M5M4464P-12, -15

ELIMINARY is not a final specification is not a final sea subject t netric limits are subject t 262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

DESCRIPTION

This is family of 65536-word by 4-bit dynamic RAMs, fabricated with the high performance N-channel silicon-gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 18-pin package configuration and an increase in system densities. The M5M4464P operates on a 5V power supply using the on-chip substrate bias generator.

FEATURES

Performance ranges

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4464P-12	120	220	260
M5M4464P-15	150	260	230

- 65536 x 4 Organization
- Industry standard 18-pin dual in line package
- Single 5V ±10% supply
- Low standby power dissipation:
- Low operating power dissipation:

M5M4464P-12

22mW (max)

M5M4464P-15

360mW (max) 330mW (max)

- PIN CONFIGURATION (TOP VIEW) OUTPUT ENABLE DE 18 Vss (0V) INPUT 17 ↔ DQ₄ DATA IN/DATA OUT DO 2 DATA IN/ DATA OUT 16 CAS COLUMN ADDRESS 3 DO STROBE INPUT WRITE M5M4464F 15 ↔ DQ3 DATA IN/DATA 4 CONTROL INPUT OUT ROW ADDRESS RAS 5 14 - A0 STROBE INPUT 13+ - A1 ADDRESS ADDRESS 7 12 + A2 INPUTS INPUTS - A 3 A 11 (5V) Vcc 9 10 - A 7 **Outline 18 P4**
- All Inputs, outputs TTL compatible and low capacitance
- 3-State unlatched outputs
- 256 refresh cycles/4ms
- Early write or \overline{OE} to control output buffer impedance
- Read-Modify-Write, RAS-only refresh, Hidden refresh and Page mode capabilities
- Wide \overline{RAS} pulse width for Page mode 30μ s max

APPLICATION

- Refresh memory for CRT
- Micro computer memory

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

FUNCTION

The M5M4464P provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, \overline{RAS} -only refresh, hidden refresh, and delayed-write. The input conditions and output states for each are shown in Table 1.

Table 1 Input conditions for each mode

			Ing	outs			Input/Output			
Operation	PAS		14/	05	Row	Column	Input	Output	Refresh	Remarks
	HA3	CAS	vv	UE	address	adress	DQ	DQ		
Read	ACT	ACT	NAC	ACT	APD	APD	OPN	VLD	YES	
Write (Early Write)	ACT	ACT	ACT	DNC	APD	APD	VLD	OPN	YES	Page mode identical
Read-modify-write	ACT	ACT	ACT	ACT	APD	APD	VLD	VLD	YES	
RAS-only retfesh	ACT	NAC	DNC	DNC	APD	DNC	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	ACT	APD	DNC	OPN	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note. ACT active, NAC nonacitive, DNC don't care, VLD valid, APD applied, OPN open.

SUMMARY OF OPERATIONS

Addressing

To select one of the 262144 memory cells in the M5M4464P the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to CAS $t_{d(RAS-CAS)}$ is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until $t_{d(RAS-CAS)max}$ ('gated $\overline{CAS'}$ operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

write enable (W)

The read or write mode is selected through the write enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} ,

data-out will remain in the high-impedance state allowing a write cycle with $\overline{\text{OE}}$ grounded.

data-in (DQ1 through DQ4)

Data is written during a write or read-modify write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early-write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal. In delayed be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal. In delayed or read-modify-write, \overline{OE} must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data-out (DQ1 through DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan-out of two Series 74 TTL loads. Data-out is the same polarity as data-in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval t_a(C) that begins with the negative transition of \overline{CAS} as long as $t_a(R)$ and $t_a(OE)$ are satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} and \overline{OE} are low. CAS or OE going high returns it to a high impedance state. In an early-write cycle, the output is always in the high-impedance state. In a delayed-write or read-modifywrite cycle, the output must be put in the high impedance state prior to applying data to the DQ input. This is accomplished by bringing OE high prior to applying data, thus satisfying toehd

M5M4464P-12, -15

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

output enable (OE)

The \overline{OE} controls the impedance of the output buffers. When \overline{OE} is high, the buffers will remain in the high impedance state. Bringing \overline{OE} low during a normal cycle will activate the output buffers putting them in the low impedance state. It is necessary for both RAS and CAS to be brought low for the output buffers to go into the low impedance state. Once in the low impedance state, they will remain in the low impedance state until \overline{OE} or \overline{CAS} is brought high.

Page-Mode Operation

This operation allows for multiple-column operating at the same row address, and eliminates the power dissipation associated with the cycling of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 256 rows ($A_0 \sim A_7$) of the M5M4464P must be refreshed every 4 ms to maintain data. The methods of refreshing for the M5M4464P are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

In this refresh method, the \overline{CAS} clock should be at a V_{IH} level and the system must perform \overline{RAS} Only cycle on all 256 row address every 4 ms. The sequential row addresses from an external counter are latched with the \overline{RAS} clock and associated internal row locations are refreshed. A \overline{RAS} Only Refresh cycle maintains the output in the high impedance state with a typical power reduction of 20% over a read or write cycle.

3. CAS before RAS Refresh

If \overline{CAS} falls $t_{SUR(CAS-RAS)}$ earlier than \overline{RAS} and if \overline{CAS} is kept low by $t_{hR(RAS-CAS)}$ after \overline{RAS} falls, \overline{CAS} before \overline{RAS} Refresh is initiated. The external address is ignored and the refresh address generated by the internal 8-bit counter is put into the address buffer to refresh the corresponding row. The output will stay in the high impedance state.

If \overline{CAS} is kept low after the above operation, \overline{RAS} cycle initiates \overline{RAS} Only Refresh with internally generated refresh address (Automatic refresh). The output will again stay in the high impedance state.

Bringing \overline{RAS} high and then low while \overline{CAS} remains high initiates the normal \overline{RAS} Only Refresh using the external address.

*If \overline{CAS} is kept low after the normal read/write cycle, \overline{RAS} cycle initiates the \overline{RAS} Only Refresh using the internal refresh address and especially after the normal read cycle, it becomes Hidden Refresh with internal address. The output is available unit \overline{CAS} is brought high.

4. Hidden Refresh

A feature of the M5M4464P is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4464P is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5M4464P as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5M4464P operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	parameter	Condtions	Limits	Unit
Vcc	Supply volrage		-1~7	V
VI	Input voltage	With respect to \vee_{SS}	-1~7	V
Vo	Output voltage		-1-7	V
10	Output current		50	mA
Pd	Power dissipation	T _a =25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted) (Note 1)

Symbol	D		Unit		
	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage	0	0	0	V
VIH	High-level input voltage, all inputs	2.4		6.5	V
VIL	Low-level input voltage, all inputs	-2.0		0.8	V

Note 1: All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

Cumbal	Perameter		Tost conditions		Unit		
Sympol	Parameter		Test conditions	Min	Тур	Max	Unit
V _{OH}	High-level output voltage		I _{OH} =-2mA	2.4		Vcc	۷.
Vol	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating 0V≤V _{OUT} ≤5.5V	-10		10	μA
Ц	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins $= 0V$	-10		10	μA
	Average supply current from V _{cc} ,	M5M4464P-12	RAS, CAS cycling			65	mA
CC1(AV)	operating (Note 3,4)	M5M4464P-15	$t_c(rd) = t_c(w) = min \text{ output open}$			60	mA
I CC2	Supply current from Vcc, standby		RAS = VIH output open			4	mA
	Average supply current from Vcc,	M5M4464P-12	\overline{RAS} cycling $\overline{CAS} = V_{1H}$			55	mA
CC3(AV)	retreshing (Note 3)	M5M4464P-15	tc (Prd) = min, output open			50	mA
	Average supply current from Vcc,	M5M4464P-12	$\overline{RAS} = V_{IL}, \overline{CAS}$ cycling			50	mA
'CC4(AV)	page mode (Note 3,4)	M5M4464P-15	to (Prd) = min, output open			45	mA
1	Average supply current from Vcc,	M5M4464P-12	CAS before RAS refresh cycling			60	mA
ICC6(AV)	CAS before RAS refresh mode (Note 3)	M5M4464P-15	t_{C} (RAS) = min, output open			55	mA

Note 2: Current flowing into an IC is positive, out is negative.
3: I_{CC1}(AV), I_{CC3}(AV), and I_{CC4}(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.
4: I_{CC1}(AV) and I_{CC4}(AV) are dependent on output loading. Specified values are obtained with the output open.

$\label{eq:capacity} \textbf{CAPACITANCE} \; (\texttt{T}_a \!=\! 0 \!\sim\! 70^\circ \! \texttt{C} \,, \; \texttt{V}_{CC} \!=\! 5 \! \lor \pm \! 10 \, \%, \; \texttt{V}_{SS} \!=\! 0 \, \texttt{V} \,, \; \texttt{unless otherwise noted} \,)$

				Unit		
Symbol	Parameter	lest conditions	Min	Тур	Max	Onit
CI(A)	Input capacitance, address inputs				5	pF
CI(OE)	Input capacitance, OE input	VI=VSS			7	pF
CI(W)	Input capacitance, write control input	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input	Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input	· ·			10	pF
C1/0	Input/Output capacitance, data ports				10	рF

M5M4464P-12, -15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

SWITCHING CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±10%, V_{SS}=0V, unless otherwise noted) (Note 5)

			Alternative	M5M4464P-12 Limits		M5M44	164P-15	
Symbol	Parameter	Limits				Unit		
			Symbol	Min	Ma×	Min	Max	
ta(C)	Access time from CAS	(Note 6,7)	t _{CAC}		60		75	ns
ta(R)	Access time from RAS	(Note 6,8)	t RAC		120		150	ns
ta(OE)	Access time from OE	(Note 6)			30		40	ns
tdis(CH)	Output disable time after CAS high	(Note 9)	t _{OFF}	0	25	0	. 30	ns
tdis(OE)	Output disable time after OE high	(Note 9)		0	25	0	30	ns

Note 5: An initial pause of 500 µs is required after power-up followed by any 8 RAS or RAS/CAS cycles before proper device operation is achieved. Note that $\overline{\text{RAS}}$ may be cycled during the initial pause.

And any 8 RAS or RAS/CAS cycles are required after prolonged periods (greater than 2ms) of RAS inactivity before proper device operation is achieved.

6: Measured with a load circuit equivalent to 2TTL loads and 100pF.

7: Assume that t_{RCCL} ≥ t_{RLCL} max.

8: Assume that $t_{RLCL} < t_{RLCL}$ max. If t_{RLCL} is greater than t_{RLCL} max then $t_{a(R)}$ will increase by the amount that t_{RLCL} exceeds t_{RLCL} max.

 $t_{dis(CH)}$ max and $t_{dis(OE)}$ max define the time at which the output achieves the high impedance state ($I_{OUT} \leq |\pm 10\mu A|$) and are not reference to V_{OH} 9: min or V_{OL} max.

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycles)

 $(T_a = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, unless otherwise noted, See notes 10,11)$

	· · · · · · · · · · · · · · · · · · ·			M5M44	64P-12	M5M44	64P-15	
Symbol	Parameter		Symbol	Limits		Limits		Unit
				Min	Ma×	Min	Max	
t _{C(RF)}	Refresh cycle time		tREF		4		4	ms
t _{w(RH)}	RAS high pulse width		t _{RP}	90		100	· .	ns
t _{RLCL}	Delay time, RAS low to CAS low	(Note 12)	t _{RCD}	25	60	30	75	ns
t _{CHRL}	Delay time, CAS high to RAS low	·(Note 13)	tCRP	10		10		ns
t _{su(RA)}	Row address setup time before RAS low		tASR	· 0		0		ns
t _{su(CA)}	Column address setup time before CAS low		tASC	0		. 0		ns
th(RA)	Row address hold time after RAS low		tRAH	15		20		ns
th(CLCA)	Column address hold time after CAS low		t _{CAH}	20		25		ns
th(RLCA)	Column address hold time after RAS low	1.1	t _{AR}	80		100		ns
t _T	Transition time (rise and fall)	(Note 14)	t _T	3	50	3	50	ns

Note 10: The timing requirements are assumed t_T=5ns.

11: VIH min and VIL max are reference levels for measuring timing of input signals.

12: tRLCL max is specified as a reference point only; if tRLCL is less than tRLCL max, access time is ta(R), if tRLCL is greater than tRLCL max, access time is tqLCL + ta (c). tqLCL min is specified as tqLCL min. = th (qA) + 2 tT + tgU(CA).
tCHRL requirement is only applicable for RAS/CAS cycles preceded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS).

14: t_T is measured between VIH min and VIL max.

Read and Refresh Cycles

			M5M4	464P-12	M5M4		
Symbol	Parameter	Symbol	Limits		Limits		Uņit
		0,00	Min	Max	Min	Max	
tc(rd)	Read cycle time	t _{RC}	220		260		ns
tw(RL)	RAS low pulse width	t _{RAS}	120	10000	150	10000	ns
tw(CL)	CAS low pulse width	t _{CAS}	60		75		ns
tw(CH)	CAS high pulse width	t _{CPN}	30		35		ns
th(RLCH)	CAS hold time after RAS low	t _{CSH}	120		150		ns
th(CLRH)	RAS hold time after CAS low	t _{RSH}	60		75		ns
tsu(rd)	Read setup time before CAS low	t _{RCS}	0		0		ns
th(CHrd)	Read hold time after CAS high (Note 15)	t _{RCH}	0		0		ns
th(RHrd)	Read hold time after RAS high (Note 15)	t _{RRH}	10		10		ns
th(OECH)	CAS hold time after OE low		30		40		ns
th (OERH)	RAS hold time after OE low	-	30		40	,	ns
th(CLOE)	OE hold time after CAS low	-	60		75		ns
th(RLOE)	OE hold time after RAS low	-	120		150		ns
t DOEL	Delay time, Data to OE low	-	0		0		ns
t _{OEHD}	Delay time, OE high to Data	_	25		30		ns
t _{BHCL}	Delay time, RAS high to CAS low	-	0		0		ns

Note 15: Either th(CHrd) or th(RHrd) must be satisfied for a read cycle.

M5M4464P-12, -15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

Write Cycles (Early Write and Delayed Write)

		Alternation	M5M44	64P-12	M5M44		
Symbol	Parameter	Symbol	Lir	nits			Unit
		5,	Min	Max	Min	Max	
t _{c(w)}	Write cycle time	t _{RC}	220		260		ns
tw(RL)	RAS low pulse width	t _{RAS}	120	10000	150	10000	ns
tw(CL)	ÇAS low pulse width	t _{CAS}	60		75		ns
tw(сн)	CAS high pulse width	t _{CPN}	30		35		ns
th(RLCH)	TAS hold time after RAS low	t _{CSH}	120		150		ns
th (CLRH)	RAS hold time after CAS low	t _{RSH}	60		75		ns
t _{su(wCL)}	Write setup time before CAS low (Note 17)	twcs	-5		-5		ns
th(CLW)	Write hold time after \overline{CAS} low	t _{wcн}	40		45		ns
th(RLW)	Write hold time after RAS low	t _{WCR}	100		120		ns
t _{h(wcн)}	CAS hold time after Write low	tcw∟	40		45		ns
t _{h (WRH)}	RAS hold time after Write low	t _{RWL}	40		45		ns
t _{w(w)}	Write pulse width	t _{WP}	40		45		ns
t _{su(D)}	Data setup time	t _{DS}	0		0		ns
th(wLD)	Data hold time after Write low	t _{DH}	30		35		ns
th(CLD)	Data hold time after CAS low	t _{DH}	30		35		ns
th(RLD)	Data hold time after RAS low	t _{DHR}	90		110		ns
t _{OEHD}	Delay time, OE high to Data		25		30		ns
th(woe)	OE hold time after Write low	-	25		30		ns

Read-Write and Read-Modify-Write Cycles

			M5M44	64P-12	M5M4464P-15			
Symbol	Parameter	Alternative	Lir	nits	Lir	nits	Unit	
			Min	Max	Min	Max		
t _{c(rdW)}	Read write/read modify write cycle time (Note 16)	t _{RWC}	295		345		ns	
tw(RL)	RAS low pulse width	t _{RAS}	195	10000	255	10000	ns	
tw(CL)	CAS low pulse width	t _{CAS}	135		180	·	ns	
th(RLCH)	CAS hold time after RAS low	t _{CSH}	195		255		ns	
th(CLRH)	RAS hold time after CAS low	t _{RSH}	135		180		ns	
t _{w(CH)}	CAS high pulse width	t _{CPN}	30		35		ns	
tsu(rd)	Read setup time before CAS low	t RCS	0		0		ns	
t _{CLWL}	Delay time, CAS low to Write low (Note 17)	tcwD	90		110		ns	
t _{rlwl}	Delay time, RAS low to Write low (Note 17)	t _{RWD}	150		185		ns	
th(wcH)	CAS hold time after Write low	t _{CW∟}	40		45		ns	
th(WRH)	RAS hold time after Write low	t _{RWL}	40		45		ns	
t _{w(W)}	Write pulse width	twp	40		45		ns	
t _{su(D)}	Data setup time	t _{DS}	0		0		ns	
th(WLD)	Data hold time after Write low	t _{DH}	40		45		ns	
th(CLOE)	OE hold time after CAS low	-	60		75		ns	
th(RLOE)	DE hold time after RAS low	_	120		150		ns	
t _{DOEL}	Delay time, Data to DE low	_	0		0		ns	
t _{oehd}	Delay time, OE high to Data	-	25		30		ns	

Note 16: $t_{C(rdW)}$ is specified as $t_{C(rdW)}$ min = $t_{a}(R)$ max + t_{OEHD} min + $t_{h}(WRH)$ min + $t_{W}(RH)$ min + $4 t_{T}$. 17: $t_{SU}(WCL)$, $t_{C(WL)}$ and t_{RLWL} are specified as reference points only. If $t_{SU}(WCL) \ge t_{SU}(WCL)$ min, the cycle is an early write cycle and the DQ pins will remain high impedance throughout the entire cycle. If $t_{CLWL} \ge t_{CLWL}$ min and $t_{RLWL} \ge t_{RLWL}$ min, the cycle is a read-modify-write cycle and the DQ pins will contain the data read from the selected address. If neither of the above condition is satisfied, the condition of the DQ (at access time and until \overline{CAS} or $\overline{\text{OE}}$ goes back to V_{IH}) is indeterminate.

M5M4464P-12, -15

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Page-Mode Cycle (Note 18)

Symbol	Parameter			M5M4464P-12 Limits		M5M44	464P-15	
			Symbol			Limits		Unit
				Min	Max	Min	Max	
t _{c(Prd)}	Read cycle time		t _{PC}	120		145		ns
t _{c(PW)}	Write cycle time		t _{PC}	120		· 145		ns
tw(RL)	RAS low pulse width	(Note 19)	tras	240	30000	295	30000	ns
t _{c(PrdW)}	Read write/read modify write cycle time		-	195		250		ns
tw(RL)	RAS low pulse width	(Note 20)	t _{RAS}	390	30000	505	30000	ns
t _{w(CH)}	CAS high pulse width		t _{CP}	50		60		ns

Note 18: All previously specified timing requirements and switching characteristics are applicable to their respective page mode timing.

19:

Specified for read or write cycle. Specified for read-write or read-modify-write cycle. 20:

CAS before RAS Refresh Cycle (Note 21)

Symbol	Parameter	Alternative Symbol	M5M4464P-12		M5M4464P-15		Unit
			Limits		Limits		
			Min	Max	Min	Max	
t _{su R} (Cas-Ras)	CAS setup time for auto refresh	t _{CSR}	10		10		ns
thr(ras-cas)	CAS hold time for auto refresh	t _{CHR}	25		30		ns
td R (RAS-CAS)	Precharge to CAS active time	t _{RPC}	0		0		ns

Note 21: Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

TIMING DIAGRAMS (Note 22)

Read Cycle

Note 22.

Indicates the don't care input.

M5M4464P-12, -15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

Write Cycle (Early Write)

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

Write Cycle (Delayed Write)

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Read-Write and Read-Modify-Write Cycles

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

RAS-Only Refresh Cycle

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

Page-Mode Read Cycle

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

Page-Mode Write Cycle

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

