–2

creating, MAIL–14
deleting, MAIL–14

folder names, displaying, MAIL–11
item code, MAIL–7

input, MAIL–7, MAIL–18
output, MAIL–7, MAIL–21

item descriptor
declaring, MAIL–7
null, MAIL–7

item list, MAIL–6
declaring, MAIL–7
terminating, MAIL–7

mail file, MAIL–3
alternate, MAIL–10
closing, MAIL–9
compressing, MAIL–11
creating, MAIL–14
default, MAIL–9

Index–4

Mail utility (MAIL)
mail file (cont’d)

opening, MAIL–9
purging, MAIL–11
specifying, MAIL–9 to MAIL–10
wastebasket, MAIL–11

mail file context
initiating, MAIL–9
terminating, MAIL–9

message attributes, creating, MAIL–15
message context

initiating, MAIL–12
terminating, MAIL–12

message format, standard, MAIL–1
message header, creating, MAIL–15
message ID, external, MAIL–2
messages, MAIL–1

attribute, MAIL–15
copying, MAIL–13
creating, MAIL–15
deleting, MAIL–14
displaying, MAIL–13
marking, MAIL–13
modifying, MAIL–13
moving, MAIL–13
printing, MAIL–13
reading, MAIL–13
selecting, MAIL–12
sending, MAIL–15, MAIL–16

null item list, MAIL–7
programming examples, MAIL–23
send context, MAIL–14 to MAIL–15
signaling error, MAIL–6
thread, MAIL–5
user profile database, MAIL–3, MAIL–17
user profile entry, MAIL–3, MAIL–17

adding, MAIL–18
deleting, MAIL–18
flags, MAIL–18
form, MAIL–18
forwarding address, MAIL–18
modifying, MAIL–18
personal name, MAIL–18
queue name, MAIL–18

N
National character set (NCS) routines

See NCS routines
NCS$COMPARE routine, NCS–8
NCS$CONVERT routine, NCS–10
NCS$END_CF routine, NCS–12
NCS$END_CS routine, NCS–13
NCS$GET_CF routine, NCS–14
NCS$GET_CS routine, NCS–16
NCS$RESTORE_CF routine, NCS–18

NCS$RESTORE_CS routine, NCS–20
NCS$SAVE_CF routine, NCS–22
NCS$SAVE_CS routine, NCS–24
NCS routines

C program sample, NCS–4
Fortran program sample, NCS–2
list of, NCS–1
typical application of, NCS–2

O
OpenVMS RMS

See RMS
Options, creating with LBR$OPEN routine,

LBR–8

P
Print Symbiont Modification routines

See PSM routines
Print symbionts

See Symbionts
Prolog 3 indexed files

creating with CONVERT routines, CONV–16
reclaiming, CONV–20
with Convert/Reclaim utility, CONV–1

Prolog files, using with CONVERT routines,
CONV–16

Prompt strings, setting with CLI$DCL_PARSE,
CLI–7

PSM$PRINT routine, PSM–21
PSM$READ_ITEM_DX routine, PSM–23
PSM$REPLACE routine, PSM–25
PSM$REPORT routine, PSM–30
PSM routines, PSM–1

examples, PSM–16 to PSM–20
USER-FORMAT-ROUTINE, PSM–33
USER-INPUT-ROUTINE, PSM–37
USER-OUTPUT-ROUTINE, PSM–43

Q
Queues

execution of, PSM–3
generic, PSM–3

R
Records

See Data records
RMS

control blocks with FDL routines, FDL–16,
FDL–19

Index–5

S
Simplified callable interface

See DECTPU routines
SMB$CHECK_FOR_MESSAGE routine, SMB–14
SMB$INITIALIZE routine, SMB–15
SMB$READ_MESSAGE routine, SMB–17
SMB$READ_MESSAGE_ITEM routine, SMB–20
SMB$SEND_TO_JOBCTL routine, SMB–30
SMB routines, SMB–1
SOR$$STAT routine, SOR–61
SOR$BEGIN_MERGE routine, SOR–29
SOR$BEGIN_SORT routine, SOR–36
SOR$DTYPE routine, SOR–42
SOR$END_SORT routine, SOR–45
SOR$PASS_FILES routine, SOR–47
SOR$RELEASE_REC routine, SOR–52
SOR$RETURN_REC routine, SOR–54
SOR$SORT_MERGE routine, SOR–56
SOR$SPEC_FILE routine, SOR–59
SOR routines, SOR–4

examples, SOR–8 to SOR–28
interface

file, SOR–5
record, SOR–5

list of, SOR–4
reentrancy using context argument, SOR–6

Sort/Merge routines
See SOR routines

Sort/Merge utility (high-performance), SOR–1
Sort/Merge utility (SORT/MERGE)

See also SOR routines
See also Sort/Merge utility (high-performance)
keys, SOR–4

Symbiont/Job Controller Interface routines
See SMB routines

Symbionts
See also Queues
active stream, PSM–3
allocating memory, SMB–4
carriage control, processing of, PSM–10
connecting to a device, SMB–4
demand input routines, PSM–5
device, PSM–2
environments, SMB–5
function of, PSM–3, SMB–2
input, PSM–2, SMB–1

INPSMB.EXE file, SMB–1
internal logic, PSM–4

main format routine, PSM–12
main input routine, PSM–9
main output routine, PSM–13

invoking, PSM–21
job controller, communication with, SMB–1
job controller requests, SMB–5

asynchronous, SMB–6

Symbionts
job controller requests (cont’d)

processing, SMB–10
reading, SMB–10
responding, SMB–13
synchronous, SMB–5

modifying, PSM–1, PSM–6, SMB–3
format routine, PSM–11
guidelines, PSM–7
initialization routine, PSM–14
input routine, PSM–9
integration of routines, PSM–15
output routine, PSM–12
restrictions, PSM–7

multiple streams, PSM–3, SMB–9
multithreaded, PSM–3
output, PSM–2, SMB–1

PRTSMB.EXE file, SMB–1
printer, SMB–1
processing, PSM–1
process-permanent file, SMB–4
server, PSM–2, SMB–1
single stream, PSM–3, SMB–9
system MAXBUF parameter, PSM–6
type, SMB–1
user-written, PSM–1, SMB–1, SMB–3
user-written guidelines, SMB–3
user-written interfaces, PSM–6

Symbiont thread, PSM–3
SYS$OUTPUT_HELP routine, LBR–8

T
Text compression, DCX–1
Text-processing routines

See DECTPU routines
TPU$CLEANUP routine, DECTPU–28
TPU$CLIPARSE routine, DECTPU–32
TPU$CLOSE_TERMINAL routine, DECTPU–34
TPU$CONTROL routine, DECTPU–35

regaining control from, DECTPU–35,
DECTPU–53

TPU$EDIT routine, DECTPU–37
TPU$EXECUTE_COMMAND routine,

DECTPU–39
TPU$EXECUTE_INIFILE routine, DECTPU–40
TPU$FILEIO routine, DECTPU–42
TPU$HANDLER routine, DECTPU–52
TPU$MESSAGE routine, DECTPU–61
TPU$PARSEINFO routine, DECTPU–62
TPU$SPECIFY_ASYNC_ACTION routine,

DECTPU–6, DECTPU–35, DECTPU–53,
DECTPU–64

TPU$TPU routine, DECTPU–66

Index–6

TPU$TRIGGER_ASYNC_ACTION routine,
DECTPU–6, DECTPU–35, DECTPU–53,
DECTPU–67

U
User-written DECTPU routines

See DECTPU routines

UTIL$CQUAL
example, CQUAL–7

UTIL$CQUAL routines, CQUAL–1
UTIL$CQUAL_CONFIRM_ACT, CQUAL–5,

CQUAL–18
UTIL$CQUAL_FILE_END, CQUAL–5,

CQUAL–17
UTIL$CQUAL_FILE_MATCH, CQUAL–3,

CQUAL–13
UTIL$CQUAL_FILE_PARSE, CQUAL–11
Utility routines

See also SMB routines, SMB–1

W
Wildcard characters, using with CONVERT

routines, CONV–13

Index–7

	OpenVMS Utility Routines Manual
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How To Order Additional Documentation
	Conventions

	1 Introduction to Utility Routines
	2 Access Control List (ACL) Editor Routine
	2.1 Introduction to the ACL Editor Routine
	2.2 Using the ACL Editor Routine: An Example
	2.3 ACL Editor Routine
	ACLEDIT$EDIT—Edit Access Control List

	3 Backup (BACKUP) Routine
	3.1 Introduction to the Backup API
	3.2 Using the Backup API: An Example
	3.3 Backup API
	BACKUP$START—Call BACKUP Utility

	4 Command Language Interface (CLI) Routines
	4.1 Introduction to CLI Routines
	4.2 Using the CLI Routines: An Example
	4.3 CLI Routines
	CLI$DCL_PARSE—Parse DCL Command String
	CLI$DISPATCH—Dispatch to Action Routine
	CLI$GET_VALUE—Get Value of Entity in Command String
	CLI$PRESENT—Determine Presence of Entity in Command String

	5 Common File Qualifier Routines
	5.1 Introduction to the Common File Qualifier Routines
	5.2 Using the Common File Qualifier Routines
	5.2.1 Calling UTIL$CQUAL_FILE_PARSE
	5.2.2 Calling UTIL$CQUAL_FILE_MATCH
	5.2.3 Calling UTIL$CQUAL_FILE_END
	5.2.4 Calling UTIL$CQUAL_CONFIRM_ACT
	5.2.5 Creating a Command Language Definition File

	5.3 UTIL$CQUAL Routines
	UTIL$CQUAL_FILE_PARSE—Parse the Command Line
	UTIL$CQUAL_FILE_MATCH—Match a File with Selection Criteria
	UTIL$CQUAL_FILE_END—End Processing
	UTIL$CQUAL_CONFIRM_ACT—Ask User for Confirmation

	6 Convert (CONVERT) Routines
	6.1 Introduction to CONVERT Routines
	6.2 Using the CONVERT Routines: Examples
	6.3 CONVERT Routines
	CONV$CONVERT—Initiate Conversion
	CONV$PASS_FILES—Specify Conversion Files
	CONV$PASS_OPTIONS—Specify Processing Options
	CONV$RECLAIM—Invoke Convert/Reclaim Utility

	7 Data Compression/Expansion (DCX) Routines
	7.1 Introduction to DCX Routines
	7.1.1 Compression Routines
	7.1.2 Expansion Routines

	7.2 Using the DCX Routines: Examples
	7.3 DCX Routines
	DCX$ANALYZE_DATA—Perform Statistical Analysis on a Data Record
	DCX$ANALYZE_DONE—Specify Analysis Completed
	DCX$ANALYZE_INIT—Initialize Analysis Context
	DCX$COMPRESS_DATA—Compress a Data Record
	DCX$COMPRESS_DONE—Specify Compression Complete
	DCX$COMPRESS_INIT—Initialize Compression Context
	DCX$EXPAND_DATA—Expand a Compressed Data Record
	DCX$EXPAND_DONE—Specify Expansion Complete
	DCX$EXPAND_INIT—Initialize Expansion Context
	DCX$MAKE_MAP—Compute the Compression/Expansion Function

	8 DEC Text Processing Utility (DECTPU) Routines
	8.1 Introduction to DECTPU Routines
	8.1.1 Interfaces to Callable DECTPU
	8.1.2 The DECTPU Shareable Image
	8.1.3 Passing Parameters to Callable DECTPU Routines
	8.1.4 Error Handling
	8.1.5 Return Values

	8.2 Simplified Callable Interface
	8.3 Full Callable Interface
	8.3.1 Main Callable DECTPU Utility Routines
	8.3.2 Other DECTPU Utility Routines
	8.3.3 User-Written Routines

	8.4 Using the DECTPU Routines: Examples
	8.5 Creating and Calling a USER Routine
	8.5.1 The CALL_USER Code
	8.5.2 Linking the CALL_USER Image

	8.6 Accessing the USER Routine from DECTPU
	8.7 DECTPU Routines
	TPU$CLEANUP—Free System Resources Used During DECTPU Session
	TPU$CLIPARSE—Parse a Command Line
	TPU$CLOSE_TERMINAL—Close Channel to Terminal
	TPU$CONTROL—Pass Control to DECTPU
	TPU$EDIT—Edit a File
	TPU$EXECUTE_COMMAND—Execute One or More DECTPU Statements
	TPU$EXECUTE_INIFILE—Execute Initialization Files
	TPU$FILEIO—Perform File Operations
	TPU$FILE_PARSE— Parse the Given File Specification
	TPU$FILE_SEARCH—Search File System for Specified File
	TPU$HANDLER—DECTPU Condition Handler
	TPU$INITIALIZE—Initialize DECTPU for Processing
	TPU$MESSAGE—Write Message String
	TPU$MESSAGE—Write Message String
	TPU$PARSEINFO—Parse Command Line and Build Item List
	TPU$SIGNAL—Signal a TPU Status
	TPU$SPECIFY_ASYNC_ACTION—Register an Asynchronous Action
	TPU$TPU—Invoke DECTPU
	TPU$TRIGGER_ASYNC_ACTION—Execute DECTPU Command at Asynchronous Level
	FILEIO—User-Written Routine to Perform File Operations
	FILE_PARSE—User-Written Routine to Perform File Parse Operations
	FILE_SEARCH—User-Written Routine to Perform File Search Operations
	HANDLER—User-Written Condition Handling Routine
	INITIALIZE—User-Written Initialization Routine
	USER—User-Written Routine Called from a DECTPU Editing Session

	9 EDT Routines
	9.1 Introduction to EDT Routines
	9.2 Using the EDT Routines: An Example
	9.3 EDT Routines
	EDT$EDIT—Edit a File
	FILEIO
	WORKIO
	XLATE

	10 File Definition Language (FDL) Routines
	10.1 Introduction to FDL Routines
	10.2 Using the FDL Routines: Examples
	10.3 FDL Routines
	FDL$CREATE—Create a File from an FDL Specification and Close the File
	FDL$GENERATE—Generate an FDL Specification
	FDL$PARSE—Parse an FDL Specification
	FDL$RELEASE—Free Virtual Memory Obtained By FDL$PARSE

	11 Librarian (LBR) Routines
	11.1 Introduction to LBR Routines
	11.1.1 Types of Libraries
	11.1.2 Structure of Libraries
	11.1.3 Summary of LBR Routines

	11.2 Using the LBR Routines: Examples
	11.2.1 Creating, Opening, and Closing a Text Library
	11.2.2 Inserting a Module
	11.2.3 Extracting a Module
	11.2.4 Deleting a Module
	11.2.5 Using Multiple Keys and Multiple Indexes
	11.2.6 Accessing Module Headers
	11.2.7 Reading Library Headers
	11.2.8 Displaying Help Text
	11.2.9 Listing and Processing Index Entries

	11.3 LBR Routines
	LBR$CLOSE—Close a Library
	LBR$DELETE_DATA—Delete a Module’s Data
	LBR$DELETE_KEY—Delete a Key
	LBR$FIND—Look Up a Module by Its RFA
	LBR$FLUSH—Recover Virtual Memory
	LBR$GET_HEADER—Retrieve Library Header Information
	LBR$GET_HELP—Retrieve Help Text
	LBR$GET_HISTORY—Retrieve a Library Update History Record
	LBR$GET_INDEX—Call a Routine for Selected Index Keys
	LBR$GET_RECORD—Read a Data Record
	LBR$INI_CONTROL—Initialize a Library Control Structure
	LBR$INSERT_KEY—Insert a New Key
	LBR$LOOKUP_KEY—Look Up a Library Key
	LBR$OPEN—Open or Create a Library
	LBR$OUTPUT_HELP—Output Help Messages
	LBR$PUT_END—Write an End-of-Module Record
	LBR$PUT_HISTORY—Write an Update History Record
	LBR$PUT_RECORD—Write a Data Record
	LBR$REPLACE_KEY—Replace a Library Key
	LBR$RET_RMSSTV—Return OpenVMS RMS Status Value
	LBR$SEARCH—Search an Index
	LBR$SET_INDEX—Set the Current Index Number
	LBR$SET_LOCATE—Set Record Access to Locate Mode
	LBR$SET_MODULE—Read or Update a Module Header
	LBR$SET_MOVE—Set Record Access to Move Mode

	12 Lightweight Directory Access Protocol (LDAP) Routines
	12.1 Introduction
	12.1.1 Overview of the LDAP Model
	12.1.2 Overview of LDAP API Use
	12.1.3 LDAP API Use on OpenVMS Systems
	12.1.4 64-bit Addressing Support
	12.1.5 Multithreading Support

	12.2 Common Data Structures and Memory Handling
	12.3 LDAP Error Codes
	12.4 Initializing an LDAP Session
	12.5 LDAP Session Handle Options
	12.6 Working with Controls
	12.7 Authenticating to the Directory
	12.8 Closing the Session
	12.9 Searching
	12.9.1 Reading and Listing the Children of an Entry

	12.10 Comparing a Value Against an Entry
	12.11 Modifying an Entry
	12.12 Modifying the Name of an Entry
	12.13 Adding an Entry
	12.14 Deleting an Entry
	12.15 Extended Operations
	12.16 Abandoning an Operation
	12.17 Obtaining Results and Looking Inside LDAP Messages
	12.18 Handling Errors and Parsing Results
	12.18.1 Stepping Through a List of Results

	12.19 Parsing Search Results
	12.19.1 Stepping Through a List of Entries
	12.19.2 Stepping Through the Attributes of an Entry
	12.19.3 Retrieving the Values of an Attribute
	12.19.4 Retrieving the Name of an Entry
	12.19.5 Retrieving Controls from an Entry
	12.19.6 Parsing References

	12.20 Encoded ASN.1 Value Manipulation
	12.20.1 Encoding
	12.20.2 Decoding
	12.21 Sample LDAP API Code

	13 LOGINOUT (LGI) Routines
	13.1 Introduction to LOGINOUT
	13.1.1 The LOGINOUT Process
	13.1.2 Using LOGINOUT with External Authentication
	13.1.3 The LOGINOUT Data Flow

	13.2 LOGINOUT Callouts
	13.2.1 LOGINOUT Callout Routines
	13.2.2 LOGINOUT Callback Routines

	13.3 Using Callout Routines
	13.3.1 Calling Environment
	13.3.2 Callout Organization
	13.3.3 Activating the Callout Routines
	13.3.4 Callout Interface
	13.3.5 Sample Program

	13.4 LOGINOUT Callout Routines
	LGI$ICR_AUTHENTICATE—Authenticate the Password
	LGI$ICR_CHKRESTRICT—Check Access Restrictions
	LGI$ICR_DECWINIT—DECwindows Initialization
	LGI$ICR_FINISH—Final Site Action
	LGI$ICR_IACT_START—Character-Cell Initialization
	LGI$ICR_IDENTIFY—Identify the User
	LGI$ICR_INIT—Initialization Callout Routine
	LGI$ICR_JOBSTEP—Batch Job Step
	LGI$ICR_LOGOUT—Installation Logout

	13.5 LOGINOUT Callback Routines
	LGI$ICB_ACCTEXPIRED—Account Expiration
	LGI$ICB_AUTOLOGIN—Check for Autologin
	LGI$ICB_CHECK_PASS—Check Password
	LGI$ICB_DISUSER—Check for Disabled User Account
	LGI$ICB_GET_INPUT—Get User Input
	LGI$ICB_GET_SYSPWD—Get System Password
	LGI$ICB_MODALHOURS—Perform Access Checks
	LGI$ICB_PASSWORD—Produce Password Prompt
	LGI$ICB_PWDEXPIRED—Password Expiration
	LGI$ICB_USERPARSE—Parse Username
	LGI$ICB_USERPROMPT—Prompt for Username
	LGI$ICB_VALIDATE—Validate User Name and Passwords

	14 Mail Utility (MAIL) Routines
	14.1 Messages
	14.2 Folders
	14.3 Mail Files
	14.4 User Profile Database
	14.5 Mail Utility Processing Contexts
	14.5.1 Callable Mail Utility Routines
	14.5.2 Single and Multiple Threads

	14.6 Programming Considerations
	14.6.1 Condition Handling
	14.6.2 Item Lists and Item Descriptors
	14.6.3 Action Routines

	14.7 Managing Mail Files
	14.7.1 Opening and Closing Mail Files
	14.7.2 Displaying Folder Names
	14.7.3 Purging Mail Files Using the Wastebasket Folder

	14.8 Message Context
	14.8.1 Selecting Messages
	14.8.2 Reading and Printing Messages
	14.8.3 Modifying Messages
	14.8.4 Copying and Moving Messages
	14.8.5 Deleting Messages

	14.9 Send Context
	14.9.1 Sending New Messages
	14.9.2 Sending Existing Messages
	14.9.3 Send Action Routines

	14.10 User Profile Context
	14.10.1 User Profile Entries

	14.11 Input Item Codes
	14.12 Output Item Codes
	14.13 Using the MAIL Routines: Examples
	14.14 MAIL Routines
	MAIL$MAILFILE_BEGIN—Start Mail File Processing
	MAIL$MAILFILE_CLOSE—Close the Current Mail File
	MAIL$MAILFILE_COMPRESS—Compress Mail File
	MAIL$MAILFILE_END—End Mail File Processing
	MAIL$MAILFILE_INFO_FILE—Get Information About a Mail File
	MAIL$MAILFILE_MODIFY—Modify Record of an Indexed File
	MAIL$MAILFILE_OPEN—Open a Mail File for Processing
	MAIL$MAILFILE_PURGE_WASTE—Delete Wastebasket Messages
	MAIL$MESSAGE_BEGIN—Start Message Processing
	MAIL$MESSAGE_COPY—Copy Messages to Another File or Folder
	MAIL$MESSAGE_DELETE—Delete Message From Current Folder
	MAIL$MESSAGE_END—End Message Processing
	MAIL$MESSAGE_GET—Get Message From a Set of Messages
	MAIL$MESSAGE_INFO—Get Information About a Message
	MAIL$MESSAGE_MODIFY—Modify Header Information
	MAIL$MESSAGE_SELECT—Select Message from Current Mail File
	MAIL$SEND_ABORT—Cancel Send Operation
	MAIL$SEND_ADD_ADDRESS—Add Address to List
	MAIL$SEND_ADD_ATTRIBUTE—Add Attribute to the Current Message
	MAIL$SEND_ADD_BODYPART—Build Message Body
	MAIL$SEND_BEGIN—Start Sending Message
	MAIL$SEND_END—End Sending Message
	MAIL$SEND_MESSAGE
	MAIL$USER_BEGIN—Access the User Profile Database
	MAIL$USER_DELETE_INFO—Delete Database Record
	MAIL$USER_END—End Access to the User Profile Database
	MAIL$USER_GET_INFO—Get User Profile Information
	MAIL$USER_SET_INFO—Add User Profile Information

	15 National Character Set (NCS) Utility Routines
	15.1 Introduction to NCS Routines
	15.1.1 List of NCS Routines
	15.1.2 Sample Application Process

	15.2 Using the NCS Utility Routines: Examples
	15.3 NCS Routines
	NCS$COMPARE—Compare Strings
	NCS$CONVERT—Convert String
	NCS$END_CF—End Conversion Function
	NCS$END_CS—End Collating Sequence
	NCS$GET_CF—Get Conversion Function
	NCS$GET_CS—Get Collating Sequence
	NCS$RESTORE_CF—Restore Conversion Function
	NCS$RESTORE_CS—Restore Collating Sequence
	NCS$SAVE_CF—Save Conversion Function
	NCS$SAVE_CS—Save Collating Sequence

	16 Print Symbiont Modification (PSM) Routines
	16.1 Introduction to PSM Routines
	16.2 Print Symbiont Overview
	16.2.1 Components of the Print Symbiont
	16.2.2 Creation of the Print Symbiont Process
	16.2.3 Symbiont Streams
	16.2.4 Symbiont and Job Controller Functions
	16.2.5 Print Symbiont Internal Logic

	16.3 Symbiont Modification Procedure
	16.3.1 Guidelines and Restrictions
	16.3.2 Writing an Input Routine
	16.3.3 Writing a Format Routine
	16.3.4 Writing an Output Routine
	16.3.5 Other Function Codes
	16.3.6 Writing a Symbiont Initialization Routine
	16.3.7 Integrating a Modified Symbiont

	16.4 Using the PSM Routines: An Example
	16.5 PSM Routines
	PSM$PRINT—Invoke OpenVMS-Supplied Print Symbiont
	PSM$READ_ITEM_DX—Obtain Value of Message Items
	PSM$REPLACE—Declare User Service Routine
	PSM$REPORT—Report Completion Status
	USER-FORMAT-ROUTINE—Invoke User-Written Format Routine
	USER-INPUT-ROUTINE—Invoke User-Written Input Routine
	USER-OUTPUT-ROUTINE—Invoke User-Written Output Routine

	17 Symbiont/Job Controller Interface (SMB) Routines
	17.1 Introduction to SMB Routines
	17.1.1 Types of Symbiont
	17.1.2 Symbionts Supplied with the Operating System
	17.1.3 Symbiont Behavior in the OpenVMS Environment
	17.1.4 Writing a Symbiont
	17.1.5 Guidelines for Writing a Symbiont
	17.1.6 The Symbiont/Job Controller Interface Routines
	17.1.7 Choosing the Symbiont Environment
	17.1.8 Reading Job Controller Requests
	17.1.9 Processing Job Controller Requests
	17.1.10 Responding to Job Controller Requests

	17.2 SMB Routines
	SMB$CHECK_FOR_MESSAGE—Check for Message from Job Controller
	SMB$INITIALIZE—Initialize User-Written Symbiont
	SMB$READ_MESSAGE—Obtain Message Sent by Job Controller
	SMB$READ_MESSAGE_ITEM—Parse Next Item from Message Buffer
	SMB$SEND_TO_JOBCTL—Send Message to Job Controller

	18 Sort/Merge (SOR) Routines
	18.1 High-Performance Sort/Merge (Alpha Only)
	18.1.1 High-Performance SOR Routine Behavior
	18.1.2 Using Threads with High-Performance Sort/Merge

	18.2 Introduction to SOR Routines
	18.2.1 Arguments to SOR Routines
	18.2.2 Interfaces to SOR Routines
	18.2.3 Reentrancy

	18.3 Using the SOR Routines: Examples
	18.4 SOR Routines
	SOR$BEGIN_MERGE—Initialize a Merge Operation
	SOR$BEGIN_SORT—Begin a Sort Operation
	SOR$DTYPE—Define Data Type
	SOR$END_SORT—End a Sort Operation
	SOR$PASS_FILES—Pass File Name
	SOR$RELEASE_REC—Pass One Record to Sort
	SOR$RETURN_REC—Return One Sorted Record
	SOR$SORT_MERGE—Sort
	SOR$SPEC_FILE—Pass a Specification File Name
	SOR$STAT—Obtain a Statistic

	Index
	Examples
	Example 2–1 Calling the ACL Editor with a VAX BLISS Program
	Example 3–1 Calling the Backup API with a VAX C Program
	Example 4–1 Using the CLI Routines to Retrieve Information About Command Lines in a Fortran Program
	Example 5–1 Using UTIL$CQUAL Routines to Process Files
	Example 6–1 Using the CONVERT Routines in a Fortran Program
	Example 6–2 Using the CONVERT Routines in a C Program
	Example 6–3 Using the CONV$RECLAIM Routine in a Fortran Program
	Example 6–4 Using the CONV$RECLAIM Routine in a C Program
	Example 7–1 Compressing a File in a Compaq Fortran Program
	Example 7–2 Expanding a Compressed File in a Compaq Fortran Program
	Example 8–1 Sample VAX BLISS Template for Callable DECTPU
	Example 8–2 Normal DECTPU Setup in Compaq Fortran
	Example 8–3 Building a Callback Item List with Compaq Fortran
	Example 8–4 Specifying a User-Written File I/O Routine in VAX C
	Example 9–1 Using the EDT Routines in a VAX BASIC Program
	Example 10–1 Using FDL$CREATE in a Fortran Program
	Example 10–2 Using FDL$PARSE and FDL$RELEASE in a C Program
	Example 10–3 Using FDL$PARSE and FDL$GENERATE in a Compaq Pascal Program
	Example 11–1 Creating a New Library Using Compaq Pascal
	Example 11–2 Inserting a Module into a Library Using Compaq Pascal
	Example 11–3 Extracting a Module from a Library Using Compaq Pascal
	Example 11–4 Deleting a Module from a Library Using Compaq Pascal
	Example 11–5 Associating Keys with Modules
	Example 11–6 Listing Keys Associated with a Module
	Example 11–7 Displaying the Module Header
	Example 11–8 Reading Library Headers
	Example 11–9 Displaying Text from a Help Library
	Example 11–10 Displaying Index Entries
	Example 14–1 Sending a File
	Example 14–2 Displaying Folders
	Example 14–3 Displaying User Profile Information
	Example 15–1 Using NCS Routines in a Compaq Fortran for OpenVMS Program
	Example 15–2 Using NCS Routines in a Compaq C for OpenVMS VAX Program
	Example 16–1 Using PSM Routines to Supply a Page Header Routine in a VAX MACRO Program
	Example 18–1 Using SOR Routines to Perform a Merge Using Record Interface in a Compaq Fortran Program
	Example 18–2 Using SOR Routines to Sort Using Mixed Interface in a Compaq Fortran Program
	Example 18–3 Using SOR Routines to Merge Three Input Files in a Compaq Pascal Program
	Example 18–4 Using SOR Routines to Sort Records from Two Input Files in a Compaq Pascal Program
	Example 18–5 Using SOR Routines to Sort Records Using the STABLE Option and Two Text Keys in a Compaq C Program

	Figures
	Figure 11–1 Structure of a Macro, Text, or Help Library
	Figure 11–2 Structure of an Object or Shareable Image Library
	Figure 11–3 Structure of a User-Developed Library
	Figure 13–1 LOGINOUT Callout Routines Data Flow
	Figure 13–2 Callout Organization
	Figure 14–1 Standard Message Format
	Figure 14–2 Item Descriptor
	Figure 16–1 Multithreaded Symbiont
	Figure 16–2 Symbiont Execution Sequence or Flow of Control
	Figure 17–1 Symbionts in the OpenVMS Environment
	Figure 17–2 Flowchart for a Single-Threaded, Synchronous Symbiont
	Figure 17–3 Flowchart for a Single-Threaded, Asynchronous Symbiont (MAIN Routine)
	Figure 17–4 Flowchart for a Single-Threaded, Asynchronous Symbiont (AST Routine)

	Tables
	Table 3–1 Backup API Language Definition Files
	Table 3–2 BACKUP Option Structure Types
	Table 3–3 bckEvent Format
	Table 3–4 Event Callback Buffer Formats
	Table 3–5 Control Event Subtypes
	Table 3–6 bckControl Format
	Table 5–1 UTIL$CQUAL Routines
	Table 5–2 UTIL$CQUAL_FILE_PARSE Command Line Qualifiers
	Table 5–3 UTIL$CQUAL_FILE_PARSE Flags and Masks
	Table 5–4 Prompting Form Values
	Table 5–5 Prompt Responses
	Table 6–1 Conversion Statistics Array
	Table 6–2 CONVERT Qualifiers
	Table 6–3 Bucket Reclamation Statistics Array
	Table 8–1 Valid Masks for the TPU$K_OPTIONS Item Code
	Table 11–1 LBR Routines
	Table 13–1 LOGINOUT Callouts
	Table 13–2 LOGINOUT Callback Routines
	Table 13–3 Useful LOGINOUT Internal Variables
	Table 14–1 Default Mail Folders
	Table 14–2 User Profile Information
	Table 14–3 Levels of Mail Utility Processing
	Table 14–4 Callable Mail Utility Routines
	Table 14–5 Types of Action Routines
	Table 14–6 Mail File Routines
	Table 14–7 Message Routines
	Table 14–8 Send Routines
	Table 14–9 User Profile Context Routines
	Table 14–10 Input Item Codes
	Table 14–11 Output Item Codes
	Table 15–1 NCS Routines
	Table 16–1 Routine Codes for Specification to PSM$REPLACE
	Table 17–1 Job Controller Functions
	Table 18–1 High-Performance Sort/Merge: Differences in SOR$ Routine Behavior

